]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
Merge branch 'fix/sun8i' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39
40 #include <asm/apic.h>
41 #include <asm/perf_event.h>
42 #include <asm/tlbflush.h>
43 #include <asm/desc.h>
44 #include <asm/debugreg.h>
45 #include <asm/kvm_para.h>
46 #include <asm/irq_remapping.h>
47
48 #include <asm/virtext.h>
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_SVM),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61
62 #define IOPM_ALLOC_ORDER 2
63 #define MSRPM_ALLOC_ORDER 1
64
65 #define SEG_TYPE_LDT 2
66 #define SEG_TYPE_BUSY_TSS16 3
67
68 #define SVM_FEATURE_NPT (1 << 0)
69 #define SVM_FEATURE_LBRV (1 << 1)
70 #define SVM_FEATURE_SVML (1 << 2)
71 #define SVM_FEATURE_NRIP (1 << 3)
72 #define SVM_FEATURE_TSC_RATE (1 << 4)
73 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
74 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
75 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
76 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
77
78 #define SVM_AVIC_DOORBELL 0xc001011b
79
80 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
81 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
82 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
83
84 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
85
86 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
87 #define TSC_RATIO_MIN 0x0000000000000001ULL
88 #define TSC_RATIO_MAX 0x000000ffffffffffULL
89
90 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
91
92 /*
93 * 0xff is broadcast, so the max index allowed for physical APIC ID
94 * table is 0xfe. APIC IDs above 0xff are reserved.
95 */
96 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
97
98 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
99 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
100 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
101
102 /* AVIC GATAG is encoded using VM and VCPU IDs */
103 #define AVIC_VCPU_ID_BITS 8
104 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
105
106 #define AVIC_VM_ID_BITS 24
107 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
108 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
109
110 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
111 (y & AVIC_VCPU_ID_MASK))
112 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
113 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
114
115 static bool erratum_383_found __read_mostly;
116
117 static const u32 host_save_user_msrs[] = {
118 #ifdef CONFIG_X86_64
119 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
120 MSR_FS_BASE,
121 #endif
122 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
123 MSR_TSC_AUX,
124 };
125
126 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
127
128 struct kvm_vcpu;
129
130 struct nested_state {
131 struct vmcb *hsave;
132 u64 hsave_msr;
133 u64 vm_cr_msr;
134 u64 vmcb;
135
136 /* These are the merged vectors */
137 u32 *msrpm;
138
139 /* gpa pointers to the real vectors */
140 u64 vmcb_msrpm;
141 u64 vmcb_iopm;
142
143 /* A VMEXIT is required but not yet emulated */
144 bool exit_required;
145
146 /* cache for intercepts of the guest */
147 u32 intercept_cr;
148 u32 intercept_dr;
149 u32 intercept_exceptions;
150 u64 intercept;
151
152 /* Nested Paging related state */
153 u64 nested_cr3;
154 };
155
156 #define MSRPM_OFFSETS 16
157 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
158
159 /*
160 * Set osvw_len to higher value when updated Revision Guides
161 * are published and we know what the new status bits are
162 */
163 static uint64_t osvw_len = 4, osvw_status;
164
165 struct vcpu_svm {
166 struct kvm_vcpu vcpu;
167 struct vmcb *vmcb;
168 unsigned long vmcb_pa;
169 struct svm_cpu_data *svm_data;
170 uint64_t asid_generation;
171 uint64_t sysenter_esp;
172 uint64_t sysenter_eip;
173 uint64_t tsc_aux;
174
175 u64 next_rip;
176
177 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
178 struct {
179 u16 fs;
180 u16 gs;
181 u16 ldt;
182 u64 gs_base;
183 } host;
184
185 u32 *msrpm;
186
187 ulong nmi_iret_rip;
188
189 struct nested_state nested;
190
191 bool nmi_singlestep;
192
193 unsigned int3_injected;
194 unsigned long int3_rip;
195 u32 apf_reason;
196
197 /* cached guest cpuid flags for faster access */
198 bool nrips_enabled : 1;
199
200 u32 ldr_reg;
201 struct page *avic_backing_page;
202 u64 *avic_physical_id_cache;
203 bool avic_is_running;
204
205 /*
206 * Per-vcpu list of struct amd_svm_iommu_ir:
207 * This is used mainly to store interrupt remapping information used
208 * when update the vcpu affinity. This avoids the need to scan for
209 * IRTE and try to match ga_tag in the IOMMU driver.
210 */
211 struct list_head ir_list;
212 spinlock_t ir_list_lock;
213 };
214
215 /*
216 * This is a wrapper of struct amd_iommu_ir_data.
217 */
218 struct amd_svm_iommu_ir {
219 struct list_head node; /* Used by SVM for per-vcpu ir_list */
220 void *data; /* Storing pointer to struct amd_ir_data */
221 };
222
223 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
224 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
225
226 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
227 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
228 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
229 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
230
231 static DEFINE_PER_CPU(u64, current_tsc_ratio);
232 #define TSC_RATIO_DEFAULT 0x0100000000ULL
233
234 #define MSR_INVALID 0xffffffffU
235
236 static const struct svm_direct_access_msrs {
237 u32 index; /* Index of the MSR */
238 bool always; /* True if intercept is always on */
239 } direct_access_msrs[] = {
240 { .index = MSR_STAR, .always = true },
241 { .index = MSR_IA32_SYSENTER_CS, .always = true },
242 #ifdef CONFIG_X86_64
243 { .index = MSR_GS_BASE, .always = true },
244 { .index = MSR_FS_BASE, .always = true },
245 { .index = MSR_KERNEL_GS_BASE, .always = true },
246 { .index = MSR_LSTAR, .always = true },
247 { .index = MSR_CSTAR, .always = true },
248 { .index = MSR_SYSCALL_MASK, .always = true },
249 #endif
250 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
251 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
252 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
253 { .index = MSR_IA32_LASTINTTOIP, .always = false },
254 { .index = MSR_INVALID, .always = false },
255 };
256
257 /* enable NPT for AMD64 and X86 with PAE */
258 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
259 static bool npt_enabled = true;
260 #else
261 static bool npt_enabled;
262 #endif
263
264 /* allow nested paging (virtualized MMU) for all guests */
265 static int npt = true;
266 module_param(npt, int, S_IRUGO);
267
268 /* allow nested virtualization in KVM/SVM */
269 static int nested = true;
270 module_param(nested, int, S_IRUGO);
271
272 /* enable / disable AVIC */
273 static int avic;
274 #ifdef CONFIG_X86_LOCAL_APIC
275 module_param(avic, int, S_IRUGO);
276 #endif
277
278 /* AVIC VM ID bit masks and lock */
279 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
280 static DEFINE_SPINLOCK(avic_vm_id_lock);
281
282 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
283 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
284 static void svm_complete_interrupts(struct vcpu_svm *svm);
285
286 static int nested_svm_exit_handled(struct vcpu_svm *svm);
287 static int nested_svm_intercept(struct vcpu_svm *svm);
288 static int nested_svm_vmexit(struct vcpu_svm *svm);
289 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
290 bool has_error_code, u32 error_code);
291
292 enum {
293 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
294 pause filter count */
295 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
296 VMCB_ASID, /* ASID */
297 VMCB_INTR, /* int_ctl, int_vector */
298 VMCB_NPT, /* npt_en, nCR3, gPAT */
299 VMCB_CR, /* CR0, CR3, CR4, EFER */
300 VMCB_DR, /* DR6, DR7 */
301 VMCB_DT, /* GDT, IDT */
302 VMCB_SEG, /* CS, DS, SS, ES, CPL */
303 VMCB_CR2, /* CR2 only */
304 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
305 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
306 * AVIC PHYSICAL_TABLE pointer,
307 * AVIC LOGICAL_TABLE pointer
308 */
309 VMCB_DIRTY_MAX,
310 };
311
312 /* TPR and CR2 are always written before VMRUN */
313 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
314
315 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
316
317 static inline void mark_all_dirty(struct vmcb *vmcb)
318 {
319 vmcb->control.clean = 0;
320 }
321
322 static inline void mark_all_clean(struct vmcb *vmcb)
323 {
324 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
325 & ~VMCB_ALWAYS_DIRTY_MASK;
326 }
327
328 static inline void mark_dirty(struct vmcb *vmcb, int bit)
329 {
330 vmcb->control.clean &= ~(1 << bit);
331 }
332
333 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
334 {
335 return container_of(vcpu, struct vcpu_svm, vcpu);
336 }
337
338 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
339 {
340 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
341 mark_dirty(svm->vmcb, VMCB_AVIC);
342 }
343
344 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
345 {
346 struct vcpu_svm *svm = to_svm(vcpu);
347 u64 *entry = svm->avic_physical_id_cache;
348
349 if (!entry)
350 return false;
351
352 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
353 }
354
355 static void recalc_intercepts(struct vcpu_svm *svm)
356 {
357 struct vmcb_control_area *c, *h;
358 struct nested_state *g;
359
360 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
361
362 if (!is_guest_mode(&svm->vcpu))
363 return;
364
365 c = &svm->vmcb->control;
366 h = &svm->nested.hsave->control;
367 g = &svm->nested;
368
369 c->intercept_cr = h->intercept_cr | g->intercept_cr;
370 c->intercept_dr = h->intercept_dr | g->intercept_dr;
371 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
372 c->intercept = h->intercept | g->intercept;
373 }
374
375 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
376 {
377 if (is_guest_mode(&svm->vcpu))
378 return svm->nested.hsave;
379 else
380 return svm->vmcb;
381 }
382
383 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
384 {
385 struct vmcb *vmcb = get_host_vmcb(svm);
386
387 vmcb->control.intercept_cr |= (1U << bit);
388
389 recalc_intercepts(svm);
390 }
391
392 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
393 {
394 struct vmcb *vmcb = get_host_vmcb(svm);
395
396 vmcb->control.intercept_cr &= ~(1U << bit);
397
398 recalc_intercepts(svm);
399 }
400
401 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
402 {
403 struct vmcb *vmcb = get_host_vmcb(svm);
404
405 return vmcb->control.intercept_cr & (1U << bit);
406 }
407
408 static inline void set_dr_intercepts(struct vcpu_svm *svm)
409 {
410 struct vmcb *vmcb = get_host_vmcb(svm);
411
412 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
413 | (1 << INTERCEPT_DR1_READ)
414 | (1 << INTERCEPT_DR2_READ)
415 | (1 << INTERCEPT_DR3_READ)
416 | (1 << INTERCEPT_DR4_READ)
417 | (1 << INTERCEPT_DR5_READ)
418 | (1 << INTERCEPT_DR6_READ)
419 | (1 << INTERCEPT_DR7_READ)
420 | (1 << INTERCEPT_DR0_WRITE)
421 | (1 << INTERCEPT_DR1_WRITE)
422 | (1 << INTERCEPT_DR2_WRITE)
423 | (1 << INTERCEPT_DR3_WRITE)
424 | (1 << INTERCEPT_DR4_WRITE)
425 | (1 << INTERCEPT_DR5_WRITE)
426 | (1 << INTERCEPT_DR6_WRITE)
427 | (1 << INTERCEPT_DR7_WRITE);
428
429 recalc_intercepts(svm);
430 }
431
432 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
433 {
434 struct vmcb *vmcb = get_host_vmcb(svm);
435
436 vmcb->control.intercept_dr = 0;
437
438 recalc_intercepts(svm);
439 }
440
441 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
442 {
443 struct vmcb *vmcb = get_host_vmcb(svm);
444
445 vmcb->control.intercept_exceptions |= (1U << bit);
446
447 recalc_intercepts(svm);
448 }
449
450 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
451 {
452 struct vmcb *vmcb = get_host_vmcb(svm);
453
454 vmcb->control.intercept_exceptions &= ~(1U << bit);
455
456 recalc_intercepts(svm);
457 }
458
459 static inline void set_intercept(struct vcpu_svm *svm, int bit)
460 {
461 struct vmcb *vmcb = get_host_vmcb(svm);
462
463 vmcb->control.intercept |= (1ULL << bit);
464
465 recalc_intercepts(svm);
466 }
467
468 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
469 {
470 struct vmcb *vmcb = get_host_vmcb(svm);
471
472 vmcb->control.intercept &= ~(1ULL << bit);
473
474 recalc_intercepts(svm);
475 }
476
477 static inline void enable_gif(struct vcpu_svm *svm)
478 {
479 svm->vcpu.arch.hflags |= HF_GIF_MASK;
480 }
481
482 static inline void disable_gif(struct vcpu_svm *svm)
483 {
484 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
485 }
486
487 static inline bool gif_set(struct vcpu_svm *svm)
488 {
489 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
490 }
491
492 static unsigned long iopm_base;
493
494 struct kvm_ldttss_desc {
495 u16 limit0;
496 u16 base0;
497 unsigned base1:8, type:5, dpl:2, p:1;
498 unsigned limit1:4, zero0:3, g:1, base2:8;
499 u32 base3;
500 u32 zero1;
501 } __attribute__((packed));
502
503 struct svm_cpu_data {
504 int cpu;
505
506 u64 asid_generation;
507 u32 max_asid;
508 u32 next_asid;
509 struct kvm_ldttss_desc *tss_desc;
510
511 struct page *save_area;
512 };
513
514 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
515
516 struct svm_init_data {
517 int cpu;
518 int r;
519 };
520
521 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
522
523 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
524 #define MSRS_RANGE_SIZE 2048
525 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
526
527 static u32 svm_msrpm_offset(u32 msr)
528 {
529 u32 offset;
530 int i;
531
532 for (i = 0; i < NUM_MSR_MAPS; i++) {
533 if (msr < msrpm_ranges[i] ||
534 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
535 continue;
536
537 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
538 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
539
540 /* Now we have the u8 offset - but need the u32 offset */
541 return offset / 4;
542 }
543
544 /* MSR not in any range */
545 return MSR_INVALID;
546 }
547
548 #define MAX_INST_SIZE 15
549
550 static inline void clgi(void)
551 {
552 asm volatile (__ex(SVM_CLGI));
553 }
554
555 static inline void stgi(void)
556 {
557 asm volatile (__ex(SVM_STGI));
558 }
559
560 static inline void invlpga(unsigned long addr, u32 asid)
561 {
562 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
563 }
564
565 static int get_npt_level(void)
566 {
567 #ifdef CONFIG_X86_64
568 return PT64_ROOT_LEVEL;
569 #else
570 return PT32E_ROOT_LEVEL;
571 #endif
572 }
573
574 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
575 {
576 vcpu->arch.efer = efer;
577 if (!npt_enabled && !(efer & EFER_LMA))
578 efer &= ~EFER_LME;
579
580 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
581 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
582 }
583
584 static int is_external_interrupt(u32 info)
585 {
586 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
587 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
588 }
589
590 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
591 {
592 struct vcpu_svm *svm = to_svm(vcpu);
593 u32 ret = 0;
594
595 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
596 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
597 return ret;
598 }
599
600 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
601 {
602 struct vcpu_svm *svm = to_svm(vcpu);
603
604 if (mask == 0)
605 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
606 else
607 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
608
609 }
610
611 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 if (svm->vmcb->control.next_rip != 0) {
616 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
617 svm->next_rip = svm->vmcb->control.next_rip;
618 }
619
620 if (!svm->next_rip) {
621 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
622 EMULATE_DONE)
623 printk(KERN_DEBUG "%s: NOP\n", __func__);
624 return;
625 }
626 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
627 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
628 __func__, kvm_rip_read(vcpu), svm->next_rip);
629
630 kvm_rip_write(vcpu, svm->next_rip);
631 svm_set_interrupt_shadow(vcpu, 0);
632 }
633
634 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
635 bool has_error_code, u32 error_code,
636 bool reinject)
637 {
638 struct vcpu_svm *svm = to_svm(vcpu);
639
640 /*
641 * If we are within a nested VM we'd better #VMEXIT and let the guest
642 * handle the exception
643 */
644 if (!reinject &&
645 nested_svm_check_exception(svm, nr, has_error_code, error_code))
646 return;
647
648 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
649 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
650
651 /*
652 * For guest debugging where we have to reinject #BP if some
653 * INT3 is guest-owned:
654 * Emulate nRIP by moving RIP forward. Will fail if injection
655 * raises a fault that is not intercepted. Still better than
656 * failing in all cases.
657 */
658 skip_emulated_instruction(&svm->vcpu);
659 rip = kvm_rip_read(&svm->vcpu);
660 svm->int3_rip = rip + svm->vmcb->save.cs.base;
661 svm->int3_injected = rip - old_rip;
662 }
663
664 svm->vmcb->control.event_inj = nr
665 | SVM_EVTINJ_VALID
666 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
667 | SVM_EVTINJ_TYPE_EXEPT;
668 svm->vmcb->control.event_inj_err = error_code;
669 }
670
671 static void svm_init_erratum_383(void)
672 {
673 u32 low, high;
674 int err;
675 u64 val;
676
677 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
678 return;
679
680 /* Use _safe variants to not break nested virtualization */
681 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
682 if (err)
683 return;
684
685 val |= (1ULL << 47);
686
687 low = lower_32_bits(val);
688 high = upper_32_bits(val);
689
690 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
691
692 erratum_383_found = true;
693 }
694
695 static void svm_init_osvw(struct kvm_vcpu *vcpu)
696 {
697 /*
698 * Guests should see errata 400 and 415 as fixed (assuming that
699 * HLT and IO instructions are intercepted).
700 */
701 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
702 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
703
704 /*
705 * By increasing VCPU's osvw.length to 3 we are telling the guest that
706 * all osvw.status bits inside that length, including bit 0 (which is
707 * reserved for erratum 298), are valid. However, if host processor's
708 * osvw_len is 0 then osvw_status[0] carries no information. We need to
709 * be conservative here and therefore we tell the guest that erratum 298
710 * is present (because we really don't know).
711 */
712 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
713 vcpu->arch.osvw.status |= 1;
714 }
715
716 static int has_svm(void)
717 {
718 const char *msg;
719
720 if (!cpu_has_svm(&msg)) {
721 printk(KERN_INFO "has_svm: %s\n", msg);
722 return 0;
723 }
724
725 return 1;
726 }
727
728 static void svm_hardware_disable(void)
729 {
730 /* Make sure we clean up behind us */
731 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
732 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
733
734 cpu_svm_disable();
735
736 amd_pmu_disable_virt();
737 }
738
739 static int svm_hardware_enable(void)
740 {
741
742 struct svm_cpu_data *sd;
743 uint64_t efer;
744 struct desc_ptr gdt_descr;
745 struct desc_struct *gdt;
746 int me = raw_smp_processor_id();
747
748 rdmsrl(MSR_EFER, efer);
749 if (efer & EFER_SVME)
750 return -EBUSY;
751
752 if (!has_svm()) {
753 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
754 return -EINVAL;
755 }
756 sd = per_cpu(svm_data, me);
757 if (!sd) {
758 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
759 return -EINVAL;
760 }
761
762 sd->asid_generation = 1;
763 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
764 sd->next_asid = sd->max_asid + 1;
765
766 native_store_gdt(&gdt_descr);
767 gdt = (struct desc_struct *)gdt_descr.address;
768 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
769
770 wrmsrl(MSR_EFER, efer | EFER_SVME);
771
772 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
773
774 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
775 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
776 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
777 }
778
779
780 /*
781 * Get OSVW bits.
782 *
783 * Note that it is possible to have a system with mixed processor
784 * revisions and therefore different OSVW bits. If bits are not the same
785 * on different processors then choose the worst case (i.e. if erratum
786 * is present on one processor and not on another then assume that the
787 * erratum is present everywhere).
788 */
789 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
790 uint64_t len, status = 0;
791 int err;
792
793 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
794 if (!err)
795 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
796 &err);
797
798 if (err)
799 osvw_status = osvw_len = 0;
800 else {
801 if (len < osvw_len)
802 osvw_len = len;
803 osvw_status |= status;
804 osvw_status &= (1ULL << osvw_len) - 1;
805 }
806 } else
807 osvw_status = osvw_len = 0;
808
809 svm_init_erratum_383();
810
811 amd_pmu_enable_virt();
812
813 return 0;
814 }
815
816 static void svm_cpu_uninit(int cpu)
817 {
818 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
819
820 if (!sd)
821 return;
822
823 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
824 __free_page(sd->save_area);
825 kfree(sd);
826 }
827
828 static int svm_cpu_init(int cpu)
829 {
830 struct svm_cpu_data *sd;
831 int r;
832
833 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
834 if (!sd)
835 return -ENOMEM;
836 sd->cpu = cpu;
837 sd->save_area = alloc_page(GFP_KERNEL);
838 r = -ENOMEM;
839 if (!sd->save_area)
840 goto err_1;
841
842 per_cpu(svm_data, cpu) = sd;
843
844 return 0;
845
846 err_1:
847 kfree(sd);
848 return r;
849
850 }
851
852 static bool valid_msr_intercept(u32 index)
853 {
854 int i;
855
856 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
857 if (direct_access_msrs[i].index == index)
858 return true;
859
860 return false;
861 }
862
863 static void set_msr_interception(u32 *msrpm, unsigned msr,
864 int read, int write)
865 {
866 u8 bit_read, bit_write;
867 unsigned long tmp;
868 u32 offset;
869
870 /*
871 * If this warning triggers extend the direct_access_msrs list at the
872 * beginning of the file
873 */
874 WARN_ON(!valid_msr_intercept(msr));
875
876 offset = svm_msrpm_offset(msr);
877 bit_read = 2 * (msr & 0x0f);
878 bit_write = 2 * (msr & 0x0f) + 1;
879 tmp = msrpm[offset];
880
881 BUG_ON(offset == MSR_INVALID);
882
883 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
884 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
885
886 msrpm[offset] = tmp;
887 }
888
889 static void svm_vcpu_init_msrpm(u32 *msrpm)
890 {
891 int i;
892
893 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
894
895 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896 if (!direct_access_msrs[i].always)
897 continue;
898
899 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
900 }
901 }
902
903 static void add_msr_offset(u32 offset)
904 {
905 int i;
906
907 for (i = 0; i < MSRPM_OFFSETS; ++i) {
908
909 /* Offset already in list? */
910 if (msrpm_offsets[i] == offset)
911 return;
912
913 /* Slot used by another offset? */
914 if (msrpm_offsets[i] != MSR_INVALID)
915 continue;
916
917 /* Add offset to list */
918 msrpm_offsets[i] = offset;
919
920 return;
921 }
922
923 /*
924 * If this BUG triggers the msrpm_offsets table has an overflow. Just
925 * increase MSRPM_OFFSETS in this case.
926 */
927 BUG();
928 }
929
930 static void init_msrpm_offsets(void)
931 {
932 int i;
933
934 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
935
936 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
937 u32 offset;
938
939 offset = svm_msrpm_offset(direct_access_msrs[i].index);
940 BUG_ON(offset == MSR_INVALID);
941
942 add_msr_offset(offset);
943 }
944 }
945
946 static void svm_enable_lbrv(struct vcpu_svm *svm)
947 {
948 u32 *msrpm = svm->msrpm;
949
950 svm->vmcb->control.lbr_ctl = 1;
951 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
952 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
953 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
954 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
955 }
956
957 static void svm_disable_lbrv(struct vcpu_svm *svm)
958 {
959 u32 *msrpm = svm->msrpm;
960
961 svm->vmcb->control.lbr_ctl = 0;
962 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
963 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
964 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
965 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
966 }
967
968 /* Note:
969 * This hash table is used to map VM_ID to a struct kvm_arch,
970 * when handling AMD IOMMU GALOG notification to schedule in
971 * a particular vCPU.
972 */
973 #define SVM_VM_DATA_HASH_BITS 8
974 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
975 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
976
977 /* Note:
978 * This function is called from IOMMU driver to notify
979 * SVM to schedule in a particular vCPU of a particular VM.
980 */
981 static int avic_ga_log_notifier(u32 ga_tag)
982 {
983 unsigned long flags;
984 struct kvm_arch *ka = NULL;
985 struct kvm_vcpu *vcpu = NULL;
986 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
987 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
988
989 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
990
991 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
992 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
993 struct kvm *kvm = container_of(ka, struct kvm, arch);
994 struct kvm_arch *vm_data = &kvm->arch;
995
996 if (vm_data->avic_vm_id != vm_id)
997 continue;
998 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
999 break;
1000 }
1001 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003 if (!vcpu)
1004 return 0;
1005
1006 /* Note:
1007 * At this point, the IOMMU should have already set the pending
1008 * bit in the vAPIC backing page. So, we just need to schedule
1009 * in the vcpu.
1010 */
1011 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012 kvm_vcpu_wake_up(vcpu);
1013
1014 return 0;
1015 }
1016
1017 static __init int svm_hardware_setup(void)
1018 {
1019 int cpu;
1020 struct page *iopm_pages;
1021 void *iopm_va;
1022 int r;
1023
1024 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026 if (!iopm_pages)
1027 return -ENOMEM;
1028
1029 iopm_va = page_address(iopm_pages);
1030 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033 init_msrpm_offsets();
1034
1035 if (boot_cpu_has(X86_FEATURE_NX))
1036 kvm_enable_efer_bits(EFER_NX);
1037
1038 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039 kvm_enable_efer_bits(EFER_FFXSR);
1040
1041 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042 kvm_has_tsc_control = true;
1043 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044 kvm_tsc_scaling_ratio_frac_bits = 32;
1045 }
1046
1047 if (nested) {
1048 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050 }
1051
1052 for_each_possible_cpu(cpu) {
1053 r = svm_cpu_init(cpu);
1054 if (r)
1055 goto err;
1056 }
1057
1058 if (!boot_cpu_has(X86_FEATURE_NPT))
1059 npt_enabled = false;
1060
1061 if (npt_enabled && !npt) {
1062 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063 npt_enabled = false;
1064 }
1065
1066 if (npt_enabled) {
1067 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068 kvm_enable_tdp();
1069 } else
1070 kvm_disable_tdp();
1071
1072 if (avic) {
1073 if (!npt_enabled ||
1074 !boot_cpu_has(X86_FEATURE_AVIC) ||
1075 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076 avic = false;
1077 } else {
1078 pr_info("AVIC enabled\n");
1079
1080 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1081 }
1082 }
1083
1084 return 0;
1085
1086 err:
1087 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1088 iopm_base = 0;
1089 return r;
1090 }
1091
1092 static __exit void svm_hardware_unsetup(void)
1093 {
1094 int cpu;
1095
1096 for_each_possible_cpu(cpu)
1097 svm_cpu_uninit(cpu);
1098
1099 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1100 iopm_base = 0;
1101 }
1102
1103 static void init_seg(struct vmcb_seg *seg)
1104 {
1105 seg->selector = 0;
1106 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1107 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1108 seg->limit = 0xffff;
1109 seg->base = 0;
1110 }
1111
1112 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1113 {
1114 seg->selector = 0;
1115 seg->attrib = SVM_SELECTOR_P_MASK | type;
1116 seg->limit = 0xffff;
1117 seg->base = 0;
1118 }
1119
1120 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1121 {
1122 struct vcpu_svm *svm = to_svm(vcpu);
1123 u64 g_tsc_offset = 0;
1124
1125 if (is_guest_mode(vcpu)) {
1126 g_tsc_offset = svm->vmcb->control.tsc_offset -
1127 svm->nested.hsave->control.tsc_offset;
1128 svm->nested.hsave->control.tsc_offset = offset;
1129 } else
1130 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1131 svm->vmcb->control.tsc_offset,
1132 offset);
1133
1134 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1135
1136 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1137 }
1138
1139 static void avic_init_vmcb(struct vcpu_svm *svm)
1140 {
1141 struct vmcb *vmcb = svm->vmcb;
1142 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1143 phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1144 phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1145 phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1146
1147 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1148 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1149 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1150 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1151 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1152 svm->vcpu.arch.apicv_active = true;
1153 }
1154
1155 static void init_vmcb(struct vcpu_svm *svm)
1156 {
1157 struct vmcb_control_area *control = &svm->vmcb->control;
1158 struct vmcb_save_area *save = &svm->vmcb->save;
1159
1160 svm->vcpu.arch.hflags = 0;
1161
1162 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1163 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1164 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1165 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1166 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1167 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1168 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1169 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1170
1171 set_dr_intercepts(svm);
1172
1173 set_exception_intercept(svm, PF_VECTOR);
1174 set_exception_intercept(svm, UD_VECTOR);
1175 set_exception_intercept(svm, MC_VECTOR);
1176 set_exception_intercept(svm, AC_VECTOR);
1177 set_exception_intercept(svm, DB_VECTOR);
1178
1179 set_intercept(svm, INTERCEPT_INTR);
1180 set_intercept(svm, INTERCEPT_NMI);
1181 set_intercept(svm, INTERCEPT_SMI);
1182 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1183 set_intercept(svm, INTERCEPT_RDPMC);
1184 set_intercept(svm, INTERCEPT_CPUID);
1185 set_intercept(svm, INTERCEPT_INVD);
1186 set_intercept(svm, INTERCEPT_HLT);
1187 set_intercept(svm, INTERCEPT_INVLPG);
1188 set_intercept(svm, INTERCEPT_INVLPGA);
1189 set_intercept(svm, INTERCEPT_IOIO_PROT);
1190 set_intercept(svm, INTERCEPT_MSR_PROT);
1191 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1192 set_intercept(svm, INTERCEPT_SHUTDOWN);
1193 set_intercept(svm, INTERCEPT_VMRUN);
1194 set_intercept(svm, INTERCEPT_VMMCALL);
1195 set_intercept(svm, INTERCEPT_VMLOAD);
1196 set_intercept(svm, INTERCEPT_VMSAVE);
1197 set_intercept(svm, INTERCEPT_STGI);
1198 set_intercept(svm, INTERCEPT_CLGI);
1199 set_intercept(svm, INTERCEPT_SKINIT);
1200 set_intercept(svm, INTERCEPT_WBINVD);
1201 set_intercept(svm, INTERCEPT_MONITOR);
1202 set_intercept(svm, INTERCEPT_MWAIT);
1203 set_intercept(svm, INTERCEPT_XSETBV);
1204
1205 control->iopm_base_pa = iopm_base;
1206 control->msrpm_base_pa = __pa(svm->msrpm);
1207 control->int_ctl = V_INTR_MASKING_MASK;
1208
1209 init_seg(&save->es);
1210 init_seg(&save->ss);
1211 init_seg(&save->ds);
1212 init_seg(&save->fs);
1213 init_seg(&save->gs);
1214
1215 save->cs.selector = 0xf000;
1216 save->cs.base = 0xffff0000;
1217 /* Executable/Readable Code Segment */
1218 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1219 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1220 save->cs.limit = 0xffff;
1221
1222 save->gdtr.limit = 0xffff;
1223 save->idtr.limit = 0xffff;
1224
1225 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1226 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1227
1228 svm_set_efer(&svm->vcpu, 0);
1229 save->dr6 = 0xffff0ff0;
1230 kvm_set_rflags(&svm->vcpu, 2);
1231 save->rip = 0x0000fff0;
1232 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1233
1234 /*
1235 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1236 * It also updates the guest-visible cr0 value.
1237 */
1238 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1239 kvm_mmu_reset_context(&svm->vcpu);
1240
1241 save->cr4 = X86_CR4_PAE;
1242 /* rdx = ?? */
1243
1244 if (npt_enabled) {
1245 /* Setup VMCB for Nested Paging */
1246 control->nested_ctl = 1;
1247 clr_intercept(svm, INTERCEPT_INVLPG);
1248 clr_exception_intercept(svm, PF_VECTOR);
1249 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1250 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1251 save->g_pat = svm->vcpu.arch.pat;
1252 save->cr3 = 0;
1253 save->cr4 = 0;
1254 }
1255 svm->asid_generation = 0;
1256
1257 svm->nested.vmcb = 0;
1258 svm->vcpu.arch.hflags = 0;
1259
1260 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1261 control->pause_filter_count = 3000;
1262 set_intercept(svm, INTERCEPT_PAUSE);
1263 }
1264
1265 if (avic)
1266 avic_init_vmcb(svm);
1267
1268 mark_all_dirty(svm->vmcb);
1269
1270 enable_gif(svm);
1271
1272 }
1273
1274 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1275 {
1276 u64 *avic_physical_id_table;
1277 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1278
1279 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1280 return NULL;
1281
1282 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1283
1284 return &avic_physical_id_table[index];
1285 }
1286
1287 /**
1288 * Note:
1289 * AVIC hardware walks the nested page table to check permissions,
1290 * but does not use the SPA address specified in the leaf page
1291 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1292 * field of the VMCB. Therefore, we set up the
1293 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1294 */
1295 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1296 {
1297 struct kvm *kvm = vcpu->kvm;
1298 int ret;
1299
1300 if (kvm->arch.apic_access_page_done)
1301 return 0;
1302
1303 ret = x86_set_memory_region(kvm,
1304 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1305 APIC_DEFAULT_PHYS_BASE,
1306 PAGE_SIZE);
1307 if (ret)
1308 return ret;
1309
1310 kvm->arch.apic_access_page_done = true;
1311 return 0;
1312 }
1313
1314 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1315 {
1316 int ret;
1317 u64 *entry, new_entry;
1318 int id = vcpu->vcpu_id;
1319 struct vcpu_svm *svm = to_svm(vcpu);
1320
1321 ret = avic_init_access_page(vcpu);
1322 if (ret)
1323 return ret;
1324
1325 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1326 return -EINVAL;
1327
1328 if (!svm->vcpu.arch.apic->regs)
1329 return -EINVAL;
1330
1331 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1332
1333 /* Setting AVIC backing page address in the phy APIC ID table */
1334 entry = avic_get_physical_id_entry(vcpu, id);
1335 if (!entry)
1336 return -EINVAL;
1337
1338 new_entry = READ_ONCE(*entry);
1339 new_entry = (page_to_phys(svm->avic_backing_page) &
1340 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1341 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1342 WRITE_ONCE(*entry, new_entry);
1343
1344 svm->avic_physical_id_cache = entry;
1345
1346 return 0;
1347 }
1348
1349 static inline int avic_get_next_vm_id(void)
1350 {
1351 int id;
1352
1353 spin_lock(&avic_vm_id_lock);
1354
1355 /* AVIC VM ID is one-based. */
1356 id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1357 if (id <= AVIC_VM_ID_MASK)
1358 __set_bit(id, avic_vm_id_bitmap);
1359 else
1360 id = -EAGAIN;
1361
1362 spin_unlock(&avic_vm_id_lock);
1363 return id;
1364 }
1365
1366 static inline int avic_free_vm_id(int id)
1367 {
1368 if (id <= 0 || id > AVIC_VM_ID_MASK)
1369 return -EINVAL;
1370
1371 spin_lock(&avic_vm_id_lock);
1372 __clear_bit(id, avic_vm_id_bitmap);
1373 spin_unlock(&avic_vm_id_lock);
1374 return 0;
1375 }
1376
1377 static void avic_vm_destroy(struct kvm *kvm)
1378 {
1379 unsigned long flags;
1380 struct kvm_arch *vm_data = &kvm->arch;
1381
1382 avic_free_vm_id(vm_data->avic_vm_id);
1383
1384 if (vm_data->avic_logical_id_table_page)
1385 __free_page(vm_data->avic_logical_id_table_page);
1386 if (vm_data->avic_physical_id_table_page)
1387 __free_page(vm_data->avic_physical_id_table_page);
1388
1389 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1390 hash_del(&vm_data->hnode);
1391 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1392 }
1393
1394 static int avic_vm_init(struct kvm *kvm)
1395 {
1396 unsigned long flags;
1397 int vm_id, err = -ENOMEM;
1398 struct kvm_arch *vm_data = &kvm->arch;
1399 struct page *p_page;
1400 struct page *l_page;
1401
1402 if (!avic)
1403 return 0;
1404
1405 vm_id = avic_get_next_vm_id();
1406 if (vm_id < 0)
1407 return vm_id;
1408 vm_data->avic_vm_id = (u32)vm_id;
1409
1410 /* Allocating physical APIC ID table (4KB) */
1411 p_page = alloc_page(GFP_KERNEL);
1412 if (!p_page)
1413 goto free_avic;
1414
1415 vm_data->avic_physical_id_table_page = p_page;
1416 clear_page(page_address(p_page));
1417
1418 /* Allocating logical APIC ID table (4KB) */
1419 l_page = alloc_page(GFP_KERNEL);
1420 if (!l_page)
1421 goto free_avic;
1422
1423 vm_data->avic_logical_id_table_page = l_page;
1424 clear_page(page_address(l_page));
1425
1426 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1427 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1428 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1429
1430 return 0;
1431
1432 free_avic:
1433 avic_vm_destroy(kvm);
1434 return err;
1435 }
1436
1437 static inline int
1438 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1439 {
1440 int ret = 0;
1441 unsigned long flags;
1442 struct amd_svm_iommu_ir *ir;
1443 struct vcpu_svm *svm = to_svm(vcpu);
1444
1445 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1446 return 0;
1447
1448 /*
1449 * Here, we go through the per-vcpu ir_list to update all existing
1450 * interrupt remapping table entry targeting this vcpu.
1451 */
1452 spin_lock_irqsave(&svm->ir_list_lock, flags);
1453
1454 if (list_empty(&svm->ir_list))
1455 goto out;
1456
1457 list_for_each_entry(ir, &svm->ir_list, node) {
1458 ret = amd_iommu_update_ga(cpu, r, ir->data);
1459 if (ret)
1460 break;
1461 }
1462 out:
1463 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1464 return ret;
1465 }
1466
1467 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1468 {
1469 u64 entry;
1470 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1471 int h_physical_id = kvm_cpu_get_apicid(cpu);
1472 struct vcpu_svm *svm = to_svm(vcpu);
1473
1474 if (!kvm_vcpu_apicv_active(vcpu))
1475 return;
1476
1477 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1478 return;
1479
1480 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1481 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1482
1483 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1484 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1485
1486 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1487 if (svm->avic_is_running)
1488 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1489
1490 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1491 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1492 svm->avic_is_running);
1493 }
1494
1495 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1496 {
1497 u64 entry;
1498 struct vcpu_svm *svm = to_svm(vcpu);
1499
1500 if (!kvm_vcpu_apicv_active(vcpu))
1501 return;
1502
1503 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1504 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1505 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1506
1507 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1508 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1509 }
1510
1511 /**
1512 * This function is called during VCPU halt/unhalt.
1513 */
1514 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1515 {
1516 struct vcpu_svm *svm = to_svm(vcpu);
1517
1518 svm->avic_is_running = is_run;
1519 if (is_run)
1520 avic_vcpu_load(vcpu, vcpu->cpu);
1521 else
1522 avic_vcpu_put(vcpu);
1523 }
1524
1525 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1526 {
1527 struct vcpu_svm *svm = to_svm(vcpu);
1528 u32 dummy;
1529 u32 eax = 1;
1530
1531 if (!init_event) {
1532 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1533 MSR_IA32_APICBASE_ENABLE;
1534 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1535 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1536 }
1537 init_vmcb(svm);
1538
1539 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1540 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1541
1542 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1543 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1544 }
1545
1546 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1547 {
1548 struct vcpu_svm *svm;
1549 struct page *page;
1550 struct page *msrpm_pages;
1551 struct page *hsave_page;
1552 struct page *nested_msrpm_pages;
1553 int err;
1554
1555 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1556 if (!svm) {
1557 err = -ENOMEM;
1558 goto out;
1559 }
1560
1561 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1562 if (err)
1563 goto free_svm;
1564
1565 err = -ENOMEM;
1566 page = alloc_page(GFP_KERNEL);
1567 if (!page)
1568 goto uninit;
1569
1570 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1571 if (!msrpm_pages)
1572 goto free_page1;
1573
1574 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1575 if (!nested_msrpm_pages)
1576 goto free_page2;
1577
1578 hsave_page = alloc_page(GFP_KERNEL);
1579 if (!hsave_page)
1580 goto free_page3;
1581
1582 if (avic) {
1583 err = avic_init_backing_page(&svm->vcpu);
1584 if (err)
1585 goto free_page4;
1586
1587 INIT_LIST_HEAD(&svm->ir_list);
1588 spin_lock_init(&svm->ir_list_lock);
1589 }
1590
1591 /* We initialize this flag to true to make sure that the is_running
1592 * bit would be set the first time the vcpu is loaded.
1593 */
1594 svm->avic_is_running = true;
1595
1596 svm->nested.hsave = page_address(hsave_page);
1597
1598 svm->msrpm = page_address(msrpm_pages);
1599 svm_vcpu_init_msrpm(svm->msrpm);
1600
1601 svm->nested.msrpm = page_address(nested_msrpm_pages);
1602 svm_vcpu_init_msrpm(svm->nested.msrpm);
1603
1604 svm->vmcb = page_address(page);
1605 clear_page(svm->vmcb);
1606 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1607 svm->asid_generation = 0;
1608 init_vmcb(svm);
1609
1610 svm_init_osvw(&svm->vcpu);
1611
1612 return &svm->vcpu;
1613
1614 free_page4:
1615 __free_page(hsave_page);
1616 free_page3:
1617 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1618 free_page2:
1619 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1620 free_page1:
1621 __free_page(page);
1622 uninit:
1623 kvm_vcpu_uninit(&svm->vcpu);
1624 free_svm:
1625 kmem_cache_free(kvm_vcpu_cache, svm);
1626 out:
1627 return ERR_PTR(err);
1628 }
1629
1630 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1631 {
1632 struct vcpu_svm *svm = to_svm(vcpu);
1633
1634 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1635 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1636 __free_page(virt_to_page(svm->nested.hsave));
1637 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1638 kvm_vcpu_uninit(vcpu);
1639 kmem_cache_free(kvm_vcpu_cache, svm);
1640 }
1641
1642 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1643 {
1644 struct vcpu_svm *svm = to_svm(vcpu);
1645 int i;
1646
1647 if (unlikely(cpu != vcpu->cpu)) {
1648 svm->asid_generation = 0;
1649 mark_all_dirty(svm->vmcb);
1650 }
1651
1652 #ifdef CONFIG_X86_64
1653 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1654 #endif
1655 savesegment(fs, svm->host.fs);
1656 savesegment(gs, svm->host.gs);
1657 svm->host.ldt = kvm_read_ldt();
1658
1659 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1660 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1661
1662 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1663 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1664 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1665 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1666 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1667 }
1668 }
1669 /* This assumes that the kernel never uses MSR_TSC_AUX */
1670 if (static_cpu_has(X86_FEATURE_RDTSCP))
1671 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1672
1673 avic_vcpu_load(vcpu, cpu);
1674 }
1675
1676 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1677 {
1678 struct vcpu_svm *svm = to_svm(vcpu);
1679 int i;
1680
1681 avic_vcpu_put(vcpu);
1682
1683 ++vcpu->stat.host_state_reload;
1684 kvm_load_ldt(svm->host.ldt);
1685 #ifdef CONFIG_X86_64
1686 loadsegment(fs, svm->host.fs);
1687 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1688 load_gs_index(svm->host.gs);
1689 #else
1690 #ifdef CONFIG_X86_32_LAZY_GS
1691 loadsegment(gs, svm->host.gs);
1692 #endif
1693 #endif
1694 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1695 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1696 }
1697
1698 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1699 {
1700 avic_set_running(vcpu, false);
1701 }
1702
1703 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1704 {
1705 avic_set_running(vcpu, true);
1706 }
1707
1708 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1709 {
1710 return to_svm(vcpu)->vmcb->save.rflags;
1711 }
1712
1713 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1714 {
1715 /*
1716 * Any change of EFLAGS.VM is accompanied by a reload of SS
1717 * (caused by either a task switch or an inter-privilege IRET),
1718 * so we do not need to update the CPL here.
1719 */
1720 to_svm(vcpu)->vmcb->save.rflags = rflags;
1721 }
1722
1723 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1724 {
1725 return 0;
1726 }
1727
1728 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1729 {
1730 switch (reg) {
1731 case VCPU_EXREG_PDPTR:
1732 BUG_ON(!npt_enabled);
1733 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1734 break;
1735 default:
1736 BUG();
1737 }
1738 }
1739
1740 static void svm_set_vintr(struct vcpu_svm *svm)
1741 {
1742 set_intercept(svm, INTERCEPT_VINTR);
1743 }
1744
1745 static void svm_clear_vintr(struct vcpu_svm *svm)
1746 {
1747 clr_intercept(svm, INTERCEPT_VINTR);
1748 }
1749
1750 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1751 {
1752 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1753
1754 switch (seg) {
1755 case VCPU_SREG_CS: return &save->cs;
1756 case VCPU_SREG_DS: return &save->ds;
1757 case VCPU_SREG_ES: return &save->es;
1758 case VCPU_SREG_FS: return &save->fs;
1759 case VCPU_SREG_GS: return &save->gs;
1760 case VCPU_SREG_SS: return &save->ss;
1761 case VCPU_SREG_TR: return &save->tr;
1762 case VCPU_SREG_LDTR: return &save->ldtr;
1763 }
1764 BUG();
1765 return NULL;
1766 }
1767
1768 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1769 {
1770 struct vmcb_seg *s = svm_seg(vcpu, seg);
1771
1772 return s->base;
1773 }
1774
1775 static void svm_get_segment(struct kvm_vcpu *vcpu,
1776 struct kvm_segment *var, int seg)
1777 {
1778 struct vmcb_seg *s = svm_seg(vcpu, seg);
1779
1780 var->base = s->base;
1781 var->limit = s->limit;
1782 var->selector = s->selector;
1783 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1784 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1785 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1786 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1787 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1788 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1789 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1790
1791 /*
1792 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1793 * However, the SVM spec states that the G bit is not observed by the
1794 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1795 * So let's synthesize a legal G bit for all segments, this helps
1796 * running KVM nested. It also helps cross-vendor migration, because
1797 * Intel's vmentry has a check on the 'G' bit.
1798 */
1799 var->g = s->limit > 0xfffff;
1800
1801 /*
1802 * AMD's VMCB does not have an explicit unusable field, so emulate it
1803 * for cross vendor migration purposes by "not present"
1804 */
1805 var->unusable = !var->present || (var->type == 0);
1806
1807 switch (seg) {
1808 case VCPU_SREG_TR:
1809 /*
1810 * Work around a bug where the busy flag in the tr selector
1811 * isn't exposed
1812 */
1813 var->type |= 0x2;
1814 break;
1815 case VCPU_SREG_DS:
1816 case VCPU_SREG_ES:
1817 case VCPU_SREG_FS:
1818 case VCPU_SREG_GS:
1819 /*
1820 * The accessed bit must always be set in the segment
1821 * descriptor cache, although it can be cleared in the
1822 * descriptor, the cached bit always remains at 1. Since
1823 * Intel has a check on this, set it here to support
1824 * cross-vendor migration.
1825 */
1826 if (!var->unusable)
1827 var->type |= 0x1;
1828 break;
1829 case VCPU_SREG_SS:
1830 /*
1831 * On AMD CPUs sometimes the DB bit in the segment
1832 * descriptor is left as 1, although the whole segment has
1833 * been made unusable. Clear it here to pass an Intel VMX
1834 * entry check when cross vendor migrating.
1835 */
1836 if (var->unusable)
1837 var->db = 0;
1838 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1839 break;
1840 }
1841 }
1842
1843 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1844 {
1845 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1846
1847 return save->cpl;
1848 }
1849
1850 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1851 {
1852 struct vcpu_svm *svm = to_svm(vcpu);
1853
1854 dt->size = svm->vmcb->save.idtr.limit;
1855 dt->address = svm->vmcb->save.idtr.base;
1856 }
1857
1858 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1859 {
1860 struct vcpu_svm *svm = to_svm(vcpu);
1861
1862 svm->vmcb->save.idtr.limit = dt->size;
1863 svm->vmcb->save.idtr.base = dt->address ;
1864 mark_dirty(svm->vmcb, VMCB_DT);
1865 }
1866
1867 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1868 {
1869 struct vcpu_svm *svm = to_svm(vcpu);
1870
1871 dt->size = svm->vmcb->save.gdtr.limit;
1872 dt->address = svm->vmcb->save.gdtr.base;
1873 }
1874
1875 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1876 {
1877 struct vcpu_svm *svm = to_svm(vcpu);
1878
1879 svm->vmcb->save.gdtr.limit = dt->size;
1880 svm->vmcb->save.gdtr.base = dt->address ;
1881 mark_dirty(svm->vmcb, VMCB_DT);
1882 }
1883
1884 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1885 {
1886 }
1887
1888 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1889 {
1890 }
1891
1892 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1893 {
1894 }
1895
1896 static void update_cr0_intercept(struct vcpu_svm *svm)
1897 {
1898 ulong gcr0 = svm->vcpu.arch.cr0;
1899 u64 *hcr0 = &svm->vmcb->save.cr0;
1900
1901 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1902 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1903
1904 mark_dirty(svm->vmcb, VMCB_CR);
1905
1906 if (gcr0 == *hcr0) {
1907 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1908 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1909 } else {
1910 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1911 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1912 }
1913 }
1914
1915 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1916 {
1917 struct vcpu_svm *svm = to_svm(vcpu);
1918
1919 #ifdef CONFIG_X86_64
1920 if (vcpu->arch.efer & EFER_LME) {
1921 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1922 vcpu->arch.efer |= EFER_LMA;
1923 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1924 }
1925
1926 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1927 vcpu->arch.efer &= ~EFER_LMA;
1928 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1929 }
1930 }
1931 #endif
1932 vcpu->arch.cr0 = cr0;
1933
1934 if (!npt_enabled)
1935 cr0 |= X86_CR0_PG | X86_CR0_WP;
1936
1937 /*
1938 * re-enable caching here because the QEMU bios
1939 * does not do it - this results in some delay at
1940 * reboot
1941 */
1942 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1943 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1944 svm->vmcb->save.cr0 = cr0;
1945 mark_dirty(svm->vmcb, VMCB_CR);
1946 update_cr0_intercept(svm);
1947 }
1948
1949 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1950 {
1951 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1952 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1953
1954 if (cr4 & X86_CR4_VMXE)
1955 return 1;
1956
1957 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1958 svm_flush_tlb(vcpu);
1959
1960 vcpu->arch.cr4 = cr4;
1961 if (!npt_enabled)
1962 cr4 |= X86_CR4_PAE;
1963 cr4 |= host_cr4_mce;
1964 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1965 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1966 return 0;
1967 }
1968
1969 static void svm_set_segment(struct kvm_vcpu *vcpu,
1970 struct kvm_segment *var, int seg)
1971 {
1972 struct vcpu_svm *svm = to_svm(vcpu);
1973 struct vmcb_seg *s = svm_seg(vcpu, seg);
1974
1975 s->base = var->base;
1976 s->limit = var->limit;
1977 s->selector = var->selector;
1978 if (var->unusable)
1979 s->attrib = 0;
1980 else {
1981 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1982 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1983 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1984 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1985 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1986 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1987 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1988 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1989 }
1990
1991 /*
1992 * This is always accurate, except if SYSRET returned to a segment
1993 * with SS.DPL != 3. Intel does not have this quirk, and always
1994 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1995 * would entail passing the CPL to userspace and back.
1996 */
1997 if (seg == VCPU_SREG_SS)
1998 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1999
2000 mark_dirty(svm->vmcb, VMCB_SEG);
2001 }
2002
2003 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2004 {
2005 struct vcpu_svm *svm = to_svm(vcpu);
2006
2007 clr_exception_intercept(svm, BP_VECTOR);
2008
2009 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2010 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2011 set_exception_intercept(svm, BP_VECTOR);
2012 } else
2013 vcpu->guest_debug = 0;
2014 }
2015
2016 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2017 {
2018 if (sd->next_asid > sd->max_asid) {
2019 ++sd->asid_generation;
2020 sd->next_asid = 1;
2021 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2022 }
2023
2024 svm->asid_generation = sd->asid_generation;
2025 svm->vmcb->control.asid = sd->next_asid++;
2026
2027 mark_dirty(svm->vmcb, VMCB_ASID);
2028 }
2029
2030 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2031 {
2032 return to_svm(vcpu)->vmcb->save.dr6;
2033 }
2034
2035 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2036 {
2037 struct vcpu_svm *svm = to_svm(vcpu);
2038
2039 svm->vmcb->save.dr6 = value;
2040 mark_dirty(svm->vmcb, VMCB_DR);
2041 }
2042
2043 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2044 {
2045 struct vcpu_svm *svm = to_svm(vcpu);
2046
2047 get_debugreg(vcpu->arch.db[0], 0);
2048 get_debugreg(vcpu->arch.db[1], 1);
2049 get_debugreg(vcpu->arch.db[2], 2);
2050 get_debugreg(vcpu->arch.db[3], 3);
2051 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2052 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2053
2054 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2055 set_dr_intercepts(svm);
2056 }
2057
2058 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2059 {
2060 struct vcpu_svm *svm = to_svm(vcpu);
2061
2062 svm->vmcb->save.dr7 = value;
2063 mark_dirty(svm->vmcb, VMCB_DR);
2064 }
2065
2066 static int pf_interception(struct vcpu_svm *svm)
2067 {
2068 u64 fault_address = svm->vmcb->control.exit_info_2;
2069 u64 error_code;
2070 int r = 1;
2071
2072 switch (svm->apf_reason) {
2073 default:
2074 error_code = svm->vmcb->control.exit_info_1;
2075
2076 trace_kvm_page_fault(fault_address, error_code);
2077 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2078 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2079 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2080 svm->vmcb->control.insn_bytes,
2081 svm->vmcb->control.insn_len);
2082 break;
2083 case KVM_PV_REASON_PAGE_NOT_PRESENT:
2084 svm->apf_reason = 0;
2085 local_irq_disable();
2086 kvm_async_pf_task_wait(fault_address);
2087 local_irq_enable();
2088 break;
2089 case KVM_PV_REASON_PAGE_READY:
2090 svm->apf_reason = 0;
2091 local_irq_disable();
2092 kvm_async_pf_task_wake(fault_address);
2093 local_irq_enable();
2094 break;
2095 }
2096 return r;
2097 }
2098
2099 static int db_interception(struct vcpu_svm *svm)
2100 {
2101 struct kvm_run *kvm_run = svm->vcpu.run;
2102
2103 if (!(svm->vcpu.guest_debug &
2104 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2105 !svm->nmi_singlestep) {
2106 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2107 return 1;
2108 }
2109
2110 if (svm->nmi_singlestep) {
2111 svm->nmi_singlestep = false;
2112 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2113 svm->vmcb->save.rflags &=
2114 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2115 }
2116
2117 if (svm->vcpu.guest_debug &
2118 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2119 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2120 kvm_run->debug.arch.pc =
2121 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2122 kvm_run->debug.arch.exception = DB_VECTOR;
2123 return 0;
2124 }
2125
2126 return 1;
2127 }
2128
2129 static int bp_interception(struct vcpu_svm *svm)
2130 {
2131 struct kvm_run *kvm_run = svm->vcpu.run;
2132
2133 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2134 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2135 kvm_run->debug.arch.exception = BP_VECTOR;
2136 return 0;
2137 }
2138
2139 static int ud_interception(struct vcpu_svm *svm)
2140 {
2141 int er;
2142
2143 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2144 if (er != EMULATE_DONE)
2145 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2146 return 1;
2147 }
2148
2149 static int ac_interception(struct vcpu_svm *svm)
2150 {
2151 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2152 return 1;
2153 }
2154
2155 static bool is_erratum_383(void)
2156 {
2157 int err, i;
2158 u64 value;
2159
2160 if (!erratum_383_found)
2161 return false;
2162
2163 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2164 if (err)
2165 return false;
2166
2167 /* Bit 62 may or may not be set for this mce */
2168 value &= ~(1ULL << 62);
2169
2170 if (value != 0xb600000000010015ULL)
2171 return false;
2172
2173 /* Clear MCi_STATUS registers */
2174 for (i = 0; i < 6; ++i)
2175 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2176
2177 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2178 if (!err) {
2179 u32 low, high;
2180
2181 value &= ~(1ULL << 2);
2182 low = lower_32_bits(value);
2183 high = upper_32_bits(value);
2184
2185 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2186 }
2187
2188 /* Flush tlb to evict multi-match entries */
2189 __flush_tlb_all();
2190
2191 return true;
2192 }
2193
2194 static void svm_handle_mce(struct vcpu_svm *svm)
2195 {
2196 if (is_erratum_383()) {
2197 /*
2198 * Erratum 383 triggered. Guest state is corrupt so kill the
2199 * guest.
2200 */
2201 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2202
2203 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2204
2205 return;
2206 }
2207
2208 /*
2209 * On an #MC intercept the MCE handler is not called automatically in
2210 * the host. So do it by hand here.
2211 */
2212 asm volatile (
2213 "int $0x12\n");
2214 /* not sure if we ever come back to this point */
2215
2216 return;
2217 }
2218
2219 static int mc_interception(struct vcpu_svm *svm)
2220 {
2221 return 1;
2222 }
2223
2224 static int shutdown_interception(struct vcpu_svm *svm)
2225 {
2226 struct kvm_run *kvm_run = svm->vcpu.run;
2227
2228 /*
2229 * VMCB is undefined after a SHUTDOWN intercept
2230 * so reinitialize it.
2231 */
2232 clear_page(svm->vmcb);
2233 init_vmcb(svm);
2234
2235 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2236 return 0;
2237 }
2238
2239 static int io_interception(struct vcpu_svm *svm)
2240 {
2241 struct kvm_vcpu *vcpu = &svm->vcpu;
2242 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2243 int size, in, string;
2244 unsigned port;
2245
2246 ++svm->vcpu.stat.io_exits;
2247 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2248 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2249 if (string)
2250 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2251
2252 port = io_info >> 16;
2253 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2254 svm->next_rip = svm->vmcb->control.exit_info_2;
2255 skip_emulated_instruction(&svm->vcpu);
2256
2257 return in ? kvm_fast_pio_in(vcpu, size, port)
2258 : kvm_fast_pio_out(vcpu, size, port);
2259 }
2260
2261 static int nmi_interception(struct vcpu_svm *svm)
2262 {
2263 return 1;
2264 }
2265
2266 static int intr_interception(struct vcpu_svm *svm)
2267 {
2268 ++svm->vcpu.stat.irq_exits;
2269 return 1;
2270 }
2271
2272 static int nop_on_interception(struct vcpu_svm *svm)
2273 {
2274 return 1;
2275 }
2276
2277 static int halt_interception(struct vcpu_svm *svm)
2278 {
2279 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2280 return kvm_emulate_halt(&svm->vcpu);
2281 }
2282
2283 static int vmmcall_interception(struct vcpu_svm *svm)
2284 {
2285 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2286 return kvm_emulate_hypercall(&svm->vcpu);
2287 }
2288
2289 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2290 {
2291 struct vcpu_svm *svm = to_svm(vcpu);
2292
2293 return svm->nested.nested_cr3;
2294 }
2295
2296 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2297 {
2298 struct vcpu_svm *svm = to_svm(vcpu);
2299 u64 cr3 = svm->nested.nested_cr3;
2300 u64 pdpte;
2301 int ret;
2302
2303 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2304 offset_in_page(cr3) + index * 8, 8);
2305 if (ret)
2306 return 0;
2307 return pdpte;
2308 }
2309
2310 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2311 unsigned long root)
2312 {
2313 struct vcpu_svm *svm = to_svm(vcpu);
2314
2315 svm->vmcb->control.nested_cr3 = root;
2316 mark_dirty(svm->vmcb, VMCB_NPT);
2317 svm_flush_tlb(vcpu);
2318 }
2319
2320 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2321 struct x86_exception *fault)
2322 {
2323 struct vcpu_svm *svm = to_svm(vcpu);
2324
2325 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2326 /*
2327 * TODO: track the cause of the nested page fault, and
2328 * correctly fill in the high bits of exit_info_1.
2329 */
2330 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2331 svm->vmcb->control.exit_code_hi = 0;
2332 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2333 svm->vmcb->control.exit_info_2 = fault->address;
2334 }
2335
2336 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2337 svm->vmcb->control.exit_info_1 |= fault->error_code;
2338
2339 /*
2340 * The present bit is always zero for page structure faults on real
2341 * hardware.
2342 */
2343 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2344 svm->vmcb->control.exit_info_1 &= ~1;
2345
2346 nested_svm_vmexit(svm);
2347 }
2348
2349 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2350 {
2351 WARN_ON(mmu_is_nested(vcpu));
2352 kvm_init_shadow_mmu(vcpu);
2353 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2354 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2355 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2356 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2357 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2358 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2359 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2360 }
2361
2362 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2363 {
2364 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2365 }
2366
2367 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2368 {
2369 if (!(svm->vcpu.arch.efer & EFER_SVME)
2370 || !is_paging(&svm->vcpu)) {
2371 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2372 return 1;
2373 }
2374
2375 if (svm->vmcb->save.cpl) {
2376 kvm_inject_gp(&svm->vcpu, 0);
2377 return 1;
2378 }
2379
2380 return 0;
2381 }
2382
2383 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2384 bool has_error_code, u32 error_code)
2385 {
2386 int vmexit;
2387
2388 if (!is_guest_mode(&svm->vcpu))
2389 return 0;
2390
2391 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2392 svm->vmcb->control.exit_code_hi = 0;
2393 svm->vmcb->control.exit_info_1 = error_code;
2394 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2395
2396 vmexit = nested_svm_intercept(svm);
2397 if (vmexit == NESTED_EXIT_DONE)
2398 svm->nested.exit_required = true;
2399
2400 return vmexit;
2401 }
2402
2403 /* This function returns true if it is save to enable the irq window */
2404 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2405 {
2406 if (!is_guest_mode(&svm->vcpu))
2407 return true;
2408
2409 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2410 return true;
2411
2412 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2413 return false;
2414
2415 /*
2416 * if vmexit was already requested (by intercepted exception
2417 * for instance) do not overwrite it with "external interrupt"
2418 * vmexit.
2419 */
2420 if (svm->nested.exit_required)
2421 return false;
2422
2423 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2424 svm->vmcb->control.exit_info_1 = 0;
2425 svm->vmcb->control.exit_info_2 = 0;
2426
2427 if (svm->nested.intercept & 1ULL) {
2428 /*
2429 * The #vmexit can't be emulated here directly because this
2430 * code path runs with irqs and preemption disabled. A
2431 * #vmexit emulation might sleep. Only signal request for
2432 * the #vmexit here.
2433 */
2434 svm->nested.exit_required = true;
2435 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2436 return false;
2437 }
2438
2439 return true;
2440 }
2441
2442 /* This function returns true if it is save to enable the nmi window */
2443 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2444 {
2445 if (!is_guest_mode(&svm->vcpu))
2446 return true;
2447
2448 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2449 return true;
2450
2451 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2452 svm->nested.exit_required = true;
2453
2454 return false;
2455 }
2456
2457 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2458 {
2459 struct page *page;
2460
2461 might_sleep();
2462
2463 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2464 if (is_error_page(page))
2465 goto error;
2466
2467 *_page = page;
2468
2469 return kmap(page);
2470
2471 error:
2472 kvm_inject_gp(&svm->vcpu, 0);
2473
2474 return NULL;
2475 }
2476
2477 static void nested_svm_unmap(struct page *page)
2478 {
2479 kunmap(page);
2480 kvm_release_page_dirty(page);
2481 }
2482
2483 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2484 {
2485 unsigned port, size, iopm_len;
2486 u16 val, mask;
2487 u8 start_bit;
2488 u64 gpa;
2489
2490 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2491 return NESTED_EXIT_HOST;
2492
2493 port = svm->vmcb->control.exit_info_1 >> 16;
2494 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2495 SVM_IOIO_SIZE_SHIFT;
2496 gpa = svm->nested.vmcb_iopm + (port / 8);
2497 start_bit = port % 8;
2498 iopm_len = (start_bit + size > 8) ? 2 : 1;
2499 mask = (0xf >> (4 - size)) << start_bit;
2500 val = 0;
2501
2502 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2503 return NESTED_EXIT_DONE;
2504
2505 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2506 }
2507
2508 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2509 {
2510 u32 offset, msr, value;
2511 int write, mask;
2512
2513 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2514 return NESTED_EXIT_HOST;
2515
2516 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2517 offset = svm_msrpm_offset(msr);
2518 write = svm->vmcb->control.exit_info_1 & 1;
2519 mask = 1 << ((2 * (msr & 0xf)) + write);
2520
2521 if (offset == MSR_INVALID)
2522 return NESTED_EXIT_DONE;
2523
2524 /* Offset is in 32 bit units but need in 8 bit units */
2525 offset *= 4;
2526
2527 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2528 return NESTED_EXIT_DONE;
2529
2530 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2531 }
2532
2533 static int nested_svm_exit_special(struct vcpu_svm *svm)
2534 {
2535 u32 exit_code = svm->vmcb->control.exit_code;
2536
2537 switch (exit_code) {
2538 case SVM_EXIT_INTR:
2539 case SVM_EXIT_NMI:
2540 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2541 return NESTED_EXIT_HOST;
2542 case SVM_EXIT_NPF:
2543 /* For now we are always handling NPFs when using them */
2544 if (npt_enabled)
2545 return NESTED_EXIT_HOST;
2546 break;
2547 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2548 /* When we're shadowing, trap PFs, but not async PF */
2549 if (!npt_enabled && svm->apf_reason == 0)
2550 return NESTED_EXIT_HOST;
2551 break;
2552 default:
2553 break;
2554 }
2555
2556 return NESTED_EXIT_CONTINUE;
2557 }
2558
2559 /*
2560 * If this function returns true, this #vmexit was already handled
2561 */
2562 static int nested_svm_intercept(struct vcpu_svm *svm)
2563 {
2564 u32 exit_code = svm->vmcb->control.exit_code;
2565 int vmexit = NESTED_EXIT_HOST;
2566
2567 switch (exit_code) {
2568 case SVM_EXIT_MSR:
2569 vmexit = nested_svm_exit_handled_msr(svm);
2570 break;
2571 case SVM_EXIT_IOIO:
2572 vmexit = nested_svm_intercept_ioio(svm);
2573 break;
2574 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2575 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2576 if (svm->nested.intercept_cr & bit)
2577 vmexit = NESTED_EXIT_DONE;
2578 break;
2579 }
2580 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2581 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2582 if (svm->nested.intercept_dr & bit)
2583 vmexit = NESTED_EXIT_DONE;
2584 break;
2585 }
2586 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2587 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2588 if (svm->nested.intercept_exceptions & excp_bits)
2589 vmexit = NESTED_EXIT_DONE;
2590 /* async page fault always cause vmexit */
2591 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2592 svm->apf_reason != 0)
2593 vmexit = NESTED_EXIT_DONE;
2594 break;
2595 }
2596 case SVM_EXIT_ERR: {
2597 vmexit = NESTED_EXIT_DONE;
2598 break;
2599 }
2600 default: {
2601 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2602 if (svm->nested.intercept & exit_bits)
2603 vmexit = NESTED_EXIT_DONE;
2604 }
2605 }
2606
2607 return vmexit;
2608 }
2609
2610 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2611 {
2612 int vmexit;
2613
2614 vmexit = nested_svm_intercept(svm);
2615
2616 if (vmexit == NESTED_EXIT_DONE)
2617 nested_svm_vmexit(svm);
2618
2619 return vmexit;
2620 }
2621
2622 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2623 {
2624 struct vmcb_control_area *dst = &dst_vmcb->control;
2625 struct vmcb_control_area *from = &from_vmcb->control;
2626
2627 dst->intercept_cr = from->intercept_cr;
2628 dst->intercept_dr = from->intercept_dr;
2629 dst->intercept_exceptions = from->intercept_exceptions;
2630 dst->intercept = from->intercept;
2631 dst->iopm_base_pa = from->iopm_base_pa;
2632 dst->msrpm_base_pa = from->msrpm_base_pa;
2633 dst->tsc_offset = from->tsc_offset;
2634 dst->asid = from->asid;
2635 dst->tlb_ctl = from->tlb_ctl;
2636 dst->int_ctl = from->int_ctl;
2637 dst->int_vector = from->int_vector;
2638 dst->int_state = from->int_state;
2639 dst->exit_code = from->exit_code;
2640 dst->exit_code_hi = from->exit_code_hi;
2641 dst->exit_info_1 = from->exit_info_1;
2642 dst->exit_info_2 = from->exit_info_2;
2643 dst->exit_int_info = from->exit_int_info;
2644 dst->exit_int_info_err = from->exit_int_info_err;
2645 dst->nested_ctl = from->nested_ctl;
2646 dst->event_inj = from->event_inj;
2647 dst->event_inj_err = from->event_inj_err;
2648 dst->nested_cr3 = from->nested_cr3;
2649 dst->lbr_ctl = from->lbr_ctl;
2650 }
2651
2652 static int nested_svm_vmexit(struct vcpu_svm *svm)
2653 {
2654 struct vmcb *nested_vmcb;
2655 struct vmcb *hsave = svm->nested.hsave;
2656 struct vmcb *vmcb = svm->vmcb;
2657 struct page *page;
2658
2659 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2660 vmcb->control.exit_info_1,
2661 vmcb->control.exit_info_2,
2662 vmcb->control.exit_int_info,
2663 vmcb->control.exit_int_info_err,
2664 KVM_ISA_SVM);
2665
2666 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2667 if (!nested_vmcb)
2668 return 1;
2669
2670 /* Exit Guest-Mode */
2671 leave_guest_mode(&svm->vcpu);
2672 svm->nested.vmcb = 0;
2673
2674 /* Give the current vmcb to the guest */
2675 disable_gif(svm);
2676
2677 nested_vmcb->save.es = vmcb->save.es;
2678 nested_vmcb->save.cs = vmcb->save.cs;
2679 nested_vmcb->save.ss = vmcb->save.ss;
2680 nested_vmcb->save.ds = vmcb->save.ds;
2681 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2682 nested_vmcb->save.idtr = vmcb->save.idtr;
2683 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2684 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2685 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2686 nested_vmcb->save.cr2 = vmcb->save.cr2;
2687 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2688 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2689 nested_vmcb->save.rip = vmcb->save.rip;
2690 nested_vmcb->save.rsp = vmcb->save.rsp;
2691 nested_vmcb->save.rax = vmcb->save.rax;
2692 nested_vmcb->save.dr7 = vmcb->save.dr7;
2693 nested_vmcb->save.dr6 = vmcb->save.dr6;
2694 nested_vmcb->save.cpl = vmcb->save.cpl;
2695
2696 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2697 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2698 nested_vmcb->control.int_state = vmcb->control.int_state;
2699 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2700 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2701 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2702 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2703 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2704 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2705
2706 if (svm->nrips_enabled)
2707 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2708
2709 /*
2710 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2711 * to make sure that we do not lose injected events. So check event_inj
2712 * here and copy it to exit_int_info if it is valid.
2713 * Exit_int_info and event_inj can't be both valid because the case
2714 * below only happens on a VMRUN instruction intercept which has
2715 * no valid exit_int_info set.
2716 */
2717 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2718 struct vmcb_control_area *nc = &nested_vmcb->control;
2719
2720 nc->exit_int_info = vmcb->control.event_inj;
2721 nc->exit_int_info_err = vmcb->control.event_inj_err;
2722 }
2723
2724 nested_vmcb->control.tlb_ctl = 0;
2725 nested_vmcb->control.event_inj = 0;
2726 nested_vmcb->control.event_inj_err = 0;
2727
2728 /* We always set V_INTR_MASKING and remember the old value in hflags */
2729 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2730 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2731
2732 /* Restore the original control entries */
2733 copy_vmcb_control_area(vmcb, hsave);
2734
2735 kvm_clear_exception_queue(&svm->vcpu);
2736 kvm_clear_interrupt_queue(&svm->vcpu);
2737
2738 svm->nested.nested_cr3 = 0;
2739
2740 /* Restore selected save entries */
2741 svm->vmcb->save.es = hsave->save.es;
2742 svm->vmcb->save.cs = hsave->save.cs;
2743 svm->vmcb->save.ss = hsave->save.ss;
2744 svm->vmcb->save.ds = hsave->save.ds;
2745 svm->vmcb->save.gdtr = hsave->save.gdtr;
2746 svm->vmcb->save.idtr = hsave->save.idtr;
2747 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2748 svm_set_efer(&svm->vcpu, hsave->save.efer);
2749 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2750 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2751 if (npt_enabled) {
2752 svm->vmcb->save.cr3 = hsave->save.cr3;
2753 svm->vcpu.arch.cr3 = hsave->save.cr3;
2754 } else {
2755 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2756 }
2757 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2758 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2759 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2760 svm->vmcb->save.dr7 = 0;
2761 svm->vmcb->save.cpl = 0;
2762 svm->vmcb->control.exit_int_info = 0;
2763
2764 mark_all_dirty(svm->vmcb);
2765
2766 nested_svm_unmap(page);
2767
2768 nested_svm_uninit_mmu_context(&svm->vcpu);
2769 kvm_mmu_reset_context(&svm->vcpu);
2770 kvm_mmu_load(&svm->vcpu);
2771
2772 return 0;
2773 }
2774
2775 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2776 {
2777 /*
2778 * This function merges the msr permission bitmaps of kvm and the
2779 * nested vmcb. It is optimized in that it only merges the parts where
2780 * the kvm msr permission bitmap may contain zero bits
2781 */
2782 int i;
2783
2784 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2785 return true;
2786
2787 for (i = 0; i < MSRPM_OFFSETS; i++) {
2788 u32 value, p;
2789 u64 offset;
2790
2791 if (msrpm_offsets[i] == 0xffffffff)
2792 break;
2793
2794 p = msrpm_offsets[i];
2795 offset = svm->nested.vmcb_msrpm + (p * 4);
2796
2797 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2798 return false;
2799
2800 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2801 }
2802
2803 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2804
2805 return true;
2806 }
2807
2808 static bool nested_vmcb_checks(struct vmcb *vmcb)
2809 {
2810 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2811 return false;
2812
2813 if (vmcb->control.asid == 0)
2814 return false;
2815
2816 if (vmcb->control.nested_ctl && !npt_enabled)
2817 return false;
2818
2819 return true;
2820 }
2821
2822 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2823 {
2824 struct vmcb *nested_vmcb;
2825 struct vmcb *hsave = svm->nested.hsave;
2826 struct vmcb *vmcb = svm->vmcb;
2827 struct page *page;
2828 u64 vmcb_gpa;
2829
2830 vmcb_gpa = svm->vmcb->save.rax;
2831
2832 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2833 if (!nested_vmcb)
2834 return false;
2835
2836 if (!nested_vmcb_checks(nested_vmcb)) {
2837 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2838 nested_vmcb->control.exit_code_hi = 0;
2839 nested_vmcb->control.exit_info_1 = 0;
2840 nested_vmcb->control.exit_info_2 = 0;
2841
2842 nested_svm_unmap(page);
2843
2844 return false;
2845 }
2846
2847 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2848 nested_vmcb->save.rip,
2849 nested_vmcb->control.int_ctl,
2850 nested_vmcb->control.event_inj,
2851 nested_vmcb->control.nested_ctl);
2852
2853 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2854 nested_vmcb->control.intercept_cr >> 16,
2855 nested_vmcb->control.intercept_exceptions,
2856 nested_vmcb->control.intercept);
2857
2858 /* Clear internal status */
2859 kvm_clear_exception_queue(&svm->vcpu);
2860 kvm_clear_interrupt_queue(&svm->vcpu);
2861
2862 /*
2863 * Save the old vmcb, so we don't need to pick what we save, but can
2864 * restore everything when a VMEXIT occurs
2865 */
2866 hsave->save.es = vmcb->save.es;
2867 hsave->save.cs = vmcb->save.cs;
2868 hsave->save.ss = vmcb->save.ss;
2869 hsave->save.ds = vmcb->save.ds;
2870 hsave->save.gdtr = vmcb->save.gdtr;
2871 hsave->save.idtr = vmcb->save.idtr;
2872 hsave->save.efer = svm->vcpu.arch.efer;
2873 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2874 hsave->save.cr4 = svm->vcpu.arch.cr4;
2875 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2876 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2877 hsave->save.rsp = vmcb->save.rsp;
2878 hsave->save.rax = vmcb->save.rax;
2879 if (npt_enabled)
2880 hsave->save.cr3 = vmcb->save.cr3;
2881 else
2882 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2883
2884 copy_vmcb_control_area(hsave, vmcb);
2885
2886 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2887 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2888 else
2889 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2890
2891 if (nested_vmcb->control.nested_ctl) {
2892 kvm_mmu_unload(&svm->vcpu);
2893 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2894 nested_svm_init_mmu_context(&svm->vcpu);
2895 }
2896
2897 /* Load the nested guest state */
2898 svm->vmcb->save.es = nested_vmcb->save.es;
2899 svm->vmcb->save.cs = nested_vmcb->save.cs;
2900 svm->vmcb->save.ss = nested_vmcb->save.ss;
2901 svm->vmcb->save.ds = nested_vmcb->save.ds;
2902 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2903 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2904 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2905 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2906 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2907 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2908 if (npt_enabled) {
2909 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2910 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2911 } else
2912 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2913
2914 /* Guest paging mode is active - reset mmu */
2915 kvm_mmu_reset_context(&svm->vcpu);
2916
2917 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2918 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2919 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2920 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2921
2922 /* In case we don't even reach vcpu_run, the fields are not updated */
2923 svm->vmcb->save.rax = nested_vmcb->save.rax;
2924 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2925 svm->vmcb->save.rip = nested_vmcb->save.rip;
2926 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2927 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2928 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2929
2930 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2931 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2932
2933 /* cache intercepts */
2934 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2935 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2936 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2937 svm->nested.intercept = nested_vmcb->control.intercept;
2938
2939 svm_flush_tlb(&svm->vcpu);
2940 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2941 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2942 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2943 else
2944 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2945
2946 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2947 /* We only want the cr8 intercept bits of the guest */
2948 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2949 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2950 }
2951
2952 /* We don't want to see VMMCALLs from a nested guest */
2953 clr_intercept(svm, INTERCEPT_VMMCALL);
2954
2955 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2956 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2957 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2958 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2959 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2960 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2961
2962 nested_svm_unmap(page);
2963
2964 /* Enter Guest-Mode */
2965 enter_guest_mode(&svm->vcpu);
2966
2967 /*
2968 * Merge guest and host intercepts - must be called with vcpu in
2969 * guest-mode to take affect here
2970 */
2971 recalc_intercepts(svm);
2972
2973 svm->nested.vmcb = vmcb_gpa;
2974
2975 enable_gif(svm);
2976
2977 mark_all_dirty(svm->vmcb);
2978
2979 return true;
2980 }
2981
2982 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2983 {
2984 to_vmcb->save.fs = from_vmcb->save.fs;
2985 to_vmcb->save.gs = from_vmcb->save.gs;
2986 to_vmcb->save.tr = from_vmcb->save.tr;
2987 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2988 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2989 to_vmcb->save.star = from_vmcb->save.star;
2990 to_vmcb->save.lstar = from_vmcb->save.lstar;
2991 to_vmcb->save.cstar = from_vmcb->save.cstar;
2992 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2993 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2994 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2995 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2996 }
2997
2998 static int vmload_interception(struct vcpu_svm *svm)
2999 {
3000 struct vmcb *nested_vmcb;
3001 struct page *page;
3002
3003 if (nested_svm_check_permissions(svm))
3004 return 1;
3005
3006 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3007 if (!nested_vmcb)
3008 return 1;
3009
3010 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3011 skip_emulated_instruction(&svm->vcpu);
3012
3013 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3014 nested_svm_unmap(page);
3015
3016 return 1;
3017 }
3018
3019 static int vmsave_interception(struct vcpu_svm *svm)
3020 {
3021 struct vmcb *nested_vmcb;
3022 struct page *page;
3023
3024 if (nested_svm_check_permissions(svm))
3025 return 1;
3026
3027 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3028 if (!nested_vmcb)
3029 return 1;
3030
3031 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3032 skip_emulated_instruction(&svm->vcpu);
3033
3034 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3035 nested_svm_unmap(page);
3036
3037 return 1;
3038 }
3039
3040 static int vmrun_interception(struct vcpu_svm *svm)
3041 {
3042 if (nested_svm_check_permissions(svm))
3043 return 1;
3044
3045 /* Save rip after vmrun instruction */
3046 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3047
3048 if (!nested_svm_vmrun(svm))
3049 return 1;
3050
3051 if (!nested_svm_vmrun_msrpm(svm))
3052 goto failed;
3053
3054 return 1;
3055
3056 failed:
3057
3058 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3059 svm->vmcb->control.exit_code_hi = 0;
3060 svm->vmcb->control.exit_info_1 = 0;
3061 svm->vmcb->control.exit_info_2 = 0;
3062
3063 nested_svm_vmexit(svm);
3064
3065 return 1;
3066 }
3067
3068 static int stgi_interception(struct vcpu_svm *svm)
3069 {
3070 if (nested_svm_check_permissions(svm))
3071 return 1;
3072
3073 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3074 skip_emulated_instruction(&svm->vcpu);
3075 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3076
3077 enable_gif(svm);
3078
3079 return 1;
3080 }
3081
3082 static int clgi_interception(struct vcpu_svm *svm)
3083 {
3084 if (nested_svm_check_permissions(svm))
3085 return 1;
3086
3087 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3088 skip_emulated_instruction(&svm->vcpu);
3089
3090 disable_gif(svm);
3091
3092 /* After a CLGI no interrupts should come */
3093 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3094 svm_clear_vintr(svm);
3095 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3096 mark_dirty(svm->vmcb, VMCB_INTR);
3097 }
3098
3099 return 1;
3100 }
3101
3102 static int invlpga_interception(struct vcpu_svm *svm)
3103 {
3104 struct kvm_vcpu *vcpu = &svm->vcpu;
3105
3106 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3107 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3108
3109 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3110 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3111
3112 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3113 skip_emulated_instruction(&svm->vcpu);
3114 return 1;
3115 }
3116
3117 static int skinit_interception(struct vcpu_svm *svm)
3118 {
3119 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3120
3121 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3122 return 1;
3123 }
3124
3125 static int wbinvd_interception(struct vcpu_svm *svm)
3126 {
3127 return kvm_emulate_wbinvd(&svm->vcpu);
3128 }
3129
3130 static int xsetbv_interception(struct vcpu_svm *svm)
3131 {
3132 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3133 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3134
3135 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3136 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3137 skip_emulated_instruction(&svm->vcpu);
3138 }
3139
3140 return 1;
3141 }
3142
3143 static int task_switch_interception(struct vcpu_svm *svm)
3144 {
3145 u16 tss_selector;
3146 int reason;
3147 int int_type = svm->vmcb->control.exit_int_info &
3148 SVM_EXITINTINFO_TYPE_MASK;
3149 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3150 uint32_t type =
3151 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3152 uint32_t idt_v =
3153 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3154 bool has_error_code = false;
3155 u32 error_code = 0;
3156
3157 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3158
3159 if (svm->vmcb->control.exit_info_2 &
3160 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3161 reason = TASK_SWITCH_IRET;
3162 else if (svm->vmcb->control.exit_info_2 &
3163 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3164 reason = TASK_SWITCH_JMP;
3165 else if (idt_v)
3166 reason = TASK_SWITCH_GATE;
3167 else
3168 reason = TASK_SWITCH_CALL;
3169
3170 if (reason == TASK_SWITCH_GATE) {
3171 switch (type) {
3172 case SVM_EXITINTINFO_TYPE_NMI:
3173 svm->vcpu.arch.nmi_injected = false;
3174 break;
3175 case SVM_EXITINTINFO_TYPE_EXEPT:
3176 if (svm->vmcb->control.exit_info_2 &
3177 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3178 has_error_code = true;
3179 error_code =
3180 (u32)svm->vmcb->control.exit_info_2;
3181 }
3182 kvm_clear_exception_queue(&svm->vcpu);
3183 break;
3184 case SVM_EXITINTINFO_TYPE_INTR:
3185 kvm_clear_interrupt_queue(&svm->vcpu);
3186 break;
3187 default:
3188 break;
3189 }
3190 }
3191
3192 if (reason != TASK_SWITCH_GATE ||
3193 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3194 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3195 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3196 skip_emulated_instruction(&svm->vcpu);
3197
3198 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3199 int_vec = -1;
3200
3201 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3202 has_error_code, error_code) == EMULATE_FAIL) {
3203 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3204 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3205 svm->vcpu.run->internal.ndata = 0;
3206 return 0;
3207 }
3208 return 1;
3209 }
3210
3211 static int cpuid_interception(struct vcpu_svm *svm)
3212 {
3213 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3214 return kvm_emulate_cpuid(&svm->vcpu);
3215 }
3216
3217 static int iret_interception(struct vcpu_svm *svm)
3218 {
3219 ++svm->vcpu.stat.nmi_window_exits;
3220 clr_intercept(svm, INTERCEPT_IRET);
3221 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3222 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3223 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3224 return 1;
3225 }
3226
3227 static int invlpg_interception(struct vcpu_svm *svm)
3228 {
3229 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3230 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3231
3232 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3233 skip_emulated_instruction(&svm->vcpu);
3234 return 1;
3235 }
3236
3237 static int emulate_on_interception(struct vcpu_svm *svm)
3238 {
3239 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3240 }
3241
3242 static int rdpmc_interception(struct vcpu_svm *svm)
3243 {
3244 int err;
3245
3246 if (!static_cpu_has(X86_FEATURE_NRIPS))
3247 return emulate_on_interception(svm);
3248
3249 err = kvm_rdpmc(&svm->vcpu);
3250 return kvm_complete_insn_gp(&svm->vcpu, err);
3251 }
3252
3253 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3254 unsigned long val)
3255 {
3256 unsigned long cr0 = svm->vcpu.arch.cr0;
3257 bool ret = false;
3258 u64 intercept;
3259
3260 intercept = svm->nested.intercept;
3261
3262 if (!is_guest_mode(&svm->vcpu) ||
3263 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3264 return false;
3265
3266 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3267 val &= ~SVM_CR0_SELECTIVE_MASK;
3268
3269 if (cr0 ^ val) {
3270 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3271 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3272 }
3273
3274 return ret;
3275 }
3276
3277 #define CR_VALID (1ULL << 63)
3278
3279 static int cr_interception(struct vcpu_svm *svm)
3280 {
3281 int reg, cr;
3282 unsigned long val;
3283 int err;
3284
3285 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3286 return emulate_on_interception(svm);
3287
3288 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3289 return emulate_on_interception(svm);
3290
3291 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3292 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3293 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3294 else
3295 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3296
3297 err = 0;
3298 if (cr >= 16) { /* mov to cr */
3299 cr -= 16;
3300 val = kvm_register_read(&svm->vcpu, reg);
3301 switch (cr) {
3302 case 0:
3303 if (!check_selective_cr0_intercepted(svm, val))
3304 err = kvm_set_cr0(&svm->vcpu, val);
3305 else
3306 return 1;
3307
3308 break;
3309 case 3:
3310 err = kvm_set_cr3(&svm->vcpu, val);
3311 break;
3312 case 4:
3313 err = kvm_set_cr4(&svm->vcpu, val);
3314 break;
3315 case 8:
3316 err = kvm_set_cr8(&svm->vcpu, val);
3317 break;
3318 default:
3319 WARN(1, "unhandled write to CR%d", cr);
3320 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3321 return 1;
3322 }
3323 } else { /* mov from cr */
3324 switch (cr) {
3325 case 0:
3326 val = kvm_read_cr0(&svm->vcpu);
3327 break;
3328 case 2:
3329 val = svm->vcpu.arch.cr2;
3330 break;
3331 case 3:
3332 val = kvm_read_cr3(&svm->vcpu);
3333 break;
3334 case 4:
3335 val = kvm_read_cr4(&svm->vcpu);
3336 break;
3337 case 8:
3338 val = kvm_get_cr8(&svm->vcpu);
3339 break;
3340 default:
3341 WARN(1, "unhandled read from CR%d", cr);
3342 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3343 return 1;
3344 }
3345 kvm_register_write(&svm->vcpu, reg, val);
3346 }
3347 return kvm_complete_insn_gp(&svm->vcpu, err);
3348 }
3349
3350 static int dr_interception(struct vcpu_svm *svm)
3351 {
3352 int reg, dr;
3353 unsigned long val;
3354
3355 if (svm->vcpu.guest_debug == 0) {
3356 /*
3357 * No more DR vmexits; force a reload of the debug registers
3358 * and reenter on this instruction. The next vmexit will
3359 * retrieve the full state of the debug registers.
3360 */
3361 clr_dr_intercepts(svm);
3362 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3363 return 1;
3364 }
3365
3366 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3367 return emulate_on_interception(svm);
3368
3369 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3370 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3371
3372 if (dr >= 16) { /* mov to DRn */
3373 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3374 return 1;
3375 val = kvm_register_read(&svm->vcpu, reg);
3376 kvm_set_dr(&svm->vcpu, dr - 16, val);
3377 } else {
3378 if (!kvm_require_dr(&svm->vcpu, dr))
3379 return 1;
3380 kvm_get_dr(&svm->vcpu, dr, &val);
3381 kvm_register_write(&svm->vcpu, reg, val);
3382 }
3383
3384 skip_emulated_instruction(&svm->vcpu);
3385
3386 return 1;
3387 }
3388
3389 static int cr8_write_interception(struct vcpu_svm *svm)
3390 {
3391 struct kvm_run *kvm_run = svm->vcpu.run;
3392 int r;
3393
3394 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3395 /* instruction emulation calls kvm_set_cr8() */
3396 r = cr_interception(svm);
3397 if (lapic_in_kernel(&svm->vcpu))
3398 return r;
3399 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3400 return r;
3401 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3402 return 0;
3403 }
3404
3405 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3406 {
3407 struct vcpu_svm *svm = to_svm(vcpu);
3408
3409 switch (msr_info->index) {
3410 case MSR_IA32_TSC: {
3411 msr_info->data = svm->vmcb->control.tsc_offset +
3412 kvm_scale_tsc(vcpu, rdtsc());
3413
3414 break;
3415 }
3416 case MSR_STAR:
3417 msr_info->data = svm->vmcb->save.star;
3418 break;
3419 #ifdef CONFIG_X86_64
3420 case MSR_LSTAR:
3421 msr_info->data = svm->vmcb->save.lstar;
3422 break;
3423 case MSR_CSTAR:
3424 msr_info->data = svm->vmcb->save.cstar;
3425 break;
3426 case MSR_KERNEL_GS_BASE:
3427 msr_info->data = svm->vmcb->save.kernel_gs_base;
3428 break;
3429 case MSR_SYSCALL_MASK:
3430 msr_info->data = svm->vmcb->save.sfmask;
3431 break;
3432 #endif
3433 case MSR_IA32_SYSENTER_CS:
3434 msr_info->data = svm->vmcb->save.sysenter_cs;
3435 break;
3436 case MSR_IA32_SYSENTER_EIP:
3437 msr_info->data = svm->sysenter_eip;
3438 break;
3439 case MSR_IA32_SYSENTER_ESP:
3440 msr_info->data = svm->sysenter_esp;
3441 break;
3442 case MSR_TSC_AUX:
3443 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3444 return 1;
3445 msr_info->data = svm->tsc_aux;
3446 break;
3447 /*
3448 * Nobody will change the following 5 values in the VMCB so we can
3449 * safely return them on rdmsr. They will always be 0 until LBRV is
3450 * implemented.
3451 */
3452 case MSR_IA32_DEBUGCTLMSR:
3453 msr_info->data = svm->vmcb->save.dbgctl;
3454 break;
3455 case MSR_IA32_LASTBRANCHFROMIP:
3456 msr_info->data = svm->vmcb->save.br_from;
3457 break;
3458 case MSR_IA32_LASTBRANCHTOIP:
3459 msr_info->data = svm->vmcb->save.br_to;
3460 break;
3461 case MSR_IA32_LASTINTFROMIP:
3462 msr_info->data = svm->vmcb->save.last_excp_from;
3463 break;
3464 case MSR_IA32_LASTINTTOIP:
3465 msr_info->data = svm->vmcb->save.last_excp_to;
3466 break;
3467 case MSR_VM_HSAVE_PA:
3468 msr_info->data = svm->nested.hsave_msr;
3469 break;
3470 case MSR_VM_CR:
3471 msr_info->data = svm->nested.vm_cr_msr;
3472 break;
3473 case MSR_IA32_UCODE_REV:
3474 msr_info->data = 0x01000065;
3475 break;
3476 case MSR_F15H_IC_CFG: {
3477
3478 int family, model;
3479
3480 family = guest_cpuid_family(vcpu);
3481 model = guest_cpuid_model(vcpu);
3482
3483 if (family < 0 || model < 0)
3484 return kvm_get_msr_common(vcpu, msr_info);
3485
3486 msr_info->data = 0;
3487
3488 if (family == 0x15 &&
3489 (model >= 0x2 && model < 0x20))
3490 msr_info->data = 0x1E;
3491 }
3492 break;
3493 default:
3494 return kvm_get_msr_common(vcpu, msr_info);
3495 }
3496 return 0;
3497 }
3498
3499 static int rdmsr_interception(struct vcpu_svm *svm)
3500 {
3501 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3502 struct msr_data msr_info;
3503
3504 msr_info.index = ecx;
3505 msr_info.host_initiated = false;
3506 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3507 trace_kvm_msr_read_ex(ecx);
3508 kvm_inject_gp(&svm->vcpu, 0);
3509 } else {
3510 trace_kvm_msr_read(ecx, msr_info.data);
3511
3512 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3513 msr_info.data & 0xffffffff);
3514 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3515 msr_info.data >> 32);
3516 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3517 skip_emulated_instruction(&svm->vcpu);
3518 }
3519 return 1;
3520 }
3521
3522 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3523 {
3524 struct vcpu_svm *svm = to_svm(vcpu);
3525 int svm_dis, chg_mask;
3526
3527 if (data & ~SVM_VM_CR_VALID_MASK)
3528 return 1;
3529
3530 chg_mask = SVM_VM_CR_VALID_MASK;
3531
3532 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3533 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3534
3535 svm->nested.vm_cr_msr &= ~chg_mask;
3536 svm->nested.vm_cr_msr |= (data & chg_mask);
3537
3538 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3539
3540 /* check for svm_disable while efer.svme is set */
3541 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3542 return 1;
3543
3544 return 0;
3545 }
3546
3547 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3548 {
3549 struct vcpu_svm *svm = to_svm(vcpu);
3550
3551 u32 ecx = msr->index;
3552 u64 data = msr->data;
3553 switch (ecx) {
3554 case MSR_IA32_TSC:
3555 kvm_write_tsc(vcpu, msr);
3556 break;
3557 case MSR_STAR:
3558 svm->vmcb->save.star = data;
3559 break;
3560 #ifdef CONFIG_X86_64
3561 case MSR_LSTAR:
3562 svm->vmcb->save.lstar = data;
3563 break;
3564 case MSR_CSTAR:
3565 svm->vmcb->save.cstar = data;
3566 break;
3567 case MSR_KERNEL_GS_BASE:
3568 svm->vmcb->save.kernel_gs_base = data;
3569 break;
3570 case MSR_SYSCALL_MASK:
3571 svm->vmcb->save.sfmask = data;
3572 break;
3573 #endif
3574 case MSR_IA32_SYSENTER_CS:
3575 svm->vmcb->save.sysenter_cs = data;
3576 break;
3577 case MSR_IA32_SYSENTER_EIP:
3578 svm->sysenter_eip = data;
3579 svm->vmcb->save.sysenter_eip = data;
3580 break;
3581 case MSR_IA32_SYSENTER_ESP:
3582 svm->sysenter_esp = data;
3583 svm->vmcb->save.sysenter_esp = data;
3584 break;
3585 case MSR_TSC_AUX:
3586 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3587 return 1;
3588
3589 /*
3590 * This is rare, so we update the MSR here instead of using
3591 * direct_access_msrs. Doing that would require a rdmsr in
3592 * svm_vcpu_put.
3593 */
3594 svm->tsc_aux = data;
3595 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3596 break;
3597 case MSR_IA32_DEBUGCTLMSR:
3598 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3599 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3600 __func__, data);
3601 break;
3602 }
3603 if (data & DEBUGCTL_RESERVED_BITS)
3604 return 1;
3605
3606 svm->vmcb->save.dbgctl = data;
3607 mark_dirty(svm->vmcb, VMCB_LBR);
3608 if (data & (1ULL<<0))
3609 svm_enable_lbrv(svm);
3610 else
3611 svm_disable_lbrv(svm);
3612 break;
3613 case MSR_VM_HSAVE_PA:
3614 svm->nested.hsave_msr = data;
3615 break;
3616 case MSR_VM_CR:
3617 return svm_set_vm_cr(vcpu, data);
3618 case MSR_VM_IGNNE:
3619 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3620 break;
3621 case MSR_IA32_APICBASE:
3622 if (kvm_vcpu_apicv_active(vcpu))
3623 avic_update_vapic_bar(to_svm(vcpu), data);
3624 /* Follow through */
3625 default:
3626 return kvm_set_msr_common(vcpu, msr);
3627 }
3628 return 0;
3629 }
3630
3631 static int wrmsr_interception(struct vcpu_svm *svm)
3632 {
3633 struct msr_data msr;
3634 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3635 u64 data = kvm_read_edx_eax(&svm->vcpu);
3636
3637 msr.data = data;
3638 msr.index = ecx;
3639 msr.host_initiated = false;
3640
3641 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3642 if (kvm_set_msr(&svm->vcpu, &msr)) {
3643 trace_kvm_msr_write_ex(ecx, data);
3644 kvm_inject_gp(&svm->vcpu, 0);
3645 } else {
3646 trace_kvm_msr_write(ecx, data);
3647 skip_emulated_instruction(&svm->vcpu);
3648 }
3649 return 1;
3650 }
3651
3652 static int msr_interception(struct vcpu_svm *svm)
3653 {
3654 if (svm->vmcb->control.exit_info_1)
3655 return wrmsr_interception(svm);
3656 else
3657 return rdmsr_interception(svm);
3658 }
3659
3660 static int interrupt_window_interception(struct vcpu_svm *svm)
3661 {
3662 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3663 svm_clear_vintr(svm);
3664 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3665 mark_dirty(svm->vmcb, VMCB_INTR);
3666 ++svm->vcpu.stat.irq_window_exits;
3667 return 1;
3668 }
3669
3670 static int pause_interception(struct vcpu_svm *svm)
3671 {
3672 kvm_vcpu_on_spin(&(svm->vcpu));
3673 return 1;
3674 }
3675
3676 static int nop_interception(struct vcpu_svm *svm)
3677 {
3678 skip_emulated_instruction(&(svm->vcpu));
3679 return 1;
3680 }
3681
3682 static int monitor_interception(struct vcpu_svm *svm)
3683 {
3684 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3685 return nop_interception(svm);
3686 }
3687
3688 static int mwait_interception(struct vcpu_svm *svm)
3689 {
3690 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3691 return nop_interception(svm);
3692 }
3693
3694 enum avic_ipi_failure_cause {
3695 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3696 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3697 AVIC_IPI_FAILURE_INVALID_TARGET,
3698 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3699 };
3700
3701 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3702 {
3703 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3704 u32 icrl = svm->vmcb->control.exit_info_1;
3705 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3706 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3707 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3708
3709 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3710
3711 switch (id) {
3712 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3713 /*
3714 * AVIC hardware handles the generation of
3715 * IPIs when the specified Message Type is Fixed
3716 * (also known as fixed delivery mode) and
3717 * the Trigger Mode is edge-triggered. The hardware
3718 * also supports self and broadcast delivery modes
3719 * specified via the Destination Shorthand(DSH)
3720 * field of the ICRL. Logical and physical APIC ID
3721 * formats are supported. All other IPI types cause
3722 * a #VMEXIT, which needs to emulated.
3723 */
3724 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3725 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3726 break;
3727 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3728 int i;
3729 struct kvm_vcpu *vcpu;
3730 struct kvm *kvm = svm->vcpu.kvm;
3731 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3732
3733 /*
3734 * At this point, we expect that the AVIC HW has already
3735 * set the appropriate IRR bits on the valid target
3736 * vcpus. So, we just need to kick the appropriate vcpu.
3737 */
3738 kvm_for_each_vcpu(i, vcpu, kvm) {
3739 bool m = kvm_apic_match_dest(vcpu, apic,
3740 icrl & KVM_APIC_SHORT_MASK,
3741 GET_APIC_DEST_FIELD(icrh),
3742 icrl & KVM_APIC_DEST_MASK);
3743
3744 if (m && !avic_vcpu_is_running(vcpu))
3745 kvm_vcpu_wake_up(vcpu);
3746 }
3747 break;
3748 }
3749 case AVIC_IPI_FAILURE_INVALID_TARGET:
3750 break;
3751 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3752 WARN_ONCE(1, "Invalid backing page\n");
3753 break;
3754 default:
3755 pr_err("Unknown IPI interception\n");
3756 }
3757
3758 return 1;
3759 }
3760
3761 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3762 {
3763 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3764 int index;
3765 u32 *logical_apic_id_table;
3766 int dlid = GET_APIC_LOGICAL_ID(ldr);
3767
3768 if (!dlid)
3769 return NULL;
3770
3771 if (flat) { /* flat */
3772 index = ffs(dlid) - 1;
3773 if (index > 7)
3774 return NULL;
3775 } else { /* cluster */
3776 int cluster = (dlid & 0xf0) >> 4;
3777 int apic = ffs(dlid & 0x0f) - 1;
3778
3779 if ((apic < 0) || (apic > 7) ||
3780 (cluster >= 0xf))
3781 return NULL;
3782 index = (cluster << 2) + apic;
3783 }
3784
3785 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3786
3787 return &logical_apic_id_table[index];
3788 }
3789
3790 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3791 bool valid)
3792 {
3793 bool flat;
3794 u32 *entry, new_entry;
3795
3796 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3797 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3798 if (!entry)
3799 return -EINVAL;
3800
3801 new_entry = READ_ONCE(*entry);
3802 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3803 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3804 if (valid)
3805 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3806 else
3807 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3808 WRITE_ONCE(*entry, new_entry);
3809
3810 return 0;
3811 }
3812
3813 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3814 {
3815 int ret;
3816 struct vcpu_svm *svm = to_svm(vcpu);
3817 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3818
3819 if (!ldr)
3820 return 1;
3821
3822 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3823 if (ret && svm->ldr_reg) {
3824 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3825 svm->ldr_reg = 0;
3826 } else {
3827 svm->ldr_reg = ldr;
3828 }
3829 return ret;
3830 }
3831
3832 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3833 {
3834 u64 *old, *new;
3835 struct vcpu_svm *svm = to_svm(vcpu);
3836 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3837 u32 id = (apic_id_reg >> 24) & 0xff;
3838
3839 if (vcpu->vcpu_id == id)
3840 return 0;
3841
3842 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3843 new = avic_get_physical_id_entry(vcpu, id);
3844 if (!new || !old)
3845 return 1;
3846
3847 /* We need to move physical_id_entry to new offset */
3848 *new = *old;
3849 *old = 0ULL;
3850 to_svm(vcpu)->avic_physical_id_cache = new;
3851
3852 /*
3853 * Also update the guest physical APIC ID in the logical
3854 * APIC ID table entry if already setup the LDR.
3855 */
3856 if (svm->ldr_reg)
3857 avic_handle_ldr_update(vcpu);
3858
3859 return 0;
3860 }
3861
3862 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3863 {
3864 struct vcpu_svm *svm = to_svm(vcpu);
3865 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3866 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3867 u32 mod = (dfr >> 28) & 0xf;
3868
3869 /*
3870 * We assume that all local APICs are using the same type.
3871 * If this changes, we need to flush the AVIC logical
3872 * APID id table.
3873 */
3874 if (vm_data->ldr_mode == mod)
3875 return 0;
3876
3877 clear_page(page_address(vm_data->avic_logical_id_table_page));
3878 vm_data->ldr_mode = mod;
3879
3880 if (svm->ldr_reg)
3881 avic_handle_ldr_update(vcpu);
3882 return 0;
3883 }
3884
3885 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3886 {
3887 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3888 u32 offset = svm->vmcb->control.exit_info_1 &
3889 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3890
3891 switch (offset) {
3892 case APIC_ID:
3893 if (avic_handle_apic_id_update(&svm->vcpu))
3894 return 0;
3895 break;
3896 case APIC_LDR:
3897 if (avic_handle_ldr_update(&svm->vcpu))
3898 return 0;
3899 break;
3900 case APIC_DFR:
3901 avic_handle_dfr_update(&svm->vcpu);
3902 break;
3903 default:
3904 break;
3905 }
3906
3907 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3908
3909 return 1;
3910 }
3911
3912 static bool is_avic_unaccelerated_access_trap(u32 offset)
3913 {
3914 bool ret = false;
3915
3916 switch (offset) {
3917 case APIC_ID:
3918 case APIC_EOI:
3919 case APIC_RRR:
3920 case APIC_LDR:
3921 case APIC_DFR:
3922 case APIC_SPIV:
3923 case APIC_ESR:
3924 case APIC_ICR:
3925 case APIC_LVTT:
3926 case APIC_LVTTHMR:
3927 case APIC_LVTPC:
3928 case APIC_LVT0:
3929 case APIC_LVT1:
3930 case APIC_LVTERR:
3931 case APIC_TMICT:
3932 case APIC_TDCR:
3933 ret = true;
3934 break;
3935 default:
3936 break;
3937 }
3938 return ret;
3939 }
3940
3941 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3942 {
3943 int ret = 0;
3944 u32 offset = svm->vmcb->control.exit_info_1 &
3945 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3946 u32 vector = svm->vmcb->control.exit_info_2 &
3947 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3948 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3949 AVIC_UNACCEL_ACCESS_WRITE_MASK;
3950 bool trap = is_avic_unaccelerated_access_trap(offset);
3951
3952 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3953 trap, write, vector);
3954 if (trap) {
3955 /* Handling Trap */
3956 WARN_ONCE(!write, "svm: Handling trap read.\n");
3957 ret = avic_unaccel_trap_write(svm);
3958 } else {
3959 /* Handling Fault */
3960 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3961 }
3962
3963 return ret;
3964 }
3965
3966 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3967 [SVM_EXIT_READ_CR0] = cr_interception,
3968 [SVM_EXIT_READ_CR3] = cr_interception,
3969 [SVM_EXIT_READ_CR4] = cr_interception,
3970 [SVM_EXIT_READ_CR8] = cr_interception,
3971 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3972 [SVM_EXIT_WRITE_CR0] = cr_interception,
3973 [SVM_EXIT_WRITE_CR3] = cr_interception,
3974 [SVM_EXIT_WRITE_CR4] = cr_interception,
3975 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3976 [SVM_EXIT_READ_DR0] = dr_interception,
3977 [SVM_EXIT_READ_DR1] = dr_interception,
3978 [SVM_EXIT_READ_DR2] = dr_interception,
3979 [SVM_EXIT_READ_DR3] = dr_interception,
3980 [SVM_EXIT_READ_DR4] = dr_interception,
3981 [SVM_EXIT_READ_DR5] = dr_interception,
3982 [SVM_EXIT_READ_DR6] = dr_interception,
3983 [SVM_EXIT_READ_DR7] = dr_interception,
3984 [SVM_EXIT_WRITE_DR0] = dr_interception,
3985 [SVM_EXIT_WRITE_DR1] = dr_interception,
3986 [SVM_EXIT_WRITE_DR2] = dr_interception,
3987 [SVM_EXIT_WRITE_DR3] = dr_interception,
3988 [SVM_EXIT_WRITE_DR4] = dr_interception,
3989 [SVM_EXIT_WRITE_DR5] = dr_interception,
3990 [SVM_EXIT_WRITE_DR6] = dr_interception,
3991 [SVM_EXIT_WRITE_DR7] = dr_interception,
3992 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3993 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3994 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3995 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3996 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3997 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3998 [SVM_EXIT_INTR] = intr_interception,
3999 [SVM_EXIT_NMI] = nmi_interception,
4000 [SVM_EXIT_SMI] = nop_on_interception,
4001 [SVM_EXIT_INIT] = nop_on_interception,
4002 [SVM_EXIT_VINTR] = interrupt_window_interception,
4003 [SVM_EXIT_RDPMC] = rdpmc_interception,
4004 [SVM_EXIT_CPUID] = cpuid_interception,
4005 [SVM_EXIT_IRET] = iret_interception,
4006 [SVM_EXIT_INVD] = emulate_on_interception,
4007 [SVM_EXIT_PAUSE] = pause_interception,
4008 [SVM_EXIT_HLT] = halt_interception,
4009 [SVM_EXIT_INVLPG] = invlpg_interception,
4010 [SVM_EXIT_INVLPGA] = invlpga_interception,
4011 [SVM_EXIT_IOIO] = io_interception,
4012 [SVM_EXIT_MSR] = msr_interception,
4013 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4014 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4015 [SVM_EXIT_VMRUN] = vmrun_interception,
4016 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4017 [SVM_EXIT_VMLOAD] = vmload_interception,
4018 [SVM_EXIT_VMSAVE] = vmsave_interception,
4019 [SVM_EXIT_STGI] = stgi_interception,
4020 [SVM_EXIT_CLGI] = clgi_interception,
4021 [SVM_EXIT_SKINIT] = skinit_interception,
4022 [SVM_EXIT_WBINVD] = wbinvd_interception,
4023 [SVM_EXIT_MONITOR] = monitor_interception,
4024 [SVM_EXIT_MWAIT] = mwait_interception,
4025 [SVM_EXIT_XSETBV] = xsetbv_interception,
4026 [SVM_EXIT_NPF] = pf_interception,
4027 [SVM_EXIT_RSM] = emulate_on_interception,
4028 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4029 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4030 };
4031
4032 static void dump_vmcb(struct kvm_vcpu *vcpu)
4033 {
4034 struct vcpu_svm *svm = to_svm(vcpu);
4035 struct vmcb_control_area *control = &svm->vmcb->control;
4036 struct vmcb_save_area *save = &svm->vmcb->save;
4037
4038 pr_err("VMCB Control Area:\n");
4039 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4040 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4041 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4042 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4043 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4044 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4045 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4046 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4047 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4048 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4049 pr_err("%-20s%d\n", "asid:", control->asid);
4050 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4051 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4052 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4053 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4054 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4055 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4056 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4057 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4058 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4059 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4060 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4061 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4062 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4063 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4064 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4065 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4066 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4067 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4068 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4069 pr_err("VMCB State Save Area:\n");
4070 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4071 "es:",
4072 save->es.selector, save->es.attrib,
4073 save->es.limit, save->es.base);
4074 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4075 "cs:",
4076 save->cs.selector, save->cs.attrib,
4077 save->cs.limit, save->cs.base);
4078 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4079 "ss:",
4080 save->ss.selector, save->ss.attrib,
4081 save->ss.limit, save->ss.base);
4082 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4083 "ds:",
4084 save->ds.selector, save->ds.attrib,
4085 save->ds.limit, save->ds.base);
4086 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4087 "fs:",
4088 save->fs.selector, save->fs.attrib,
4089 save->fs.limit, save->fs.base);
4090 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4091 "gs:",
4092 save->gs.selector, save->gs.attrib,
4093 save->gs.limit, save->gs.base);
4094 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4095 "gdtr:",
4096 save->gdtr.selector, save->gdtr.attrib,
4097 save->gdtr.limit, save->gdtr.base);
4098 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4099 "ldtr:",
4100 save->ldtr.selector, save->ldtr.attrib,
4101 save->ldtr.limit, save->ldtr.base);
4102 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4103 "idtr:",
4104 save->idtr.selector, save->idtr.attrib,
4105 save->idtr.limit, save->idtr.base);
4106 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4107 "tr:",
4108 save->tr.selector, save->tr.attrib,
4109 save->tr.limit, save->tr.base);
4110 pr_err("cpl: %d efer: %016llx\n",
4111 save->cpl, save->efer);
4112 pr_err("%-15s %016llx %-13s %016llx\n",
4113 "cr0:", save->cr0, "cr2:", save->cr2);
4114 pr_err("%-15s %016llx %-13s %016llx\n",
4115 "cr3:", save->cr3, "cr4:", save->cr4);
4116 pr_err("%-15s %016llx %-13s %016llx\n",
4117 "dr6:", save->dr6, "dr7:", save->dr7);
4118 pr_err("%-15s %016llx %-13s %016llx\n",
4119 "rip:", save->rip, "rflags:", save->rflags);
4120 pr_err("%-15s %016llx %-13s %016llx\n",
4121 "rsp:", save->rsp, "rax:", save->rax);
4122 pr_err("%-15s %016llx %-13s %016llx\n",
4123 "star:", save->star, "lstar:", save->lstar);
4124 pr_err("%-15s %016llx %-13s %016llx\n",
4125 "cstar:", save->cstar, "sfmask:", save->sfmask);
4126 pr_err("%-15s %016llx %-13s %016llx\n",
4127 "kernel_gs_base:", save->kernel_gs_base,
4128 "sysenter_cs:", save->sysenter_cs);
4129 pr_err("%-15s %016llx %-13s %016llx\n",
4130 "sysenter_esp:", save->sysenter_esp,
4131 "sysenter_eip:", save->sysenter_eip);
4132 pr_err("%-15s %016llx %-13s %016llx\n",
4133 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4134 pr_err("%-15s %016llx %-13s %016llx\n",
4135 "br_from:", save->br_from, "br_to:", save->br_to);
4136 pr_err("%-15s %016llx %-13s %016llx\n",
4137 "excp_from:", save->last_excp_from,
4138 "excp_to:", save->last_excp_to);
4139 }
4140
4141 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4142 {
4143 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4144
4145 *info1 = control->exit_info_1;
4146 *info2 = control->exit_info_2;
4147 }
4148
4149 static int handle_exit(struct kvm_vcpu *vcpu)
4150 {
4151 struct vcpu_svm *svm = to_svm(vcpu);
4152 struct kvm_run *kvm_run = vcpu->run;
4153 u32 exit_code = svm->vmcb->control.exit_code;
4154
4155 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4156
4157 vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4158
4159 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4160 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4161 if (npt_enabled)
4162 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4163
4164 if (unlikely(svm->nested.exit_required)) {
4165 nested_svm_vmexit(svm);
4166 svm->nested.exit_required = false;
4167
4168 return 1;
4169 }
4170
4171 if (is_guest_mode(vcpu)) {
4172 int vmexit;
4173
4174 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4175 svm->vmcb->control.exit_info_1,
4176 svm->vmcb->control.exit_info_2,
4177 svm->vmcb->control.exit_int_info,
4178 svm->vmcb->control.exit_int_info_err,
4179 KVM_ISA_SVM);
4180
4181 vmexit = nested_svm_exit_special(svm);
4182
4183 if (vmexit == NESTED_EXIT_CONTINUE)
4184 vmexit = nested_svm_exit_handled(svm);
4185
4186 if (vmexit == NESTED_EXIT_DONE)
4187 return 1;
4188 }
4189
4190 svm_complete_interrupts(svm);
4191
4192 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4193 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4194 kvm_run->fail_entry.hardware_entry_failure_reason
4195 = svm->vmcb->control.exit_code;
4196 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4197 dump_vmcb(vcpu);
4198 return 0;
4199 }
4200
4201 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4202 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4203 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4204 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4205 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4206 "exit_code 0x%x\n",
4207 __func__, svm->vmcb->control.exit_int_info,
4208 exit_code);
4209
4210 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4211 || !svm_exit_handlers[exit_code]) {
4212 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4213 kvm_queue_exception(vcpu, UD_VECTOR);
4214 return 1;
4215 }
4216
4217 return svm_exit_handlers[exit_code](svm);
4218 }
4219
4220 static void reload_tss(struct kvm_vcpu *vcpu)
4221 {
4222 int cpu = raw_smp_processor_id();
4223
4224 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4225 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4226 load_TR_desc();
4227 }
4228
4229 static void pre_svm_run(struct vcpu_svm *svm)
4230 {
4231 int cpu = raw_smp_processor_id();
4232
4233 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4234
4235 /* FIXME: handle wraparound of asid_generation */
4236 if (svm->asid_generation != sd->asid_generation)
4237 new_asid(svm, sd);
4238 }
4239
4240 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4241 {
4242 struct vcpu_svm *svm = to_svm(vcpu);
4243
4244 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4245 vcpu->arch.hflags |= HF_NMI_MASK;
4246 set_intercept(svm, INTERCEPT_IRET);
4247 ++vcpu->stat.nmi_injections;
4248 }
4249
4250 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4251 {
4252 struct vmcb_control_area *control;
4253
4254 /* The following fields are ignored when AVIC is enabled */
4255 control = &svm->vmcb->control;
4256 control->int_vector = irq;
4257 control->int_ctl &= ~V_INTR_PRIO_MASK;
4258 control->int_ctl |= V_IRQ_MASK |
4259 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4260 mark_dirty(svm->vmcb, VMCB_INTR);
4261 }
4262
4263 static void svm_set_irq(struct kvm_vcpu *vcpu)
4264 {
4265 struct vcpu_svm *svm = to_svm(vcpu);
4266
4267 BUG_ON(!(gif_set(svm)));
4268
4269 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4270 ++vcpu->stat.irq_injections;
4271
4272 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4273 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4274 }
4275
4276 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4277 {
4278 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4279 }
4280
4281 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4282 {
4283 struct vcpu_svm *svm = to_svm(vcpu);
4284
4285 if (svm_nested_virtualize_tpr(vcpu) ||
4286 kvm_vcpu_apicv_active(vcpu))
4287 return;
4288
4289 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4290
4291 if (irr == -1)
4292 return;
4293
4294 if (tpr >= irr)
4295 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4296 }
4297
4298 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4299 {
4300 return;
4301 }
4302
4303 static bool svm_get_enable_apicv(void)
4304 {
4305 return avic;
4306 }
4307
4308 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4309 {
4310 }
4311
4312 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4313 {
4314 }
4315
4316 /* Note: Currently only used by Hyper-V. */
4317 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4318 {
4319 struct vcpu_svm *svm = to_svm(vcpu);
4320 struct vmcb *vmcb = svm->vmcb;
4321
4322 if (!avic)
4323 return;
4324
4325 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4326 mark_dirty(vmcb, VMCB_INTR);
4327 }
4328
4329 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4330 {
4331 return;
4332 }
4333
4334 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4335 {
4336 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4337 smp_mb__after_atomic();
4338
4339 if (avic_vcpu_is_running(vcpu))
4340 wrmsrl(SVM_AVIC_DOORBELL,
4341 kvm_cpu_get_apicid(vcpu->cpu));
4342 else
4343 kvm_vcpu_wake_up(vcpu);
4344 }
4345
4346 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4347 {
4348 unsigned long flags;
4349 struct amd_svm_iommu_ir *cur;
4350
4351 spin_lock_irqsave(&svm->ir_list_lock, flags);
4352 list_for_each_entry(cur, &svm->ir_list, node) {
4353 if (cur->data != pi->ir_data)
4354 continue;
4355 list_del(&cur->node);
4356 kfree(cur);
4357 break;
4358 }
4359 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4360 }
4361
4362 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4363 {
4364 int ret = 0;
4365 unsigned long flags;
4366 struct amd_svm_iommu_ir *ir;
4367
4368 /**
4369 * In some cases, the existing irte is updaed and re-set,
4370 * so we need to check here if it's already been * added
4371 * to the ir_list.
4372 */
4373 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4374 struct kvm *kvm = svm->vcpu.kvm;
4375 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4376 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4377 struct vcpu_svm *prev_svm;
4378
4379 if (!prev_vcpu) {
4380 ret = -EINVAL;
4381 goto out;
4382 }
4383
4384 prev_svm = to_svm(prev_vcpu);
4385 svm_ir_list_del(prev_svm, pi);
4386 }
4387
4388 /**
4389 * Allocating new amd_iommu_pi_data, which will get
4390 * add to the per-vcpu ir_list.
4391 */
4392 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4393 if (!ir) {
4394 ret = -ENOMEM;
4395 goto out;
4396 }
4397 ir->data = pi->ir_data;
4398
4399 spin_lock_irqsave(&svm->ir_list_lock, flags);
4400 list_add(&ir->node, &svm->ir_list);
4401 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4402 out:
4403 return ret;
4404 }
4405
4406 /**
4407 * Note:
4408 * The HW cannot support posting multicast/broadcast
4409 * interrupts to a vCPU. So, we still use legacy interrupt
4410 * remapping for these kind of interrupts.
4411 *
4412 * For lowest-priority interrupts, we only support
4413 * those with single CPU as the destination, e.g. user
4414 * configures the interrupts via /proc/irq or uses
4415 * irqbalance to make the interrupts single-CPU.
4416 */
4417 static int
4418 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4419 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4420 {
4421 struct kvm_lapic_irq irq;
4422 struct kvm_vcpu *vcpu = NULL;
4423
4424 kvm_set_msi_irq(kvm, e, &irq);
4425
4426 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4427 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4428 __func__, irq.vector);
4429 return -1;
4430 }
4431
4432 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4433 irq.vector);
4434 *svm = to_svm(vcpu);
4435 vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4436 vcpu_info->vector = irq.vector;
4437
4438 return 0;
4439 }
4440
4441 /*
4442 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4443 *
4444 * @kvm: kvm
4445 * @host_irq: host irq of the interrupt
4446 * @guest_irq: gsi of the interrupt
4447 * @set: set or unset PI
4448 * returns 0 on success, < 0 on failure
4449 */
4450 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4451 uint32_t guest_irq, bool set)
4452 {
4453 struct kvm_kernel_irq_routing_entry *e;
4454 struct kvm_irq_routing_table *irq_rt;
4455 int idx, ret = -EINVAL;
4456
4457 if (!kvm_arch_has_assigned_device(kvm) ||
4458 !irq_remapping_cap(IRQ_POSTING_CAP))
4459 return 0;
4460
4461 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4462 __func__, host_irq, guest_irq, set);
4463
4464 idx = srcu_read_lock(&kvm->irq_srcu);
4465 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4466 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4467
4468 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4469 struct vcpu_data vcpu_info;
4470 struct vcpu_svm *svm = NULL;
4471
4472 if (e->type != KVM_IRQ_ROUTING_MSI)
4473 continue;
4474
4475 /**
4476 * Here, we setup with legacy mode in the following cases:
4477 * 1. When cannot target interrupt to a specific vcpu.
4478 * 2. Unsetting posted interrupt.
4479 * 3. APIC virtialization is disabled for the vcpu.
4480 */
4481 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4482 kvm_vcpu_apicv_active(&svm->vcpu)) {
4483 struct amd_iommu_pi_data pi;
4484
4485 /* Try to enable guest_mode in IRTE */
4486 pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4487 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4488 svm->vcpu.vcpu_id);
4489 pi.is_guest_mode = true;
4490 pi.vcpu_data = &vcpu_info;
4491 ret = irq_set_vcpu_affinity(host_irq, &pi);
4492
4493 /**
4494 * Here, we successfully setting up vcpu affinity in
4495 * IOMMU guest mode. Now, we need to store the posted
4496 * interrupt information in a per-vcpu ir_list so that
4497 * we can reference to them directly when we update vcpu
4498 * scheduling information in IOMMU irte.
4499 */
4500 if (!ret && pi.is_guest_mode)
4501 svm_ir_list_add(svm, &pi);
4502 } else {
4503 /* Use legacy mode in IRTE */
4504 struct amd_iommu_pi_data pi;
4505
4506 /**
4507 * Here, pi is used to:
4508 * - Tell IOMMU to use legacy mode for this interrupt.
4509 * - Retrieve ga_tag of prior interrupt remapping data.
4510 */
4511 pi.is_guest_mode = false;
4512 ret = irq_set_vcpu_affinity(host_irq, &pi);
4513
4514 /**
4515 * Check if the posted interrupt was previously
4516 * setup with the guest_mode by checking if the ga_tag
4517 * was cached. If so, we need to clean up the per-vcpu
4518 * ir_list.
4519 */
4520 if (!ret && pi.prev_ga_tag) {
4521 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4522 struct kvm_vcpu *vcpu;
4523
4524 vcpu = kvm_get_vcpu_by_id(kvm, id);
4525 if (vcpu)
4526 svm_ir_list_del(to_svm(vcpu), &pi);
4527 }
4528 }
4529
4530 if (!ret && svm) {
4531 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4532 host_irq, e->gsi,
4533 vcpu_info.vector,
4534 vcpu_info.pi_desc_addr, set);
4535 }
4536
4537 if (ret < 0) {
4538 pr_err("%s: failed to update PI IRTE\n", __func__);
4539 goto out;
4540 }
4541 }
4542
4543 ret = 0;
4544 out:
4545 srcu_read_unlock(&kvm->irq_srcu, idx);
4546 return ret;
4547 }
4548
4549 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4550 {
4551 struct vcpu_svm *svm = to_svm(vcpu);
4552 struct vmcb *vmcb = svm->vmcb;
4553 int ret;
4554 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4555 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4556 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4557
4558 return ret;
4559 }
4560
4561 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4562 {
4563 struct vcpu_svm *svm = to_svm(vcpu);
4564
4565 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4566 }
4567
4568 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4569 {
4570 struct vcpu_svm *svm = to_svm(vcpu);
4571
4572 if (masked) {
4573 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4574 set_intercept(svm, INTERCEPT_IRET);
4575 } else {
4576 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4577 clr_intercept(svm, INTERCEPT_IRET);
4578 }
4579 }
4580
4581 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4582 {
4583 struct vcpu_svm *svm = to_svm(vcpu);
4584 struct vmcb *vmcb = svm->vmcb;
4585 int ret;
4586
4587 if (!gif_set(svm) ||
4588 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4589 return 0;
4590
4591 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4592
4593 if (is_guest_mode(vcpu))
4594 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4595
4596 return ret;
4597 }
4598
4599 static void enable_irq_window(struct kvm_vcpu *vcpu)
4600 {
4601 struct vcpu_svm *svm = to_svm(vcpu);
4602
4603 if (kvm_vcpu_apicv_active(vcpu))
4604 return;
4605
4606 /*
4607 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4608 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4609 * get that intercept, this function will be called again though and
4610 * we'll get the vintr intercept.
4611 */
4612 if (gif_set(svm) && nested_svm_intr(svm)) {
4613 svm_set_vintr(svm);
4614 svm_inject_irq(svm, 0x0);
4615 }
4616 }
4617
4618 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4619 {
4620 struct vcpu_svm *svm = to_svm(vcpu);
4621
4622 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4623 == HF_NMI_MASK)
4624 return; /* IRET will cause a vm exit */
4625
4626 /*
4627 * Something prevents NMI from been injected. Single step over possible
4628 * problem (IRET or exception injection or interrupt shadow)
4629 */
4630 svm->nmi_singlestep = true;
4631 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4632 }
4633
4634 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4635 {
4636 return 0;
4637 }
4638
4639 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4640 {
4641 struct vcpu_svm *svm = to_svm(vcpu);
4642
4643 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4644 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4645 else
4646 svm->asid_generation--;
4647 }
4648
4649 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4650 {
4651 }
4652
4653 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4654 {
4655 struct vcpu_svm *svm = to_svm(vcpu);
4656
4657 if (svm_nested_virtualize_tpr(vcpu))
4658 return;
4659
4660 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4661 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4662 kvm_set_cr8(vcpu, cr8);
4663 }
4664 }
4665
4666 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4667 {
4668 struct vcpu_svm *svm = to_svm(vcpu);
4669 u64 cr8;
4670
4671 if (svm_nested_virtualize_tpr(vcpu) ||
4672 kvm_vcpu_apicv_active(vcpu))
4673 return;
4674
4675 cr8 = kvm_get_cr8(vcpu);
4676 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4677 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4678 }
4679
4680 static void svm_complete_interrupts(struct vcpu_svm *svm)
4681 {
4682 u8 vector;
4683 int type;
4684 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4685 unsigned int3_injected = svm->int3_injected;
4686
4687 svm->int3_injected = 0;
4688
4689 /*
4690 * If we've made progress since setting HF_IRET_MASK, we've
4691 * executed an IRET and can allow NMI injection.
4692 */
4693 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4694 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4695 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4696 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4697 }
4698
4699 svm->vcpu.arch.nmi_injected = false;
4700 kvm_clear_exception_queue(&svm->vcpu);
4701 kvm_clear_interrupt_queue(&svm->vcpu);
4702
4703 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4704 return;
4705
4706 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4707
4708 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4709 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4710
4711 switch (type) {
4712 case SVM_EXITINTINFO_TYPE_NMI:
4713 svm->vcpu.arch.nmi_injected = true;
4714 break;
4715 case SVM_EXITINTINFO_TYPE_EXEPT:
4716 /*
4717 * In case of software exceptions, do not reinject the vector,
4718 * but re-execute the instruction instead. Rewind RIP first
4719 * if we emulated INT3 before.
4720 */
4721 if (kvm_exception_is_soft(vector)) {
4722 if (vector == BP_VECTOR && int3_injected &&
4723 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4724 kvm_rip_write(&svm->vcpu,
4725 kvm_rip_read(&svm->vcpu) -
4726 int3_injected);
4727 break;
4728 }
4729 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4730 u32 err = svm->vmcb->control.exit_int_info_err;
4731 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4732
4733 } else
4734 kvm_requeue_exception(&svm->vcpu, vector);
4735 break;
4736 case SVM_EXITINTINFO_TYPE_INTR:
4737 kvm_queue_interrupt(&svm->vcpu, vector, false);
4738 break;
4739 default:
4740 break;
4741 }
4742 }
4743
4744 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4745 {
4746 struct vcpu_svm *svm = to_svm(vcpu);
4747 struct vmcb_control_area *control = &svm->vmcb->control;
4748
4749 control->exit_int_info = control->event_inj;
4750 control->exit_int_info_err = control->event_inj_err;
4751 control->event_inj = 0;
4752 svm_complete_interrupts(svm);
4753 }
4754
4755 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4756 {
4757 struct vcpu_svm *svm = to_svm(vcpu);
4758
4759 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4760 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4761 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4762
4763 /*
4764 * A vmexit emulation is required before the vcpu can be executed
4765 * again.
4766 */
4767 if (unlikely(svm->nested.exit_required))
4768 return;
4769
4770 pre_svm_run(svm);
4771
4772 sync_lapic_to_cr8(vcpu);
4773
4774 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4775
4776 clgi();
4777
4778 local_irq_enable();
4779
4780 asm volatile (
4781 "push %%" _ASM_BP "; \n\t"
4782 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4783 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4784 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4785 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4786 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4787 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4788 #ifdef CONFIG_X86_64
4789 "mov %c[r8](%[svm]), %%r8 \n\t"
4790 "mov %c[r9](%[svm]), %%r9 \n\t"
4791 "mov %c[r10](%[svm]), %%r10 \n\t"
4792 "mov %c[r11](%[svm]), %%r11 \n\t"
4793 "mov %c[r12](%[svm]), %%r12 \n\t"
4794 "mov %c[r13](%[svm]), %%r13 \n\t"
4795 "mov %c[r14](%[svm]), %%r14 \n\t"
4796 "mov %c[r15](%[svm]), %%r15 \n\t"
4797 #endif
4798
4799 /* Enter guest mode */
4800 "push %%" _ASM_AX " \n\t"
4801 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4802 __ex(SVM_VMLOAD) "\n\t"
4803 __ex(SVM_VMRUN) "\n\t"
4804 __ex(SVM_VMSAVE) "\n\t"
4805 "pop %%" _ASM_AX " \n\t"
4806
4807 /* Save guest registers, load host registers */
4808 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4809 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4810 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4811 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4812 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4813 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4814 #ifdef CONFIG_X86_64
4815 "mov %%r8, %c[r8](%[svm]) \n\t"
4816 "mov %%r9, %c[r9](%[svm]) \n\t"
4817 "mov %%r10, %c[r10](%[svm]) \n\t"
4818 "mov %%r11, %c[r11](%[svm]) \n\t"
4819 "mov %%r12, %c[r12](%[svm]) \n\t"
4820 "mov %%r13, %c[r13](%[svm]) \n\t"
4821 "mov %%r14, %c[r14](%[svm]) \n\t"
4822 "mov %%r15, %c[r15](%[svm]) \n\t"
4823 #endif
4824 "pop %%" _ASM_BP
4825 :
4826 : [svm]"a"(svm),
4827 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4828 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4829 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4830 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4831 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4832 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4833 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4834 #ifdef CONFIG_X86_64
4835 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4836 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4837 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4838 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4839 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4840 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4841 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4842 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4843 #endif
4844 : "cc", "memory"
4845 #ifdef CONFIG_X86_64
4846 , "rbx", "rcx", "rdx", "rsi", "rdi"
4847 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4848 #else
4849 , "ebx", "ecx", "edx", "esi", "edi"
4850 #endif
4851 );
4852
4853 #ifdef CONFIG_X86_64
4854 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4855 #else
4856 loadsegment(fs, svm->host.fs);
4857 #ifndef CONFIG_X86_32_LAZY_GS
4858 loadsegment(gs, svm->host.gs);
4859 #endif
4860 #endif
4861
4862 reload_tss(vcpu);
4863
4864 local_irq_disable();
4865
4866 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4867 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4868 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4869 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4870
4871 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4872 kvm_before_handle_nmi(&svm->vcpu);
4873
4874 stgi();
4875
4876 /* Any pending NMI will happen here */
4877
4878 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4879 kvm_after_handle_nmi(&svm->vcpu);
4880
4881 sync_cr8_to_lapic(vcpu);
4882
4883 svm->next_rip = 0;
4884
4885 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4886
4887 /* if exit due to PF check for async PF */
4888 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4889 svm->apf_reason = kvm_read_and_reset_pf_reason();
4890
4891 if (npt_enabled) {
4892 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4893 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4894 }
4895
4896 /*
4897 * We need to handle MC intercepts here before the vcpu has a chance to
4898 * change the physical cpu
4899 */
4900 if (unlikely(svm->vmcb->control.exit_code ==
4901 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4902 svm_handle_mce(svm);
4903
4904 mark_all_clean(svm->vmcb);
4905 }
4906
4907 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4908 {
4909 struct vcpu_svm *svm = to_svm(vcpu);
4910
4911 svm->vmcb->save.cr3 = root;
4912 mark_dirty(svm->vmcb, VMCB_CR);
4913 svm_flush_tlb(vcpu);
4914 }
4915
4916 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4917 {
4918 struct vcpu_svm *svm = to_svm(vcpu);
4919
4920 svm->vmcb->control.nested_cr3 = root;
4921 mark_dirty(svm->vmcb, VMCB_NPT);
4922
4923 /* Also sync guest cr3 here in case we live migrate */
4924 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4925 mark_dirty(svm->vmcb, VMCB_CR);
4926
4927 svm_flush_tlb(vcpu);
4928 }
4929
4930 static int is_disabled(void)
4931 {
4932 u64 vm_cr;
4933
4934 rdmsrl(MSR_VM_CR, vm_cr);
4935 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4936 return 1;
4937
4938 return 0;
4939 }
4940
4941 static void
4942 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4943 {
4944 /*
4945 * Patch in the VMMCALL instruction:
4946 */
4947 hypercall[0] = 0x0f;
4948 hypercall[1] = 0x01;
4949 hypercall[2] = 0xd9;
4950 }
4951
4952 static void svm_check_processor_compat(void *rtn)
4953 {
4954 *(int *)rtn = 0;
4955 }
4956
4957 static bool svm_cpu_has_accelerated_tpr(void)
4958 {
4959 return false;
4960 }
4961
4962 static bool svm_has_high_real_mode_segbase(void)
4963 {
4964 return true;
4965 }
4966
4967 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4968 {
4969 return 0;
4970 }
4971
4972 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4973 {
4974 struct vcpu_svm *svm = to_svm(vcpu);
4975 struct kvm_cpuid_entry2 *entry;
4976
4977 /* Update nrips enabled cache */
4978 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4979
4980 if (!kvm_vcpu_apicv_active(vcpu))
4981 return;
4982
4983 entry = kvm_find_cpuid_entry(vcpu, 1, 0);
4984 if (entry)
4985 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4986 }
4987
4988 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4989 {
4990 switch (func) {
4991 case 0x1:
4992 if (avic)
4993 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4994 break;
4995 case 0x80000001:
4996 if (nested)
4997 entry->ecx |= (1 << 2); /* Set SVM bit */
4998 break;
4999 case 0x8000000A:
5000 entry->eax = 1; /* SVM revision 1 */
5001 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5002 ASID emulation to nested SVM */
5003 entry->ecx = 0; /* Reserved */
5004 entry->edx = 0; /* Per default do not support any
5005 additional features */
5006
5007 /* Support next_rip if host supports it */
5008 if (boot_cpu_has(X86_FEATURE_NRIPS))
5009 entry->edx |= SVM_FEATURE_NRIP;
5010
5011 /* Support NPT for the guest if enabled */
5012 if (npt_enabled)
5013 entry->edx |= SVM_FEATURE_NPT;
5014
5015 break;
5016 }
5017 }
5018
5019 static int svm_get_lpage_level(void)
5020 {
5021 return PT_PDPE_LEVEL;
5022 }
5023
5024 static bool svm_rdtscp_supported(void)
5025 {
5026 return boot_cpu_has(X86_FEATURE_RDTSCP);
5027 }
5028
5029 static bool svm_invpcid_supported(void)
5030 {
5031 return false;
5032 }
5033
5034 static bool svm_mpx_supported(void)
5035 {
5036 return false;
5037 }
5038
5039 static bool svm_xsaves_supported(void)
5040 {
5041 return false;
5042 }
5043
5044 static bool svm_has_wbinvd_exit(void)
5045 {
5046 return true;
5047 }
5048
5049 #define PRE_EX(exit) { .exit_code = (exit), \
5050 .stage = X86_ICPT_PRE_EXCEPT, }
5051 #define POST_EX(exit) { .exit_code = (exit), \
5052 .stage = X86_ICPT_POST_EXCEPT, }
5053 #define POST_MEM(exit) { .exit_code = (exit), \
5054 .stage = X86_ICPT_POST_MEMACCESS, }
5055
5056 static const struct __x86_intercept {
5057 u32 exit_code;
5058 enum x86_intercept_stage stage;
5059 } x86_intercept_map[] = {
5060 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5061 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5062 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5063 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5064 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5065 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5066 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5067 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5068 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5069 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5070 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5071 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5072 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5073 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5074 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5075 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5076 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5077 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5078 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5079 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5080 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5081 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5082 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5083 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5084 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5085 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5086 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5087 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5088 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5089 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5090 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5091 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5092 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5093 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5094 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5095 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5096 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5097 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5098 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5099 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5100 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5101 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5102 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5103 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5104 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5105 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5106 };
5107
5108 #undef PRE_EX
5109 #undef POST_EX
5110 #undef POST_MEM
5111
5112 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5113 struct x86_instruction_info *info,
5114 enum x86_intercept_stage stage)
5115 {
5116 struct vcpu_svm *svm = to_svm(vcpu);
5117 int vmexit, ret = X86EMUL_CONTINUE;
5118 struct __x86_intercept icpt_info;
5119 struct vmcb *vmcb = svm->vmcb;
5120
5121 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5122 goto out;
5123
5124 icpt_info = x86_intercept_map[info->intercept];
5125
5126 if (stage != icpt_info.stage)
5127 goto out;
5128
5129 switch (icpt_info.exit_code) {
5130 case SVM_EXIT_READ_CR0:
5131 if (info->intercept == x86_intercept_cr_read)
5132 icpt_info.exit_code += info->modrm_reg;
5133 break;
5134 case SVM_EXIT_WRITE_CR0: {
5135 unsigned long cr0, val;
5136 u64 intercept;
5137
5138 if (info->intercept == x86_intercept_cr_write)
5139 icpt_info.exit_code += info->modrm_reg;
5140
5141 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5142 info->intercept == x86_intercept_clts)
5143 break;
5144
5145 intercept = svm->nested.intercept;
5146
5147 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5148 break;
5149
5150 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5151 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5152
5153 if (info->intercept == x86_intercept_lmsw) {
5154 cr0 &= 0xfUL;
5155 val &= 0xfUL;
5156 /* lmsw can't clear PE - catch this here */
5157 if (cr0 & X86_CR0_PE)
5158 val |= X86_CR0_PE;
5159 }
5160
5161 if (cr0 ^ val)
5162 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5163
5164 break;
5165 }
5166 case SVM_EXIT_READ_DR0:
5167 case SVM_EXIT_WRITE_DR0:
5168 icpt_info.exit_code += info->modrm_reg;
5169 break;
5170 case SVM_EXIT_MSR:
5171 if (info->intercept == x86_intercept_wrmsr)
5172 vmcb->control.exit_info_1 = 1;
5173 else
5174 vmcb->control.exit_info_1 = 0;
5175 break;
5176 case SVM_EXIT_PAUSE:
5177 /*
5178 * We get this for NOP only, but pause
5179 * is rep not, check this here
5180 */
5181 if (info->rep_prefix != REPE_PREFIX)
5182 goto out;
5183 case SVM_EXIT_IOIO: {
5184 u64 exit_info;
5185 u32 bytes;
5186
5187 if (info->intercept == x86_intercept_in ||
5188 info->intercept == x86_intercept_ins) {
5189 exit_info = ((info->src_val & 0xffff) << 16) |
5190 SVM_IOIO_TYPE_MASK;
5191 bytes = info->dst_bytes;
5192 } else {
5193 exit_info = (info->dst_val & 0xffff) << 16;
5194 bytes = info->src_bytes;
5195 }
5196
5197 if (info->intercept == x86_intercept_outs ||
5198 info->intercept == x86_intercept_ins)
5199 exit_info |= SVM_IOIO_STR_MASK;
5200
5201 if (info->rep_prefix)
5202 exit_info |= SVM_IOIO_REP_MASK;
5203
5204 bytes = min(bytes, 4u);
5205
5206 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5207
5208 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5209
5210 vmcb->control.exit_info_1 = exit_info;
5211 vmcb->control.exit_info_2 = info->next_rip;
5212
5213 break;
5214 }
5215 default:
5216 break;
5217 }
5218
5219 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5220 if (static_cpu_has(X86_FEATURE_NRIPS))
5221 vmcb->control.next_rip = info->next_rip;
5222 vmcb->control.exit_code = icpt_info.exit_code;
5223 vmexit = nested_svm_exit_handled(svm);
5224
5225 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5226 : X86EMUL_CONTINUE;
5227
5228 out:
5229 return ret;
5230 }
5231
5232 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5233 {
5234 local_irq_enable();
5235 /*
5236 * We must have an instruction with interrupts enabled, so
5237 * the timer interrupt isn't delayed by the interrupt shadow.
5238 */
5239 asm("nop");
5240 local_irq_disable();
5241 }
5242
5243 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5244 {
5245 }
5246
5247 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5248 {
5249 if (avic_handle_apic_id_update(vcpu) != 0)
5250 return;
5251 if (avic_handle_dfr_update(vcpu) != 0)
5252 return;
5253 avic_handle_ldr_update(vcpu);
5254 }
5255
5256 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5257 .cpu_has_kvm_support = has_svm,
5258 .disabled_by_bios = is_disabled,
5259 .hardware_setup = svm_hardware_setup,
5260 .hardware_unsetup = svm_hardware_unsetup,
5261 .check_processor_compatibility = svm_check_processor_compat,
5262 .hardware_enable = svm_hardware_enable,
5263 .hardware_disable = svm_hardware_disable,
5264 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5265 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5266
5267 .vcpu_create = svm_create_vcpu,
5268 .vcpu_free = svm_free_vcpu,
5269 .vcpu_reset = svm_vcpu_reset,
5270
5271 .vm_init = avic_vm_init,
5272 .vm_destroy = avic_vm_destroy,
5273
5274 .prepare_guest_switch = svm_prepare_guest_switch,
5275 .vcpu_load = svm_vcpu_load,
5276 .vcpu_put = svm_vcpu_put,
5277 .vcpu_blocking = svm_vcpu_blocking,
5278 .vcpu_unblocking = svm_vcpu_unblocking,
5279
5280 .update_bp_intercept = update_bp_intercept,
5281 .get_msr = svm_get_msr,
5282 .set_msr = svm_set_msr,
5283 .get_segment_base = svm_get_segment_base,
5284 .get_segment = svm_get_segment,
5285 .set_segment = svm_set_segment,
5286 .get_cpl = svm_get_cpl,
5287 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5288 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5289 .decache_cr3 = svm_decache_cr3,
5290 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5291 .set_cr0 = svm_set_cr0,
5292 .set_cr3 = svm_set_cr3,
5293 .set_cr4 = svm_set_cr4,
5294 .set_efer = svm_set_efer,
5295 .get_idt = svm_get_idt,
5296 .set_idt = svm_set_idt,
5297 .get_gdt = svm_get_gdt,
5298 .set_gdt = svm_set_gdt,
5299 .get_dr6 = svm_get_dr6,
5300 .set_dr6 = svm_set_dr6,
5301 .set_dr7 = svm_set_dr7,
5302 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5303 .cache_reg = svm_cache_reg,
5304 .get_rflags = svm_get_rflags,
5305 .set_rflags = svm_set_rflags,
5306
5307 .get_pkru = svm_get_pkru,
5308
5309 .tlb_flush = svm_flush_tlb,
5310
5311 .run = svm_vcpu_run,
5312 .handle_exit = handle_exit,
5313 .skip_emulated_instruction = skip_emulated_instruction,
5314 .set_interrupt_shadow = svm_set_interrupt_shadow,
5315 .get_interrupt_shadow = svm_get_interrupt_shadow,
5316 .patch_hypercall = svm_patch_hypercall,
5317 .set_irq = svm_set_irq,
5318 .set_nmi = svm_inject_nmi,
5319 .queue_exception = svm_queue_exception,
5320 .cancel_injection = svm_cancel_injection,
5321 .interrupt_allowed = svm_interrupt_allowed,
5322 .nmi_allowed = svm_nmi_allowed,
5323 .get_nmi_mask = svm_get_nmi_mask,
5324 .set_nmi_mask = svm_set_nmi_mask,
5325 .enable_nmi_window = enable_nmi_window,
5326 .enable_irq_window = enable_irq_window,
5327 .update_cr8_intercept = update_cr8_intercept,
5328 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5329 .get_enable_apicv = svm_get_enable_apicv,
5330 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5331 .load_eoi_exitmap = svm_load_eoi_exitmap,
5332 .hwapic_irr_update = svm_hwapic_irr_update,
5333 .hwapic_isr_update = svm_hwapic_isr_update,
5334 .apicv_post_state_restore = avic_post_state_restore,
5335
5336 .set_tss_addr = svm_set_tss_addr,
5337 .get_tdp_level = get_npt_level,
5338 .get_mt_mask = svm_get_mt_mask,
5339
5340 .get_exit_info = svm_get_exit_info,
5341
5342 .get_lpage_level = svm_get_lpage_level,
5343
5344 .cpuid_update = svm_cpuid_update,
5345
5346 .rdtscp_supported = svm_rdtscp_supported,
5347 .invpcid_supported = svm_invpcid_supported,
5348 .mpx_supported = svm_mpx_supported,
5349 .xsaves_supported = svm_xsaves_supported,
5350
5351 .set_supported_cpuid = svm_set_supported_cpuid,
5352
5353 .has_wbinvd_exit = svm_has_wbinvd_exit,
5354
5355 .write_tsc_offset = svm_write_tsc_offset,
5356
5357 .set_tdp_cr3 = set_tdp_cr3,
5358
5359 .check_intercept = svm_check_intercept,
5360 .handle_external_intr = svm_handle_external_intr,
5361
5362 .sched_in = svm_sched_in,
5363
5364 .pmu_ops = &amd_pmu_ops,
5365 .deliver_posted_interrupt = svm_deliver_avic_intr,
5366 .update_pi_irte = svm_update_pi_irte,
5367 };
5368
5369 static int __init svm_init(void)
5370 {
5371 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5372 __alignof__(struct vcpu_svm), THIS_MODULE);
5373 }
5374
5375 static void __exit svm_exit(void)
5376 {
5377 kvm_exit();
5378 }
5379
5380 module_init(svm_init)
5381 module_exit(svm_exit)