]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Add manipulation functions for DRx intercepts
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
55
56 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
57 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
58 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67 MSR_FS_BASE,
68 #endif
69 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77 struct vmcb *hsave;
78 u64 hsave_msr;
79 u64 vm_cr_msr;
80 u64 vmcb;
81
82 /* These are the merged vectors */
83 u32 *msrpm;
84
85 /* gpa pointers to the real vectors */
86 u64 vmcb_msrpm;
87 u64 vmcb_iopm;
88
89 /* A VMEXIT is required but not yet emulated */
90 bool exit_required;
91
92 /*
93 * If we vmexit during an instruction emulation we need this to restore
94 * the l1 guest rip after the emulation
95 */
96 unsigned long vmexit_rip;
97 unsigned long vmexit_rsp;
98 unsigned long vmexit_rax;
99
100 /* cache for intercepts of the guest */
101 u32 intercept_cr;
102 u32 intercept_dr;
103 u32 intercept_exceptions;
104 u64 intercept;
105
106 /* Nested Paging related state */
107 u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS 16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114 struct kvm_vcpu vcpu;
115 struct vmcb *vmcb;
116 unsigned long vmcb_pa;
117 struct svm_cpu_data *svm_data;
118 uint64_t asid_generation;
119 uint64_t sysenter_esp;
120 uint64_t sysenter_eip;
121
122 u64 next_rip;
123
124 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125 struct {
126 u16 fs;
127 u16 gs;
128 u16 ldt;
129 u64 gs_base;
130 } host;
131
132 u32 *msrpm;
133
134 struct nested_state nested;
135
136 bool nmi_singlestep;
137
138 unsigned int3_injected;
139 unsigned long int3_rip;
140 u32 apf_reason;
141 };
142
143 #define MSR_INVALID 0xffffffffU
144
145 static struct svm_direct_access_msrs {
146 u32 index; /* Index of the MSR */
147 bool always; /* True if intercept is always on */
148 } direct_access_msrs[] = {
149 { .index = MSR_STAR, .always = true },
150 { .index = MSR_IA32_SYSENTER_CS, .always = true },
151 #ifdef CONFIG_X86_64
152 { .index = MSR_GS_BASE, .always = true },
153 { .index = MSR_FS_BASE, .always = true },
154 { .index = MSR_KERNEL_GS_BASE, .always = true },
155 { .index = MSR_LSTAR, .always = true },
156 { .index = MSR_CSTAR, .always = true },
157 { .index = MSR_SYSCALL_MASK, .always = true },
158 #endif
159 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
160 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
161 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
162 { .index = MSR_IA32_LASTINTTOIP, .always = false },
163 { .index = MSR_INVALID, .always = false },
164 };
165
166 /* enable NPT for AMD64 and X86 with PAE */
167 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
168 static bool npt_enabled = true;
169 #else
170 static bool npt_enabled;
171 #endif
172 static int npt = 1;
173
174 module_param(npt, int, S_IRUGO);
175
176 static int nested = 1;
177 module_param(nested, int, S_IRUGO);
178
179 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
180 static void svm_complete_interrupts(struct vcpu_svm *svm);
181
182 static int nested_svm_exit_handled(struct vcpu_svm *svm);
183 static int nested_svm_intercept(struct vcpu_svm *svm);
184 static int nested_svm_vmexit(struct vcpu_svm *svm);
185 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
186 bool has_error_code, u32 error_code);
187
188 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
189 {
190 return container_of(vcpu, struct vcpu_svm, vcpu);
191 }
192
193 static void recalc_intercepts(struct vcpu_svm *svm)
194 {
195 struct vmcb_control_area *c, *h;
196 struct nested_state *g;
197
198 if (!is_guest_mode(&svm->vcpu))
199 return;
200
201 c = &svm->vmcb->control;
202 h = &svm->nested.hsave->control;
203 g = &svm->nested;
204
205 c->intercept_cr = h->intercept_cr | g->intercept_cr;
206 c->intercept_dr = h->intercept_dr | g->intercept_dr;
207 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
208 c->intercept = h->intercept | g->intercept;
209 }
210
211 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
212 {
213 if (is_guest_mode(&svm->vcpu))
214 return svm->nested.hsave;
215 else
216 return svm->vmcb;
217 }
218
219 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
220 {
221 struct vmcb *vmcb = get_host_vmcb(svm);
222
223 vmcb->control.intercept_cr |= (1U << bit);
224
225 recalc_intercepts(svm);
226 }
227
228 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
229 {
230 struct vmcb *vmcb = get_host_vmcb(svm);
231
232 vmcb->control.intercept_cr &= ~(1U << bit);
233
234 recalc_intercepts(svm);
235 }
236
237 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
238 {
239 struct vmcb *vmcb = get_host_vmcb(svm);
240
241 return vmcb->control.intercept_cr & (1U << bit);
242 }
243
244 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
245 {
246 struct vmcb *vmcb = get_host_vmcb(svm);
247
248 vmcb->control.intercept_dr |= (1U << bit);
249
250 recalc_intercepts(svm);
251 }
252
253 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
254 {
255 struct vmcb *vmcb = get_host_vmcb(svm);
256
257 vmcb->control.intercept_dr &= ~(1U << bit);
258
259 recalc_intercepts(svm);
260 }
261
262 static inline void enable_gif(struct vcpu_svm *svm)
263 {
264 svm->vcpu.arch.hflags |= HF_GIF_MASK;
265 }
266
267 static inline void disable_gif(struct vcpu_svm *svm)
268 {
269 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
270 }
271
272 static inline bool gif_set(struct vcpu_svm *svm)
273 {
274 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
275 }
276
277 static unsigned long iopm_base;
278
279 struct kvm_ldttss_desc {
280 u16 limit0;
281 u16 base0;
282 unsigned base1:8, type:5, dpl:2, p:1;
283 unsigned limit1:4, zero0:3, g:1, base2:8;
284 u32 base3;
285 u32 zero1;
286 } __attribute__((packed));
287
288 struct svm_cpu_data {
289 int cpu;
290
291 u64 asid_generation;
292 u32 max_asid;
293 u32 next_asid;
294 struct kvm_ldttss_desc *tss_desc;
295
296 struct page *save_area;
297 };
298
299 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
300 static uint32_t svm_features;
301
302 struct svm_init_data {
303 int cpu;
304 int r;
305 };
306
307 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
308
309 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
310 #define MSRS_RANGE_SIZE 2048
311 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
312
313 static u32 svm_msrpm_offset(u32 msr)
314 {
315 u32 offset;
316 int i;
317
318 for (i = 0; i < NUM_MSR_MAPS; i++) {
319 if (msr < msrpm_ranges[i] ||
320 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
321 continue;
322
323 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
324 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
325
326 /* Now we have the u8 offset - but need the u32 offset */
327 return offset / 4;
328 }
329
330 /* MSR not in any range */
331 return MSR_INVALID;
332 }
333
334 #define MAX_INST_SIZE 15
335
336 static inline void clgi(void)
337 {
338 asm volatile (__ex(SVM_CLGI));
339 }
340
341 static inline void stgi(void)
342 {
343 asm volatile (__ex(SVM_STGI));
344 }
345
346 static inline void invlpga(unsigned long addr, u32 asid)
347 {
348 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
349 }
350
351 static inline void force_new_asid(struct kvm_vcpu *vcpu)
352 {
353 to_svm(vcpu)->asid_generation--;
354 }
355
356 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
357 {
358 force_new_asid(vcpu);
359 }
360
361 static int get_npt_level(void)
362 {
363 #ifdef CONFIG_X86_64
364 return PT64_ROOT_LEVEL;
365 #else
366 return PT32E_ROOT_LEVEL;
367 #endif
368 }
369
370 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
371 {
372 vcpu->arch.efer = efer;
373 if (!npt_enabled && !(efer & EFER_LMA))
374 efer &= ~EFER_LME;
375
376 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
377 }
378
379 static int is_external_interrupt(u32 info)
380 {
381 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
382 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
383 }
384
385 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
386 {
387 struct vcpu_svm *svm = to_svm(vcpu);
388 u32 ret = 0;
389
390 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
391 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
392 return ret & mask;
393 }
394
395 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
396 {
397 struct vcpu_svm *svm = to_svm(vcpu);
398
399 if (mask == 0)
400 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
401 else
402 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
403
404 }
405
406 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
407 {
408 struct vcpu_svm *svm = to_svm(vcpu);
409
410 if (svm->vmcb->control.next_rip != 0)
411 svm->next_rip = svm->vmcb->control.next_rip;
412
413 if (!svm->next_rip) {
414 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
415 EMULATE_DONE)
416 printk(KERN_DEBUG "%s: NOP\n", __func__);
417 return;
418 }
419 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
420 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
421 __func__, kvm_rip_read(vcpu), svm->next_rip);
422
423 kvm_rip_write(vcpu, svm->next_rip);
424 svm_set_interrupt_shadow(vcpu, 0);
425 }
426
427 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
428 bool has_error_code, u32 error_code,
429 bool reinject)
430 {
431 struct vcpu_svm *svm = to_svm(vcpu);
432
433 /*
434 * If we are within a nested VM we'd better #VMEXIT and let the guest
435 * handle the exception
436 */
437 if (!reinject &&
438 nested_svm_check_exception(svm, nr, has_error_code, error_code))
439 return;
440
441 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
442 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
443
444 /*
445 * For guest debugging where we have to reinject #BP if some
446 * INT3 is guest-owned:
447 * Emulate nRIP by moving RIP forward. Will fail if injection
448 * raises a fault that is not intercepted. Still better than
449 * failing in all cases.
450 */
451 skip_emulated_instruction(&svm->vcpu);
452 rip = kvm_rip_read(&svm->vcpu);
453 svm->int3_rip = rip + svm->vmcb->save.cs.base;
454 svm->int3_injected = rip - old_rip;
455 }
456
457 svm->vmcb->control.event_inj = nr
458 | SVM_EVTINJ_VALID
459 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
460 | SVM_EVTINJ_TYPE_EXEPT;
461 svm->vmcb->control.event_inj_err = error_code;
462 }
463
464 static void svm_init_erratum_383(void)
465 {
466 u32 low, high;
467 int err;
468 u64 val;
469
470 if (!cpu_has_amd_erratum(amd_erratum_383))
471 return;
472
473 /* Use _safe variants to not break nested virtualization */
474 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
475 if (err)
476 return;
477
478 val |= (1ULL << 47);
479
480 low = lower_32_bits(val);
481 high = upper_32_bits(val);
482
483 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
484
485 erratum_383_found = true;
486 }
487
488 static int has_svm(void)
489 {
490 const char *msg;
491
492 if (!cpu_has_svm(&msg)) {
493 printk(KERN_INFO "has_svm: %s\n", msg);
494 return 0;
495 }
496
497 return 1;
498 }
499
500 static void svm_hardware_disable(void *garbage)
501 {
502 cpu_svm_disable();
503 }
504
505 static int svm_hardware_enable(void *garbage)
506 {
507
508 struct svm_cpu_data *sd;
509 uint64_t efer;
510 struct desc_ptr gdt_descr;
511 struct desc_struct *gdt;
512 int me = raw_smp_processor_id();
513
514 rdmsrl(MSR_EFER, efer);
515 if (efer & EFER_SVME)
516 return -EBUSY;
517
518 if (!has_svm()) {
519 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
520 me);
521 return -EINVAL;
522 }
523 sd = per_cpu(svm_data, me);
524
525 if (!sd) {
526 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
527 me);
528 return -EINVAL;
529 }
530
531 sd->asid_generation = 1;
532 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
533 sd->next_asid = sd->max_asid + 1;
534
535 native_store_gdt(&gdt_descr);
536 gdt = (struct desc_struct *)gdt_descr.address;
537 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
538
539 wrmsrl(MSR_EFER, efer | EFER_SVME);
540
541 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
542
543 svm_init_erratum_383();
544
545 return 0;
546 }
547
548 static void svm_cpu_uninit(int cpu)
549 {
550 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
551
552 if (!sd)
553 return;
554
555 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
556 __free_page(sd->save_area);
557 kfree(sd);
558 }
559
560 static int svm_cpu_init(int cpu)
561 {
562 struct svm_cpu_data *sd;
563 int r;
564
565 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
566 if (!sd)
567 return -ENOMEM;
568 sd->cpu = cpu;
569 sd->save_area = alloc_page(GFP_KERNEL);
570 r = -ENOMEM;
571 if (!sd->save_area)
572 goto err_1;
573
574 per_cpu(svm_data, cpu) = sd;
575
576 return 0;
577
578 err_1:
579 kfree(sd);
580 return r;
581
582 }
583
584 static bool valid_msr_intercept(u32 index)
585 {
586 int i;
587
588 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
589 if (direct_access_msrs[i].index == index)
590 return true;
591
592 return false;
593 }
594
595 static void set_msr_interception(u32 *msrpm, unsigned msr,
596 int read, int write)
597 {
598 u8 bit_read, bit_write;
599 unsigned long tmp;
600 u32 offset;
601
602 /*
603 * If this warning triggers extend the direct_access_msrs list at the
604 * beginning of the file
605 */
606 WARN_ON(!valid_msr_intercept(msr));
607
608 offset = svm_msrpm_offset(msr);
609 bit_read = 2 * (msr & 0x0f);
610 bit_write = 2 * (msr & 0x0f) + 1;
611 tmp = msrpm[offset];
612
613 BUG_ON(offset == MSR_INVALID);
614
615 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
616 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
617
618 msrpm[offset] = tmp;
619 }
620
621 static void svm_vcpu_init_msrpm(u32 *msrpm)
622 {
623 int i;
624
625 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
626
627 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
628 if (!direct_access_msrs[i].always)
629 continue;
630
631 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
632 }
633 }
634
635 static void add_msr_offset(u32 offset)
636 {
637 int i;
638
639 for (i = 0; i < MSRPM_OFFSETS; ++i) {
640
641 /* Offset already in list? */
642 if (msrpm_offsets[i] == offset)
643 return;
644
645 /* Slot used by another offset? */
646 if (msrpm_offsets[i] != MSR_INVALID)
647 continue;
648
649 /* Add offset to list */
650 msrpm_offsets[i] = offset;
651
652 return;
653 }
654
655 /*
656 * If this BUG triggers the msrpm_offsets table has an overflow. Just
657 * increase MSRPM_OFFSETS in this case.
658 */
659 BUG();
660 }
661
662 static void init_msrpm_offsets(void)
663 {
664 int i;
665
666 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
667
668 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
669 u32 offset;
670
671 offset = svm_msrpm_offset(direct_access_msrs[i].index);
672 BUG_ON(offset == MSR_INVALID);
673
674 add_msr_offset(offset);
675 }
676 }
677
678 static void svm_enable_lbrv(struct vcpu_svm *svm)
679 {
680 u32 *msrpm = svm->msrpm;
681
682 svm->vmcb->control.lbr_ctl = 1;
683 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
684 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
685 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
686 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
687 }
688
689 static void svm_disable_lbrv(struct vcpu_svm *svm)
690 {
691 u32 *msrpm = svm->msrpm;
692
693 svm->vmcb->control.lbr_ctl = 0;
694 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
695 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
696 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
697 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
698 }
699
700 static __init int svm_hardware_setup(void)
701 {
702 int cpu;
703 struct page *iopm_pages;
704 void *iopm_va;
705 int r;
706
707 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
708
709 if (!iopm_pages)
710 return -ENOMEM;
711
712 iopm_va = page_address(iopm_pages);
713 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
714 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
715
716 init_msrpm_offsets();
717
718 if (boot_cpu_has(X86_FEATURE_NX))
719 kvm_enable_efer_bits(EFER_NX);
720
721 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
722 kvm_enable_efer_bits(EFER_FFXSR);
723
724 if (nested) {
725 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
726 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
727 }
728
729 for_each_possible_cpu(cpu) {
730 r = svm_cpu_init(cpu);
731 if (r)
732 goto err;
733 }
734
735 svm_features = cpuid_edx(SVM_CPUID_FUNC);
736
737 if (!boot_cpu_has(X86_FEATURE_NPT))
738 npt_enabled = false;
739
740 if (npt_enabled && !npt) {
741 printk(KERN_INFO "kvm: Nested Paging disabled\n");
742 npt_enabled = false;
743 }
744
745 if (npt_enabled) {
746 printk(KERN_INFO "kvm: Nested Paging enabled\n");
747 kvm_enable_tdp();
748 } else
749 kvm_disable_tdp();
750
751 return 0;
752
753 err:
754 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
755 iopm_base = 0;
756 return r;
757 }
758
759 static __exit void svm_hardware_unsetup(void)
760 {
761 int cpu;
762
763 for_each_possible_cpu(cpu)
764 svm_cpu_uninit(cpu);
765
766 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
767 iopm_base = 0;
768 }
769
770 static void init_seg(struct vmcb_seg *seg)
771 {
772 seg->selector = 0;
773 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
774 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
775 seg->limit = 0xffff;
776 seg->base = 0;
777 }
778
779 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
780 {
781 seg->selector = 0;
782 seg->attrib = SVM_SELECTOR_P_MASK | type;
783 seg->limit = 0xffff;
784 seg->base = 0;
785 }
786
787 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
788 {
789 struct vcpu_svm *svm = to_svm(vcpu);
790 u64 g_tsc_offset = 0;
791
792 if (is_guest_mode(vcpu)) {
793 g_tsc_offset = svm->vmcb->control.tsc_offset -
794 svm->nested.hsave->control.tsc_offset;
795 svm->nested.hsave->control.tsc_offset = offset;
796 }
797
798 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
799 }
800
801 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
802 {
803 struct vcpu_svm *svm = to_svm(vcpu);
804
805 svm->vmcb->control.tsc_offset += adjustment;
806 if (is_guest_mode(vcpu))
807 svm->nested.hsave->control.tsc_offset += adjustment;
808 }
809
810 static void init_vmcb(struct vcpu_svm *svm)
811 {
812 struct vmcb_control_area *control = &svm->vmcb->control;
813 struct vmcb_save_area *save = &svm->vmcb->save;
814
815 svm->vcpu.fpu_active = 1;
816 svm->vcpu.arch.hflags = 0;
817
818 set_cr_intercept(svm, INTERCEPT_CR0_READ);
819 set_cr_intercept(svm, INTERCEPT_CR3_READ);
820 set_cr_intercept(svm, INTERCEPT_CR4_READ);
821 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
822 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
823 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
824 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
825
826 set_dr_intercept(svm, INTERCEPT_DR0_READ);
827 set_dr_intercept(svm, INTERCEPT_DR1_READ);
828 set_dr_intercept(svm, INTERCEPT_DR2_READ);
829 set_dr_intercept(svm, INTERCEPT_DR3_READ);
830 set_dr_intercept(svm, INTERCEPT_DR4_READ);
831 set_dr_intercept(svm, INTERCEPT_DR5_READ);
832 set_dr_intercept(svm, INTERCEPT_DR6_READ);
833 set_dr_intercept(svm, INTERCEPT_DR7_READ);
834
835 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
836 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
837 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
838 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
839 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
840 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
841 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
842 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
843
844 control->intercept_exceptions = (1 << PF_VECTOR) |
845 (1 << UD_VECTOR) |
846 (1 << MC_VECTOR);
847
848
849 control->intercept = (1ULL << INTERCEPT_INTR) |
850 (1ULL << INTERCEPT_NMI) |
851 (1ULL << INTERCEPT_SMI) |
852 (1ULL << INTERCEPT_SELECTIVE_CR0) |
853 (1ULL << INTERCEPT_CPUID) |
854 (1ULL << INTERCEPT_INVD) |
855 (1ULL << INTERCEPT_HLT) |
856 (1ULL << INTERCEPT_INVLPG) |
857 (1ULL << INTERCEPT_INVLPGA) |
858 (1ULL << INTERCEPT_IOIO_PROT) |
859 (1ULL << INTERCEPT_MSR_PROT) |
860 (1ULL << INTERCEPT_TASK_SWITCH) |
861 (1ULL << INTERCEPT_SHUTDOWN) |
862 (1ULL << INTERCEPT_VMRUN) |
863 (1ULL << INTERCEPT_VMMCALL) |
864 (1ULL << INTERCEPT_VMLOAD) |
865 (1ULL << INTERCEPT_VMSAVE) |
866 (1ULL << INTERCEPT_STGI) |
867 (1ULL << INTERCEPT_CLGI) |
868 (1ULL << INTERCEPT_SKINIT) |
869 (1ULL << INTERCEPT_WBINVD) |
870 (1ULL << INTERCEPT_MONITOR) |
871 (1ULL << INTERCEPT_MWAIT);
872
873 control->iopm_base_pa = iopm_base;
874 control->msrpm_base_pa = __pa(svm->msrpm);
875 control->int_ctl = V_INTR_MASKING_MASK;
876
877 init_seg(&save->es);
878 init_seg(&save->ss);
879 init_seg(&save->ds);
880 init_seg(&save->fs);
881 init_seg(&save->gs);
882
883 save->cs.selector = 0xf000;
884 /* Executable/Readable Code Segment */
885 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
886 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
887 save->cs.limit = 0xffff;
888 /*
889 * cs.base should really be 0xffff0000, but vmx can't handle that, so
890 * be consistent with it.
891 *
892 * Replace when we have real mode working for vmx.
893 */
894 save->cs.base = 0xf0000;
895
896 save->gdtr.limit = 0xffff;
897 save->idtr.limit = 0xffff;
898
899 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
900 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
901
902 svm_set_efer(&svm->vcpu, 0);
903 save->dr6 = 0xffff0ff0;
904 save->dr7 = 0x400;
905 save->rflags = 2;
906 save->rip = 0x0000fff0;
907 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
908
909 /*
910 * This is the guest-visible cr0 value.
911 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
912 */
913 svm->vcpu.arch.cr0 = 0;
914 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
915
916 save->cr4 = X86_CR4_PAE;
917 /* rdx = ?? */
918
919 if (npt_enabled) {
920 /* Setup VMCB for Nested Paging */
921 control->nested_ctl = 1;
922 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
923 (1ULL << INTERCEPT_INVLPG));
924 control->intercept_exceptions &= ~(1 << PF_VECTOR);
925 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
926 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
927 save->g_pat = 0x0007040600070406ULL;
928 save->cr3 = 0;
929 save->cr4 = 0;
930 }
931 force_new_asid(&svm->vcpu);
932
933 svm->nested.vmcb = 0;
934 svm->vcpu.arch.hflags = 0;
935
936 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
937 control->pause_filter_count = 3000;
938 control->intercept |= (1ULL << INTERCEPT_PAUSE);
939 }
940
941 enable_gif(svm);
942 }
943
944 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
945 {
946 struct vcpu_svm *svm = to_svm(vcpu);
947
948 init_vmcb(svm);
949
950 if (!kvm_vcpu_is_bsp(vcpu)) {
951 kvm_rip_write(vcpu, 0);
952 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
953 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
954 }
955 vcpu->arch.regs_avail = ~0;
956 vcpu->arch.regs_dirty = ~0;
957
958 return 0;
959 }
960
961 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
962 {
963 struct vcpu_svm *svm;
964 struct page *page;
965 struct page *msrpm_pages;
966 struct page *hsave_page;
967 struct page *nested_msrpm_pages;
968 int err;
969
970 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
971 if (!svm) {
972 err = -ENOMEM;
973 goto out;
974 }
975
976 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
977 if (err)
978 goto free_svm;
979
980 err = -ENOMEM;
981 page = alloc_page(GFP_KERNEL);
982 if (!page)
983 goto uninit;
984
985 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
986 if (!msrpm_pages)
987 goto free_page1;
988
989 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
990 if (!nested_msrpm_pages)
991 goto free_page2;
992
993 hsave_page = alloc_page(GFP_KERNEL);
994 if (!hsave_page)
995 goto free_page3;
996
997 svm->nested.hsave = page_address(hsave_page);
998
999 svm->msrpm = page_address(msrpm_pages);
1000 svm_vcpu_init_msrpm(svm->msrpm);
1001
1002 svm->nested.msrpm = page_address(nested_msrpm_pages);
1003 svm_vcpu_init_msrpm(svm->nested.msrpm);
1004
1005 svm->vmcb = page_address(page);
1006 clear_page(svm->vmcb);
1007 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1008 svm->asid_generation = 0;
1009 init_vmcb(svm);
1010 kvm_write_tsc(&svm->vcpu, 0);
1011
1012 err = fx_init(&svm->vcpu);
1013 if (err)
1014 goto free_page4;
1015
1016 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1017 if (kvm_vcpu_is_bsp(&svm->vcpu))
1018 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1019
1020 return &svm->vcpu;
1021
1022 free_page4:
1023 __free_page(hsave_page);
1024 free_page3:
1025 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1026 free_page2:
1027 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1028 free_page1:
1029 __free_page(page);
1030 uninit:
1031 kvm_vcpu_uninit(&svm->vcpu);
1032 free_svm:
1033 kmem_cache_free(kvm_vcpu_cache, svm);
1034 out:
1035 return ERR_PTR(err);
1036 }
1037
1038 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1039 {
1040 struct vcpu_svm *svm = to_svm(vcpu);
1041
1042 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1043 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1044 __free_page(virt_to_page(svm->nested.hsave));
1045 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1046 kvm_vcpu_uninit(vcpu);
1047 kmem_cache_free(kvm_vcpu_cache, svm);
1048 }
1049
1050 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1051 {
1052 struct vcpu_svm *svm = to_svm(vcpu);
1053 int i;
1054
1055 if (unlikely(cpu != vcpu->cpu)) {
1056 svm->asid_generation = 0;
1057 }
1058
1059 #ifdef CONFIG_X86_64
1060 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1061 #endif
1062 savesegment(fs, svm->host.fs);
1063 savesegment(gs, svm->host.gs);
1064 svm->host.ldt = kvm_read_ldt();
1065
1066 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1067 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1068 }
1069
1070 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1071 {
1072 struct vcpu_svm *svm = to_svm(vcpu);
1073 int i;
1074
1075 ++vcpu->stat.host_state_reload;
1076 kvm_load_ldt(svm->host.ldt);
1077 #ifdef CONFIG_X86_64
1078 loadsegment(fs, svm->host.fs);
1079 load_gs_index(svm->host.gs);
1080 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1081 #else
1082 loadsegment(gs, svm->host.gs);
1083 #endif
1084 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1085 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1086 }
1087
1088 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1089 {
1090 return to_svm(vcpu)->vmcb->save.rflags;
1091 }
1092
1093 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1094 {
1095 to_svm(vcpu)->vmcb->save.rflags = rflags;
1096 }
1097
1098 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1099 {
1100 switch (reg) {
1101 case VCPU_EXREG_PDPTR:
1102 BUG_ON(!npt_enabled);
1103 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1104 break;
1105 default:
1106 BUG();
1107 }
1108 }
1109
1110 static void svm_set_vintr(struct vcpu_svm *svm)
1111 {
1112 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1113 }
1114
1115 static void svm_clear_vintr(struct vcpu_svm *svm)
1116 {
1117 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1118 }
1119
1120 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1121 {
1122 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1123
1124 switch (seg) {
1125 case VCPU_SREG_CS: return &save->cs;
1126 case VCPU_SREG_DS: return &save->ds;
1127 case VCPU_SREG_ES: return &save->es;
1128 case VCPU_SREG_FS: return &save->fs;
1129 case VCPU_SREG_GS: return &save->gs;
1130 case VCPU_SREG_SS: return &save->ss;
1131 case VCPU_SREG_TR: return &save->tr;
1132 case VCPU_SREG_LDTR: return &save->ldtr;
1133 }
1134 BUG();
1135 return NULL;
1136 }
1137
1138 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1139 {
1140 struct vmcb_seg *s = svm_seg(vcpu, seg);
1141
1142 return s->base;
1143 }
1144
1145 static void svm_get_segment(struct kvm_vcpu *vcpu,
1146 struct kvm_segment *var, int seg)
1147 {
1148 struct vmcb_seg *s = svm_seg(vcpu, seg);
1149
1150 var->base = s->base;
1151 var->limit = s->limit;
1152 var->selector = s->selector;
1153 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1154 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1155 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1156 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1157 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1158 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1159 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1160 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1161
1162 /*
1163 * AMD's VMCB does not have an explicit unusable field, so emulate it
1164 * for cross vendor migration purposes by "not present"
1165 */
1166 var->unusable = !var->present || (var->type == 0);
1167
1168 switch (seg) {
1169 case VCPU_SREG_CS:
1170 /*
1171 * SVM always stores 0 for the 'G' bit in the CS selector in
1172 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1173 * Intel's VMENTRY has a check on the 'G' bit.
1174 */
1175 var->g = s->limit > 0xfffff;
1176 break;
1177 case VCPU_SREG_TR:
1178 /*
1179 * Work around a bug where the busy flag in the tr selector
1180 * isn't exposed
1181 */
1182 var->type |= 0x2;
1183 break;
1184 case VCPU_SREG_DS:
1185 case VCPU_SREG_ES:
1186 case VCPU_SREG_FS:
1187 case VCPU_SREG_GS:
1188 /*
1189 * The accessed bit must always be set in the segment
1190 * descriptor cache, although it can be cleared in the
1191 * descriptor, the cached bit always remains at 1. Since
1192 * Intel has a check on this, set it here to support
1193 * cross-vendor migration.
1194 */
1195 if (!var->unusable)
1196 var->type |= 0x1;
1197 break;
1198 case VCPU_SREG_SS:
1199 /*
1200 * On AMD CPUs sometimes the DB bit in the segment
1201 * descriptor is left as 1, although the whole segment has
1202 * been made unusable. Clear it here to pass an Intel VMX
1203 * entry check when cross vendor migrating.
1204 */
1205 if (var->unusable)
1206 var->db = 0;
1207 break;
1208 }
1209 }
1210
1211 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1212 {
1213 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1214
1215 return save->cpl;
1216 }
1217
1218 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1219 {
1220 struct vcpu_svm *svm = to_svm(vcpu);
1221
1222 dt->size = svm->vmcb->save.idtr.limit;
1223 dt->address = svm->vmcb->save.idtr.base;
1224 }
1225
1226 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1227 {
1228 struct vcpu_svm *svm = to_svm(vcpu);
1229
1230 svm->vmcb->save.idtr.limit = dt->size;
1231 svm->vmcb->save.idtr.base = dt->address ;
1232 }
1233
1234 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1235 {
1236 struct vcpu_svm *svm = to_svm(vcpu);
1237
1238 dt->size = svm->vmcb->save.gdtr.limit;
1239 dt->address = svm->vmcb->save.gdtr.base;
1240 }
1241
1242 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1243 {
1244 struct vcpu_svm *svm = to_svm(vcpu);
1245
1246 svm->vmcb->save.gdtr.limit = dt->size;
1247 svm->vmcb->save.gdtr.base = dt->address ;
1248 }
1249
1250 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1251 {
1252 }
1253
1254 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1255 {
1256 }
1257
1258 static void update_cr0_intercept(struct vcpu_svm *svm)
1259 {
1260 ulong gcr0 = svm->vcpu.arch.cr0;
1261 u64 *hcr0 = &svm->vmcb->save.cr0;
1262
1263 if (!svm->vcpu.fpu_active)
1264 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1265 else
1266 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1267 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1268
1269
1270 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1271 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1272 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1273 } else {
1274 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1275 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1276 }
1277 }
1278
1279 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1280 {
1281 struct vcpu_svm *svm = to_svm(vcpu);
1282
1283 if (is_guest_mode(vcpu)) {
1284 /*
1285 * We are here because we run in nested mode, the host kvm
1286 * intercepts cr0 writes but the l1 hypervisor does not.
1287 * But the L1 hypervisor may intercept selective cr0 writes.
1288 * This needs to be checked here.
1289 */
1290 unsigned long old, new;
1291
1292 /* Remove bits that would trigger a real cr0 write intercept */
1293 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1294 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1295
1296 if (old == new) {
1297 /* cr0 write with ts and mp unchanged */
1298 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1299 if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1300 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1301 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1302 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1303 return;
1304 }
1305 }
1306 }
1307
1308 #ifdef CONFIG_X86_64
1309 if (vcpu->arch.efer & EFER_LME) {
1310 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1311 vcpu->arch.efer |= EFER_LMA;
1312 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1313 }
1314
1315 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1316 vcpu->arch.efer &= ~EFER_LMA;
1317 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1318 }
1319 }
1320 #endif
1321 vcpu->arch.cr0 = cr0;
1322
1323 if (!npt_enabled)
1324 cr0 |= X86_CR0_PG | X86_CR0_WP;
1325
1326 if (!vcpu->fpu_active)
1327 cr0 |= X86_CR0_TS;
1328 /*
1329 * re-enable caching here because the QEMU bios
1330 * does not do it - this results in some delay at
1331 * reboot
1332 */
1333 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1334 svm->vmcb->save.cr0 = cr0;
1335 update_cr0_intercept(svm);
1336 }
1337
1338 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1339 {
1340 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1341 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1342
1343 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1344 force_new_asid(vcpu);
1345
1346 vcpu->arch.cr4 = cr4;
1347 if (!npt_enabled)
1348 cr4 |= X86_CR4_PAE;
1349 cr4 |= host_cr4_mce;
1350 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1351 }
1352
1353 static void svm_set_segment(struct kvm_vcpu *vcpu,
1354 struct kvm_segment *var, int seg)
1355 {
1356 struct vcpu_svm *svm = to_svm(vcpu);
1357 struct vmcb_seg *s = svm_seg(vcpu, seg);
1358
1359 s->base = var->base;
1360 s->limit = var->limit;
1361 s->selector = var->selector;
1362 if (var->unusable)
1363 s->attrib = 0;
1364 else {
1365 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1366 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1367 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1368 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1369 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1370 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1371 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1372 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1373 }
1374 if (seg == VCPU_SREG_CS)
1375 svm->vmcb->save.cpl
1376 = (svm->vmcb->save.cs.attrib
1377 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1378
1379 }
1380
1381 static void update_db_intercept(struct kvm_vcpu *vcpu)
1382 {
1383 struct vcpu_svm *svm = to_svm(vcpu);
1384
1385 svm->vmcb->control.intercept_exceptions &=
1386 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1387
1388 if (svm->nmi_singlestep)
1389 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1390
1391 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1392 if (vcpu->guest_debug &
1393 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1394 svm->vmcb->control.intercept_exceptions |=
1395 1 << DB_VECTOR;
1396 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1397 svm->vmcb->control.intercept_exceptions |=
1398 1 << BP_VECTOR;
1399 } else
1400 vcpu->guest_debug = 0;
1401 }
1402
1403 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1404 {
1405 struct vcpu_svm *svm = to_svm(vcpu);
1406
1407 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1408 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1409 else
1410 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1411
1412 update_db_intercept(vcpu);
1413 }
1414
1415 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1416 {
1417 if (sd->next_asid > sd->max_asid) {
1418 ++sd->asid_generation;
1419 sd->next_asid = 1;
1420 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1421 }
1422
1423 svm->asid_generation = sd->asid_generation;
1424 svm->vmcb->control.asid = sd->next_asid++;
1425 }
1426
1427 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1428 {
1429 struct vcpu_svm *svm = to_svm(vcpu);
1430
1431 svm->vmcb->save.dr7 = value;
1432 }
1433
1434 static int pf_interception(struct vcpu_svm *svm)
1435 {
1436 u64 fault_address = svm->vmcb->control.exit_info_2;
1437 u32 error_code;
1438 int r = 1;
1439
1440 switch (svm->apf_reason) {
1441 default:
1442 error_code = svm->vmcb->control.exit_info_1;
1443
1444 trace_kvm_page_fault(fault_address, error_code);
1445 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1446 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1447 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1448 break;
1449 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1450 svm->apf_reason = 0;
1451 local_irq_disable();
1452 kvm_async_pf_task_wait(fault_address);
1453 local_irq_enable();
1454 break;
1455 case KVM_PV_REASON_PAGE_READY:
1456 svm->apf_reason = 0;
1457 local_irq_disable();
1458 kvm_async_pf_task_wake(fault_address);
1459 local_irq_enable();
1460 break;
1461 }
1462 return r;
1463 }
1464
1465 static int db_interception(struct vcpu_svm *svm)
1466 {
1467 struct kvm_run *kvm_run = svm->vcpu.run;
1468
1469 if (!(svm->vcpu.guest_debug &
1470 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1471 !svm->nmi_singlestep) {
1472 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1473 return 1;
1474 }
1475
1476 if (svm->nmi_singlestep) {
1477 svm->nmi_singlestep = false;
1478 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1479 svm->vmcb->save.rflags &=
1480 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1481 update_db_intercept(&svm->vcpu);
1482 }
1483
1484 if (svm->vcpu.guest_debug &
1485 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1486 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1487 kvm_run->debug.arch.pc =
1488 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1489 kvm_run->debug.arch.exception = DB_VECTOR;
1490 return 0;
1491 }
1492
1493 return 1;
1494 }
1495
1496 static int bp_interception(struct vcpu_svm *svm)
1497 {
1498 struct kvm_run *kvm_run = svm->vcpu.run;
1499
1500 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1501 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1502 kvm_run->debug.arch.exception = BP_VECTOR;
1503 return 0;
1504 }
1505
1506 static int ud_interception(struct vcpu_svm *svm)
1507 {
1508 int er;
1509
1510 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1511 if (er != EMULATE_DONE)
1512 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1513 return 1;
1514 }
1515
1516 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1517 {
1518 struct vcpu_svm *svm = to_svm(vcpu);
1519 u32 excp;
1520
1521 if (is_guest_mode(vcpu)) {
1522 u32 h_excp, n_excp;
1523
1524 h_excp = svm->nested.hsave->control.intercept_exceptions;
1525 n_excp = svm->nested.intercept_exceptions;
1526 h_excp &= ~(1 << NM_VECTOR);
1527 excp = h_excp | n_excp;
1528 } else {
1529 excp = svm->vmcb->control.intercept_exceptions;
1530 excp &= ~(1 << NM_VECTOR);
1531 }
1532
1533 svm->vmcb->control.intercept_exceptions = excp;
1534
1535 svm->vcpu.fpu_active = 1;
1536 update_cr0_intercept(svm);
1537 }
1538
1539 static int nm_interception(struct vcpu_svm *svm)
1540 {
1541 svm_fpu_activate(&svm->vcpu);
1542 return 1;
1543 }
1544
1545 static bool is_erratum_383(void)
1546 {
1547 int err, i;
1548 u64 value;
1549
1550 if (!erratum_383_found)
1551 return false;
1552
1553 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1554 if (err)
1555 return false;
1556
1557 /* Bit 62 may or may not be set for this mce */
1558 value &= ~(1ULL << 62);
1559
1560 if (value != 0xb600000000010015ULL)
1561 return false;
1562
1563 /* Clear MCi_STATUS registers */
1564 for (i = 0; i < 6; ++i)
1565 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1566
1567 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1568 if (!err) {
1569 u32 low, high;
1570
1571 value &= ~(1ULL << 2);
1572 low = lower_32_bits(value);
1573 high = upper_32_bits(value);
1574
1575 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1576 }
1577
1578 /* Flush tlb to evict multi-match entries */
1579 __flush_tlb_all();
1580
1581 return true;
1582 }
1583
1584 static void svm_handle_mce(struct vcpu_svm *svm)
1585 {
1586 if (is_erratum_383()) {
1587 /*
1588 * Erratum 383 triggered. Guest state is corrupt so kill the
1589 * guest.
1590 */
1591 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1592
1593 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1594
1595 return;
1596 }
1597
1598 /*
1599 * On an #MC intercept the MCE handler is not called automatically in
1600 * the host. So do it by hand here.
1601 */
1602 asm volatile (
1603 "int $0x12\n");
1604 /* not sure if we ever come back to this point */
1605
1606 return;
1607 }
1608
1609 static int mc_interception(struct vcpu_svm *svm)
1610 {
1611 return 1;
1612 }
1613
1614 static int shutdown_interception(struct vcpu_svm *svm)
1615 {
1616 struct kvm_run *kvm_run = svm->vcpu.run;
1617
1618 /*
1619 * VMCB is undefined after a SHUTDOWN intercept
1620 * so reinitialize it.
1621 */
1622 clear_page(svm->vmcb);
1623 init_vmcb(svm);
1624
1625 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1626 return 0;
1627 }
1628
1629 static int io_interception(struct vcpu_svm *svm)
1630 {
1631 struct kvm_vcpu *vcpu = &svm->vcpu;
1632 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1633 int size, in, string;
1634 unsigned port;
1635
1636 ++svm->vcpu.stat.io_exits;
1637 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1638 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1639 if (string || in)
1640 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1641
1642 port = io_info >> 16;
1643 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1644 svm->next_rip = svm->vmcb->control.exit_info_2;
1645 skip_emulated_instruction(&svm->vcpu);
1646
1647 return kvm_fast_pio_out(vcpu, size, port);
1648 }
1649
1650 static int nmi_interception(struct vcpu_svm *svm)
1651 {
1652 return 1;
1653 }
1654
1655 static int intr_interception(struct vcpu_svm *svm)
1656 {
1657 ++svm->vcpu.stat.irq_exits;
1658 return 1;
1659 }
1660
1661 static int nop_on_interception(struct vcpu_svm *svm)
1662 {
1663 return 1;
1664 }
1665
1666 static int halt_interception(struct vcpu_svm *svm)
1667 {
1668 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1669 skip_emulated_instruction(&svm->vcpu);
1670 return kvm_emulate_halt(&svm->vcpu);
1671 }
1672
1673 static int vmmcall_interception(struct vcpu_svm *svm)
1674 {
1675 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1676 skip_emulated_instruction(&svm->vcpu);
1677 kvm_emulate_hypercall(&svm->vcpu);
1678 return 1;
1679 }
1680
1681 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1682 {
1683 struct vcpu_svm *svm = to_svm(vcpu);
1684
1685 return svm->nested.nested_cr3;
1686 }
1687
1688 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1689 unsigned long root)
1690 {
1691 struct vcpu_svm *svm = to_svm(vcpu);
1692
1693 svm->vmcb->control.nested_cr3 = root;
1694 force_new_asid(vcpu);
1695 }
1696
1697 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1698 struct x86_exception *fault)
1699 {
1700 struct vcpu_svm *svm = to_svm(vcpu);
1701
1702 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1703 svm->vmcb->control.exit_code_hi = 0;
1704 svm->vmcb->control.exit_info_1 = fault->error_code;
1705 svm->vmcb->control.exit_info_2 = fault->address;
1706
1707 nested_svm_vmexit(svm);
1708 }
1709
1710 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1711 {
1712 int r;
1713
1714 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1715
1716 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1717 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1718 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1719 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1720 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1721
1722 return r;
1723 }
1724
1725 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1726 {
1727 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1728 }
1729
1730 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1731 {
1732 if (!(svm->vcpu.arch.efer & EFER_SVME)
1733 || !is_paging(&svm->vcpu)) {
1734 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1735 return 1;
1736 }
1737
1738 if (svm->vmcb->save.cpl) {
1739 kvm_inject_gp(&svm->vcpu, 0);
1740 return 1;
1741 }
1742
1743 return 0;
1744 }
1745
1746 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1747 bool has_error_code, u32 error_code)
1748 {
1749 int vmexit;
1750
1751 if (!is_guest_mode(&svm->vcpu))
1752 return 0;
1753
1754 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1755 svm->vmcb->control.exit_code_hi = 0;
1756 svm->vmcb->control.exit_info_1 = error_code;
1757 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1758
1759 vmexit = nested_svm_intercept(svm);
1760 if (vmexit == NESTED_EXIT_DONE)
1761 svm->nested.exit_required = true;
1762
1763 return vmexit;
1764 }
1765
1766 /* This function returns true if it is save to enable the irq window */
1767 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1768 {
1769 if (!is_guest_mode(&svm->vcpu))
1770 return true;
1771
1772 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1773 return true;
1774
1775 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1776 return false;
1777
1778 /*
1779 * if vmexit was already requested (by intercepted exception
1780 * for instance) do not overwrite it with "external interrupt"
1781 * vmexit.
1782 */
1783 if (svm->nested.exit_required)
1784 return false;
1785
1786 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1787 svm->vmcb->control.exit_info_1 = 0;
1788 svm->vmcb->control.exit_info_2 = 0;
1789
1790 if (svm->nested.intercept & 1ULL) {
1791 /*
1792 * The #vmexit can't be emulated here directly because this
1793 * code path runs with irqs and preemtion disabled. A
1794 * #vmexit emulation might sleep. Only signal request for
1795 * the #vmexit here.
1796 */
1797 svm->nested.exit_required = true;
1798 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1799 return false;
1800 }
1801
1802 return true;
1803 }
1804
1805 /* This function returns true if it is save to enable the nmi window */
1806 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1807 {
1808 if (!is_guest_mode(&svm->vcpu))
1809 return true;
1810
1811 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1812 return true;
1813
1814 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1815 svm->nested.exit_required = true;
1816
1817 return false;
1818 }
1819
1820 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1821 {
1822 struct page *page;
1823
1824 might_sleep();
1825
1826 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1827 if (is_error_page(page))
1828 goto error;
1829
1830 *_page = page;
1831
1832 return kmap(page);
1833
1834 error:
1835 kvm_release_page_clean(page);
1836 kvm_inject_gp(&svm->vcpu, 0);
1837
1838 return NULL;
1839 }
1840
1841 static void nested_svm_unmap(struct page *page)
1842 {
1843 kunmap(page);
1844 kvm_release_page_dirty(page);
1845 }
1846
1847 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1848 {
1849 unsigned port;
1850 u8 val, bit;
1851 u64 gpa;
1852
1853 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1854 return NESTED_EXIT_HOST;
1855
1856 port = svm->vmcb->control.exit_info_1 >> 16;
1857 gpa = svm->nested.vmcb_iopm + (port / 8);
1858 bit = port % 8;
1859 val = 0;
1860
1861 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1862 val &= (1 << bit);
1863
1864 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1865 }
1866
1867 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1868 {
1869 u32 offset, msr, value;
1870 int write, mask;
1871
1872 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1873 return NESTED_EXIT_HOST;
1874
1875 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1876 offset = svm_msrpm_offset(msr);
1877 write = svm->vmcb->control.exit_info_1 & 1;
1878 mask = 1 << ((2 * (msr & 0xf)) + write);
1879
1880 if (offset == MSR_INVALID)
1881 return NESTED_EXIT_DONE;
1882
1883 /* Offset is in 32 bit units but need in 8 bit units */
1884 offset *= 4;
1885
1886 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1887 return NESTED_EXIT_DONE;
1888
1889 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1890 }
1891
1892 static int nested_svm_exit_special(struct vcpu_svm *svm)
1893 {
1894 u32 exit_code = svm->vmcb->control.exit_code;
1895
1896 switch (exit_code) {
1897 case SVM_EXIT_INTR:
1898 case SVM_EXIT_NMI:
1899 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1900 return NESTED_EXIT_HOST;
1901 case SVM_EXIT_NPF:
1902 /* For now we are always handling NPFs when using them */
1903 if (npt_enabled)
1904 return NESTED_EXIT_HOST;
1905 break;
1906 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1907 /* When we're shadowing, trap PFs, but not async PF */
1908 if (!npt_enabled && svm->apf_reason == 0)
1909 return NESTED_EXIT_HOST;
1910 break;
1911 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1912 nm_interception(svm);
1913 break;
1914 default:
1915 break;
1916 }
1917
1918 return NESTED_EXIT_CONTINUE;
1919 }
1920
1921 /*
1922 * If this function returns true, this #vmexit was already handled
1923 */
1924 static int nested_svm_intercept(struct vcpu_svm *svm)
1925 {
1926 u32 exit_code = svm->vmcb->control.exit_code;
1927 int vmexit = NESTED_EXIT_HOST;
1928
1929 switch (exit_code) {
1930 case SVM_EXIT_MSR:
1931 vmexit = nested_svm_exit_handled_msr(svm);
1932 break;
1933 case SVM_EXIT_IOIO:
1934 vmexit = nested_svm_intercept_ioio(svm);
1935 break;
1936 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1937 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
1938 if (svm->nested.intercept_cr & bit)
1939 vmexit = NESTED_EXIT_DONE;
1940 break;
1941 }
1942 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
1943 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
1944 if (svm->nested.intercept_dr & bit)
1945 vmexit = NESTED_EXIT_DONE;
1946 break;
1947 }
1948 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1949 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1950 if (svm->nested.intercept_exceptions & excp_bits)
1951 vmexit = NESTED_EXIT_DONE;
1952 /* async page fault always cause vmexit */
1953 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1954 svm->apf_reason != 0)
1955 vmexit = NESTED_EXIT_DONE;
1956 break;
1957 }
1958 case SVM_EXIT_ERR: {
1959 vmexit = NESTED_EXIT_DONE;
1960 break;
1961 }
1962 default: {
1963 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1964 if (svm->nested.intercept & exit_bits)
1965 vmexit = NESTED_EXIT_DONE;
1966 }
1967 }
1968
1969 return vmexit;
1970 }
1971
1972 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1973 {
1974 int vmexit;
1975
1976 vmexit = nested_svm_intercept(svm);
1977
1978 if (vmexit == NESTED_EXIT_DONE)
1979 nested_svm_vmexit(svm);
1980
1981 return vmexit;
1982 }
1983
1984 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1985 {
1986 struct vmcb_control_area *dst = &dst_vmcb->control;
1987 struct vmcb_control_area *from = &from_vmcb->control;
1988
1989 dst->intercept_cr = from->intercept_cr;
1990 dst->intercept_dr = from->intercept_dr;
1991 dst->intercept_exceptions = from->intercept_exceptions;
1992 dst->intercept = from->intercept;
1993 dst->iopm_base_pa = from->iopm_base_pa;
1994 dst->msrpm_base_pa = from->msrpm_base_pa;
1995 dst->tsc_offset = from->tsc_offset;
1996 dst->asid = from->asid;
1997 dst->tlb_ctl = from->tlb_ctl;
1998 dst->int_ctl = from->int_ctl;
1999 dst->int_vector = from->int_vector;
2000 dst->int_state = from->int_state;
2001 dst->exit_code = from->exit_code;
2002 dst->exit_code_hi = from->exit_code_hi;
2003 dst->exit_info_1 = from->exit_info_1;
2004 dst->exit_info_2 = from->exit_info_2;
2005 dst->exit_int_info = from->exit_int_info;
2006 dst->exit_int_info_err = from->exit_int_info_err;
2007 dst->nested_ctl = from->nested_ctl;
2008 dst->event_inj = from->event_inj;
2009 dst->event_inj_err = from->event_inj_err;
2010 dst->nested_cr3 = from->nested_cr3;
2011 dst->lbr_ctl = from->lbr_ctl;
2012 }
2013
2014 static int nested_svm_vmexit(struct vcpu_svm *svm)
2015 {
2016 struct vmcb *nested_vmcb;
2017 struct vmcb *hsave = svm->nested.hsave;
2018 struct vmcb *vmcb = svm->vmcb;
2019 struct page *page;
2020
2021 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2022 vmcb->control.exit_info_1,
2023 vmcb->control.exit_info_2,
2024 vmcb->control.exit_int_info,
2025 vmcb->control.exit_int_info_err);
2026
2027 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2028 if (!nested_vmcb)
2029 return 1;
2030
2031 /* Exit Guest-Mode */
2032 leave_guest_mode(&svm->vcpu);
2033 svm->nested.vmcb = 0;
2034
2035 /* Give the current vmcb to the guest */
2036 disable_gif(svm);
2037
2038 nested_vmcb->save.es = vmcb->save.es;
2039 nested_vmcb->save.cs = vmcb->save.cs;
2040 nested_vmcb->save.ss = vmcb->save.ss;
2041 nested_vmcb->save.ds = vmcb->save.ds;
2042 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2043 nested_vmcb->save.idtr = vmcb->save.idtr;
2044 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2045 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2046 nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
2047 nested_vmcb->save.cr2 = vmcb->save.cr2;
2048 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2049 nested_vmcb->save.rflags = vmcb->save.rflags;
2050 nested_vmcb->save.rip = vmcb->save.rip;
2051 nested_vmcb->save.rsp = vmcb->save.rsp;
2052 nested_vmcb->save.rax = vmcb->save.rax;
2053 nested_vmcb->save.dr7 = vmcb->save.dr7;
2054 nested_vmcb->save.dr6 = vmcb->save.dr6;
2055 nested_vmcb->save.cpl = vmcb->save.cpl;
2056
2057 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2058 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2059 nested_vmcb->control.int_state = vmcb->control.int_state;
2060 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2061 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2062 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2063 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2064 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2065 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2066 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2067
2068 /*
2069 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2070 * to make sure that we do not lose injected events. So check event_inj
2071 * here and copy it to exit_int_info if it is valid.
2072 * Exit_int_info and event_inj can't be both valid because the case
2073 * below only happens on a VMRUN instruction intercept which has
2074 * no valid exit_int_info set.
2075 */
2076 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2077 struct vmcb_control_area *nc = &nested_vmcb->control;
2078
2079 nc->exit_int_info = vmcb->control.event_inj;
2080 nc->exit_int_info_err = vmcb->control.event_inj_err;
2081 }
2082
2083 nested_vmcb->control.tlb_ctl = 0;
2084 nested_vmcb->control.event_inj = 0;
2085 nested_vmcb->control.event_inj_err = 0;
2086
2087 /* We always set V_INTR_MASKING and remember the old value in hflags */
2088 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2089 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2090
2091 /* Restore the original control entries */
2092 copy_vmcb_control_area(vmcb, hsave);
2093
2094 kvm_clear_exception_queue(&svm->vcpu);
2095 kvm_clear_interrupt_queue(&svm->vcpu);
2096
2097 svm->nested.nested_cr3 = 0;
2098
2099 /* Restore selected save entries */
2100 svm->vmcb->save.es = hsave->save.es;
2101 svm->vmcb->save.cs = hsave->save.cs;
2102 svm->vmcb->save.ss = hsave->save.ss;
2103 svm->vmcb->save.ds = hsave->save.ds;
2104 svm->vmcb->save.gdtr = hsave->save.gdtr;
2105 svm->vmcb->save.idtr = hsave->save.idtr;
2106 svm->vmcb->save.rflags = hsave->save.rflags;
2107 svm_set_efer(&svm->vcpu, hsave->save.efer);
2108 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2109 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2110 if (npt_enabled) {
2111 svm->vmcb->save.cr3 = hsave->save.cr3;
2112 svm->vcpu.arch.cr3 = hsave->save.cr3;
2113 } else {
2114 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2115 }
2116 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2117 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2118 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2119 svm->vmcb->save.dr7 = 0;
2120 svm->vmcb->save.cpl = 0;
2121 svm->vmcb->control.exit_int_info = 0;
2122
2123 nested_svm_unmap(page);
2124
2125 nested_svm_uninit_mmu_context(&svm->vcpu);
2126 kvm_mmu_reset_context(&svm->vcpu);
2127 kvm_mmu_load(&svm->vcpu);
2128
2129 return 0;
2130 }
2131
2132 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2133 {
2134 /*
2135 * This function merges the msr permission bitmaps of kvm and the
2136 * nested vmcb. It is omptimized in that it only merges the parts where
2137 * the kvm msr permission bitmap may contain zero bits
2138 */
2139 int i;
2140
2141 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2142 return true;
2143
2144 for (i = 0; i < MSRPM_OFFSETS; i++) {
2145 u32 value, p;
2146 u64 offset;
2147
2148 if (msrpm_offsets[i] == 0xffffffff)
2149 break;
2150
2151 p = msrpm_offsets[i];
2152 offset = svm->nested.vmcb_msrpm + (p * 4);
2153
2154 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2155 return false;
2156
2157 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2158 }
2159
2160 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2161
2162 return true;
2163 }
2164
2165 static bool nested_vmcb_checks(struct vmcb *vmcb)
2166 {
2167 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2168 return false;
2169
2170 if (vmcb->control.asid == 0)
2171 return false;
2172
2173 if (vmcb->control.nested_ctl && !npt_enabled)
2174 return false;
2175
2176 return true;
2177 }
2178
2179 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2180 {
2181 struct vmcb *nested_vmcb;
2182 struct vmcb *hsave = svm->nested.hsave;
2183 struct vmcb *vmcb = svm->vmcb;
2184 struct page *page;
2185 u64 vmcb_gpa;
2186
2187 vmcb_gpa = svm->vmcb->save.rax;
2188
2189 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2190 if (!nested_vmcb)
2191 return false;
2192
2193 if (!nested_vmcb_checks(nested_vmcb)) {
2194 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2195 nested_vmcb->control.exit_code_hi = 0;
2196 nested_vmcb->control.exit_info_1 = 0;
2197 nested_vmcb->control.exit_info_2 = 0;
2198
2199 nested_svm_unmap(page);
2200
2201 return false;
2202 }
2203
2204 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2205 nested_vmcb->save.rip,
2206 nested_vmcb->control.int_ctl,
2207 nested_vmcb->control.event_inj,
2208 nested_vmcb->control.nested_ctl);
2209
2210 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2211 nested_vmcb->control.intercept_cr >> 16,
2212 nested_vmcb->control.intercept_exceptions,
2213 nested_vmcb->control.intercept);
2214
2215 /* Clear internal status */
2216 kvm_clear_exception_queue(&svm->vcpu);
2217 kvm_clear_interrupt_queue(&svm->vcpu);
2218
2219 /*
2220 * Save the old vmcb, so we don't need to pick what we save, but can
2221 * restore everything when a VMEXIT occurs
2222 */
2223 hsave->save.es = vmcb->save.es;
2224 hsave->save.cs = vmcb->save.cs;
2225 hsave->save.ss = vmcb->save.ss;
2226 hsave->save.ds = vmcb->save.ds;
2227 hsave->save.gdtr = vmcb->save.gdtr;
2228 hsave->save.idtr = vmcb->save.idtr;
2229 hsave->save.efer = svm->vcpu.arch.efer;
2230 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2231 hsave->save.cr4 = svm->vcpu.arch.cr4;
2232 hsave->save.rflags = vmcb->save.rflags;
2233 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2234 hsave->save.rsp = vmcb->save.rsp;
2235 hsave->save.rax = vmcb->save.rax;
2236 if (npt_enabled)
2237 hsave->save.cr3 = vmcb->save.cr3;
2238 else
2239 hsave->save.cr3 = svm->vcpu.arch.cr3;
2240
2241 copy_vmcb_control_area(hsave, vmcb);
2242
2243 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2244 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2245 else
2246 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2247
2248 if (nested_vmcb->control.nested_ctl) {
2249 kvm_mmu_unload(&svm->vcpu);
2250 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2251 nested_svm_init_mmu_context(&svm->vcpu);
2252 }
2253
2254 /* Load the nested guest state */
2255 svm->vmcb->save.es = nested_vmcb->save.es;
2256 svm->vmcb->save.cs = nested_vmcb->save.cs;
2257 svm->vmcb->save.ss = nested_vmcb->save.ss;
2258 svm->vmcb->save.ds = nested_vmcb->save.ds;
2259 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2260 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2261 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2262 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2263 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2264 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2265 if (npt_enabled) {
2266 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2267 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2268 } else
2269 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2270
2271 /* Guest paging mode is active - reset mmu */
2272 kvm_mmu_reset_context(&svm->vcpu);
2273
2274 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2275 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2276 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2277 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2278
2279 /* In case we don't even reach vcpu_run, the fields are not updated */
2280 svm->vmcb->save.rax = nested_vmcb->save.rax;
2281 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2282 svm->vmcb->save.rip = nested_vmcb->save.rip;
2283 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2284 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2285 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2286
2287 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2288 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2289
2290 /* cache intercepts */
2291 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2292 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2293 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2294 svm->nested.intercept = nested_vmcb->control.intercept;
2295
2296 force_new_asid(&svm->vcpu);
2297 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2298 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2299 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2300 else
2301 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2302
2303 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2304 /* We only want the cr8 intercept bits of the guest */
2305 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2306 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2307 }
2308
2309 /* We don't want to see VMMCALLs from a nested guest */
2310 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2311
2312 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2313 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2314 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2315 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2316 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2317 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2318
2319 nested_svm_unmap(page);
2320
2321 /* Enter Guest-Mode */
2322 enter_guest_mode(&svm->vcpu);
2323
2324 /*
2325 * Merge guest and host intercepts - must be called with vcpu in
2326 * guest-mode to take affect here
2327 */
2328 recalc_intercepts(svm);
2329
2330 svm->nested.vmcb = vmcb_gpa;
2331
2332 enable_gif(svm);
2333
2334 return true;
2335 }
2336
2337 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2338 {
2339 to_vmcb->save.fs = from_vmcb->save.fs;
2340 to_vmcb->save.gs = from_vmcb->save.gs;
2341 to_vmcb->save.tr = from_vmcb->save.tr;
2342 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2343 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2344 to_vmcb->save.star = from_vmcb->save.star;
2345 to_vmcb->save.lstar = from_vmcb->save.lstar;
2346 to_vmcb->save.cstar = from_vmcb->save.cstar;
2347 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2348 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2349 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2350 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2351 }
2352
2353 static int vmload_interception(struct vcpu_svm *svm)
2354 {
2355 struct vmcb *nested_vmcb;
2356 struct page *page;
2357
2358 if (nested_svm_check_permissions(svm))
2359 return 1;
2360
2361 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2362 skip_emulated_instruction(&svm->vcpu);
2363
2364 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2365 if (!nested_vmcb)
2366 return 1;
2367
2368 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2369 nested_svm_unmap(page);
2370
2371 return 1;
2372 }
2373
2374 static int vmsave_interception(struct vcpu_svm *svm)
2375 {
2376 struct vmcb *nested_vmcb;
2377 struct page *page;
2378
2379 if (nested_svm_check_permissions(svm))
2380 return 1;
2381
2382 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2383 skip_emulated_instruction(&svm->vcpu);
2384
2385 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2386 if (!nested_vmcb)
2387 return 1;
2388
2389 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2390 nested_svm_unmap(page);
2391
2392 return 1;
2393 }
2394
2395 static int vmrun_interception(struct vcpu_svm *svm)
2396 {
2397 if (nested_svm_check_permissions(svm))
2398 return 1;
2399
2400 /* Save rip after vmrun instruction */
2401 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2402
2403 if (!nested_svm_vmrun(svm))
2404 return 1;
2405
2406 if (!nested_svm_vmrun_msrpm(svm))
2407 goto failed;
2408
2409 return 1;
2410
2411 failed:
2412
2413 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2414 svm->vmcb->control.exit_code_hi = 0;
2415 svm->vmcb->control.exit_info_1 = 0;
2416 svm->vmcb->control.exit_info_2 = 0;
2417
2418 nested_svm_vmexit(svm);
2419
2420 return 1;
2421 }
2422
2423 static int stgi_interception(struct vcpu_svm *svm)
2424 {
2425 if (nested_svm_check_permissions(svm))
2426 return 1;
2427
2428 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2429 skip_emulated_instruction(&svm->vcpu);
2430 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2431
2432 enable_gif(svm);
2433
2434 return 1;
2435 }
2436
2437 static int clgi_interception(struct vcpu_svm *svm)
2438 {
2439 if (nested_svm_check_permissions(svm))
2440 return 1;
2441
2442 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2443 skip_emulated_instruction(&svm->vcpu);
2444
2445 disable_gif(svm);
2446
2447 /* After a CLGI no interrupts should come */
2448 svm_clear_vintr(svm);
2449 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2450
2451 return 1;
2452 }
2453
2454 static int invlpga_interception(struct vcpu_svm *svm)
2455 {
2456 struct kvm_vcpu *vcpu = &svm->vcpu;
2457
2458 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2459 vcpu->arch.regs[VCPU_REGS_RAX]);
2460
2461 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2462 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2463
2464 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2465 skip_emulated_instruction(&svm->vcpu);
2466 return 1;
2467 }
2468
2469 static int skinit_interception(struct vcpu_svm *svm)
2470 {
2471 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2472
2473 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2474 return 1;
2475 }
2476
2477 static int invalid_op_interception(struct vcpu_svm *svm)
2478 {
2479 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2480 return 1;
2481 }
2482
2483 static int task_switch_interception(struct vcpu_svm *svm)
2484 {
2485 u16 tss_selector;
2486 int reason;
2487 int int_type = svm->vmcb->control.exit_int_info &
2488 SVM_EXITINTINFO_TYPE_MASK;
2489 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2490 uint32_t type =
2491 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2492 uint32_t idt_v =
2493 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2494 bool has_error_code = false;
2495 u32 error_code = 0;
2496
2497 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2498
2499 if (svm->vmcb->control.exit_info_2 &
2500 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2501 reason = TASK_SWITCH_IRET;
2502 else if (svm->vmcb->control.exit_info_2 &
2503 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2504 reason = TASK_SWITCH_JMP;
2505 else if (idt_v)
2506 reason = TASK_SWITCH_GATE;
2507 else
2508 reason = TASK_SWITCH_CALL;
2509
2510 if (reason == TASK_SWITCH_GATE) {
2511 switch (type) {
2512 case SVM_EXITINTINFO_TYPE_NMI:
2513 svm->vcpu.arch.nmi_injected = false;
2514 break;
2515 case SVM_EXITINTINFO_TYPE_EXEPT:
2516 if (svm->vmcb->control.exit_info_2 &
2517 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2518 has_error_code = true;
2519 error_code =
2520 (u32)svm->vmcb->control.exit_info_2;
2521 }
2522 kvm_clear_exception_queue(&svm->vcpu);
2523 break;
2524 case SVM_EXITINTINFO_TYPE_INTR:
2525 kvm_clear_interrupt_queue(&svm->vcpu);
2526 break;
2527 default:
2528 break;
2529 }
2530 }
2531
2532 if (reason != TASK_SWITCH_GATE ||
2533 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2534 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2535 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2536 skip_emulated_instruction(&svm->vcpu);
2537
2538 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2539 has_error_code, error_code) == EMULATE_FAIL) {
2540 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2541 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2542 svm->vcpu.run->internal.ndata = 0;
2543 return 0;
2544 }
2545 return 1;
2546 }
2547
2548 static int cpuid_interception(struct vcpu_svm *svm)
2549 {
2550 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2551 kvm_emulate_cpuid(&svm->vcpu);
2552 return 1;
2553 }
2554
2555 static int iret_interception(struct vcpu_svm *svm)
2556 {
2557 ++svm->vcpu.stat.nmi_window_exits;
2558 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2559 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2560 return 1;
2561 }
2562
2563 static int invlpg_interception(struct vcpu_svm *svm)
2564 {
2565 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2566 }
2567
2568 static int emulate_on_interception(struct vcpu_svm *svm)
2569 {
2570 return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2571 }
2572
2573 static int cr0_write_interception(struct vcpu_svm *svm)
2574 {
2575 struct kvm_vcpu *vcpu = &svm->vcpu;
2576 int r;
2577
2578 r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2579
2580 if (svm->nested.vmexit_rip) {
2581 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2582 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2583 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2584 svm->nested.vmexit_rip = 0;
2585 }
2586
2587 return r == EMULATE_DONE;
2588 }
2589
2590 static int cr8_write_interception(struct vcpu_svm *svm)
2591 {
2592 struct kvm_run *kvm_run = svm->vcpu.run;
2593
2594 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2595 /* instruction emulation calls kvm_set_cr8() */
2596 emulate_instruction(&svm->vcpu, 0, 0, 0);
2597 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2598 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2599 return 1;
2600 }
2601 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2602 return 1;
2603 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2604 return 0;
2605 }
2606
2607 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2608 {
2609 struct vcpu_svm *svm = to_svm(vcpu);
2610
2611 switch (ecx) {
2612 case MSR_IA32_TSC: {
2613 u64 tsc_offset;
2614
2615 if (is_guest_mode(vcpu))
2616 tsc_offset = svm->nested.hsave->control.tsc_offset;
2617 else
2618 tsc_offset = svm->vmcb->control.tsc_offset;
2619
2620 *data = tsc_offset + native_read_tsc();
2621 break;
2622 }
2623 case MSR_STAR:
2624 *data = svm->vmcb->save.star;
2625 break;
2626 #ifdef CONFIG_X86_64
2627 case MSR_LSTAR:
2628 *data = svm->vmcb->save.lstar;
2629 break;
2630 case MSR_CSTAR:
2631 *data = svm->vmcb->save.cstar;
2632 break;
2633 case MSR_KERNEL_GS_BASE:
2634 *data = svm->vmcb->save.kernel_gs_base;
2635 break;
2636 case MSR_SYSCALL_MASK:
2637 *data = svm->vmcb->save.sfmask;
2638 break;
2639 #endif
2640 case MSR_IA32_SYSENTER_CS:
2641 *data = svm->vmcb->save.sysenter_cs;
2642 break;
2643 case MSR_IA32_SYSENTER_EIP:
2644 *data = svm->sysenter_eip;
2645 break;
2646 case MSR_IA32_SYSENTER_ESP:
2647 *data = svm->sysenter_esp;
2648 break;
2649 /*
2650 * Nobody will change the following 5 values in the VMCB so we can
2651 * safely return them on rdmsr. They will always be 0 until LBRV is
2652 * implemented.
2653 */
2654 case MSR_IA32_DEBUGCTLMSR:
2655 *data = svm->vmcb->save.dbgctl;
2656 break;
2657 case MSR_IA32_LASTBRANCHFROMIP:
2658 *data = svm->vmcb->save.br_from;
2659 break;
2660 case MSR_IA32_LASTBRANCHTOIP:
2661 *data = svm->vmcb->save.br_to;
2662 break;
2663 case MSR_IA32_LASTINTFROMIP:
2664 *data = svm->vmcb->save.last_excp_from;
2665 break;
2666 case MSR_IA32_LASTINTTOIP:
2667 *data = svm->vmcb->save.last_excp_to;
2668 break;
2669 case MSR_VM_HSAVE_PA:
2670 *data = svm->nested.hsave_msr;
2671 break;
2672 case MSR_VM_CR:
2673 *data = svm->nested.vm_cr_msr;
2674 break;
2675 case MSR_IA32_UCODE_REV:
2676 *data = 0x01000065;
2677 break;
2678 default:
2679 return kvm_get_msr_common(vcpu, ecx, data);
2680 }
2681 return 0;
2682 }
2683
2684 static int rdmsr_interception(struct vcpu_svm *svm)
2685 {
2686 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2687 u64 data;
2688
2689 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2690 trace_kvm_msr_read_ex(ecx);
2691 kvm_inject_gp(&svm->vcpu, 0);
2692 } else {
2693 trace_kvm_msr_read(ecx, data);
2694
2695 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2696 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2697 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2698 skip_emulated_instruction(&svm->vcpu);
2699 }
2700 return 1;
2701 }
2702
2703 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2704 {
2705 struct vcpu_svm *svm = to_svm(vcpu);
2706 int svm_dis, chg_mask;
2707
2708 if (data & ~SVM_VM_CR_VALID_MASK)
2709 return 1;
2710
2711 chg_mask = SVM_VM_CR_VALID_MASK;
2712
2713 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2714 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2715
2716 svm->nested.vm_cr_msr &= ~chg_mask;
2717 svm->nested.vm_cr_msr |= (data & chg_mask);
2718
2719 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2720
2721 /* check for svm_disable while efer.svme is set */
2722 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2723 return 1;
2724
2725 return 0;
2726 }
2727
2728 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2729 {
2730 struct vcpu_svm *svm = to_svm(vcpu);
2731
2732 switch (ecx) {
2733 case MSR_IA32_TSC:
2734 kvm_write_tsc(vcpu, data);
2735 break;
2736 case MSR_STAR:
2737 svm->vmcb->save.star = data;
2738 break;
2739 #ifdef CONFIG_X86_64
2740 case MSR_LSTAR:
2741 svm->vmcb->save.lstar = data;
2742 break;
2743 case MSR_CSTAR:
2744 svm->vmcb->save.cstar = data;
2745 break;
2746 case MSR_KERNEL_GS_BASE:
2747 svm->vmcb->save.kernel_gs_base = data;
2748 break;
2749 case MSR_SYSCALL_MASK:
2750 svm->vmcb->save.sfmask = data;
2751 break;
2752 #endif
2753 case MSR_IA32_SYSENTER_CS:
2754 svm->vmcb->save.sysenter_cs = data;
2755 break;
2756 case MSR_IA32_SYSENTER_EIP:
2757 svm->sysenter_eip = data;
2758 svm->vmcb->save.sysenter_eip = data;
2759 break;
2760 case MSR_IA32_SYSENTER_ESP:
2761 svm->sysenter_esp = data;
2762 svm->vmcb->save.sysenter_esp = data;
2763 break;
2764 case MSR_IA32_DEBUGCTLMSR:
2765 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2766 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2767 __func__, data);
2768 break;
2769 }
2770 if (data & DEBUGCTL_RESERVED_BITS)
2771 return 1;
2772
2773 svm->vmcb->save.dbgctl = data;
2774 if (data & (1ULL<<0))
2775 svm_enable_lbrv(svm);
2776 else
2777 svm_disable_lbrv(svm);
2778 break;
2779 case MSR_VM_HSAVE_PA:
2780 svm->nested.hsave_msr = data;
2781 break;
2782 case MSR_VM_CR:
2783 return svm_set_vm_cr(vcpu, data);
2784 case MSR_VM_IGNNE:
2785 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2786 break;
2787 default:
2788 return kvm_set_msr_common(vcpu, ecx, data);
2789 }
2790 return 0;
2791 }
2792
2793 static int wrmsr_interception(struct vcpu_svm *svm)
2794 {
2795 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2796 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2797 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2798
2799
2800 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2801 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2802 trace_kvm_msr_write_ex(ecx, data);
2803 kvm_inject_gp(&svm->vcpu, 0);
2804 } else {
2805 trace_kvm_msr_write(ecx, data);
2806 skip_emulated_instruction(&svm->vcpu);
2807 }
2808 return 1;
2809 }
2810
2811 static int msr_interception(struct vcpu_svm *svm)
2812 {
2813 if (svm->vmcb->control.exit_info_1)
2814 return wrmsr_interception(svm);
2815 else
2816 return rdmsr_interception(svm);
2817 }
2818
2819 static int interrupt_window_interception(struct vcpu_svm *svm)
2820 {
2821 struct kvm_run *kvm_run = svm->vcpu.run;
2822
2823 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2824 svm_clear_vintr(svm);
2825 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2826 /*
2827 * If the user space waits to inject interrupts, exit as soon as
2828 * possible
2829 */
2830 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2831 kvm_run->request_interrupt_window &&
2832 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2833 ++svm->vcpu.stat.irq_window_exits;
2834 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2835 return 0;
2836 }
2837
2838 return 1;
2839 }
2840
2841 static int pause_interception(struct vcpu_svm *svm)
2842 {
2843 kvm_vcpu_on_spin(&(svm->vcpu));
2844 return 1;
2845 }
2846
2847 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2848 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2849 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2850 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2851 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2852 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2853 [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
2854 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2855 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2856 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2857 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2858 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2859 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2860 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2861 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2862 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2863 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2864 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2865 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2866 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2867 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2868 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2869 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2870 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2871 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2872 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2873 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2874 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2875 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2876 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2877 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2878 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2879 [SVM_EXIT_INTR] = intr_interception,
2880 [SVM_EXIT_NMI] = nmi_interception,
2881 [SVM_EXIT_SMI] = nop_on_interception,
2882 [SVM_EXIT_INIT] = nop_on_interception,
2883 [SVM_EXIT_VINTR] = interrupt_window_interception,
2884 [SVM_EXIT_CPUID] = cpuid_interception,
2885 [SVM_EXIT_IRET] = iret_interception,
2886 [SVM_EXIT_INVD] = emulate_on_interception,
2887 [SVM_EXIT_PAUSE] = pause_interception,
2888 [SVM_EXIT_HLT] = halt_interception,
2889 [SVM_EXIT_INVLPG] = invlpg_interception,
2890 [SVM_EXIT_INVLPGA] = invlpga_interception,
2891 [SVM_EXIT_IOIO] = io_interception,
2892 [SVM_EXIT_MSR] = msr_interception,
2893 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2894 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2895 [SVM_EXIT_VMRUN] = vmrun_interception,
2896 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2897 [SVM_EXIT_VMLOAD] = vmload_interception,
2898 [SVM_EXIT_VMSAVE] = vmsave_interception,
2899 [SVM_EXIT_STGI] = stgi_interception,
2900 [SVM_EXIT_CLGI] = clgi_interception,
2901 [SVM_EXIT_SKINIT] = skinit_interception,
2902 [SVM_EXIT_WBINVD] = emulate_on_interception,
2903 [SVM_EXIT_MONITOR] = invalid_op_interception,
2904 [SVM_EXIT_MWAIT] = invalid_op_interception,
2905 [SVM_EXIT_NPF] = pf_interception,
2906 };
2907
2908 void dump_vmcb(struct kvm_vcpu *vcpu)
2909 {
2910 struct vcpu_svm *svm = to_svm(vcpu);
2911 struct vmcb_control_area *control = &svm->vmcb->control;
2912 struct vmcb_save_area *save = &svm->vmcb->save;
2913
2914 pr_err("VMCB Control Area:\n");
2915 pr_err("cr_read: %04x\n", control->intercept_cr & 0xffff);
2916 pr_err("cr_write: %04x\n", control->intercept_cr >> 16);
2917 pr_err("dr_read: %04x\n", control->intercept_dr & 0xffff);
2918 pr_err("dr_write: %04x\n", control->intercept_dr >> 16);
2919 pr_err("exceptions: %08x\n", control->intercept_exceptions);
2920 pr_err("intercepts: %016llx\n", control->intercept);
2921 pr_err("pause filter count: %d\n", control->pause_filter_count);
2922 pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
2923 pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
2924 pr_err("tsc_offset: %016llx\n", control->tsc_offset);
2925 pr_err("asid: %d\n", control->asid);
2926 pr_err("tlb_ctl: %d\n", control->tlb_ctl);
2927 pr_err("int_ctl: %08x\n", control->int_ctl);
2928 pr_err("int_vector: %08x\n", control->int_vector);
2929 pr_err("int_state: %08x\n", control->int_state);
2930 pr_err("exit_code: %08x\n", control->exit_code);
2931 pr_err("exit_info1: %016llx\n", control->exit_info_1);
2932 pr_err("exit_info2: %016llx\n", control->exit_info_2);
2933 pr_err("exit_int_info: %08x\n", control->exit_int_info);
2934 pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
2935 pr_err("nested_ctl: %lld\n", control->nested_ctl);
2936 pr_err("nested_cr3: %016llx\n", control->nested_cr3);
2937 pr_err("event_inj: %08x\n", control->event_inj);
2938 pr_err("event_inj_err: %08x\n", control->event_inj_err);
2939 pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
2940 pr_err("next_rip: %016llx\n", control->next_rip);
2941 pr_err("VMCB State Save Area:\n");
2942 pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
2943 save->es.selector, save->es.attrib,
2944 save->es.limit, save->es.base);
2945 pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
2946 save->cs.selector, save->cs.attrib,
2947 save->cs.limit, save->cs.base);
2948 pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
2949 save->ss.selector, save->ss.attrib,
2950 save->ss.limit, save->ss.base);
2951 pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
2952 save->ds.selector, save->ds.attrib,
2953 save->ds.limit, save->ds.base);
2954 pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
2955 save->fs.selector, save->fs.attrib,
2956 save->fs.limit, save->fs.base);
2957 pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
2958 save->gs.selector, save->gs.attrib,
2959 save->gs.limit, save->gs.base);
2960 pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2961 save->gdtr.selector, save->gdtr.attrib,
2962 save->gdtr.limit, save->gdtr.base);
2963 pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2964 save->ldtr.selector, save->ldtr.attrib,
2965 save->ldtr.limit, save->ldtr.base);
2966 pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2967 save->idtr.selector, save->idtr.attrib,
2968 save->idtr.limit, save->idtr.base);
2969 pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
2970 save->tr.selector, save->tr.attrib,
2971 save->tr.limit, save->tr.base);
2972 pr_err("cpl: %d efer: %016llx\n",
2973 save->cpl, save->efer);
2974 pr_err("cr0: %016llx cr2: %016llx\n",
2975 save->cr0, save->cr2);
2976 pr_err("cr3: %016llx cr4: %016llx\n",
2977 save->cr3, save->cr4);
2978 pr_err("dr6: %016llx dr7: %016llx\n",
2979 save->dr6, save->dr7);
2980 pr_err("rip: %016llx rflags: %016llx\n",
2981 save->rip, save->rflags);
2982 pr_err("rsp: %016llx rax: %016llx\n",
2983 save->rsp, save->rax);
2984 pr_err("star: %016llx lstar: %016llx\n",
2985 save->star, save->lstar);
2986 pr_err("cstar: %016llx sfmask: %016llx\n",
2987 save->cstar, save->sfmask);
2988 pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
2989 save->kernel_gs_base, save->sysenter_cs);
2990 pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
2991 save->sysenter_esp, save->sysenter_eip);
2992 pr_err("gpat: %016llx dbgctl: %016llx\n",
2993 save->g_pat, save->dbgctl);
2994 pr_err("br_from: %016llx br_to: %016llx\n",
2995 save->br_from, save->br_to);
2996 pr_err("excp_from: %016llx excp_to: %016llx\n",
2997 save->last_excp_from, save->last_excp_to);
2998
2999 }
3000
3001 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3002 {
3003 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3004
3005 *info1 = control->exit_info_1;
3006 *info2 = control->exit_info_2;
3007 }
3008
3009 static int handle_exit(struct kvm_vcpu *vcpu)
3010 {
3011 struct vcpu_svm *svm = to_svm(vcpu);
3012 struct kvm_run *kvm_run = vcpu->run;
3013 u32 exit_code = svm->vmcb->control.exit_code;
3014
3015 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3016
3017 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3018 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3019 if (npt_enabled)
3020 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3021
3022 if (unlikely(svm->nested.exit_required)) {
3023 nested_svm_vmexit(svm);
3024 svm->nested.exit_required = false;
3025
3026 return 1;
3027 }
3028
3029 if (is_guest_mode(vcpu)) {
3030 int vmexit;
3031
3032 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3033 svm->vmcb->control.exit_info_1,
3034 svm->vmcb->control.exit_info_2,
3035 svm->vmcb->control.exit_int_info,
3036 svm->vmcb->control.exit_int_info_err);
3037
3038 vmexit = nested_svm_exit_special(svm);
3039
3040 if (vmexit == NESTED_EXIT_CONTINUE)
3041 vmexit = nested_svm_exit_handled(svm);
3042
3043 if (vmexit == NESTED_EXIT_DONE)
3044 return 1;
3045 }
3046
3047 svm_complete_interrupts(svm);
3048
3049 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3050 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3051 kvm_run->fail_entry.hardware_entry_failure_reason
3052 = svm->vmcb->control.exit_code;
3053 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3054 dump_vmcb(vcpu);
3055 return 0;
3056 }
3057
3058 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3059 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3060 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3061 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3062 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3063 "exit_code 0x%x\n",
3064 __func__, svm->vmcb->control.exit_int_info,
3065 exit_code);
3066
3067 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3068 || !svm_exit_handlers[exit_code]) {
3069 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3070 kvm_run->hw.hardware_exit_reason = exit_code;
3071 return 0;
3072 }
3073
3074 return svm_exit_handlers[exit_code](svm);
3075 }
3076
3077 static void reload_tss(struct kvm_vcpu *vcpu)
3078 {
3079 int cpu = raw_smp_processor_id();
3080
3081 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3082 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3083 load_TR_desc();
3084 }
3085
3086 static void pre_svm_run(struct vcpu_svm *svm)
3087 {
3088 int cpu = raw_smp_processor_id();
3089
3090 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3091
3092 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3093 /* FIXME: handle wraparound of asid_generation */
3094 if (svm->asid_generation != sd->asid_generation)
3095 new_asid(svm, sd);
3096 }
3097
3098 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3099 {
3100 struct vcpu_svm *svm = to_svm(vcpu);
3101
3102 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3103 vcpu->arch.hflags |= HF_NMI_MASK;
3104 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3105 ++vcpu->stat.nmi_injections;
3106 }
3107
3108 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3109 {
3110 struct vmcb_control_area *control;
3111
3112 control = &svm->vmcb->control;
3113 control->int_vector = irq;
3114 control->int_ctl &= ~V_INTR_PRIO_MASK;
3115 control->int_ctl |= V_IRQ_MASK |
3116 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3117 }
3118
3119 static void svm_set_irq(struct kvm_vcpu *vcpu)
3120 {
3121 struct vcpu_svm *svm = to_svm(vcpu);
3122
3123 BUG_ON(!(gif_set(svm)));
3124
3125 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3126 ++vcpu->stat.irq_injections;
3127
3128 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3129 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3130 }
3131
3132 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3133 {
3134 struct vcpu_svm *svm = to_svm(vcpu);
3135
3136 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3137 return;
3138
3139 if (irr == -1)
3140 return;
3141
3142 if (tpr >= irr)
3143 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3144 }
3145
3146 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3147 {
3148 struct vcpu_svm *svm = to_svm(vcpu);
3149 struct vmcb *vmcb = svm->vmcb;
3150 int ret;
3151 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3152 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3153 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3154
3155 return ret;
3156 }
3157
3158 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3159 {
3160 struct vcpu_svm *svm = to_svm(vcpu);
3161
3162 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3163 }
3164
3165 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3166 {
3167 struct vcpu_svm *svm = to_svm(vcpu);
3168
3169 if (masked) {
3170 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3171 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3172 } else {
3173 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3174 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3175 }
3176 }
3177
3178 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3179 {
3180 struct vcpu_svm *svm = to_svm(vcpu);
3181 struct vmcb *vmcb = svm->vmcb;
3182 int ret;
3183
3184 if (!gif_set(svm) ||
3185 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3186 return 0;
3187
3188 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3189
3190 if (is_guest_mode(vcpu))
3191 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3192
3193 return ret;
3194 }
3195
3196 static void enable_irq_window(struct kvm_vcpu *vcpu)
3197 {
3198 struct vcpu_svm *svm = to_svm(vcpu);
3199
3200 /*
3201 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3202 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3203 * get that intercept, this function will be called again though and
3204 * we'll get the vintr intercept.
3205 */
3206 if (gif_set(svm) && nested_svm_intr(svm)) {
3207 svm_set_vintr(svm);
3208 svm_inject_irq(svm, 0x0);
3209 }
3210 }
3211
3212 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3213 {
3214 struct vcpu_svm *svm = to_svm(vcpu);
3215
3216 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3217 == HF_NMI_MASK)
3218 return; /* IRET will cause a vm exit */
3219
3220 /*
3221 * Something prevents NMI from been injected. Single step over possible
3222 * problem (IRET or exception injection or interrupt shadow)
3223 */
3224 svm->nmi_singlestep = true;
3225 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3226 update_db_intercept(vcpu);
3227 }
3228
3229 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3230 {
3231 return 0;
3232 }
3233
3234 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3235 {
3236 force_new_asid(vcpu);
3237 }
3238
3239 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3240 {
3241 }
3242
3243 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3244 {
3245 struct vcpu_svm *svm = to_svm(vcpu);
3246
3247 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3248 return;
3249
3250 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3251 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3252 kvm_set_cr8(vcpu, cr8);
3253 }
3254 }
3255
3256 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3257 {
3258 struct vcpu_svm *svm = to_svm(vcpu);
3259 u64 cr8;
3260
3261 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3262 return;
3263
3264 cr8 = kvm_get_cr8(vcpu);
3265 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3266 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3267 }
3268
3269 static void svm_complete_interrupts(struct vcpu_svm *svm)
3270 {
3271 u8 vector;
3272 int type;
3273 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3274 unsigned int3_injected = svm->int3_injected;
3275
3276 svm->int3_injected = 0;
3277
3278 if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3279 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3280 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3281 }
3282
3283 svm->vcpu.arch.nmi_injected = false;
3284 kvm_clear_exception_queue(&svm->vcpu);
3285 kvm_clear_interrupt_queue(&svm->vcpu);
3286
3287 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3288 return;
3289
3290 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3291
3292 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3293 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3294
3295 switch (type) {
3296 case SVM_EXITINTINFO_TYPE_NMI:
3297 svm->vcpu.arch.nmi_injected = true;
3298 break;
3299 case SVM_EXITINTINFO_TYPE_EXEPT:
3300 /*
3301 * In case of software exceptions, do not reinject the vector,
3302 * but re-execute the instruction instead. Rewind RIP first
3303 * if we emulated INT3 before.
3304 */
3305 if (kvm_exception_is_soft(vector)) {
3306 if (vector == BP_VECTOR && int3_injected &&
3307 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3308 kvm_rip_write(&svm->vcpu,
3309 kvm_rip_read(&svm->vcpu) -
3310 int3_injected);
3311 break;
3312 }
3313 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3314 u32 err = svm->vmcb->control.exit_int_info_err;
3315 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3316
3317 } else
3318 kvm_requeue_exception(&svm->vcpu, vector);
3319 break;
3320 case SVM_EXITINTINFO_TYPE_INTR:
3321 kvm_queue_interrupt(&svm->vcpu, vector, false);
3322 break;
3323 default:
3324 break;
3325 }
3326 }
3327
3328 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3329 {
3330 struct vcpu_svm *svm = to_svm(vcpu);
3331 struct vmcb_control_area *control = &svm->vmcb->control;
3332
3333 control->exit_int_info = control->event_inj;
3334 control->exit_int_info_err = control->event_inj_err;
3335 control->event_inj = 0;
3336 svm_complete_interrupts(svm);
3337 }
3338
3339 #ifdef CONFIG_X86_64
3340 #define R "r"
3341 #else
3342 #define R "e"
3343 #endif
3344
3345 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3346 {
3347 struct vcpu_svm *svm = to_svm(vcpu);
3348
3349 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3350 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3351 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3352
3353 /*
3354 * A vmexit emulation is required before the vcpu can be executed
3355 * again.
3356 */
3357 if (unlikely(svm->nested.exit_required))
3358 return;
3359
3360 pre_svm_run(svm);
3361
3362 sync_lapic_to_cr8(vcpu);
3363
3364 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3365
3366 clgi();
3367
3368 local_irq_enable();
3369
3370 asm volatile (
3371 "push %%"R"bp; \n\t"
3372 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3373 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3374 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3375 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3376 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3377 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3378 #ifdef CONFIG_X86_64
3379 "mov %c[r8](%[svm]), %%r8 \n\t"
3380 "mov %c[r9](%[svm]), %%r9 \n\t"
3381 "mov %c[r10](%[svm]), %%r10 \n\t"
3382 "mov %c[r11](%[svm]), %%r11 \n\t"
3383 "mov %c[r12](%[svm]), %%r12 \n\t"
3384 "mov %c[r13](%[svm]), %%r13 \n\t"
3385 "mov %c[r14](%[svm]), %%r14 \n\t"
3386 "mov %c[r15](%[svm]), %%r15 \n\t"
3387 #endif
3388
3389 /* Enter guest mode */
3390 "push %%"R"ax \n\t"
3391 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3392 __ex(SVM_VMLOAD) "\n\t"
3393 __ex(SVM_VMRUN) "\n\t"
3394 __ex(SVM_VMSAVE) "\n\t"
3395 "pop %%"R"ax \n\t"
3396
3397 /* Save guest registers, load host registers */
3398 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3399 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3400 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3401 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3402 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3403 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3404 #ifdef CONFIG_X86_64
3405 "mov %%r8, %c[r8](%[svm]) \n\t"
3406 "mov %%r9, %c[r9](%[svm]) \n\t"
3407 "mov %%r10, %c[r10](%[svm]) \n\t"
3408 "mov %%r11, %c[r11](%[svm]) \n\t"
3409 "mov %%r12, %c[r12](%[svm]) \n\t"
3410 "mov %%r13, %c[r13](%[svm]) \n\t"
3411 "mov %%r14, %c[r14](%[svm]) \n\t"
3412 "mov %%r15, %c[r15](%[svm]) \n\t"
3413 #endif
3414 "pop %%"R"bp"
3415 :
3416 : [svm]"a"(svm),
3417 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3418 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3419 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3420 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3421 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3422 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3423 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3424 #ifdef CONFIG_X86_64
3425 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3426 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3427 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3428 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3429 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3430 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3431 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3432 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3433 #endif
3434 : "cc", "memory"
3435 , R"bx", R"cx", R"dx", R"si", R"di"
3436 #ifdef CONFIG_X86_64
3437 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3438 #endif
3439 );
3440
3441 #ifdef CONFIG_X86_64
3442 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3443 #else
3444 loadsegment(fs, svm->host.fs);
3445 #endif
3446
3447 reload_tss(vcpu);
3448
3449 local_irq_disable();
3450
3451 stgi();
3452
3453 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3454 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3455 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3456 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3457
3458 sync_cr8_to_lapic(vcpu);
3459
3460 svm->next_rip = 0;
3461
3462 /* if exit due to PF check for async PF */
3463 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3464 svm->apf_reason = kvm_read_and_reset_pf_reason();
3465
3466 if (npt_enabled) {
3467 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3468 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3469 }
3470
3471 /*
3472 * We need to handle MC intercepts here before the vcpu has a chance to
3473 * change the physical cpu
3474 */
3475 if (unlikely(svm->vmcb->control.exit_code ==
3476 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3477 svm_handle_mce(svm);
3478 }
3479
3480 #undef R
3481
3482 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3483 {
3484 struct vcpu_svm *svm = to_svm(vcpu);
3485
3486 svm->vmcb->save.cr3 = root;
3487 force_new_asid(vcpu);
3488 }
3489
3490 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3491 {
3492 struct vcpu_svm *svm = to_svm(vcpu);
3493
3494 svm->vmcb->control.nested_cr3 = root;
3495
3496 /* Also sync guest cr3 here in case we live migrate */
3497 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3498
3499 force_new_asid(vcpu);
3500 }
3501
3502 static int is_disabled(void)
3503 {
3504 u64 vm_cr;
3505
3506 rdmsrl(MSR_VM_CR, vm_cr);
3507 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3508 return 1;
3509
3510 return 0;
3511 }
3512
3513 static void
3514 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3515 {
3516 /*
3517 * Patch in the VMMCALL instruction:
3518 */
3519 hypercall[0] = 0x0f;
3520 hypercall[1] = 0x01;
3521 hypercall[2] = 0xd9;
3522 }
3523
3524 static void svm_check_processor_compat(void *rtn)
3525 {
3526 *(int *)rtn = 0;
3527 }
3528
3529 static bool svm_cpu_has_accelerated_tpr(void)
3530 {
3531 return false;
3532 }
3533
3534 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3535 {
3536 return 0;
3537 }
3538
3539 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3540 {
3541 }
3542
3543 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3544 {
3545 switch (func) {
3546 case 0x00000001:
3547 /* Mask out xsave bit as long as it is not supported by SVM */
3548 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3549 break;
3550 case 0x80000001:
3551 if (nested)
3552 entry->ecx |= (1 << 2); /* Set SVM bit */
3553 break;
3554 case 0x8000000A:
3555 entry->eax = 1; /* SVM revision 1 */
3556 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3557 ASID emulation to nested SVM */
3558 entry->ecx = 0; /* Reserved */
3559 entry->edx = 0; /* Per default do not support any
3560 additional features */
3561
3562 /* Support next_rip if host supports it */
3563 if (boot_cpu_has(X86_FEATURE_NRIPS))
3564 entry->edx |= SVM_FEATURE_NRIP;
3565
3566 /* Support NPT for the guest if enabled */
3567 if (npt_enabled)
3568 entry->edx |= SVM_FEATURE_NPT;
3569
3570 break;
3571 }
3572 }
3573
3574 static const struct trace_print_flags svm_exit_reasons_str[] = {
3575 { SVM_EXIT_READ_CR0, "read_cr0" },
3576 { SVM_EXIT_READ_CR3, "read_cr3" },
3577 { SVM_EXIT_READ_CR4, "read_cr4" },
3578 { SVM_EXIT_READ_CR8, "read_cr8" },
3579 { SVM_EXIT_WRITE_CR0, "write_cr0" },
3580 { SVM_EXIT_WRITE_CR3, "write_cr3" },
3581 { SVM_EXIT_WRITE_CR4, "write_cr4" },
3582 { SVM_EXIT_WRITE_CR8, "write_cr8" },
3583 { SVM_EXIT_READ_DR0, "read_dr0" },
3584 { SVM_EXIT_READ_DR1, "read_dr1" },
3585 { SVM_EXIT_READ_DR2, "read_dr2" },
3586 { SVM_EXIT_READ_DR3, "read_dr3" },
3587 { SVM_EXIT_WRITE_DR0, "write_dr0" },
3588 { SVM_EXIT_WRITE_DR1, "write_dr1" },
3589 { SVM_EXIT_WRITE_DR2, "write_dr2" },
3590 { SVM_EXIT_WRITE_DR3, "write_dr3" },
3591 { SVM_EXIT_WRITE_DR5, "write_dr5" },
3592 { SVM_EXIT_WRITE_DR7, "write_dr7" },
3593 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
3594 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
3595 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
3596 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
3597 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
3598 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
3599 { SVM_EXIT_INTR, "interrupt" },
3600 { SVM_EXIT_NMI, "nmi" },
3601 { SVM_EXIT_SMI, "smi" },
3602 { SVM_EXIT_INIT, "init" },
3603 { SVM_EXIT_VINTR, "vintr" },
3604 { SVM_EXIT_CPUID, "cpuid" },
3605 { SVM_EXIT_INVD, "invd" },
3606 { SVM_EXIT_HLT, "hlt" },
3607 { SVM_EXIT_INVLPG, "invlpg" },
3608 { SVM_EXIT_INVLPGA, "invlpga" },
3609 { SVM_EXIT_IOIO, "io" },
3610 { SVM_EXIT_MSR, "msr" },
3611 { SVM_EXIT_TASK_SWITCH, "task_switch" },
3612 { SVM_EXIT_SHUTDOWN, "shutdown" },
3613 { SVM_EXIT_VMRUN, "vmrun" },
3614 { SVM_EXIT_VMMCALL, "hypercall" },
3615 { SVM_EXIT_VMLOAD, "vmload" },
3616 { SVM_EXIT_VMSAVE, "vmsave" },
3617 { SVM_EXIT_STGI, "stgi" },
3618 { SVM_EXIT_CLGI, "clgi" },
3619 { SVM_EXIT_SKINIT, "skinit" },
3620 { SVM_EXIT_WBINVD, "wbinvd" },
3621 { SVM_EXIT_MONITOR, "monitor" },
3622 { SVM_EXIT_MWAIT, "mwait" },
3623 { SVM_EXIT_NPF, "npf" },
3624 { -1, NULL }
3625 };
3626
3627 static int svm_get_lpage_level(void)
3628 {
3629 return PT_PDPE_LEVEL;
3630 }
3631
3632 static bool svm_rdtscp_supported(void)
3633 {
3634 return false;
3635 }
3636
3637 static bool svm_has_wbinvd_exit(void)
3638 {
3639 return true;
3640 }
3641
3642 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3643 {
3644 struct vcpu_svm *svm = to_svm(vcpu);
3645
3646 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3647 if (is_guest_mode(vcpu))
3648 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3649 update_cr0_intercept(svm);
3650 }
3651
3652 static struct kvm_x86_ops svm_x86_ops = {
3653 .cpu_has_kvm_support = has_svm,
3654 .disabled_by_bios = is_disabled,
3655 .hardware_setup = svm_hardware_setup,
3656 .hardware_unsetup = svm_hardware_unsetup,
3657 .check_processor_compatibility = svm_check_processor_compat,
3658 .hardware_enable = svm_hardware_enable,
3659 .hardware_disable = svm_hardware_disable,
3660 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3661
3662 .vcpu_create = svm_create_vcpu,
3663 .vcpu_free = svm_free_vcpu,
3664 .vcpu_reset = svm_vcpu_reset,
3665
3666 .prepare_guest_switch = svm_prepare_guest_switch,
3667 .vcpu_load = svm_vcpu_load,
3668 .vcpu_put = svm_vcpu_put,
3669
3670 .set_guest_debug = svm_guest_debug,
3671 .get_msr = svm_get_msr,
3672 .set_msr = svm_set_msr,
3673 .get_segment_base = svm_get_segment_base,
3674 .get_segment = svm_get_segment,
3675 .set_segment = svm_set_segment,
3676 .get_cpl = svm_get_cpl,
3677 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3678 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3679 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3680 .set_cr0 = svm_set_cr0,
3681 .set_cr3 = svm_set_cr3,
3682 .set_cr4 = svm_set_cr4,
3683 .set_efer = svm_set_efer,
3684 .get_idt = svm_get_idt,
3685 .set_idt = svm_set_idt,
3686 .get_gdt = svm_get_gdt,
3687 .set_gdt = svm_set_gdt,
3688 .set_dr7 = svm_set_dr7,
3689 .cache_reg = svm_cache_reg,
3690 .get_rflags = svm_get_rflags,
3691 .set_rflags = svm_set_rflags,
3692 .fpu_activate = svm_fpu_activate,
3693 .fpu_deactivate = svm_fpu_deactivate,
3694
3695 .tlb_flush = svm_flush_tlb,
3696
3697 .run = svm_vcpu_run,
3698 .handle_exit = handle_exit,
3699 .skip_emulated_instruction = skip_emulated_instruction,
3700 .set_interrupt_shadow = svm_set_interrupt_shadow,
3701 .get_interrupt_shadow = svm_get_interrupt_shadow,
3702 .patch_hypercall = svm_patch_hypercall,
3703 .set_irq = svm_set_irq,
3704 .set_nmi = svm_inject_nmi,
3705 .queue_exception = svm_queue_exception,
3706 .cancel_injection = svm_cancel_injection,
3707 .interrupt_allowed = svm_interrupt_allowed,
3708 .nmi_allowed = svm_nmi_allowed,
3709 .get_nmi_mask = svm_get_nmi_mask,
3710 .set_nmi_mask = svm_set_nmi_mask,
3711 .enable_nmi_window = enable_nmi_window,
3712 .enable_irq_window = enable_irq_window,
3713 .update_cr8_intercept = update_cr8_intercept,
3714
3715 .set_tss_addr = svm_set_tss_addr,
3716 .get_tdp_level = get_npt_level,
3717 .get_mt_mask = svm_get_mt_mask,
3718
3719 .get_exit_info = svm_get_exit_info,
3720 .exit_reasons_str = svm_exit_reasons_str,
3721
3722 .get_lpage_level = svm_get_lpage_level,
3723
3724 .cpuid_update = svm_cpuid_update,
3725
3726 .rdtscp_supported = svm_rdtscp_supported,
3727
3728 .set_supported_cpuid = svm_set_supported_cpuid,
3729
3730 .has_wbinvd_exit = svm_has_wbinvd_exit,
3731
3732 .write_tsc_offset = svm_write_tsc_offset,
3733 .adjust_tsc_offset = svm_adjust_tsc_offset,
3734
3735 .set_tdp_cr3 = set_tdp_cr3,
3736 };
3737
3738 static int __init svm_init(void)
3739 {
3740 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3741 __alignof__(struct vcpu_svm), THIS_MODULE);
3742 }
3743
3744 static void __exit svm_exit(void)
3745 {
3746 kvm_exit();
3747 }
3748
3749 module_init(svm_init)
3750 module_exit(svm_exit)