]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
KVM: x86: pass host_initiated to functions that read MSRs
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM),
50 {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 MSR_FS_BASE,
86 #endif
87 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95 struct vmcb *hsave;
96 u64 hsave_msr;
97 u64 vm_cr_msr;
98 u64 vmcb;
99
100 /* These are the merged vectors */
101 u32 *msrpm;
102
103 /* gpa pointers to the real vectors */
104 u64 vmcb_msrpm;
105 u64 vmcb_iopm;
106
107 /* A VMEXIT is required but not yet emulated */
108 bool exit_required;
109
110 /* cache for intercepts of the guest */
111 u32 intercept_cr;
112 u32 intercept_dr;
113 u32 intercept_exceptions;
114 u64 intercept;
115
116 /* Nested Paging related state */
117 u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
126 */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130 struct kvm_vcpu vcpu;
131 struct vmcb *vmcb;
132 unsigned long vmcb_pa;
133 struct svm_cpu_data *svm_data;
134 uint64_t asid_generation;
135 uint64_t sysenter_esp;
136 uint64_t sysenter_eip;
137
138 u64 next_rip;
139
140 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 struct {
142 u16 fs;
143 u16 gs;
144 u16 ldt;
145 u64 gs_base;
146 } host;
147
148 u32 *msrpm;
149
150 ulong nmi_iret_rip;
151
152 struct nested_state nested;
153
154 bool nmi_singlestep;
155
156 unsigned int3_injected;
157 unsigned long int3_rip;
158 u32 apf_reason;
159
160 u64 tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165
166 #define MSR_INVALID 0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169 u32 index; /* Index of the MSR */
170 bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 { .index = MSR_STAR, .always = true },
173 { .index = MSR_IA32_SYSENTER_CS, .always = true },
174 #ifdef CONFIG_X86_64
175 { .index = MSR_GS_BASE, .always = true },
176 { .index = MSR_FS_BASE, .always = true },
177 { .index = MSR_KERNEL_GS_BASE, .always = true },
178 { .index = MSR_LSTAR, .always = true },
179 { .index = MSR_CSTAR, .always = true },
180 { .index = MSR_SYSCALL_MASK, .always = true },
181 #endif
182 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
183 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
184 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
185 { .index = MSR_IA32_LASTINTTOIP, .always = false },
186 { .index = MSR_INVALID, .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
218 VMCB_ASID, /* ASID */
219 VMCB_INTR, /* int_ctl, int_vector */
220 VMCB_NPT, /* npt_en, nCR3, gPAT */
221 VMCB_CR, /* CR0, CR3, CR4, EFER */
222 VMCB_DR, /* DR6, DR7 */
223 VMCB_DT, /* GDT, IDT */
224 VMCB_SEG, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2, /* CR2 only */
226 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235 vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246 vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251 return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256 struct vmcb_control_area *c, *h;
257 struct nested_state *g;
258
259 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261 if (!is_guest_mode(&svm->vcpu))
262 return;
263
264 c = &svm->vmcb->control;
265 h = &svm->nested.hsave->control;
266 g = &svm->nested;
267
268 c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276 if (is_guest_mode(&svm->vcpu))
277 return svm->nested.hsave;
278 else
279 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 vmcb->control.intercept_cr |= (1U << bit);
287
288 recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 struct vmcb *vmcb = get_host_vmcb(svm);
294
295 vmcb->control.intercept_cr &= ~(1U << bit);
296
297 recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302 struct vmcb *vmcb = get_host_vmcb(svm);
303
304 return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 | (1 << INTERCEPT_DR1_READ)
313 | (1 << INTERCEPT_DR2_READ)
314 | (1 << INTERCEPT_DR3_READ)
315 | (1 << INTERCEPT_DR4_READ)
316 | (1 << INTERCEPT_DR5_READ)
317 | (1 << INTERCEPT_DR6_READ)
318 | (1 << INTERCEPT_DR7_READ)
319 | (1 << INTERCEPT_DR0_WRITE)
320 | (1 << INTERCEPT_DR1_WRITE)
321 | (1 << INTERCEPT_DR2_WRITE)
322 | (1 << INTERCEPT_DR3_WRITE)
323 | (1 << INTERCEPT_DR4_WRITE)
324 | (1 << INTERCEPT_DR5_WRITE)
325 | (1 << INTERCEPT_DR6_WRITE)
326 | (1 << INTERCEPT_DR7_WRITE);
327
328 recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333 struct vmcb *vmcb = get_host_vmcb(svm);
334
335 vmcb->control.intercept_dr = 0;
336
337 recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342 struct vmcb *vmcb = get_host_vmcb(svm);
343
344 vmcb->control.intercept_exceptions |= (1U << bit);
345
346 recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351 struct vmcb *vmcb = get_host_vmcb(svm);
352
353 vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355 recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360 struct vmcb *vmcb = get_host_vmcb(svm);
361
362 vmcb->control.intercept |= (1ULL << bit);
363
364 recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369 struct vmcb *vmcb = get_host_vmcb(svm);
370
371 vmcb->control.intercept &= ~(1ULL << bit);
372
373 recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378 svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394 u16 limit0;
395 u16 base0;
396 unsigned base1:8, type:5, dpl:2, p:1;
397 unsigned limit1:4, zero0:3, g:1, base2:8;
398 u32 base3;
399 u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403 int cpu;
404
405 u64 asid_generation;
406 u32 max_asid;
407 u32 next_asid;
408 struct kvm_ldttss_desc *tss_desc;
409
410 struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416 int cpu;
417 int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428 u32 offset;
429 int i;
430
431 for (i = 0; i < NUM_MSR_MAPS; i++) {
432 if (msr < msrpm_ranges[i] ||
433 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 continue;
435
436 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
438
439 /* Now we have the u8 offset - but need the u32 offset */
440 return offset / 4;
441 }
442
443 /* MSR not in any range */
444 return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451 asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456 asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467 return PT64_ROOT_LEVEL;
468 #else
469 return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475 vcpu->arch.efer = efer;
476 if (!npt_enabled && !(efer & EFER_LMA))
477 efer &= ~EFER_LME;
478
479 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491 struct vcpu_svm *svm = to_svm(vcpu);
492 u32 ret = 0;
493
494 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 return ret;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501 struct vcpu_svm *svm = to_svm(vcpu);
502
503 if (mask == 0)
504 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 else
506 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512 struct vcpu_svm *svm = to_svm(vcpu);
513
514 if (svm->vmcb->control.next_rip != 0)
515 svm->next_rip = svm->vmcb->control.next_rip;
516
517 if (!svm->next_rip) {
518 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519 EMULATE_DONE)
520 printk(KERN_DEBUG "%s: NOP\n", __func__);
521 return;
522 }
523 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525 __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527 kvm_rip_write(vcpu, svm->next_rip);
528 svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532 bool has_error_code, u32 error_code,
533 bool reinject)
534 {
535 struct vcpu_svm *svm = to_svm(vcpu);
536
537 /*
538 * If we are within a nested VM we'd better #VMEXIT and let the guest
539 * handle the exception
540 */
541 if (!reinject &&
542 nested_svm_check_exception(svm, nr, has_error_code, error_code))
543 return;
544
545 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548 /*
549 * For guest debugging where we have to reinject #BP if some
550 * INT3 is guest-owned:
551 * Emulate nRIP by moving RIP forward. Will fail if injection
552 * raises a fault that is not intercepted. Still better than
553 * failing in all cases.
554 */
555 skip_emulated_instruction(&svm->vcpu);
556 rip = kvm_rip_read(&svm->vcpu);
557 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558 svm->int3_injected = rip - old_rip;
559 }
560
561 svm->vmcb->control.event_inj = nr
562 | SVM_EVTINJ_VALID
563 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564 | SVM_EVTINJ_TYPE_EXEPT;
565 svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570 u32 low, high;
571 int err;
572 u64 val;
573
574 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575 return;
576
577 /* Use _safe variants to not break nested virtualization */
578 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579 if (err)
580 return;
581
582 val |= (1ULL << 47);
583
584 low = lower_32_bits(val);
585 high = upper_32_bits(val);
586
587 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589 erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594 /*
595 * Guests should see errata 400 and 415 as fixed (assuming that
596 * HLT and IO instructions are intercepted).
597 */
598 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601 /*
602 * By increasing VCPU's osvw.length to 3 we are telling the guest that
603 * all osvw.status bits inside that length, including bit 0 (which is
604 * reserved for erratum 298), are valid. However, if host processor's
605 * osvw_len is 0 then osvw_status[0] carries no information. We need to
606 * be conservative here and therefore we tell the guest that erratum 298
607 * is present (because we really don't know).
608 */
609 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615 const char *msg;
616
617 if (!cpu_has_svm(&msg)) {
618 printk(KERN_INFO "has_svm: %s\n", msg);
619 return 0;
620 }
621
622 return 1;
623 }
624
625 static void svm_hardware_disable(void)
626 {
627 /* Make sure we clean up behind us */
628 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631 cpu_svm_disable();
632
633 amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void)
637 {
638
639 struct svm_cpu_data *sd;
640 uint64_t efer;
641 struct desc_ptr gdt_descr;
642 struct desc_struct *gdt;
643 int me = raw_smp_processor_id();
644
645 rdmsrl(MSR_EFER, efer);
646 if (efer & EFER_SVME)
647 return -EBUSY;
648
649 if (!has_svm()) {
650 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651 return -EINVAL;
652 }
653 sd = per_cpu(svm_data, me);
654 if (!sd) {
655 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656 return -EINVAL;
657 }
658
659 sd->asid_generation = 1;
660 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661 sd->next_asid = sd->max_asid + 1;
662
663 native_store_gdt(&gdt_descr);
664 gdt = (struct desc_struct *)gdt_descr.address;
665 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667 wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674 }
675
676
677 /*
678 * Get OSVW bits.
679 *
680 * Note that it is possible to have a system with mixed processor
681 * revisions and therefore different OSVW bits. If bits are not the same
682 * on different processors then choose the worst case (i.e. if erratum
683 * is present on one processor and not on another then assume that the
684 * erratum is present everywhere).
685 */
686 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687 uint64_t len, status = 0;
688 int err;
689
690 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691 if (!err)
692 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693 &err);
694
695 if (err)
696 osvw_status = osvw_len = 0;
697 else {
698 if (len < osvw_len)
699 osvw_len = len;
700 osvw_status |= status;
701 osvw_status &= (1ULL << osvw_len) - 1;
702 }
703 } else
704 osvw_status = osvw_len = 0;
705
706 svm_init_erratum_383();
707
708 amd_pmu_enable_virt();
709
710 return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717 if (!sd)
718 return;
719
720 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721 __free_page(sd->save_area);
722 kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727 struct svm_cpu_data *sd;
728 int r;
729
730 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731 if (!sd)
732 return -ENOMEM;
733 sd->cpu = cpu;
734 sd->save_area = alloc_page(GFP_KERNEL);
735 r = -ENOMEM;
736 if (!sd->save_area)
737 goto err_1;
738
739 per_cpu(svm_data, cpu) = sd;
740
741 return 0;
742
743 err_1:
744 kfree(sd);
745 return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751 int i;
752
753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754 if (direct_access_msrs[i].index == index)
755 return true;
756
757 return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761 int read, int write)
762 {
763 u8 bit_read, bit_write;
764 unsigned long tmp;
765 u32 offset;
766
767 /*
768 * If this warning triggers extend the direct_access_msrs list at the
769 * beginning of the file
770 */
771 WARN_ON(!valid_msr_intercept(msr));
772
773 offset = svm_msrpm_offset(msr);
774 bit_read = 2 * (msr & 0x0f);
775 bit_write = 2 * (msr & 0x0f) + 1;
776 tmp = msrpm[offset];
777
778 BUG_ON(offset == MSR_INVALID);
779
780 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
781 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783 msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788 int i;
789
790 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793 if (!direct_access_msrs[i].always)
794 continue;
795
796 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797 }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802 int i;
803
804 for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806 /* Offset already in list? */
807 if (msrpm_offsets[i] == offset)
808 return;
809
810 /* Slot used by another offset? */
811 if (msrpm_offsets[i] != MSR_INVALID)
812 continue;
813
814 /* Add offset to list */
815 msrpm_offsets[i] = offset;
816
817 return;
818 }
819
820 /*
821 * If this BUG triggers the msrpm_offsets table has an overflow. Just
822 * increase MSRPM_OFFSETS in this case.
823 */
824 BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829 int i;
830
831 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834 u32 offset;
835
836 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837 BUG_ON(offset == MSR_INVALID);
838
839 add_msr_offset(offset);
840 }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845 u32 *msrpm = svm->msrpm;
846
847 svm->vmcb->control.lbr_ctl = 1;
848 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856 u32 *msrpm = svm->msrpm;
857
858 svm->vmcb->control.lbr_ctl = 0;
859 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867 int cpu;
868 struct page *iopm_pages;
869 void *iopm_va;
870 int r;
871
872 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874 if (!iopm_pages)
875 return -ENOMEM;
876
877 iopm_va = page_address(iopm_pages);
878 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881 init_msrpm_offsets();
882
883 if (boot_cpu_has(X86_FEATURE_NX))
884 kvm_enable_efer_bits(EFER_NX);
885
886 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887 kvm_enable_efer_bits(EFER_FFXSR);
888
889 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890 u64 max;
891
892 kvm_has_tsc_control = true;
893
894 /*
895 * Make sure the user can only configure tsc_khz values that
896 * fit into a signed integer.
897 * A min value is not calculated needed because it will always
898 * be 1 on all machines and a value of 0 is used to disable
899 * tsc-scaling for the vcpu.
900 */
901 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903 kvm_max_guest_tsc_khz = max;
904 }
905
906 if (nested) {
907 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909 }
910
911 for_each_possible_cpu(cpu) {
912 r = svm_cpu_init(cpu);
913 if (r)
914 goto err;
915 }
916
917 if (!boot_cpu_has(X86_FEATURE_NPT))
918 npt_enabled = false;
919
920 if (npt_enabled && !npt) {
921 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922 npt_enabled = false;
923 }
924
925 if (npt_enabled) {
926 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927 kvm_enable_tdp();
928 } else
929 kvm_disable_tdp();
930
931 return 0;
932
933 err:
934 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935 iopm_base = 0;
936 return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941 int cpu;
942
943 for_each_possible_cpu(cpu)
944 svm_cpu_uninit(cpu);
945
946 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947 iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952 seg->selector = 0;
953 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955 seg->limit = 0xffff;
956 seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961 seg->selector = 0;
962 seg->attrib = SVM_SELECTOR_P_MASK | type;
963 seg->limit = 0xffff;
964 seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969 u64 mult, frac, _tsc;
970
971 mult = ratio >> 32;
972 frac = ratio & ((1ULL << 32) - 1);
973
974 _tsc = tsc;
975 _tsc *= mult;
976 _tsc += (tsc >> 32) * frac;
977 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979 return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984 struct vcpu_svm *svm = to_svm(vcpu);
985 u64 _tsc = tsc;
986
987 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990 return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995 struct vcpu_svm *svm = to_svm(vcpu);
996 u64 ratio;
997 u64 khz;
998
999 /* Guest TSC same frequency as host TSC? */
1000 if (!scale) {
1001 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002 return;
1003 }
1004
1005 /* TSC scaling supported? */
1006 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007 if (user_tsc_khz > tsc_khz) {
1008 vcpu->arch.tsc_catchup = 1;
1009 vcpu->arch.tsc_always_catchup = 1;
1010 } else
1011 WARN(1, "user requested TSC rate below hardware speed\n");
1012 return;
1013 }
1014
1015 khz = user_tsc_khz;
1016
1017 /* TSC scaling required - calculate ratio */
1018 ratio = khz << 32;
1019 do_div(ratio, tsc_khz);
1020
1021 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023 user_tsc_khz);
1024 return;
1025 }
1026 svm->tsc_ratio = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031 struct vcpu_svm *svm = to_svm(vcpu);
1032
1033 return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038 struct vcpu_svm *svm = to_svm(vcpu);
1039 u64 g_tsc_offset = 0;
1040
1041 if (is_guest_mode(vcpu)) {
1042 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043 svm->nested.hsave->control.tsc_offset;
1044 svm->nested.hsave->control.tsc_offset = offset;
1045 } else
1046 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047 svm->vmcb->control.tsc_offset,
1048 offset);
1049
1050 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057 struct vcpu_svm *svm = to_svm(vcpu);
1058
1059 if (host) {
1060 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1061 WARN_ON(adjustment < 0);
1062 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1063 }
1064
1065 svm->vmcb->control.tsc_offset += adjustment;
1066 if (is_guest_mode(vcpu))
1067 svm->nested.hsave->control.tsc_offset += adjustment;
1068 else
1069 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1070 svm->vmcb->control.tsc_offset - adjustment,
1071 svm->vmcb->control.tsc_offset);
1072
1073 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1074 }
1075
1076 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1077 {
1078 u64 tsc;
1079
1080 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1081
1082 return target_tsc - tsc;
1083 }
1084
1085 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1086 {
1087 struct vmcb_control_area *control = &svm->vmcb->control;
1088 struct vmcb_save_area *save = &svm->vmcb->save;
1089
1090 svm->vcpu.fpu_active = 1;
1091 svm->vcpu.arch.hflags = 0;
1092
1093 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1094 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1095 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1096 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1097 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1098 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1099 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1100
1101 set_dr_intercepts(svm);
1102
1103 set_exception_intercept(svm, PF_VECTOR);
1104 set_exception_intercept(svm, UD_VECTOR);
1105 set_exception_intercept(svm, MC_VECTOR);
1106
1107 set_intercept(svm, INTERCEPT_INTR);
1108 set_intercept(svm, INTERCEPT_NMI);
1109 set_intercept(svm, INTERCEPT_SMI);
1110 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1111 set_intercept(svm, INTERCEPT_RDPMC);
1112 set_intercept(svm, INTERCEPT_CPUID);
1113 set_intercept(svm, INTERCEPT_INVD);
1114 set_intercept(svm, INTERCEPT_HLT);
1115 set_intercept(svm, INTERCEPT_INVLPG);
1116 set_intercept(svm, INTERCEPT_INVLPGA);
1117 set_intercept(svm, INTERCEPT_IOIO_PROT);
1118 set_intercept(svm, INTERCEPT_MSR_PROT);
1119 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1120 set_intercept(svm, INTERCEPT_SHUTDOWN);
1121 set_intercept(svm, INTERCEPT_VMRUN);
1122 set_intercept(svm, INTERCEPT_VMMCALL);
1123 set_intercept(svm, INTERCEPT_VMLOAD);
1124 set_intercept(svm, INTERCEPT_VMSAVE);
1125 set_intercept(svm, INTERCEPT_STGI);
1126 set_intercept(svm, INTERCEPT_CLGI);
1127 set_intercept(svm, INTERCEPT_SKINIT);
1128 set_intercept(svm, INTERCEPT_WBINVD);
1129 set_intercept(svm, INTERCEPT_MONITOR);
1130 set_intercept(svm, INTERCEPT_MWAIT);
1131 set_intercept(svm, INTERCEPT_XSETBV);
1132
1133 control->iopm_base_pa = iopm_base;
1134 control->msrpm_base_pa = __pa(svm->msrpm);
1135 control->int_ctl = V_INTR_MASKING_MASK;
1136
1137 init_seg(&save->es);
1138 init_seg(&save->ss);
1139 init_seg(&save->ds);
1140 init_seg(&save->fs);
1141 init_seg(&save->gs);
1142
1143 save->cs.selector = 0xf000;
1144 save->cs.base = 0xffff0000;
1145 /* Executable/Readable Code Segment */
1146 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1147 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1148 save->cs.limit = 0xffff;
1149
1150 save->gdtr.limit = 0xffff;
1151 save->idtr.limit = 0xffff;
1152
1153 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1154 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1155
1156 if (!init_event)
1157 svm_set_efer(&svm->vcpu, 0);
1158 save->dr6 = 0xffff0ff0;
1159 kvm_set_rflags(&svm->vcpu, 2);
1160 save->rip = 0x0000fff0;
1161 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1162
1163 /*
1164 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1165 * It also updates the guest-visible cr0 value.
1166 */
1167 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1168
1169 save->cr4 = X86_CR4_PAE;
1170 /* rdx = ?? */
1171
1172 if (npt_enabled) {
1173 /* Setup VMCB for Nested Paging */
1174 control->nested_ctl = 1;
1175 clr_intercept(svm, INTERCEPT_INVLPG);
1176 clr_exception_intercept(svm, PF_VECTOR);
1177 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1178 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1179 save->g_pat = svm->vcpu.arch.pat;
1180 save->cr3 = 0;
1181 save->cr4 = 0;
1182 }
1183 svm->asid_generation = 0;
1184
1185 svm->nested.vmcb = 0;
1186 svm->vcpu.arch.hflags = 0;
1187
1188 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1189 control->pause_filter_count = 3000;
1190 set_intercept(svm, INTERCEPT_PAUSE);
1191 }
1192
1193 mark_all_dirty(svm->vmcb);
1194
1195 enable_gif(svm);
1196 }
1197
1198 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1199 {
1200 struct vcpu_svm *svm = to_svm(vcpu);
1201 u32 dummy;
1202 u32 eax = 1;
1203
1204 if (!init_event) {
1205 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1206 MSR_IA32_APICBASE_ENABLE;
1207 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1208 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1209 }
1210 init_vmcb(svm, init_event);
1211
1212 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1213 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1214 }
1215
1216 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1217 {
1218 struct vcpu_svm *svm;
1219 struct page *page;
1220 struct page *msrpm_pages;
1221 struct page *hsave_page;
1222 struct page *nested_msrpm_pages;
1223 int err;
1224
1225 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1226 if (!svm) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1232
1233 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1234 if (err)
1235 goto free_svm;
1236
1237 err = -ENOMEM;
1238 page = alloc_page(GFP_KERNEL);
1239 if (!page)
1240 goto uninit;
1241
1242 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1243 if (!msrpm_pages)
1244 goto free_page1;
1245
1246 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1247 if (!nested_msrpm_pages)
1248 goto free_page2;
1249
1250 hsave_page = alloc_page(GFP_KERNEL);
1251 if (!hsave_page)
1252 goto free_page3;
1253
1254 svm->nested.hsave = page_address(hsave_page);
1255
1256 svm->msrpm = page_address(msrpm_pages);
1257 svm_vcpu_init_msrpm(svm->msrpm);
1258
1259 svm->nested.msrpm = page_address(nested_msrpm_pages);
1260 svm_vcpu_init_msrpm(svm->nested.msrpm);
1261
1262 svm->vmcb = page_address(page);
1263 clear_page(svm->vmcb);
1264 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1265 svm->asid_generation = 0;
1266 init_vmcb(svm, false);
1267
1268 svm_init_osvw(&svm->vcpu);
1269
1270 return &svm->vcpu;
1271
1272 free_page3:
1273 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1274 free_page2:
1275 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1276 free_page1:
1277 __free_page(page);
1278 uninit:
1279 kvm_vcpu_uninit(&svm->vcpu);
1280 free_svm:
1281 kmem_cache_free(kvm_vcpu_cache, svm);
1282 out:
1283 return ERR_PTR(err);
1284 }
1285
1286 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1287 {
1288 struct vcpu_svm *svm = to_svm(vcpu);
1289
1290 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1291 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1292 __free_page(virt_to_page(svm->nested.hsave));
1293 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1294 kvm_vcpu_uninit(vcpu);
1295 kmem_cache_free(kvm_vcpu_cache, svm);
1296 }
1297
1298 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1299 {
1300 struct vcpu_svm *svm = to_svm(vcpu);
1301 int i;
1302
1303 if (unlikely(cpu != vcpu->cpu)) {
1304 svm->asid_generation = 0;
1305 mark_all_dirty(svm->vmcb);
1306 }
1307
1308 #ifdef CONFIG_X86_64
1309 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1310 #endif
1311 savesegment(fs, svm->host.fs);
1312 savesegment(gs, svm->host.gs);
1313 svm->host.ldt = kvm_read_ldt();
1314
1315 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1316 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1317
1318 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1319 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1320 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1321 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1322 }
1323 }
1324
1325 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1326 {
1327 struct vcpu_svm *svm = to_svm(vcpu);
1328 int i;
1329
1330 ++vcpu->stat.host_state_reload;
1331 kvm_load_ldt(svm->host.ldt);
1332 #ifdef CONFIG_X86_64
1333 loadsegment(fs, svm->host.fs);
1334 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1335 load_gs_index(svm->host.gs);
1336 #else
1337 #ifdef CONFIG_X86_32_LAZY_GS
1338 loadsegment(gs, svm->host.gs);
1339 #endif
1340 #endif
1341 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1342 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1343 }
1344
1345 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1346 {
1347 return to_svm(vcpu)->vmcb->save.rflags;
1348 }
1349
1350 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352 /*
1353 * Any change of EFLAGS.VM is accompained by a reload of SS
1354 * (caused by either a task switch or an inter-privilege IRET),
1355 * so we do not need to update the CPL here.
1356 */
1357 to_svm(vcpu)->vmcb->save.rflags = rflags;
1358 }
1359
1360 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1361 {
1362 switch (reg) {
1363 case VCPU_EXREG_PDPTR:
1364 BUG_ON(!npt_enabled);
1365 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1366 break;
1367 default:
1368 BUG();
1369 }
1370 }
1371
1372 static void svm_set_vintr(struct vcpu_svm *svm)
1373 {
1374 set_intercept(svm, INTERCEPT_VINTR);
1375 }
1376
1377 static void svm_clear_vintr(struct vcpu_svm *svm)
1378 {
1379 clr_intercept(svm, INTERCEPT_VINTR);
1380 }
1381
1382 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1383 {
1384 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1385
1386 switch (seg) {
1387 case VCPU_SREG_CS: return &save->cs;
1388 case VCPU_SREG_DS: return &save->ds;
1389 case VCPU_SREG_ES: return &save->es;
1390 case VCPU_SREG_FS: return &save->fs;
1391 case VCPU_SREG_GS: return &save->gs;
1392 case VCPU_SREG_SS: return &save->ss;
1393 case VCPU_SREG_TR: return &save->tr;
1394 case VCPU_SREG_LDTR: return &save->ldtr;
1395 }
1396 BUG();
1397 return NULL;
1398 }
1399
1400 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1401 {
1402 struct vmcb_seg *s = svm_seg(vcpu, seg);
1403
1404 return s->base;
1405 }
1406
1407 static void svm_get_segment(struct kvm_vcpu *vcpu,
1408 struct kvm_segment *var, int seg)
1409 {
1410 struct vmcb_seg *s = svm_seg(vcpu, seg);
1411
1412 var->base = s->base;
1413 var->limit = s->limit;
1414 var->selector = s->selector;
1415 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1416 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1417 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1418 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1419 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1420 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1421 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1422
1423 /*
1424 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1425 * However, the SVM spec states that the G bit is not observed by the
1426 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1427 * So let's synthesize a legal G bit for all segments, this helps
1428 * running KVM nested. It also helps cross-vendor migration, because
1429 * Intel's vmentry has a check on the 'G' bit.
1430 */
1431 var->g = s->limit > 0xfffff;
1432
1433 /*
1434 * AMD's VMCB does not have an explicit unusable field, so emulate it
1435 * for cross vendor migration purposes by "not present"
1436 */
1437 var->unusable = !var->present || (var->type == 0);
1438
1439 switch (seg) {
1440 case VCPU_SREG_TR:
1441 /*
1442 * Work around a bug where the busy flag in the tr selector
1443 * isn't exposed
1444 */
1445 var->type |= 0x2;
1446 break;
1447 case VCPU_SREG_DS:
1448 case VCPU_SREG_ES:
1449 case VCPU_SREG_FS:
1450 case VCPU_SREG_GS:
1451 /*
1452 * The accessed bit must always be set in the segment
1453 * descriptor cache, although it can be cleared in the
1454 * descriptor, the cached bit always remains at 1. Since
1455 * Intel has a check on this, set it here to support
1456 * cross-vendor migration.
1457 */
1458 if (!var->unusable)
1459 var->type |= 0x1;
1460 break;
1461 case VCPU_SREG_SS:
1462 /*
1463 * On AMD CPUs sometimes the DB bit in the segment
1464 * descriptor is left as 1, although the whole segment has
1465 * been made unusable. Clear it here to pass an Intel VMX
1466 * entry check when cross vendor migrating.
1467 */
1468 if (var->unusable)
1469 var->db = 0;
1470 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1471 break;
1472 }
1473 }
1474
1475 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1476 {
1477 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1478
1479 return save->cpl;
1480 }
1481
1482 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1483 {
1484 struct vcpu_svm *svm = to_svm(vcpu);
1485
1486 dt->size = svm->vmcb->save.idtr.limit;
1487 dt->address = svm->vmcb->save.idtr.base;
1488 }
1489
1490 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1491 {
1492 struct vcpu_svm *svm = to_svm(vcpu);
1493
1494 svm->vmcb->save.idtr.limit = dt->size;
1495 svm->vmcb->save.idtr.base = dt->address ;
1496 mark_dirty(svm->vmcb, VMCB_DT);
1497 }
1498
1499 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1500 {
1501 struct vcpu_svm *svm = to_svm(vcpu);
1502
1503 dt->size = svm->vmcb->save.gdtr.limit;
1504 dt->address = svm->vmcb->save.gdtr.base;
1505 }
1506
1507 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509 struct vcpu_svm *svm = to_svm(vcpu);
1510
1511 svm->vmcb->save.gdtr.limit = dt->size;
1512 svm->vmcb->save.gdtr.base = dt->address ;
1513 mark_dirty(svm->vmcb, VMCB_DT);
1514 }
1515
1516 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1517 {
1518 }
1519
1520 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1521 {
1522 }
1523
1524 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1525 {
1526 }
1527
1528 static void update_cr0_intercept(struct vcpu_svm *svm)
1529 {
1530 ulong gcr0 = svm->vcpu.arch.cr0;
1531 u64 *hcr0 = &svm->vmcb->save.cr0;
1532
1533 if (!svm->vcpu.fpu_active)
1534 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1535 else
1536 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1537 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1538
1539 mark_dirty(svm->vmcb, VMCB_CR);
1540
1541 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1542 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1543 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544 } else {
1545 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547 }
1548 }
1549
1550 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1551 {
1552 struct vcpu_svm *svm = to_svm(vcpu);
1553
1554 #ifdef CONFIG_X86_64
1555 if (vcpu->arch.efer & EFER_LME) {
1556 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1557 vcpu->arch.efer |= EFER_LMA;
1558 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1559 }
1560
1561 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1562 vcpu->arch.efer &= ~EFER_LMA;
1563 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1564 }
1565 }
1566 #endif
1567 vcpu->arch.cr0 = cr0;
1568
1569 if (!npt_enabled)
1570 cr0 |= X86_CR0_PG | X86_CR0_WP;
1571
1572 if (!vcpu->fpu_active)
1573 cr0 |= X86_CR0_TS;
1574 /*
1575 * re-enable caching here because the QEMU bios
1576 * does not do it - this results in some delay at
1577 * reboot
1578 */
1579 if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_CD_NW_CLEARED))
1580 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1581 svm->vmcb->save.cr0 = cr0;
1582 mark_dirty(svm->vmcb, VMCB_CR);
1583 update_cr0_intercept(svm);
1584 }
1585
1586 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1587 {
1588 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1589 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1590
1591 if (cr4 & X86_CR4_VMXE)
1592 return 1;
1593
1594 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1595 svm_flush_tlb(vcpu);
1596
1597 vcpu->arch.cr4 = cr4;
1598 if (!npt_enabled)
1599 cr4 |= X86_CR4_PAE;
1600 cr4 |= host_cr4_mce;
1601 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1602 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1603 return 0;
1604 }
1605
1606 static void svm_set_segment(struct kvm_vcpu *vcpu,
1607 struct kvm_segment *var, int seg)
1608 {
1609 struct vcpu_svm *svm = to_svm(vcpu);
1610 struct vmcb_seg *s = svm_seg(vcpu, seg);
1611
1612 s->base = var->base;
1613 s->limit = var->limit;
1614 s->selector = var->selector;
1615 if (var->unusable)
1616 s->attrib = 0;
1617 else {
1618 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1619 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1620 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1621 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1622 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1623 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1624 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1625 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1626 }
1627
1628 /*
1629 * This is always accurate, except if SYSRET returned to a segment
1630 * with SS.DPL != 3. Intel does not have this quirk, and always
1631 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1632 * would entail passing the CPL to userspace and back.
1633 */
1634 if (seg == VCPU_SREG_SS)
1635 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1636
1637 mark_dirty(svm->vmcb, VMCB_SEG);
1638 }
1639
1640 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1641 {
1642 struct vcpu_svm *svm = to_svm(vcpu);
1643
1644 clr_exception_intercept(svm, DB_VECTOR);
1645 clr_exception_intercept(svm, BP_VECTOR);
1646
1647 if (svm->nmi_singlestep)
1648 set_exception_intercept(svm, DB_VECTOR);
1649
1650 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1651 if (vcpu->guest_debug &
1652 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1653 set_exception_intercept(svm, DB_VECTOR);
1654 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1655 set_exception_intercept(svm, BP_VECTOR);
1656 } else
1657 vcpu->guest_debug = 0;
1658 }
1659
1660 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1661 {
1662 if (sd->next_asid > sd->max_asid) {
1663 ++sd->asid_generation;
1664 sd->next_asid = 1;
1665 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1666 }
1667
1668 svm->asid_generation = sd->asid_generation;
1669 svm->vmcb->control.asid = sd->next_asid++;
1670
1671 mark_dirty(svm->vmcb, VMCB_ASID);
1672 }
1673
1674 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1675 {
1676 return to_svm(vcpu)->vmcb->save.dr6;
1677 }
1678
1679 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1680 {
1681 struct vcpu_svm *svm = to_svm(vcpu);
1682
1683 svm->vmcb->save.dr6 = value;
1684 mark_dirty(svm->vmcb, VMCB_DR);
1685 }
1686
1687 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1688 {
1689 struct vcpu_svm *svm = to_svm(vcpu);
1690
1691 get_debugreg(vcpu->arch.db[0], 0);
1692 get_debugreg(vcpu->arch.db[1], 1);
1693 get_debugreg(vcpu->arch.db[2], 2);
1694 get_debugreg(vcpu->arch.db[3], 3);
1695 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1696 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1697
1698 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1699 set_dr_intercepts(svm);
1700 }
1701
1702 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1703 {
1704 struct vcpu_svm *svm = to_svm(vcpu);
1705
1706 svm->vmcb->save.dr7 = value;
1707 mark_dirty(svm->vmcb, VMCB_DR);
1708 }
1709
1710 static int pf_interception(struct vcpu_svm *svm)
1711 {
1712 u64 fault_address = svm->vmcb->control.exit_info_2;
1713 u32 error_code;
1714 int r = 1;
1715
1716 switch (svm->apf_reason) {
1717 default:
1718 error_code = svm->vmcb->control.exit_info_1;
1719
1720 trace_kvm_page_fault(fault_address, error_code);
1721 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1722 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1723 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1724 svm->vmcb->control.insn_bytes,
1725 svm->vmcb->control.insn_len);
1726 break;
1727 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1728 svm->apf_reason = 0;
1729 local_irq_disable();
1730 kvm_async_pf_task_wait(fault_address);
1731 local_irq_enable();
1732 break;
1733 case KVM_PV_REASON_PAGE_READY:
1734 svm->apf_reason = 0;
1735 local_irq_disable();
1736 kvm_async_pf_task_wake(fault_address);
1737 local_irq_enable();
1738 break;
1739 }
1740 return r;
1741 }
1742
1743 static int db_interception(struct vcpu_svm *svm)
1744 {
1745 struct kvm_run *kvm_run = svm->vcpu.run;
1746
1747 if (!(svm->vcpu.guest_debug &
1748 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1749 !svm->nmi_singlestep) {
1750 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1751 return 1;
1752 }
1753
1754 if (svm->nmi_singlestep) {
1755 svm->nmi_singlestep = false;
1756 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1757 svm->vmcb->save.rflags &=
1758 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1759 update_db_bp_intercept(&svm->vcpu);
1760 }
1761
1762 if (svm->vcpu.guest_debug &
1763 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1764 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1765 kvm_run->debug.arch.pc =
1766 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1767 kvm_run->debug.arch.exception = DB_VECTOR;
1768 return 0;
1769 }
1770
1771 return 1;
1772 }
1773
1774 static int bp_interception(struct vcpu_svm *svm)
1775 {
1776 struct kvm_run *kvm_run = svm->vcpu.run;
1777
1778 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1779 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1780 kvm_run->debug.arch.exception = BP_VECTOR;
1781 return 0;
1782 }
1783
1784 static int ud_interception(struct vcpu_svm *svm)
1785 {
1786 int er;
1787
1788 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1789 if (er != EMULATE_DONE)
1790 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1791 return 1;
1792 }
1793
1794 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1795 {
1796 struct vcpu_svm *svm = to_svm(vcpu);
1797
1798 clr_exception_intercept(svm, NM_VECTOR);
1799
1800 svm->vcpu.fpu_active = 1;
1801 update_cr0_intercept(svm);
1802 }
1803
1804 static int nm_interception(struct vcpu_svm *svm)
1805 {
1806 svm_fpu_activate(&svm->vcpu);
1807 return 1;
1808 }
1809
1810 static bool is_erratum_383(void)
1811 {
1812 int err, i;
1813 u64 value;
1814
1815 if (!erratum_383_found)
1816 return false;
1817
1818 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1819 if (err)
1820 return false;
1821
1822 /* Bit 62 may or may not be set for this mce */
1823 value &= ~(1ULL << 62);
1824
1825 if (value != 0xb600000000010015ULL)
1826 return false;
1827
1828 /* Clear MCi_STATUS registers */
1829 for (i = 0; i < 6; ++i)
1830 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1831
1832 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1833 if (!err) {
1834 u32 low, high;
1835
1836 value &= ~(1ULL << 2);
1837 low = lower_32_bits(value);
1838 high = upper_32_bits(value);
1839
1840 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1841 }
1842
1843 /* Flush tlb to evict multi-match entries */
1844 __flush_tlb_all();
1845
1846 return true;
1847 }
1848
1849 static void svm_handle_mce(struct vcpu_svm *svm)
1850 {
1851 if (is_erratum_383()) {
1852 /*
1853 * Erratum 383 triggered. Guest state is corrupt so kill the
1854 * guest.
1855 */
1856 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1857
1858 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1859
1860 return;
1861 }
1862
1863 /*
1864 * On an #MC intercept the MCE handler is not called automatically in
1865 * the host. So do it by hand here.
1866 */
1867 asm volatile (
1868 "int $0x12\n");
1869 /* not sure if we ever come back to this point */
1870
1871 return;
1872 }
1873
1874 static int mc_interception(struct vcpu_svm *svm)
1875 {
1876 return 1;
1877 }
1878
1879 static int shutdown_interception(struct vcpu_svm *svm)
1880 {
1881 struct kvm_run *kvm_run = svm->vcpu.run;
1882
1883 /*
1884 * VMCB is undefined after a SHUTDOWN intercept
1885 * so reinitialize it.
1886 */
1887 clear_page(svm->vmcb);
1888 init_vmcb(svm, false);
1889
1890 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1891 return 0;
1892 }
1893
1894 static int io_interception(struct vcpu_svm *svm)
1895 {
1896 struct kvm_vcpu *vcpu = &svm->vcpu;
1897 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1898 int size, in, string;
1899 unsigned port;
1900
1901 ++svm->vcpu.stat.io_exits;
1902 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1903 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1904 if (string || in)
1905 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1906
1907 port = io_info >> 16;
1908 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1909 svm->next_rip = svm->vmcb->control.exit_info_2;
1910 skip_emulated_instruction(&svm->vcpu);
1911
1912 return kvm_fast_pio_out(vcpu, size, port);
1913 }
1914
1915 static int nmi_interception(struct vcpu_svm *svm)
1916 {
1917 return 1;
1918 }
1919
1920 static int intr_interception(struct vcpu_svm *svm)
1921 {
1922 ++svm->vcpu.stat.irq_exits;
1923 return 1;
1924 }
1925
1926 static int nop_on_interception(struct vcpu_svm *svm)
1927 {
1928 return 1;
1929 }
1930
1931 static int halt_interception(struct vcpu_svm *svm)
1932 {
1933 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1934 return kvm_emulate_halt(&svm->vcpu);
1935 }
1936
1937 static int vmmcall_interception(struct vcpu_svm *svm)
1938 {
1939 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1940 kvm_emulate_hypercall(&svm->vcpu);
1941 return 1;
1942 }
1943
1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1945 {
1946 struct vcpu_svm *svm = to_svm(vcpu);
1947
1948 return svm->nested.nested_cr3;
1949 }
1950
1951 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1952 {
1953 struct vcpu_svm *svm = to_svm(vcpu);
1954 u64 cr3 = svm->nested.nested_cr3;
1955 u64 pdpte;
1956 int ret;
1957
1958 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1959 offset_in_page(cr3) + index * 8, 8);
1960 if (ret)
1961 return 0;
1962 return pdpte;
1963 }
1964
1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1966 unsigned long root)
1967 {
1968 struct vcpu_svm *svm = to_svm(vcpu);
1969
1970 svm->vmcb->control.nested_cr3 = root;
1971 mark_dirty(svm->vmcb, VMCB_NPT);
1972 svm_flush_tlb(vcpu);
1973 }
1974
1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1976 struct x86_exception *fault)
1977 {
1978 struct vcpu_svm *svm = to_svm(vcpu);
1979
1980 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1981 /*
1982 * TODO: track the cause of the nested page fault, and
1983 * correctly fill in the high bits of exit_info_1.
1984 */
1985 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1986 svm->vmcb->control.exit_code_hi = 0;
1987 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1988 svm->vmcb->control.exit_info_2 = fault->address;
1989 }
1990
1991 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1992 svm->vmcb->control.exit_info_1 |= fault->error_code;
1993
1994 /*
1995 * The present bit is always zero for page structure faults on real
1996 * hardware.
1997 */
1998 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1999 svm->vmcb->control.exit_info_1 &= ~1;
2000
2001 nested_svm_vmexit(svm);
2002 }
2003
2004 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2005 {
2006 WARN_ON(mmu_is_nested(vcpu));
2007 kvm_init_shadow_mmu(vcpu);
2008 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2009 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2010 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2011 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2012 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2013 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2014 }
2015
2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2017 {
2018 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2019 }
2020
2021 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2022 {
2023 if (!(svm->vcpu.arch.efer & EFER_SVME)
2024 || !is_paging(&svm->vcpu)) {
2025 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2026 return 1;
2027 }
2028
2029 if (svm->vmcb->save.cpl) {
2030 kvm_inject_gp(&svm->vcpu, 0);
2031 return 1;
2032 }
2033
2034 return 0;
2035 }
2036
2037 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2038 bool has_error_code, u32 error_code)
2039 {
2040 int vmexit;
2041
2042 if (!is_guest_mode(&svm->vcpu))
2043 return 0;
2044
2045 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2046 svm->vmcb->control.exit_code_hi = 0;
2047 svm->vmcb->control.exit_info_1 = error_code;
2048 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2049
2050 vmexit = nested_svm_intercept(svm);
2051 if (vmexit == NESTED_EXIT_DONE)
2052 svm->nested.exit_required = true;
2053
2054 return vmexit;
2055 }
2056
2057 /* This function returns true if it is save to enable the irq window */
2058 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2059 {
2060 if (!is_guest_mode(&svm->vcpu))
2061 return true;
2062
2063 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2064 return true;
2065
2066 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2067 return false;
2068
2069 /*
2070 * if vmexit was already requested (by intercepted exception
2071 * for instance) do not overwrite it with "external interrupt"
2072 * vmexit.
2073 */
2074 if (svm->nested.exit_required)
2075 return false;
2076
2077 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2078 svm->vmcb->control.exit_info_1 = 0;
2079 svm->vmcb->control.exit_info_2 = 0;
2080
2081 if (svm->nested.intercept & 1ULL) {
2082 /*
2083 * The #vmexit can't be emulated here directly because this
2084 * code path runs with irqs and preemption disabled. A
2085 * #vmexit emulation might sleep. Only signal request for
2086 * the #vmexit here.
2087 */
2088 svm->nested.exit_required = true;
2089 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2090 return false;
2091 }
2092
2093 return true;
2094 }
2095
2096 /* This function returns true if it is save to enable the nmi window */
2097 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2098 {
2099 if (!is_guest_mode(&svm->vcpu))
2100 return true;
2101
2102 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2103 return true;
2104
2105 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2106 svm->nested.exit_required = true;
2107
2108 return false;
2109 }
2110
2111 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2112 {
2113 struct page *page;
2114
2115 might_sleep();
2116
2117 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2118 if (is_error_page(page))
2119 goto error;
2120
2121 *_page = page;
2122
2123 return kmap(page);
2124
2125 error:
2126 kvm_inject_gp(&svm->vcpu, 0);
2127
2128 return NULL;
2129 }
2130
2131 static void nested_svm_unmap(struct page *page)
2132 {
2133 kunmap(page);
2134 kvm_release_page_dirty(page);
2135 }
2136
2137 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2138 {
2139 unsigned port, size, iopm_len;
2140 u16 val, mask;
2141 u8 start_bit;
2142 u64 gpa;
2143
2144 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2145 return NESTED_EXIT_HOST;
2146
2147 port = svm->vmcb->control.exit_info_1 >> 16;
2148 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2149 SVM_IOIO_SIZE_SHIFT;
2150 gpa = svm->nested.vmcb_iopm + (port / 8);
2151 start_bit = port % 8;
2152 iopm_len = (start_bit + size > 8) ? 2 : 1;
2153 mask = (0xf >> (4 - size)) << start_bit;
2154 val = 0;
2155
2156 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2157 return NESTED_EXIT_DONE;
2158
2159 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161
2162 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2163 {
2164 u32 offset, msr, value;
2165 int write, mask;
2166
2167 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2168 return NESTED_EXIT_HOST;
2169
2170 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2171 offset = svm_msrpm_offset(msr);
2172 write = svm->vmcb->control.exit_info_1 & 1;
2173 mask = 1 << ((2 * (msr & 0xf)) + write);
2174
2175 if (offset == MSR_INVALID)
2176 return NESTED_EXIT_DONE;
2177
2178 /* Offset is in 32 bit units but need in 8 bit units */
2179 offset *= 4;
2180
2181 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2182 return NESTED_EXIT_DONE;
2183
2184 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2185 }
2186
2187 static int nested_svm_exit_special(struct vcpu_svm *svm)
2188 {
2189 u32 exit_code = svm->vmcb->control.exit_code;
2190
2191 switch (exit_code) {
2192 case SVM_EXIT_INTR:
2193 case SVM_EXIT_NMI:
2194 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2195 return NESTED_EXIT_HOST;
2196 case SVM_EXIT_NPF:
2197 /* For now we are always handling NPFs when using them */
2198 if (npt_enabled)
2199 return NESTED_EXIT_HOST;
2200 break;
2201 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2202 /* When we're shadowing, trap PFs, but not async PF */
2203 if (!npt_enabled && svm->apf_reason == 0)
2204 return NESTED_EXIT_HOST;
2205 break;
2206 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2207 nm_interception(svm);
2208 break;
2209 default:
2210 break;
2211 }
2212
2213 return NESTED_EXIT_CONTINUE;
2214 }
2215
2216 /*
2217 * If this function returns true, this #vmexit was already handled
2218 */
2219 static int nested_svm_intercept(struct vcpu_svm *svm)
2220 {
2221 u32 exit_code = svm->vmcb->control.exit_code;
2222 int vmexit = NESTED_EXIT_HOST;
2223
2224 switch (exit_code) {
2225 case SVM_EXIT_MSR:
2226 vmexit = nested_svm_exit_handled_msr(svm);
2227 break;
2228 case SVM_EXIT_IOIO:
2229 vmexit = nested_svm_intercept_ioio(svm);
2230 break;
2231 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2232 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2233 if (svm->nested.intercept_cr & bit)
2234 vmexit = NESTED_EXIT_DONE;
2235 break;
2236 }
2237 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2238 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2239 if (svm->nested.intercept_dr & bit)
2240 vmexit = NESTED_EXIT_DONE;
2241 break;
2242 }
2243 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2244 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2245 if (svm->nested.intercept_exceptions & excp_bits)
2246 vmexit = NESTED_EXIT_DONE;
2247 /* async page fault always cause vmexit */
2248 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2249 svm->apf_reason != 0)
2250 vmexit = NESTED_EXIT_DONE;
2251 break;
2252 }
2253 case SVM_EXIT_ERR: {
2254 vmexit = NESTED_EXIT_DONE;
2255 break;
2256 }
2257 default: {
2258 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2259 if (svm->nested.intercept & exit_bits)
2260 vmexit = NESTED_EXIT_DONE;
2261 }
2262 }
2263
2264 return vmexit;
2265 }
2266
2267 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2268 {
2269 int vmexit;
2270
2271 vmexit = nested_svm_intercept(svm);
2272
2273 if (vmexit == NESTED_EXIT_DONE)
2274 nested_svm_vmexit(svm);
2275
2276 return vmexit;
2277 }
2278
2279 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2280 {
2281 struct vmcb_control_area *dst = &dst_vmcb->control;
2282 struct vmcb_control_area *from = &from_vmcb->control;
2283
2284 dst->intercept_cr = from->intercept_cr;
2285 dst->intercept_dr = from->intercept_dr;
2286 dst->intercept_exceptions = from->intercept_exceptions;
2287 dst->intercept = from->intercept;
2288 dst->iopm_base_pa = from->iopm_base_pa;
2289 dst->msrpm_base_pa = from->msrpm_base_pa;
2290 dst->tsc_offset = from->tsc_offset;
2291 dst->asid = from->asid;
2292 dst->tlb_ctl = from->tlb_ctl;
2293 dst->int_ctl = from->int_ctl;
2294 dst->int_vector = from->int_vector;
2295 dst->int_state = from->int_state;
2296 dst->exit_code = from->exit_code;
2297 dst->exit_code_hi = from->exit_code_hi;
2298 dst->exit_info_1 = from->exit_info_1;
2299 dst->exit_info_2 = from->exit_info_2;
2300 dst->exit_int_info = from->exit_int_info;
2301 dst->exit_int_info_err = from->exit_int_info_err;
2302 dst->nested_ctl = from->nested_ctl;
2303 dst->event_inj = from->event_inj;
2304 dst->event_inj_err = from->event_inj_err;
2305 dst->nested_cr3 = from->nested_cr3;
2306 dst->lbr_ctl = from->lbr_ctl;
2307 }
2308
2309 static int nested_svm_vmexit(struct vcpu_svm *svm)
2310 {
2311 struct vmcb *nested_vmcb;
2312 struct vmcb *hsave = svm->nested.hsave;
2313 struct vmcb *vmcb = svm->vmcb;
2314 struct page *page;
2315
2316 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2317 vmcb->control.exit_info_1,
2318 vmcb->control.exit_info_2,
2319 vmcb->control.exit_int_info,
2320 vmcb->control.exit_int_info_err,
2321 KVM_ISA_SVM);
2322
2323 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2324 if (!nested_vmcb)
2325 return 1;
2326
2327 /* Exit Guest-Mode */
2328 leave_guest_mode(&svm->vcpu);
2329 svm->nested.vmcb = 0;
2330
2331 /* Give the current vmcb to the guest */
2332 disable_gif(svm);
2333
2334 nested_vmcb->save.es = vmcb->save.es;
2335 nested_vmcb->save.cs = vmcb->save.cs;
2336 nested_vmcb->save.ss = vmcb->save.ss;
2337 nested_vmcb->save.ds = vmcb->save.ds;
2338 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2339 nested_vmcb->save.idtr = vmcb->save.idtr;
2340 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2341 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2342 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2343 nested_vmcb->save.cr2 = vmcb->save.cr2;
2344 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2345 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2346 nested_vmcb->save.rip = vmcb->save.rip;
2347 nested_vmcb->save.rsp = vmcb->save.rsp;
2348 nested_vmcb->save.rax = vmcb->save.rax;
2349 nested_vmcb->save.dr7 = vmcb->save.dr7;
2350 nested_vmcb->save.dr6 = vmcb->save.dr6;
2351 nested_vmcb->save.cpl = vmcb->save.cpl;
2352
2353 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2354 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2355 nested_vmcb->control.int_state = vmcb->control.int_state;
2356 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2357 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2358 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2359 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2360 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2361 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2362 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2363
2364 /*
2365 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366 * to make sure that we do not lose injected events. So check event_inj
2367 * here and copy it to exit_int_info if it is valid.
2368 * Exit_int_info and event_inj can't be both valid because the case
2369 * below only happens on a VMRUN instruction intercept which has
2370 * no valid exit_int_info set.
2371 */
2372 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2373 struct vmcb_control_area *nc = &nested_vmcb->control;
2374
2375 nc->exit_int_info = vmcb->control.event_inj;
2376 nc->exit_int_info_err = vmcb->control.event_inj_err;
2377 }
2378
2379 nested_vmcb->control.tlb_ctl = 0;
2380 nested_vmcb->control.event_inj = 0;
2381 nested_vmcb->control.event_inj_err = 0;
2382
2383 /* We always set V_INTR_MASKING and remember the old value in hflags */
2384 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2385 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2386
2387 /* Restore the original control entries */
2388 copy_vmcb_control_area(vmcb, hsave);
2389
2390 kvm_clear_exception_queue(&svm->vcpu);
2391 kvm_clear_interrupt_queue(&svm->vcpu);
2392
2393 svm->nested.nested_cr3 = 0;
2394
2395 /* Restore selected save entries */
2396 svm->vmcb->save.es = hsave->save.es;
2397 svm->vmcb->save.cs = hsave->save.cs;
2398 svm->vmcb->save.ss = hsave->save.ss;
2399 svm->vmcb->save.ds = hsave->save.ds;
2400 svm->vmcb->save.gdtr = hsave->save.gdtr;
2401 svm->vmcb->save.idtr = hsave->save.idtr;
2402 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2403 svm_set_efer(&svm->vcpu, hsave->save.efer);
2404 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2405 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2406 if (npt_enabled) {
2407 svm->vmcb->save.cr3 = hsave->save.cr3;
2408 svm->vcpu.arch.cr3 = hsave->save.cr3;
2409 } else {
2410 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2411 }
2412 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2413 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2414 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2415 svm->vmcb->save.dr7 = 0;
2416 svm->vmcb->save.cpl = 0;
2417 svm->vmcb->control.exit_int_info = 0;
2418
2419 mark_all_dirty(svm->vmcb);
2420
2421 nested_svm_unmap(page);
2422
2423 nested_svm_uninit_mmu_context(&svm->vcpu);
2424 kvm_mmu_reset_context(&svm->vcpu);
2425 kvm_mmu_load(&svm->vcpu);
2426
2427 return 0;
2428 }
2429
2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2431 {
2432 /*
2433 * This function merges the msr permission bitmaps of kvm and the
2434 * nested vmcb. It is optimized in that it only merges the parts where
2435 * the kvm msr permission bitmap may contain zero bits
2436 */
2437 int i;
2438
2439 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2440 return true;
2441
2442 for (i = 0; i < MSRPM_OFFSETS; i++) {
2443 u32 value, p;
2444 u64 offset;
2445
2446 if (msrpm_offsets[i] == 0xffffffff)
2447 break;
2448
2449 p = msrpm_offsets[i];
2450 offset = svm->nested.vmcb_msrpm + (p * 4);
2451
2452 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2453 return false;
2454
2455 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2456 }
2457
2458 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2459
2460 return true;
2461 }
2462
2463 static bool nested_vmcb_checks(struct vmcb *vmcb)
2464 {
2465 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2466 return false;
2467
2468 if (vmcb->control.asid == 0)
2469 return false;
2470
2471 if (vmcb->control.nested_ctl && !npt_enabled)
2472 return false;
2473
2474 return true;
2475 }
2476
2477 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2478 {
2479 struct vmcb *nested_vmcb;
2480 struct vmcb *hsave = svm->nested.hsave;
2481 struct vmcb *vmcb = svm->vmcb;
2482 struct page *page;
2483 u64 vmcb_gpa;
2484
2485 vmcb_gpa = svm->vmcb->save.rax;
2486
2487 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2488 if (!nested_vmcb)
2489 return false;
2490
2491 if (!nested_vmcb_checks(nested_vmcb)) {
2492 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2493 nested_vmcb->control.exit_code_hi = 0;
2494 nested_vmcb->control.exit_info_1 = 0;
2495 nested_vmcb->control.exit_info_2 = 0;
2496
2497 nested_svm_unmap(page);
2498
2499 return false;
2500 }
2501
2502 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2503 nested_vmcb->save.rip,
2504 nested_vmcb->control.int_ctl,
2505 nested_vmcb->control.event_inj,
2506 nested_vmcb->control.nested_ctl);
2507
2508 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2509 nested_vmcb->control.intercept_cr >> 16,
2510 nested_vmcb->control.intercept_exceptions,
2511 nested_vmcb->control.intercept);
2512
2513 /* Clear internal status */
2514 kvm_clear_exception_queue(&svm->vcpu);
2515 kvm_clear_interrupt_queue(&svm->vcpu);
2516
2517 /*
2518 * Save the old vmcb, so we don't need to pick what we save, but can
2519 * restore everything when a VMEXIT occurs
2520 */
2521 hsave->save.es = vmcb->save.es;
2522 hsave->save.cs = vmcb->save.cs;
2523 hsave->save.ss = vmcb->save.ss;
2524 hsave->save.ds = vmcb->save.ds;
2525 hsave->save.gdtr = vmcb->save.gdtr;
2526 hsave->save.idtr = vmcb->save.idtr;
2527 hsave->save.efer = svm->vcpu.arch.efer;
2528 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2529 hsave->save.cr4 = svm->vcpu.arch.cr4;
2530 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2531 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2532 hsave->save.rsp = vmcb->save.rsp;
2533 hsave->save.rax = vmcb->save.rax;
2534 if (npt_enabled)
2535 hsave->save.cr3 = vmcb->save.cr3;
2536 else
2537 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2538
2539 copy_vmcb_control_area(hsave, vmcb);
2540
2541 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2542 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2543 else
2544 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2545
2546 if (nested_vmcb->control.nested_ctl) {
2547 kvm_mmu_unload(&svm->vcpu);
2548 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2549 nested_svm_init_mmu_context(&svm->vcpu);
2550 }
2551
2552 /* Load the nested guest state */
2553 svm->vmcb->save.es = nested_vmcb->save.es;
2554 svm->vmcb->save.cs = nested_vmcb->save.cs;
2555 svm->vmcb->save.ss = nested_vmcb->save.ss;
2556 svm->vmcb->save.ds = nested_vmcb->save.ds;
2557 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2558 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2559 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2560 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2561 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2562 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2563 if (npt_enabled) {
2564 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2565 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2566 } else
2567 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2568
2569 /* Guest paging mode is active - reset mmu */
2570 kvm_mmu_reset_context(&svm->vcpu);
2571
2572 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2573 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2574 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2575 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2576
2577 /* In case we don't even reach vcpu_run, the fields are not updated */
2578 svm->vmcb->save.rax = nested_vmcb->save.rax;
2579 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2580 svm->vmcb->save.rip = nested_vmcb->save.rip;
2581 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2582 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2583 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2584
2585 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2586 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2587
2588 /* cache intercepts */
2589 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2590 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2591 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2592 svm->nested.intercept = nested_vmcb->control.intercept;
2593
2594 svm_flush_tlb(&svm->vcpu);
2595 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2596 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2597 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2598 else
2599 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2600
2601 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2602 /* We only want the cr8 intercept bits of the guest */
2603 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2604 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2605 }
2606
2607 /* We don't want to see VMMCALLs from a nested guest */
2608 clr_intercept(svm, INTERCEPT_VMMCALL);
2609
2610 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2611 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2612 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2613 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2614 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2615 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2616
2617 nested_svm_unmap(page);
2618
2619 /* Enter Guest-Mode */
2620 enter_guest_mode(&svm->vcpu);
2621
2622 /*
2623 * Merge guest and host intercepts - must be called with vcpu in
2624 * guest-mode to take affect here
2625 */
2626 recalc_intercepts(svm);
2627
2628 svm->nested.vmcb = vmcb_gpa;
2629
2630 enable_gif(svm);
2631
2632 mark_all_dirty(svm->vmcb);
2633
2634 return true;
2635 }
2636
2637 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2638 {
2639 to_vmcb->save.fs = from_vmcb->save.fs;
2640 to_vmcb->save.gs = from_vmcb->save.gs;
2641 to_vmcb->save.tr = from_vmcb->save.tr;
2642 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2643 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2644 to_vmcb->save.star = from_vmcb->save.star;
2645 to_vmcb->save.lstar = from_vmcb->save.lstar;
2646 to_vmcb->save.cstar = from_vmcb->save.cstar;
2647 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2648 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2649 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2650 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2651 }
2652
2653 static int vmload_interception(struct vcpu_svm *svm)
2654 {
2655 struct vmcb *nested_vmcb;
2656 struct page *page;
2657
2658 if (nested_svm_check_permissions(svm))
2659 return 1;
2660
2661 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2662 if (!nested_vmcb)
2663 return 1;
2664
2665 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666 skip_emulated_instruction(&svm->vcpu);
2667
2668 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2669 nested_svm_unmap(page);
2670
2671 return 1;
2672 }
2673
2674 static int vmsave_interception(struct vcpu_svm *svm)
2675 {
2676 struct vmcb *nested_vmcb;
2677 struct page *page;
2678
2679 if (nested_svm_check_permissions(svm))
2680 return 1;
2681
2682 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2683 if (!nested_vmcb)
2684 return 1;
2685
2686 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2687 skip_emulated_instruction(&svm->vcpu);
2688
2689 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2690 nested_svm_unmap(page);
2691
2692 return 1;
2693 }
2694
2695 static int vmrun_interception(struct vcpu_svm *svm)
2696 {
2697 if (nested_svm_check_permissions(svm))
2698 return 1;
2699
2700 /* Save rip after vmrun instruction */
2701 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2702
2703 if (!nested_svm_vmrun(svm))
2704 return 1;
2705
2706 if (!nested_svm_vmrun_msrpm(svm))
2707 goto failed;
2708
2709 return 1;
2710
2711 failed:
2712
2713 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2714 svm->vmcb->control.exit_code_hi = 0;
2715 svm->vmcb->control.exit_info_1 = 0;
2716 svm->vmcb->control.exit_info_2 = 0;
2717
2718 nested_svm_vmexit(svm);
2719
2720 return 1;
2721 }
2722
2723 static int stgi_interception(struct vcpu_svm *svm)
2724 {
2725 if (nested_svm_check_permissions(svm))
2726 return 1;
2727
2728 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729 skip_emulated_instruction(&svm->vcpu);
2730 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2731
2732 enable_gif(svm);
2733
2734 return 1;
2735 }
2736
2737 static int clgi_interception(struct vcpu_svm *svm)
2738 {
2739 if (nested_svm_check_permissions(svm))
2740 return 1;
2741
2742 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743 skip_emulated_instruction(&svm->vcpu);
2744
2745 disable_gif(svm);
2746
2747 /* After a CLGI no interrupts should come */
2748 svm_clear_vintr(svm);
2749 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2750
2751 mark_dirty(svm->vmcb, VMCB_INTR);
2752
2753 return 1;
2754 }
2755
2756 static int invlpga_interception(struct vcpu_svm *svm)
2757 {
2758 struct kvm_vcpu *vcpu = &svm->vcpu;
2759
2760 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2761 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2762
2763 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2765
2766 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767 skip_emulated_instruction(&svm->vcpu);
2768 return 1;
2769 }
2770
2771 static int skinit_interception(struct vcpu_svm *svm)
2772 {
2773 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2774
2775 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776 return 1;
2777 }
2778
2779 static int wbinvd_interception(struct vcpu_svm *svm)
2780 {
2781 kvm_emulate_wbinvd(&svm->vcpu);
2782 return 1;
2783 }
2784
2785 static int xsetbv_interception(struct vcpu_svm *svm)
2786 {
2787 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2788 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2789
2790 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2791 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2792 skip_emulated_instruction(&svm->vcpu);
2793 }
2794
2795 return 1;
2796 }
2797
2798 static int task_switch_interception(struct vcpu_svm *svm)
2799 {
2800 u16 tss_selector;
2801 int reason;
2802 int int_type = svm->vmcb->control.exit_int_info &
2803 SVM_EXITINTINFO_TYPE_MASK;
2804 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2805 uint32_t type =
2806 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2807 uint32_t idt_v =
2808 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2809 bool has_error_code = false;
2810 u32 error_code = 0;
2811
2812 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2813
2814 if (svm->vmcb->control.exit_info_2 &
2815 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2816 reason = TASK_SWITCH_IRET;
2817 else if (svm->vmcb->control.exit_info_2 &
2818 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2819 reason = TASK_SWITCH_JMP;
2820 else if (idt_v)
2821 reason = TASK_SWITCH_GATE;
2822 else
2823 reason = TASK_SWITCH_CALL;
2824
2825 if (reason == TASK_SWITCH_GATE) {
2826 switch (type) {
2827 case SVM_EXITINTINFO_TYPE_NMI:
2828 svm->vcpu.arch.nmi_injected = false;
2829 break;
2830 case SVM_EXITINTINFO_TYPE_EXEPT:
2831 if (svm->vmcb->control.exit_info_2 &
2832 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2833 has_error_code = true;
2834 error_code =
2835 (u32)svm->vmcb->control.exit_info_2;
2836 }
2837 kvm_clear_exception_queue(&svm->vcpu);
2838 break;
2839 case SVM_EXITINTINFO_TYPE_INTR:
2840 kvm_clear_interrupt_queue(&svm->vcpu);
2841 break;
2842 default:
2843 break;
2844 }
2845 }
2846
2847 if (reason != TASK_SWITCH_GATE ||
2848 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2849 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2850 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2851 skip_emulated_instruction(&svm->vcpu);
2852
2853 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2854 int_vec = -1;
2855
2856 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2857 has_error_code, error_code) == EMULATE_FAIL) {
2858 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2859 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2860 svm->vcpu.run->internal.ndata = 0;
2861 return 0;
2862 }
2863 return 1;
2864 }
2865
2866 static int cpuid_interception(struct vcpu_svm *svm)
2867 {
2868 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2869 kvm_emulate_cpuid(&svm->vcpu);
2870 return 1;
2871 }
2872
2873 static int iret_interception(struct vcpu_svm *svm)
2874 {
2875 ++svm->vcpu.stat.nmi_window_exits;
2876 clr_intercept(svm, INTERCEPT_IRET);
2877 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2878 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2879 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2880 return 1;
2881 }
2882
2883 static int invlpg_interception(struct vcpu_svm *svm)
2884 {
2885 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2886 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2887
2888 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2889 skip_emulated_instruction(&svm->vcpu);
2890 return 1;
2891 }
2892
2893 static int emulate_on_interception(struct vcpu_svm *svm)
2894 {
2895 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2896 }
2897
2898 static int rdpmc_interception(struct vcpu_svm *svm)
2899 {
2900 int err;
2901
2902 if (!static_cpu_has(X86_FEATURE_NRIPS))
2903 return emulate_on_interception(svm);
2904
2905 err = kvm_rdpmc(&svm->vcpu);
2906 kvm_complete_insn_gp(&svm->vcpu, err);
2907
2908 return 1;
2909 }
2910
2911 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2912 unsigned long val)
2913 {
2914 unsigned long cr0 = svm->vcpu.arch.cr0;
2915 bool ret = false;
2916 u64 intercept;
2917
2918 intercept = svm->nested.intercept;
2919
2920 if (!is_guest_mode(&svm->vcpu) ||
2921 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2922 return false;
2923
2924 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2925 val &= ~SVM_CR0_SELECTIVE_MASK;
2926
2927 if (cr0 ^ val) {
2928 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2929 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2930 }
2931
2932 return ret;
2933 }
2934
2935 #define CR_VALID (1ULL << 63)
2936
2937 static int cr_interception(struct vcpu_svm *svm)
2938 {
2939 int reg, cr;
2940 unsigned long val;
2941 int err;
2942
2943 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2944 return emulate_on_interception(svm);
2945
2946 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2947 return emulate_on_interception(svm);
2948
2949 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2950 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2951 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2952 else
2953 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2954
2955 err = 0;
2956 if (cr >= 16) { /* mov to cr */
2957 cr -= 16;
2958 val = kvm_register_read(&svm->vcpu, reg);
2959 switch (cr) {
2960 case 0:
2961 if (!check_selective_cr0_intercepted(svm, val))
2962 err = kvm_set_cr0(&svm->vcpu, val);
2963 else
2964 return 1;
2965
2966 break;
2967 case 3:
2968 err = kvm_set_cr3(&svm->vcpu, val);
2969 break;
2970 case 4:
2971 err = kvm_set_cr4(&svm->vcpu, val);
2972 break;
2973 case 8:
2974 err = kvm_set_cr8(&svm->vcpu, val);
2975 break;
2976 default:
2977 WARN(1, "unhandled write to CR%d", cr);
2978 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2979 return 1;
2980 }
2981 } else { /* mov from cr */
2982 switch (cr) {
2983 case 0:
2984 val = kvm_read_cr0(&svm->vcpu);
2985 break;
2986 case 2:
2987 val = svm->vcpu.arch.cr2;
2988 break;
2989 case 3:
2990 val = kvm_read_cr3(&svm->vcpu);
2991 break;
2992 case 4:
2993 val = kvm_read_cr4(&svm->vcpu);
2994 break;
2995 case 8:
2996 val = kvm_get_cr8(&svm->vcpu);
2997 break;
2998 default:
2999 WARN(1, "unhandled read from CR%d", cr);
3000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3001 return 1;
3002 }
3003 kvm_register_write(&svm->vcpu, reg, val);
3004 }
3005 kvm_complete_insn_gp(&svm->vcpu, err);
3006
3007 return 1;
3008 }
3009
3010 static int dr_interception(struct vcpu_svm *svm)
3011 {
3012 int reg, dr;
3013 unsigned long val;
3014
3015 if (svm->vcpu.guest_debug == 0) {
3016 /*
3017 * No more DR vmexits; force a reload of the debug registers
3018 * and reenter on this instruction. The next vmexit will
3019 * retrieve the full state of the debug registers.
3020 */
3021 clr_dr_intercepts(svm);
3022 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3023 return 1;
3024 }
3025
3026 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3027 return emulate_on_interception(svm);
3028
3029 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3030 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3031
3032 if (dr >= 16) { /* mov to DRn */
3033 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3034 return 1;
3035 val = kvm_register_read(&svm->vcpu, reg);
3036 kvm_set_dr(&svm->vcpu, dr - 16, val);
3037 } else {
3038 if (!kvm_require_dr(&svm->vcpu, dr))
3039 return 1;
3040 kvm_get_dr(&svm->vcpu, dr, &val);
3041 kvm_register_write(&svm->vcpu, reg, val);
3042 }
3043
3044 skip_emulated_instruction(&svm->vcpu);
3045
3046 return 1;
3047 }
3048
3049 static int cr8_write_interception(struct vcpu_svm *svm)
3050 {
3051 struct kvm_run *kvm_run = svm->vcpu.run;
3052 int r;
3053
3054 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3055 /* instruction emulation calls kvm_set_cr8() */
3056 r = cr_interception(svm);
3057 if (irqchip_in_kernel(svm->vcpu.kvm))
3058 return r;
3059 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3060 return r;
3061 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3062 return 0;
3063 }
3064
3065 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3066 {
3067 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3068 return vmcb->control.tsc_offset +
3069 svm_scale_tsc(vcpu, host_tsc);
3070 }
3071
3072 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3073 {
3074 struct vcpu_svm *svm = to_svm(vcpu);
3075
3076 switch (msr_info->index) {
3077 case MSR_IA32_TSC: {
3078 msr_info->data = svm->vmcb->control.tsc_offset +
3079 svm_scale_tsc(vcpu, native_read_tsc());
3080
3081 break;
3082 }
3083 case MSR_STAR:
3084 msr_info->data = svm->vmcb->save.star;
3085 break;
3086 #ifdef CONFIG_X86_64
3087 case MSR_LSTAR:
3088 msr_info->data = svm->vmcb->save.lstar;
3089 break;
3090 case MSR_CSTAR:
3091 msr_info->data = svm->vmcb->save.cstar;
3092 break;
3093 case MSR_KERNEL_GS_BASE:
3094 msr_info->data = svm->vmcb->save.kernel_gs_base;
3095 break;
3096 case MSR_SYSCALL_MASK:
3097 msr_info->data = svm->vmcb->save.sfmask;
3098 break;
3099 #endif
3100 case MSR_IA32_SYSENTER_CS:
3101 msr_info->data = svm->vmcb->save.sysenter_cs;
3102 break;
3103 case MSR_IA32_SYSENTER_EIP:
3104 msr_info->data = svm->sysenter_eip;
3105 break;
3106 case MSR_IA32_SYSENTER_ESP:
3107 msr_info->data = svm->sysenter_esp;
3108 break;
3109 /*
3110 * Nobody will change the following 5 values in the VMCB so we can
3111 * safely return them on rdmsr. They will always be 0 until LBRV is
3112 * implemented.
3113 */
3114 case MSR_IA32_DEBUGCTLMSR:
3115 msr_info->data = svm->vmcb->save.dbgctl;
3116 break;
3117 case MSR_IA32_LASTBRANCHFROMIP:
3118 msr_info->data = svm->vmcb->save.br_from;
3119 break;
3120 case MSR_IA32_LASTBRANCHTOIP:
3121 msr_info->data = svm->vmcb->save.br_to;
3122 break;
3123 case MSR_IA32_LASTINTFROMIP:
3124 msr_info->data = svm->vmcb->save.last_excp_from;
3125 break;
3126 case MSR_IA32_LASTINTTOIP:
3127 msr_info->data = svm->vmcb->save.last_excp_to;
3128 break;
3129 case MSR_VM_HSAVE_PA:
3130 msr_info->data = svm->nested.hsave_msr;
3131 break;
3132 case MSR_VM_CR:
3133 msr_info->data = svm->nested.vm_cr_msr;
3134 break;
3135 case MSR_IA32_UCODE_REV:
3136 msr_info->data = 0x01000065;
3137 break;
3138 default:
3139 return kvm_get_msr_common(vcpu, msr_info);
3140 }
3141 return 0;
3142 }
3143
3144 static int rdmsr_interception(struct vcpu_svm *svm)
3145 {
3146 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3147 struct msr_data msr_info;
3148
3149 msr_info.index = ecx;
3150 msr_info.host_initiated = false;
3151 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3152 trace_kvm_msr_read_ex(ecx);
3153 kvm_inject_gp(&svm->vcpu, 0);
3154 } else {
3155 trace_kvm_msr_read(ecx, msr_info.data);
3156
3157 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3158 msr_info.data & 0xffffffff);
3159 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3160 msr_info.data >> 32);
3161 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3162 skip_emulated_instruction(&svm->vcpu);
3163 }
3164 return 1;
3165 }
3166
3167 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3168 {
3169 struct vcpu_svm *svm = to_svm(vcpu);
3170 int svm_dis, chg_mask;
3171
3172 if (data & ~SVM_VM_CR_VALID_MASK)
3173 return 1;
3174
3175 chg_mask = SVM_VM_CR_VALID_MASK;
3176
3177 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3178 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3179
3180 svm->nested.vm_cr_msr &= ~chg_mask;
3181 svm->nested.vm_cr_msr |= (data & chg_mask);
3182
3183 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3184
3185 /* check for svm_disable while efer.svme is set */
3186 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3187 return 1;
3188
3189 return 0;
3190 }
3191
3192 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3193 {
3194 struct vcpu_svm *svm = to_svm(vcpu);
3195
3196 u32 ecx = msr->index;
3197 u64 data = msr->data;
3198 switch (ecx) {
3199 case MSR_IA32_TSC:
3200 kvm_write_tsc(vcpu, msr);
3201 break;
3202 case MSR_STAR:
3203 svm->vmcb->save.star = data;
3204 break;
3205 #ifdef CONFIG_X86_64
3206 case MSR_LSTAR:
3207 svm->vmcb->save.lstar = data;
3208 break;
3209 case MSR_CSTAR:
3210 svm->vmcb->save.cstar = data;
3211 break;
3212 case MSR_KERNEL_GS_BASE:
3213 svm->vmcb->save.kernel_gs_base = data;
3214 break;
3215 case MSR_SYSCALL_MASK:
3216 svm->vmcb->save.sfmask = data;
3217 break;
3218 #endif
3219 case MSR_IA32_SYSENTER_CS:
3220 svm->vmcb->save.sysenter_cs = data;
3221 break;
3222 case MSR_IA32_SYSENTER_EIP:
3223 svm->sysenter_eip = data;
3224 svm->vmcb->save.sysenter_eip = data;
3225 break;
3226 case MSR_IA32_SYSENTER_ESP:
3227 svm->sysenter_esp = data;
3228 svm->vmcb->save.sysenter_esp = data;
3229 break;
3230 case MSR_IA32_DEBUGCTLMSR:
3231 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3232 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3233 __func__, data);
3234 break;
3235 }
3236 if (data & DEBUGCTL_RESERVED_BITS)
3237 return 1;
3238
3239 svm->vmcb->save.dbgctl = data;
3240 mark_dirty(svm->vmcb, VMCB_LBR);
3241 if (data & (1ULL<<0))
3242 svm_enable_lbrv(svm);
3243 else
3244 svm_disable_lbrv(svm);
3245 break;
3246 case MSR_VM_HSAVE_PA:
3247 svm->nested.hsave_msr = data;
3248 break;
3249 case MSR_VM_CR:
3250 return svm_set_vm_cr(vcpu, data);
3251 case MSR_VM_IGNNE:
3252 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3253 break;
3254 default:
3255 return kvm_set_msr_common(vcpu, msr);
3256 }
3257 return 0;
3258 }
3259
3260 static int wrmsr_interception(struct vcpu_svm *svm)
3261 {
3262 struct msr_data msr;
3263 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3264 u64 data = kvm_read_edx_eax(&svm->vcpu);
3265
3266 msr.data = data;
3267 msr.index = ecx;
3268 msr.host_initiated = false;
3269
3270 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3271 if (kvm_set_msr(&svm->vcpu, &msr)) {
3272 trace_kvm_msr_write_ex(ecx, data);
3273 kvm_inject_gp(&svm->vcpu, 0);
3274 } else {
3275 trace_kvm_msr_write(ecx, data);
3276 skip_emulated_instruction(&svm->vcpu);
3277 }
3278 return 1;
3279 }
3280
3281 static int msr_interception(struct vcpu_svm *svm)
3282 {
3283 if (svm->vmcb->control.exit_info_1)
3284 return wrmsr_interception(svm);
3285 else
3286 return rdmsr_interception(svm);
3287 }
3288
3289 static int interrupt_window_interception(struct vcpu_svm *svm)
3290 {
3291 struct kvm_run *kvm_run = svm->vcpu.run;
3292
3293 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3294 svm_clear_vintr(svm);
3295 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3296 mark_dirty(svm->vmcb, VMCB_INTR);
3297 ++svm->vcpu.stat.irq_window_exits;
3298 /*
3299 * If the user space waits to inject interrupts, exit as soon as
3300 * possible
3301 */
3302 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3303 kvm_run->request_interrupt_window &&
3304 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3305 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3306 return 0;
3307 }
3308
3309 return 1;
3310 }
3311
3312 static int pause_interception(struct vcpu_svm *svm)
3313 {
3314 kvm_vcpu_on_spin(&(svm->vcpu));
3315 return 1;
3316 }
3317
3318 static int nop_interception(struct vcpu_svm *svm)
3319 {
3320 skip_emulated_instruction(&(svm->vcpu));
3321 return 1;
3322 }
3323
3324 static int monitor_interception(struct vcpu_svm *svm)
3325 {
3326 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3327 return nop_interception(svm);
3328 }
3329
3330 static int mwait_interception(struct vcpu_svm *svm)
3331 {
3332 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3333 return nop_interception(svm);
3334 }
3335
3336 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3337 [SVM_EXIT_READ_CR0] = cr_interception,
3338 [SVM_EXIT_READ_CR3] = cr_interception,
3339 [SVM_EXIT_READ_CR4] = cr_interception,
3340 [SVM_EXIT_READ_CR8] = cr_interception,
3341 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3342 [SVM_EXIT_WRITE_CR0] = cr_interception,
3343 [SVM_EXIT_WRITE_CR3] = cr_interception,
3344 [SVM_EXIT_WRITE_CR4] = cr_interception,
3345 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3346 [SVM_EXIT_READ_DR0] = dr_interception,
3347 [SVM_EXIT_READ_DR1] = dr_interception,
3348 [SVM_EXIT_READ_DR2] = dr_interception,
3349 [SVM_EXIT_READ_DR3] = dr_interception,
3350 [SVM_EXIT_READ_DR4] = dr_interception,
3351 [SVM_EXIT_READ_DR5] = dr_interception,
3352 [SVM_EXIT_READ_DR6] = dr_interception,
3353 [SVM_EXIT_READ_DR7] = dr_interception,
3354 [SVM_EXIT_WRITE_DR0] = dr_interception,
3355 [SVM_EXIT_WRITE_DR1] = dr_interception,
3356 [SVM_EXIT_WRITE_DR2] = dr_interception,
3357 [SVM_EXIT_WRITE_DR3] = dr_interception,
3358 [SVM_EXIT_WRITE_DR4] = dr_interception,
3359 [SVM_EXIT_WRITE_DR5] = dr_interception,
3360 [SVM_EXIT_WRITE_DR6] = dr_interception,
3361 [SVM_EXIT_WRITE_DR7] = dr_interception,
3362 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3363 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3364 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3365 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3366 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3367 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3368 [SVM_EXIT_INTR] = intr_interception,
3369 [SVM_EXIT_NMI] = nmi_interception,
3370 [SVM_EXIT_SMI] = nop_on_interception,
3371 [SVM_EXIT_INIT] = nop_on_interception,
3372 [SVM_EXIT_VINTR] = interrupt_window_interception,
3373 [SVM_EXIT_RDPMC] = rdpmc_interception,
3374 [SVM_EXIT_CPUID] = cpuid_interception,
3375 [SVM_EXIT_IRET] = iret_interception,
3376 [SVM_EXIT_INVD] = emulate_on_interception,
3377 [SVM_EXIT_PAUSE] = pause_interception,
3378 [SVM_EXIT_HLT] = halt_interception,
3379 [SVM_EXIT_INVLPG] = invlpg_interception,
3380 [SVM_EXIT_INVLPGA] = invlpga_interception,
3381 [SVM_EXIT_IOIO] = io_interception,
3382 [SVM_EXIT_MSR] = msr_interception,
3383 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3384 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3385 [SVM_EXIT_VMRUN] = vmrun_interception,
3386 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3387 [SVM_EXIT_VMLOAD] = vmload_interception,
3388 [SVM_EXIT_VMSAVE] = vmsave_interception,
3389 [SVM_EXIT_STGI] = stgi_interception,
3390 [SVM_EXIT_CLGI] = clgi_interception,
3391 [SVM_EXIT_SKINIT] = skinit_interception,
3392 [SVM_EXIT_WBINVD] = wbinvd_interception,
3393 [SVM_EXIT_MONITOR] = monitor_interception,
3394 [SVM_EXIT_MWAIT] = mwait_interception,
3395 [SVM_EXIT_XSETBV] = xsetbv_interception,
3396 [SVM_EXIT_NPF] = pf_interception,
3397 };
3398
3399 static void dump_vmcb(struct kvm_vcpu *vcpu)
3400 {
3401 struct vcpu_svm *svm = to_svm(vcpu);
3402 struct vmcb_control_area *control = &svm->vmcb->control;
3403 struct vmcb_save_area *save = &svm->vmcb->save;
3404
3405 pr_err("VMCB Control Area:\n");
3406 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3407 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3408 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3409 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3410 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3411 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3412 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3413 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3414 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3415 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3416 pr_err("%-20s%d\n", "asid:", control->asid);
3417 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3418 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3419 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3420 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3421 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3422 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3423 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3424 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3425 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3426 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3427 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3428 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3429 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3430 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3431 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3432 pr_err("VMCB State Save Area:\n");
3433 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3434 "es:",
3435 save->es.selector, save->es.attrib,
3436 save->es.limit, save->es.base);
3437 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3438 "cs:",
3439 save->cs.selector, save->cs.attrib,
3440 save->cs.limit, save->cs.base);
3441 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3442 "ss:",
3443 save->ss.selector, save->ss.attrib,
3444 save->ss.limit, save->ss.base);
3445 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3446 "ds:",
3447 save->ds.selector, save->ds.attrib,
3448 save->ds.limit, save->ds.base);
3449 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3450 "fs:",
3451 save->fs.selector, save->fs.attrib,
3452 save->fs.limit, save->fs.base);
3453 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3454 "gs:",
3455 save->gs.selector, save->gs.attrib,
3456 save->gs.limit, save->gs.base);
3457 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3458 "gdtr:",
3459 save->gdtr.selector, save->gdtr.attrib,
3460 save->gdtr.limit, save->gdtr.base);
3461 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3462 "ldtr:",
3463 save->ldtr.selector, save->ldtr.attrib,
3464 save->ldtr.limit, save->ldtr.base);
3465 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3466 "idtr:",
3467 save->idtr.selector, save->idtr.attrib,
3468 save->idtr.limit, save->idtr.base);
3469 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3470 "tr:",
3471 save->tr.selector, save->tr.attrib,
3472 save->tr.limit, save->tr.base);
3473 pr_err("cpl: %d efer: %016llx\n",
3474 save->cpl, save->efer);
3475 pr_err("%-15s %016llx %-13s %016llx\n",
3476 "cr0:", save->cr0, "cr2:", save->cr2);
3477 pr_err("%-15s %016llx %-13s %016llx\n",
3478 "cr3:", save->cr3, "cr4:", save->cr4);
3479 pr_err("%-15s %016llx %-13s %016llx\n",
3480 "dr6:", save->dr6, "dr7:", save->dr7);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "rip:", save->rip, "rflags:", save->rflags);
3483 pr_err("%-15s %016llx %-13s %016llx\n",
3484 "rsp:", save->rsp, "rax:", save->rax);
3485 pr_err("%-15s %016llx %-13s %016llx\n",
3486 "star:", save->star, "lstar:", save->lstar);
3487 pr_err("%-15s %016llx %-13s %016llx\n",
3488 "cstar:", save->cstar, "sfmask:", save->sfmask);
3489 pr_err("%-15s %016llx %-13s %016llx\n",
3490 "kernel_gs_base:", save->kernel_gs_base,
3491 "sysenter_cs:", save->sysenter_cs);
3492 pr_err("%-15s %016llx %-13s %016llx\n",
3493 "sysenter_esp:", save->sysenter_esp,
3494 "sysenter_eip:", save->sysenter_eip);
3495 pr_err("%-15s %016llx %-13s %016llx\n",
3496 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3497 pr_err("%-15s %016llx %-13s %016llx\n",
3498 "br_from:", save->br_from, "br_to:", save->br_to);
3499 pr_err("%-15s %016llx %-13s %016llx\n",
3500 "excp_from:", save->last_excp_from,
3501 "excp_to:", save->last_excp_to);
3502 }
3503
3504 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3505 {
3506 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3507
3508 *info1 = control->exit_info_1;
3509 *info2 = control->exit_info_2;
3510 }
3511
3512 static int handle_exit(struct kvm_vcpu *vcpu)
3513 {
3514 struct vcpu_svm *svm = to_svm(vcpu);
3515 struct kvm_run *kvm_run = vcpu->run;
3516 u32 exit_code = svm->vmcb->control.exit_code;
3517
3518 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3519 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3520 if (npt_enabled)
3521 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3522
3523 if (unlikely(svm->nested.exit_required)) {
3524 nested_svm_vmexit(svm);
3525 svm->nested.exit_required = false;
3526
3527 return 1;
3528 }
3529
3530 if (is_guest_mode(vcpu)) {
3531 int vmexit;
3532
3533 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3534 svm->vmcb->control.exit_info_1,
3535 svm->vmcb->control.exit_info_2,
3536 svm->vmcb->control.exit_int_info,
3537 svm->vmcb->control.exit_int_info_err,
3538 KVM_ISA_SVM);
3539
3540 vmexit = nested_svm_exit_special(svm);
3541
3542 if (vmexit == NESTED_EXIT_CONTINUE)
3543 vmexit = nested_svm_exit_handled(svm);
3544
3545 if (vmexit == NESTED_EXIT_DONE)
3546 return 1;
3547 }
3548
3549 svm_complete_interrupts(svm);
3550
3551 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3552 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3553 kvm_run->fail_entry.hardware_entry_failure_reason
3554 = svm->vmcb->control.exit_code;
3555 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3556 dump_vmcb(vcpu);
3557 return 0;
3558 }
3559
3560 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3561 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3562 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3563 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3564 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3565 "exit_code 0x%x\n",
3566 __func__, svm->vmcb->control.exit_int_info,
3567 exit_code);
3568
3569 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3570 || !svm_exit_handlers[exit_code]) {
3571 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3572 kvm_queue_exception(vcpu, UD_VECTOR);
3573 return 1;
3574 }
3575
3576 return svm_exit_handlers[exit_code](svm);
3577 }
3578
3579 static void reload_tss(struct kvm_vcpu *vcpu)
3580 {
3581 int cpu = raw_smp_processor_id();
3582
3583 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3584 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3585 load_TR_desc();
3586 }
3587
3588 static void pre_svm_run(struct vcpu_svm *svm)
3589 {
3590 int cpu = raw_smp_processor_id();
3591
3592 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3593
3594 /* FIXME: handle wraparound of asid_generation */
3595 if (svm->asid_generation != sd->asid_generation)
3596 new_asid(svm, sd);
3597 }
3598
3599 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3600 {
3601 struct vcpu_svm *svm = to_svm(vcpu);
3602
3603 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3604 vcpu->arch.hflags |= HF_NMI_MASK;
3605 set_intercept(svm, INTERCEPT_IRET);
3606 ++vcpu->stat.nmi_injections;
3607 }
3608
3609 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3610 {
3611 struct vmcb_control_area *control;
3612
3613 control = &svm->vmcb->control;
3614 control->int_vector = irq;
3615 control->int_ctl &= ~V_INTR_PRIO_MASK;
3616 control->int_ctl |= V_IRQ_MASK |
3617 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3618 mark_dirty(svm->vmcb, VMCB_INTR);
3619 }
3620
3621 static void svm_set_irq(struct kvm_vcpu *vcpu)
3622 {
3623 struct vcpu_svm *svm = to_svm(vcpu);
3624
3625 BUG_ON(!(gif_set(svm)));
3626
3627 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3628 ++vcpu->stat.irq_injections;
3629
3630 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3631 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3632 }
3633
3634 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3635 {
3636 struct vcpu_svm *svm = to_svm(vcpu);
3637
3638 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3639 return;
3640
3641 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3642
3643 if (irr == -1)
3644 return;
3645
3646 if (tpr >= irr)
3647 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3648 }
3649
3650 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3651 {
3652 return;
3653 }
3654
3655 static int svm_vm_has_apicv(struct kvm *kvm)
3656 {
3657 return 0;
3658 }
3659
3660 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3661 {
3662 return;
3663 }
3664
3665 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3666 {
3667 return;
3668 }
3669
3670 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3671 {
3672 struct vcpu_svm *svm = to_svm(vcpu);
3673 struct vmcb *vmcb = svm->vmcb;
3674 int ret;
3675 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3676 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3677 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3678
3679 return ret;
3680 }
3681
3682 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3683 {
3684 struct vcpu_svm *svm = to_svm(vcpu);
3685
3686 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3687 }
3688
3689 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3690 {
3691 struct vcpu_svm *svm = to_svm(vcpu);
3692
3693 if (masked) {
3694 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3695 set_intercept(svm, INTERCEPT_IRET);
3696 } else {
3697 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3698 clr_intercept(svm, INTERCEPT_IRET);
3699 }
3700 }
3701
3702 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3703 {
3704 struct vcpu_svm *svm = to_svm(vcpu);
3705 struct vmcb *vmcb = svm->vmcb;
3706 int ret;
3707
3708 if (!gif_set(svm) ||
3709 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3710 return 0;
3711
3712 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3713
3714 if (is_guest_mode(vcpu))
3715 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3716
3717 return ret;
3718 }
3719
3720 static void enable_irq_window(struct kvm_vcpu *vcpu)
3721 {
3722 struct vcpu_svm *svm = to_svm(vcpu);
3723
3724 /*
3725 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3726 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3727 * get that intercept, this function will be called again though and
3728 * we'll get the vintr intercept.
3729 */
3730 if (gif_set(svm) && nested_svm_intr(svm)) {
3731 svm_set_vintr(svm);
3732 svm_inject_irq(svm, 0x0);
3733 }
3734 }
3735
3736 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3737 {
3738 struct vcpu_svm *svm = to_svm(vcpu);
3739
3740 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3741 == HF_NMI_MASK)
3742 return; /* IRET will cause a vm exit */
3743
3744 /*
3745 * Something prevents NMI from been injected. Single step over possible
3746 * problem (IRET or exception injection or interrupt shadow)
3747 */
3748 svm->nmi_singlestep = true;
3749 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3750 update_db_bp_intercept(vcpu);
3751 }
3752
3753 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3754 {
3755 return 0;
3756 }
3757
3758 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3759 {
3760 struct vcpu_svm *svm = to_svm(vcpu);
3761
3762 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3763 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3764 else
3765 svm->asid_generation--;
3766 }
3767
3768 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3769 {
3770 }
3771
3772 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3773 {
3774 struct vcpu_svm *svm = to_svm(vcpu);
3775
3776 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3777 return;
3778
3779 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3780 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3781 kvm_set_cr8(vcpu, cr8);
3782 }
3783 }
3784
3785 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3786 {
3787 struct vcpu_svm *svm = to_svm(vcpu);
3788 u64 cr8;
3789
3790 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3791 return;
3792
3793 cr8 = kvm_get_cr8(vcpu);
3794 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3795 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3796 }
3797
3798 static void svm_complete_interrupts(struct vcpu_svm *svm)
3799 {
3800 u8 vector;
3801 int type;
3802 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3803 unsigned int3_injected = svm->int3_injected;
3804
3805 svm->int3_injected = 0;
3806
3807 /*
3808 * If we've made progress since setting HF_IRET_MASK, we've
3809 * executed an IRET and can allow NMI injection.
3810 */
3811 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3812 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3813 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3814 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3815 }
3816
3817 svm->vcpu.arch.nmi_injected = false;
3818 kvm_clear_exception_queue(&svm->vcpu);
3819 kvm_clear_interrupt_queue(&svm->vcpu);
3820
3821 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3822 return;
3823
3824 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3825
3826 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3827 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3828
3829 switch (type) {
3830 case SVM_EXITINTINFO_TYPE_NMI:
3831 svm->vcpu.arch.nmi_injected = true;
3832 break;
3833 case SVM_EXITINTINFO_TYPE_EXEPT:
3834 /*
3835 * In case of software exceptions, do not reinject the vector,
3836 * but re-execute the instruction instead. Rewind RIP first
3837 * if we emulated INT3 before.
3838 */
3839 if (kvm_exception_is_soft(vector)) {
3840 if (vector == BP_VECTOR && int3_injected &&
3841 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3842 kvm_rip_write(&svm->vcpu,
3843 kvm_rip_read(&svm->vcpu) -
3844 int3_injected);
3845 break;
3846 }
3847 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3848 u32 err = svm->vmcb->control.exit_int_info_err;
3849 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3850
3851 } else
3852 kvm_requeue_exception(&svm->vcpu, vector);
3853 break;
3854 case SVM_EXITINTINFO_TYPE_INTR:
3855 kvm_queue_interrupt(&svm->vcpu, vector, false);
3856 break;
3857 default:
3858 break;
3859 }
3860 }
3861
3862 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3863 {
3864 struct vcpu_svm *svm = to_svm(vcpu);
3865 struct vmcb_control_area *control = &svm->vmcb->control;
3866
3867 control->exit_int_info = control->event_inj;
3868 control->exit_int_info_err = control->event_inj_err;
3869 control->event_inj = 0;
3870 svm_complete_interrupts(svm);
3871 }
3872
3873 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3874 {
3875 struct vcpu_svm *svm = to_svm(vcpu);
3876
3877 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3878 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3879 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3880
3881 /*
3882 * A vmexit emulation is required before the vcpu can be executed
3883 * again.
3884 */
3885 if (unlikely(svm->nested.exit_required))
3886 return;
3887
3888 pre_svm_run(svm);
3889
3890 sync_lapic_to_cr8(vcpu);
3891
3892 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3893
3894 clgi();
3895
3896 local_irq_enable();
3897
3898 asm volatile (
3899 "push %%" _ASM_BP "; \n\t"
3900 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3901 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3902 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3903 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3904 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3905 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3906 #ifdef CONFIG_X86_64
3907 "mov %c[r8](%[svm]), %%r8 \n\t"
3908 "mov %c[r9](%[svm]), %%r9 \n\t"
3909 "mov %c[r10](%[svm]), %%r10 \n\t"
3910 "mov %c[r11](%[svm]), %%r11 \n\t"
3911 "mov %c[r12](%[svm]), %%r12 \n\t"
3912 "mov %c[r13](%[svm]), %%r13 \n\t"
3913 "mov %c[r14](%[svm]), %%r14 \n\t"
3914 "mov %c[r15](%[svm]), %%r15 \n\t"
3915 #endif
3916
3917 /* Enter guest mode */
3918 "push %%" _ASM_AX " \n\t"
3919 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3920 __ex(SVM_VMLOAD) "\n\t"
3921 __ex(SVM_VMRUN) "\n\t"
3922 __ex(SVM_VMSAVE) "\n\t"
3923 "pop %%" _ASM_AX " \n\t"
3924
3925 /* Save guest registers, load host registers */
3926 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3927 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3928 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3929 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3930 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3931 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3932 #ifdef CONFIG_X86_64
3933 "mov %%r8, %c[r8](%[svm]) \n\t"
3934 "mov %%r9, %c[r9](%[svm]) \n\t"
3935 "mov %%r10, %c[r10](%[svm]) \n\t"
3936 "mov %%r11, %c[r11](%[svm]) \n\t"
3937 "mov %%r12, %c[r12](%[svm]) \n\t"
3938 "mov %%r13, %c[r13](%[svm]) \n\t"
3939 "mov %%r14, %c[r14](%[svm]) \n\t"
3940 "mov %%r15, %c[r15](%[svm]) \n\t"
3941 #endif
3942 "pop %%" _ASM_BP
3943 :
3944 : [svm]"a"(svm),
3945 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3946 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3947 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3948 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3949 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3950 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3951 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3952 #ifdef CONFIG_X86_64
3953 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3954 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3955 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3956 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3957 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3958 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3959 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3960 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3961 #endif
3962 : "cc", "memory"
3963 #ifdef CONFIG_X86_64
3964 , "rbx", "rcx", "rdx", "rsi", "rdi"
3965 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3966 #else
3967 , "ebx", "ecx", "edx", "esi", "edi"
3968 #endif
3969 );
3970
3971 #ifdef CONFIG_X86_64
3972 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3973 #else
3974 loadsegment(fs, svm->host.fs);
3975 #ifndef CONFIG_X86_32_LAZY_GS
3976 loadsegment(gs, svm->host.gs);
3977 #endif
3978 #endif
3979
3980 reload_tss(vcpu);
3981
3982 local_irq_disable();
3983
3984 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3985 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3986 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3987 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3988
3989 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3990
3991 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3992 kvm_before_handle_nmi(&svm->vcpu);
3993
3994 stgi();
3995
3996 /* Any pending NMI will happen here */
3997
3998 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3999 kvm_after_handle_nmi(&svm->vcpu);
4000
4001 sync_cr8_to_lapic(vcpu);
4002
4003 svm->next_rip = 0;
4004
4005 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4006
4007 /* if exit due to PF check for async PF */
4008 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4009 svm->apf_reason = kvm_read_and_reset_pf_reason();
4010
4011 if (npt_enabled) {
4012 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4013 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4014 }
4015
4016 /*
4017 * We need to handle MC intercepts here before the vcpu has a chance to
4018 * change the physical cpu
4019 */
4020 if (unlikely(svm->vmcb->control.exit_code ==
4021 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4022 svm_handle_mce(svm);
4023
4024 mark_all_clean(svm->vmcb);
4025 }
4026
4027 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4028 {
4029 struct vcpu_svm *svm = to_svm(vcpu);
4030
4031 svm->vmcb->save.cr3 = root;
4032 mark_dirty(svm->vmcb, VMCB_CR);
4033 svm_flush_tlb(vcpu);
4034 }
4035
4036 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4037 {
4038 struct vcpu_svm *svm = to_svm(vcpu);
4039
4040 svm->vmcb->control.nested_cr3 = root;
4041 mark_dirty(svm->vmcb, VMCB_NPT);
4042
4043 /* Also sync guest cr3 here in case we live migrate */
4044 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4045 mark_dirty(svm->vmcb, VMCB_CR);
4046
4047 svm_flush_tlb(vcpu);
4048 }
4049
4050 static int is_disabled(void)
4051 {
4052 u64 vm_cr;
4053
4054 rdmsrl(MSR_VM_CR, vm_cr);
4055 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4056 return 1;
4057
4058 return 0;
4059 }
4060
4061 static void
4062 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4063 {
4064 /*
4065 * Patch in the VMMCALL instruction:
4066 */
4067 hypercall[0] = 0x0f;
4068 hypercall[1] = 0x01;
4069 hypercall[2] = 0xd9;
4070 }
4071
4072 static void svm_check_processor_compat(void *rtn)
4073 {
4074 *(int *)rtn = 0;
4075 }
4076
4077 static bool svm_cpu_has_accelerated_tpr(void)
4078 {
4079 return false;
4080 }
4081
4082 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4083 {
4084 return 0;
4085 }
4086
4087 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4088 {
4089 }
4090
4091 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4092 {
4093 switch (func) {
4094 case 0x80000001:
4095 if (nested)
4096 entry->ecx |= (1 << 2); /* Set SVM bit */
4097 break;
4098 case 0x8000000A:
4099 entry->eax = 1; /* SVM revision 1 */
4100 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4101 ASID emulation to nested SVM */
4102 entry->ecx = 0; /* Reserved */
4103 entry->edx = 0; /* Per default do not support any
4104 additional features */
4105
4106 /* Support next_rip if host supports it */
4107 if (boot_cpu_has(X86_FEATURE_NRIPS))
4108 entry->edx |= SVM_FEATURE_NRIP;
4109
4110 /* Support NPT for the guest if enabled */
4111 if (npt_enabled)
4112 entry->edx |= SVM_FEATURE_NPT;
4113
4114 break;
4115 }
4116 }
4117
4118 static int svm_get_lpage_level(void)
4119 {
4120 return PT_PDPE_LEVEL;
4121 }
4122
4123 static bool svm_rdtscp_supported(void)
4124 {
4125 return false;
4126 }
4127
4128 static bool svm_invpcid_supported(void)
4129 {
4130 return false;
4131 }
4132
4133 static bool svm_mpx_supported(void)
4134 {
4135 return false;
4136 }
4137
4138 static bool svm_xsaves_supported(void)
4139 {
4140 return false;
4141 }
4142
4143 static bool svm_has_wbinvd_exit(void)
4144 {
4145 return true;
4146 }
4147
4148 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4149 {
4150 struct vcpu_svm *svm = to_svm(vcpu);
4151
4152 set_exception_intercept(svm, NM_VECTOR);
4153 update_cr0_intercept(svm);
4154 }
4155
4156 #define PRE_EX(exit) { .exit_code = (exit), \
4157 .stage = X86_ICPT_PRE_EXCEPT, }
4158 #define POST_EX(exit) { .exit_code = (exit), \
4159 .stage = X86_ICPT_POST_EXCEPT, }
4160 #define POST_MEM(exit) { .exit_code = (exit), \
4161 .stage = X86_ICPT_POST_MEMACCESS, }
4162
4163 static const struct __x86_intercept {
4164 u32 exit_code;
4165 enum x86_intercept_stage stage;
4166 } x86_intercept_map[] = {
4167 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4168 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4169 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4170 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4171 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4172 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4173 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4174 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4175 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4176 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4177 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4178 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4179 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4180 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4181 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4182 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4183 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4184 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4185 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4186 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4187 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4188 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4189 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4190 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4191 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4192 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4193 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4194 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4195 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4196 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4197 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4198 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4199 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4200 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4201 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4202 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4203 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4204 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4205 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4206 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4207 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4208 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4209 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4210 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4211 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4212 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4213 };
4214
4215 #undef PRE_EX
4216 #undef POST_EX
4217 #undef POST_MEM
4218
4219 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4220 struct x86_instruction_info *info,
4221 enum x86_intercept_stage stage)
4222 {
4223 struct vcpu_svm *svm = to_svm(vcpu);
4224 int vmexit, ret = X86EMUL_CONTINUE;
4225 struct __x86_intercept icpt_info;
4226 struct vmcb *vmcb = svm->vmcb;
4227
4228 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4229 goto out;
4230
4231 icpt_info = x86_intercept_map[info->intercept];
4232
4233 if (stage != icpt_info.stage)
4234 goto out;
4235
4236 switch (icpt_info.exit_code) {
4237 case SVM_EXIT_READ_CR0:
4238 if (info->intercept == x86_intercept_cr_read)
4239 icpt_info.exit_code += info->modrm_reg;
4240 break;
4241 case SVM_EXIT_WRITE_CR0: {
4242 unsigned long cr0, val;
4243 u64 intercept;
4244
4245 if (info->intercept == x86_intercept_cr_write)
4246 icpt_info.exit_code += info->modrm_reg;
4247
4248 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4249 info->intercept == x86_intercept_clts)
4250 break;
4251
4252 intercept = svm->nested.intercept;
4253
4254 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4255 break;
4256
4257 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4258 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4259
4260 if (info->intercept == x86_intercept_lmsw) {
4261 cr0 &= 0xfUL;
4262 val &= 0xfUL;
4263 /* lmsw can't clear PE - catch this here */
4264 if (cr0 & X86_CR0_PE)
4265 val |= X86_CR0_PE;
4266 }
4267
4268 if (cr0 ^ val)
4269 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4270
4271 break;
4272 }
4273 case SVM_EXIT_READ_DR0:
4274 case SVM_EXIT_WRITE_DR0:
4275 icpt_info.exit_code += info->modrm_reg;
4276 break;
4277 case SVM_EXIT_MSR:
4278 if (info->intercept == x86_intercept_wrmsr)
4279 vmcb->control.exit_info_1 = 1;
4280 else
4281 vmcb->control.exit_info_1 = 0;
4282 break;
4283 case SVM_EXIT_PAUSE:
4284 /*
4285 * We get this for NOP only, but pause
4286 * is rep not, check this here
4287 */
4288 if (info->rep_prefix != REPE_PREFIX)
4289 goto out;
4290 case SVM_EXIT_IOIO: {
4291 u64 exit_info;
4292 u32 bytes;
4293
4294 if (info->intercept == x86_intercept_in ||
4295 info->intercept == x86_intercept_ins) {
4296 exit_info = ((info->src_val & 0xffff) << 16) |
4297 SVM_IOIO_TYPE_MASK;
4298 bytes = info->dst_bytes;
4299 } else {
4300 exit_info = (info->dst_val & 0xffff) << 16;
4301 bytes = info->src_bytes;
4302 }
4303
4304 if (info->intercept == x86_intercept_outs ||
4305 info->intercept == x86_intercept_ins)
4306 exit_info |= SVM_IOIO_STR_MASK;
4307
4308 if (info->rep_prefix)
4309 exit_info |= SVM_IOIO_REP_MASK;
4310
4311 bytes = min(bytes, 4u);
4312
4313 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4314
4315 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4316
4317 vmcb->control.exit_info_1 = exit_info;
4318 vmcb->control.exit_info_2 = info->next_rip;
4319
4320 break;
4321 }
4322 default:
4323 break;
4324 }
4325
4326 vmcb->control.next_rip = info->next_rip;
4327 vmcb->control.exit_code = icpt_info.exit_code;
4328 vmexit = nested_svm_exit_handled(svm);
4329
4330 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4331 : X86EMUL_CONTINUE;
4332
4333 out:
4334 return ret;
4335 }
4336
4337 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4338 {
4339 local_irq_enable();
4340 }
4341
4342 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4343 {
4344 }
4345
4346 static struct kvm_x86_ops svm_x86_ops = {
4347 .cpu_has_kvm_support = has_svm,
4348 .disabled_by_bios = is_disabled,
4349 .hardware_setup = svm_hardware_setup,
4350 .hardware_unsetup = svm_hardware_unsetup,
4351 .check_processor_compatibility = svm_check_processor_compat,
4352 .hardware_enable = svm_hardware_enable,
4353 .hardware_disable = svm_hardware_disable,
4354 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4355
4356 .vcpu_create = svm_create_vcpu,
4357 .vcpu_free = svm_free_vcpu,
4358 .vcpu_reset = svm_vcpu_reset,
4359
4360 .prepare_guest_switch = svm_prepare_guest_switch,
4361 .vcpu_load = svm_vcpu_load,
4362 .vcpu_put = svm_vcpu_put,
4363
4364 .update_db_bp_intercept = update_db_bp_intercept,
4365 .get_msr = svm_get_msr,
4366 .set_msr = svm_set_msr,
4367 .get_segment_base = svm_get_segment_base,
4368 .get_segment = svm_get_segment,
4369 .set_segment = svm_set_segment,
4370 .get_cpl = svm_get_cpl,
4371 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4372 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4373 .decache_cr3 = svm_decache_cr3,
4374 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4375 .set_cr0 = svm_set_cr0,
4376 .set_cr3 = svm_set_cr3,
4377 .set_cr4 = svm_set_cr4,
4378 .set_efer = svm_set_efer,
4379 .get_idt = svm_get_idt,
4380 .set_idt = svm_set_idt,
4381 .get_gdt = svm_get_gdt,
4382 .set_gdt = svm_set_gdt,
4383 .get_dr6 = svm_get_dr6,
4384 .set_dr6 = svm_set_dr6,
4385 .set_dr7 = svm_set_dr7,
4386 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4387 .cache_reg = svm_cache_reg,
4388 .get_rflags = svm_get_rflags,
4389 .set_rflags = svm_set_rflags,
4390 .fpu_activate = svm_fpu_activate,
4391 .fpu_deactivate = svm_fpu_deactivate,
4392
4393 .tlb_flush = svm_flush_tlb,
4394
4395 .run = svm_vcpu_run,
4396 .handle_exit = handle_exit,
4397 .skip_emulated_instruction = skip_emulated_instruction,
4398 .set_interrupt_shadow = svm_set_interrupt_shadow,
4399 .get_interrupt_shadow = svm_get_interrupt_shadow,
4400 .patch_hypercall = svm_patch_hypercall,
4401 .set_irq = svm_set_irq,
4402 .set_nmi = svm_inject_nmi,
4403 .queue_exception = svm_queue_exception,
4404 .cancel_injection = svm_cancel_injection,
4405 .interrupt_allowed = svm_interrupt_allowed,
4406 .nmi_allowed = svm_nmi_allowed,
4407 .get_nmi_mask = svm_get_nmi_mask,
4408 .set_nmi_mask = svm_set_nmi_mask,
4409 .enable_nmi_window = enable_nmi_window,
4410 .enable_irq_window = enable_irq_window,
4411 .update_cr8_intercept = update_cr8_intercept,
4412 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4413 .vm_has_apicv = svm_vm_has_apicv,
4414 .load_eoi_exitmap = svm_load_eoi_exitmap,
4415 .sync_pir_to_irr = svm_sync_pir_to_irr,
4416
4417 .set_tss_addr = svm_set_tss_addr,
4418 .get_tdp_level = get_npt_level,
4419 .get_mt_mask = svm_get_mt_mask,
4420
4421 .get_exit_info = svm_get_exit_info,
4422
4423 .get_lpage_level = svm_get_lpage_level,
4424
4425 .cpuid_update = svm_cpuid_update,
4426
4427 .rdtscp_supported = svm_rdtscp_supported,
4428 .invpcid_supported = svm_invpcid_supported,
4429 .mpx_supported = svm_mpx_supported,
4430 .xsaves_supported = svm_xsaves_supported,
4431
4432 .set_supported_cpuid = svm_set_supported_cpuid,
4433
4434 .has_wbinvd_exit = svm_has_wbinvd_exit,
4435
4436 .set_tsc_khz = svm_set_tsc_khz,
4437 .read_tsc_offset = svm_read_tsc_offset,
4438 .write_tsc_offset = svm_write_tsc_offset,
4439 .adjust_tsc_offset = svm_adjust_tsc_offset,
4440 .compute_tsc_offset = svm_compute_tsc_offset,
4441 .read_l1_tsc = svm_read_l1_tsc,
4442
4443 .set_tdp_cr3 = set_tdp_cr3,
4444
4445 .check_intercept = svm_check_intercept,
4446 .handle_external_intr = svm_handle_external_intr,
4447
4448 .sched_in = svm_sched_in,
4449 };
4450
4451 static int __init svm_init(void)
4452 {
4453 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4454 __alignof__(struct vcpu_svm), THIS_MODULE);
4455 }
4456
4457 static void __exit svm_exit(void)
4458 {
4459 kvm_exit();
4460 }
4461
4462 module_init(svm_init)
4463 module_exit(svm_exit)