2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
49 #include <asm/virtext.h>
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
57 static const struct x86_cpu_id svm_cpu_id
[] = {
58 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
61 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
69 #define SVM_FEATURE_NPT (1 << 0)
70 #define SVM_FEATURE_LBRV (1 << 1)
71 #define SVM_FEATURE_SVML (1 << 2)
72 #define SVM_FEATURE_NRIP (1 << 3)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79 #define SVM_AVIC_DOORBELL 0xc001011b
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116 static bool erratum_383_found __read_mostly
;
118 static const u32 host_save_user_msrs
[] = {
120 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
123 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
131 struct nested_state
{
137 /* These are the merged vectors */
140 /* gpa pointers to the real vectors */
144 /* A VMEXIT is required but not yet emulated */
147 /* cache for intercepts of the guest */
150 u32 intercept_exceptions
;
153 /* Nested Paging related state */
157 #define MSRPM_OFFSETS 16
158 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
161 * Set osvw_len to higher value when updated Revision Guides
162 * are published and we know what the new status bits are
164 static uint64_t osvw_len
= 4, osvw_status
;
167 struct kvm_vcpu vcpu
;
169 unsigned long vmcb_pa
;
170 struct svm_cpu_data
*svm_data
;
171 uint64_t asid_generation
;
172 uint64_t sysenter_esp
;
173 uint64_t sysenter_eip
;
178 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
190 struct nested_state nested
;
193 u64 nmi_singlestep_guest_rflags
;
195 unsigned int3_injected
;
196 unsigned long int3_rip
;
198 /* cached guest cpuid flags for faster access */
199 bool nrips_enabled
: 1;
202 struct page
*avic_backing_page
;
203 u64
*avic_physical_id_cache
;
204 bool avic_is_running
;
207 * Per-vcpu list of struct amd_svm_iommu_ir:
208 * This is used mainly to store interrupt remapping information used
209 * when update the vcpu affinity. This avoids the need to scan for
210 * IRTE and try to match ga_tag in the IOMMU driver.
212 struct list_head ir_list
;
213 spinlock_t ir_list_lock
;
217 * This is a wrapper of struct amd_iommu_ir_data.
219 struct amd_svm_iommu_ir
{
220 struct list_head node
; /* Used by SVM for per-vcpu ir_list */
221 void *data
; /* Storing pointer to struct amd_ir_data */
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
232 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
233 #define TSC_RATIO_DEFAULT 0x0100000000ULL
235 #define MSR_INVALID 0xffffffffU
237 static const struct svm_direct_access_msrs
{
238 u32 index
; /* Index of the MSR */
239 bool always
; /* True if intercept is always on */
240 } direct_access_msrs
[] = {
241 { .index
= MSR_STAR
, .always
= true },
242 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
244 { .index
= MSR_GS_BASE
, .always
= true },
245 { .index
= MSR_FS_BASE
, .always
= true },
246 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
247 { .index
= MSR_LSTAR
, .always
= true },
248 { .index
= MSR_CSTAR
, .always
= true },
249 { .index
= MSR_SYSCALL_MASK
, .always
= true },
251 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
252 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
253 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
254 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
255 { .index
= MSR_INVALID
, .always
= false },
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled
= true;
262 static bool npt_enabled
;
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt
= true;
267 module_param(npt
, int, S_IRUGO
);
269 /* allow nested virtualization in KVM/SVM */
270 static int nested
= true;
271 module_param(nested
, int, S_IRUGO
);
273 /* enable / disable AVIC */
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic
, int, S_IRUGO
);
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls
= true;
281 module_param(vls
, int, 0444);
283 /* AVIC VM ID bit masks and lock */
284 static DECLARE_BITMAP(avic_vm_id_bitmap
, AVIC_VM_ID_NR
);
285 static DEFINE_SPINLOCK(avic_vm_id_lock
);
287 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
);
288 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
289 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
291 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
292 static int nested_svm_intercept(struct vcpu_svm
*svm
);
293 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
294 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
295 bool has_error_code
, u32 error_code
);
298 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
299 pause filter count */
300 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
301 VMCB_ASID
, /* ASID */
302 VMCB_INTR
, /* int_ctl, int_vector */
303 VMCB_NPT
, /* npt_en, nCR3, gPAT */
304 VMCB_CR
, /* CR0, CR3, CR4, EFER */
305 VMCB_DR
, /* DR6, DR7 */
306 VMCB_DT
, /* GDT, IDT */
307 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
308 VMCB_CR2
, /* CR2 only */
309 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310 VMCB_AVIC
, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311 * AVIC PHYSICAL_TABLE pointer,
312 * AVIC LOGICAL_TABLE pointer
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
320 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
322 static inline void mark_all_dirty(struct vmcb
*vmcb
)
324 vmcb
->control
.clean
= 0;
327 static inline void mark_all_clean(struct vmcb
*vmcb
)
329 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
330 & ~VMCB_ALWAYS_DIRTY_MASK
;
333 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
335 vmcb
->control
.clean
&= ~(1 << bit
);
338 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
340 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
343 static inline void avic_update_vapic_bar(struct vcpu_svm
*svm
, u64 data
)
345 svm
->vmcb
->control
.avic_vapic_bar
= data
& VMCB_AVIC_APIC_BAR_MASK
;
346 mark_dirty(svm
->vmcb
, VMCB_AVIC
);
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu
*vcpu
)
351 struct vcpu_svm
*svm
= to_svm(vcpu
);
352 u64
*entry
= svm
->avic_physical_id_cache
;
357 return (READ_ONCE(*entry
) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
360 static void recalc_intercepts(struct vcpu_svm
*svm
)
362 struct vmcb_control_area
*c
, *h
;
363 struct nested_state
*g
;
365 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
367 if (!is_guest_mode(&svm
->vcpu
))
370 c
= &svm
->vmcb
->control
;
371 h
= &svm
->nested
.hsave
->control
;
374 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
375 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
376 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
377 c
->intercept
= h
->intercept
| g
->intercept
;
380 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
382 if (is_guest_mode(&svm
->vcpu
))
383 return svm
->nested
.hsave
;
388 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
390 struct vmcb
*vmcb
= get_host_vmcb(svm
);
392 vmcb
->control
.intercept_cr
|= (1U << bit
);
394 recalc_intercepts(svm
);
397 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
399 struct vmcb
*vmcb
= get_host_vmcb(svm
);
401 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
403 recalc_intercepts(svm
);
406 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
408 struct vmcb
*vmcb
= get_host_vmcb(svm
);
410 return vmcb
->control
.intercept_cr
& (1U << bit
);
413 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
415 struct vmcb
*vmcb
= get_host_vmcb(svm
);
417 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
418 | (1 << INTERCEPT_DR1_READ
)
419 | (1 << INTERCEPT_DR2_READ
)
420 | (1 << INTERCEPT_DR3_READ
)
421 | (1 << INTERCEPT_DR4_READ
)
422 | (1 << INTERCEPT_DR5_READ
)
423 | (1 << INTERCEPT_DR6_READ
)
424 | (1 << INTERCEPT_DR7_READ
)
425 | (1 << INTERCEPT_DR0_WRITE
)
426 | (1 << INTERCEPT_DR1_WRITE
)
427 | (1 << INTERCEPT_DR2_WRITE
)
428 | (1 << INTERCEPT_DR3_WRITE
)
429 | (1 << INTERCEPT_DR4_WRITE
)
430 | (1 << INTERCEPT_DR5_WRITE
)
431 | (1 << INTERCEPT_DR6_WRITE
)
432 | (1 << INTERCEPT_DR7_WRITE
);
434 recalc_intercepts(svm
);
437 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
439 struct vmcb
*vmcb
= get_host_vmcb(svm
);
441 vmcb
->control
.intercept_dr
= 0;
443 recalc_intercepts(svm
);
446 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
448 struct vmcb
*vmcb
= get_host_vmcb(svm
);
450 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
452 recalc_intercepts(svm
);
455 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
457 struct vmcb
*vmcb
= get_host_vmcb(svm
);
459 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
461 recalc_intercepts(svm
);
464 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
466 struct vmcb
*vmcb
= get_host_vmcb(svm
);
468 vmcb
->control
.intercept
|= (1ULL << bit
);
470 recalc_intercepts(svm
);
473 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
475 struct vmcb
*vmcb
= get_host_vmcb(svm
);
477 vmcb
->control
.intercept
&= ~(1ULL << bit
);
479 recalc_intercepts(svm
);
482 static inline void enable_gif(struct vcpu_svm
*svm
)
484 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
487 static inline void disable_gif(struct vcpu_svm
*svm
)
489 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
492 static inline bool gif_set(struct vcpu_svm
*svm
)
494 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
497 static unsigned long iopm_base
;
499 struct kvm_ldttss_desc
{
502 unsigned base1
:8, type
:5, dpl
:2, p
:1;
503 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
506 } __attribute__((packed
));
508 struct svm_cpu_data
{
514 struct kvm_ldttss_desc
*tss_desc
;
516 struct page
*save_area
;
519 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
521 struct svm_init_data
{
526 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
528 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
529 #define MSRS_RANGE_SIZE 2048
530 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
532 static u32
svm_msrpm_offset(u32 msr
)
537 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
538 if (msr
< msrpm_ranges
[i
] ||
539 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
542 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
543 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
545 /* Now we have the u8 offset - but need the u32 offset */
549 /* MSR not in any range */
553 #define MAX_INST_SIZE 15
555 static inline void clgi(void)
557 asm volatile (__ex(SVM_CLGI
));
560 static inline void stgi(void)
562 asm volatile (__ex(SVM_STGI
));
565 static inline void invlpga(unsigned long addr
, u32 asid
)
567 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
570 static int get_npt_level(void)
573 return PT64_ROOT_LEVEL
;
575 return PT32E_ROOT_LEVEL
;
579 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
581 vcpu
->arch
.efer
= efer
;
582 if (!npt_enabled
&& !(efer
& EFER_LMA
))
585 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
586 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
589 static int is_external_interrupt(u32 info
)
591 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
592 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
595 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
597 struct vcpu_svm
*svm
= to_svm(vcpu
);
600 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
601 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
605 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
607 struct vcpu_svm
*svm
= to_svm(vcpu
);
610 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
612 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
616 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
618 struct vcpu_svm
*svm
= to_svm(vcpu
);
620 if (svm
->vmcb
->control
.next_rip
!= 0) {
621 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
622 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
625 if (!svm
->next_rip
) {
626 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
628 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
631 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
632 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
633 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
635 kvm_rip_write(vcpu
, svm
->next_rip
);
636 svm_set_interrupt_shadow(vcpu
, 0);
639 static void svm_queue_exception(struct kvm_vcpu
*vcpu
)
641 struct vcpu_svm
*svm
= to_svm(vcpu
);
642 unsigned nr
= vcpu
->arch
.exception
.nr
;
643 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
644 bool reinject
= vcpu
->arch
.exception
.reinject
;
645 u32 error_code
= vcpu
->arch
.exception
.error_code
;
648 * If we are within a nested VM we'd better #VMEXIT and let the guest
649 * handle the exception
652 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
655 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
656 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
659 * For guest debugging where we have to reinject #BP if some
660 * INT3 is guest-owned:
661 * Emulate nRIP by moving RIP forward. Will fail if injection
662 * raises a fault that is not intercepted. Still better than
663 * failing in all cases.
665 skip_emulated_instruction(&svm
->vcpu
);
666 rip
= kvm_rip_read(&svm
->vcpu
);
667 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
668 svm
->int3_injected
= rip
- old_rip
;
671 svm
->vmcb
->control
.event_inj
= nr
673 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
674 | SVM_EVTINJ_TYPE_EXEPT
;
675 svm
->vmcb
->control
.event_inj_err
= error_code
;
678 static void svm_init_erratum_383(void)
684 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
687 /* Use _safe variants to not break nested virtualization */
688 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
694 low
= lower_32_bits(val
);
695 high
= upper_32_bits(val
);
697 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
699 erratum_383_found
= true;
702 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
705 * Guests should see errata 400 and 415 as fixed (assuming that
706 * HLT and IO instructions are intercepted).
708 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
709 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
712 * By increasing VCPU's osvw.length to 3 we are telling the guest that
713 * all osvw.status bits inside that length, including bit 0 (which is
714 * reserved for erratum 298), are valid. However, if host processor's
715 * osvw_len is 0 then osvw_status[0] carries no information. We need to
716 * be conservative here and therefore we tell the guest that erratum 298
717 * is present (because we really don't know).
719 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
720 vcpu
->arch
.osvw
.status
|= 1;
723 static int has_svm(void)
727 if (!cpu_has_svm(&msg
)) {
728 printk(KERN_INFO
"has_svm: %s\n", msg
);
735 static void svm_hardware_disable(void)
737 /* Make sure we clean up behind us */
738 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
739 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
743 amd_pmu_disable_virt();
746 static int svm_hardware_enable(void)
749 struct svm_cpu_data
*sd
;
751 struct desc_struct
*gdt
;
752 int me
= raw_smp_processor_id();
754 rdmsrl(MSR_EFER
, efer
);
755 if (efer
& EFER_SVME
)
759 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
762 sd
= per_cpu(svm_data
, me
);
764 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
768 sd
->asid_generation
= 1;
769 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
770 sd
->next_asid
= sd
->max_asid
+ 1;
772 gdt
= get_current_gdt_rw();
773 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
775 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
777 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
779 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
780 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
781 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
788 * Note that it is possible to have a system with mixed processor
789 * revisions and therefore different OSVW bits. If bits are not the same
790 * on different processors then choose the worst case (i.e. if erratum
791 * is present on one processor and not on another then assume that the
792 * erratum is present everywhere).
794 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
795 uint64_t len
, status
= 0;
798 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
800 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
804 osvw_status
= osvw_len
= 0;
808 osvw_status
|= status
;
809 osvw_status
&= (1ULL << osvw_len
) - 1;
812 osvw_status
= osvw_len
= 0;
814 svm_init_erratum_383();
816 amd_pmu_enable_virt();
821 static void svm_cpu_uninit(int cpu
)
823 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
828 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
829 __free_page(sd
->save_area
);
833 static int svm_cpu_init(int cpu
)
835 struct svm_cpu_data
*sd
;
838 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
842 sd
->save_area
= alloc_page(GFP_KERNEL
);
847 per_cpu(svm_data
, cpu
) = sd
;
857 static bool valid_msr_intercept(u32 index
)
861 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
862 if (direct_access_msrs
[i
].index
== index
)
868 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
871 u8 bit_read
, bit_write
;
876 * If this warning triggers extend the direct_access_msrs list at the
877 * beginning of the file
879 WARN_ON(!valid_msr_intercept(msr
));
881 offset
= svm_msrpm_offset(msr
);
882 bit_read
= 2 * (msr
& 0x0f);
883 bit_write
= 2 * (msr
& 0x0f) + 1;
886 BUG_ON(offset
== MSR_INVALID
);
888 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
889 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
894 static void svm_vcpu_init_msrpm(u32
*msrpm
)
898 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
900 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
901 if (!direct_access_msrs
[i
].always
)
904 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
908 static void add_msr_offset(u32 offset
)
912 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
914 /* Offset already in list? */
915 if (msrpm_offsets
[i
] == offset
)
918 /* Slot used by another offset? */
919 if (msrpm_offsets
[i
] != MSR_INVALID
)
922 /* Add offset to list */
923 msrpm_offsets
[i
] = offset
;
929 * If this BUG triggers the msrpm_offsets table has an overflow. Just
930 * increase MSRPM_OFFSETS in this case.
935 static void init_msrpm_offsets(void)
939 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
941 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
944 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
945 BUG_ON(offset
== MSR_INVALID
);
947 add_msr_offset(offset
);
951 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
953 u32
*msrpm
= svm
->msrpm
;
955 svm
->vmcb
->control
.virt_ext
|= LBR_CTL_ENABLE_MASK
;
956 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
957 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
958 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
959 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
962 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
964 u32
*msrpm
= svm
->msrpm
;
966 svm
->vmcb
->control
.virt_ext
&= ~LBR_CTL_ENABLE_MASK
;
967 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
968 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
969 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
970 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
973 static void disable_nmi_singlestep(struct vcpu_svm
*svm
)
975 svm
->nmi_singlestep
= false;
976 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
)) {
977 /* Clear our flags if they were not set by the guest */
978 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
979 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_TF
;
980 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
981 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_RF
;
986 * This hash table is used to map VM_ID to a struct kvm_arch,
987 * when handling AMD IOMMU GALOG notification to schedule in
990 #define SVM_VM_DATA_HASH_BITS 8
991 static DEFINE_HASHTABLE(svm_vm_data_hash
, SVM_VM_DATA_HASH_BITS
);
992 static DEFINE_SPINLOCK(svm_vm_data_hash_lock
);
995 * This function is called from IOMMU driver to notify
996 * SVM to schedule in a particular vCPU of a particular VM.
998 static int avic_ga_log_notifier(u32 ga_tag
)
1000 unsigned long flags
;
1001 struct kvm_arch
*ka
= NULL
;
1002 struct kvm_vcpu
*vcpu
= NULL
;
1003 u32 vm_id
= AVIC_GATAG_TO_VMID(ga_tag
);
1004 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(ga_tag
);
1006 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__
, vm_id
, vcpu_id
);
1008 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1009 hash_for_each_possible(svm_vm_data_hash
, ka
, hnode
, vm_id
) {
1010 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1011 struct kvm_arch
*vm_data
= &kvm
->arch
;
1013 if (vm_data
->avic_vm_id
!= vm_id
)
1015 vcpu
= kvm_get_vcpu_by_id(kvm
, vcpu_id
);
1018 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1024 * At this point, the IOMMU should have already set the pending
1025 * bit in the vAPIC backing page. So, we just need to schedule
1028 if (vcpu
->mode
== OUTSIDE_GUEST_MODE
)
1029 kvm_vcpu_wake_up(vcpu
);
1034 static __init
int svm_hardware_setup(void)
1037 struct page
*iopm_pages
;
1041 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
1046 iopm_va
= page_address(iopm_pages
);
1047 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
1048 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
1050 init_msrpm_offsets();
1052 if (boot_cpu_has(X86_FEATURE_NX
))
1053 kvm_enable_efer_bits(EFER_NX
);
1055 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
1056 kvm_enable_efer_bits(EFER_FFXSR
);
1058 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1059 kvm_has_tsc_control
= true;
1060 kvm_max_tsc_scaling_ratio
= TSC_RATIO_MAX
;
1061 kvm_tsc_scaling_ratio_frac_bits
= 32;
1065 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
1066 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
1069 for_each_possible_cpu(cpu
) {
1070 r
= svm_cpu_init(cpu
);
1075 if (!boot_cpu_has(X86_FEATURE_NPT
))
1076 npt_enabled
= false;
1078 if (npt_enabled
&& !npt
) {
1079 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
1080 npt_enabled
= false;
1084 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
1091 !boot_cpu_has(X86_FEATURE_AVIC
) ||
1092 !IS_ENABLED(CONFIG_X86_LOCAL_APIC
)) {
1095 pr_info("AVIC enabled\n");
1097 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier
);
1103 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD
) ||
1104 !IS_ENABLED(CONFIG_X86_64
)) {
1107 pr_info("Virtual VMLOAD VMSAVE supported\n");
1114 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
1119 static __exit
void svm_hardware_unsetup(void)
1123 for_each_possible_cpu(cpu
)
1124 svm_cpu_uninit(cpu
);
1126 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
1130 static void init_seg(struct vmcb_seg
*seg
)
1133 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
1134 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
1135 seg
->limit
= 0xffff;
1139 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
1142 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
1143 seg
->limit
= 0xffff;
1147 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1149 struct vcpu_svm
*svm
= to_svm(vcpu
);
1150 u64 g_tsc_offset
= 0;
1152 if (is_guest_mode(vcpu
)) {
1153 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1154 svm
->nested
.hsave
->control
.tsc_offset
;
1155 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1157 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1158 svm
->vmcb
->control
.tsc_offset
,
1161 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1163 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1166 static void avic_init_vmcb(struct vcpu_svm
*svm
)
1168 struct vmcb
*vmcb
= svm
->vmcb
;
1169 struct kvm_arch
*vm_data
= &svm
->vcpu
.kvm
->arch
;
1170 phys_addr_t bpa
= page_to_phys(svm
->avic_backing_page
);
1171 phys_addr_t lpa
= page_to_phys(vm_data
->avic_logical_id_table_page
);
1172 phys_addr_t ppa
= page_to_phys(vm_data
->avic_physical_id_table_page
);
1174 vmcb
->control
.avic_backing_page
= bpa
& AVIC_HPA_MASK
;
1175 vmcb
->control
.avic_logical_id
= lpa
& AVIC_HPA_MASK
;
1176 vmcb
->control
.avic_physical_id
= ppa
& AVIC_HPA_MASK
;
1177 vmcb
->control
.avic_physical_id
|= AVIC_MAX_PHYSICAL_ID_COUNT
;
1178 vmcb
->control
.int_ctl
|= AVIC_ENABLE_MASK
;
1179 svm
->vcpu
.arch
.apicv_active
= true;
1182 static void init_vmcb(struct vcpu_svm
*svm
)
1184 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1185 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1187 svm
->vcpu
.arch
.hflags
= 0;
1189 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1190 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1191 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1192 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1193 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1194 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1195 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
1196 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1198 set_dr_intercepts(svm
);
1200 set_exception_intercept(svm
, PF_VECTOR
);
1201 set_exception_intercept(svm
, UD_VECTOR
);
1202 set_exception_intercept(svm
, MC_VECTOR
);
1203 set_exception_intercept(svm
, AC_VECTOR
);
1204 set_exception_intercept(svm
, DB_VECTOR
);
1206 set_intercept(svm
, INTERCEPT_INTR
);
1207 set_intercept(svm
, INTERCEPT_NMI
);
1208 set_intercept(svm
, INTERCEPT_SMI
);
1209 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1210 set_intercept(svm
, INTERCEPT_RDPMC
);
1211 set_intercept(svm
, INTERCEPT_CPUID
);
1212 set_intercept(svm
, INTERCEPT_INVD
);
1213 set_intercept(svm
, INTERCEPT_HLT
);
1214 set_intercept(svm
, INTERCEPT_INVLPG
);
1215 set_intercept(svm
, INTERCEPT_INVLPGA
);
1216 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1217 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1218 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1219 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1220 set_intercept(svm
, INTERCEPT_VMRUN
);
1221 set_intercept(svm
, INTERCEPT_VMMCALL
);
1222 set_intercept(svm
, INTERCEPT_VMLOAD
);
1223 set_intercept(svm
, INTERCEPT_VMSAVE
);
1224 set_intercept(svm
, INTERCEPT_STGI
);
1225 set_intercept(svm
, INTERCEPT_CLGI
);
1226 set_intercept(svm
, INTERCEPT_SKINIT
);
1227 set_intercept(svm
, INTERCEPT_WBINVD
);
1228 set_intercept(svm
, INTERCEPT_XSETBV
);
1230 if (!kvm_mwait_in_guest()) {
1231 set_intercept(svm
, INTERCEPT_MONITOR
);
1232 set_intercept(svm
, INTERCEPT_MWAIT
);
1235 control
->iopm_base_pa
= iopm_base
;
1236 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1237 control
->int_ctl
= V_INTR_MASKING_MASK
;
1239 init_seg(&save
->es
);
1240 init_seg(&save
->ss
);
1241 init_seg(&save
->ds
);
1242 init_seg(&save
->fs
);
1243 init_seg(&save
->gs
);
1245 save
->cs
.selector
= 0xf000;
1246 save
->cs
.base
= 0xffff0000;
1247 /* Executable/Readable Code Segment */
1248 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1249 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1250 save
->cs
.limit
= 0xffff;
1252 save
->gdtr
.limit
= 0xffff;
1253 save
->idtr
.limit
= 0xffff;
1255 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1256 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1258 svm_set_efer(&svm
->vcpu
, 0);
1259 save
->dr6
= 0xffff0ff0;
1260 kvm_set_rflags(&svm
->vcpu
, 2);
1261 save
->rip
= 0x0000fff0;
1262 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1265 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1266 * It also updates the guest-visible cr0 value.
1268 svm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1269 kvm_mmu_reset_context(&svm
->vcpu
);
1271 save
->cr4
= X86_CR4_PAE
;
1275 /* Setup VMCB for Nested Paging */
1276 control
->nested_ctl
= 1;
1277 clr_intercept(svm
, INTERCEPT_INVLPG
);
1278 clr_exception_intercept(svm
, PF_VECTOR
);
1279 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1280 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1281 save
->g_pat
= svm
->vcpu
.arch
.pat
;
1285 svm
->asid_generation
= 0;
1287 svm
->nested
.vmcb
= 0;
1288 svm
->vcpu
.arch
.hflags
= 0;
1290 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1291 control
->pause_filter_count
= 3000;
1292 set_intercept(svm
, INTERCEPT_PAUSE
);
1296 avic_init_vmcb(svm
);
1299 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1300 * in VMCB and clear intercepts to avoid #VMEXIT.
1303 clr_intercept(svm
, INTERCEPT_VMLOAD
);
1304 clr_intercept(svm
, INTERCEPT_VMSAVE
);
1305 svm
->vmcb
->control
.virt_ext
|= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK
;
1308 mark_all_dirty(svm
->vmcb
);
1314 static u64
*avic_get_physical_id_entry(struct kvm_vcpu
*vcpu
,
1317 u64
*avic_physical_id_table
;
1318 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
1320 if (index
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1323 avic_physical_id_table
= page_address(vm_data
->avic_physical_id_table_page
);
1325 return &avic_physical_id_table
[index
];
1330 * AVIC hardware walks the nested page table to check permissions,
1331 * but does not use the SPA address specified in the leaf page
1332 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1333 * field of the VMCB. Therefore, we set up the
1334 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1336 static int avic_init_access_page(struct kvm_vcpu
*vcpu
)
1338 struct kvm
*kvm
= vcpu
->kvm
;
1341 if (kvm
->arch
.apic_access_page_done
)
1344 ret
= x86_set_memory_region(kvm
,
1345 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
1346 APIC_DEFAULT_PHYS_BASE
,
1351 kvm
->arch
.apic_access_page_done
= true;
1355 static int avic_init_backing_page(struct kvm_vcpu
*vcpu
)
1358 u64
*entry
, new_entry
;
1359 int id
= vcpu
->vcpu_id
;
1360 struct vcpu_svm
*svm
= to_svm(vcpu
);
1362 ret
= avic_init_access_page(vcpu
);
1366 if (id
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1369 if (!svm
->vcpu
.arch
.apic
->regs
)
1372 svm
->avic_backing_page
= virt_to_page(svm
->vcpu
.arch
.apic
->regs
);
1374 /* Setting AVIC backing page address in the phy APIC ID table */
1375 entry
= avic_get_physical_id_entry(vcpu
, id
);
1379 new_entry
= READ_ONCE(*entry
);
1380 new_entry
= (page_to_phys(svm
->avic_backing_page
) &
1381 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK
) |
1382 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK
;
1383 WRITE_ONCE(*entry
, new_entry
);
1385 svm
->avic_physical_id_cache
= entry
;
1390 static inline int avic_get_next_vm_id(void)
1394 spin_lock(&avic_vm_id_lock
);
1396 /* AVIC VM ID is one-based. */
1397 id
= find_next_zero_bit(avic_vm_id_bitmap
, AVIC_VM_ID_NR
, 1);
1398 if (id
<= AVIC_VM_ID_MASK
)
1399 __set_bit(id
, avic_vm_id_bitmap
);
1403 spin_unlock(&avic_vm_id_lock
);
1407 static inline int avic_free_vm_id(int id
)
1409 if (id
<= 0 || id
> AVIC_VM_ID_MASK
)
1412 spin_lock(&avic_vm_id_lock
);
1413 __clear_bit(id
, avic_vm_id_bitmap
);
1414 spin_unlock(&avic_vm_id_lock
);
1418 static void avic_vm_destroy(struct kvm
*kvm
)
1420 unsigned long flags
;
1421 struct kvm_arch
*vm_data
= &kvm
->arch
;
1426 avic_free_vm_id(vm_data
->avic_vm_id
);
1428 if (vm_data
->avic_logical_id_table_page
)
1429 __free_page(vm_data
->avic_logical_id_table_page
);
1430 if (vm_data
->avic_physical_id_table_page
)
1431 __free_page(vm_data
->avic_physical_id_table_page
);
1433 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1434 hash_del(&vm_data
->hnode
);
1435 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1438 static int avic_vm_init(struct kvm
*kvm
)
1440 unsigned long flags
;
1441 int vm_id
, err
= -ENOMEM
;
1442 struct kvm_arch
*vm_data
= &kvm
->arch
;
1443 struct page
*p_page
;
1444 struct page
*l_page
;
1449 vm_id
= avic_get_next_vm_id();
1452 vm_data
->avic_vm_id
= (u32
)vm_id
;
1454 /* Allocating physical APIC ID table (4KB) */
1455 p_page
= alloc_page(GFP_KERNEL
);
1459 vm_data
->avic_physical_id_table_page
= p_page
;
1460 clear_page(page_address(p_page
));
1462 /* Allocating logical APIC ID table (4KB) */
1463 l_page
= alloc_page(GFP_KERNEL
);
1467 vm_data
->avic_logical_id_table_page
= l_page
;
1468 clear_page(page_address(l_page
));
1470 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1471 hash_add(svm_vm_data_hash
, &vm_data
->hnode
, vm_data
->avic_vm_id
);
1472 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1477 avic_vm_destroy(kvm
);
1482 avic_update_iommu_vcpu_affinity(struct kvm_vcpu
*vcpu
, int cpu
, bool r
)
1485 unsigned long flags
;
1486 struct amd_svm_iommu_ir
*ir
;
1487 struct vcpu_svm
*svm
= to_svm(vcpu
);
1489 if (!kvm_arch_has_assigned_device(vcpu
->kvm
))
1493 * Here, we go through the per-vcpu ir_list to update all existing
1494 * interrupt remapping table entry targeting this vcpu.
1496 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
1498 if (list_empty(&svm
->ir_list
))
1501 list_for_each_entry(ir
, &svm
->ir_list
, node
) {
1502 ret
= amd_iommu_update_ga(cpu
, r
, ir
->data
);
1507 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
1511 static void avic_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1514 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1515 int h_physical_id
= kvm_cpu_get_apicid(cpu
);
1516 struct vcpu_svm
*svm
= to_svm(vcpu
);
1518 if (!kvm_vcpu_apicv_active(vcpu
))
1521 if (WARN_ON(h_physical_id
>= AVIC_MAX_PHYSICAL_ID_COUNT
))
1524 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
1525 WARN_ON(entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
1527 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
;
1528 entry
|= (h_physical_id
& AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
);
1530 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1531 if (svm
->avic_is_running
)
1532 entry
|= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1534 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
1535 avic_update_iommu_vcpu_affinity(vcpu
, h_physical_id
,
1536 svm
->avic_is_running
);
1539 static void avic_vcpu_put(struct kvm_vcpu
*vcpu
)
1542 struct vcpu_svm
*svm
= to_svm(vcpu
);
1544 if (!kvm_vcpu_apicv_active(vcpu
))
1547 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
1548 if (entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
)
1549 avic_update_iommu_vcpu_affinity(vcpu
, -1, 0);
1551 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1552 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
1556 * This function is called during VCPU halt/unhalt.
1558 static void avic_set_running(struct kvm_vcpu
*vcpu
, bool is_run
)
1560 struct vcpu_svm
*svm
= to_svm(vcpu
);
1562 svm
->avic_is_running
= is_run
;
1564 avic_vcpu_load(vcpu
, vcpu
->cpu
);
1566 avic_vcpu_put(vcpu
);
1569 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
1571 struct vcpu_svm
*svm
= to_svm(vcpu
);
1576 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
1577 MSR_IA32_APICBASE_ENABLE
;
1578 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
1579 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1583 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1584 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1586 if (kvm_vcpu_apicv_active(vcpu
) && !init_event
)
1587 avic_update_vapic_bar(svm
, APIC_DEFAULT_PHYS_BASE
);
1590 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1592 struct vcpu_svm
*svm
;
1594 struct page
*msrpm_pages
;
1595 struct page
*hsave_page
;
1596 struct page
*nested_msrpm_pages
;
1599 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1605 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1610 page
= alloc_page(GFP_KERNEL
);
1614 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1618 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1619 if (!nested_msrpm_pages
)
1622 hsave_page
= alloc_page(GFP_KERNEL
);
1627 err
= avic_init_backing_page(&svm
->vcpu
);
1631 INIT_LIST_HEAD(&svm
->ir_list
);
1632 spin_lock_init(&svm
->ir_list_lock
);
1635 /* We initialize this flag to true to make sure that the is_running
1636 * bit would be set the first time the vcpu is loaded.
1638 svm
->avic_is_running
= true;
1640 svm
->nested
.hsave
= page_address(hsave_page
);
1642 svm
->msrpm
= page_address(msrpm_pages
);
1643 svm_vcpu_init_msrpm(svm
->msrpm
);
1645 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1646 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1648 svm
->vmcb
= page_address(page
);
1649 clear_page(svm
->vmcb
);
1650 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1651 svm
->asid_generation
= 0;
1654 svm_init_osvw(&svm
->vcpu
);
1659 __free_page(hsave_page
);
1661 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1663 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1667 kvm_vcpu_uninit(&svm
->vcpu
);
1669 kmem_cache_free(kvm_vcpu_cache
, svm
);
1671 return ERR_PTR(err
);
1674 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1676 struct vcpu_svm
*svm
= to_svm(vcpu
);
1678 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1679 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1680 __free_page(virt_to_page(svm
->nested
.hsave
));
1681 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1682 kvm_vcpu_uninit(vcpu
);
1683 kmem_cache_free(kvm_vcpu_cache
, svm
);
1686 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1688 struct vcpu_svm
*svm
= to_svm(vcpu
);
1691 if (unlikely(cpu
!= vcpu
->cpu
)) {
1692 svm
->asid_generation
= 0;
1693 mark_all_dirty(svm
->vmcb
);
1696 #ifdef CONFIG_X86_64
1697 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1699 savesegment(fs
, svm
->host
.fs
);
1700 savesegment(gs
, svm
->host
.gs
);
1701 svm
->host
.ldt
= kvm_read_ldt();
1703 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1704 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1706 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1707 u64 tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1708 if (tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
1709 __this_cpu_write(current_tsc_ratio
, tsc_ratio
);
1710 wrmsrl(MSR_AMD64_TSC_RATIO
, tsc_ratio
);
1713 /* This assumes that the kernel never uses MSR_TSC_AUX */
1714 if (static_cpu_has(X86_FEATURE_RDTSCP
))
1715 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
1717 avic_vcpu_load(vcpu
, cpu
);
1720 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1722 struct vcpu_svm
*svm
= to_svm(vcpu
);
1725 avic_vcpu_put(vcpu
);
1727 ++vcpu
->stat
.host_state_reload
;
1728 kvm_load_ldt(svm
->host
.ldt
);
1729 #ifdef CONFIG_X86_64
1730 loadsegment(fs
, svm
->host
.fs
);
1731 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gsbase
);
1732 load_gs_index(svm
->host
.gs
);
1734 #ifdef CONFIG_X86_32_LAZY_GS
1735 loadsegment(gs
, svm
->host
.gs
);
1738 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1739 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1742 static void svm_vcpu_blocking(struct kvm_vcpu
*vcpu
)
1744 avic_set_running(vcpu
, false);
1747 static void svm_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
1749 avic_set_running(vcpu
, true);
1752 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1754 struct vcpu_svm
*svm
= to_svm(vcpu
);
1755 unsigned long rflags
= svm
->vmcb
->save
.rflags
;
1757 if (svm
->nmi_singlestep
) {
1758 /* Hide our flags if they were not set by the guest */
1759 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
1760 rflags
&= ~X86_EFLAGS_TF
;
1761 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
1762 rflags
&= ~X86_EFLAGS_RF
;
1767 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1769 if (to_svm(vcpu
)->nmi_singlestep
)
1770 rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1773 * Any change of EFLAGS.VM is accompanied by a reload of SS
1774 * (caused by either a task switch or an inter-privilege IRET),
1775 * so we do not need to update the CPL here.
1777 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1780 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1783 case VCPU_EXREG_PDPTR
:
1784 BUG_ON(!npt_enabled
);
1785 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1792 static void svm_set_vintr(struct vcpu_svm
*svm
)
1794 set_intercept(svm
, INTERCEPT_VINTR
);
1797 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1799 clr_intercept(svm
, INTERCEPT_VINTR
);
1802 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1804 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1807 case VCPU_SREG_CS
: return &save
->cs
;
1808 case VCPU_SREG_DS
: return &save
->ds
;
1809 case VCPU_SREG_ES
: return &save
->es
;
1810 case VCPU_SREG_FS
: return &save
->fs
;
1811 case VCPU_SREG_GS
: return &save
->gs
;
1812 case VCPU_SREG_SS
: return &save
->ss
;
1813 case VCPU_SREG_TR
: return &save
->tr
;
1814 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1820 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1822 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1827 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1828 struct kvm_segment
*var
, int seg
)
1830 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1832 var
->base
= s
->base
;
1833 var
->limit
= s
->limit
;
1834 var
->selector
= s
->selector
;
1835 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1836 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1837 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1838 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1839 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1840 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1841 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1844 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1845 * However, the SVM spec states that the G bit is not observed by the
1846 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1847 * So let's synthesize a legal G bit for all segments, this helps
1848 * running KVM nested. It also helps cross-vendor migration, because
1849 * Intel's vmentry has a check on the 'G' bit.
1851 var
->g
= s
->limit
> 0xfffff;
1854 * AMD's VMCB does not have an explicit unusable field, so emulate it
1855 * for cross vendor migration purposes by "not present"
1857 var
->unusable
= !var
->present
;
1862 * Work around a bug where the busy flag in the tr selector
1872 * The accessed bit must always be set in the segment
1873 * descriptor cache, although it can be cleared in the
1874 * descriptor, the cached bit always remains at 1. Since
1875 * Intel has a check on this, set it here to support
1876 * cross-vendor migration.
1883 * On AMD CPUs sometimes the DB bit in the segment
1884 * descriptor is left as 1, although the whole segment has
1885 * been made unusable. Clear it here to pass an Intel VMX
1886 * entry check when cross vendor migrating.
1890 /* This is symmetric with svm_set_segment() */
1891 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
1896 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1898 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1903 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1905 struct vcpu_svm
*svm
= to_svm(vcpu
);
1907 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1908 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1911 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1913 struct vcpu_svm
*svm
= to_svm(vcpu
);
1915 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1916 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1917 mark_dirty(svm
->vmcb
, VMCB_DT
);
1920 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1922 struct vcpu_svm
*svm
= to_svm(vcpu
);
1924 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1925 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1928 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1930 struct vcpu_svm
*svm
= to_svm(vcpu
);
1932 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1933 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1934 mark_dirty(svm
->vmcb
, VMCB_DT
);
1937 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1941 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1945 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1949 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1951 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1952 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1954 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1955 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1957 mark_dirty(svm
->vmcb
, VMCB_CR
);
1959 if (gcr0
== *hcr0
) {
1960 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1961 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1963 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1964 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1968 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1970 struct vcpu_svm
*svm
= to_svm(vcpu
);
1972 #ifdef CONFIG_X86_64
1973 if (vcpu
->arch
.efer
& EFER_LME
) {
1974 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1975 vcpu
->arch
.efer
|= EFER_LMA
;
1976 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1979 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1980 vcpu
->arch
.efer
&= ~EFER_LMA
;
1981 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1985 vcpu
->arch
.cr0
= cr0
;
1988 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1991 * re-enable caching here because the QEMU bios
1992 * does not do it - this results in some delay at
1995 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
1996 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1997 svm
->vmcb
->save
.cr0
= cr0
;
1998 mark_dirty(svm
->vmcb
, VMCB_CR
);
1999 update_cr0_intercept(svm
);
2002 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
2004 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
2005 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
2007 if (cr4
& X86_CR4_VMXE
)
2010 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
2011 svm_flush_tlb(vcpu
);
2013 vcpu
->arch
.cr4
= cr4
;
2016 cr4
|= host_cr4_mce
;
2017 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
2018 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
2022 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
2023 struct kvm_segment
*var
, int seg
)
2025 struct vcpu_svm
*svm
= to_svm(vcpu
);
2026 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2028 s
->base
= var
->base
;
2029 s
->limit
= var
->limit
;
2030 s
->selector
= var
->selector
;
2031 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
2032 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
2033 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
2034 s
->attrib
|= ((var
->present
& 1) && !var
->unusable
) << SVM_SELECTOR_P_SHIFT
;
2035 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
2036 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
2037 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
2038 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
2041 * This is always accurate, except if SYSRET returned to a segment
2042 * with SS.DPL != 3. Intel does not have this quirk, and always
2043 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2044 * would entail passing the CPL to userspace and back.
2046 if (seg
== VCPU_SREG_SS
)
2047 /* This is symmetric with svm_get_segment() */
2048 svm
->vmcb
->save
.cpl
= (var
->dpl
& 3);
2050 mark_dirty(svm
->vmcb
, VMCB_SEG
);
2053 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
2055 struct vcpu_svm
*svm
= to_svm(vcpu
);
2057 clr_exception_intercept(svm
, BP_VECTOR
);
2059 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
2060 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2061 set_exception_intercept(svm
, BP_VECTOR
);
2063 vcpu
->guest_debug
= 0;
2066 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
2068 if (sd
->next_asid
> sd
->max_asid
) {
2069 ++sd
->asid_generation
;
2071 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
2074 svm
->asid_generation
= sd
->asid_generation
;
2075 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
2077 mark_dirty(svm
->vmcb
, VMCB_ASID
);
2080 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
2082 return to_svm(vcpu
)->vmcb
->save
.dr6
;
2085 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
2087 struct vcpu_svm
*svm
= to_svm(vcpu
);
2089 svm
->vmcb
->save
.dr6
= value
;
2090 mark_dirty(svm
->vmcb
, VMCB_DR
);
2093 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
2095 struct vcpu_svm
*svm
= to_svm(vcpu
);
2097 get_debugreg(vcpu
->arch
.db
[0], 0);
2098 get_debugreg(vcpu
->arch
.db
[1], 1);
2099 get_debugreg(vcpu
->arch
.db
[2], 2);
2100 get_debugreg(vcpu
->arch
.db
[3], 3);
2101 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
2102 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
2104 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
2105 set_dr_intercepts(svm
);
2108 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
2110 struct vcpu_svm
*svm
= to_svm(vcpu
);
2112 svm
->vmcb
->save
.dr7
= value
;
2113 mark_dirty(svm
->vmcb
, VMCB_DR
);
2116 static int pf_interception(struct vcpu_svm
*svm
)
2118 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
2119 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
2121 return kvm_handle_page_fault(&svm
->vcpu
, error_code
, fault_address
,
2122 svm
->vmcb
->control
.insn_bytes
,
2123 svm
->vmcb
->control
.insn_len
, !npt_enabled
);
2126 static int db_interception(struct vcpu_svm
*svm
)
2128 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2130 if (!(svm
->vcpu
.guest_debug
&
2131 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
2132 !svm
->nmi_singlestep
) {
2133 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
2137 if (svm
->nmi_singlestep
) {
2138 disable_nmi_singlestep(svm
);
2141 if (svm
->vcpu
.guest_debug
&
2142 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
2143 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2144 kvm_run
->debug
.arch
.pc
=
2145 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2146 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
2153 static int bp_interception(struct vcpu_svm
*svm
)
2155 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2157 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2158 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2159 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
2163 static int ud_interception(struct vcpu_svm
*svm
)
2167 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
2168 if (er
!= EMULATE_DONE
)
2169 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2173 static int ac_interception(struct vcpu_svm
*svm
)
2175 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
2179 static bool is_erratum_383(void)
2184 if (!erratum_383_found
)
2187 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
2191 /* Bit 62 may or may not be set for this mce */
2192 value
&= ~(1ULL << 62);
2194 if (value
!= 0xb600000000010015ULL
)
2197 /* Clear MCi_STATUS registers */
2198 for (i
= 0; i
< 6; ++i
)
2199 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
2201 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
2205 value
&= ~(1ULL << 2);
2206 low
= lower_32_bits(value
);
2207 high
= upper_32_bits(value
);
2209 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
2212 /* Flush tlb to evict multi-match entries */
2218 static void svm_handle_mce(struct vcpu_svm
*svm
)
2220 if (is_erratum_383()) {
2222 * Erratum 383 triggered. Guest state is corrupt so kill the
2225 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2227 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
2233 * On an #MC intercept the MCE handler is not called automatically in
2234 * the host. So do it by hand here.
2238 /* not sure if we ever come back to this point */
2243 static int mc_interception(struct vcpu_svm
*svm
)
2248 static int shutdown_interception(struct vcpu_svm
*svm
)
2250 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2253 * VMCB is undefined after a SHUTDOWN intercept
2254 * so reinitialize it.
2256 clear_page(svm
->vmcb
);
2259 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2263 static int io_interception(struct vcpu_svm
*svm
)
2265 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2266 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
2267 int size
, in
, string
, ret
;
2270 ++svm
->vcpu
.stat
.io_exits
;
2271 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
2272 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
2274 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
2276 port
= io_info
>> 16;
2277 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
2278 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
2279 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
2282 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2283 * KVM_EXIT_DEBUG here.
2286 return kvm_fast_pio_in(vcpu
, size
, port
) && ret
;
2288 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
2291 static int nmi_interception(struct vcpu_svm
*svm
)
2296 static int intr_interception(struct vcpu_svm
*svm
)
2298 ++svm
->vcpu
.stat
.irq_exits
;
2302 static int nop_on_interception(struct vcpu_svm
*svm
)
2307 static int halt_interception(struct vcpu_svm
*svm
)
2309 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
2310 return kvm_emulate_halt(&svm
->vcpu
);
2313 static int vmmcall_interception(struct vcpu_svm
*svm
)
2315 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2316 return kvm_emulate_hypercall(&svm
->vcpu
);
2319 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
2321 struct vcpu_svm
*svm
= to_svm(vcpu
);
2323 return svm
->nested
.nested_cr3
;
2326 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
2328 struct vcpu_svm
*svm
= to_svm(vcpu
);
2329 u64 cr3
= svm
->nested
.nested_cr3
;
2333 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa_to_gfn(cr3
), &pdpte
,
2334 offset_in_page(cr3
) + index
* 8, 8);
2340 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
2343 struct vcpu_svm
*svm
= to_svm(vcpu
);
2345 svm
->vmcb
->control
.nested_cr3
= root
;
2346 mark_dirty(svm
->vmcb
, VMCB_NPT
);
2347 svm_flush_tlb(vcpu
);
2350 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
2351 struct x86_exception
*fault
)
2353 struct vcpu_svm
*svm
= to_svm(vcpu
);
2355 if (svm
->vmcb
->control
.exit_code
!= SVM_EXIT_NPF
) {
2357 * TODO: track the cause of the nested page fault, and
2358 * correctly fill in the high bits of exit_info_1.
2360 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
2361 svm
->vmcb
->control
.exit_code_hi
= 0;
2362 svm
->vmcb
->control
.exit_info_1
= (1ULL << 32);
2363 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
2366 svm
->vmcb
->control
.exit_info_1
&= ~0xffffffffULL
;
2367 svm
->vmcb
->control
.exit_info_1
|= fault
->error_code
;
2370 * The present bit is always zero for page structure faults on real
2373 if (svm
->vmcb
->control
.exit_info_1
& (2ULL << 32))
2374 svm
->vmcb
->control
.exit_info_1
&= ~1;
2376 nested_svm_vmexit(svm
);
2379 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
2381 WARN_ON(mmu_is_nested(vcpu
));
2382 kvm_init_shadow_mmu(vcpu
);
2383 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
2384 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
2385 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
2386 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
2387 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
2388 reset_shadow_zero_bits_mask(vcpu
, &vcpu
->arch
.mmu
);
2389 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
2392 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
2394 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
2397 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
2399 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
) ||
2400 !is_paging(&svm
->vcpu
)) {
2401 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2405 if (svm
->vmcb
->save
.cpl
) {
2406 kvm_inject_gp(&svm
->vcpu
, 0);
2413 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2414 bool has_error_code
, u32 error_code
)
2418 if (!is_guest_mode(&svm
->vcpu
))
2421 vmexit
= nested_svm_intercept(svm
);
2422 if (vmexit
!= NESTED_EXIT_DONE
)
2425 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2426 svm
->vmcb
->control
.exit_code_hi
= 0;
2427 svm
->vmcb
->control
.exit_info_1
= error_code
;
2430 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2431 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2432 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2433 * written only when inject_pending_event runs (DR6 would written here
2434 * too). This should be conditional on a new capability---if the
2435 * capability is disabled, kvm_multiple_exception would write the
2436 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2438 if (svm
->vcpu
.arch
.exception
.nested_apf
)
2439 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.apf
.nested_apf_token
;
2441 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2443 svm
->nested
.exit_required
= true;
2447 /* This function returns true if it is save to enable the irq window */
2448 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2450 if (!is_guest_mode(&svm
->vcpu
))
2453 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2456 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2460 * if vmexit was already requested (by intercepted exception
2461 * for instance) do not overwrite it with "external interrupt"
2464 if (svm
->nested
.exit_required
)
2467 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2468 svm
->vmcb
->control
.exit_info_1
= 0;
2469 svm
->vmcb
->control
.exit_info_2
= 0;
2471 if (svm
->nested
.intercept
& 1ULL) {
2473 * The #vmexit can't be emulated here directly because this
2474 * code path runs with irqs and preemption disabled. A
2475 * #vmexit emulation might sleep. Only signal request for
2478 svm
->nested
.exit_required
= true;
2479 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2486 /* This function returns true if it is save to enable the nmi window */
2487 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2489 if (!is_guest_mode(&svm
->vcpu
))
2492 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2495 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2496 svm
->nested
.exit_required
= true;
2501 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2507 page
= kvm_vcpu_gfn_to_page(&svm
->vcpu
, gpa
>> PAGE_SHIFT
);
2508 if (is_error_page(page
))
2516 kvm_inject_gp(&svm
->vcpu
, 0);
2521 static void nested_svm_unmap(struct page
*page
)
2524 kvm_release_page_dirty(page
);
2527 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2529 unsigned port
, size
, iopm_len
;
2534 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2535 return NESTED_EXIT_HOST
;
2537 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2538 size
= (svm
->vmcb
->control
.exit_info_1
& SVM_IOIO_SIZE_MASK
) >>
2539 SVM_IOIO_SIZE_SHIFT
;
2540 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2541 start_bit
= port
% 8;
2542 iopm_len
= (start_bit
+ size
> 8) ? 2 : 1;
2543 mask
= (0xf >> (4 - size
)) << start_bit
;
2546 if (kvm_vcpu_read_guest(&svm
->vcpu
, gpa
, &val
, iopm_len
))
2547 return NESTED_EXIT_DONE
;
2549 return (val
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2552 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2554 u32 offset
, msr
, value
;
2557 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2558 return NESTED_EXIT_HOST
;
2560 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2561 offset
= svm_msrpm_offset(msr
);
2562 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2563 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2565 if (offset
== MSR_INVALID
)
2566 return NESTED_EXIT_DONE
;
2568 /* Offset is in 32 bit units but need in 8 bit units */
2571 if (kvm_vcpu_read_guest(&svm
->vcpu
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2572 return NESTED_EXIT_DONE
;
2574 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2577 /* DB exceptions for our internal use must not cause vmexit */
2578 static int nested_svm_intercept_db(struct vcpu_svm
*svm
)
2582 /* if we're not singlestepping, it's not ours */
2583 if (!svm
->nmi_singlestep
)
2584 return NESTED_EXIT_DONE
;
2586 /* if it's not a singlestep exception, it's not ours */
2587 if (kvm_get_dr(&svm
->vcpu
, 6, &dr6
))
2588 return NESTED_EXIT_DONE
;
2589 if (!(dr6
& DR6_BS
))
2590 return NESTED_EXIT_DONE
;
2592 /* if the guest is singlestepping, it should get the vmexit */
2593 if (svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
) {
2594 disable_nmi_singlestep(svm
);
2595 return NESTED_EXIT_DONE
;
2598 /* it's ours, the nested hypervisor must not see this one */
2599 return NESTED_EXIT_HOST
;
2602 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2604 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2606 switch (exit_code
) {
2609 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2610 return NESTED_EXIT_HOST
;
2612 /* For now we are always handling NPFs when using them */
2614 return NESTED_EXIT_HOST
;
2616 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2617 /* When we're shadowing, trap PFs, but not async PF */
2618 if (!npt_enabled
&& svm
->vcpu
.arch
.apf
.host_apf_reason
== 0)
2619 return NESTED_EXIT_HOST
;
2625 return NESTED_EXIT_CONTINUE
;
2629 * If this function returns true, this #vmexit was already handled
2631 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2633 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2634 int vmexit
= NESTED_EXIT_HOST
;
2636 switch (exit_code
) {
2638 vmexit
= nested_svm_exit_handled_msr(svm
);
2641 vmexit
= nested_svm_intercept_ioio(svm
);
2643 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2644 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2645 if (svm
->nested
.intercept_cr
& bit
)
2646 vmexit
= NESTED_EXIT_DONE
;
2649 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2650 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2651 if (svm
->nested
.intercept_dr
& bit
)
2652 vmexit
= NESTED_EXIT_DONE
;
2655 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2656 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2657 if (svm
->nested
.intercept_exceptions
& excp_bits
) {
2658 if (exit_code
== SVM_EXIT_EXCP_BASE
+ DB_VECTOR
)
2659 vmexit
= nested_svm_intercept_db(svm
);
2661 vmexit
= NESTED_EXIT_DONE
;
2663 /* async page fault always cause vmexit */
2664 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2665 svm
->vcpu
.arch
.exception
.nested_apf
!= 0)
2666 vmexit
= NESTED_EXIT_DONE
;
2669 case SVM_EXIT_ERR
: {
2670 vmexit
= NESTED_EXIT_DONE
;
2674 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2675 if (svm
->nested
.intercept
& exit_bits
)
2676 vmexit
= NESTED_EXIT_DONE
;
2683 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2687 vmexit
= nested_svm_intercept(svm
);
2689 if (vmexit
== NESTED_EXIT_DONE
)
2690 nested_svm_vmexit(svm
);
2695 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2697 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2698 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2700 dst
->intercept_cr
= from
->intercept_cr
;
2701 dst
->intercept_dr
= from
->intercept_dr
;
2702 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2703 dst
->intercept
= from
->intercept
;
2704 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2705 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2706 dst
->tsc_offset
= from
->tsc_offset
;
2707 dst
->asid
= from
->asid
;
2708 dst
->tlb_ctl
= from
->tlb_ctl
;
2709 dst
->int_ctl
= from
->int_ctl
;
2710 dst
->int_vector
= from
->int_vector
;
2711 dst
->int_state
= from
->int_state
;
2712 dst
->exit_code
= from
->exit_code
;
2713 dst
->exit_code_hi
= from
->exit_code_hi
;
2714 dst
->exit_info_1
= from
->exit_info_1
;
2715 dst
->exit_info_2
= from
->exit_info_2
;
2716 dst
->exit_int_info
= from
->exit_int_info
;
2717 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2718 dst
->nested_ctl
= from
->nested_ctl
;
2719 dst
->event_inj
= from
->event_inj
;
2720 dst
->event_inj_err
= from
->event_inj_err
;
2721 dst
->nested_cr3
= from
->nested_cr3
;
2722 dst
->virt_ext
= from
->virt_ext
;
2725 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2727 struct vmcb
*nested_vmcb
;
2728 struct vmcb
*hsave
= svm
->nested
.hsave
;
2729 struct vmcb
*vmcb
= svm
->vmcb
;
2732 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2733 vmcb
->control
.exit_info_1
,
2734 vmcb
->control
.exit_info_2
,
2735 vmcb
->control
.exit_int_info
,
2736 vmcb
->control
.exit_int_info_err
,
2739 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2743 /* Exit Guest-Mode */
2744 leave_guest_mode(&svm
->vcpu
);
2745 svm
->nested
.vmcb
= 0;
2747 /* Give the current vmcb to the guest */
2750 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2751 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2752 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2753 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2754 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2755 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2756 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2757 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2758 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2759 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2760 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2761 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2762 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2763 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2764 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2765 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2766 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2767 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2769 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2770 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2771 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2772 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2773 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2774 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2775 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2776 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2777 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2779 if (svm
->nrips_enabled
)
2780 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2783 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2784 * to make sure that we do not lose injected events. So check event_inj
2785 * here and copy it to exit_int_info if it is valid.
2786 * Exit_int_info and event_inj can't be both valid because the case
2787 * below only happens on a VMRUN instruction intercept which has
2788 * no valid exit_int_info set.
2790 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2791 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2793 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2794 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2797 nested_vmcb
->control
.tlb_ctl
= 0;
2798 nested_vmcb
->control
.event_inj
= 0;
2799 nested_vmcb
->control
.event_inj_err
= 0;
2801 /* We always set V_INTR_MASKING and remember the old value in hflags */
2802 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2803 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2805 /* Restore the original control entries */
2806 copy_vmcb_control_area(vmcb
, hsave
);
2808 kvm_clear_exception_queue(&svm
->vcpu
);
2809 kvm_clear_interrupt_queue(&svm
->vcpu
);
2811 svm
->nested
.nested_cr3
= 0;
2813 /* Restore selected save entries */
2814 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2815 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2816 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2817 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2818 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2819 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2820 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2821 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2822 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2823 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2825 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2826 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2828 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2830 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2831 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2832 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2833 svm
->vmcb
->save
.dr7
= 0;
2834 svm
->vmcb
->save
.cpl
= 0;
2835 svm
->vmcb
->control
.exit_int_info
= 0;
2837 mark_all_dirty(svm
->vmcb
);
2839 nested_svm_unmap(page
);
2841 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2842 kvm_mmu_reset_context(&svm
->vcpu
);
2843 kvm_mmu_load(&svm
->vcpu
);
2848 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2851 * This function merges the msr permission bitmaps of kvm and the
2852 * nested vmcb. It is optimized in that it only merges the parts where
2853 * the kvm msr permission bitmap may contain zero bits
2857 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2860 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2864 if (msrpm_offsets
[i
] == 0xffffffff)
2867 p
= msrpm_offsets
[i
];
2868 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2870 if (kvm_vcpu_read_guest(&svm
->vcpu
, offset
, &value
, 4))
2873 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2876 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2881 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2883 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2886 if (vmcb
->control
.asid
== 0)
2889 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2895 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2897 struct vmcb
*nested_vmcb
;
2898 struct vmcb
*hsave
= svm
->nested
.hsave
;
2899 struct vmcb
*vmcb
= svm
->vmcb
;
2903 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2905 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2909 if (!nested_vmcb_checks(nested_vmcb
)) {
2910 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2911 nested_vmcb
->control
.exit_code_hi
= 0;
2912 nested_vmcb
->control
.exit_info_1
= 0;
2913 nested_vmcb
->control
.exit_info_2
= 0;
2915 nested_svm_unmap(page
);
2920 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2921 nested_vmcb
->save
.rip
,
2922 nested_vmcb
->control
.int_ctl
,
2923 nested_vmcb
->control
.event_inj
,
2924 nested_vmcb
->control
.nested_ctl
);
2926 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2927 nested_vmcb
->control
.intercept_cr
>> 16,
2928 nested_vmcb
->control
.intercept_exceptions
,
2929 nested_vmcb
->control
.intercept
);
2931 /* Clear internal status */
2932 kvm_clear_exception_queue(&svm
->vcpu
);
2933 kvm_clear_interrupt_queue(&svm
->vcpu
);
2936 * Save the old vmcb, so we don't need to pick what we save, but can
2937 * restore everything when a VMEXIT occurs
2939 hsave
->save
.es
= vmcb
->save
.es
;
2940 hsave
->save
.cs
= vmcb
->save
.cs
;
2941 hsave
->save
.ss
= vmcb
->save
.ss
;
2942 hsave
->save
.ds
= vmcb
->save
.ds
;
2943 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2944 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2945 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2946 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2947 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2948 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2949 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2950 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2951 hsave
->save
.rax
= vmcb
->save
.rax
;
2953 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2955 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2957 copy_vmcb_control_area(hsave
, vmcb
);
2959 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2960 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2962 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2964 if (nested_vmcb
->control
.nested_ctl
) {
2965 kvm_mmu_unload(&svm
->vcpu
);
2966 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2967 nested_svm_init_mmu_context(&svm
->vcpu
);
2970 /* Load the nested guest state */
2971 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2972 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2973 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2974 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2975 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2976 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2977 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2978 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2979 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2980 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2982 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2983 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2985 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2987 /* Guest paging mode is active - reset mmu */
2988 kvm_mmu_reset_context(&svm
->vcpu
);
2990 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2991 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2992 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2993 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2995 /* In case we don't even reach vcpu_run, the fields are not updated */
2996 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2997 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2998 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2999 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
3000 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
3001 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
3003 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
3004 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
3006 /* cache intercepts */
3007 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
3008 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
3009 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
3010 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
3012 svm_flush_tlb(&svm
->vcpu
);
3013 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
3014 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
3015 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
3017 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
3019 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
3020 /* We only want the cr8 intercept bits of the guest */
3021 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
3022 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3025 /* We don't want to see VMMCALLs from a nested guest */
3026 clr_intercept(svm
, INTERCEPT_VMMCALL
);
3028 svm
->vmcb
->control
.virt_ext
= nested_vmcb
->control
.virt_ext
;
3029 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
3030 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
3031 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
3032 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
3033 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
3035 nested_svm_unmap(page
);
3037 /* Enter Guest-Mode */
3038 enter_guest_mode(&svm
->vcpu
);
3041 * Merge guest and host intercepts - must be called with vcpu in
3042 * guest-mode to take affect here
3044 recalc_intercepts(svm
);
3046 svm
->nested
.vmcb
= vmcb_gpa
;
3050 mark_all_dirty(svm
->vmcb
);
3055 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
3057 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
3058 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
3059 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
3060 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
3061 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
3062 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
3063 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
3064 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
3065 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
3066 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
3067 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
3068 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
3071 static int vmload_interception(struct vcpu_svm
*svm
)
3073 struct vmcb
*nested_vmcb
;
3077 if (nested_svm_check_permissions(svm
))
3080 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
3084 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3085 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3087 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
3088 nested_svm_unmap(page
);
3093 static int vmsave_interception(struct vcpu_svm
*svm
)
3095 struct vmcb
*nested_vmcb
;
3099 if (nested_svm_check_permissions(svm
))
3102 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
3106 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3107 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3109 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
3110 nested_svm_unmap(page
);
3115 static int vmrun_interception(struct vcpu_svm
*svm
)
3117 if (nested_svm_check_permissions(svm
))
3120 /* Save rip after vmrun instruction */
3121 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
3123 if (!nested_svm_vmrun(svm
))
3126 if (!nested_svm_vmrun_msrpm(svm
))
3133 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
3134 svm
->vmcb
->control
.exit_code_hi
= 0;
3135 svm
->vmcb
->control
.exit_info_1
= 0;
3136 svm
->vmcb
->control
.exit_info_2
= 0;
3138 nested_svm_vmexit(svm
);
3143 static int stgi_interception(struct vcpu_svm
*svm
)
3147 if (nested_svm_check_permissions(svm
))
3150 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3151 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3152 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3159 static int clgi_interception(struct vcpu_svm
*svm
)
3163 if (nested_svm_check_permissions(svm
))
3166 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3167 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3171 /* After a CLGI no interrupts should come */
3172 if (!kvm_vcpu_apicv_active(&svm
->vcpu
)) {
3173 svm_clear_vintr(svm
);
3174 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3175 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3181 static int invlpga_interception(struct vcpu_svm
*svm
)
3183 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
3185 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
),
3186 kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3188 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3189 kvm_mmu_invlpg(vcpu
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3191 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3192 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3195 static int skinit_interception(struct vcpu_svm
*svm
)
3197 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3199 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3203 static int wbinvd_interception(struct vcpu_svm
*svm
)
3205 return kvm_emulate_wbinvd(&svm
->vcpu
);
3208 static int xsetbv_interception(struct vcpu_svm
*svm
)
3210 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
3211 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3213 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
3214 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3215 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3221 static int task_switch_interception(struct vcpu_svm
*svm
)
3225 int int_type
= svm
->vmcb
->control
.exit_int_info
&
3226 SVM_EXITINTINFO_TYPE_MASK
;
3227 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
3229 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
3231 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
3232 bool has_error_code
= false;
3235 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
3237 if (svm
->vmcb
->control
.exit_info_2
&
3238 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
3239 reason
= TASK_SWITCH_IRET
;
3240 else if (svm
->vmcb
->control
.exit_info_2
&
3241 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
3242 reason
= TASK_SWITCH_JMP
;
3244 reason
= TASK_SWITCH_GATE
;
3246 reason
= TASK_SWITCH_CALL
;
3248 if (reason
== TASK_SWITCH_GATE
) {
3250 case SVM_EXITINTINFO_TYPE_NMI
:
3251 svm
->vcpu
.arch
.nmi_injected
= false;
3253 case SVM_EXITINTINFO_TYPE_EXEPT
:
3254 if (svm
->vmcb
->control
.exit_info_2
&
3255 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
3256 has_error_code
= true;
3258 (u32
)svm
->vmcb
->control
.exit_info_2
;
3260 kvm_clear_exception_queue(&svm
->vcpu
);
3262 case SVM_EXITINTINFO_TYPE_INTR
:
3263 kvm_clear_interrupt_queue(&svm
->vcpu
);
3270 if (reason
!= TASK_SWITCH_GATE
||
3271 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
3272 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
3273 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
3274 skip_emulated_instruction(&svm
->vcpu
);
3276 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
3279 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
3280 has_error_code
, error_code
) == EMULATE_FAIL
) {
3281 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3282 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3283 svm
->vcpu
.run
->internal
.ndata
= 0;
3289 static int cpuid_interception(struct vcpu_svm
*svm
)
3291 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3292 return kvm_emulate_cpuid(&svm
->vcpu
);
3295 static int iret_interception(struct vcpu_svm
*svm
)
3297 ++svm
->vcpu
.stat
.nmi_window_exits
;
3298 clr_intercept(svm
, INTERCEPT_IRET
);
3299 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
3300 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
3301 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3305 static int invlpg_interception(struct vcpu_svm
*svm
)
3307 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
3308 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
3310 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
3311 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3314 static int emulate_on_interception(struct vcpu_svm
*svm
)
3316 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
3319 static int rdpmc_interception(struct vcpu_svm
*svm
)
3323 if (!static_cpu_has(X86_FEATURE_NRIPS
))
3324 return emulate_on_interception(svm
);
3326 err
= kvm_rdpmc(&svm
->vcpu
);
3327 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
3330 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
3333 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
3337 intercept
= svm
->nested
.intercept
;
3339 if (!is_guest_mode(&svm
->vcpu
) ||
3340 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
3343 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
3344 val
&= ~SVM_CR0_SELECTIVE_MASK
;
3347 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
3348 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
3354 #define CR_VALID (1ULL << 63)
3356 static int cr_interception(struct vcpu_svm
*svm
)
3362 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
3363 return emulate_on_interception(svm
);
3365 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
3366 return emulate_on_interception(svm
);
3368 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
3369 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
3370 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
3372 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
3375 if (cr
>= 16) { /* mov to cr */
3377 val
= kvm_register_read(&svm
->vcpu
, reg
);
3380 if (!check_selective_cr0_intercepted(svm
, val
))
3381 err
= kvm_set_cr0(&svm
->vcpu
, val
);
3387 err
= kvm_set_cr3(&svm
->vcpu
, val
);
3390 err
= kvm_set_cr4(&svm
->vcpu
, val
);
3393 err
= kvm_set_cr8(&svm
->vcpu
, val
);
3396 WARN(1, "unhandled write to CR%d", cr
);
3397 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3400 } else { /* mov from cr */
3403 val
= kvm_read_cr0(&svm
->vcpu
);
3406 val
= svm
->vcpu
.arch
.cr2
;
3409 val
= kvm_read_cr3(&svm
->vcpu
);
3412 val
= kvm_read_cr4(&svm
->vcpu
);
3415 val
= kvm_get_cr8(&svm
->vcpu
);
3418 WARN(1, "unhandled read from CR%d", cr
);
3419 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3422 kvm_register_write(&svm
->vcpu
, reg
, val
);
3424 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
3427 static int dr_interception(struct vcpu_svm
*svm
)
3432 if (svm
->vcpu
.guest_debug
== 0) {
3434 * No more DR vmexits; force a reload of the debug registers
3435 * and reenter on this instruction. The next vmexit will
3436 * retrieve the full state of the debug registers.
3438 clr_dr_intercepts(svm
);
3439 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
3443 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
3444 return emulate_on_interception(svm
);
3446 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
3447 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
3449 if (dr
>= 16) { /* mov to DRn */
3450 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
3452 val
= kvm_register_read(&svm
->vcpu
, reg
);
3453 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
3455 if (!kvm_require_dr(&svm
->vcpu
, dr
))
3457 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
3458 kvm_register_write(&svm
->vcpu
, reg
, val
);
3461 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3464 static int cr8_write_interception(struct vcpu_svm
*svm
)
3466 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3469 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
3470 /* instruction emulation calls kvm_set_cr8() */
3471 r
= cr_interception(svm
);
3472 if (lapic_in_kernel(&svm
->vcpu
))
3474 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3476 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3480 static int svm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3482 struct vcpu_svm
*svm
= to_svm(vcpu
);
3484 switch (msr_info
->index
) {
3485 case MSR_IA32_TSC
: {
3486 msr_info
->data
= svm
->vmcb
->control
.tsc_offset
+
3487 kvm_scale_tsc(vcpu
, rdtsc());
3492 msr_info
->data
= svm
->vmcb
->save
.star
;
3494 #ifdef CONFIG_X86_64
3496 msr_info
->data
= svm
->vmcb
->save
.lstar
;
3499 msr_info
->data
= svm
->vmcb
->save
.cstar
;
3501 case MSR_KERNEL_GS_BASE
:
3502 msr_info
->data
= svm
->vmcb
->save
.kernel_gs_base
;
3504 case MSR_SYSCALL_MASK
:
3505 msr_info
->data
= svm
->vmcb
->save
.sfmask
;
3508 case MSR_IA32_SYSENTER_CS
:
3509 msr_info
->data
= svm
->vmcb
->save
.sysenter_cs
;
3511 case MSR_IA32_SYSENTER_EIP
:
3512 msr_info
->data
= svm
->sysenter_eip
;
3514 case MSR_IA32_SYSENTER_ESP
:
3515 msr_info
->data
= svm
->sysenter_esp
;
3518 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
3520 msr_info
->data
= svm
->tsc_aux
;
3523 * Nobody will change the following 5 values in the VMCB so we can
3524 * safely return them on rdmsr. They will always be 0 until LBRV is
3527 case MSR_IA32_DEBUGCTLMSR
:
3528 msr_info
->data
= svm
->vmcb
->save
.dbgctl
;
3530 case MSR_IA32_LASTBRANCHFROMIP
:
3531 msr_info
->data
= svm
->vmcb
->save
.br_from
;
3533 case MSR_IA32_LASTBRANCHTOIP
:
3534 msr_info
->data
= svm
->vmcb
->save
.br_to
;
3536 case MSR_IA32_LASTINTFROMIP
:
3537 msr_info
->data
= svm
->vmcb
->save
.last_excp_from
;
3539 case MSR_IA32_LASTINTTOIP
:
3540 msr_info
->data
= svm
->vmcb
->save
.last_excp_to
;
3542 case MSR_VM_HSAVE_PA
:
3543 msr_info
->data
= svm
->nested
.hsave_msr
;
3546 msr_info
->data
= svm
->nested
.vm_cr_msr
;
3548 case MSR_IA32_UCODE_REV
:
3549 msr_info
->data
= 0x01000065;
3551 case MSR_F15H_IC_CFG
: {
3555 family
= guest_cpuid_family(vcpu
);
3556 model
= guest_cpuid_model(vcpu
);
3558 if (family
< 0 || model
< 0)
3559 return kvm_get_msr_common(vcpu
, msr_info
);
3563 if (family
== 0x15 &&
3564 (model
>= 0x2 && model
< 0x20))
3565 msr_info
->data
= 0x1E;
3569 return kvm_get_msr_common(vcpu
, msr_info
);
3574 static int rdmsr_interception(struct vcpu_svm
*svm
)
3576 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3577 struct msr_data msr_info
;
3579 msr_info
.index
= ecx
;
3580 msr_info
.host_initiated
= false;
3581 if (svm_get_msr(&svm
->vcpu
, &msr_info
)) {
3582 trace_kvm_msr_read_ex(ecx
);
3583 kvm_inject_gp(&svm
->vcpu
, 0);
3586 trace_kvm_msr_read(ecx
, msr_info
.data
);
3588 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
,
3589 msr_info
.data
& 0xffffffff);
3590 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RDX
,
3591 msr_info
.data
>> 32);
3592 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3593 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3597 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3599 struct vcpu_svm
*svm
= to_svm(vcpu
);
3600 int svm_dis
, chg_mask
;
3602 if (data
& ~SVM_VM_CR_VALID_MASK
)
3605 chg_mask
= SVM_VM_CR_VALID_MASK
;
3607 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3608 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3610 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3611 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3613 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3615 /* check for svm_disable while efer.svme is set */
3616 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3622 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3624 struct vcpu_svm
*svm
= to_svm(vcpu
);
3626 u32 ecx
= msr
->index
;
3627 u64 data
= msr
->data
;
3630 kvm_write_tsc(vcpu
, msr
);
3633 svm
->vmcb
->save
.star
= data
;
3635 #ifdef CONFIG_X86_64
3637 svm
->vmcb
->save
.lstar
= data
;
3640 svm
->vmcb
->save
.cstar
= data
;
3642 case MSR_KERNEL_GS_BASE
:
3643 svm
->vmcb
->save
.kernel_gs_base
= data
;
3645 case MSR_SYSCALL_MASK
:
3646 svm
->vmcb
->save
.sfmask
= data
;
3649 case MSR_IA32_SYSENTER_CS
:
3650 svm
->vmcb
->save
.sysenter_cs
= data
;
3652 case MSR_IA32_SYSENTER_EIP
:
3653 svm
->sysenter_eip
= data
;
3654 svm
->vmcb
->save
.sysenter_eip
= data
;
3656 case MSR_IA32_SYSENTER_ESP
:
3657 svm
->sysenter_esp
= data
;
3658 svm
->vmcb
->save
.sysenter_esp
= data
;
3661 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
3665 * This is rare, so we update the MSR here instead of using
3666 * direct_access_msrs. Doing that would require a rdmsr in
3669 svm
->tsc_aux
= data
;
3670 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
3672 case MSR_IA32_DEBUGCTLMSR
:
3673 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3674 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3678 if (data
& DEBUGCTL_RESERVED_BITS
)
3681 svm
->vmcb
->save
.dbgctl
= data
;
3682 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3683 if (data
& (1ULL<<0))
3684 svm_enable_lbrv(svm
);
3686 svm_disable_lbrv(svm
);
3688 case MSR_VM_HSAVE_PA
:
3689 svm
->nested
.hsave_msr
= data
;
3692 return svm_set_vm_cr(vcpu
, data
);
3694 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3696 case MSR_IA32_APICBASE
:
3697 if (kvm_vcpu_apicv_active(vcpu
))
3698 avic_update_vapic_bar(to_svm(vcpu
), data
);
3699 /* Follow through */
3701 return kvm_set_msr_common(vcpu
, msr
);
3706 static int wrmsr_interception(struct vcpu_svm
*svm
)
3708 struct msr_data msr
;
3709 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3710 u64 data
= kvm_read_edx_eax(&svm
->vcpu
);
3714 msr
.host_initiated
= false;
3716 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3717 if (kvm_set_msr(&svm
->vcpu
, &msr
)) {
3718 trace_kvm_msr_write_ex(ecx
, data
);
3719 kvm_inject_gp(&svm
->vcpu
, 0);
3722 trace_kvm_msr_write(ecx
, data
);
3723 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3727 static int msr_interception(struct vcpu_svm
*svm
)
3729 if (svm
->vmcb
->control
.exit_info_1
)
3730 return wrmsr_interception(svm
);
3732 return rdmsr_interception(svm
);
3735 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3737 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3738 svm_clear_vintr(svm
);
3739 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3740 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3741 ++svm
->vcpu
.stat
.irq_window_exits
;
3745 static int pause_interception(struct vcpu_svm
*svm
)
3747 kvm_vcpu_on_spin(&(svm
->vcpu
));
3751 static int nop_interception(struct vcpu_svm
*svm
)
3753 return kvm_skip_emulated_instruction(&(svm
->vcpu
));
3756 static int monitor_interception(struct vcpu_svm
*svm
)
3758 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
3759 return nop_interception(svm
);
3762 static int mwait_interception(struct vcpu_svm
*svm
)
3764 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
3765 return nop_interception(svm
);
3768 enum avic_ipi_failure_cause
{
3769 AVIC_IPI_FAILURE_INVALID_INT_TYPE
,
3770 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
,
3771 AVIC_IPI_FAILURE_INVALID_TARGET
,
3772 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
,
3775 static int avic_incomplete_ipi_interception(struct vcpu_svm
*svm
)
3777 u32 icrh
= svm
->vmcb
->control
.exit_info_1
>> 32;
3778 u32 icrl
= svm
->vmcb
->control
.exit_info_1
;
3779 u32 id
= svm
->vmcb
->control
.exit_info_2
>> 32;
3780 u32 index
= svm
->vmcb
->control
.exit_info_2
& 0xFF;
3781 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
3783 trace_kvm_avic_incomplete_ipi(svm
->vcpu
.vcpu_id
, icrh
, icrl
, id
, index
);
3786 case AVIC_IPI_FAILURE_INVALID_INT_TYPE
:
3788 * AVIC hardware handles the generation of
3789 * IPIs when the specified Message Type is Fixed
3790 * (also known as fixed delivery mode) and
3791 * the Trigger Mode is edge-triggered. The hardware
3792 * also supports self and broadcast delivery modes
3793 * specified via the Destination Shorthand(DSH)
3794 * field of the ICRL. Logical and physical APIC ID
3795 * formats are supported. All other IPI types cause
3796 * a #VMEXIT, which needs to emulated.
3798 kvm_lapic_reg_write(apic
, APIC_ICR2
, icrh
);
3799 kvm_lapic_reg_write(apic
, APIC_ICR
, icrl
);
3801 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
: {
3803 struct kvm_vcpu
*vcpu
;
3804 struct kvm
*kvm
= svm
->vcpu
.kvm
;
3805 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
3808 * At this point, we expect that the AVIC HW has already
3809 * set the appropriate IRR bits on the valid target
3810 * vcpus. So, we just need to kick the appropriate vcpu.
3812 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3813 bool m
= kvm_apic_match_dest(vcpu
, apic
,
3814 icrl
& KVM_APIC_SHORT_MASK
,
3815 GET_APIC_DEST_FIELD(icrh
),
3816 icrl
& KVM_APIC_DEST_MASK
);
3818 if (m
&& !avic_vcpu_is_running(vcpu
))
3819 kvm_vcpu_wake_up(vcpu
);
3823 case AVIC_IPI_FAILURE_INVALID_TARGET
:
3825 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
:
3826 WARN_ONCE(1, "Invalid backing page\n");
3829 pr_err("Unknown IPI interception\n");
3835 static u32
*avic_get_logical_id_entry(struct kvm_vcpu
*vcpu
, u32 ldr
, bool flat
)
3837 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
3839 u32
*logical_apic_id_table
;
3840 int dlid
= GET_APIC_LOGICAL_ID(ldr
);
3845 if (flat
) { /* flat */
3846 index
= ffs(dlid
) - 1;
3849 } else { /* cluster */
3850 int cluster
= (dlid
& 0xf0) >> 4;
3851 int apic
= ffs(dlid
& 0x0f) - 1;
3853 if ((apic
< 0) || (apic
> 7) ||
3856 index
= (cluster
<< 2) + apic
;
3859 logical_apic_id_table
= (u32
*) page_address(vm_data
->avic_logical_id_table_page
);
3861 return &logical_apic_id_table
[index
];
3864 static int avic_ldr_write(struct kvm_vcpu
*vcpu
, u8 g_physical_id
, u32 ldr
,
3868 u32
*entry
, new_entry
;
3870 flat
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
) == APIC_DFR_FLAT
;
3871 entry
= avic_get_logical_id_entry(vcpu
, ldr
, flat
);
3875 new_entry
= READ_ONCE(*entry
);
3876 new_entry
&= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
;
3877 new_entry
|= (g_physical_id
& AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
);
3879 new_entry
|= AVIC_LOGICAL_ID_ENTRY_VALID_MASK
;
3881 new_entry
&= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK
;
3882 WRITE_ONCE(*entry
, new_entry
);
3887 static int avic_handle_ldr_update(struct kvm_vcpu
*vcpu
)
3890 struct vcpu_svm
*svm
= to_svm(vcpu
);
3891 u32 ldr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_LDR
);
3896 ret
= avic_ldr_write(vcpu
, vcpu
->vcpu_id
, ldr
, true);
3897 if (ret
&& svm
->ldr_reg
) {
3898 avic_ldr_write(vcpu
, 0, svm
->ldr_reg
, false);
3906 static int avic_handle_apic_id_update(struct kvm_vcpu
*vcpu
)
3909 struct vcpu_svm
*svm
= to_svm(vcpu
);
3910 u32 apic_id_reg
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_ID
);
3911 u32 id
= (apic_id_reg
>> 24) & 0xff;
3913 if (vcpu
->vcpu_id
== id
)
3916 old
= avic_get_physical_id_entry(vcpu
, vcpu
->vcpu_id
);
3917 new = avic_get_physical_id_entry(vcpu
, id
);
3921 /* We need to move physical_id_entry to new offset */
3924 to_svm(vcpu
)->avic_physical_id_cache
= new;
3927 * Also update the guest physical APIC ID in the logical
3928 * APIC ID table entry if already setup the LDR.
3931 avic_handle_ldr_update(vcpu
);
3936 static int avic_handle_dfr_update(struct kvm_vcpu
*vcpu
)
3938 struct vcpu_svm
*svm
= to_svm(vcpu
);
3939 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
3940 u32 dfr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
);
3941 u32 mod
= (dfr
>> 28) & 0xf;
3944 * We assume that all local APICs are using the same type.
3945 * If this changes, we need to flush the AVIC logical
3948 if (vm_data
->ldr_mode
== mod
)
3951 clear_page(page_address(vm_data
->avic_logical_id_table_page
));
3952 vm_data
->ldr_mode
= mod
;
3955 avic_handle_ldr_update(vcpu
);
3959 static int avic_unaccel_trap_write(struct vcpu_svm
*svm
)
3961 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
3962 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
3963 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
3967 if (avic_handle_apic_id_update(&svm
->vcpu
))
3971 if (avic_handle_ldr_update(&svm
->vcpu
))
3975 avic_handle_dfr_update(&svm
->vcpu
);
3981 kvm_lapic_reg_write(apic
, offset
, kvm_lapic_get_reg(apic
, offset
));
3986 static bool is_avic_unaccelerated_access_trap(u32 offset
)
4015 static int avic_unaccelerated_access_interception(struct vcpu_svm
*svm
)
4018 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
4019 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
4020 u32 vector
= svm
->vmcb
->control
.exit_info_2
&
4021 AVIC_UNACCEL_ACCESS_VECTOR_MASK
;
4022 bool write
= (svm
->vmcb
->control
.exit_info_1
>> 32) &
4023 AVIC_UNACCEL_ACCESS_WRITE_MASK
;
4024 bool trap
= is_avic_unaccelerated_access_trap(offset
);
4026 trace_kvm_avic_unaccelerated_access(svm
->vcpu
.vcpu_id
, offset
,
4027 trap
, write
, vector
);
4030 WARN_ONCE(!write
, "svm: Handling trap read.\n");
4031 ret
= avic_unaccel_trap_write(svm
);
4033 /* Handling Fault */
4034 ret
= (emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
);
4040 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
4041 [SVM_EXIT_READ_CR0
] = cr_interception
,
4042 [SVM_EXIT_READ_CR3
] = cr_interception
,
4043 [SVM_EXIT_READ_CR4
] = cr_interception
,
4044 [SVM_EXIT_READ_CR8
] = cr_interception
,
4045 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
4046 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
4047 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
4048 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
4049 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
4050 [SVM_EXIT_READ_DR0
] = dr_interception
,
4051 [SVM_EXIT_READ_DR1
] = dr_interception
,
4052 [SVM_EXIT_READ_DR2
] = dr_interception
,
4053 [SVM_EXIT_READ_DR3
] = dr_interception
,
4054 [SVM_EXIT_READ_DR4
] = dr_interception
,
4055 [SVM_EXIT_READ_DR5
] = dr_interception
,
4056 [SVM_EXIT_READ_DR6
] = dr_interception
,
4057 [SVM_EXIT_READ_DR7
] = dr_interception
,
4058 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
4059 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
4060 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
4061 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
4062 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
4063 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
4064 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
4065 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
4066 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
4067 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
4068 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
4069 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
4070 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
4071 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
4072 [SVM_EXIT_INTR
] = intr_interception
,
4073 [SVM_EXIT_NMI
] = nmi_interception
,
4074 [SVM_EXIT_SMI
] = nop_on_interception
,
4075 [SVM_EXIT_INIT
] = nop_on_interception
,
4076 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
4077 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
4078 [SVM_EXIT_CPUID
] = cpuid_interception
,
4079 [SVM_EXIT_IRET
] = iret_interception
,
4080 [SVM_EXIT_INVD
] = emulate_on_interception
,
4081 [SVM_EXIT_PAUSE
] = pause_interception
,
4082 [SVM_EXIT_HLT
] = halt_interception
,
4083 [SVM_EXIT_INVLPG
] = invlpg_interception
,
4084 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
4085 [SVM_EXIT_IOIO
] = io_interception
,
4086 [SVM_EXIT_MSR
] = msr_interception
,
4087 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
4088 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
4089 [SVM_EXIT_VMRUN
] = vmrun_interception
,
4090 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
4091 [SVM_EXIT_VMLOAD
] = vmload_interception
,
4092 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
4093 [SVM_EXIT_STGI
] = stgi_interception
,
4094 [SVM_EXIT_CLGI
] = clgi_interception
,
4095 [SVM_EXIT_SKINIT
] = skinit_interception
,
4096 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
4097 [SVM_EXIT_MONITOR
] = monitor_interception
,
4098 [SVM_EXIT_MWAIT
] = mwait_interception
,
4099 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
4100 [SVM_EXIT_NPF
] = pf_interception
,
4101 [SVM_EXIT_RSM
] = emulate_on_interception
,
4102 [SVM_EXIT_AVIC_INCOMPLETE_IPI
] = avic_incomplete_ipi_interception
,
4103 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS
] = avic_unaccelerated_access_interception
,
4106 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
4108 struct vcpu_svm
*svm
= to_svm(vcpu
);
4109 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
4110 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
4112 pr_err("VMCB Control Area:\n");
4113 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
4114 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
4115 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
4116 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
4117 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
4118 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
4119 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
4120 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
4121 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
4122 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
4123 pr_err("%-20s%d\n", "asid:", control
->asid
);
4124 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
4125 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
4126 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
4127 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
4128 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
4129 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
4130 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
4131 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
4132 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
4133 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
4134 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
4135 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control
->avic_vapic_bar
);
4136 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
4137 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
4138 pr_err("%-20s%lld\n", "virt_ext:", control
->virt_ext
);
4139 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
4140 pr_err("%-20s%016llx\n", "avic_backing_page:", control
->avic_backing_page
);
4141 pr_err("%-20s%016llx\n", "avic_logical_id:", control
->avic_logical_id
);
4142 pr_err("%-20s%016llx\n", "avic_physical_id:", control
->avic_physical_id
);
4143 pr_err("VMCB State Save Area:\n");
4144 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4146 save
->es
.selector
, save
->es
.attrib
,
4147 save
->es
.limit
, save
->es
.base
);
4148 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4150 save
->cs
.selector
, save
->cs
.attrib
,
4151 save
->cs
.limit
, save
->cs
.base
);
4152 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4154 save
->ss
.selector
, save
->ss
.attrib
,
4155 save
->ss
.limit
, save
->ss
.base
);
4156 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4158 save
->ds
.selector
, save
->ds
.attrib
,
4159 save
->ds
.limit
, save
->ds
.base
);
4160 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4162 save
->fs
.selector
, save
->fs
.attrib
,
4163 save
->fs
.limit
, save
->fs
.base
);
4164 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4166 save
->gs
.selector
, save
->gs
.attrib
,
4167 save
->gs
.limit
, save
->gs
.base
);
4168 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4170 save
->gdtr
.selector
, save
->gdtr
.attrib
,
4171 save
->gdtr
.limit
, save
->gdtr
.base
);
4172 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4174 save
->ldtr
.selector
, save
->ldtr
.attrib
,
4175 save
->ldtr
.limit
, save
->ldtr
.base
);
4176 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4178 save
->idtr
.selector
, save
->idtr
.attrib
,
4179 save
->idtr
.limit
, save
->idtr
.base
);
4180 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4182 save
->tr
.selector
, save
->tr
.attrib
,
4183 save
->tr
.limit
, save
->tr
.base
);
4184 pr_err("cpl: %d efer: %016llx\n",
4185 save
->cpl
, save
->efer
);
4186 pr_err("%-15s %016llx %-13s %016llx\n",
4187 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
4188 pr_err("%-15s %016llx %-13s %016llx\n",
4189 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
4190 pr_err("%-15s %016llx %-13s %016llx\n",
4191 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
4192 pr_err("%-15s %016llx %-13s %016llx\n",
4193 "rip:", save
->rip
, "rflags:", save
->rflags
);
4194 pr_err("%-15s %016llx %-13s %016llx\n",
4195 "rsp:", save
->rsp
, "rax:", save
->rax
);
4196 pr_err("%-15s %016llx %-13s %016llx\n",
4197 "star:", save
->star
, "lstar:", save
->lstar
);
4198 pr_err("%-15s %016llx %-13s %016llx\n",
4199 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
4200 pr_err("%-15s %016llx %-13s %016llx\n",
4201 "kernel_gs_base:", save
->kernel_gs_base
,
4202 "sysenter_cs:", save
->sysenter_cs
);
4203 pr_err("%-15s %016llx %-13s %016llx\n",
4204 "sysenter_esp:", save
->sysenter_esp
,
4205 "sysenter_eip:", save
->sysenter_eip
);
4206 pr_err("%-15s %016llx %-13s %016llx\n",
4207 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
4208 pr_err("%-15s %016llx %-13s %016llx\n",
4209 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
4210 pr_err("%-15s %016llx %-13s %016llx\n",
4211 "excp_from:", save
->last_excp_from
,
4212 "excp_to:", save
->last_excp_to
);
4215 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
4217 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
4219 *info1
= control
->exit_info_1
;
4220 *info2
= control
->exit_info_2
;
4223 static int handle_exit(struct kvm_vcpu
*vcpu
)
4225 struct vcpu_svm
*svm
= to_svm(vcpu
);
4226 struct kvm_run
*kvm_run
= vcpu
->run
;
4227 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
4229 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
4231 vcpu
->arch
.gpa_available
= (exit_code
== SVM_EXIT_NPF
);
4233 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
4234 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
4236 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
4238 if (unlikely(svm
->nested
.exit_required
)) {
4239 nested_svm_vmexit(svm
);
4240 svm
->nested
.exit_required
= false;
4245 if (is_guest_mode(vcpu
)) {
4248 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
4249 svm
->vmcb
->control
.exit_info_1
,
4250 svm
->vmcb
->control
.exit_info_2
,
4251 svm
->vmcb
->control
.exit_int_info
,
4252 svm
->vmcb
->control
.exit_int_info_err
,
4255 vmexit
= nested_svm_exit_special(svm
);
4257 if (vmexit
== NESTED_EXIT_CONTINUE
)
4258 vmexit
= nested_svm_exit_handled(svm
);
4260 if (vmexit
== NESTED_EXIT_DONE
)
4264 svm_complete_interrupts(svm
);
4266 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
4267 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
4268 kvm_run
->fail_entry
.hardware_entry_failure_reason
4269 = svm
->vmcb
->control
.exit_code
;
4270 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4275 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
4276 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
4277 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
4278 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
4279 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
4281 __func__
, svm
->vmcb
->control
.exit_int_info
,
4284 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
4285 || !svm_exit_handlers
[exit_code
]) {
4286 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code
);
4287 kvm_queue_exception(vcpu
, UD_VECTOR
);
4291 return svm_exit_handlers
[exit_code
](svm
);
4294 static void reload_tss(struct kvm_vcpu
*vcpu
)
4296 int cpu
= raw_smp_processor_id();
4298 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
4299 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
4303 static void pre_svm_run(struct vcpu_svm
*svm
)
4305 int cpu
= raw_smp_processor_id();
4307 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
4309 /* FIXME: handle wraparound of asid_generation */
4310 if (svm
->asid_generation
!= sd
->asid_generation
)
4314 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
4316 struct vcpu_svm
*svm
= to_svm(vcpu
);
4318 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
4319 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
4320 set_intercept(svm
, INTERCEPT_IRET
);
4321 ++vcpu
->stat
.nmi_injections
;
4324 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
4326 struct vmcb_control_area
*control
;
4328 /* The following fields are ignored when AVIC is enabled */
4329 control
= &svm
->vmcb
->control
;
4330 control
->int_vector
= irq
;
4331 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
4332 control
->int_ctl
|= V_IRQ_MASK
|
4333 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
4334 mark_dirty(svm
->vmcb
, VMCB_INTR
);
4337 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
4339 struct vcpu_svm
*svm
= to_svm(vcpu
);
4341 BUG_ON(!(gif_set(svm
)));
4343 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
4344 ++vcpu
->stat
.irq_injections
;
4346 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
4347 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
4350 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu
*vcpu
)
4352 return is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
);
4355 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
4357 struct vcpu_svm
*svm
= to_svm(vcpu
);
4359 if (svm_nested_virtualize_tpr(vcpu
) ||
4360 kvm_vcpu_apicv_active(vcpu
))
4363 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
4369 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
4372 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
4377 static bool svm_get_enable_apicv(void)
4382 static void svm_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
4386 static void svm_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
4390 /* Note: Currently only used by Hyper-V. */
4391 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
4393 struct vcpu_svm
*svm
= to_svm(vcpu
);
4394 struct vmcb
*vmcb
= svm
->vmcb
;
4399 vmcb
->control
.int_ctl
&= ~AVIC_ENABLE_MASK
;
4400 mark_dirty(vmcb
, VMCB_INTR
);
4403 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
4408 static void svm_deliver_avic_intr(struct kvm_vcpu
*vcpu
, int vec
)
4410 kvm_lapic_set_irr(vec
, vcpu
->arch
.apic
);
4411 smp_mb__after_atomic();
4413 if (avic_vcpu_is_running(vcpu
))
4414 wrmsrl(SVM_AVIC_DOORBELL
,
4415 kvm_cpu_get_apicid(vcpu
->cpu
));
4417 kvm_vcpu_wake_up(vcpu
);
4420 static void svm_ir_list_del(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
4422 unsigned long flags
;
4423 struct amd_svm_iommu_ir
*cur
;
4425 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
4426 list_for_each_entry(cur
, &svm
->ir_list
, node
) {
4427 if (cur
->data
!= pi
->ir_data
)
4429 list_del(&cur
->node
);
4433 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
4436 static int svm_ir_list_add(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
4439 unsigned long flags
;
4440 struct amd_svm_iommu_ir
*ir
;
4443 * In some cases, the existing irte is updaed and re-set,
4444 * so we need to check here if it's already been * added
4447 if (pi
->ir_data
&& (pi
->prev_ga_tag
!= 0)) {
4448 struct kvm
*kvm
= svm
->vcpu
.kvm
;
4449 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(pi
->prev_ga_tag
);
4450 struct kvm_vcpu
*prev_vcpu
= kvm_get_vcpu_by_id(kvm
, vcpu_id
);
4451 struct vcpu_svm
*prev_svm
;
4458 prev_svm
= to_svm(prev_vcpu
);
4459 svm_ir_list_del(prev_svm
, pi
);
4463 * Allocating new amd_iommu_pi_data, which will get
4464 * add to the per-vcpu ir_list.
4466 ir
= kzalloc(sizeof(struct amd_svm_iommu_ir
), GFP_KERNEL
);
4471 ir
->data
= pi
->ir_data
;
4473 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
4474 list_add(&ir
->node
, &svm
->ir_list
);
4475 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
4482 * The HW cannot support posting multicast/broadcast
4483 * interrupts to a vCPU. So, we still use legacy interrupt
4484 * remapping for these kind of interrupts.
4486 * For lowest-priority interrupts, we only support
4487 * those with single CPU as the destination, e.g. user
4488 * configures the interrupts via /proc/irq or uses
4489 * irqbalance to make the interrupts single-CPU.
4492 get_pi_vcpu_info(struct kvm
*kvm
, struct kvm_kernel_irq_routing_entry
*e
,
4493 struct vcpu_data
*vcpu_info
, struct vcpu_svm
**svm
)
4495 struct kvm_lapic_irq irq
;
4496 struct kvm_vcpu
*vcpu
= NULL
;
4498 kvm_set_msi_irq(kvm
, e
, &irq
);
4500 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
4501 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4502 __func__
, irq
.vector
);
4506 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__
,
4508 *svm
= to_svm(vcpu
);
4509 vcpu_info
->pi_desc_addr
= page_to_phys((*svm
)->avic_backing_page
);
4510 vcpu_info
->vector
= irq
.vector
;
4516 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4519 * @host_irq: host irq of the interrupt
4520 * @guest_irq: gsi of the interrupt
4521 * @set: set or unset PI
4522 * returns 0 on success, < 0 on failure
4524 static int svm_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
4525 uint32_t guest_irq
, bool set
)
4527 struct kvm_kernel_irq_routing_entry
*e
;
4528 struct kvm_irq_routing_table
*irq_rt
;
4529 int idx
, ret
= -EINVAL
;
4531 if (!kvm_arch_has_assigned_device(kvm
) ||
4532 !irq_remapping_cap(IRQ_POSTING_CAP
))
4535 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4536 __func__
, host_irq
, guest_irq
, set
);
4538 idx
= srcu_read_lock(&kvm
->irq_srcu
);
4539 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
4540 WARN_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
4542 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
4543 struct vcpu_data vcpu_info
;
4544 struct vcpu_svm
*svm
= NULL
;
4546 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
4550 * Here, we setup with legacy mode in the following cases:
4551 * 1. When cannot target interrupt to a specific vcpu.
4552 * 2. Unsetting posted interrupt.
4553 * 3. APIC virtialization is disabled for the vcpu.
4555 if (!get_pi_vcpu_info(kvm
, e
, &vcpu_info
, &svm
) && set
&&
4556 kvm_vcpu_apicv_active(&svm
->vcpu
)) {
4557 struct amd_iommu_pi_data pi
;
4559 /* Try to enable guest_mode in IRTE */
4560 pi
.base
= page_to_phys(svm
->avic_backing_page
) & AVIC_HPA_MASK
;
4561 pi
.ga_tag
= AVIC_GATAG(kvm
->arch
.avic_vm_id
,
4563 pi
.is_guest_mode
= true;
4564 pi
.vcpu_data
= &vcpu_info
;
4565 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
4568 * Here, we successfully setting up vcpu affinity in
4569 * IOMMU guest mode. Now, we need to store the posted
4570 * interrupt information in a per-vcpu ir_list so that
4571 * we can reference to them directly when we update vcpu
4572 * scheduling information in IOMMU irte.
4574 if (!ret
&& pi
.is_guest_mode
)
4575 svm_ir_list_add(svm
, &pi
);
4577 /* Use legacy mode in IRTE */
4578 struct amd_iommu_pi_data pi
;
4581 * Here, pi is used to:
4582 * - Tell IOMMU to use legacy mode for this interrupt.
4583 * - Retrieve ga_tag of prior interrupt remapping data.
4585 pi
.is_guest_mode
= false;
4586 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
4589 * Check if the posted interrupt was previously
4590 * setup with the guest_mode by checking if the ga_tag
4591 * was cached. If so, we need to clean up the per-vcpu
4594 if (!ret
&& pi
.prev_ga_tag
) {
4595 int id
= AVIC_GATAG_TO_VCPUID(pi
.prev_ga_tag
);
4596 struct kvm_vcpu
*vcpu
;
4598 vcpu
= kvm_get_vcpu_by_id(kvm
, id
);
4600 svm_ir_list_del(to_svm(vcpu
), &pi
);
4605 trace_kvm_pi_irte_update(svm
->vcpu
.vcpu_id
,
4608 vcpu_info
.pi_desc_addr
, set
);
4612 pr_err("%s: failed to update PI IRTE\n", __func__
);
4619 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
4623 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
4625 struct vcpu_svm
*svm
= to_svm(vcpu
);
4626 struct vmcb
*vmcb
= svm
->vmcb
;
4628 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
4629 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
4630 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
4635 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4637 struct vcpu_svm
*svm
= to_svm(vcpu
);
4639 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
4642 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4644 struct vcpu_svm
*svm
= to_svm(vcpu
);
4647 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
4648 set_intercept(svm
, INTERCEPT_IRET
);
4650 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
4651 clr_intercept(svm
, INTERCEPT_IRET
);
4655 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4657 struct vcpu_svm
*svm
= to_svm(vcpu
);
4658 struct vmcb
*vmcb
= svm
->vmcb
;
4661 if (!gif_set(svm
) ||
4662 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
4665 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
4667 if (is_guest_mode(vcpu
))
4668 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
4673 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
4675 struct vcpu_svm
*svm
= to_svm(vcpu
);
4677 if (kvm_vcpu_apicv_active(vcpu
))
4681 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4682 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4683 * get that intercept, this function will be called again though and
4684 * we'll get the vintr intercept.
4686 if (gif_set(svm
) && nested_svm_intr(svm
)) {
4688 svm_inject_irq(svm
, 0x0);
4692 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
4694 struct vcpu_svm
*svm
= to_svm(vcpu
);
4696 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
4698 return; /* IRET will cause a vm exit */
4700 if ((svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
) == 0)
4701 return; /* STGI will cause a vm exit */
4703 if (svm
->nested
.exit_required
)
4704 return; /* we're not going to run the guest yet */
4707 * Something prevents NMI from been injected. Single step over possible
4708 * problem (IRET or exception injection or interrupt shadow)
4710 svm
->nmi_singlestep_guest_rflags
= svm_get_rflags(vcpu
);
4711 svm
->nmi_singlestep
= true;
4712 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
4715 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4720 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
4722 struct vcpu_svm
*svm
= to_svm(vcpu
);
4724 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
4725 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
4727 svm
->asid_generation
--;
4730 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
4734 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
4736 struct vcpu_svm
*svm
= to_svm(vcpu
);
4738 if (svm_nested_virtualize_tpr(vcpu
))
4741 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
4742 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
4743 kvm_set_cr8(vcpu
, cr8
);
4747 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
4749 struct vcpu_svm
*svm
= to_svm(vcpu
);
4752 if (svm_nested_virtualize_tpr(vcpu
) ||
4753 kvm_vcpu_apicv_active(vcpu
))
4756 cr8
= kvm_get_cr8(vcpu
);
4757 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
4758 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
4761 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
4765 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
4766 unsigned int3_injected
= svm
->int3_injected
;
4768 svm
->int3_injected
= 0;
4771 * If we've made progress since setting HF_IRET_MASK, we've
4772 * executed an IRET and can allow NMI injection.
4774 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
4775 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
4776 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
4777 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
4780 svm
->vcpu
.arch
.nmi_injected
= false;
4781 kvm_clear_exception_queue(&svm
->vcpu
);
4782 kvm_clear_interrupt_queue(&svm
->vcpu
);
4784 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
4787 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
4789 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
4790 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
4793 case SVM_EXITINTINFO_TYPE_NMI
:
4794 svm
->vcpu
.arch
.nmi_injected
= true;
4796 case SVM_EXITINTINFO_TYPE_EXEPT
:
4798 * In case of software exceptions, do not reinject the vector,
4799 * but re-execute the instruction instead. Rewind RIP first
4800 * if we emulated INT3 before.
4802 if (kvm_exception_is_soft(vector
)) {
4803 if (vector
== BP_VECTOR
&& int3_injected
&&
4804 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
4805 kvm_rip_write(&svm
->vcpu
,
4806 kvm_rip_read(&svm
->vcpu
) -
4810 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
4811 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
4812 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
4815 kvm_requeue_exception(&svm
->vcpu
, vector
);
4817 case SVM_EXITINTINFO_TYPE_INTR
:
4818 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
4825 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
4827 struct vcpu_svm
*svm
= to_svm(vcpu
);
4828 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
4830 control
->exit_int_info
= control
->event_inj
;
4831 control
->exit_int_info_err
= control
->event_inj_err
;
4832 control
->event_inj
= 0;
4833 svm_complete_interrupts(svm
);
4836 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
4838 struct vcpu_svm
*svm
= to_svm(vcpu
);
4840 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
4841 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
4842 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
4845 * A vmexit emulation is required before the vcpu can be executed
4848 if (unlikely(svm
->nested
.exit_required
))
4852 * Disable singlestep if we're injecting an interrupt/exception.
4853 * We don't want our modified rflags to be pushed on the stack where
4854 * we might not be able to easily reset them if we disabled NMI
4857 if (svm
->nmi_singlestep
&& svm
->vmcb
->control
.event_inj
) {
4859 * Event injection happens before external interrupts cause a
4860 * vmexit and interrupts are disabled here, so smp_send_reschedule
4861 * is enough to force an immediate vmexit.
4863 disable_nmi_singlestep(svm
);
4864 smp_send_reschedule(vcpu
->cpu
);
4869 sync_lapic_to_cr8(vcpu
);
4871 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
4878 "push %%" _ASM_BP
"; \n\t"
4879 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
4880 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
4881 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
4882 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
4883 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
4884 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
4885 #ifdef CONFIG_X86_64
4886 "mov %c[r8](%[svm]), %%r8 \n\t"
4887 "mov %c[r9](%[svm]), %%r9 \n\t"
4888 "mov %c[r10](%[svm]), %%r10 \n\t"
4889 "mov %c[r11](%[svm]), %%r11 \n\t"
4890 "mov %c[r12](%[svm]), %%r12 \n\t"
4891 "mov %c[r13](%[svm]), %%r13 \n\t"
4892 "mov %c[r14](%[svm]), %%r14 \n\t"
4893 "mov %c[r15](%[svm]), %%r15 \n\t"
4896 /* Enter guest mode */
4897 "push %%" _ASM_AX
" \n\t"
4898 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
4899 __ex(SVM_VMLOAD
) "\n\t"
4900 __ex(SVM_VMRUN
) "\n\t"
4901 __ex(SVM_VMSAVE
) "\n\t"
4902 "pop %%" _ASM_AX
" \n\t"
4904 /* Save guest registers, load host registers */
4905 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
4906 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
4907 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
4908 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
4909 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
4910 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
4911 #ifdef CONFIG_X86_64
4912 "mov %%r8, %c[r8](%[svm]) \n\t"
4913 "mov %%r9, %c[r9](%[svm]) \n\t"
4914 "mov %%r10, %c[r10](%[svm]) \n\t"
4915 "mov %%r11, %c[r11](%[svm]) \n\t"
4916 "mov %%r12, %c[r12](%[svm]) \n\t"
4917 "mov %%r13, %c[r13](%[svm]) \n\t"
4918 "mov %%r14, %c[r14](%[svm]) \n\t"
4919 "mov %%r15, %c[r15](%[svm]) \n\t"
4924 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
4925 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
4926 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
4927 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
4928 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
4929 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
4930 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
4931 #ifdef CONFIG_X86_64
4932 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
4933 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
4934 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
4935 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
4936 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
4937 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
4938 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
4939 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
4942 #ifdef CONFIG_X86_64
4943 , "rbx", "rcx", "rdx", "rsi", "rdi"
4944 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4946 , "ebx", "ecx", "edx", "esi", "edi"
4950 #ifdef CONFIG_X86_64
4951 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
4953 loadsegment(fs
, svm
->host
.fs
);
4954 #ifndef CONFIG_X86_32_LAZY_GS
4955 loadsegment(gs
, svm
->host
.gs
);
4961 local_irq_disable();
4963 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
4964 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
4965 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
4966 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
4968 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
4969 kvm_before_handle_nmi(&svm
->vcpu
);
4973 /* Any pending NMI will happen here */
4975 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
4976 kvm_after_handle_nmi(&svm
->vcpu
);
4978 sync_cr8_to_lapic(vcpu
);
4982 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
4984 /* if exit due to PF check for async PF */
4985 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
4986 svm
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
4989 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
4990 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
4994 * We need to handle MC intercepts here before the vcpu has a chance to
4995 * change the physical cpu
4997 if (unlikely(svm
->vmcb
->control
.exit_code
==
4998 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
4999 svm_handle_mce(svm
);
5001 mark_all_clean(svm
->vmcb
);
5003 STACK_FRAME_NON_STANDARD(svm_vcpu_run
);
5005 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5007 struct vcpu_svm
*svm
= to_svm(vcpu
);
5009 svm
->vmcb
->save
.cr3
= root
;
5010 mark_dirty(svm
->vmcb
, VMCB_CR
);
5011 svm_flush_tlb(vcpu
);
5014 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5016 struct vcpu_svm
*svm
= to_svm(vcpu
);
5018 svm
->vmcb
->control
.nested_cr3
= root
;
5019 mark_dirty(svm
->vmcb
, VMCB_NPT
);
5021 /* Also sync guest cr3 here in case we live migrate */
5022 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
5023 mark_dirty(svm
->vmcb
, VMCB_CR
);
5025 svm_flush_tlb(vcpu
);
5028 static int is_disabled(void)
5032 rdmsrl(MSR_VM_CR
, vm_cr
);
5033 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
5040 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5043 * Patch in the VMMCALL instruction:
5045 hypercall
[0] = 0x0f;
5046 hypercall
[1] = 0x01;
5047 hypercall
[2] = 0xd9;
5050 static void svm_check_processor_compat(void *rtn
)
5055 static bool svm_cpu_has_accelerated_tpr(void)
5060 static bool svm_has_high_real_mode_segbase(void)
5065 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
5070 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
5072 struct vcpu_svm
*svm
= to_svm(vcpu
);
5073 struct kvm_cpuid_entry2
*entry
;
5075 /* Update nrips enabled cache */
5076 svm
->nrips_enabled
= !!guest_cpuid_has_nrips(&svm
->vcpu
);
5078 if (!kvm_vcpu_apicv_active(vcpu
))
5081 entry
= kvm_find_cpuid_entry(vcpu
, 1, 0);
5083 entry
->ecx
&= ~bit(X86_FEATURE_X2APIC
);
5086 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
5091 entry
->ecx
&= ~bit(X86_FEATURE_X2APIC
);
5095 entry
->ecx
|= (1 << 2); /* Set SVM bit */
5098 entry
->eax
= 1; /* SVM revision 1 */
5099 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
5100 ASID emulation to nested SVM */
5101 entry
->ecx
= 0; /* Reserved */
5102 entry
->edx
= 0; /* Per default do not support any
5103 additional features */
5105 /* Support next_rip if host supports it */
5106 if (boot_cpu_has(X86_FEATURE_NRIPS
))
5107 entry
->edx
|= SVM_FEATURE_NRIP
;
5109 /* Support NPT for the guest if enabled */
5111 entry
->edx
|= SVM_FEATURE_NPT
;
5117 static int svm_get_lpage_level(void)
5119 return PT_PDPE_LEVEL
;
5122 static bool svm_rdtscp_supported(void)
5124 return boot_cpu_has(X86_FEATURE_RDTSCP
);
5127 static bool svm_invpcid_supported(void)
5132 static bool svm_mpx_supported(void)
5137 static bool svm_xsaves_supported(void)
5142 static bool svm_has_wbinvd_exit(void)
5147 #define PRE_EX(exit) { .exit_code = (exit), \
5148 .stage = X86_ICPT_PRE_EXCEPT, }
5149 #define POST_EX(exit) { .exit_code = (exit), \
5150 .stage = X86_ICPT_POST_EXCEPT, }
5151 #define POST_MEM(exit) { .exit_code = (exit), \
5152 .stage = X86_ICPT_POST_MEMACCESS, }
5154 static const struct __x86_intercept
{
5156 enum x86_intercept_stage stage
;
5157 } x86_intercept_map
[] = {
5158 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
5159 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5160 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5161 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5162 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
5163 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
5164 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
5165 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
5166 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
5167 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
5168 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
5169 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
5170 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
5171 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
5172 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
5173 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
5174 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
5175 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
5176 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
5177 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
5178 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
5179 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
5180 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
5181 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
5182 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
5183 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
5184 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
5185 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
5186 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
5187 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
5188 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
5189 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
5190 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
5191 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
5192 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
5193 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
5194 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
5195 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
5196 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
5197 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
5198 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
5199 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
5200 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
5201 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
5202 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
5203 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
5210 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
5211 struct x86_instruction_info
*info
,
5212 enum x86_intercept_stage stage
)
5214 struct vcpu_svm
*svm
= to_svm(vcpu
);
5215 int vmexit
, ret
= X86EMUL_CONTINUE
;
5216 struct __x86_intercept icpt_info
;
5217 struct vmcb
*vmcb
= svm
->vmcb
;
5219 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
5222 icpt_info
= x86_intercept_map
[info
->intercept
];
5224 if (stage
!= icpt_info
.stage
)
5227 switch (icpt_info
.exit_code
) {
5228 case SVM_EXIT_READ_CR0
:
5229 if (info
->intercept
== x86_intercept_cr_read
)
5230 icpt_info
.exit_code
+= info
->modrm_reg
;
5232 case SVM_EXIT_WRITE_CR0
: {
5233 unsigned long cr0
, val
;
5236 if (info
->intercept
== x86_intercept_cr_write
)
5237 icpt_info
.exit_code
+= info
->modrm_reg
;
5239 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
5240 info
->intercept
== x86_intercept_clts
)
5243 intercept
= svm
->nested
.intercept
;
5245 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
5248 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
5249 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
5251 if (info
->intercept
== x86_intercept_lmsw
) {
5254 /* lmsw can't clear PE - catch this here */
5255 if (cr0
& X86_CR0_PE
)
5260 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
5264 case SVM_EXIT_READ_DR0
:
5265 case SVM_EXIT_WRITE_DR0
:
5266 icpt_info
.exit_code
+= info
->modrm_reg
;
5269 if (info
->intercept
== x86_intercept_wrmsr
)
5270 vmcb
->control
.exit_info_1
= 1;
5272 vmcb
->control
.exit_info_1
= 0;
5274 case SVM_EXIT_PAUSE
:
5276 * We get this for NOP only, but pause
5277 * is rep not, check this here
5279 if (info
->rep_prefix
!= REPE_PREFIX
)
5281 case SVM_EXIT_IOIO
: {
5285 if (info
->intercept
== x86_intercept_in
||
5286 info
->intercept
== x86_intercept_ins
) {
5287 exit_info
= ((info
->src_val
& 0xffff) << 16) |
5289 bytes
= info
->dst_bytes
;
5291 exit_info
= (info
->dst_val
& 0xffff) << 16;
5292 bytes
= info
->src_bytes
;
5295 if (info
->intercept
== x86_intercept_outs
||
5296 info
->intercept
== x86_intercept_ins
)
5297 exit_info
|= SVM_IOIO_STR_MASK
;
5299 if (info
->rep_prefix
)
5300 exit_info
|= SVM_IOIO_REP_MASK
;
5302 bytes
= min(bytes
, 4u);
5304 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
5306 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
5308 vmcb
->control
.exit_info_1
= exit_info
;
5309 vmcb
->control
.exit_info_2
= info
->next_rip
;
5317 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5318 if (static_cpu_has(X86_FEATURE_NRIPS
))
5319 vmcb
->control
.next_rip
= info
->next_rip
;
5320 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
5321 vmexit
= nested_svm_exit_handled(svm
);
5323 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
5330 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
5334 * We must have an instruction with interrupts enabled, so
5335 * the timer interrupt isn't delayed by the interrupt shadow.
5338 local_irq_disable();
5341 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
5345 static inline void avic_post_state_restore(struct kvm_vcpu
*vcpu
)
5347 if (avic_handle_apic_id_update(vcpu
) != 0)
5349 if (avic_handle_dfr_update(vcpu
) != 0)
5351 avic_handle_ldr_update(vcpu
);
5354 static void svm_setup_mce(struct kvm_vcpu
*vcpu
)
5356 /* [63:9] are reserved. */
5357 vcpu
->arch
.mcg_cap
&= 0x1ff;
5360 static struct kvm_x86_ops svm_x86_ops __ro_after_init
= {
5361 .cpu_has_kvm_support
= has_svm
,
5362 .disabled_by_bios
= is_disabled
,
5363 .hardware_setup
= svm_hardware_setup
,
5364 .hardware_unsetup
= svm_hardware_unsetup
,
5365 .check_processor_compatibility
= svm_check_processor_compat
,
5366 .hardware_enable
= svm_hardware_enable
,
5367 .hardware_disable
= svm_hardware_disable
,
5368 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
5369 .cpu_has_high_real_mode_segbase
= svm_has_high_real_mode_segbase
,
5371 .vcpu_create
= svm_create_vcpu
,
5372 .vcpu_free
= svm_free_vcpu
,
5373 .vcpu_reset
= svm_vcpu_reset
,
5375 .vm_init
= avic_vm_init
,
5376 .vm_destroy
= avic_vm_destroy
,
5378 .prepare_guest_switch
= svm_prepare_guest_switch
,
5379 .vcpu_load
= svm_vcpu_load
,
5380 .vcpu_put
= svm_vcpu_put
,
5381 .vcpu_blocking
= svm_vcpu_blocking
,
5382 .vcpu_unblocking
= svm_vcpu_unblocking
,
5384 .update_bp_intercept
= update_bp_intercept
,
5385 .get_msr
= svm_get_msr
,
5386 .set_msr
= svm_set_msr
,
5387 .get_segment_base
= svm_get_segment_base
,
5388 .get_segment
= svm_get_segment
,
5389 .set_segment
= svm_set_segment
,
5390 .get_cpl
= svm_get_cpl
,
5391 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
5392 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
5393 .decache_cr3
= svm_decache_cr3
,
5394 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
5395 .set_cr0
= svm_set_cr0
,
5396 .set_cr3
= svm_set_cr3
,
5397 .set_cr4
= svm_set_cr4
,
5398 .set_efer
= svm_set_efer
,
5399 .get_idt
= svm_get_idt
,
5400 .set_idt
= svm_set_idt
,
5401 .get_gdt
= svm_get_gdt
,
5402 .set_gdt
= svm_set_gdt
,
5403 .get_dr6
= svm_get_dr6
,
5404 .set_dr6
= svm_set_dr6
,
5405 .set_dr7
= svm_set_dr7
,
5406 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
5407 .cache_reg
= svm_cache_reg
,
5408 .get_rflags
= svm_get_rflags
,
5409 .set_rflags
= svm_set_rflags
,
5411 .tlb_flush
= svm_flush_tlb
,
5413 .run
= svm_vcpu_run
,
5414 .handle_exit
= handle_exit
,
5415 .skip_emulated_instruction
= skip_emulated_instruction
,
5416 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
5417 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
5418 .patch_hypercall
= svm_patch_hypercall
,
5419 .set_irq
= svm_set_irq
,
5420 .set_nmi
= svm_inject_nmi
,
5421 .queue_exception
= svm_queue_exception
,
5422 .cancel_injection
= svm_cancel_injection
,
5423 .interrupt_allowed
= svm_interrupt_allowed
,
5424 .nmi_allowed
= svm_nmi_allowed
,
5425 .get_nmi_mask
= svm_get_nmi_mask
,
5426 .set_nmi_mask
= svm_set_nmi_mask
,
5427 .enable_nmi_window
= enable_nmi_window
,
5428 .enable_irq_window
= enable_irq_window
,
5429 .update_cr8_intercept
= update_cr8_intercept
,
5430 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
5431 .get_enable_apicv
= svm_get_enable_apicv
,
5432 .refresh_apicv_exec_ctrl
= svm_refresh_apicv_exec_ctrl
,
5433 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
5434 .hwapic_irr_update
= svm_hwapic_irr_update
,
5435 .hwapic_isr_update
= svm_hwapic_isr_update
,
5436 .apicv_post_state_restore
= avic_post_state_restore
,
5438 .set_tss_addr
= svm_set_tss_addr
,
5439 .get_tdp_level
= get_npt_level
,
5440 .get_mt_mask
= svm_get_mt_mask
,
5442 .get_exit_info
= svm_get_exit_info
,
5444 .get_lpage_level
= svm_get_lpage_level
,
5446 .cpuid_update
= svm_cpuid_update
,
5448 .rdtscp_supported
= svm_rdtscp_supported
,
5449 .invpcid_supported
= svm_invpcid_supported
,
5450 .mpx_supported
= svm_mpx_supported
,
5451 .xsaves_supported
= svm_xsaves_supported
,
5453 .set_supported_cpuid
= svm_set_supported_cpuid
,
5455 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
5457 .write_tsc_offset
= svm_write_tsc_offset
,
5459 .set_tdp_cr3
= set_tdp_cr3
,
5461 .check_intercept
= svm_check_intercept
,
5462 .handle_external_intr
= svm_handle_external_intr
,
5464 .sched_in
= svm_sched_in
,
5466 .pmu_ops
= &amd_pmu_ops
,
5467 .deliver_posted_interrupt
= svm_deliver_avic_intr
,
5468 .update_pi_irte
= svm_update_pi_irte
,
5469 .setup_mce
= svm_setup_mce
,
5472 static int __init
svm_init(void)
5474 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
5475 __alignof__(struct vcpu_svm
), THIS_MODULE
);
5478 static void __exit
svm_exit(void)
5483 module_init(svm_init
)
5484 module_exit(svm_exit
)