]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kvm/svm.c
Merge branch 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-kernels.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/kvm_para.h>
36
37 #include <asm/virtext.h>
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 #define IOPM_ALLOC_ORDER 2
46 #define MSRPM_ALLOC_ORDER 1
47
48 #define SEG_TYPE_LDT 2
49 #define SEG_TYPE_BUSY_TSS16 3
50
51 #define SVM_FEATURE_NPT (1 << 0)
52 #define SVM_FEATURE_LBRV (1 << 1)
53 #define SVM_FEATURE_SVML (1 << 2)
54 #define SVM_FEATURE_NRIP (1 << 3)
55 #define SVM_FEATURE_TSC_RATE (1 << 4)
56 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
57 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
58 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
59 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
60
61 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
62 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
63 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
64
65 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66
67 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
68 #define TSC_RATIO_MIN 0x0000000000000001ULL
69 #define TSC_RATIO_MAX 0x000000ffffffffffULL
70
71 static bool erratum_383_found __read_mostly;
72
73 static const u32 host_save_user_msrs[] = {
74 #ifdef CONFIG_X86_64
75 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
76 MSR_FS_BASE,
77 #endif
78 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
79 };
80
81 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82
83 struct kvm_vcpu;
84
85 struct nested_state {
86 struct vmcb *hsave;
87 u64 hsave_msr;
88 u64 vm_cr_msr;
89 u64 vmcb;
90
91 /* These are the merged vectors */
92 u32 *msrpm;
93
94 /* gpa pointers to the real vectors */
95 u64 vmcb_msrpm;
96 u64 vmcb_iopm;
97
98 /* A VMEXIT is required but not yet emulated */
99 bool exit_required;
100
101 /* cache for intercepts of the guest */
102 u32 intercept_cr;
103 u32 intercept_dr;
104 u32 intercept_exceptions;
105 u64 intercept;
106
107 /* Nested Paging related state */
108 u64 nested_cr3;
109 };
110
111 #define MSRPM_OFFSETS 16
112 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113
114 /*
115 * Set osvw_len to higher value when updated Revision Guides
116 * are published and we know what the new status bits are
117 */
118 static uint64_t osvw_len = 4, osvw_status;
119
120 struct vcpu_svm {
121 struct kvm_vcpu vcpu;
122 struct vmcb *vmcb;
123 unsigned long vmcb_pa;
124 struct svm_cpu_data *svm_data;
125 uint64_t asid_generation;
126 uint64_t sysenter_esp;
127 uint64_t sysenter_eip;
128
129 u64 next_rip;
130
131 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
132 struct {
133 u16 fs;
134 u16 gs;
135 u16 ldt;
136 u64 gs_base;
137 } host;
138
139 u32 *msrpm;
140
141 ulong nmi_iret_rip;
142
143 struct nested_state nested;
144
145 bool nmi_singlestep;
146
147 unsigned int3_injected;
148 unsigned long int3_rip;
149 u32 apf_reason;
150
151 u64 tsc_ratio;
152 };
153
154 static DEFINE_PER_CPU(u64, current_tsc_ratio);
155 #define TSC_RATIO_DEFAULT 0x0100000000ULL
156
157 #define MSR_INVALID 0xffffffffU
158
159 static struct svm_direct_access_msrs {
160 u32 index; /* Index of the MSR */
161 bool always; /* True if intercept is always on */
162 } direct_access_msrs[] = {
163 { .index = MSR_STAR, .always = true },
164 { .index = MSR_IA32_SYSENTER_CS, .always = true },
165 #ifdef CONFIG_X86_64
166 { .index = MSR_GS_BASE, .always = true },
167 { .index = MSR_FS_BASE, .always = true },
168 { .index = MSR_KERNEL_GS_BASE, .always = true },
169 { .index = MSR_LSTAR, .always = true },
170 { .index = MSR_CSTAR, .always = true },
171 { .index = MSR_SYSCALL_MASK, .always = true },
172 #endif
173 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
174 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
175 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
176 { .index = MSR_IA32_LASTINTTOIP, .always = false },
177 { .index = MSR_INVALID, .always = false },
178 };
179
180 /* enable NPT for AMD64 and X86 with PAE */
181 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
182 static bool npt_enabled = true;
183 #else
184 static bool npt_enabled;
185 #endif
186
187 /* allow nested paging (virtualized MMU) for all guests */
188 static int npt = true;
189 module_param(npt, int, S_IRUGO);
190
191 /* allow nested virtualization in KVM/SVM */
192 static int nested = true;
193 module_param(nested, int, S_IRUGO);
194
195 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
196 static void svm_complete_interrupts(struct vcpu_svm *svm);
197
198 static int nested_svm_exit_handled(struct vcpu_svm *svm);
199 static int nested_svm_intercept(struct vcpu_svm *svm);
200 static int nested_svm_vmexit(struct vcpu_svm *svm);
201 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
202 bool has_error_code, u32 error_code);
203 static u64 __scale_tsc(u64 ratio, u64 tsc);
204
205 enum {
206 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
207 pause filter count */
208 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
209 VMCB_ASID, /* ASID */
210 VMCB_INTR, /* int_ctl, int_vector */
211 VMCB_NPT, /* npt_en, nCR3, gPAT */
212 VMCB_CR, /* CR0, CR3, CR4, EFER */
213 VMCB_DR, /* DR6, DR7 */
214 VMCB_DT, /* GDT, IDT */
215 VMCB_SEG, /* CS, DS, SS, ES, CPL */
216 VMCB_CR2, /* CR2 only */
217 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
218 VMCB_DIRTY_MAX,
219 };
220
221 /* TPR and CR2 are always written before VMRUN */
222 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
223
224 static inline void mark_all_dirty(struct vmcb *vmcb)
225 {
226 vmcb->control.clean = 0;
227 }
228
229 static inline void mark_all_clean(struct vmcb *vmcb)
230 {
231 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
232 & ~VMCB_ALWAYS_DIRTY_MASK;
233 }
234
235 static inline void mark_dirty(struct vmcb *vmcb, int bit)
236 {
237 vmcb->control.clean &= ~(1 << bit);
238 }
239
240 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
241 {
242 return container_of(vcpu, struct vcpu_svm, vcpu);
243 }
244
245 static void recalc_intercepts(struct vcpu_svm *svm)
246 {
247 struct vmcb_control_area *c, *h;
248 struct nested_state *g;
249
250 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
251
252 if (!is_guest_mode(&svm->vcpu))
253 return;
254
255 c = &svm->vmcb->control;
256 h = &svm->nested.hsave->control;
257 g = &svm->nested;
258
259 c->intercept_cr = h->intercept_cr | g->intercept_cr;
260 c->intercept_dr = h->intercept_dr | g->intercept_dr;
261 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
262 c->intercept = h->intercept | g->intercept;
263 }
264
265 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
266 {
267 if (is_guest_mode(&svm->vcpu))
268 return svm->nested.hsave;
269 else
270 return svm->vmcb;
271 }
272
273 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
274 {
275 struct vmcb *vmcb = get_host_vmcb(svm);
276
277 vmcb->control.intercept_cr |= (1U << bit);
278
279 recalc_intercepts(svm);
280 }
281
282 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 vmcb->control.intercept_cr &= ~(1U << bit);
287
288 recalc_intercepts(svm);
289 }
290
291 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 struct vmcb *vmcb = get_host_vmcb(svm);
294
295 return vmcb->control.intercept_cr & (1U << bit);
296 }
297
298 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
299 {
300 struct vmcb *vmcb = get_host_vmcb(svm);
301
302 vmcb->control.intercept_dr |= (1U << bit);
303
304 recalc_intercepts(svm);
305 }
306
307 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_dr &= ~(1U << bit);
312
313 recalc_intercepts(svm);
314 }
315
316 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
317 {
318 struct vmcb *vmcb = get_host_vmcb(svm);
319
320 vmcb->control.intercept_exceptions |= (1U << bit);
321
322 recalc_intercepts(svm);
323 }
324
325 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
326 {
327 struct vmcb *vmcb = get_host_vmcb(svm);
328
329 vmcb->control.intercept_exceptions &= ~(1U << bit);
330
331 recalc_intercepts(svm);
332 }
333
334 static inline void set_intercept(struct vcpu_svm *svm, int bit)
335 {
336 struct vmcb *vmcb = get_host_vmcb(svm);
337
338 vmcb->control.intercept |= (1ULL << bit);
339
340 recalc_intercepts(svm);
341 }
342
343 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
344 {
345 struct vmcb *vmcb = get_host_vmcb(svm);
346
347 vmcb->control.intercept &= ~(1ULL << bit);
348
349 recalc_intercepts(svm);
350 }
351
352 static inline void enable_gif(struct vcpu_svm *svm)
353 {
354 svm->vcpu.arch.hflags |= HF_GIF_MASK;
355 }
356
357 static inline void disable_gif(struct vcpu_svm *svm)
358 {
359 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
360 }
361
362 static inline bool gif_set(struct vcpu_svm *svm)
363 {
364 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
365 }
366
367 static unsigned long iopm_base;
368
369 struct kvm_ldttss_desc {
370 u16 limit0;
371 u16 base0;
372 unsigned base1:8, type:5, dpl:2, p:1;
373 unsigned limit1:4, zero0:3, g:1, base2:8;
374 u32 base3;
375 u32 zero1;
376 } __attribute__((packed));
377
378 struct svm_cpu_data {
379 int cpu;
380
381 u64 asid_generation;
382 u32 max_asid;
383 u32 next_asid;
384 struct kvm_ldttss_desc *tss_desc;
385
386 struct page *save_area;
387 };
388
389 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
390
391 struct svm_init_data {
392 int cpu;
393 int r;
394 };
395
396 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
397
398 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
399 #define MSRS_RANGE_SIZE 2048
400 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
401
402 static u32 svm_msrpm_offset(u32 msr)
403 {
404 u32 offset;
405 int i;
406
407 for (i = 0; i < NUM_MSR_MAPS; i++) {
408 if (msr < msrpm_ranges[i] ||
409 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
410 continue;
411
412 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
413 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
414
415 /* Now we have the u8 offset - but need the u32 offset */
416 return offset / 4;
417 }
418
419 /* MSR not in any range */
420 return MSR_INVALID;
421 }
422
423 #define MAX_INST_SIZE 15
424
425 static inline void clgi(void)
426 {
427 asm volatile (__ex(SVM_CLGI));
428 }
429
430 static inline void stgi(void)
431 {
432 asm volatile (__ex(SVM_STGI));
433 }
434
435 static inline void invlpga(unsigned long addr, u32 asid)
436 {
437 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
438 }
439
440 static int get_npt_level(void)
441 {
442 #ifdef CONFIG_X86_64
443 return PT64_ROOT_LEVEL;
444 #else
445 return PT32E_ROOT_LEVEL;
446 #endif
447 }
448
449 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
450 {
451 vcpu->arch.efer = efer;
452 if (!npt_enabled && !(efer & EFER_LMA))
453 efer &= ~EFER_LME;
454
455 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
456 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
457 }
458
459 static int is_external_interrupt(u32 info)
460 {
461 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
462 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
463 }
464
465 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
466 {
467 struct vcpu_svm *svm = to_svm(vcpu);
468 u32 ret = 0;
469
470 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
471 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
472 return ret & mask;
473 }
474
475 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
476 {
477 struct vcpu_svm *svm = to_svm(vcpu);
478
479 if (mask == 0)
480 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
481 else
482 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
483
484 }
485
486 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
487 {
488 struct vcpu_svm *svm = to_svm(vcpu);
489
490 if (svm->vmcb->control.next_rip != 0)
491 svm->next_rip = svm->vmcb->control.next_rip;
492
493 if (!svm->next_rip) {
494 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
495 EMULATE_DONE)
496 printk(KERN_DEBUG "%s: NOP\n", __func__);
497 return;
498 }
499 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
500 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
501 __func__, kvm_rip_read(vcpu), svm->next_rip);
502
503 kvm_rip_write(vcpu, svm->next_rip);
504 svm_set_interrupt_shadow(vcpu, 0);
505 }
506
507 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
508 bool has_error_code, u32 error_code,
509 bool reinject)
510 {
511 struct vcpu_svm *svm = to_svm(vcpu);
512
513 /*
514 * If we are within a nested VM we'd better #VMEXIT and let the guest
515 * handle the exception
516 */
517 if (!reinject &&
518 nested_svm_check_exception(svm, nr, has_error_code, error_code))
519 return;
520
521 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
522 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
523
524 /*
525 * For guest debugging where we have to reinject #BP if some
526 * INT3 is guest-owned:
527 * Emulate nRIP by moving RIP forward. Will fail if injection
528 * raises a fault that is not intercepted. Still better than
529 * failing in all cases.
530 */
531 skip_emulated_instruction(&svm->vcpu);
532 rip = kvm_rip_read(&svm->vcpu);
533 svm->int3_rip = rip + svm->vmcb->save.cs.base;
534 svm->int3_injected = rip - old_rip;
535 }
536
537 svm->vmcb->control.event_inj = nr
538 | SVM_EVTINJ_VALID
539 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
540 | SVM_EVTINJ_TYPE_EXEPT;
541 svm->vmcb->control.event_inj_err = error_code;
542 }
543
544 static void svm_init_erratum_383(void)
545 {
546 u32 low, high;
547 int err;
548 u64 val;
549
550 if (!cpu_has_amd_erratum(amd_erratum_383))
551 return;
552
553 /* Use _safe variants to not break nested virtualization */
554 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
555 if (err)
556 return;
557
558 val |= (1ULL << 47);
559
560 low = lower_32_bits(val);
561 high = upper_32_bits(val);
562
563 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
564
565 erratum_383_found = true;
566 }
567
568 static void svm_init_osvw(struct kvm_vcpu *vcpu)
569 {
570 /*
571 * Guests should see errata 400 and 415 as fixed (assuming that
572 * HLT and IO instructions are intercepted).
573 */
574 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
575 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
576
577 /*
578 * By increasing VCPU's osvw.length to 3 we are telling the guest that
579 * all osvw.status bits inside that length, including bit 0 (which is
580 * reserved for erratum 298), are valid. However, if host processor's
581 * osvw_len is 0 then osvw_status[0] carries no information. We need to
582 * be conservative here and therefore we tell the guest that erratum 298
583 * is present (because we really don't know).
584 */
585 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
586 vcpu->arch.osvw.status |= 1;
587 }
588
589 static int has_svm(void)
590 {
591 const char *msg;
592
593 if (!cpu_has_svm(&msg)) {
594 printk(KERN_INFO "has_svm: %s\n", msg);
595 return 0;
596 }
597
598 return 1;
599 }
600
601 static void svm_hardware_disable(void *garbage)
602 {
603 /* Make sure we clean up behind us */
604 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
605 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
606
607 cpu_svm_disable();
608
609 amd_pmu_disable_virt();
610 }
611
612 static int svm_hardware_enable(void *garbage)
613 {
614
615 struct svm_cpu_data *sd;
616 uint64_t efer;
617 struct desc_ptr gdt_descr;
618 struct desc_struct *gdt;
619 int me = raw_smp_processor_id();
620
621 rdmsrl(MSR_EFER, efer);
622 if (efer & EFER_SVME)
623 return -EBUSY;
624
625 if (!has_svm()) {
626 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
627 me);
628 return -EINVAL;
629 }
630 sd = per_cpu(svm_data, me);
631
632 if (!sd) {
633 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
634 me);
635 return -EINVAL;
636 }
637
638 sd->asid_generation = 1;
639 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
640 sd->next_asid = sd->max_asid + 1;
641
642 native_store_gdt(&gdt_descr);
643 gdt = (struct desc_struct *)gdt_descr.address;
644 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
645
646 wrmsrl(MSR_EFER, efer | EFER_SVME);
647
648 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
649
650 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
651 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
652 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
653 }
654
655
656 /*
657 * Get OSVW bits.
658 *
659 * Note that it is possible to have a system with mixed processor
660 * revisions and therefore different OSVW bits. If bits are not the same
661 * on different processors then choose the worst case (i.e. if erratum
662 * is present on one processor and not on another then assume that the
663 * erratum is present everywhere).
664 */
665 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
666 uint64_t len, status = 0;
667 int err;
668
669 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
670 if (!err)
671 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
672 &err);
673
674 if (err)
675 osvw_status = osvw_len = 0;
676 else {
677 if (len < osvw_len)
678 osvw_len = len;
679 osvw_status |= status;
680 osvw_status &= (1ULL << osvw_len) - 1;
681 }
682 } else
683 osvw_status = osvw_len = 0;
684
685 svm_init_erratum_383();
686
687 amd_pmu_enable_virt();
688
689 return 0;
690 }
691
692 static void svm_cpu_uninit(int cpu)
693 {
694 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
695
696 if (!sd)
697 return;
698
699 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
700 __free_page(sd->save_area);
701 kfree(sd);
702 }
703
704 static int svm_cpu_init(int cpu)
705 {
706 struct svm_cpu_data *sd;
707 int r;
708
709 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
710 if (!sd)
711 return -ENOMEM;
712 sd->cpu = cpu;
713 sd->save_area = alloc_page(GFP_KERNEL);
714 r = -ENOMEM;
715 if (!sd->save_area)
716 goto err_1;
717
718 per_cpu(svm_data, cpu) = sd;
719
720 return 0;
721
722 err_1:
723 kfree(sd);
724 return r;
725
726 }
727
728 static bool valid_msr_intercept(u32 index)
729 {
730 int i;
731
732 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
733 if (direct_access_msrs[i].index == index)
734 return true;
735
736 return false;
737 }
738
739 static void set_msr_interception(u32 *msrpm, unsigned msr,
740 int read, int write)
741 {
742 u8 bit_read, bit_write;
743 unsigned long tmp;
744 u32 offset;
745
746 /*
747 * If this warning triggers extend the direct_access_msrs list at the
748 * beginning of the file
749 */
750 WARN_ON(!valid_msr_intercept(msr));
751
752 offset = svm_msrpm_offset(msr);
753 bit_read = 2 * (msr & 0x0f);
754 bit_write = 2 * (msr & 0x0f) + 1;
755 tmp = msrpm[offset];
756
757 BUG_ON(offset == MSR_INVALID);
758
759 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
760 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
761
762 msrpm[offset] = tmp;
763 }
764
765 static void svm_vcpu_init_msrpm(u32 *msrpm)
766 {
767 int i;
768
769 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
770
771 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
772 if (!direct_access_msrs[i].always)
773 continue;
774
775 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
776 }
777 }
778
779 static void add_msr_offset(u32 offset)
780 {
781 int i;
782
783 for (i = 0; i < MSRPM_OFFSETS; ++i) {
784
785 /* Offset already in list? */
786 if (msrpm_offsets[i] == offset)
787 return;
788
789 /* Slot used by another offset? */
790 if (msrpm_offsets[i] != MSR_INVALID)
791 continue;
792
793 /* Add offset to list */
794 msrpm_offsets[i] = offset;
795
796 return;
797 }
798
799 /*
800 * If this BUG triggers the msrpm_offsets table has an overflow. Just
801 * increase MSRPM_OFFSETS in this case.
802 */
803 BUG();
804 }
805
806 static void init_msrpm_offsets(void)
807 {
808 int i;
809
810 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
811
812 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
813 u32 offset;
814
815 offset = svm_msrpm_offset(direct_access_msrs[i].index);
816 BUG_ON(offset == MSR_INVALID);
817
818 add_msr_offset(offset);
819 }
820 }
821
822 static void svm_enable_lbrv(struct vcpu_svm *svm)
823 {
824 u32 *msrpm = svm->msrpm;
825
826 svm->vmcb->control.lbr_ctl = 1;
827 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
828 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
829 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
830 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
831 }
832
833 static void svm_disable_lbrv(struct vcpu_svm *svm)
834 {
835 u32 *msrpm = svm->msrpm;
836
837 svm->vmcb->control.lbr_ctl = 0;
838 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
839 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
840 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
841 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
842 }
843
844 static __init int svm_hardware_setup(void)
845 {
846 int cpu;
847 struct page *iopm_pages;
848 void *iopm_va;
849 int r;
850
851 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
852
853 if (!iopm_pages)
854 return -ENOMEM;
855
856 iopm_va = page_address(iopm_pages);
857 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
858 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
859
860 init_msrpm_offsets();
861
862 if (boot_cpu_has(X86_FEATURE_NX))
863 kvm_enable_efer_bits(EFER_NX);
864
865 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
866 kvm_enable_efer_bits(EFER_FFXSR);
867
868 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
869 u64 max;
870
871 kvm_has_tsc_control = true;
872
873 /*
874 * Make sure the user can only configure tsc_khz values that
875 * fit into a signed integer.
876 * A min value is not calculated needed because it will always
877 * be 1 on all machines and a value of 0 is used to disable
878 * tsc-scaling for the vcpu.
879 */
880 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
881
882 kvm_max_guest_tsc_khz = max;
883 }
884
885 if (nested) {
886 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
887 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
888 }
889
890 for_each_possible_cpu(cpu) {
891 r = svm_cpu_init(cpu);
892 if (r)
893 goto err;
894 }
895
896 if (!boot_cpu_has(X86_FEATURE_NPT))
897 npt_enabled = false;
898
899 if (npt_enabled && !npt) {
900 printk(KERN_INFO "kvm: Nested Paging disabled\n");
901 npt_enabled = false;
902 }
903
904 if (npt_enabled) {
905 printk(KERN_INFO "kvm: Nested Paging enabled\n");
906 kvm_enable_tdp();
907 } else
908 kvm_disable_tdp();
909
910 return 0;
911
912 err:
913 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
914 iopm_base = 0;
915 return r;
916 }
917
918 static __exit void svm_hardware_unsetup(void)
919 {
920 int cpu;
921
922 for_each_possible_cpu(cpu)
923 svm_cpu_uninit(cpu);
924
925 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
926 iopm_base = 0;
927 }
928
929 static void init_seg(struct vmcb_seg *seg)
930 {
931 seg->selector = 0;
932 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
933 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
934 seg->limit = 0xffff;
935 seg->base = 0;
936 }
937
938 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
939 {
940 seg->selector = 0;
941 seg->attrib = SVM_SELECTOR_P_MASK | type;
942 seg->limit = 0xffff;
943 seg->base = 0;
944 }
945
946 static u64 __scale_tsc(u64 ratio, u64 tsc)
947 {
948 u64 mult, frac, _tsc;
949
950 mult = ratio >> 32;
951 frac = ratio & ((1ULL << 32) - 1);
952
953 _tsc = tsc;
954 _tsc *= mult;
955 _tsc += (tsc >> 32) * frac;
956 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
957
958 return _tsc;
959 }
960
961 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
962 {
963 struct vcpu_svm *svm = to_svm(vcpu);
964 u64 _tsc = tsc;
965
966 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
967 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
968
969 return _tsc;
970 }
971
972 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
973 {
974 struct vcpu_svm *svm = to_svm(vcpu);
975 u64 ratio;
976 u64 khz;
977
978 /* Guest TSC same frequency as host TSC? */
979 if (!scale) {
980 svm->tsc_ratio = TSC_RATIO_DEFAULT;
981 return;
982 }
983
984 /* TSC scaling supported? */
985 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
986 if (user_tsc_khz > tsc_khz) {
987 vcpu->arch.tsc_catchup = 1;
988 vcpu->arch.tsc_always_catchup = 1;
989 } else
990 WARN(1, "user requested TSC rate below hardware speed\n");
991 return;
992 }
993
994 khz = user_tsc_khz;
995
996 /* TSC scaling required - calculate ratio */
997 ratio = khz << 32;
998 do_div(ratio, tsc_khz);
999
1000 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1001 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1002 user_tsc_khz);
1003 return;
1004 }
1005 svm->tsc_ratio = ratio;
1006 }
1007
1008 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1009 {
1010 struct vcpu_svm *svm = to_svm(vcpu);
1011 u64 g_tsc_offset = 0;
1012
1013 if (is_guest_mode(vcpu)) {
1014 g_tsc_offset = svm->vmcb->control.tsc_offset -
1015 svm->nested.hsave->control.tsc_offset;
1016 svm->nested.hsave->control.tsc_offset = offset;
1017 }
1018
1019 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1020
1021 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1022 }
1023
1024 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1025 {
1026 struct vcpu_svm *svm = to_svm(vcpu);
1027
1028 WARN_ON(adjustment < 0);
1029 if (host)
1030 adjustment = svm_scale_tsc(vcpu, adjustment);
1031
1032 svm->vmcb->control.tsc_offset += adjustment;
1033 if (is_guest_mode(vcpu))
1034 svm->nested.hsave->control.tsc_offset += adjustment;
1035 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1036 }
1037
1038 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1039 {
1040 u64 tsc;
1041
1042 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1043
1044 return target_tsc - tsc;
1045 }
1046
1047 static void init_vmcb(struct vcpu_svm *svm)
1048 {
1049 struct vmcb_control_area *control = &svm->vmcb->control;
1050 struct vmcb_save_area *save = &svm->vmcb->save;
1051
1052 svm->vcpu.fpu_active = 1;
1053 svm->vcpu.arch.hflags = 0;
1054
1055 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1056 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1057 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1058 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1059 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1060 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1061 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1062
1063 set_dr_intercept(svm, INTERCEPT_DR0_READ);
1064 set_dr_intercept(svm, INTERCEPT_DR1_READ);
1065 set_dr_intercept(svm, INTERCEPT_DR2_READ);
1066 set_dr_intercept(svm, INTERCEPT_DR3_READ);
1067 set_dr_intercept(svm, INTERCEPT_DR4_READ);
1068 set_dr_intercept(svm, INTERCEPT_DR5_READ);
1069 set_dr_intercept(svm, INTERCEPT_DR6_READ);
1070 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1071
1072 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1073 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1074 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1075 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1076 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1077 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1078 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1079 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1080
1081 set_exception_intercept(svm, PF_VECTOR);
1082 set_exception_intercept(svm, UD_VECTOR);
1083 set_exception_intercept(svm, MC_VECTOR);
1084
1085 set_intercept(svm, INTERCEPT_INTR);
1086 set_intercept(svm, INTERCEPT_NMI);
1087 set_intercept(svm, INTERCEPT_SMI);
1088 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1089 set_intercept(svm, INTERCEPT_RDPMC);
1090 set_intercept(svm, INTERCEPT_CPUID);
1091 set_intercept(svm, INTERCEPT_INVD);
1092 set_intercept(svm, INTERCEPT_HLT);
1093 set_intercept(svm, INTERCEPT_INVLPG);
1094 set_intercept(svm, INTERCEPT_INVLPGA);
1095 set_intercept(svm, INTERCEPT_IOIO_PROT);
1096 set_intercept(svm, INTERCEPT_MSR_PROT);
1097 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1098 set_intercept(svm, INTERCEPT_SHUTDOWN);
1099 set_intercept(svm, INTERCEPT_VMRUN);
1100 set_intercept(svm, INTERCEPT_VMMCALL);
1101 set_intercept(svm, INTERCEPT_VMLOAD);
1102 set_intercept(svm, INTERCEPT_VMSAVE);
1103 set_intercept(svm, INTERCEPT_STGI);
1104 set_intercept(svm, INTERCEPT_CLGI);
1105 set_intercept(svm, INTERCEPT_SKINIT);
1106 set_intercept(svm, INTERCEPT_WBINVD);
1107 set_intercept(svm, INTERCEPT_MONITOR);
1108 set_intercept(svm, INTERCEPT_MWAIT);
1109 set_intercept(svm, INTERCEPT_XSETBV);
1110
1111 control->iopm_base_pa = iopm_base;
1112 control->msrpm_base_pa = __pa(svm->msrpm);
1113 control->int_ctl = V_INTR_MASKING_MASK;
1114
1115 init_seg(&save->es);
1116 init_seg(&save->ss);
1117 init_seg(&save->ds);
1118 init_seg(&save->fs);
1119 init_seg(&save->gs);
1120
1121 save->cs.selector = 0xf000;
1122 /* Executable/Readable Code Segment */
1123 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1124 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1125 save->cs.limit = 0xffff;
1126 /*
1127 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1128 * be consistent with it.
1129 *
1130 * Replace when we have real mode working for vmx.
1131 */
1132 save->cs.base = 0xf0000;
1133
1134 save->gdtr.limit = 0xffff;
1135 save->idtr.limit = 0xffff;
1136
1137 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1138 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1139
1140 svm_set_efer(&svm->vcpu, 0);
1141 save->dr6 = 0xffff0ff0;
1142 save->dr7 = 0x400;
1143 kvm_set_rflags(&svm->vcpu, 2);
1144 save->rip = 0x0000fff0;
1145 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1146
1147 /*
1148 * This is the guest-visible cr0 value.
1149 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1150 */
1151 svm->vcpu.arch.cr0 = 0;
1152 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1153
1154 save->cr4 = X86_CR4_PAE;
1155 /* rdx = ?? */
1156
1157 if (npt_enabled) {
1158 /* Setup VMCB for Nested Paging */
1159 control->nested_ctl = 1;
1160 clr_intercept(svm, INTERCEPT_INVLPG);
1161 clr_exception_intercept(svm, PF_VECTOR);
1162 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1163 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1164 save->g_pat = 0x0007040600070406ULL;
1165 save->cr3 = 0;
1166 save->cr4 = 0;
1167 }
1168 svm->asid_generation = 0;
1169
1170 svm->nested.vmcb = 0;
1171 svm->vcpu.arch.hflags = 0;
1172
1173 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1174 control->pause_filter_count = 3000;
1175 set_intercept(svm, INTERCEPT_PAUSE);
1176 }
1177
1178 mark_all_dirty(svm->vmcb);
1179
1180 enable_gif(svm);
1181 }
1182
1183 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1184 {
1185 struct vcpu_svm *svm = to_svm(vcpu);
1186
1187 init_vmcb(svm);
1188
1189 if (!kvm_vcpu_is_bsp(vcpu)) {
1190 kvm_rip_write(vcpu, 0);
1191 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1192 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1193 }
1194 vcpu->arch.regs_avail = ~0;
1195 vcpu->arch.regs_dirty = ~0;
1196
1197 return 0;
1198 }
1199
1200 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1201 {
1202 struct vcpu_svm *svm;
1203 struct page *page;
1204 struct page *msrpm_pages;
1205 struct page *hsave_page;
1206 struct page *nested_msrpm_pages;
1207 int err;
1208
1209 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1210 if (!svm) {
1211 err = -ENOMEM;
1212 goto out;
1213 }
1214
1215 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1216
1217 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1218 if (err)
1219 goto free_svm;
1220
1221 err = -ENOMEM;
1222 page = alloc_page(GFP_KERNEL);
1223 if (!page)
1224 goto uninit;
1225
1226 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1227 if (!msrpm_pages)
1228 goto free_page1;
1229
1230 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1231 if (!nested_msrpm_pages)
1232 goto free_page2;
1233
1234 hsave_page = alloc_page(GFP_KERNEL);
1235 if (!hsave_page)
1236 goto free_page3;
1237
1238 svm->nested.hsave = page_address(hsave_page);
1239
1240 svm->msrpm = page_address(msrpm_pages);
1241 svm_vcpu_init_msrpm(svm->msrpm);
1242
1243 svm->nested.msrpm = page_address(nested_msrpm_pages);
1244 svm_vcpu_init_msrpm(svm->nested.msrpm);
1245
1246 svm->vmcb = page_address(page);
1247 clear_page(svm->vmcb);
1248 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1249 svm->asid_generation = 0;
1250 init_vmcb(svm);
1251 kvm_write_tsc(&svm->vcpu, 0);
1252
1253 err = fx_init(&svm->vcpu);
1254 if (err)
1255 goto free_page4;
1256
1257 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1258 if (kvm_vcpu_is_bsp(&svm->vcpu))
1259 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1260
1261 svm_init_osvw(&svm->vcpu);
1262
1263 return &svm->vcpu;
1264
1265 free_page4:
1266 __free_page(hsave_page);
1267 free_page3:
1268 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1269 free_page2:
1270 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1271 free_page1:
1272 __free_page(page);
1273 uninit:
1274 kvm_vcpu_uninit(&svm->vcpu);
1275 free_svm:
1276 kmem_cache_free(kvm_vcpu_cache, svm);
1277 out:
1278 return ERR_PTR(err);
1279 }
1280
1281 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1282 {
1283 struct vcpu_svm *svm = to_svm(vcpu);
1284
1285 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1286 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1287 __free_page(virt_to_page(svm->nested.hsave));
1288 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1289 kvm_vcpu_uninit(vcpu);
1290 kmem_cache_free(kvm_vcpu_cache, svm);
1291 }
1292
1293 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1294 {
1295 struct vcpu_svm *svm = to_svm(vcpu);
1296 int i;
1297
1298 if (unlikely(cpu != vcpu->cpu)) {
1299 svm->asid_generation = 0;
1300 mark_all_dirty(svm->vmcb);
1301 }
1302
1303 #ifdef CONFIG_X86_64
1304 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1305 #endif
1306 savesegment(fs, svm->host.fs);
1307 savesegment(gs, svm->host.gs);
1308 svm->host.ldt = kvm_read_ldt();
1309
1310 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1311 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1312
1313 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1314 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1315 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1316 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1317 }
1318 }
1319
1320 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322 struct vcpu_svm *svm = to_svm(vcpu);
1323 int i;
1324
1325 ++vcpu->stat.host_state_reload;
1326 kvm_load_ldt(svm->host.ldt);
1327 #ifdef CONFIG_X86_64
1328 loadsegment(fs, svm->host.fs);
1329 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1330 load_gs_index(svm->host.gs);
1331 #else
1332 #ifdef CONFIG_X86_32_LAZY_GS
1333 loadsegment(gs, svm->host.gs);
1334 #endif
1335 #endif
1336 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1337 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1338 }
1339
1340 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1341 {
1342 struct vcpu_svm *svm = to_svm(vcpu);
1343 int cpl;
1344
1345 if (!is_protmode(vcpu))
1346 cpl = 0;
1347 else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1348 cpl = 3;
1349 else
1350 cpl = svm->vmcb->save.cs.selector & 0x3;
1351
1352 svm->vmcb->save.cpl = cpl;
1353 }
1354
1355 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1356 {
1357 return to_svm(vcpu)->vmcb->save.rflags;
1358 }
1359
1360 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1361 {
1362 unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1363
1364 to_svm(vcpu)->vmcb->save.rflags = rflags;
1365 if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1366 svm_update_cpl(vcpu);
1367 }
1368
1369 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1370 {
1371 switch (reg) {
1372 case VCPU_EXREG_PDPTR:
1373 BUG_ON(!npt_enabled);
1374 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1375 break;
1376 default:
1377 BUG();
1378 }
1379 }
1380
1381 static void svm_set_vintr(struct vcpu_svm *svm)
1382 {
1383 set_intercept(svm, INTERCEPT_VINTR);
1384 }
1385
1386 static void svm_clear_vintr(struct vcpu_svm *svm)
1387 {
1388 clr_intercept(svm, INTERCEPT_VINTR);
1389 }
1390
1391 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1392 {
1393 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1394
1395 switch (seg) {
1396 case VCPU_SREG_CS: return &save->cs;
1397 case VCPU_SREG_DS: return &save->ds;
1398 case VCPU_SREG_ES: return &save->es;
1399 case VCPU_SREG_FS: return &save->fs;
1400 case VCPU_SREG_GS: return &save->gs;
1401 case VCPU_SREG_SS: return &save->ss;
1402 case VCPU_SREG_TR: return &save->tr;
1403 case VCPU_SREG_LDTR: return &save->ldtr;
1404 }
1405 BUG();
1406 return NULL;
1407 }
1408
1409 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1410 {
1411 struct vmcb_seg *s = svm_seg(vcpu, seg);
1412
1413 return s->base;
1414 }
1415
1416 static void svm_get_segment(struct kvm_vcpu *vcpu,
1417 struct kvm_segment *var, int seg)
1418 {
1419 struct vmcb_seg *s = svm_seg(vcpu, seg);
1420
1421 var->base = s->base;
1422 var->limit = s->limit;
1423 var->selector = s->selector;
1424 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1425 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1426 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1427 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1428 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1429 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1430 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1431 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1432
1433 /*
1434 * AMD's VMCB does not have an explicit unusable field, so emulate it
1435 * for cross vendor migration purposes by "not present"
1436 */
1437 var->unusable = !var->present || (var->type == 0);
1438
1439 switch (seg) {
1440 case VCPU_SREG_CS:
1441 /*
1442 * SVM always stores 0 for the 'G' bit in the CS selector in
1443 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1444 * Intel's VMENTRY has a check on the 'G' bit.
1445 */
1446 var->g = s->limit > 0xfffff;
1447 break;
1448 case VCPU_SREG_TR:
1449 /*
1450 * Work around a bug where the busy flag in the tr selector
1451 * isn't exposed
1452 */
1453 var->type |= 0x2;
1454 break;
1455 case VCPU_SREG_DS:
1456 case VCPU_SREG_ES:
1457 case VCPU_SREG_FS:
1458 case VCPU_SREG_GS:
1459 /*
1460 * The accessed bit must always be set in the segment
1461 * descriptor cache, although it can be cleared in the
1462 * descriptor, the cached bit always remains at 1. Since
1463 * Intel has a check on this, set it here to support
1464 * cross-vendor migration.
1465 */
1466 if (!var->unusable)
1467 var->type |= 0x1;
1468 break;
1469 case VCPU_SREG_SS:
1470 /*
1471 * On AMD CPUs sometimes the DB bit in the segment
1472 * descriptor is left as 1, although the whole segment has
1473 * been made unusable. Clear it here to pass an Intel VMX
1474 * entry check when cross vendor migrating.
1475 */
1476 if (var->unusable)
1477 var->db = 0;
1478 break;
1479 }
1480 }
1481
1482 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1483 {
1484 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1485
1486 return save->cpl;
1487 }
1488
1489 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1490 {
1491 struct vcpu_svm *svm = to_svm(vcpu);
1492
1493 dt->size = svm->vmcb->save.idtr.limit;
1494 dt->address = svm->vmcb->save.idtr.base;
1495 }
1496
1497 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1498 {
1499 struct vcpu_svm *svm = to_svm(vcpu);
1500
1501 svm->vmcb->save.idtr.limit = dt->size;
1502 svm->vmcb->save.idtr.base = dt->address ;
1503 mark_dirty(svm->vmcb, VMCB_DT);
1504 }
1505
1506 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1507 {
1508 struct vcpu_svm *svm = to_svm(vcpu);
1509
1510 dt->size = svm->vmcb->save.gdtr.limit;
1511 dt->address = svm->vmcb->save.gdtr.base;
1512 }
1513
1514 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1515 {
1516 struct vcpu_svm *svm = to_svm(vcpu);
1517
1518 svm->vmcb->save.gdtr.limit = dt->size;
1519 svm->vmcb->save.gdtr.base = dt->address ;
1520 mark_dirty(svm->vmcb, VMCB_DT);
1521 }
1522
1523 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526
1527 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1528 {
1529 }
1530
1531 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1532 {
1533 }
1534
1535 static void update_cr0_intercept(struct vcpu_svm *svm)
1536 {
1537 ulong gcr0 = svm->vcpu.arch.cr0;
1538 u64 *hcr0 = &svm->vmcb->save.cr0;
1539
1540 if (!svm->vcpu.fpu_active)
1541 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1542 else
1543 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1544 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1545
1546 mark_dirty(svm->vmcb, VMCB_CR);
1547
1548 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1549 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1550 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1551 } else {
1552 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1553 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554 }
1555 }
1556
1557 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1558 {
1559 struct vcpu_svm *svm = to_svm(vcpu);
1560
1561 #ifdef CONFIG_X86_64
1562 if (vcpu->arch.efer & EFER_LME) {
1563 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1564 vcpu->arch.efer |= EFER_LMA;
1565 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1566 }
1567
1568 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1569 vcpu->arch.efer &= ~EFER_LMA;
1570 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1571 }
1572 }
1573 #endif
1574 vcpu->arch.cr0 = cr0;
1575
1576 if (!npt_enabled)
1577 cr0 |= X86_CR0_PG | X86_CR0_WP;
1578
1579 if (!vcpu->fpu_active)
1580 cr0 |= X86_CR0_TS;
1581 /*
1582 * re-enable caching here because the QEMU bios
1583 * does not do it - this results in some delay at
1584 * reboot
1585 */
1586 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1587 svm->vmcb->save.cr0 = cr0;
1588 mark_dirty(svm->vmcb, VMCB_CR);
1589 update_cr0_intercept(svm);
1590 }
1591
1592 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1593 {
1594 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1595 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1596
1597 if (cr4 & X86_CR4_VMXE)
1598 return 1;
1599
1600 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1601 svm_flush_tlb(vcpu);
1602
1603 vcpu->arch.cr4 = cr4;
1604 if (!npt_enabled)
1605 cr4 |= X86_CR4_PAE;
1606 cr4 |= host_cr4_mce;
1607 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1608 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1609 return 0;
1610 }
1611
1612 static void svm_set_segment(struct kvm_vcpu *vcpu,
1613 struct kvm_segment *var, int seg)
1614 {
1615 struct vcpu_svm *svm = to_svm(vcpu);
1616 struct vmcb_seg *s = svm_seg(vcpu, seg);
1617
1618 s->base = var->base;
1619 s->limit = var->limit;
1620 s->selector = var->selector;
1621 if (var->unusable)
1622 s->attrib = 0;
1623 else {
1624 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1625 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1626 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1627 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1628 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1629 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1630 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1631 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1632 }
1633 if (seg == VCPU_SREG_CS)
1634 svm_update_cpl(vcpu);
1635
1636 mark_dirty(svm->vmcb, VMCB_SEG);
1637 }
1638
1639 static void update_db_intercept(struct kvm_vcpu *vcpu)
1640 {
1641 struct vcpu_svm *svm = to_svm(vcpu);
1642
1643 clr_exception_intercept(svm, DB_VECTOR);
1644 clr_exception_intercept(svm, BP_VECTOR);
1645
1646 if (svm->nmi_singlestep)
1647 set_exception_intercept(svm, DB_VECTOR);
1648
1649 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1650 if (vcpu->guest_debug &
1651 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1652 set_exception_intercept(svm, DB_VECTOR);
1653 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1654 set_exception_intercept(svm, BP_VECTOR);
1655 } else
1656 vcpu->guest_debug = 0;
1657 }
1658
1659 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1660 {
1661 struct vcpu_svm *svm = to_svm(vcpu);
1662
1663 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1664 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1665 else
1666 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1667
1668 mark_dirty(svm->vmcb, VMCB_DR);
1669
1670 update_db_intercept(vcpu);
1671 }
1672
1673 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1674 {
1675 if (sd->next_asid > sd->max_asid) {
1676 ++sd->asid_generation;
1677 sd->next_asid = 1;
1678 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1679 }
1680
1681 svm->asid_generation = sd->asid_generation;
1682 svm->vmcb->control.asid = sd->next_asid++;
1683
1684 mark_dirty(svm->vmcb, VMCB_ASID);
1685 }
1686
1687 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1688 {
1689 struct vcpu_svm *svm = to_svm(vcpu);
1690
1691 svm->vmcb->save.dr7 = value;
1692 mark_dirty(svm->vmcb, VMCB_DR);
1693 }
1694
1695 static int pf_interception(struct vcpu_svm *svm)
1696 {
1697 u64 fault_address = svm->vmcb->control.exit_info_2;
1698 u32 error_code;
1699 int r = 1;
1700
1701 switch (svm->apf_reason) {
1702 default:
1703 error_code = svm->vmcb->control.exit_info_1;
1704
1705 trace_kvm_page_fault(fault_address, error_code);
1706 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1707 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1708 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1709 svm->vmcb->control.insn_bytes,
1710 svm->vmcb->control.insn_len);
1711 break;
1712 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1713 svm->apf_reason = 0;
1714 local_irq_disable();
1715 kvm_async_pf_task_wait(fault_address);
1716 local_irq_enable();
1717 break;
1718 case KVM_PV_REASON_PAGE_READY:
1719 svm->apf_reason = 0;
1720 local_irq_disable();
1721 kvm_async_pf_task_wake(fault_address);
1722 local_irq_enable();
1723 break;
1724 }
1725 return r;
1726 }
1727
1728 static int db_interception(struct vcpu_svm *svm)
1729 {
1730 struct kvm_run *kvm_run = svm->vcpu.run;
1731
1732 if (!(svm->vcpu.guest_debug &
1733 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1734 !svm->nmi_singlestep) {
1735 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1736 return 1;
1737 }
1738
1739 if (svm->nmi_singlestep) {
1740 svm->nmi_singlestep = false;
1741 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1742 svm->vmcb->save.rflags &=
1743 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1744 update_db_intercept(&svm->vcpu);
1745 }
1746
1747 if (svm->vcpu.guest_debug &
1748 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1749 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1750 kvm_run->debug.arch.pc =
1751 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1752 kvm_run->debug.arch.exception = DB_VECTOR;
1753 return 0;
1754 }
1755
1756 return 1;
1757 }
1758
1759 static int bp_interception(struct vcpu_svm *svm)
1760 {
1761 struct kvm_run *kvm_run = svm->vcpu.run;
1762
1763 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1764 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1765 kvm_run->debug.arch.exception = BP_VECTOR;
1766 return 0;
1767 }
1768
1769 static int ud_interception(struct vcpu_svm *svm)
1770 {
1771 int er;
1772
1773 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1774 if (er != EMULATE_DONE)
1775 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1776 return 1;
1777 }
1778
1779 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1780 {
1781 struct vcpu_svm *svm = to_svm(vcpu);
1782
1783 clr_exception_intercept(svm, NM_VECTOR);
1784
1785 svm->vcpu.fpu_active = 1;
1786 update_cr0_intercept(svm);
1787 }
1788
1789 static int nm_interception(struct vcpu_svm *svm)
1790 {
1791 svm_fpu_activate(&svm->vcpu);
1792 return 1;
1793 }
1794
1795 static bool is_erratum_383(void)
1796 {
1797 int err, i;
1798 u64 value;
1799
1800 if (!erratum_383_found)
1801 return false;
1802
1803 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1804 if (err)
1805 return false;
1806
1807 /* Bit 62 may or may not be set for this mce */
1808 value &= ~(1ULL << 62);
1809
1810 if (value != 0xb600000000010015ULL)
1811 return false;
1812
1813 /* Clear MCi_STATUS registers */
1814 for (i = 0; i < 6; ++i)
1815 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1816
1817 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1818 if (!err) {
1819 u32 low, high;
1820
1821 value &= ~(1ULL << 2);
1822 low = lower_32_bits(value);
1823 high = upper_32_bits(value);
1824
1825 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1826 }
1827
1828 /* Flush tlb to evict multi-match entries */
1829 __flush_tlb_all();
1830
1831 return true;
1832 }
1833
1834 static void svm_handle_mce(struct vcpu_svm *svm)
1835 {
1836 if (is_erratum_383()) {
1837 /*
1838 * Erratum 383 triggered. Guest state is corrupt so kill the
1839 * guest.
1840 */
1841 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1842
1843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1844
1845 return;
1846 }
1847
1848 /*
1849 * On an #MC intercept the MCE handler is not called automatically in
1850 * the host. So do it by hand here.
1851 */
1852 asm volatile (
1853 "int $0x12\n");
1854 /* not sure if we ever come back to this point */
1855
1856 return;
1857 }
1858
1859 static int mc_interception(struct vcpu_svm *svm)
1860 {
1861 return 1;
1862 }
1863
1864 static int shutdown_interception(struct vcpu_svm *svm)
1865 {
1866 struct kvm_run *kvm_run = svm->vcpu.run;
1867
1868 /*
1869 * VMCB is undefined after a SHUTDOWN intercept
1870 * so reinitialize it.
1871 */
1872 clear_page(svm->vmcb);
1873 init_vmcb(svm);
1874
1875 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1876 return 0;
1877 }
1878
1879 static int io_interception(struct vcpu_svm *svm)
1880 {
1881 struct kvm_vcpu *vcpu = &svm->vcpu;
1882 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1883 int size, in, string;
1884 unsigned port;
1885
1886 ++svm->vcpu.stat.io_exits;
1887 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1888 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1889 if (string || in)
1890 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1891
1892 port = io_info >> 16;
1893 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1894 svm->next_rip = svm->vmcb->control.exit_info_2;
1895 skip_emulated_instruction(&svm->vcpu);
1896
1897 return kvm_fast_pio_out(vcpu, size, port);
1898 }
1899
1900 static int nmi_interception(struct vcpu_svm *svm)
1901 {
1902 return 1;
1903 }
1904
1905 static int intr_interception(struct vcpu_svm *svm)
1906 {
1907 ++svm->vcpu.stat.irq_exits;
1908 return 1;
1909 }
1910
1911 static int nop_on_interception(struct vcpu_svm *svm)
1912 {
1913 return 1;
1914 }
1915
1916 static int halt_interception(struct vcpu_svm *svm)
1917 {
1918 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1919 skip_emulated_instruction(&svm->vcpu);
1920 return kvm_emulate_halt(&svm->vcpu);
1921 }
1922
1923 static int vmmcall_interception(struct vcpu_svm *svm)
1924 {
1925 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1926 skip_emulated_instruction(&svm->vcpu);
1927 kvm_emulate_hypercall(&svm->vcpu);
1928 return 1;
1929 }
1930
1931 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1932 {
1933 struct vcpu_svm *svm = to_svm(vcpu);
1934
1935 return svm->nested.nested_cr3;
1936 }
1937
1938 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1939 {
1940 struct vcpu_svm *svm = to_svm(vcpu);
1941 u64 cr3 = svm->nested.nested_cr3;
1942 u64 pdpte;
1943 int ret;
1944
1945 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1946 offset_in_page(cr3) + index * 8, 8);
1947 if (ret)
1948 return 0;
1949 return pdpte;
1950 }
1951
1952 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1953 unsigned long root)
1954 {
1955 struct vcpu_svm *svm = to_svm(vcpu);
1956
1957 svm->vmcb->control.nested_cr3 = root;
1958 mark_dirty(svm->vmcb, VMCB_NPT);
1959 svm_flush_tlb(vcpu);
1960 }
1961
1962 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1963 struct x86_exception *fault)
1964 {
1965 struct vcpu_svm *svm = to_svm(vcpu);
1966
1967 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1968 svm->vmcb->control.exit_code_hi = 0;
1969 svm->vmcb->control.exit_info_1 = fault->error_code;
1970 svm->vmcb->control.exit_info_2 = fault->address;
1971
1972 nested_svm_vmexit(svm);
1973 }
1974
1975 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1976 {
1977 int r;
1978
1979 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1980
1981 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1982 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1983 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1984 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1985 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1986 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1987
1988 return r;
1989 }
1990
1991 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1992 {
1993 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1994 }
1995
1996 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1997 {
1998 if (!(svm->vcpu.arch.efer & EFER_SVME)
1999 || !is_paging(&svm->vcpu)) {
2000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2001 return 1;
2002 }
2003
2004 if (svm->vmcb->save.cpl) {
2005 kvm_inject_gp(&svm->vcpu, 0);
2006 return 1;
2007 }
2008
2009 return 0;
2010 }
2011
2012 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2013 bool has_error_code, u32 error_code)
2014 {
2015 int vmexit;
2016
2017 if (!is_guest_mode(&svm->vcpu))
2018 return 0;
2019
2020 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2021 svm->vmcb->control.exit_code_hi = 0;
2022 svm->vmcb->control.exit_info_1 = error_code;
2023 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2024
2025 vmexit = nested_svm_intercept(svm);
2026 if (vmexit == NESTED_EXIT_DONE)
2027 svm->nested.exit_required = true;
2028
2029 return vmexit;
2030 }
2031
2032 /* This function returns true if it is save to enable the irq window */
2033 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2034 {
2035 if (!is_guest_mode(&svm->vcpu))
2036 return true;
2037
2038 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2039 return true;
2040
2041 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2042 return false;
2043
2044 /*
2045 * if vmexit was already requested (by intercepted exception
2046 * for instance) do not overwrite it with "external interrupt"
2047 * vmexit.
2048 */
2049 if (svm->nested.exit_required)
2050 return false;
2051
2052 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2053 svm->vmcb->control.exit_info_1 = 0;
2054 svm->vmcb->control.exit_info_2 = 0;
2055
2056 if (svm->nested.intercept & 1ULL) {
2057 /*
2058 * The #vmexit can't be emulated here directly because this
2059 * code path runs with irqs and preemtion disabled. A
2060 * #vmexit emulation might sleep. Only signal request for
2061 * the #vmexit here.
2062 */
2063 svm->nested.exit_required = true;
2064 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2065 return false;
2066 }
2067
2068 return true;
2069 }
2070
2071 /* This function returns true if it is save to enable the nmi window */
2072 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2073 {
2074 if (!is_guest_mode(&svm->vcpu))
2075 return true;
2076
2077 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2078 return true;
2079
2080 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2081 svm->nested.exit_required = true;
2082
2083 return false;
2084 }
2085
2086 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2087 {
2088 struct page *page;
2089
2090 might_sleep();
2091
2092 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2093 if (is_error_page(page))
2094 goto error;
2095
2096 *_page = page;
2097
2098 return kmap(page);
2099
2100 error:
2101 kvm_release_page_clean(page);
2102 kvm_inject_gp(&svm->vcpu, 0);
2103
2104 return NULL;
2105 }
2106
2107 static void nested_svm_unmap(struct page *page)
2108 {
2109 kunmap(page);
2110 kvm_release_page_dirty(page);
2111 }
2112
2113 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2114 {
2115 unsigned port;
2116 u8 val, bit;
2117 u64 gpa;
2118
2119 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2120 return NESTED_EXIT_HOST;
2121
2122 port = svm->vmcb->control.exit_info_1 >> 16;
2123 gpa = svm->nested.vmcb_iopm + (port / 8);
2124 bit = port % 8;
2125 val = 0;
2126
2127 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2128 val &= (1 << bit);
2129
2130 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2131 }
2132
2133 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2134 {
2135 u32 offset, msr, value;
2136 int write, mask;
2137
2138 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2139 return NESTED_EXIT_HOST;
2140
2141 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2142 offset = svm_msrpm_offset(msr);
2143 write = svm->vmcb->control.exit_info_1 & 1;
2144 mask = 1 << ((2 * (msr & 0xf)) + write);
2145
2146 if (offset == MSR_INVALID)
2147 return NESTED_EXIT_DONE;
2148
2149 /* Offset is in 32 bit units but need in 8 bit units */
2150 offset *= 4;
2151
2152 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2153 return NESTED_EXIT_DONE;
2154
2155 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2156 }
2157
2158 static int nested_svm_exit_special(struct vcpu_svm *svm)
2159 {
2160 u32 exit_code = svm->vmcb->control.exit_code;
2161
2162 switch (exit_code) {
2163 case SVM_EXIT_INTR:
2164 case SVM_EXIT_NMI:
2165 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2166 return NESTED_EXIT_HOST;
2167 case SVM_EXIT_NPF:
2168 /* For now we are always handling NPFs when using them */
2169 if (npt_enabled)
2170 return NESTED_EXIT_HOST;
2171 break;
2172 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2173 /* When we're shadowing, trap PFs, but not async PF */
2174 if (!npt_enabled && svm->apf_reason == 0)
2175 return NESTED_EXIT_HOST;
2176 break;
2177 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2178 nm_interception(svm);
2179 break;
2180 default:
2181 break;
2182 }
2183
2184 return NESTED_EXIT_CONTINUE;
2185 }
2186
2187 /*
2188 * If this function returns true, this #vmexit was already handled
2189 */
2190 static int nested_svm_intercept(struct vcpu_svm *svm)
2191 {
2192 u32 exit_code = svm->vmcb->control.exit_code;
2193 int vmexit = NESTED_EXIT_HOST;
2194
2195 switch (exit_code) {
2196 case SVM_EXIT_MSR:
2197 vmexit = nested_svm_exit_handled_msr(svm);
2198 break;
2199 case SVM_EXIT_IOIO:
2200 vmexit = nested_svm_intercept_ioio(svm);
2201 break;
2202 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2203 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2204 if (svm->nested.intercept_cr & bit)
2205 vmexit = NESTED_EXIT_DONE;
2206 break;
2207 }
2208 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2209 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2210 if (svm->nested.intercept_dr & bit)
2211 vmexit = NESTED_EXIT_DONE;
2212 break;
2213 }
2214 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2215 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2216 if (svm->nested.intercept_exceptions & excp_bits)
2217 vmexit = NESTED_EXIT_DONE;
2218 /* async page fault always cause vmexit */
2219 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2220 svm->apf_reason != 0)
2221 vmexit = NESTED_EXIT_DONE;
2222 break;
2223 }
2224 case SVM_EXIT_ERR: {
2225 vmexit = NESTED_EXIT_DONE;
2226 break;
2227 }
2228 default: {
2229 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2230 if (svm->nested.intercept & exit_bits)
2231 vmexit = NESTED_EXIT_DONE;
2232 }
2233 }
2234
2235 return vmexit;
2236 }
2237
2238 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2239 {
2240 int vmexit;
2241
2242 vmexit = nested_svm_intercept(svm);
2243
2244 if (vmexit == NESTED_EXIT_DONE)
2245 nested_svm_vmexit(svm);
2246
2247 return vmexit;
2248 }
2249
2250 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2251 {
2252 struct vmcb_control_area *dst = &dst_vmcb->control;
2253 struct vmcb_control_area *from = &from_vmcb->control;
2254
2255 dst->intercept_cr = from->intercept_cr;
2256 dst->intercept_dr = from->intercept_dr;
2257 dst->intercept_exceptions = from->intercept_exceptions;
2258 dst->intercept = from->intercept;
2259 dst->iopm_base_pa = from->iopm_base_pa;
2260 dst->msrpm_base_pa = from->msrpm_base_pa;
2261 dst->tsc_offset = from->tsc_offset;
2262 dst->asid = from->asid;
2263 dst->tlb_ctl = from->tlb_ctl;
2264 dst->int_ctl = from->int_ctl;
2265 dst->int_vector = from->int_vector;
2266 dst->int_state = from->int_state;
2267 dst->exit_code = from->exit_code;
2268 dst->exit_code_hi = from->exit_code_hi;
2269 dst->exit_info_1 = from->exit_info_1;
2270 dst->exit_info_2 = from->exit_info_2;
2271 dst->exit_int_info = from->exit_int_info;
2272 dst->exit_int_info_err = from->exit_int_info_err;
2273 dst->nested_ctl = from->nested_ctl;
2274 dst->event_inj = from->event_inj;
2275 dst->event_inj_err = from->event_inj_err;
2276 dst->nested_cr3 = from->nested_cr3;
2277 dst->lbr_ctl = from->lbr_ctl;
2278 }
2279
2280 static int nested_svm_vmexit(struct vcpu_svm *svm)
2281 {
2282 struct vmcb *nested_vmcb;
2283 struct vmcb *hsave = svm->nested.hsave;
2284 struct vmcb *vmcb = svm->vmcb;
2285 struct page *page;
2286
2287 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2288 vmcb->control.exit_info_1,
2289 vmcb->control.exit_info_2,
2290 vmcb->control.exit_int_info,
2291 vmcb->control.exit_int_info_err,
2292 KVM_ISA_SVM);
2293
2294 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2295 if (!nested_vmcb)
2296 return 1;
2297
2298 /* Exit Guest-Mode */
2299 leave_guest_mode(&svm->vcpu);
2300 svm->nested.vmcb = 0;
2301
2302 /* Give the current vmcb to the guest */
2303 disable_gif(svm);
2304
2305 nested_vmcb->save.es = vmcb->save.es;
2306 nested_vmcb->save.cs = vmcb->save.cs;
2307 nested_vmcb->save.ss = vmcb->save.ss;
2308 nested_vmcb->save.ds = vmcb->save.ds;
2309 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2310 nested_vmcb->save.idtr = vmcb->save.idtr;
2311 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2312 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2313 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2314 nested_vmcb->save.cr2 = vmcb->save.cr2;
2315 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2316 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2317 nested_vmcb->save.rip = vmcb->save.rip;
2318 nested_vmcb->save.rsp = vmcb->save.rsp;
2319 nested_vmcb->save.rax = vmcb->save.rax;
2320 nested_vmcb->save.dr7 = vmcb->save.dr7;
2321 nested_vmcb->save.dr6 = vmcb->save.dr6;
2322 nested_vmcb->save.cpl = vmcb->save.cpl;
2323
2324 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2325 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2326 nested_vmcb->control.int_state = vmcb->control.int_state;
2327 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2328 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2329 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2330 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2331 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2332 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2333 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2334
2335 /*
2336 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2337 * to make sure that we do not lose injected events. So check event_inj
2338 * here and copy it to exit_int_info if it is valid.
2339 * Exit_int_info and event_inj can't be both valid because the case
2340 * below only happens on a VMRUN instruction intercept which has
2341 * no valid exit_int_info set.
2342 */
2343 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2344 struct vmcb_control_area *nc = &nested_vmcb->control;
2345
2346 nc->exit_int_info = vmcb->control.event_inj;
2347 nc->exit_int_info_err = vmcb->control.event_inj_err;
2348 }
2349
2350 nested_vmcb->control.tlb_ctl = 0;
2351 nested_vmcb->control.event_inj = 0;
2352 nested_vmcb->control.event_inj_err = 0;
2353
2354 /* We always set V_INTR_MASKING and remember the old value in hflags */
2355 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2356 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2357
2358 /* Restore the original control entries */
2359 copy_vmcb_control_area(vmcb, hsave);
2360
2361 kvm_clear_exception_queue(&svm->vcpu);
2362 kvm_clear_interrupt_queue(&svm->vcpu);
2363
2364 svm->nested.nested_cr3 = 0;
2365
2366 /* Restore selected save entries */
2367 svm->vmcb->save.es = hsave->save.es;
2368 svm->vmcb->save.cs = hsave->save.cs;
2369 svm->vmcb->save.ss = hsave->save.ss;
2370 svm->vmcb->save.ds = hsave->save.ds;
2371 svm->vmcb->save.gdtr = hsave->save.gdtr;
2372 svm->vmcb->save.idtr = hsave->save.idtr;
2373 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2374 svm_set_efer(&svm->vcpu, hsave->save.efer);
2375 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2376 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2377 if (npt_enabled) {
2378 svm->vmcb->save.cr3 = hsave->save.cr3;
2379 svm->vcpu.arch.cr3 = hsave->save.cr3;
2380 } else {
2381 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2382 }
2383 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2384 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2385 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2386 svm->vmcb->save.dr7 = 0;
2387 svm->vmcb->save.cpl = 0;
2388 svm->vmcb->control.exit_int_info = 0;
2389
2390 mark_all_dirty(svm->vmcb);
2391
2392 nested_svm_unmap(page);
2393
2394 nested_svm_uninit_mmu_context(&svm->vcpu);
2395 kvm_mmu_reset_context(&svm->vcpu);
2396 kvm_mmu_load(&svm->vcpu);
2397
2398 return 0;
2399 }
2400
2401 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2402 {
2403 /*
2404 * This function merges the msr permission bitmaps of kvm and the
2405 * nested vmcb. It is omptimized in that it only merges the parts where
2406 * the kvm msr permission bitmap may contain zero bits
2407 */
2408 int i;
2409
2410 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2411 return true;
2412
2413 for (i = 0; i < MSRPM_OFFSETS; i++) {
2414 u32 value, p;
2415 u64 offset;
2416
2417 if (msrpm_offsets[i] == 0xffffffff)
2418 break;
2419
2420 p = msrpm_offsets[i];
2421 offset = svm->nested.vmcb_msrpm + (p * 4);
2422
2423 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2424 return false;
2425
2426 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2427 }
2428
2429 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2430
2431 return true;
2432 }
2433
2434 static bool nested_vmcb_checks(struct vmcb *vmcb)
2435 {
2436 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2437 return false;
2438
2439 if (vmcb->control.asid == 0)
2440 return false;
2441
2442 if (vmcb->control.nested_ctl && !npt_enabled)
2443 return false;
2444
2445 return true;
2446 }
2447
2448 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2449 {
2450 struct vmcb *nested_vmcb;
2451 struct vmcb *hsave = svm->nested.hsave;
2452 struct vmcb *vmcb = svm->vmcb;
2453 struct page *page;
2454 u64 vmcb_gpa;
2455
2456 vmcb_gpa = svm->vmcb->save.rax;
2457
2458 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2459 if (!nested_vmcb)
2460 return false;
2461
2462 if (!nested_vmcb_checks(nested_vmcb)) {
2463 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2464 nested_vmcb->control.exit_code_hi = 0;
2465 nested_vmcb->control.exit_info_1 = 0;
2466 nested_vmcb->control.exit_info_2 = 0;
2467
2468 nested_svm_unmap(page);
2469
2470 return false;
2471 }
2472
2473 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2474 nested_vmcb->save.rip,
2475 nested_vmcb->control.int_ctl,
2476 nested_vmcb->control.event_inj,
2477 nested_vmcb->control.nested_ctl);
2478
2479 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2480 nested_vmcb->control.intercept_cr >> 16,
2481 nested_vmcb->control.intercept_exceptions,
2482 nested_vmcb->control.intercept);
2483
2484 /* Clear internal status */
2485 kvm_clear_exception_queue(&svm->vcpu);
2486 kvm_clear_interrupt_queue(&svm->vcpu);
2487
2488 /*
2489 * Save the old vmcb, so we don't need to pick what we save, but can
2490 * restore everything when a VMEXIT occurs
2491 */
2492 hsave->save.es = vmcb->save.es;
2493 hsave->save.cs = vmcb->save.cs;
2494 hsave->save.ss = vmcb->save.ss;
2495 hsave->save.ds = vmcb->save.ds;
2496 hsave->save.gdtr = vmcb->save.gdtr;
2497 hsave->save.idtr = vmcb->save.idtr;
2498 hsave->save.efer = svm->vcpu.arch.efer;
2499 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2500 hsave->save.cr4 = svm->vcpu.arch.cr4;
2501 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2502 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2503 hsave->save.rsp = vmcb->save.rsp;
2504 hsave->save.rax = vmcb->save.rax;
2505 if (npt_enabled)
2506 hsave->save.cr3 = vmcb->save.cr3;
2507 else
2508 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2509
2510 copy_vmcb_control_area(hsave, vmcb);
2511
2512 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2513 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2514 else
2515 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2516
2517 if (nested_vmcb->control.nested_ctl) {
2518 kvm_mmu_unload(&svm->vcpu);
2519 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2520 nested_svm_init_mmu_context(&svm->vcpu);
2521 }
2522
2523 /* Load the nested guest state */
2524 svm->vmcb->save.es = nested_vmcb->save.es;
2525 svm->vmcb->save.cs = nested_vmcb->save.cs;
2526 svm->vmcb->save.ss = nested_vmcb->save.ss;
2527 svm->vmcb->save.ds = nested_vmcb->save.ds;
2528 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2529 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2530 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2531 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2532 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2533 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2534 if (npt_enabled) {
2535 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2536 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2537 } else
2538 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2539
2540 /* Guest paging mode is active - reset mmu */
2541 kvm_mmu_reset_context(&svm->vcpu);
2542
2543 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2544 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2545 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2546 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2547
2548 /* In case we don't even reach vcpu_run, the fields are not updated */
2549 svm->vmcb->save.rax = nested_vmcb->save.rax;
2550 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2551 svm->vmcb->save.rip = nested_vmcb->save.rip;
2552 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2553 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2554 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2555
2556 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2557 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2558
2559 /* cache intercepts */
2560 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2561 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2562 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2563 svm->nested.intercept = nested_vmcb->control.intercept;
2564
2565 svm_flush_tlb(&svm->vcpu);
2566 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2567 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2568 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2569 else
2570 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2571
2572 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2573 /* We only want the cr8 intercept bits of the guest */
2574 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2575 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2576 }
2577
2578 /* We don't want to see VMMCALLs from a nested guest */
2579 clr_intercept(svm, INTERCEPT_VMMCALL);
2580
2581 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2582 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2583 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2584 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2585 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2586 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2587
2588 nested_svm_unmap(page);
2589
2590 /* Enter Guest-Mode */
2591 enter_guest_mode(&svm->vcpu);
2592
2593 /*
2594 * Merge guest and host intercepts - must be called with vcpu in
2595 * guest-mode to take affect here
2596 */
2597 recalc_intercepts(svm);
2598
2599 svm->nested.vmcb = vmcb_gpa;
2600
2601 enable_gif(svm);
2602
2603 mark_all_dirty(svm->vmcb);
2604
2605 return true;
2606 }
2607
2608 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2609 {
2610 to_vmcb->save.fs = from_vmcb->save.fs;
2611 to_vmcb->save.gs = from_vmcb->save.gs;
2612 to_vmcb->save.tr = from_vmcb->save.tr;
2613 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2614 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2615 to_vmcb->save.star = from_vmcb->save.star;
2616 to_vmcb->save.lstar = from_vmcb->save.lstar;
2617 to_vmcb->save.cstar = from_vmcb->save.cstar;
2618 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2619 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2620 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2621 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2622 }
2623
2624 static int vmload_interception(struct vcpu_svm *svm)
2625 {
2626 struct vmcb *nested_vmcb;
2627 struct page *page;
2628
2629 if (nested_svm_check_permissions(svm))
2630 return 1;
2631
2632 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2633 if (!nested_vmcb)
2634 return 1;
2635
2636 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2637 skip_emulated_instruction(&svm->vcpu);
2638
2639 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2640 nested_svm_unmap(page);
2641
2642 return 1;
2643 }
2644
2645 static int vmsave_interception(struct vcpu_svm *svm)
2646 {
2647 struct vmcb *nested_vmcb;
2648 struct page *page;
2649
2650 if (nested_svm_check_permissions(svm))
2651 return 1;
2652
2653 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2654 if (!nested_vmcb)
2655 return 1;
2656
2657 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2658 skip_emulated_instruction(&svm->vcpu);
2659
2660 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2661 nested_svm_unmap(page);
2662
2663 return 1;
2664 }
2665
2666 static int vmrun_interception(struct vcpu_svm *svm)
2667 {
2668 if (nested_svm_check_permissions(svm))
2669 return 1;
2670
2671 /* Save rip after vmrun instruction */
2672 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2673
2674 if (!nested_svm_vmrun(svm))
2675 return 1;
2676
2677 if (!nested_svm_vmrun_msrpm(svm))
2678 goto failed;
2679
2680 return 1;
2681
2682 failed:
2683
2684 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2685 svm->vmcb->control.exit_code_hi = 0;
2686 svm->vmcb->control.exit_info_1 = 0;
2687 svm->vmcb->control.exit_info_2 = 0;
2688
2689 nested_svm_vmexit(svm);
2690
2691 return 1;
2692 }
2693
2694 static int stgi_interception(struct vcpu_svm *svm)
2695 {
2696 if (nested_svm_check_permissions(svm))
2697 return 1;
2698
2699 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2700 skip_emulated_instruction(&svm->vcpu);
2701 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2702
2703 enable_gif(svm);
2704
2705 return 1;
2706 }
2707
2708 static int clgi_interception(struct vcpu_svm *svm)
2709 {
2710 if (nested_svm_check_permissions(svm))
2711 return 1;
2712
2713 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2714 skip_emulated_instruction(&svm->vcpu);
2715
2716 disable_gif(svm);
2717
2718 /* After a CLGI no interrupts should come */
2719 svm_clear_vintr(svm);
2720 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2721
2722 mark_dirty(svm->vmcb, VMCB_INTR);
2723
2724 return 1;
2725 }
2726
2727 static int invlpga_interception(struct vcpu_svm *svm)
2728 {
2729 struct kvm_vcpu *vcpu = &svm->vcpu;
2730
2731 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2732 vcpu->arch.regs[VCPU_REGS_RAX]);
2733
2734 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2735 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2736
2737 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2738 skip_emulated_instruction(&svm->vcpu);
2739 return 1;
2740 }
2741
2742 static int skinit_interception(struct vcpu_svm *svm)
2743 {
2744 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2745
2746 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2747 return 1;
2748 }
2749
2750 static int xsetbv_interception(struct vcpu_svm *svm)
2751 {
2752 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2753 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2754
2755 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2756 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2757 skip_emulated_instruction(&svm->vcpu);
2758 }
2759
2760 return 1;
2761 }
2762
2763 static int invalid_op_interception(struct vcpu_svm *svm)
2764 {
2765 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2766 return 1;
2767 }
2768
2769 static int task_switch_interception(struct vcpu_svm *svm)
2770 {
2771 u16 tss_selector;
2772 int reason;
2773 int int_type = svm->vmcb->control.exit_int_info &
2774 SVM_EXITINTINFO_TYPE_MASK;
2775 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2776 uint32_t type =
2777 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2778 uint32_t idt_v =
2779 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2780 bool has_error_code = false;
2781 u32 error_code = 0;
2782
2783 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2784
2785 if (svm->vmcb->control.exit_info_2 &
2786 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2787 reason = TASK_SWITCH_IRET;
2788 else if (svm->vmcb->control.exit_info_2 &
2789 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2790 reason = TASK_SWITCH_JMP;
2791 else if (idt_v)
2792 reason = TASK_SWITCH_GATE;
2793 else
2794 reason = TASK_SWITCH_CALL;
2795
2796 if (reason == TASK_SWITCH_GATE) {
2797 switch (type) {
2798 case SVM_EXITINTINFO_TYPE_NMI:
2799 svm->vcpu.arch.nmi_injected = false;
2800 break;
2801 case SVM_EXITINTINFO_TYPE_EXEPT:
2802 if (svm->vmcb->control.exit_info_2 &
2803 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2804 has_error_code = true;
2805 error_code =
2806 (u32)svm->vmcb->control.exit_info_2;
2807 }
2808 kvm_clear_exception_queue(&svm->vcpu);
2809 break;
2810 case SVM_EXITINTINFO_TYPE_INTR:
2811 kvm_clear_interrupt_queue(&svm->vcpu);
2812 break;
2813 default:
2814 break;
2815 }
2816 }
2817
2818 if (reason != TASK_SWITCH_GATE ||
2819 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2820 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2821 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2822 skip_emulated_instruction(&svm->vcpu);
2823
2824 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2825 int_vec = -1;
2826
2827 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2828 has_error_code, error_code) == EMULATE_FAIL) {
2829 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2830 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2831 svm->vcpu.run->internal.ndata = 0;
2832 return 0;
2833 }
2834 return 1;
2835 }
2836
2837 static int cpuid_interception(struct vcpu_svm *svm)
2838 {
2839 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2840 kvm_emulate_cpuid(&svm->vcpu);
2841 return 1;
2842 }
2843
2844 static int iret_interception(struct vcpu_svm *svm)
2845 {
2846 ++svm->vcpu.stat.nmi_window_exits;
2847 clr_intercept(svm, INTERCEPT_IRET);
2848 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2849 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2850 return 1;
2851 }
2852
2853 static int invlpg_interception(struct vcpu_svm *svm)
2854 {
2855 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2856 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2857
2858 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2859 skip_emulated_instruction(&svm->vcpu);
2860 return 1;
2861 }
2862
2863 static int emulate_on_interception(struct vcpu_svm *svm)
2864 {
2865 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2866 }
2867
2868 static int rdpmc_interception(struct vcpu_svm *svm)
2869 {
2870 int err;
2871
2872 if (!static_cpu_has(X86_FEATURE_NRIPS))
2873 return emulate_on_interception(svm);
2874
2875 err = kvm_rdpmc(&svm->vcpu);
2876 kvm_complete_insn_gp(&svm->vcpu, err);
2877
2878 return 1;
2879 }
2880
2881 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2882 {
2883 unsigned long cr0 = svm->vcpu.arch.cr0;
2884 bool ret = false;
2885 u64 intercept;
2886
2887 intercept = svm->nested.intercept;
2888
2889 if (!is_guest_mode(&svm->vcpu) ||
2890 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2891 return false;
2892
2893 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2894 val &= ~SVM_CR0_SELECTIVE_MASK;
2895
2896 if (cr0 ^ val) {
2897 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2898 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2899 }
2900
2901 return ret;
2902 }
2903
2904 #define CR_VALID (1ULL << 63)
2905
2906 static int cr_interception(struct vcpu_svm *svm)
2907 {
2908 int reg, cr;
2909 unsigned long val;
2910 int err;
2911
2912 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2913 return emulate_on_interception(svm);
2914
2915 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2916 return emulate_on_interception(svm);
2917
2918 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2919 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2920
2921 err = 0;
2922 if (cr >= 16) { /* mov to cr */
2923 cr -= 16;
2924 val = kvm_register_read(&svm->vcpu, reg);
2925 switch (cr) {
2926 case 0:
2927 if (!check_selective_cr0_intercepted(svm, val))
2928 err = kvm_set_cr0(&svm->vcpu, val);
2929 else
2930 return 1;
2931
2932 break;
2933 case 3:
2934 err = kvm_set_cr3(&svm->vcpu, val);
2935 break;
2936 case 4:
2937 err = kvm_set_cr4(&svm->vcpu, val);
2938 break;
2939 case 8:
2940 err = kvm_set_cr8(&svm->vcpu, val);
2941 break;
2942 default:
2943 WARN(1, "unhandled write to CR%d", cr);
2944 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2945 return 1;
2946 }
2947 } else { /* mov from cr */
2948 switch (cr) {
2949 case 0:
2950 val = kvm_read_cr0(&svm->vcpu);
2951 break;
2952 case 2:
2953 val = svm->vcpu.arch.cr2;
2954 break;
2955 case 3:
2956 val = kvm_read_cr3(&svm->vcpu);
2957 break;
2958 case 4:
2959 val = kvm_read_cr4(&svm->vcpu);
2960 break;
2961 case 8:
2962 val = kvm_get_cr8(&svm->vcpu);
2963 break;
2964 default:
2965 WARN(1, "unhandled read from CR%d", cr);
2966 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2967 return 1;
2968 }
2969 kvm_register_write(&svm->vcpu, reg, val);
2970 }
2971 kvm_complete_insn_gp(&svm->vcpu, err);
2972
2973 return 1;
2974 }
2975
2976 static int dr_interception(struct vcpu_svm *svm)
2977 {
2978 int reg, dr;
2979 unsigned long val;
2980 int err;
2981
2982 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2983 return emulate_on_interception(svm);
2984
2985 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2986 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2987
2988 if (dr >= 16) { /* mov to DRn */
2989 val = kvm_register_read(&svm->vcpu, reg);
2990 kvm_set_dr(&svm->vcpu, dr - 16, val);
2991 } else {
2992 err = kvm_get_dr(&svm->vcpu, dr, &val);
2993 if (!err)
2994 kvm_register_write(&svm->vcpu, reg, val);
2995 }
2996
2997 skip_emulated_instruction(&svm->vcpu);
2998
2999 return 1;
3000 }
3001
3002 static int cr8_write_interception(struct vcpu_svm *svm)
3003 {
3004 struct kvm_run *kvm_run = svm->vcpu.run;
3005 int r;
3006
3007 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3008 /* instruction emulation calls kvm_set_cr8() */
3009 r = cr_interception(svm);
3010 if (irqchip_in_kernel(svm->vcpu.kvm)) {
3011 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3012 return r;
3013 }
3014 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3015 return r;
3016 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3017 return 0;
3018 }
3019
3020 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
3021 {
3022 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3023 return vmcb->control.tsc_offset +
3024 svm_scale_tsc(vcpu, native_read_tsc());
3025 }
3026
3027 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3028 {
3029 struct vcpu_svm *svm = to_svm(vcpu);
3030
3031 switch (ecx) {
3032 case MSR_IA32_TSC: {
3033 *data = svm->vmcb->control.tsc_offset +
3034 svm_scale_tsc(vcpu, native_read_tsc());
3035
3036 break;
3037 }
3038 case MSR_STAR:
3039 *data = svm->vmcb->save.star;
3040 break;
3041 #ifdef CONFIG_X86_64
3042 case MSR_LSTAR:
3043 *data = svm->vmcb->save.lstar;
3044 break;
3045 case MSR_CSTAR:
3046 *data = svm->vmcb->save.cstar;
3047 break;
3048 case MSR_KERNEL_GS_BASE:
3049 *data = svm->vmcb->save.kernel_gs_base;
3050 break;
3051 case MSR_SYSCALL_MASK:
3052 *data = svm->vmcb->save.sfmask;
3053 break;
3054 #endif
3055 case MSR_IA32_SYSENTER_CS:
3056 *data = svm->vmcb->save.sysenter_cs;
3057 break;
3058 case MSR_IA32_SYSENTER_EIP:
3059 *data = svm->sysenter_eip;
3060 break;
3061 case MSR_IA32_SYSENTER_ESP:
3062 *data = svm->sysenter_esp;
3063 break;
3064 /*
3065 * Nobody will change the following 5 values in the VMCB so we can
3066 * safely return them on rdmsr. They will always be 0 until LBRV is
3067 * implemented.
3068 */
3069 case MSR_IA32_DEBUGCTLMSR:
3070 *data = svm->vmcb->save.dbgctl;
3071 break;
3072 case MSR_IA32_LASTBRANCHFROMIP:
3073 *data = svm->vmcb->save.br_from;
3074 break;
3075 case MSR_IA32_LASTBRANCHTOIP:
3076 *data = svm->vmcb->save.br_to;
3077 break;
3078 case MSR_IA32_LASTINTFROMIP:
3079 *data = svm->vmcb->save.last_excp_from;
3080 break;
3081 case MSR_IA32_LASTINTTOIP:
3082 *data = svm->vmcb->save.last_excp_to;
3083 break;
3084 case MSR_VM_HSAVE_PA:
3085 *data = svm->nested.hsave_msr;
3086 break;
3087 case MSR_VM_CR:
3088 *data = svm->nested.vm_cr_msr;
3089 break;
3090 case MSR_IA32_UCODE_REV:
3091 *data = 0x01000065;
3092 break;
3093 default:
3094 return kvm_get_msr_common(vcpu, ecx, data);
3095 }
3096 return 0;
3097 }
3098
3099 static int rdmsr_interception(struct vcpu_svm *svm)
3100 {
3101 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3102 u64 data;
3103
3104 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3105 trace_kvm_msr_read_ex(ecx);
3106 kvm_inject_gp(&svm->vcpu, 0);
3107 } else {
3108 trace_kvm_msr_read(ecx, data);
3109
3110 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3111 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3112 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3113 skip_emulated_instruction(&svm->vcpu);
3114 }
3115 return 1;
3116 }
3117
3118 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3119 {
3120 struct vcpu_svm *svm = to_svm(vcpu);
3121 int svm_dis, chg_mask;
3122
3123 if (data & ~SVM_VM_CR_VALID_MASK)
3124 return 1;
3125
3126 chg_mask = SVM_VM_CR_VALID_MASK;
3127
3128 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3129 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3130
3131 svm->nested.vm_cr_msr &= ~chg_mask;
3132 svm->nested.vm_cr_msr |= (data & chg_mask);
3133
3134 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3135
3136 /* check for svm_disable while efer.svme is set */
3137 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3138 return 1;
3139
3140 return 0;
3141 }
3142
3143 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3144 {
3145 struct vcpu_svm *svm = to_svm(vcpu);
3146
3147 switch (ecx) {
3148 case MSR_IA32_TSC:
3149 kvm_write_tsc(vcpu, data);
3150 break;
3151 case MSR_STAR:
3152 svm->vmcb->save.star = data;
3153 break;
3154 #ifdef CONFIG_X86_64
3155 case MSR_LSTAR:
3156 svm->vmcb->save.lstar = data;
3157 break;
3158 case MSR_CSTAR:
3159 svm->vmcb->save.cstar = data;
3160 break;
3161 case MSR_KERNEL_GS_BASE:
3162 svm->vmcb->save.kernel_gs_base = data;
3163 break;
3164 case MSR_SYSCALL_MASK:
3165 svm->vmcb->save.sfmask = data;
3166 break;
3167 #endif
3168 case MSR_IA32_SYSENTER_CS:
3169 svm->vmcb->save.sysenter_cs = data;
3170 break;
3171 case MSR_IA32_SYSENTER_EIP:
3172 svm->sysenter_eip = data;
3173 svm->vmcb->save.sysenter_eip = data;
3174 break;
3175 case MSR_IA32_SYSENTER_ESP:
3176 svm->sysenter_esp = data;
3177 svm->vmcb->save.sysenter_esp = data;
3178 break;
3179 case MSR_IA32_DEBUGCTLMSR:
3180 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3181 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3182 __func__, data);
3183 break;
3184 }
3185 if (data & DEBUGCTL_RESERVED_BITS)
3186 return 1;
3187
3188 svm->vmcb->save.dbgctl = data;
3189 mark_dirty(svm->vmcb, VMCB_LBR);
3190 if (data & (1ULL<<0))
3191 svm_enable_lbrv(svm);
3192 else
3193 svm_disable_lbrv(svm);
3194 break;
3195 case MSR_VM_HSAVE_PA:
3196 svm->nested.hsave_msr = data;
3197 break;
3198 case MSR_VM_CR:
3199 return svm_set_vm_cr(vcpu, data);
3200 case MSR_VM_IGNNE:
3201 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3202 break;
3203 default:
3204 return kvm_set_msr_common(vcpu, ecx, data);
3205 }
3206 return 0;
3207 }
3208
3209 static int wrmsr_interception(struct vcpu_svm *svm)
3210 {
3211 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3212 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3213 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3214
3215
3216 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3217 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3218 trace_kvm_msr_write_ex(ecx, data);
3219 kvm_inject_gp(&svm->vcpu, 0);
3220 } else {
3221 trace_kvm_msr_write(ecx, data);
3222 skip_emulated_instruction(&svm->vcpu);
3223 }
3224 return 1;
3225 }
3226
3227 static int msr_interception(struct vcpu_svm *svm)
3228 {
3229 if (svm->vmcb->control.exit_info_1)
3230 return wrmsr_interception(svm);
3231 else
3232 return rdmsr_interception(svm);
3233 }
3234
3235 static int interrupt_window_interception(struct vcpu_svm *svm)
3236 {
3237 struct kvm_run *kvm_run = svm->vcpu.run;
3238
3239 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3240 svm_clear_vintr(svm);
3241 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3242 mark_dirty(svm->vmcb, VMCB_INTR);
3243 /*
3244 * If the user space waits to inject interrupts, exit as soon as
3245 * possible
3246 */
3247 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3248 kvm_run->request_interrupt_window &&
3249 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3250 ++svm->vcpu.stat.irq_window_exits;
3251 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3252 return 0;
3253 }
3254
3255 return 1;
3256 }
3257
3258 static int pause_interception(struct vcpu_svm *svm)
3259 {
3260 kvm_vcpu_on_spin(&(svm->vcpu));
3261 return 1;
3262 }
3263
3264 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3265 [SVM_EXIT_READ_CR0] = cr_interception,
3266 [SVM_EXIT_READ_CR3] = cr_interception,
3267 [SVM_EXIT_READ_CR4] = cr_interception,
3268 [SVM_EXIT_READ_CR8] = cr_interception,
3269 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3270 [SVM_EXIT_WRITE_CR0] = cr_interception,
3271 [SVM_EXIT_WRITE_CR3] = cr_interception,
3272 [SVM_EXIT_WRITE_CR4] = cr_interception,
3273 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3274 [SVM_EXIT_READ_DR0] = dr_interception,
3275 [SVM_EXIT_READ_DR1] = dr_interception,
3276 [SVM_EXIT_READ_DR2] = dr_interception,
3277 [SVM_EXIT_READ_DR3] = dr_interception,
3278 [SVM_EXIT_READ_DR4] = dr_interception,
3279 [SVM_EXIT_READ_DR5] = dr_interception,
3280 [SVM_EXIT_READ_DR6] = dr_interception,
3281 [SVM_EXIT_READ_DR7] = dr_interception,
3282 [SVM_EXIT_WRITE_DR0] = dr_interception,
3283 [SVM_EXIT_WRITE_DR1] = dr_interception,
3284 [SVM_EXIT_WRITE_DR2] = dr_interception,
3285 [SVM_EXIT_WRITE_DR3] = dr_interception,
3286 [SVM_EXIT_WRITE_DR4] = dr_interception,
3287 [SVM_EXIT_WRITE_DR5] = dr_interception,
3288 [SVM_EXIT_WRITE_DR6] = dr_interception,
3289 [SVM_EXIT_WRITE_DR7] = dr_interception,
3290 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3291 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3292 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3293 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3294 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3295 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3296 [SVM_EXIT_INTR] = intr_interception,
3297 [SVM_EXIT_NMI] = nmi_interception,
3298 [SVM_EXIT_SMI] = nop_on_interception,
3299 [SVM_EXIT_INIT] = nop_on_interception,
3300 [SVM_EXIT_VINTR] = interrupt_window_interception,
3301 [SVM_EXIT_RDPMC] = rdpmc_interception,
3302 [SVM_EXIT_CPUID] = cpuid_interception,
3303 [SVM_EXIT_IRET] = iret_interception,
3304 [SVM_EXIT_INVD] = emulate_on_interception,
3305 [SVM_EXIT_PAUSE] = pause_interception,
3306 [SVM_EXIT_HLT] = halt_interception,
3307 [SVM_EXIT_INVLPG] = invlpg_interception,
3308 [SVM_EXIT_INVLPGA] = invlpga_interception,
3309 [SVM_EXIT_IOIO] = io_interception,
3310 [SVM_EXIT_MSR] = msr_interception,
3311 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3312 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3313 [SVM_EXIT_VMRUN] = vmrun_interception,
3314 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3315 [SVM_EXIT_VMLOAD] = vmload_interception,
3316 [SVM_EXIT_VMSAVE] = vmsave_interception,
3317 [SVM_EXIT_STGI] = stgi_interception,
3318 [SVM_EXIT_CLGI] = clgi_interception,
3319 [SVM_EXIT_SKINIT] = skinit_interception,
3320 [SVM_EXIT_WBINVD] = emulate_on_interception,
3321 [SVM_EXIT_MONITOR] = invalid_op_interception,
3322 [SVM_EXIT_MWAIT] = invalid_op_interception,
3323 [SVM_EXIT_XSETBV] = xsetbv_interception,
3324 [SVM_EXIT_NPF] = pf_interception,
3325 };
3326
3327 static void dump_vmcb(struct kvm_vcpu *vcpu)
3328 {
3329 struct vcpu_svm *svm = to_svm(vcpu);
3330 struct vmcb_control_area *control = &svm->vmcb->control;
3331 struct vmcb_save_area *save = &svm->vmcb->save;
3332
3333 pr_err("VMCB Control Area:\n");
3334 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3335 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3336 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3337 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3338 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3339 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3340 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3341 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3342 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3343 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3344 pr_err("%-20s%d\n", "asid:", control->asid);
3345 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3346 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3347 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3348 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3349 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3350 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3351 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3352 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3353 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3354 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3355 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3356 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3357 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3358 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3359 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3360 pr_err("VMCB State Save Area:\n");
3361 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362 "es:",
3363 save->es.selector, save->es.attrib,
3364 save->es.limit, save->es.base);
3365 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366 "cs:",
3367 save->cs.selector, save->cs.attrib,
3368 save->cs.limit, save->cs.base);
3369 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370 "ss:",
3371 save->ss.selector, save->ss.attrib,
3372 save->ss.limit, save->ss.base);
3373 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374 "ds:",
3375 save->ds.selector, save->ds.attrib,
3376 save->ds.limit, save->ds.base);
3377 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378 "fs:",
3379 save->fs.selector, save->fs.attrib,
3380 save->fs.limit, save->fs.base);
3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382 "gs:",
3383 save->gs.selector, save->gs.attrib,
3384 save->gs.limit, save->gs.base);
3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3386 "gdtr:",
3387 save->gdtr.selector, save->gdtr.attrib,
3388 save->gdtr.limit, save->gdtr.base);
3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3390 "ldtr:",
3391 save->ldtr.selector, save->ldtr.attrib,
3392 save->ldtr.limit, save->ldtr.base);
3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 "idtr:",
3395 save->idtr.selector, save->idtr.attrib,
3396 save->idtr.limit, save->idtr.base);
3397 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398 "tr:",
3399 save->tr.selector, save->tr.attrib,
3400 save->tr.limit, save->tr.base);
3401 pr_err("cpl: %d efer: %016llx\n",
3402 save->cpl, save->efer);
3403 pr_err("%-15s %016llx %-13s %016llx\n",
3404 "cr0:", save->cr0, "cr2:", save->cr2);
3405 pr_err("%-15s %016llx %-13s %016llx\n",
3406 "cr3:", save->cr3, "cr4:", save->cr4);
3407 pr_err("%-15s %016llx %-13s %016llx\n",
3408 "dr6:", save->dr6, "dr7:", save->dr7);
3409 pr_err("%-15s %016llx %-13s %016llx\n",
3410 "rip:", save->rip, "rflags:", save->rflags);
3411 pr_err("%-15s %016llx %-13s %016llx\n",
3412 "rsp:", save->rsp, "rax:", save->rax);
3413 pr_err("%-15s %016llx %-13s %016llx\n",
3414 "star:", save->star, "lstar:", save->lstar);
3415 pr_err("%-15s %016llx %-13s %016llx\n",
3416 "cstar:", save->cstar, "sfmask:", save->sfmask);
3417 pr_err("%-15s %016llx %-13s %016llx\n",
3418 "kernel_gs_base:", save->kernel_gs_base,
3419 "sysenter_cs:", save->sysenter_cs);
3420 pr_err("%-15s %016llx %-13s %016llx\n",
3421 "sysenter_esp:", save->sysenter_esp,
3422 "sysenter_eip:", save->sysenter_eip);
3423 pr_err("%-15s %016llx %-13s %016llx\n",
3424 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3425 pr_err("%-15s %016llx %-13s %016llx\n",
3426 "br_from:", save->br_from, "br_to:", save->br_to);
3427 pr_err("%-15s %016llx %-13s %016llx\n",
3428 "excp_from:", save->last_excp_from,
3429 "excp_to:", save->last_excp_to);
3430 }
3431
3432 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3433 {
3434 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3435
3436 *info1 = control->exit_info_1;
3437 *info2 = control->exit_info_2;
3438 }
3439
3440 static int handle_exit(struct kvm_vcpu *vcpu)
3441 {
3442 struct vcpu_svm *svm = to_svm(vcpu);
3443 struct kvm_run *kvm_run = vcpu->run;
3444 u32 exit_code = svm->vmcb->control.exit_code;
3445
3446 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3447 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3448 if (npt_enabled)
3449 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3450
3451 if (unlikely(svm->nested.exit_required)) {
3452 nested_svm_vmexit(svm);
3453 svm->nested.exit_required = false;
3454
3455 return 1;
3456 }
3457
3458 if (is_guest_mode(vcpu)) {
3459 int vmexit;
3460
3461 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3462 svm->vmcb->control.exit_info_1,
3463 svm->vmcb->control.exit_info_2,
3464 svm->vmcb->control.exit_int_info,
3465 svm->vmcb->control.exit_int_info_err,
3466 KVM_ISA_SVM);
3467
3468 vmexit = nested_svm_exit_special(svm);
3469
3470 if (vmexit == NESTED_EXIT_CONTINUE)
3471 vmexit = nested_svm_exit_handled(svm);
3472
3473 if (vmexit == NESTED_EXIT_DONE)
3474 return 1;
3475 }
3476
3477 svm_complete_interrupts(svm);
3478
3479 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3480 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3481 kvm_run->fail_entry.hardware_entry_failure_reason
3482 = svm->vmcb->control.exit_code;
3483 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3484 dump_vmcb(vcpu);
3485 return 0;
3486 }
3487
3488 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3489 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3490 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3491 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3492 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3493 "exit_code 0x%x\n",
3494 __func__, svm->vmcb->control.exit_int_info,
3495 exit_code);
3496
3497 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3498 || !svm_exit_handlers[exit_code]) {
3499 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3500 kvm_run->hw.hardware_exit_reason = exit_code;
3501 return 0;
3502 }
3503
3504 return svm_exit_handlers[exit_code](svm);
3505 }
3506
3507 static void reload_tss(struct kvm_vcpu *vcpu)
3508 {
3509 int cpu = raw_smp_processor_id();
3510
3511 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3512 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3513 load_TR_desc();
3514 }
3515
3516 static void pre_svm_run(struct vcpu_svm *svm)
3517 {
3518 int cpu = raw_smp_processor_id();
3519
3520 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3521
3522 /* FIXME: handle wraparound of asid_generation */
3523 if (svm->asid_generation != sd->asid_generation)
3524 new_asid(svm, sd);
3525 }
3526
3527 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3528 {
3529 struct vcpu_svm *svm = to_svm(vcpu);
3530
3531 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3532 vcpu->arch.hflags |= HF_NMI_MASK;
3533 set_intercept(svm, INTERCEPT_IRET);
3534 ++vcpu->stat.nmi_injections;
3535 }
3536
3537 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3538 {
3539 struct vmcb_control_area *control;
3540
3541 control = &svm->vmcb->control;
3542 control->int_vector = irq;
3543 control->int_ctl &= ~V_INTR_PRIO_MASK;
3544 control->int_ctl |= V_IRQ_MASK |
3545 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3546 mark_dirty(svm->vmcb, VMCB_INTR);
3547 }
3548
3549 static void svm_set_irq(struct kvm_vcpu *vcpu)
3550 {
3551 struct vcpu_svm *svm = to_svm(vcpu);
3552
3553 BUG_ON(!(gif_set(svm)));
3554
3555 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3556 ++vcpu->stat.irq_injections;
3557
3558 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3559 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3560 }
3561
3562 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3563 {
3564 struct vcpu_svm *svm = to_svm(vcpu);
3565
3566 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3567 return;
3568
3569 if (irr == -1)
3570 return;
3571
3572 if (tpr >= irr)
3573 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3574 }
3575
3576 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3577 {
3578 struct vcpu_svm *svm = to_svm(vcpu);
3579 struct vmcb *vmcb = svm->vmcb;
3580 int ret;
3581 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3582 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3583 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3584
3585 return ret;
3586 }
3587
3588 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3589 {
3590 struct vcpu_svm *svm = to_svm(vcpu);
3591
3592 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3593 }
3594
3595 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3596 {
3597 struct vcpu_svm *svm = to_svm(vcpu);
3598
3599 if (masked) {
3600 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3601 set_intercept(svm, INTERCEPT_IRET);
3602 } else {
3603 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3604 clr_intercept(svm, INTERCEPT_IRET);
3605 }
3606 }
3607
3608 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3609 {
3610 struct vcpu_svm *svm = to_svm(vcpu);
3611 struct vmcb *vmcb = svm->vmcb;
3612 int ret;
3613
3614 if (!gif_set(svm) ||
3615 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3616 return 0;
3617
3618 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3619
3620 if (is_guest_mode(vcpu))
3621 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3622
3623 return ret;
3624 }
3625
3626 static void enable_irq_window(struct kvm_vcpu *vcpu)
3627 {
3628 struct vcpu_svm *svm = to_svm(vcpu);
3629
3630 /*
3631 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3632 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3633 * get that intercept, this function will be called again though and
3634 * we'll get the vintr intercept.
3635 */
3636 if (gif_set(svm) && nested_svm_intr(svm)) {
3637 svm_set_vintr(svm);
3638 svm_inject_irq(svm, 0x0);
3639 }
3640 }
3641
3642 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3643 {
3644 struct vcpu_svm *svm = to_svm(vcpu);
3645
3646 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3647 == HF_NMI_MASK)
3648 return; /* IRET will cause a vm exit */
3649
3650 /*
3651 * Something prevents NMI from been injected. Single step over possible
3652 * problem (IRET or exception injection or interrupt shadow)
3653 */
3654 svm->nmi_singlestep = true;
3655 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3656 update_db_intercept(vcpu);
3657 }
3658
3659 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3660 {
3661 return 0;
3662 }
3663
3664 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3665 {
3666 struct vcpu_svm *svm = to_svm(vcpu);
3667
3668 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3669 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3670 else
3671 svm->asid_generation--;
3672 }
3673
3674 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3675 {
3676 }
3677
3678 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3679 {
3680 struct vcpu_svm *svm = to_svm(vcpu);
3681
3682 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3683 return;
3684
3685 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3686 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3687 kvm_set_cr8(vcpu, cr8);
3688 }
3689 }
3690
3691 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3692 {
3693 struct vcpu_svm *svm = to_svm(vcpu);
3694 u64 cr8;
3695
3696 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3697 return;
3698
3699 cr8 = kvm_get_cr8(vcpu);
3700 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3701 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3702 }
3703
3704 static void svm_complete_interrupts(struct vcpu_svm *svm)
3705 {
3706 u8 vector;
3707 int type;
3708 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3709 unsigned int3_injected = svm->int3_injected;
3710
3711 svm->int3_injected = 0;
3712
3713 /*
3714 * If we've made progress since setting HF_IRET_MASK, we've
3715 * executed an IRET and can allow NMI injection.
3716 */
3717 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3718 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3719 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3720 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3721 }
3722
3723 svm->vcpu.arch.nmi_injected = false;
3724 kvm_clear_exception_queue(&svm->vcpu);
3725 kvm_clear_interrupt_queue(&svm->vcpu);
3726
3727 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3728 return;
3729
3730 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3731
3732 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3733 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3734
3735 switch (type) {
3736 case SVM_EXITINTINFO_TYPE_NMI:
3737 svm->vcpu.arch.nmi_injected = true;
3738 break;
3739 case SVM_EXITINTINFO_TYPE_EXEPT:
3740 /*
3741 * In case of software exceptions, do not reinject the vector,
3742 * but re-execute the instruction instead. Rewind RIP first
3743 * if we emulated INT3 before.
3744 */
3745 if (kvm_exception_is_soft(vector)) {
3746 if (vector == BP_VECTOR && int3_injected &&
3747 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3748 kvm_rip_write(&svm->vcpu,
3749 kvm_rip_read(&svm->vcpu) -
3750 int3_injected);
3751 break;
3752 }
3753 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3754 u32 err = svm->vmcb->control.exit_int_info_err;
3755 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3756
3757 } else
3758 kvm_requeue_exception(&svm->vcpu, vector);
3759 break;
3760 case SVM_EXITINTINFO_TYPE_INTR:
3761 kvm_queue_interrupt(&svm->vcpu, vector, false);
3762 break;
3763 default:
3764 break;
3765 }
3766 }
3767
3768 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3769 {
3770 struct vcpu_svm *svm = to_svm(vcpu);
3771 struct vmcb_control_area *control = &svm->vmcb->control;
3772
3773 control->exit_int_info = control->event_inj;
3774 control->exit_int_info_err = control->event_inj_err;
3775 control->event_inj = 0;
3776 svm_complete_interrupts(svm);
3777 }
3778
3779 #ifdef CONFIG_X86_64
3780 #define R "r"
3781 #else
3782 #define R "e"
3783 #endif
3784
3785 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3786 {
3787 struct vcpu_svm *svm = to_svm(vcpu);
3788
3789 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3790 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3791 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3792
3793 /*
3794 * A vmexit emulation is required before the vcpu can be executed
3795 * again.
3796 */
3797 if (unlikely(svm->nested.exit_required))
3798 return;
3799
3800 pre_svm_run(svm);
3801
3802 sync_lapic_to_cr8(vcpu);
3803
3804 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3805
3806 clgi();
3807
3808 local_irq_enable();
3809
3810 asm volatile (
3811 "push %%"R"bp; \n\t"
3812 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3813 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3814 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3815 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3816 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3817 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3818 #ifdef CONFIG_X86_64
3819 "mov %c[r8](%[svm]), %%r8 \n\t"
3820 "mov %c[r9](%[svm]), %%r9 \n\t"
3821 "mov %c[r10](%[svm]), %%r10 \n\t"
3822 "mov %c[r11](%[svm]), %%r11 \n\t"
3823 "mov %c[r12](%[svm]), %%r12 \n\t"
3824 "mov %c[r13](%[svm]), %%r13 \n\t"
3825 "mov %c[r14](%[svm]), %%r14 \n\t"
3826 "mov %c[r15](%[svm]), %%r15 \n\t"
3827 #endif
3828
3829 /* Enter guest mode */
3830 "push %%"R"ax \n\t"
3831 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3832 __ex(SVM_VMLOAD) "\n\t"
3833 __ex(SVM_VMRUN) "\n\t"
3834 __ex(SVM_VMSAVE) "\n\t"
3835 "pop %%"R"ax \n\t"
3836
3837 /* Save guest registers, load host registers */
3838 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3839 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3840 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3841 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3842 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3843 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3844 #ifdef CONFIG_X86_64
3845 "mov %%r8, %c[r8](%[svm]) \n\t"
3846 "mov %%r9, %c[r9](%[svm]) \n\t"
3847 "mov %%r10, %c[r10](%[svm]) \n\t"
3848 "mov %%r11, %c[r11](%[svm]) \n\t"
3849 "mov %%r12, %c[r12](%[svm]) \n\t"
3850 "mov %%r13, %c[r13](%[svm]) \n\t"
3851 "mov %%r14, %c[r14](%[svm]) \n\t"
3852 "mov %%r15, %c[r15](%[svm]) \n\t"
3853 #endif
3854 "pop %%"R"bp"
3855 :
3856 : [svm]"a"(svm),
3857 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3858 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3859 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3860 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3861 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3862 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3863 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3864 #ifdef CONFIG_X86_64
3865 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3866 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3867 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3868 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3869 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3870 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3871 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3872 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3873 #endif
3874 : "cc", "memory"
3875 , R"bx", R"cx", R"dx", R"si", R"di"
3876 #ifdef CONFIG_X86_64
3877 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3878 #endif
3879 );
3880
3881 #ifdef CONFIG_X86_64
3882 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3883 #else
3884 loadsegment(fs, svm->host.fs);
3885 #ifndef CONFIG_X86_32_LAZY_GS
3886 loadsegment(gs, svm->host.gs);
3887 #endif
3888 #endif
3889
3890 reload_tss(vcpu);
3891
3892 local_irq_disable();
3893
3894 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3895 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3896 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3897 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3898
3899 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3900
3901 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3902 kvm_before_handle_nmi(&svm->vcpu);
3903
3904 stgi();
3905
3906 /* Any pending NMI will happen here */
3907
3908 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3909 kvm_after_handle_nmi(&svm->vcpu);
3910
3911 sync_cr8_to_lapic(vcpu);
3912
3913 svm->next_rip = 0;
3914
3915 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3916
3917 /* if exit due to PF check for async PF */
3918 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3919 svm->apf_reason = kvm_read_and_reset_pf_reason();
3920
3921 if (npt_enabled) {
3922 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3923 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3924 }
3925
3926 /*
3927 * We need to handle MC intercepts here before the vcpu has a chance to
3928 * change the physical cpu
3929 */
3930 if (unlikely(svm->vmcb->control.exit_code ==
3931 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3932 svm_handle_mce(svm);
3933
3934 mark_all_clean(svm->vmcb);
3935 }
3936
3937 #undef R
3938
3939 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3940 {
3941 struct vcpu_svm *svm = to_svm(vcpu);
3942
3943 svm->vmcb->save.cr3 = root;
3944 mark_dirty(svm->vmcb, VMCB_CR);
3945 svm_flush_tlb(vcpu);
3946 }
3947
3948 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3949 {
3950 struct vcpu_svm *svm = to_svm(vcpu);
3951
3952 svm->vmcb->control.nested_cr3 = root;
3953 mark_dirty(svm->vmcb, VMCB_NPT);
3954
3955 /* Also sync guest cr3 here in case we live migrate */
3956 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3957 mark_dirty(svm->vmcb, VMCB_CR);
3958
3959 svm_flush_tlb(vcpu);
3960 }
3961
3962 static int is_disabled(void)
3963 {
3964 u64 vm_cr;
3965
3966 rdmsrl(MSR_VM_CR, vm_cr);
3967 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3968 return 1;
3969
3970 return 0;
3971 }
3972
3973 static void
3974 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3975 {
3976 /*
3977 * Patch in the VMMCALL instruction:
3978 */
3979 hypercall[0] = 0x0f;
3980 hypercall[1] = 0x01;
3981 hypercall[2] = 0xd9;
3982 }
3983
3984 static void svm_check_processor_compat(void *rtn)
3985 {
3986 *(int *)rtn = 0;
3987 }
3988
3989 static bool svm_cpu_has_accelerated_tpr(void)
3990 {
3991 return false;
3992 }
3993
3994 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3995 {
3996 return 0;
3997 }
3998
3999 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4000 {
4001 }
4002
4003 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4004 {
4005 switch (func) {
4006 case 0x80000001:
4007 if (nested)
4008 entry->ecx |= (1 << 2); /* Set SVM bit */
4009 break;
4010 case 0x8000000A:
4011 entry->eax = 1; /* SVM revision 1 */
4012 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4013 ASID emulation to nested SVM */
4014 entry->ecx = 0; /* Reserved */
4015 entry->edx = 0; /* Per default do not support any
4016 additional features */
4017
4018 /* Support next_rip if host supports it */
4019 if (boot_cpu_has(X86_FEATURE_NRIPS))
4020 entry->edx |= SVM_FEATURE_NRIP;
4021
4022 /* Support NPT for the guest if enabled */
4023 if (npt_enabled)
4024 entry->edx |= SVM_FEATURE_NPT;
4025
4026 break;
4027 }
4028 }
4029
4030 static int svm_get_lpage_level(void)
4031 {
4032 return PT_PDPE_LEVEL;
4033 }
4034
4035 static bool svm_rdtscp_supported(void)
4036 {
4037 return false;
4038 }
4039
4040 static bool svm_has_wbinvd_exit(void)
4041 {
4042 return true;
4043 }
4044
4045 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4046 {
4047 struct vcpu_svm *svm = to_svm(vcpu);
4048
4049 set_exception_intercept(svm, NM_VECTOR);
4050 update_cr0_intercept(svm);
4051 }
4052
4053 #define PRE_EX(exit) { .exit_code = (exit), \
4054 .stage = X86_ICPT_PRE_EXCEPT, }
4055 #define POST_EX(exit) { .exit_code = (exit), \
4056 .stage = X86_ICPT_POST_EXCEPT, }
4057 #define POST_MEM(exit) { .exit_code = (exit), \
4058 .stage = X86_ICPT_POST_MEMACCESS, }
4059
4060 static struct __x86_intercept {
4061 u32 exit_code;
4062 enum x86_intercept_stage stage;
4063 } x86_intercept_map[] = {
4064 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4065 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4066 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4067 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4068 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4069 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4070 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4071 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4072 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4073 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4074 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4075 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4076 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4077 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4078 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4079 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4080 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4081 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4082 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4083 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4084 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4085 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4086 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4087 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4088 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4089 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4090 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4091 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4092 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4093 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4094 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4095 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4096 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4097 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4098 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4099 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4100 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4101 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4102 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4103 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4104 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4105 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4106 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4107 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4108 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4109 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4110 };
4111
4112 #undef PRE_EX
4113 #undef POST_EX
4114 #undef POST_MEM
4115
4116 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4117 struct x86_instruction_info *info,
4118 enum x86_intercept_stage stage)
4119 {
4120 struct vcpu_svm *svm = to_svm(vcpu);
4121 int vmexit, ret = X86EMUL_CONTINUE;
4122 struct __x86_intercept icpt_info;
4123 struct vmcb *vmcb = svm->vmcb;
4124
4125 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4126 goto out;
4127
4128 icpt_info = x86_intercept_map[info->intercept];
4129
4130 if (stage != icpt_info.stage)
4131 goto out;
4132
4133 switch (icpt_info.exit_code) {
4134 case SVM_EXIT_READ_CR0:
4135 if (info->intercept == x86_intercept_cr_read)
4136 icpt_info.exit_code += info->modrm_reg;
4137 break;
4138 case SVM_EXIT_WRITE_CR0: {
4139 unsigned long cr0, val;
4140 u64 intercept;
4141
4142 if (info->intercept == x86_intercept_cr_write)
4143 icpt_info.exit_code += info->modrm_reg;
4144
4145 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4146 break;
4147
4148 intercept = svm->nested.intercept;
4149
4150 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4151 break;
4152
4153 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4154 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4155
4156 if (info->intercept == x86_intercept_lmsw) {
4157 cr0 &= 0xfUL;
4158 val &= 0xfUL;
4159 /* lmsw can't clear PE - catch this here */
4160 if (cr0 & X86_CR0_PE)
4161 val |= X86_CR0_PE;
4162 }
4163
4164 if (cr0 ^ val)
4165 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4166
4167 break;
4168 }
4169 case SVM_EXIT_READ_DR0:
4170 case SVM_EXIT_WRITE_DR0:
4171 icpt_info.exit_code += info->modrm_reg;
4172 break;
4173 case SVM_EXIT_MSR:
4174 if (info->intercept == x86_intercept_wrmsr)
4175 vmcb->control.exit_info_1 = 1;
4176 else
4177 vmcb->control.exit_info_1 = 0;
4178 break;
4179 case SVM_EXIT_PAUSE:
4180 /*
4181 * We get this for NOP only, but pause
4182 * is rep not, check this here
4183 */
4184 if (info->rep_prefix != REPE_PREFIX)
4185 goto out;
4186 case SVM_EXIT_IOIO: {
4187 u64 exit_info;
4188 u32 bytes;
4189
4190 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4191
4192 if (info->intercept == x86_intercept_in ||
4193 info->intercept == x86_intercept_ins) {
4194 exit_info |= SVM_IOIO_TYPE_MASK;
4195 bytes = info->src_bytes;
4196 } else {
4197 bytes = info->dst_bytes;
4198 }
4199
4200 if (info->intercept == x86_intercept_outs ||
4201 info->intercept == x86_intercept_ins)
4202 exit_info |= SVM_IOIO_STR_MASK;
4203
4204 if (info->rep_prefix)
4205 exit_info |= SVM_IOIO_REP_MASK;
4206
4207 bytes = min(bytes, 4u);
4208
4209 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4210
4211 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4212
4213 vmcb->control.exit_info_1 = exit_info;
4214 vmcb->control.exit_info_2 = info->next_rip;
4215
4216 break;
4217 }
4218 default:
4219 break;
4220 }
4221
4222 vmcb->control.next_rip = info->next_rip;
4223 vmcb->control.exit_code = icpt_info.exit_code;
4224 vmexit = nested_svm_exit_handled(svm);
4225
4226 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4227 : X86EMUL_CONTINUE;
4228
4229 out:
4230 return ret;
4231 }
4232
4233 static struct kvm_x86_ops svm_x86_ops = {
4234 .cpu_has_kvm_support = has_svm,
4235 .disabled_by_bios = is_disabled,
4236 .hardware_setup = svm_hardware_setup,
4237 .hardware_unsetup = svm_hardware_unsetup,
4238 .check_processor_compatibility = svm_check_processor_compat,
4239 .hardware_enable = svm_hardware_enable,
4240 .hardware_disable = svm_hardware_disable,
4241 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4242
4243 .vcpu_create = svm_create_vcpu,
4244 .vcpu_free = svm_free_vcpu,
4245 .vcpu_reset = svm_vcpu_reset,
4246
4247 .prepare_guest_switch = svm_prepare_guest_switch,
4248 .vcpu_load = svm_vcpu_load,
4249 .vcpu_put = svm_vcpu_put,
4250
4251 .set_guest_debug = svm_guest_debug,
4252 .get_msr = svm_get_msr,
4253 .set_msr = svm_set_msr,
4254 .get_segment_base = svm_get_segment_base,
4255 .get_segment = svm_get_segment,
4256 .set_segment = svm_set_segment,
4257 .get_cpl = svm_get_cpl,
4258 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4259 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4260 .decache_cr3 = svm_decache_cr3,
4261 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4262 .set_cr0 = svm_set_cr0,
4263 .set_cr3 = svm_set_cr3,
4264 .set_cr4 = svm_set_cr4,
4265 .set_efer = svm_set_efer,
4266 .get_idt = svm_get_idt,
4267 .set_idt = svm_set_idt,
4268 .get_gdt = svm_get_gdt,
4269 .set_gdt = svm_set_gdt,
4270 .set_dr7 = svm_set_dr7,
4271 .cache_reg = svm_cache_reg,
4272 .get_rflags = svm_get_rflags,
4273 .set_rflags = svm_set_rflags,
4274 .fpu_activate = svm_fpu_activate,
4275 .fpu_deactivate = svm_fpu_deactivate,
4276
4277 .tlb_flush = svm_flush_tlb,
4278
4279 .run = svm_vcpu_run,
4280 .handle_exit = handle_exit,
4281 .skip_emulated_instruction = skip_emulated_instruction,
4282 .set_interrupt_shadow = svm_set_interrupt_shadow,
4283 .get_interrupt_shadow = svm_get_interrupt_shadow,
4284 .patch_hypercall = svm_patch_hypercall,
4285 .set_irq = svm_set_irq,
4286 .set_nmi = svm_inject_nmi,
4287 .queue_exception = svm_queue_exception,
4288 .cancel_injection = svm_cancel_injection,
4289 .interrupt_allowed = svm_interrupt_allowed,
4290 .nmi_allowed = svm_nmi_allowed,
4291 .get_nmi_mask = svm_get_nmi_mask,
4292 .set_nmi_mask = svm_set_nmi_mask,
4293 .enable_nmi_window = enable_nmi_window,
4294 .enable_irq_window = enable_irq_window,
4295 .update_cr8_intercept = update_cr8_intercept,
4296
4297 .set_tss_addr = svm_set_tss_addr,
4298 .get_tdp_level = get_npt_level,
4299 .get_mt_mask = svm_get_mt_mask,
4300
4301 .get_exit_info = svm_get_exit_info,
4302
4303 .get_lpage_level = svm_get_lpage_level,
4304
4305 .cpuid_update = svm_cpuid_update,
4306
4307 .rdtscp_supported = svm_rdtscp_supported,
4308
4309 .set_supported_cpuid = svm_set_supported_cpuid,
4310
4311 .has_wbinvd_exit = svm_has_wbinvd_exit,
4312
4313 .set_tsc_khz = svm_set_tsc_khz,
4314 .write_tsc_offset = svm_write_tsc_offset,
4315 .adjust_tsc_offset = svm_adjust_tsc_offset,
4316 .compute_tsc_offset = svm_compute_tsc_offset,
4317 .read_l1_tsc = svm_read_l1_tsc,
4318
4319 .set_tdp_cr3 = set_tdp_cr3,
4320
4321 .check_intercept = svm_check_intercept,
4322 };
4323
4324 static int __init svm_init(void)
4325 {
4326 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4327 __alignof__(struct vcpu_svm), THIS_MODULE);
4328 }
4329
4330 static void __exit svm_exit(void)
4331 {
4332 kvm_exit();
4333 }
4334
4335 module_init(svm_init)
4336 module_exit(svm_exit)