]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
KVM: VMX: Implement PCID/INVPCID for guests with EPT
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/kernel.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/kvm_para.h>
37
38 #include <asm/virtext.h>
39 #include "trace.h"
40
41 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static const struct x86_cpu_id svm_cpu_id[] = {
47 X86_FEATURE_MATCH(X86_FEATURE_SVM),
48 {}
49 };
50 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
51
52 #define IOPM_ALLOC_ORDER 2
53 #define MSRPM_ALLOC_ORDER 1
54
55 #define SEG_TYPE_LDT 2
56 #define SEG_TYPE_BUSY_TSS16 3
57
58 #define SVM_FEATURE_NPT (1 << 0)
59 #define SVM_FEATURE_LBRV (1 << 1)
60 #define SVM_FEATURE_SVML (1 << 2)
61 #define SVM_FEATURE_NRIP (1 << 3)
62 #define SVM_FEATURE_TSC_RATE (1 << 4)
63 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
64 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
65 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
66 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
67
68 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
69 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
70 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
75 #define TSC_RATIO_MIN 0x0000000000000001ULL
76 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 static const u32 host_save_user_msrs[] = {
81 #ifdef CONFIG_X86_64
82 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
83 MSR_FS_BASE,
84 #endif
85 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
86 };
87
88 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
89
90 struct kvm_vcpu;
91
92 struct nested_state {
93 struct vmcb *hsave;
94 u64 hsave_msr;
95 u64 vm_cr_msr;
96 u64 vmcb;
97
98 /* These are the merged vectors */
99 u32 *msrpm;
100
101 /* gpa pointers to the real vectors */
102 u64 vmcb_msrpm;
103 u64 vmcb_iopm;
104
105 /* A VMEXIT is required but not yet emulated */
106 bool exit_required;
107
108 /* cache for intercepts of the guest */
109 u32 intercept_cr;
110 u32 intercept_dr;
111 u32 intercept_exceptions;
112 u64 intercept;
113
114 /* Nested Paging related state */
115 u64 nested_cr3;
116 };
117
118 #define MSRPM_OFFSETS 16
119 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
120
121 /*
122 * Set osvw_len to higher value when updated Revision Guides
123 * are published and we know what the new status bits are
124 */
125 static uint64_t osvw_len = 4, osvw_status;
126
127 struct vcpu_svm {
128 struct kvm_vcpu vcpu;
129 struct vmcb *vmcb;
130 unsigned long vmcb_pa;
131 struct svm_cpu_data *svm_data;
132 uint64_t asid_generation;
133 uint64_t sysenter_esp;
134 uint64_t sysenter_eip;
135
136 u64 next_rip;
137
138 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
139 struct {
140 u16 fs;
141 u16 gs;
142 u16 ldt;
143 u64 gs_base;
144 } host;
145
146 u32 *msrpm;
147
148 ulong nmi_iret_rip;
149
150 struct nested_state nested;
151
152 bool nmi_singlestep;
153
154 unsigned int3_injected;
155 unsigned long int3_rip;
156 u32 apf_reason;
157
158 u64 tsc_ratio;
159 };
160
161 static DEFINE_PER_CPU(u64, current_tsc_ratio);
162 #define TSC_RATIO_DEFAULT 0x0100000000ULL
163
164 #define MSR_INVALID 0xffffffffU
165
166 static struct svm_direct_access_msrs {
167 u32 index; /* Index of the MSR */
168 bool always; /* True if intercept is always on */
169 } direct_access_msrs[] = {
170 { .index = MSR_STAR, .always = true },
171 { .index = MSR_IA32_SYSENTER_CS, .always = true },
172 #ifdef CONFIG_X86_64
173 { .index = MSR_GS_BASE, .always = true },
174 { .index = MSR_FS_BASE, .always = true },
175 { .index = MSR_KERNEL_GS_BASE, .always = true },
176 { .index = MSR_LSTAR, .always = true },
177 { .index = MSR_CSTAR, .always = true },
178 { .index = MSR_SYSCALL_MASK, .always = true },
179 #endif
180 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
181 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
182 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
183 { .index = MSR_IA32_LASTINTTOIP, .always = false },
184 { .index = MSR_INVALID, .always = false },
185 };
186
187 /* enable NPT for AMD64 and X86 with PAE */
188 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
189 static bool npt_enabled = true;
190 #else
191 static bool npt_enabled;
192 #endif
193
194 /* allow nested paging (virtualized MMU) for all guests */
195 static int npt = true;
196 module_param(npt, int, S_IRUGO);
197
198 /* allow nested virtualization in KVM/SVM */
199 static int nested = true;
200 module_param(nested, int, S_IRUGO);
201
202 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
203 static void svm_complete_interrupts(struct vcpu_svm *svm);
204
205 static int nested_svm_exit_handled(struct vcpu_svm *svm);
206 static int nested_svm_intercept(struct vcpu_svm *svm);
207 static int nested_svm_vmexit(struct vcpu_svm *svm);
208 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
209 bool has_error_code, u32 error_code);
210 static u64 __scale_tsc(u64 ratio, u64 tsc);
211
212 enum {
213 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
214 pause filter count */
215 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
216 VMCB_ASID, /* ASID */
217 VMCB_INTR, /* int_ctl, int_vector */
218 VMCB_NPT, /* npt_en, nCR3, gPAT */
219 VMCB_CR, /* CR0, CR3, CR4, EFER */
220 VMCB_DR, /* DR6, DR7 */
221 VMCB_DT, /* GDT, IDT */
222 VMCB_SEG, /* CS, DS, SS, ES, CPL */
223 VMCB_CR2, /* CR2 only */
224 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
225 VMCB_DIRTY_MAX,
226 };
227
228 /* TPR and CR2 are always written before VMRUN */
229 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
230
231 static inline void mark_all_dirty(struct vmcb *vmcb)
232 {
233 vmcb->control.clean = 0;
234 }
235
236 static inline void mark_all_clean(struct vmcb *vmcb)
237 {
238 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
239 & ~VMCB_ALWAYS_DIRTY_MASK;
240 }
241
242 static inline void mark_dirty(struct vmcb *vmcb, int bit)
243 {
244 vmcb->control.clean &= ~(1 << bit);
245 }
246
247 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
248 {
249 return container_of(vcpu, struct vcpu_svm, vcpu);
250 }
251
252 static void recalc_intercepts(struct vcpu_svm *svm)
253 {
254 struct vmcb_control_area *c, *h;
255 struct nested_state *g;
256
257 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
258
259 if (!is_guest_mode(&svm->vcpu))
260 return;
261
262 c = &svm->vmcb->control;
263 h = &svm->nested.hsave->control;
264 g = &svm->nested;
265
266 c->intercept_cr = h->intercept_cr | g->intercept_cr;
267 c->intercept_dr = h->intercept_dr | g->intercept_dr;
268 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
269 c->intercept = h->intercept | g->intercept;
270 }
271
272 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
273 {
274 if (is_guest_mode(&svm->vcpu))
275 return svm->nested.hsave;
276 else
277 return svm->vmcb;
278 }
279
280 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
281 {
282 struct vmcb *vmcb = get_host_vmcb(svm);
283
284 vmcb->control.intercept_cr |= (1U << bit);
285
286 recalc_intercepts(svm);
287 }
288
289 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
290 {
291 struct vmcb *vmcb = get_host_vmcb(svm);
292
293 vmcb->control.intercept_cr &= ~(1U << bit);
294
295 recalc_intercepts(svm);
296 }
297
298 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
299 {
300 struct vmcb *vmcb = get_host_vmcb(svm);
301
302 return vmcb->control.intercept_cr & (1U << bit);
303 }
304
305 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
306 {
307 struct vmcb *vmcb = get_host_vmcb(svm);
308
309 vmcb->control.intercept_dr |= (1U << bit);
310
311 recalc_intercepts(svm);
312 }
313
314 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
315 {
316 struct vmcb *vmcb = get_host_vmcb(svm);
317
318 vmcb->control.intercept_dr &= ~(1U << bit);
319
320 recalc_intercepts(svm);
321 }
322
323 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
324 {
325 struct vmcb *vmcb = get_host_vmcb(svm);
326
327 vmcb->control.intercept_exceptions |= (1U << bit);
328
329 recalc_intercepts(svm);
330 }
331
332 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
333 {
334 struct vmcb *vmcb = get_host_vmcb(svm);
335
336 vmcb->control.intercept_exceptions &= ~(1U << bit);
337
338 recalc_intercepts(svm);
339 }
340
341 static inline void set_intercept(struct vcpu_svm *svm, int bit)
342 {
343 struct vmcb *vmcb = get_host_vmcb(svm);
344
345 vmcb->control.intercept |= (1ULL << bit);
346
347 recalc_intercepts(svm);
348 }
349
350 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
351 {
352 struct vmcb *vmcb = get_host_vmcb(svm);
353
354 vmcb->control.intercept &= ~(1ULL << bit);
355
356 recalc_intercepts(svm);
357 }
358
359 static inline void enable_gif(struct vcpu_svm *svm)
360 {
361 svm->vcpu.arch.hflags |= HF_GIF_MASK;
362 }
363
364 static inline void disable_gif(struct vcpu_svm *svm)
365 {
366 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
367 }
368
369 static inline bool gif_set(struct vcpu_svm *svm)
370 {
371 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
372 }
373
374 static unsigned long iopm_base;
375
376 struct kvm_ldttss_desc {
377 u16 limit0;
378 u16 base0;
379 unsigned base1:8, type:5, dpl:2, p:1;
380 unsigned limit1:4, zero0:3, g:1, base2:8;
381 u32 base3;
382 u32 zero1;
383 } __attribute__((packed));
384
385 struct svm_cpu_data {
386 int cpu;
387
388 u64 asid_generation;
389 u32 max_asid;
390 u32 next_asid;
391 struct kvm_ldttss_desc *tss_desc;
392
393 struct page *save_area;
394 };
395
396 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
397
398 struct svm_init_data {
399 int cpu;
400 int r;
401 };
402
403 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
404
405 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
406 #define MSRS_RANGE_SIZE 2048
407 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
408
409 static u32 svm_msrpm_offset(u32 msr)
410 {
411 u32 offset;
412 int i;
413
414 for (i = 0; i < NUM_MSR_MAPS; i++) {
415 if (msr < msrpm_ranges[i] ||
416 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
417 continue;
418
419 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
420 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
421
422 /* Now we have the u8 offset - but need the u32 offset */
423 return offset / 4;
424 }
425
426 /* MSR not in any range */
427 return MSR_INVALID;
428 }
429
430 #define MAX_INST_SIZE 15
431
432 static inline void clgi(void)
433 {
434 asm volatile (__ex(SVM_CLGI));
435 }
436
437 static inline void stgi(void)
438 {
439 asm volatile (__ex(SVM_STGI));
440 }
441
442 static inline void invlpga(unsigned long addr, u32 asid)
443 {
444 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
445 }
446
447 static int get_npt_level(void)
448 {
449 #ifdef CONFIG_X86_64
450 return PT64_ROOT_LEVEL;
451 #else
452 return PT32E_ROOT_LEVEL;
453 #endif
454 }
455
456 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
457 {
458 vcpu->arch.efer = efer;
459 if (!npt_enabled && !(efer & EFER_LMA))
460 efer &= ~EFER_LME;
461
462 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
463 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
464 }
465
466 static int is_external_interrupt(u32 info)
467 {
468 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
469 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
470 }
471
472 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474 struct vcpu_svm *svm = to_svm(vcpu);
475 u32 ret = 0;
476
477 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
478 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
479 return ret & mask;
480 }
481
482 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
483 {
484 struct vcpu_svm *svm = to_svm(vcpu);
485
486 if (mask == 0)
487 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
488 else
489 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
490
491 }
492
493 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
494 {
495 struct vcpu_svm *svm = to_svm(vcpu);
496
497 if (svm->vmcb->control.next_rip != 0)
498 svm->next_rip = svm->vmcb->control.next_rip;
499
500 if (!svm->next_rip) {
501 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
502 EMULATE_DONE)
503 printk(KERN_DEBUG "%s: NOP\n", __func__);
504 return;
505 }
506 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
507 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
508 __func__, kvm_rip_read(vcpu), svm->next_rip);
509
510 kvm_rip_write(vcpu, svm->next_rip);
511 svm_set_interrupt_shadow(vcpu, 0);
512 }
513
514 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
515 bool has_error_code, u32 error_code,
516 bool reinject)
517 {
518 struct vcpu_svm *svm = to_svm(vcpu);
519
520 /*
521 * If we are within a nested VM we'd better #VMEXIT and let the guest
522 * handle the exception
523 */
524 if (!reinject &&
525 nested_svm_check_exception(svm, nr, has_error_code, error_code))
526 return;
527
528 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
529 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
530
531 /*
532 * For guest debugging where we have to reinject #BP if some
533 * INT3 is guest-owned:
534 * Emulate nRIP by moving RIP forward. Will fail if injection
535 * raises a fault that is not intercepted. Still better than
536 * failing in all cases.
537 */
538 skip_emulated_instruction(&svm->vcpu);
539 rip = kvm_rip_read(&svm->vcpu);
540 svm->int3_rip = rip + svm->vmcb->save.cs.base;
541 svm->int3_injected = rip - old_rip;
542 }
543
544 svm->vmcb->control.event_inj = nr
545 | SVM_EVTINJ_VALID
546 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
547 | SVM_EVTINJ_TYPE_EXEPT;
548 svm->vmcb->control.event_inj_err = error_code;
549 }
550
551 static void svm_init_erratum_383(void)
552 {
553 u32 low, high;
554 int err;
555 u64 val;
556
557 if (!cpu_has_amd_erratum(amd_erratum_383))
558 return;
559
560 /* Use _safe variants to not break nested virtualization */
561 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
562 if (err)
563 return;
564
565 val |= (1ULL << 47);
566
567 low = lower_32_bits(val);
568 high = upper_32_bits(val);
569
570 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
571
572 erratum_383_found = true;
573 }
574
575 static void svm_init_osvw(struct kvm_vcpu *vcpu)
576 {
577 /*
578 * Guests should see errata 400 and 415 as fixed (assuming that
579 * HLT and IO instructions are intercepted).
580 */
581 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
582 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
583
584 /*
585 * By increasing VCPU's osvw.length to 3 we are telling the guest that
586 * all osvw.status bits inside that length, including bit 0 (which is
587 * reserved for erratum 298), are valid. However, if host processor's
588 * osvw_len is 0 then osvw_status[0] carries no information. We need to
589 * be conservative here and therefore we tell the guest that erratum 298
590 * is present (because we really don't know).
591 */
592 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
593 vcpu->arch.osvw.status |= 1;
594 }
595
596 static int has_svm(void)
597 {
598 const char *msg;
599
600 if (!cpu_has_svm(&msg)) {
601 printk(KERN_INFO "has_svm: %s\n", msg);
602 return 0;
603 }
604
605 return 1;
606 }
607
608 static void svm_hardware_disable(void *garbage)
609 {
610 /* Make sure we clean up behind us */
611 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
612 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
613
614 cpu_svm_disable();
615
616 amd_pmu_disable_virt();
617 }
618
619 static int svm_hardware_enable(void *garbage)
620 {
621
622 struct svm_cpu_data *sd;
623 uint64_t efer;
624 struct desc_ptr gdt_descr;
625 struct desc_struct *gdt;
626 int me = raw_smp_processor_id();
627
628 rdmsrl(MSR_EFER, efer);
629 if (efer & EFER_SVME)
630 return -EBUSY;
631
632 if (!has_svm()) {
633 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
634 me);
635 return -EINVAL;
636 }
637 sd = per_cpu(svm_data, me);
638
639 if (!sd) {
640 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
641 me);
642 return -EINVAL;
643 }
644
645 sd->asid_generation = 1;
646 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
647 sd->next_asid = sd->max_asid + 1;
648
649 native_store_gdt(&gdt_descr);
650 gdt = (struct desc_struct *)gdt_descr.address;
651 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
652
653 wrmsrl(MSR_EFER, efer | EFER_SVME);
654
655 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
656
657 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
658 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
659 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
660 }
661
662
663 /*
664 * Get OSVW bits.
665 *
666 * Note that it is possible to have a system with mixed processor
667 * revisions and therefore different OSVW bits. If bits are not the same
668 * on different processors then choose the worst case (i.e. if erratum
669 * is present on one processor and not on another then assume that the
670 * erratum is present everywhere).
671 */
672 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
673 uint64_t len, status = 0;
674 int err;
675
676 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
677 if (!err)
678 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
679 &err);
680
681 if (err)
682 osvw_status = osvw_len = 0;
683 else {
684 if (len < osvw_len)
685 osvw_len = len;
686 osvw_status |= status;
687 osvw_status &= (1ULL << osvw_len) - 1;
688 }
689 } else
690 osvw_status = osvw_len = 0;
691
692 svm_init_erratum_383();
693
694 amd_pmu_enable_virt();
695
696 return 0;
697 }
698
699 static void svm_cpu_uninit(int cpu)
700 {
701 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
702
703 if (!sd)
704 return;
705
706 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
707 __free_page(sd->save_area);
708 kfree(sd);
709 }
710
711 static int svm_cpu_init(int cpu)
712 {
713 struct svm_cpu_data *sd;
714 int r;
715
716 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
717 if (!sd)
718 return -ENOMEM;
719 sd->cpu = cpu;
720 sd->save_area = alloc_page(GFP_KERNEL);
721 r = -ENOMEM;
722 if (!sd->save_area)
723 goto err_1;
724
725 per_cpu(svm_data, cpu) = sd;
726
727 return 0;
728
729 err_1:
730 kfree(sd);
731 return r;
732
733 }
734
735 static bool valid_msr_intercept(u32 index)
736 {
737 int i;
738
739 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
740 if (direct_access_msrs[i].index == index)
741 return true;
742
743 return false;
744 }
745
746 static void set_msr_interception(u32 *msrpm, unsigned msr,
747 int read, int write)
748 {
749 u8 bit_read, bit_write;
750 unsigned long tmp;
751 u32 offset;
752
753 /*
754 * If this warning triggers extend the direct_access_msrs list at the
755 * beginning of the file
756 */
757 WARN_ON(!valid_msr_intercept(msr));
758
759 offset = svm_msrpm_offset(msr);
760 bit_read = 2 * (msr & 0x0f);
761 bit_write = 2 * (msr & 0x0f) + 1;
762 tmp = msrpm[offset];
763
764 BUG_ON(offset == MSR_INVALID);
765
766 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
767 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768
769 msrpm[offset] = tmp;
770 }
771
772 static void svm_vcpu_init_msrpm(u32 *msrpm)
773 {
774 int i;
775
776 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
777
778 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
779 if (!direct_access_msrs[i].always)
780 continue;
781
782 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
783 }
784 }
785
786 static void add_msr_offset(u32 offset)
787 {
788 int i;
789
790 for (i = 0; i < MSRPM_OFFSETS; ++i) {
791
792 /* Offset already in list? */
793 if (msrpm_offsets[i] == offset)
794 return;
795
796 /* Slot used by another offset? */
797 if (msrpm_offsets[i] != MSR_INVALID)
798 continue;
799
800 /* Add offset to list */
801 msrpm_offsets[i] = offset;
802
803 return;
804 }
805
806 /*
807 * If this BUG triggers the msrpm_offsets table has an overflow. Just
808 * increase MSRPM_OFFSETS in this case.
809 */
810 BUG();
811 }
812
813 static void init_msrpm_offsets(void)
814 {
815 int i;
816
817 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
818
819 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
820 u32 offset;
821
822 offset = svm_msrpm_offset(direct_access_msrs[i].index);
823 BUG_ON(offset == MSR_INVALID);
824
825 add_msr_offset(offset);
826 }
827 }
828
829 static void svm_enable_lbrv(struct vcpu_svm *svm)
830 {
831 u32 *msrpm = svm->msrpm;
832
833 svm->vmcb->control.lbr_ctl = 1;
834 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
835 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
836 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
837 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
838 }
839
840 static void svm_disable_lbrv(struct vcpu_svm *svm)
841 {
842 u32 *msrpm = svm->msrpm;
843
844 svm->vmcb->control.lbr_ctl = 0;
845 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
846 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
847 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
848 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
849 }
850
851 static __init int svm_hardware_setup(void)
852 {
853 int cpu;
854 struct page *iopm_pages;
855 void *iopm_va;
856 int r;
857
858 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
859
860 if (!iopm_pages)
861 return -ENOMEM;
862
863 iopm_va = page_address(iopm_pages);
864 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
865 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
866
867 init_msrpm_offsets();
868
869 if (boot_cpu_has(X86_FEATURE_NX))
870 kvm_enable_efer_bits(EFER_NX);
871
872 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
873 kvm_enable_efer_bits(EFER_FFXSR);
874
875 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
876 u64 max;
877
878 kvm_has_tsc_control = true;
879
880 /*
881 * Make sure the user can only configure tsc_khz values that
882 * fit into a signed integer.
883 * A min value is not calculated needed because it will always
884 * be 1 on all machines and a value of 0 is used to disable
885 * tsc-scaling for the vcpu.
886 */
887 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
888
889 kvm_max_guest_tsc_khz = max;
890 }
891
892 if (nested) {
893 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
894 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
895 }
896
897 for_each_possible_cpu(cpu) {
898 r = svm_cpu_init(cpu);
899 if (r)
900 goto err;
901 }
902
903 if (!boot_cpu_has(X86_FEATURE_NPT))
904 npt_enabled = false;
905
906 if (npt_enabled && !npt) {
907 printk(KERN_INFO "kvm: Nested Paging disabled\n");
908 npt_enabled = false;
909 }
910
911 if (npt_enabled) {
912 printk(KERN_INFO "kvm: Nested Paging enabled\n");
913 kvm_enable_tdp();
914 } else
915 kvm_disable_tdp();
916
917 return 0;
918
919 err:
920 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
921 iopm_base = 0;
922 return r;
923 }
924
925 static __exit void svm_hardware_unsetup(void)
926 {
927 int cpu;
928
929 for_each_possible_cpu(cpu)
930 svm_cpu_uninit(cpu);
931
932 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
933 iopm_base = 0;
934 }
935
936 static void init_seg(struct vmcb_seg *seg)
937 {
938 seg->selector = 0;
939 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
940 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
941 seg->limit = 0xffff;
942 seg->base = 0;
943 }
944
945 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
946 {
947 seg->selector = 0;
948 seg->attrib = SVM_SELECTOR_P_MASK | type;
949 seg->limit = 0xffff;
950 seg->base = 0;
951 }
952
953 static u64 __scale_tsc(u64 ratio, u64 tsc)
954 {
955 u64 mult, frac, _tsc;
956
957 mult = ratio >> 32;
958 frac = ratio & ((1ULL << 32) - 1);
959
960 _tsc = tsc;
961 _tsc *= mult;
962 _tsc += (tsc >> 32) * frac;
963 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
964
965 return _tsc;
966 }
967
968 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
969 {
970 struct vcpu_svm *svm = to_svm(vcpu);
971 u64 _tsc = tsc;
972
973 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
974 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
975
976 return _tsc;
977 }
978
979 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
980 {
981 struct vcpu_svm *svm = to_svm(vcpu);
982 u64 ratio;
983 u64 khz;
984
985 /* Guest TSC same frequency as host TSC? */
986 if (!scale) {
987 svm->tsc_ratio = TSC_RATIO_DEFAULT;
988 return;
989 }
990
991 /* TSC scaling supported? */
992 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
993 if (user_tsc_khz > tsc_khz) {
994 vcpu->arch.tsc_catchup = 1;
995 vcpu->arch.tsc_always_catchup = 1;
996 } else
997 WARN(1, "user requested TSC rate below hardware speed\n");
998 return;
999 }
1000
1001 khz = user_tsc_khz;
1002
1003 /* TSC scaling required - calculate ratio */
1004 ratio = khz << 32;
1005 do_div(ratio, tsc_khz);
1006
1007 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1008 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1009 user_tsc_khz);
1010 return;
1011 }
1012 svm->tsc_ratio = ratio;
1013 }
1014
1015 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1016 {
1017 struct vcpu_svm *svm = to_svm(vcpu);
1018 u64 g_tsc_offset = 0;
1019
1020 if (is_guest_mode(vcpu)) {
1021 g_tsc_offset = svm->vmcb->control.tsc_offset -
1022 svm->nested.hsave->control.tsc_offset;
1023 svm->nested.hsave->control.tsc_offset = offset;
1024 }
1025
1026 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1027
1028 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030
1031 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1032 {
1033 struct vcpu_svm *svm = to_svm(vcpu);
1034
1035 WARN_ON(adjustment < 0);
1036 if (host)
1037 adjustment = svm_scale_tsc(vcpu, adjustment);
1038
1039 svm->vmcb->control.tsc_offset += adjustment;
1040 if (is_guest_mode(vcpu))
1041 svm->nested.hsave->control.tsc_offset += adjustment;
1042 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1043 }
1044
1045 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1046 {
1047 u64 tsc;
1048
1049 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1050
1051 return target_tsc - tsc;
1052 }
1053
1054 static void init_vmcb(struct vcpu_svm *svm)
1055 {
1056 struct vmcb_control_area *control = &svm->vmcb->control;
1057 struct vmcb_save_area *save = &svm->vmcb->save;
1058
1059 svm->vcpu.fpu_active = 1;
1060 svm->vcpu.arch.hflags = 0;
1061
1062 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1063 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1064 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1065 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1066 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1067 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1068 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1069
1070 set_dr_intercept(svm, INTERCEPT_DR0_READ);
1071 set_dr_intercept(svm, INTERCEPT_DR1_READ);
1072 set_dr_intercept(svm, INTERCEPT_DR2_READ);
1073 set_dr_intercept(svm, INTERCEPT_DR3_READ);
1074 set_dr_intercept(svm, INTERCEPT_DR4_READ);
1075 set_dr_intercept(svm, INTERCEPT_DR5_READ);
1076 set_dr_intercept(svm, INTERCEPT_DR6_READ);
1077 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1078
1079 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1080 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1081 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1082 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1083 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1084 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1085 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1086 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1087
1088 set_exception_intercept(svm, PF_VECTOR);
1089 set_exception_intercept(svm, UD_VECTOR);
1090 set_exception_intercept(svm, MC_VECTOR);
1091
1092 set_intercept(svm, INTERCEPT_INTR);
1093 set_intercept(svm, INTERCEPT_NMI);
1094 set_intercept(svm, INTERCEPT_SMI);
1095 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1096 set_intercept(svm, INTERCEPT_RDPMC);
1097 set_intercept(svm, INTERCEPT_CPUID);
1098 set_intercept(svm, INTERCEPT_INVD);
1099 set_intercept(svm, INTERCEPT_HLT);
1100 set_intercept(svm, INTERCEPT_INVLPG);
1101 set_intercept(svm, INTERCEPT_INVLPGA);
1102 set_intercept(svm, INTERCEPT_IOIO_PROT);
1103 set_intercept(svm, INTERCEPT_MSR_PROT);
1104 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1105 set_intercept(svm, INTERCEPT_SHUTDOWN);
1106 set_intercept(svm, INTERCEPT_VMRUN);
1107 set_intercept(svm, INTERCEPT_VMMCALL);
1108 set_intercept(svm, INTERCEPT_VMLOAD);
1109 set_intercept(svm, INTERCEPT_VMSAVE);
1110 set_intercept(svm, INTERCEPT_STGI);
1111 set_intercept(svm, INTERCEPT_CLGI);
1112 set_intercept(svm, INTERCEPT_SKINIT);
1113 set_intercept(svm, INTERCEPT_WBINVD);
1114 set_intercept(svm, INTERCEPT_MONITOR);
1115 set_intercept(svm, INTERCEPT_MWAIT);
1116 set_intercept(svm, INTERCEPT_XSETBV);
1117
1118 control->iopm_base_pa = iopm_base;
1119 control->msrpm_base_pa = __pa(svm->msrpm);
1120 control->int_ctl = V_INTR_MASKING_MASK;
1121
1122 init_seg(&save->es);
1123 init_seg(&save->ss);
1124 init_seg(&save->ds);
1125 init_seg(&save->fs);
1126 init_seg(&save->gs);
1127
1128 save->cs.selector = 0xf000;
1129 /* Executable/Readable Code Segment */
1130 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1131 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1132 save->cs.limit = 0xffff;
1133 /*
1134 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1135 * be consistent with it.
1136 *
1137 * Replace when we have real mode working for vmx.
1138 */
1139 save->cs.base = 0xf0000;
1140
1141 save->gdtr.limit = 0xffff;
1142 save->idtr.limit = 0xffff;
1143
1144 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1145 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1146
1147 svm_set_efer(&svm->vcpu, 0);
1148 save->dr6 = 0xffff0ff0;
1149 save->dr7 = 0x400;
1150 kvm_set_rflags(&svm->vcpu, 2);
1151 save->rip = 0x0000fff0;
1152 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1153
1154 /*
1155 * This is the guest-visible cr0 value.
1156 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1157 */
1158 svm->vcpu.arch.cr0 = 0;
1159 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1160
1161 save->cr4 = X86_CR4_PAE;
1162 /* rdx = ?? */
1163
1164 if (npt_enabled) {
1165 /* Setup VMCB for Nested Paging */
1166 control->nested_ctl = 1;
1167 clr_intercept(svm, INTERCEPT_INVLPG);
1168 clr_exception_intercept(svm, PF_VECTOR);
1169 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1170 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1171 save->g_pat = 0x0007040600070406ULL;
1172 save->cr3 = 0;
1173 save->cr4 = 0;
1174 }
1175 svm->asid_generation = 0;
1176
1177 svm->nested.vmcb = 0;
1178 svm->vcpu.arch.hflags = 0;
1179
1180 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1181 control->pause_filter_count = 3000;
1182 set_intercept(svm, INTERCEPT_PAUSE);
1183 }
1184
1185 mark_all_dirty(svm->vmcb);
1186
1187 enable_gif(svm);
1188 }
1189
1190 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1191 {
1192 struct vcpu_svm *svm = to_svm(vcpu);
1193
1194 init_vmcb(svm);
1195
1196 if (!kvm_vcpu_is_bsp(vcpu)) {
1197 kvm_rip_write(vcpu, 0);
1198 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1199 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1200 }
1201 vcpu->arch.regs_avail = ~0;
1202 vcpu->arch.regs_dirty = ~0;
1203
1204 return 0;
1205 }
1206
1207 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1208 {
1209 struct vcpu_svm *svm;
1210 struct page *page;
1211 struct page *msrpm_pages;
1212 struct page *hsave_page;
1213 struct page *nested_msrpm_pages;
1214 int err;
1215
1216 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1217 if (!svm) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
1221
1222 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1223
1224 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1225 if (err)
1226 goto free_svm;
1227
1228 err = -ENOMEM;
1229 page = alloc_page(GFP_KERNEL);
1230 if (!page)
1231 goto uninit;
1232
1233 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1234 if (!msrpm_pages)
1235 goto free_page1;
1236
1237 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1238 if (!nested_msrpm_pages)
1239 goto free_page2;
1240
1241 hsave_page = alloc_page(GFP_KERNEL);
1242 if (!hsave_page)
1243 goto free_page3;
1244
1245 svm->nested.hsave = page_address(hsave_page);
1246
1247 svm->msrpm = page_address(msrpm_pages);
1248 svm_vcpu_init_msrpm(svm->msrpm);
1249
1250 svm->nested.msrpm = page_address(nested_msrpm_pages);
1251 svm_vcpu_init_msrpm(svm->nested.msrpm);
1252
1253 svm->vmcb = page_address(page);
1254 clear_page(svm->vmcb);
1255 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1256 svm->asid_generation = 0;
1257 init_vmcb(svm);
1258 kvm_write_tsc(&svm->vcpu, 0);
1259
1260 err = fx_init(&svm->vcpu);
1261 if (err)
1262 goto free_page4;
1263
1264 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1265 if (kvm_vcpu_is_bsp(&svm->vcpu))
1266 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1267
1268 svm_init_osvw(&svm->vcpu);
1269
1270 return &svm->vcpu;
1271
1272 free_page4:
1273 __free_page(hsave_page);
1274 free_page3:
1275 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1276 free_page2:
1277 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1278 free_page1:
1279 __free_page(page);
1280 uninit:
1281 kvm_vcpu_uninit(&svm->vcpu);
1282 free_svm:
1283 kmem_cache_free(kvm_vcpu_cache, svm);
1284 out:
1285 return ERR_PTR(err);
1286 }
1287
1288 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1289 {
1290 struct vcpu_svm *svm = to_svm(vcpu);
1291
1292 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1293 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1294 __free_page(virt_to_page(svm->nested.hsave));
1295 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1296 kvm_vcpu_uninit(vcpu);
1297 kmem_cache_free(kvm_vcpu_cache, svm);
1298 }
1299
1300 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1301 {
1302 struct vcpu_svm *svm = to_svm(vcpu);
1303 int i;
1304
1305 if (unlikely(cpu != vcpu->cpu)) {
1306 svm->asid_generation = 0;
1307 mark_all_dirty(svm->vmcb);
1308 }
1309
1310 #ifdef CONFIG_X86_64
1311 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1312 #endif
1313 savesegment(fs, svm->host.fs);
1314 savesegment(gs, svm->host.gs);
1315 svm->host.ldt = kvm_read_ldt();
1316
1317 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1318 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1319
1320 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1321 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1322 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1323 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1324 }
1325 }
1326
1327 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1328 {
1329 struct vcpu_svm *svm = to_svm(vcpu);
1330 int i;
1331
1332 ++vcpu->stat.host_state_reload;
1333 kvm_load_ldt(svm->host.ldt);
1334 #ifdef CONFIG_X86_64
1335 loadsegment(fs, svm->host.fs);
1336 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1337 load_gs_index(svm->host.gs);
1338 #else
1339 #ifdef CONFIG_X86_32_LAZY_GS
1340 loadsegment(gs, svm->host.gs);
1341 #endif
1342 #endif
1343 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1344 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1345 }
1346
1347 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1348 {
1349 struct vcpu_svm *svm = to_svm(vcpu);
1350 int cpl;
1351
1352 if (!is_protmode(vcpu))
1353 cpl = 0;
1354 else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1355 cpl = 3;
1356 else
1357 cpl = svm->vmcb->save.cs.selector & 0x3;
1358
1359 svm->vmcb->save.cpl = cpl;
1360 }
1361
1362 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1363 {
1364 return to_svm(vcpu)->vmcb->save.rflags;
1365 }
1366
1367 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1368 {
1369 unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1370
1371 to_svm(vcpu)->vmcb->save.rflags = rflags;
1372 if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1373 svm_update_cpl(vcpu);
1374 }
1375
1376 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1377 {
1378 switch (reg) {
1379 case VCPU_EXREG_PDPTR:
1380 BUG_ON(!npt_enabled);
1381 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1382 break;
1383 default:
1384 BUG();
1385 }
1386 }
1387
1388 static void svm_set_vintr(struct vcpu_svm *svm)
1389 {
1390 set_intercept(svm, INTERCEPT_VINTR);
1391 }
1392
1393 static void svm_clear_vintr(struct vcpu_svm *svm)
1394 {
1395 clr_intercept(svm, INTERCEPT_VINTR);
1396 }
1397
1398 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1399 {
1400 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1401
1402 switch (seg) {
1403 case VCPU_SREG_CS: return &save->cs;
1404 case VCPU_SREG_DS: return &save->ds;
1405 case VCPU_SREG_ES: return &save->es;
1406 case VCPU_SREG_FS: return &save->fs;
1407 case VCPU_SREG_GS: return &save->gs;
1408 case VCPU_SREG_SS: return &save->ss;
1409 case VCPU_SREG_TR: return &save->tr;
1410 case VCPU_SREG_LDTR: return &save->ldtr;
1411 }
1412 BUG();
1413 return NULL;
1414 }
1415
1416 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1417 {
1418 struct vmcb_seg *s = svm_seg(vcpu, seg);
1419
1420 return s->base;
1421 }
1422
1423 static void svm_get_segment(struct kvm_vcpu *vcpu,
1424 struct kvm_segment *var, int seg)
1425 {
1426 struct vmcb_seg *s = svm_seg(vcpu, seg);
1427
1428 var->base = s->base;
1429 var->limit = s->limit;
1430 var->selector = s->selector;
1431 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1432 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1433 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1434 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1435 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1436 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1437 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1438 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1439
1440 /*
1441 * AMD's VMCB does not have an explicit unusable field, so emulate it
1442 * for cross vendor migration purposes by "not present"
1443 */
1444 var->unusable = !var->present || (var->type == 0);
1445
1446 switch (seg) {
1447 case VCPU_SREG_CS:
1448 /*
1449 * SVM always stores 0 for the 'G' bit in the CS selector in
1450 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1451 * Intel's VMENTRY has a check on the 'G' bit.
1452 */
1453 var->g = s->limit > 0xfffff;
1454 break;
1455 case VCPU_SREG_TR:
1456 /*
1457 * Work around a bug where the busy flag in the tr selector
1458 * isn't exposed
1459 */
1460 var->type |= 0x2;
1461 break;
1462 case VCPU_SREG_DS:
1463 case VCPU_SREG_ES:
1464 case VCPU_SREG_FS:
1465 case VCPU_SREG_GS:
1466 /*
1467 * The accessed bit must always be set in the segment
1468 * descriptor cache, although it can be cleared in the
1469 * descriptor, the cached bit always remains at 1. Since
1470 * Intel has a check on this, set it here to support
1471 * cross-vendor migration.
1472 */
1473 if (!var->unusable)
1474 var->type |= 0x1;
1475 break;
1476 case VCPU_SREG_SS:
1477 /*
1478 * On AMD CPUs sometimes the DB bit in the segment
1479 * descriptor is left as 1, although the whole segment has
1480 * been made unusable. Clear it here to pass an Intel VMX
1481 * entry check when cross vendor migrating.
1482 */
1483 if (var->unusable)
1484 var->db = 0;
1485 break;
1486 }
1487 }
1488
1489 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1490 {
1491 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1492
1493 return save->cpl;
1494 }
1495
1496 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497 {
1498 struct vcpu_svm *svm = to_svm(vcpu);
1499
1500 dt->size = svm->vmcb->save.idtr.limit;
1501 dt->address = svm->vmcb->save.idtr.base;
1502 }
1503
1504 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505 {
1506 struct vcpu_svm *svm = to_svm(vcpu);
1507
1508 svm->vmcb->save.idtr.limit = dt->size;
1509 svm->vmcb->save.idtr.base = dt->address ;
1510 mark_dirty(svm->vmcb, VMCB_DT);
1511 }
1512
1513 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1514 {
1515 struct vcpu_svm *svm = to_svm(vcpu);
1516
1517 dt->size = svm->vmcb->save.gdtr.limit;
1518 dt->address = svm->vmcb->save.gdtr.base;
1519 }
1520
1521 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1522 {
1523 struct vcpu_svm *svm = to_svm(vcpu);
1524
1525 svm->vmcb->save.gdtr.limit = dt->size;
1526 svm->vmcb->save.gdtr.base = dt->address ;
1527 mark_dirty(svm->vmcb, VMCB_DT);
1528 }
1529
1530 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1531 {
1532 }
1533
1534 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1535 {
1536 }
1537
1538 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1539 {
1540 }
1541
1542 static void update_cr0_intercept(struct vcpu_svm *svm)
1543 {
1544 ulong gcr0 = svm->vcpu.arch.cr0;
1545 u64 *hcr0 = &svm->vmcb->save.cr0;
1546
1547 if (!svm->vcpu.fpu_active)
1548 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1549 else
1550 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1551 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1552
1553 mark_dirty(svm->vmcb, VMCB_CR);
1554
1555 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1556 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1557 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1558 } else {
1559 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1560 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1561 }
1562 }
1563
1564 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1565 {
1566 struct vcpu_svm *svm = to_svm(vcpu);
1567
1568 #ifdef CONFIG_X86_64
1569 if (vcpu->arch.efer & EFER_LME) {
1570 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1571 vcpu->arch.efer |= EFER_LMA;
1572 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1573 }
1574
1575 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1576 vcpu->arch.efer &= ~EFER_LMA;
1577 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1578 }
1579 }
1580 #endif
1581 vcpu->arch.cr0 = cr0;
1582
1583 if (!npt_enabled)
1584 cr0 |= X86_CR0_PG | X86_CR0_WP;
1585
1586 if (!vcpu->fpu_active)
1587 cr0 |= X86_CR0_TS;
1588 /*
1589 * re-enable caching here because the QEMU bios
1590 * does not do it - this results in some delay at
1591 * reboot
1592 */
1593 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1594 svm->vmcb->save.cr0 = cr0;
1595 mark_dirty(svm->vmcb, VMCB_CR);
1596 update_cr0_intercept(svm);
1597 }
1598
1599 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1600 {
1601 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1602 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1603
1604 if (cr4 & X86_CR4_VMXE)
1605 return 1;
1606
1607 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1608 svm_flush_tlb(vcpu);
1609
1610 vcpu->arch.cr4 = cr4;
1611 if (!npt_enabled)
1612 cr4 |= X86_CR4_PAE;
1613 cr4 |= host_cr4_mce;
1614 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1615 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1616 return 0;
1617 }
1618
1619 static void svm_set_segment(struct kvm_vcpu *vcpu,
1620 struct kvm_segment *var, int seg)
1621 {
1622 struct vcpu_svm *svm = to_svm(vcpu);
1623 struct vmcb_seg *s = svm_seg(vcpu, seg);
1624
1625 s->base = var->base;
1626 s->limit = var->limit;
1627 s->selector = var->selector;
1628 if (var->unusable)
1629 s->attrib = 0;
1630 else {
1631 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1632 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1633 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1634 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1635 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1636 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1637 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1638 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1639 }
1640 if (seg == VCPU_SREG_CS)
1641 svm_update_cpl(vcpu);
1642
1643 mark_dirty(svm->vmcb, VMCB_SEG);
1644 }
1645
1646 static void update_db_intercept(struct kvm_vcpu *vcpu)
1647 {
1648 struct vcpu_svm *svm = to_svm(vcpu);
1649
1650 clr_exception_intercept(svm, DB_VECTOR);
1651 clr_exception_intercept(svm, BP_VECTOR);
1652
1653 if (svm->nmi_singlestep)
1654 set_exception_intercept(svm, DB_VECTOR);
1655
1656 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1657 if (vcpu->guest_debug &
1658 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1659 set_exception_intercept(svm, DB_VECTOR);
1660 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1661 set_exception_intercept(svm, BP_VECTOR);
1662 } else
1663 vcpu->guest_debug = 0;
1664 }
1665
1666 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1667 {
1668 struct vcpu_svm *svm = to_svm(vcpu);
1669
1670 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1671 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1672 else
1673 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1674
1675 mark_dirty(svm->vmcb, VMCB_DR);
1676
1677 update_db_intercept(vcpu);
1678 }
1679
1680 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1681 {
1682 if (sd->next_asid > sd->max_asid) {
1683 ++sd->asid_generation;
1684 sd->next_asid = 1;
1685 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1686 }
1687
1688 svm->asid_generation = sd->asid_generation;
1689 svm->vmcb->control.asid = sd->next_asid++;
1690
1691 mark_dirty(svm->vmcb, VMCB_ASID);
1692 }
1693
1694 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1695 {
1696 struct vcpu_svm *svm = to_svm(vcpu);
1697
1698 svm->vmcb->save.dr7 = value;
1699 mark_dirty(svm->vmcb, VMCB_DR);
1700 }
1701
1702 static int pf_interception(struct vcpu_svm *svm)
1703 {
1704 u64 fault_address = svm->vmcb->control.exit_info_2;
1705 u32 error_code;
1706 int r = 1;
1707
1708 switch (svm->apf_reason) {
1709 default:
1710 error_code = svm->vmcb->control.exit_info_1;
1711
1712 trace_kvm_page_fault(fault_address, error_code);
1713 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1714 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1715 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1716 svm->vmcb->control.insn_bytes,
1717 svm->vmcb->control.insn_len);
1718 break;
1719 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1720 svm->apf_reason = 0;
1721 local_irq_disable();
1722 kvm_async_pf_task_wait(fault_address);
1723 local_irq_enable();
1724 break;
1725 case KVM_PV_REASON_PAGE_READY:
1726 svm->apf_reason = 0;
1727 local_irq_disable();
1728 kvm_async_pf_task_wake(fault_address);
1729 local_irq_enable();
1730 break;
1731 }
1732 return r;
1733 }
1734
1735 static int db_interception(struct vcpu_svm *svm)
1736 {
1737 struct kvm_run *kvm_run = svm->vcpu.run;
1738
1739 if (!(svm->vcpu.guest_debug &
1740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1741 !svm->nmi_singlestep) {
1742 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1743 return 1;
1744 }
1745
1746 if (svm->nmi_singlestep) {
1747 svm->nmi_singlestep = false;
1748 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1749 svm->vmcb->save.rflags &=
1750 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1751 update_db_intercept(&svm->vcpu);
1752 }
1753
1754 if (svm->vcpu.guest_debug &
1755 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1756 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1757 kvm_run->debug.arch.pc =
1758 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1759 kvm_run->debug.arch.exception = DB_VECTOR;
1760 return 0;
1761 }
1762
1763 return 1;
1764 }
1765
1766 static int bp_interception(struct vcpu_svm *svm)
1767 {
1768 struct kvm_run *kvm_run = svm->vcpu.run;
1769
1770 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1771 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1772 kvm_run->debug.arch.exception = BP_VECTOR;
1773 return 0;
1774 }
1775
1776 static int ud_interception(struct vcpu_svm *svm)
1777 {
1778 int er;
1779
1780 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1781 if (er != EMULATE_DONE)
1782 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1783 return 1;
1784 }
1785
1786 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1787 {
1788 struct vcpu_svm *svm = to_svm(vcpu);
1789
1790 clr_exception_intercept(svm, NM_VECTOR);
1791
1792 svm->vcpu.fpu_active = 1;
1793 update_cr0_intercept(svm);
1794 }
1795
1796 static int nm_interception(struct vcpu_svm *svm)
1797 {
1798 svm_fpu_activate(&svm->vcpu);
1799 return 1;
1800 }
1801
1802 static bool is_erratum_383(void)
1803 {
1804 int err, i;
1805 u64 value;
1806
1807 if (!erratum_383_found)
1808 return false;
1809
1810 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1811 if (err)
1812 return false;
1813
1814 /* Bit 62 may or may not be set for this mce */
1815 value &= ~(1ULL << 62);
1816
1817 if (value != 0xb600000000010015ULL)
1818 return false;
1819
1820 /* Clear MCi_STATUS registers */
1821 for (i = 0; i < 6; ++i)
1822 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1823
1824 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1825 if (!err) {
1826 u32 low, high;
1827
1828 value &= ~(1ULL << 2);
1829 low = lower_32_bits(value);
1830 high = upper_32_bits(value);
1831
1832 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1833 }
1834
1835 /* Flush tlb to evict multi-match entries */
1836 __flush_tlb_all();
1837
1838 return true;
1839 }
1840
1841 static void svm_handle_mce(struct vcpu_svm *svm)
1842 {
1843 if (is_erratum_383()) {
1844 /*
1845 * Erratum 383 triggered. Guest state is corrupt so kill the
1846 * guest.
1847 */
1848 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1849
1850 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1851
1852 return;
1853 }
1854
1855 /*
1856 * On an #MC intercept the MCE handler is not called automatically in
1857 * the host. So do it by hand here.
1858 */
1859 asm volatile (
1860 "int $0x12\n");
1861 /* not sure if we ever come back to this point */
1862
1863 return;
1864 }
1865
1866 static int mc_interception(struct vcpu_svm *svm)
1867 {
1868 return 1;
1869 }
1870
1871 static int shutdown_interception(struct vcpu_svm *svm)
1872 {
1873 struct kvm_run *kvm_run = svm->vcpu.run;
1874
1875 /*
1876 * VMCB is undefined after a SHUTDOWN intercept
1877 * so reinitialize it.
1878 */
1879 clear_page(svm->vmcb);
1880 init_vmcb(svm);
1881
1882 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1883 return 0;
1884 }
1885
1886 static int io_interception(struct vcpu_svm *svm)
1887 {
1888 struct kvm_vcpu *vcpu = &svm->vcpu;
1889 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1890 int size, in, string;
1891 unsigned port;
1892
1893 ++svm->vcpu.stat.io_exits;
1894 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1895 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1896 if (string || in)
1897 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1898
1899 port = io_info >> 16;
1900 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1901 svm->next_rip = svm->vmcb->control.exit_info_2;
1902 skip_emulated_instruction(&svm->vcpu);
1903
1904 return kvm_fast_pio_out(vcpu, size, port);
1905 }
1906
1907 static int nmi_interception(struct vcpu_svm *svm)
1908 {
1909 return 1;
1910 }
1911
1912 static int intr_interception(struct vcpu_svm *svm)
1913 {
1914 ++svm->vcpu.stat.irq_exits;
1915 return 1;
1916 }
1917
1918 static int nop_on_interception(struct vcpu_svm *svm)
1919 {
1920 return 1;
1921 }
1922
1923 static int halt_interception(struct vcpu_svm *svm)
1924 {
1925 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1926 skip_emulated_instruction(&svm->vcpu);
1927 return kvm_emulate_halt(&svm->vcpu);
1928 }
1929
1930 static int vmmcall_interception(struct vcpu_svm *svm)
1931 {
1932 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1933 skip_emulated_instruction(&svm->vcpu);
1934 kvm_emulate_hypercall(&svm->vcpu);
1935 return 1;
1936 }
1937
1938 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1939 {
1940 struct vcpu_svm *svm = to_svm(vcpu);
1941
1942 return svm->nested.nested_cr3;
1943 }
1944
1945 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1946 {
1947 struct vcpu_svm *svm = to_svm(vcpu);
1948 u64 cr3 = svm->nested.nested_cr3;
1949 u64 pdpte;
1950 int ret;
1951
1952 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1953 offset_in_page(cr3) + index * 8, 8);
1954 if (ret)
1955 return 0;
1956 return pdpte;
1957 }
1958
1959 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1960 unsigned long root)
1961 {
1962 struct vcpu_svm *svm = to_svm(vcpu);
1963
1964 svm->vmcb->control.nested_cr3 = root;
1965 mark_dirty(svm->vmcb, VMCB_NPT);
1966 svm_flush_tlb(vcpu);
1967 }
1968
1969 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1970 struct x86_exception *fault)
1971 {
1972 struct vcpu_svm *svm = to_svm(vcpu);
1973
1974 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1975 svm->vmcb->control.exit_code_hi = 0;
1976 svm->vmcb->control.exit_info_1 = fault->error_code;
1977 svm->vmcb->control.exit_info_2 = fault->address;
1978
1979 nested_svm_vmexit(svm);
1980 }
1981
1982 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1983 {
1984 int r;
1985
1986 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1987
1988 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1989 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1990 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1991 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1992 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1993 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1994
1995 return r;
1996 }
1997
1998 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1999 {
2000 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2001 }
2002
2003 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2004 {
2005 if (!(svm->vcpu.arch.efer & EFER_SVME)
2006 || !is_paging(&svm->vcpu)) {
2007 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2008 return 1;
2009 }
2010
2011 if (svm->vmcb->save.cpl) {
2012 kvm_inject_gp(&svm->vcpu, 0);
2013 return 1;
2014 }
2015
2016 return 0;
2017 }
2018
2019 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2020 bool has_error_code, u32 error_code)
2021 {
2022 int vmexit;
2023
2024 if (!is_guest_mode(&svm->vcpu))
2025 return 0;
2026
2027 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2028 svm->vmcb->control.exit_code_hi = 0;
2029 svm->vmcb->control.exit_info_1 = error_code;
2030 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2031
2032 vmexit = nested_svm_intercept(svm);
2033 if (vmexit == NESTED_EXIT_DONE)
2034 svm->nested.exit_required = true;
2035
2036 return vmexit;
2037 }
2038
2039 /* This function returns true if it is save to enable the irq window */
2040 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2041 {
2042 if (!is_guest_mode(&svm->vcpu))
2043 return true;
2044
2045 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2046 return true;
2047
2048 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2049 return false;
2050
2051 /*
2052 * if vmexit was already requested (by intercepted exception
2053 * for instance) do not overwrite it with "external interrupt"
2054 * vmexit.
2055 */
2056 if (svm->nested.exit_required)
2057 return false;
2058
2059 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2060 svm->vmcb->control.exit_info_1 = 0;
2061 svm->vmcb->control.exit_info_2 = 0;
2062
2063 if (svm->nested.intercept & 1ULL) {
2064 /*
2065 * The #vmexit can't be emulated here directly because this
2066 * code path runs with irqs and preemtion disabled. A
2067 * #vmexit emulation might sleep. Only signal request for
2068 * the #vmexit here.
2069 */
2070 svm->nested.exit_required = true;
2071 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2072 return false;
2073 }
2074
2075 return true;
2076 }
2077
2078 /* This function returns true if it is save to enable the nmi window */
2079 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2080 {
2081 if (!is_guest_mode(&svm->vcpu))
2082 return true;
2083
2084 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2085 return true;
2086
2087 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2088 svm->nested.exit_required = true;
2089
2090 return false;
2091 }
2092
2093 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2094 {
2095 struct page *page;
2096
2097 might_sleep();
2098
2099 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2100 if (is_error_page(page))
2101 goto error;
2102
2103 *_page = page;
2104
2105 return kmap(page);
2106
2107 error:
2108 kvm_release_page_clean(page);
2109 kvm_inject_gp(&svm->vcpu, 0);
2110
2111 return NULL;
2112 }
2113
2114 static void nested_svm_unmap(struct page *page)
2115 {
2116 kunmap(page);
2117 kvm_release_page_dirty(page);
2118 }
2119
2120 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2121 {
2122 unsigned port;
2123 u8 val, bit;
2124 u64 gpa;
2125
2126 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2127 return NESTED_EXIT_HOST;
2128
2129 port = svm->vmcb->control.exit_info_1 >> 16;
2130 gpa = svm->nested.vmcb_iopm + (port / 8);
2131 bit = port % 8;
2132 val = 0;
2133
2134 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2135 val &= (1 << bit);
2136
2137 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2138 }
2139
2140 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2141 {
2142 u32 offset, msr, value;
2143 int write, mask;
2144
2145 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2146 return NESTED_EXIT_HOST;
2147
2148 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2149 offset = svm_msrpm_offset(msr);
2150 write = svm->vmcb->control.exit_info_1 & 1;
2151 mask = 1 << ((2 * (msr & 0xf)) + write);
2152
2153 if (offset == MSR_INVALID)
2154 return NESTED_EXIT_DONE;
2155
2156 /* Offset is in 32 bit units but need in 8 bit units */
2157 offset *= 4;
2158
2159 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2160 return NESTED_EXIT_DONE;
2161
2162 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2163 }
2164
2165 static int nested_svm_exit_special(struct vcpu_svm *svm)
2166 {
2167 u32 exit_code = svm->vmcb->control.exit_code;
2168
2169 switch (exit_code) {
2170 case SVM_EXIT_INTR:
2171 case SVM_EXIT_NMI:
2172 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2173 return NESTED_EXIT_HOST;
2174 case SVM_EXIT_NPF:
2175 /* For now we are always handling NPFs when using them */
2176 if (npt_enabled)
2177 return NESTED_EXIT_HOST;
2178 break;
2179 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2180 /* When we're shadowing, trap PFs, but not async PF */
2181 if (!npt_enabled && svm->apf_reason == 0)
2182 return NESTED_EXIT_HOST;
2183 break;
2184 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2185 nm_interception(svm);
2186 break;
2187 default:
2188 break;
2189 }
2190
2191 return NESTED_EXIT_CONTINUE;
2192 }
2193
2194 /*
2195 * If this function returns true, this #vmexit was already handled
2196 */
2197 static int nested_svm_intercept(struct vcpu_svm *svm)
2198 {
2199 u32 exit_code = svm->vmcb->control.exit_code;
2200 int vmexit = NESTED_EXIT_HOST;
2201
2202 switch (exit_code) {
2203 case SVM_EXIT_MSR:
2204 vmexit = nested_svm_exit_handled_msr(svm);
2205 break;
2206 case SVM_EXIT_IOIO:
2207 vmexit = nested_svm_intercept_ioio(svm);
2208 break;
2209 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2210 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2211 if (svm->nested.intercept_cr & bit)
2212 vmexit = NESTED_EXIT_DONE;
2213 break;
2214 }
2215 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2216 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2217 if (svm->nested.intercept_dr & bit)
2218 vmexit = NESTED_EXIT_DONE;
2219 break;
2220 }
2221 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2222 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2223 if (svm->nested.intercept_exceptions & excp_bits)
2224 vmexit = NESTED_EXIT_DONE;
2225 /* async page fault always cause vmexit */
2226 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2227 svm->apf_reason != 0)
2228 vmexit = NESTED_EXIT_DONE;
2229 break;
2230 }
2231 case SVM_EXIT_ERR: {
2232 vmexit = NESTED_EXIT_DONE;
2233 break;
2234 }
2235 default: {
2236 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2237 if (svm->nested.intercept & exit_bits)
2238 vmexit = NESTED_EXIT_DONE;
2239 }
2240 }
2241
2242 return vmexit;
2243 }
2244
2245 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2246 {
2247 int vmexit;
2248
2249 vmexit = nested_svm_intercept(svm);
2250
2251 if (vmexit == NESTED_EXIT_DONE)
2252 nested_svm_vmexit(svm);
2253
2254 return vmexit;
2255 }
2256
2257 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2258 {
2259 struct vmcb_control_area *dst = &dst_vmcb->control;
2260 struct vmcb_control_area *from = &from_vmcb->control;
2261
2262 dst->intercept_cr = from->intercept_cr;
2263 dst->intercept_dr = from->intercept_dr;
2264 dst->intercept_exceptions = from->intercept_exceptions;
2265 dst->intercept = from->intercept;
2266 dst->iopm_base_pa = from->iopm_base_pa;
2267 dst->msrpm_base_pa = from->msrpm_base_pa;
2268 dst->tsc_offset = from->tsc_offset;
2269 dst->asid = from->asid;
2270 dst->tlb_ctl = from->tlb_ctl;
2271 dst->int_ctl = from->int_ctl;
2272 dst->int_vector = from->int_vector;
2273 dst->int_state = from->int_state;
2274 dst->exit_code = from->exit_code;
2275 dst->exit_code_hi = from->exit_code_hi;
2276 dst->exit_info_1 = from->exit_info_1;
2277 dst->exit_info_2 = from->exit_info_2;
2278 dst->exit_int_info = from->exit_int_info;
2279 dst->exit_int_info_err = from->exit_int_info_err;
2280 dst->nested_ctl = from->nested_ctl;
2281 dst->event_inj = from->event_inj;
2282 dst->event_inj_err = from->event_inj_err;
2283 dst->nested_cr3 = from->nested_cr3;
2284 dst->lbr_ctl = from->lbr_ctl;
2285 }
2286
2287 static int nested_svm_vmexit(struct vcpu_svm *svm)
2288 {
2289 struct vmcb *nested_vmcb;
2290 struct vmcb *hsave = svm->nested.hsave;
2291 struct vmcb *vmcb = svm->vmcb;
2292 struct page *page;
2293
2294 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2295 vmcb->control.exit_info_1,
2296 vmcb->control.exit_info_2,
2297 vmcb->control.exit_int_info,
2298 vmcb->control.exit_int_info_err,
2299 KVM_ISA_SVM);
2300
2301 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2302 if (!nested_vmcb)
2303 return 1;
2304
2305 /* Exit Guest-Mode */
2306 leave_guest_mode(&svm->vcpu);
2307 svm->nested.vmcb = 0;
2308
2309 /* Give the current vmcb to the guest */
2310 disable_gif(svm);
2311
2312 nested_vmcb->save.es = vmcb->save.es;
2313 nested_vmcb->save.cs = vmcb->save.cs;
2314 nested_vmcb->save.ss = vmcb->save.ss;
2315 nested_vmcb->save.ds = vmcb->save.ds;
2316 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2317 nested_vmcb->save.idtr = vmcb->save.idtr;
2318 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2319 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2320 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2321 nested_vmcb->save.cr2 = vmcb->save.cr2;
2322 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2323 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2324 nested_vmcb->save.rip = vmcb->save.rip;
2325 nested_vmcb->save.rsp = vmcb->save.rsp;
2326 nested_vmcb->save.rax = vmcb->save.rax;
2327 nested_vmcb->save.dr7 = vmcb->save.dr7;
2328 nested_vmcb->save.dr6 = vmcb->save.dr6;
2329 nested_vmcb->save.cpl = vmcb->save.cpl;
2330
2331 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2332 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2333 nested_vmcb->control.int_state = vmcb->control.int_state;
2334 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2335 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2336 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2337 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2338 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2339 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2340 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2341
2342 /*
2343 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2344 * to make sure that we do not lose injected events. So check event_inj
2345 * here and copy it to exit_int_info if it is valid.
2346 * Exit_int_info and event_inj can't be both valid because the case
2347 * below only happens on a VMRUN instruction intercept which has
2348 * no valid exit_int_info set.
2349 */
2350 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2351 struct vmcb_control_area *nc = &nested_vmcb->control;
2352
2353 nc->exit_int_info = vmcb->control.event_inj;
2354 nc->exit_int_info_err = vmcb->control.event_inj_err;
2355 }
2356
2357 nested_vmcb->control.tlb_ctl = 0;
2358 nested_vmcb->control.event_inj = 0;
2359 nested_vmcb->control.event_inj_err = 0;
2360
2361 /* We always set V_INTR_MASKING and remember the old value in hflags */
2362 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2363 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2364
2365 /* Restore the original control entries */
2366 copy_vmcb_control_area(vmcb, hsave);
2367
2368 kvm_clear_exception_queue(&svm->vcpu);
2369 kvm_clear_interrupt_queue(&svm->vcpu);
2370
2371 svm->nested.nested_cr3 = 0;
2372
2373 /* Restore selected save entries */
2374 svm->vmcb->save.es = hsave->save.es;
2375 svm->vmcb->save.cs = hsave->save.cs;
2376 svm->vmcb->save.ss = hsave->save.ss;
2377 svm->vmcb->save.ds = hsave->save.ds;
2378 svm->vmcb->save.gdtr = hsave->save.gdtr;
2379 svm->vmcb->save.idtr = hsave->save.idtr;
2380 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2381 svm_set_efer(&svm->vcpu, hsave->save.efer);
2382 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2383 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2384 if (npt_enabled) {
2385 svm->vmcb->save.cr3 = hsave->save.cr3;
2386 svm->vcpu.arch.cr3 = hsave->save.cr3;
2387 } else {
2388 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2389 }
2390 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2391 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2392 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2393 svm->vmcb->save.dr7 = 0;
2394 svm->vmcb->save.cpl = 0;
2395 svm->vmcb->control.exit_int_info = 0;
2396
2397 mark_all_dirty(svm->vmcb);
2398
2399 nested_svm_unmap(page);
2400
2401 nested_svm_uninit_mmu_context(&svm->vcpu);
2402 kvm_mmu_reset_context(&svm->vcpu);
2403 kvm_mmu_load(&svm->vcpu);
2404
2405 return 0;
2406 }
2407
2408 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2409 {
2410 /*
2411 * This function merges the msr permission bitmaps of kvm and the
2412 * nested vmcb. It is omptimized in that it only merges the parts where
2413 * the kvm msr permission bitmap may contain zero bits
2414 */
2415 int i;
2416
2417 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2418 return true;
2419
2420 for (i = 0; i < MSRPM_OFFSETS; i++) {
2421 u32 value, p;
2422 u64 offset;
2423
2424 if (msrpm_offsets[i] == 0xffffffff)
2425 break;
2426
2427 p = msrpm_offsets[i];
2428 offset = svm->nested.vmcb_msrpm + (p * 4);
2429
2430 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2431 return false;
2432
2433 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2434 }
2435
2436 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2437
2438 return true;
2439 }
2440
2441 static bool nested_vmcb_checks(struct vmcb *vmcb)
2442 {
2443 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2444 return false;
2445
2446 if (vmcb->control.asid == 0)
2447 return false;
2448
2449 if (vmcb->control.nested_ctl && !npt_enabled)
2450 return false;
2451
2452 return true;
2453 }
2454
2455 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2456 {
2457 struct vmcb *nested_vmcb;
2458 struct vmcb *hsave = svm->nested.hsave;
2459 struct vmcb *vmcb = svm->vmcb;
2460 struct page *page;
2461 u64 vmcb_gpa;
2462
2463 vmcb_gpa = svm->vmcb->save.rax;
2464
2465 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2466 if (!nested_vmcb)
2467 return false;
2468
2469 if (!nested_vmcb_checks(nested_vmcb)) {
2470 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2471 nested_vmcb->control.exit_code_hi = 0;
2472 nested_vmcb->control.exit_info_1 = 0;
2473 nested_vmcb->control.exit_info_2 = 0;
2474
2475 nested_svm_unmap(page);
2476
2477 return false;
2478 }
2479
2480 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2481 nested_vmcb->save.rip,
2482 nested_vmcb->control.int_ctl,
2483 nested_vmcb->control.event_inj,
2484 nested_vmcb->control.nested_ctl);
2485
2486 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2487 nested_vmcb->control.intercept_cr >> 16,
2488 nested_vmcb->control.intercept_exceptions,
2489 nested_vmcb->control.intercept);
2490
2491 /* Clear internal status */
2492 kvm_clear_exception_queue(&svm->vcpu);
2493 kvm_clear_interrupt_queue(&svm->vcpu);
2494
2495 /*
2496 * Save the old vmcb, so we don't need to pick what we save, but can
2497 * restore everything when a VMEXIT occurs
2498 */
2499 hsave->save.es = vmcb->save.es;
2500 hsave->save.cs = vmcb->save.cs;
2501 hsave->save.ss = vmcb->save.ss;
2502 hsave->save.ds = vmcb->save.ds;
2503 hsave->save.gdtr = vmcb->save.gdtr;
2504 hsave->save.idtr = vmcb->save.idtr;
2505 hsave->save.efer = svm->vcpu.arch.efer;
2506 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2507 hsave->save.cr4 = svm->vcpu.arch.cr4;
2508 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2509 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2510 hsave->save.rsp = vmcb->save.rsp;
2511 hsave->save.rax = vmcb->save.rax;
2512 if (npt_enabled)
2513 hsave->save.cr3 = vmcb->save.cr3;
2514 else
2515 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2516
2517 copy_vmcb_control_area(hsave, vmcb);
2518
2519 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2520 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2521 else
2522 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2523
2524 if (nested_vmcb->control.nested_ctl) {
2525 kvm_mmu_unload(&svm->vcpu);
2526 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2527 nested_svm_init_mmu_context(&svm->vcpu);
2528 }
2529
2530 /* Load the nested guest state */
2531 svm->vmcb->save.es = nested_vmcb->save.es;
2532 svm->vmcb->save.cs = nested_vmcb->save.cs;
2533 svm->vmcb->save.ss = nested_vmcb->save.ss;
2534 svm->vmcb->save.ds = nested_vmcb->save.ds;
2535 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2536 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2537 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2538 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2539 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2540 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2541 if (npt_enabled) {
2542 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2543 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2544 } else
2545 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2546
2547 /* Guest paging mode is active - reset mmu */
2548 kvm_mmu_reset_context(&svm->vcpu);
2549
2550 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2551 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2552 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2553 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2554
2555 /* In case we don't even reach vcpu_run, the fields are not updated */
2556 svm->vmcb->save.rax = nested_vmcb->save.rax;
2557 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2558 svm->vmcb->save.rip = nested_vmcb->save.rip;
2559 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2560 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2561 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2562
2563 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2564 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2565
2566 /* cache intercepts */
2567 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2568 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2569 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2570 svm->nested.intercept = nested_vmcb->control.intercept;
2571
2572 svm_flush_tlb(&svm->vcpu);
2573 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2574 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2575 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2576 else
2577 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2578
2579 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2580 /* We only want the cr8 intercept bits of the guest */
2581 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2582 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2583 }
2584
2585 /* We don't want to see VMMCALLs from a nested guest */
2586 clr_intercept(svm, INTERCEPT_VMMCALL);
2587
2588 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2589 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2590 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2591 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2592 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2593 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2594
2595 nested_svm_unmap(page);
2596
2597 /* Enter Guest-Mode */
2598 enter_guest_mode(&svm->vcpu);
2599
2600 /*
2601 * Merge guest and host intercepts - must be called with vcpu in
2602 * guest-mode to take affect here
2603 */
2604 recalc_intercepts(svm);
2605
2606 svm->nested.vmcb = vmcb_gpa;
2607
2608 enable_gif(svm);
2609
2610 mark_all_dirty(svm->vmcb);
2611
2612 return true;
2613 }
2614
2615 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2616 {
2617 to_vmcb->save.fs = from_vmcb->save.fs;
2618 to_vmcb->save.gs = from_vmcb->save.gs;
2619 to_vmcb->save.tr = from_vmcb->save.tr;
2620 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2621 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2622 to_vmcb->save.star = from_vmcb->save.star;
2623 to_vmcb->save.lstar = from_vmcb->save.lstar;
2624 to_vmcb->save.cstar = from_vmcb->save.cstar;
2625 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2626 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2627 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2628 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2629 }
2630
2631 static int vmload_interception(struct vcpu_svm *svm)
2632 {
2633 struct vmcb *nested_vmcb;
2634 struct page *page;
2635
2636 if (nested_svm_check_permissions(svm))
2637 return 1;
2638
2639 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2640 if (!nested_vmcb)
2641 return 1;
2642
2643 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2644 skip_emulated_instruction(&svm->vcpu);
2645
2646 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2647 nested_svm_unmap(page);
2648
2649 return 1;
2650 }
2651
2652 static int vmsave_interception(struct vcpu_svm *svm)
2653 {
2654 struct vmcb *nested_vmcb;
2655 struct page *page;
2656
2657 if (nested_svm_check_permissions(svm))
2658 return 1;
2659
2660 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2661 if (!nested_vmcb)
2662 return 1;
2663
2664 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2665 skip_emulated_instruction(&svm->vcpu);
2666
2667 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2668 nested_svm_unmap(page);
2669
2670 return 1;
2671 }
2672
2673 static int vmrun_interception(struct vcpu_svm *svm)
2674 {
2675 if (nested_svm_check_permissions(svm))
2676 return 1;
2677
2678 /* Save rip after vmrun instruction */
2679 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2680
2681 if (!nested_svm_vmrun(svm))
2682 return 1;
2683
2684 if (!nested_svm_vmrun_msrpm(svm))
2685 goto failed;
2686
2687 return 1;
2688
2689 failed:
2690
2691 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2692 svm->vmcb->control.exit_code_hi = 0;
2693 svm->vmcb->control.exit_info_1 = 0;
2694 svm->vmcb->control.exit_info_2 = 0;
2695
2696 nested_svm_vmexit(svm);
2697
2698 return 1;
2699 }
2700
2701 static int stgi_interception(struct vcpu_svm *svm)
2702 {
2703 if (nested_svm_check_permissions(svm))
2704 return 1;
2705
2706 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2707 skip_emulated_instruction(&svm->vcpu);
2708 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2709
2710 enable_gif(svm);
2711
2712 return 1;
2713 }
2714
2715 static int clgi_interception(struct vcpu_svm *svm)
2716 {
2717 if (nested_svm_check_permissions(svm))
2718 return 1;
2719
2720 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2721 skip_emulated_instruction(&svm->vcpu);
2722
2723 disable_gif(svm);
2724
2725 /* After a CLGI no interrupts should come */
2726 svm_clear_vintr(svm);
2727 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2728
2729 mark_dirty(svm->vmcb, VMCB_INTR);
2730
2731 return 1;
2732 }
2733
2734 static int invlpga_interception(struct vcpu_svm *svm)
2735 {
2736 struct kvm_vcpu *vcpu = &svm->vcpu;
2737
2738 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2739 vcpu->arch.regs[VCPU_REGS_RAX]);
2740
2741 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2742 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2743
2744 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2745 skip_emulated_instruction(&svm->vcpu);
2746 return 1;
2747 }
2748
2749 static int skinit_interception(struct vcpu_svm *svm)
2750 {
2751 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2752
2753 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2754 return 1;
2755 }
2756
2757 static int xsetbv_interception(struct vcpu_svm *svm)
2758 {
2759 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2760 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2761
2762 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2763 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2764 skip_emulated_instruction(&svm->vcpu);
2765 }
2766
2767 return 1;
2768 }
2769
2770 static int invalid_op_interception(struct vcpu_svm *svm)
2771 {
2772 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2773 return 1;
2774 }
2775
2776 static int task_switch_interception(struct vcpu_svm *svm)
2777 {
2778 u16 tss_selector;
2779 int reason;
2780 int int_type = svm->vmcb->control.exit_int_info &
2781 SVM_EXITINTINFO_TYPE_MASK;
2782 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2783 uint32_t type =
2784 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2785 uint32_t idt_v =
2786 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2787 bool has_error_code = false;
2788 u32 error_code = 0;
2789
2790 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2791
2792 if (svm->vmcb->control.exit_info_2 &
2793 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2794 reason = TASK_SWITCH_IRET;
2795 else if (svm->vmcb->control.exit_info_2 &
2796 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2797 reason = TASK_SWITCH_JMP;
2798 else if (idt_v)
2799 reason = TASK_SWITCH_GATE;
2800 else
2801 reason = TASK_SWITCH_CALL;
2802
2803 if (reason == TASK_SWITCH_GATE) {
2804 switch (type) {
2805 case SVM_EXITINTINFO_TYPE_NMI:
2806 svm->vcpu.arch.nmi_injected = false;
2807 break;
2808 case SVM_EXITINTINFO_TYPE_EXEPT:
2809 if (svm->vmcb->control.exit_info_2 &
2810 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2811 has_error_code = true;
2812 error_code =
2813 (u32)svm->vmcb->control.exit_info_2;
2814 }
2815 kvm_clear_exception_queue(&svm->vcpu);
2816 break;
2817 case SVM_EXITINTINFO_TYPE_INTR:
2818 kvm_clear_interrupt_queue(&svm->vcpu);
2819 break;
2820 default:
2821 break;
2822 }
2823 }
2824
2825 if (reason != TASK_SWITCH_GATE ||
2826 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2827 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2828 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2829 skip_emulated_instruction(&svm->vcpu);
2830
2831 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2832 int_vec = -1;
2833
2834 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2835 has_error_code, error_code) == EMULATE_FAIL) {
2836 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2837 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2838 svm->vcpu.run->internal.ndata = 0;
2839 return 0;
2840 }
2841 return 1;
2842 }
2843
2844 static int cpuid_interception(struct vcpu_svm *svm)
2845 {
2846 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2847 kvm_emulate_cpuid(&svm->vcpu);
2848 return 1;
2849 }
2850
2851 static int iret_interception(struct vcpu_svm *svm)
2852 {
2853 ++svm->vcpu.stat.nmi_window_exits;
2854 clr_intercept(svm, INTERCEPT_IRET);
2855 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2856 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2857 return 1;
2858 }
2859
2860 static int invlpg_interception(struct vcpu_svm *svm)
2861 {
2862 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2864
2865 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2866 skip_emulated_instruction(&svm->vcpu);
2867 return 1;
2868 }
2869
2870 static int emulate_on_interception(struct vcpu_svm *svm)
2871 {
2872 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2873 }
2874
2875 static int rdpmc_interception(struct vcpu_svm *svm)
2876 {
2877 int err;
2878
2879 if (!static_cpu_has(X86_FEATURE_NRIPS))
2880 return emulate_on_interception(svm);
2881
2882 err = kvm_rdpmc(&svm->vcpu);
2883 kvm_complete_insn_gp(&svm->vcpu, err);
2884
2885 return 1;
2886 }
2887
2888 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2889 {
2890 unsigned long cr0 = svm->vcpu.arch.cr0;
2891 bool ret = false;
2892 u64 intercept;
2893
2894 intercept = svm->nested.intercept;
2895
2896 if (!is_guest_mode(&svm->vcpu) ||
2897 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2898 return false;
2899
2900 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2901 val &= ~SVM_CR0_SELECTIVE_MASK;
2902
2903 if (cr0 ^ val) {
2904 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2905 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2906 }
2907
2908 return ret;
2909 }
2910
2911 #define CR_VALID (1ULL << 63)
2912
2913 static int cr_interception(struct vcpu_svm *svm)
2914 {
2915 int reg, cr;
2916 unsigned long val;
2917 int err;
2918
2919 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2920 return emulate_on_interception(svm);
2921
2922 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2923 return emulate_on_interception(svm);
2924
2925 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2926 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2927
2928 err = 0;
2929 if (cr >= 16) { /* mov to cr */
2930 cr -= 16;
2931 val = kvm_register_read(&svm->vcpu, reg);
2932 switch (cr) {
2933 case 0:
2934 if (!check_selective_cr0_intercepted(svm, val))
2935 err = kvm_set_cr0(&svm->vcpu, val);
2936 else
2937 return 1;
2938
2939 break;
2940 case 3:
2941 err = kvm_set_cr3(&svm->vcpu, val);
2942 break;
2943 case 4:
2944 err = kvm_set_cr4(&svm->vcpu, val);
2945 break;
2946 case 8:
2947 err = kvm_set_cr8(&svm->vcpu, val);
2948 break;
2949 default:
2950 WARN(1, "unhandled write to CR%d", cr);
2951 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2952 return 1;
2953 }
2954 } else { /* mov from cr */
2955 switch (cr) {
2956 case 0:
2957 val = kvm_read_cr0(&svm->vcpu);
2958 break;
2959 case 2:
2960 val = svm->vcpu.arch.cr2;
2961 break;
2962 case 3:
2963 val = kvm_read_cr3(&svm->vcpu);
2964 break;
2965 case 4:
2966 val = kvm_read_cr4(&svm->vcpu);
2967 break;
2968 case 8:
2969 val = kvm_get_cr8(&svm->vcpu);
2970 break;
2971 default:
2972 WARN(1, "unhandled read from CR%d", cr);
2973 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2974 return 1;
2975 }
2976 kvm_register_write(&svm->vcpu, reg, val);
2977 }
2978 kvm_complete_insn_gp(&svm->vcpu, err);
2979
2980 return 1;
2981 }
2982
2983 static int dr_interception(struct vcpu_svm *svm)
2984 {
2985 int reg, dr;
2986 unsigned long val;
2987 int err;
2988
2989 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2990 return emulate_on_interception(svm);
2991
2992 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2993 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2994
2995 if (dr >= 16) { /* mov to DRn */
2996 val = kvm_register_read(&svm->vcpu, reg);
2997 kvm_set_dr(&svm->vcpu, dr - 16, val);
2998 } else {
2999 err = kvm_get_dr(&svm->vcpu, dr, &val);
3000 if (!err)
3001 kvm_register_write(&svm->vcpu, reg, val);
3002 }
3003
3004 skip_emulated_instruction(&svm->vcpu);
3005
3006 return 1;
3007 }
3008
3009 static int cr8_write_interception(struct vcpu_svm *svm)
3010 {
3011 struct kvm_run *kvm_run = svm->vcpu.run;
3012 int r;
3013
3014 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3015 /* instruction emulation calls kvm_set_cr8() */
3016 r = cr_interception(svm);
3017 if (irqchip_in_kernel(svm->vcpu.kvm)) {
3018 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3019 return r;
3020 }
3021 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3022 return r;
3023 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3024 return 0;
3025 }
3026
3027 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
3028 {
3029 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3030 return vmcb->control.tsc_offset +
3031 svm_scale_tsc(vcpu, native_read_tsc());
3032 }
3033
3034 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3035 {
3036 struct vcpu_svm *svm = to_svm(vcpu);
3037
3038 switch (ecx) {
3039 case MSR_IA32_TSC: {
3040 *data = svm->vmcb->control.tsc_offset +
3041 svm_scale_tsc(vcpu, native_read_tsc());
3042
3043 break;
3044 }
3045 case MSR_STAR:
3046 *data = svm->vmcb->save.star;
3047 break;
3048 #ifdef CONFIG_X86_64
3049 case MSR_LSTAR:
3050 *data = svm->vmcb->save.lstar;
3051 break;
3052 case MSR_CSTAR:
3053 *data = svm->vmcb->save.cstar;
3054 break;
3055 case MSR_KERNEL_GS_BASE:
3056 *data = svm->vmcb->save.kernel_gs_base;
3057 break;
3058 case MSR_SYSCALL_MASK:
3059 *data = svm->vmcb->save.sfmask;
3060 break;
3061 #endif
3062 case MSR_IA32_SYSENTER_CS:
3063 *data = svm->vmcb->save.sysenter_cs;
3064 break;
3065 case MSR_IA32_SYSENTER_EIP:
3066 *data = svm->sysenter_eip;
3067 break;
3068 case MSR_IA32_SYSENTER_ESP:
3069 *data = svm->sysenter_esp;
3070 break;
3071 /*
3072 * Nobody will change the following 5 values in the VMCB so we can
3073 * safely return them on rdmsr. They will always be 0 until LBRV is
3074 * implemented.
3075 */
3076 case MSR_IA32_DEBUGCTLMSR:
3077 *data = svm->vmcb->save.dbgctl;
3078 break;
3079 case MSR_IA32_LASTBRANCHFROMIP:
3080 *data = svm->vmcb->save.br_from;
3081 break;
3082 case MSR_IA32_LASTBRANCHTOIP:
3083 *data = svm->vmcb->save.br_to;
3084 break;
3085 case MSR_IA32_LASTINTFROMIP:
3086 *data = svm->vmcb->save.last_excp_from;
3087 break;
3088 case MSR_IA32_LASTINTTOIP:
3089 *data = svm->vmcb->save.last_excp_to;
3090 break;
3091 case MSR_VM_HSAVE_PA:
3092 *data = svm->nested.hsave_msr;
3093 break;
3094 case MSR_VM_CR:
3095 *data = svm->nested.vm_cr_msr;
3096 break;
3097 case MSR_IA32_UCODE_REV:
3098 *data = 0x01000065;
3099 break;
3100 default:
3101 return kvm_get_msr_common(vcpu, ecx, data);
3102 }
3103 return 0;
3104 }
3105
3106 static int rdmsr_interception(struct vcpu_svm *svm)
3107 {
3108 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3109 u64 data;
3110
3111 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3112 trace_kvm_msr_read_ex(ecx);
3113 kvm_inject_gp(&svm->vcpu, 0);
3114 } else {
3115 trace_kvm_msr_read(ecx, data);
3116
3117 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3118 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3119 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3120 skip_emulated_instruction(&svm->vcpu);
3121 }
3122 return 1;
3123 }
3124
3125 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3126 {
3127 struct vcpu_svm *svm = to_svm(vcpu);
3128 int svm_dis, chg_mask;
3129
3130 if (data & ~SVM_VM_CR_VALID_MASK)
3131 return 1;
3132
3133 chg_mask = SVM_VM_CR_VALID_MASK;
3134
3135 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3136 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3137
3138 svm->nested.vm_cr_msr &= ~chg_mask;
3139 svm->nested.vm_cr_msr |= (data & chg_mask);
3140
3141 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3142
3143 /* check for svm_disable while efer.svme is set */
3144 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3145 return 1;
3146
3147 return 0;
3148 }
3149
3150 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3151 {
3152 struct vcpu_svm *svm = to_svm(vcpu);
3153
3154 switch (ecx) {
3155 case MSR_IA32_TSC:
3156 kvm_write_tsc(vcpu, data);
3157 break;
3158 case MSR_STAR:
3159 svm->vmcb->save.star = data;
3160 break;
3161 #ifdef CONFIG_X86_64
3162 case MSR_LSTAR:
3163 svm->vmcb->save.lstar = data;
3164 break;
3165 case MSR_CSTAR:
3166 svm->vmcb->save.cstar = data;
3167 break;
3168 case MSR_KERNEL_GS_BASE:
3169 svm->vmcb->save.kernel_gs_base = data;
3170 break;
3171 case MSR_SYSCALL_MASK:
3172 svm->vmcb->save.sfmask = data;
3173 break;
3174 #endif
3175 case MSR_IA32_SYSENTER_CS:
3176 svm->vmcb->save.sysenter_cs = data;
3177 break;
3178 case MSR_IA32_SYSENTER_EIP:
3179 svm->sysenter_eip = data;
3180 svm->vmcb->save.sysenter_eip = data;
3181 break;
3182 case MSR_IA32_SYSENTER_ESP:
3183 svm->sysenter_esp = data;
3184 svm->vmcb->save.sysenter_esp = data;
3185 break;
3186 case MSR_IA32_DEBUGCTLMSR:
3187 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3188 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3189 __func__, data);
3190 break;
3191 }
3192 if (data & DEBUGCTL_RESERVED_BITS)
3193 return 1;
3194
3195 svm->vmcb->save.dbgctl = data;
3196 mark_dirty(svm->vmcb, VMCB_LBR);
3197 if (data & (1ULL<<0))
3198 svm_enable_lbrv(svm);
3199 else
3200 svm_disable_lbrv(svm);
3201 break;
3202 case MSR_VM_HSAVE_PA:
3203 svm->nested.hsave_msr = data;
3204 break;
3205 case MSR_VM_CR:
3206 return svm_set_vm_cr(vcpu, data);
3207 case MSR_VM_IGNNE:
3208 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3209 break;
3210 default:
3211 return kvm_set_msr_common(vcpu, ecx, data);
3212 }
3213 return 0;
3214 }
3215
3216 static int wrmsr_interception(struct vcpu_svm *svm)
3217 {
3218 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3219 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3220 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3221
3222
3223 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3224 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3225 trace_kvm_msr_write_ex(ecx, data);
3226 kvm_inject_gp(&svm->vcpu, 0);
3227 } else {
3228 trace_kvm_msr_write(ecx, data);
3229 skip_emulated_instruction(&svm->vcpu);
3230 }
3231 return 1;
3232 }
3233
3234 static int msr_interception(struct vcpu_svm *svm)
3235 {
3236 if (svm->vmcb->control.exit_info_1)
3237 return wrmsr_interception(svm);
3238 else
3239 return rdmsr_interception(svm);
3240 }
3241
3242 static int interrupt_window_interception(struct vcpu_svm *svm)
3243 {
3244 struct kvm_run *kvm_run = svm->vcpu.run;
3245
3246 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3247 svm_clear_vintr(svm);
3248 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3249 mark_dirty(svm->vmcb, VMCB_INTR);
3250 ++svm->vcpu.stat.irq_window_exits;
3251 /*
3252 * If the user space waits to inject interrupts, exit as soon as
3253 * possible
3254 */
3255 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3256 kvm_run->request_interrupt_window &&
3257 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3258 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3259 return 0;
3260 }
3261
3262 return 1;
3263 }
3264
3265 static int pause_interception(struct vcpu_svm *svm)
3266 {
3267 kvm_vcpu_on_spin(&(svm->vcpu));
3268 return 1;
3269 }
3270
3271 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3272 [SVM_EXIT_READ_CR0] = cr_interception,
3273 [SVM_EXIT_READ_CR3] = cr_interception,
3274 [SVM_EXIT_READ_CR4] = cr_interception,
3275 [SVM_EXIT_READ_CR8] = cr_interception,
3276 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3277 [SVM_EXIT_WRITE_CR0] = cr_interception,
3278 [SVM_EXIT_WRITE_CR3] = cr_interception,
3279 [SVM_EXIT_WRITE_CR4] = cr_interception,
3280 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3281 [SVM_EXIT_READ_DR0] = dr_interception,
3282 [SVM_EXIT_READ_DR1] = dr_interception,
3283 [SVM_EXIT_READ_DR2] = dr_interception,
3284 [SVM_EXIT_READ_DR3] = dr_interception,
3285 [SVM_EXIT_READ_DR4] = dr_interception,
3286 [SVM_EXIT_READ_DR5] = dr_interception,
3287 [SVM_EXIT_READ_DR6] = dr_interception,
3288 [SVM_EXIT_READ_DR7] = dr_interception,
3289 [SVM_EXIT_WRITE_DR0] = dr_interception,
3290 [SVM_EXIT_WRITE_DR1] = dr_interception,
3291 [SVM_EXIT_WRITE_DR2] = dr_interception,
3292 [SVM_EXIT_WRITE_DR3] = dr_interception,
3293 [SVM_EXIT_WRITE_DR4] = dr_interception,
3294 [SVM_EXIT_WRITE_DR5] = dr_interception,
3295 [SVM_EXIT_WRITE_DR6] = dr_interception,
3296 [SVM_EXIT_WRITE_DR7] = dr_interception,
3297 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3298 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3299 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3300 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3301 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3302 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3303 [SVM_EXIT_INTR] = intr_interception,
3304 [SVM_EXIT_NMI] = nmi_interception,
3305 [SVM_EXIT_SMI] = nop_on_interception,
3306 [SVM_EXIT_INIT] = nop_on_interception,
3307 [SVM_EXIT_VINTR] = interrupt_window_interception,
3308 [SVM_EXIT_RDPMC] = rdpmc_interception,
3309 [SVM_EXIT_CPUID] = cpuid_interception,
3310 [SVM_EXIT_IRET] = iret_interception,
3311 [SVM_EXIT_INVD] = emulate_on_interception,
3312 [SVM_EXIT_PAUSE] = pause_interception,
3313 [SVM_EXIT_HLT] = halt_interception,
3314 [SVM_EXIT_INVLPG] = invlpg_interception,
3315 [SVM_EXIT_INVLPGA] = invlpga_interception,
3316 [SVM_EXIT_IOIO] = io_interception,
3317 [SVM_EXIT_MSR] = msr_interception,
3318 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3319 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3320 [SVM_EXIT_VMRUN] = vmrun_interception,
3321 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3322 [SVM_EXIT_VMLOAD] = vmload_interception,
3323 [SVM_EXIT_VMSAVE] = vmsave_interception,
3324 [SVM_EXIT_STGI] = stgi_interception,
3325 [SVM_EXIT_CLGI] = clgi_interception,
3326 [SVM_EXIT_SKINIT] = skinit_interception,
3327 [SVM_EXIT_WBINVD] = emulate_on_interception,
3328 [SVM_EXIT_MONITOR] = invalid_op_interception,
3329 [SVM_EXIT_MWAIT] = invalid_op_interception,
3330 [SVM_EXIT_XSETBV] = xsetbv_interception,
3331 [SVM_EXIT_NPF] = pf_interception,
3332 };
3333
3334 static void dump_vmcb(struct kvm_vcpu *vcpu)
3335 {
3336 struct vcpu_svm *svm = to_svm(vcpu);
3337 struct vmcb_control_area *control = &svm->vmcb->control;
3338 struct vmcb_save_area *save = &svm->vmcb->save;
3339
3340 pr_err("VMCB Control Area:\n");
3341 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3342 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3343 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3344 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3345 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3346 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3347 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3348 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3349 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3350 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3351 pr_err("%-20s%d\n", "asid:", control->asid);
3352 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3353 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3354 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3355 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3356 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3357 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3358 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3359 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3360 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3361 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3362 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3363 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3364 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3365 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3366 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3367 pr_err("VMCB State Save Area:\n");
3368 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369 "es:",
3370 save->es.selector, save->es.attrib,
3371 save->es.limit, save->es.base);
3372 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373 "cs:",
3374 save->cs.selector, save->cs.attrib,
3375 save->cs.limit, save->cs.base);
3376 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377 "ss:",
3378 save->ss.selector, save->ss.attrib,
3379 save->ss.limit, save->ss.base);
3380 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381 "ds:",
3382 save->ds.selector, save->ds.attrib,
3383 save->ds.limit, save->ds.base);
3384 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385 "fs:",
3386 save->fs.selector, save->fs.attrib,
3387 save->fs.limit, save->fs.base);
3388 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389 "gs:",
3390 save->gs.selector, save->gs.attrib,
3391 save->gs.limit, save->gs.base);
3392 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393 "gdtr:",
3394 save->gdtr.selector, save->gdtr.attrib,
3395 save->gdtr.limit, save->gdtr.base);
3396 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397 "ldtr:",
3398 save->ldtr.selector, save->ldtr.attrib,
3399 save->ldtr.limit, save->ldtr.base);
3400 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401 "idtr:",
3402 save->idtr.selector, save->idtr.attrib,
3403 save->idtr.limit, save->idtr.base);
3404 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3405 "tr:",
3406 save->tr.selector, save->tr.attrib,
3407 save->tr.limit, save->tr.base);
3408 pr_err("cpl: %d efer: %016llx\n",
3409 save->cpl, save->efer);
3410 pr_err("%-15s %016llx %-13s %016llx\n",
3411 "cr0:", save->cr0, "cr2:", save->cr2);
3412 pr_err("%-15s %016llx %-13s %016llx\n",
3413 "cr3:", save->cr3, "cr4:", save->cr4);
3414 pr_err("%-15s %016llx %-13s %016llx\n",
3415 "dr6:", save->dr6, "dr7:", save->dr7);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "rip:", save->rip, "rflags:", save->rflags);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "rsp:", save->rsp, "rax:", save->rax);
3420 pr_err("%-15s %016llx %-13s %016llx\n",
3421 "star:", save->star, "lstar:", save->lstar);
3422 pr_err("%-15s %016llx %-13s %016llx\n",
3423 "cstar:", save->cstar, "sfmask:", save->sfmask);
3424 pr_err("%-15s %016llx %-13s %016llx\n",
3425 "kernel_gs_base:", save->kernel_gs_base,
3426 "sysenter_cs:", save->sysenter_cs);
3427 pr_err("%-15s %016llx %-13s %016llx\n",
3428 "sysenter_esp:", save->sysenter_esp,
3429 "sysenter_eip:", save->sysenter_eip);
3430 pr_err("%-15s %016llx %-13s %016llx\n",
3431 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3432 pr_err("%-15s %016llx %-13s %016llx\n",
3433 "br_from:", save->br_from, "br_to:", save->br_to);
3434 pr_err("%-15s %016llx %-13s %016llx\n",
3435 "excp_from:", save->last_excp_from,
3436 "excp_to:", save->last_excp_to);
3437 }
3438
3439 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3440 {
3441 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3442
3443 *info1 = control->exit_info_1;
3444 *info2 = control->exit_info_2;
3445 }
3446
3447 static int handle_exit(struct kvm_vcpu *vcpu)
3448 {
3449 struct vcpu_svm *svm = to_svm(vcpu);
3450 struct kvm_run *kvm_run = vcpu->run;
3451 u32 exit_code = svm->vmcb->control.exit_code;
3452
3453 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3454 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3455 if (npt_enabled)
3456 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3457
3458 if (unlikely(svm->nested.exit_required)) {
3459 nested_svm_vmexit(svm);
3460 svm->nested.exit_required = false;
3461
3462 return 1;
3463 }
3464
3465 if (is_guest_mode(vcpu)) {
3466 int vmexit;
3467
3468 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3469 svm->vmcb->control.exit_info_1,
3470 svm->vmcb->control.exit_info_2,
3471 svm->vmcb->control.exit_int_info,
3472 svm->vmcb->control.exit_int_info_err,
3473 KVM_ISA_SVM);
3474
3475 vmexit = nested_svm_exit_special(svm);
3476
3477 if (vmexit == NESTED_EXIT_CONTINUE)
3478 vmexit = nested_svm_exit_handled(svm);
3479
3480 if (vmexit == NESTED_EXIT_DONE)
3481 return 1;
3482 }
3483
3484 svm_complete_interrupts(svm);
3485
3486 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3487 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3488 kvm_run->fail_entry.hardware_entry_failure_reason
3489 = svm->vmcb->control.exit_code;
3490 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3491 dump_vmcb(vcpu);
3492 return 0;
3493 }
3494
3495 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3496 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3497 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3498 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3499 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3500 "exit_code 0x%x\n",
3501 __func__, svm->vmcb->control.exit_int_info,
3502 exit_code);
3503
3504 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3505 || !svm_exit_handlers[exit_code]) {
3506 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3507 kvm_run->hw.hardware_exit_reason = exit_code;
3508 return 0;
3509 }
3510
3511 return svm_exit_handlers[exit_code](svm);
3512 }
3513
3514 static void reload_tss(struct kvm_vcpu *vcpu)
3515 {
3516 int cpu = raw_smp_processor_id();
3517
3518 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3519 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3520 load_TR_desc();
3521 }
3522
3523 static void pre_svm_run(struct vcpu_svm *svm)
3524 {
3525 int cpu = raw_smp_processor_id();
3526
3527 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3528
3529 /* FIXME: handle wraparound of asid_generation */
3530 if (svm->asid_generation != sd->asid_generation)
3531 new_asid(svm, sd);
3532 }
3533
3534 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3535 {
3536 struct vcpu_svm *svm = to_svm(vcpu);
3537
3538 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3539 vcpu->arch.hflags |= HF_NMI_MASK;
3540 set_intercept(svm, INTERCEPT_IRET);
3541 ++vcpu->stat.nmi_injections;
3542 }
3543
3544 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3545 {
3546 struct vmcb_control_area *control;
3547
3548 control = &svm->vmcb->control;
3549 control->int_vector = irq;
3550 control->int_ctl &= ~V_INTR_PRIO_MASK;
3551 control->int_ctl |= V_IRQ_MASK |
3552 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3553 mark_dirty(svm->vmcb, VMCB_INTR);
3554 }
3555
3556 static void svm_set_irq(struct kvm_vcpu *vcpu)
3557 {
3558 struct vcpu_svm *svm = to_svm(vcpu);
3559
3560 BUG_ON(!(gif_set(svm)));
3561
3562 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3563 ++vcpu->stat.irq_injections;
3564
3565 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3566 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3567 }
3568
3569 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3570 {
3571 struct vcpu_svm *svm = to_svm(vcpu);
3572
3573 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3574 return;
3575
3576 if (irr == -1)
3577 return;
3578
3579 if (tpr >= irr)
3580 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3581 }
3582
3583 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3584 {
3585 struct vcpu_svm *svm = to_svm(vcpu);
3586 struct vmcb *vmcb = svm->vmcb;
3587 int ret;
3588 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3589 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3590 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3591
3592 return ret;
3593 }
3594
3595 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3596 {
3597 struct vcpu_svm *svm = to_svm(vcpu);
3598
3599 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3600 }
3601
3602 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3603 {
3604 struct vcpu_svm *svm = to_svm(vcpu);
3605
3606 if (masked) {
3607 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3608 set_intercept(svm, INTERCEPT_IRET);
3609 } else {
3610 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3611 clr_intercept(svm, INTERCEPT_IRET);
3612 }
3613 }
3614
3615 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3616 {
3617 struct vcpu_svm *svm = to_svm(vcpu);
3618 struct vmcb *vmcb = svm->vmcb;
3619 int ret;
3620
3621 if (!gif_set(svm) ||
3622 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3623 return 0;
3624
3625 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3626
3627 if (is_guest_mode(vcpu))
3628 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3629
3630 return ret;
3631 }
3632
3633 static void enable_irq_window(struct kvm_vcpu *vcpu)
3634 {
3635 struct vcpu_svm *svm = to_svm(vcpu);
3636
3637 /*
3638 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3639 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3640 * get that intercept, this function will be called again though and
3641 * we'll get the vintr intercept.
3642 */
3643 if (gif_set(svm) && nested_svm_intr(svm)) {
3644 svm_set_vintr(svm);
3645 svm_inject_irq(svm, 0x0);
3646 }
3647 }
3648
3649 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3650 {
3651 struct vcpu_svm *svm = to_svm(vcpu);
3652
3653 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3654 == HF_NMI_MASK)
3655 return; /* IRET will cause a vm exit */
3656
3657 /*
3658 * Something prevents NMI from been injected. Single step over possible
3659 * problem (IRET or exception injection or interrupt shadow)
3660 */
3661 svm->nmi_singlestep = true;
3662 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3663 update_db_intercept(vcpu);
3664 }
3665
3666 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3667 {
3668 return 0;
3669 }
3670
3671 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3672 {
3673 struct vcpu_svm *svm = to_svm(vcpu);
3674
3675 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3676 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3677 else
3678 svm->asid_generation--;
3679 }
3680
3681 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3682 {
3683 }
3684
3685 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3686 {
3687 struct vcpu_svm *svm = to_svm(vcpu);
3688
3689 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3690 return;
3691
3692 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3693 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3694 kvm_set_cr8(vcpu, cr8);
3695 }
3696 }
3697
3698 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3699 {
3700 struct vcpu_svm *svm = to_svm(vcpu);
3701 u64 cr8;
3702
3703 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3704 return;
3705
3706 cr8 = kvm_get_cr8(vcpu);
3707 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3708 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3709 }
3710
3711 static void svm_complete_interrupts(struct vcpu_svm *svm)
3712 {
3713 u8 vector;
3714 int type;
3715 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3716 unsigned int3_injected = svm->int3_injected;
3717
3718 svm->int3_injected = 0;
3719
3720 /*
3721 * If we've made progress since setting HF_IRET_MASK, we've
3722 * executed an IRET and can allow NMI injection.
3723 */
3724 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3725 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3726 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3727 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3728 }
3729
3730 svm->vcpu.arch.nmi_injected = false;
3731 kvm_clear_exception_queue(&svm->vcpu);
3732 kvm_clear_interrupt_queue(&svm->vcpu);
3733
3734 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3735 return;
3736
3737 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3738
3739 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3740 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3741
3742 switch (type) {
3743 case SVM_EXITINTINFO_TYPE_NMI:
3744 svm->vcpu.arch.nmi_injected = true;
3745 break;
3746 case SVM_EXITINTINFO_TYPE_EXEPT:
3747 /*
3748 * In case of software exceptions, do not reinject the vector,
3749 * but re-execute the instruction instead. Rewind RIP first
3750 * if we emulated INT3 before.
3751 */
3752 if (kvm_exception_is_soft(vector)) {
3753 if (vector == BP_VECTOR && int3_injected &&
3754 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3755 kvm_rip_write(&svm->vcpu,
3756 kvm_rip_read(&svm->vcpu) -
3757 int3_injected);
3758 break;
3759 }
3760 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3761 u32 err = svm->vmcb->control.exit_int_info_err;
3762 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3763
3764 } else
3765 kvm_requeue_exception(&svm->vcpu, vector);
3766 break;
3767 case SVM_EXITINTINFO_TYPE_INTR:
3768 kvm_queue_interrupt(&svm->vcpu, vector, false);
3769 break;
3770 default:
3771 break;
3772 }
3773 }
3774
3775 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3776 {
3777 struct vcpu_svm *svm = to_svm(vcpu);
3778 struct vmcb_control_area *control = &svm->vmcb->control;
3779
3780 control->exit_int_info = control->event_inj;
3781 control->exit_int_info_err = control->event_inj_err;
3782 control->event_inj = 0;
3783 svm_complete_interrupts(svm);
3784 }
3785
3786 #ifdef CONFIG_X86_64
3787 #define R "r"
3788 #else
3789 #define R "e"
3790 #endif
3791
3792 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3793 {
3794 struct vcpu_svm *svm = to_svm(vcpu);
3795
3796 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3797 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3798 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3799
3800 /*
3801 * A vmexit emulation is required before the vcpu can be executed
3802 * again.
3803 */
3804 if (unlikely(svm->nested.exit_required))
3805 return;
3806
3807 pre_svm_run(svm);
3808
3809 sync_lapic_to_cr8(vcpu);
3810
3811 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3812
3813 clgi();
3814
3815 local_irq_enable();
3816
3817 asm volatile (
3818 "push %%"R"bp; \n\t"
3819 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3820 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3821 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3822 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3823 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3824 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3825 #ifdef CONFIG_X86_64
3826 "mov %c[r8](%[svm]), %%r8 \n\t"
3827 "mov %c[r9](%[svm]), %%r9 \n\t"
3828 "mov %c[r10](%[svm]), %%r10 \n\t"
3829 "mov %c[r11](%[svm]), %%r11 \n\t"
3830 "mov %c[r12](%[svm]), %%r12 \n\t"
3831 "mov %c[r13](%[svm]), %%r13 \n\t"
3832 "mov %c[r14](%[svm]), %%r14 \n\t"
3833 "mov %c[r15](%[svm]), %%r15 \n\t"
3834 #endif
3835
3836 /* Enter guest mode */
3837 "push %%"R"ax \n\t"
3838 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3839 __ex(SVM_VMLOAD) "\n\t"
3840 __ex(SVM_VMRUN) "\n\t"
3841 __ex(SVM_VMSAVE) "\n\t"
3842 "pop %%"R"ax \n\t"
3843
3844 /* Save guest registers, load host registers */
3845 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3846 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3847 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3848 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3849 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3850 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3851 #ifdef CONFIG_X86_64
3852 "mov %%r8, %c[r8](%[svm]) \n\t"
3853 "mov %%r9, %c[r9](%[svm]) \n\t"
3854 "mov %%r10, %c[r10](%[svm]) \n\t"
3855 "mov %%r11, %c[r11](%[svm]) \n\t"
3856 "mov %%r12, %c[r12](%[svm]) \n\t"
3857 "mov %%r13, %c[r13](%[svm]) \n\t"
3858 "mov %%r14, %c[r14](%[svm]) \n\t"
3859 "mov %%r15, %c[r15](%[svm]) \n\t"
3860 #endif
3861 "pop %%"R"bp"
3862 :
3863 : [svm]"a"(svm),
3864 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3865 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3866 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3867 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3868 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3869 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3870 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3871 #ifdef CONFIG_X86_64
3872 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3873 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3874 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3875 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3876 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3877 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3878 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3879 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3880 #endif
3881 : "cc", "memory"
3882 , R"bx", R"cx", R"dx", R"si", R"di"
3883 #ifdef CONFIG_X86_64
3884 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3885 #endif
3886 );
3887
3888 #ifdef CONFIG_X86_64
3889 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3890 #else
3891 loadsegment(fs, svm->host.fs);
3892 #ifndef CONFIG_X86_32_LAZY_GS
3893 loadsegment(gs, svm->host.gs);
3894 #endif
3895 #endif
3896
3897 reload_tss(vcpu);
3898
3899 local_irq_disable();
3900
3901 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3902 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3903 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3904 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3905
3906 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3907
3908 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3909 kvm_before_handle_nmi(&svm->vcpu);
3910
3911 stgi();
3912
3913 /* Any pending NMI will happen here */
3914
3915 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3916 kvm_after_handle_nmi(&svm->vcpu);
3917
3918 sync_cr8_to_lapic(vcpu);
3919
3920 svm->next_rip = 0;
3921
3922 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3923
3924 /* if exit due to PF check for async PF */
3925 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3926 svm->apf_reason = kvm_read_and_reset_pf_reason();
3927
3928 if (npt_enabled) {
3929 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3930 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3931 }
3932
3933 /*
3934 * We need to handle MC intercepts here before the vcpu has a chance to
3935 * change the physical cpu
3936 */
3937 if (unlikely(svm->vmcb->control.exit_code ==
3938 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3939 svm_handle_mce(svm);
3940
3941 mark_all_clean(svm->vmcb);
3942 }
3943
3944 #undef R
3945
3946 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3947 {
3948 struct vcpu_svm *svm = to_svm(vcpu);
3949
3950 svm->vmcb->save.cr3 = root;
3951 mark_dirty(svm->vmcb, VMCB_CR);
3952 svm_flush_tlb(vcpu);
3953 }
3954
3955 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3956 {
3957 struct vcpu_svm *svm = to_svm(vcpu);
3958
3959 svm->vmcb->control.nested_cr3 = root;
3960 mark_dirty(svm->vmcb, VMCB_NPT);
3961
3962 /* Also sync guest cr3 here in case we live migrate */
3963 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3964 mark_dirty(svm->vmcb, VMCB_CR);
3965
3966 svm_flush_tlb(vcpu);
3967 }
3968
3969 static int is_disabled(void)
3970 {
3971 u64 vm_cr;
3972
3973 rdmsrl(MSR_VM_CR, vm_cr);
3974 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3975 return 1;
3976
3977 return 0;
3978 }
3979
3980 static void
3981 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3982 {
3983 /*
3984 * Patch in the VMMCALL instruction:
3985 */
3986 hypercall[0] = 0x0f;
3987 hypercall[1] = 0x01;
3988 hypercall[2] = 0xd9;
3989 }
3990
3991 static void svm_check_processor_compat(void *rtn)
3992 {
3993 *(int *)rtn = 0;
3994 }
3995
3996 static bool svm_cpu_has_accelerated_tpr(void)
3997 {
3998 return false;
3999 }
4000
4001 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4002 {
4003 return 0;
4004 }
4005
4006 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4007 {
4008 }
4009
4010 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4011 {
4012 switch (func) {
4013 case 0x80000001:
4014 if (nested)
4015 entry->ecx |= (1 << 2); /* Set SVM bit */
4016 break;
4017 case 0x8000000A:
4018 entry->eax = 1; /* SVM revision 1 */
4019 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4020 ASID emulation to nested SVM */
4021 entry->ecx = 0; /* Reserved */
4022 entry->edx = 0; /* Per default do not support any
4023 additional features */
4024
4025 /* Support next_rip if host supports it */
4026 if (boot_cpu_has(X86_FEATURE_NRIPS))
4027 entry->edx |= SVM_FEATURE_NRIP;
4028
4029 /* Support NPT for the guest if enabled */
4030 if (npt_enabled)
4031 entry->edx |= SVM_FEATURE_NPT;
4032
4033 break;
4034 }
4035 }
4036
4037 static int svm_get_lpage_level(void)
4038 {
4039 return PT_PDPE_LEVEL;
4040 }
4041
4042 static bool svm_rdtscp_supported(void)
4043 {
4044 return false;
4045 }
4046
4047 static bool svm_invpcid_supported(void)
4048 {
4049 return false;
4050 }
4051
4052 static bool svm_has_wbinvd_exit(void)
4053 {
4054 return true;
4055 }
4056
4057 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4058 {
4059 struct vcpu_svm *svm = to_svm(vcpu);
4060
4061 set_exception_intercept(svm, NM_VECTOR);
4062 update_cr0_intercept(svm);
4063 }
4064
4065 #define PRE_EX(exit) { .exit_code = (exit), \
4066 .stage = X86_ICPT_PRE_EXCEPT, }
4067 #define POST_EX(exit) { .exit_code = (exit), \
4068 .stage = X86_ICPT_POST_EXCEPT, }
4069 #define POST_MEM(exit) { .exit_code = (exit), \
4070 .stage = X86_ICPT_POST_MEMACCESS, }
4071
4072 static struct __x86_intercept {
4073 u32 exit_code;
4074 enum x86_intercept_stage stage;
4075 } x86_intercept_map[] = {
4076 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4077 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4078 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4079 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4080 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4081 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4082 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4083 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4084 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4085 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4086 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4087 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4088 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4089 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4090 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4091 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4092 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4093 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4094 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4095 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4096 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4097 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4098 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4099 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4100 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4101 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4102 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4103 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4104 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4105 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4106 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4107 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4108 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4109 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4110 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4111 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4112 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4113 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4114 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4115 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4116 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4117 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4118 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4119 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4120 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4121 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4122 };
4123
4124 #undef PRE_EX
4125 #undef POST_EX
4126 #undef POST_MEM
4127
4128 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4129 struct x86_instruction_info *info,
4130 enum x86_intercept_stage stage)
4131 {
4132 struct vcpu_svm *svm = to_svm(vcpu);
4133 int vmexit, ret = X86EMUL_CONTINUE;
4134 struct __x86_intercept icpt_info;
4135 struct vmcb *vmcb = svm->vmcb;
4136
4137 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4138 goto out;
4139
4140 icpt_info = x86_intercept_map[info->intercept];
4141
4142 if (stage != icpt_info.stage)
4143 goto out;
4144
4145 switch (icpt_info.exit_code) {
4146 case SVM_EXIT_READ_CR0:
4147 if (info->intercept == x86_intercept_cr_read)
4148 icpt_info.exit_code += info->modrm_reg;
4149 break;
4150 case SVM_EXIT_WRITE_CR0: {
4151 unsigned long cr0, val;
4152 u64 intercept;
4153
4154 if (info->intercept == x86_intercept_cr_write)
4155 icpt_info.exit_code += info->modrm_reg;
4156
4157 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4158 break;
4159
4160 intercept = svm->nested.intercept;
4161
4162 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4163 break;
4164
4165 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4166 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4167
4168 if (info->intercept == x86_intercept_lmsw) {
4169 cr0 &= 0xfUL;
4170 val &= 0xfUL;
4171 /* lmsw can't clear PE - catch this here */
4172 if (cr0 & X86_CR0_PE)
4173 val |= X86_CR0_PE;
4174 }
4175
4176 if (cr0 ^ val)
4177 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4178
4179 break;
4180 }
4181 case SVM_EXIT_READ_DR0:
4182 case SVM_EXIT_WRITE_DR0:
4183 icpt_info.exit_code += info->modrm_reg;
4184 break;
4185 case SVM_EXIT_MSR:
4186 if (info->intercept == x86_intercept_wrmsr)
4187 vmcb->control.exit_info_1 = 1;
4188 else
4189 vmcb->control.exit_info_1 = 0;
4190 break;
4191 case SVM_EXIT_PAUSE:
4192 /*
4193 * We get this for NOP only, but pause
4194 * is rep not, check this here
4195 */
4196 if (info->rep_prefix != REPE_PREFIX)
4197 goto out;
4198 case SVM_EXIT_IOIO: {
4199 u64 exit_info;
4200 u32 bytes;
4201
4202 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4203
4204 if (info->intercept == x86_intercept_in ||
4205 info->intercept == x86_intercept_ins) {
4206 exit_info |= SVM_IOIO_TYPE_MASK;
4207 bytes = info->src_bytes;
4208 } else {
4209 bytes = info->dst_bytes;
4210 }
4211
4212 if (info->intercept == x86_intercept_outs ||
4213 info->intercept == x86_intercept_ins)
4214 exit_info |= SVM_IOIO_STR_MASK;
4215
4216 if (info->rep_prefix)
4217 exit_info |= SVM_IOIO_REP_MASK;
4218
4219 bytes = min(bytes, 4u);
4220
4221 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4222
4223 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4224
4225 vmcb->control.exit_info_1 = exit_info;
4226 vmcb->control.exit_info_2 = info->next_rip;
4227
4228 break;
4229 }
4230 default:
4231 break;
4232 }
4233
4234 vmcb->control.next_rip = info->next_rip;
4235 vmcb->control.exit_code = icpt_info.exit_code;
4236 vmexit = nested_svm_exit_handled(svm);
4237
4238 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4239 : X86EMUL_CONTINUE;
4240
4241 out:
4242 return ret;
4243 }
4244
4245 static struct kvm_x86_ops svm_x86_ops = {
4246 .cpu_has_kvm_support = has_svm,
4247 .disabled_by_bios = is_disabled,
4248 .hardware_setup = svm_hardware_setup,
4249 .hardware_unsetup = svm_hardware_unsetup,
4250 .check_processor_compatibility = svm_check_processor_compat,
4251 .hardware_enable = svm_hardware_enable,
4252 .hardware_disable = svm_hardware_disable,
4253 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4254
4255 .vcpu_create = svm_create_vcpu,
4256 .vcpu_free = svm_free_vcpu,
4257 .vcpu_reset = svm_vcpu_reset,
4258
4259 .prepare_guest_switch = svm_prepare_guest_switch,
4260 .vcpu_load = svm_vcpu_load,
4261 .vcpu_put = svm_vcpu_put,
4262
4263 .set_guest_debug = svm_guest_debug,
4264 .get_msr = svm_get_msr,
4265 .set_msr = svm_set_msr,
4266 .get_segment_base = svm_get_segment_base,
4267 .get_segment = svm_get_segment,
4268 .set_segment = svm_set_segment,
4269 .get_cpl = svm_get_cpl,
4270 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4271 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4272 .decache_cr3 = svm_decache_cr3,
4273 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4274 .set_cr0 = svm_set_cr0,
4275 .set_cr3 = svm_set_cr3,
4276 .set_cr4 = svm_set_cr4,
4277 .set_efer = svm_set_efer,
4278 .get_idt = svm_get_idt,
4279 .set_idt = svm_set_idt,
4280 .get_gdt = svm_get_gdt,
4281 .set_gdt = svm_set_gdt,
4282 .set_dr7 = svm_set_dr7,
4283 .cache_reg = svm_cache_reg,
4284 .get_rflags = svm_get_rflags,
4285 .set_rflags = svm_set_rflags,
4286 .fpu_activate = svm_fpu_activate,
4287 .fpu_deactivate = svm_fpu_deactivate,
4288
4289 .tlb_flush = svm_flush_tlb,
4290
4291 .run = svm_vcpu_run,
4292 .handle_exit = handle_exit,
4293 .skip_emulated_instruction = skip_emulated_instruction,
4294 .set_interrupt_shadow = svm_set_interrupt_shadow,
4295 .get_interrupt_shadow = svm_get_interrupt_shadow,
4296 .patch_hypercall = svm_patch_hypercall,
4297 .set_irq = svm_set_irq,
4298 .set_nmi = svm_inject_nmi,
4299 .queue_exception = svm_queue_exception,
4300 .cancel_injection = svm_cancel_injection,
4301 .interrupt_allowed = svm_interrupt_allowed,
4302 .nmi_allowed = svm_nmi_allowed,
4303 .get_nmi_mask = svm_get_nmi_mask,
4304 .set_nmi_mask = svm_set_nmi_mask,
4305 .enable_nmi_window = enable_nmi_window,
4306 .enable_irq_window = enable_irq_window,
4307 .update_cr8_intercept = update_cr8_intercept,
4308
4309 .set_tss_addr = svm_set_tss_addr,
4310 .get_tdp_level = get_npt_level,
4311 .get_mt_mask = svm_get_mt_mask,
4312
4313 .get_exit_info = svm_get_exit_info,
4314
4315 .get_lpage_level = svm_get_lpage_level,
4316
4317 .cpuid_update = svm_cpuid_update,
4318
4319 .rdtscp_supported = svm_rdtscp_supported,
4320 .invpcid_supported = svm_invpcid_supported,
4321
4322 .set_supported_cpuid = svm_set_supported_cpuid,
4323
4324 .has_wbinvd_exit = svm_has_wbinvd_exit,
4325
4326 .set_tsc_khz = svm_set_tsc_khz,
4327 .write_tsc_offset = svm_write_tsc_offset,
4328 .adjust_tsc_offset = svm_adjust_tsc_offset,
4329 .compute_tsc_offset = svm_compute_tsc_offset,
4330 .read_l1_tsc = svm_read_l1_tsc,
4331
4332 .set_tdp_cr3 = set_tdp_cr3,
4333
4334 .check_intercept = svm_check_intercept,
4335 };
4336
4337 static int __init svm_init(void)
4338 {
4339 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4340 __alignof__(struct vcpu_svm), THIS_MODULE);
4341 }
4342
4343 static void __exit svm_exit(void)
4344 {
4345 kvm_exit();
4346 }
4347
4348 module_init(svm_init)
4349 module_exit(svm_exit)