]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
KVM: svm: add support for RDTSCP
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 MSR_TSC_AUX,
90 };
91
92 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
93
94 struct kvm_vcpu;
95
96 struct nested_state {
97 struct vmcb *hsave;
98 u64 hsave_msr;
99 u64 vm_cr_msr;
100 u64 vmcb;
101
102 /* These are the merged vectors */
103 u32 *msrpm;
104
105 /* gpa pointers to the real vectors */
106 u64 vmcb_msrpm;
107 u64 vmcb_iopm;
108
109 /* A VMEXIT is required but not yet emulated */
110 bool exit_required;
111
112 /* cache for intercepts of the guest */
113 u32 intercept_cr;
114 u32 intercept_dr;
115 u32 intercept_exceptions;
116 u64 intercept;
117
118 /* Nested Paging related state */
119 u64 nested_cr3;
120 };
121
122 #define MSRPM_OFFSETS 16
123 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
124
125 /*
126 * Set osvw_len to higher value when updated Revision Guides
127 * are published and we know what the new status bits are
128 */
129 static uint64_t osvw_len = 4, osvw_status;
130
131 struct vcpu_svm {
132 struct kvm_vcpu vcpu;
133 struct vmcb *vmcb;
134 unsigned long vmcb_pa;
135 struct svm_cpu_data *svm_data;
136 uint64_t asid_generation;
137 uint64_t sysenter_esp;
138 uint64_t sysenter_eip;
139 uint64_t tsc_aux;
140
141 u64 next_rip;
142
143 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
144 struct {
145 u16 fs;
146 u16 gs;
147 u16 ldt;
148 u64 gs_base;
149 } host;
150
151 u32 *msrpm;
152
153 ulong nmi_iret_rip;
154
155 struct nested_state nested;
156
157 bool nmi_singlestep;
158
159 unsigned int3_injected;
160 unsigned long int3_rip;
161 u32 apf_reason;
162
163 /* cached guest cpuid flags for faster access */
164 bool nrips_enabled : 1;
165 };
166
167 static DEFINE_PER_CPU(u64, current_tsc_ratio);
168 #define TSC_RATIO_DEFAULT 0x0100000000ULL
169
170 #define MSR_INVALID 0xffffffffU
171
172 static const struct svm_direct_access_msrs {
173 u32 index; /* Index of the MSR */
174 bool always; /* True if intercept is always on */
175 } direct_access_msrs[] = {
176 { .index = MSR_STAR, .always = true },
177 { .index = MSR_IA32_SYSENTER_CS, .always = true },
178 #ifdef CONFIG_X86_64
179 { .index = MSR_GS_BASE, .always = true },
180 { .index = MSR_FS_BASE, .always = true },
181 { .index = MSR_KERNEL_GS_BASE, .always = true },
182 { .index = MSR_LSTAR, .always = true },
183 { .index = MSR_CSTAR, .always = true },
184 { .index = MSR_SYSCALL_MASK, .always = true },
185 #endif
186 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
187 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
188 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
189 { .index = MSR_IA32_LASTINTTOIP, .always = false },
190 { .index = MSR_INVALID, .always = false },
191 };
192
193 /* enable NPT for AMD64 and X86 with PAE */
194 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
195 static bool npt_enabled = true;
196 #else
197 static bool npt_enabled;
198 #endif
199
200 /* allow nested paging (virtualized MMU) for all guests */
201 static int npt = true;
202 module_param(npt, int, S_IRUGO);
203
204 /* allow nested virtualization in KVM/SVM */
205 static int nested = true;
206 module_param(nested, int, S_IRUGO);
207
208 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
209 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
210 static void svm_complete_interrupts(struct vcpu_svm *svm);
211
212 static int nested_svm_exit_handled(struct vcpu_svm *svm);
213 static int nested_svm_intercept(struct vcpu_svm *svm);
214 static int nested_svm_vmexit(struct vcpu_svm *svm);
215 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
216 bool has_error_code, u32 error_code);
217
218 enum {
219 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
220 pause filter count */
221 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
222 VMCB_ASID, /* ASID */
223 VMCB_INTR, /* int_ctl, int_vector */
224 VMCB_NPT, /* npt_en, nCR3, gPAT */
225 VMCB_CR, /* CR0, CR3, CR4, EFER */
226 VMCB_DR, /* DR6, DR7 */
227 VMCB_DT, /* GDT, IDT */
228 VMCB_SEG, /* CS, DS, SS, ES, CPL */
229 VMCB_CR2, /* CR2 only */
230 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
231 VMCB_DIRTY_MAX,
232 };
233
234 /* TPR and CR2 are always written before VMRUN */
235 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
236
237 static inline void mark_all_dirty(struct vmcb *vmcb)
238 {
239 vmcb->control.clean = 0;
240 }
241
242 static inline void mark_all_clean(struct vmcb *vmcb)
243 {
244 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
245 & ~VMCB_ALWAYS_DIRTY_MASK;
246 }
247
248 static inline void mark_dirty(struct vmcb *vmcb, int bit)
249 {
250 vmcb->control.clean &= ~(1 << bit);
251 }
252
253 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
254 {
255 return container_of(vcpu, struct vcpu_svm, vcpu);
256 }
257
258 static void recalc_intercepts(struct vcpu_svm *svm)
259 {
260 struct vmcb_control_area *c, *h;
261 struct nested_state *g;
262
263 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
264
265 if (!is_guest_mode(&svm->vcpu))
266 return;
267
268 c = &svm->vmcb->control;
269 h = &svm->nested.hsave->control;
270 g = &svm->nested;
271
272 c->intercept_cr = h->intercept_cr | g->intercept_cr;
273 c->intercept_dr = h->intercept_dr | g->intercept_dr;
274 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
275 c->intercept = h->intercept | g->intercept;
276 }
277
278 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
279 {
280 if (is_guest_mode(&svm->vcpu))
281 return svm->nested.hsave;
282 else
283 return svm->vmcb;
284 }
285
286 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
287 {
288 struct vmcb *vmcb = get_host_vmcb(svm);
289
290 vmcb->control.intercept_cr |= (1U << bit);
291
292 recalc_intercepts(svm);
293 }
294
295 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
296 {
297 struct vmcb *vmcb = get_host_vmcb(svm);
298
299 vmcb->control.intercept_cr &= ~(1U << bit);
300
301 recalc_intercepts(svm);
302 }
303
304 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
305 {
306 struct vmcb *vmcb = get_host_vmcb(svm);
307
308 return vmcb->control.intercept_cr & (1U << bit);
309 }
310
311 static inline void set_dr_intercepts(struct vcpu_svm *svm)
312 {
313 struct vmcb *vmcb = get_host_vmcb(svm);
314
315 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
316 | (1 << INTERCEPT_DR1_READ)
317 | (1 << INTERCEPT_DR2_READ)
318 | (1 << INTERCEPT_DR3_READ)
319 | (1 << INTERCEPT_DR4_READ)
320 | (1 << INTERCEPT_DR5_READ)
321 | (1 << INTERCEPT_DR6_READ)
322 | (1 << INTERCEPT_DR7_READ)
323 | (1 << INTERCEPT_DR0_WRITE)
324 | (1 << INTERCEPT_DR1_WRITE)
325 | (1 << INTERCEPT_DR2_WRITE)
326 | (1 << INTERCEPT_DR3_WRITE)
327 | (1 << INTERCEPT_DR4_WRITE)
328 | (1 << INTERCEPT_DR5_WRITE)
329 | (1 << INTERCEPT_DR6_WRITE)
330 | (1 << INTERCEPT_DR7_WRITE);
331
332 recalc_intercepts(svm);
333 }
334
335 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
336 {
337 struct vmcb *vmcb = get_host_vmcb(svm);
338
339 vmcb->control.intercept_dr = 0;
340
341 recalc_intercepts(svm);
342 }
343
344 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
345 {
346 struct vmcb *vmcb = get_host_vmcb(svm);
347
348 vmcb->control.intercept_exceptions |= (1U << bit);
349
350 recalc_intercepts(svm);
351 }
352
353 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
354 {
355 struct vmcb *vmcb = get_host_vmcb(svm);
356
357 vmcb->control.intercept_exceptions &= ~(1U << bit);
358
359 recalc_intercepts(svm);
360 }
361
362 static inline void set_intercept(struct vcpu_svm *svm, int bit)
363 {
364 struct vmcb *vmcb = get_host_vmcb(svm);
365
366 vmcb->control.intercept |= (1ULL << bit);
367
368 recalc_intercepts(svm);
369 }
370
371 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
372 {
373 struct vmcb *vmcb = get_host_vmcb(svm);
374
375 vmcb->control.intercept &= ~(1ULL << bit);
376
377 recalc_intercepts(svm);
378 }
379
380 static inline void enable_gif(struct vcpu_svm *svm)
381 {
382 svm->vcpu.arch.hflags |= HF_GIF_MASK;
383 }
384
385 static inline void disable_gif(struct vcpu_svm *svm)
386 {
387 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
388 }
389
390 static inline bool gif_set(struct vcpu_svm *svm)
391 {
392 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
393 }
394
395 static unsigned long iopm_base;
396
397 struct kvm_ldttss_desc {
398 u16 limit0;
399 u16 base0;
400 unsigned base1:8, type:5, dpl:2, p:1;
401 unsigned limit1:4, zero0:3, g:1, base2:8;
402 u32 base3;
403 u32 zero1;
404 } __attribute__((packed));
405
406 struct svm_cpu_data {
407 int cpu;
408
409 u64 asid_generation;
410 u32 max_asid;
411 u32 next_asid;
412 struct kvm_ldttss_desc *tss_desc;
413
414 struct page *save_area;
415 };
416
417 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
418
419 struct svm_init_data {
420 int cpu;
421 int r;
422 };
423
424 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
425
426 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
427 #define MSRS_RANGE_SIZE 2048
428 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
429
430 static u32 svm_msrpm_offset(u32 msr)
431 {
432 u32 offset;
433 int i;
434
435 for (i = 0; i < NUM_MSR_MAPS; i++) {
436 if (msr < msrpm_ranges[i] ||
437 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
438 continue;
439
440 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
441 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
442
443 /* Now we have the u8 offset - but need the u32 offset */
444 return offset / 4;
445 }
446
447 /* MSR not in any range */
448 return MSR_INVALID;
449 }
450
451 #define MAX_INST_SIZE 15
452
453 static inline void clgi(void)
454 {
455 asm volatile (__ex(SVM_CLGI));
456 }
457
458 static inline void stgi(void)
459 {
460 asm volatile (__ex(SVM_STGI));
461 }
462
463 static inline void invlpga(unsigned long addr, u32 asid)
464 {
465 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
466 }
467
468 static int get_npt_level(void)
469 {
470 #ifdef CONFIG_X86_64
471 return PT64_ROOT_LEVEL;
472 #else
473 return PT32E_ROOT_LEVEL;
474 #endif
475 }
476
477 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
478 {
479 vcpu->arch.efer = efer;
480 if (!npt_enabled && !(efer & EFER_LMA))
481 efer &= ~EFER_LME;
482
483 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
484 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
485 }
486
487 static int is_external_interrupt(u32 info)
488 {
489 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
490 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
491 }
492
493 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
494 {
495 struct vcpu_svm *svm = to_svm(vcpu);
496 u32 ret = 0;
497
498 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
499 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
500 return ret;
501 }
502
503 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
504 {
505 struct vcpu_svm *svm = to_svm(vcpu);
506
507 if (mask == 0)
508 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
509 else
510 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
511
512 }
513
514 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
515 {
516 struct vcpu_svm *svm = to_svm(vcpu);
517
518 if (svm->vmcb->control.next_rip != 0) {
519 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
520 svm->next_rip = svm->vmcb->control.next_rip;
521 }
522
523 if (!svm->next_rip) {
524 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
525 EMULATE_DONE)
526 printk(KERN_DEBUG "%s: NOP\n", __func__);
527 return;
528 }
529 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
530 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
531 __func__, kvm_rip_read(vcpu), svm->next_rip);
532
533 kvm_rip_write(vcpu, svm->next_rip);
534 svm_set_interrupt_shadow(vcpu, 0);
535 }
536
537 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
538 bool has_error_code, u32 error_code,
539 bool reinject)
540 {
541 struct vcpu_svm *svm = to_svm(vcpu);
542
543 /*
544 * If we are within a nested VM we'd better #VMEXIT and let the guest
545 * handle the exception
546 */
547 if (!reinject &&
548 nested_svm_check_exception(svm, nr, has_error_code, error_code))
549 return;
550
551 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
552 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
553
554 /*
555 * For guest debugging where we have to reinject #BP if some
556 * INT3 is guest-owned:
557 * Emulate nRIP by moving RIP forward. Will fail if injection
558 * raises a fault that is not intercepted. Still better than
559 * failing in all cases.
560 */
561 skip_emulated_instruction(&svm->vcpu);
562 rip = kvm_rip_read(&svm->vcpu);
563 svm->int3_rip = rip + svm->vmcb->save.cs.base;
564 svm->int3_injected = rip - old_rip;
565 }
566
567 svm->vmcb->control.event_inj = nr
568 | SVM_EVTINJ_VALID
569 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
570 | SVM_EVTINJ_TYPE_EXEPT;
571 svm->vmcb->control.event_inj_err = error_code;
572 }
573
574 static void svm_init_erratum_383(void)
575 {
576 u32 low, high;
577 int err;
578 u64 val;
579
580 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
581 return;
582
583 /* Use _safe variants to not break nested virtualization */
584 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
585 if (err)
586 return;
587
588 val |= (1ULL << 47);
589
590 low = lower_32_bits(val);
591 high = upper_32_bits(val);
592
593 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
594
595 erratum_383_found = true;
596 }
597
598 static void svm_init_osvw(struct kvm_vcpu *vcpu)
599 {
600 /*
601 * Guests should see errata 400 and 415 as fixed (assuming that
602 * HLT and IO instructions are intercepted).
603 */
604 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
605 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
606
607 /*
608 * By increasing VCPU's osvw.length to 3 we are telling the guest that
609 * all osvw.status bits inside that length, including bit 0 (which is
610 * reserved for erratum 298), are valid. However, if host processor's
611 * osvw_len is 0 then osvw_status[0] carries no information. We need to
612 * be conservative here and therefore we tell the guest that erratum 298
613 * is present (because we really don't know).
614 */
615 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
616 vcpu->arch.osvw.status |= 1;
617 }
618
619 static int has_svm(void)
620 {
621 const char *msg;
622
623 if (!cpu_has_svm(&msg)) {
624 printk(KERN_INFO "has_svm: %s\n", msg);
625 return 0;
626 }
627
628 return 1;
629 }
630
631 static void svm_hardware_disable(void)
632 {
633 /* Make sure we clean up behind us */
634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
635 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
636
637 cpu_svm_disable();
638
639 amd_pmu_disable_virt();
640 }
641
642 static int svm_hardware_enable(void)
643 {
644
645 struct svm_cpu_data *sd;
646 uint64_t efer;
647 struct desc_ptr gdt_descr;
648 struct desc_struct *gdt;
649 int me = raw_smp_processor_id();
650
651 rdmsrl(MSR_EFER, efer);
652 if (efer & EFER_SVME)
653 return -EBUSY;
654
655 if (!has_svm()) {
656 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
657 return -EINVAL;
658 }
659 sd = per_cpu(svm_data, me);
660 if (!sd) {
661 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
662 return -EINVAL;
663 }
664
665 sd->asid_generation = 1;
666 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
667 sd->next_asid = sd->max_asid + 1;
668
669 native_store_gdt(&gdt_descr);
670 gdt = (struct desc_struct *)gdt_descr.address;
671 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
672
673 wrmsrl(MSR_EFER, efer | EFER_SVME);
674
675 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
676
677 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
678 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
679 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
680 }
681
682
683 /*
684 * Get OSVW bits.
685 *
686 * Note that it is possible to have a system with mixed processor
687 * revisions and therefore different OSVW bits. If bits are not the same
688 * on different processors then choose the worst case (i.e. if erratum
689 * is present on one processor and not on another then assume that the
690 * erratum is present everywhere).
691 */
692 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
693 uint64_t len, status = 0;
694 int err;
695
696 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
697 if (!err)
698 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
699 &err);
700
701 if (err)
702 osvw_status = osvw_len = 0;
703 else {
704 if (len < osvw_len)
705 osvw_len = len;
706 osvw_status |= status;
707 osvw_status &= (1ULL << osvw_len) - 1;
708 }
709 } else
710 osvw_status = osvw_len = 0;
711
712 svm_init_erratum_383();
713
714 amd_pmu_enable_virt();
715
716 return 0;
717 }
718
719 static void svm_cpu_uninit(int cpu)
720 {
721 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
722
723 if (!sd)
724 return;
725
726 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
727 __free_page(sd->save_area);
728 kfree(sd);
729 }
730
731 static int svm_cpu_init(int cpu)
732 {
733 struct svm_cpu_data *sd;
734 int r;
735
736 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
737 if (!sd)
738 return -ENOMEM;
739 sd->cpu = cpu;
740 sd->save_area = alloc_page(GFP_KERNEL);
741 r = -ENOMEM;
742 if (!sd->save_area)
743 goto err_1;
744
745 per_cpu(svm_data, cpu) = sd;
746
747 return 0;
748
749 err_1:
750 kfree(sd);
751 return r;
752
753 }
754
755 static bool valid_msr_intercept(u32 index)
756 {
757 int i;
758
759 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
760 if (direct_access_msrs[i].index == index)
761 return true;
762
763 return false;
764 }
765
766 static void set_msr_interception(u32 *msrpm, unsigned msr,
767 int read, int write)
768 {
769 u8 bit_read, bit_write;
770 unsigned long tmp;
771 u32 offset;
772
773 /*
774 * If this warning triggers extend the direct_access_msrs list at the
775 * beginning of the file
776 */
777 WARN_ON(!valid_msr_intercept(msr));
778
779 offset = svm_msrpm_offset(msr);
780 bit_read = 2 * (msr & 0x0f);
781 bit_write = 2 * (msr & 0x0f) + 1;
782 tmp = msrpm[offset];
783
784 BUG_ON(offset == MSR_INVALID);
785
786 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
787 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
788
789 msrpm[offset] = tmp;
790 }
791
792 static void svm_vcpu_init_msrpm(u32 *msrpm)
793 {
794 int i;
795
796 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
797
798 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
799 if (!direct_access_msrs[i].always)
800 continue;
801
802 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
803 }
804 }
805
806 static void add_msr_offset(u32 offset)
807 {
808 int i;
809
810 for (i = 0; i < MSRPM_OFFSETS; ++i) {
811
812 /* Offset already in list? */
813 if (msrpm_offsets[i] == offset)
814 return;
815
816 /* Slot used by another offset? */
817 if (msrpm_offsets[i] != MSR_INVALID)
818 continue;
819
820 /* Add offset to list */
821 msrpm_offsets[i] = offset;
822
823 return;
824 }
825
826 /*
827 * If this BUG triggers the msrpm_offsets table has an overflow. Just
828 * increase MSRPM_OFFSETS in this case.
829 */
830 BUG();
831 }
832
833 static void init_msrpm_offsets(void)
834 {
835 int i;
836
837 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
838
839 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
840 u32 offset;
841
842 offset = svm_msrpm_offset(direct_access_msrs[i].index);
843 BUG_ON(offset == MSR_INVALID);
844
845 add_msr_offset(offset);
846 }
847 }
848
849 static void svm_enable_lbrv(struct vcpu_svm *svm)
850 {
851 u32 *msrpm = svm->msrpm;
852
853 svm->vmcb->control.lbr_ctl = 1;
854 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
855 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
856 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
857 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
858 }
859
860 static void svm_disable_lbrv(struct vcpu_svm *svm)
861 {
862 u32 *msrpm = svm->msrpm;
863
864 svm->vmcb->control.lbr_ctl = 0;
865 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
866 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
867 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
868 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
869 }
870
871 static __init int svm_hardware_setup(void)
872 {
873 int cpu;
874 struct page *iopm_pages;
875 void *iopm_va;
876 int r;
877
878 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
879
880 if (!iopm_pages)
881 return -ENOMEM;
882
883 iopm_va = page_address(iopm_pages);
884 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
885 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
886
887 init_msrpm_offsets();
888
889 if (boot_cpu_has(X86_FEATURE_NX))
890 kvm_enable_efer_bits(EFER_NX);
891
892 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
893 kvm_enable_efer_bits(EFER_FFXSR);
894
895 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
896 kvm_has_tsc_control = true;
897 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
898 kvm_tsc_scaling_ratio_frac_bits = 32;
899 }
900
901 if (nested) {
902 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
903 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
904 }
905
906 for_each_possible_cpu(cpu) {
907 r = svm_cpu_init(cpu);
908 if (r)
909 goto err;
910 }
911
912 if (!boot_cpu_has(X86_FEATURE_NPT))
913 npt_enabled = false;
914
915 if (npt_enabled && !npt) {
916 printk(KERN_INFO "kvm: Nested Paging disabled\n");
917 npt_enabled = false;
918 }
919
920 if (npt_enabled) {
921 printk(KERN_INFO "kvm: Nested Paging enabled\n");
922 kvm_enable_tdp();
923 } else
924 kvm_disable_tdp();
925
926 return 0;
927
928 err:
929 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
930 iopm_base = 0;
931 return r;
932 }
933
934 static __exit void svm_hardware_unsetup(void)
935 {
936 int cpu;
937
938 for_each_possible_cpu(cpu)
939 svm_cpu_uninit(cpu);
940
941 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
942 iopm_base = 0;
943 }
944
945 static void init_seg(struct vmcb_seg *seg)
946 {
947 seg->selector = 0;
948 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
949 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
950 seg->limit = 0xffff;
951 seg->base = 0;
952 }
953
954 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
955 {
956 seg->selector = 0;
957 seg->attrib = SVM_SELECTOR_P_MASK | type;
958 seg->limit = 0xffff;
959 seg->base = 0;
960 }
961
962 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
963 {
964 struct vcpu_svm *svm = to_svm(vcpu);
965
966 return svm->vmcb->control.tsc_offset;
967 }
968
969 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
970 {
971 struct vcpu_svm *svm = to_svm(vcpu);
972 u64 g_tsc_offset = 0;
973
974 if (is_guest_mode(vcpu)) {
975 g_tsc_offset = svm->vmcb->control.tsc_offset -
976 svm->nested.hsave->control.tsc_offset;
977 svm->nested.hsave->control.tsc_offset = offset;
978 } else
979 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
980 svm->vmcb->control.tsc_offset,
981 offset);
982
983 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
984
985 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
986 }
987
988 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
989 {
990 struct vcpu_svm *svm = to_svm(vcpu);
991
992 svm->vmcb->control.tsc_offset += adjustment;
993 if (is_guest_mode(vcpu))
994 svm->nested.hsave->control.tsc_offset += adjustment;
995 else
996 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
997 svm->vmcb->control.tsc_offset - adjustment,
998 svm->vmcb->control.tsc_offset);
999
1000 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1001 }
1002
1003 static void init_vmcb(struct vcpu_svm *svm)
1004 {
1005 struct vmcb_control_area *control = &svm->vmcb->control;
1006 struct vmcb_save_area *save = &svm->vmcb->save;
1007
1008 svm->vcpu.fpu_active = 1;
1009 svm->vcpu.arch.hflags = 0;
1010
1011 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1012 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1013 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1014 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1015 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1016 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1017 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1018
1019 set_dr_intercepts(svm);
1020
1021 set_exception_intercept(svm, PF_VECTOR);
1022 set_exception_intercept(svm, UD_VECTOR);
1023 set_exception_intercept(svm, MC_VECTOR);
1024 set_exception_intercept(svm, AC_VECTOR);
1025 set_exception_intercept(svm, DB_VECTOR);
1026
1027 set_intercept(svm, INTERCEPT_INTR);
1028 set_intercept(svm, INTERCEPT_NMI);
1029 set_intercept(svm, INTERCEPT_SMI);
1030 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1031 set_intercept(svm, INTERCEPT_RDPMC);
1032 set_intercept(svm, INTERCEPT_CPUID);
1033 set_intercept(svm, INTERCEPT_INVD);
1034 set_intercept(svm, INTERCEPT_HLT);
1035 set_intercept(svm, INTERCEPT_INVLPG);
1036 set_intercept(svm, INTERCEPT_INVLPGA);
1037 set_intercept(svm, INTERCEPT_IOIO_PROT);
1038 set_intercept(svm, INTERCEPT_MSR_PROT);
1039 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1040 set_intercept(svm, INTERCEPT_SHUTDOWN);
1041 set_intercept(svm, INTERCEPT_VMRUN);
1042 set_intercept(svm, INTERCEPT_VMMCALL);
1043 set_intercept(svm, INTERCEPT_VMLOAD);
1044 set_intercept(svm, INTERCEPT_VMSAVE);
1045 set_intercept(svm, INTERCEPT_STGI);
1046 set_intercept(svm, INTERCEPT_CLGI);
1047 set_intercept(svm, INTERCEPT_SKINIT);
1048 set_intercept(svm, INTERCEPT_WBINVD);
1049 set_intercept(svm, INTERCEPT_MONITOR);
1050 set_intercept(svm, INTERCEPT_MWAIT);
1051 set_intercept(svm, INTERCEPT_XSETBV);
1052
1053 control->iopm_base_pa = iopm_base;
1054 control->msrpm_base_pa = __pa(svm->msrpm);
1055 control->int_ctl = V_INTR_MASKING_MASK;
1056
1057 init_seg(&save->es);
1058 init_seg(&save->ss);
1059 init_seg(&save->ds);
1060 init_seg(&save->fs);
1061 init_seg(&save->gs);
1062
1063 save->cs.selector = 0xf000;
1064 save->cs.base = 0xffff0000;
1065 /* Executable/Readable Code Segment */
1066 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068 save->cs.limit = 0xffff;
1069
1070 save->gdtr.limit = 0xffff;
1071 save->idtr.limit = 0xffff;
1072
1073 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075
1076 svm_set_efer(&svm->vcpu, 0);
1077 save->dr6 = 0xffff0ff0;
1078 kvm_set_rflags(&svm->vcpu, 2);
1079 save->rip = 0x0000fff0;
1080 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081
1082 /*
1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 * It also updates the guest-visible cr0 value.
1085 */
1086 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087 kvm_mmu_reset_context(&svm->vcpu);
1088
1089 save->cr4 = X86_CR4_PAE;
1090 /* rdx = ?? */
1091
1092 if (npt_enabled) {
1093 /* Setup VMCB for Nested Paging */
1094 control->nested_ctl = 1;
1095 clr_intercept(svm, INTERCEPT_INVLPG);
1096 clr_exception_intercept(svm, PF_VECTOR);
1097 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099 save->g_pat = svm->vcpu.arch.pat;
1100 save->cr3 = 0;
1101 save->cr4 = 0;
1102 }
1103 svm->asid_generation = 0;
1104
1105 svm->nested.vmcb = 0;
1106 svm->vcpu.arch.hflags = 0;
1107
1108 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1109 control->pause_filter_count = 3000;
1110 set_intercept(svm, INTERCEPT_PAUSE);
1111 }
1112
1113 mark_all_dirty(svm->vmcb);
1114
1115 enable_gif(svm);
1116 }
1117
1118 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1119 {
1120 struct vcpu_svm *svm = to_svm(vcpu);
1121 u32 dummy;
1122 u32 eax = 1;
1123
1124 if (!init_event) {
1125 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1126 MSR_IA32_APICBASE_ENABLE;
1127 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1128 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1129 }
1130 init_vmcb(svm);
1131
1132 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1133 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1134 }
1135
1136 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1137 {
1138 struct vcpu_svm *svm;
1139 struct page *page;
1140 struct page *msrpm_pages;
1141 struct page *hsave_page;
1142 struct page *nested_msrpm_pages;
1143 int err;
1144
1145 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1146 if (!svm) {
1147 err = -ENOMEM;
1148 goto out;
1149 }
1150
1151 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1152 if (err)
1153 goto free_svm;
1154
1155 err = -ENOMEM;
1156 page = alloc_page(GFP_KERNEL);
1157 if (!page)
1158 goto uninit;
1159
1160 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1161 if (!msrpm_pages)
1162 goto free_page1;
1163
1164 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1165 if (!nested_msrpm_pages)
1166 goto free_page2;
1167
1168 hsave_page = alloc_page(GFP_KERNEL);
1169 if (!hsave_page)
1170 goto free_page3;
1171
1172 svm->nested.hsave = page_address(hsave_page);
1173
1174 svm->msrpm = page_address(msrpm_pages);
1175 svm_vcpu_init_msrpm(svm->msrpm);
1176
1177 svm->nested.msrpm = page_address(nested_msrpm_pages);
1178 svm_vcpu_init_msrpm(svm->nested.msrpm);
1179
1180 svm->vmcb = page_address(page);
1181 clear_page(svm->vmcb);
1182 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1183 svm->asid_generation = 0;
1184 init_vmcb(svm);
1185
1186 svm_init_osvw(&svm->vcpu);
1187
1188 return &svm->vcpu;
1189
1190 free_page3:
1191 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1192 free_page2:
1193 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1194 free_page1:
1195 __free_page(page);
1196 uninit:
1197 kvm_vcpu_uninit(&svm->vcpu);
1198 free_svm:
1199 kmem_cache_free(kvm_vcpu_cache, svm);
1200 out:
1201 return ERR_PTR(err);
1202 }
1203
1204 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1205 {
1206 struct vcpu_svm *svm = to_svm(vcpu);
1207
1208 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1209 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1210 __free_page(virt_to_page(svm->nested.hsave));
1211 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1212 kvm_vcpu_uninit(vcpu);
1213 kmem_cache_free(kvm_vcpu_cache, svm);
1214 }
1215
1216 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1217 {
1218 struct vcpu_svm *svm = to_svm(vcpu);
1219 int i;
1220
1221 if (unlikely(cpu != vcpu->cpu)) {
1222 svm->asid_generation = 0;
1223 mark_all_dirty(svm->vmcb);
1224 }
1225
1226 #ifdef CONFIG_X86_64
1227 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1228 #endif
1229 savesegment(fs, svm->host.fs);
1230 savesegment(gs, svm->host.gs);
1231 svm->host.ldt = kvm_read_ldt();
1232
1233 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1234 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1235
1236 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1237 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1238 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1239 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1240 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1241 }
1242 }
1243 /* This assumes that the kernel never uses MSR_TSC_AUX */
1244 if (static_cpu_has(X86_FEATURE_RDTSCP))
1245 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1246 }
1247
1248 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1249 {
1250 struct vcpu_svm *svm = to_svm(vcpu);
1251 int i;
1252
1253 ++vcpu->stat.host_state_reload;
1254 kvm_load_ldt(svm->host.ldt);
1255 #ifdef CONFIG_X86_64
1256 loadsegment(fs, svm->host.fs);
1257 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1258 load_gs_index(svm->host.gs);
1259 #else
1260 #ifdef CONFIG_X86_32_LAZY_GS
1261 loadsegment(gs, svm->host.gs);
1262 #endif
1263 #endif
1264 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1265 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1266 }
1267
1268 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1269 {
1270 return to_svm(vcpu)->vmcb->save.rflags;
1271 }
1272
1273 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1274 {
1275 /*
1276 * Any change of EFLAGS.VM is accompained by a reload of SS
1277 * (caused by either a task switch or an inter-privilege IRET),
1278 * so we do not need to update the CPL here.
1279 */
1280 to_svm(vcpu)->vmcb->save.rflags = rflags;
1281 }
1282
1283 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1284 {
1285 switch (reg) {
1286 case VCPU_EXREG_PDPTR:
1287 BUG_ON(!npt_enabled);
1288 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1289 break;
1290 default:
1291 BUG();
1292 }
1293 }
1294
1295 static void svm_set_vintr(struct vcpu_svm *svm)
1296 {
1297 set_intercept(svm, INTERCEPT_VINTR);
1298 }
1299
1300 static void svm_clear_vintr(struct vcpu_svm *svm)
1301 {
1302 clr_intercept(svm, INTERCEPT_VINTR);
1303 }
1304
1305 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1306 {
1307 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1308
1309 switch (seg) {
1310 case VCPU_SREG_CS: return &save->cs;
1311 case VCPU_SREG_DS: return &save->ds;
1312 case VCPU_SREG_ES: return &save->es;
1313 case VCPU_SREG_FS: return &save->fs;
1314 case VCPU_SREG_GS: return &save->gs;
1315 case VCPU_SREG_SS: return &save->ss;
1316 case VCPU_SREG_TR: return &save->tr;
1317 case VCPU_SREG_LDTR: return &save->ldtr;
1318 }
1319 BUG();
1320 return NULL;
1321 }
1322
1323 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1324 {
1325 struct vmcb_seg *s = svm_seg(vcpu, seg);
1326
1327 return s->base;
1328 }
1329
1330 static void svm_get_segment(struct kvm_vcpu *vcpu,
1331 struct kvm_segment *var, int seg)
1332 {
1333 struct vmcb_seg *s = svm_seg(vcpu, seg);
1334
1335 var->base = s->base;
1336 var->limit = s->limit;
1337 var->selector = s->selector;
1338 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1339 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1340 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1341 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1342 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1343 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1344 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1345
1346 /*
1347 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1348 * However, the SVM spec states that the G bit is not observed by the
1349 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1350 * So let's synthesize a legal G bit for all segments, this helps
1351 * running KVM nested. It also helps cross-vendor migration, because
1352 * Intel's vmentry has a check on the 'G' bit.
1353 */
1354 var->g = s->limit > 0xfffff;
1355
1356 /*
1357 * AMD's VMCB does not have an explicit unusable field, so emulate it
1358 * for cross vendor migration purposes by "not present"
1359 */
1360 var->unusable = !var->present || (var->type == 0);
1361
1362 switch (seg) {
1363 case VCPU_SREG_TR:
1364 /*
1365 * Work around a bug where the busy flag in the tr selector
1366 * isn't exposed
1367 */
1368 var->type |= 0x2;
1369 break;
1370 case VCPU_SREG_DS:
1371 case VCPU_SREG_ES:
1372 case VCPU_SREG_FS:
1373 case VCPU_SREG_GS:
1374 /*
1375 * The accessed bit must always be set in the segment
1376 * descriptor cache, although it can be cleared in the
1377 * descriptor, the cached bit always remains at 1. Since
1378 * Intel has a check on this, set it here to support
1379 * cross-vendor migration.
1380 */
1381 if (!var->unusable)
1382 var->type |= 0x1;
1383 break;
1384 case VCPU_SREG_SS:
1385 /*
1386 * On AMD CPUs sometimes the DB bit in the segment
1387 * descriptor is left as 1, although the whole segment has
1388 * been made unusable. Clear it here to pass an Intel VMX
1389 * entry check when cross vendor migrating.
1390 */
1391 if (var->unusable)
1392 var->db = 0;
1393 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1394 break;
1395 }
1396 }
1397
1398 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1399 {
1400 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1401
1402 return save->cpl;
1403 }
1404
1405 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1406 {
1407 struct vcpu_svm *svm = to_svm(vcpu);
1408
1409 dt->size = svm->vmcb->save.idtr.limit;
1410 dt->address = svm->vmcb->save.idtr.base;
1411 }
1412
1413 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1414 {
1415 struct vcpu_svm *svm = to_svm(vcpu);
1416
1417 svm->vmcb->save.idtr.limit = dt->size;
1418 svm->vmcb->save.idtr.base = dt->address ;
1419 mark_dirty(svm->vmcb, VMCB_DT);
1420 }
1421
1422 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1423 {
1424 struct vcpu_svm *svm = to_svm(vcpu);
1425
1426 dt->size = svm->vmcb->save.gdtr.limit;
1427 dt->address = svm->vmcb->save.gdtr.base;
1428 }
1429
1430 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1431 {
1432 struct vcpu_svm *svm = to_svm(vcpu);
1433
1434 svm->vmcb->save.gdtr.limit = dt->size;
1435 svm->vmcb->save.gdtr.base = dt->address ;
1436 mark_dirty(svm->vmcb, VMCB_DT);
1437 }
1438
1439 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1440 {
1441 }
1442
1443 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1444 {
1445 }
1446
1447 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1448 {
1449 }
1450
1451 static void update_cr0_intercept(struct vcpu_svm *svm)
1452 {
1453 ulong gcr0 = svm->vcpu.arch.cr0;
1454 u64 *hcr0 = &svm->vmcb->save.cr0;
1455
1456 if (!svm->vcpu.fpu_active)
1457 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1458 else
1459 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1460 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1461
1462 mark_dirty(svm->vmcb, VMCB_CR);
1463
1464 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1465 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1466 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1467 } else {
1468 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1469 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1470 }
1471 }
1472
1473 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1474 {
1475 struct vcpu_svm *svm = to_svm(vcpu);
1476
1477 #ifdef CONFIG_X86_64
1478 if (vcpu->arch.efer & EFER_LME) {
1479 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1480 vcpu->arch.efer |= EFER_LMA;
1481 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1482 }
1483
1484 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1485 vcpu->arch.efer &= ~EFER_LMA;
1486 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1487 }
1488 }
1489 #endif
1490 vcpu->arch.cr0 = cr0;
1491
1492 if (!npt_enabled)
1493 cr0 |= X86_CR0_PG | X86_CR0_WP;
1494
1495 if (!vcpu->fpu_active)
1496 cr0 |= X86_CR0_TS;
1497 /*
1498 * re-enable caching here because the QEMU bios
1499 * does not do it - this results in some delay at
1500 * reboot
1501 */
1502 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1503 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1504 svm->vmcb->save.cr0 = cr0;
1505 mark_dirty(svm->vmcb, VMCB_CR);
1506 update_cr0_intercept(svm);
1507 }
1508
1509 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1510 {
1511 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1512 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1513
1514 if (cr4 & X86_CR4_VMXE)
1515 return 1;
1516
1517 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1518 svm_flush_tlb(vcpu);
1519
1520 vcpu->arch.cr4 = cr4;
1521 if (!npt_enabled)
1522 cr4 |= X86_CR4_PAE;
1523 cr4 |= host_cr4_mce;
1524 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1525 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1526 return 0;
1527 }
1528
1529 static void svm_set_segment(struct kvm_vcpu *vcpu,
1530 struct kvm_segment *var, int seg)
1531 {
1532 struct vcpu_svm *svm = to_svm(vcpu);
1533 struct vmcb_seg *s = svm_seg(vcpu, seg);
1534
1535 s->base = var->base;
1536 s->limit = var->limit;
1537 s->selector = var->selector;
1538 if (var->unusable)
1539 s->attrib = 0;
1540 else {
1541 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1542 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1543 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1544 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1545 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1546 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1547 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1548 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1549 }
1550
1551 /*
1552 * This is always accurate, except if SYSRET returned to a segment
1553 * with SS.DPL != 3. Intel does not have this quirk, and always
1554 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1555 * would entail passing the CPL to userspace and back.
1556 */
1557 if (seg == VCPU_SREG_SS)
1558 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1559
1560 mark_dirty(svm->vmcb, VMCB_SEG);
1561 }
1562
1563 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1564 {
1565 struct vcpu_svm *svm = to_svm(vcpu);
1566
1567 clr_exception_intercept(svm, BP_VECTOR);
1568
1569 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1570 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1571 set_exception_intercept(svm, BP_VECTOR);
1572 } else
1573 vcpu->guest_debug = 0;
1574 }
1575
1576 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1577 {
1578 if (sd->next_asid > sd->max_asid) {
1579 ++sd->asid_generation;
1580 sd->next_asid = 1;
1581 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1582 }
1583
1584 svm->asid_generation = sd->asid_generation;
1585 svm->vmcb->control.asid = sd->next_asid++;
1586
1587 mark_dirty(svm->vmcb, VMCB_ASID);
1588 }
1589
1590 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1591 {
1592 return to_svm(vcpu)->vmcb->save.dr6;
1593 }
1594
1595 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1596 {
1597 struct vcpu_svm *svm = to_svm(vcpu);
1598
1599 svm->vmcb->save.dr6 = value;
1600 mark_dirty(svm->vmcb, VMCB_DR);
1601 }
1602
1603 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1604 {
1605 struct vcpu_svm *svm = to_svm(vcpu);
1606
1607 get_debugreg(vcpu->arch.db[0], 0);
1608 get_debugreg(vcpu->arch.db[1], 1);
1609 get_debugreg(vcpu->arch.db[2], 2);
1610 get_debugreg(vcpu->arch.db[3], 3);
1611 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1612 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1613
1614 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1615 set_dr_intercepts(svm);
1616 }
1617
1618 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1619 {
1620 struct vcpu_svm *svm = to_svm(vcpu);
1621
1622 svm->vmcb->save.dr7 = value;
1623 mark_dirty(svm->vmcb, VMCB_DR);
1624 }
1625
1626 static int pf_interception(struct vcpu_svm *svm)
1627 {
1628 u64 fault_address = svm->vmcb->control.exit_info_2;
1629 u32 error_code;
1630 int r = 1;
1631
1632 switch (svm->apf_reason) {
1633 default:
1634 error_code = svm->vmcb->control.exit_info_1;
1635
1636 trace_kvm_page_fault(fault_address, error_code);
1637 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1638 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1639 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1640 svm->vmcb->control.insn_bytes,
1641 svm->vmcb->control.insn_len);
1642 break;
1643 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1644 svm->apf_reason = 0;
1645 local_irq_disable();
1646 kvm_async_pf_task_wait(fault_address);
1647 local_irq_enable();
1648 break;
1649 case KVM_PV_REASON_PAGE_READY:
1650 svm->apf_reason = 0;
1651 local_irq_disable();
1652 kvm_async_pf_task_wake(fault_address);
1653 local_irq_enable();
1654 break;
1655 }
1656 return r;
1657 }
1658
1659 static int db_interception(struct vcpu_svm *svm)
1660 {
1661 struct kvm_run *kvm_run = svm->vcpu.run;
1662
1663 if (!(svm->vcpu.guest_debug &
1664 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1665 !svm->nmi_singlestep) {
1666 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1667 return 1;
1668 }
1669
1670 if (svm->nmi_singlestep) {
1671 svm->nmi_singlestep = false;
1672 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1673 svm->vmcb->save.rflags &=
1674 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1675 }
1676
1677 if (svm->vcpu.guest_debug &
1678 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1679 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1680 kvm_run->debug.arch.pc =
1681 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1682 kvm_run->debug.arch.exception = DB_VECTOR;
1683 return 0;
1684 }
1685
1686 return 1;
1687 }
1688
1689 static int bp_interception(struct vcpu_svm *svm)
1690 {
1691 struct kvm_run *kvm_run = svm->vcpu.run;
1692
1693 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1694 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1695 kvm_run->debug.arch.exception = BP_VECTOR;
1696 return 0;
1697 }
1698
1699 static int ud_interception(struct vcpu_svm *svm)
1700 {
1701 int er;
1702
1703 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1704 if (er != EMULATE_DONE)
1705 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1706 return 1;
1707 }
1708
1709 static int ac_interception(struct vcpu_svm *svm)
1710 {
1711 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1712 return 1;
1713 }
1714
1715 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1716 {
1717 struct vcpu_svm *svm = to_svm(vcpu);
1718
1719 clr_exception_intercept(svm, NM_VECTOR);
1720
1721 svm->vcpu.fpu_active = 1;
1722 update_cr0_intercept(svm);
1723 }
1724
1725 static int nm_interception(struct vcpu_svm *svm)
1726 {
1727 svm_fpu_activate(&svm->vcpu);
1728 return 1;
1729 }
1730
1731 static bool is_erratum_383(void)
1732 {
1733 int err, i;
1734 u64 value;
1735
1736 if (!erratum_383_found)
1737 return false;
1738
1739 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1740 if (err)
1741 return false;
1742
1743 /* Bit 62 may or may not be set for this mce */
1744 value &= ~(1ULL << 62);
1745
1746 if (value != 0xb600000000010015ULL)
1747 return false;
1748
1749 /* Clear MCi_STATUS registers */
1750 for (i = 0; i < 6; ++i)
1751 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1752
1753 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1754 if (!err) {
1755 u32 low, high;
1756
1757 value &= ~(1ULL << 2);
1758 low = lower_32_bits(value);
1759 high = upper_32_bits(value);
1760
1761 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1762 }
1763
1764 /* Flush tlb to evict multi-match entries */
1765 __flush_tlb_all();
1766
1767 return true;
1768 }
1769
1770 static void svm_handle_mce(struct vcpu_svm *svm)
1771 {
1772 if (is_erratum_383()) {
1773 /*
1774 * Erratum 383 triggered. Guest state is corrupt so kill the
1775 * guest.
1776 */
1777 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1778
1779 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1780
1781 return;
1782 }
1783
1784 /*
1785 * On an #MC intercept the MCE handler is not called automatically in
1786 * the host. So do it by hand here.
1787 */
1788 asm volatile (
1789 "int $0x12\n");
1790 /* not sure if we ever come back to this point */
1791
1792 return;
1793 }
1794
1795 static int mc_interception(struct vcpu_svm *svm)
1796 {
1797 return 1;
1798 }
1799
1800 static int shutdown_interception(struct vcpu_svm *svm)
1801 {
1802 struct kvm_run *kvm_run = svm->vcpu.run;
1803
1804 /*
1805 * VMCB is undefined after a SHUTDOWN intercept
1806 * so reinitialize it.
1807 */
1808 clear_page(svm->vmcb);
1809 init_vmcb(svm);
1810
1811 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1812 return 0;
1813 }
1814
1815 static int io_interception(struct vcpu_svm *svm)
1816 {
1817 struct kvm_vcpu *vcpu = &svm->vcpu;
1818 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1819 int size, in, string;
1820 unsigned port;
1821
1822 ++svm->vcpu.stat.io_exits;
1823 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1824 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1825 if (string || in)
1826 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1827
1828 port = io_info >> 16;
1829 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1830 svm->next_rip = svm->vmcb->control.exit_info_2;
1831 skip_emulated_instruction(&svm->vcpu);
1832
1833 return kvm_fast_pio_out(vcpu, size, port);
1834 }
1835
1836 static int nmi_interception(struct vcpu_svm *svm)
1837 {
1838 return 1;
1839 }
1840
1841 static int intr_interception(struct vcpu_svm *svm)
1842 {
1843 ++svm->vcpu.stat.irq_exits;
1844 return 1;
1845 }
1846
1847 static int nop_on_interception(struct vcpu_svm *svm)
1848 {
1849 return 1;
1850 }
1851
1852 static int halt_interception(struct vcpu_svm *svm)
1853 {
1854 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1855 return kvm_emulate_halt(&svm->vcpu);
1856 }
1857
1858 static int vmmcall_interception(struct vcpu_svm *svm)
1859 {
1860 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1861 kvm_emulate_hypercall(&svm->vcpu);
1862 return 1;
1863 }
1864
1865 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1866 {
1867 struct vcpu_svm *svm = to_svm(vcpu);
1868
1869 return svm->nested.nested_cr3;
1870 }
1871
1872 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1873 {
1874 struct vcpu_svm *svm = to_svm(vcpu);
1875 u64 cr3 = svm->nested.nested_cr3;
1876 u64 pdpte;
1877 int ret;
1878
1879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1880 offset_in_page(cr3) + index * 8, 8);
1881 if (ret)
1882 return 0;
1883 return pdpte;
1884 }
1885
1886 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1887 unsigned long root)
1888 {
1889 struct vcpu_svm *svm = to_svm(vcpu);
1890
1891 svm->vmcb->control.nested_cr3 = root;
1892 mark_dirty(svm->vmcb, VMCB_NPT);
1893 svm_flush_tlb(vcpu);
1894 }
1895
1896 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1897 struct x86_exception *fault)
1898 {
1899 struct vcpu_svm *svm = to_svm(vcpu);
1900
1901 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1902 /*
1903 * TODO: track the cause of the nested page fault, and
1904 * correctly fill in the high bits of exit_info_1.
1905 */
1906 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1907 svm->vmcb->control.exit_code_hi = 0;
1908 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1909 svm->vmcb->control.exit_info_2 = fault->address;
1910 }
1911
1912 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1913 svm->vmcb->control.exit_info_1 |= fault->error_code;
1914
1915 /*
1916 * The present bit is always zero for page structure faults on real
1917 * hardware.
1918 */
1919 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1920 svm->vmcb->control.exit_info_1 &= ~1;
1921
1922 nested_svm_vmexit(svm);
1923 }
1924
1925 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1926 {
1927 WARN_ON(mmu_is_nested(vcpu));
1928 kvm_init_shadow_mmu(vcpu);
1929 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1930 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1931 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1932 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1933 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1934 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1935 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1936 }
1937
1938 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1939 {
1940 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1941 }
1942
1943 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1944 {
1945 if (!(svm->vcpu.arch.efer & EFER_SVME)
1946 || !is_paging(&svm->vcpu)) {
1947 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1948 return 1;
1949 }
1950
1951 if (svm->vmcb->save.cpl) {
1952 kvm_inject_gp(&svm->vcpu, 0);
1953 return 1;
1954 }
1955
1956 return 0;
1957 }
1958
1959 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1960 bool has_error_code, u32 error_code)
1961 {
1962 int vmexit;
1963
1964 if (!is_guest_mode(&svm->vcpu))
1965 return 0;
1966
1967 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1968 svm->vmcb->control.exit_code_hi = 0;
1969 svm->vmcb->control.exit_info_1 = error_code;
1970 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1971
1972 vmexit = nested_svm_intercept(svm);
1973 if (vmexit == NESTED_EXIT_DONE)
1974 svm->nested.exit_required = true;
1975
1976 return vmexit;
1977 }
1978
1979 /* This function returns true if it is save to enable the irq window */
1980 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1981 {
1982 if (!is_guest_mode(&svm->vcpu))
1983 return true;
1984
1985 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1986 return true;
1987
1988 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1989 return false;
1990
1991 /*
1992 * if vmexit was already requested (by intercepted exception
1993 * for instance) do not overwrite it with "external interrupt"
1994 * vmexit.
1995 */
1996 if (svm->nested.exit_required)
1997 return false;
1998
1999 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2000 svm->vmcb->control.exit_info_1 = 0;
2001 svm->vmcb->control.exit_info_2 = 0;
2002
2003 if (svm->nested.intercept & 1ULL) {
2004 /*
2005 * The #vmexit can't be emulated here directly because this
2006 * code path runs with irqs and preemption disabled. A
2007 * #vmexit emulation might sleep. Only signal request for
2008 * the #vmexit here.
2009 */
2010 svm->nested.exit_required = true;
2011 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2012 return false;
2013 }
2014
2015 return true;
2016 }
2017
2018 /* This function returns true if it is save to enable the nmi window */
2019 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2020 {
2021 if (!is_guest_mode(&svm->vcpu))
2022 return true;
2023
2024 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2025 return true;
2026
2027 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2028 svm->nested.exit_required = true;
2029
2030 return false;
2031 }
2032
2033 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2034 {
2035 struct page *page;
2036
2037 might_sleep();
2038
2039 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2040 if (is_error_page(page))
2041 goto error;
2042
2043 *_page = page;
2044
2045 return kmap(page);
2046
2047 error:
2048 kvm_inject_gp(&svm->vcpu, 0);
2049
2050 return NULL;
2051 }
2052
2053 static void nested_svm_unmap(struct page *page)
2054 {
2055 kunmap(page);
2056 kvm_release_page_dirty(page);
2057 }
2058
2059 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2060 {
2061 unsigned port, size, iopm_len;
2062 u16 val, mask;
2063 u8 start_bit;
2064 u64 gpa;
2065
2066 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2067 return NESTED_EXIT_HOST;
2068
2069 port = svm->vmcb->control.exit_info_1 >> 16;
2070 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2071 SVM_IOIO_SIZE_SHIFT;
2072 gpa = svm->nested.vmcb_iopm + (port / 8);
2073 start_bit = port % 8;
2074 iopm_len = (start_bit + size > 8) ? 2 : 1;
2075 mask = (0xf >> (4 - size)) << start_bit;
2076 val = 0;
2077
2078 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2079 return NESTED_EXIT_DONE;
2080
2081 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2082 }
2083
2084 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2085 {
2086 u32 offset, msr, value;
2087 int write, mask;
2088
2089 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2090 return NESTED_EXIT_HOST;
2091
2092 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2093 offset = svm_msrpm_offset(msr);
2094 write = svm->vmcb->control.exit_info_1 & 1;
2095 mask = 1 << ((2 * (msr & 0xf)) + write);
2096
2097 if (offset == MSR_INVALID)
2098 return NESTED_EXIT_DONE;
2099
2100 /* Offset is in 32 bit units but need in 8 bit units */
2101 offset *= 4;
2102
2103 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2104 return NESTED_EXIT_DONE;
2105
2106 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2107 }
2108
2109 static int nested_svm_exit_special(struct vcpu_svm *svm)
2110 {
2111 u32 exit_code = svm->vmcb->control.exit_code;
2112
2113 switch (exit_code) {
2114 case SVM_EXIT_INTR:
2115 case SVM_EXIT_NMI:
2116 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2117 return NESTED_EXIT_HOST;
2118 case SVM_EXIT_NPF:
2119 /* For now we are always handling NPFs when using them */
2120 if (npt_enabled)
2121 return NESTED_EXIT_HOST;
2122 break;
2123 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2124 /* When we're shadowing, trap PFs, but not async PF */
2125 if (!npt_enabled && svm->apf_reason == 0)
2126 return NESTED_EXIT_HOST;
2127 break;
2128 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2129 nm_interception(svm);
2130 break;
2131 default:
2132 break;
2133 }
2134
2135 return NESTED_EXIT_CONTINUE;
2136 }
2137
2138 /*
2139 * If this function returns true, this #vmexit was already handled
2140 */
2141 static int nested_svm_intercept(struct vcpu_svm *svm)
2142 {
2143 u32 exit_code = svm->vmcb->control.exit_code;
2144 int vmexit = NESTED_EXIT_HOST;
2145
2146 switch (exit_code) {
2147 case SVM_EXIT_MSR:
2148 vmexit = nested_svm_exit_handled_msr(svm);
2149 break;
2150 case SVM_EXIT_IOIO:
2151 vmexit = nested_svm_intercept_ioio(svm);
2152 break;
2153 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2154 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2155 if (svm->nested.intercept_cr & bit)
2156 vmexit = NESTED_EXIT_DONE;
2157 break;
2158 }
2159 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2160 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2161 if (svm->nested.intercept_dr & bit)
2162 vmexit = NESTED_EXIT_DONE;
2163 break;
2164 }
2165 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2166 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2167 if (svm->nested.intercept_exceptions & excp_bits)
2168 vmexit = NESTED_EXIT_DONE;
2169 /* async page fault always cause vmexit */
2170 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2171 svm->apf_reason != 0)
2172 vmexit = NESTED_EXIT_DONE;
2173 break;
2174 }
2175 case SVM_EXIT_ERR: {
2176 vmexit = NESTED_EXIT_DONE;
2177 break;
2178 }
2179 default: {
2180 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2181 if (svm->nested.intercept & exit_bits)
2182 vmexit = NESTED_EXIT_DONE;
2183 }
2184 }
2185
2186 return vmexit;
2187 }
2188
2189 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2190 {
2191 int vmexit;
2192
2193 vmexit = nested_svm_intercept(svm);
2194
2195 if (vmexit == NESTED_EXIT_DONE)
2196 nested_svm_vmexit(svm);
2197
2198 return vmexit;
2199 }
2200
2201 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2202 {
2203 struct vmcb_control_area *dst = &dst_vmcb->control;
2204 struct vmcb_control_area *from = &from_vmcb->control;
2205
2206 dst->intercept_cr = from->intercept_cr;
2207 dst->intercept_dr = from->intercept_dr;
2208 dst->intercept_exceptions = from->intercept_exceptions;
2209 dst->intercept = from->intercept;
2210 dst->iopm_base_pa = from->iopm_base_pa;
2211 dst->msrpm_base_pa = from->msrpm_base_pa;
2212 dst->tsc_offset = from->tsc_offset;
2213 dst->asid = from->asid;
2214 dst->tlb_ctl = from->tlb_ctl;
2215 dst->int_ctl = from->int_ctl;
2216 dst->int_vector = from->int_vector;
2217 dst->int_state = from->int_state;
2218 dst->exit_code = from->exit_code;
2219 dst->exit_code_hi = from->exit_code_hi;
2220 dst->exit_info_1 = from->exit_info_1;
2221 dst->exit_info_2 = from->exit_info_2;
2222 dst->exit_int_info = from->exit_int_info;
2223 dst->exit_int_info_err = from->exit_int_info_err;
2224 dst->nested_ctl = from->nested_ctl;
2225 dst->event_inj = from->event_inj;
2226 dst->event_inj_err = from->event_inj_err;
2227 dst->nested_cr3 = from->nested_cr3;
2228 dst->lbr_ctl = from->lbr_ctl;
2229 }
2230
2231 static int nested_svm_vmexit(struct vcpu_svm *svm)
2232 {
2233 struct vmcb *nested_vmcb;
2234 struct vmcb *hsave = svm->nested.hsave;
2235 struct vmcb *vmcb = svm->vmcb;
2236 struct page *page;
2237
2238 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2239 vmcb->control.exit_info_1,
2240 vmcb->control.exit_info_2,
2241 vmcb->control.exit_int_info,
2242 vmcb->control.exit_int_info_err,
2243 KVM_ISA_SVM);
2244
2245 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2246 if (!nested_vmcb)
2247 return 1;
2248
2249 /* Exit Guest-Mode */
2250 leave_guest_mode(&svm->vcpu);
2251 svm->nested.vmcb = 0;
2252
2253 /* Give the current vmcb to the guest */
2254 disable_gif(svm);
2255
2256 nested_vmcb->save.es = vmcb->save.es;
2257 nested_vmcb->save.cs = vmcb->save.cs;
2258 nested_vmcb->save.ss = vmcb->save.ss;
2259 nested_vmcb->save.ds = vmcb->save.ds;
2260 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2261 nested_vmcb->save.idtr = vmcb->save.idtr;
2262 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2263 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2264 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2265 nested_vmcb->save.cr2 = vmcb->save.cr2;
2266 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2267 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2268 nested_vmcb->save.rip = vmcb->save.rip;
2269 nested_vmcb->save.rsp = vmcb->save.rsp;
2270 nested_vmcb->save.rax = vmcb->save.rax;
2271 nested_vmcb->save.dr7 = vmcb->save.dr7;
2272 nested_vmcb->save.dr6 = vmcb->save.dr6;
2273 nested_vmcb->save.cpl = vmcb->save.cpl;
2274
2275 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2276 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2277 nested_vmcb->control.int_state = vmcb->control.int_state;
2278 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2279 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2280 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2281 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2282 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2283 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2284
2285 if (svm->nrips_enabled)
2286 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2287
2288 /*
2289 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2290 * to make sure that we do not lose injected events. So check event_inj
2291 * here and copy it to exit_int_info if it is valid.
2292 * Exit_int_info and event_inj can't be both valid because the case
2293 * below only happens on a VMRUN instruction intercept which has
2294 * no valid exit_int_info set.
2295 */
2296 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2297 struct vmcb_control_area *nc = &nested_vmcb->control;
2298
2299 nc->exit_int_info = vmcb->control.event_inj;
2300 nc->exit_int_info_err = vmcb->control.event_inj_err;
2301 }
2302
2303 nested_vmcb->control.tlb_ctl = 0;
2304 nested_vmcb->control.event_inj = 0;
2305 nested_vmcb->control.event_inj_err = 0;
2306
2307 /* We always set V_INTR_MASKING and remember the old value in hflags */
2308 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2309 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2310
2311 /* Restore the original control entries */
2312 copy_vmcb_control_area(vmcb, hsave);
2313
2314 kvm_clear_exception_queue(&svm->vcpu);
2315 kvm_clear_interrupt_queue(&svm->vcpu);
2316
2317 svm->nested.nested_cr3 = 0;
2318
2319 /* Restore selected save entries */
2320 svm->vmcb->save.es = hsave->save.es;
2321 svm->vmcb->save.cs = hsave->save.cs;
2322 svm->vmcb->save.ss = hsave->save.ss;
2323 svm->vmcb->save.ds = hsave->save.ds;
2324 svm->vmcb->save.gdtr = hsave->save.gdtr;
2325 svm->vmcb->save.idtr = hsave->save.idtr;
2326 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2327 svm_set_efer(&svm->vcpu, hsave->save.efer);
2328 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2329 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2330 if (npt_enabled) {
2331 svm->vmcb->save.cr3 = hsave->save.cr3;
2332 svm->vcpu.arch.cr3 = hsave->save.cr3;
2333 } else {
2334 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2335 }
2336 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2337 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2338 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2339 svm->vmcb->save.dr7 = 0;
2340 svm->vmcb->save.cpl = 0;
2341 svm->vmcb->control.exit_int_info = 0;
2342
2343 mark_all_dirty(svm->vmcb);
2344
2345 nested_svm_unmap(page);
2346
2347 nested_svm_uninit_mmu_context(&svm->vcpu);
2348 kvm_mmu_reset_context(&svm->vcpu);
2349 kvm_mmu_load(&svm->vcpu);
2350
2351 return 0;
2352 }
2353
2354 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2355 {
2356 /*
2357 * This function merges the msr permission bitmaps of kvm and the
2358 * nested vmcb. It is optimized in that it only merges the parts where
2359 * the kvm msr permission bitmap may contain zero bits
2360 */
2361 int i;
2362
2363 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2364 return true;
2365
2366 for (i = 0; i < MSRPM_OFFSETS; i++) {
2367 u32 value, p;
2368 u64 offset;
2369
2370 if (msrpm_offsets[i] == 0xffffffff)
2371 break;
2372
2373 p = msrpm_offsets[i];
2374 offset = svm->nested.vmcb_msrpm + (p * 4);
2375
2376 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2377 return false;
2378
2379 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2380 }
2381
2382 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2383
2384 return true;
2385 }
2386
2387 static bool nested_vmcb_checks(struct vmcb *vmcb)
2388 {
2389 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2390 return false;
2391
2392 if (vmcb->control.asid == 0)
2393 return false;
2394
2395 if (vmcb->control.nested_ctl && !npt_enabled)
2396 return false;
2397
2398 return true;
2399 }
2400
2401 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2402 {
2403 struct vmcb *nested_vmcb;
2404 struct vmcb *hsave = svm->nested.hsave;
2405 struct vmcb *vmcb = svm->vmcb;
2406 struct page *page;
2407 u64 vmcb_gpa;
2408
2409 vmcb_gpa = svm->vmcb->save.rax;
2410
2411 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2412 if (!nested_vmcb)
2413 return false;
2414
2415 if (!nested_vmcb_checks(nested_vmcb)) {
2416 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2417 nested_vmcb->control.exit_code_hi = 0;
2418 nested_vmcb->control.exit_info_1 = 0;
2419 nested_vmcb->control.exit_info_2 = 0;
2420
2421 nested_svm_unmap(page);
2422
2423 return false;
2424 }
2425
2426 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2427 nested_vmcb->save.rip,
2428 nested_vmcb->control.int_ctl,
2429 nested_vmcb->control.event_inj,
2430 nested_vmcb->control.nested_ctl);
2431
2432 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2433 nested_vmcb->control.intercept_cr >> 16,
2434 nested_vmcb->control.intercept_exceptions,
2435 nested_vmcb->control.intercept);
2436
2437 /* Clear internal status */
2438 kvm_clear_exception_queue(&svm->vcpu);
2439 kvm_clear_interrupt_queue(&svm->vcpu);
2440
2441 /*
2442 * Save the old vmcb, so we don't need to pick what we save, but can
2443 * restore everything when a VMEXIT occurs
2444 */
2445 hsave->save.es = vmcb->save.es;
2446 hsave->save.cs = vmcb->save.cs;
2447 hsave->save.ss = vmcb->save.ss;
2448 hsave->save.ds = vmcb->save.ds;
2449 hsave->save.gdtr = vmcb->save.gdtr;
2450 hsave->save.idtr = vmcb->save.idtr;
2451 hsave->save.efer = svm->vcpu.arch.efer;
2452 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2453 hsave->save.cr4 = svm->vcpu.arch.cr4;
2454 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2455 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2456 hsave->save.rsp = vmcb->save.rsp;
2457 hsave->save.rax = vmcb->save.rax;
2458 if (npt_enabled)
2459 hsave->save.cr3 = vmcb->save.cr3;
2460 else
2461 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2462
2463 copy_vmcb_control_area(hsave, vmcb);
2464
2465 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2466 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2467 else
2468 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2469
2470 if (nested_vmcb->control.nested_ctl) {
2471 kvm_mmu_unload(&svm->vcpu);
2472 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2473 nested_svm_init_mmu_context(&svm->vcpu);
2474 }
2475
2476 /* Load the nested guest state */
2477 svm->vmcb->save.es = nested_vmcb->save.es;
2478 svm->vmcb->save.cs = nested_vmcb->save.cs;
2479 svm->vmcb->save.ss = nested_vmcb->save.ss;
2480 svm->vmcb->save.ds = nested_vmcb->save.ds;
2481 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2482 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2483 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2484 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2485 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2486 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2487 if (npt_enabled) {
2488 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2489 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2490 } else
2491 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2492
2493 /* Guest paging mode is active - reset mmu */
2494 kvm_mmu_reset_context(&svm->vcpu);
2495
2496 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2497 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2498 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2499 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2500
2501 /* In case we don't even reach vcpu_run, the fields are not updated */
2502 svm->vmcb->save.rax = nested_vmcb->save.rax;
2503 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2504 svm->vmcb->save.rip = nested_vmcb->save.rip;
2505 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2506 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2507 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2508
2509 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2510 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2511
2512 /* cache intercepts */
2513 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2514 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2515 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2516 svm->nested.intercept = nested_vmcb->control.intercept;
2517
2518 svm_flush_tlb(&svm->vcpu);
2519 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2520 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2521 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2522 else
2523 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2524
2525 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2526 /* We only want the cr8 intercept bits of the guest */
2527 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2528 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2529 }
2530
2531 /* We don't want to see VMMCALLs from a nested guest */
2532 clr_intercept(svm, INTERCEPT_VMMCALL);
2533
2534 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2535 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2536 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2537 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2538 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2539 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2540
2541 nested_svm_unmap(page);
2542
2543 /* Enter Guest-Mode */
2544 enter_guest_mode(&svm->vcpu);
2545
2546 /*
2547 * Merge guest and host intercepts - must be called with vcpu in
2548 * guest-mode to take affect here
2549 */
2550 recalc_intercepts(svm);
2551
2552 svm->nested.vmcb = vmcb_gpa;
2553
2554 enable_gif(svm);
2555
2556 mark_all_dirty(svm->vmcb);
2557
2558 return true;
2559 }
2560
2561 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2562 {
2563 to_vmcb->save.fs = from_vmcb->save.fs;
2564 to_vmcb->save.gs = from_vmcb->save.gs;
2565 to_vmcb->save.tr = from_vmcb->save.tr;
2566 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2567 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2568 to_vmcb->save.star = from_vmcb->save.star;
2569 to_vmcb->save.lstar = from_vmcb->save.lstar;
2570 to_vmcb->save.cstar = from_vmcb->save.cstar;
2571 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2572 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2573 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2574 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2575 }
2576
2577 static int vmload_interception(struct vcpu_svm *svm)
2578 {
2579 struct vmcb *nested_vmcb;
2580 struct page *page;
2581
2582 if (nested_svm_check_permissions(svm))
2583 return 1;
2584
2585 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2586 if (!nested_vmcb)
2587 return 1;
2588
2589 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2590 skip_emulated_instruction(&svm->vcpu);
2591
2592 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2593 nested_svm_unmap(page);
2594
2595 return 1;
2596 }
2597
2598 static int vmsave_interception(struct vcpu_svm *svm)
2599 {
2600 struct vmcb *nested_vmcb;
2601 struct page *page;
2602
2603 if (nested_svm_check_permissions(svm))
2604 return 1;
2605
2606 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2607 if (!nested_vmcb)
2608 return 1;
2609
2610 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2611 skip_emulated_instruction(&svm->vcpu);
2612
2613 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2614 nested_svm_unmap(page);
2615
2616 return 1;
2617 }
2618
2619 static int vmrun_interception(struct vcpu_svm *svm)
2620 {
2621 if (nested_svm_check_permissions(svm))
2622 return 1;
2623
2624 /* Save rip after vmrun instruction */
2625 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2626
2627 if (!nested_svm_vmrun(svm))
2628 return 1;
2629
2630 if (!nested_svm_vmrun_msrpm(svm))
2631 goto failed;
2632
2633 return 1;
2634
2635 failed:
2636
2637 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2638 svm->vmcb->control.exit_code_hi = 0;
2639 svm->vmcb->control.exit_info_1 = 0;
2640 svm->vmcb->control.exit_info_2 = 0;
2641
2642 nested_svm_vmexit(svm);
2643
2644 return 1;
2645 }
2646
2647 static int stgi_interception(struct vcpu_svm *svm)
2648 {
2649 if (nested_svm_check_permissions(svm))
2650 return 1;
2651
2652 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2653 skip_emulated_instruction(&svm->vcpu);
2654 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2655
2656 enable_gif(svm);
2657
2658 return 1;
2659 }
2660
2661 static int clgi_interception(struct vcpu_svm *svm)
2662 {
2663 if (nested_svm_check_permissions(svm))
2664 return 1;
2665
2666 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2667 skip_emulated_instruction(&svm->vcpu);
2668
2669 disable_gif(svm);
2670
2671 /* After a CLGI no interrupts should come */
2672 svm_clear_vintr(svm);
2673 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2674
2675 mark_dirty(svm->vmcb, VMCB_INTR);
2676
2677 return 1;
2678 }
2679
2680 static int invlpga_interception(struct vcpu_svm *svm)
2681 {
2682 struct kvm_vcpu *vcpu = &svm->vcpu;
2683
2684 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2685 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2686
2687 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2688 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2689
2690 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2691 skip_emulated_instruction(&svm->vcpu);
2692 return 1;
2693 }
2694
2695 static int skinit_interception(struct vcpu_svm *svm)
2696 {
2697 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2698
2699 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2700 return 1;
2701 }
2702
2703 static int wbinvd_interception(struct vcpu_svm *svm)
2704 {
2705 kvm_emulate_wbinvd(&svm->vcpu);
2706 return 1;
2707 }
2708
2709 static int xsetbv_interception(struct vcpu_svm *svm)
2710 {
2711 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2712 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2713
2714 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2715 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2716 skip_emulated_instruction(&svm->vcpu);
2717 }
2718
2719 return 1;
2720 }
2721
2722 static int task_switch_interception(struct vcpu_svm *svm)
2723 {
2724 u16 tss_selector;
2725 int reason;
2726 int int_type = svm->vmcb->control.exit_int_info &
2727 SVM_EXITINTINFO_TYPE_MASK;
2728 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2729 uint32_t type =
2730 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2731 uint32_t idt_v =
2732 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2733 bool has_error_code = false;
2734 u32 error_code = 0;
2735
2736 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2737
2738 if (svm->vmcb->control.exit_info_2 &
2739 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2740 reason = TASK_SWITCH_IRET;
2741 else if (svm->vmcb->control.exit_info_2 &
2742 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2743 reason = TASK_SWITCH_JMP;
2744 else if (idt_v)
2745 reason = TASK_SWITCH_GATE;
2746 else
2747 reason = TASK_SWITCH_CALL;
2748
2749 if (reason == TASK_SWITCH_GATE) {
2750 switch (type) {
2751 case SVM_EXITINTINFO_TYPE_NMI:
2752 svm->vcpu.arch.nmi_injected = false;
2753 break;
2754 case SVM_EXITINTINFO_TYPE_EXEPT:
2755 if (svm->vmcb->control.exit_info_2 &
2756 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2757 has_error_code = true;
2758 error_code =
2759 (u32)svm->vmcb->control.exit_info_2;
2760 }
2761 kvm_clear_exception_queue(&svm->vcpu);
2762 break;
2763 case SVM_EXITINTINFO_TYPE_INTR:
2764 kvm_clear_interrupt_queue(&svm->vcpu);
2765 break;
2766 default:
2767 break;
2768 }
2769 }
2770
2771 if (reason != TASK_SWITCH_GATE ||
2772 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2773 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2774 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2775 skip_emulated_instruction(&svm->vcpu);
2776
2777 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2778 int_vec = -1;
2779
2780 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2781 has_error_code, error_code) == EMULATE_FAIL) {
2782 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2783 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2784 svm->vcpu.run->internal.ndata = 0;
2785 return 0;
2786 }
2787 return 1;
2788 }
2789
2790 static int cpuid_interception(struct vcpu_svm *svm)
2791 {
2792 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2793 kvm_emulate_cpuid(&svm->vcpu);
2794 return 1;
2795 }
2796
2797 static int iret_interception(struct vcpu_svm *svm)
2798 {
2799 ++svm->vcpu.stat.nmi_window_exits;
2800 clr_intercept(svm, INTERCEPT_IRET);
2801 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2802 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2803 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2804 return 1;
2805 }
2806
2807 static int invlpg_interception(struct vcpu_svm *svm)
2808 {
2809 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2810 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2811
2812 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2813 skip_emulated_instruction(&svm->vcpu);
2814 return 1;
2815 }
2816
2817 static int emulate_on_interception(struct vcpu_svm *svm)
2818 {
2819 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2820 }
2821
2822 static int rdpmc_interception(struct vcpu_svm *svm)
2823 {
2824 int err;
2825
2826 if (!static_cpu_has(X86_FEATURE_NRIPS))
2827 return emulate_on_interception(svm);
2828
2829 err = kvm_rdpmc(&svm->vcpu);
2830 kvm_complete_insn_gp(&svm->vcpu, err);
2831
2832 return 1;
2833 }
2834
2835 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2836 unsigned long val)
2837 {
2838 unsigned long cr0 = svm->vcpu.arch.cr0;
2839 bool ret = false;
2840 u64 intercept;
2841
2842 intercept = svm->nested.intercept;
2843
2844 if (!is_guest_mode(&svm->vcpu) ||
2845 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2846 return false;
2847
2848 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2849 val &= ~SVM_CR0_SELECTIVE_MASK;
2850
2851 if (cr0 ^ val) {
2852 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2853 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2854 }
2855
2856 return ret;
2857 }
2858
2859 #define CR_VALID (1ULL << 63)
2860
2861 static int cr_interception(struct vcpu_svm *svm)
2862 {
2863 int reg, cr;
2864 unsigned long val;
2865 int err;
2866
2867 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2868 return emulate_on_interception(svm);
2869
2870 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2871 return emulate_on_interception(svm);
2872
2873 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2874 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2875 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2876 else
2877 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2878
2879 err = 0;
2880 if (cr >= 16) { /* mov to cr */
2881 cr -= 16;
2882 val = kvm_register_read(&svm->vcpu, reg);
2883 switch (cr) {
2884 case 0:
2885 if (!check_selective_cr0_intercepted(svm, val))
2886 err = kvm_set_cr0(&svm->vcpu, val);
2887 else
2888 return 1;
2889
2890 break;
2891 case 3:
2892 err = kvm_set_cr3(&svm->vcpu, val);
2893 break;
2894 case 4:
2895 err = kvm_set_cr4(&svm->vcpu, val);
2896 break;
2897 case 8:
2898 err = kvm_set_cr8(&svm->vcpu, val);
2899 break;
2900 default:
2901 WARN(1, "unhandled write to CR%d", cr);
2902 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2903 return 1;
2904 }
2905 } else { /* mov from cr */
2906 switch (cr) {
2907 case 0:
2908 val = kvm_read_cr0(&svm->vcpu);
2909 break;
2910 case 2:
2911 val = svm->vcpu.arch.cr2;
2912 break;
2913 case 3:
2914 val = kvm_read_cr3(&svm->vcpu);
2915 break;
2916 case 4:
2917 val = kvm_read_cr4(&svm->vcpu);
2918 break;
2919 case 8:
2920 val = kvm_get_cr8(&svm->vcpu);
2921 break;
2922 default:
2923 WARN(1, "unhandled read from CR%d", cr);
2924 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2925 return 1;
2926 }
2927 kvm_register_write(&svm->vcpu, reg, val);
2928 }
2929 kvm_complete_insn_gp(&svm->vcpu, err);
2930
2931 return 1;
2932 }
2933
2934 static int dr_interception(struct vcpu_svm *svm)
2935 {
2936 int reg, dr;
2937 unsigned long val;
2938
2939 if (svm->vcpu.guest_debug == 0) {
2940 /*
2941 * No more DR vmexits; force a reload of the debug registers
2942 * and reenter on this instruction. The next vmexit will
2943 * retrieve the full state of the debug registers.
2944 */
2945 clr_dr_intercepts(svm);
2946 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2947 return 1;
2948 }
2949
2950 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2951 return emulate_on_interception(svm);
2952
2953 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2954 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2955
2956 if (dr >= 16) { /* mov to DRn */
2957 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2958 return 1;
2959 val = kvm_register_read(&svm->vcpu, reg);
2960 kvm_set_dr(&svm->vcpu, dr - 16, val);
2961 } else {
2962 if (!kvm_require_dr(&svm->vcpu, dr))
2963 return 1;
2964 kvm_get_dr(&svm->vcpu, dr, &val);
2965 kvm_register_write(&svm->vcpu, reg, val);
2966 }
2967
2968 skip_emulated_instruction(&svm->vcpu);
2969
2970 return 1;
2971 }
2972
2973 static int cr8_write_interception(struct vcpu_svm *svm)
2974 {
2975 struct kvm_run *kvm_run = svm->vcpu.run;
2976 int r;
2977
2978 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2979 /* instruction emulation calls kvm_set_cr8() */
2980 r = cr_interception(svm);
2981 if (lapic_in_kernel(&svm->vcpu))
2982 return r;
2983 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2984 return r;
2985 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2986 return 0;
2987 }
2988
2989 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2990 {
2991 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2992 return vmcb->control.tsc_offset + host_tsc;
2993 }
2994
2995 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2996 {
2997 struct vcpu_svm *svm = to_svm(vcpu);
2998
2999 switch (msr_info->index) {
3000 case MSR_IA32_TSC: {
3001 msr_info->data = svm->vmcb->control.tsc_offset +
3002 kvm_scale_tsc(vcpu, rdtsc());
3003
3004 break;
3005 }
3006 case MSR_STAR:
3007 msr_info->data = svm->vmcb->save.star;
3008 break;
3009 #ifdef CONFIG_X86_64
3010 case MSR_LSTAR:
3011 msr_info->data = svm->vmcb->save.lstar;
3012 break;
3013 case MSR_CSTAR:
3014 msr_info->data = svm->vmcb->save.cstar;
3015 break;
3016 case MSR_KERNEL_GS_BASE:
3017 msr_info->data = svm->vmcb->save.kernel_gs_base;
3018 break;
3019 case MSR_SYSCALL_MASK:
3020 msr_info->data = svm->vmcb->save.sfmask;
3021 break;
3022 #endif
3023 case MSR_IA32_SYSENTER_CS:
3024 msr_info->data = svm->vmcb->save.sysenter_cs;
3025 break;
3026 case MSR_IA32_SYSENTER_EIP:
3027 msr_info->data = svm->sysenter_eip;
3028 break;
3029 case MSR_IA32_SYSENTER_ESP:
3030 msr_info->data = svm->sysenter_esp;
3031 break;
3032 case MSR_TSC_AUX:
3033 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3034 return 1;
3035 msr_info->data = svm->tsc_aux;
3036 break;
3037 /*
3038 * Nobody will change the following 5 values in the VMCB so we can
3039 * safely return them on rdmsr. They will always be 0 until LBRV is
3040 * implemented.
3041 */
3042 case MSR_IA32_DEBUGCTLMSR:
3043 msr_info->data = svm->vmcb->save.dbgctl;
3044 break;
3045 case MSR_IA32_LASTBRANCHFROMIP:
3046 msr_info->data = svm->vmcb->save.br_from;
3047 break;
3048 case MSR_IA32_LASTBRANCHTOIP:
3049 msr_info->data = svm->vmcb->save.br_to;
3050 break;
3051 case MSR_IA32_LASTINTFROMIP:
3052 msr_info->data = svm->vmcb->save.last_excp_from;
3053 break;
3054 case MSR_IA32_LASTINTTOIP:
3055 msr_info->data = svm->vmcb->save.last_excp_to;
3056 break;
3057 case MSR_VM_HSAVE_PA:
3058 msr_info->data = svm->nested.hsave_msr;
3059 break;
3060 case MSR_VM_CR:
3061 msr_info->data = svm->nested.vm_cr_msr;
3062 break;
3063 case MSR_IA32_UCODE_REV:
3064 msr_info->data = 0x01000065;
3065 break;
3066 default:
3067 return kvm_get_msr_common(vcpu, msr_info);
3068 }
3069 return 0;
3070 }
3071
3072 static int rdmsr_interception(struct vcpu_svm *svm)
3073 {
3074 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3075 struct msr_data msr_info;
3076
3077 msr_info.index = ecx;
3078 msr_info.host_initiated = false;
3079 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3080 trace_kvm_msr_read_ex(ecx);
3081 kvm_inject_gp(&svm->vcpu, 0);
3082 } else {
3083 trace_kvm_msr_read(ecx, msr_info.data);
3084
3085 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3086 msr_info.data & 0xffffffff);
3087 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3088 msr_info.data >> 32);
3089 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3090 skip_emulated_instruction(&svm->vcpu);
3091 }
3092 return 1;
3093 }
3094
3095 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3096 {
3097 struct vcpu_svm *svm = to_svm(vcpu);
3098 int svm_dis, chg_mask;
3099
3100 if (data & ~SVM_VM_CR_VALID_MASK)
3101 return 1;
3102
3103 chg_mask = SVM_VM_CR_VALID_MASK;
3104
3105 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3106 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3107
3108 svm->nested.vm_cr_msr &= ~chg_mask;
3109 svm->nested.vm_cr_msr |= (data & chg_mask);
3110
3111 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3112
3113 /* check for svm_disable while efer.svme is set */
3114 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3115 return 1;
3116
3117 return 0;
3118 }
3119
3120 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3121 {
3122 struct vcpu_svm *svm = to_svm(vcpu);
3123
3124 u32 ecx = msr->index;
3125 u64 data = msr->data;
3126 switch (ecx) {
3127 case MSR_IA32_TSC:
3128 kvm_write_tsc(vcpu, msr);
3129 break;
3130 case MSR_STAR:
3131 svm->vmcb->save.star = data;
3132 break;
3133 #ifdef CONFIG_X86_64
3134 case MSR_LSTAR:
3135 svm->vmcb->save.lstar = data;
3136 break;
3137 case MSR_CSTAR:
3138 svm->vmcb->save.cstar = data;
3139 break;
3140 case MSR_KERNEL_GS_BASE:
3141 svm->vmcb->save.kernel_gs_base = data;
3142 break;
3143 case MSR_SYSCALL_MASK:
3144 svm->vmcb->save.sfmask = data;
3145 break;
3146 #endif
3147 case MSR_IA32_SYSENTER_CS:
3148 svm->vmcb->save.sysenter_cs = data;
3149 break;
3150 case MSR_IA32_SYSENTER_EIP:
3151 svm->sysenter_eip = data;
3152 svm->vmcb->save.sysenter_eip = data;
3153 break;
3154 case MSR_IA32_SYSENTER_ESP:
3155 svm->sysenter_esp = data;
3156 svm->vmcb->save.sysenter_esp = data;
3157 break;
3158 case MSR_TSC_AUX:
3159 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3160 return 1;
3161
3162 /*
3163 * This is rare, so we update the MSR here instead of using
3164 * direct_access_msrs. Doing that would require a rdmsr in
3165 * svm_vcpu_put.
3166 */
3167 svm->tsc_aux = data;
3168 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3169 break;
3170 case MSR_IA32_DEBUGCTLMSR:
3171 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3172 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3173 __func__, data);
3174 break;
3175 }
3176 if (data & DEBUGCTL_RESERVED_BITS)
3177 return 1;
3178
3179 svm->vmcb->save.dbgctl = data;
3180 mark_dirty(svm->vmcb, VMCB_LBR);
3181 if (data & (1ULL<<0))
3182 svm_enable_lbrv(svm);
3183 else
3184 svm_disable_lbrv(svm);
3185 break;
3186 case MSR_VM_HSAVE_PA:
3187 svm->nested.hsave_msr = data;
3188 break;
3189 case MSR_VM_CR:
3190 return svm_set_vm_cr(vcpu, data);
3191 case MSR_VM_IGNNE:
3192 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3193 break;
3194 default:
3195 return kvm_set_msr_common(vcpu, msr);
3196 }
3197 return 0;
3198 }
3199
3200 static int wrmsr_interception(struct vcpu_svm *svm)
3201 {
3202 struct msr_data msr;
3203 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3204 u64 data = kvm_read_edx_eax(&svm->vcpu);
3205
3206 msr.data = data;
3207 msr.index = ecx;
3208 msr.host_initiated = false;
3209
3210 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3211 if (kvm_set_msr(&svm->vcpu, &msr)) {
3212 trace_kvm_msr_write_ex(ecx, data);
3213 kvm_inject_gp(&svm->vcpu, 0);
3214 } else {
3215 trace_kvm_msr_write(ecx, data);
3216 skip_emulated_instruction(&svm->vcpu);
3217 }
3218 return 1;
3219 }
3220
3221 static int msr_interception(struct vcpu_svm *svm)
3222 {
3223 if (svm->vmcb->control.exit_info_1)
3224 return wrmsr_interception(svm);
3225 else
3226 return rdmsr_interception(svm);
3227 }
3228
3229 static int interrupt_window_interception(struct vcpu_svm *svm)
3230 {
3231 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3232 svm_clear_vintr(svm);
3233 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3234 mark_dirty(svm->vmcb, VMCB_INTR);
3235 ++svm->vcpu.stat.irq_window_exits;
3236 return 1;
3237 }
3238
3239 static int pause_interception(struct vcpu_svm *svm)
3240 {
3241 kvm_vcpu_on_spin(&(svm->vcpu));
3242 return 1;
3243 }
3244
3245 static int nop_interception(struct vcpu_svm *svm)
3246 {
3247 skip_emulated_instruction(&(svm->vcpu));
3248 return 1;
3249 }
3250
3251 static int monitor_interception(struct vcpu_svm *svm)
3252 {
3253 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3254 return nop_interception(svm);
3255 }
3256
3257 static int mwait_interception(struct vcpu_svm *svm)
3258 {
3259 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3260 return nop_interception(svm);
3261 }
3262
3263 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3264 [SVM_EXIT_READ_CR0] = cr_interception,
3265 [SVM_EXIT_READ_CR3] = cr_interception,
3266 [SVM_EXIT_READ_CR4] = cr_interception,
3267 [SVM_EXIT_READ_CR8] = cr_interception,
3268 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3269 [SVM_EXIT_WRITE_CR0] = cr_interception,
3270 [SVM_EXIT_WRITE_CR3] = cr_interception,
3271 [SVM_EXIT_WRITE_CR4] = cr_interception,
3272 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3273 [SVM_EXIT_READ_DR0] = dr_interception,
3274 [SVM_EXIT_READ_DR1] = dr_interception,
3275 [SVM_EXIT_READ_DR2] = dr_interception,
3276 [SVM_EXIT_READ_DR3] = dr_interception,
3277 [SVM_EXIT_READ_DR4] = dr_interception,
3278 [SVM_EXIT_READ_DR5] = dr_interception,
3279 [SVM_EXIT_READ_DR6] = dr_interception,
3280 [SVM_EXIT_READ_DR7] = dr_interception,
3281 [SVM_EXIT_WRITE_DR0] = dr_interception,
3282 [SVM_EXIT_WRITE_DR1] = dr_interception,
3283 [SVM_EXIT_WRITE_DR2] = dr_interception,
3284 [SVM_EXIT_WRITE_DR3] = dr_interception,
3285 [SVM_EXIT_WRITE_DR4] = dr_interception,
3286 [SVM_EXIT_WRITE_DR5] = dr_interception,
3287 [SVM_EXIT_WRITE_DR6] = dr_interception,
3288 [SVM_EXIT_WRITE_DR7] = dr_interception,
3289 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3290 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3291 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3292 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3293 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3294 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3295 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3296 [SVM_EXIT_INTR] = intr_interception,
3297 [SVM_EXIT_NMI] = nmi_interception,
3298 [SVM_EXIT_SMI] = nop_on_interception,
3299 [SVM_EXIT_INIT] = nop_on_interception,
3300 [SVM_EXIT_VINTR] = interrupt_window_interception,
3301 [SVM_EXIT_RDPMC] = rdpmc_interception,
3302 [SVM_EXIT_CPUID] = cpuid_interception,
3303 [SVM_EXIT_IRET] = iret_interception,
3304 [SVM_EXIT_INVD] = emulate_on_interception,
3305 [SVM_EXIT_PAUSE] = pause_interception,
3306 [SVM_EXIT_HLT] = halt_interception,
3307 [SVM_EXIT_INVLPG] = invlpg_interception,
3308 [SVM_EXIT_INVLPGA] = invlpga_interception,
3309 [SVM_EXIT_IOIO] = io_interception,
3310 [SVM_EXIT_MSR] = msr_interception,
3311 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3312 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3313 [SVM_EXIT_VMRUN] = vmrun_interception,
3314 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3315 [SVM_EXIT_VMLOAD] = vmload_interception,
3316 [SVM_EXIT_VMSAVE] = vmsave_interception,
3317 [SVM_EXIT_STGI] = stgi_interception,
3318 [SVM_EXIT_CLGI] = clgi_interception,
3319 [SVM_EXIT_SKINIT] = skinit_interception,
3320 [SVM_EXIT_WBINVD] = wbinvd_interception,
3321 [SVM_EXIT_MONITOR] = monitor_interception,
3322 [SVM_EXIT_MWAIT] = mwait_interception,
3323 [SVM_EXIT_XSETBV] = xsetbv_interception,
3324 [SVM_EXIT_NPF] = pf_interception,
3325 [SVM_EXIT_RSM] = emulate_on_interception,
3326 };
3327
3328 static void dump_vmcb(struct kvm_vcpu *vcpu)
3329 {
3330 struct vcpu_svm *svm = to_svm(vcpu);
3331 struct vmcb_control_area *control = &svm->vmcb->control;
3332 struct vmcb_save_area *save = &svm->vmcb->save;
3333
3334 pr_err("VMCB Control Area:\n");
3335 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3336 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3337 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3338 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3339 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3340 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3341 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3342 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3343 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3344 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3345 pr_err("%-20s%d\n", "asid:", control->asid);
3346 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3347 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3348 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3349 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3350 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3351 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3352 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3353 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3354 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3355 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3356 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3357 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3358 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3359 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3360 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3361 pr_err("VMCB State Save Area:\n");
3362 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363 "es:",
3364 save->es.selector, save->es.attrib,
3365 save->es.limit, save->es.base);
3366 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3367 "cs:",
3368 save->cs.selector, save->cs.attrib,
3369 save->cs.limit, save->cs.base);
3370 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3371 "ss:",
3372 save->ss.selector, save->ss.attrib,
3373 save->ss.limit, save->ss.base);
3374 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3375 "ds:",
3376 save->ds.selector, save->ds.attrib,
3377 save->ds.limit, save->ds.base);
3378 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3379 "fs:",
3380 save->fs.selector, save->fs.attrib,
3381 save->fs.limit, save->fs.base);
3382 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383 "gs:",
3384 save->gs.selector, save->gs.attrib,
3385 save->gs.limit, save->gs.base);
3386 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387 "gdtr:",
3388 save->gdtr.selector, save->gdtr.attrib,
3389 save->gdtr.limit, save->gdtr.base);
3390 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391 "ldtr:",
3392 save->ldtr.selector, save->ldtr.attrib,
3393 save->ldtr.limit, save->ldtr.base);
3394 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395 "idtr:",
3396 save->idtr.selector, save->idtr.attrib,
3397 save->idtr.limit, save->idtr.base);
3398 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399 "tr:",
3400 save->tr.selector, save->tr.attrib,
3401 save->tr.limit, save->tr.base);
3402 pr_err("cpl: %d efer: %016llx\n",
3403 save->cpl, save->efer);
3404 pr_err("%-15s %016llx %-13s %016llx\n",
3405 "cr0:", save->cr0, "cr2:", save->cr2);
3406 pr_err("%-15s %016llx %-13s %016llx\n",
3407 "cr3:", save->cr3, "cr4:", save->cr4);
3408 pr_err("%-15s %016llx %-13s %016llx\n",
3409 "dr6:", save->dr6, "dr7:", save->dr7);
3410 pr_err("%-15s %016llx %-13s %016llx\n",
3411 "rip:", save->rip, "rflags:", save->rflags);
3412 pr_err("%-15s %016llx %-13s %016llx\n",
3413 "rsp:", save->rsp, "rax:", save->rax);
3414 pr_err("%-15s %016llx %-13s %016llx\n",
3415 "star:", save->star, "lstar:", save->lstar);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "cstar:", save->cstar, "sfmask:", save->sfmask);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "kernel_gs_base:", save->kernel_gs_base,
3420 "sysenter_cs:", save->sysenter_cs);
3421 pr_err("%-15s %016llx %-13s %016llx\n",
3422 "sysenter_esp:", save->sysenter_esp,
3423 "sysenter_eip:", save->sysenter_eip);
3424 pr_err("%-15s %016llx %-13s %016llx\n",
3425 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3426 pr_err("%-15s %016llx %-13s %016llx\n",
3427 "br_from:", save->br_from, "br_to:", save->br_to);
3428 pr_err("%-15s %016llx %-13s %016llx\n",
3429 "excp_from:", save->last_excp_from,
3430 "excp_to:", save->last_excp_to);
3431 }
3432
3433 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3434 {
3435 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3436
3437 *info1 = control->exit_info_1;
3438 *info2 = control->exit_info_2;
3439 }
3440
3441 static int handle_exit(struct kvm_vcpu *vcpu)
3442 {
3443 struct vcpu_svm *svm = to_svm(vcpu);
3444 struct kvm_run *kvm_run = vcpu->run;
3445 u32 exit_code = svm->vmcb->control.exit_code;
3446
3447 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3448 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3449 if (npt_enabled)
3450 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3451
3452 if (unlikely(svm->nested.exit_required)) {
3453 nested_svm_vmexit(svm);
3454 svm->nested.exit_required = false;
3455
3456 return 1;
3457 }
3458
3459 if (is_guest_mode(vcpu)) {
3460 int vmexit;
3461
3462 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3463 svm->vmcb->control.exit_info_1,
3464 svm->vmcb->control.exit_info_2,
3465 svm->vmcb->control.exit_int_info,
3466 svm->vmcb->control.exit_int_info_err,
3467 KVM_ISA_SVM);
3468
3469 vmexit = nested_svm_exit_special(svm);
3470
3471 if (vmexit == NESTED_EXIT_CONTINUE)
3472 vmexit = nested_svm_exit_handled(svm);
3473
3474 if (vmexit == NESTED_EXIT_DONE)
3475 return 1;
3476 }
3477
3478 svm_complete_interrupts(svm);
3479
3480 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3481 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3482 kvm_run->fail_entry.hardware_entry_failure_reason
3483 = svm->vmcb->control.exit_code;
3484 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3485 dump_vmcb(vcpu);
3486 return 0;
3487 }
3488
3489 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3490 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3491 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3492 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3493 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3494 "exit_code 0x%x\n",
3495 __func__, svm->vmcb->control.exit_int_info,
3496 exit_code);
3497
3498 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3499 || !svm_exit_handlers[exit_code]) {
3500 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3501 kvm_queue_exception(vcpu, UD_VECTOR);
3502 return 1;
3503 }
3504
3505 return svm_exit_handlers[exit_code](svm);
3506 }
3507
3508 static void reload_tss(struct kvm_vcpu *vcpu)
3509 {
3510 int cpu = raw_smp_processor_id();
3511
3512 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3513 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3514 load_TR_desc();
3515 }
3516
3517 static void pre_svm_run(struct vcpu_svm *svm)
3518 {
3519 int cpu = raw_smp_processor_id();
3520
3521 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3522
3523 /* FIXME: handle wraparound of asid_generation */
3524 if (svm->asid_generation != sd->asid_generation)
3525 new_asid(svm, sd);
3526 }
3527
3528 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3529 {
3530 struct vcpu_svm *svm = to_svm(vcpu);
3531
3532 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3533 vcpu->arch.hflags |= HF_NMI_MASK;
3534 set_intercept(svm, INTERCEPT_IRET);
3535 ++vcpu->stat.nmi_injections;
3536 }
3537
3538 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3539 {
3540 struct vmcb_control_area *control;
3541
3542 control = &svm->vmcb->control;
3543 control->int_vector = irq;
3544 control->int_ctl &= ~V_INTR_PRIO_MASK;
3545 control->int_ctl |= V_IRQ_MASK |
3546 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3547 mark_dirty(svm->vmcb, VMCB_INTR);
3548 }
3549
3550 static void svm_set_irq(struct kvm_vcpu *vcpu)
3551 {
3552 struct vcpu_svm *svm = to_svm(vcpu);
3553
3554 BUG_ON(!(gif_set(svm)));
3555
3556 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3557 ++vcpu->stat.irq_injections;
3558
3559 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3560 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3561 }
3562
3563 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3564 {
3565 struct vcpu_svm *svm = to_svm(vcpu);
3566
3567 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3568 return;
3569
3570 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3571
3572 if (irr == -1)
3573 return;
3574
3575 if (tpr >= irr)
3576 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3577 }
3578
3579 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3580 {
3581 return;
3582 }
3583
3584 static bool svm_get_enable_apicv(void)
3585 {
3586 return false;
3587 }
3588
3589 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3590 {
3591 }
3592
3593 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3594 {
3595 return;
3596 }
3597
3598 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3599 {
3600 return;
3601 }
3602
3603 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3604 {
3605 struct vcpu_svm *svm = to_svm(vcpu);
3606 struct vmcb *vmcb = svm->vmcb;
3607 int ret;
3608 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3609 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3610 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3611
3612 return ret;
3613 }
3614
3615 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3616 {
3617 struct vcpu_svm *svm = to_svm(vcpu);
3618
3619 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3620 }
3621
3622 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3623 {
3624 struct vcpu_svm *svm = to_svm(vcpu);
3625
3626 if (masked) {
3627 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3628 set_intercept(svm, INTERCEPT_IRET);
3629 } else {
3630 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3631 clr_intercept(svm, INTERCEPT_IRET);
3632 }
3633 }
3634
3635 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3636 {
3637 struct vcpu_svm *svm = to_svm(vcpu);
3638 struct vmcb *vmcb = svm->vmcb;
3639 int ret;
3640
3641 if (!gif_set(svm) ||
3642 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3643 return 0;
3644
3645 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3646
3647 if (is_guest_mode(vcpu))
3648 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3649
3650 return ret;
3651 }
3652
3653 static void enable_irq_window(struct kvm_vcpu *vcpu)
3654 {
3655 struct vcpu_svm *svm = to_svm(vcpu);
3656
3657 /*
3658 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3659 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3660 * get that intercept, this function will be called again though and
3661 * we'll get the vintr intercept.
3662 */
3663 if (gif_set(svm) && nested_svm_intr(svm)) {
3664 svm_set_vintr(svm);
3665 svm_inject_irq(svm, 0x0);
3666 }
3667 }
3668
3669 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3670 {
3671 struct vcpu_svm *svm = to_svm(vcpu);
3672
3673 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3674 == HF_NMI_MASK)
3675 return; /* IRET will cause a vm exit */
3676
3677 /*
3678 * Something prevents NMI from been injected. Single step over possible
3679 * problem (IRET or exception injection or interrupt shadow)
3680 */
3681 svm->nmi_singlestep = true;
3682 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3683 }
3684
3685 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3686 {
3687 return 0;
3688 }
3689
3690 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3691 {
3692 struct vcpu_svm *svm = to_svm(vcpu);
3693
3694 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3695 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3696 else
3697 svm->asid_generation--;
3698 }
3699
3700 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3701 {
3702 }
3703
3704 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3705 {
3706 struct vcpu_svm *svm = to_svm(vcpu);
3707
3708 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3709 return;
3710
3711 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3712 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3713 kvm_set_cr8(vcpu, cr8);
3714 }
3715 }
3716
3717 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3718 {
3719 struct vcpu_svm *svm = to_svm(vcpu);
3720 u64 cr8;
3721
3722 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3723 return;
3724
3725 cr8 = kvm_get_cr8(vcpu);
3726 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3727 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3728 }
3729
3730 static void svm_complete_interrupts(struct vcpu_svm *svm)
3731 {
3732 u8 vector;
3733 int type;
3734 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3735 unsigned int3_injected = svm->int3_injected;
3736
3737 svm->int3_injected = 0;
3738
3739 /*
3740 * If we've made progress since setting HF_IRET_MASK, we've
3741 * executed an IRET and can allow NMI injection.
3742 */
3743 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3744 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3745 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3746 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3747 }
3748
3749 svm->vcpu.arch.nmi_injected = false;
3750 kvm_clear_exception_queue(&svm->vcpu);
3751 kvm_clear_interrupt_queue(&svm->vcpu);
3752
3753 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3754 return;
3755
3756 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3757
3758 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3759 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3760
3761 switch (type) {
3762 case SVM_EXITINTINFO_TYPE_NMI:
3763 svm->vcpu.arch.nmi_injected = true;
3764 break;
3765 case SVM_EXITINTINFO_TYPE_EXEPT:
3766 /*
3767 * In case of software exceptions, do not reinject the vector,
3768 * but re-execute the instruction instead. Rewind RIP first
3769 * if we emulated INT3 before.
3770 */
3771 if (kvm_exception_is_soft(vector)) {
3772 if (vector == BP_VECTOR && int3_injected &&
3773 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3774 kvm_rip_write(&svm->vcpu,
3775 kvm_rip_read(&svm->vcpu) -
3776 int3_injected);
3777 break;
3778 }
3779 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3780 u32 err = svm->vmcb->control.exit_int_info_err;
3781 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3782
3783 } else
3784 kvm_requeue_exception(&svm->vcpu, vector);
3785 break;
3786 case SVM_EXITINTINFO_TYPE_INTR:
3787 kvm_queue_interrupt(&svm->vcpu, vector, false);
3788 break;
3789 default:
3790 break;
3791 }
3792 }
3793
3794 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3795 {
3796 struct vcpu_svm *svm = to_svm(vcpu);
3797 struct vmcb_control_area *control = &svm->vmcb->control;
3798
3799 control->exit_int_info = control->event_inj;
3800 control->exit_int_info_err = control->event_inj_err;
3801 control->event_inj = 0;
3802 svm_complete_interrupts(svm);
3803 }
3804
3805 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3806 {
3807 struct vcpu_svm *svm = to_svm(vcpu);
3808
3809 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3810 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3811 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3812
3813 /*
3814 * A vmexit emulation is required before the vcpu can be executed
3815 * again.
3816 */
3817 if (unlikely(svm->nested.exit_required))
3818 return;
3819
3820 pre_svm_run(svm);
3821
3822 sync_lapic_to_cr8(vcpu);
3823
3824 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3825
3826 clgi();
3827
3828 local_irq_enable();
3829
3830 asm volatile (
3831 "push %%" _ASM_BP "; \n\t"
3832 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3833 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3834 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3835 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3836 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3837 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3838 #ifdef CONFIG_X86_64
3839 "mov %c[r8](%[svm]), %%r8 \n\t"
3840 "mov %c[r9](%[svm]), %%r9 \n\t"
3841 "mov %c[r10](%[svm]), %%r10 \n\t"
3842 "mov %c[r11](%[svm]), %%r11 \n\t"
3843 "mov %c[r12](%[svm]), %%r12 \n\t"
3844 "mov %c[r13](%[svm]), %%r13 \n\t"
3845 "mov %c[r14](%[svm]), %%r14 \n\t"
3846 "mov %c[r15](%[svm]), %%r15 \n\t"
3847 #endif
3848
3849 /* Enter guest mode */
3850 "push %%" _ASM_AX " \n\t"
3851 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3852 __ex(SVM_VMLOAD) "\n\t"
3853 __ex(SVM_VMRUN) "\n\t"
3854 __ex(SVM_VMSAVE) "\n\t"
3855 "pop %%" _ASM_AX " \n\t"
3856
3857 /* Save guest registers, load host registers */
3858 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3859 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3860 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3861 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3862 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3863 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3864 #ifdef CONFIG_X86_64
3865 "mov %%r8, %c[r8](%[svm]) \n\t"
3866 "mov %%r9, %c[r9](%[svm]) \n\t"
3867 "mov %%r10, %c[r10](%[svm]) \n\t"
3868 "mov %%r11, %c[r11](%[svm]) \n\t"
3869 "mov %%r12, %c[r12](%[svm]) \n\t"
3870 "mov %%r13, %c[r13](%[svm]) \n\t"
3871 "mov %%r14, %c[r14](%[svm]) \n\t"
3872 "mov %%r15, %c[r15](%[svm]) \n\t"
3873 #endif
3874 "pop %%" _ASM_BP
3875 :
3876 : [svm]"a"(svm),
3877 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3878 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3879 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3880 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3881 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3882 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3883 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3884 #ifdef CONFIG_X86_64
3885 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3886 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3887 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3888 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3889 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3890 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3891 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3892 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3893 #endif
3894 : "cc", "memory"
3895 #ifdef CONFIG_X86_64
3896 , "rbx", "rcx", "rdx", "rsi", "rdi"
3897 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3898 #else
3899 , "ebx", "ecx", "edx", "esi", "edi"
3900 #endif
3901 );
3902
3903 #ifdef CONFIG_X86_64
3904 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3905 #else
3906 loadsegment(fs, svm->host.fs);
3907 #ifndef CONFIG_X86_32_LAZY_GS
3908 loadsegment(gs, svm->host.gs);
3909 #endif
3910 #endif
3911
3912 reload_tss(vcpu);
3913
3914 local_irq_disable();
3915
3916 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3917 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3918 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3919 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3920
3921 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3922
3923 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3924 kvm_before_handle_nmi(&svm->vcpu);
3925
3926 stgi();
3927
3928 /* Any pending NMI will happen here */
3929
3930 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3931 kvm_after_handle_nmi(&svm->vcpu);
3932
3933 sync_cr8_to_lapic(vcpu);
3934
3935 svm->next_rip = 0;
3936
3937 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3938
3939 /* if exit due to PF check for async PF */
3940 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3941 svm->apf_reason = kvm_read_and_reset_pf_reason();
3942
3943 if (npt_enabled) {
3944 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3945 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3946 }
3947
3948 /*
3949 * We need to handle MC intercepts here before the vcpu has a chance to
3950 * change the physical cpu
3951 */
3952 if (unlikely(svm->vmcb->control.exit_code ==
3953 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3954 svm_handle_mce(svm);
3955
3956 mark_all_clean(svm->vmcb);
3957 }
3958
3959 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3960 {
3961 struct vcpu_svm *svm = to_svm(vcpu);
3962
3963 svm->vmcb->save.cr3 = root;
3964 mark_dirty(svm->vmcb, VMCB_CR);
3965 svm_flush_tlb(vcpu);
3966 }
3967
3968 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3969 {
3970 struct vcpu_svm *svm = to_svm(vcpu);
3971
3972 svm->vmcb->control.nested_cr3 = root;
3973 mark_dirty(svm->vmcb, VMCB_NPT);
3974
3975 /* Also sync guest cr3 here in case we live migrate */
3976 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3977 mark_dirty(svm->vmcb, VMCB_CR);
3978
3979 svm_flush_tlb(vcpu);
3980 }
3981
3982 static int is_disabled(void)
3983 {
3984 u64 vm_cr;
3985
3986 rdmsrl(MSR_VM_CR, vm_cr);
3987 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3988 return 1;
3989
3990 return 0;
3991 }
3992
3993 static void
3994 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3995 {
3996 /*
3997 * Patch in the VMMCALL instruction:
3998 */
3999 hypercall[0] = 0x0f;
4000 hypercall[1] = 0x01;
4001 hypercall[2] = 0xd9;
4002 }
4003
4004 static void svm_check_processor_compat(void *rtn)
4005 {
4006 *(int *)rtn = 0;
4007 }
4008
4009 static bool svm_cpu_has_accelerated_tpr(void)
4010 {
4011 return false;
4012 }
4013
4014 static bool svm_has_high_real_mode_segbase(void)
4015 {
4016 return true;
4017 }
4018
4019 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4020 {
4021 return 0;
4022 }
4023
4024 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4025 {
4026 struct vcpu_svm *svm = to_svm(vcpu);
4027
4028 /* Update nrips enabled cache */
4029 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4030 }
4031
4032 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4033 {
4034 switch (func) {
4035 case 0x80000001:
4036 if (nested)
4037 entry->ecx |= (1 << 2); /* Set SVM bit */
4038 break;
4039 case 0x8000000A:
4040 entry->eax = 1; /* SVM revision 1 */
4041 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4042 ASID emulation to nested SVM */
4043 entry->ecx = 0; /* Reserved */
4044 entry->edx = 0; /* Per default do not support any
4045 additional features */
4046
4047 /* Support next_rip if host supports it */
4048 if (boot_cpu_has(X86_FEATURE_NRIPS))
4049 entry->edx |= SVM_FEATURE_NRIP;
4050
4051 /* Support NPT for the guest if enabled */
4052 if (npt_enabled)
4053 entry->edx |= SVM_FEATURE_NPT;
4054
4055 break;
4056 }
4057 }
4058
4059 static int svm_get_lpage_level(void)
4060 {
4061 return PT_PDPE_LEVEL;
4062 }
4063
4064 static bool svm_rdtscp_supported(void)
4065 {
4066 return boot_cpu_has(X86_FEATURE_RDTSCP);
4067 }
4068
4069 static bool svm_invpcid_supported(void)
4070 {
4071 return false;
4072 }
4073
4074 static bool svm_mpx_supported(void)
4075 {
4076 return false;
4077 }
4078
4079 static bool svm_xsaves_supported(void)
4080 {
4081 return false;
4082 }
4083
4084 static bool svm_has_wbinvd_exit(void)
4085 {
4086 return true;
4087 }
4088
4089 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4090 {
4091 struct vcpu_svm *svm = to_svm(vcpu);
4092
4093 set_exception_intercept(svm, NM_VECTOR);
4094 update_cr0_intercept(svm);
4095 }
4096
4097 #define PRE_EX(exit) { .exit_code = (exit), \
4098 .stage = X86_ICPT_PRE_EXCEPT, }
4099 #define POST_EX(exit) { .exit_code = (exit), \
4100 .stage = X86_ICPT_POST_EXCEPT, }
4101 #define POST_MEM(exit) { .exit_code = (exit), \
4102 .stage = X86_ICPT_POST_MEMACCESS, }
4103
4104 static const struct __x86_intercept {
4105 u32 exit_code;
4106 enum x86_intercept_stage stage;
4107 } x86_intercept_map[] = {
4108 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4109 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4110 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4111 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4112 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4113 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4114 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4115 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4116 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4117 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4118 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4119 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4120 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4121 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4122 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4123 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4124 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4125 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4126 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4127 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4128 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4129 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4130 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4131 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4132 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4133 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4134 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4135 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4136 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4137 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4138 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4139 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4140 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4141 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4142 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4143 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4144 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4145 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4146 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4147 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4148 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4149 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4150 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4151 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4152 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4153 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4154 };
4155
4156 #undef PRE_EX
4157 #undef POST_EX
4158 #undef POST_MEM
4159
4160 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4161 struct x86_instruction_info *info,
4162 enum x86_intercept_stage stage)
4163 {
4164 struct vcpu_svm *svm = to_svm(vcpu);
4165 int vmexit, ret = X86EMUL_CONTINUE;
4166 struct __x86_intercept icpt_info;
4167 struct vmcb *vmcb = svm->vmcb;
4168
4169 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4170 goto out;
4171
4172 icpt_info = x86_intercept_map[info->intercept];
4173
4174 if (stage != icpt_info.stage)
4175 goto out;
4176
4177 switch (icpt_info.exit_code) {
4178 case SVM_EXIT_READ_CR0:
4179 if (info->intercept == x86_intercept_cr_read)
4180 icpt_info.exit_code += info->modrm_reg;
4181 break;
4182 case SVM_EXIT_WRITE_CR0: {
4183 unsigned long cr0, val;
4184 u64 intercept;
4185
4186 if (info->intercept == x86_intercept_cr_write)
4187 icpt_info.exit_code += info->modrm_reg;
4188
4189 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4190 info->intercept == x86_intercept_clts)
4191 break;
4192
4193 intercept = svm->nested.intercept;
4194
4195 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4196 break;
4197
4198 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4199 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4200
4201 if (info->intercept == x86_intercept_lmsw) {
4202 cr0 &= 0xfUL;
4203 val &= 0xfUL;
4204 /* lmsw can't clear PE - catch this here */
4205 if (cr0 & X86_CR0_PE)
4206 val |= X86_CR0_PE;
4207 }
4208
4209 if (cr0 ^ val)
4210 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4211
4212 break;
4213 }
4214 case SVM_EXIT_READ_DR0:
4215 case SVM_EXIT_WRITE_DR0:
4216 icpt_info.exit_code += info->modrm_reg;
4217 break;
4218 case SVM_EXIT_MSR:
4219 if (info->intercept == x86_intercept_wrmsr)
4220 vmcb->control.exit_info_1 = 1;
4221 else
4222 vmcb->control.exit_info_1 = 0;
4223 break;
4224 case SVM_EXIT_PAUSE:
4225 /*
4226 * We get this for NOP only, but pause
4227 * is rep not, check this here
4228 */
4229 if (info->rep_prefix != REPE_PREFIX)
4230 goto out;
4231 case SVM_EXIT_IOIO: {
4232 u64 exit_info;
4233 u32 bytes;
4234
4235 if (info->intercept == x86_intercept_in ||
4236 info->intercept == x86_intercept_ins) {
4237 exit_info = ((info->src_val & 0xffff) << 16) |
4238 SVM_IOIO_TYPE_MASK;
4239 bytes = info->dst_bytes;
4240 } else {
4241 exit_info = (info->dst_val & 0xffff) << 16;
4242 bytes = info->src_bytes;
4243 }
4244
4245 if (info->intercept == x86_intercept_outs ||
4246 info->intercept == x86_intercept_ins)
4247 exit_info |= SVM_IOIO_STR_MASK;
4248
4249 if (info->rep_prefix)
4250 exit_info |= SVM_IOIO_REP_MASK;
4251
4252 bytes = min(bytes, 4u);
4253
4254 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4255
4256 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4257
4258 vmcb->control.exit_info_1 = exit_info;
4259 vmcb->control.exit_info_2 = info->next_rip;
4260
4261 break;
4262 }
4263 default:
4264 break;
4265 }
4266
4267 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4268 if (static_cpu_has(X86_FEATURE_NRIPS))
4269 vmcb->control.next_rip = info->next_rip;
4270 vmcb->control.exit_code = icpt_info.exit_code;
4271 vmexit = nested_svm_exit_handled(svm);
4272
4273 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4274 : X86EMUL_CONTINUE;
4275
4276 out:
4277 return ret;
4278 }
4279
4280 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4281 {
4282 local_irq_enable();
4283 }
4284
4285 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4286 {
4287 }
4288
4289 static struct kvm_x86_ops svm_x86_ops = {
4290 .cpu_has_kvm_support = has_svm,
4291 .disabled_by_bios = is_disabled,
4292 .hardware_setup = svm_hardware_setup,
4293 .hardware_unsetup = svm_hardware_unsetup,
4294 .check_processor_compatibility = svm_check_processor_compat,
4295 .hardware_enable = svm_hardware_enable,
4296 .hardware_disable = svm_hardware_disable,
4297 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4298 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4299
4300 .vcpu_create = svm_create_vcpu,
4301 .vcpu_free = svm_free_vcpu,
4302 .vcpu_reset = svm_vcpu_reset,
4303
4304 .prepare_guest_switch = svm_prepare_guest_switch,
4305 .vcpu_load = svm_vcpu_load,
4306 .vcpu_put = svm_vcpu_put,
4307
4308 .update_bp_intercept = update_bp_intercept,
4309 .get_msr = svm_get_msr,
4310 .set_msr = svm_set_msr,
4311 .get_segment_base = svm_get_segment_base,
4312 .get_segment = svm_get_segment,
4313 .set_segment = svm_set_segment,
4314 .get_cpl = svm_get_cpl,
4315 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4316 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4317 .decache_cr3 = svm_decache_cr3,
4318 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4319 .set_cr0 = svm_set_cr0,
4320 .set_cr3 = svm_set_cr3,
4321 .set_cr4 = svm_set_cr4,
4322 .set_efer = svm_set_efer,
4323 .get_idt = svm_get_idt,
4324 .set_idt = svm_set_idt,
4325 .get_gdt = svm_get_gdt,
4326 .set_gdt = svm_set_gdt,
4327 .get_dr6 = svm_get_dr6,
4328 .set_dr6 = svm_set_dr6,
4329 .set_dr7 = svm_set_dr7,
4330 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4331 .cache_reg = svm_cache_reg,
4332 .get_rflags = svm_get_rflags,
4333 .set_rflags = svm_set_rflags,
4334 .fpu_activate = svm_fpu_activate,
4335 .fpu_deactivate = svm_fpu_deactivate,
4336
4337 .tlb_flush = svm_flush_tlb,
4338
4339 .run = svm_vcpu_run,
4340 .handle_exit = handle_exit,
4341 .skip_emulated_instruction = skip_emulated_instruction,
4342 .set_interrupt_shadow = svm_set_interrupt_shadow,
4343 .get_interrupt_shadow = svm_get_interrupt_shadow,
4344 .patch_hypercall = svm_patch_hypercall,
4345 .set_irq = svm_set_irq,
4346 .set_nmi = svm_inject_nmi,
4347 .queue_exception = svm_queue_exception,
4348 .cancel_injection = svm_cancel_injection,
4349 .interrupt_allowed = svm_interrupt_allowed,
4350 .nmi_allowed = svm_nmi_allowed,
4351 .get_nmi_mask = svm_get_nmi_mask,
4352 .set_nmi_mask = svm_set_nmi_mask,
4353 .enable_nmi_window = enable_nmi_window,
4354 .enable_irq_window = enable_irq_window,
4355 .update_cr8_intercept = update_cr8_intercept,
4356 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4357 .get_enable_apicv = svm_get_enable_apicv,
4358 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4359 .load_eoi_exitmap = svm_load_eoi_exitmap,
4360 .sync_pir_to_irr = svm_sync_pir_to_irr,
4361
4362 .set_tss_addr = svm_set_tss_addr,
4363 .get_tdp_level = get_npt_level,
4364 .get_mt_mask = svm_get_mt_mask,
4365
4366 .get_exit_info = svm_get_exit_info,
4367
4368 .get_lpage_level = svm_get_lpage_level,
4369
4370 .cpuid_update = svm_cpuid_update,
4371
4372 .rdtscp_supported = svm_rdtscp_supported,
4373 .invpcid_supported = svm_invpcid_supported,
4374 .mpx_supported = svm_mpx_supported,
4375 .xsaves_supported = svm_xsaves_supported,
4376
4377 .set_supported_cpuid = svm_set_supported_cpuid,
4378
4379 .has_wbinvd_exit = svm_has_wbinvd_exit,
4380
4381 .read_tsc_offset = svm_read_tsc_offset,
4382 .write_tsc_offset = svm_write_tsc_offset,
4383 .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4384 .read_l1_tsc = svm_read_l1_tsc,
4385
4386 .set_tdp_cr3 = set_tdp_cr3,
4387
4388 .check_intercept = svm_check_intercept,
4389 .handle_external_intr = svm_handle_external_intr,
4390
4391 .sched_in = svm_sched_in,
4392
4393 .pmu_ops = &amd_pmu_ops,
4394 };
4395
4396 static int __init svm_init(void)
4397 {
4398 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4399 __alignof__(struct vcpu_svm), THIS_MODULE);
4400 }
4401
4402 static void __exit svm_exit(void)
4403 {
4404 kvm_exit();
4405 }
4406
4407 module_init(svm_init)
4408 module_exit(svm_exit)