]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
KVM: Fix interrupt unhalting a vcpu when it shouldn't
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33
34 #define __ex(x) __kvm_handle_fault_on_reboot(x)
35
36 MODULE_AUTHOR("Qumranet");
37 MODULE_LICENSE("GPL");
38
39 #define IOPM_ALLOC_ORDER 2
40 #define MSRPM_ALLOC_ORDER 1
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_FEATURE_SVML (1 << 2)
48
49 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
50
51 /* Turn on to get debugging output*/
52 /* #define NESTED_DEBUG */
53
54 #ifdef NESTED_DEBUG
55 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
56 #else
57 #define nsvm_printk(fmt, args...) do {} while(0)
58 #endif
59
60 /* enable NPT for AMD64 and X86 with PAE */
61 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
62 static bool npt_enabled = true;
63 #else
64 static bool npt_enabled = false;
65 #endif
66 static int npt = 1;
67
68 module_param(npt, int, S_IRUGO);
69
70 static int nested = 0;
71 module_param(nested, int, S_IRUGO);
72
73 static void kvm_reput_irq(struct vcpu_svm *svm);
74 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
75
76 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
77 static int nested_svm_vmexit(struct vcpu_svm *svm);
78 static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
79 void *arg2, void *opaque);
80 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
81 bool has_error_code, u32 error_code);
82
83 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
84 {
85 return container_of(vcpu, struct vcpu_svm, vcpu);
86 }
87
88 static inline bool is_nested(struct vcpu_svm *svm)
89 {
90 return svm->nested_vmcb;
91 }
92
93 static unsigned long iopm_base;
94
95 struct kvm_ldttss_desc {
96 u16 limit0;
97 u16 base0;
98 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
99 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
100 u32 base3;
101 u32 zero1;
102 } __attribute__((packed));
103
104 struct svm_cpu_data {
105 int cpu;
106
107 u64 asid_generation;
108 u32 max_asid;
109 u32 next_asid;
110 struct kvm_ldttss_desc *tss_desc;
111
112 struct page *save_area;
113 };
114
115 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
116 static uint32_t svm_features;
117
118 struct svm_init_data {
119 int cpu;
120 int r;
121 };
122
123 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
124
125 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
126 #define MSRS_RANGE_SIZE 2048
127 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
128
129 #define MAX_INST_SIZE 15
130
131 static inline u32 svm_has(u32 feat)
132 {
133 return svm_features & feat;
134 }
135
136 static inline void clgi(void)
137 {
138 asm volatile (__ex(SVM_CLGI));
139 }
140
141 static inline void stgi(void)
142 {
143 asm volatile (__ex(SVM_STGI));
144 }
145
146 static inline void invlpga(unsigned long addr, u32 asid)
147 {
148 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
149 }
150
151 static inline unsigned long kvm_read_cr2(void)
152 {
153 unsigned long cr2;
154
155 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
156 return cr2;
157 }
158
159 static inline void kvm_write_cr2(unsigned long val)
160 {
161 asm volatile ("mov %0, %%cr2" :: "r" (val));
162 }
163
164 static inline void force_new_asid(struct kvm_vcpu *vcpu)
165 {
166 to_svm(vcpu)->asid_generation--;
167 }
168
169 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
170 {
171 force_new_asid(vcpu);
172 }
173
174 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
175 {
176 if (!npt_enabled && !(efer & EFER_LMA))
177 efer &= ~EFER_LME;
178
179 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
180 vcpu->arch.shadow_efer = efer;
181 }
182
183 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
184 bool has_error_code, u32 error_code)
185 {
186 struct vcpu_svm *svm = to_svm(vcpu);
187
188 /* If we are within a nested VM we'd better #VMEXIT and let the
189 guest handle the exception */
190 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
191 return;
192
193 svm->vmcb->control.event_inj = nr
194 | SVM_EVTINJ_VALID
195 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
196 | SVM_EVTINJ_TYPE_EXEPT;
197 svm->vmcb->control.event_inj_err = error_code;
198 }
199
200 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
201 {
202 struct vcpu_svm *svm = to_svm(vcpu);
203
204 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
205 }
206
207 static int is_external_interrupt(u32 info)
208 {
209 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
210 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
211 }
212
213 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
214 {
215 struct vcpu_svm *svm = to_svm(vcpu);
216
217 if (!svm->next_rip) {
218 printk(KERN_DEBUG "%s: NOP\n", __func__);
219 return;
220 }
221 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
222 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
223 __func__, kvm_rip_read(vcpu), svm->next_rip);
224
225 kvm_rip_write(vcpu, svm->next_rip);
226 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
227
228 vcpu->arch.interrupt_window_open = (svm->vcpu.arch.hflags & HF_GIF_MASK);
229 }
230
231 static int has_svm(void)
232 {
233 const char *msg;
234
235 if (!cpu_has_svm(&msg)) {
236 printk(KERN_INFO "has_svm: %s\n", msg);
237 return 0;
238 }
239
240 return 1;
241 }
242
243 static void svm_hardware_disable(void *garbage)
244 {
245 cpu_svm_disable();
246 }
247
248 static void svm_hardware_enable(void *garbage)
249 {
250
251 struct svm_cpu_data *svm_data;
252 uint64_t efer;
253 struct desc_ptr gdt_descr;
254 struct desc_struct *gdt;
255 int me = raw_smp_processor_id();
256
257 if (!has_svm()) {
258 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
259 return;
260 }
261 svm_data = per_cpu(svm_data, me);
262
263 if (!svm_data) {
264 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
265 me);
266 return;
267 }
268
269 svm_data->asid_generation = 1;
270 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
271 svm_data->next_asid = svm_data->max_asid + 1;
272
273 asm volatile ("sgdt %0" : "=m"(gdt_descr));
274 gdt = (struct desc_struct *)gdt_descr.address;
275 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
276
277 rdmsrl(MSR_EFER, efer);
278 wrmsrl(MSR_EFER, efer | EFER_SVME);
279
280 wrmsrl(MSR_VM_HSAVE_PA,
281 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
282 }
283
284 static void svm_cpu_uninit(int cpu)
285 {
286 struct svm_cpu_data *svm_data
287 = per_cpu(svm_data, raw_smp_processor_id());
288
289 if (!svm_data)
290 return;
291
292 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
293 __free_page(svm_data->save_area);
294 kfree(svm_data);
295 }
296
297 static int svm_cpu_init(int cpu)
298 {
299 struct svm_cpu_data *svm_data;
300 int r;
301
302 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
303 if (!svm_data)
304 return -ENOMEM;
305 svm_data->cpu = cpu;
306 svm_data->save_area = alloc_page(GFP_KERNEL);
307 r = -ENOMEM;
308 if (!svm_data->save_area)
309 goto err_1;
310
311 per_cpu(svm_data, cpu) = svm_data;
312
313 return 0;
314
315 err_1:
316 kfree(svm_data);
317 return r;
318
319 }
320
321 static void set_msr_interception(u32 *msrpm, unsigned msr,
322 int read, int write)
323 {
324 int i;
325
326 for (i = 0; i < NUM_MSR_MAPS; i++) {
327 if (msr >= msrpm_ranges[i] &&
328 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
329 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
330 msrpm_ranges[i]) * 2;
331
332 u32 *base = msrpm + (msr_offset / 32);
333 u32 msr_shift = msr_offset % 32;
334 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
335 *base = (*base & ~(0x3 << msr_shift)) |
336 (mask << msr_shift);
337 return;
338 }
339 }
340 BUG();
341 }
342
343 static void svm_vcpu_init_msrpm(u32 *msrpm)
344 {
345 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
346
347 #ifdef CONFIG_X86_64
348 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
349 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
350 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
351 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
352 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
353 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
354 #endif
355 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
356 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
357 set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
358 set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
359 }
360
361 static void svm_enable_lbrv(struct vcpu_svm *svm)
362 {
363 u32 *msrpm = svm->msrpm;
364
365 svm->vmcb->control.lbr_ctl = 1;
366 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
367 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
368 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
369 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
370 }
371
372 static void svm_disable_lbrv(struct vcpu_svm *svm)
373 {
374 u32 *msrpm = svm->msrpm;
375
376 svm->vmcb->control.lbr_ctl = 0;
377 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
378 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
379 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
380 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
381 }
382
383 static __init int svm_hardware_setup(void)
384 {
385 int cpu;
386 struct page *iopm_pages;
387 void *iopm_va;
388 int r;
389
390 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
391
392 if (!iopm_pages)
393 return -ENOMEM;
394
395 iopm_va = page_address(iopm_pages);
396 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
397 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
398
399 if (boot_cpu_has(X86_FEATURE_NX))
400 kvm_enable_efer_bits(EFER_NX);
401
402 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
403 kvm_enable_efer_bits(EFER_FFXSR);
404
405 if (nested) {
406 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
407 kvm_enable_efer_bits(EFER_SVME);
408 }
409
410 for_each_online_cpu(cpu) {
411 r = svm_cpu_init(cpu);
412 if (r)
413 goto err;
414 }
415
416 svm_features = cpuid_edx(SVM_CPUID_FUNC);
417
418 if (!svm_has(SVM_FEATURE_NPT))
419 npt_enabled = false;
420
421 if (npt_enabled && !npt) {
422 printk(KERN_INFO "kvm: Nested Paging disabled\n");
423 npt_enabled = false;
424 }
425
426 if (npt_enabled) {
427 printk(KERN_INFO "kvm: Nested Paging enabled\n");
428 kvm_enable_tdp();
429 } else
430 kvm_disable_tdp();
431
432 return 0;
433
434 err:
435 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
436 iopm_base = 0;
437 return r;
438 }
439
440 static __exit void svm_hardware_unsetup(void)
441 {
442 int cpu;
443
444 for_each_online_cpu(cpu)
445 svm_cpu_uninit(cpu);
446
447 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
448 iopm_base = 0;
449 }
450
451 static void init_seg(struct vmcb_seg *seg)
452 {
453 seg->selector = 0;
454 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
455 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
456 seg->limit = 0xffff;
457 seg->base = 0;
458 }
459
460 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
461 {
462 seg->selector = 0;
463 seg->attrib = SVM_SELECTOR_P_MASK | type;
464 seg->limit = 0xffff;
465 seg->base = 0;
466 }
467
468 static void init_vmcb(struct vcpu_svm *svm)
469 {
470 struct vmcb_control_area *control = &svm->vmcb->control;
471 struct vmcb_save_area *save = &svm->vmcb->save;
472
473 control->intercept_cr_read = INTERCEPT_CR0_MASK |
474 INTERCEPT_CR3_MASK |
475 INTERCEPT_CR4_MASK;
476
477 control->intercept_cr_write = INTERCEPT_CR0_MASK |
478 INTERCEPT_CR3_MASK |
479 INTERCEPT_CR4_MASK |
480 INTERCEPT_CR8_MASK;
481
482 control->intercept_dr_read = INTERCEPT_DR0_MASK |
483 INTERCEPT_DR1_MASK |
484 INTERCEPT_DR2_MASK |
485 INTERCEPT_DR3_MASK;
486
487 control->intercept_dr_write = INTERCEPT_DR0_MASK |
488 INTERCEPT_DR1_MASK |
489 INTERCEPT_DR2_MASK |
490 INTERCEPT_DR3_MASK |
491 INTERCEPT_DR5_MASK |
492 INTERCEPT_DR7_MASK;
493
494 control->intercept_exceptions = (1 << PF_VECTOR) |
495 (1 << UD_VECTOR) |
496 (1 << MC_VECTOR);
497
498
499 control->intercept = (1ULL << INTERCEPT_INTR) |
500 (1ULL << INTERCEPT_NMI) |
501 (1ULL << INTERCEPT_SMI) |
502 (1ULL << INTERCEPT_CPUID) |
503 (1ULL << INTERCEPT_INVD) |
504 (1ULL << INTERCEPT_HLT) |
505 (1ULL << INTERCEPT_INVLPG) |
506 (1ULL << INTERCEPT_INVLPGA) |
507 (1ULL << INTERCEPT_IOIO_PROT) |
508 (1ULL << INTERCEPT_MSR_PROT) |
509 (1ULL << INTERCEPT_TASK_SWITCH) |
510 (1ULL << INTERCEPT_SHUTDOWN) |
511 (1ULL << INTERCEPT_VMRUN) |
512 (1ULL << INTERCEPT_VMMCALL) |
513 (1ULL << INTERCEPT_VMLOAD) |
514 (1ULL << INTERCEPT_VMSAVE) |
515 (1ULL << INTERCEPT_STGI) |
516 (1ULL << INTERCEPT_CLGI) |
517 (1ULL << INTERCEPT_SKINIT) |
518 (1ULL << INTERCEPT_WBINVD) |
519 (1ULL << INTERCEPT_MONITOR) |
520 (1ULL << INTERCEPT_MWAIT);
521
522 control->iopm_base_pa = iopm_base;
523 control->msrpm_base_pa = __pa(svm->msrpm);
524 control->tsc_offset = 0;
525 control->int_ctl = V_INTR_MASKING_MASK;
526
527 init_seg(&save->es);
528 init_seg(&save->ss);
529 init_seg(&save->ds);
530 init_seg(&save->fs);
531 init_seg(&save->gs);
532
533 save->cs.selector = 0xf000;
534 /* Executable/Readable Code Segment */
535 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
536 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
537 save->cs.limit = 0xffff;
538 /*
539 * cs.base should really be 0xffff0000, but vmx can't handle that, so
540 * be consistent with it.
541 *
542 * Replace when we have real mode working for vmx.
543 */
544 save->cs.base = 0xf0000;
545
546 save->gdtr.limit = 0xffff;
547 save->idtr.limit = 0xffff;
548
549 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
550 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
551
552 save->efer = EFER_SVME;
553 save->dr6 = 0xffff0ff0;
554 save->dr7 = 0x400;
555 save->rflags = 2;
556 save->rip = 0x0000fff0;
557 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
558
559 /*
560 * cr0 val on cpu init should be 0x60000010, we enable cpu
561 * cache by default. the orderly way is to enable cache in bios.
562 */
563 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
564 save->cr4 = X86_CR4_PAE;
565 /* rdx = ?? */
566
567 if (npt_enabled) {
568 /* Setup VMCB for Nested Paging */
569 control->nested_ctl = 1;
570 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
571 (1ULL << INTERCEPT_INVLPG));
572 control->intercept_exceptions &= ~(1 << PF_VECTOR);
573 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
574 INTERCEPT_CR3_MASK);
575 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
576 INTERCEPT_CR3_MASK);
577 save->g_pat = 0x0007040600070406ULL;
578 /* enable caching because the QEMU Bios doesn't enable it */
579 save->cr0 = X86_CR0_ET;
580 save->cr3 = 0;
581 save->cr4 = 0;
582 }
583 force_new_asid(&svm->vcpu);
584
585 svm->nested_vmcb = 0;
586 svm->vcpu.arch.hflags = HF_GIF_MASK;
587 }
588
589 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
590 {
591 struct vcpu_svm *svm = to_svm(vcpu);
592
593 init_vmcb(svm);
594
595 if (vcpu->vcpu_id != 0) {
596 kvm_rip_write(vcpu, 0);
597 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
598 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
599 }
600 vcpu->arch.regs_avail = ~0;
601 vcpu->arch.regs_dirty = ~0;
602
603 return 0;
604 }
605
606 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
607 {
608 struct vcpu_svm *svm;
609 struct page *page;
610 struct page *msrpm_pages;
611 struct page *hsave_page;
612 struct page *nested_msrpm_pages;
613 int err;
614
615 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
616 if (!svm) {
617 err = -ENOMEM;
618 goto out;
619 }
620
621 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
622 if (err)
623 goto free_svm;
624
625 page = alloc_page(GFP_KERNEL);
626 if (!page) {
627 err = -ENOMEM;
628 goto uninit;
629 }
630
631 err = -ENOMEM;
632 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
633 if (!msrpm_pages)
634 goto uninit;
635
636 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
637 if (!nested_msrpm_pages)
638 goto uninit;
639
640 svm->msrpm = page_address(msrpm_pages);
641 svm_vcpu_init_msrpm(svm->msrpm);
642
643 hsave_page = alloc_page(GFP_KERNEL);
644 if (!hsave_page)
645 goto uninit;
646 svm->hsave = page_address(hsave_page);
647
648 svm->nested_msrpm = page_address(nested_msrpm_pages);
649
650 svm->vmcb = page_address(page);
651 clear_page(svm->vmcb);
652 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
653 svm->asid_generation = 0;
654 init_vmcb(svm);
655
656 fx_init(&svm->vcpu);
657 svm->vcpu.fpu_active = 1;
658 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
659 if (svm->vcpu.vcpu_id == 0)
660 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
661
662 return &svm->vcpu;
663
664 uninit:
665 kvm_vcpu_uninit(&svm->vcpu);
666 free_svm:
667 kmem_cache_free(kvm_vcpu_cache, svm);
668 out:
669 return ERR_PTR(err);
670 }
671
672 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
673 {
674 struct vcpu_svm *svm = to_svm(vcpu);
675
676 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
677 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
678 __free_page(virt_to_page(svm->hsave));
679 __free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER);
680 kvm_vcpu_uninit(vcpu);
681 kmem_cache_free(kvm_vcpu_cache, svm);
682 }
683
684 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
685 {
686 struct vcpu_svm *svm = to_svm(vcpu);
687 int i;
688
689 if (unlikely(cpu != vcpu->cpu)) {
690 u64 tsc_this, delta;
691
692 /*
693 * Make sure that the guest sees a monotonically
694 * increasing TSC.
695 */
696 rdtscll(tsc_this);
697 delta = vcpu->arch.host_tsc - tsc_this;
698 svm->vmcb->control.tsc_offset += delta;
699 vcpu->cpu = cpu;
700 kvm_migrate_timers(vcpu);
701 }
702
703 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
704 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
705 }
706
707 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
708 {
709 struct vcpu_svm *svm = to_svm(vcpu);
710 int i;
711
712 ++vcpu->stat.host_state_reload;
713 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
714 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
715
716 rdtscll(vcpu->arch.host_tsc);
717 }
718
719 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
720 {
721 return to_svm(vcpu)->vmcb->save.rflags;
722 }
723
724 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
725 {
726 to_svm(vcpu)->vmcb->save.rflags = rflags;
727 }
728
729 static void svm_set_vintr(struct vcpu_svm *svm)
730 {
731 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
732 }
733
734 static void svm_clear_vintr(struct vcpu_svm *svm)
735 {
736 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
737 }
738
739 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
740 {
741 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
742
743 switch (seg) {
744 case VCPU_SREG_CS: return &save->cs;
745 case VCPU_SREG_DS: return &save->ds;
746 case VCPU_SREG_ES: return &save->es;
747 case VCPU_SREG_FS: return &save->fs;
748 case VCPU_SREG_GS: return &save->gs;
749 case VCPU_SREG_SS: return &save->ss;
750 case VCPU_SREG_TR: return &save->tr;
751 case VCPU_SREG_LDTR: return &save->ldtr;
752 }
753 BUG();
754 return NULL;
755 }
756
757 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
758 {
759 struct vmcb_seg *s = svm_seg(vcpu, seg);
760
761 return s->base;
762 }
763
764 static void svm_get_segment(struct kvm_vcpu *vcpu,
765 struct kvm_segment *var, int seg)
766 {
767 struct vmcb_seg *s = svm_seg(vcpu, seg);
768
769 var->base = s->base;
770 var->limit = s->limit;
771 var->selector = s->selector;
772 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
773 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
774 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
775 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
776 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
777 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
778 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
779 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
780
781 /* AMD's VMCB does not have an explicit unusable field, so emulate it
782 * for cross vendor migration purposes by "not present"
783 */
784 var->unusable = !var->present || (var->type == 0);
785
786 switch (seg) {
787 case VCPU_SREG_CS:
788 /*
789 * SVM always stores 0 for the 'G' bit in the CS selector in
790 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
791 * Intel's VMENTRY has a check on the 'G' bit.
792 */
793 var->g = s->limit > 0xfffff;
794 break;
795 case VCPU_SREG_TR:
796 /*
797 * Work around a bug where the busy flag in the tr selector
798 * isn't exposed
799 */
800 var->type |= 0x2;
801 break;
802 case VCPU_SREG_DS:
803 case VCPU_SREG_ES:
804 case VCPU_SREG_FS:
805 case VCPU_SREG_GS:
806 /*
807 * The accessed bit must always be set in the segment
808 * descriptor cache, although it can be cleared in the
809 * descriptor, the cached bit always remains at 1. Since
810 * Intel has a check on this, set it here to support
811 * cross-vendor migration.
812 */
813 if (!var->unusable)
814 var->type |= 0x1;
815 break;
816 }
817 }
818
819 static int svm_get_cpl(struct kvm_vcpu *vcpu)
820 {
821 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
822
823 return save->cpl;
824 }
825
826 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
827 {
828 struct vcpu_svm *svm = to_svm(vcpu);
829
830 dt->limit = svm->vmcb->save.idtr.limit;
831 dt->base = svm->vmcb->save.idtr.base;
832 }
833
834 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
835 {
836 struct vcpu_svm *svm = to_svm(vcpu);
837
838 svm->vmcb->save.idtr.limit = dt->limit;
839 svm->vmcb->save.idtr.base = dt->base ;
840 }
841
842 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
843 {
844 struct vcpu_svm *svm = to_svm(vcpu);
845
846 dt->limit = svm->vmcb->save.gdtr.limit;
847 dt->base = svm->vmcb->save.gdtr.base;
848 }
849
850 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
851 {
852 struct vcpu_svm *svm = to_svm(vcpu);
853
854 svm->vmcb->save.gdtr.limit = dt->limit;
855 svm->vmcb->save.gdtr.base = dt->base ;
856 }
857
858 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
859 {
860 }
861
862 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
863 {
864 struct vcpu_svm *svm = to_svm(vcpu);
865
866 #ifdef CONFIG_X86_64
867 if (vcpu->arch.shadow_efer & EFER_LME) {
868 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
869 vcpu->arch.shadow_efer |= EFER_LMA;
870 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
871 }
872
873 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
874 vcpu->arch.shadow_efer &= ~EFER_LMA;
875 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
876 }
877 }
878 #endif
879 if (npt_enabled)
880 goto set;
881
882 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
883 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
884 vcpu->fpu_active = 1;
885 }
886
887 vcpu->arch.cr0 = cr0;
888 cr0 |= X86_CR0_PG | X86_CR0_WP;
889 if (!vcpu->fpu_active) {
890 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
891 cr0 |= X86_CR0_TS;
892 }
893 set:
894 /*
895 * re-enable caching here because the QEMU bios
896 * does not do it - this results in some delay at
897 * reboot
898 */
899 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
900 svm->vmcb->save.cr0 = cr0;
901 }
902
903 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
904 {
905 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
906 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
907
908 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
909 force_new_asid(vcpu);
910
911 vcpu->arch.cr4 = cr4;
912 if (!npt_enabled)
913 cr4 |= X86_CR4_PAE;
914 cr4 |= host_cr4_mce;
915 to_svm(vcpu)->vmcb->save.cr4 = cr4;
916 }
917
918 static void svm_set_segment(struct kvm_vcpu *vcpu,
919 struct kvm_segment *var, int seg)
920 {
921 struct vcpu_svm *svm = to_svm(vcpu);
922 struct vmcb_seg *s = svm_seg(vcpu, seg);
923
924 s->base = var->base;
925 s->limit = var->limit;
926 s->selector = var->selector;
927 if (var->unusable)
928 s->attrib = 0;
929 else {
930 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
931 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
932 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
933 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
934 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
935 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
936 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
937 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
938 }
939 if (seg == VCPU_SREG_CS)
940 svm->vmcb->save.cpl
941 = (svm->vmcb->save.cs.attrib
942 >> SVM_SELECTOR_DPL_SHIFT) & 3;
943
944 }
945
946 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
947 {
948 int old_debug = vcpu->guest_debug;
949 struct vcpu_svm *svm = to_svm(vcpu);
950
951 vcpu->guest_debug = dbg->control;
952
953 svm->vmcb->control.intercept_exceptions &=
954 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
955 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
956 if (vcpu->guest_debug &
957 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
958 svm->vmcb->control.intercept_exceptions |=
959 1 << DB_VECTOR;
960 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
961 svm->vmcb->control.intercept_exceptions |=
962 1 << BP_VECTOR;
963 } else
964 vcpu->guest_debug = 0;
965
966 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
967 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
968 else
969 svm->vmcb->save.dr7 = vcpu->arch.dr7;
970
971 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
972 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
973 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
974 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
975
976 return 0;
977 }
978
979 static int svm_get_irq(struct kvm_vcpu *vcpu)
980 {
981 struct vcpu_svm *svm = to_svm(vcpu);
982 u32 exit_int_info = svm->vmcb->control.exit_int_info;
983
984 if (is_external_interrupt(exit_int_info))
985 return exit_int_info & SVM_EVTINJ_VEC_MASK;
986 return -1;
987 }
988
989 static void load_host_msrs(struct kvm_vcpu *vcpu)
990 {
991 #ifdef CONFIG_X86_64
992 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
993 #endif
994 }
995
996 static void save_host_msrs(struct kvm_vcpu *vcpu)
997 {
998 #ifdef CONFIG_X86_64
999 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1000 #endif
1001 }
1002
1003 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1004 {
1005 if (svm_data->next_asid > svm_data->max_asid) {
1006 ++svm_data->asid_generation;
1007 svm_data->next_asid = 1;
1008 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1009 }
1010
1011 svm->vcpu.cpu = svm_data->cpu;
1012 svm->asid_generation = svm_data->asid_generation;
1013 svm->vmcb->control.asid = svm_data->next_asid++;
1014 }
1015
1016 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1017 {
1018 struct vcpu_svm *svm = to_svm(vcpu);
1019 unsigned long val;
1020
1021 switch (dr) {
1022 case 0 ... 3:
1023 val = vcpu->arch.db[dr];
1024 break;
1025 case 6:
1026 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1027 val = vcpu->arch.dr6;
1028 else
1029 val = svm->vmcb->save.dr6;
1030 break;
1031 case 7:
1032 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1033 val = vcpu->arch.dr7;
1034 else
1035 val = svm->vmcb->save.dr7;
1036 break;
1037 default:
1038 val = 0;
1039 }
1040
1041 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
1042 return val;
1043 }
1044
1045 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1046 int *exception)
1047 {
1048 struct vcpu_svm *svm = to_svm(vcpu);
1049
1050 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)value, handler);
1051
1052 *exception = 0;
1053
1054 switch (dr) {
1055 case 0 ... 3:
1056 vcpu->arch.db[dr] = value;
1057 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1058 vcpu->arch.eff_db[dr] = value;
1059 return;
1060 case 4 ... 5:
1061 if (vcpu->arch.cr4 & X86_CR4_DE)
1062 *exception = UD_VECTOR;
1063 return;
1064 case 6:
1065 if (value & 0xffffffff00000000ULL) {
1066 *exception = GP_VECTOR;
1067 return;
1068 }
1069 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1070 return;
1071 case 7:
1072 if (value & 0xffffffff00000000ULL) {
1073 *exception = GP_VECTOR;
1074 return;
1075 }
1076 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1077 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1078 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1079 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1080 }
1081 return;
1082 default:
1083 /* FIXME: Possible case? */
1084 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1085 __func__, dr);
1086 *exception = UD_VECTOR;
1087 return;
1088 }
1089 }
1090
1091 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1092 {
1093 u32 exit_int_info = svm->vmcb->control.exit_int_info;
1094 struct kvm *kvm = svm->vcpu.kvm;
1095 u64 fault_address;
1096 u32 error_code;
1097 bool event_injection = false;
1098
1099 if (!irqchip_in_kernel(kvm) &&
1100 is_external_interrupt(exit_int_info)) {
1101 event_injection = true;
1102 kvm_push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1103 }
1104
1105 fault_address = svm->vmcb->control.exit_info_2;
1106 error_code = svm->vmcb->control.exit_info_1;
1107
1108 if (!npt_enabled)
1109 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1110 (u32)fault_address, (u32)(fault_address >> 32),
1111 handler);
1112 else
1113 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1114 (u32)fault_address, (u32)(fault_address >> 32),
1115 handler);
1116 /*
1117 * FIXME: Tis shouldn't be necessary here, but there is a flush
1118 * missing in the MMU code. Until we find this bug, flush the
1119 * complete TLB here on an NPF
1120 */
1121 if (npt_enabled)
1122 svm_flush_tlb(&svm->vcpu);
1123
1124 if (!npt_enabled && event_injection)
1125 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1126 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1127 }
1128
1129 static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1130 {
1131 if (!(svm->vcpu.guest_debug &
1132 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
1133 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1134 return 1;
1135 }
1136 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1137 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1138 kvm_run->debug.arch.exception = DB_VECTOR;
1139 return 0;
1140 }
1141
1142 static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1143 {
1144 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1145 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1146 kvm_run->debug.arch.exception = BP_VECTOR;
1147 return 0;
1148 }
1149
1150 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1151 {
1152 int er;
1153
1154 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1155 if (er != EMULATE_DONE)
1156 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1157 return 1;
1158 }
1159
1160 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1161 {
1162 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1163 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1164 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1165 svm->vcpu.fpu_active = 1;
1166
1167 return 1;
1168 }
1169
1170 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1171 {
1172 /*
1173 * On an #MC intercept the MCE handler is not called automatically in
1174 * the host. So do it by hand here.
1175 */
1176 asm volatile (
1177 "int $0x12\n");
1178 /* not sure if we ever come back to this point */
1179
1180 return 1;
1181 }
1182
1183 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1184 {
1185 /*
1186 * VMCB is undefined after a SHUTDOWN intercept
1187 * so reinitialize it.
1188 */
1189 clear_page(svm->vmcb);
1190 init_vmcb(svm);
1191
1192 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1193 return 0;
1194 }
1195
1196 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1197 {
1198 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1199 int size, in, string;
1200 unsigned port;
1201
1202 ++svm->vcpu.stat.io_exits;
1203
1204 svm->next_rip = svm->vmcb->control.exit_info_2;
1205
1206 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1207
1208 if (string) {
1209 if (emulate_instruction(&svm->vcpu,
1210 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1211 return 0;
1212 return 1;
1213 }
1214
1215 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1216 port = io_info >> 16;
1217 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1218
1219 skip_emulated_instruction(&svm->vcpu);
1220 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1221 }
1222
1223 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1224 {
1225 KVMTRACE_0D(NMI, &svm->vcpu, handler);
1226 return 1;
1227 }
1228
1229 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1230 {
1231 ++svm->vcpu.stat.irq_exits;
1232 KVMTRACE_0D(INTR, &svm->vcpu, handler);
1233 return 1;
1234 }
1235
1236 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1237 {
1238 return 1;
1239 }
1240
1241 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1242 {
1243 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1244 skip_emulated_instruction(&svm->vcpu);
1245 return kvm_emulate_halt(&svm->vcpu);
1246 }
1247
1248 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1249 {
1250 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1251 skip_emulated_instruction(&svm->vcpu);
1252 kvm_emulate_hypercall(&svm->vcpu);
1253 return 1;
1254 }
1255
1256 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1257 {
1258 if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1259 || !is_paging(&svm->vcpu)) {
1260 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1261 return 1;
1262 }
1263
1264 if (svm->vmcb->save.cpl) {
1265 kvm_inject_gp(&svm->vcpu, 0);
1266 return 1;
1267 }
1268
1269 return 0;
1270 }
1271
1272 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1273 bool has_error_code, u32 error_code)
1274 {
1275 if (is_nested(svm)) {
1276 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1277 svm->vmcb->control.exit_code_hi = 0;
1278 svm->vmcb->control.exit_info_1 = error_code;
1279 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1280 if (nested_svm_exit_handled(svm, false)) {
1281 nsvm_printk("VMexit -> EXCP 0x%x\n", nr);
1282
1283 nested_svm_vmexit(svm);
1284 return 1;
1285 }
1286 }
1287
1288 return 0;
1289 }
1290
1291 static inline int nested_svm_intr(struct vcpu_svm *svm)
1292 {
1293 if (is_nested(svm)) {
1294 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1295 return 0;
1296
1297 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1298 return 0;
1299
1300 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1301
1302 if (nested_svm_exit_handled(svm, false)) {
1303 nsvm_printk("VMexit -> INTR\n");
1304 nested_svm_vmexit(svm);
1305 return 1;
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312 static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
1313 {
1314 struct page *page;
1315
1316 down_read(&current->mm->mmap_sem);
1317 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1318 up_read(&current->mm->mmap_sem);
1319
1320 if (is_error_page(page)) {
1321 printk(KERN_INFO "%s: could not find page at 0x%llx\n",
1322 __func__, gpa);
1323 kvm_release_page_clean(page);
1324 kvm_inject_gp(&svm->vcpu, 0);
1325 return NULL;
1326 }
1327 return page;
1328 }
1329
1330 static int nested_svm_do(struct vcpu_svm *svm,
1331 u64 arg1_gpa, u64 arg2_gpa, void *opaque,
1332 int (*handler)(struct vcpu_svm *svm,
1333 void *arg1,
1334 void *arg2,
1335 void *opaque))
1336 {
1337 struct page *arg1_page;
1338 struct page *arg2_page = NULL;
1339 void *arg1;
1340 void *arg2 = NULL;
1341 int retval;
1342
1343 arg1_page = nested_svm_get_page(svm, arg1_gpa);
1344 if(arg1_page == NULL)
1345 return 1;
1346
1347 if (arg2_gpa) {
1348 arg2_page = nested_svm_get_page(svm, arg2_gpa);
1349 if(arg2_page == NULL) {
1350 kvm_release_page_clean(arg1_page);
1351 return 1;
1352 }
1353 }
1354
1355 arg1 = kmap_atomic(arg1_page, KM_USER0);
1356 if (arg2_gpa)
1357 arg2 = kmap_atomic(arg2_page, KM_USER1);
1358
1359 retval = handler(svm, arg1, arg2, opaque);
1360
1361 kunmap_atomic(arg1, KM_USER0);
1362 if (arg2_gpa)
1363 kunmap_atomic(arg2, KM_USER1);
1364
1365 kvm_release_page_dirty(arg1_page);
1366 if (arg2_gpa)
1367 kvm_release_page_dirty(arg2_page);
1368
1369 return retval;
1370 }
1371
1372 static int nested_svm_exit_handled_real(struct vcpu_svm *svm,
1373 void *arg1,
1374 void *arg2,
1375 void *opaque)
1376 {
1377 struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1378 bool kvm_overrides = *(bool *)opaque;
1379 u32 exit_code = svm->vmcb->control.exit_code;
1380
1381 if (kvm_overrides) {
1382 switch (exit_code) {
1383 case SVM_EXIT_INTR:
1384 case SVM_EXIT_NMI:
1385 return 0;
1386 /* For now we are always handling NPFs when using them */
1387 case SVM_EXIT_NPF:
1388 if (npt_enabled)
1389 return 0;
1390 break;
1391 /* When we're shadowing, trap PFs */
1392 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1393 if (!npt_enabled)
1394 return 0;
1395 break;
1396 default:
1397 break;
1398 }
1399 }
1400
1401 switch (exit_code) {
1402 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1403 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1404 if (nested_vmcb->control.intercept_cr_read & cr_bits)
1405 return 1;
1406 break;
1407 }
1408 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1409 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1410 if (nested_vmcb->control.intercept_cr_write & cr_bits)
1411 return 1;
1412 break;
1413 }
1414 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1415 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1416 if (nested_vmcb->control.intercept_dr_read & dr_bits)
1417 return 1;
1418 break;
1419 }
1420 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1421 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1422 if (nested_vmcb->control.intercept_dr_write & dr_bits)
1423 return 1;
1424 break;
1425 }
1426 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1427 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1428 if (nested_vmcb->control.intercept_exceptions & excp_bits)
1429 return 1;
1430 break;
1431 }
1432 default: {
1433 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1434 nsvm_printk("exit code: 0x%x\n", exit_code);
1435 if (nested_vmcb->control.intercept & exit_bits)
1436 return 1;
1437 }
1438 }
1439
1440 return 0;
1441 }
1442
1443 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm,
1444 void *arg1, void *arg2,
1445 void *opaque)
1446 {
1447 struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1448 u8 *msrpm = (u8 *)arg2;
1449 u32 t0, t1;
1450 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1451 u32 param = svm->vmcb->control.exit_info_1 & 1;
1452
1453 if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1454 return 0;
1455
1456 switch(msr) {
1457 case 0 ... 0x1fff:
1458 t0 = (msr * 2) % 8;
1459 t1 = msr / 8;
1460 break;
1461 case 0xc0000000 ... 0xc0001fff:
1462 t0 = (8192 + msr - 0xc0000000) * 2;
1463 t1 = (t0 / 8);
1464 t0 %= 8;
1465 break;
1466 case 0xc0010000 ... 0xc0011fff:
1467 t0 = (16384 + msr - 0xc0010000) * 2;
1468 t1 = (t0 / 8);
1469 t0 %= 8;
1470 break;
1471 default:
1472 return 1;
1473 break;
1474 }
1475 if (msrpm[t1] & ((1 << param) << t0))
1476 return 1;
1477
1478 return 0;
1479 }
1480
1481 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
1482 {
1483 bool k = kvm_override;
1484
1485 switch (svm->vmcb->control.exit_code) {
1486 case SVM_EXIT_MSR:
1487 return nested_svm_do(svm, svm->nested_vmcb,
1488 svm->nested_vmcb_msrpm, NULL,
1489 nested_svm_exit_handled_msr);
1490 default: break;
1491 }
1492
1493 return nested_svm_do(svm, svm->nested_vmcb, 0, &k,
1494 nested_svm_exit_handled_real);
1495 }
1496
1497 static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1,
1498 void *arg2, void *opaque)
1499 {
1500 struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1501 struct vmcb *hsave = svm->hsave;
1502 u64 nested_save[] = { nested_vmcb->save.cr0,
1503 nested_vmcb->save.cr3,
1504 nested_vmcb->save.cr4,
1505 nested_vmcb->save.efer,
1506 nested_vmcb->control.intercept_cr_read,
1507 nested_vmcb->control.intercept_cr_write,
1508 nested_vmcb->control.intercept_dr_read,
1509 nested_vmcb->control.intercept_dr_write,
1510 nested_vmcb->control.intercept_exceptions,
1511 nested_vmcb->control.intercept,
1512 nested_vmcb->control.msrpm_base_pa,
1513 nested_vmcb->control.iopm_base_pa,
1514 nested_vmcb->control.tsc_offset };
1515
1516 /* Give the current vmcb to the guest */
1517 memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb));
1518 nested_vmcb->save.cr0 = nested_save[0];
1519 if (!npt_enabled)
1520 nested_vmcb->save.cr3 = nested_save[1];
1521 nested_vmcb->save.cr4 = nested_save[2];
1522 nested_vmcb->save.efer = nested_save[3];
1523 nested_vmcb->control.intercept_cr_read = nested_save[4];
1524 nested_vmcb->control.intercept_cr_write = nested_save[5];
1525 nested_vmcb->control.intercept_dr_read = nested_save[6];
1526 nested_vmcb->control.intercept_dr_write = nested_save[7];
1527 nested_vmcb->control.intercept_exceptions = nested_save[8];
1528 nested_vmcb->control.intercept = nested_save[9];
1529 nested_vmcb->control.msrpm_base_pa = nested_save[10];
1530 nested_vmcb->control.iopm_base_pa = nested_save[11];
1531 nested_vmcb->control.tsc_offset = nested_save[12];
1532
1533 /* We always set V_INTR_MASKING and remember the old value in hflags */
1534 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1535 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1536
1537 if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) &&
1538 (nested_vmcb->control.int_vector)) {
1539 nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
1540 nested_vmcb->control.int_vector);
1541 }
1542
1543 /* Restore the original control entries */
1544 svm->vmcb->control = hsave->control;
1545
1546 /* Kill any pending exceptions */
1547 if (svm->vcpu.arch.exception.pending == true)
1548 nsvm_printk("WARNING: Pending Exception\n");
1549 svm->vcpu.arch.exception.pending = false;
1550
1551 /* Restore selected save entries */
1552 svm->vmcb->save.es = hsave->save.es;
1553 svm->vmcb->save.cs = hsave->save.cs;
1554 svm->vmcb->save.ss = hsave->save.ss;
1555 svm->vmcb->save.ds = hsave->save.ds;
1556 svm->vmcb->save.gdtr = hsave->save.gdtr;
1557 svm->vmcb->save.idtr = hsave->save.idtr;
1558 svm->vmcb->save.rflags = hsave->save.rflags;
1559 svm_set_efer(&svm->vcpu, hsave->save.efer);
1560 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1561 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1562 if (npt_enabled) {
1563 svm->vmcb->save.cr3 = hsave->save.cr3;
1564 svm->vcpu.arch.cr3 = hsave->save.cr3;
1565 } else {
1566 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1567 }
1568 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1569 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1570 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1571 svm->vmcb->save.dr7 = 0;
1572 svm->vmcb->save.cpl = 0;
1573 svm->vmcb->control.exit_int_info = 0;
1574
1575 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
1576 /* Exit nested SVM mode */
1577 svm->nested_vmcb = 0;
1578
1579 return 0;
1580 }
1581
1582 static int nested_svm_vmexit(struct vcpu_svm *svm)
1583 {
1584 nsvm_printk("VMexit\n");
1585 if (nested_svm_do(svm, svm->nested_vmcb, 0,
1586 NULL, nested_svm_vmexit_real))
1587 return 1;
1588
1589 kvm_mmu_reset_context(&svm->vcpu);
1590 kvm_mmu_load(&svm->vcpu);
1591
1592 return 0;
1593 }
1594
1595 static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1,
1596 void *arg2, void *opaque)
1597 {
1598 int i;
1599 u32 *nested_msrpm = (u32*)arg1;
1600 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1601 svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1602 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm);
1603
1604 return 0;
1605 }
1606
1607 static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1,
1608 void *arg2, void *opaque)
1609 {
1610 struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1611 struct vmcb *hsave = svm->hsave;
1612
1613 /* nested_vmcb is our indicator if nested SVM is activated */
1614 svm->nested_vmcb = svm->vmcb->save.rax;
1615
1616 /* Clear internal status */
1617 svm->vcpu.arch.exception.pending = false;
1618
1619 /* Save the old vmcb, so we don't need to pick what we save, but
1620 can restore everything when a VMEXIT occurs */
1621 memcpy(hsave, svm->vmcb, sizeof(struct vmcb));
1622 /* We need to remember the original CR3 in the SPT case */
1623 if (!npt_enabled)
1624 hsave->save.cr3 = svm->vcpu.arch.cr3;
1625 hsave->save.cr4 = svm->vcpu.arch.cr4;
1626 hsave->save.rip = svm->next_rip;
1627
1628 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1629 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1630 else
1631 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1632
1633 /* Load the nested guest state */
1634 svm->vmcb->save.es = nested_vmcb->save.es;
1635 svm->vmcb->save.cs = nested_vmcb->save.cs;
1636 svm->vmcb->save.ss = nested_vmcb->save.ss;
1637 svm->vmcb->save.ds = nested_vmcb->save.ds;
1638 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1639 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1640 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1641 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1642 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1643 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1644 if (npt_enabled) {
1645 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1646 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1647 } else {
1648 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1649 kvm_mmu_reset_context(&svm->vcpu);
1650 }
1651 svm->vmcb->save.cr2 = nested_vmcb->save.cr2;
1652 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1653 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1654 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1655 /* In case we don't even reach vcpu_run, the fields are not updated */
1656 svm->vmcb->save.rax = nested_vmcb->save.rax;
1657 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1658 svm->vmcb->save.rip = nested_vmcb->save.rip;
1659 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1660 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1661 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1662
1663 /* We don't want a nested guest to be more powerful than the guest,
1664 so all intercepts are ORed */
1665 svm->vmcb->control.intercept_cr_read |=
1666 nested_vmcb->control.intercept_cr_read;
1667 svm->vmcb->control.intercept_cr_write |=
1668 nested_vmcb->control.intercept_cr_write;
1669 svm->vmcb->control.intercept_dr_read |=
1670 nested_vmcb->control.intercept_dr_read;
1671 svm->vmcb->control.intercept_dr_write |=
1672 nested_vmcb->control.intercept_dr_write;
1673 svm->vmcb->control.intercept_exceptions |=
1674 nested_vmcb->control.intercept_exceptions;
1675
1676 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1677
1678 svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1679
1680 force_new_asid(&svm->vcpu);
1681 svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1682 svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1683 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1684 if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1685 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1686 nested_vmcb->control.int_ctl);
1687 }
1688 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1689 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1690 else
1691 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1692
1693 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1694 nested_vmcb->control.exit_int_info,
1695 nested_vmcb->control.int_state);
1696
1697 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1698 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1699 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1700 if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1701 nsvm_printk("Injecting Event: 0x%x\n",
1702 nested_vmcb->control.event_inj);
1703 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1704 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1705
1706 svm->vcpu.arch.hflags |= HF_GIF_MASK;
1707
1708 return 0;
1709 }
1710
1711 static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1712 {
1713 to_vmcb->save.fs = from_vmcb->save.fs;
1714 to_vmcb->save.gs = from_vmcb->save.gs;
1715 to_vmcb->save.tr = from_vmcb->save.tr;
1716 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1717 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1718 to_vmcb->save.star = from_vmcb->save.star;
1719 to_vmcb->save.lstar = from_vmcb->save.lstar;
1720 to_vmcb->save.cstar = from_vmcb->save.cstar;
1721 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1722 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1723 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1724 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1725
1726 return 1;
1727 }
1728
1729 static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb,
1730 void *arg2, void *opaque)
1731 {
1732 return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb);
1733 }
1734
1735 static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
1736 void *arg2, void *opaque)
1737 {
1738 return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb);
1739 }
1740
1741 static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1742 {
1743 if (nested_svm_check_permissions(svm))
1744 return 1;
1745
1746 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1747 skip_emulated_instruction(&svm->vcpu);
1748
1749 nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload);
1750
1751 return 1;
1752 }
1753
1754 static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1755 {
1756 if (nested_svm_check_permissions(svm))
1757 return 1;
1758
1759 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1760 skip_emulated_instruction(&svm->vcpu);
1761
1762 nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave);
1763
1764 return 1;
1765 }
1766
1767 static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1768 {
1769 nsvm_printk("VMrun\n");
1770 if (nested_svm_check_permissions(svm))
1771 return 1;
1772
1773 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1774 skip_emulated_instruction(&svm->vcpu);
1775
1776 if (nested_svm_do(svm, svm->vmcb->save.rax, 0,
1777 NULL, nested_svm_vmrun))
1778 return 1;
1779
1780 if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0,
1781 NULL, nested_svm_vmrun_msrpm))
1782 return 1;
1783
1784 return 1;
1785 }
1786
1787 static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1788 {
1789 if (nested_svm_check_permissions(svm))
1790 return 1;
1791
1792 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1793 skip_emulated_instruction(&svm->vcpu);
1794
1795 svm->vcpu.arch.hflags |= HF_GIF_MASK;
1796
1797 return 1;
1798 }
1799
1800 static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1801 {
1802 if (nested_svm_check_permissions(svm))
1803 return 1;
1804
1805 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1806 skip_emulated_instruction(&svm->vcpu);
1807
1808 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
1809
1810 /* After a CLGI no interrupts should come */
1811 svm_clear_vintr(svm);
1812 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1813
1814 return 1;
1815 }
1816
1817 static int invalid_op_interception(struct vcpu_svm *svm,
1818 struct kvm_run *kvm_run)
1819 {
1820 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1821 return 1;
1822 }
1823
1824 static int task_switch_interception(struct vcpu_svm *svm,
1825 struct kvm_run *kvm_run)
1826 {
1827 u16 tss_selector;
1828
1829 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1830 if (svm->vmcb->control.exit_info_2 &
1831 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1832 return kvm_task_switch(&svm->vcpu, tss_selector,
1833 TASK_SWITCH_IRET);
1834 if (svm->vmcb->control.exit_info_2 &
1835 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1836 return kvm_task_switch(&svm->vcpu, tss_selector,
1837 TASK_SWITCH_JMP);
1838 return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1839 }
1840
1841 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1842 {
1843 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1844 kvm_emulate_cpuid(&svm->vcpu);
1845 return 1;
1846 }
1847
1848 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1849 {
1850 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1851 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1852 return 1;
1853 }
1854
1855 static int emulate_on_interception(struct vcpu_svm *svm,
1856 struct kvm_run *kvm_run)
1857 {
1858 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1859 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1860 return 1;
1861 }
1862
1863 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1864 {
1865 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1866 if (irqchip_in_kernel(svm->vcpu.kvm))
1867 return 1;
1868 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1869 return 0;
1870 }
1871
1872 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1873 {
1874 struct vcpu_svm *svm = to_svm(vcpu);
1875
1876 switch (ecx) {
1877 case MSR_IA32_TIME_STAMP_COUNTER: {
1878 u64 tsc;
1879
1880 rdtscll(tsc);
1881 *data = svm->vmcb->control.tsc_offset + tsc;
1882 break;
1883 }
1884 case MSR_K6_STAR:
1885 *data = svm->vmcb->save.star;
1886 break;
1887 #ifdef CONFIG_X86_64
1888 case MSR_LSTAR:
1889 *data = svm->vmcb->save.lstar;
1890 break;
1891 case MSR_CSTAR:
1892 *data = svm->vmcb->save.cstar;
1893 break;
1894 case MSR_KERNEL_GS_BASE:
1895 *data = svm->vmcb->save.kernel_gs_base;
1896 break;
1897 case MSR_SYSCALL_MASK:
1898 *data = svm->vmcb->save.sfmask;
1899 break;
1900 #endif
1901 case MSR_IA32_SYSENTER_CS:
1902 *data = svm->vmcb->save.sysenter_cs;
1903 break;
1904 case MSR_IA32_SYSENTER_EIP:
1905 *data = svm->vmcb->save.sysenter_eip;
1906 break;
1907 case MSR_IA32_SYSENTER_ESP:
1908 *data = svm->vmcb->save.sysenter_esp;
1909 break;
1910 /* Nobody will change the following 5 values in the VMCB so
1911 we can safely return them on rdmsr. They will always be 0
1912 until LBRV is implemented. */
1913 case MSR_IA32_DEBUGCTLMSR:
1914 *data = svm->vmcb->save.dbgctl;
1915 break;
1916 case MSR_IA32_LASTBRANCHFROMIP:
1917 *data = svm->vmcb->save.br_from;
1918 break;
1919 case MSR_IA32_LASTBRANCHTOIP:
1920 *data = svm->vmcb->save.br_to;
1921 break;
1922 case MSR_IA32_LASTINTFROMIP:
1923 *data = svm->vmcb->save.last_excp_from;
1924 break;
1925 case MSR_IA32_LASTINTTOIP:
1926 *data = svm->vmcb->save.last_excp_to;
1927 break;
1928 case MSR_VM_HSAVE_PA:
1929 *data = svm->hsave_msr;
1930 break;
1931 case MSR_VM_CR:
1932 *data = 0;
1933 break;
1934 case MSR_IA32_UCODE_REV:
1935 *data = 0x01000065;
1936 break;
1937 default:
1938 return kvm_get_msr_common(vcpu, ecx, data);
1939 }
1940 return 0;
1941 }
1942
1943 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1944 {
1945 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1946 u64 data;
1947
1948 if (svm_get_msr(&svm->vcpu, ecx, &data))
1949 kvm_inject_gp(&svm->vcpu, 0);
1950 else {
1951 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1952 (u32)(data >> 32), handler);
1953
1954 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1955 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1956 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1957 skip_emulated_instruction(&svm->vcpu);
1958 }
1959 return 1;
1960 }
1961
1962 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1963 {
1964 struct vcpu_svm *svm = to_svm(vcpu);
1965
1966 switch (ecx) {
1967 case MSR_IA32_TIME_STAMP_COUNTER: {
1968 u64 tsc;
1969
1970 rdtscll(tsc);
1971 svm->vmcb->control.tsc_offset = data - tsc;
1972 break;
1973 }
1974 case MSR_K6_STAR:
1975 svm->vmcb->save.star = data;
1976 break;
1977 #ifdef CONFIG_X86_64
1978 case MSR_LSTAR:
1979 svm->vmcb->save.lstar = data;
1980 break;
1981 case MSR_CSTAR:
1982 svm->vmcb->save.cstar = data;
1983 break;
1984 case MSR_KERNEL_GS_BASE:
1985 svm->vmcb->save.kernel_gs_base = data;
1986 break;
1987 case MSR_SYSCALL_MASK:
1988 svm->vmcb->save.sfmask = data;
1989 break;
1990 #endif
1991 case MSR_IA32_SYSENTER_CS:
1992 svm->vmcb->save.sysenter_cs = data;
1993 break;
1994 case MSR_IA32_SYSENTER_EIP:
1995 svm->vmcb->save.sysenter_eip = data;
1996 break;
1997 case MSR_IA32_SYSENTER_ESP:
1998 svm->vmcb->save.sysenter_esp = data;
1999 break;
2000 case MSR_IA32_DEBUGCTLMSR:
2001 if (!svm_has(SVM_FEATURE_LBRV)) {
2002 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2003 __func__, data);
2004 break;
2005 }
2006 if (data & DEBUGCTL_RESERVED_BITS)
2007 return 1;
2008
2009 svm->vmcb->save.dbgctl = data;
2010 if (data & (1ULL<<0))
2011 svm_enable_lbrv(svm);
2012 else
2013 svm_disable_lbrv(svm);
2014 break;
2015 case MSR_K7_EVNTSEL0:
2016 case MSR_K7_EVNTSEL1:
2017 case MSR_K7_EVNTSEL2:
2018 case MSR_K7_EVNTSEL3:
2019 case MSR_K7_PERFCTR0:
2020 case MSR_K7_PERFCTR1:
2021 case MSR_K7_PERFCTR2:
2022 case MSR_K7_PERFCTR3:
2023 /*
2024 * Just discard all writes to the performance counters; this
2025 * should keep both older linux and windows 64-bit guests
2026 * happy
2027 */
2028 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
2029
2030 break;
2031 case MSR_VM_HSAVE_PA:
2032 svm->hsave_msr = data;
2033 break;
2034 default:
2035 return kvm_set_msr_common(vcpu, ecx, data);
2036 }
2037 return 0;
2038 }
2039
2040 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2041 {
2042 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2043 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2044 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2045
2046 KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
2047 handler);
2048
2049 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2050 if (svm_set_msr(&svm->vcpu, ecx, data))
2051 kvm_inject_gp(&svm->vcpu, 0);
2052 else
2053 skip_emulated_instruction(&svm->vcpu);
2054 return 1;
2055 }
2056
2057 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2058 {
2059 if (svm->vmcb->control.exit_info_1)
2060 return wrmsr_interception(svm, kvm_run);
2061 else
2062 return rdmsr_interception(svm, kvm_run);
2063 }
2064
2065 static int interrupt_window_interception(struct vcpu_svm *svm,
2066 struct kvm_run *kvm_run)
2067 {
2068 KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
2069
2070 svm_clear_vintr(svm);
2071 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2072 /*
2073 * If the user space waits to inject interrupts, exit as soon as
2074 * possible
2075 */
2076 if (kvm_run->request_interrupt_window &&
2077 !svm->vcpu.arch.irq_summary) {
2078 ++svm->vcpu.stat.irq_window_exits;
2079 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2080 return 0;
2081 }
2082
2083 return 1;
2084 }
2085
2086 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
2087 struct kvm_run *kvm_run) = {
2088 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2089 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2090 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2091 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2092 /* for now: */
2093 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2094 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2095 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2096 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2097 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2098 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2099 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2100 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2101 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2102 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2103 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2104 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2105 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2106 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2107 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2108 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2109 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2110 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2111 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2112 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2113 [SVM_EXIT_INTR] = intr_interception,
2114 [SVM_EXIT_NMI] = nmi_interception,
2115 [SVM_EXIT_SMI] = nop_on_interception,
2116 [SVM_EXIT_INIT] = nop_on_interception,
2117 [SVM_EXIT_VINTR] = interrupt_window_interception,
2118 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2119 [SVM_EXIT_CPUID] = cpuid_interception,
2120 [SVM_EXIT_INVD] = emulate_on_interception,
2121 [SVM_EXIT_HLT] = halt_interception,
2122 [SVM_EXIT_INVLPG] = invlpg_interception,
2123 [SVM_EXIT_INVLPGA] = invalid_op_interception,
2124 [SVM_EXIT_IOIO] = io_interception,
2125 [SVM_EXIT_MSR] = msr_interception,
2126 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2127 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2128 [SVM_EXIT_VMRUN] = vmrun_interception,
2129 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2130 [SVM_EXIT_VMLOAD] = vmload_interception,
2131 [SVM_EXIT_VMSAVE] = vmsave_interception,
2132 [SVM_EXIT_STGI] = stgi_interception,
2133 [SVM_EXIT_CLGI] = clgi_interception,
2134 [SVM_EXIT_SKINIT] = invalid_op_interception,
2135 [SVM_EXIT_WBINVD] = emulate_on_interception,
2136 [SVM_EXIT_MONITOR] = invalid_op_interception,
2137 [SVM_EXIT_MWAIT] = invalid_op_interception,
2138 [SVM_EXIT_NPF] = pf_interception,
2139 };
2140
2141 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2142 {
2143 struct vcpu_svm *svm = to_svm(vcpu);
2144 u32 exit_code = svm->vmcb->control.exit_code;
2145
2146 KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
2147 (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
2148
2149 if (is_nested(svm)) {
2150 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2151 exit_code, svm->vmcb->control.exit_info_1,
2152 svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2153 if (nested_svm_exit_handled(svm, true)) {
2154 nested_svm_vmexit(svm);
2155 nsvm_printk("-> #VMEXIT\n");
2156 return 1;
2157 }
2158 }
2159
2160 if (npt_enabled) {
2161 int mmu_reload = 0;
2162 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2163 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2164 mmu_reload = 1;
2165 }
2166 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2167 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2168 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2169 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
2170 kvm_inject_gp(vcpu, 0);
2171 return 1;
2172 }
2173 }
2174 if (mmu_reload) {
2175 kvm_mmu_reset_context(vcpu);
2176 kvm_mmu_load(vcpu);
2177 }
2178 }
2179
2180 kvm_reput_irq(svm);
2181
2182 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2183 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2184 kvm_run->fail_entry.hardware_entry_failure_reason
2185 = svm->vmcb->control.exit_code;
2186 return 0;
2187 }
2188
2189 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2190 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2191 exit_code != SVM_EXIT_NPF)
2192 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2193 "exit_code 0x%x\n",
2194 __func__, svm->vmcb->control.exit_int_info,
2195 exit_code);
2196
2197 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2198 || !svm_exit_handlers[exit_code]) {
2199 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2200 kvm_run->hw.hardware_exit_reason = exit_code;
2201 return 0;
2202 }
2203
2204 return svm_exit_handlers[exit_code](svm, kvm_run);
2205 }
2206
2207 static void reload_tss(struct kvm_vcpu *vcpu)
2208 {
2209 int cpu = raw_smp_processor_id();
2210
2211 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2212 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2213 load_TR_desc();
2214 }
2215
2216 static void pre_svm_run(struct vcpu_svm *svm)
2217 {
2218 int cpu = raw_smp_processor_id();
2219
2220 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2221
2222 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2223 if (svm->vcpu.cpu != cpu ||
2224 svm->asid_generation != svm_data->asid_generation)
2225 new_asid(svm, svm_data);
2226 }
2227
2228
2229 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2230 {
2231 struct vmcb_control_area *control;
2232
2233 KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
2234
2235 ++svm->vcpu.stat.irq_injections;
2236 control = &svm->vmcb->control;
2237 control->int_vector = irq;
2238 control->int_ctl &= ~V_INTR_PRIO_MASK;
2239 control->int_ctl |= V_IRQ_MASK |
2240 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2241 }
2242
2243 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
2244 {
2245 struct vcpu_svm *svm = to_svm(vcpu);
2246
2247 nested_svm_intr(svm);
2248
2249 svm_inject_irq(svm, irq);
2250 }
2251
2252 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
2253 {
2254 struct vcpu_svm *svm = to_svm(vcpu);
2255 struct vmcb *vmcb = svm->vmcb;
2256 int max_irr, tpr;
2257
2258 if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
2259 return;
2260
2261 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2262
2263 max_irr = kvm_lapic_find_highest_irr(vcpu);
2264 if (max_irr == -1)
2265 return;
2266
2267 tpr = kvm_lapic_get_cr8(vcpu) << 4;
2268
2269 if (tpr >= (max_irr & 0xf0))
2270 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2271 }
2272
2273 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2274 {
2275 struct vcpu_svm *svm = to_svm(vcpu);
2276 struct vmcb *vmcb = svm->vmcb;
2277 return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2278 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2279 (svm->vcpu.arch.hflags & HF_GIF_MASK);
2280 }
2281
2282 static void svm_intr_assist(struct kvm_vcpu *vcpu)
2283 {
2284 struct vcpu_svm *svm = to_svm(vcpu);
2285 struct vmcb *vmcb = svm->vmcb;
2286 int intr_vector = -1;
2287
2288 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
2289 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
2290 intr_vector = vmcb->control.exit_int_info &
2291 SVM_EVTINJ_VEC_MASK;
2292 vmcb->control.exit_int_info = 0;
2293 svm_inject_irq(svm, intr_vector);
2294 goto out;
2295 }
2296
2297 if (vmcb->control.int_ctl & V_IRQ_MASK)
2298 goto out;
2299
2300 if (!kvm_cpu_has_interrupt(vcpu))
2301 goto out;
2302
2303 if (nested_svm_intr(svm))
2304 goto out;
2305
2306 if (!(svm->vcpu.arch.hflags & HF_GIF_MASK))
2307 goto out;
2308
2309 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
2310 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
2311 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
2312 /* unable to deliver irq, set pending irq */
2313 svm_set_vintr(svm);
2314 svm_inject_irq(svm, 0x0);
2315 goto out;
2316 }
2317 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
2318 intr_vector = kvm_cpu_get_interrupt(vcpu);
2319 svm_inject_irq(svm, intr_vector);
2320 out:
2321 update_cr8_intercept(vcpu);
2322 }
2323
2324 static void kvm_reput_irq(struct vcpu_svm *svm)
2325 {
2326 struct vmcb_control_area *control = &svm->vmcb->control;
2327
2328 if ((control->int_ctl & V_IRQ_MASK)
2329 && !irqchip_in_kernel(svm->vcpu.kvm)) {
2330 control->int_ctl &= ~V_IRQ_MASK;
2331 kvm_push_irq(&svm->vcpu, control->int_vector);
2332 }
2333
2334 svm->vcpu.arch.interrupt_window_open =
2335 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2336 (svm->vcpu.arch.hflags & HF_GIF_MASK);
2337 }
2338
2339 static void svm_do_inject_vector(struct vcpu_svm *svm)
2340 {
2341 svm_inject_irq(svm, kvm_pop_irq(&svm->vcpu));
2342 }
2343
2344 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2345 struct kvm_run *kvm_run)
2346 {
2347 struct vcpu_svm *svm = to_svm(vcpu);
2348 struct vmcb_control_area *control = &svm->vmcb->control;
2349
2350 if (nested_svm_intr(svm))
2351 return;
2352
2353 svm->vcpu.arch.interrupt_window_open =
2354 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2355 (svm->vmcb->save.rflags & X86_EFLAGS_IF) &&
2356 (svm->vcpu.arch.hflags & HF_GIF_MASK));
2357
2358 if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
2359 /*
2360 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2361 */
2362 svm_do_inject_vector(svm);
2363
2364 /*
2365 * Interrupts blocked. Wait for unblock.
2366 */
2367 if (!svm->vcpu.arch.interrupt_window_open &&
2368 (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
2369 svm_set_vintr(svm);
2370 else
2371 svm_clear_vintr(svm);
2372 }
2373
2374 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2375 {
2376 return 0;
2377 }
2378
2379 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2380 {
2381 force_new_asid(vcpu);
2382 }
2383
2384 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2385 {
2386 }
2387
2388 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2389 {
2390 struct vcpu_svm *svm = to_svm(vcpu);
2391
2392 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2393 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2394 kvm_lapic_set_tpr(vcpu, cr8);
2395 }
2396 }
2397
2398 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2399 {
2400 struct vcpu_svm *svm = to_svm(vcpu);
2401 u64 cr8;
2402
2403 if (!irqchip_in_kernel(vcpu->kvm))
2404 return;
2405
2406 cr8 = kvm_get_cr8(vcpu);
2407 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2408 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2409 }
2410
2411 #ifdef CONFIG_X86_64
2412 #define R "r"
2413 #else
2414 #define R "e"
2415 #endif
2416
2417 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2418 {
2419 struct vcpu_svm *svm = to_svm(vcpu);
2420 u16 fs_selector;
2421 u16 gs_selector;
2422 u16 ldt_selector;
2423
2424 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2425 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2426 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2427
2428 pre_svm_run(svm);
2429
2430 sync_lapic_to_cr8(vcpu);
2431
2432 save_host_msrs(vcpu);
2433 fs_selector = kvm_read_fs();
2434 gs_selector = kvm_read_gs();
2435 ldt_selector = kvm_read_ldt();
2436 svm->host_cr2 = kvm_read_cr2();
2437 if (!is_nested(svm))
2438 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2439 /* required for live migration with NPT */
2440 if (npt_enabled)
2441 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2442
2443 clgi();
2444
2445 local_irq_enable();
2446
2447 asm volatile (
2448 "push %%"R"bp; \n\t"
2449 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2450 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2451 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2452 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2453 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2454 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2455 #ifdef CONFIG_X86_64
2456 "mov %c[r8](%[svm]), %%r8 \n\t"
2457 "mov %c[r9](%[svm]), %%r9 \n\t"
2458 "mov %c[r10](%[svm]), %%r10 \n\t"
2459 "mov %c[r11](%[svm]), %%r11 \n\t"
2460 "mov %c[r12](%[svm]), %%r12 \n\t"
2461 "mov %c[r13](%[svm]), %%r13 \n\t"
2462 "mov %c[r14](%[svm]), %%r14 \n\t"
2463 "mov %c[r15](%[svm]), %%r15 \n\t"
2464 #endif
2465
2466 /* Enter guest mode */
2467 "push %%"R"ax \n\t"
2468 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2469 __ex(SVM_VMLOAD) "\n\t"
2470 __ex(SVM_VMRUN) "\n\t"
2471 __ex(SVM_VMSAVE) "\n\t"
2472 "pop %%"R"ax \n\t"
2473
2474 /* Save guest registers, load host registers */
2475 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2476 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2477 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2478 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2479 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2480 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2481 #ifdef CONFIG_X86_64
2482 "mov %%r8, %c[r8](%[svm]) \n\t"
2483 "mov %%r9, %c[r9](%[svm]) \n\t"
2484 "mov %%r10, %c[r10](%[svm]) \n\t"
2485 "mov %%r11, %c[r11](%[svm]) \n\t"
2486 "mov %%r12, %c[r12](%[svm]) \n\t"
2487 "mov %%r13, %c[r13](%[svm]) \n\t"
2488 "mov %%r14, %c[r14](%[svm]) \n\t"
2489 "mov %%r15, %c[r15](%[svm]) \n\t"
2490 #endif
2491 "pop %%"R"bp"
2492 :
2493 : [svm]"a"(svm),
2494 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2495 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2496 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2497 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2498 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2499 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2500 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2501 #ifdef CONFIG_X86_64
2502 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2503 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2504 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2505 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2506 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2507 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2508 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2509 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2510 #endif
2511 : "cc", "memory"
2512 , R"bx", R"cx", R"dx", R"si", R"di"
2513 #ifdef CONFIG_X86_64
2514 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2515 #endif
2516 );
2517
2518 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2519 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2520 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2521 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2522
2523 kvm_write_cr2(svm->host_cr2);
2524
2525 kvm_load_fs(fs_selector);
2526 kvm_load_gs(gs_selector);
2527 kvm_load_ldt(ldt_selector);
2528 load_host_msrs(vcpu);
2529
2530 reload_tss(vcpu);
2531
2532 local_irq_disable();
2533
2534 stgi();
2535
2536 sync_cr8_to_lapic(vcpu);
2537
2538 svm->next_rip = 0;
2539 }
2540
2541 #undef R
2542
2543 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2544 {
2545 struct vcpu_svm *svm = to_svm(vcpu);
2546
2547 if (npt_enabled) {
2548 svm->vmcb->control.nested_cr3 = root;
2549 force_new_asid(vcpu);
2550 return;
2551 }
2552
2553 svm->vmcb->save.cr3 = root;
2554 force_new_asid(vcpu);
2555
2556 if (vcpu->fpu_active) {
2557 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2558 svm->vmcb->save.cr0 |= X86_CR0_TS;
2559 vcpu->fpu_active = 0;
2560 }
2561 }
2562
2563 static int is_disabled(void)
2564 {
2565 u64 vm_cr;
2566
2567 rdmsrl(MSR_VM_CR, vm_cr);
2568 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2569 return 1;
2570
2571 return 0;
2572 }
2573
2574 static void
2575 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2576 {
2577 /*
2578 * Patch in the VMMCALL instruction:
2579 */
2580 hypercall[0] = 0x0f;
2581 hypercall[1] = 0x01;
2582 hypercall[2] = 0xd9;
2583 }
2584
2585 static void svm_check_processor_compat(void *rtn)
2586 {
2587 *(int *)rtn = 0;
2588 }
2589
2590 static bool svm_cpu_has_accelerated_tpr(void)
2591 {
2592 return false;
2593 }
2594
2595 static int get_npt_level(void)
2596 {
2597 #ifdef CONFIG_X86_64
2598 return PT64_ROOT_LEVEL;
2599 #else
2600 return PT32E_ROOT_LEVEL;
2601 #endif
2602 }
2603
2604 static int svm_get_mt_mask_shift(void)
2605 {
2606 return 0;
2607 }
2608
2609 static struct kvm_x86_ops svm_x86_ops = {
2610 .cpu_has_kvm_support = has_svm,
2611 .disabled_by_bios = is_disabled,
2612 .hardware_setup = svm_hardware_setup,
2613 .hardware_unsetup = svm_hardware_unsetup,
2614 .check_processor_compatibility = svm_check_processor_compat,
2615 .hardware_enable = svm_hardware_enable,
2616 .hardware_disable = svm_hardware_disable,
2617 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2618
2619 .vcpu_create = svm_create_vcpu,
2620 .vcpu_free = svm_free_vcpu,
2621 .vcpu_reset = svm_vcpu_reset,
2622
2623 .prepare_guest_switch = svm_prepare_guest_switch,
2624 .vcpu_load = svm_vcpu_load,
2625 .vcpu_put = svm_vcpu_put,
2626
2627 .set_guest_debug = svm_guest_debug,
2628 .get_msr = svm_get_msr,
2629 .set_msr = svm_set_msr,
2630 .get_segment_base = svm_get_segment_base,
2631 .get_segment = svm_get_segment,
2632 .set_segment = svm_set_segment,
2633 .get_cpl = svm_get_cpl,
2634 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2635 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2636 .set_cr0 = svm_set_cr0,
2637 .set_cr3 = svm_set_cr3,
2638 .set_cr4 = svm_set_cr4,
2639 .set_efer = svm_set_efer,
2640 .get_idt = svm_get_idt,
2641 .set_idt = svm_set_idt,
2642 .get_gdt = svm_get_gdt,
2643 .set_gdt = svm_set_gdt,
2644 .get_dr = svm_get_dr,
2645 .set_dr = svm_set_dr,
2646 .get_rflags = svm_get_rflags,
2647 .set_rflags = svm_set_rflags,
2648
2649 .tlb_flush = svm_flush_tlb,
2650
2651 .run = svm_vcpu_run,
2652 .handle_exit = handle_exit,
2653 .skip_emulated_instruction = skip_emulated_instruction,
2654 .patch_hypercall = svm_patch_hypercall,
2655 .get_irq = svm_get_irq,
2656 .set_irq = svm_set_irq,
2657 .queue_exception = svm_queue_exception,
2658 .exception_injected = svm_exception_injected,
2659 .inject_pending_irq = svm_intr_assist,
2660 .inject_pending_vectors = do_interrupt_requests,
2661 .interrupt_allowed = svm_interrupt_allowed,
2662
2663 .set_tss_addr = svm_set_tss_addr,
2664 .get_tdp_level = get_npt_level,
2665 .get_mt_mask_shift = svm_get_mt_mask_shift,
2666 };
2667
2668 static int __init svm_init(void)
2669 {
2670 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2671 THIS_MODULE);
2672 }
2673
2674 static void __exit svm_exit(void)
2675 {
2676 kvm_exit();
2677 }
2678
2679 module_init(svm_init)
2680 module_exit(svm_exit)