]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/svm.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84 #define SVM_AVIC_DOORBELL 0xc001011b
85
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141 };
142
143 struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 struct page *avic_logical_id_table_page;
149 struct page *avic_physical_id_table_page;
150 struct hlist_node hnode;
151
152 struct kvm_sev_info sev_info;
153 };
154
155 struct kvm_vcpu;
156
157 struct nested_state {
158 struct vmcb *hsave;
159 u64 hsave_msr;
160 u64 vm_cr_msr;
161 u64 vmcb;
162
163 /* These are the merged vectors */
164 u32 *msrpm;
165
166 /* gpa pointers to the real vectors */
167 u64 vmcb_msrpm;
168 u64 vmcb_iopm;
169
170 /* A VMEXIT is required but not yet emulated */
171 bool exit_required;
172
173 /* cache for intercepts of the guest */
174 u32 intercept_cr;
175 u32 intercept_dr;
176 u32 intercept_exceptions;
177 u64 intercept;
178
179 /* Nested Paging related state */
180 u64 nested_cr3;
181 };
182
183 #define MSRPM_OFFSETS 16
184 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
185
186 /*
187 * Set osvw_len to higher value when updated Revision Guides
188 * are published and we know what the new status bits are
189 */
190 static uint64_t osvw_len = 4, osvw_status;
191
192 struct vcpu_svm {
193 struct kvm_vcpu vcpu;
194 struct vmcb *vmcb;
195 unsigned long vmcb_pa;
196 struct svm_cpu_data *svm_data;
197 uint64_t asid_generation;
198 uint64_t sysenter_esp;
199 uint64_t sysenter_eip;
200 uint64_t tsc_aux;
201
202 u64 msr_decfg;
203
204 u64 next_rip;
205
206 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
207 struct {
208 u16 fs;
209 u16 gs;
210 u16 ldt;
211 u64 gs_base;
212 } host;
213
214 u64 spec_ctrl;
215 /*
216 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
217 * translated into the appropriate L2_CFG bits on the host to
218 * perform speculative control.
219 */
220 u64 virt_spec_ctrl;
221
222 u32 *msrpm;
223
224 ulong nmi_iret_rip;
225
226 struct nested_state nested;
227
228 bool nmi_singlestep;
229 u64 nmi_singlestep_guest_rflags;
230
231 unsigned int3_injected;
232 unsigned long int3_rip;
233
234 /* cached guest cpuid flags for faster access */
235 bool nrips_enabled : 1;
236
237 u32 ldr_reg;
238 u32 dfr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254 };
255
256 /*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
266 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
267
268 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
269 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
270 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
271 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
272
273 static DEFINE_PER_CPU(u64, current_tsc_ratio);
274 #define TSC_RATIO_DEFAULT 0x0100000000ULL
275
276 #define MSR_INVALID 0xffffffffU
277
278 static const struct svm_direct_access_msrs {
279 u32 index; /* Index of the MSR */
280 bool always; /* True if intercept is always on */
281 } direct_access_msrs[] = {
282 { .index = MSR_STAR, .always = true },
283 { .index = MSR_IA32_SYSENTER_CS, .always = true },
284 #ifdef CONFIG_X86_64
285 { .index = MSR_GS_BASE, .always = true },
286 { .index = MSR_FS_BASE, .always = true },
287 { .index = MSR_KERNEL_GS_BASE, .always = true },
288 { .index = MSR_LSTAR, .always = true },
289 { .index = MSR_CSTAR, .always = true },
290 { .index = MSR_SYSCALL_MASK, .always = true },
291 #endif
292 { .index = MSR_IA32_SPEC_CTRL, .always = false },
293 { .index = MSR_IA32_PRED_CMD, .always = false },
294 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
295 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
296 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
297 { .index = MSR_IA32_LASTINTTOIP, .always = false },
298 { .index = MSR_INVALID, .always = false },
299 };
300
301 /* enable NPT for AMD64 and X86 with PAE */
302 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
303 static bool npt_enabled = true;
304 #else
305 static bool npt_enabled;
306 #endif
307
308 /*
309 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
310 * pause_filter_count: On processors that support Pause filtering(indicated
311 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
312 * count value. On VMRUN this value is loaded into an internal counter.
313 * Each time a pause instruction is executed, this counter is decremented
314 * until it reaches zero at which time a #VMEXIT is generated if pause
315 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
316 * Intercept Filtering for more details.
317 * This also indicate if ple logic enabled.
318 *
319 * pause_filter_thresh: In addition, some processor families support advanced
320 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
321 * the amount of time a guest is allowed to execute in a pause loop.
322 * In this mode, a 16-bit pause filter threshold field is added in the
323 * VMCB. The threshold value is a cycle count that is used to reset the
324 * pause counter. As with simple pause filtering, VMRUN loads the pause
325 * count value from VMCB into an internal counter. Then, on each pause
326 * instruction the hardware checks the elapsed number of cycles since
327 * the most recent pause instruction against the pause filter threshold.
328 * If the elapsed cycle count is greater than the pause filter threshold,
329 * then the internal pause count is reloaded from the VMCB and execution
330 * continues. If the elapsed cycle count is less than the pause filter
331 * threshold, then the internal pause count is decremented. If the count
332 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
333 * triggered. If advanced pause filtering is supported and pause filter
334 * threshold field is set to zero, the filter will operate in the simpler,
335 * count only mode.
336 */
337
338 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
339 module_param(pause_filter_thresh, ushort, 0444);
340
341 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
342 module_param(pause_filter_count, ushort, 0444);
343
344 /* Default doubles per-vcpu window every exit. */
345 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
346 module_param(pause_filter_count_grow, ushort, 0444);
347
348 /* Default resets per-vcpu window every exit to pause_filter_count. */
349 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
350 module_param(pause_filter_count_shrink, ushort, 0444);
351
352 /* Default is to compute the maximum so we can never overflow. */
353 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
354 module_param(pause_filter_count_max, ushort, 0444);
355
356 /* allow nested paging (virtualized MMU) for all guests */
357 static int npt = true;
358 module_param(npt, int, S_IRUGO);
359
360 /* allow nested virtualization in KVM/SVM */
361 static int nested = true;
362 module_param(nested, int, S_IRUGO);
363
364 /* enable / disable AVIC */
365 static int avic;
366 #ifdef CONFIG_X86_LOCAL_APIC
367 module_param(avic, int, S_IRUGO);
368 #endif
369
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls = true;
372 module_param(vls, int, 0444);
373
374 /* enable/disable Virtual GIF */
375 static int vgif = true;
376 module_param(vgif, int, 0444);
377
378 /* enable/disable SEV support */
379 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
380 module_param(sev, int, 0444);
381
382 static u8 rsm_ins_bytes[] = "\x0f\xaa";
383
384 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
385 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
386 static void svm_complete_interrupts(struct vcpu_svm *svm);
387
388 static int nested_svm_exit_handled(struct vcpu_svm *svm);
389 static int nested_svm_intercept(struct vcpu_svm *svm);
390 static int nested_svm_vmexit(struct vcpu_svm *svm);
391 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
392 bool has_error_code, u32 error_code);
393
394 enum {
395 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
396 pause filter count */
397 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
398 VMCB_ASID, /* ASID */
399 VMCB_INTR, /* int_ctl, int_vector */
400 VMCB_NPT, /* npt_en, nCR3, gPAT */
401 VMCB_CR, /* CR0, CR3, CR4, EFER */
402 VMCB_DR, /* DR6, DR7 */
403 VMCB_DT, /* GDT, IDT */
404 VMCB_SEG, /* CS, DS, SS, ES, CPL */
405 VMCB_CR2, /* CR2 only */
406 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
407 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
408 * AVIC PHYSICAL_TABLE pointer,
409 * AVIC LOGICAL_TABLE pointer
410 */
411 VMCB_DIRTY_MAX,
412 };
413
414 /* TPR and CR2 are always written before VMRUN */
415 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
416
417 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
418
419 static unsigned int max_sev_asid;
420 static unsigned int min_sev_asid;
421 static unsigned long *sev_asid_bitmap;
422 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
423
424 struct enc_region {
425 struct list_head list;
426 unsigned long npages;
427 struct page **pages;
428 unsigned long uaddr;
429 unsigned long size;
430 };
431
432
433 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
434 {
435 return container_of(kvm, struct kvm_svm, kvm);
436 }
437
438 static inline bool svm_sev_enabled(void)
439 {
440 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
441 }
442
443 static inline bool sev_guest(struct kvm *kvm)
444 {
445 #ifdef CONFIG_KVM_AMD_SEV
446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
447
448 return sev->active;
449 #else
450 return false;
451 #endif
452 }
453
454 static inline int sev_get_asid(struct kvm *kvm)
455 {
456 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
457
458 return sev->asid;
459 }
460
461 static inline void mark_all_dirty(struct vmcb *vmcb)
462 {
463 vmcb->control.clean = 0;
464 }
465
466 static inline void mark_all_clean(struct vmcb *vmcb)
467 {
468 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
469 & ~VMCB_ALWAYS_DIRTY_MASK;
470 }
471
472 static inline void mark_dirty(struct vmcb *vmcb, int bit)
473 {
474 vmcb->control.clean &= ~(1 << bit);
475 }
476
477 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
478 {
479 return container_of(vcpu, struct vcpu_svm, vcpu);
480 }
481
482 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
483 {
484 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
485 mark_dirty(svm->vmcb, VMCB_AVIC);
486 }
487
488 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
489 {
490 struct vcpu_svm *svm = to_svm(vcpu);
491 u64 *entry = svm->avic_physical_id_cache;
492
493 if (!entry)
494 return false;
495
496 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
497 }
498
499 static void recalc_intercepts(struct vcpu_svm *svm)
500 {
501 struct vmcb_control_area *c, *h;
502 struct nested_state *g;
503
504 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
505
506 if (!is_guest_mode(&svm->vcpu))
507 return;
508
509 c = &svm->vmcb->control;
510 h = &svm->nested.hsave->control;
511 g = &svm->nested;
512
513 c->intercept_cr = h->intercept_cr | g->intercept_cr;
514 c->intercept_dr = h->intercept_dr | g->intercept_dr;
515 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
516 c->intercept = h->intercept | g->intercept;
517 }
518
519 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
520 {
521 if (is_guest_mode(&svm->vcpu))
522 return svm->nested.hsave;
523 else
524 return svm->vmcb;
525 }
526
527 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
528 {
529 struct vmcb *vmcb = get_host_vmcb(svm);
530
531 vmcb->control.intercept_cr |= (1U << bit);
532
533 recalc_intercepts(svm);
534 }
535
536 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
537 {
538 struct vmcb *vmcb = get_host_vmcb(svm);
539
540 vmcb->control.intercept_cr &= ~(1U << bit);
541
542 recalc_intercepts(svm);
543 }
544
545 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
546 {
547 struct vmcb *vmcb = get_host_vmcb(svm);
548
549 return vmcb->control.intercept_cr & (1U << bit);
550 }
551
552 static inline void set_dr_intercepts(struct vcpu_svm *svm)
553 {
554 struct vmcb *vmcb = get_host_vmcb(svm);
555
556 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
557 | (1 << INTERCEPT_DR1_READ)
558 | (1 << INTERCEPT_DR2_READ)
559 | (1 << INTERCEPT_DR3_READ)
560 | (1 << INTERCEPT_DR4_READ)
561 | (1 << INTERCEPT_DR5_READ)
562 | (1 << INTERCEPT_DR6_READ)
563 | (1 << INTERCEPT_DR7_READ)
564 | (1 << INTERCEPT_DR0_WRITE)
565 | (1 << INTERCEPT_DR1_WRITE)
566 | (1 << INTERCEPT_DR2_WRITE)
567 | (1 << INTERCEPT_DR3_WRITE)
568 | (1 << INTERCEPT_DR4_WRITE)
569 | (1 << INTERCEPT_DR5_WRITE)
570 | (1 << INTERCEPT_DR6_WRITE)
571 | (1 << INTERCEPT_DR7_WRITE);
572
573 recalc_intercepts(svm);
574 }
575
576 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
577 {
578 struct vmcb *vmcb = get_host_vmcb(svm);
579
580 vmcb->control.intercept_dr = 0;
581
582 recalc_intercepts(svm);
583 }
584
585 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
586 {
587 struct vmcb *vmcb = get_host_vmcb(svm);
588
589 vmcb->control.intercept_exceptions |= (1U << bit);
590
591 recalc_intercepts(svm);
592 }
593
594 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
595 {
596 struct vmcb *vmcb = get_host_vmcb(svm);
597
598 vmcb->control.intercept_exceptions &= ~(1U << bit);
599
600 recalc_intercepts(svm);
601 }
602
603 static inline void set_intercept(struct vcpu_svm *svm, int bit)
604 {
605 struct vmcb *vmcb = get_host_vmcb(svm);
606
607 vmcb->control.intercept |= (1ULL << bit);
608
609 recalc_intercepts(svm);
610 }
611
612 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
613 {
614 struct vmcb *vmcb = get_host_vmcb(svm);
615
616 vmcb->control.intercept &= ~(1ULL << bit);
617
618 recalc_intercepts(svm);
619 }
620
621 static inline bool vgif_enabled(struct vcpu_svm *svm)
622 {
623 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
624 }
625
626 static inline void enable_gif(struct vcpu_svm *svm)
627 {
628 if (vgif_enabled(svm))
629 svm->vmcb->control.int_ctl |= V_GIF_MASK;
630 else
631 svm->vcpu.arch.hflags |= HF_GIF_MASK;
632 }
633
634 static inline void disable_gif(struct vcpu_svm *svm)
635 {
636 if (vgif_enabled(svm))
637 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
638 else
639 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
640 }
641
642 static inline bool gif_set(struct vcpu_svm *svm)
643 {
644 if (vgif_enabled(svm))
645 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
646 else
647 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
648 }
649
650 static unsigned long iopm_base;
651
652 struct kvm_ldttss_desc {
653 u16 limit0;
654 u16 base0;
655 unsigned base1:8, type:5, dpl:2, p:1;
656 unsigned limit1:4, zero0:3, g:1, base2:8;
657 u32 base3;
658 u32 zero1;
659 } __attribute__((packed));
660
661 struct svm_cpu_data {
662 int cpu;
663
664 u64 asid_generation;
665 u32 max_asid;
666 u32 next_asid;
667 u32 min_asid;
668 struct kvm_ldttss_desc *tss_desc;
669
670 struct page *save_area;
671 struct vmcb *current_vmcb;
672
673 /* index = sev_asid, value = vmcb pointer */
674 struct vmcb **sev_vmcbs;
675 };
676
677 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
678
679 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
680
681 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
682 #define MSRS_RANGE_SIZE 2048
683 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
684
685 static u32 svm_msrpm_offset(u32 msr)
686 {
687 u32 offset;
688 int i;
689
690 for (i = 0; i < NUM_MSR_MAPS; i++) {
691 if (msr < msrpm_ranges[i] ||
692 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
693 continue;
694
695 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
696 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
697
698 /* Now we have the u8 offset - but need the u32 offset */
699 return offset / 4;
700 }
701
702 /* MSR not in any range */
703 return MSR_INVALID;
704 }
705
706 #define MAX_INST_SIZE 15
707
708 static inline void clgi(void)
709 {
710 asm volatile (__ex("clgi"));
711 }
712
713 static inline void stgi(void)
714 {
715 asm volatile (__ex("stgi"));
716 }
717
718 static inline void invlpga(unsigned long addr, u32 asid)
719 {
720 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
721 }
722
723 static int get_npt_level(struct kvm_vcpu *vcpu)
724 {
725 #ifdef CONFIG_X86_64
726 return PT64_ROOT_4LEVEL;
727 #else
728 return PT32E_ROOT_LEVEL;
729 #endif
730 }
731
732 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
733 {
734 vcpu->arch.efer = efer;
735 if (!npt_enabled && !(efer & EFER_LMA))
736 efer &= ~EFER_LME;
737
738 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
739 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
740 }
741
742 static int is_external_interrupt(u32 info)
743 {
744 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
745 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
746 }
747
748 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
749 {
750 struct vcpu_svm *svm = to_svm(vcpu);
751 u32 ret = 0;
752
753 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
754 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
755 return ret;
756 }
757
758 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
759 {
760 struct vcpu_svm *svm = to_svm(vcpu);
761
762 if (mask == 0)
763 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
764 else
765 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
766
767 }
768
769 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
770 {
771 struct vcpu_svm *svm = to_svm(vcpu);
772
773 if (svm->vmcb->control.next_rip != 0) {
774 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
775 svm->next_rip = svm->vmcb->control.next_rip;
776 }
777
778 if (!svm->next_rip) {
779 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
780 EMULATE_DONE)
781 printk(KERN_DEBUG "%s: NOP\n", __func__);
782 return;
783 }
784 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
785 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
786 __func__, kvm_rip_read(vcpu), svm->next_rip);
787
788 kvm_rip_write(vcpu, svm->next_rip);
789 svm_set_interrupt_shadow(vcpu, 0);
790 }
791
792 static void svm_queue_exception(struct kvm_vcpu *vcpu)
793 {
794 struct vcpu_svm *svm = to_svm(vcpu);
795 unsigned nr = vcpu->arch.exception.nr;
796 bool has_error_code = vcpu->arch.exception.has_error_code;
797 bool reinject = vcpu->arch.exception.injected;
798 u32 error_code = vcpu->arch.exception.error_code;
799
800 /*
801 * If we are within a nested VM we'd better #VMEXIT and let the guest
802 * handle the exception
803 */
804 if (!reinject &&
805 nested_svm_check_exception(svm, nr, has_error_code, error_code))
806 return;
807
808 kvm_deliver_exception_payload(&svm->vcpu);
809
810 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
811 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
812
813 /*
814 * For guest debugging where we have to reinject #BP if some
815 * INT3 is guest-owned:
816 * Emulate nRIP by moving RIP forward. Will fail if injection
817 * raises a fault that is not intercepted. Still better than
818 * failing in all cases.
819 */
820 skip_emulated_instruction(&svm->vcpu);
821 rip = kvm_rip_read(&svm->vcpu);
822 svm->int3_rip = rip + svm->vmcb->save.cs.base;
823 svm->int3_injected = rip - old_rip;
824 }
825
826 svm->vmcb->control.event_inj = nr
827 | SVM_EVTINJ_VALID
828 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
829 | SVM_EVTINJ_TYPE_EXEPT;
830 svm->vmcb->control.event_inj_err = error_code;
831 }
832
833 static void svm_init_erratum_383(void)
834 {
835 u32 low, high;
836 int err;
837 u64 val;
838
839 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
840 return;
841
842 /* Use _safe variants to not break nested virtualization */
843 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
844 if (err)
845 return;
846
847 val |= (1ULL << 47);
848
849 low = lower_32_bits(val);
850 high = upper_32_bits(val);
851
852 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
853
854 erratum_383_found = true;
855 }
856
857 static void svm_init_osvw(struct kvm_vcpu *vcpu)
858 {
859 /*
860 * Guests should see errata 400 and 415 as fixed (assuming that
861 * HLT and IO instructions are intercepted).
862 */
863 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
864 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
865
866 /*
867 * By increasing VCPU's osvw.length to 3 we are telling the guest that
868 * all osvw.status bits inside that length, including bit 0 (which is
869 * reserved for erratum 298), are valid. However, if host processor's
870 * osvw_len is 0 then osvw_status[0] carries no information. We need to
871 * be conservative here and therefore we tell the guest that erratum 298
872 * is present (because we really don't know).
873 */
874 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
875 vcpu->arch.osvw.status |= 1;
876 }
877
878 static int has_svm(void)
879 {
880 const char *msg;
881
882 if (!cpu_has_svm(&msg)) {
883 printk(KERN_INFO "has_svm: %s\n", msg);
884 return 0;
885 }
886
887 return 1;
888 }
889
890 static void svm_hardware_disable(void)
891 {
892 /* Make sure we clean up behind us */
893 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
894 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
895
896 cpu_svm_disable();
897
898 amd_pmu_disable_virt();
899 }
900
901 static int svm_hardware_enable(void)
902 {
903
904 struct svm_cpu_data *sd;
905 uint64_t efer;
906 struct desc_struct *gdt;
907 int me = raw_smp_processor_id();
908
909 rdmsrl(MSR_EFER, efer);
910 if (efer & EFER_SVME)
911 return -EBUSY;
912
913 if (!has_svm()) {
914 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
915 return -EINVAL;
916 }
917 sd = per_cpu(svm_data, me);
918 if (!sd) {
919 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
920 return -EINVAL;
921 }
922
923 sd->asid_generation = 1;
924 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
925 sd->next_asid = sd->max_asid + 1;
926 sd->min_asid = max_sev_asid + 1;
927
928 gdt = get_current_gdt_rw();
929 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
930
931 wrmsrl(MSR_EFER, efer | EFER_SVME);
932
933 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
934
935 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
936 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
937 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
938 }
939
940
941 /*
942 * Get OSVW bits.
943 *
944 * Note that it is possible to have a system with mixed processor
945 * revisions and therefore different OSVW bits. If bits are not the same
946 * on different processors then choose the worst case (i.e. if erratum
947 * is present on one processor and not on another then assume that the
948 * erratum is present everywhere).
949 */
950 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
951 uint64_t len, status = 0;
952 int err;
953
954 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
955 if (!err)
956 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
957 &err);
958
959 if (err)
960 osvw_status = osvw_len = 0;
961 else {
962 if (len < osvw_len)
963 osvw_len = len;
964 osvw_status |= status;
965 osvw_status &= (1ULL << osvw_len) - 1;
966 }
967 } else
968 osvw_status = osvw_len = 0;
969
970 svm_init_erratum_383();
971
972 amd_pmu_enable_virt();
973
974 return 0;
975 }
976
977 static void svm_cpu_uninit(int cpu)
978 {
979 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
980
981 if (!sd)
982 return;
983
984 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
985 kfree(sd->sev_vmcbs);
986 __free_page(sd->save_area);
987 kfree(sd);
988 }
989
990 static int svm_cpu_init(int cpu)
991 {
992 struct svm_cpu_data *sd;
993 int r;
994
995 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
996 if (!sd)
997 return -ENOMEM;
998 sd->cpu = cpu;
999 r = -ENOMEM;
1000 sd->save_area = alloc_page(GFP_KERNEL);
1001 if (!sd->save_area)
1002 goto err_1;
1003
1004 if (svm_sev_enabled()) {
1005 r = -ENOMEM;
1006 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1007 sizeof(void *),
1008 GFP_KERNEL);
1009 if (!sd->sev_vmcbs)
1010 goto err_1;
1011 }
1012
1013 per_cpu(svm_data, cpu) = sd;
1014
1015 return 0;
1016
1017 err_1:
1018 kfree(sd);
1019 return r;
1020
1021 }
1022
1023 static bool valid_msr_intercept(u32 index)
1024 {
1025 int i;
1026
1027 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1028 if (direct_access_msrs[i].index == index)
1029 return true;
1030
1031 return false;
1032 }
1033
1034 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1035 {
1036 u8 bit_write;
1037 unsigned long tmp;
1038 u32 offset;
1039 u32 *msrpm;
1040
1041 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1042 to_svm(vcpu)->msrpm;
1043
1044 offset = svm_msrpm_offset(msr);
1045 bit_write = 2 * (msr & 0x0f) + 1;
1046 tmp = msrpm[offset];
1047
1048 BUG_ON(offset == MSR_INVALID);
1049
1050 return !!test_bit(bit_write, &tmp);
1051 }
1052
1053 static void set_msr_interception(u32 *msrpm, unsigned msr,
1054 int read, int write)
1055 {
1056 u8 bit_read, bit_write;
1057 unsigned long tmp;
1058 u32 offset;
1059
1060 /*
1061 * If this warning triggers extend the direct_access_msrs list at the
1062 * beginning of the file
1063 */
1064 WARN_ON(!valid_msr_intercept(msr));
1065
1066 offset = svm_msrpm_offset(msr);
1067 bit_read = 2 * (msr & 0x0f);
1068 bit_write = 2 * (msr & 0x0f) + 1;
1069 tmp = msrpm[offset];
1070
1071 BUG_ON(offset == MSR_INVALID);
1072
1073 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1074 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1075
1076 msrpm[offset] = tmp;
1077 }
1078
1079 static void svm_vcpu_init_msrpm(u32 *msrpm)
1080 {
1081 int i;
1082
1083 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1084
1085 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1086 if (!direct_access_msrs[i].always)
1087 continue;
1088
1089 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1090 }
1091 }
1092
1093 static void add_msr_offset(u32 offset)
1094 {
1095 int i;
1096
1097 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1098
1099 /* Offset already in list? */
1100 if (msrpm_offsets[i] == offset)
1101 return;
1102
1103 /* Slot used by another offset? */
1104 if (msrpm_offsets[i] != MSR_INVALID)
1105 continue;
1106
1107 /* Add offset to list */
1108 msrpm_offsets[i] = offset;
1109
1110 return;
1111 }
1112
1113 /*
1114 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1115 * increase MSRPM_OFFSETS in this case.
1116 */
1117 BUG();
1118 }
1119
1120 static void init_msrpm_offsets(void)
1121 {
1122 int i;
1123
1124 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1125
1126 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1127 u32 offset;
1128
1129 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1130 BUG_ON(offset == MSR_INVALID);
1131
1132 add_msr_offset(offset);
1133 }
1134 }
1135
1136 static void svm_enable_lbrv(struct vcpu_svm *svm)
1137 {
1138 u32 *msrpm = svm->msrpm;
1139
1140 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1141 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1142 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1143 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1144 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1145 }
1146
1147 static void svm_disable_lbrv(struct vcpu_svm *svm)
1148 {
1149 u32 *msrpm = svm->msrpm;
1150
1151 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1152 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1153 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1154 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1155 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1156 }
1157
1158 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1159 {
1160 svm->nmi_singlestep = false;
1161
1162 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1163 /* Clear our flags if they were not set by the guest */
1164 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1165 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1166 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1167 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1168 }
1169 }
1170
1171 /* Note:
1172 * This hash table is used to map VM_ID to a struct kvm_svm,
1173 * when handling AMD IOMMU GALOG notification to schedule in
1174 * a particular vCPU.
1175 */
1176 #define SVM_VM_DATA_HASH_BITS 8
1177 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1178 static u32 next_vm_id = 0;
1179 static bool next_vm_id_wrapped = 0;
1180 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1181
1182 /* Note:
1183 * This function is called from IOMMU driver to notify
1184 * SVM to schedule in a particular vCPU of a particular VM.
1185 */
1186 static int avic_ga_log_notifier(u32 ga_tag)
1187 {
1188 unsigned long flags;
1189 struct kvm_svm *kvm_svm;
1190 struct kvm_vcpu *vcpu = NULL;
1191 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1192 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1193
1194 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1195
1196 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1197 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1198 if (kvm_svm->avic_vm_id != vm_id)
1199 continue;
1200 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1201 break;
1202 }
1203 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1204
1205 /* Note:
1206 * At this point, the IOMMU should have already set the pending
1207 * bit in the vAPIC backing page. So, we just need to schedule
1208 * in the vcpu.
1209 */
1210 if (vcpu)
1211 kvm_vcpu_wake_up(vcpu);
1212
1213 return 0;
1214 }
1215
1216 static __init int sev_hardware_setup(void)
1217 {
1218 struct sev_user_data_status *status;
1219 int rc;
1220
1221 /* Maximum number of encrypted guests supported simultaneously */
1222 max_sev_asid = cpuid_ecx(0x8000001F);
1223
1224 if (!max_sev_asid)
1225 return 1;
1226
1227 /* Minimum ASID value that should be used for SEV guest */
1228 min_sev_asid = cpuid_edx(0x8000001F);
1229
1230 /* Initialize SEV ASID bitmap */
1231 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1232 if (!sev_asid_bitmap)
1233 return 1;
1234
1235 status = kmalloc(sizeof(*status), GFP_KERNEL);
1236 if (!status)
1237 return 1;
1238
1239 /*
1240 * Check SEV platform status.
1241 *
1242 * PLATFORM_STATUS can be called in any state, if we failed to query
1243 * the PLATFORM status then either PSP firmware does not support SEV
1244 * feature or SEV firmware is dead.
1245 */
1246 rc = sev_platform_status(status, NULL);
1247 if (rc)
1248 goto err;
1249
1250 pr_info("SEV supported\n");
1251
1252 err:
1253 kfree(status);
1254 return rc;
1255 }
1256
1257 static void grow_ple_window(struct kvm_vcpu *vcpu)
1258 {
1259 struct vcpu_svm *svm = to_svm(vcpu);
1260 struct vmcb_control_area *control = &svm->vmcb->control;
1261 int old = control->pause_filter_count;
1262
1263 control->pause_filter_count = __grow_ple_window(old,
1264 pause_filter_count,
1265 pause_filter_count_grow,
1266 pause_filter_count_max);
1267
1268 if (control->pause_filter_count != old)
1269 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1270
1271 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1272 control->pause_filter_count, old);
1273 }
1274
1275 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1276 {
1277 struct vcpu_svm *svm = to_svm(vcpu);
1278 struct vmcb_control_area *control = &svm->vmcb->control;
1279 int old = control->pause_filter_count;
1280
1281 control->pause_filter_count =
1282 __shrink_ple_window(old,
1283 pause_filter_count,
1284 pause_filter_count_shrink,
1285 pause_filter_count);
1286 if (control->pause_filter_count != old)
1287 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1288
1289 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1290 control->pause_filter_count, old);
1291 }
1292
1293 static __init int svm_hardware_setup(void)
1294 {
1295 int cpu;
1296 struct page *iopm_pages;
1297 void *iopm_va;
1298 int r;
1299
1300 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1301
1302 if (!iopm_pages)
1303 return -ENOMEM;
1304
1305 iopm_va = page_address(iopm_pages);
1306 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1307 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1308
1309 init_msrpm_offsets();
1310
1311 if (boot_cpu_has(X86_FEATURE_NX))
1312 kvm_enable_efer_bits(EFER_NX);
1313
1314 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1315 kvm_enable_efer_bits(EFER_FFXSR);
1316
1317 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1318 kvm_has_tsc_control = true;
1319 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1320 kvm_tsc_scaling_ratio_frac_bits = 32;
1321 }
1322
1323 /* Check for pause filtering support */
1324 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1325 pause_filter_count = 0;
1326 pause_filter_thresh = 0;
1327 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1328 pause_filter_thresh = 0;
1329 }
1330
1331 if (nested) {
1332 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1333 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1334 }
1335
1336 if (sev) {
1337 if (boot_cpu_has(X86_FEATURE_SEV) &&
1338 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1339 r = sev_hardware_setup();
1340 if (r)
1341 sev = false;
1342 } else {
1343 sev = false;
1344 }
1345 }
1346
1347 for_each_possible_cpu(cpu) {
1348 r = svm_cpu_init(cpu);
1349 if (r)
1350 goto err;
1351 }
1352
1353 if (!boot_cpu_has(X86_FEATURE_NPT))
1354 npt_enabled = false;
1355
1356 if (npt_enabled && !npt) {
1357 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1358 npt_enabled = false;
1359 }
1360
1361 if (npt_enabled) {
1362 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1363 kvm_enable_tdp();
1364 } else
1365 kvm_disable_tdp();
1366
1367 if (avic) {
1368 if (!npt_enabled ||
1369 !boot_cpu_has(X86_FEATURE_AVIC) ||
1370 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1371 avic = false;
1372 } else {
1373 pr_info("AVIC enabled\n");
1374
1375 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1376 }
1377 }
1378
1379 if (vls) {
1380 if (!npt_enabled ||
1381 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1382 !IS_ENABLED(CONFIG_X86_64)) {
1383 vls = false;
1384 } else {
1385 pr_info("Virtual VMLOAD VMSAVE supported\n");
1386 }
1387 }
1388
1389 if (vgif) {
1390 if (!boot_cpu_has(X86_FEATURE_VGIF))
1391 vgif = false;
1392 else
1393 pr_info("Virtual GIF supported\n");
1394 }
1395
1396 return 0;
1397
1398 err:
1399 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1400 iopm_base = 0;
1401 return r;
1402 }
1403
1404 static __exit void svm_hardware_unsetup(void)
1405 {
1406 int cpu;
1407
1408 if (svm_sev_enabled())
1409 bitmap_free(sev_asid_bitmap);
1410
1411 for_each_possible_cpu(cpu)
1412 svm_cpu_uninit(cpu);
1413
1414 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1415 iopm_base = 0;
1416 }
1417
1418 static void init_seg(struct vmcb_seg *seg)
1419 {
1420 seg->selector = 0;
1421 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1422 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1423 seg->limit = 0xffff;
1424 seg->base = 0;
1425 }
1426
1427 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1428 {
1429 seg->selector = 0;
1430 seg->attrib = SVM_SELECTOR_P_MASK | type;
1431 seg->limit = 0xffff;
1432 seg->base = 0;
1433 }
1434
1435 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1436 {
1437 struct vcpu_svm *svm = to_svm(vcpu);
1438
1439 if (is_guest_mode(vcpu))
1440 return svm->nested.hsave->control.tsc_offset;
1441
1442 return vcpu->arch.tsc_offset;
1443 }
1444
1445 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1446 {
1447 struct vcpu_svm *svm = to_svm(vcpu);
1448 u64 g_tsc_offset = 0;
1449
1450 if (is_guest_mode(vcpu)) {
1451 /* Write L1's TSC offset. */
1452 g_tsc_offset = svm->vmcb->control.tsc_offset -
1453 svm->nested.hsave->control.tsc_offset;
1454 svm->nested.hsave->control.tsc_offset = offset;
1455 }
1456
1457 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1458 svm->vmcb->control.tsc_offset - g_tsc_offset,
1459 offset);
1460
1461 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1462
1463 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1464 return svm->vmcb->control.tsc_offset;
1465 }
1466
1467 static void avic_init_vmcb(struct vcpu_svm *svm)
1468 {
1469 struct vmcb *vmcb = svm->vmcb;
1470 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1471 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1472 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1473 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1474
1475 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1476 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1477 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1478 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1479 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1480 }
1481
1482 static void init_vmcb(struct vcpu_svm *svm)
1483 {
1484 struct vmcb_control_area *control = &svm->vmcb->control;
1485 struct vmcb_save_area *save = &svm->vmcb->save;
1486
1487 svm->vcpu.arch.hflags = 0;
1488
1489 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1490 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1491 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1492 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1493 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1494 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1495 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1496 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1497
1498 set_dr_intercepts(svm);
1499
1500 set_exception_intercept(svm, PF_VECTOR);
1501 set_exception_intercept(svm, UD_VECTOR);
1502 set_exception_intercept(svm, MC_VECTOR);
1503 set_exception_intercept(svm, AC_VECTOR);
1504 set_exception_intercept(svm, DB_VECTOR);
1505 /*
1506 * Guest access to VMware backdoor ports could legitimately
1507 * trigger #GP because of TSS I/O permission bitmap.
1508 * We intercept those #GP and allow access to them anyway
1509 * as VMware does.
1510 */
1511 if (enable_vmware_backdoor)
1512 set_exception_intercept(svm, GP_VECTOR);
1513
1514 set_intercept(svm, INTERCEPT_INTR);
1515 set_intercept(svm, INTERCEPT_NMI);
1516 set_intercept(svm, INTERCEPT_SMI);
1517 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1518 set_intercept(svm, INTERCEPT_RDPMC);
1519 set_intercept(svm, INTERCEPT_CPUID);
1520 set_intercept(svm, INTERCEPT_INVD);
1521 set_intercept(svm, INTERCEPT_INVLPG);
1522 set_intercept(svm, INTERCEPT_INVLPGA);
1523 set_intercept(svm, INTERCEPT_IOIO_PROT);
1524 set_intercept(svm, INTERCEPT_MSR_PROT);
1525 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1526 set_intercept(svm, INTERCEPT_SHUTDOWN);
1527 set_intercept(svm, INTERCEPT_VMRUN);
1528 set_intercept(svm, INTERCEPT_VMMCALL);
1529 set_intercept(svm, INTERCEPT_VMLOAD);
1530 set_intercept(svm, INTERCEPT_VMSAVE);
1531 set_intercept(svm, INTERCEPT_STGI);
1532 set_intercept(svm, INTERCEPT_CLGI);
1533 set_intercept(svm, INTERCEPT_SKINIT);
1534 set_intercept(svm, INTERCEPT_WBINVD);
1535 set_intercept(svm, INTERCEPT_XSETBV);
1536 set_intercept(svm, INTERCEPT_RSM);
1537
1538 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1539 set_intercept(svm, INTERCEPT_MONITOR);
1540 set_intercept(svm, INTERCEPT_MWAIT);
1541 }
1542
1543 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1544 set_intercept(svm, INTERCEPT_HLT);
1545
1546 control->iopm_base_pa = __sme_set(iopm_base);
1547 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1548 control->int_ctl = V_INTR_MASKING_MASK;
1549
1550 init_seg(&save->es);
1551 init_seg(&save->ss);
1552 init_seg(&save->ds);
1553 init_seg(&save->fs);
1554 init_seg(&save->gs);
1555
1556 save->cs.selector = 0xf000;
1557 save->cs.base = 0xffff0000;
1558 /* Executable/Readable Code Segment */
1559 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1560 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1561 save->cs.limit = 0xffff;
1562
1563 save->gdtr.limit = 0xffff;
1564 save->idtr.limit = 0xffff;
1565
1566 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1567 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1568
1569 svm_set_efer(&svm->vcpu, 0);
1570 save->dr6 = 0xffff0ff0;
1571 kvm_set_rflags(&svm->vcpu, 2);
1572 save->rip = 0x0000fff0;
1573 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1574
1575 /*
1576 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1577 * It also updates the guest-visible cr0 value.
1578 */
1579 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1580 kvm_mmu_reset_context(&svm->vcpu);
1581
1582 save->cr4 = X86_CR4_PAE;
1583 /* rdx = ?? */
1584
1585 if (npt_enabled) {
1586 /* Setup VMCB for Nested Paging */
1587 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1588 clr_intercept(svm, INTERCEPT_INVLPG);
1589 clr_exception_intercept(svm, PF_VECTOR);
1590 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1591 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1592 save->g_pat = svm->vcpu.arch.pat;
1593 save->cr3 = 0;
1594 save->cr4 = 0;
1595 }
1596 svm->asid_generation = 0;
1597
1598 svm->nested.vmcb = 0;
1599 svm->vcpu.arch.hflags = 0;
1600
1601 if (pause_filter_count) {
1602 control->pause_filter_count = pause_filter_count;
1603 if (pause_filter_thresh)
1604 control->pause_filter_thresh = pause_filter_thresh;
1605 set_intercept(svm, INTERCEPT_PAUSE);
1606 } else {
1607 clr_intercept(svm, INTERCEPT_PAUSE);
1608 }
1609
1610 if (kvm_vcpu_apicv_active(&svm->vcpu))
1611 avic_init_vmcb(svm);
1612
1613 /*
1614 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1615 * in VMCB and clear intercepts to avoid #VMEXIT.
1616 */
1617 if (vls) {
1618 clr_intercept(svm, INTERCEPT_VMLOAD);
1619 clr_intercept(svm, INTERCEPT_VMSAVE);
1620 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1621 }
1622
1623 if (vgif) {
1624 clr_intercept(svm, INTERCEPT_STGI);
1625 clr_intercept(svm, INTERCEPT_CLGI);
1626 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1627 }
1628
1629 if (sev_guest(svm->vcpu.kvm)) {
1630 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1631 clr_exception_intercept(svm, UD_VECTOR);
1632 }
1633
1634 mark_all_dirty(svm->vmcb);
1635
1636 enable_gif(svm);
1637
1638 }
1639
1640 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1641 unsigned int index)
1642 {
1643 u64 *avic_physical_id_table;
1644 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1645
1646 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1647 return NULL;
1648
1649 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1650
1651 return &avic_physical_id_table[index];
1652 }
1653
1654 /**
1655 * Note:
1656 * AVIC hardware walks the nested page table to check permissions,
1657 * but does not use the SPA address specified in the leaf page
1658 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1659 * field of the VMCB. Therefore, we set up the
1660 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1661 */
1662 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1663 {
1664 struct kvm *kvm = vcpu->kvm;
1665 int ret = 0;
1666
1667 mutex_lock(&kvm->slots_lock);
1668 if (kvm->arch.apic_access_page_done)
1669 goto out;
1670
1671 ret = __x86_set_memory_region(kvm,
1672 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1673 APIC_DEFAULT_PHYS_BASE,
1674 PAGE_SIZE);
1675 if (ret)
1676 goto out;
1677
1678 kvm->arch.apic_access_page_done = true;
1679 out:
1680 mutex_unlock(&kvm->slots_lock);
1681 return ret;
1682 }
1683
1684 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1685 {
1686 int ret;
1687 u64 *entry, new_entry;
1688 int id = vcpu->vcpu_id;
1689 struct vcpu_svm *svm = to_svm(vcpu);
1690
1691 ret = avic_init_access_page(vcpu);
1692 if (ret)
1693 return ret;
1694
1695 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1696 return -EINVAL;
1697
1698 if (!svm->vcpu.arch.apic->regs)
1699 return -EINVAL;
1700
1701 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1702
1703 /* Setting AVIC backing page address in the phy APIC ID table */
1704 entry = avic_get_physical_id_entry(vcpu, id);
1705 if (!entry)
1706 return -EINVAL;
1707
1708 new_entry = READ_ONCE(*entry);
1709 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1710 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1711 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1712 WRITE_ONCE(*entry, new_entry);
1713
1714 svm->avic_physical_id_cache = entry;
1715
1716 return 0;
1717 }
1718
1719 static void __sev_asid_free(int asid)
1720 {
1721 struct svm_cpu_data *sd;
1722 int cpu, pos;
1723
1724 pos = asid - 1;
1725 clear_bit(pos, sev_asid_bitmap);
1726
1727 for_each_possible_cpu(cpu) {
1728 sd = per_cpu(svm_data, cpu);
1729 sd->sev_vmcbs[pos] = NULL;
1730 }
1731 }
1732
1733 static void sev_asid_free(struct kvm *kvm)
1734 {
1735 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1736
1737 __sev_asid_free(sev->asid);
1738 }
1739
1740 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1741 {
1742 struct sev_data_decommission *decommission;
1743 struct sev_data_deactivate *data;
1744
1745 if (!handle)
1746 return;
1747
1748 data = kzalloc(sizeof(*data), GFP_KERNEL);
1749 if (!data)
1750 return;
1751
1752 /* deactivate handle */
1753 data->handle = handle;
1754 sev_guest_deactivate(data, NULL);
1755
1756 wbinvd_on_all_cpus();
1757 sev_guest_df_flush(NULL);
1758 kfree(data);
1759
1760 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1761 if (!decommission)
1762 return;
1763
1764 /* decommission handle */
1765 decommission->handle = handle;
1766 sev_guest_decommission(decommission, NULL);
1767
1768 kfree(decommission);
1769 }
1770
1771 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1772 unsigned long ulen, unsigned long *n,
1773 int write)
1774 {
1775 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1776 unsigned long npages, npinned, size;
1777 unsigned long locked, lock_limit;
1778 struct page **pages;
1779 unsigned long first, last;
1780
1781 if (ulen == 0 || uaddr + ulen < uaddr)
1782 return NULL;
1783
1784 /* Calculate number of pages. */
1785 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1786 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1787 npages = (last - first + 1);
1788
1789 locked = sev->pages_locked + npages;
1790 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1791 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1792 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1793 return NULL;
1794 }
1795
1796 /* Avoid using vmalloc for smaller buffers. */
1797 size = npages * sizeof(struct page *);
1798 if (size > PAGE_SIZE)
1799 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1800 PAGE_KERNEL);
1801 else
1802 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1803
1804 if (!pages)
1805 return NULL;
1806
1807 /* Pin the user virtual address. */
1808 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1809 if (npinned != npages) {
1810 pr_err("SEV: Failure locking %lu pages.\n", npages);
1811 goto err;
1812 }
1813
1814 *n = npages;
1815 sev->pages_locked = locked;
1816
1817 return pages;
1818
1819 err:
1820 if (npinned > 0)
1821 release_pages(pages, npinned);
1822
1823 kvfree(pages);
1824 return NULL;
1825 }
1826
1827 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1828 unsigned long npages)
1829 {
1830 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1831
1832 release_pages(pages, npages);
1833 kvfree(pages);
1834 sev->pages_locked -= npages;
1835 }
1836
1837 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1838 {
1839 uint8_t *page_virtual;
1840 unsigned long i;
1841
1842 if (npages == 0 || pages == NULL)
1843 return;
1844
1845 for (i = 0; i < npages; i++) {
1846 page_virtual = kmap_atomic(pages[i]);
1847 clflush_cache_range(page_virtual, PAGE_SIZE);
1848 kunmap_atomic(page_virtual);
1849 }
1850 }
1851
1852 static void __unregister_enc_region_locked(struct kvm *kvm,
1853 struct enc_region *region)
1854 {
1855 /*
1856 * The guest may change the memory encryption attribute from C=0 -> C=1
1857 * or vice versa for this memory range. Lets make sure caches are
1858 * flushed to ensure that guest data gets written into memory with
1859 * correct C-bit.
1860 */
1861 sev_clflush_pages(region->pages, region->npages);
1862
1863 sev_unpin_memory(kvm, region->pages, region->npages);
1864 list_del(&region->list);
1865 kfree(region);
1866 }
1867
1868 static struct kvm *svm_vm_alloc(void)
1869 {
1870 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1871 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1872 PAGE_KERNEL);
1873 return &kvm_svm->kvm;
1874 }
1875
1876 static void svm_vm_free(struct kvm *kvm)
1877 {
1878 vfree(to_kvm_svm(kvm));
1879 }
1880
1881 static void sev_vm_destroy(struct kvm *kvm)
1882 {
1883 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1884 struct list_head *head = &sev->regions_list;
1885 struct list_head *pos, *q;
1886
1887 if (!sev_guest(kvm))
1888 return;
1889
1890 mutex_lock(&kvm->lock);
1891
1892 /*
1893 * if userspace was terminated before unregistering the memory regions
1894 * then lets unpin all the registered memory.
1895 */
1896 if (!list_empty(head)) {
1897 list_for_each_safe(pos, q, head) {
1898 __unregister_enc_region_locked(kvm,
1899 list_entry(pos, struct enc_region, list));
1900 }
1901 }
1902
1903 mutex_unlock(&kvm->lock);
1904
1905 sev_unbind_asid(kvm, sev->handle);
1906 sev_asid_free(kvm);
1907 }
1908
1909 static void avic_vm_destroy(struct kvm *kvm)
1910 {
1911 unsigned long flags;
1912 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1913
1914 if (!avic)
1915 return;
1916
1917 if (kvm_svm->avic_logical_id_table_page)
1918 __free_page(kvm_svm->avic_logical_id_table_page);
1919 if (kvm_svm->avic_physical_id_table_page)
1920 __free_page(kvm_svm->avic_physical_id_table_page);
1921
1922 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1923 hash_del(&kvm_svm->hnode);
1924 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1925 }
1926
1927 static void svm_vm_destroy(struct kvm *kvm)
1928 {
1929 avic_vm_destroy(kvm);
1930 sev_vm_destroy(kvm);
1931 }
1932
1933 static int avic_vm_init(struct kvm *kvm)
1934 {
1935 unsigned long flags;
1936 int err = -ENOMEM;
1937 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1938 struct kvm_svm *k2;
1939 struct page *p_page;
1940 struct page *l_page;
1941 u32 vm_id;
1942
1943 if (!avic)
1944 return 0;
1945
1946 /* Allocating physical APIC ID table (4KB) */
1947 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1948 if (!p_page)
1949 goto free_avic;
1950
1951 kvm_svm->avic_physical_id_table_page = p_page;
1952 clear_page(page_address(p_page));
1953
1954 /* Allocating logical APIC ID table (4KB) */
1955 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1956 if (!l_page)
1957 goto free_avic;
1958
1959 kvm_svm->avic_logical_id_table_page = l_page;
1960 clear_page(page_address(l_page));
1961
1962 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1963 again:
1964 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1965 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1966 next_vm_id_wrapped = 1;
1967 goto again;
1968 }
1969 /* Is it still in use? Only possible if wrapped at least once */
1970 if (next_vm_id_wrapped) {
1971 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1972 if (k2->avic_vm_id == vm_id)
1973 goto again;
1974 }
1975 }
1976 kvm_svm->avic_vm_id = vm_id;
1977 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1978 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1979
1980 return 0;
1981
1982 free_avic:
1983 avic_vm_destroy(kvm);
1984 return err;
1985 }
1986
1987 static inline int
1988 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1989 {
1990 int ret = 0;
1991 unsigned long flags;
1992 struct amd_svm_iommu_ir *ir;
1993 struct vcpu_svm *svm = to_svm(vcpu);
1994
1995 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1996 return 0;
1997
1998 /*
1999 * Here, we go through the per-vcpu ir_list to update all existing
2000 * interrupt remapping table entry targeting this vcpu.
2001 */
2002 spin_lock_irqsave(&svm->ir_list_lock, flags);
2003
2004 if (list_empty(&svm->ir_list))
2005 goto out;
2006
2007 list_for_each_entry(ir, &svm->ir_list, node) {
2008 ret = amd_iommu_update_ga(cpu, r, ir->data);
2009 if (ret)
2010 break;
2011 }
2012 out:
2013 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2014 return ret;
2015 }
2016
2017 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2018 {
2019 u64 entry;
2020 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2021 int h_physical_id = kvm_cpu_get_apicid(cpu);
2022 struct vcpu_svm *svm = to_svm(vcpu);
2023
2024 if (!kvm_vcpu_apicv_active(vcpu))
2025 return;
2026
2027 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2028 return;
2029
2030 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2031 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2032
2033 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2034 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2035
2036 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2037 if (svm->avic_is_running)
2038 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2039
2040 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2041 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2042 svm->avic_is_running);
2043 }
2044
2045 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2046 {
2047 u64 entry;
2048 struct vcpu_svm *svm = to_svm(vcpu);
2049
2050 if (!kvm_vcpu_apicv_active(vcpu))
2051 return;
2052
2053 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2054 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2055 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2056
2057 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2058 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2059 }
2060
2061 /**
2062 * This function is called during VCPU halt/unhalt.
2063 */
2064 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2065 {
2066 struct vcpu_svm *svm = to_svm(vcpu);
2067
2068 svm->avic_is_running = is_run;
2069 if (is_run)
2070 avic_vcpu_load(vcpu, vcpu->cpu);
2071 else
2072 avic_vcpu_put(vcpu);
2073 }
2074
2075 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2076 {
2077 struct vcpu_svm *svm = to_svm(vcpu);
2078 u32 dummy;
2079 u32 eax = 1;
2080
2081 vcpu->arch.microcode_version = 0x01000065;
2082 svm->spec_ctrl = 0;
2083 svm->virt_spec_ctrl = 0;
2084
2085 if (!init_event) {
2086 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2087 MSR_IA32_APICBASE_ENABLE;
2088 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2089 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2090 }
2091 init_vmcb(svm);
2092
2093 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2094 kvm_rdx_write(vcpu, eax);
2095
2096 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2097 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2098 }
2099
2100 static int avic_init_vcpu(struct vcpu_svm *svm)
2101 {
2102 int ret;
2103
2104 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2105 return 0;
2106
2107 ret = avic_init_backing_page(&svm->vcpu);
2108 if (ret)
2109 return ret;
2110
2111 INIT_LIST_HEAD(&svm->ir_list);
2112 spin_lock_init(&svm->ir_list_lock);
2113 svm->dfr_reg = APIC_DFR_FLAT;
2114
2115 return ret;
2116 }
2117
2118 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2119 {
2120 struct vcpu_svm *svm;
2121 struct page *page;
2122 struct page *msrpm_pages;
2123 struct page *hsave_page;
2124 struct page *nested_msrpm_pages;
2125 int err;
2126
2127 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2128 if (!svm) {
2129 err = -ENOMEM;
2130 goto out;
2131 }
2132
2133 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2134 GFP_KERNEL_ACCOUNT);
2135 if (!svm->vcpu.arch.guest_fpu) {
2136 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2137 err = -ENOMEM;
2138 goto free_partial_svm;
2139 }
2140
2141 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2142 if (err)
2143 goto free_svm;
2144
2145 err = -ENOMEM;
2146 page = alloc_page(GFP_KERNEL_ACCOUNT);
2147 if (!page)
2148 goto uninit;
2149
2150 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2151 if (!msrpm_pages)
2152 goto free_page1;
2153
2154 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2155 if (!nested_msrpm_pages)
2156 goto free_page2;
2157
2158 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2159 if (!hsave_page)
2160 goto free_page3;
2161
2162 err = avic_init_vcpu(svm);
2163 if (err)
2164 goto free_page4;
2165
2166 /* We initialize this flag to true to make sure that the is_running
2167 * bit would be set the first time the vcpu is loaded.
2168 */
2169 svm->avic_is_running = true;
2170
2171 svm->nested.hsave = page_address(hsave_page);
2172
2173 svm->msrpm = page_address(msrpm_pages);
2174 svm_vcpu_init_msrpm(svm->msrpm);
2175
2176 svm->nested.msrpm = page_address(nested_msrpm_pages);
2177 svm_vcpu_init_msrpm(svm->nested.msrpm);
2178
2179 svm->vmcb = page_address(page);
2180 clear_page(svm->vmcb);
2181 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2182 svm->asid_generation = 0;
2183 init_vmcb(svm);
2184
2185 svm_init_osvw(&svm->vcpu);
2186
2187 return &svm->vcpu;
2188
2189 free_page4:
2190 __free_page(hsave_page);
2191 free_page3:
2192 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2193 free_page2:
2194 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2195 free_page1:
2196 __free_page(page);
2197 uninit:
2198 kvm_vcpu_uninit(&svm->vcpu);
2199 free_svm:
2200 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2201 free_partial_svm:
2202 kmem_cache_free(kvm_vcpu_cache, svm);
2203 out:
2204 return ERR_PTR(err);
2205 }
2206
2207 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2208 {
2209 int i;
2210
2211 for_each_online_cpu(i)
2212 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2213 }
2214
2215 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2216 {
2217 struct vcpu_svm *svm = to_svm(vcpu);
2218
2219 /*
2220 * The vmcb page can be recycled, causing a false negative in
2221 * svm_vcpu_load(). So, ensure that no logical CPU has this
2222 * vmcb page recorded as its current vmcb.
2223 */
2224 svm_clear_current_vmcb(svm->vmcb);
2225
2226 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2227 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2228 __free_page(virt_to_page(svm->nested.hsave));
2229 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2230 kvm_vcpu_uninit(vcpu);
2231 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2232 kmem_cache_free(kvm_vcpu_cache, svm);
2233 }
2234
2235 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2236 {
2237 struct vcpu_svm *svm = to_svm(vcpu);
2238 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2239 int i;
2240
2241 if (unlikely(cpu != vcpu->cpu)) {
2242 svm->asid_generation = 0;
2243 mark_all_dirty(svm->vmcb);
2244 }
2245
2246 #ifdef CONFIG_X86_64
2247 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2248 #endif
2249 savesegment(fs, svm->host.fs);
2250 savesegment(gs, svm->host.gs);
2251 svm->host.ldt = kvm_read_ldt();
2252
2253 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2254 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2255
2256 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2257 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2258 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2259 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2260 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2261 }
2262 }
2263 /* This assumes that the kernel never uses MSR_TSC_AUX */
2264 if (static_cpu_has(X86_FEATURE_RDTSCP))
2265 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2266
2267 if (sd->current_vmcb != svm->vmcb) {
2268 sd->current_vmcb = svm->vmcb;
2269 indirect_branch_prediction_barrier();
2270 }
2271 avic_vcpu_load(vcpu, cpu);
2272 }
2273
2274 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2275 {
2276 struct vcpu_svm *svm = to_svm(vcpu);
2277 int i;
2278
2279 avic_vcpu_put(vcpu);
2280
2281 ++vcpu->stat.host_state_reload;
2282 kvm_load_ldt(svm->host.ldt);
2283 #ifdef CONFIG_X86_64
2284 loadsegment(fs, svm->host.fs);
2285 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2286 load_gs_index(svm->host.gs);
2287 #else
2288 #ifdef CONFIG_X86_32_LAZY_GS
2289 loadsegment(gs, svm->host.gs);
2290 #endif
2291 #endif
2292 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2293 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2294 }
2295
2296 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2297 {
2298 avic_set_running(vcpu, false);
2299 }
2300
2301 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2302 {
2303 avic_set_running(vcpu, true);
2304 }
2305
2306 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2307 {
2308 struct vcpu_svm *svm = to_svm(vcpu);
2309 unsigned long rflags = svm->vmcb->save.rflags;
2310
2311 if (svm->nmi_singlestep) {
2312 /* Hide our flags if they were not set by the guest */
2313 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2314 rflags &= ~X86_EFLAGS_TF;
2315 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2316 rflags &= ~X86_EFLAGS_RF;
2317 }
2318 return rflags;
2319 }
2320
2321 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2322 {
2323 if (to_svm(vcpu)->nmi_singlestep)
2324 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2325
2326 /*
2327 * Any change of EFLAGS.VM is accompanied by a reload of SS
2328 * (caused by either a task switch or an inter-privilege IRET),
2329 * so we do not need to update the CPL here.
2330 */
2331 to_svm(vcpu)->vmcb->save.rflags = rflags;
2332 }
2333
2334 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2335 {
2336 switch (reg) {
2337 case VCPU_EXREG_PDPTR:
2338 BUG_ON(!npt_enabled);
2339 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2340 break;
2341 default:
2342 BUG();
2343 }
2344 }
2345
2346 static void svm_set_vintr(struct vcpu_svm *svm)
2347 {
2348 set_intercept(svm, INTERCEPT_VINTR);
2349 }
2350
2351 static void svm_clear_vintr(struct vcpu_svm *svm)
2352 {
2353 clr_intercept(svm, INTERCEPT_VINTR);
2354 }
2355
2356 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2357 {
2358 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2359
2360 switch (seg) {
2361 case VCPU_SREG_CS: return &save->cs;
2362 case VCPU_SREG_DS: return &save->ds;
2363 case VCPU_SREG_ES: return &save->es;
2364 case VCPU_SREG_FS: return &save->fs;
2365 case VCPU_SREG_GS: return &save->gs;
2366 case VCPU_SREG_SS: return &save->ss;
2367 case VCPU_SREG_TR: return &save->tr;
2368 case VCPU_SREG_LDTR: return &save->ldtr;
2369 }
2370 BUG();
2371 return NULL;
2372 }
2373
2374 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2375 {
2376 struct vmcb_seg *s = svm_seg(vcpu, seg);
2377
2378 return s->base;
2379 }
2380
2381 static void svm_get_segment(struct kvm_vcpu *vcpu,
2382 struct kvm_segment *var, int seg)
2383 {
2384 struct vmcb_seg *s = svm_seg(vcpu, seg);
2385
2386 var->base = s->base;
2387 var->limit = s->limit;
2388 var->selector = s->selector;
2389 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2390 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2391 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2392 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2393 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2394 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2395 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2396
2397 /*
2398 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2399 * However, the SVM spec states that the G bit is not observed by the
2400 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2401 * So let's synthesize a legal G bit for all segments, this helps
2402 * running KVM nested. It also helps cross-vendor migration, because
2403 * Intel's vmentry has a check on the 'G' bit.
2404 */
2405 var->g = s->limit > 0xfffff;
2406
2407 /*
2408 * AMD's VMCB does not have an explicit unusable field, so emulate it
2409 * for cross vendor migration purposes by "not present"
2410 */
2411 var->unusable = !var->present;
2412
2413 switch (seg) {
2414 case VCPU_SREG_TR:
2415 /*
2416 * Work around a bug where the busy flag in the tr selector
2417 * isn't exposed
2418 */
2419 var->type |= 0x2;
2420 break;
2421 case VCPU_SREG_DS:
2422 case VCPU_SREG_ES:
2423 case VCPU_SREG_FS:
2424 case VCPU_SREG_GS:
2425 /*
2426 * The accessed bit must always be set in the segment
2427 * descriptor cache, although it can be cleared in the
2428 * descriptor, the cached bit always remains at 1. Since
2429 * Intel has a check on this, set it here to support
2430 * cross-vendor migration.
2431 */
2432 if (!var->unusable)
2433 var->type |= 0x1;
2434 break;
2435 case VCPU_SREG_SS:
2436 /*
2437 * On AMD CPUs sometimes the DB bit in the segment
2438 * descriptor is left as 1, although the whole segment has
2439 * been made unusable. Clear it here to pass an Intel VMX
2440 * entry check when cross vendor migrating.
2441 */
2442 if (var->unusable)
2443 var->db = 0;
2444 /* This is symmetric with svm_set_segment() */
2445 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2446 break;
2447 }
2448 }
2449
2450 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2451 {
2452 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2453
2454 return save->cpl;
2455 }
2456
2457 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2458 {
2459 struct vcpu_svm *svm = to_svm(vcpu);
2460
2461 dt->size = svm->vmcb->save.idtr.limit;
2462 dt->address = svm->vmcb->save.idtr.base;
2463 }
2464
2465 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2466 {
2467 struct vcpu_svm *svm = to_svm(vcpu);
2468
2469 svm->vmcb->save.idtr.limit = dt->size;
2470 svm->vmcb->save.idtr.base = dt->address ;
2471 mark_dirty(svm->vmcb, VMCB_DT);
2472 }
2473
2474 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2475 {
2476 struct vcpu_svm *svm = to_svm(vcpu);
2477
2478 dt->size = svm->vmcb->save.gdtr.limit;
2479 dt->address = svm->vmcb->save.gdtr.base;
2480 }
2481
2482 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2483 {
2484 struct vcpu_svm *svm = to_svm(vcpu);
2485
2486 svm->vmcb->save.gdtr.limit = dt->size;
2487 svm->vmcb->save.gdtr.base = dt->address ;
2488 mark_dirty(svm->vmcb, VMCB_DT);
2489 }
2490
2491 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2492 {
2493 }
2494
2495 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2496 {
2497 }
2498
2499 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2500 {
2501 }
2502
2503 static void update_cr0_intercept(struct vcpu_svm *svm)
2504 {
2505 ulong gcr0 = svm->vcpu.arch.cr0;
2506 u64 *hcr0 = &svm->vmcb->save.cr0;
2507
2508 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2509 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2510
2511 mark_dirty(svm->vmcb, VMCB_CR);
2512
2513 if (gcr0 == *hcr0) {
2514 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2515 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2516 } else {
2517 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2518 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2519 }
2520 }
2521
2522 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2523 {
2524 struct vcpu_svm *svm = to_svm(vcpu);
2525
2526 #ifdef CONFIG_X86_64
2527 if (vcpu->arch.efer & EFER_LME) {
2528 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2529 vcpu->arch.efer |= EFER_LMA;
2530 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2531 }
2532
2533 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2534 vcpu->arch.efer &= ~EFER_LMA;
2535 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2536 }
2537 }
2538 #endif
2539 vcpu->arch.cr0 = cr0;
2540
2541 if (!npt_enabled)
2542 cr0 |= X86_CR0_PG | X86_CR0_WP;
2543
2544 /*
2545 * re-enable caching here because the QEMU bios
2546 * does not do it - this results in some delay at
2547 * reboot
2548 */
2549 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2550 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2551 svm->vmcb->save.cr0 = cr0;
2552 mark_dirty(svm->vmcb, VMCB_CR);
2553 update_cr0_intercept(svm);
2554 }
2555
2556 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2557 {
2558 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2559 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2560
2561 if (cr4 & X86_CR4_VMXE)
2562 return 1;
2563
2564 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2565 svm_flush_tlb(vcpu, true);
2566
2567 vcpu->arch.cr4 = cr4;
2568 if (!npt_enabled)
2569 cr4 |= X86_CR4_PAE;
2570 cr4 |= host_cr4_mce;
2571 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2572 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2573 return 0;
2574 }
2575
2576 static void svm_set_segment(struct kvm_vcpu *vcpu,
2577 struct kvm_segment *var, int seg)
2578 {
2579 struct vcpu_svm *svm = to_svm(vcpu);
2580 struct vmcb_seg *s = svm_seg(vcpu, seg);
2581
2582 s->base = var->base;
2583 s->limit = var->limit;
2584 s->selector = var->selector;
2585 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2586 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2587 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2588 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2589 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2590 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2591 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2592 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2593
2594 /*
2595 * This is always accurate, except if SYSRET returned to a segment
2596 * with SS.DPL != 3. Intel does not have this quirk, and always
2597 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2598 * would entail passing the CPL to userspace and back.
2599 */
2600 if (seg == VCPU_SREG_SS)
2601 /* This is symmetric with svm_get_segment() */
2602 svm->vmcb->save.cpl = (var->dpl & 3);
2603
2604 mark_dirty(svm->vmcb, VMCB_SEG);
2605 }
2606
2607 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2608 {
2609 struct vcpu_svm *svm = to_svm(vcpu);
2610
2611 clr_exception_intercept(svm, BP_VECTOR);
2612
2613 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2614 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2615 set_exception_intercept(svm, BP_VECTOR);
2616 } else
2617 vcpu->guest_debug = 0;
2618 }
2619
2620 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2621 {
2622 if (sd->next_asid > sd->max_asid) {
2623 ++sd->asid_generation;
2624 sd->next_asid = sd->min_asid;
2625 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2626 }
2627
2628 svm->asid_generation = sd->asid_generation;
2629 svm->vmcb->control.asid = sd->next_asid++;
2630
2631 mark_dirty(svm->vmcb, VMCB_ASID);
2632 }
2633
2634 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2635 {
2636 return to_svm(vcpu)->vmcb->save.dr6;
2637 }
2638
2639 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2640 {
2641 struct vcpu_svm *svm = to_svm(vcpu);
2642
2643 svm->vmcb->save.dr6 = value;
2644 mark_dirty(svm->vmcb, VMCB_DR);
2645 }
2646
2647 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2648 {
2649 struct vcpu_svm *svm = to_svm(vcpu);
2650
2651 get_debugreg(vcpu->arch.db[0], 0);
2652 get_debugreg(vcpu->arch.db[1], 1);
2653 get_debugreg(vcpu->arch.db[2], 2);
2654 get_debugreg(vcpu->arch.db[3], 3);
2655 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2656 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2657
2658 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2659 set_dr_intercepts(svm);
2660 }
2661
2662 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2663 {
2664 struct vcpu_svm *svm = to_svm(vcpu);
2665
2666 svm->vmcb->save.dr7 = value;
2667 mark_dirty(svm->vmcb, VMCB_DR);
2668 }
2669
2670 static int pf_interception(struct vcpu_svm *svm)
2671 {
2672 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2673 u64 error_code = svm->vmcb->control.exit_info_1;
2674
2675 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2676 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2677 svm->vmcb->control.insn_bytes : NULL,
2678 svm->vmcb->control.insn_len);
2679 }
2680
2681 static int npf_interception(struct vcpu_svm *svm)
2682 {
2683 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2684 u64 error_code = svm->vmcb->control.exit_info_1;
2685
2686 trace_kvm_page_fault(fault_address, error_code);
2687 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2688 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2689 svm->vmcb->control.insn_bytes : NULL,
2690 svm->vmcb->control.insn_len);
2691 }
2692
2693 static int db_interception(struct vcpu_svm *svm)
2694 {
2695 struct kvm_run *kvm_run = svm->vcpu.run;
2696 struct kvm_vcpu *vcpu = &svm->vcpu;
2697
2698 if (!(svm->vcpu.guest_debug &
2699 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2700 !svm->nmi_singlestep) {
2701 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2702 return 1;
2703 }
2704
2705 if (svm->nmi_singlestep) {
2706 disable_nmi_singlestep(svm);
2707 /* Make sure we check for pending NMIs upon entry */
2708 kvm_make_request(KVM_REQ_EVENT, vcpu);
2709 }
2710
2711 if (svm->vcpu.guest_debug &
2712 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2713 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2714 kvm_run->debug.arch.pc =
2715 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2716 kvm_run->debug.arch.exception = DB_VECTOR;
2717 return 0;
2718 }
2719
2720 return 1;
2721 }
2722
2723 static int bp_interception(struct vcpu_svm *svm)
2724 {
2725 struct kvm_run *kvm_run = svm->vcpu.run;
2726
2727 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2728 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2729 kvm_run->debug.arch.exception = BP_VECTOR;
2730 return 0;
2731 }
2732
2733 static int ud_interception(struct vcpu_svm *svm)
2734 {
2735 return handle_ud(&svm->vcpu);
2736 }
2737
2738 static int ac_interception(struct vcpu_svm *svm)
2739 {
2740 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2741 return 1;
2742 }
2743
2744 static int gp_interception(struct vcpu_svm *svm)
2745 {
2746 struct kvm_vcpu *vcpu = &svm->vcpu;
2747 u32 error_code = svm->vmcb->control.exit_info_1;
2748 int er;
2749
2750 WARN_ON_ONCE(!enable_vmware_backdoor);
2751
2752 er = kvm_emulate_instruction(vcpu,
2753 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2754 if (er == EMULATE_USER_EXIT)
2755 return 0;
2756 else if (er != EMULATE_DONE)
2757 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2758 return 1;
2759 }
2760
2761 static bool is_erratum_383(void)
2762 {
2763 int err, i;
2764 u64 value;
2765
2766 if (!erratum_383_found)
2767 return false;
2768
2769 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2770 if (err)
2771 return false;
2772
2773 /* Bit 62 may or may not be set for this mce */
2774 value &= ~(1ULL << 62);
2775
2776 if (value != 0xb600000000010015ULL)
2777 return false;
2778
2779 /* Clear MCi_STATUS registers */
2780 for (i = 0; i < 6; ++i)
2781 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2782
2783 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2784 if (!err) {
2785 u32 low, high;
2786
2787 value &= ~(1ULL << 2);
2788 low = lower_32_bits(value);
2789 high = upper_32_bits(value);
2790
2791 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2792 }
2793
2794 /* Flush tlb to evict multi-match entries */
2795 __flush_tlb_all();
2796
2797 return true;
2798 }
2799
2800 static void svm_handle_mce(struct vcpu_svm *svm)
2801 {
2802 if (is_erratum_383()) {
2803 /*
2804 * Erratum 383 triggered. Guest state is corrupt so kill the
2805 * guest.
2806 */
2807 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2808
2809 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2810
2811 return;
2812 }
2813
2814 /*
2815 * On an #MC intercept the MCE handler is not called automatically in
2816 * the host. So do it by hand here.
2817 */
2818 asm volatile (
2819 "int $0x12\n");
2820 /* not sure if we ever come back to this point */
2821
2822 return;
2823 }
2824
2825 static int mc_interception(struct vcpu_svm *svm)
2826 {
2827 return 1;
2828 }
2829
2830 static int shutdown_interception(struct vcpu_svm *svm)
2831 {
2832 struct kvm_run *kvm_run = svm->vcpu.run;
2833
2834 /*
2835 * VMCB is undefined after a SHUTDOWN intercept
2836 * so reinitialize it.
2837 */
2838 clear_page(svm->vmcb);
2839 init_vmcb(svm);
2840
2841 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2842 return 0;
2843 }
2844
2845 static int io_interception(struct vcpu_svm *svm)
2846 {
2847 struct kvm_vcpu *vcpu = &svm->vcpu;
2848 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2849 int size, in, string;
2850 unsigned port;
2851
2852 ++svm->vcpu.stat.io_exits;
2853 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2854 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2855 if (string)
2856 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2857
2858 port = io_info >> 16;
2859 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2860 svm->next_rip = svm->vmcb->control.exit_info_2;
2861
2862 return kvm_fast_pio(&svm->vcpu, size, port, in);
2863 }
2864
2865 static int nmi_interception(struct vcpu_svm *svm)
2866 {
2867 return 1;
2868 }
2869
2870 static int intr_interception(struct vcpu_svm *svm)
2871 {
2872 ++svm->vcpu.stat.irq_exits;
2873 return 1;
2874 }
2875
2876 static int nop_on_interception(struct vcpu_svm *svm)
2877 {
2878 return 1;
2879 }
2880
2881 static int halt_interception(struct vcpu_svm *svm)
2882 {
2883 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2884 return kvm_emulate_halt(&svm->vcpu);
2885 }
2886
2887 static int vmmcall_interception(struct vcpu_svm *svm)
2888 {
2889 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2890 return kvm_emulate_hypercall(&svm->vcpu);
2891 }
2892
2893 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2894 {
2895 struct vcpu_svm *svm = to_svm(vcpu);
2896
2897 return svm->nested.nested_cr3;
2898 }
2899
2900 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2901 {
2902 struct vcpu_svm *svm = to_svm(vcpu);
2903 u64 cr3 = svm->nested.nested_cr3;
2904 u64 pdpte;
2905 int ret;
2906
2907 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2908 offset_in_page(cr3) + index * 8, 8);
2909 if (ret)
2910 return 0;
2911 return pdpte;
2912 }
2913
2914 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2915 unsigned long root)
2916 {
2917 struct vcpu_svm *svm = to_svm(vcpu);
2918
2919 svm->vmcb->control.nested_cr3 = __sme_set(root);
2920 mark_dirty(svm->vmcb, VMCB_NPT);
2921 }
2922
2923 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2924 struct x86_exception *fault)
2925 {
2926 struct vcpu_svm *svm = to_svm(vcpu);
2927
2928 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2929 /*
2930 * TODO: track the cause of the nested page fault, and
2931 * correctly fill in the high bits of exit_info_1.
2932 */
2933 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2934 svm->vmcb->control.exit_code_hi = 0;
2935 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2936 svm->vmcb->control.exit_info_2 = fault->address;
2937 }
2938
2939 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2940 svm->vmcb->control.exit_info_1 |= fault->error_code;
2941
2942 /*
2943 * The present bit is always zero for page structure faults on real
2944 * hardware.
2945 */
2946 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2947 svm->vmcb->control.exit_info_1 &= ~1;
2948
2949 nested_svm_vmexit(svm);
2950 }
2951
2952 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2953 {
2954 WARN_ON(mmu_is_nested(vcpu));
2955
2956 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2957 kvm_init_shadow_mmu(vcpu);
2958 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2959 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2960 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2961 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2962 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2963 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2964 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2965 }
2966
2967 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2968 {
2969 vcpu->arch.mmu = &vcpu->arch.root_mmu;
2970 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2971 }
2972
2973 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2974 {
2975 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2976 !is_paging(&svm->vcpu)) {
2977 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2978 return 1;
2979 }
2980
2981 if (svm->vmcb->save.cpl) {
2982 kvm_inject_gp(&svm->vcpu, 0);
2983 return 1;
2984 }
2985
2986 return 0;
2987 }
2988
2989 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2990 bool has_error_code, u32 error_code)
2991 {
2992 int vmexit;
2993
2994 if (!is_guest_mode(&svm->vcpu))
2995 return 0;
2996
2997 vmexit = nested_svm_intercept(svm);
2998 if (vmexit != NESTED_EXIT_DONE)
2999 return 0;
3000
3001 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3002 svm->vmcb->control.exit_code_hi = 0;
3003 svm->vmcb->control.exit_info_1 = error_code;
3004
3005 /*
3006 * EXITINFO2 is undefined for all exception intercepts other
3007 * than #PF.
3008 */
3009 if (svm->vcpu.arch.exception.nested_apf)
3010 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3011 else if (svm->vcpu.arch.exception.has_payload)
3012 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3013 else
3014 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3015
3016 svm->nested.exit_required = true;
3017 return vmexit;
3018 }
3019
3020 /* This function returns true if it is save to enable the irq window */
3021 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3022 {
3023 if (!is_guest_mode(&svm->vcpu))
3024 return true;
3025
3026 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3027 return true;
3028
3029 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3030 return false;
3031
3032 /*
3033 * if vmexit was already requested (by intercepted exception
3034 * for instance) do not overwrite it with "external interrupt"
3035 * vmexit.
3036 */
3037 if (svm->nested.exit_required)
3038 return false;
3039
3040 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3041 svm->vmcb->control.exit_info_1 = 0;
3042 svm->vmcb->control.exit_info_2 = 0;
3043
3044 if (svm->nested.intercept & 1ULL) {
3045 /*
3046 * The #vmexit can't be emulated here directly because this
3047 * code path runs with irqs and preemption disabled. A
3048 * #vmexit emulation might sleep. Only signal request for
3049 * the #vmexit here.
3050 */
3051 svm->nested.exit_required = true;
3052 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3053 return false;
3054 }
3055
3056 return true;
3057 }
3058
3059 /* This function returns true if it is save to enable the nmi window */
3060 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3061 {
3062 if (!is_guest_mode(&svm->vcpu))
3063 return true;
3064
3065 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3066 return true;
3067
3068 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3069 svm->nested.exit_required = true;
3070
3071 return false;
3072 }
3073
3074 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3075 {
3076 unsigned port, size, iopm_len;
3077 u16 val, mask;
3078 u8 start_bit;
3079 u64 gpa;
3080
3081 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3082 return NESTED_EXIT_HOST;
3083
3084 port = svm->vmcb->control.exit_info_1 >> 16;
3085 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3086 SVM_IOIO_SIZE_SHIFT;
3087 gpa = svm->nested.vmcb_iopm + (port / 8);
3088 start_bit = port % 8;
3089 iopm_len = (start_bit + size > 8) ? 2 : 1;
3090 mask = (0xf >> (4 - size)) << start_bit;
3091 val = 0;
3092
3093 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3094 return NESTED_EXIT_DONE;
3095
3096 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3097 }
3098
3099 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3100 {
3101 u32 offset, msr, value;
3102 int write, mask;
3103
3104 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3105 return NESTED_EXIT_HOST;
3106
3107 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3108 offset = svm_msrpm_offset(msr);
3109 write = svm->vmcb->control.exit_info_1 & 1;
3110 mask = 1 << ((2 * (msr & 0xf)) + write);
3111
3112 if (offset == MSR_INVALID)
3113 return NESTED_EXIT_DONE;
3114
3115 /* Offset is in 32 bit units but need in 8 bit units */
3116 offset *= 4;
3117
3118 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3119 return NESTED_EXIT_DONE;
3120
3121 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3122 }
3123
3124 /* DB exceptions for our internal use must not cause vmexit */
3125 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3126 {
3127 unsigned long dr6;
3128
3129 /* if we're not singlestepping, it's not ours */
3130 if (!svm->nmi_singlestep)
3131 return NESTED_EXIT_DONE;
3132
3133 /* if it's not a singlestep exception, it's not ours */
3134 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3135 return NESTED_EXIT_DONE;
3136 if (!(dr6 & DR6_BS))
3137 return NESTED_EXIT_DONE;
3138
3139 /* if the guest is singlestepping, it should get the vmexit */
3140 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3141 disable_nmi_singlestep(svm);
3142 return NESTED_EXIT_DONE;
3143 }
3144
3145 /* it's ours, the nested hypervisor must not see this one */
3146 return NESTED_EXIT_HOST;
3147 }
3148
3149 static int nested_svm_exit_special(struct vcpu_svm *svm)
3150 {
3151 u32 exit_code = svm->vmcb->control.exit_code;
3152
3153 switch (exit_code) {
3154 case SVM_EXIT_INTR:
3155 case SVM_EXIT_NMI:
3156 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3157 return NESTED_EXIT_HOST;
3158 case SVM_EXIT_NPF:
3159 /* For now we are always handling NPFs when using them */
3160 if (npt_enabled)
3161 return NESTED_EXIT_HOST;
3162 break;
3163 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3164 /* When we're shadowing, trap PFs, but not async PF */
3165 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3166 return NESTED_EXIT_HOST;
3167 break;
3168 default:
3169 break;
3170 }
3171
3172 return NESTED_EXIT_CONTINUE;
3173 }
3174
3175 /*
3176 * If this function returns true, this #vmexit was already handled
3177 */
3178 static int nested_svm_intercept(struct vcpu_svm *svm)
3179 {
3180 u32 exit_code = svm->vmcb->control.exit_code;
3181 int vmexit = NESTED_EXIT_HOST;
3182
3183 switch (exit_code) {
3184 case SVM_EXIT_MSR:
3185 vmexit = nested_svm_exit_handled_msr(svm);
3186 break;
3187 case SVM_EXIT_IOIO:
3188 vmexit = nested_svm_intercept_ioio(svm);
3189 break;
3190 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3191 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3192 if (svm->nested.intercept_cr & bit)
3193 vmexit = NESTED_EXIT_DONE;
3194 break;
3195 }
3196 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3197 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3198 if (svm->nested.intercept_dr & bit)
3199 vmexit = NESTED_EXIT_DONE;
3200 break;
3201 }
3202 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3203 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3204 if (svm->nested.intercept_exceptions & excp_bits) {
3205 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3206 vmexit = nested_svm_intercept_db(svm);
3207 else
3208 vmexit = NESTED_EXIT_DONE;
3209 }
3210 /* async page fault always cause vmexit */
3211 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3212 svm->vcpu.arch.exception.nested_apf != 0)
3213 vmexit = NESTED_EXIT_DONE;
3214 break;
3215 }
3216 case SVM_EXIT_ERR: {
3217 vmexit = NESTED_EXIT_DONE;
3218 break;
3219 }
3220 default: {
3221 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3222 if (svm->nested.intercept & exit_bits)
3223 vmexit = NESTED_EXIT_DONE;
3224 }
3225 }
3226
3227 return vmexit;
3228 }
3229
3230 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3231 {
3232 int vmexit;
3233
3234 vmexit = nested_svm_intercept(svm);
3235
3236 if (vmexit == NESTED_EXIT_DONE)
3237 nested_svm_vmexit(svm);
3238
3239 return vmexit;
3240 }
3241
3242 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3243 {
3244 struct vmcb_control_area *dst = &dst_vmcb->control;
3245 struct vmcb_control_area *from = &from_vmcb->control;
3246
3247 dst->intercept_cr = from->intercept_cr;
3248 dst->intercept_dr = from->intercept_dr;
3249 dst->intercept_exceptions = from->intercept_exceptions;
3250 dst->intercept = from->intercept;
3251 dst->iopm_base_pa = from->iopm_base_pa;
3252 dst->msrpm_base_pa = from->msrpm_base_pa;
3253 dst->tsc_offset = from->tsc_offset;
3254 dst->asid = from->asid;
3255 dst->tlb_ctl = from->tlb_ctl;
3256 dst->int_ctl = from->int_ctl;
3257 dst->int_vector = from->int_vector;
3258 dst->int_state = from->int_state;
3259 dst->exit_code = from->exit_code;
3260 dst->exit_code_hi = from->exit_code_hi;
3261 dst->exit_info_1 = from->exit_info_1;
3262 dst->exit_info_2 = from->exit_info_2;
3263 dst->exit_int_info = from->exit_int_info;
3264 dst->exit_int_info_err = from->exit_int_info_err;
3265 dst->nested_ctl = from->nested_ctl;
3266 dst->event_inj = from->event_inj;
3267 dst->event_inj_err = from->event_inj_err;
3268 dst->nested_cr3 = from->nested_cr3;
3269 dst->virt_ext = from->virt_ext;
3270 dst->pause_filter_count = from->pause_filter_count;
3271 dst->pause_filter_thresh = from->pause_filter_thresh;
3272 }
3273
3274 static int nested_svm_vmexit(struct vcpu_svm *svm)
3275 {
3276 int rc;
3277 struct vmcb *nested_vmcb;
3278 struct vmcb *hsave = svm->nested.hsave;
3279 struct vmcb *vmcb = svm->vmcb;
3280 struct kvm_host_map map;
3281
3282 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3283 vmcb->control.exit_info_1,
3284 vmcb->control.exit_info_2,
3285 vmcb->control.exit_int_info,
3286 vmcb->control.exit_int_info_err,
3287 KVM_ISA_SVM);
3288
3289 rc = kvm_vcpu_map(&svm->vcpu, gfn_to_gpa(svm->nested.vmcb), &map);
3290 if (rc) {
3291 if (rc == -EINVAL)
3292 kvm_inject_gp(&svm->vcpu, 0);
3293 return 1;
3294 }
3295
3296 nested_vmcb = map.hva;
3297
3298 /* Exit Guest-Mode */
3299 leave_guest_mode(&svm->vcpu);
3300 svm->nested.vmcb = 0;
3301
3302 /* Give the current vmcb to the guest */
3303 disable_gif(svm);
3304
3305 nested_vmcb->save.es = vmcb->save.es;
3306 nested_vmcb->save.cs = vmcb->save.cs;
3307 nested_vmcb->save.ss = vmcb->save.ss;
3308 nested_vmcb->save.ds = vmcb->save.ds;
3309 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3310 nested_vmcb->save.idtr = vmcb->save.idtr;
3311 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3312 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3313 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3314 nested_vmcb->save.cr2 = vmcb->save.cr2;
3315 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3316 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3317 nested_vmcb->save.rip = vmcb->save.rip;
3318 nested_vmcb->save.rsp = vmcb->save.rsp;
3319 nested_vmcb->save.rax = vmcb->save.rax;
3320 nested_vmcb->save.dr7 = vmcb->save.dr7;
3321 nested_vmcb->save.dr6 = vmcb->save.dr6;
3322 nested_vmcb->save.cpl = vmcb->save.cpl;
3323
3324 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3325 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3326 nested_vmcb->control.int_state = vmcb->control.int_state;
3327 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3328 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3329 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3330 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3331 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3332 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3333
3334 if (svm->nrips_enabled)
3335 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3336
3337 /*
3338 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3339 * to make sure that we do not lose injected events. So check event_inj
3340 * here and copy it to exit_int_info if it is valid.
3341 * Exit_int_info and event_inj can't be both valid because the case
3342 * below only happens on a VMRUN instruction intercept which has
3343 * no valid exit_int_info set.
3344 */
3345 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3346 struct vmcb_control_area *nc = &nested_vmcb->control;
3347
3348 nc->exit_int_info = vmcb->control.event_inj;
3349 nc->exit_int_info_err = vmcb->control.event_inj_err;
3350 }
3351
3352 nested_vmcb->control.tlb_ctl = 0;
3353 nested_vmcb->control.event_inj = 0;
3354 nested_vmcb->control.event_inj_err = 0;
3355
3356 nested_vmcb->control.pause_filter_count =
3357 svm->vmcb->control.pause_filter_count;
3358 nested_vmcb->control.pause_filter_thresh =
3359 svm->vmcb->control.pause_filter_thresh;
3360
3361 /* We always set V_INTR_MASKING and remember the old value in hflags */
3362 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3363 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3364
3365 /* Restore the original control entries */
3366 copy_vmcb_control_area(vmcb, hsave);
3367
3368 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3369 kvm_clear_exception_queue(&svm->vcpu);
3370 kvm_clear_interrupt_queue(&svm->vcpu);
3371
3372 svm->nested.nested_cr3 = 0;
3373
3374 /* Restore selected save entries */
3375 svm->vmcb->save.es = hsave->save.es;
3376 svm->vmcb->save.cs = hsave->save.cs;
3377 svm->vmcb->save.ss = hsave->save.ss;
3378 svm->vmcb->save.ds = hsave->save.ds;
3379 svm->vmcb->save.gdtr = hsave->save.gdtr;
3380 svm->vmcb->save.idtr = hsave->save.idtr;
3381 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3382 svm_set_efer(&svm->vcpu, hsave->save.efer);
3383 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3384 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3385 if (npt_enabled) {
3386 svm->vmcb->save.cr3 = hsave->save.cr3;
3387 svm->vcpu.arch.cr3 = hsave->save.cr3;
3388 } else {
3389 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3390 }
3391 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3392 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3393 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3394 svm->vmcb->save.dr7 = 0;
3395 svm->vmcb->save.cpl = 0;
3396 svm->vmcb->control.exit_int_info = 0;
3397
3398 mark_all_dirty(svm->vmcb);
3399
3400 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3401
3402 nested_svm_uninit_mmu_context(&svm->vcpu);
3403 kvm_mmu_reset_context(&svm->vcpu);
3404 kvm_mmu_load(&svm->vcpu);
3405
3406 /*
3407 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3408 * doesn't end up in L1.
3409 */
3410 svm->vcpu.arch.nmi_injected = false;
3411 kvm_clear_exception_queue(&svm->vcpu);
3412 kvm_clear_interrupt_queue(&svm->vcpu);
3413
3414 return 0;
3415 }
3416
3417 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3418 {
3419 /*
3420 * This function merges the msr permission bitmaps of kvm and the
3421 * nested vmcb. It is optimized in that it only merges the parts where
3422 * the kvm msr permission bitmap may contain zero bits
3423 */
3424 int i;
3425
3426 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3427 return true;
3428
3429 for (i = 0; i < MSRPM_OFFSETS; i++) {
3430 u32 value, p;
3431 u64 offset;
3432
3433 if (msrpm_offsets[i] == 0xffffffff)
3434 break;
3435
3436 p = msrpm_offsets[i];
3437 offset = svm->nested.vmcb_msrpm + (p * 4);
3438
3439 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3440 return false;
3441
3442 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3443 }
3444
3445 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3446
3447 return true;
3448 }
3449
3450 static bool nested_vmcb_checks(struct vmcb *vmcb)
3451 {
3452 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3453 return false;
3454
3455 if (vmcb->control.asid == 0)
3456 return false;
3457
3458 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3459 !npt_enabled)
3460 return false;
3461
3462 return true;
3463 }
3464
3465 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3466 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3467 {
3468 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3469 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3470 else
3471 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3472
3473 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3474 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3475 nested_svm_init_mmu_context(&svm->vcpu);
3476 }
3477
3478 /* Load the nested guest state */
3479 svm->vmcb->save.es = nested_vmcb->save.es;
3480 svm->vmcb->save.cs = nested_vmcb->save.cs;
3481 svm->vmcb->save.ss = nested_vmcb->save.ss;
3482 svm->vmcb->save.ds = nested_vmcb->save.ds;
3483 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3484 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3485 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3486 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3487 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3488 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3489 if (npt_enabled) {
3490 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3491 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3492 } else
3493 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3494
3495 /* Guest paging mode is active - reset mmu */
3496 kvm_mmu_reset_context(&svm->vcpu);
3497
3498 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3499 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3500 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3501 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3502
3503 /* In case we don't even reach vcpu_run, the fields are not updated */
3504 svm->vmcb->save.rax = nested_vmcb->save.rax;
3505 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3506 svm->vmcb->save.rip = nested_vmcb->save.rip;
3507 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3508 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3509 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3510
3511 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3512 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3513
3514 /* cache intercepts */
3515 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3516 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3517 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3518 svm->nested.intercept = nested_vmcb->control.intercept;
3519
3520 svm_flush_tlb(&svm->vcpu, true);
3521 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3522 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3523 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3524 else
3525 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3526
3527 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3528 /* We only want the cr8 intercept bits of the guest */
3529 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3530 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3531 }
3532
3533 /* We don't want to see VMMCALLs from a nested guest */
3534 clr_intercept(svm, INTERCEPT_VMMCALL);
3535
3536 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3537 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3538
3539 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3540 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3541 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3542 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3543 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3544
3545 svm->vmcb->control.pause_filter_count =
3546 nested_vmcb->control.pause_filter_count;
3547 svm->vmcb->control.pause_filter_thresh =
3548 nested_vmcb->control.pause_filter_thresh;
3549
3550 kvm_vcpu_unmap(&svm->vcpu, map, true);
3551
3552 /* Enter Guest-Mode */
3553 enter_guest_mode(&svm->vcpu);
3554
3555 /*
3556 * Merge guest and host intercepts - must be called with vcpu in
3557 * guest-mode to take affect here
3558 */
3559 recalc_intercepts(svm);
3560
3561 svm->nested.vmcb = vmcb_gpa;
3562
3563 enable_gif(svm);
3564
3565 mark_all_dirty(svm->vmcb);
3566 }
3567
3568 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3569 {
3570 int rc;
3571 struct vmcb *nested_vmcb;
3572 struct vmcb *hsave = svm->nested.hsave;
3573 struct vmcb *vmcb = svm->vmcb;
3574 struct kvm_host_map map;
3575 u64 vmcb_gpa;
3576
3577 vmcb_gpa = svm->vmcb->save.rax;
3578
3579 rc = kvm_vcpu_map(&svm->vcpu, gfn_to_gpa(vmcb_gpa), &map);
3580 if (rc) {
3581 if (rc == -EINVAL)
3582 kvm_inject_gp(&svm->vcpu, 0);
3583 return false;
3584 }
3585
3586 nested_vmcb = map.hva;
3587
3588 if (!nested_vmcb_checks(nested_vmcb)) {
3589 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3590 nested_vmcb->control.exit_code_hi = 0;
3591 nested_vmcb->control.exit_info_1 = 0;
3592 nested_vmcb->control.exit_info_2 = 0;
3593
3594 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3595
3596 return false;
3597 }
3598
3599 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3600 nested_vmcb->save.rip,
3601 nested_vmcb->control.int_ctl,
3602 nested_vmcb->control.event_inj,
3603 nested_vmcb->control.nested_ctl);
3604
3605 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3606 nested_vmcb->control.intercept_cr >> 16,
3607 nested_vmcb->control.intercept_exceptions,
3608 nested_vmcb->control.intercept);
3609
3610 /* Clear internal status */
3611 kvm_clear_exception_queue(&svm->vcpu);
3612 kvm_clear_interrupt_queue(&svm->vcpu);
3613
3614 /*
3615 * Save the old vmcb, so we don't need to pick what we save, but can
3616 * restore everything when a VMEXIT occurs
3617 */
3618 hsave->save.es = vmcb->save.es;
3619 hsave->save.cs = vmcb->save.cs;
3620 hsave->save.ss = vmcb->save.ss;
3621 hsave->save.ds = vmcb->save.ds;
3622 hsave->save.gdtr = vmcb->save.gdtr;
3623 hsave->save.idtr = vmcb->save.idtr;
3624 hsave->save.efer = svm->vcpu.arch.efer;
3625 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3626 hsave->save.cr4 = svm->vcpu.arch.cr4;
3627 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3628 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3629 hsave->save.rsp = vmcb->save.rsp;
3630 hsave->save.rax = vmcb->save.rax;
3631 if (npt_enabled)
3632 hsave->save.cr3 = vmcb->save.cr3;
3633 else
3634 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3635
3636 copy_vmcb_control_area(hsave, vmcb);
3637
3638 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3639
3640 return true;
3641 }
3642
3643 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3644 {
3645 to_vmcb->save.fs = from_vmcb->save.fs;
3646 to_vmcb->save.gs = from_vmcb->save.gs;
3647 to_vmcb->save.tr = from_vmcb->save.tr;
3648 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3649 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3650 to_vmcb->save.star = from_vmcb->save.star;
3651 to_vmcb->save.lstar = from_vmcb->save.lstar;
3652 to_vmcb->save.cstar = from_vmcb->save.cstar;
3653 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3654 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3655 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3656 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3657 }
3658
3659 static int vmload_interception(struct vcpu_svm *svm)
3660 {
3661 struct vmcb *nested_vmcb;
3662 struct kvm_host_map map;
3663 int ret;
3664
3665 if (nested_svm_check_permissions(svm))
3666 return 1;
3667
3668 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3669 if (ret) {
3670 if (ret == -EINVAL)
3671 kvm_inject_gp(&svm->vcpu, 0);
3672 return 1;
3673 }
3674
3675 nested_vmcb = map.hva;
3676
3677 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3678 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3679
3680 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3681 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3682
3683 return ret;
3684 }
3685
3686 static int vmsave_interception(struct vcpu_svm *svm)
3687 {
3688 struct vmcb *nested_vmcb;
3689 struct kvm_host_map map;
3690 int ret;
3691
3692 if (nested_svm_check_permissions(svm))
3693 return 1;
3694
3695 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3696 if (ret) {
3697 if (ret == -EINVAL)
3698 kvm_inject_gp(&svm->vcpu, 0);
3699 return 1;
3700 }
3701
3702 nested_vmcb = map.hva;
3703
3704 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3705 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3706
3707 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3708 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3709
3710 return ret;
3711 }
3712
3713 static int vmrun_interception(struct vcpu_svm *svm)
3714 {
3715 if (nested_svm_check_permissions(svm))
3716 return 1;
3717
3718 /* Save rip after vmrun instruction */
3719 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3720
3721 if (!nested_svm_vmrun(svm))
3722 return 1;
3723
3724 if (!nested_svm_vmrun_msrpm(svm))
3725 goto failed;
3726
3727 return 1;
3728
3729 failed:
3730
3731 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3732 svm->vmcb->control.exit_code_hi = 0;
3733 svm->vmcb->control.exit_info_1 = 0;
3734 svm->vmcb->control.exit_info_2 = 0;
3735
3736 nested_svm_vmexit(svm);
3737
3738 return 1;
3739 }
3740
3741 static int stgi_interception(struct vcpu_svm *svm)
3742 {
3743 int ret;
3744
3745 if (nested_svm_check_permissions(svm))
3746 return 1;
3747
3748 /*
3749 * If VGIF is enabled, the STGI intercept is only added to
3750 * detect the opening of the SMI/NMI window; remove it now.
3751 */
3752 if (vgif_enabled(svm))
3753 clr_intercept(svm, INTERCEPT_STGI);
3754
3755 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3756 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3757 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3758
3759 enable_gif(svm);
3760
3761 return ret;
3762 }
3763
3764 static int clgi_interception(struct vcpu_svm *svm)
3765 {
3766 int ret;
3767
3768 if (nested_svm_check_permissions(svm))
3769 return 1;
3770
3771 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3772 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3773
3774 disable_gif(svm);
3775
3776 /* After a CLGI no interrupts should come */
3777 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3778 svm_clear_vintr(svm);
3779 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3780 mark_dirty(svm->vmcb, VMCB_INTR);
3781 }
3782
3783 return ret;
3784 }
3785
3786 static int invlpga_interception(struct vcpu_svm *svm)
3787 {
3788 struct kvm_vcpu *vcpu = &svm->vcpu;
3789
3790 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3791 kvm_rax_read(&svm->vcpu));
3792
3793 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3794 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3795
3796 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3797 return kvm_skip_emulated_instruction(&svm->vcpu);
3798 }
3799
3800 static int skinit_interception(struct vcpu_svm *svm)
3801 {
3802 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3803
3804 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3805 return 1;
3806 }
3807
3808 static int wbinvd_interception(struct vcpu_svm *svm)
3809 {
3810 return kvm_emulate_wbinvd(&svm->vcpu);
3811 }
3812
3813 static int xsetbv_interception(struct vcpu_svm *svm)
3814 {
3815 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3816 u32 index = kvm_rcx_read(&svm->vcpu);
3817
3818 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3819 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3820 return kvm_skip_emulated_instruction(&svm->vcpu);
3821 }
3822
3823 return 1;
3824 }
3825
3826 static int task_switch_interception(struct vcpu_svm *svm)
3827 {
3828 u16 tss_selector;
3829 int reason;
3830 int int_type = svm->vmcb->control.exit_int_info &
3831 SVM_EXITINTINFO_TYPE_MASK;
3832 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3833 uint32_t type =
3834 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3835 uint32_t idt_v =
3836 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3837 bool has_error_code = false;
3838 u32 error_code = 0;
3839
3840 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3841
3842 if (svm->vmcb->control.exit_info_2 &
3843 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3844 reason = TASK_SWITCH_IRET;
3845 else if (svm->vmcb->control.exit_info_2 &
3846 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3847 reason = TASK_SWITCH_JMP;
3848 else if (idt_v)
3849 reason = TASK_SWITCH_GATE;
3850 else
3851 reason = TASK_SWITCH_CALL;
3852
3853 if (reason == TASK_SWITCH_GATE) {
3854 switch (type) {
3855 case SVM_EXITINTINFO_TYPE_NMI:
3856 svm->vcpu.arch.nmi_injected = false;
3857 break;
3858 case SVM_EXITINTINFO_TYPE_EXEPT:
3859 if (svm->vmcb->control.exit_info_2 &
3860 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3861 has_error_code = true;
3862 error_code =
3863 (u32)svm->vmcb->control.exit_info_2;
3864 }
3865 kvm_clear_exception_queue(&svm->vcpu);
3866 break;
3867 case SVM_EXITINTINFO_TYPE_INTR:
3868 kvm_clear_interrupt_queue(&svm->vcpu);
3869 break;
3870 default:
3871 break;
3872 }
3873 }
3874
3875 if (reason != TASK_SWITCH_GATE ||
3876 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3877 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3878 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3879 skip_emulated_instruction(&svm->vcpu);
3880
3881 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3882 int_vec = -1;
3883
3884 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3885 has_error_code, error_code) == EMULATE_FAIL) {
3886 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3887 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3888 svm->vcpu.run->internal.ndata = 0;
3889 return 0;
3890 }
3891 return 1;
3892 }
3893
3894 static int cpuid_interception(struct vcpu_svm *svm)
3895 {
3896 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3897 return kvm_emulate_cpuid(&svm->vcpu);
3898 }
3899
3900 static int iret_interception(struct vcpu_svm *svm)
3901 {
3902 ++svm->vcpu.stat.nmi_window_exits;
3903 clr_intercept(svm, INTERCEPT_IRET);
3904 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3905 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3906 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3907 return 1;
3908 }
3909
3910 static int invlpg_interception(struct vcpu_svm *svm)
3911 {
3912 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3913 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3914
3915 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3916 return kvm_skip_emulated_instruction(&svm->vcpu);
3917 }
3918
3919 static int emulate_on_interception(struct vcpu_svm *svm)
3920 {
3921 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3922 }
3923
3924 static int rsm_interception(struct vcpu_svm *svm)
3925 {
3926 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3927 rsm_ins_bytes, 2) == EMULATE_DONE;
3928 }
3929
3930 static int rdpmc_interception(struct vcpu_svm *svm)
3931 {
3932 int err;
3933
3934 if (!static_cpu_has(X86_FEATURE_NRIPS))
3935 return emulate_on_interception(svm);
3936
3937 err = kvm_rdpmc(&svm->vcpu);
3938 return kvm_complete_insn_gp(&svm->vcpu, err);
3939 }
3940
3941 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3942 unsigned long val)
3943 {
3944 unsigned long cr0 = svm->vcpu.arch.cr0;
3945 bool ret = false;
3946 u64 intercept;
3947
3948 intercept = svm->nested.intercept;
3949
3950 if (!is_guest_mode(&svm->vcpu) ||
3951 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3952 return false;
3953
3954 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3955 val &= ~SVM_CR0_SELECTIVE_MASK;
3956
3957 if (cr0 ^ val) {
3958 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3959 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3960 }
3961
3962 return ret;
3963 }
3964
3965 #define CR_VALID (1ULL << 63)
3966
3967 static int cr_interception(struct vcpu_svm *svm)
3968 {
3969 int reg, cr;
3970 unsigned long val;
3971 int err;
3972
3973 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3974 return emulate_on_interception(svm);
3975
3976 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3977 return emulate_on_interception(svm);
3978
3979 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3980 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3981 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3982 else
3983 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3984
3985 err = 0;
3986 if (cr >= 16) { /* mov to cr */
3987 cr -= 16;
3988 val = kvm_register_read(&svm->vcpu, reg);
3989 switch (cr) {
3990 case 0:
3991 if (!check_selective_cr0_intercepted(svm, val))
3992 err = kvm_set_cr0(&svm->vcpu, val);
3993 else
3994 return 1;
3995
3996 break;
3997 case 3:
3998 err = kvm_set_cr3(&svm->vcpu, val);
3999 break;
4000 case 4:
4001 err = kvm_set_cr4(&svm->vcpu, val);
4002 break;
4003 case 8:
4004 err = kvm_set_cr8(&svm->vcpu, val);
4005 break;
4006 default:
4007 WARN(1, "unhandled write to CR%d", cr);
4008 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4009 return 1;
4010 }
4011 } else { /* mov from cr */
4012 switch (cr) {
4013 case 0:
4014 val = kvm_read_cr0(&svm->vcpu);
4015 break;
4016 case 2:
4017 val = svm->vcpu.arch.cr2;
4018 break;
4019 case 3:
4020 val = kvm_read_cr3(&svm->vcpu);
4021 break;
4022 case 4:
4023 val = kvm_read_cr4(&svm->vcpu);
4024 break;
4025 case 8:
4026 val = kvm_get_cr8(&svm->vcpu);
4027 break;
4028 default:
4029 WARN(1, "unhandled read from CR%d", cr);
4030 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4031 return 1;
4032 }
4033 kvm_register_write(&svm->vcpu, reg, val);
4034 }
4035 return kvm_complete_insn_gp(&svm->vcpu, err);
4036 }
4037
4038 static int dr_interception(struct vcpu_svm *svm)
4039 {
4040 int reg, dr;
4041 unsigned long val;
4042
4043 if (svm->vcpu.guest_debug == 0) {
4044 /*
4045 * No more DR vmexits; force a reload of the debug registers
4046 * and reenter on this instruction. The next vmexit will
4047 * retrieve the full state of the debug registers.
4048 */
4049 clr_dr_intercepts(svm);
4050 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4051 return 1;
4052 }
4053
4054 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4055 return emulate_on_interception(svm);
4056
4057 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4058 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4059
4060 if (dr >= 16) { /* mov to DRn */
4061 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4062 return 1;
4063 val = kvm_register_read(&svm->vcpu, reg);
4064 kvm_set_dr(&svm->vcpu, dr - 16, val);
4065 } else {
4066 if (!kvm_require_dr(&svm->vcpu, dr))
4067 return 1;
4068 kvm_get_dr(&svm->vcpu, dr, &val);
4069 kvm_register_write(&svm->vcpu, reg, val);
4070 }
4071
4072 return kvm_skip_emulated_instruction(&svm->vcpu);
4073 }
4074
4075 static int cr8_write_interception(struct vcpu_svm *svm)
4076 {
4077 struct kvm_run *kvm_run = svm->vcpu.run;
4078 int r;
4079
4080 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4081 /* instruction emulation calls kvm_set_cr8() */
4082 r = cr_interception(svm);
4083 if (lapic_in_kernel(&svm->vcpu))
4084 return r;
4085 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4086 return r;
4087 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4088 return 0;
4089 }
4090
4091 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4092 {
4093 msr->data = 0;
4094
4095 switch (msr->index) {
4096 case MSR_F10H_DECFG:
4097 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4098 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4099 break;
4100 default:
4101 return 1;
4102 }
4103
4104 return 0;
4105 }
4106
4107 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4108 {
4109 struct vcpu_svm *svm = to_svm(vcpu);
4110
4111 switch (msr_info->index) {
4112 case MSR_STAR:
4113 msr_info->data = svm->vmcb->save.star;
4114 break;
4115 #ifdef CONFIG_X86_64
4116 case MSR_LSTAR:
4117 msr_info->data = svm->vmcb->save.lstar;
4118 break;
4119 case MSR_CSTAR:
4120 msr_info->data = svm->vmcb->save.cstar;
4121 break;
4122 case MSR_KERNEL_GS_BASE:
4123 msr_info->data = svm->vmcb->save.kernel_gs_base;
4124 break;
4125 case MSR_SYSCALL_MASK:
4126 msr_info->data = svm->vmcb->save.sfmask;
4127 break;
4128 #endif
4129 case MSR_IA32_SYSENTER_CS:
4130 msr_info->data = svm->vmcb->save.sysenter_cs;
4131 break;
4132 case MSR_IA32_SYSENTER_EIP:
4133 msr_info->data = svm->sysenter_eip;
4134 break;
4135 case MSR_IA32_SYSENTER_ESP:
4136 msr_info->data = svm->sysenter_esp;
4137 break;
4138 case MSR_TSC_AUX:
4139 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4140 return 1;
4141 msr_info->data = svm->tsc_aux;
4142 break;
4143 /*
4144 * Nobody will change the following 5 values in the VMCB so we can
4145 * safely return them on rdmsr. They will always be 0 until LBRV is
4146 * implemented.
4147 */
4148 case MSR_IA32_DEBUGCTLMSR:
4149 msr_info->data = svm->vmcb->save.dbgctl;
4150 break;
4151 case MSR_IA32_LASTBRANCHFROMIP:
4152 msr_info->data = svm->vmcb->save.br_from;
4153 break;
4154 case MSR_IA32_LASTBRANCHTOIP:
4155 msr_info->data = svm->vmcb->save.br_to;
4156 break;
4157 case MSR_IA32_LASTINTFROMIP:
4158 msr_info->data = svm->vmcb->save.last_excp_from;
4159 break;
4160 case MSR_IA32_LASTINTTOIP:
4161 msr_info->data = svm->vmcb->save.last_excp_to;
4162 break;
4163 case MSR_VM_HSAVE_PA:
4164 msr_info->data = svm->nested.hsave_msr;
4165 break;
4166 case MSR_VM_CR:
4167 msr_info->data = svm->nested.vm_cr_msr;
4168 break;
4169 case MSR_IA32_SPEC_CTRL:
4170 if (!msr_info->host_initiated &&
4171 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4172 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4173 return 1;
4174
4175 msr_info->data = svm->spec_ctrl;
4176 break;
4177 case MSR_AMD64_VIRT_SPEC_CTRL:
4178 if (!msr_info->host_initiated &&
4179 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4180 return 1;
4181
4182 msr_info->data = svm->virt_spec_ctrl;
4183 break;
4184 case MSR_F15H_IC_CFG: {
4185
4186 int family, model;
4187
4188 family = guest_cpuid_family(vcpu);
4189 model = guest_cpuid_model(vcpu);
4190
4191 if (family < 0 || model < 0)
4192 return kvm_get_msr_common(vcpu, msr_info);
4193
4194 msr_info->data = 0;
4195
4196 if (family == 0x15 &&
4197 (model >= 0x2 && model < 0x20))
4198 msr_info->data = 0x1E;
4199 }
4200 break;
4201 case MSR_F10H_DECFG:
4202 msr_info->data = svm->msr_decfg;
4203 break;
4204 default:
4205 return kvm_get_msr_common(vcpu, msr_info);
4206 }
4207 return 0;
4208 }
4209
4210 static int rdmsr_interception(struct vcpu_svm *svm)
4211 {
4212 u32 ecx = kvm_rcx_read(&svm->vcpu);
4213 struct msr_data msr_info;
4214
4215 msr_info.index = ecx;
4216 msr_info.host_initiated = false;
4217 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4218 trace_kvm_msr_read_ex(ecx);
4219 kvm_inject_gp(&svm->vcpu, 0);
4220 return 1;
4221 } else {
4222 trace_kvm_msr_read(ecx, msr_info.data);
4223
4224 kvm_rax_write(&svm->vcpu, msr_info.data & 0xffffffff);
4225 kvm_rdx_write(&svm->vcpu, msr_info.data >> 32);
4226 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4227 return kvm_skip_emulated_instruction(&svm->vcpu);
4228 }
4229 }
4230
4231 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4232 {
4233 struct vcpu_svm *svm = to_svm(vcpu);
4234 int svm_dis, chg_mask;
4235
4236 if (data & ~SVM_VM_CR_VALID_MASK)
4237 return 1;
4238
4239 chg_mask = SVM_VM_CR_VALID_MASK;
4240
4241 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4242 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4243
4244 svm->nested.vm_cr_msr &= ~chg_mask;
4245 svm->nested.vm_cr_msr |= (data & chg_mask);
4246
4247 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4248
4249 /* check for svm_disable while efer.svme is set */
4250 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4251 return 1;
4252
4253 return 0;
4254 }
4255
4256 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4257 {
4258 struct vcpu_svm *svm = to_svm(vcpu);
4259
4260 u32 ecx = msr->index;
4261 u64 data = msr->data;
4262 switch (ecx) {
4263 case MSR_IA32_CR_PAT:
4264 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4265 return 1;
4266 vcpu->arch.pat = data;
4267 svm->vmcb->save.g_pat = data;
4268 mark_dirty(svm->vmcb, VMCB_NPT);
4269 break;
4270 case MSR_IA32_SPEC_CTRL:
4271 if (!msr->host_initiated &&
4272 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4273 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4274 return 1;
4275
4276 /* The STIBP bit doesn't fault even if it's not advertised */
4277 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4278 return 1;
4279
4280 svm->spec_ctrl = data;
4281
4282 if (!data)
4283 break;
4284
4285 /*
4286 * For non-nested:
4287 * When it's written (to non-zero) for the first time, pass
4288 * it through.
4289 *
4290 * For nested:
4291 * The handling of the MSR bitmap for L2 guests is done in
4292 * nested_svm_vmrun_msrpm.
4293 * We update the L1 MSR bit as well since it will end up
4294 * touching the MSR anyway now.
4295 */
4296 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4297 break;
4298 case MSR_IA32_PRED_CMD:
4299 if (!msr->host_initiated &&
4300 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4301 return 1;
4302
4303 if (data & ~PRED_CMD_IBPB)
4304 return 1;
4305
4306 if (!data)
4307 break;
4308
4309 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4310 if (is_guest_mode(vcpu))
4311 break;
4312 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4313 break;
4314 case MSR_AMD64_VIRT_SPEC_CTRL:
4315 if (!msr->host_initiated &&
4316 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4317 return 1;
4318
4319 if (data & ~SPEC_CTRL_SSBD)
4320 return 1;
4321
4322 svm->virt_spec_ctrl = data;
4323 break;
4324 case MSR_STAR:
4325 svm->vmcb->save.star = data;
4326 break;
4327 #ifdef CONFIG_X86_64
4328 case MSR_LSTAR:
4329 svm->vmcb->save.lstar = data;
4330 break;
4331 case MSR_CSTAR:
4332 svm->vmcb->save.cstar = data;
4333 break;
4334 case MSR_KERNEL_GS_BASE:
4335 svm->vmcb->save.kernel_gs_base = data;
4336 break;
4337 case MSR_SYSCALL_MASK:
4338 svm->vmcb->save.sfmask = data;
4339 break;
4340 #endif
4341 case MSR_IA32_SYSENTER_CS:
4342 svm->vmcb->save.sysenter_cs = data;
4343 break;
4344 case MSR_IA32_SYSENTER_EIP:
4345 svm->sysenter_eip = data;
4346 svm->vmcb->save.sysenter_eip = data;
4347 break;
4348 case MSR_IA32_SYSENTER_ESP:
4349 svm->sysenter_esp = data;
4350 svm->vmcb->save.sysenter_esp = data;
4351 break;
4352 case MSR_TSC_AUX:
4353 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4354 return 1;
4355
4356 /*
4357 * This is rare, so we update the MSR here instead of using
4358 * direct_access_msrs. Doing that would require a rdmsr in
4359 * svm_vcpu_put.
4360 */
4361 svm->tsc_aux = data;
4362 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4363 break;
4364 case MSR_IA32_DEBUGCTLMSR:
4365 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4366 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4367 __func__, data);
4368 break;
4369 }
4370 if (data & DEBUGCTL_RESERVED_BITS)
4371 return 1;
4372
4373 svm->vmcb->save.dbgctl = data;
4374 mark_dirty(svm->vmcb, VMCB_LBR);
4375 if (data & (1ULL<<0))
4376 svm_enable_lbrv(svm);
4377 else
4378 svm_disable_lbrv(svm);
4379 break;
4380 case MSR_VM_HSAVE_PA:
4381 svm->nested.hsave_msr = data;
4382 break;
4383 case MSR_VM_CR:
4384 return svm_set_vm_cr(vcpu, data);
4385 case MSR_VM_IGNNE:
4386 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4387 break;
4388 case MSR_F10H_DECFG: {
4389 struct kvm_msr_entry msr_entry;
4390
4391 msr_entry.index = msr->index;
4392 if (svm_get_msr_feature(&msr_entry))
4393 return 1;
4394
4395 /* Check the supported bits */
4396 if (data & ~msr_entry.data)
4397 return 1;
4398
4399 /* Don't allow the guest to change a bit, #GP */
4400 if (!msr->host_initiated && (data ^ msr_entry.data))
4401 return 1;
4402
4403 svm->msr_decfg = data;
4404 break;
4405 }
4406 case MSR_IA32_APICBASE:
4407 if (kvm_vcpu_apicv_active(vcpu))
4408 avic_update_vapic_bar(to_svm(vcpu), data);
4409 /* Fall through */
4410 default:
4411 return kvm_set_msr_common(vcpu, msr);
4412 }
4413 return 0;
4414 }
4415
4416 static int wrmsr_interception(struct vcpu_svm *svm)
4417 {
4418 struct msr_data msr;
4419 u32 ecx = kvm_rcx_read(&svm->vcpu);
4420 u64 data = kvm_read_edx_eax(&svm->vcpu);
4421
4422 msr.data = data;
4423 msr.index = ecx;
4424 msr.host_initiated = false;
4425
4426 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4427 if (kvm_set_msr(&svm->vcpu, &msr)) {
4428 trace_kvm_msr_write_ex(ecx, data);
4429 kvm_inject_gp(&svm->vcpu, 0);
4430 return 1;
4431 } else {
4432 trace_kvm_msr_write(ecx, data);
4433 return kvm_skip_emulated_instruction(&svm->vcpu);
4434 }
4435 }
4436
4437 static int msr_interception(struct vcpu_svm *svm)
4438 {
4439 if (svm->vmcb->control.exit_info_1)
4440 return wrmsr_interception(svm);
4441 else
4442 return rdmsr_interception(svm);
4443 }
4444
4445 static int interrupt_window_interception(struct vcpu_svm *svm)
4446 {
4447 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4448 svm_clear_vintr(svm);
4449 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4450 mark_dirty(svm->vmcb, VMCB_INTR);
4451 ++svm->vcpu.stat.irq_window_exits;
4452 return 1;
4453 }
4454
4455 static int pause_interception(struct vcpu_svm *svm)
4456 {
4457 struct kvm_vcpu *vcpu = &svm->vcpu;
4458 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4459
4460 if (pause_filter_thresh)
4461 grow_ple_window(vcpu);
4462
4463 kvm_vcpu_on_spin(vcpu, in_kernel);
4464 return 1;
4465 }
4466
4467 static int nop_interception(struct vcpu_svm *svm)
4468 {
4469 return kvm_skip_emulated_instruction(&(svm->vcpu));
4470 }
4471
4472 static int monitor_interception(struct vcpu_svm *svm)
4473 {
4474 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4475 return nop_interception(svm);
4476 }
4477
4478 static int mwait_interception(struct vcpu_svm *svm)
4479 {
4480 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4481 return nop_interception(svm);
4482 }
4483
4484 enum avic_ipi_failure_cause {
4485 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4486 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4487 AVIC_IPI_FAILURE_INVALID_TARGET,
4488 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4489 };
4490
4491 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4492 {
4493 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4494 u32 icrl = svm->vmcb->control.exit_info_1;
4495 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4496 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4497 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4498
4499 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4500
4501 switch (id) {
4502 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4503 /*
4504 * AVIC hardware handles the generation of
4505 * IPIs when the specified Message Type is Fixed
4506 * (also known as fixed delivery mode) and
4507 * the Trigger Mode is edge-triggered. The hardware
4508 * also supports self and broadcast delivery modes
4509 * specified via the Destination Shorthand(DSH)
4510 * field of the ICRL. Logical and physical APIC ID
4511 * formats are supported. All other IPI types cause
4512 * a #VMEXIT, which needs to emulated.
4513 */
4514 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4515 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4516 break;
4517 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4518 int i;
4519 struct kvm_vcpu *vcpu;
4520 struct kvm *kvm = svm->vcpu.kvm;
4521 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4522
4523 /*
4524 * At this point, we expect that the AVIC HW has already
4525 * set the appropriate IRR bits on the valid target
4526 * vcpus. So, we just need to kick the appropriate vcpu.
4527 */
4528 kvm_for_each_vcpu(i, vcpu, kvm) {
4529 bool m = kvm_apic_match_dest(vcpu, apic,
4530 icrl & KVM_APIC_SHORT_MASK,
4531 GET_APIC_DEST_FIELD(icrh),
4532 icrl & KVM_APIC_DEST_MASK);
4533
4534 if (m && !avic_vcpu_is_running(vcpu))
4535 kvm_vcpu_wake_up(vcpu);
4536 }
4537 break;
4538 }
4539 case AVIC_IPI_FAILURE_INVALID_TARGET:
4540 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4541 index, svm->vcpu.vcpu_id, icrh, icrl);
4542 break;
4543 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4544 WARN_ONCE(1, "Invalid backing page\n");
4545 break;
4546 default:
4547 pr_err("Unknown IPI interception\n");
4548 }
4549
4550 return 1;
4551 }
4552
4553 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4554 {
4555 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4556 int index;
4557 u32 *logical_apic_id_table;
4558 int dlid = GET_APIC_LOGICAL_ID(ldr);
4559
4560 if (!dlid)
4561 return NULL;
4562
4563 if (flat) { /* flat */
4564 index = ffs(dlid) - 1;
4565 if (index > 7)
4566 return NULL;
4567 } else { /* cluster */
4568 int cluster = (dlid & 0xf0) >> 4;
4569 int apic = ffs(dlid & 0x0f) - 1;
4570
4571 if ((apic < 0) || (apic > 7) ||
4572 (cluster >= 0xf))
4573 return NULL;
4574 index = (cluster << 2) + apic;
4575 }
4576
4577 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4578
4579 return &logical_apic_id_table[index];
4580 }
4581
4582 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4583 {
4584 bool flat;
4585 u32 *entry, new_entry;
4586
4587 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4588 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4589 if (!entry)
4590 return -EINVAL;
4591
4592 new_entry = READ_ONCE(*entry);
4593 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4594 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4595 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4596 WRITE_ONCE(*entry, new_entry);
4597
4598 return 0;
4599 }
4600
4601 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4602 {
4603 struct vcpu_svm *svm = to_svm(vcpu);
4604 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4605 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4606
4607 if (entry)
4608 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4609 }
4610
4611 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4612 {
4613 int ret = 0;
4614 struct vcpu_svm *svm = to_svm(vcpu);
4615 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4616
4617 if (ldr == svm->ldr_reg)
4618 return 0;
4619
4620 avic_invalidate_logical_id_entry(vcpu);
4621
4622 if (ldr)
4623 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr);
4624
4625 if (!ret)
4626 svm->ldr_reg = ldr;
4627
4628 return ret;
4629 }
4630
4631 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4632 {
4633 u64 *old, *new;
4634 struct vcpu_svm *svm = to_svm(vcpu);
4635 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4636 u32 id = (apic_id_reg >> 24) & 0xff;
4637
4638 if (vcpu->vcpu_id == id)
4639 return 0;
4640
4641 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4642 new = avic_get_physical_id_entry(vcpu, id);
4643 if (!new || !old)
4644 return 1;
4645
4646 /* We need to move physical_id_entry to new offset */
4647 *new = *old;
4648 *old = 0ULL;
4649 to_svm(vcpu)->avic_physical_id_cache = new;
4650
4651 /*
4652 * Also update the guest physical APIC ID in the logical
4653 * APIC ID table entry if already setup the LDR.
4654 */
4655 if (svm->ldr_reg)
4656 avic_handle_ldr_update(vcpu);
4657
4658 return 0;
4659 }
4660
4661 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4662 {
4663 struct vcpu_svm *svm = to_svm(vcpu);
4664 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4665
4666 if (svm->dfr_reg == dfr)
4667 return;
4668
4669 avic_invalidate_logical_id_entry(vcpu);
4670 svm->dfr_reg = dfr;
4671 }
4672
4673 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4674 {
4675 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4676 u32 offset = svm->vmcb->control.exit_info_1 &
4677 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4678
4679 switch (offset) {
4680 case APIC_ID:
4681 if (avic_handle_apic_id_update(&svm->vcpu))
4682 return 0;
4683 break;
4684 case APIC_LDR:
4685 if (avic_handle_ldr_update(&svm->vcpu))
4686 return 0;
4687 break;
4688 case APIC_DFR:
4689 avic_handle_dfr_update(&svm->vcpu);
4690 break;
4691 default:
4692 break;
4693 }
4694
4695 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4696
4697 return 1;
4698 }
4699
4700 static bool is_avic_unaccelerated_access_trap(u32 offset)
4701 {
4702 bool ret = false;
4703
4704 switch (offset) {
4705 case APIC_ID:
4706 case APIC_EOI:
4707 case APIC_RRR:
4708 case APIC_LDR:
4709 case APIC_DFR:
4710 case APIC_SPIV:
4711 case APIC_ESR:
4712 case APIC_ICR:
4713 case APIC_LVTT:
4714 case APIC_LVTTHMR:
4715 case APIC_LVTPC:
4716 case APIC_LVT0:
4717 case APIC_LVT1:
4718 case APIC_LVTERR:
4719 case APIC_TMICT:
4720 case APIC_TDCR:
4721 ret = true;
4722 break;
4723 default:
4724 break;
4725 }
4726 return ret;
4727 }
4728
4729 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4730 {
4731 int ret = 0;
4732 u32 offset = svm->vmcb->control.exit_info_1 &
4733 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4734 u32 vector = svm->vmcb->control.exit_info_2 &
4735 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4736 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4737 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4738 bool trap = is_avic_unaccelerated_access_trap(offset);
4739
4740 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4741 trap, write, vector);
4742 if (trap) {
4743 /* Handling Trap */
4744 WARN_ONCE(!write, "svm: Handling trap read.\n");
4745 ret = avic_unaccel_trap_write(svm);
4746 } else {
4747 /* Handling Fault */
4748 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4749 }
4750
4751 return ret;
4752 }
4753
4754 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4755 [SVM_EXIT_READ_CR0] = cr_interception,
4756 [SVM_EXIT_READ_CR3] = cr_interception,
4757 [SVM_EXIT_READ_CR4] = cr_interception,
4758 [SVM_EXIT_READ_CR8] = cr_interception,
4759 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4760 [SVM_EXIT_WRITE_CR0] = cr_interception,
4761 [SVM_EXIT_WRITE_CR3] = cr_interception,
4762 [SVM_EXIT_WRITE_CR4] = cr_interception,
4763 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4764 [SVM_EXIT_READ_DR0] = dr_interception,
4765 [SVM_EXIT_READ_DR1] = dr_interception,
4766 [SVM_EXIT_READ_DR2] = dr_interception,
4767 [SVM_EXIT_READ_DR3] = dr_interception,
4768 [SVM_EXIT_READ_DR4] = dr_interception,
4769 [SVM_EXIT_READ_DR5] = dr_interception,
4770 [SVM_EXIT_READ_DR6] = dr_interception,
4771 [SVM_EXIT_READ_DR7] = dr_interception,
4772 [SVM_EXIT_WRITE_DR0] = dr_interception,
4773 [SVM_EXIT_WRITE_DR1] = dr_interception,
4774 [SVM_EXIT_WRITE_DR2] = dr_interception,
4775 [SVM_EXIT_WRITE_DR3] = dr_interception,
4776 [SVM_EXIT_WRITE_DR4] = dr_interception,
4777 [SVM_EXIT_WRITE_DR5] = dr_interception,
4778 [SVM_EXIT_WRITE_DR6] = dr_interception,
4779 [SVM_EXIT_WRITE_DR7] = dr_interception,
4780 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4781 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4782 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4783 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4784 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4785 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4786 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4787 [SVM_EXIT_INTR] = intr_interception,
4788 [SVM_EXIT_NMI] = nmi_interception,
4789 [SVM_EXIT_SMI] = nop_on_interception,
4790 [SVM_EXIT_INIT] = nop_on_interception,
4791 [SVM_EXIT_VINTR] = interrupt_window_interception,
4792 [SVM_EXIT_RDPMC] = rdpmc_interception,
4793 [SVM_EXIT_CPUID] = cpuid_interception,
4794 [SVM_EXIT_IRET] = iret_interception,
4795 [SVM_EXIT_INVD] = emulate_on_interception,
4796 [SVM_EXIT_PAUSE] = pause_interception,
4797 [SVM_EXIT_HLT] = halt_interception,
4798 [SVM_EXIT_INVLPG] = invlpg_interception,
4799 [SVM_EXIT_INVLPGA] = invlpga_interception,
4800 [SVM_EXIT_IOIO] = io_interception,
4801 [SVM_EXIT_MSR] = msr_interception,
4802 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4803 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4804 [SVM_EXIT_VMRUN] = vmrun_interception,
4805 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4806 [SVM_EXIT_VMLOAD] = vmload_interception,
4807 [SVM_EXIT_VMSAVE] = vmsave_interception,
4808 [SVM_EXIT_STGI] = stgi_interception,
4809 [SVM_EXIT_CLGI] = clgi_interception,
4810 [SVM_EXIT_SKINIT] = skinit_interception,
4811 [SVM_EXIT_WBINVD] = wbinvd_interception,
4812 [SVM_EXIT_MONITOR] = monitor_interception,
4813 [SVM_EXIT_MWAIT] = mwait_interception,
4814 [SVM_EXIT_XSETBV] = xsetbv_interception,
4815 [SVM_EXIT_NPF] = npf_interception,
4816 [SVM_EXIT_RSM] = rsm_interception,
4817 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4818 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4819 };
4820
4821 static void dump_vmcb(struct kvm_vcpu *vcpu)
4822 {
4823 struct vcpu_svm *svm = to_svm(vcpu);
4824 struct vmcb_control_area *control = &svm->vmcb->control;
4825 struct vmcb_save_area *save = &svm->vmcb->save;
4826
4827 pr_err("VMCB Control Area:\n");
4828 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4829 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4830 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4831 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4832 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4833 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4834 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4835 pr_err("%-20s%d\n", "pause filter threshold:",
4836 control->pause_filter_thresh);
4837 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4838 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4839 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4840 pr_err("%-20s%d\n", "asid:", control->asid);
4841 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4842 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4843 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4844 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4845 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4846 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4847 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4848 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4849 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4850 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4851 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4852 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4853 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4854 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4855 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4856 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4857 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4858 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4859 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4860 pr_err("VMCB State Save Area:\n");
4861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4862 "es:",
4863 save->es.selector, save->es.attrib,
4864 save->es.limit, save->es.base);
4865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4866 "cs:",
4867 save->cs.selector, save->cs.attrib,
4868 save->cs.limit, save->cs.base);
4869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4870 "ss:",
4871 save->ss.selector, save->ss.attrib,
4872 save->ss.limit, save->ss.base);
4873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4874 "ds:",
4875 save->ds.selector, save->ds.attrib,
4876 save->ds.limit, save->ds.base);
4877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4878 "fs:",
4879 save->fs.selector, save->fs.attrib,
4880 save->fs.limit, save->fs.base);
4881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4882 "gs:",
4883 save->gs.selector, save->gs.attrib,
4884 save->gs.limit, save->gs.base);
4885 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4886 "gdtr:",
4887 save->gdtr.selector, save->gdtr.attrib,
4888 save->gdtr.limit, save->gdtr.base);
4889 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4890 "ldtr:",
4891 save->ldtr.selector, save->ldtr.attrib,
4892 save->ldtr.limit, save->ldtr.base);
4893 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4894 "idtr:",
4895 save->idtr.selector, save->idtr.attrib,
4896 save->idtr.limit, save->idtr.base);
4897 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4898 "tr:",
4899 save->tr.selector, save->tr.attrib,
4900 save->tr.limit, save->tr.base);
4901 pr_err("cpl: %d efer: %016llx\n",
4902 save->cpl, save->efer);
4903 pr_err("%-15s %016llx %-13s %016llx\n",
4904 "cr0:", save->cr0, "cr2:", save->cr2);
4905 pr_err("%-15s %016llx %-13s %016llx\n",
4906 "cr3:", save->cr3, "cr4:", save->cr4);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "dr6:", save->dr6, "dr7:", save->dr7);
4909 pr_err("%-15s %016llx %-13s %016llx\n",
4910 "rip:", save->rip, "rflags:", save->rflags);
4911 pr_err("%-15s %016llx %-13s %016llx\n",
4912 "rsp:", save->rsp, "rax:", save->rax);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "star:", save->star, "lstar:", save->lstar);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "cstar:", save->cstar, "sfmask:", save->sfmask);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "kernel_gs_base:", save->kernel_gs_base,
4919 "sysenter_cs:", save->sysenter_cs);
4920 pr_err("%-15s %016llx %-13s %016llx\n",
4921 "sysenter_esp:", save->sysenter_esp,
4922 "sysenter_eip:", save->sysenter_eip);
4923 pr_err("%-15s %016llx %-13s %016llx\n",
4924 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4925 pr_err("%-15s %016llx %-13s %016llx\n",
4926 "br_from:", save->br_from, "br_to:", save->br_to);
4927 pr_err("%-15s %016llx %-13s %016llx\n",
4928 "excp_from:", save->last_excp_from,
4929 "excp_to:", save->last_excp_to);
4930 }
4931
4932 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4933 {
4934 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4935
4936 *info1 = control->exit_info_1;
4937 *info2 = control->exit_info_2;
4938 }
4939
4940 static int handle_exit(struct kvm_vcpu *vcpu)
4941 {
4942 struct vcpu_svm *svm = to_svm(vcpu);
4943 struct kvm_run *kvm_run = vcpu->run;
4944 u32 exit_code = svm->vmcb->control.exit_code;
4945
4946 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4947
4948 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4949 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4950 if (npt_enabled)
4951 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4952
4953 if (unlikely(svm->nested.exit_required)) {
4954 nested_svm_vmexit(svm);
4955 svm->nested.exit_required = false;
4956
4957 return 1;
4958 }
4959
4960 if (is_guest_mode(vcpu)) {
4961 int vmexit;
4962
4963 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4964 svm->vmcb->control.exit_info_1,
4965 svm->vmcb->control.exit_info_2,
4966 svm->vmcb->control.exit_int_info,
4967 svm->vmcb->control.exit_int_info_err,
4968 KVM_ISA_SVM);
4969
4970 vmexit = nested_svm_exit_special(svm);
4971
4972 if (vmexit == NESTED_EXIT_CONTINUE)
4973 vmexit = nested_svm_exit_handled(svm);
4974
4975 if (vmexit == NESTED_EXIT_DONE)
4976 return 1;
4977 }
4978
4979 svm_complete_interrupts(svm);
4980
4981 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4982 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4983 kvm_run->fail_entry.hardware_entry_failure_reason
4984 = svm->vmcb->control.exit_code;
4985 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4986 dump_vmcb(vcpu);
4987 return 0;
4988 }
4989
4990 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4991 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4992 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4993 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4994 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4995 "exit_code 0x%x\n",
4996 __func__, svm->vmcb->control.exit_int_info,
4997 exit_code);
4998
4999 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5000 || !svm_exit_handlers[exit_code]) {
5001 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
5002 kvm_queue_exception(vcpu, UD_VECTOR);
5003 return 1;
5004 }
5005
5006 return svm_exit_handlers[exit_code](svm);
5007 }
5008
5009 static void reload_tss(struct kvm_vcpu *vcpu)
5010 {
5011 int cpu = raw_smp_processor_id();
5012
5013 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5014 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5015 load_TR_desc();
5016 }
5017
5018 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5019 {
5020 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5021 int asid = sev_get_asid(svm->vcpu.kvm);
5022
5023 /* Assign the asid allocated with this SEV guest */
5024 svm->vmcb->control.asid = asid;
5025
5026 /*
5027 * Flush guest TLB:
5028 *
5029 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5030 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5031 */
5032 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5033 svm->last_cpu == cpu)
5034 return;
5035
5036 svm->last_cpu = cpu;
5037 sd->sev_vmcbs[asid] = svm->vmcb;
5038 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5039 mark_dirty(svm->vmcb, VMCB_ASID);
5040 }
5041
5042 static void pre_svm_run(struct vcpu_svm *svm)
5043 {
5044 int cpu = raw_smp_processor_id();
5045
5046 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5047
5048 if (sev_guest(svm->vcpu.kvm))
5049 return pre_sev_run(svm, cpu);
5050
5051 /* FIXME: handle wraparound of asid_generation */
5052 if (svm->asid_generation != sd->asid_generation)
5053 new_asid(svm, sd);
5054 }
5055
5056 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5057 {
5058 struct vcpu_svm *svm = to_svm(vcpu);
5059
5060 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5061 vcpu->arch.hflags |= HF_NMI_MASK;
5062 set_intercept(svm, INTERCEPT_IRET);
5063 ++vcpu->stat.nmi_injections;
5064 }
5065
5066 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5067 {
5068 struct vmcb_control_area *control;
5069
5070 /* The following fields are ignored when AVIC is enabled */
5071 control = &svm->vmcb->control;
5072 control->int_vector = irq;
5073 control->int_ctl &= ~V_INTR_PRIO_MASK;
5074 control->int_ctl |= V_IRQ_MASK |
5075 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5076 mark_dirty(svm->vmcb, VMCB_INTR);
5077 }
5078
5079 static void svm_set_irq(struct kvm_vcpu *vcpu)
5080 {
5081 struct vcpu_svm *svm = to_svm(vcpu);
5082
5083 BUG_ON(!(gif_set(svm)));
5084
5085 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5086 ++vcpu->stat.irq_injections;
5087
5088 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5089 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5090 }
5091
5092 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5093 {
5094 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5095 }
5096
5097 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5098 {
5099 struct vcpu_svm *svm = to_svm(vcpu);
5100
5101 if (svm_nested_virtualize_tpr(vcpu) ||
5102 kvm_vcpu_apicv_active(vcpu))
5103 return;
5104
5105 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5106
5107 if (irr == -1)
5108 return;
5109
5110 if (tpr >= irr)
5111 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5112 }
5113
5114 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5115 {
5116 return;
5117 }
5118
5119 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5120 {
5121 return avic && irqchip_split(vcpu->kvm);
5122 }
5123
5124 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5125 {
5126 }
5127
5128 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5129 {
5130 }
5131
5132 /* Note: Currently only used by Hyper-V. */
5133 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5134 {
5135 struct vcpu_svm *svm = to_svm(vcpu);
5136 struct vmcb *vmcb = svm->vmcb;
5137
5138 if (kvm_vcpu_apicv_active(vcpu))
5139 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5140 else
5141 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5142 mark_dirty(vmcb, VMCB_AVIC);
5143 }
5144
5145 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5146 {
5147 return;
5148 }
5149
5150 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5151 {
5152 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5153 smp_mb__after_atomic();
5154
5155 if (avic_vcpu_is_running(vcpu))
5156 wrmsrl(SVM_AVIC_DOORBELL,
5157 kvm_cpu_get_apicid(vcpu->cpu));
5158 else
5159 kvm_vcpu_wake_up(vcpu);
5160 }
5161
5162 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5163 {
5164 unsigned long flags;
5165 struct amd_svm_iommu_ir *cur;
5166
5167 spin_lock_irqsave(&svm->ir_list_lock, flags);
5168 list_for_each_entry(cur, &svm->ir_list, node) {
5169 if (cur->data != pi->ir_data)
5170 continue;
5171 list_del(&cur->node);
5172 kfree(cur);
5173 break;
5174 }
5175 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5176 }
5177
5178 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5179 {
5180 int ret = 0;
5181 unsigned long flags;
5182 struct amd_svm_iommu_ir *ir;
5183
5184 /**
5185 * In some cases, the existing irte is updaed and re-set,
5186 * so we need to check here if it's already been * added
5187 * to the ir_list.
5188 */
5189 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5190 struct kvm *kvm = svm->vcpu.kvm;
5191 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5192 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5193 struct vcpu_svm *prev_svm;
5194
5195 if (!prev_vcpu) {
5196 ret = -EINVAL;
5197 goto out;
5198 }
5199
5200 prev_svm = to_svm(prev_vcpu);
5201 svm_ir_list_del(prev_svm, pi);
5202 }
5203
5204 /**
5205 * Allocating new amd_iommu_pi_data, which will get
5206 * add to the per-vcpu ir_list.
5207 */
5208 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5209 if (!ir) {
5210 ret = -ENOMEM;
5211 goto out;
5212 }
5213 ir->data = pi->ir_data;
5214
5215 spin_lock_irqsave(&svm->ir_list_lock, flags);
5216 list_add(&ir->node, &svm->ir_list);
5217 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5218 out:
5219 return ret;
5220 }
5221
5222 /**
5223 * Note:
5224 * The HW cannot support posting multicast/broadcast
5225 * interrupts to a vCPU. So, we still use legacy interrupt
5226 * remapping for these kind of interrupts.
5227 *
5228 * For lowest-priority interrupts, we only support
5229 * those with single CPU as the destination, e.g. user
5230 * configures the interrupts via /proc/irq or uses
5231 * irqbalance to make the interrupts single-CPU.
5232 */
5233 static int
5234 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5235 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5236 {
5237 struct kvm_lapic_irq irq;
5238 struct kvm_vcpu *vcpu = NULL;
5239
5240 kvm_set_msi_irq(kvm, e, &irq);
5241
5242 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5243 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5244 __func__, irq.vector);
5245 return -1;
5246 }
5247
5248 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5249 irq.vector);
5250 *svm = to_svm(vcpu);
5251 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5252 vcpu_info->vector = irq.vector;
5253
5254 return 0;
5255 }
5256
5257 /*
5258 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5259 *
5260 * @kvm: kvm
5261 * @host_irq: host irq of the interrupt
5262 * @guest_irq: gsi of the interrupt
5263 * @set: set or unset PI
5264 * returns 0 on success, < 0 on failure
5265 */
5266 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5267 uint32_t guest_irq, bool set)
5268 {
5269 struct kvm_kernel_irq_routing_entry *e;
5270 struct kvm_irq_routing_table *irq_rt;
5271 int idx, ret = -EINVAL;
5272
5273 if (!kvm_arch_has_assigned_device(kvm) ||
5274 !irq_remapping_cap(IRQ_POSTING_CAP))
5275 return 0;
5276
5277 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5278 __func__, host_irq, guest_irq, set);
5279
5280 idx = srcu_read_lock(&kvm->irq_srcu);
5281 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5282 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5283
5284 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5285 struct vcpu_data vcpu_info;
5286 struct vcpu_svm *svm = NULL;
5287
5288 if (e->type != KVM_IRQ_ROUTING_MSI)
5289 continue;
5290
5291 /**
5292 * Here, we setup with legacy mode in the following cases:
5293 * 1. When cannot target interrupt to a specific vcpu.
5294 * 2. Unsetting posted interrupt.
5295 * 3. APIC virtialization is disabled for the vcpu.
5296 */
5297 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5298 kvm_vcpu_apicv_active(&svm->vcpu)) {
5299 struct amd_iommu_pi_data pi;
5300
5301 /* Try to enable guest_mode in IRTE */
5302 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5303 AVIC_HPA_MASK);
5304 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5305 svm->vcpu.vcpu_id);
5306 pi.is_guest_mode = true;
5307 pi.vcpu_data = &vcpu_info;
5308 ret = irq_set_vcpu_affinity(host_irq, &pi);
5309
5310 /**
5311 * Here, we successfully setting up vcpu affinity in
5312 * IOMMU guest mode. Now, we need to store the posted
5313 * interrupt information in a per-vcpu ir_list so that
5314 * we can reference to them directly when we update vcpu
5315 * scheduling information in IOMMU irte.
5316 */
5317 if (!ret && pi.is_guest_mode)
5318 svm_ir_list_add(svm, &pi);
5319 } else {
5320 /* Use legacy mode in IRTE */
5321 struct amd_iommu_pi_data pi;
5322
5323 /**
5324 * Here, pi is used to:
5325 * - Tell IOMMU to use legacy mode for this interrupt.
5326 * - Retrieve ga_tag of prior interrupt remapping data.
5327 */
5328 pi.is_guest_mode = false;
5329 ret = irq_set_vcpu_affinity(host_irq, &pi);
5330
5331 /**
5332 * Check if the posted interrupt was previously
5333 * setup with the guest_mode by checking if the ga_tag
5334 * was cached. If so, we need to clean up the per-vcpu
5335 * ir_list.
5336 */
5337 if (!ret && pi.prev_ga_tag) {
5338 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5339 struct kvm_vcpu *vcpu;
5340
5341 vcpu = kvm_get_vcpu_by_id(kvm, id);
5342 if (vcpu)
5343 svm_ir_list_del(to_svm(vcpu), &pi);
5344 }
5345 }
5346
5347 if (!ret && svm) {
5348 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5349 e->gsi, vcpu_info.vector,
5350 vcpu_info.pi_desc_addr, set);
5351 }
5352
5353 if (ret < 0) {
5354 pr_err("%s: failed to update PI IRTE\n", __func__);
5355 goto out;
5356 }
5357 }
5358
5359 ret = 0;
5360 out:
5361 srcu_read_unlock(&kvm->irq_srcu, idx);
5362 return ret;
5363 }
5364
5365 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5366 {
5367 struct vcpu_svm *svm = to_svm(vcpu);
5368 struct vmcb *vmcb = svm->vmcb;
5369 int ret;
5370 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5371 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5372 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5373
5374 return ret;
5375 }
5376
5377 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5378 {
5379 struct vcpu_svm *svm = to_svm(vcpu);
5380
5381 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5382 }
5383
5384 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5385 {
5386 struct vcpu_svm *svm = to_svm(vcpu);
5387
5388 if (masked) {
5389 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5390 set_intercept(svm, INTERCEPT_IRET);
5391 } else {
5392 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5393 clr_intercept(svm, INTERCEPT_IRET);
5394 }
5395 }
5396
5397 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5398 {
5399 struct vcpu_svm *svm = to_svm(vcpu);
5400 struct vmcb *vmcb = svm->vmcb;
5401 int ret;
5402
5403 if (!gif_set(svm) ||
5404 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5405 return 0;
5406
5407 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5408
5409 if (is_guest_mode(vcpu))
5410 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5411
5412 return ret;
5413 }
5414
5415 static void enable_irq_window(struct kvm_vcpu *vcpu)
5416 {
5417 struct vcpu_svm *svm = to_svm(vcpu);
5418
5419 if (kvm_vcpu_apicv_active(vcpu))
5420 return;
5421
5422 /*
5423 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5424 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5425 * get that intercept, this function will be called again though and
5426 * we'll get the vintr intercept. However, if the vGIF feature is
5427 * enabled, the STGI interception will not occur. Enable the irq
5428 * window under the assumption that the hardware will set the GIF.
5429 */
5430 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5431 svm_set_vintr(svm);
5432 svm_inject_irq(svm, 0x0);
5433 }
5434 }
5435
5436 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5437 {
5438 struct vcpu_svm *svm = to_svm(vcpu);
5439
5440 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5441 == HF_NMI_MASK)
5442 return; /* IRET will cause a vm exit */
5443
5444 if (!gif_set(svm)) {
5445 if (vgif_enabled(svm))
5446 set_intercept(svm, INTERCEPT_STGI);
5447 return; /* STGI will cause a vm exit */
5448 }
5449
5450 if (svm->nested.exit_required)
5451 return; /* we're not going to run the guest yet */
5452
5453 /*
5454 * Something prevents NMI from been injected. Single step over possible
5455 * problem (IRET or exception injection or interrupt shadow)
5456 */
5457 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5458 svm->nmi_singlestep = true;
5459 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5460 }
5461
5462 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5463 {
5464 return 0;
5465 }
5466
5467 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5468 {
5469 return 0;
5470 }
5471
5472 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5473 {
5474 struct vcpu_svm *svm = to_svm(vcpu);
5475
5476 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5477 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5478 else
5479 svm->asid_generation--;
5480 }
5481
5482 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5483 {
5484 struct vcpu_svm *svm = to_svm(vcpu);
5485
5486 invlpga(gva, svm->vmcb->control.asid);
5487 }
5488
5489 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5490 {
5491 }
5492
5493 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5494 {
5495 struct vcpu_svm *svm = to_svm(vcpu);
5496
5497 if (svm_nested_virtualize_tpr(vcpu))
5498 return;
5499
5500 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5501 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5502 kvm_set_cr8(vcpu, cr8);
5503 }
5504 }
5505
5506 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5507 {
5508 struct vcpu_svm *svm = to_svm(vcpu);
5509 u64 cr8;
5510
5511 if (svm_nested_virtualize_tpr(vcpu) ||
5512 kvm_vcpu_apicv_active(vcpu))
5513 return;
5514
5515 cr8 = kvm_get_cr8(vcpu);
5516 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5517 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5518 }
5519
5520 static void svm_complete_interrupts(struct vcpu_svm *svm)
5521 {
5522 u8 vector;
5523 int type;
5524 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5525 unsigned int3_injected = svm->int3_injected;
5526
5527 svm->int3_injected = 0;
5528
5529 /*
5530 * If we've made progress since setting HF_IRET_MASK, we've
5531 * executed an IRET and can allow NMI injection.
5532 */
5533 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5534 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5535 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5536 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5537 }
5538
5539 svm->vcpu.arch.nmi_injected = false;
5540 kvm_clear_exception_queue(&svm->vcpu);
5541 kvm_clear_interrupt_queue(&svm->vcpu);
5542
5543 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5544 return;
5545
5546 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5547
5548 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5549 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5550
5551 switch (type) {
5552 case SVM_EXITINTINFO_TYPE_NMI:
5553 svm->vcpu.arch.nmi_injected = true;
5554 break;
5555 case SVM_EXITINTINFO_TYPE_EXEPT:
5556 /*
5557 * In case of software exceptions, do not reinject the vector,
5558 * but re-execute the instruction instead. Rewind RIP first
5559 * if we emulated INT3 before.
5560 */
5561 if (kvm_exception_is_soft(vector)) {
5562 if (vector == BP_VECTOR && int3_injected &&
5563 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5564 kvm_rip_write(&svm->vcpu,
5565 kvm_rip_read(&svm->vcpu) -
5566 int3_injected);
5567 break;
5568 }
5569 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5570 u32 err = svm->vmcb->control.exit_int_info_err;
5571 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5572
5573 } else
5574 kvm_requeue_exception(&svm->vcpu, vector);
5575 break;
5576 case SVM_EXITINTINFO_TYPE_INTR:
5577 kvm_queue_interrupt(&svm->vcpu, vector, false);
5578 break;
5579 default:
5580 break;
5581 }
5582 }
5583
5584 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5585 {
5586 struct vcpu_svm *svm = to_svm(vcpu);
5587 struct vmcb_control_area *control = &svm->vmcb->control;
5588
5589 control->exit_int_info = control->event_inj;
5590 control->exit_int_info_err = control->event_inj_err;
5591 control->event_inj = 0;
5592 svm_complete_interrupts(svm);
5593 }
5594
5595 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5596 {
5597 struct vcpu_svm *svm = to_svm(vcpu);
5598
5599 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5600 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5601 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5602
5603 /*
5604 * A vmexit emulation is required before the vcpu can be executed
5605 * again.
5606 */
5607 if (unlikely(svm->nested.exit_required))
5608 return;
5609
5610 /*
5611 * Disable singlestep if we're injecting an interrupt/exception.
5612 * We don't want our modified rflags to be pushed on the stack where
5613 * we might not be able to easily reset them if we disabled NMI
5614 * singlestep later.
5615 */
5616 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5617 /*
5618 * Event injection happens before external interrupts cause a
5619 * vmexit and interrupts are disabled here, so smp_send_reschedule
5620 * is enough to force an immediate vmexit.
5621 */
5622 disable_nmi_singlestep(svm);
5623 smp_send_reschedule(vcpu->cpu);
5624 }
5625
5626 pre_svm_run(svm);
5627
5628 sync_lapic_to_cr8(vcpu);
5629
5630 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5631
5632 clgi();
5633 kvm_load_guest_xcr0(vcpu);
5634
5635 /*
5636 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5637 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5638 * is no need to worry about the conditional branch over the wrmsr
5639 * being speculatively taken.
5640 */
5641 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5642
5643 local_irq_enable();
5644
5645 asm volatile (
5646 "push %%" _ASM_BP "; \n\t"
5647 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5648 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5649 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5650 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5651 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5652 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5653 #ifdef CONFIG_X86_64
5654 "mov %c[r8](%[svm]), %%r8 \n\t"
5655 "mov %c[r9](%[svm]), %%r9 \n\t"
5656 "mov %c[r10](%[svm]), %%r10 \n\t"
5657 "mov %c[r11](%[svm]), %%r11 \n\t"
5658 "mov %c[r12](%[svm]), %%r12 \n\t"
5659 "mov %c[r13](%[svm]), %%r13 \n\t"
5660 "mov %c[r14](%[svm]), %%r14 \n\t"
5661 "mov %c[r15](%[svm]), %%r15 \n\t"
5662 #endif
5663
5664 /* Enter guest mode */
5665 "push %%" _ASM_AX " \n\t"
5666 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5667 __ex("vmload %%" _ASM_AX) "\n\t"
5668 __ex("vmrun %%" _ASM_AX) "\n\t"
5669 __ex("vmsave %%" _ASM_AX) "\n\t"
5670 "pop %%" _ASM_AX " \n\t"
5671
5672 /* Save guest registers, load host registers */
5673 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5674 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5675 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5676 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5677 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5678 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5679 #ifdef CONFIG_X86_64
5680 "mov %%r8, %c[r8](%[svm]) \n\t"
5681 "mov %%r9, %c[r9](%[svm]) \n\t"
5682 "mov %%r10, %c[r10](%[svm]) \n\t"
5683 "mov %%r11, %c[r11](%[svm]) \n\t"
5684 "mov %%r12, %c[r12](%[svm]) \n\t"
5685 "mov %%r13, %c[r13](%[svm]) \n\t"
5686 "mov %%r14, %c[r14](%[svm]) \n\t"
5687 "mov %%r15, %c[r15](%[svm]) \n\t"
5688 /*
5689 * Clear host registers marked as clobbered to prevent
5690 * speculative use.
5691 */
5692 "xor %%r8d, %%r8d \n\t"
5693 "xor %%r9d, %%r9d \n\t"
5694 "xor %%r10d, %%r10d \n\t"
5695 "xor %%r11d, %%r11d \n\t"
5696 "xor %%r12d, %%r12d \n\t"
5697 "xor %%r13d, %%r13d \n\t"
5698 "xor %%r14d, %%r14d \n\t"
5699 "xor %%r15d, %%r15d \n\t"
5700 #endif
5701 "xor %%ebx, %%ebx \n\t"
5702 "xor %%ecx, %%ecx \n\t"
5703 "xor %%edx, %%edx \n\t"
5704 "xor %%esi, %%esi \n\t"
5705 "xor %%edi, %%edi \n\t"
5706 "pop %%" _ASM_BP
5707 :
5708 : [svm]"a"(svm),
5709 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5710 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5711 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5712 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5713 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5714 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5715 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5716 #ifdef CONFIG_X86_64
5717 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5718 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5719 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5720 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5721 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5722 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5723 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5724 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5725 #endif
5726 : "cc", "memory"
5727 #ifdef CONFIG_X86_64
5728 , "rbx", "rcx", "rdx", "rsi", "rdi"
5729 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5730 #else
5731 , "ebx", "ecx", "edx", "esi", "edi"
5732 #endif
5733 );
5734
5735 /* Eliminate branch target predictions from guest mode */
5736 vmexit_fill_RSB();
5737
5738 #ifdef CONFIG_X86_64
5739 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5740 #else
5741 loadsegment(fs, svm->host.fs);
5742 #ifndef CONFIG_X86_32_LAZY_GS
5743 loadsegment(gs, svm->host.gs);
5744 #endif
5745 #endif
5746
5747 /*
5748 * We do not use IBRS in the kernel. If this vCPU has used the
5749 * SPEC_CTRL MSR it may have left it on; save the value and
5750 * turn it off. This is much more efficient than blindly adding
5751 * it to the atomic save/restore list. Especially as the former
5752 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5753 *
5754 * For non-nested case:
5755 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5756 * save it.
5757 *
5758 * For nested case:
5759 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5760 * save it.
5761 */
5762 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5763 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5764
5765 reload_tss(vcpu);
5766
5767 local_irq_disable();
5768
5769 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5770
5771 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5772 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5773 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5774 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5775
5776 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5777 kvm_before_interrupt(&svm->vcpu);
5778
5779 kvm_put_guest_xcr0(vcpu);
5780 stgi();
5781
5782 /* Any pending NMI will happen here */
5783
5784 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5785 kvm_after_interrupt(&svm->vcpu);
5786
5787 sync_cr8_to_lapic(vcpu);
5788
5789 svm->next_rip = 0;
5790
5791 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5792
5793 /* if exit due to PF check for async PF */
5794 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5795 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5796
5797 if (npt_enabled) {
5798 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5799 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5800 }
5801
5802 /*
5803 * We need to handle MC intercepts here before the vcpu has a chance to
5804 * change the physical cpu
5805 */
5806 if (unlikely(svm->vmcb->control.exit_code ==
5807 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5808 svm_handle_mce(svm);
5809
5810 mark_all_clean(svm->vmcb);
5811 }
5812 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5813
5814 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5815 {
5816 struct vcpu_svm *svm = to_svm(vcpu);
5817
5818 svm->vmcb->save.cr3 = __sme_set(root);
5819 mark_dirty(svm->vmcb, VMCB_CR);
5820 }
5821
5822 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5823 {
5824 struct vcpu_svm *svm = to_svm(vcpu);
5825
5826 svm->vmcb->control.nested_cr3 = __sme_set(root);
5827 mark_dirty(svm->vmcb, VMCB_NPT);
5828
5829 /* Also sync guest cr3 here in case we live migrate */
5830 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5831 mark_dirty(svm->vmcb, VMCB_CR);
5832 }
5833
5834 static int is_disabled(void)
5835 {
5836 u64 vm_cr;
5837
5838 rdmsrl(MSR_VM_CR, vm_cr);
5839 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5840 return 1;
5841
5842 return 0;
5843 }
5844
5845 static void
5846 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5847 {
5848 /*
5849 * Patch in the VMMCALL instruction:
5850 */
5851 hypercall[0] = 0x0f;
5852 hypercall[1] = 0x01;
5853 hypercall[2] = 0xd9;
5854 }
5855
5856 static void svm_check_processor_compat(void *rtn)
5857 {
5858 *(int *)rtn = 0;
5859 }
5860
5861 static bool svm_cpu_has_accelerated_tpr(void)
5862 {
5863 return false;
5864 }
5865
5866 static bool svm_has_emulated_msr(int index)
5867 {
5868 switch (index) {
5869 case MSR_IA32_MCG_EXT_CTL:
5870 return false;
5871 default:
5872 break;
5873 }
5874
5875 return true;
5876 }
5877
5878 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5879 {
5880 return 0;
5881 }
5882
5883 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5884 {
5885 struct vcpu_svm *svm = to_svm(vcpu);
5886
5887 /* Update nrips enabled cache */
5888 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5889
5890 if (!kvm_vcpu_apicv_active(vcpu))
5891 return;
5892
5893 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5894 }
5895
5896 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5897 {
5898 switch (func) {
5899 case 0x1:
5900 if (avic)
5901 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5902 break;
5903 case 0x80000001:
5904 if (nested)
5905 entry->ecx |= (1 << 2); /* Set SVM bit */
5906 break;
5907 case 0x8000000A:
5908 entry->eax = 1; /* SVM revision 1 */
5909 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5910 ASID emulation to nested SVM */
5911 entry->ecx = 0; /* Reserved */
5912 entry->edx = 0; /* Per default do not support any
5913 additional features */
5914
5915 /* Support next_rip if host supports it */
5916 if (boot_cpu_has(X86_FEATURE_NRIPS))
5917 entry->edx |= SVM_FEATURE_NRIP;
5918
5919 /* Support NPT for the guest if enabled */
5920 if (npt_enabled)
5921 entry->edx |= SVM_FEATURE_NPT;
5922
5923 break;
5924 case 0x8000001F:
5925 /* Support memory encryption cpuid if host supports it */
5926 if (boot_cpu_has(X86_FEATURE_SEV))
5927 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5928 &entry->ecx, &entry->edx);
5929
5930 }
5931 }
5932
5933 static int svm_get_lpage_level(void)
5934 {
5935 return PT_PDPE_LEVEL;
5936 }
5937
5938 static bool svm_rdtscp_supported(void)
5939 {
5940 return boot_cpu_has(X86_FEATURE_RDTSCP);
5941 }
5942
5943 static bool svm_invpcid_supported(void)
5944 {
5945 return false;
5946 }
5947
5948 static bool svm_mpx_supported(void)
5949 {
5950 return false;
5951 }
5952
5953 static bool svm_xsaves_supported(void)
5954 {
5955 return false;
5956 }
5957
5958 static bool svm_umip_emulated(void)
5959 {
5960 return false;
5961 }
5962
5963 static bool svm_pt_supported(void)
5964 {
5965 return false;
5966 }
5967
5968 static bool svm_has_wbinvd_exit(void)
5969 {
5970 return true;
5971 }
5972
5973 #define PRE_EX(exit) { .exit_code = (exit), \
5974 .stage = X86_ICPT_PRE_EXCEPT, }
5975 #define POST_EX(exit) { .exit_code = (exit), \
5976 .stage = X86_ICPT_POST_EXCEPT, }
5977 #define POST_MEM(exit) { .exit_code = (exit), \
5978 .stage = X86_ICPT_POST_MEMACCESS, }
5979
5980 static const struct __x86_intercept {
5981 u32 exit_code;
5982 enum x86_intercept_stage stage;
5983 } x86_intercept_map[] = {
5984 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5985 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5986 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5987 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5988 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5989 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5990 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5991 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5992 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5993 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5994 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5995 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5996 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5997 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5998 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5999 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6000 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6001 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6002 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6003 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6004 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6005 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6006 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6007 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6008 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6009 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6010 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6011 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6012 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6013 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6014 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6015 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6016 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6017 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6018 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6019 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6020 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6021 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6022 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6023 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6024 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6025 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6026 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6027 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6028 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6029 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6030 };
6031
6032 #undef PRE_EX
6033 #undef POST_EX
6034 #undef POST_MEM
6035
6036 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6037 struct x86_instruction_info *info,
6038 enum x86_intercept_stage stage)
6039 {
6040 struct vcpu_svm *svm = to_svm(vcpu);
6041 int vmexit, ret = X86EMUL_CONTINUE;
6042 struct __x86_intercept icpt_info;
6043 struct vmcb *vmcb = svm->vmcb;
6044
6045 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6046 goto out;
6047
6048 icpt_info = x86_intercept_map[info->intercept];
6049
6050 if (stage != icpt_info.stage)
6051 goto out;
6052
6053 switch (icpt_info.exit_code) {
6054 case SVM_EXIT_READ_CR0:
6055 if (info->intercept == x86_intercept_cr_read)
6056 icpt_info.exit_code += info->modrm_reg;
6057 break;
6058 case SVM_EXIT_WRITE_CR0: {
6059 unsigned long cr0, val;
6060 u64 intercept;
6061
6062 if (info->intercept == x86_intercept_cr_write)
6063 icpt_info.exit_code += info->modrm_reg;
6064
6065 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6066 info->intercept == x86_intercept_clts)
6067 break;
6068
6069 intercept = svm->nested.intercept;
6070
6071 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6072 break;
6073
6074 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6075 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6076
6077 if (info->intercept == x86_intercept_lmsw) {
6078 cr0 &= 0xfUL;
6079 val &= 0xfUL;
6080 /* lmsw can't clear PE - catch this here */
6081 if (cr0 & X86_CR0_PE)
6082 val |= X86_CR0_PE;
6083 }
6084
6085 if (cr0 ^ val)
6086 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6087
6088 break;
6089 }
6090 case SVM_EXIT_READ_DR0:
6091 case SVM_EXIT_WRITE_DR0:
6092 icpt_info.exit_code += info->modrm_reg;
6093 break;
6094 case SVM_EXIT_MSR:
6095 if (info->intercept == x86_intercept_wrmsr)
6096 vmcb->control.exit_info_1 = 1;
6097 else
6098 vmcb->control.exit_info_1 = 0;
6099 break;
6100 case SVM_EXIT_PAUSE:
6101 /*
6102 * We get this for NOP only, but pause
6103 * is rep not, check this here
6104 */
6105 if (info->rep_prefix != REPE_PREFIX)
6106 goto out;
6107 break;
6108 case SVM_EXIT_IOIO: {
6109 u64 exit_info;
6110 u32 bytes;
6111
6112 if (info->intercept == x86_intercept_in ||
6113 info->intercept == x86_intercept_ins) {
6114 exit_info = ((info->src_val & 0xffff) << 16) |
6115 SVM_IOIO_TYPE_MASK;
6116 bytes = info->dst_bytes;
6117 } else {
6118 exit_info = (info->dst_val & 0xffff) << 16;
6119 bytes = info->src_bytes;
6120 }
6121
6122 if (info->intercept == x86_intercept_outs ||
6123 info->intercept == x86_intercept_ins)
6124 exit_info |= SVM_IOIO_STR_MASK;
6125
6126 if (info->rep_prefix)
6127 exit_info |= SVM_IOIO_REP_MASK;
6128
6129 bytes = min(bytes, 4u);
6130
6131 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6132
6133 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6134
6135 vmcb->control.exit_info_1 = exit_info;
6136 vmcb->control.exit_info_2 = info->next_rip;
6137
6138 break;
6139 }
6140 default:
6141 break;
6142 }
6143
6144 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6145 if (static_cpu_has(X86_FEATURE_NRIPS))
6146 vmcb->control.next_rip = info->next_rip;
6147 vmcb->control.exit_code = icpt_info.exit_code;
6148 vmexit = nested_svm_exit_handled(svm);
6149
6150 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6151 : X86EMUL_CONTINUE;
6152
6153 out:
6154 return ret;
6155 }
6156
6157 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6158 {
6159 local_irq_enable();
6160 /*
6161 * We must have an instruction with interrupts enabled, so
6162 * the timer interrupt isn't delayed by the interrupt shadow.
6163 */
6164 asm("nop");
6165 local_irq_disable();
6166 }
6167
6168 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6169 {
6170 if (pause_filter_thresh)
6171 shrink_ple_window(vcpu);
6172 }
6173
6174 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6175 {
6176 if (avic_handle_apic_id_update(vcpu) != 0)
6177 return;
6178 avic_handle_dfr_update(vcpu);
6179 avic_handle_ldr_update(vcpu);
6180 }
6181
6182 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6183 {
6184 /* [63:9] are reserved. */
6185 vcpu->arch.mcg_cap &= 0x1ff;
6186 }
6187
6188 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6189 {
6190 struct vcpu_svm *svm = to_svm(vcpu);
6191
6192 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6193 if (!gif_set(svm))
6194 return 0;
6195
6196 if (is_guest_mode(&svm->vcpu) &&
6197 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6198 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6199 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6200 svm->nested.exit_required = true;
6201 return 0;
6202 }
6203
6204 return 1;
6205 }
6206
6207 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6208 {
6209 struct vcpu_svm *svm = to_svm(vcpu);
6210 int ret;
6211
6212 if (is_guest_mode(vcpu)) {
6213 /* FED8h - SVM Guest */
6214 put_smstate(u64, smstate, 0x7ed8, 1);
6215 /* FEE0h - SVM Guest VMCB Physical Address */
6216 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6217
6218 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6219 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6220 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6221
6222 ret = nested_svm_vmexit(svm);
6223 if (ret)
6224 return ret;
6225 }
6226 return 0;
6227 }
6228
6229 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6230 {
6231 struct vcpu_svm *svm = to_svm(vcpu);
6232 struct vmcb *nested_vmcb;
6233 struct kvm_host_map map;
6234 u64 guest;
6235 u64 vmcb;
6236
6237 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6238 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6239
6240 if (guest) {
6241 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6242 return 1;
6243 nested_vmcb = map.hva;
6244 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6245 }
6246 return 0;
6247 }
6248
6249 static int enable_smi_window(struct kvm_vcpu *vcpu)
6250 {
6251 struct vcpu_svm *svm = to_svm(vcpu);
6252
6253 if (!gif_set(svm)) {
6254 if (vgif_enabled(svm))
6255 set_intercept(svm, INTERCEPT_STGI);
6256 /* STGI will cause a vm exit */
6257 return 1;
6258 }
6259 return 0;
6260 }
6261
6262 static int sev_asid_new(void)
6263 {
6264 int pos;
6265
6266 /*
6267 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6268 */
6269 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6270 if (pos >= max_sev_asid)
6271 return -EBUSY;
6272
6273 set_bit(pos, sev_asid_bitmap);
6274 return pos + 1;
6275 }
6276
6277 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6278 {
6279 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6280 int asid, ret;
6281
6282 ret = -EBUSY;
6283 if (unlikely(sev->active))
6284 return ret;
6285
6286 asid = sev_asid_new();
6287 if (asid < 0)
6288 return ret;
6289
6290 ret = sev_platform_init(&argp->error);
6291 if (ret)
6292 goto e_free;
6293
6294 sev->active = true;
6295 sev->asid = asid;
6296 INIT_LIST_HEAD(&sev->regions_list);
6297
6298 return 0;
6299
6300 e_free:
6301 __sev_asid_free(asid);
6302 return ret;
6303 }
6304
6305 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6306 {
6307 struct sev_data_activate *data;
6308 int asid = sev_get_asid(kvm);
6309 int ret;
6310
6311 wbinvd_on_all_cpus();
6312
6313 ret = sev_guest_df_flush(error);
6314 if (ret)
6315 return ret;
6316
6317 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6318 if (!data)
6319 return -ENOMEM;
6320
6321 /* activate ASID on the given handle */
6322 data->handle = handle;
6323 data->asid = asid;
6324 ret = sev_guest_activate(data, error);
6325 kfree(data);
6326
6327 return ret;
6328 }
6329
6330 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6331 {
6332 struct fd f;
6333 int ret;
6334
6335 f = fdget(fd);
6336 if (!f.file)
6337 return -EBADF;
6338
6339 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6340
6341 fdput(f);
6342 return ret;
6343 }
6344
6345 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6346 {
6347 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6348
6349 return __sev_issue_cmd(sev->fd, id, data, error);
6350 }
6351
6352 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6353 {
6354 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6355 struct sev_data_launch_start *start;
6356 struct kvm_sev_launch_start params;
6357 void *dh_blob, *session_blob;
6358 int *error = &argp->error;
6359 int ret;
6360
6361 if (!sev_guest(kvm))
6362 return -ENOTTY;
6363
6364 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6365 return -EFAULT;
6366
6367 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6368 if (!start)
6369 return -ENOMEM;
6370
6371 dh_blob = NULL;
6372 if (params.dh_uaddr) {
6373 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6374 if (IS_ERR(dh_blob)) {
6375 ret = PTR_ERR(dh_blob);
6376 goto e_free;
6377 }
6378
6379 start->dh_cert_address = __sme_set(__pa(dh_blob));
6380 start->dh_cert_len = params.dh_len;
6381 }
6382
6383 session_blob = NULL;
6384 if (params.session_uaddr) {
6385 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6386 if (IS_ERR(session_blob)) {
6387 ret = PTR_ERR(session_blob);
6388 goto e_free_dh;
6389 }
6390
6391 start->session_address = __sme_set(__pa(session_blob));
6392 start->session_len = params.session_len;
6393 }
6394
6395 start->handle = params.handle;
6396 start->policy = params.policy;
6397
6398 /* create memory encryption context */
6399 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6400 if (ret)
6401 goto e_free_session;
6402
6403 /* Bind ASID to this guest */
6404 ret = sev_bind_asid(kvm, start->handle, error);
6405 if (ret)
6406 goto e_free_session;
6407
6408 /* return handle to userspace */
6409 params.handle = start->handle;
6410 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6411 sev_unbind_asid(kvm, start->handle);
6412 ret = -EFAULT;
6413 goto e_free_session;
6414 }
6415
6416 sev->handle = start->handle;
6417 sev->fd = argp->sev_fd;
6418
6419 e_free_session:
6420 kfree(session_blob);
6421 e_free_dh:
6422 kfree(dh_blob);
6423 e_free:
6424 kfree(start);
6425 return ret;
6426 }
6427
6428 static unsigned long get_num_contig_pages(unsigned long idx,
6429 struct page **inpages, unsigned long npages)
6430 {
6431 unsigned long paddr, next_paddr;
6432 unsigned long i = idx + 1, pages = 1;
6433
6434 /* find the number of contiguous pages starting from idx */
6435 paddr = __sme_page_pa(inpages[idx]);
6436 while (i < npages) {
6437 next_paddr = __sme_page_pa(inpages[i++]);
6438 if ((paddr + PAGE_SIZE) == next_paddr) {
6439 pages++;
6440 paddr = next_paddr;
6441 continue;
6442 }
6443 break;
6444 }
6445
6446 return pages;
6447 }
6448
6449 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6450 {
6451 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6452 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6453 struct kvm_sev_launch_update_data params;
6454 struct sev_data_launch_update_data *data;
6455 struct page **inpages;
6456 int ret;
6457
6458 if (!sev_guest(kvm))
6459 return -ENOTTY;
6460
6461 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6462 return -EFAULT;
6463
6464 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6465 if (!data)
6466 return -ENOMEM;
6467
6468 vaddr = params.uaddr;
6469 size = params.len;
6470 vaddr_end = vaddr + size;
6471
6472 /* Lock the user memory. */
6473 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6474 if (!inpages) {
6475 ret = -ENOMEM;
6476 goto e_free;
6477 }
6478
6479 /*
6480 * The LAUNCH_UPDATE command will perform in-place encryption of the
6481 * memory content (i.e it will write the same memory region with C=1).
6482 * It's possible that the cache may contain the data with C=0, i.e.,
6483 * unencrypted so invalidate it first.
6484 */
6485 sev_clflush_pages(inpages, npages);
6486
6487 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6488 int offset, len;
6489
6490 /*
6491 * If the user buffer is not page-aligned, calculate the offset
6492 * within the page.
6493 */
6494 offset = vaddr & (PAGE_SIZE - 1);
6495
6496 /* Calculate the number of pages that can be encrypted in one go. */
6497 pages = get_num_contig_pages(i, inpages, npages);
6498
6499 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6500
6501 data->handle = sev->handle;
6502 data->len = len;
6503 data->address = __sme_page_pa(inpages[i]) + offset;
6504 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6505 if (ret)
6506 goto e_unpin;
6507
6508 size -= len;
6509 next_vaddr = vaddr + len;
6510 }
6511
6512 e_unpin:
6513 /* content of memory is updated, mark pages dirty */
6514 for (i = 0; i < npages; i++) {
6515 set_page_dirty_lock(inpages[i]);
6516 mark_page_accessed(inpages[i]);
6517 }
6518 /* unlock the user pages */
6519 sev_unpin_memory(kvm, inpages, npages);
6520 e_free:
6521 kfree(data);
6522 return ret;
6523 }
6524
6525 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6526 {
6527 void __user *measure = (void __user *)(uintptr_t)argp->data;
6528 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6529 struct sev_data_launch_measure *data;
6530 struct kvm_sev_launch_measure params;
6531 void __user *p = NULL;
6532 void *blob = NULL;
6533 int ret;
6534
6535 if (!sev_guest(kvm))
6536 return -ENOTTY;
6537
6538 if (copy_from_user(&params, measure, sizeof(params)))
6539 return -EFAULT;
6540
6541 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6542 if (!data)
6543 return -ENOMEM;
6544
6545 /* User wants to query the blob length */
6546 if (!params.len)
6547 goto cmd;
6548
6549 p = (void __user *)(uintptr_t)params.uaddr;
6550 if (p) {
6551 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6552 ret = -EINVAL;
6553 goto e_free;
6554 }
6555
6556 ret = -ENOMEM;
6557 blob = kmalloc(params.len, GFP_KERNEL);
6558 if (!blob)
6559 goto e_free;
6560
6561 data->address = __psp_pa(blob);
6562 data->len = params.len;
6563 }
6564
6565 cmd:
6566 data->handle = sev->handle;
6567 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6568
6569 /*
6570 * If we query the session length, FW responded with expected data.
6571 */
6572 if (!params.len)
6573 goto done;
6574
6575 if (ret)
6576 goto e_free_blob;
6577
6578 if (blob) {
6579 if (copy_to_user(p, blob, params.len))
6580 ret = -EFAULT;
6581 }
6582
6583 done:
6584 params.len = data->len;
6585 if (copy_to_user(measure, &params, sizeof(params)))
6586 ret = -EFAULT;
6587 e_free_blob:
6588 kfree(blob);
6589 e_free:
6590 kfree(data);
6591 return ret;
6592 }
6593
6594 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6595 {
6596 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6597 struct sev_data_launch_finish *data;
6598 int ret;
6599
6600 if (!sev_guest(kvm))
6601 return -ENOTTY;
6602
6603 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6604 if (!data)
6605 return -ENOMEM;
6606
6607 data->handle = sev->handle;
6608 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6609
6610 kfree(data);
6611 return ret;
6612 }
6613
6614 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6615 {
6616 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6617 struct kvm_sev_guest_status params;
6618 struct sev_data_guest_status *data;
6619 int ret;
6620
6621 if (!sev_guest(kvm))
6622 return -ENOTTY;
6623
6624 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6625 if (!data)
6626 return -ENOMEM;
6627
6628 data->handle = sev->handle;
6629 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6630 if (ret)
6631 goto e_free;
6632
6633 params.policy = data->policy;
6634 params.state = data->state;
6635 params.handle = data->handle;
6636
6637 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6638 ret = -EFAULT;
6639 e_free:
6640 kfree(data);
6641 return ret;
6642 }
6643
6644 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6645 unsigned long dst, int size,
6646 int *error, bool enc)
6647 {
6648 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6649 struct sev_data_dbg *data;
6650 int ret;
6651
6652 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6653 if (!data)
6654 return -ENOMEM;
6655
6656 data->handle = sev->handle;
6657 data->dst_addr = dst;
6658 data->src_addr = src;
6659 data->len = size;
6660
6661 ret = sev_issue_cmd(kvm,
6662 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6663 data, error);
6664 kfree(data);
6665 return ret;
6666 }
6667
6668 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6669 unsigned long dst_paddr, int sz, int *err)
6670 {
6671 int offset;
6672
6673 /*
6674 * Its safe to read more than we are asked, caller should ensure that
6675 * destination has enough space.
6676 */
6677 src_paddr = round_down(src_paddr, 16);
6678 offset = src_paddr & 15;
6679 sz = round_up(sz + offset, 16);
6680
6681 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6682 }
6683
6684 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6685 unsigned long __user dst_uaddr,
6686 unsigned long dst_paddr,
6687 int size, int *err)
6688 {
6689 struct page *tpage = NULL;
6690 int ret, offset;
6691
6692 /* if inputs are not 16-byte then use intermediate buffer */
6693 if (!IS_ALIGNED(dst_paddr, 16) ||
6694 !IS_ALIGNED(paddr, 16) ||
6695 !IS_ALIGNED(size, 16)) {
6696 tpage = (void *)alloc_page(GFP_KERNEL);
6697 if (!tpage)
6698 return -ENOMEM;
6699
6700 dst_paddr = __sme_page_pa(tpage);
6701 }
6702
6703 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6704 if (ret)
6705 goto e_free;
6706
6707 if (tpage) {
6708 offset = paddr & 15;
6709 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6710 page_address(tpage) + offset, size))
6711 ret = -EFAULT;
6712 }
6713
6714 e_free:
6715 if (tpage)
6716 __free_page(tpage);
6717
6718 return ret;
6719 }
6720
6721 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6722 unsigned long __user vaddr,
6723 unsigned long dst_paddr,
6724 unsigned long __user dst_vaddr,
6725 int size, int *error)
6726 {
6727 struct page *src_tpage = NULL;
6728 struct page *dst_tpage = NULL;
6729 int ret, len = size;
6730
6731 /* If source buffer is not aligned then use an intermediate buffer */
6732 if (!IS_ALIGNED(vaddr, 16)) {
6733 src_tpage = alloc_page(GFP_KERNEL);
6734 if (!src_tpage)
6735 return -ENOMEM;
6736
6737 if (copy_from_user(page_address(src_tpage),
6738 (void __user *)(uintptr_t)vaddr, size)) {
6739 __free_page(src_tpage);
6740 return -EFAULT;
6741 }
6742
6743 paddr = __sme_page_pa(src_tpage);
6744 }
6745
6746 /*
6747 * If destination buffer or length is not aligned then do read-modify-write:
6748 * - decrypt destination in an intermediate buffer
6749 * - copy the source buffer in an intermediate buffer
6750 * - use the intermediate buffer as source buffer
6751 */
6752 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6753 int dst_offset;
6754
6755 dst_tpage = alloc_page(GFP_KERNEL);
6756 if (!dst_tpage) {
6757 ret = -ENOMEM;
6758 goto e_free;
6759 }
6760
6761 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6762 __sme_page_pa(dst_tpage), size, error);
6763 if (ret)
6764 goto e_free;
6765
6766 /*
6767 * If source is kernel buffer then use memcpy() otherwise
6768 * copy_from_user().
6769 */
6770 dst_offset = dst_paddr & 15;
6771
6772 if (src_tpage)
6773 memcpy(page_address(dst_tpage) + dst_offset,
6774 page_address(src_tpage), size);
6775 else {
6776 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6777 (void __user *)(uintptr_t)vaddr, size)) {
6778 ret = -EFAULT;
6779 goto e_free;
6780 }
6781 }
6782
6783 paddr = __sme_page_pa(dst_tpage);
6784 dst_paddr = round_down(dst_paddr, 16);
6785 len = round_up(size, 16);
6786 }
6787
6788 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6789
6790 e_free:
6791 if (src_tpage)
6792 __free_page(src_tpage);
6793 if (dst_tpage)
6794 __free_page(dst_tpage);
6795 return ret;
6796 }
6797
6798 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6799 {
6800 unsigned long vaddr, vaddr_end, next_vaddr;
6801 unsigned long dst_vaddr;
6802 struct page **src_p, **dst_p;
6803 struct kvm_sev_dbg debug;
6804 unsigned long n;
6805 unsigned int size;
6806 int ret;
6807
6808 if (!sev_guest(kvm))
6809 return -ENOTTY;
6810
6811 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6812 return -EFAULT;
6813
6814 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6815 return -EINVAL;
6816 if (!debug.dst_uaddr)
6817 return -EINVAL;
6818
6819 vaddr = debug.src_uaddr;
6820 size = debug.len;
6821 vaddr_end = vaddr + size;
6822 dst_vaddr = debug.dst_uaddr;
6823
6824 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6825 int len, s_off, d_off;
6826
6827 /* lock userspace source and destination page */
6828 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6829 if (!src_p)
6830 return -EFAULT;
6831
6832 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6833 if (!dst_p) {
6834 sev_unpin_memory(kvm, src_p, n);
6835 return -EFAULT;
6836 }
6837
6838 /*
6839 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6840 * memory content (i.e it will write the same memory region with C=1).
6841 * It's possible that the cache may contain the data with C=0, i.e.,
6842 * unencrypted so invalidate it first.
6843 */
6844 sev_clflush_pages(src_p, 1);
6845 sev_clflush_pages(dst_p, 1);
6846
6847 /*
6848 * Since user buffer may not be page aligned, calculate the
6849 * offset within the page.
6850 */
6851 s_off = vaddr & ~PAGE_MASK;
6852 d_off = dst_vaddr & ~PAGE_MASK;
6853 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6854
6855 if (dec)
6856 ret = __sev_dbg_decrypt_user(kvm,
6857 __sme_page_pa(src_p[0]) + s_off,
6858 dst_vaddr,
6859 __sme_page_pa(dst_p[0]) + d_off,
6860 len, &argp->error);
6861 else
6862 ret = __sev_dbg_encrypt_user(kvm,
6863 __sme_page_pa(src_p[0]) + s_off,
6864 vaddr,
6865 __sme_page_pa(dst_p[0]) + d_off,
6866 dst_vaddr,
6867 len, &argp->error);
6868
6869 sev_unpin_memory(kvm, src_p, n);
6870 sev_unpin_memory(kvm, dst_p, n);
6871
6872 if (ret)
6873 goto err;
6874
6875 next_vaddr = vaddr + len;
6876 dst_vaddr = dst_vaddr + len;
6877 size -= len;
6878 }
6879 err:
6880 return ret;
6881 }
6882
6883 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6884 {
6885 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6886 struct sev_data_launch_secret *data;
6887 struct kvm_sev_launch_secret params;
6888 struct page **pages;
6889 void *blob, *hdr;
6890 unsigned long n;
6891 int ret, offset;
6892
6893 if (!sev_guest(kvm))
6894 return -ENOTTY;
6895
6896 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6897 return -EFAULT;
6898
6899 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6900 if (!pages)
6901 return -ENOMEM;
6902
6903 /*
6904 * The secret must be copied into contiguous memory region, lets verify
6905 * that userspace memory pages are contiguous before we issue command.
6906 */
6907 if (get_num_contig_pages(0, pages, n) != n) {
6908 ret = -EINVAL;
6909 goto e_unpin_memory;
6910 }
6911
6912 ret = -ENOMEM;
6913 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6914 if (!data)
6915 goto e_unpin_memory;
6916
6917 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6918 data->guest_address = __sme_page_pa(pages[0]) + offset;
6919 data->guest_len = params.guest_len;
6920
6921 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6922 if (IS_ERR(blob)) {
6923 ret = PTR_ERR(blob);
6924 goto e_free;
6925 }
6926
6927 data->trans_address = __psp_pa(blob);
6928 data->trans_len = params.trans_len;
6929
6930 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6931 if (IS_ERR(hdr)) {
6932 ret = PTR_ERR(hdr);
6933 goto e_free_blob;
6934 }
6935 data->hdr_address = __psp_pa(hdr);
6936 data->hdr_len = params.hdr_len;
6937
6938 data->handle = sev->handle;
6939 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6940
6941 kfree(hdr);
6942
6943 e_free_blob:
6944 kfree(blob);
6945 e_free:
6946 kfree(data);
6947 e_unpin_memory:
6948 sev_unpin_memory(kvm, pages, n);
6949 return ret;
6950 }
6951
6952 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6953 {
6954 struct kvm_sev_cmd sev_cmd;
6955 int r;
6956
6957 if (!svm_sev_enabled())
6958 return -ENOTTY;
6959
6960 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6961 return -EFAULT;
6962
6963 mutex_lock(&kvm->lock);
6964
6965 switch (sev_cmd.id) {
6966 case KVM_SEV_INIT:
6967 r = sev_guest_init(kvm, &sev_cmd);
6968 break;
6969 case KVM_SEV_LAUNCH_START:
6970 r = sev_launch_start(kvm, &sev_cmd);
6971 break;
6972 case KVM_SEV_LAUNCH_UPDATE_DATA:
6973 r = sev_launch_update_data(kvm, &sev_cmd);
6974 break;
6975 case KVM_SEV_LAUNCH_MEASURE:
6976 r = sev_launch_measure(kvm, &sev_cmd);
6977 break;
6978 case KVM_SEV_LAUNCH_FINISH:
6979 r = sev_launch_finish(kvm, &sev_cmd);
6980 break;
6981 case KVM_SEV_GUEST_STATUS:
6982 r = sev_guest_status(kvm, &sev_cmd);
6983 break;
6984 case KVM_SEV_DBG_DECRYPT:
6985 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6986 break;
6987 case KVM_SEV_DBG_ENCRYPT:
6988 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6989 break;
6990 case KVM_SEV_LAUNCH_SECRET:
6991 r = sev_launch_secret(kvm, &sev_cmd);
6992 break;
6993 default:
6994 r = -EINVAL;
6995 goto out;
6996 }
6997
6998 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6999 r = -EFAULT;
7000
7001 out:
7002 mutex_unlock(&kvm->lock);
7003 return r;
7004 }
7005
7006 static int svm_register_enc_region(struct kvm *kvm,
7007 struct kvm_enc_region *range)
7008 {
7009 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7010 struct enc_region *region;
7011 int ret = 0;
7012
7013 if (!sev_guest(kvm))
7014 return -ENOTTY;
7015
7016 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7017 return -EINVAL;
7018
7019 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7020 if (!region)
7021 return -ENOMEM;
7022
7023 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7024 if (!region->pages) {
7025 ret = -ENOMEM;
7026 goto e_free;
7027 }
7028
7029 /*
7030 * The guest may change the memory encryption attribute from C=0 -> C=1
7031 * or vice versa for this memory range. Lets make sure caches are
7032 * flushed to ensure that guest data gets written into memory with
7033 * correct C-bit.
7034 */
7035 sev_clflush_pages(region->pages, region->npages);
7036
7037 region->uaddr = range->addr;
7038 region->size = range->size;
7039
7040 mutex_lock(&kvm->lock);
7041 list_add_tail(&region->list, &sev->regions_list);
7042 mutex_unlock(&kvm->lock);
7043
7044 return ret;
7045
7046 e_free:
7047 kfree(region);
7048 return ret;
7049 }
7050
7051 static struct enc_region *
7052 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7053 {
7054 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7055 struct list_head *head = &sev->regions_list;
7056 struct enc_region *i;
7057
7058 list_for_each_entry(i, head, list) {
7059 if (i->uaddr == range->addr &&
7060 i->size == range->size)
7061 return i;
7062 }
7063
7064 return NULL;
7065 }
7066
7067
7068 static int svm_unregister_enc_region(struct kvm *kvm,
7069 struct kvm_enc_region *range)
7070 {
7071 struct enc_region *region;
7072 int ret;
7073
7074 mutex_lock(&kvm->lock);
7075
7076 if (!sev_guest(kvm)) {
7077 ret = -ENOTTY;
7078 goto failed;
7079 }
7080
7081 region = find_enc_region(kvm, range);
7082 if (!region) {
7083 ret = -EINVAL;
7084 goto failed;
7085 }
7086
7087 __unregister_enc_region_locked(kvm, region);
7088
7089 mutex_unlock(&kvm->lock);
7090 return 0;
7091
7092 failed:
7093 mutex_unlock(&kvm->lock);
7094 return ret;
7095 }
7096
7097 static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
7098 {
7099 /* Not supported */
7100 return 0;
7101 }
7102
7103 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7104 uint16_t *vmcs_version)
7105 {
7106 /* Intel-only feature */
7107 return -ENODEV;
7108 }
7109
7110 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7111 {
7112 bool is_user, smap;
7113
7114 is_user = svm_get_cpl(vcpu) == 3;
7115 smap = !kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
7116
7117 /*
7118 * Detect and workaround Errata 1096 Fam_17h_00_0Fh
7119 *
7120 * In non SEV guest, hypervisor will be able to read the guest
7121 * memory to decode the instruction pointer when insn_len is zero
7122 * so we return true to indicate that decoding is possible.
7123 *
7124 * But in the SEV guest, the guest memory is encrypted with the
7125 * guest specific key and hypervisor will not be able to decode the
7126 * instruction pointer so we will not able to workaround it. Lets
7127 * print the error and request to kill the guest.
7128 */
7129 if (is_user && smap) {
7130 if (!sev_guest(vcpu->kvm))
7131 return true;
7132
7133 pr_err_ratelimited("KVM: Guest triggered AMD Erratum 1096\n");
7134 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7135 }
7136
7137 return false;
7138 }
7139
7140 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7141 .cpu_has_kvm_support = has_svm,
7142 .disabled_by_bios = is_disabled,
7143 .hardware_setup = svm_hardware_setup,
7144 .hardware_unsetup = svm_hardware_unsetup,
7145 .check_processor_compatibility = svm_check_processor_compat,
7146 .hardware_enable = svm_hardware_enable,
7147 .hardware_disable = svm_hardware_disable,
7148 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7149 .has_emulated_msr = svm_has_emulated_msr,
7150
7151 .vcpu_create = svm_create_vcpu,
7152 .vcpu_free = svm_free_vcpu,
7153 .vcpu_reset = svm_vcpu_reset,
7154
7155 .vm_alloc = svm_vm_alloc,
7156 .vm_free = svm_vm_free,
7157 .vm_init = avic_vm_init,
7158 .vm_destroy = svm_vm_destroy,
7159
7160 .prepare_guest_switch = svm_prepare_guest_switch,
7161 .vcpu_load = svm_vcpu_load,
7162 .vcpu_put = svm_vcpu_put,
7163 .vcpu_blocking = svm_vcpu_blocking,
7164 .vcpu_unblocking = svm_vcpu_unblocking,
7165
7166 .update_bp_intercept = update_bp_intercept,
7167 .get_msr_feature = svm_get_msr_feature,
7168 .get_msr = svm_get_msr,
7169 .set_msr = svm_set_msr,
7170 .get_segment_base = svm_get_segment_base,
7171 .get_segment = svm_get_segment,
7172 .set_segment = svm_set_segment,
7173 .get_cpl = svm_get_cpl,
7174 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7175 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7176 .decache_cr3 = svm_decache_cr3,
7177 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7178 .set_cr0 = svm_set_cr0,
7179 .set_cr3 = svm_set_cr3,
7180 .set_cr4 = svm_set_cr4,
7181 .set_efer = svm_set_efer,
7182 .get_idt = svm_get_idt,
7183 .set_idt = svm_set_idt,
7184 .get_gdt = svm_get_gdt,
7185 .set_gdt = svm_set_gdt,
7186 .get_dr6 = svm_get_dr6,
7187 .set_dr6 = svm_set_dr6,
7188 .set_dr7 = svm_set_dr7,
7189 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7190 .cache_reg = svm_cache_reg,
7191 .get_rflags = svm_get_rflags,
7192 .set_rflags = svm_set_rflags,
7193
7194 .tlb_flush = svm_flush_tlb,
7195 .tlb_flush_gva = svm_flush_tlb_gva,
7196
7197 .run = svm_vcpu_run,
7198 .handle_exit = handle_exit,
7199 .skip_emulated_instruction = skip_emulated_instruction,
7200 .set_interrupt_shadow = svm_set_interrupt_shadow,
7201 .get_interrupt_shadow = svm_get_interrupt_shadow,
7202 .patch_hypercall = svm_patch_hypercall,
7203 .set_irq = svm_set_irq,
7204 .set_nmi = svm_inject_nmi,
7205 .queue_exception = svm_queue_exception,
7206 .cancel_injection = svm_cancel_injection,
7207 .interrupt_allowed = svm_interrupt_allowed,
7208 .nmi_allowed = svm_nmi_allowed,
7209 .get_nmi_mask = svm_get_nmi_mask,
7210 .set_nmi_mask = svm_set_nmi_mask,
7211 .enable_nmi_window = enable_nmi_window,
7212 .enable_irq_window = enable_irq_window,
7213 .update_cr8_intercept = update_cr8_intercept,
7214 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7215 .get_enable_apicv = svm_get_enable_apicv,
7216 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7217 .load_eoi_exitmap = svm_load_eoi_exitmap,
7218 .hwapic_irr_update = svm_hwapic_irr_update,
7219 .hwapic_isr_update = svm_hwapic_isr_update,
7220 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7221 .apicv_post_state_restore = avic_post_state_restore,
7222
7223 .set_tss_addr = svm_set_tss_addr,
7224 .set_identity_map_addr = svm_set_identity_map_addr,
7225 .get_tdp_level = get_npt_level,
7226 .get_mt_mask = svm_get_mt_mask,
7227
7228 .get_exit_info = svm_get_exit_info,
7229
7230 .get_lpage_level = svm_get_lpage_level,
7231
7232 .cpuid_update = svm_cpuid_update,
7233
7234 .rdtscp_supported = svm_rdtscp_supported,
7235 .invpcid_supported = svm_invpcid_supported,
7236 .mpx_supported = svm_mpx_supported,
7237 .xsaves_supported = svm_xsaves_supported,
7238 .umip_emulated = svm_umip_emulated,
7239 .pt_supported = svm_pt_supported,
7240
7241 .set_supported_cpuid = svm_set_supported_cpuid,
7242
7243 .has_wbinvd_exit = svm_has_wbinvd_exit,
7244
7245 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7246 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7247
7248 .set_tdp_cr3 = set_tdp_cr3,
7249
7250 .check_intercept = svm_check_intercept,
7251 .handle_external_intr = svm_handle_external_intr,
7252
7253 .request_immediate_exit = __kvm_request_immediate_exit,
7254
7255 .sched_in = svm_sched_in,
7256
7257 .pmu_ops = &amd_pmu_ops,
7258 .deliver_posted_interrupt = svm_deliver_avic_intr,
7259 .update_pi_irte = svm_update_pi_irte,
7260 .setup_mce = svm_setup_mce,
7261
7262 .smi_allowed = svm_smi_allowed,
7263 .pre_enter_smm = svm_pre_enter_smm,
7264 .pre_leave_smm = svm_pre_leave_smm,
7265 .enable_smi_window = enable_smi_window,
7266
7267 .mem_enc_op = svm_mem_enc_op,
7268 .mem_enc_reg_region = svm_register_enc_region,
7269 .mem_enc_unreg_region = svm_unregister_enc_region,
7270
7271 .nested_enable_evmcs = nested_enable_evmcs,
7272 .nested_get_evmcs_version = nested_get_evmcs_version,
7273
7274 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7275 };
7276
7277 static int __init svm_init(void)
7278 {
7279 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7280 __alignof__(struct vcpu_svm), THIS_MODULE);
7281 }
7282
7283 static void __exit svm_exit(void)
7284 {
7285 kvm_exit();
7286 }
7287
7288 module_init(svm_init)
7289 module_exit(svm_exit)