]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48
49 #include <asm/virtext.h>
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 static const struct x86_cpu_id svm_cpu_id[] = {
58 X86_FEATURE_MATCH(X86_FEATURE_SVM),
59 {}
60 };
61 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
62
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 #define SVM_FEATURE_NPT (1 << 0)
70 #define SVM_FEATURE_LBRV (1 << 1)
71 #define SVM_FEATURE_SVML (1 << 2)
72 #define SVM_FEATURE_NRIP (1 << 3)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
78
79 #define SVM_AVIC_DOORBELL 0xc001011b
80
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
96 */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121 MSR_FS_BASE,
122 #endif
123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124 MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_vcpu;
130
131 struct nested_state {
132 struct vmcb *hsave;
133 u64 hsave_msr;
134 u64 vm_cr_msr;
135 u64 vmcb;
136
137 /* These are the merged vectors */
138 u32 *msrpm;
139
140 /* gpa pointers to the real vectors */
141 u64 vmcb_msrpm;
142 u64 vmcb_iopm;
143
144 /* A VMEXIT is required but not yet emulated */
145 bool exit_required;
146
147 /* cache for intercepts of the guest */
148 u32 intercept_cr;
149 u32 intercept_dr;
150 u32 intercept_exceptions;
151 u64 intercept;
152
153 /* Nested Paging related state */
154 u64 nested_cr3;
155 };
156
157 #define MSRPM_OFFSETS 16
158 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
159
160 /*
161 * Set osvw_len to higher value when updated Revision Guides
162 * are published and we know what the new status bits are
163 */
164 static uint64_t osvw_len = 4, osvw_status;
165
166 struct vcpu_svm {
167 struct kvm_vcpu vcpu;
168 struct vmcb *vmcb;
169 unsigned long vmcb_pa;
170 struct svm_cpu_data *svm_data;
171 uint64_t asid_generation;
172 uint64_t sysenter_esp;
173 uint64_t sysenter_eip;
174 uint64_t tsc_aux;
175
176 u64 next_rip;
177
178 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
179 struct {
180 u16 fs;
181 u16 gs;
182 u16 ldt;
183 u64 gs_base;
184 } host;
185
186 u32 *msrpm;
187
188 ulong nmi_iret_rip;
189
190 struct nested_state nested;
191
192 bool nmi_singlestep;
193 u64 nmi_singlestep_guest_rflags;
194
195 unsigned int3_injected;
196 unsigned long int3_rip;
197
198 /* cached guest cpuid flags for faster access */
199 bool nrips_enabled : 1;
200
201 u32 ldr_reg;
202 struct page *avic_backing_page;
203 u64 *avic_physical_id_cache;
204 bool avic_is_running;
205
206 /*
207 * Per-vcpu list of struct amd_svm_iommu_ir:
208 * This is used mainly to store interrupt remapping information used
209 * when update the vcpu affinity. This avoids the need to scan for
210 * IRTE and try to match ga_tag in the IOMMU driver.
211 */
212 struct list_head ir_list;
213 spinlock_t ir_list_lock;
214 };
215
216 /*
217 * This is a wrapper of struct amd_iommu_ir_data.
218 */
219 struct amd_svm_iommu_ir {
220 struct list_head node; /* Used by SVM for per-vcpu ir_list */
221 void *data; /* Storing pointer to struct amd_ir_data */
222 };
223
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
226
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
231
232 static DEFINE_PER_CPU(u64, current_tsc_ratio);
233 #define TSC_RATIO_DEFAULT 0x0100000000ULL
234
235 #define MSR_INVALID 0xffffffffU
236
237 static const struct svm_direct_access_msrs {
238 u32 index; /* Index of the MSR */
239 bool always; /* True if intercept is always on */
240 } direct_access_msrs[] = {
241 { .index = MSR_STAR, .always = true },
242 { .index = MSR_IA32_SYSENTER_CS, .always = true },
243 #ifdef CONFIG_X86_64
244 { .index = MSR_GS_BASE, .always = true },
245 { .index = MSR_FS_BASE, .always = true },
246 { .index = MSR_KERNEL_GS_BASE, .always = true },
247 { .index = MSR_LSTAR, .always = true },
248 { .index = MSR_CSTAR, .always = true },
249 { .index = MSR_SYSCALL_MASK, .always = true },
250 #endif
251 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
252 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
253 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
254 { .index = MSR_IA32_LASTINTTOIP, .always = false },
255 { .index = MSR_INVALID, .always = false },
256 };
257
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled = true;
261 #else
262 static bool npt_enabled;
263 #endif
264
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt = true;
267 module_param(npt, int, S_IRUGO);
268
269 /* allow nested virtualization in KVM/SVM */
270 static int nested = true;
271 module_param(nested, int, S_IRUGO);
272
273 /* enable / disable AVIC */
274 static int avic;
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic, int, S_IRUGO);
277 #endif
278
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls = true;
281 module_param(vls, int, 0444);
282
283 /* enable/disable Virtual GIF */
284 static int vgif = true;
285 module_param(vgif, int, 0444);
286
287 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
288 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
289 static void svm_complete_interrupts(struct vcpu_svm *svm);
290
291 static int nested_svm_exit_handled(struct vcpu_svm *svm);
292 static int nested_svm_intercept(struct vcpu_svm *svm);
293 static int nested_svm_vmexit(struct vcpu_svm *svm);
294 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
295 bool has_error_code, u32 error_code);
296
297 enum {
298 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
299 pause filter count */
300 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
301 VMCB_ASID, /* ASID */
302 VMCB_INTR, /* int_ctl, int_vector */
303 VMCB_NPT, /* npt_en, nCR3, gPAT */
304 VMCB_CR, /* CR0, CR3, CR4, EFER */
305 VMCB_DR, /* DR6, DR7 */
306 VMCB_DT, /* GDT, IDT */
307 VMCB_SEG, /* CS, DS, SS, ES, CPL */
308 VMCB_CR2, /* CR2 only */
309 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311 * AVIC PHYSICAL_TABLE pointer,
312 * AVIC LOGICAL_TABLE pointer
313 */
314 VMCB_DIRTY_MAX,
315 };
316
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
319
320 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
321
322 static inline void mark_all_dirty(struct vmcb *vmcb)
323 {
324 vmcb->control.clean = 0;
325 }
326
327 static inline void mark_all_clean(struct vmcb *vmcb)
328 {
329 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
330 & ~VMCB_ALWAYS_DIRTY_MASK;
331 }
332
333 static inline void mark_dirty(struct vmcb *vmcb, int bit)
334 {
335 vmcb->control.clean &= ~(1 << bit);
336 }
337
338 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
339 {
340 return container_of(vcpu, struct vcpu_svm, vcpu);
341 }
342
343 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
344 {
345 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
346 mark_dirty(svm->vmcb, VMCB_AVIC);
347 }
348
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
350 {
351 struct vcpu_svm *svm = to_svm(vcpu);
352 u64 *entry = svm->avic_physical_id_cache;
353
354 if (!entry)
355 return false;
356
357 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
358 }
359
360 static void recalc_intercepts(struct vcpu_svm *svm)
361 {
362 struct vmcb_control_area *c, *h;
363 struct nested_state *g;
364
365 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
366
367 if (!is_guest_mode(&svm->vcpu))
368 return;
369
370 c = &svm->vmcb->control;
371 h = &svm->nested.hsave->control;
372 g = &svm->nested;
373
374 c->intercept_cr = h->intercept_cr | g->intercept_cr;
375 c->intercept_dr = h->intercept_dr | g->intercept_dr;
376 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
377 c->intercept = h->intercept | g->intercept;
378 }
379
380 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
381 {
382 if (is_guest_mode(&svm->vcpu))
383 return svm->nested.hsave;
384 else
385 return svm->vmcb;
386 }
387
388 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
389 {
390 struct vmcb *vmcb = get_host_vmcb(svm);
391
392 vmcb->control.intercept_cr |= (1U << bit);
393
394 recalc_intercepts(svm);
395 }
396
397 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
398 {
399 struct vmcb *vmcb = get_host_vmcb(svm);
400
401 vmcb->control.intercept_cr &= ~(1U << bit);
402
403 recalc_intercepts(svm);
404 }
405
406 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
407 {
408 struct vmcb *vmcb = get_host_vmcb(svm);
409
410 return vmcb->control.intercept_cr & (1U << bit);
411 }
412
413 static inline void set_dr_intercepts(struct vcpu_svm *svm)
414 {
415 struct vmcb *vmcb = get_host_vmcb(svm);
416
417 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
418 | (1 << INTERCEPT_DR1_READ)
419 | (1 << INTERCEPT_DR2_READ)
420 | (1 << INTERCEPT_DR3_READ)
421 | (1 << INTERCEPT_DR4_READ)
422 | (1 << INTERCEPT_DR5_READ)
423 | (1 << INTERCEPT_DR6_READ)
424 | (1 << INTERCEPT_DR7_READ)
425 | (1 << INTERCEPT_DR0_WRITE)
426 | (1 << INTERCEPT_DR1_WRITE)
427 | (1 << INTERCEPT_DR2_WRITE)
428 | (1 << INTERCEPT_DR3_WRITE)
429 | (1 << INTERCEPT_DR4_WRITE)
430 | (1 << INTERCEPT_DR5_WRITE)
431 | (1 << INTERCEPT_DR6_WRITE)
432 | (1 << INTERCEPT_DR7_WRITE);
433
434 recalc_intercepts(svm);
435 }
436
437 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
438 {
439 struct vmcb *vmcb = get_host_vmcb(svm);
440
441 vmcb->control.intercept_dr = 0;
442
443 recalc_intercepts(svm);
444 }
445
446 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
447 {
448 struct vmcb *vmcb = get_host_vmcb(svm);
449
450 vmcb->control.intercept_exceptions |= (1U << bit);
451
452 recalc_intercepts(svm);
453 }
454
455 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
456 {
457 struct vmcb *vmcb = get_host_vmcb(svm);
458
459 vmcb->control.intercept_exceptions &= ~(1U << bit);
460
461 recalc_intercepts(svm);
462 }
463
464 static inline void set_intercept(struct vcpu_svm *svm, int bit)
465 {
466 struct vmcb *vmcb = get_host_vmcb(svm);
467
468 vmcb->control.intercept |= (1ULL << bit);
469
470 recalc_intercepts(svm);
471 }
472
473 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
474 {
475 struct vmcb *vmcb = get_host_vmcb(svm);
476
477 vmcb->control.intercept &= ~(1ULL << bit);
478
479 recalc_intercepts(svm);
480 }
481
482 static inline bool vgif_enabled(struct vcpu_svm *svm)
483 {
484 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
485 }
486
487 static inline void enable_gif(struct vcpu_svm *svm)
488 {
489 if (vgif_enabled(svm))
490 svm->vmcb->control.int_ctl |= V_GIF_MASK;
491 else
492 svm->vcpu.arch.hflags |= HF_GIF_MASK;
493 }
494
495 static inline void disable_gif(struct vcpu_svm *svm)
496 {
497 if (vgif_enabled(svm))
498 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
499 else
500 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
501 }
502
503 static inline bool gif_set(struct vcpu_svm *svm)
504 {
505 if (vgif_enabled(svm))
506 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
507 else
508 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
509 }
510
511 static unsigned long iopm_base;
512
513 struct kvm_ldttss_desc {
514 u16 limit0;
515 u16 base0;
516 unsigned base1:8, type:5, dpl:2, p:1;
517 unsigned limit1:4, zero0:3, g:1, base2:8;
518 u32 base3;
519 u32 zero1;
520 } __attribute__((packed));
521
522 struct svm_cpu_data {
523 int cpu;
524
525 u64 asid_generation;
526 u32 max_asid;
527 u32 next_asid;
528 struct kvm_ldttss_desc *tss_desc;
529
530 struct page *save_area;
531 };
532
533 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
534
535 struct svm_init_data {
536 int cpu;
537 int r;
538 };
539
540 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
541
542 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
543 #define MSRS_RANGE_SIZE 2048
544 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
545
546 static u32 svm_msrpm_offset(u32 msr)
547 {
548 u32 offset;
549 int i;
550
551 for (i = 0; i < NUM_MSR_MAPS; i++) {
552 if (msr < msrpm_ranges[i] ||
553 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
554 continue;
555
556 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
557 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
558
559 /* Now we have the u8 offset - but need the u32 offset */
560 return offset / 4;
561 }
562
563 /* MSR not in any range */
564 return MSR_INVALID;
565 }
566
567 #define MAX_INST_SIZE 15
568
569 static inline void clgi(void)
570 {
571 asm volatile (__ex(SVM_CLGI));
572 }
573
574 static inline void stgi(void)
575 {
576 asm volatile (__ex(SVM_STGI));
577 }
578
579 static inline void invlpga(unsigned long addr, u32 asid)
580 {
581 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
582 }
583
584 static int get_npt_level(struct kvm_vcpu *vcpu)
585 {
586 #ifdef CONFIG_X86_64
587 return PT64_ROOT_4LEVEL;
588 #else
589 return PT32E_ROOT_LEVEL;
590 #endif
591 }
592
593 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
594 {
595 vcpu->arch.efer = efer;
596 if (!npt_enabled && !(efer & EFER_LMA))
597 efer &= ~EFER_LME;
598
599 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
600 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
601 }
602
603 static int is_external_interrupt(u32 info)
604 {
605 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
606 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
607 }
608
609 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
610 {
611 struct vcpu_svm *svm = to_svm(vcpu);
612 u32 ret = 0;
613
614 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
615 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
616 return ret;
617 }
618
619 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
620 {
621 struct vcpu_svm *svm = to_svm(vcpu);
622
623 if (mask == 0)
624 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
625 else
626 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
627
628 }
629
630 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
631 {
632 struct vcpu_svm *svm = to_svm(vcpu);
633
634 if (svm->vmcb->control.next_rip != 0) {
635 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
636 svm->next_rip = svm->vmcb->control.next_rip;
637 }
638
639 if (!svm->next_rip) {
640 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
641 EMULATE_DONE)
642 printk(KERN_DEBUG "%s: NOP\n", __func__);
643 return;
644 }
645 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
646 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
647 __func__, kvm_rip_read(vcpu), svm->next_rip);
648
649 kvm_rip_write(vcpu, svm->next_rip);
650 svm_set_interrupt_shadow(vcpu, 0);
651 }
652
653 static void svm_queue_exception(struct kvm_vcpu *vcpu)
654 {
655 struct vcpu_svm *svm = to_svm(vcpu);
656 unsigned nr = vcpu->arch.exception.nr;
657 bool has_error_code = vcpu->arch.exception.has_error_code;
658 bool reinject = vcpu->arch.exception.injected;
659 u32 error_code = vcpu->arch.exception.error_code;
660
661 /*
662 * If we are within a nested VM we'd better #VMEXIT and let the guest
663 * handle the exception
664 */
665 if (!reinject &&
666 nested_svm_check_exception(svm, nr, has_error_code, error_code))
667 return;
668
669 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
670 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
671
672 /*
673 * For guest debugging where we have to reinject #BP if some
674 * INT3 is guest-owned:
675 * Emulate nRIP by moving RIP forward. Will fail if injection
676 * raises a fault that is not intercepted. Still better than
677 * failing in all cases.
678 */
679 skip_emulated_instruction(&svm->vcpu);
680 rip = kvm_rip_read(&svm->vcpu);
681 svm->int3_rip = rip + svm->vmcb->save.cs.base;
682 svm->int3_injected = rip - old_rip;
683 }
684
685 svm->vmcb->control.event_inj = nr
686 | SVM_EVTINJ_VALID
687 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
688 | SVM_EVTINJ_TYPE_EXEPT;
689 svm->vmcb->control.event_inj_err = error_code;
690 }
691
692 static void svm_init_erratum_383(void)
693 {
694 u32 low, high;
695 int err;
696 u64 val;
697
698 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
699 return;
700
701 /* Use _safe variants to not break nested virtualization */
702 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
703 if (err)
704 return;
705
706 val |= (1ULL << 47);
707
708 low = lower_32_bits(val);
709 high = upper_32_bits(val);
710
711 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
712
713 erratum_383_found = true;
714 }
715
716 static void svm_init_osvw(struct kvm_vcpu *vcpu)
717 {
718 /*
719 * Guests should see errata 400 and 415 as fixed (assuming that
720 * HLT and IO instructions are intercepted).
721 */
722 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
723 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
724
725 /*
726 * By increasing VCPU's osvw.length to 3 we are telling the guest that
727 * all osvw.status bits inside that length, including bit 0 (which is
728 * reserved for erratum 298), are valid. However, if host processor's
729 * osvw_len is 0 then osvw_status[0] carries no information. We need to
730 * be conservative here and therefore we tell the guest that erratum 298
731 * is present (because we really don't know).
732 */
733 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
734 vcpu->arch.osvw.status |= 1;
735 }
736
737 static int has_svm(void)
738 {
739 const char *msg;
740
741 if (!cpu_has_svm(&msg)) {
742 printk(KERN_INFO "has_svm: %s\n", msg);
743 return 0;
744 }
745
746 return 1;
747 }
748
749 static void svm_hardware_disable(void)
750 {
751 /* Make sure we clean up behind us */
752 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
753 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
754
755 cpu_svm_disable();
756
757 amd_pmu_disable_virt();
758 }
759
760 static int svm_hardware_enable(void)
761 {
762
763 struct svm_cpu_data *sd;
764 uint64_t efer;
765 struct desc_struct *gdt;
766 int me = raw_smp_processor_id();
767
768 rdmsrl(MSR_EFER, efer);
769 if (efer & EFER_SVME)
770 return -EBUSY;
771
772 if (!has_svm()) {
773 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
774 return -EINVAL;
775 }
776 sd = per_cpu(svm_data, me);
777 if (!sd) {
778 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
779 return -EINVAL;
780 }
781
782 sd->asid_generation = 1;
783 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
784 sd->next_asid = sd->max_asid + 1;
785
786 gdt = get_current_gdt_rw();
787 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
788
789 wrmsrl(MSR_EFER, efer | EFER_SVME);
790
791 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
792
793 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
794 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
795 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
796 }
797
798
799 /*
800 * Get OSVW bits.
801 *
802 * Note that it is possible to have a system with mixed processor
803 * revisions and therefore different OSVW bits. If bits are not the same
804 * on different processors then choose the worst case (i.e. if erratum
805 * is present on one processor and not on another then assume that the
806 * erratum is present everywhere).
807 */
808 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
809 uint64_t len, status = 0;
810 int err;
811
812 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
813 if (!err)
814 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
815 &err);
816
817 if (err)
818 osvw_status = osvw_len = 0;
819 else {
820 if (len < osvw_len)
821 osvw_len = len;
822 osvw_status |= status;
823 osvw_status &= (1ULL << osvw_len) - 1;
824 }
825 } else
826 osvw_status = osvw_len = 0;
827
828 svm_init_erratum_383();
829
830 amd_pmu_enable_virt();
831
832 return 0;
833 }
834
835 static void svm_cpu_uninit(int cpu)
836 {
837 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
838
839 if (!sd)
840 return;
841
842 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
843 __free_page(sd->save_area);
844 kfree(sd);
845 }
846
847 static int svm_cpu_init(int cpu)
848 {
849 struct svm_cpu_data *sd;
850 int r;
851
852 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
853 if (!sd)
854 return -ENOMEM;
855 sd->cpu = cpu;
856 sd->save_area = alloc_page(GFP_KERNEL);
857 r = -ENOMEM;
858 if (!sd->save_area)
859 goto err_1;
860
861 per_cpu(svm_data, cpu) = sd;
862
863 return 0;
864
865 err_1:
866 kfree(sd);
867 return r;
868
869 }
870
871 static bool valid_msr_intercept(u32 index)
872 {
873 int i;
874
875 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
876 if (direct_access_msrs[i].index == index)
877 return true;
878
879 return false;
880 }
881
882 static void set_msr_interception(u32 *msrpm, unsigned msr,
883 int read, int write)
884 {
885 u8 bit_read, bit_write;
886 unsigned long tmp;
887 u32 offset;
888
889 /*
890 * If this warning triggers extend the direct_access_msrs list at the
891 * beginning of the file
892 */
893 WARN_ON(!valid_msr_intercept(msr));
894
895 offset = svm_msrpm_offset(msr);
896 bit_read = 2 * (msr & 0x0f);
897 bit_write = 2 * (msr & 0x0f) + 1;
898 tmp = msrpm[offset];
899
900 BUG_ON(offset == MSR_INVALID);
901
902 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
903 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
904
905 msrpm[offset] = tmp;
906 }
907
908 static void svm_vcpu_init_msrpm(u32 *msrpm)
909 {
910 int i;
911
912 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
913
914 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
915 if (!direct_access_msrs[i].always)
916 continue;
917
918 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
919 }
920 }
921
922 static void add_msr_offset(u32 offset)
923 {
924 int i;
925
926 for (i = 0; i < MSRPM_OFFSETS; ++i) {
927
928 /* Offset already in list? */
929 if (msrpm_offsets[i] == offset)
930 return;
931
932 /* Slot used by another offset? */
933 if (msrpm_offsets[i] != MSR_INVALID)
934 continue;
935
936 /* Add offset to list */
937 msrpm_offsets[i] = offset;
938
939 return;
940 }
941
942 /*
943 * If this BUG triggers the msrpm_offsets table has an overflow. Just
944 * increase MSRPM_OFFSETS in this case.
945 */
946 BUG();
947 }
948
949 static void init_msrpm_offsets(void)
950 {
951 int i;
952
953 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
954
955 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
956 u32 offset;
957
958 offset = svm_msrpm_offset(direct_access_msrs[i].index);
959 BUG_ON(offset == MSR_INVALID);
960
961 add_msr_offset(offset);
962 }
963 }
964
965 static void svm_enable_lbrv(struct vcpu_svm *svm)
966 {
967 u32 *msrpm = svm->msrpm;
968
969 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
970 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
971 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
972 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
973 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
974 }
975
976 static void svm_disable_lbrv(struct vcpu_svm *svm)
977 {
978 u32 *msrpm = svm->msrpm;
979
980 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
981 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
982 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
983 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
984 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
985 }
986
987 static void disable_nmi_singlestep(struct vcpu_svm *svm)
988 {
989 svm->nmi_singlestep = false;
990
991 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
992 /* Clear our flags if they were not set by the guest */
993 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
994 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
995 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
996 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
997 }
998 }
999
1000 /* Note:
1001 * This hash table is used to map VM_ID to a struct kvm_arch,
1002 * when handling AMD IOMMU GALOG notification to schedule in
1003 * a particular vCPU.
1004 */
1005 #define SVM_VM_DATA_HASH_BITS 8
1006 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1007 static u32 next_vm_id = 0;
1008 static bool next_vm_id_wrapped = 0;
1009 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1010
1011 /* Note:
1012 * This function is called from IOMMU driver to notify
1013 * SVM to schedule in a particular vCPU of a particular VM.
1014 */
1015 static int avic_ga_log_notifier(u32 ga_tag)
1016 {
1017 unsigned long flags;
1018 struct kvm_arch *ka = NULL;
1019 struct kvm_vcpu *vcpu = NULL;
1020 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1021 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1022
1023 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1024
1025 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1026 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1027 struct kvm *kvm = container_of(ka, struct kvm, arch);
1028 struct kvm_arch *vm_data = &kvm->arch;
1029
1030 if (vm_data->avic_vm_id != vm_id)
1031 continue;
1032 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1033 break;
1034 }
1035 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1036
1037 /* Note:
1038 * At this point, the IOMMU should have already set the pending
1039 * bit in the vAPIC backing page. So, we just need to schedule
1040 * in the vcpu.
1041 */
1042 if (vcpu)
1043 kvm_vcpu_wake_up(vcpu);
1044
1045 return 0;
1046 }
1047
1048 static __init int svm_hardware_setup(void)
1049 {
1050 int cpu;
1051 struct page *iopm_pages;
1052 void *iopm_va;
1053 int r;
1054
1055 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1056
1057 if (!iopm_pages)
1058 return -ENOMEM;
1059
1060 iopm_va = page_address(iopm_pages);
1061 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1062 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1063
1064 init_msrpm_offsets();
1065
1066 if (boot_cpu_has(X86_FEATURE_NX))
1067 kvm_enable_efer_bits(EFER_NX);
1068
1069 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1070 kvm_enable_efer_bits(EFER_FFXSR);
1071
1072 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1073 kvm_has_tsc_control = true;
1074 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1075 kvm_tsc_scaling_ratio_frac_bits = 32;
1076 }
1077
1078 if (nested) {
1079 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1080 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1081 }
1082
1083 for_each_possible_cpu(cpu) {
1084 r = svm_cpu_init(cpu);
1085 if (r)
1086 goto err;
1087 }
1088
1089 if (!boot_cpu_has(X86_FEATURE_NPT))
1090 npt_enabled = false;
1091
1092 if (npt_enabled && !npt) {
1093 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1094 npt_enabled = false;
1095 }
1096
1097 if (npt_enabled) {
1098 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1099 kvm_enable_tdp();
1100 } else
1101 kvm_disable_tdp();
1102
1103 if (avic) {
1104 if (!npt_enabled ||
1105 !boot_cpu_has(X86_FEATURE_AVIC) ||
1106 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1107 avic = false;
1108 } else {
1109 pr_info("AVIC enabled\n");
1110
1111 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1112 }
1113 }
1114
1115 if (vls) {
1116 if (!npt_enabled ||
1117 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1118 !IS_ENABLED(CONFIG_X86_64)) {
1119 vls = false;
1120 } else {
1121 pr_info("Virtual VMLOAD VMSAVE supported\n");
1122 }
1123 }
1124
1125 if (vgif) {
1126 if (!boot_cpu_has(X86_FEATURE_VGIF))
1127 vgif = false;
1128 else
1129 pr_info("Virtual GIF supported\n");
1130 }
1131
1132 return 0;
1133
1134 err:
1135 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1136 iopm_base = 0;
1137 return r;
1138 }
1139
1140 static __exit void svm_hardware_unsetup(void)
1141 {
1142 int cpu;
1143
1144 for_each_possible_cpu(cpu)
1145 svm_cpu_uninit(cpu);
1146
1147 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1148 iopm_base = 0;
1149 }
1150
1151 static void init_seg(struct vmcb_seg *seg)
1152 {
1153 seg->selector = 0;
1154 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1155 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1156 seg->limit = 0xffff;
1157 seg->base = 0;
1158 }
1159
1160 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1161 {
1162 seg->selector = 0;
1163 seg->attrib = SVM_SELECTOR_P_MASK | type;
1164 seg->limit = 0xffff;
1165 seg->base = 0;
1166 }
1167
1168 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1169 {
1170 struct vcpu_svm *svm = to_svm(vcpu);
1171 u64 g_tsc_offset = 0;
1172
1173 if (is_guest_mode(vcpu)) {
1174 g_tsc_offset = svm->vmcb->control.tsc_offset -
1175 svm->nested.hsave->control.tsc_offset;
1176 svm->nested.hsave->control.tsc_offset = offset;
1177 } else
1178 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1179 svm->vmcb->control.tsc_offset,
1180 offset);
1181
1182 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1183
1184 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1185 }
1186
1187 static void avic_init_vmcb(struct vcpu_svm *svm)
1188 {
1189 struct vmcb *vmcb = svm->vmcb;
1190 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1191 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1192 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1193 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1194
1195 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1196 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1197 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1198 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1199 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1200 }
1201
1202 static void init_vmcb(struct vcpu_svm *svm)
1203 {
1204 struct vmcb_control_area *control = &svm->vmcb->control;
1205 struct vmcb_save_area *save = &svm->vmcb->save;
1206
1207 svm->vcpu.arch.hflags = 0;
1208
1209 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1210 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1211 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1212 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1213 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1214 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1215 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1216 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1217
1218 set_dr_intercepts(svm);
1219
1220 set_exception_intercept(svm, PF_VECTOR);
1221 set_exception_intercept(svm, UD_VECTOR);
1222 set_exception_intercept(svm, MC_VECTOR);
1223 set_exception_intercept(svm, AC_VECTOR);
1224 set_exception_intercept(svm, DB_VECTOR);
1225
1226 set_intercept(svm, INTERCEPT_INTR);
1227 set_intercept(svm, INTERCEPT_NMI);
1228 set_intercept(svm, INTERCEPT_SMI);
1229 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1230 set_intercept(svm, INTERCEPT_RDPMC);
1231 set_intercept(svm, INTERCEPT_CPUID);
1232 set_intercept(svm, INTERCEPT_INVD);
1233 set_intercept(svm, INTERCEPT_HLT);
1234 set_intercept(svm, INTERCEPT_INVLPG);
1235 set_intercept(svm, INTERCEPT_INVLPGA);
1236 set_intercept(svm, INTERCEPT_IOIO_PROT);
1237 set_intercept(svm, INTERCEPT_MSR_PROT);
1238 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1239 set_intercept(svm, INTERCEPT_SHUTDOWN);
1240 set_intercept(svm, INTERCEPT_VMRUN);
1241 set_intercept(svm, INTERCEPT_VMMCALL);
1242 set_intercept(svm, INTERCEPT_VMLOAD);
1243 set_intercept(svm, INTERCEPT_VMSAVE);
1244 set_intercept(svm, INTERCEPT_STGI);
1245 set_intercept(svm, INTERCEPT_CLGI);
1246 set_intercept(svm, INTERCEPT_SKINIT);
1247 set_intercept(svm, INTERCEPT_WBINVD);
1248 set_intercept(svm, INTERCEPT_XSETBV);
1249
1250 if (!kvm_mwait_in_guest()) {
1251 set_intercept(svm, INTERCEPT_MONITOR);
1252 set_intercept(svm, INTERCEPT_MWAIT);
1253 }
1254
1255 control->iopm_base_pa = __sme_set(iopm_base);
1256 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1257 control->int_ctl = V_INTR_MASKING_MASK;
1258
1259 init_seg(&save->es);
1260 init_seg(&save->ss);
1261 init_seg(&save->ds);
1262 init_seg(&save->fs);
1263 init_seg(&save->gs);
1264
1265 save->cs.selector = 0xf000;
1266 save->cs.base = 0xffff0000;
1267 /* Executable/Readable Code Segment */
1268 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1269 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1270 save->cs.limit = 0xffff;
1271
1272 save->gdtr.limit = 0xffff;
1273 save->idtr.limit = 0xffff;
1274
1275 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1276 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1277
1278 svm_set_efer(&svm->vcpu, 0);
1279 save->dr6 = 0xffff0ff0;
1280 kvm_set_rflags(&svm->vcpu, 2);
1281 save->rip = 0x0000fff0;
1282 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1283
1284 /*
1285 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1286 * It also updates the guest-visible cr0 value.
1287 */
1288 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1289 kvm_mmu_reset_context(&svm->vcpu);
1290
1291 save->cr4 = X86_CR4_PAE;
1292 /* rdx = ?? */
1293
1294 if (npt_enabled) {
1295 /* Setup VMCB for Nested Paging */
1296 control->nested_ctl = 1;
1297 clr_intercept(svm, INTERCEPT_INVLPG);
1298 clr_exception_intercept(svm, PF_VECTOR);
1299 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1300 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1301 save->g_pat = svm->vcpu.arch.pat;
1302 save->cr3 = 0;
1303 save->cr4 = 0;
1304 }
1305 svm->asid_generation = 0;
1306
1307 svm->nested.vmcb = 0;
1308 svm->vcpu.arch.hflags = 0;
1309
1310 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1311 control->pause_filter_count = 3000;
1312 set_intercept(svm, INTERCEPT_PAUSE);
1313 }
1314
1315 if (kvm_vcpu_apicv_active(&svm->vcpu))
1316 avic_init_vmcb(svm);
1317
1318 /*
1319 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1320 * in VMCB and clear intercepts to avoid #VMEXIT.
1321 */
1322 if (vls) {
1323 clr_intercept(svm, INTERCEPT_VMLOAD);
1324 clr_intercept(svm, INTERCEPT_VMSAVE);
1325 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1326 }
1327
1328 if (vgif) {
1329 clr_intercept(svm, INTERCEPT_STGI);
1330 clr_intercept(svm, INTERCEPT_CLGI);
1331 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1332 }
1333
1334 mark_all_dirty(svm->vmcb);
1335
1336 enable_gif(svm);
1337
1338 }
1339
1340 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1341 unsigned int index)
1342 {
1343 u64 *avic_physical_id_table;
1344 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1345
1346 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1347 return NULL;
1348
1349 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1350
1351 return &avic_physical_id_table[index];
1352 }
1353
1354 /**
1355 * Note:
1356 * AVIC hardware walks the nested page table to check permissions,
1357 * but does not use the SPA address specified in the leaf page
1358 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1359 * field of the VMCB. Therefore, we set up the
1360 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1361 */
1362 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1363 {
1364 struct kvm *kvm = vcpu->kvm;
1365 int ret;
1366
1367 if (kvm->arch.apic_access_page_done)
1368 return 0;
1369
1370 ret = x86_set_memory_region(kvm,
1371 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1372 APIC_DEFAULT_PHYS_BASE,
1373 PAGE_SIZE);
1374 if (ret)
1375 return ret;
1376
1377 kvm->arch.apic_access_page_done = true;
1378 return 0;
1379 }
1380
1381 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1382 {
1383 int ret;
1384 u64 *entry, new_entry;
1385 int id = vcpu->vcpu_id;
1386 struct vcpu_svm *svm = to_svm(vcpu);
1387
1388 ret = avic_init_access_page(vcpu);
1389 if (ret)
1390 return ret;
1391
1392 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1393 return -EINVAL;
1394
1395 if (!svm->vcpu.arch.apic->regs)
1396 return -EINVAL;
1397
1398 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1399
1400 /* Setting AVIC backing page address in the phy APIC ID table */
1401 entry = avic_get_physical_id_entry(vcpu, id);
1402 if (!entry)
1403 return -EINVAL;
1404
1405 new_entry = READ_ONCE(*entry);
1406 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1407 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1408 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1409 WRITE_ONCE(*entry, new_entry);
1410
1411 svm->avic_physical_id_cache = entry;
1412
1413 return 0;
1414 }
1415
1416 static void avic_vm_destroy(struct kvm *kvm)
1417 {
1418 unsigned long flags;
1419 struct kvm_arch *vm_data = &kvm->arch;
1420
1421 if (!avic)
1422 return;
1423
1424 if (vm_data->avic_logical_id_table_page)
1425 __free_page(vm_data->avic_logical_id_table_page);
1426 if (vm_data->avic_physical_id_table_page)
1427 __free_page(vm_data->avic_physical_id_table_page);
1428
1429 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430 hash_del(&vm_data->hnode);
1431 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432 }
1433
1434 static int avic_vm_init(struct kvm *kvm)
1435 {
1436 unsigned long flags;
1437 int err = -ENOMEM;
1438 struct kvm_arch *vm_data = &kvm->arch;
1439 struct page *p_page;
1440 struct page *l_page;
1441 struct kvm_arch *ka;
1442 u32 vm_id;
1443
1444 if (!avic)
1445 return 0;
1446
1447 /* Allocating physical APIC ID table (4KB) */
1448 p_page = alloc_page(GFP_KERNEL);
1449 if (!p_page)
1450 goto free_avic;
1451
1452 vm_data->avic_physical_id_table_page = p_page;
1453 clear_page(page_address(p_page));
1454
1455 /* Allocating logical APIC ID table (4KB) */
1456 l_page = alloc_page(GFP_KERNEL);
1457 if (!l_page)
1458 goto free_avic;
1459
1460 vm_data->avic_logical_id_table_page = l_page;
1461 clear_page(page_address(l_page));
1462
1463 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1464 again:
1465 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1466 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1467 next_vm_id_wrapped = 1;
1468 goto again;
1469 }
1470 /* Is it still in use? Only possible if wrapped at least once */
1471 if (next_vm_id_wrapped) {
1472 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1473 struct kvm *k2 = container_of(ka, struct kvm, arch);
1474 struct kvm_arch *vd2 = &k2->arch;
1475 if (vd2->avic_vm_id == vm_id)
1476 goto again;
1477 }
1478 }
1479 vm_data->avic_vm_id = vm_id;
1480 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1481 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1482
1483 return 0;
1484
1485 free_avic:
1486 avic_vm_destroy(kvm);
1487 return err;
1488 }
1489
1490 static inline int
1491 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1492 {
1493 int ret = 0;
1494 unsigned long flags;
1495 struct amd_svm_iommu_ir *ir;
1496 struct vcpu_svm *svm = to_svm(vcpu);
1497
1498 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1499 return 0;
1500
1501 /*
1502 * Here, we go through the per-vcpu ir_list to update all existing
1503 * interrupt remapping table entry targeting this vcpu.
1504 */
1505 spin_lock_irqsave(&svm->ir_list_lock, flags);
1506
1507 if (list_empty(&svm->ir_list))
1508 goto out;
1509
1510 list_for_each_entry(ir, &svm->ir_list, node) {
1511 ret = amd_iommu_update_ga(cpu, r, ir->data);
1512 if (ret)
1513 break;
1514 }
1515 out:
1516 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1517 return ret;
1518 }
1519
1520 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1521 {
1522 u64 entry;
1523 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1524 int h_physical_id = kvm_cpu_get_apicid(cpu);
1525 struct vcpu_svm *svm = to_svm(vcpu);
1526
1527 if (!kvm_vcpu_apicv_active(vcpu))
1528 return;
1529
1530 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1531 return;
1532
1533 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1534 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1535
1536 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1537 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1538
1539 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1540 if (svm->avic_is_running)
1541 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1542
1543 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1544 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1545 svm->avic_is_running);
1546 }
1547
1548 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1549 {
1550 u64 entry;
1551 struct vcpu_svm *svm = to_svm(vcpu);
1552
1553 if (!kvm_vcpu_apicv_active(vcpu))
1554 return;
1555
1556 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1557 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1558 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1559
1560 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1561 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1562 }
1563
1564 /**
1565 * This function is called during VCPU halt/unhalt.
1566 */
1567 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1568 {
1569 struct vcpu_svm *svm = to_svm(vcpu);
1570
1571 svm->avic_is_running = is_run;
1572 if (is_run)
1573 avic_vcpu_load(vcpu, vcpu->cpu);
1574 else
1575 avic_vcpu_put(vcpu);
1576 }
1577
1578 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1579 {
1580 struct vcpu_svm *svm = to_svm(vcpu);
1581 u32 dummy;
1582 u32 eax = 1;
1583
1584 if (!init_event) {
1585 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1586 MSR_IA32_APICBASE_ENABLE;
1587 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1588 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1589 }
1590 init_vmcb(svm);
1591
1592 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1593 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1594
1595 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1596 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1597 }
1598
1599 static int avic_init_vcpu(struct vcpu_svm *svm)
1600 {
1601 int ret;
1602
1603 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1604 return 0;
1605
1606 ret = avic_init_backing_page(&svm->vcpu);
1607 if (ret)
1608 return ret;
1609
1610 INIT_LIST_HEAD(&svm->ir_list);
1611 spin_lock_init(&svm->ir_list_lock);
1612
1613 return ret;
1614 }
1615
1616 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1617 {
1618 struct vcpu_svm *svm;
1619 struct page *page;
1620 struct page *msrpm_pages;
1621 struct page *hsave_page;
1622 struct page *nested_msrpm_pages;
1623 int err;
1624
1625 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1626 if (!svm) {
1627 err = -ENOMEM;
1628 goto out;
1629 }
1630
1631 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1632 if (err)
1633 goto free_svm;
1634
1635 err = -ENOMEM;
1636 page = alloc_page(GFP_KERNEL);
1637 if (!page)
1638 goto uninit;
1639
1640 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1641 if (!msrpm_pages)
1642 goto free_page1;
1643
1644 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1645 if (!nested_msrpm_pages)
1646 goto free_page2;
1647
1648 hsave_page = alloc_page(GFP_KERNEL);
1649 if (!hsave_page)
1650 goto free_page3;
1651
1652 err = avic_init_vcpu(svm);
1653 if (err)
1654 goto free_page4;
1655
1656 /* We initialize this flag to true to make sure that the is_running
1657 * bit would be set the first time the vcpu is loaded.
1658 */
1659 svm->avic_is_running = true;
1660
1661 svm->nested.hsave = page_address(hsave_page);
1662
1663 svm->msrpm = page_address(msrpm_pages);
1664 svm_vcpu_init_msrpm(svm->msrpm);
1665
1666 svm->nested.msrpm = page_address(nested_msrpm_pages);
1667 svm_vcpu_init_msrpm(svm->nested.msrpm);
1668
1669 svm->vmcb = page_address(page);
1670 clear_page(svm->vmcb);
1671 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1672 svm->asid_generation = 0;
1673 init_vmcb(svm);
1674
1675 svm_init_osvw(&svm->vcpu);
1676
1677 return &svm->vcpu;
1678
1679 free_page4:
1680 __free_page(hsave_page);
1681 free_page3:
1682 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1683 free_page2:
1684 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1685 free_page1:
1686 __free_page(page);
1687 uninit:
1688 kvm_vcpu_uninit(&svm->vcpu);
1689 free_svm:
1690 kmem_cache_free(kvm_vcpu_cache, svm);
1691 out:
1692 return ERR_PTR(err);
1693 }
1694
1695 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1696 {
1697 struct vcpu_svm *svm = to_svm(vcpu);
1698
1699 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1700 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1701 __free_page(virt_to_page(svm->nested.hsave));
1702 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1703 kvm_vcpu_uninit(vcpu);
1704 kmem_cache_free(kvm_vcpu_cache, svm);
1705 }
1706
1707 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1708 {
1709 struct vcpu_svm *svm = to_svm(vcpu);
1710 int i;
1711
1712 if (unlikely(cpu != vcpu->cpu)) {
1713 svm->asid_generation = 0;
1714 mark_all_dirty(svm->vmcb);
1715 }
1716
1717 #ifdef CONFIG_X86_64
1718 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1719 #endif
1720 savesegment(fs, svm->host.fs);
1721 savesegment(gs, svm->host.gs);
1722 svm->host.ldt = kvm_read_ldt();
1723
1724 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1725 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1726
1727 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1728 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1729 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1730 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1731 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1732 }
1733 }
1734 /* This assumes that the kernel never uses MSR_TSC_AUX */
1735 if (static_cpu_has(X86_FEATURE_RDTSCP))
1736 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1737
1738 avic_vcpu_load(vcpu, cpu);
1739 }
1740
1741 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1742 {
1743 struct vcpu_svm *svm = to_svm(vcpu);
1744 int i;
1745
1746 avic_vcpu_put(vcpu);
1747
1748 ++vcpu->stat.host_state_reload;
1749 kvm_load_ldt(svm->host.ldt);
1750 #ifdef CONFIG_X86_64
1751 loadsegment(fs, svm->host.fs);
1752 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1753 load_gs_index(svm->host.gs);
1754 #else
1755 #ifdef CONFIG_X86_32_LAZY_GS
1756 loadsegment(gs, svm->host.gs);
1757 #endif
1758 #endif
1759 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1760 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1761 }
1762
1763 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1764 {
1765 avic_set_running(vcpu, false);
1766 }
1767
1768 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1769 {
1770 avic_set_running(vcpu, true);
1771 }
1772
1773 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1774 {
1775 struct vcpu_svm *svm = to_svm(vcpu);
1776 unsigned long rflags = svm->vmcb->save.rflags;
1777
1778 if (svm->nmi_singlestep) {
1779 /* Hide our flags if they were not set by the guest */
1780 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1781 rflags &= ~X86_EFLAGS_TF;
1782 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1783 rflags &= ~X86_EFLAGS_RF;
1784 }
1785 return rflags;
1786 }
1787
1788 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1789 {
1790 if (to_svm(vcpu)->nmi_singlestep)
1791 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1792
1793 /*
1794 * Any change of EFLAGS.VM is accompanied by a reload of SS
1795 * (caused by either a task switch or an inter-privilege IRET),
1796 * so we do not need to update the CPL here.
1797 */
1798 to_svm(vcpu)->vmcb->save.rflags = rflags;
1799 }
1800
1801 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1802 {
1803 switch (reg) {
1804 case VCPU_EXREG_PDPTR:
1805 BUG_ON(!npt_enabled);
1806 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1807 break;
1808 default:
1809 BUG();
1810 }
1811 }
1812
1813 static void svm_set_vintr(struct vcpu_svm *svm)
1814 {
1815 set_intercept(svm, INTERCEPT_VINTR);
1816 }
1817
1818 static void svm_clear_vintr(struct vcpu_svm *svm)
1819 {
1820 clr_intercept(svm, INTERCEPT_VINTR);
1821 }
1822
1823 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1824 {
1825 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1826
1827 switch (seg) {
1828 case VCPU_SREG_CS: return &save->cs;
1829 case VCPU_SREG_DS: return &save->ds;
1830 case VCPU_SREG_ES: return &save->es;
1831 case VCPU_SREG_FS: return &save->fs;
1832 case VCPU_SREG_GS: return &save->gs;
1833 case VCPU_SREG_SS: return &save->ss;
1834 case VCPU_SREG_TR: return &save->tr;
1835 case VCPU_SREG_LDTR: return &save->ldtr;
1836 }
1837 BUG();
1838 return NULL;
1839 }
1840
1841 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1842 {
1843 struct vmcb_seg *s = svm_seg(vcpu, seg);
1844
1845 return s->base;
1846 }
1847
1848 static void svm_get_segment(struct kvm_vcpu *vcpu,
1849 struct kvm_segment *var, int seg)
1850 {
1851 struct vmcb_seg *s = svm_seg(vcpu, seg);
1852
1853 var->base = s->base;
1854 var->limit = s->limit;
1855 var->selector = s->selector;
1856 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1857 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1858 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1859 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1860 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1861 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1862 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1863
1864 /*
1865 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1866 * However, the SVM spec states that the G bit is not observed by the
1867 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1868 * So let's synthesize a legal G bit for all segments, this helps
1869 * running KVM nested. It also helps cross-vendor migration, because
1870 * Intel's vmentry has a check on the 'G' bit.
1871 */
1872 var->g = s->limit > 0xfffff;
1873
1874 /*
1875 * AMD's VMCB does not have an explicit unusable field, so emulate it
1876 * for cross vendor migration purposes by "not present"
1877 */
1878 var->unusable = !var->present;
1879
1880 switch (seg) {
1881 case VCPU_SREG_TR:
1882 /*
1883 * Work around a bug where the busy flag in the tr selector
1884 * isn't exposed
1885 */
1886 var->type |= 0x2;
1887 break;
1888 case VCPU_SREG_DS:
1889 case VCPU_SREG_ES:
1890 case VCPU_SREG_FS:
1891 case VCPU_SREG_GS:
1892 /*
1893 * The accessed bit must always be set in the segment
1894 * descriptor cache, although it can be cleared in the
1895 * descriptor, the cached bit always remains at 1. Since
1896 * Intel has a check on this, set it here to support
1897 * cross-vendor migration.
1898 */
1899 if (!var->unusable)
1900 var->type |= 0x1;
1901 break;
1902 case VCPU_SREG_SS:
1903 /*
1904 * On AMD CPUs sometimes the DB bit in the segment
1905 * descriptor is left as 1, although the whole segment has
1906 * been made unusable. Clear it here to pass an Intel VMX
1907 * entry check when cross vendor migrating.
1908 */
1909 if (var->unusable)
1910 var->db = 0;
1911 /* This is symmetric with svm_set_segment() */
1912 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1913 break;
1914 }
1915 }
1916
1917 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1918 {
1919 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1920
1921 return save->cpl;
1922 }
1923
1924 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1925 {
1926 struct vcpu_svm *svm = to_svm(vcpu);
1927
1928 dt->size = svm->vmcb->save.idtr.limit;
1929 dt->address = svm->vmcb->save.idtr.base;
1930 }
1931
1932 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1933 {
1934 struct vcpu_svm *svm = to_svm(vcpu);
1935
1936 svm->vmcb->save.idtr.limit = dt->size;
1937 svm->vmcb->save.idtr.base = dt->address ;
1938 mark_dirty(svm->vmcb, VMCB_DT);
1939 }
1940
1941 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1942 {
1943 struct vcpu_svm *svm = to_svm(vcpu);
1944
1945 dt->size = svm->vmcb->save.gdtr.limit;
1946 dt->address = svm->vmcb->save.gdtr.base;
1947 }
1948
1949 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1950 {
1951 struct vcpu_svm *svm = to_svm(vcpu);
1952
1953 svm->vmcb->save.gdtr.limit = dt->size;
1954 svm->vmcb->save.gdtr.base = dt->address ;
1955 mark_dirty(svm->vmcb, VMCB_DT);
1956 }
1957
1958 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1959 {
1960 }
1961
1962 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1963 {
1964 }
1965
1966 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1967 {
1968 }
1969
1970 static void update_cr0_intercept(struct vcpu_svm *svm)
1971 {
1972 ulong gcr0 = svm->vcpu.arch.cr0;
1973 u64 *hcr0 = &svm->vmcb->save.cr0;
1974
1975 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1976 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1977
1978 mark_dirty(svm->vmcb, VMCB_CR);
1979
1980 if (gcr0 == *hcr0) {
1981 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1982 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1983 } else {
1984 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1985 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1986 }
1987 }
1988
1989 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1990 {
1991 struct vcpu_svm *svm = to_svm(vcpu);
1992
1993 #ifdef CONFIG_X86_64
1994 if (vcpu->arch.efer & EFER_LME) {
1995 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1996 vcpu->arch.efer |= EFER_LMA;
1997 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1998 }
1999
2000 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2001 vcpu->arch.efer &= ~EFER_LMA;
2002 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2003 }
2004 }
2005 #endif
2006 vcpu->arch.cr0 = cr0;
2007
2008 if (!npt_enabled)
2009 cr0 |= X86_CR0_PG | X86_CR0_WP;
2010
2011 /*
2012 * re-enable caching here because the QEMU bios
2013 * does not do it - this results in some delay at
2014 * reboot
2015 */
2016 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2017 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2018 svm->vmcb->save.cr0 = cr0;
2019 mark_dirty(svm->vmcb, VMCB_CR);
2020 update_cr0_intercept(svm);
2021 }
2022
2023 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2024 {
2025 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2026 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2027
2028 if (cr4 & X86_CR4_VMXE)
2029 return 1;
2030
2031 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2032 svm_flush_tlb(vcpu);
2033
2034 vcpu->arch.cr4 = cr4;
2035 if (!npt_enabled)
2036 cr4 |= X86_CR4_PAE;
2037 cr4 |= host_cr4_mce;
2038 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2039 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2040 return 0;
2041 }
2042
2043 static void svm_set_segment(struct kvm_vcpu *vcpu,
2044 struct kvm_segment *var, int seg)
2045 {
2046 struct vcpu_svm *svm = to_svm(vcpu);
2047 struct vmcb_seg *s = svm_seg(vcpu, seg);
2048
2049 s->base = var->base;
2050 s->limit = var->limit;
2051 s->selector = var->selector;
2052 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2053 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2054 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2055 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2056 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2057 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2058 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2059 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2060
2061 /*
2062 * This is always accurate, except if SYSRET returned to a segment
2063 * with SS.DPL != 3. Intel does not have this quirk, and always
2064 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2065 * would entail passing the CPL to userspace and back.
2066 */
2067 if (seg == VCPU_SREG_SS)
2068 /* This is symmetric with svm_get_segment() */
2069 svm->vmcb->save.cpl = (var->dpl & 3);
2070
2071 mark_dirty(svm->vmcb, VMCB_SEG);
2072 }
2073
2074 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2075 {
2076 struct vcpu_svm *svm = to_svm(vcpu);
2077
2078 clr_exception_intercept(svm, BP_VECTOR);
2079
2080 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2081 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2082 set_exception_intercept(svm, BP_VECTOR);
2083 } else
2084 vcpu->guest_debug = 0;
2085 }
2086
2087 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2088 {
2089 if (sd->next_asid > sd->max_asid) {
2090 ++sd->asid_generation;
2091 sd->next_asid = 1;
2092 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2093 }
2094
2095 svm->asid_generation = sd->asid_generation;
2096 svm->vmcb->control.asid = sd->next_asid++;
2097
2098 mark_dirty(svm->vmcb, VMCB_ASID);
2099 }
2100
2101 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2102 {
2103 return to_svm(vcpu)->vmcb->save.dr6;
2104 }
2105
2106 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2107 {
2108 struct vcpu_svm *svm = to_svm(vcpu);
2109
2110 svm->vmcb->save.dr6 = value;
2111 mark_dirty(svm->vmcb, VMCB_DR);
2112 }
2113
2114 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2115 {
2116 struct vcpu_svm *svm = to_svm(vcpu);
2117
2118 get_debugreg(vcpu->arch.db[0], 0);
2119 get_debugreg(vcpu->arch.db[1], 1);
2120 get_debugreg(vcpu->arch.db[2], 2);
2121 get_debugreg(vcpu->arch.db[3], 3);
2122 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2123 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2124
2125 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2126 set_dr_intercepts(svm);
2127 }
2128
2129 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2130 {
2131 struct vcpu_svm *svm = to_svm(vcpu);
2132
2133 svm->vmcb->save.dr7 = value;
2134 mark_dirty(svm->vmcb, VMCB_DR);
2135 }
2136
2137 static int pf_interception(struct vcpu_svm *svm)
2138 {
2139 u64 fault_address = svm->vmcb->control.exit_info_2;
2140 u64 error_code = svm->vmcb->control.exit_info_1;
2141
2142 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2143 svm->vmcb->control.insn_bytes,
2144 svm->vmcb->control.insn_len);
2145 }
2146
2147 static int npf_interception(struct vcpu_svm *svm)
2148 {
2149 u64 fault_address = svm->vmcb->control.exit_info_2;
2150 u64 error_code = svm->vmcb->control.exit_info_1;
2151
2152 trace_kvm_page_fault(fault_address, error_code);
2153 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2154 svm->vmcb->control.insn_bytes,
2155 svm->vmcb->control.insn_len);
2156 }
2157
2158 static int db_interception(struct vcpu_svm *svm)
2159 {
2160 struct kvm_run *kvm_run = svm->vcpu.run;
2161
2162 if (!(svm->vcpu.guest_debug &
2163 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2164 !svm->nmi_singlestep) {
2165 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2166 return 1;
2167 }
2168
2169 if (svm->nmi_singlestep) {
2170 disable_nmi_singlestep(svm);
2171 }
2172
2173 if (svm->vcpu.guest_debug &
2174 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2175 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2176 kvm_run->debug.arch.pc =
2177 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2178 kvm_run->debug.arch.exception = DB_VECTOR;
2179 return 0;
2180 }
2181
2182 return 1;
2183 }
2184
2185 static int bp_interception(struct vcpu_svm *svm)
2186 {
2187 struct kvm_run *kvm_run = svm->vcpu.run;
2188
2189 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2190 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2191 kvm_run->debug.arch.exception = BP_VECTOR;
2192 return 0;
2193 }
2194
2195 static int ud_interception(struct vcpu_svm *svm)
2196 {
2197 int er;
2198
2199 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2200 if (er != EMULATE_DONE)
2201 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2202 return 1;
2203 }
2204
2205 static int ac_interception(struct vcpu_svm *svm)
2206 {
2207 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2208 return 1;
2209 }
2210
2211 static bool is_erratum_383(void)
2212 {
2213 int err, i;
2214 u64 value;
2215
2216 if (!erratum_383_found)
2217 return false;
2218
2219 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2220 if (err)
2221 return false;
2222
2223 /* Bit 62 may or may not be set for this mce */
2224 value &= ~(1ULL << 62);
2225
2226 if (value != 0xb600000000010015ULL)
2227 return false;
2228
2229 /* Clear MCi_STATUS registers */
2230 for (i = 0; i < 6; ++i)
2231 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2232
2233 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2234 if (!err) {
2235 u32 low, high;
2236
2237 value &= ~(1ULL << 2);
2238 low = lower_32_bits(value);
2239 high = upper_32_bits(value);
2240
2241 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2242 }
2243
2244 /* Flush tlb to evict multi-match entries */
2245 __flush_tlb_all();
2246
2247 return true;
2248 }
2249
2250 static void svm_handle_mce(struct vcpu_svm *svm)
2251 {
2252 if (is_erratum_383()) {
2253 /*
2254 * Erratum 383 triggered. Guest state is corrupt so kill the
2255 * guest.
2256 */
2257 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2258
2259 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2260
2261 return;
2262 }
2263
2264 /*
2265 * On an #MC intercept the MCE handler is not called automatically in
2266 * the host. So do it by hand here.
2267 */
2268 asm volatile (
2269 "int $0x12\n");
2270 /* not sure if we ever come back to this point */
2271
2272 return;
2273 }
2274
2275 static int mc_interception(struct vcpu_svm *svm)
2276 {
2277 return 1;
2278 }
2279
2280 static int shutdown_interception(struct vcpu_svm *svm)
2281 {
2282 struct kvm_run *kvm_run = svm->vcpu.run;
2283
2284 /*
2285 * VMCB is undefined after a SHUTDOWN intercept
2286 * so reinitialize it.
2287 */
2288 clear_page(svm->vmcb);
2289 init_vmcb(svm);
2290
2291 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2292 return 0;
2293 }
2294
2295 static int io_interception(struct vcpu_svm *svm)
2296 {
2297 struct kvm_vcpu *vcpu = &svm->vcpu;
2298 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2299 int size, in, string, ret;
2300 unsigned port;
2301
2302 ++svm->vcpu.stat.io_exits;
2303 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2304 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2305 if (string)
2306 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2307
2308 port = io_info >> 16;
2309 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2310 svm->next_rip = svm->vmcb->control.exit_info_2;
2311 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2312
2313 /*
2314 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2315 * KVM_EXIT_DEBUG here.
2316 */
2317 if (in)
2318 return kvm_fast_pio_in(vcpu, size, port) && ret;
2319 else
2320 return kvm_fast_pio_out(vcpu, size, port) && ret;
2321 }
2322
2323 static int nmi_interception(struct vcpu_svm *svm)
2324 {
2325 return 1;
2326 }
2327
2328 static int intr_interception(struct vcpu_svm *svm)
2329 {
2330 ++svm->vcpu.stat.irq_exits;
2331 return 1;
2332 }
2333
2334 static int nop_on_interception(struct vcpu_svm *svm)
2335 {
2336 return 1;
2337 }
2338
2339 static int halt_interception(struct vcpu_svm *svm)
2340 {
2341 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2342 return kvm_emulate_halt(&svm->vcpu);
2343 }
2344
2345 static int vmmcall_interception(struct vcpu_svm *svm)
2346 {
2347 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2348 return kvm_emulate_hypercall(&svm->vcpu);
2349 }
2350
2351 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2352 {
2353 struct vcpu_svm *svm = to_svm(vcpu);
2354
2355 return svm->nested.nested_cr3;
2356 }
2357
2358 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2359 {
2360 struct vcpu_svm *svm = to_svm(vcpu);
2361 u64 cr3 = svm->nested.nested_cr3;
2362 u64 pdpte;
2363 int ret;
2364
2365 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2366 offset_in_page(cr3) + index * 8, 8);
2367 if (ret)
2368 return 0;
2369 return pdpte;
2370 }
2371
2372 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2373 unsigned long root)
2374 {
2375 struct vcpu_svm *svm = to_svm(vcpu);
2376
2377 svm->vmcb->control.nested_cr3 = __sme_set(root);
2378 mark_dirty(svm->vmcb, VMCB_NPT);
2379 svm_flush_tlb(vcpu);
2380 }
2381
2382 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2383 struct x86_exception *fault)
2384 {
2385 struct vcpu_svm *svm = to_svm(vcpu);
2386
2387 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2388 /*
2389 * TODO: track the cause of the nested page fault, and
2390 * correctly fill in the high bits of exit_info_1.
2391 */
2392 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2393 svm->vmcb->control.exit_code_hi = 0;
2394 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2395 svm->vmcb->control.exit_info_2 = fault->address;
2396 }
2397
2398 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2399 svm->vmcb->control.exit_info_1 |= fault->error_code;
2400
2401 /*
2402 * The present bit is always zero for page structure faults on real
2403 * hardware.
2404 */
2405 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2406 svm->vmcb->control.exit_info_1 &= ~1;
2407
2408 nested_svm_vmexit(svm);
2409 }
2410
2411 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2412 {
2413 WARN_ON(mmu_is_nested(vcpu));
2414 kvm_init_shadow_mmu(vcpu);
2415 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2416 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2417 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2418 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2419 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2420 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2421 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2422 }
2423
2424 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2425 {
2426 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2427 }
2428
2429 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2430 {
2431 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2432 !is_paging(&svm->vcpu)) {
2433 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2434 return 1;
2435 }
2436
2437 if (svm->vmcb->save.cpl) {
2438 kvm_inject_gp(&svm->vcpu, 0);
2439 return 1;
2440 }
2441
2442 return 0;
2443 }
2444
2445 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2446 bool has_error_code, u32 error_code)
2447 {
2448 int vmexit;
2449
2450 if (!is_guest_mode(&svm->vcpu))
2451 return 0;
2452
2453 vmexit = nested_svm_intercept(svm);
2454 if (vmexit != NESTED_EXIT_DONE)
2455 return 0;
2456
2457 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2458 svm->vmcb->control.exit_code_hi = 0;
2459 svm->vmcb->control.exit_info_1 = error_code;
2460
2461 /*
2462 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2463 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2464 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2465 * written only when inject_pending_event runs (DR6 would written here
2466 * too). This should be conditional on a new capability---if the
2467 * capability is disabled, kvm_multiple_exception would write the
2468 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2469 */
2470 if (svm->vcpu.arch.exception.nested_apf)
2471 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2472 else
2473 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2474
2475 svm->nested.exit_required = true;
2476 return vmexit;
2477 }
2478
2479 /* This function returns true if it is save to enable the irq window */
2480 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2481 {
2482 if (!is_guest_mode(&svm->vcpu))
2483 return true;
2484
2485 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2486 return true;
2487
2488 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2489 return false;
2490
2491 /*
2492 * if vmexit was already requested (by intercepted exception
2493 * for instance) do not overwrite it with "external interrupt"
2494 * vmexit.
2495 */
2496 if (svm->nested.exit_required)
2497 return false;
2498
2499 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2500 svm->vmcb->control.exit_info_1 = 0;
2501 svm->vmcb->control.exit_info_2 = 0;
2502
2503 if (svm->nested.intercept & 1ULL) {
2504 /*
2505 * The #vmexit can't be emulated here directly because this
2506 * code path runs with irqs and preemption disabled. A
2507 * #vmexit emulation might sleep. Only signal request for
2508 * the #vmexit here.
2509 */
2510 svm->nested.exit_required = true;
2511 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2512 return false;
2513 }
2514
2515 return true;
2516 }
2517
2518 /* This function returns true if it is save to enable the nmi window */
2519 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2520 {
2521 if (!is_guest_mode(&svm->vcpu))
2522 return true;
2523
2524 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2525 return true;
2526
2527 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2528 svm->nested.exit_required = true;
2529
2530 return false;
2531 }
2532
2533 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2534 {
2535 struct page *page;
2536
2537 might_sleep();
2538
2539 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2540 if (is_error_page(page))
2541 goto error;
2542
2543 *_page = page;
2544
2545 return kmap(page);
2546
2547 error:
2548 kvm_inject_gp(&svm->vcpu, 0);
2549
2550 return NULL;
2551 }
2552
2553 static void nested_svm_unmap(struct page *page)
2554 {
2555 kunmap(page);
2556 kvm_release_page_dirty(page);
2557 }
2558
2559 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2560 {
2561 unsigned port, size, iopm_len;
2562 u16 val, mask;
2563 u8 start_bit;
2564 u64 gpa;
2565
2566 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2567 return NESTED_EXIT_HOST;
2568
2569 port = svm->vmcb->control.exit_info_1 >> 16;
2570 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2571 SVM_IOIO_SIZE_SHIFT;
2572 gpa = svm->nested.vmcb_iopm + (port / 8);
2573 start_bit = port % 8;
2574 iopm_len = (start_bit + size > 8) ? 2 : 1;
2575 mask = (0xf >> (4 - size)) << start_bit;
2576 val = 0;
2577
2578 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2579 return NESTED_EXIT_DONE;
2580
2581 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2582 }
2583
2584 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2585 {
2586 u32 offset, msr, value;
2587 int write, mask;
2588
2589 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2590 return NESTED_EXIT_HOST;
2591
2592 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2593 offset = svm_msrpm_offset(msr);
2594 write = svm->vmcb->control.exit_info_1 & 1;
2595 mask = 1 << ((2 * (msr & 0xf)) + write);
2596
2597 if (offset == MSR_INVALID)
2598 return NESTED_EXIT_DONE;
2599
2600 /* Offset is in 32 bit units but need in 8 bit units */
2601 offset *= 4;
2602
2603 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2604 return NESTED_EXIT_DONE;
2605
2606 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2607 }
2608
2609 /* DB exceptions for our internal use must not cause vmexit */
2610 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2611 {
2612 unsigned long dr6;
2613
2614 /* if we're not singlestepping, it's not ours */
2615 if (!svm->nmi_singlestep)
2616 return NESTED_EXIT_DONE;
2617
2618 /* if it's not a singlestep exception, it's not ours */
2619 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2620 return NESTED_EXIT_DONE;
2621 if (!(dr6 & DR6_BS))
2622 return NESTED_EXIT_DONE;
2623
2624 /* if the guest is singlestepping, it should get the vmexit */
2625 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2626 disable_nmi_singlestep(svm);
2627 return NESTED_EXIT_DONE;
2628 }
2629
2630 /* it's ours, the nested hypervisor must not see this one */
2631 return NESTED_EXIT_HOST;
2632 }
2633
2634 static int nested_svm_exit_special(struct vcpu_svm *svm)
2635 {
2636 u32 exit_code = svm->vmcb->control.exit_code;
2637
2638 switch (exit_code) {
2639 case SVM_EXIT_INTR:
2640 case SVM_EXIT_NMI:
2641 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2642 return NESTED_EXIT_HOST;
2643 case SVM_EXIT_NPF:
2644 /* For now we are always handling NPFs when using them */
2645 if (npt_enabled)
2646 return NESTED_EXIT_HOST;
2647 break;
2648 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2649 /* When we're shadowing, trap PFs, but not async PF */
2650 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2651 return NESTED_EXIT_HOST;
2652 break;
2653 default:
2654 break;
2655 }
2656
2657 return NESTED_EXIT_CONTINUE;
2658 }
2659
2660 /*
2661 * If this function returns true, this #vmexit was already handled
2662 */
2663 static int nested_svm_intercept(struct vcpu_svm *svm)
2664 {
2665 u32 exit_code = svm->vmcb->control.exit_code;
2666 int vmexit = NESTED_EXIT_HOST;
2667
2668 switch (exit_code) {
2669 case SVM_EXIT_MSR:
2670 vmexit = nested_svm_exit_handled_msr(svm);
2671 break;
2672 case SVM_EXIT_IOIO:
2673 vmexit = nested_svm_intercept_ioio(svm);
2674 break;
2675 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2676 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2677 if (svm->nested.intercept_cr & bit)
2678 vmexit = NESTED_EXIT_DONE;
2679 break;
2680 }
2681 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2682 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2683 if (svm->nested.intercept_dr & bit)
2684 vmexit = NESTED_EXIT_DONE;
2685 break;
2686 }
2687 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2688 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2689 if (svm->nested.intercept_exceptions & excp_bits) {
2690 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2691 vmexit = nested_svm_intercept_db(svm);
2692 else
2693 vmexit = NESTED_EXIT_DONE;
2694 }
2695 /* async page fault always cause vmexit */
2696 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2697 svm->vcpu.arch.exception.nested_apf != 0)
2698 vmexit = NESTED_EXIT_DONE;
2699 break;
2700 }
2701 case SVM_EXIT_ERR: {
2702 vmexit = NESTED_EXIT_DONE;
2703 break;
2704 }
2705 default: {
2706 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2707 if (svm->nested.intercept & exit_bits)
2708 vmexit = NESTED_EXIT_DONE;
2709 }
2710 }
2711
2712 return vmexit;
2713 }
2714
2715 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2716 {
2717 int vmexit;
2718
2719 vmexit = nested_svm_intercept(svm);
2720
2721 if (vmexit == NESTED_EXIT_DONE)
2722 nested_svm_vmexit(svm);
2723
2724 return vmexit;
2725 }
2726
2727 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2728 {
2729 struct vmcb_control_area *dst = &dst_vmcb->control;
2730 struct vmcb_control_area *from = &from_vmcb->control;
2731
2732 dst->intercept_cr = from->intercept_cr;
2733 dst->intercept_dr = from->intercept_dr;
2734 dst->intercept_exceptions = from->intercept_exceptions;
2735 dst->intercept = from->intercept;
2736 dst->iopm_base_pa = from->iopm_base_pa;
2737 dst->msrpm_base_pa = from->msrpm_base_pa;
2738 dst->tsc_offset = from->tsc_offset;
2739 dst->asid = from->asid;
2740 dst->tlb_ctl = from->tlb_ctl;
2741 dst->int_ctl = from->int_ctl;
2742 dst->int_vector = from->int_vector;
2743 dst->int_state = from->int_state;
2744 dst->exit_code = from->exit_code;
2745 dst->exit_code_hi = from->exit_code_hi;
2746 dst->exit_info_1 = from->exit_info_1;
2747 dst->exit_info_2 = from->exit_info_2;
2748 dst->exit_int_info = from->exit_int_info;
2749 dst->exit_int_info_err = from->exit_int_info_err;
2750 dst->nested_ctl = from->nested_ctl;
2751 dst->event_inj = from->event_inj;
2752 dst->event_inj_err = from->event_inj_err;
2753 dst->nested_cr3 = from->nested_cr3;
2754 dst->virt_ext = from->virt_ext;
2755 }
2756
2757 static int nested_svm_vmexit(struct vcpu_svm *svm)
2758 {
2759 struct vmcb *nested_vmcb;
2760 struct vmcb *hsave = svm->nested.hsave;
2761 struct vmcb *vmcb = svm->vmcb;
2762 struct page *page;
2763
2764 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2765 vmcb->control.exit_info_1,
2766 vmcb->control.exit_info_2,
2767 vmcb->control.exit_int_info,
2768 vmcb->control.exit_int_info_err,
2769 KVM_ISA_SVM);
2770
2771 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2772 if (!nested_vmcb)
2773 return 1;
2774
2775 /* Exit Guest-Mode */
2776 leave_guest_mode(&svm->vcpu);
2777 svm->nested.vmcb = 0;
2778
2779 /* Give the current vmcb to the guest */
2780 disable_gif(svm);
2781
2782 nested_vmcb->save.es = vmcb->save.es;
2783 nested_vmcb->save.cs = vmcb->save.cs;
2784 nested_vmcb->save.ss = vmcb->save.ss;
2785 nested_vmcb->save.ds = vmcb->save.ds;
2786 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2787 nested_vmcb->save.idtr = vmcb->save.idtr;
2788 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2789 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2790 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2791 nested_vmcb->save.cr2 = vmcb->save.cr2;
2792 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2793 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2794 nested_vmcb->save.rip = vmcb->save.rip;
2795 nested_vmcb->save.rsp = vmcb->save.rsp;
2796 nested_vmcb->save.rax = vmcb->save.rax;
2797 nested_vmcb->save.dr7 = vmcb->save.dr7;
2798 nested_vmcb->save.dr6 = vmcb->save.dr6;
2799 nested_vmcb->save.cpl = vmcb->save.cpl;
2800
2801 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2802 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2803 nested_vmcb->control.int_state = vmcb->control.int_state;
2804 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2805 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2806 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2807 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2808 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2809 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2810
2811 if (svm->nrips_enabled)
2812 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2813
2814 /*
2815 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2816 * to make sure that we do not lose injected events. So check event_inj
2817 * here and copy it to exit_int_info if it is valid.
2818 * Exit_int_info and event_inj can't be both valid because the case
2819 * below only happens on a VMRUN instruction intercept which has
2820 * no valid exit_int_info set.
2821 */
2822 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2823 struct vmcb_control_area *nc = &nested_vmcb->control;
2824
2825 nc->exit_int_info = vmcb->control.event_inj;
2826 nc->exit_int_info_err = vmcb->control.event_inj_err;
2827 }
2828
2829 nested_vmcb->control.tlb_ctl = 0;
2830 nested_vmcb->control.event_inj = 0;
2831 nested_vmcb->control.event_inj_err = 0;
2832
2833 /* We always set V_INTR_MASKING and remember the old value in hflags */
2834 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2835 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2836
2837 /* Restore the original control entries */
2838 copy_vmcb_control_area(vmcb, hsave);
2839
2840 kvm_clear_exception_queue(&svm->vcpu);
2841 kvm_clear_interrupt_queue(&svm->vcpu);
2842
2843 svm->nested.nested_cr3 = 0;
2844
2845 /* Restore selected save entries */
2846 svm->vmcb->save.es = hsave->save.es;
2847 svm->vmcb->save.cs = hsave->save.cs;
2848 svm->vmcb->save.ss = hsave->save.ss;
2849 svm->vmcb->save.ds = hsave->save.ds;
2850 svm->vmcb->save.gdtr = hsave->save.gdtr;
2851 svm->vmcb->save.idtr = hsave->save.idtr;
2852 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2853 svm_set_efer(&svm->vcpu, hsave->save.efer);
2854 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2855 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2856 if (npt_enabled) {
2857 svm->vmcb->save.cr3 = hsave->save.cr3;
2858 svm->vcpu.arch.cr3 = hsave->save.cr3;
2859 } else {
2860 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2861 }
2862 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2863 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2864 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2865 svm->vmcb->save.dr7 = 0;
2866 svm->vmcb->save.cpl = 0;
2867 svm->vmcb->control.exit_int_info = 0;
2868
2869 mark_all_dirty(svm->vmcb);
2870
2871 nested_svm_unmap(page);
2872
2873 nested_svm_uninit_mmu_context(&svm->vcpu);
2874 kvm_mmu_reset_context(&svm->vcpu);
2875 kvm_mmu_load(&svm->vcpu);
2876
2877 return 0;
2878 }
2879
2880 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2881 {
2882 /*
2883 * This function merges the msr permission bitmaps of kvm and the
2884 * nested vmcb. It is optimized in that it only merges the parts where
2885 * the kvm msr permission bitmap may contain zero bits
2886 */
2887 int i;
2888
2889 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2890 return true;
2891
2892 for (i = 0; i < MSRPM_OFFSETS; i++) {
2893 u32 value, p;
2894 u64 offset;
2895
2896 if (msrpm_offsets[i] == 0xffffffff)
2897 break;
2898
2899 p = msrpm_offsets[i];
2900 offset = svm->nested.vmcb_msrpm + (p * 4);
2901
2902 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2903 return false;
2904
2905 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2906 }
2907
2908 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
2909
2910 return true;
2911 }
2912
2913 static bool nested_vmcb_checks(struct vmcb *vmcb)
2914 {
2915 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2916 return false;
2917
2918 if (vmcb->control.asid == 0)
2919 return false;
2920
2921 if (vmcb->control.nested_ctl && !npt_enabled)
2922 return false;
2923
2924 return true;
2925 }
2926
2927 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
2928 struct vmcb *nested_vmcb, struct page *page)
2929 {
2930 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2931 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2932 else
2933 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2934
2935 if (nested_vmcb->control.nested_ctl) {
2936 kvm_mmu_unload(&svm->vcpu);
2937 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2938 nested_svm_init_mmu_context(&svm->vcpu);
2939 }
2940
2941 /* Load the nested guest state */
2942 svm->vmcb->save.es = nested_vmcb->save.es;
2943 svm->vmcb->save.cs = nested_vmcb->save.cs;
2944 svm->vmcb->save.ss = nested_vmcb->save.ss;
2945 svm->vmcb->save.ds = nested_vmcb->save.ds;
2946 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2947 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2948 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2949 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2950 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2951 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2952 if (npt_enabled) {
2953 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2954 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2955 } else
2956 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2957
2958 /* Guest paging mode is active - reset mmu */
2959 kvm_mmu_reset_context(&svm->vcpu);
2960
2961 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2962 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2963 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2964 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2965
2966 /* In case we don't even reach vcpu_run, the fields are not updated */
2967 svm->vmcb->save.rax = nested_vmcb->save.rax;
2968 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2969 svm->vmcb->save.rip = nested_vmcb->save.rip;
2970 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2971 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2972 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2973
2974 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2975 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2976
2977 /* cache intercepts */
2978 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2979 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2980 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2981 svm->nested.intercept = nested_vmcb->control.intercept;
2982
2983 svm_flush_tlb(&svm->vcpu);
2984 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2985 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2986 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2987 else
2988 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2989
2990 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2991 /* We only want the cr8 intercept bits of the guest */
2992 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2993 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2994 }
2995
2996 /* We don't want to see VMMCALLs from a nested guest */
2997 clr_intercept(svm, INTERCEPT_VMMCALL);
2998
2999 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3000 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3001 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3002 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3003 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3004 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3005
3006 nested_svm_unmap(page);
3007
3008 /* Enter Guest-Mode */
3009 enter_guest_mode(&svm->vcpu);
3010
3011 /*
3012 * Merge guest and host intercepts - must be called with vcpu in
3013 * guest-mode to take affect here
3014 */
3015 recalc_intercepts(svm);
3016
3017 svm->nested.vmcb = vmcb_gpa;
3018
3019 enable_gif(svm);
3020
3021 mark_all_dirty(svm->vmcb);
3022 }
3023
3024 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3025 {
3026 struct vmcb *nested_vmcb;
3027 struct vmcb *hsave = svm->nested.hsave;
3028 struct vmcb *vmcb = svm->vmcb;
3029 struct page *page;
3030 u64 vmcb_gpa;
3031
3032 vmcb_gpa = svm->vmcb->save.rax;
3033
3034 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3035 if (!nested_vmcb)
3036 return false;
3037
3038 if (!nested_vmcb_checks(nested_vmcb)) {
3039 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3040 nested_vmcb->control.exit_code_hi = 0;
3041 nested_vmcb->control.exit_info_1 = 0;
3042 nested_vmcb->control.exit_info_2 = 0;
3043
3044 nested_svm_unmap(page);
3045
3046 return false;
3047 }
3048
3049 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3050 nested_vmcb->save.rip,
3051 nested_vmcb->control.int_ctl,
3052 nested_vmcb->control.event_inj,
3053 nested_vmcb->control.nested_ctl);
3054
3055 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3056 nested_vmcb->control.intercept_cr >> 16,
3057 nested_vmcb->control.intercept_exceptions,
3058 nested_vmcb->control.intercept);
3059
3060 /* Clear internal status */
3061 kvm_clear_exception_queue(&svm->vcpu);
3062 kvm_clear_interrupt_queue(&svm->vcpu);
3063
3064 /*
3065 * Save the old vmcb, so we don't need to pick what we save, but can
3066 * restore everything when a VMEXIT occurs
3067 */
3068 hsave->save.es = vmcb->save.es;
3069 hsave->save.cs = vmcb->save.cs;
3070 hsave->save.ss = vmcb->save.ss;
3071 hsave->save.ds = vmcb->save.ds;
3072 hsave->save.gdtr = vmcb->save.gdtr;
3073 hsave->save.idtr = vmcb->save.idtr;
3074 hsave->save.efer = svm->vcpu.arch.efer;
3075 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3076 hsave->save.cr4 = svm->vcpu.arch.cr4;
3077 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3078 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3079 hsave->save.rsp = vmcb->save.rsp;
3080 hsave->save.rax = vmcb->save.rax;
3081 if (npt_enabled)
3082 hsave->save.cr3 = vmcb->save.cr3;
3083 else
3084 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3085
3086 copy_vmcb_control_area(hsave, vmcb);
3087
3088 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3089
3090 return true;
3091 }
3092
3093 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3094 {
3095 to_vmcb->save.fs = from_vmcb->save.fs;
3096 to_vmcb->save.gs = from_vmcb->save.gs;
3097 to_vmcb->save.tr = from_vmcb->save.tr;
3098 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3099 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3100 to_vmcb->save.star = from_vmcb->save.star;
3101 to_vmcb->save.lstar = from_vmcb->save.lstar;
3102 to_vmcb->save.cstar = from_vmcb->save.cstar;
3103 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3104 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3105 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3106 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3107 }
3108
3109 static int vmload_interception(struct vcpu_svm *svm)
3110 {
3111 struct vmcb *nested_vmcb;
3112 struct page *page;
3113 int ret;
3114
3115 if (nested_svm_check_permissions(svm))
3116 return 1;
3117
3118 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3119 if (!nested_vmcb)
3120 return 1;
3121
3122 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3123 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3124
3125 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3126 nested_svm_unmap(page);
3127
3128 return ret;
3129 }
3130
3131 static int vmsave_interception(struct vcpu_svm *svm)
3132 {
3133 struct vmcb *nested_vmcb;
3134 struct page *page;
3135 int ret;
3136
3137 if (nested_svm_check_permissions(svm))
3138 return 1;
3139
3140 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3141 if (!nested_vmcb)
3142 return 1;
3143
3144 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3145 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3146
3147 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3148 nested_svm_unmap(page);
3149
3150 return ret;
3151 }
3152
3153 static int vmrun_interception(struct vcpu_svm *svm)
3154 {
3155 if (nested_svm_check_permissions(svm))
3156 return 1;
3157
3158 /* Save rip after vmrun instruction */
3159 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3160
3161 if (!nested_svm_vmrun(svm))
3162 return 1;
3163
3164 if (!nested_svm_vmrun_msrpm(svm))
3165 goto failed;
3166
3167 return 1;
3168
3169 failed:
3170
3171 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3172 svm->vmcb->control.exit_code_hi = 0;
3173 svm->vmcb->control.exit_info_1 = 0;
3174 svm->vmcb->control.exit_info_2 = 0;
3175
3176 nested_svm_vmexit(svm);
3177
3178 return 1;
3179 }
3180
3181 static int stgi_interception(struct vcpu_svm *svm)
3182 {
3183 int ret;
3184
3185 if (nested_svm_check_permissions(svm))
3186 return 1;
3187
3188 /*
3189 * If VGIF is enabled, the STGI intercept is only added to
3190 * detect the opening of the SMI/NMI window; remove it now.
3191 */
3192 if (vgif_enabled(svm))
3193 clr_intercept(svm, INTERCEPT_STGI);
3194
3195 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3196 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3197 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3198
3199 enable_gif(svm);
3200
3201 return ret;
3202 }
3203
3204 static int clgi_interception(struct vcpu_svm *svm)
3205 {
3206 int ret;
3207
3208 if (nested_svm_check_permissions(svm))
3209 return 1;
3210
3211 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3212 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3213
3214 disable_gif(svm);
3215
3216 /* After a CLGI no interrupts should come */
3217 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3218 svm_clear_vintr(svm);
3219 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3220 mark_dirty(svm->vmcb, VMCB_INTR);
3221 }
3222
3223 return ret;
3224 }
3225
3226 static int invlpga_interception(struct vcpu_svm *svm)
3227 {
3228 struct kvm_vcpu *vcpu = &svm->vcpu;
3229
3230 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3231 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3232
3233 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3234 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3235
3236 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3237 return kvm_skip_emulated_instruction(&svm->vcpu);
3238 }
3239
3240 static int skinit_interception(struct vcpu_svm *svm)
3241 {
3242 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3243
3244 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3245 return 1;
3246 }
3247
3248 static int wbinvd_interception(struct vcpu_svm *svm)
3249 {
3250 return kvm_emulate_wbinvd(&svm->vcpu);
3251 }
3252
3253 static int xsetbv_interception(struct vcpu_svm *svm)
3254 {
3255 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3256 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3257
3258 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3259 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3260 return kvm_skip_emulated_instruction(&svm->vcpu);
3261 }
3262
3263 return 1;
3264 }
3265
3266 static int task_switch_interception(struct vcpu_svm *svm)
3267 {
3268 u16 tss_selector;
3269 int reason;
3270 int int_type = svm->vmcb->control.exit_int_info &
3271 SVM_EXITINTINFO_TYPE_MASK;
3272 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3273 uint32_t type =
3274 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3275 uint32_t idt_v =
3276 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3277 bool has_error_code = false;
3278 u32 error_code = 0;
3279
3280 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3281
3282 if (svm->vmcb->control.exit_info_2 &
3283 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3284 reason = TASK_SWITCH_IRET;
3285 else if (svm->vmcb->control.exit_info_2 &
3286 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3287 reason = TASK_SWITCH_JMP;
3288 else if (idt_v)
3289 reason = TASK_SWITCH_GATE;
3290 else
3291 reason = TASK_SWITCH_CALL;
3292
3293 if (reason == TASK_SWITCH_GATE) {
3294 switch (type) {
3295 case SVM_EXITINTINFO_TYPE_NMI:
3296 svm->vcpu.arch.nmi_injected = false;
3297 break;
3298 case SVM_EXITINTINFO_TYPE_EXEPT:
3299 if (svm->vmcb->control.exit_info_2 &
3300 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3301 has_error_code = true;
3302 error_code =
3303 (u32)svm->vmcb->control.exit_info_2;
3304 }
3305 kvm_clear_exception_queue(&svm->vcpu);
3306 break;
3307 case SVM_EXITINTINFO_TYPE_INTR:
3308 kvm_clear_interrupt_queue(&svm->vcpu);
3309 break;
3310 default:
3311 break;
3312 }
3313 }
3314
3315 if (reason != TASK_SWITCH_GATE ||
3316 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3317 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3318 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3319 skip_emulated_instruction(&svm->vcpu);
3320
3321 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3322 int_vec = -1;
3323
3324 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3325 has_error_code, error_code) == EMULATE_FAIL) {
3326 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3327 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3328 svm->vcpu.run->internal.ndata = 0;
3329 return 0;
3330 }
3331 return 1;
3332 }
3333
3334 static int cpuid_interception(struct vcpu_svm *svm)
3335 {
3336 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3337 return kvm_emulate_cpuid(&svm->vcpu);
3338 }
3339
3340 static int iret_interception(struct vcpu_svm *svm)
3341 {
3342 ++svm->vcpu.stat.nmi_window_exits;
3343 clr_intercept(svm, INTERCEPT_IRET);
3344 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3345 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3346 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3347 return 1;
3348 }
3349
3350 static int invlpg_interception(struct vcpu_svm *svm)
3351 {
3352 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3353 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3354
3355 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3356 return kvm_skip_emulated_instruction(&svm->vcpu);
3357 }
3358
3359 static int emulate_on_interception(struct vcpu_svm *svm)
3360 {
3361 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3362 }
3363
3364 static int rdpmc_interception(struct vcpu_svm *svm)
3365 {
3366 int err;
3367
3368 if (!static_cpu_has(X86_FEATURE_NRIPS))
3369 return emulate_on_interception(svm);
3370
3371 err = kvm_rdpmc(&svm->vcpu);
3372 return kvm_complete_insn_gp(&svm->vcpu, err);
3373 }
3374
3375 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3376 unsigned long val)
3377 {
3378 unsigned long cr0 = svm->vcpu.arch.cr0;
3379 bool ret = false;
3380 u64 intercept;
3381
3382 intercept = svm->nested.intercept;
3383
3384 if (!is_guest_mode(&svm->vcpu) ||
3385 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3386 return false;
3387
3388 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3389 val &= ~SVM_CR0_SELECTIVE_MASK;
3390
3391 if (cr0 ^ val) {
3392 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3393 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3394 }
3395
3396 return ret;
3397 }
3398
3399 #define CR_VALID (1ULL << 63)
3400
3401 static int cr_interception(struct vcpu_svm *svm)
3402 {
3403 int reg, cr;
3404 unsigned long val;
3405 int err;
3406
3407 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3408 return emulate_on_interception(svm);
3409
3410 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3411 return emulate_on_interception(svm);
3412
3413 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3414 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3415 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3416 else
3417 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3418
3419 err = 0;
3420 if (cr >= 16) { /* mov to cr */
3421 cr -= 16;
3422 val = kvm_register_read(&svm->vcpu, reg);
3423 switch (cr) {
3424 case 0:
3425 if (!check_selective_cr0_intercepted(svm, val))
3426 err = kvm_set_cr0(&svm->vcpu, val);
3427 else
3428 return 1;
3429
3430 break;
3431 case 3:
3432 err = kvm_set_cr3(&svm->vcpu, val);
3433 break;
3434 case 4:
3435 err = kvm_set_cr4(&svm->vcpu, val);
3436 break;
3437 case 8:
3438 err = kvm_set_cr8(&svm->vcpu, val);
3439 break;
3440 default:
3441 WARN(1, "unhandled write to CR%d", cr);
3442 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3443 return 1;
3444 }
3445 } else { /* mov from cr */
3446 switch (cr) {
3447 case 0:
3448 val = kvm_read_cr0(&svm->vcpu);
3449 break;
3450 case 2:
3451 val = svm->vcpu.arch.cr2;
3452 break;
3453 case 3:
3454 val = kvm_read_cr3(&svm->vcpu);
3455 break;
3456 case 4:
3457 val = kvm_read_cr4(&svm->vcpu);
3458 break;
3459 case 8:
3460 val = kvm_get_cr8(&svm->vcpu);
3461 break;
3462 default:
3463 WARN(1, "unhandled read from CR%d", cr);
3464 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3465 return 1;
3466 }
3467 kvm_register_write(&svm->vcpu, reg, val);
3468 }
3469 return kvm_complete_insn_gp(&svm->vcpu, err);
3470 }
3471
3472 static int dr_interception(struct vcpu_svm *svm)
3473 {
3474 int reg, dr;
3475 unsigned long val;
3476
3477 if (svm->vcpu.guest_debug == 0) {
3478 /*
3479 * No more DR vmexits; force a reload of the debug registers
3480 * and reenter on this instruction. The next vmexit will
3481 * retrieve the full state of the debug registers.
3482 */
3483 clr_dr_intercepts(svm);
3484 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3485 return 1;
3486 }
3487
3488 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3489 return emulate_on_interception(svm);
3490
3491 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3492 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3493
3494 if (dr >= 16) { /* mov to DRn */
3495 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3496 return 1;
3497 val = kvm_register_read(&svm->vcpu, reg);
3498 kvm_set_dr(&svm->vcpu, dr - 16, val);
3499 } else {
3500 if (!kvm_require_dr(&svm->vcpu, dr))
3501 return 1;
3502 kvm_get_dr(&svm->vcpu, dr, &val);
3503 kvm_register_write(&svm->vcpu, reg, val);
3504 }
3505
3506 return kvm_skip_emulated_instruction(&svm->vcpu);
3507 }
3508
3509 static int cr8_write_interception(struct vcpu_svm *svm)
3510 {
3511 struct kvm_run *kvm_run = svm->vcpu.run;
3512 int r;
3513
3514 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3515 /* instruction emulation calls kvm_set_cr8() */
3516 r = cr_interception(svm);
3517 if (lapic_in_kernel(&svm->vcpu))
3518 return r;
3519 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3520 return r;
3521 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3522 return 0;
3523 }
3524
3525 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3526 {
3527 struct vcpu_svm *svm = to_svm(vcpu);
3528
3529 switch (msr_info->index) {
3530 case MSR_IA32_TSC: {
3531 msr_info->data = svm->vmcb->control.tsc_offset +
3532 kvm_scale_tsc(vcpu, rdtsc());
3533
3534 break;
3535 }
3536 case MSR_STAR:
3537 msr_info->data = svm->vmcb->save.star;
3538 break;
3539 #ifdef CONFIG_X86_64
3540 case MSR_LSTAR:
3541 msr_info->data = svm->vmcb->save.lstar;
3542 break;
3543 case MSR_CSTAR:
3544 msr_info->data = svm->vmcb->save.cstar;
3545 break;
3546 case MSR_KERNEL_GS_BASE:
3547 msr_info->data = svm->vmcb->save.kernel_gs_base;
3548 break;
3549 case MSR_SYSCALL_MASK:
3550 msr_info->data = svm->vmcb->save.sfmask;
3551 break;
3552 #endif
3553 case MSR_IA32_SYSENTER_CS:
3554 msr_info->data = svm->vmcb->save.sysenter_cs;
3555 break;
3556 case MSR_IA32_SYSENTER_EIP:
3557 msr_info->data = svm->sysenter_eip;
3558 break;
3559 case MSR_IA32_SYSENTER_ESP:
3560 msr_info->data = svm->sysenter_esp;
3561 break;
3562 case MSR_TSC_AUX:
3563 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3564 return 1;
3565 msr_info->data = svm->tsc_aux;
3566 break;
3567 /*
3568 * Nobody will change the following 5 values in the VMCB so we can
3569 * safely return them on rdmsr. They will always be 0 until LBRV is
3570 * implemented.
3571 */
3572 case MSR_IA32_DEBUGCTLMSR:
3573 msr_info->data = svm->vmcb->save.dbgctl;
3574 break;
3575 case MSR_IA32_LASTBRANCHFROMIP:
3576 msr_info->data = svm->vmcb->save.br_from;
3577 break;
3578 case MSR_IA32_LASTBRANCHTOIP:
3579 msr_info->data = svm->vmcb->save.br_to;
3580 break;
3581 case MSR_IA32_LASTINTFROMIP:
3582 msr_info->data = svm->vmcb->save.last_excp_from;
3583 break;
3584 case MSR_IA32_LASTINTTOIP:
3585 msr_info->data = svm->vmcb->save.last_excp_to;
3586 break;
3587 case MSR_VM_HSAVE_PA:
3588 msr_info->data = svm->nested.hsave_msr;
3589 break;
3590 case MSR_VM_CR:
3591 msr_info->data = svm->nested.vm_cr_msr;
3592 break;
3593 case MSR_IA32_UCODE_REV:
3594 msr_info->data = 0x01000065;
3595 break;
3596 case MSR_F15H_IC_CFG: {
3597
3598 int family, model;
3599
3600 family = guest_cpuid_family(vcpu);
3601 model = guest_cpuid_model(vcpu);
3602
3603 if (family < 0 || model < 0)
3604 return kvm_get_msr_common(vcpu, msr_info);
3605
3606 msr_info->data = 0;
3607
3608 if (family == 0x15 &&
3609 (model >= 0x2 && model < 0x20))
3610 msr_info->data = 0x1E;
3611 }
3612 break;
3613 default:
3614 return kvm_get_msr_common(vcpu, msr_info);
3615 }
3616 return 0;
3617 }
3618
3619 static int rdmsr_interception(struct vcpu_svm *svm)
3620 {
3621 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3622 struct msr_data msr_info;
3623
3624 msr_info.index = ecx;
3625 msr_info.host_initiated = false;
3626 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3627 trace_kvm_msr_read_ex(ecx);
3628 kvm_inject_gp(&svm->vcpu, 0);
3629 return 1;
3630 } else {
3631 trace_kvm_msr_read(ecx, msr_info.data);
3632
3633 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3634 msr_info.data & 0xffffffff);
3635 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3636 msr_info.data >> 32);
3637 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3638 return kvm_skip_emulated_instruction(&svm->vcpu);
3639 }
3640 }
3641
3642 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3643 {
3644 struct vcpu_svm *svm = to_svm(vcpu);
3645 int svm_dis, chg_mask;
3646
3647 if (data & ~SVM_VM_CR_VALID_MASK)
3648 return 1;
3649
3650 chg_mask = SVM_VM_CR_VALID_MASK;
3651
3652 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3653 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3654
3655 svm->nested.vm_cr_msr &= ~chg_mask;
3656 svm->nested.vm_cr_msr |= (data & chg_mask);
3657
3658 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3659
3660 /* check for svm_disable while efer.svme is set */
3661 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3662 return 1;
3663
3664 return 0;
3665 }
3666
3667 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3668 {
3669 struct vcpu_svm *svm = to_svm(vcpu);
3670
3671 u32 ecx = msr->index;
3672 u64 data = msr->data;
3673 switch (ecx) {
3674 case MSR_IA32_TSC:
3675 kvm_write_tsc(vcpu, msr);
3676 break;
3677 case MSR_STAR:
3678 svm->vmcb->save.star = data;
3679 break;
3680 #ifdef CONFIG_X86_64
3681 case MSR_LSTAR:
3682 svm->vmcb->save.lstar = data;
3683 break;
3684 case MSR_CSTAR:
3685 svm->vmcb->save.cstar = data;
3686 break;
3687 case MSR_KERNEL_GS_BASE:
3688 svm->vmcb->save.kernel_gs_base = data;
3689 break;
3690 case MSR_SYSCALL_MASK:
3691 svm->vmcb->save.sfmask = data;
3692 break;
3693 #endif
3694 case MSR_IA32_SYSENTER_CS:
3695 svm->vmcb->save.sysenter_cs = data;
3696 break;
3697 case MSR_IA32_SYSENTER_EIP:
3698 svm->sysenter_eip = data;
3699 svm->vmcb->save.sysenter_eip = data;
3700 break;
3701 case MSR_IA32_SYSENTER_ESP:
3702 svm->sysenter_esp = data;
3703 svm->vmcb->save.sysenter_esp = data;
3704 break;
3705 case MSR_TSC_AUX:
3706 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3707 return 1;
3708
3709 /*
3710 * This is rare, so we update the MSR here instead of using
3711 * direct_access_msrs. Doing that would require a rdmsr in
3712 * svm_vcpu_put.
3713 */
3714 svm->tsc_aux = data;
3715 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3716 break;
3717 case MSR_IA32_DEBUGCTLMSR:
3718 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3719 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3720 __func__, data);
3721 break;
3722 }
3723 if (data & DEBUGCTL_RESERVED_BITS)
3724 return 1;
3725
3726 svm->vmcb->save.dbgctl = data;
3727 mark_dirty(svm->vmcb, VMCB_LBR);
3728 if (data & (1ULL<<0))
3729 svm_enable_lbrv(svm);
3730 else
3731 svm_disable_lbrv(svm);
3732 break;
3733 case MSR_VM_HSAVE_PA:
3734 svm->nested.hsave_msr = data;
3735 break;
3736 case MSR_VM_CR:
3737 return svm_set_vm_cr(vcpu, data);
3738 case MSR_VM_IGNNE:
3739 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3740 break;
3741 case MSR_IA32_APICBASE:
3742 if (kvm_vcpu_apicv_active(vcpu))
3743 avic_update_vapic_bar(to_svm(vcpu), data);
3744 /* Follow through */
3745 default:
3746 return kvm_set_msr_common(vcpu, msr);
3747 }
3748 return 0;
3749 }
3750
3751 static int wrmsr_interception(struct vcpu_svm *svm)
3752 {
3753 struct msr_data msr;
3754 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3755 u64 data = kvm_read_edx_eax(&svm->vcpu);
3756
3757 msr.data = data;
3758 msr.index = ecx;
3759 msr.host_initiated = false;
3760
3761 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3762 if (kvm_set_msr(&svm->vcpu, &msr)) {
3763 trace_kvm_msr_write_ex(ecx, data);
3764 kvm_inject_gp(&svm->vcpu, 0);
3765 return 1;
3766 } else {
3767 trace_kvm_msr_write(ecx, data);
3768 return kvm_skip_emulated_instruction(&svm->vcpu);
3769 }
3770 }
3771
3772 static int msr_interception(struct vcpu_svm *svm)
3773 {
3774 if (svm->vmcb->control.exit_info_1)
3775 return wrmsr_interception(svm);
3776 else
3777 return rdmsr_interception(svm);
3778 }
3779
3780 static int interrupt_window_interception(struct vcpu_svm *svm)
3781 {
3782 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3783 svm_clear_vintr(svm);
3784 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3785 mark_dirty(svm->vmcb, VMCB_INTR);
3786 ++svm->vcpu.stat.irq_window_exits;
3787 return 1;
3788 }
3789
3790 static int pause_interception(struct vcpu_svm *svm)
3791 {
3792 struct kvm_vcpu *vcpu = &svm->vcpu;
3793 bool in_kernel = (svm_get_cpl(vcpu) == 0);
3794
3795 kvm_vcpu_on_spin(vcpu, in_kernel);
3796 return 1;
3797 }
3798
3799 static int nop_interception(struct vcpu_svm *svm)
3800 {
3801 return kvm_skip_emulated_instruction(&(svm->vcpu));
3802 }
3803
3804 static int monitor_interception(struct vcpu_svm *svm)
3805 {
3806 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3807 return nop_interception(svm);
3808 }
3809
3810 static int mwait_interception(struct vcpu_svm *svm)
3811 {
3812 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3813 return nop_interception(svm);
3814 }
3815
3816 enum avic_ipi_failure_cause {
3817 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3818 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3819 AVIC_IPI_FAILURE_INVALID_TARGET,
3820 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3821 };
3822
3823 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3824 {
3825 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3826 u32 icrl = svm->vmcb->control.exit_info_1;
3827 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3828 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3829 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3830
3831 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3832
3833 switch (id) {
3834 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3835 /*
3836 * AVIC hardware handles the generation of
3837 * IPIs when the specified Message Type is Fixed
3838 * (also known as fixed delivery mode) and
3839 * the Trigger Mode is edge-triggered. The hardware
3840 * also supports self and broadcast delivery modes
3841 * specified via the Destination Shorthand(DSH)
3842 * field of the ICRL. Logical and physical APIC ID
3843 * formats are supported. All other IPI types cause
3844 * a #VMEXIT, which needs to emulated.
3845 */
3846 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3847 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3848 break;
3849 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3850 int i;
3851 struct kvm_vcpu *vcpu;
3852 struct kvm *kvm = svm->vcpu.kvm;
3853 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3854
3855 /*
3856 * At this point, we expect that the AVIC HW has already
3857 * set the appropriate IRR bits on the valid target
3858 * vcpus. So, we just need to kick the appropriate vcpu.
3859 */
3860 kvm_for_each_vcpu(i, vcpu, kvm) {
3861 bool m = kvm_apic_match_dest(vcpu, apic,
3862 icrl & KVM_APIC_SHORT_MASK,
3863 GET_APIC_DEST_FIELD(icrh),
3864 icrl & KVM_APIC_DEST_MASK);
3865
3866 if (m && !avic_vcpu_is_running(vcpu))
3867 kvm_vcpu_wake_up(vcpu);
3868 }
3869 break;
3870 }
3871 case AVIC_IPI_FAILURE_INVALID_TARGET:
3872 break;
3873 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3874 WARN_ONCE(1, "Invalid backing page\n");
3875 break;
3876 default:
3877 pr_err("Unknown IPI interception\n");
3878 }
3879
3880 return 1;
3881 }
3882
3883 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3884 {
3885 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3886 int index;
3887 u32 *logical_apic_id_table;
3888 int dlid = GET_APIC_LOGICAL_ID(ldr);
3889
3890 if (!dlid)
3891 return NULL;
3892
3893 if (flat) { /* flat */
3894 index = ffs(dlid) - 1;
3895 if (index > 7)
3896 return NULL;
3897 } else { /* cluster */
3898 int cluster = (dlid & 0xf0) >> 4;
3899 int apic = ffs(dlid & 0x0f) - 1;
3900
3901 if ((apic < 0) || (apic > 7) ||
3902 (cluster >= 0xf))
3903 return NULL;
3904 index = (cluster << 2) + apic;
3905 }
3906
3907 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3908
3909 return &logical_apic_id_table[index];
3910 }
3911
3912 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3913 bool valid)
3914 {
3915 bool flat;
3916 u32 *entry, new_entry;
3917
3918 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3919 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3920 if (!entry)
3921 return -EINVAL;
3922
3923 new_entry = READ_ONCE(*entry);
3924 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3925 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3926 if (valid)
3927 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3928 else
3929 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3930 WRITE_ONCE(*entry, new_entry);
3931
3932 return 0;
3933 }
3934
3935 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3936 {
3937 int ret;
3938 struct vcpu_svm *svm = to_svm(vcpu);
3939 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3940
3941 if (!ldr)
3942 return 1;
3943
3944 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3945 if (ret && svm->ldr_reg) {
3946 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3947 svm->ldr_reg = 0;
3948 } else {
3949 svm->ldr_reg = ldr;
3950 }
3951 return ret;
3952 }
3953
3954 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3955 {
3956 u64 *old, *new;
3957 struct vcpu_svm *svm = to_svm(vcpu);
3958 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3959 u32 id = (apic_id_reg >> 24) & 0xff;
3960
3961 if (vcpu->vcpu_id == id)
3962 return 0;
3963
3964 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3965 new = avic_get_physical_id_entry(vcpu, id);
3966 if (!new || !old)
3967 return 1;
3968
3969 /* We need to move physical_id_entry to new offset */
3970 *new = *old;
3971 *old = 0ULL;
3972 to_svm(vcpu)->avic_physical_id_cache = new;
3973
3974 /*
3975 * Also update the guest physical APIC ID in the logical
3976 * APIC ID table entry if already setup the LDR.
3977 */
3978 if (svm->ldr_reg)
3979 avic_handle_ldr_update(vcpu);
3980
3981 return 0;
3982 }
3983
3984 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3985 {
3986 struct vcpu_svm *svm = to_svm(vcpu);
3987 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3988 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3989 u32 mod = (dfr >> 28) & 0xf;
3990
3991 /*
3992 * We assume that all local APICs are using the same type.
3993 * If this changes, we need to flush the AVIC logical
3994 * APID id table.
3995 */
3996 if (vm_data->ldr_mode == mod)
3997 return 0;
3998
3999 clear_page(page_address(vm_data->avic_logical_id_table_page));
4000 vm_data->ldr_mode = mod;
4001
4002 if (svm->ldr_reg)
4003 avic_handle_ldr_update(vcpu);
4004 return 0;
4005 }
4006
4007 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4008 {
4009 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4010 u32 offset = svm->vmcb->control.exit_info_1 &
4011 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4012
4013 switch (offset) {
4014 case APIC_ID:
4015 if (avic_handle_apic_id_update(&svm->vcpu))
4016 return 0;
4017 break;
4018 case APIC_LDR:
4019 if (avic_handle_ldr_update(&svm->vcpu))
4020 return 0;
4021 break;
4022 case APIC_DFR:
4023 avic_handle_dfr_update(&svm->vcpu);
4024 break;
4025 default:
4026 break;
4027 }
4028
4029 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4030
4031 return 1;
4032 }
4033
4034 static bool is_avic_unaccelerated_access_trap(u32 offset)
4035 {
4036 bool ret = false;
4037
4038 switch (offset) {
4039 case APIC_ID:
4040 case APIC_EOI:
4041 case APIC_RRR:
4042 case APIC_LDR:
4043 case APIC_DFR:
4044 case APIC_SPIV:
4045 case APIC_ESR:
4046 case APIC_ICR:
4047 case APIC_LVTT:
4048 case APIC_LVTTHMR:
4049 case APIC_LVTPC:
4050 case APIC_LVT0:
4051 case APIC_LVT1:
4052 case APIC_LVTERR:
4053 case APIC_TMICT:
4054 case APIC_TDCR:
4055 ret = true;
4056 break;
4057 default:
4058 break;
4059 }
4060 return ret;
4061 }
4062
4063 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4064 {
4065 int ret = 0;
4066 u32 offset = svm->vmcb->control.exit_info_1 &
4067 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4068 u32 vector = svm->vmcb->control.exit_info_2 &
4069 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4070 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4071 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4072 bool trap = is_avic_unaccelerated_access_trap(offset);
4073
4074 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4075 trap, write, vector);
4076 if (trap) {
4077 /* Handling Trap */
4078 WARN_ONCE(!write, "svm: Handling trap read.\n");
4079 ret = avic_unaccel_trap_write(svm);
4080 } else {
4081 /* Handling Fault */
4082 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4083 }
4084
4085 return ret;
4086 }
4087
4088 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4089 [SVM_EXIT_READ_CR0] = cr_interception,
4090 [SVM_EXIT_READ_CR3] = cr_interception,
4091 [SVM_EXIT_READ_CR4] = cr_interception,
4092 [SVM_EXIT_READ_CR8] = cr_interception,
4093 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4094 [SVM_EXIT_WRITE_CR0] = cr_interception,
4095 [SVM_EXIT_WRITE_CR3] = cr_interception,
4096 [SVM_EXIT_WRITE_CR4] = cr_interception,
4097 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4098 [SVM_EXIT_READ_DR0] = dr_interception,
4099 [SVM_EXIT_READ_DR1] = dr_interception,
4100 [SVM_EXIT_READ_DR2] = dr_interception,
4101 [SVM_EXIT_READ_DR3] = dr_interception,
4102 [SVM_EXIT_READ_DR4] = dr_interception,
4103 [SVM_EXIT_READ_DR5] = dr_interception,
4104 [SVM_EXIT_READ_DR6] = dr_interception,
4105 [SVM_EXIT_READ_DR7] = dr_interception,
4106 [SVM_EXIT_WRITE_DR0] = dr_interception,
4107 [SVM_EXIT_WRITE_DR1] = dr_interception,
4108 [SVM_EXIT_WRITE_DR2] = dr_interception,
4109 [SVM_EXIT_WRITE_DR3] = dr_interception,
4110 [SVM_EXIT_WRITE_DR4] = dr_interception,
4111 [SVM_EXIT_WRITE_DR5] = dr_interception,
4112 [SVM_EXIT_WRITE_DR6] = dr_interception,
4113 [SVM_EXIT_WRITE_DR7] = dr_interception,
4114 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4115 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4116 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4117 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4118 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4119 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4120 [SVM_EXIT_INTR] = intr_interception,
4121 [SVM_EXIT_NMI] = nmi_interception,
4122 [SVM_EXIT_SMI] = nop_on_interception,
4123 [SVM_EXIT_INIT] = nop_on_interception,
4124 [SVM_EXIT_VINTR] = interrupt_window_interception,
4125 [SVM_EXIT_RDPMC] = rdpmc_interception,
4126 [SVM_EXIT_CPUID] = cpuid_interception,
4127 [SVM_EXIT_IRET] = iret_interception,
4128 [SVM_EXIT_INVD] = emulate_on_interception,
4129 [SVM_EXIT_PAUSE] = pause_interception,
4130 [SVM_EXIT_HLT] = halt_interception,
4131 [SVM_EXIT_INVLPG] = invlpg_interception,
4132 [SVM_EXIT_INVLPGA] = invlpga_interception,
4133 [SVM_EXIT_IOIO] = io_interception,
4134 [SVM_EXIT_MSR] = msr_interception,
4135 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4136 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4137 [SVM_EXIT_VMRUN] = vmrun_interception,
4138 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4139 [SVM_EXIT_VMLOAD] = vmload_interception,
4140 [SVM_EXIT_VMSAVE] = vmsave_interception,
4141 [SVM_EXIT_STGI] = stgi_interception,
4142 [SVM_EXIT_CLGI] = clgi_interception,
4143 [SVM_EXIT_SKINIT] = skinit_interception,
4144 [SVM_EXIT_WBINVD] = wbinvd_interception,
4145 [SVM_EXIT_MONITOR] = monitor_interception,
4146 [SVM_EXIT_MWAIT] = mwait_interception,
4147 [SVM_EXIT_XSETBV] = xsetbv_interception,
4148 [SVM_EXIT_NPF] = npf_interception,
4149 [SVM_EXIT_RSM] = emulate_on_interception,
4150 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4151 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4152 };
4153
4154 static void dump_vmcb(struct kvm_vcpu *vcpu)
4155 {
4156 struct vcpu_svm *svm = to_svm(vcpu);
4157 struct vmcb_control_area *control = &svm->vmcb->control;
4158 struct vmcb_save_area *save = &svm->vmcb->save;
4159
4160 pr_err("VMCB Control Area:\n");
4161 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4162 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4163 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4164 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4165 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4166 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4167 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4168 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4169 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4170 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4171 pr_err("%-20s%d\n", "asid:", control->asid);
4172 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4173 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4174 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4175 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4176 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4177 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4178 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4179 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4180 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4181 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4182 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4183 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4184 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4185 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4186 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4187 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4188 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4189 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4190 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4191 pr_err("VMCB State Save Area:\n");
4192 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4193 "es:",
4194 save->es.selector, save->es.attrib,
4195 save->es.limit, save->es.base);
4196 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4197 "cs:",
4198 save->cs.selector, save->cs.attrib,
4199 save->cs.limit, save->cs.base);
4200 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4201 "ss:",
4202 save->ss.selector, save->ss.attrib,
4203 save->ss.limit, save->ss.base);
4204 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4205 "ds:",
4206 save->ds.selector, save->ds.attrib,
4207 save->ds.limit, save->ds.base);
4208 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4209 "fs:",
4210 save->fs.selector, save->fs.attrib,
4211 save->fs.limit, save->fs.base);
4212 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4213 "gs:",
4214 save->gs.selector, save->gs.attrib,
4215 save->gs.limit, save->gs.base);
4216 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4217 "gdtr:",
4218 save->gdtr.selector, save->gdtr.attrib,
4219 save->gdtr.limit, save->gdtr.base);
4220 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4221 "ldtr:",
4222 save->ldtr.selector, save->ldtr.attrib,
4223 save->ldtr.limit, save->ldtr.base);
4224 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4225 "idtr:",
4226 save->idtr.selector, save->idtr.attrib,
4227 save->idtr.limit, save->idtr.base);
4228 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4229 "tr:",
4230 save->tr.selector, save->tr.attrib,
4231 save->tr.limit, save->tr.base);
4232 pr_err("cpl: %d efer: %016llx\n",
4233 save->cpl, save->efer);
4234 pr_err("%-15s %016llx %-13s %016llx\n",
4235 "cr0:", save->cr0, "cr2:", save->cr2);
4236 pr_err("%-15s %016llx %-13s %016llx\n",
4237 "cr3:", save->cr3, "cr4:", save->cr4);
4238 pr_err("%-15s %016llx %-13s %016llx\n",
4239 "dr6:", save->dr6, "dr7:", save->dr7);
4240 pr_err("%-15s %016llx %-13s %016llx\n",
4241 "rip:", save->rip, "rflags:", save->rflags);
4242 pr_err("%-15s %016llx %-13s %016llx\n",
4243 "rsp:", save->rsp, "rax:", save->rax);
4244 pr_err("%-15s %016llx %-13s %016llx\n",
4245 "star:", save->star, "lstar:", save->lstar);
4246 pr_err("%-15s %016llx %-13s %016llx\n",
4247 "cstar:", save->cstar, "sfmask:", save->sfmask);
4248 pr_err("%-15s %016llx %-13s %016llx\n",
4249 "kernel_gs_base:", save->kernel_gs_base,
4250 "sysenter_cs:", save->sysenter_cs);
4251 pr_err("%-15s %016llx %-13s %016llx\n",
4252 "sysenter_esp:", save->sysenter_esp,
4253 "sysenter_eip:", save->sysenter_eip);
4254 pr_err("%-15s %016llx %-13s %016llx\n",
4255 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4256 pr_err("%-15s %016llx %-13s %016llx\n",
4257 "br_from:", save->br_from, "br_to:", save->br_to);
4258 pr_err("%-15s %016llx %-13s %016llx\n",
4259 "excp_from:", save->last_excp_from,
4260 "excp_to:", save->last_excp_to);
4261 }
4262
4263 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4264 {
4265 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4266
4267 *info1 = control->exit_info_1;
4268 *info2 = control->exit_info_2;
4269 }
4270
4271 static int handle_exit(struct kvm_vcpu *vcpu)
4272 {
4273 struct vcpu_svm *svm = to_svm(vcpu);
4274 struct kvm_run *kvm_run = vcpu->run;
4275 u32 exit_code = svm->vmcb->control.exit_code;
4276
4277 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4278
4279 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4280 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4281 if (npt_enabled)
4282 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4283
4284 if (unlikely(svm->nested.exit_required)) {
4285 nested_svm_vmexit(svm);
4286 svm->nested.exit_required = false;
4287
4288 return 1;
4289 }
4290
4291 if (is_guest_mode(vcpu)) {
4292 int vmexit;
4293
4294 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4295 svm->vmcb->control.exit_info_1,
4296 svm->vmcb->control.exit_info_2,
4297 svm->vmcb->control.exit_int_info,
4298 svm->vmcb->control.exit_int_info_err,
4299 KVM_ISA_SVM);
4300
4301 vmexit = nested_svm_exit_special(svm);
4302
4303 if (vmexit == NESTED_EXIT_CONTINUE)
4304 vmexit = nested_svm_exit_handled(svm);
4305
4306 if (vmexit == NESTED_EXIT_DONE)
4307 return 1;
4308 }
4309
4310 svm_complete_interrupts(svm);
4311
4312 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4313 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4314 kvm_run->fail_entry.hardware_entry_failure_reason
4315 = svm->vmcb->control.exit_code;
4316 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4317 dump_vmcb(vcpu);
4318 return 0;
4319 }
4320
4321 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4322 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4323 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4324 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4325 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4326 "exit_code 0x%x\n",
4327 __func__, svm->vmcb->control.exit_int_info,
4328 exit_code);
4329
4330 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4331 || !svm_exit_handlers[exit_code]) {
4332 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4333 kvm_queue_exception(vcpu, UD_VECTOR);
4334 return 1;
4335 }
4336
4337 return svm_exit_handlers[exit_code](svm);
4338 }
4339
4340 static void reload_tss(struct kvm_vcpu *vcpu)
4341 {
4342 int cpu = raw_smp_processor_id();
4343
4344 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4345 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4346 load_TR_desc();
4347 }
4348
4349 static void pre_svm_run(struct vcpu_svm *svm)
4350 {
4351 int cpu = raw_smp_processor_id();
4352
4353 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4354
4355 /* FIXME: handle wraparound of asid_generation */
4356 if (svm->asid_generation != sd->asid_generation)
4357 new_asid(svm, sd);
4358 }
4359
4360 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4361 {
4362 struct vcpu_svm *svm = to_svm(vcpu);
4363
4364 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4365 vcpu->arch.hflags |= HF_NMI_MASK;
4366 set_intercept(svm, INTERCEPT_IRET);
4367 ++vcpu->stat.nmi_injections;
4368 }
4369
4370 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4371 {
4372 struct vmcb_control_area *control;
4373
4374 /* The following fields are ignored when AVIC is enabled */
4375 control = &svm->vmcb->control;
4376 control->int_vector = irq;
4377 control->int_ctl &= ~V_INTR_PRIO_MASK;
4378 control->int_ctl |= V_IRQ_MASK |
4379 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4380 mark_dirty(svm->vmcb, VMCB_INTR);
4381 }
4382
4383 static void svm_set_irq(struct kvm_vcpu *vcpu)
4384 {
4385 struct vcpu_svm *svm = to_svm(vcpu);
4386
4387 BUG_ON(!(gif_set(svm)));
4388
4389 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4390 ++vcpu->stat.irq_injections;
4391
4392 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4393 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4394 }
4395
4396 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4397 {
4398 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4399 }
4400
4401 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4402 {
4403 struct vcpu_svm *svm = to_svm(vcpu);
4404
4405 if (svm_nested_virtualize_tpr(vcpu) ||
4406 kvm_vcpu_apicv_active(vcpu))
4407 return;
4408
4409 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4410
4411 if (irr == -1)
4412 return;
4413
4414 if (tpr >= irr)
4415 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4416 }
4417
4418 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4419 {
4420 return;
4421 }
4422
4423 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4424 {
4425 return avic && irqchip_split(vcpu->kvm);
4426 }
4427
4428 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4429 {
4430 }
4431
4432 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4433 {
4434 }
4435
4436 /* Note: Currently only used by Hyper-V. */
4437 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4438 {
4439 struct vcpu_svm *svm = to_svm(vcpu);
4440 struct vmcb *vmcb = svm->vmcb;
4441
4442 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4443 return;
4444
4445 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4446 mark_dirty(vmcb, VMCB_INTR);
4447 }
4448
4449 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4450 {
4451 return;
4452 }
4453
4454 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4455 {
4456 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4457 smp_mb__after_atomic();
4458
4459 if (avic_vcpu_is_running(vcpu))
4460 wrmsrl(SVM_AVIC_DOORBELL,
4461 kvm_cpu_get_apicid(vcpu->cpu));
4462 else
4463 kvm_vcpu_wake_up(vcpu);
4464 }
4465
4466 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4467 {
4468 unsigned long flags;
4469 struct amd_svm_iommu_ir *cur;
4470
4471 spin_lock_irqsave(&svm->ir_list_lock, flags);
4472 list_for_each_entry(cur, &svm->ir_list, node) {
4473 if (cur->data != pi->ir_data)
4474 continue;
4475 list_del(&cur->node);
4476 kfree(cur);
4477 break;
4478 }
4479 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4480 }
4481
4482 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4483 {
4484 int ret = 0;
4485 unsigned long flags;
4486 struct amd_svm_iommu_ir *ir;
4487
4488 /**
4489 * In some cases, the existing irte is updaed and re-set,
4490 * so we need to check here if it's already been * added
4491 * to the ir_list.
4492 */
4493 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4494 struct kvm *kvm = svm->vcpu.kvm;
4495 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4496 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4497 struct vcpu_svm *prev_svm;
4498
4499 if (!prev_vcpu) {
4500 ret = -EINVAL;
4501 goto out;
4502 }
4503
4504 prev_svm = to_svm(prev_vcpu);
4505 svm_ir_list_del(prev_svm, pi);
4506 }
4507
4508 /**
4509 * Allocating new amd_iommu_pi_data, which will get
4510 * add to the per-vcpu ir_list.
4511 */
4512 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4513 if (!ir) {
4514 ret = -ENOMEM;
4515 goto out;
4516 }
4517 ir->data = pi->ir_data;
4518
4519 spin_lock_irqsave(&svm->ir_list_lock, flags);
4520 list_add(&ir->node, &svm->ir_list);
4521 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4522 out:
4523 return ret;
4524 }
4525
4526 /**
4527 * Note:
4528 * The HW cannot support posting multicast/broadcast
4529 * interrupts to a vCPU. So, we still use legacy interrupt
4530 * remapping for these kind of interrupts.
4531 *
4532 * For lowest-priority interrupts, we only support
4533 * those with single CPU as the destination, e.g. user
4534 * configures the interrupts via /proc/irq or uses
4535 * irqbalance to make the interrupts single-CPU.
4536 */
4537 static int
4538 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4539 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4540 {
4541 struct kvm_lapic_irq irq;
4542 struct kvm_vcpu *vcpu = NULL;
4543
4544 kvm_set_msi_irq(kvm, e, &irq);
4545
4546 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4547 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4548 __func__, irq.vector);
4549 return -1;
4550 }
4551
4552 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4553 irq.vector);
4554 *svm = to_svm(vcpu);
4555 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4556 vcpu_info->vector = irq.vector;
4557
4558 return 0;
4559 }
4560
4561 /*
4562 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4563 *
4564 * @kvm: kvm
4565 * @host_irq: host irq of the interrupt
4566 * @guest_irq: gsi of the interrupt
4567 * @set: set or unset PI
4568 * returns 0 on success, < 0 on failure
4569 */
4570 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4571 uint32_t guest_irq, bool set)
4572 {
4573 struct kvm_kernel_irq_routing_entry *e;
4574 struct kvm_irq_routing_table *irq_rt;
4575 int idx, ret = -EINVAL;
4576
4577 if (!kvm_arch_has_assigned_device(kvm) ||
4578 !irq_remapping_cap(IRQ_POSTING_CAP))
4579 return 0;
4580
4581 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4582 __func__, host_irq, guest_irq, set);
4583
4584 idx = srcu_read_lock(&kvm->irq_srcu);
4585 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4586 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4587
4588 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4589 struct vcpu_data vcpu_info;
4590 struct vcpu_svm *svm = NULL;
4591
4592 if (e->type != KVM_IRQ_ROUTING_MSI)
4593 continue;
4594
4595 /**
4596 * Here, we setup with legacy mode in the following cases:
4597 * 1. When cannot target interrupt to a specific vcpu.
4598 * 2. Unsetting posted interrupt.
4599 * 3. APIC virtialization is disabled for the vcpu.
4600 */
4601 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4602 kvm_vcpu_apicv_active(&svm->vcpu)) {
4603 struct amd_iommu_pi_data pi;
4604
4605 /* Try to enable guest_mode in IRTE */
4606 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4607 AVIC_HPA_MASK);
4608 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4609 svm->vcpu.vcpu_id);
4610 pi.is_guest_mode = true;
4611 pi.vcpu_data = &vcpu_info;
4612 ret = irq_set_vcpu_affinity(host_irq, &pi);
4613
4614 /**
4615 * Here, we successfully setting up vcpu affinity in
4616 * IOMMU guest mode. Now, we need to store the posted
4617 * interrupt information in a per-vcpu ir_list so that
4618 * we can reference to them directly when we update vcpu
4619 * scheduling information in IOMMU irte.
4620 */
4621 if (!ret && pi.is_guest_mode)
4622 svm_ir_list_add(svm, &pi);
4623 } else {
4624 /* Use legacy mode in IRTE */
4625 struct amd_iommu_pi_data pi;
4626
4627 /**
4628 * Here, pi is used to:
4629 * - Tell IOMMU to use legacy mode for this interrupt.
4630 * - Retrieve ga_tag of prior interrupt remapping data.
4631 */
4632 pi.is_guest_mode = false;
4633 ret = irq_set_vcpu_affinity(host_irq, &pi);
4634
4635 /**
4636 * Check if the posted interrupt was previously
4637 * setup with the guest_mode by checking if the ga_tag
4638 * was cached. If so, we need to clean up the per-vcpu
4639 * ir_list.
4640 */
4641 if (!ret && pi.prev_ga_tag) {
4642 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4643 struct kvm_vcpu *vcpu;
4644
4645 vcpu = kvm_get_vcpu_by_id(kvm, id);
4646 if (vcpu)
4647 svm_ir_list_del(to_svm(vcpu), &pi);
4648 }
4649 }
4650
4651 if (!ret && svm) {
4652 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4653 host_irq, e->gsi,
4654 vcpu_info.vector,
4655 vcpu_info.pi_desc_addr, set);
4656 }
4657
4658 if (ret < 0) {
4659 pr_err("%s: failed to update PI IRTE\n", __func__);
4660 goto out;
4661 }
4662 }
4663
4664 ret = 0;
4665 out:
4666 srcu_read_unlock(&kvm->irq_srcu, idx);
4667 return ret;
4668 }
4669
4670 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4671 {
4672 struct vcpu_svm *svm = to_svm(vcpu);
4673 struct vmcb *vmcb = svm->vmcb;
4674 int ret;
4675 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4676 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4677 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4678
4679 return ret;
4680 }
4681
4682 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4683 {
4684 struct vcpu_svm *svm = to_svm(vcpu);
4685
4686 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4687 }
4688
4689 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4690 {
4691 struct vcpu_svm *svm = to_svm(vcpu);
4692
4693 if (masked) {
4694 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4695 set_intercept(svm, INTERCEPT_IRET);
4696 } else {
4697 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4698 clr_intercept(svm, INTERCEPT_IRET);
4699 }
4700 }
4701
4702 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4703 {
4704 struct vcpu_svm *svm = to_svm(vcpu);
4705 struct vmcb *vmcb = svm->vmcb;
4706 int ret;
4707
4708 if (!gif_set(svm) ||
4709 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4710 return 0;
4711
4712 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4713
4714 if (is_guest_mode(vcpu))
4715 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4716
4717 return ret;
4718 }
4719
4720 static void enable_irq_window(struct kvm_vcpu *vcpu)
4721 {
4722 struct vcpu_svm *svm = to_svm(vcpu);
4723
4724 if (kvm_vcpu_apicv_active(vcpu))
4725 return;
4726
4727 /*
4728 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4729 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4730 * get that intercept, this function will be called again though and
4731 * we'll get the vintr intercept. However, if the vGIF feature is
4732 * enabled, the STGI interception will not occur. Enable the irq
4733 * window under the assumption that the hardware will set the GIF.
4734 */
4735 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4736 svm_set_vintr(svm);
4737 svm_inject_irq(svm, 0x0);
4738 }
4739 }
4740
4741 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4742 {
4743 struct vcpu_svm *svm = to_svm(vcpu);
4744
4745 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4746 == HF_NMI_MASK)
4747 return; /* IRET will cause a vm exit */
4748
4749 if (!gif_set(svm)) {
4750 if (vgif_enabled(svm))
4751 set_intercept(svm, INTERCEPT_STGI);
4752 return; /* STGI will cause a vm exit */
4753 }
4754
4755 if (svm->nested.exit_required)
4756 return; /* we're not going to run the guest yet */
4757
4758 /*
4759 * Something prevents NMI from been injected. Single step over possible
4760 * problem (IRET or exception injection or interrupt shadow)
4761 */
4762 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4763 svm->nmi_singlestep = true;
4764 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4765 }
4766
4767 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4768 {
4769 return 0;
4770 }
4771
4772 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4773 {
4774 struct vcpu_svm *svm = to_svm(vcpu);
4775
4776 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4777 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4778 else
4779 svm->asid_generation--;
4780 }
4781
4782 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4783 {
4784 }
4785
4786 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4787 {
4788 struct vcpu_svm *svm = to_svm(vcpu);
4789
4790 if (svm_nested_virtualize_tpr(vcpu))
4791 return;
4792
4793 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4794 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4795 kvm_set_cr8(vcpu, cr8);
4796 }
4797 }
4798
4799 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4800 {
4801 struct vcpu_svm *svm = to_svm(vcpu);
4802 u64 cr8;
4803
4804 if (svm_nested_virtualize_tpr(vcpu) ||
4805 kvm_vcpu_apicv_active(vcpu))
4806 return;
4807
4808 cr8 = kvm_get_cr8(vcpu);
4809 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4810 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4811 }
4812
4813 static void svm_complete_interrupts(struct vcpu_svm *svm)
4814 {
4815 u8 vector;
4816 int type;
4817 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4818 unsigned int3_injected = svm->int3_injected;
4819
4820 svm->int3_injected = 0;
4821
4822 /*
4823 * If we've made progress since setting HF_IRET_MASK, we've
4824 * executed an IRET and can allow NMI injection.
4825 */
4826 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4827 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4828 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4829 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4830 }
4831
4832 svm->vcpu.arch.nmi_injected = false;
4833 kvm_clear_exception_queue(&svm->vcpu);
4834 kvm_clear_interrupt_queue(&svm->vcpu);
4835
4836 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4837 return;
4838
4839 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4840
4841 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4842 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4843
4844 switch (type) {
4845 case SVM_EXITINTINFO_TYPE_NMI:
4846 svm->vcpu.arch.nmi_injected = true;
4847 break;
4848 case SVM_EXITINTINFO_TYPE_EXEPT:
4849 /*
4850 * In case of software exceptions, do not reinject the vector,
4851 * but re-execute the instruction instead. Rewind RIP first
4852 * if we emulated INT3 before.
4853 */
4854 if (kvm_exception_is_soft(vector)) {
4855 if (vector == BP_VECTOR && int3_injected &&
4856 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4857 kvm_rip_write(&svm->vcpu,
4858 kvm_rip_read(&svm->vcpu) -
4859 int3_injected);
4860 break;
4861 }
4862 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4863 u32 err = svm->vmcb->control.exit_int_info_err;
4864 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4865
4866 } else
4867 kvm_requeue_exception(&svm->vcpu, vector);
4868 break;
4869 case SVM_EXITINTINFO_TYPE_INTR:
4870 kvm_queue_interrupt(&svm->vcpu, vector, false);
4871 break;
4872 default:
4873 break;
4874 }
4875 }
4876
4877 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4878 {
4879 struct vcpu_svm *svm = to_svm(vcpu);
4880 struct vmcb_control_area *control = &svm->vmcb->control;
4881
4882 control->exit_int_info = control->event_inj;
4883 control->exit_int_info_err = control->event_inj_err;
4884 control->event_inj = 0;
4885 svm_complete_interrupts(svm);
4886 }
4887
4888 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4889 {
4890 struct vcpu_svm *svm = to_svm(vcpu);
4891
4892 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4893 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4894 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4895
4896 /*
4897 * A vmexit emulation is required before the vcpu can be executed
4898 * again.
4899 */
4900 if (unlikely(svm->nested.exit_required))
4901 return;
4902
4903 /*
4904 * Disable singlestep if we're injecting an interrupt/exception.
4905 * We don't want our modified rflags to be pushed on the stack where
4906 * we might not be able to easily reset them if we disabled NMI
4907 * singlestep later.
4908 */
4909 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4910 /*
4911 * Event injection happens before external interrupts cause a
4912 * vmexit and interrupts are disabled here, so smp_send_reschedule
4913 * is enough to force an immediate vmexit.
4914 */
4915 disable_nmi_singlestep(svm);
4916 smp_send_reschedule(vcpu->cpu);
4917 }
4918
4919 pre_svm_run(svm);
4920
4921 sync_lapic_to_cr8(vcpu);
4922
4923 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4924
4925 clgi();
4926
4927 local_irq_enable();
4928
4929 asm volatile (
4930 "push %%" _ASM_BP "; \n\t"
4931 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4932 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4933 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4934 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4935 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4936 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4937 #ifdef CONFIG_X86_64
4938 "mov %c[r8](%[svm]), %%r8 \n\t"
4939 "mov %c[r9](%[svm]), %%r9 \n\t"
4940 "mov %c[r10](%[svm]), %%r10 \n\t"
4941 "mov %c[r11](%[svm]), %%r11 \n\t"
4942 "mov %c[r12](%[svm]), %%r12 \n\t"
4943 "mov %c[r13](%[svm]), %%r13 \n\t"
4944 "mov %c[r14](%[svm]), %%r14 \n\t"
4945 "mov %c[r15](%[svm]), %%r15 \n\t"
4946 #endif
4947
4948 /* Enter guest mode */
4949 "push %%" _ASM_AX " \n\t"
4950 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4951 __ex(SVM_VMLOAD) "\n\t"
4952 __ex(SVM_VMRUN) "\n\t"
4953 __ex(SVM_VMSAVE) "\n\t"
4954 "pop %%" _ASM_AX " \n\t"
4955
4956 /* Save guest registers, load host registers */
4957 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4958 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4959 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4960 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4961 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4962 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4963 #ifdef CONFIG_X86_64
4964 "mov %%r8, %c[r8](%[svm]) \n\t"
4965 "mov %%r9, %c[r9](%[svm]) \n\t"
4966 "mov %%r10, %c[r10](%[svm]) \n\t"
4967 "mov %%r11, %c[r11](%[svm]) \n\t"
4968 "mov %%r12, %c[r12](%[svm]) \n\t"
4969 "mov %%r13, %c[r13](%[svm]) \n\t"
4970 "mov %%r14, %c[r14](%[svm]) \n\t"
4971 "mov %%r15, %c[r15](%[svm]) \n\t"
4972 #endif
4973 "pop %%" _ASM_BP
4974 :
4975 : [svm]"a"(svm),
4976 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4977 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4978 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4979 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4980 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4981 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4982 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4983 #ifdef CONFIG_X86_64
4984 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4985 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4986 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4987 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4988 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4989 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4990 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4991 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4992 #endif
4993 : "cc", "memory"
4994 #ifdef CONFIG_X86_64
4995 , "rbx", "rcx", "rdx", "rsi", "rdi"
4996 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4997 #else
4998 , "ebx", "ecx", "edx", "esi", "edi"
4999 #endif
5000 );
5001
5002 #ifdef CONFIG_X86_64
5003 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5004 #else
5005 loadsegment(fs, svm->host.fs);
5006 #ifndef CONFIG_X86_32_LAZY_GS
5007 loadsegment(gs, svm->host.gs);
5008 #endif
5009 #endif
5010
5011 reload_tss(vcpu);
5012
5013 local_irq_disable();
5014
5015 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5016 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5017 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5018 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5019
5020 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5021 kvm_before_handle_nmi(&svm->vcpu);
5022
5023 stgi();
5024
5025 /* Any pending NMI will happen here */
5026
5027 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5028 kvm_after_handle_nmi(&svm->vcpu);
5029
5030 sync_cr8_to_lapic(vcpu);
5031
5032 svm->next_rip = 0;
5033
5034 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5035
5036 /* if exit due to PF check for async PF */
5037 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5038 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5039
5040 if (npt_enabled) {
5041 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5042 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5043 }
5044
5045 /*
5046 * We need to handle MC intercepts here before the vcpu has a chance to
5047 * change the physical cpu
5048 */
5049 if (unlikely(svm->vmcb->control.exit_code ==
5050 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5051 svm_handle_mce(svm);
5052
5053 mark_all_clean(svm->vmcb);
5054 }
5055 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5056
5057 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5058 {
5059 struct vcpu_svm *svm = to_svm(vcpu);
5060
5061 svm->vmcb->save.cr3 = __sme_set(root);
5062 mark_dirty(svm->vmcb, VMCB_CR);
5063 svm_flush_tlb(vcpu);
5064 }
5065
5066 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5067 {
5068 struct vcpu_svm *svm = to_svm(vcpu);
5069
5070 svm->vmcb->control.nested_cr3 = __sme_set(root);
5071 mark_dirty(svm->vmcb, VMCB_NPT);
5072
5073 /* Also sync guest cr3 here in case we live migrate */
5074 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5075 mark_dirty(svm->vmcb, VMCB_CR);
5076
5077 svm_flush_tlb(vcpu);
5078 }
5079
5080 static int is_disabled(void)
5081 {
5082 u64 vm_cr;
5083
5084 rdmsrl(MSR_VM_CR, vm_cr);
5085 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5086 return 1;
5087
5088 return 0;
5089 }
5090
5091 static void
5092 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5093 {
5094 /*
5095 * Patch in the VMMCALL instruction:
5096 */
5097 hypercall[0] = 0x0f;
5098 hypercall[1] = 0x01;
5099 hypercall[2] = 0xd9;
5100 }
5101
5102 static void svm_check_processor_compat(void *rtn)
5103 {
5104 *(int *)rtn = 0;
5105 }
5106
5107 static bool svm_cpu_has_accelerated_tpr(void)
5108 {
5109 return false;
5110 }
5111
5112 static bool svm_has_high_real_mode_segbase(void)
5113 {
5114 return true;
5115 }
5116
5117 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5118 {
5119 return 0;
5120 }
5121
5122 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5123 {
5124 struct vcpu_svm *svm = to_svm(vcpu);
5125
5126 /* Update nrips enabled cache */
5127 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5128
5129 if (!kvm_vcpu_apicv_active(vcpu))
5130 return;
5131
5132 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5133 }
5134
5135 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5136 {
5137 switch (func) {
5138 case 0x1:
5139 if (avic)
5140 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5141 break;
5142 case 0x80000001:
5143 if (nested)
5144 entry->ecx |= (1 << 2); /* Set SVM bit */
5145 break;
5146 case 0x8000000A:
5147 entry->eax = 1; /* SVM revision 1 */
5148 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5149 ASID emulation to nested SVM */
5150 entry->ecx = 0; /* Reserved */
5151 entry->edx = 0; /* Per default do not support any
5152 additional features */
5153
5154 /* Support next_rip if host supports it */
5155 if (boot_cpu_has(X86_FEATURE_NRIPS))
5156 entry->edx |= SVM_FEATURE_NRIP;
5157
5158 /* Support NPT for the guest if enabled */
5159 if (npt_enabled)
5160 entry->edx |= SVM_FEATURE_NPT;
5161
5162 break;
5163 }
5164 }
5165
5166 static int svm_get_lpage_level(void)
5167 {
5168 return PT_PDPE_LEVEL;
5169 }
5170
5171 static bool svm_rdtscp_supported(void)
5172 {
5173 return boot_cpu_has(X86_FEATURE_RDTSCP);
5174 }
5175
5176 static bool svm_invpcid_supported(void)
5177 {
5178 return false;
5179 }
5180
5181 static bool svm_mpx_supported(void)
5182 {
5183 return false;
5184 }
5185
5186 static bool svm_xsaves_supported(void)
5187 {
5188 return false;
5189 }
5190
5191 static bool svm_has_wbinvd_exit(void)
5192 {
5193 return true;
5194 }
5195
5196 #define PRE_EX(exit) { .exit_code = (exit), \
5197 .stage = X86_ICPT_PRE_EXCEPT, }
5198 #define POST_EX(exit) { .exit_code = (exit), \
5199 .stage = X86_ICPT_POST_EXCEPT, }
5200 #define POST_MEM(exit) { .exit_code = (exit), \
5201 .stage = X86_ICPT_POST_MEMACCESS, }
5202
5203 static const struct __x86_intercept {
5204 u32 exit_code;
5205 enum x86_intercept_stage stage;
5206 } x86_intercept_map[] = {
5207 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5208 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5209 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5210 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5211 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5212 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5213 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5214 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5215 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5216 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5217 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5218 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5219 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5220 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5221 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5222 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5223 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5224 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5225 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5226 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5227 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5228 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5229 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5230 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5231 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5232 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5233 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5234 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5235 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5236 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5237 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5238 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5239 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5240 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5241 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5242 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5243 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5244 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5245 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5246 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5247 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5248 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5249 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5250 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5251 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5252 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5253 };
5254
5255 #undef PRE_EX
5256 #undef POST_EX
5257 #undef POST_MEM
5258
5259 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5260 struct x86_instruction_info *info,
5261 enum x86_intercept_stage stage)
5262 {
5263 struct vcpu_svm *svm = to_svm(vcpu);
5264 int vmexit, ret = X86EMUL_CONTINUE;
5265 struct __x86_intercept icpt_info;
5266 struct vmcb *vmcb = svm->vmcb;
5267
5268 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5269 goto out;
5270
5271 icpt_info = x86_intercept_map[info->intercept];
5272
5273 if (stage != icpt_info.stage)
5274 goto out;
5275
5276 switch (icpt_info.exit_code) {
5277 case SVM_EXIT_READ_CR0:
5278 if (info->intercept == x86_intercept_cr_read)
5279 icpt_info.exit_code += info->modrm_reg;
5280 break;
5281 case SVM_EXIT_WRITE_CR0: {
5282 unsigned long cr0, val;
5283 u64 intercept;
5284
5285 if (info->intercept == x86_intercept_cr_write)
5286 icpt_info.exit_code += info->modrm_reg;
5287
5288 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5289 info->intercept == x86_intercept_clts)
5290 break;
5291
5292 intercept = svm->nested.intercept;
5293
5294 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5295 break;
5296
5297 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5298 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5299
5300 if (info->intercept == x86_intercept_lmsw) {
5301 cr0 &= 0xfUL;
5302 val &= 0xfUL;
5303 /* lmsw can't clear PE - catch this here */
5304 if (cr0 & X86_CR0_PE)
5305 val |= X86_CR0_PE;
5306 }
5307
5308 if (cr0 ^ val)
5309 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5310
5311 break;
5312 }
5313 case SVM_EXIT_READ_DR0:
5314 case SVM_EXIT_WRITE_DR0:
5315 icpt_info.exit_code += info->modrm_reg;
5316 break;
5317 case SVM_EXIT_MSR:
5318 if (info->intercept == x86_intercept_wrmsr)
5319 vmcb->control.exit_info_1 = 1;
5320 else
5321 vmcb->control.exit_info_1 = 0;
5322 break;
5323 case SVM_EXIT_PAUSE:
5324 /*
5325 * We get this for NOP only, but pause
5326 * is rep not, check this here
5327 */
5328 if (info->rep_prefix != REPE_PREFIX)
5329 goto out;
5330 break;
5331 case SVM_EXIT_IOIO: {
5332 u64 exit_info;
5333 u32 bytes;
5334
5335 if (info->intercept == x86_intercept_in ||
5336 info->intercept == x86_intercept_ins) {
5337 exit_info = ((info->src_val & 0xffff) << 16) |
5338 SVM_IOIO_TYPE_MASK;
5339 bytes = info->dst_bytes;
5340 } else {
5341 exit_info = (info->dst_val & 0xffff) << 16;
5342 bytes = info->src_bytes;
5343 }
5344
5345 if (info->intercept == x86_intercept_outs ||
5346 info->intercept == x86_intercept_ins)
5347 exit_info |= SVM_IOIO_STR_MASK;
5348
5349 if (info->rep_prefix)
5350 exit_info |= SVM_IOIO_REP_MASK;
5351
5352 bytes = min(bytes, 4u);
5353
5354 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5355
5356 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5357
5358 vmcb->control.exit_info_1 = exit_info;
5359 vmcb->control.exit_info_2 = info->next_rip;
5360
5361 break;
5362 }
5363 default:
5364 break;
5365 }
5366
5367 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5368 if (static_cpu_has(X86_FEATURE_NRIPS))
5369 vmcb->control.next_rip = info->next_rip;
5370 vmcb->control.exit_code = icpt_info.exit_code;
5371 vmexit = nested_svm_exit_handled(svm);
5372
5373 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5374 : X86EMUL_CONTINUE;
5375
5376 out:
5377 return ret;
5378 }
5379
5380 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5381 {
5382 local_irq_enable();
5383 /*
5384 * We must have an instruction with interrupts enabled, so
5385 * the timer interrupt isn't delayed by the interrupt shadow.
5386 */
5387 asm("nop");
5388 local_irq_disable();
5389 }
5390
5391 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5392 {
5393 }
5394
5395 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5396 {
5397 if (avic_handle_apic_id_update(vcpu) != 0)
5398 return;
5399 if (avic_handle_dfr_update(vcpu) != 0)
5400 return;
5401 avic_handle_ldr_update(vcpu);
5402 }
5403
5404 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5405 {
5406 /* [63:9] are reserved. */
5407 vcpu->arch.mcg_cap &= 0x1ff;
5408 }
5409
5410 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
5411 {
5412 struct vcpu_svm *svm = to_svm(vcpu);
5413
5414 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5415 if (!gif_set(svm))
5416 return 0;
5417
5418 if (is_guest_mode(&svm->vcpu) &&
5419 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
5420 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5421 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
5422 svm->nested.exit_required = true;
5423 return 0;
5424 }
5425
5426 return 1;
5427 }
5428
5429 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
5430 {
5431 struct vcpu_svm *svm = to_svm(vcpu);
5432 int ret;
5433
5434 if (is_guest_mode(vcpu)) {
5435 /* FED8h - SVM Guest */
5436 put_smstate(u64, smstate, 0x7ed8, 1);
5437 /* FEE0h - SVM Guest VMCB Physical Address */
5438 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
5439
5440 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5441 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5442 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5443
5444 ret = nested_svm_vmexit(svm);
5445 if (ret)
5446 return ret;
5447 }
5448 return 0;
5449 }
5450
5451 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
5452 {
5453 struct vcpu_svm *svm = to_svm(vcpu);
5454 struct vmcb *nested_vmcb;
5455 struct page *page;
5456 struct {
5457 u64 guest;
5458 u64 vmcb;
5459 } svm_state_save;
5460 int ret;
5461
5462 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
5463 sizeof(svm_state_save));
5464 if (ret)
5465 return ret;
5466
5467 if (svm_state_save.guest) {
5468 vcpu->arch.hflags &= ~HF_SMM_MASK;
5469 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
5470 if (nested_vmcb)
5471 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
5472 else
5473 ret = 1;
5474 vcpu->arch.hflags |= HF_SMM_MASK;
5475 }
5476 return ret;
5477 }
5478
5479 static int enable_smi_window(struct kvm_vcpu *vcpu)
5480 {
5481 struct vcpu_svm *svm = to_svm(vcpu);
5482
5483 if (!gif_set(svm)) {
5484 if (vgif_enabled(svm))
5485 set_intercept(svm, INTERCEPT_STGI);
5486 /* STGI will cause a vm exit */
5487 return 1;
5488 }
5489 return 0;
5490 }
5491
5492 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5493 .cpu_has_kvm_support = has_svm,
5494 .disabled_by_bios = is_disabled,
5495 .hardware_setup = svm_hardware_setup,
5496 .hardware_unsetup = svm_hardware_unsetup,
5497 .check_processor_compatibility = svm_check_processor_compat,
5498 .hardware_enable = svm_hardware_enable,
5499 .hardware_disable = svm_hardware_disable,
5500 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5501 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5502
5503 .vcpu_create = svm_create_vcpu,
5504 .vcpu_free = svm_free_vcpu,
5505 .vcpu_reset = svm_vcpu_reset,
5506
5507 .vm_init = avic_vm_init,
5508 .vm_destroy = avic_vm_destroy,
5509
5510 .prepare_guest_switch = svm_prepare_guest_switch,
5511 .vcpu_load = svm_vcpu_load,
5512 .vcpu_put = svm_vcpu_put,
5513 .vcpu_blocking = svm_vcpu_blocking,
5514 .vcpu_unblocking = svm_vcpu_unblocking,
5515
5516 .update_bp_intercept = update_bp_intercept,
5517 .get_msr = svm_get_msr,
5518 .set_msr = svm_set_msr,
5519 .get_segment_base = svm_get_segment_base,
5520 .get_segment = svm_get_segment,
5521 .set_segment = svm_set_segment,
5522 .get_cpl = svm_get_cpl,
5523 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5524 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5525 .decache_cr3 = svm_decache_cr3,
5526 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5527 .set_cr0 = svm_set_cr0,
5528 .set_cr3 = svm_set_cr3,
5529 .set_cr4 = svm_set_cr4,
5530 .set_efer = svm_set_efer,
5531 .get_idt = svm_get_idt,
5532 .set_idt = svm_set_idt,
5533 .get_gdt = svm_get_gdt,
5534 .set_gdt = svm_set_gdt,
5535 .get_dr6 = svm_get_dr6,
5536 .set_dr6 = svm_set_dr6,
5537 .set_dr7 = svm_set_dr7,
5538 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5539 .cache_reg = svm_cache_reg,
5540 .get_rflags = svm_get_rflags,
5541 .set_rflags = svm_set_rflags,
5542
5543 .tlb_flush = svm_flush_tlb,
5544
5545 .run = svm_vcpu_run,
5546 .handle_exit = handle_exit,
5547 .skip_emulated_instruction = skip_emulated_instruction,
5548 .set_interrupt_shadow = svm_set_interrupt_shadow,
5549 .get_interrupt_shadow = svm_get_interrupt_shadow,
5550 .patch_hypercall = svm_patch_hypercall,
5551 .set_irq = svm_set_irq,
5552 .set_nmi = svm_inject_nmi,
5553 .queue_exception = svm_queue_exception,
5554 .cancel_injection = svm_cancel_injection,
5555 .interrupt_allowed = svm_interrupt_allowed,
5556 .nmi_allowed = svm_nmi_allowed,
5557 .get_nmi_mask = svm_get_nmi_mask,
5558 .set_nmi_mask = svm_set_nmi_mask,
5559 .enable_nmi_window = enable_nmi_window,
5560 .enable_irq_window = enable_irq_window,
5561 .update_cr8_intercept = update_cr8_intercept,
5562 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5563 .get_enable_apicv = svm_get_enable_apicv,
5564 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5565 .load_eoi_exitmap = svm_load_eoi_exitmap,
5566 .hwapic_irr_update = svm_hwapic_irr_update,
5567 .hwapic_isr_update = svm_hwapic_isr_update,
5568 .apicv_post_state_restore = avic_post_state_restore,
5569
5570 .set_tss_addr = svm_set_tss_addr,
5571 .get_tdp_level = get_npt_level,
5572 .get_mt_mask = svm_get_mt_mask,
5573
5574 .get_exit_info = svm_get_exit_info,
5575
5576 .get_lpage_level = svm_get_lpage_level,
5577
5578 .cpuid_update = svm_cpuid_update,
5579
5580 .rdtscp_supported = svm_rdtscp_supported,
5581 .invpcid_supported = svm_invpcid_supported,
5582 .mpx_supported = svm_mpx_supported,
5583 .xsaves_supported = svm_xsaves_supported,
5584
5585 .set_supported_cpuid = svm_set_supported_cpuid,
5586
5587 .has_wbinvd_exit = svm_has_wbinvd_exit,
5588
5589 .write_tsc_offset = svm_write_tsc_offset,
5590
5591 .set_tdp_cr3 = set_tdp_cr3,
5592
5593 .check_intercept = svm_check_intercept,
5594 .handle_external_intr = svm_handle_external_intr,
5595
5596 .sched_in = svm_sched_in,
5597
5598 .pmu_ops = &amd_pmu_ops,
5599 .deliver_posted_interrupt = svm_deliver_avic_intr,
5600 .update_pi_irte = svm_update_pi_irte,
5601 .setup_mce = svm_setup_mce,
5602
5603 .smi_allowed = svm_smi_allowed,
5604 .pre_enter_smm = svm_pre_enter_smm,
5605 .pre_leave_smm = svm_pre_leave_smm,
5606 .enable_smi_window = enable_smi_window,
5607 };
5608
5609 static int __init svm_init(void)
5610 {
5611 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5612 __alignof__(struct vcpu_svm), THIS_MODULE);
5613 }
5614
5615 static void __exit svm_exit(void)
5616 {
5617 kvm_exit();
5618 }
5619
5620 module_init(svm_init)
5621 module_exit(svm_exit)