]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kvm/svm.c
Merge git://github.com/rustyrussell/linux
[mirror_ubuntu-kernels.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/kvm_para.h>
36
37 #include <asm/virtext.h>
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 #define IOPM_ALLOC_ORDER 2
46 #define MSRPM_ALLOC_ORDER 1
47
48 #define SEG_TYPE_LDT 2
49 #define SEG_TYPE_BUSY_TSS16 3
50
51 #define SVM_FEATURE_NPT (1 << 0)
52 #define SVM_FEATURE_LBRV (1 << 1)
53 #define SVM_FEATURE_SVML (1 << 2)
54 #define SVM_FEATURE_NRIP (1 << 3)
55 #define SVM_FEATURE_TSC_RATE (1 << 4)
56 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
57 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
58 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
59 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
60
61 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
62 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
63 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
64
65 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66
67 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
68 #define TSC_RATIO_MIN 0x0000000000000001ULL
69 #define TSC_RATIO_MAX 0x000000ffffffffffULL
70
71 static bool erratum_383_found __read_mostly;
72
73 static const u32 host_save_user_msrs[] = {
74 #ifdef CONFIG_X86_64
75 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
76 MSR_FS_BASE,
77 #endif
78 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
79 };
80
81 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82
83 struct kvm_vcpu;
84
85 struct nested_state {
86 struct vmcb *hsave;
87 u64 hsave_msr;
88 u64 vm_cr_msr;
89 u64 vmcb;
90
91 /* These are the merged vectors */
92 u32 *msrpm;
93
94 /* gpa pointers to the real vectors */
95 u64 vmcb_msrpm;
96 u64 vmcb_iopm;
97
98 /* A VMEXIT is required but not yet emulated */
99 bool exit_required;
100
101 /* cache for intercepts of the guest */
102 u32 intercept_cr;
103 u32 intercept_dr;
104 u32 intercept_exceptions;
105 u64 intercept;
106
107 /* Nested Paging related state */
108 u64 nested_cr3;
109 };
110
111 #define MSRPM_OFFSETS 16
112 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113
114 struct vcpu_svm {
115 struct kvm_vcpu vcpu;
116 struct vmcb *vmcb;
117 unsigned long vmcb_pa;
118 struct svm_cpu_data *svm_data;
119 uint64_t asid_generation;
120 uint64_t sysenter_esp;
121 uint64_t sysenter_eip;
122
123 u64 next_rip;
124
125 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
126 struct {
127 u16 fs;
128 u16 gs;
129 u16 ldt;
130 u64 gs_base;
131 } host;
132
133 u32 *msrpm;
134
135 ulong nmi_iret_rip;
136
137 struct nested_state nested;
138
139 bool nmi_singlestep;
140
141 unsigned int3_injected;
142 unsigned long int3_rip;
143 u32 apf_reason;
144
145 u64 tsc_ratio;
146 };
147
148 static DEFINE_PER_CPU(u64, current_tsc_ratio);
149 #define TSC_RATIO_DEFAULT 0x0100000000ULL
150
151 #define MSR_INVALID 0xffffffffU
152
153 static struct svm_direct_access_msrs {
154 u32 index; /* Index of the MSR */
155 bool always; /* True if intercept is always on */
156 } direct_access_msrs[] = {
157 { .index = MSR_STAR, .always = true },
158 { .index = MSR_IA32_SYSENTER_CS, .always = true },
159 #ifdef CONFIG_X86_64
160 { .index = MSR_GS_BASE, .always = true },
161 { .index = MSR_FS_BASE, .always = true },
162 { .index = MSR_KERNEL_GS_BASE, .always = true },
163 { .index = MSR_LSTAR, .always = true },
164 { .index = MSR_CSTAR, .always = true },
165 { .index = MSR_SYSCALL_MASK, .always = true },
166 #endif
167 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
168 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
169 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
170 { .index = MSR_IA32_LASTINTTOIP, .always = false },
171 { .index = MSR_INVALID, .always = false },
172 };
173
174 /* enable NPT for AMD64 and X86 with PAE */
175 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
176 static bool npt_enabled = true;
177 #else
178 static bool npt_enabled;
179 #endif
180 static int npt = 1;
181
182 module_param(npt, int, S_IRUGO);
183
184 static int nested = 1;
185 module_param(nested, int, S_IRUGO);
186
187 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
188 static void svm_complete_interrupts(struct vcpu_svm *svm);
189
190 static int nested_svm_exit_handled(struct vcpu_svm *svm);
191 static int nested_svm_intercept(struct vcpu_svm *svm);
192 static int nested_svm_vmexit(struct vcpu_svm *svm);
193 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
194 bool has_error_code, u32 error_code);
195 static u64 __scale_tsc(u64 ratio, u64 tsc);
196
197 enum {
198 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
199 pause filter count */
200 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
201 VMCB_ASID, /* ASID */
202 VMCB_INTR, /* int_ctl, int_vector */
203 VMCB_NPT, /* npt_en, nCR3, gPAT */
204 VMCB_CR, /* CR0, CR3, CR4, EFER */
205 VMCB_DR, /* DR6, DR7 */
206 VMCB_DT, /* GDT, IDT */
207 VMCB_SEG, /* CS, DS, SS, ES, CPL */
208 VMCB_CR2, /* CR2 only */
209 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
210 VMCB_DIRTY_MAX,
211 };
212
213 /* TPR and CR2 are always written before VMRUN */
214 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
215
216 static inline void mark_all_dirty(struct vmcb *vmcb)
217 {
218 vmcb->control.clean = 0;
219 }
220
221 static inline void mark_all_clean(struct vmcb *vmcb)
222 {
223 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
224 & ~VMCB_ALWAYS_DIRTY_MASK;
225 }
226
227 static inline void mark_dirty(struct vmcb *vmcb, int bit)
228 {
229 vmcb->control.clean &= ~(1 << bit);
230 }
231
232 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
233 {
234 return container_of(vcpu, struct vcpu_svm, vcpu);
235 }
236
237 static void recalc_intercepts(struct vcpu_svm *svm)
238 {
239 struct vmcb_control_area *c, *h;
240 struct nested_state *g;
241
242 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
243
244 if (!is_guest_mode(&svm->vcpu))
245 return;
246
247 c = &svm->vmcb->control;
248 h = &svm->nested.hsave->control;
249 g = &svm->nested;
250
251 c->intercept_cr = h->intercept_cr | g->intercept_cr;
252 c->intercept_dr = h->intercept_dr | g->intercept_dr;
253 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
254 c->intercept = h->intercept | g->intercept;
255 }
256
257 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
258 {
259 if (is_guest_mode(&svm->vcpu))
260 return svm->nested.hsave;
261 else
262 return svm->vmcb;
263 }
264
265 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
266 {
267 struct vmcb *vmcb = get_host_vmcb(svm);
268
269 vmcb->control.intercept_cr |= (1U << bit);
270
271 recalc_intercepts(svm);
272 }
273
274 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
275 {
276 struct vmcb *vmcb = get_host_vmcb(svm);
277
278 vmcb->control.intercept_cr &= ~(1U << bit);
279
280 recalc_intercepts(svm);
281 }
282
283 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285 struct vmcb *vmcb = get_host_vmcb(svm);
286
287 return vmcb->control.intercept_cr & (1U << bit);
288 }
289
290 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
291 {
292 struct vmcb *vmcb = get_host_vmcb(svm);
293
294 vmcb->control.intercept_dr |= (1U << bit);
295
296 recalc_intercepts(svm);
297 }
298
299 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
300 {
301 struct vmcb *vmcb = get_host_vmcb(svm);
302
303 vmcb->control.intercept_dr &= ~(1U << bit);
304
305 recalc_intercepts(svm);
306 }
307
308 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
309 {
310 struct vmcb *vmcb = get_host_vmcb(svm);
311
312 vmcb->control.intercept_exceptions |= (1U << bit);
313
314 recalc_intercepts(svm);
315 }
316
317 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
318 {
319 struct vmcb *vmcb = get_host_vmcb(svm);
320
321 vmcb->control.intercept_exceptions &= ~(1U << bit);
322
323 recalc_intercepts(svm);
324 }
325
326 static inline void set_intercept(struct vcpu_svm *svm, int bit)
327 {
328 struct vmcb *vmcb = get_host_vmcb(svm);
329
330 vmcb->control.intercept |= (1ULL << bit);
331
332 recalc_intercepts(svm);
333 }
334
335 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
336 {
337 struct vmcb *vmcb = get_host_vmcb(svm);
338
339 vmcb->control.intercept &= ~(1ULL << bit);
340
341 recalc_intercepts(svm);
342 }
343
344 static inline void enable_gif(struct vcpu_svm *svm)
345 {
346 svm->vcpu.arch.hflags |= HF_GIF_MASK;
347 }
348
349 static inline void disable_gif(struct vcpu_svm *svm)
350 {
351 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
352 }
353
354 static inline bool gif_set(struct vcpu_svm *svm)
355 {
356 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
357 }
358
359 static unsigned long iopm_base;
360
361 struct kvm_ldttss_desc {
362 u16 limit0;
363 u16 base0;
364 unsigned base1:8, type:5, dpl:2, p:1;
365 unsigned limit1:4, zero0:3, g:1, base2:8;
366 u32 base3;
367 u32 zero1;
368 } __attribute__((packed));
369
370 struct svm_cpu_data {
371 int cpu;
372
373 u64 asid_generation;
374 u32 max_asid;
375 u32 next_asid;
376 struct kvm_ldttss_desc *tss_desc;
377
378 struct page *save_area;
379 };
380
381 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
382
383 struct svm_init_data {
384 int cpu;
385 int r;
386 };
387
388 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
389
390 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
391 #define MSRS_RANGE_SIZE 2048
392 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
393
394 static u32 svm_msrpm_offset(u32 msr)
395 {
396 u32 offset;
397 int i;
398
399 for (i = 0; i < NUM_MSR_MAPS; i++) {
400 if (msr < msrpm_ranges[i] ||
401 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
402 continue;
403
404 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
405 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
406
407 /* Now we have the u8 offset - but need the u32 offset */
408 return offset / 4;
409 }
410
411 /* MSR not in any range */
412 return MSR_INVALID;
413 }
414
415 #define MAX_INST_SIZE 15
416
417 static inline void clgi(void)
418 {
419 asm volatile (__ex(SVM_CLGI));
420 }
421
422 static inline void stgi(void)
423 {
424 asm volatile (__ex(SVM_STGI));
425 }
426
427 static inline void invlpga(unsigned long addr, u32 asid)
428 {
429 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
430 }
431
432 static int get_npt_level(void)
433 {
434 #ifdef CONFIG_X86_64
435 return PT64_ROOT_LEVEL;
436 #else
437 return PT32E_ROOT_LEVEL;
438 #endif
439 }
440
441 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
442 {
443 vcpu->arch.efer = efer;
444 if (!npt_enabled && !(efer & EFER_LMA))
445 efer &= ~EFER_LME;
446
447 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
448 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
449 }
450
451 static int is_external_interrupt(u32 info)
452 {
453 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
454 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
455 }
456
457 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
458 {
459 struct vcpu_svm *svm = to_svm(vcpu);
460 u32 ret = 0;
461
462 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
463 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
464 return ret & mask;
465 }
466
467 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
468 {
469 struct vcpu_svm *svm = to_svm(vcpu);
470
471 if (mask == 0)
472 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
473 else
474 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
475
476 }
477
478 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
479 {
480 struct vcpu_svm *svm = to_svm(vcpu);
481
482 if (svm->vmcb->control.next_rip != 0)
483 svm->next_rip = svm->vmcb->control.next_rip;
484
485 if (!svm->next_rip) {
486 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
487 EMULATE_DONE)
488 printk(KERN_DEBUG "%s: NOP\n", __func__);
489 return;
490 }
491 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
492 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
493 __func__, kvm_rip_read(vcpu), svm->next_rip);
494
495 kvm_rip_write(vcpu, svm->next_rip);
496 svm_set_interrupt_shadow(vcpu, 0);
497 }
498
499 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
500 bool has_error_code, u32 error_code,
501 bool reinject)
502 {
503 struct vcpu_svm *svm = to_svm(vcpu);
504
505 /*
506 * If we are within a nested VM we'd better #VMEXIT and let the guest
507 * handle the exception
508 */
509 if (!reinject &&
510 nested_svm_check_exception(svm, nr, has_error_code, error_code))
511 return;
512
513 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
514 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
515
516 /*
517 * For guest debugging where we have to reinject #BP if some
518 * INT3 is guest-owned:
519 * Emulate nRIP by moving RIP forward. Will fail if injection
520 * raises a fault that is not intercepted. Still better than
521 * failing in all cases.
522 */
523 skip_emulated_instruction(&svm->vcpu);
524 rip = kvm_rip_read(&svm->vcpu);
525 svm->int3_rip = rip + svm->vmcb->save.cs.base;
526 svm->int3_injected = rip - old_rip;
527 }
528
529 svm->vmcb->control.event_inj = nr
530 | SVM_EVTINJ_VALID
531 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
532 | SVM_EVTINJ_TYPE_EXEPT;
533 svm->vmcb->control.event_inj_err = error_code;
534 }
535
536 static void svm_init_erratum_383(void)
537 {
538 u32 low, high;
539 int err;
540 u64 val;
541
542 if (!cpu_has_amd_erratum(amd_erratum_383))
543 return;
544
545 /* Use _safe variants to not break nested virtualization */
546 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
547 if (err)
548 return;
549
550 val |= (1ULL << 47);
551
552 low = lower_32_bits(val);
553 high = upper_32_bits(val);
554
555 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
556
557 erratum_383_found = true;
558 }
559
560 static int has_svm(void)
561 {
562 const char *msg;
563
564 if (!cpu_has_svm(&msg)) {
565 printk(KERN_INFO "has_svm: %s\n", msg);
566 return 0;
567 }
568
569 return 1;
570 }
571
572 static void svm_hardware_disable(void *garbage)
573 {
574 /* Make sure we clean up behind us */
575 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
576 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
577
578 cpu_svm_disable();
579
580 amd_pmu_disable_virt();
581 }
582
583 static int svm_hardware_enable(void *garbage)
584 {
585
586 struct svm_cpu_data *sd;
587 uint64_t efer;
588 struct desc_ptr gdt_descr;
589 struct desc_struct *gdt;
590 int me = raw_smp_processor_id();
591
592 rdmsrl(MSR_EFER, efer);
593 if (efer & EFER_SVME)
594 return -EBUSY;
595
596 if (!has_svm()) {
597 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
598 me);
599 return -EINVAL;
600 }
601 sd = per_cpu(svm_data, me);
602
603 if (!sd) {
604 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
605 me);
606 return -EINVAL;
607 }
608
609 sd->asid_generation = 1;
610 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
611 sd->next_asid = sd->max_asid + 1;
612
613 native_store_gdt(&gdt_descr);
614 gdt = (struct desc_struct *)gdt_descr.address;
615 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
616
617 wrmsrl(MSR_EFER, efer | EFER_SVME);
618
619 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
620
621 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
622 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
623 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
624 }
625
626 svm_init_erratum_383();
627
628 amd_pmu_enable_virt();
629
630 return 0;
631 }
632
633 static void svm_cpu_uninit(int cpu)
634 {
635 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
636
637 if (!sd)
638 return;
639
640 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
641 __free_page(sd->save_area);
642 kfree(sd);
643 }
644
645 static int svm_cpu_init(int cpu)
646 {
647 struct svm_cpu_data *sd;
648 int r;
649
650 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
651 if (!sd)
652 return -ENOMEM;
653 sd->cpu = cpu;
654 sd->save_area = alloc_page(GFP_KERNEL);
655 r = -ENOMEM;
656 if (!sd->save_area)
657 goto err_1;
658
659 per_cpu(svm_data, cpu) = sd;
660
661 return 0;
662
663 err_1:
664 kfree(sd);
665 return r;
666
667 }
668
669 static bool valid_msr_intercept(u32 index)
670 {
671 int i;
672
673 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
674 if (direct_access_msrs[i].index == index)
675 return true;
676
677 return false;
678 }
679
680 static void set_msr_interception(u32 *msrpm, unsigned msr,
681 int read, int write)
682 {
683 u8 bit_read, bit_write;
684 unsigned long tmp;
685 u32 offset;
686
687 /*
688 * If this warning triggers extend the direct_access_msrs list at the
689 * beginning of the file
690 */
691 WARN_ON(!valid_msr_intercept(msr));
692
693 offset = svm_msrpm_offset(msr);
694 bit_read = 2 * (msr & 0x0f);
695 bit_write = 2 * (msr & 0x0f) + 1;
696 tmp = msrpm[offset];
697
698 BUG_ON(offset == MSR_INVALID);
699
700 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
701 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
702
703 msrpm[offset] = tmp;
704 }
705
706 static void svm_vcpu_init_msrpm(u32 *msrpm)
707 {
708 int i;
709
710 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
711
712 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
713 if (!direct_access_msrs[i].always)
714 continue;
715
716 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
717 }
718 }
719
720 static void add_msr_offset(u32 offset)
721 {
722 int i;
723
724 for (i = 0; i < MSRPM_OFFSETS; ++i) {
725
726 /* Offset already in list? */
727 if (msrpm_offsets[i] == offset)
728 return;
729
730 /* Slot used by another offset? */
731 if (msrpm_offsets[i] != MSR_INVALID)
732 continue;
733
734 /* Add offset to list */
735 msrpm_offsets[i] = offset;
736
737 return;
738 }
739
740 /*
741 * If this BUG triggers the msrpm_offsets table has an overflow. Just
742 * increase MSRPM_OFFSETS in this case.
743 */
744 BUG();
745 }
746
747 static void init_msrpm_offsets(void)
748 {
749 int i;
750
751 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
752
753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
754 u32 offset;
755
756 offset = svm_msrpm_offset(direct_access_msrs[i].index);
757 BUG_ON(offset == MSR_INVALID);
758
759 add_msr_offset(offset);
760 }
761 }
762
763 static void svm_enable_lbrv(struct vcpu_svm *svm)
764 {
765 u32 *msrpm = svm->msrpm;
766
767 svm->vmcb->control.lbr_ctl = 1;
768 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
769 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
770 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
771 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
772 }
773
774 static void svm_disable_lbrv(struct vcpu_svm *svm)
775 {
776 u32 *msrpm = svm->msrpm;
777
778 svm->vmcb->control.lbr_ctl = 0;
779 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
780 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
781 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
782 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
783 }
784
785 static __init int svm_hardware_setup(void)
786 {
787 int cpu;
788 struct page *iopm_pages;
789 void *iopm_va;
790 int r;
791
792 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
793
794 if (!iopm_pages)
795 return -ENOMEM;
796
797 iopm_va = page_address(iopm_pages);
798 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
799 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
800
801 init_msrpm_offsets();
802
803 if (boot_cpu_has(X86_FEATURE_NX))
804 kvm_enable_efer_bits(EFER_NX);
805
806 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
807 kvm_enable_efer_bits(EFER_FFXSR);
808
809 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
810 u64 max;
811
812 kvm_has_tsc_control = true;
813
814 /*
815 * Make sure the user can only configure tsc_khz values that
816 * fit into a signed integer.
817 * A min value is not calculated needed because it will always
818 * be 1 on all machines and a value of 0 is used to disable
819 * tsc-scaling for the vcpu.
820 */
821 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
822
823 kvm_max_guest_tsc_khz = max;
824 }
825
826 if (nested) {
827 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
828 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
829 }
830
831 for_each_possible_cpu(cpu) {
832 r = svm_cpu_init(cpu);
833 if (r)
834 goto err;
835 }
836
837 if (!boot_cpu_has(X86_FEATURE_NPT))
838 npt_enabled = false;
839
840 if (npt_enabled && !npt) {
841 printk(KERN_INFO "kvm: Nested Paging disabled\n");
842 npt_enabled = false;
843 }
844
845 if (npt_enabled) {
846 printk(KERN_INFO "kvm: Nested Paging enabled\n");
847 kvm_enable_tdp();
848 } else
849 kvm_disable_tdp();
850
851 return 0;
852
853 err:
854 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
855 iopm_base = 0;
856 return r;
857 }
858
859 static __exit void svm_hardware_unsetup(void)
860 {
861 int cpu;
862
863 for_each_possible_cpu(cpu)
864 svm_cpu_uninit(cpu);
865
866 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
867 iopm_base = 0;
868 }
869
870 static void init_seg(struct vmcb_seg *seg)
871 {
872 seg->selector = 0;
873 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
874 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
875 seg->limit = 0xffff;
876 seg->base = 0;
877 }
878
879 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
880 {
881 seg->selector = 0;
882 seg->attrib = SVM_SELECTOR_P_MASK | type;
883 seg->limit = 0xffff;
884 seg->base = 0;
885 }
886
887 static u64 __scale_tsc(u64 ratio, u64 tsc)
888 {
889 u64 mult, frac, _tsc;
890
891 mult = ratio >> 32;
892 frac = ratio & ((1ULL << 32) - 1);
893
894 _tsc = tsc;
895 _tsc *= mult;
896 _tsc += (tsc >> 32) * frac;
897 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
898
899 return _tsc;
900 }
901
902 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
903 {
904 struct vcpu_svm *svm = to_svm(vcpu);
905 u64 _tsc = tsc;
906
907 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
908 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
909
910 return _tsc;
911 }
912
913 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
914 {
915 struct vcpu_svm *svm = to_svm(vcpu);
916 u64 ratio;
917 u64 khz;
918
919 /* TSC scaling supported? */
920 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
921 return;
922
923 /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
924 if (user_tsc_khz == 0) {
925 vcpu->arch.virtual_tsc_khz = 0;
926 svm->tsc_ratio = TSC_RATIO_DEFAULT;
927 return;
928 }
929
930 khz = user_tsc_khz;
931
932 /* TSC scaling required - calculate ratio */
933 ratio = khz << 32;
934 do_div(ratio, tsc_khz);
935
936 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
937 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
938 user_tsc_khz);
939 return;
940 }
941 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
942 svm->tsc_ratio = ratio;
943 }
944
945 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
946 {
947 struct vcpu_svm *svm = to_svm(vcpu);
948 u64 g_tsc_offset = 0;
949
950 if (is_guest_mode(vcpu)) {
951 g_tsc_offset = svm->vmcb->control.tsc_offset -
952 svm->nested.hsave->control.tsc_offset;
953 svm->nested.hsave->control.tsc_offset = offset;
954 }
955
956 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
957
958 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
959 }
960
961 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
962 {
963 struct vcpu_svm *svm = to_svm(vcpu);
964
965 svm->vmcb->control.tsc_offset += adjustment;
966 if (is_guest_mode(vcpu))
967 svm->nested.hsave->control.tsc_offset += adjustment;
968 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
969 }
970
971 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
972 {
973 u64 tsc;
974
975 tsc = svm_scale_tsc(vcpu, native_read_tsc());
976
977 return target_tsc - tsc;
978 }
979
980 static void init_vmcb(struct vcpu_svm *svm)
981 {
982 struct vmcb_control_area *control = &svm->vmcb->control;
983 struct vmcb_save_area *save = &svm->vmcb->save;
984
985 svm->vcpu.fpu_active = 1;
986 svm->vcpu.arch.hflags = 0;
987
988 set_cr_intercept(svm, INTERCEPT_CR0_READ);
989 set_cr_intercept(svm, INTERCEPT_CR3_READ);
990 set_cr_intercept(svm, INTERCEPT_CR4_READ);
991 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
992 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
993 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
994 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
995
996 set_dr_intercept(svm, INTERCEPT_DR0_READ);
997 set_dr_intercept(svm, INTERCEPT_DR1_READ);
998 set_dr_intercept(svm, INTERCEPT_DR2_READ);
999 set_dr_intercept(svm, INTERCEPT_DR3_READ);
1000 set_dr_intercept(svm, INTERCEPT_DR4_READ);
1001 set_dr_intercept(svm, INTERCEPT_DR5_READ);
1002 set_dr_intercept(svm, INTERCEPT_DR6_READ);
1003 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1004
1005 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1006 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1007 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1008 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1009 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1010 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1011 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1012 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1013
1014 set_exception_intercept(svm, PF_VECTOR);
1015 set_exception_intercept(svm, UD_VECTOR);
1016 set_exception_intercept(svm, MC_VECTOR);
1017
1018 set_intercept(svm, INTERCEPT_INTR);
1019 set_intercept(svm, INTERCEPT_NMI);
1020 set_intercept(svm, INTERCEPT_SMI);
1021 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1022 set_intercept(svm, INTERCEPT_RDPMC);
1023 set_intercept(svm, INTERCEPT_CPUID);
1024 set_intercept(svm, INTERCEPT_INVD);
1025 set_intercept(svm, INTERCEPT_HLT);
1026 set_intercept(svm, INTERCEPT_INVLPG);
1027 set_intercept(svm, INTERCEPT_INVLPGA);
1028 set_intercept(svm, INTERCEPT_IOIO_PROT);
1029 set_intercept(svm, INTERCEPT_MSR_PROT);
1030 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1031 set_intercept(svm, INTERCEPT_SHUTDOWN);
1032 set_intercept(svm, INTERCEPT_VMRUN);
1033 set_intercept(svm, INTERCEPT_VMMCALL);
1034 set_intercept(svm, INTERCEPT_VMLOAD);
1035 set_intercept(svm, INTERCEPT_VMSAVE);
1036 set_intercept(svm, INTERCEPT_STGI);
1037 set_intercept(svm, INTERCEPT_CLGI);
1038 set_intercept(svm, INTERCEPT_SKINIT);
1039 set_intercept(svm, INTERCEPT_WBINVD);
1040 set_intercept(svm, INTERCEPT_MONITOR);
1041 set_intercept(svm, INTERCEPT_MWAIT);
1042 set_intercept(svm, INTERCEPT_XSETBV);
1043
1044 control->iopm_base_pa = iopm_base;
1045 control->msrpm_base_pa = __pa(svm->msrpm);
1046 control->int_ctl = V_INTR_MASKING_MASK;
1047
1048 init_seg(&save->es);
1049 init_seg(&save->ss);
1050 init_seg(&save->ds);
1051 init_seg(&save->fs);
1052 init_seg(&save->gs);
1053
1054 save->cs.selector = 0xf000;
1055 /* Executable/Readable Code Segment */
1056 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1057 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1058 save->cs.limit = 0xffff;
1059 /*
1060 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1061 * be consistent with it.
1062 *
1063 * Replace when we have real mode working for vmx.
1064 */
1065 save->cs.base = 0xf0000;
1066
1067 save->gdtr.limit = 0xffff;
1068 save->idtr.limit = 0xffff;
1069
1070 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1071 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1072
1073 svm_set_efer(&svm->vcpu, 0);
1074 save->dr6 = 0xffff0ff0;
1075 save->dr7 = 0x400;
1076 kvm_set_rflags(&svm->vcpu, 2);
1077 save->rip = 0x0000fff0;
1078 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079
1080 /*
1081 * This is the guest-visible cr0 value.
1082 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1083 */
1084 svm->vcpu.arch.cr0 = 0;
1085 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1086
1087 save->cr4 = X86_CR4_PAE;
1088 /* rdx = ?? */
1089
1090 if (npt_enabled) {
1091 /* Setup VMCB for Nested Paging */
1092 control->nested_ctl = 1;
1093 clr_intercept(svm, INTERCEPT_INVLPG);
1094 clr_exception_intercept(svm, PF_VECTOR);
1095 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097 save->g_pat = 0x0007040600070406ULL;
1098 save->cr3 = 0;
1099 save->cr4 = 0;
1100 }
1101 svm->asid_generation = 0;
1102
1103 svm->nested.vmcb = 0;
1104 svm->vcpu.arch.hflags = 0;
1105
1106 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107 control->pause_filter_count = 3000;
1108 set_intercept(svm, INTERCEPT_PAUSE);
1109 }
1110
1111 mark_all_dirty(svm->vmcb);
1112
1113 enable_gif(svm);
1114 }
1115
1116 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1117 {
1118 struct vcpu_svm *svm = to_svm(vcpu);
1119
1120 init_vmcb(svm);
1121
1122 if (!kvm_vcpu_is_bsp(vcpu)) {
1123 kvm_rip_write(vcpu, 0);
1124 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1125 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1126 }
1127 vcpu->arch.regs_avail = ~0;
1128 vcpu->arch.regs_dirty = ~0;
1129
1130 return 0;
1131 }
1132
1133 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1134 {
1135 struct vcpu_svm *svm;
1136 struct page *page;
1137 struct page *msrpm_pages;
1138 struct page *hsave_page;
1139 struct page *nested_msrpm_pages;
1140 int err;
1141
1142 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1143 if (!svm) {
1144 err = -ENOMEM;
1145 goto out;
1146 }
1147
1148 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1149
1150 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1151 if (err)
1152 goto free_svm;
1153
1154 err = -ENOMEM;
1155 page = alloc_page(GFP_KERNEL);
1156 if (!page)
1157 goto uninit;
1158
1159 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1160 if (!msrpm_pages)
1161 goto free_page1;
1162
1163 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1164 if (!nested_msrpm_pages)
1165 goto free_page2;
1166
1167 hsave_page = alloc_page(GFP_KERNEL);
1168 if (!hsave_page)
1169 goto free_page3;
1170
1171 svm->nested.hsave = page_address(hsave_page);
1172
1173 svm->msrpm = page_address(msrpm_pages);
1174 svm_vcpu_init_msrpm(svm->msrpm);
1175
1176 svm->nested.msrpm = page_address(nested_msrpm_pages);
1177 svm_vcpu_init_msrpm(svm->nested.msrpm);
1178
1179 svm->vmcb = page_address(page);
1180 clear_page(svm->vmcb);
1181 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1182 svm->asid_generation = 0;
1183 init_vmcb(svm);
1184 kvm_write_tsc(&svm->vcpu, 0);
1185
1186 err = fx_init(&svm->vcpu);
1187 if (err)
1188 goto free_page4;
1189
1190 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1191 if (kvm_vcpu_is_bsp(&svm->vcpu))
1192 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1193
1194 return &svm->vcpu;
1195
1196 free_page4:
1197 __free_page(hsave_page);
1198 free_page3:
1199 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1200 free_page2:
1201 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1202 free_page1:
1203 __free_page(page);
1204 uninit:
1205 kvm_vcpu_uninit(&svm->vcpu);
1206 free_svm:
1207 kmem_cache_free(kvm_vcpu_cache, svm);
1208 out:
1209 return ERR_PTR(err);
1210 }
1211
1212 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1213 {
1214 struct vcpu_svm *svm = to_svm(vcpu);
1215
1216 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1217 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1218 __free_page(virt_to_page(svm->nested.hsave));
1219 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1220 kvm_vcpu_uninit(vcpu);
1221 kmem_cache_free(kvm_vcpu_cache, svm);
1222 }
1223
1224 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1225 {
1226 struct vcpu_svm *svm = to_svm(vcpu);
1227 int i;
1228
1229 if (unlikely(cpu != vcpu->cpu)) {
1230 svm->asid_generation = 0;
1231 mark_all_dirty(svm->vmcb);
1232 }
1233
1234 #ifdef CONFIG_X86_64
1235 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1236 #endif
1237 savesegment(fs, svm->host.fs);
1238 savesegment(gs, svm->host.gs);
1239 svm->host.ldt = kvm_read_ldt();
1240
1241 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1242 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1243
1244 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1245 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1246 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1247 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1248 }
1249 }
1250
1251 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1252 {
1253 struct vcpu_svm *svm = to_svm(vcpu);
1254 int i;
1255
1256 ++vcpu->stat.host_state_reload;
1257 kvm_load_ldt(svm->host.ldt);
1258 #ifdef CONFIG_X86_64
1259 loadsegment(fs, svm->host.fs);
1260 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1261 load_gs_index(svm->host.gs);
1262 #else
1263 #ifdef CONFIG_X86_32_LAZY_GS
1264 loadsegment(gs, svm->host.gs);
1265 #endif
1266 #endif
1267 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1268 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1269 }
1270
1271 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1272 {
1273 return to_svm(vcpu)->vmcb->save.rflags;
1274 }
1275
1276 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1277 {
1278 to_svm(vcpu)->vmcb->save.rflags = rflags;
1279 }
1280
1281 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1282 {
1283 switch (reg) {
1284 case VCPU_EXREG_PDPTR:
1285 BUG_ON(!npt_enabled);
1286 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1287 break;
1288 default:
1289 BUG();
1290 }
1291 }
1292
1293 static void svm_set_vintr(struct vcpu_svm *svm)
1294 {
1295 set_intercept(svm, INTERCEPT_VINTR);
1296 }
1297
1298 static void svm_clear_vintr(struct vcpu_svm *svm)
1299 {
1300 clr_intercept(svm, INTERCEPT_VINTR);
1301 }
1302
1303 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1304 {
1305 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1306
1307 switch (seg) {
1308 case VCPU_SREG_CS: return &save->cs;
1309 case VCPU_SREG_DS: return &save->ds;
1310 case VCPU_SREG_ES: return &save->es;
1311 case VCPU_SREG_FS: return &save->fs;
1312 case VCPU_SREG_GS: return &save->gs;
1313 case VCPU_SREG_SS: return &save->ss;
1314 case VCPU_SREG_TR: return &save->tr;
1315 case VCPU_SREG_LDTR: return &save->ldtr;
1316 }
1317 BUG();
1318 return NULL;
1319 }
1320
1321 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1322 {
1323 struct vmcb_seg *s = svm_seg(vcpu, seg);
1324
1325 return s->base;
1326 }
1327
1328 static void svm_get_segment(struct kvm_vcpu *vcpu,
1329 struct kvm_segment *var, int seg)
1330 {
1331 struct vmcb_seg *s = svm_seg(vcpu, seg);
1332
1333 var->base = s->base;
1334 var->limit = s->limit;
1335 var->selector = s->selector;
1336 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1337 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1338 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1339 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1340 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1341 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1342 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1343 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1344
1345 /*
1346 * AMD's VMCB does not have an explicit unusable field, so emulate it
1347 * for cross vendor migration purposes by "not present"
1348 */
1349 var->unusable = !var->present || (var->type == 0);
1350
1351 switch (seg) {
1352 case VCPU_SREG_CS:
1353 /*
1354 * SVM always stores 0 for the 'G' bit in the CS selector in
1355 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1356 * Intel's VMENTRY has a check on the 'G' bit.
1357 */
1358 var->g = s->limit > 0xfffff;
1359 break;
1360 case VCPU_SREG_TR:
1361 /*
1362 * Work around a bug where the busy flag in the tr selector
1363 * isn't exposed
1364 */
1365 var->type |= 0x2;
1366 break;
1367 case VCPU_SREG_DS:
1368 case VCPU_SREG_ES:
1369 case VCPU_SREG_FS:
1370 case VCPU_SREG_GS:
1371 /*
1372 * The accessed bit must always be set in the segment
1373 * descriptor cache, although it can be cleared in the
1374 * descriptor, the cached bit always remains at 1. Since
1375 * Intel has a check on this, set it here to support
1376 * cross-vendor migration.
1377 */
1378 if (!var->unusable)
1379 var->type |= 0x1;
1380 break;
1381 case VCPU_SREG_SS:
1382 /*
1383 * On AMD CPUs sometimes the DB bit in the segment
1384 * descriptor is left as 1, although the whole segment has
1385 * been made unusable. Clear it here to pass an Intel VMX
1386 * entry check when cross vendor migrating.
1387 */
1388 if (var->unusable)
1389 var->db = 0;
1390 break;
1391 }
1392 }
1393
1394 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1395 {
1396 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1397
1398 return save->cpl;
1399 }
1400
1401 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1402 {
1403 struct vcpu_svm *svm = to_svm(vcpu);
1404
1405 dt->size = svm->vmcb->save.idtr.limit;
1406 dt->address = svm->vmcb->save.idtr.base;
1407 }
1408
1409 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1410 {
1411 struct vcpu_svm *svm = to_svm(vcpu);
1412
1413 svm->vmcb->save.idtr.limit = dt->size;
1414 svm->vmcb->save.idtr.base = dt->address ;
1415 mark_dirty(svm->vmcb, VMCB_DT);
1416 }
1417
1418 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1419 {
1420 struct vcpu_svm *svm = to_svm(vcpu);
1421
1422 dt->size = svm->vmcb->save.gdtr.limit;
1423 dt->address = svm->vmcb->save.gdtr.base;
1424 }
1425
1426 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1427 {
1428 struct vcpu_svm *svm = to_svm(vcpu);
1429
1430 svm->vmcb->save.gdtr.limit = dt->size;
1431 svm->vmcb->save.gdtr.base = dt->address ;
1432 mark_dirty(svm->vmcb, VMCB_DT);
1433 }
1434
1435 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1436 {
1437 }
1438
1439 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1440 {
1441 }
1442
1443 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1444 {
1445 }
1446
1447 static void update_cr0_intercept(struct vcpu_svm *svm)
1448 {
1449 ulong gcr0 = svm->vcpu.arch.cr0;
1450 u64 *hcr0 = &svm->vmcb->save.cr0;
1451
1452 if (!svm->vcpu.fpu_active)
1453 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1454 else
1455 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1456 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1457
1458 mark_dirty(svm->vmcb, VMCB_CR);
1459
1460 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1461 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1462 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1463 } else {
1464 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1465 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1466 }
1467 }
1468
1469 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1470 {
1471 struct vcpu_svm *svm = to_svm(vcpu);
1472
1473 #ifdef CONFIG_X86_64
1474 if (vcpu->arch.efer & EFER_LME) {
1475 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1476 vcpu->arch.efer |= EFER_LMA;
1477 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1478 }
1479
1480 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1481 vcpu->arch.efer &= ~EFER_LMA;
1482 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1483 }
1484 }
1485 #endif
1486 vcpu->arch.cr0 = cr0;
1487
1488 if (!npt_enabled)
1489 cr0 |= X86_CR0_PG | X86_CR0_WP;
1490
1491 if (!vcpu->fpu_active)
1492 cr0 |= X86_CR0_TS;
1493 /*
1494 * re-enable caching here because the QEMU bios
1495 * does not do it - this results in some delay at
1496 * reboot
1497 */
1498 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499 svm->vmcb->save.cr0 = cr0;
1500 mark_dirty(svm->vmcb, VMCB_CR);
1501 update_cr0_intercept(svm);
1502 }
1503
1504 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505 {
1506 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1507 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508
1509 if (cr4 & X86_CR4_VMXE)
1510 return 1;
1511
1512 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513 svm_flush_tlb(vcpu);
1514
1515 vcpu->arch.cr4 = cr4;
1516 if (!npt_enabled)
1517 cr4 |= X86_CR4_PAE;
1518 cr4 |= host_cr4_mce;
1519 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521 return 0;
1522 }
1523
1524 static void svm_set_segment(struct kvm_vcpu *vcpu,
1525 struct kvm_segment *var, int seg)
1526 {
1527 struct vcpu_svm *svm = to_svm(vcpu);
1528 struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530 s->base = var->base;
1531 s->limit = var->limit;
1532 s->selector = var->selector;
1533 if (var->unusable)
1534 s->attrib = 0;
1535 else {
1536 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544 }
1545 if (seg == VCPU_SREG_CS)
1546 svm->vmcb->save.cpl
1547 = (svm->vmcb->save.cs.attrib
1548 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1549
1550 mark_dirty(svm->vmcb, VMCB_SEG);
1551 }
1552
1553 static void update_db_intercept(struct kvm_vcpu *vcpu)
1554 {
1555 struct vcpu_svm *svm = to_svm(vcpu);
1556
1557 clr_exception_intercept(svm, DB_VECTOR);
1558 clr_exception_intercept(svm, BP_VECTOR);
1559
1560 if (svm->nmi_singlestep)
1561 set_exception_intercept(svm, DB_VECTOR);
1562
1563 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1564 if (vcpu->guest_debug &
1565 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1566 set_exception_intercept(svm, DB_VECTOR);
1567 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1568 set_exception_intercept(svm, BP_VECTOR);
1569 } else
1570 vcpu->guest_debug = 0;
1571 }
1572
1573 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1574 {
1575 struct vcpu_svm *svm = to_svm(vcpu);
1576
1577 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1578 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1579 else
1580 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1581
1582 mark_dirty(svm->vmcb, VMCB_DR);
1583
1584 update_db_intercept(vcpu);
1585 }
1586
1587 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1588 {
1589 if (sd->next_asid > sd->max_asid) {
1590 ++sd->asid_generation;
1591 sd->next_asid = 1;
1592 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1593 }
1594
1595 svm->asid_generation = sd->asid_generation;
1596 svm->vmcb->control.asid = sd->next_asid++;
1597
1598 mark_dirty(svm->vmcb, VMCB_ASID);
1599 }
1600
1601 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1602 {
1603 struct vcpu_svm *svm = to_svm(vcpu);
1604
1605 svm->vmcb->save.dr7 = value;
1606 mark_dirty(svm->vmcb, VMCB_DR);
1607 }
1608
1609 static int pf_interception(struct vcpu_svm *svm)
1610 {
1611 u64 fault_address = svm->vmcb->control.exit_info_2;
1612 u32 error_code;
1613 int r = 1;
1614
1615 switch (svm->apf_reason) {
1616 default:
1617 error_code = svm->vmcb->control.exit_info_1;
1618
1619 trace_kvm_page_fault(fault_address, error_code);
1620 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1621 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1622 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1623 svm->vmcb->control.insn_bytes,
1624 svm->vmcb->control.insn_len);
1625 break;
1626 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1627 svm->apf_reason = 0;
1628 local_irq_disable();
1629 kvm_async_pf_task_wait(fault_address);
1630 local_irq_enable();
1631 break;
1632 case KVM_PV_REASON_PAGE_READY:
1633 svm->apf_reason = 0;
1634 local_irq_disable();
1635 kvm_async_pf_task_wake(fault_address);
1636 local_irq_enable();
1637 break;
1638 }
1639 return r;
1640 }
1641
1642 static int db_interception(struct vcpu_svm *svm)
1643 {
1644 struct kvm_run *kvm_run = svm->vcpu.run;
1645
1646 if (!(svm->vcpu.guest_debug &
1647 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1648 !svm->nmi_singlestep) {
1649 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1650 return 1;
1651 }
1652
1653 if (svm->nmi_singlestep) {
1654 svm->nmi_singlestep = false;
1655 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1656 svm->vmcb->save.rflags &=
1657 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1658 update_db_intercept(&svm->vcpu);
1659 }
1660
1661 if (svm->vcpu.guest_debug &
1662 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1663 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1664 kvm_run->debug.arch.pc =
1665 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1666 kvm_run->debug.arch.exception = DB_VECTOR;
1667 return 0;
1668 }
1669
1670 return 1;
1671 }
1672
1673 static int bp_interception(struct vcpu_svm *svm)
1674 {
1675 struct kvm_run *kvm_run = svm->vcpu.run;
1676
1677 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1678 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1679 kvm_run->debug.arch.exception = BP_VECTOR;
1680 return 0;
1681 }
1682
1683 static int ud_interception(struct vcpu_svm *svm)
1684 {
1685 int er;
1686
1687 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1688 if (er != EMULATE_DONE)
1689 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1690 return 1;
1691 }
1692
1693 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1694 {
1695 struct vcpu_svm *svm = to_svm(vcpu);
1696
1697 clr_exception_intercept(svm, NM_VECTOR);
1698
1699 svm->vcpu.fpu_active = 1;
1700 update_cr0_intercept(svm);
1701 }
1702
1703 static int nm_interception(struct vcpu_svm *svm)
1704 {
1705 svm_fpu_activate(&svm->vcpu);
1706 return 1;
1707 }
1708
1709 static bool is_erratum_383(void)
1710 {
1711 int err, i;
1712 u64 value;
1713
1714 if (!erratum_383_found)
1715 return false;
1716
1717 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1718 if (err)
1719 return false;
1720
1721 /* Bit 62 may or may not be set for this mce */
1722 value &= ~(1ULL << 62);
1723
1724 if (value != 0xb600000000010015ULL)
1725 return false;
1726
1727 /* Clear MCi_STATUS registers */
1728 for (i = 0; i < 6; ++i)
1729 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1730
1731 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1732 if (!err) {
1733 u32 low, high;
1734
1735 value &= ~(1ULL << 2);
1736 low = lower_32_bits(value);
1737 high = upper_32_bits(value);
1738
1739 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1740 }
1741
1742 /* Flush tlb to evict multi-match entries */
1743 __flush_tlb_all();
1744
1745 return true;
1746 }
1747
1748 static void svm_handle_mce(struct vcpu_svm *svm)
1749 {
1750 if (is_erratum_383()) {
1751 /*
1752 * Erratum 383 triggered. Guest state is corrupt so kill the
1753 * guest.
1754 */
1755 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1756
1757 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1758
1759 return;
1760 }
1761
1762 /*
1763 * On an #MC intercept the MCE handler is not called automatically in
1764 * the host. So do it by hand here.
1765 */
1766 asm volatile (
1767 "int $0x12\n");
1768 /* not sure if we ever come back to this point */
1769
1770 return;
1771 }
1772
1773 static int mc_interception(struct vcpu_svm *svm)
1774 {
1775 return 1;
1776 }
1777
1778 static int shutdown_interception(struct vcpu_svm *svm)
1779 {
1780 struct kvm_run *kvm_run = svm->vcpu.run;
1781
1782 /*
1783 * VMCB is undefined after a SHUTDOWN intercept
1784 * so reinitialize it.
1785 */
1786 clear_page(svm->vmcb);
1787 init_vmcb(svm);
1788
1789 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1790 return 0;
1791 }
1792
1793 static int io_interception(struct vcpu_svm *svm)
1794 {
1795 struct kvm_vcpu *vcpu = &svm->vcpu;
1796 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1797 int size, in, string;
1798 unsigned port;
1799
1800 ++svm->vcpu.stat.io_exits;
1801 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1802 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1803 if (string || in)
1804 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1805
1806 port = io_info >> 16;
1807 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1808 svm->next_rip = svm->vmcb->control.exit_info_2;
1809 skip_emulated_instruction(&svm->vcpu);
1810
1811 return kvm_fast_pio_out(vcpu, size, port);
1812 }
1813
1814 static int nmi_interception(struct vcpu_svm *svm)
1815 {
1816 return 1;
1817 }
1818
1819 static int intr_interception(struct vcpu_svm *svm)
1820 {
1821 ++svm->vcpu.stat.irq_exits;
1822 return 1;
1823 }
1824
1825 static int nop_on_interception(struct vcpu_svm *svm)
1826 {
1827 return 1;
1828 }
1829
1830 static int halt_interception(struct vcpu_svm *svm)
1831 {
1832 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1833 skip_emulated_instruction(&svm->vcpu);
1834 return kvm_emulate_halt(&svm->vcpu);
1835 }
1836
1837 static int vmmcall_interception(struct vcpu_svm *svm)
1838 {
1839 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1840 skip_emulated_instruction(&svm->vcpu);
1841 kvm_emulate_hypercall(&svm->vcpu);
1842 return 1;
1843 }
1844
1845 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1846 {
1847 struct vcpu_svm *svm = to_svm(vcpu);
1848
1849 return svm->nested.nested_cr3;
1850 }
1851
1852 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1853 {
1854 struct vcpu_svm *svm = to_svm(vcpu);
1855 u64 cr3 = svm->nested.nested_cr3;
1856 u64 pdpte;
1857 int ret;
1858
1859 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1860 offset_in_page(cr3) + index * 8, 8);
1861 if (ret)
1862 return 0;
1863 return pdpte;
1864 }
1865
1866 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1867 unsigned long root)
1868 {
1869 struct vcpu_svm *svm = to_svm(vcpu);
1870
1871 svm->vmcb->control.nested_cr3 = root;
1872 mark_dirty(svm->vmcb, VMCB_NPT);
1873 svm_flush_tlb(vcpu);
1874 }
1875
1876 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1877 struct x86_exception *fault)
1878 {
1879 struct vcpu_svm *svm = to_svm(vcpu);
1880
1881 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1882 svm->vmcb->control.exit_code_hi = 0;
1883 svm->vmcb->control.exit_info_1 = fault->error_code;
1884 svm->vmcb->control.exit_info_2 = fault->address;
1885
1886 nested_svm_vmexit(svm);
1887 }
1888
1889 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1890 {
1891 int r;
1892
1893 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1894
1895 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1896 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1897 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1898 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1899 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1900 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1901
1902 return r;
1903 }
1904
1905 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1906 {
1907 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1908 }
1909
1910 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1911 {
1912 if (!(svm->vcpu.arch.efer & EFER_SVME)
1913 || !is_paging(&svm->vcpu)) {
1914 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1915 return 1;
1916 }
1917
1918 if (svm->vmcb->save.cpl) {
1919 kvm_inject_gp(&svm->vcpu, 0);
1920 return 1;
1921 }
1922
1923 return 0;
1924 }
1925
1926 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1927 bool has_error_code, u32 error_code)
1928 {
1929 int vmexit;
1930
1931 if (!is_guest_mode(&svm->vcpu))
1932 return 0;
1933
1934 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1935 svm->vmcb->control.exit_code_hi = 0;
1936 svm->vmcb->control.exit_info_1 = error_code;
1937 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1938
1939 vmexit = nested_svm_intercept(svm);
1940 if (vmexit == NESTED_EXIT_DONE)
1941 svm->nested.exit_required = true;
1942
1943 return vmexit;
1944 }
1945
1946 /* This function returns true if it is save to enable the irq window */
1947 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1948 {
1949 if (!is_guest_mode(&svm->vcpu))
1950 return true;
1951
1952 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1953 return true;
1954
1955 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1956 return false;
1957
1958 /*
1959 * if vmexit was already requested (by intercepted exception
1960 * for instance) do not overwrite it with "external interrupt"
1961 * vmexit.
1962 */
1963 if (svm->nested.exit_required)
1964 return false;
1965
1966 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1967 svm->vmcb->control.exit_info_1 = 0;
1968 svm->vmcb->control.exit_info_2 = 0;
1969
1970 if (svm->nested.intercept & 1ULL) {
1971 /*
1972 * The #vmexit can't be emulated here directly because this
1973 * code path runs with irqs and preemtion disabled. A
1974 * #vmexit emulation might sleep. Only signal request for
1975 * the #vmexit here.
1976 */
1977 svm->nested.exit_required = true;
1978 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1979 return false;
1980 }
1981
1982 return true;
1983 }
1984
1985 /* This function returns true if it is save to enable the nmi window */
1986 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1987 {
1988 if (!is_guest_mode(&svm->vcpu))
1989 return true;
1990
1991 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1992 return true;
1993
1994 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1995 svm->nested.exit_required = true;
1996
1997 return false;
1998 }
1999
2000 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2001 {
2002 struct page *page;
2003
2004 might_sleep();
2005
2006 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2007 if (is_error_page(page))
2008 goto error;
2009
2010 *_page = page;
2011
2012 return kmap(page);
2013
2014 error:
2015 kvm_release_page_clean(page);
2016 kvm_inject_gp(&svm->vcpu, 0);
2017
2018 return NULL;
2019 }
2020
2021 static void nested_svm_unmap(struct page *page)
2022 {
2023 kunmap(page);
2024 kvm_release_page_dirty(page);
2025 }
2026
2027 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2028 {
2029 unsigned port;
2030 u8 val, bit;
2031 u64 gpa;
2032
2033 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2034 return NESTED_EXIT_HOST;
2035
2036 port = svm->vmcb->control.exit_info_1 >> 16;
2037 gpa = svm->nested.vmcb_iopm + (port / 8);
2038 bit = port % 8;
2039 val = 0;
2040
2041 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2042 val &= (1 << bit);
2043
2044 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2045 }
2046
2047 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2048 {
2049 u32 offset, msr, value;
2050 int write, mask;
2051
2052 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2053 return NESTED_EXIT_HOST;
2054
2055 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2056 offset = svm_msrpm_offset(msr);
2057 write = svm->vmcb->control.exit_info_1 & 1;
2058 mask = 1 << ((2 * (msr & 0xf)) + write);
2059
2060 if (offset == MSR_INVALID)
2061 return NESTED_EXIT_DONE;
2062
2063 /* Offset is in 32 bit units but need in 8 bit units */
2064 offset *= 4;
2065
2066 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2067 return NESTED_EXIT_DONE;
2068
2069 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2070 }
2071
2072 static int nested_svm_exit_special(struct vcpu_svm *svm)
2073 {
2074 u32 exit_code = svm->vmcb->control.exit_code;
2075
2076 switch (exit_code) {
2077 case SVM_EXIT_INTR:
2078 case SVM_EXIT_NMI:
2079 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2080 return NESTED_EXIT_HOST;
2081 case SVM_EXIT_NPF:
2082 /* For now we are always handling NPFs when using them */
2083 if (npt_enabled)
2084 return NESTED_EXIT_HOST;
2085 break;
2086 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2087 /* When we're shadowing, trap PFs, but not async PF */
2088 if (!npt_enabled && svm->apf_reason == 0)
2089 return NESTED_EXIT_HOST;
2090 break;
2091 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2092 nm_interception(svm);
2093 break;
2094 default:
2095 break;
2096 }
2097
2098 return NESTED_EXIT_CONTINUE;
2099 }
2100
2101 /*
2102 * If this function returns true, this #vmexit was already handled
2103 */
2104 static int nested_svm_intercept(struct vcpu_svm *svm)
2105 {
2106 u32 exit_code = svm->vmcb->control.exit_code;
2107 int vmexit = NESTED_EXIT_HOST;
2108
2109 switch (exit_code) {
2110 case SVM_EXIT_MSR:
2111 vmexit = nested_svm_exit_handled_msr(svm);
2112 break;
2113 case SVM_EXIT_IOIO:
2114 vmexit = nested_svm_intercept_ioio(svm);
2115 break;
2116 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2117 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2118 if (svm->nested.intercept_cr & bit)
2119 vmexit = NESTED_EXIT_DONE;
2120 break;
2121 }
2122 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2123 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2124 if (svm->nested.intercept_dr & bit)
2125 vmexit = NESTED_EXIT_DONE;
2126 break;
2127 }
2128 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2129 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2130 if (svm->nested.intercept_exceptions & excp_bits)
2131 vmexit = NESTED_EXIT_DONE;
2132 /* async page fault always cause vmexit */
2133 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2134 svm->apf_reason != 0)
2135 vmexit = NESTED_EXIT_DONE;
2136 break;
2137 }
2138 case SVM_EXIT_ERR: {
2139 vmexit = NESTED_EXIT_DONE;
2140 break;
2141 }
2142 default: {
2143 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2144 if (svm->nested.intercept & exit_bits)
2145 vmexit = NESTED_EXIT_DONE;
2146 }
2147 }
2148
2149 return vmexit;
2150 }
2151
2152 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2153 {
2154 int vmexit;
2155
2156 vmexit = nested_svm_intercept(svm);
2157
2158 if (vmexit == NESTED_EXIT_DONE)
2159 nested_svm_vmexit(svm);
2160
2161 return vmexit;
2162 }
2163
2164 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2165 {
2166 struct vmcb_control_area *dst = &dst_vmcb->control;
2167 struct vmcb_control_area *from = &from_vmcb->control;
2168
2169 dst->intercept_cr = from->intercept_cr;
2170 dst->intercept_dr = from->intercept_dr;
2171 dst->intercept_exceptions = from->intercept_exceptions;
2172 dst->intercept = from->intercept;
2173 dst->iopm_base_pa = from->iopm_base_pa;
2174 dst->msrpm_base_pa = from->msrpm_base_pa;
2175 dst->tsc_offset = from->tsc_offset;
2176 dst->asid = from->asid;
2177 dst->tlb_ctl = from->tlb_ctl;
2178 dst->int_ctl = from->int_ctl;
2179 dst->int_vector = from->int_vector;
2180 dst->int_state = from->int_state;
2181 dst->exit_code = from->exit_code;
2182 dst->exit_code_hi = from->exit_code_hi;
2183 dst->exit_info_1 = from->exit_info_1;
2184 dst->exit_info_2 = from->exit_info_2;
2185 dst->exit_int_info = from->exit_int_info;
2186 dst->exit_int_info_err = from->exit_int_info_err;
2187 dst->nested_ctl = from->nested_ctl;
2188 dst->event_inj = from->event_inj;
2189 dst->event_inj_err = from->event_inj_err;
2190 dst->nested_cr3 = from->nested_cr3;
2191 dst->lbr_ctl = from->lbr_ctl;
2192 }
2193
2194 static int nested_svm_vmexit(struct vcpu_svm *svm)
2195 {
2196 struct vmcb *nested_vmcb;
2197 struct vmcb *hsave = svm->nested.hsave;
2198 struct vmcb *vmcb = svm->vmcb;
2199 struct page *page;
2200
2201 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2202 vmcb->control.exit_info_1,
2203 vmcb->control.exit_info_2,
2204 vmcb->control.exit_int_info,
2205 vmcb->control.exit_int_info_err,
2206 KVM_ISA_SVM);
2207
2208 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2209 if (!nested_vmcb)
2210 return 1;
2211
2212 /* Exit Guest-Mode */
2213 leave_guest_mode(&svm->vcpu);
2214 svm->nested.vmcb = 0;
2215
2216 /* Give the current vmcb to the guest */
2217 disable_gif(svm);
2218
2219 nested_vmcb->save.es = vmcb->save.es;
2220 nested_vmcb->save.cs = vmcb->save.cs;
2221 nested_vmcb->save.ss = vmcb->save.ss;
2222 nested_vmcb->save.ds = vmcb->save.ds;
2223 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2224 nested_vmcb->save.idtr = vmcb->save.idtr;
2225 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2226 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2227 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2228 nested_vmcb->save.cr2 = vmcb->save.cr2;
2229 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2230 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2231 nested_vmcb->save.rip = vmcb->save.rip;
2232 nested_vmcb->save.rsp = vmcb->save.rsp;
2233 nested_vmcb->save.rax = vmcb->save.rax;
2234 nested_vmcb->save.dr7 = vmcb->save.dr7;
2235 nested_vmcb->save.dr6 = vmcb->save.dr6;
2236 nested_vmcb->save.cpl = vmcb->save.cpl;
2237
2238 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2239 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2240 nested_vmcb->control.int_state = vmcb->control.int_state;
2241 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2242 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2243 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2244 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2245 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2246 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2247 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2248
2249 /*
2250 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2251 * to make sure that we do not lose injected events. So check event_inj
2252 * here and copy it to exit_int_info if it is valid.
2253 * Exit_int_info and event_inj can't be both valid because the case
2254 * below only happens on a VMRUN instruction intercept which has
2255 * no valid exit_int_info set.
2256 */
2257 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2258 struct vmcb_control_area *nc = &nested_vmcb->control;
2259
2260 nc->exit_int_info = vmcb->control.event_inj;
2261 nc->exit_int_info_err = vmcb->control.event_inj_err;
2262 }
2263
2264 nested_vmcb->control.tlb_ctl = 0;
2265 nested_vmcb->control.event_inj = 0;
2266 nested_vmcb->control.event_inj_err = 0;
2267
2268 /* We always set V_INTR_MASKING and remember the old value in hflags */
2269 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2270 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2271
2272 /* Restore the original control entries */
2273 copy_vmcb_control_area(vmcb, hsave);
2274
2275 kvm_clear_exception_queue(&svm->vcpu);
2276 kvm_clear_interrupt_queue(&svm->vcpu);
2277
2278 svm->nested.nested_cr3 = 0;
2279
2280 /* Restore selected save entries */
2281 svm->vmcb->save.es = hsave->save.es;
2282 svm->vmcb->save.cs = hsave->save.cs;
2283 svm->vmcb->save.ss = hsave->save.ss;
2284 svm->vmcb->save.ds = hsave->save.ds;
2285 svm->vmcb->save.gdtr = hsave->save.gdtr;
2286 svm->vmcb->save.idtr = hsave->save.idtr;
2287 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2288 svm_set_efer(&svm->vcpu, hsave->save.efer);
2289 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2290 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2291 if (npt_enabled) {
2292 svm->vmcb->save.cr3 = hsave->save.cr3;
2293 svm->vcpu.arch.cr3 = hsave->save.cr3;
2294 } else {
2295 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2296 }
2297 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2298 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2299 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2300 svm->vmcb->save.dr7 = 0;
2301 svm->vmcb->save.cpl = 0;
2302 svm->vmcb->control.exit_int_info = 0;
2303
2304 mark_all_dirty(svm->vmcb);
2305
2306 nested_svm_unmap(page);
2307
2308 nested_svm_uninit_mmu_context(&svm->vcpu);
2309 kvm_mmu_reset_context(&svm->vcpu);
2310 kvm_mmu_load(&svm->vcpu);
2311
2312 return 0;
2313 }
2314
2315 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2316 {
2317 /*
2318 * This function merges the msr permission bitmaps of kvm and the
2319 * nested vmcb. It is omptimized in that it only merges the parts where
2320 * the kvm msr permission bitmap may contain zero bits
2321 */
2322 int i;
2323
2324 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2325 return true;
2326
2327 for (i = 0; i < MSRPM_OFFSETS; i++) {
2328 u32 value, p;
2329 u64 offset;
2330
2331 if (msrpm_offsets[i] == 0xffffffff)
2332 break;
2333
2334 p = msrpm_offsets[i];
2335 offset = svm->nested.vmcb_msrpm + (p * 4);
2336
2337 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2338 return false;
2339
2340 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2341 }
2342
2343 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2344
2345 return true;
2346 }
2347
2348 static bool nested_vmcb_checks(struct vmcb *vmcb)
2349 {
2350 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2351 return false;
2352
2353 if (vmcb->control.asid == 0)
2354 return false;
2355
2356 if (vmcb->control.nested_ctl && !npt_enabled)
2357 return false;
2358
2359 return true;
2360 }
2361
2362 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2363 {
2364 struct vmcb *nested_vmcb;
2365 struct vmcb *hsave = svm->nested.hsave;
2366 struct vmcb *vmcb = svm->vmcb;
2367 struct page *page;
2368 u64 vmcb_gpa;
2369
2370 vmcb_gpa = svm->vmcb->save.rax;
2371
2372 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2373 if (!nested_vmcb)
2374 return false;
2375
2376 if (!nested_vmcb_checks(nested_vmcb)) {
2377 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2378 nested_vmcb->control.exit_code_hi = 0;
2379 nested_vmcb->control.exit_info_1 = 0;
2380 nested_vmcb->control.exit_info_2 = 0;
2381
2382 nested_svm_unmap(page);
2383
2384 return false;
2385 }
2386
2387 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2388 nested_vmcb->save.rip,
2389 nested_vmcb->control.int_ctl,
2390 nested_vmcb->control.event_inj,
2391 nested_vmcb->control.nested_ctl);
2392
2393 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2394 nested_vmcb->control.intercept_cr >> 16,
2395 nested_vmcb->control.intercept_exceptions,
2396 nested_vmcb->control.intercept);
2397
2398 /* Clear internal status */
2399 kvm_clear_exception_queue(&svm->vcpu);
2400 kvm_clear_interrupt_queue(&svm->vcpu);
2401
2402 /*
2403 * Save the old vmcb, so we don't need to pick what we save, but can
2404 * restore everything when a VMEXIT occurs
2405 */
2406 hsave->save.es = vmcb->save.es;
2407 hsave->save.cs = vmcb->save.cs;
2408 hsave->save.ss = vmcb->save.ss;
2409 hsave->save.ds = vmcb->save.ds;
2410 hsave->save.gdtr = vmcb->save.gdtr;
2411 hsave->save.idtr = vmcb->save.idtr;
2412 hsave->save.efer = svm->vcpu.arch.efer;
2413 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2414 hsave->save.cr4 = svm->vcpu.arch.cr4;
2415 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2416 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2417 hsave->save.rsp = vmcb->save.rsp;
2418 hsave->save.rax = vmcb->save.rax;
2419 if (npt_enabled)
2420 hsave->save.cr3 = vmcb->save.cr3;
2421 else
2422 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2423
2424 copy_vmcb_control_area(hsave, vmcb);
2425
2426 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2427 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2428 else
2429 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2430
2431 if (nested_vmcb->control.nested_ctl) {
2432 kvm_mmu_unload(&svm->vcpu);
2433 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2434 nested_svm_init_mmu_context(&svm->vcpu);
2435 }
2436
2437 /* Load the nested guest state */
2438 svm->vmcb->save.es = nested_vmcb->save.es;
2439 svm->vmcb->save.cs = nested_vmcb->save.cs;
2440 svm->vmcb->save.ss = nested_vmcb->save.ss;
2441 svm->vmcb->save.ds = nested_vmcb->save.ds;
2442 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2443 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2444 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2445 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2446 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2447 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2448 if (npt_enabled) {
2449 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2450 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2451 } else
2452 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2453
2454 /* Guest paging mode is active - reset mmu */
2455 kvm_mmu_reset_context(&svm->vcpu);
2456
2457 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2458 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2459 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2460 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2461
2462 /* In case we don't even reach vcpu_run, the fields are not updated */
2463 svm->vmcb->save.rax = nested_vmcb->save.rax;
2464 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2465 svm->vmcb->save.rip = nested_vmcb->save.rip;
2466 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2467 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2468 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2469
2470 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2471 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2472
2473 /* cache intercepts */
2474 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2475 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2476 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2477 svm->nested.intercept = nested_vmcb->control.intercept;
2478
2479 svm_flush_tlb(&svm->vcpu);
2480 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2481 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2482 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2483 else
2484 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2485
2486 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2487 /* We only want the cr8 intercept bits of the guest */
2488 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2489 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2490 }
2491
2492 /* We don't want to see VMMCALLs from a nested guest */
2493 clr_intercept(svm, INTERCEPT_VMMCALL);
2494
2495 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2496 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2497 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2498 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2499 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2500 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2501
2502 nested_svm_unmap(page);
2503
2504 /* Enter Guest-Mode */
2505 enter_guest_mode(&svm->vcpu);
2506
2507 /*
2508 * Merge guest and host intercepts - must be called with vcpu in
2509 * guest-mode to take affect here
2510 */
2511 recalc_intercepts(svm);
2512
2513 svm->nested.vmcb = vmcb_gpa;
2514
2515 enable_gif(svm);
2516
2517 mark_all_dirty(svm->vmcb);
2518
2519 return true;
2520 }
2521
2522 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2523 {
2524 to_vmcb->save.fs = from_vmcb->save.fs;
2525 to_vmcb->save.gs = from_vmcb->save.gs;
2526 to_vmcb->save.tr = from_vmcb->save.tr;
2527 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2528 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2529 to_vmcb->save.star = from_vmcb->save.star;
2530 to_vmcb->save.lstar = from_vmcb->save.lstar;
2531 to_vmcb->save.cstar = from_vmcb->save.cstar;
2532 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2533 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2534 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2535 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2536 }
2537
2538 static int vmload_interception(struct vcpu_svm *svm)
2539 {
2540 struct vmcb *nested_vmcb;
2541 struct page *page;
2542
2543 if (nested_svm_check_permissions(svm))
2544 return 1;
2545
2546 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2547 if (!nested_vmcb)
2548 return 1;
2549
2550 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2551 skip_emulated_instruction(&svm->vcpu);
2552
2553 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2554 nested_svm_unmap(page);
2555
2556 return 1;
2557 }
2558
2559 static int vmsave_interception(struct vcpu_svm *svm)
2560 {
2561 struct vmcb *nested_vmcb;
2562 struct page *page;
2563
2564 if (nested_svm_check_permissions(svm))
2565 return 1;
2566
2567 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2568 if (!nested_vmcb)
2569 return 1;
2570
2571 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2572 skip_emulated_instruction(&svm->vcpu);
2573
2574 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2575 nested_svm_unmap(page);
2576
2577 return 1;
2578 }
2579
2580 static int vmrun_interception(struct vcpu_svm *svm)
2581 {
2582 if (nested_svm_check_permissions(svm))
2583 return 1;
2584
2585 /* Save rip after vmrun instruction */
2586 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2587
2588 if (!nested_svm_vmrun(svm))
2589 return 1;
2590
2591 if (!nested_svm_vmrun_msrpm(svm))
2592 goto failed;
2593
2594 return 1;
2595
2596 failed:
2597
2598 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2599 svm->vmcb->control.exit_code_hi = 0;
2600 svm->vmcb->control.exit_info_1 = 0;
2601 svm->vmcb->control.exit_info_2 = 0;
2602
2603 nested_svm_vmexit(svm);
2604
2605 return 1;
2606 }
2607
2608 static int stgi_interception(struct vcpu_svm *svm)
2609 {
2610 if (nested_svm_check_permissions(svm))
2611 return 1;
2612
2613 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2614 skip_emulated_instruction(&svm->vcpu);
2615 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2616
2617 enable_gif(svm);
2618
2619 return 1;
2620 }
2621
2622 static int clgi_interception(struct vcpu_svm *svm)
2623 {
2624 if (nested_svm_check_permissions(svm))
2625 return 1;
2626
2627 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2628 skip_emulated_instruction(&svm->vcpu);
2629
2630 disable_gif(svm);
2631
2632 /* After a CLGI no interrupts should come */
2633 svm_clear_vintr(svm);
2634 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2635
2636 mark_dirty(svm->vmcb, VMCB_INTR);
2637
2638 return 1;
2639 }
2640
2641 static int invlpga_interception(struct vcpu_svm *svm)
2642 {
2643 struct kvm_vcpu *vcpu = &svm->vcpu;
2644
2645 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2646 vcpu->arch.regs[VCPU_REGS_RAX]);
2647
2648 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2649 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2650
2651 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2652 skip_emulated_instruction(&svm->vcpu);
2653 return 1;
2654 }
2655
2656 static int skinit_interception(struct vcpu_svm *svm)
2657 {
2658 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2659
2660 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2661 return 1;
2662 }
2663
2664 static int xsetbv_interception(struct vcpu_svm *svm)
2665 {
2666 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2667 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2668
2669 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2670 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2671 skip_emulated_instruction(&svm->vcpu);
2672 }
2673
2674 return 1;
2675 }
2676
2677 static int invalid_op_interception(struct vcpu_svm *svm)
2678 {
2679 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2680 return 1;
2681 }
2682
2683 static int task_switch_interception(struct vcpu_svm *svm)
2684 {
2685 u16 tss_selector;
2686 int reason;
2687 int int_type = svm->vmcb->control.exit_int_info &
2688 SVM_EXITINTINFO_TYPE_MASK;
2689 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2690 uint32_t type =
2691 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2692 uint32_t idt_v =
2693 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2694 bool has_error_code = false;
2695 u32 error_code = 0;
2696
2697 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2698
2699 if (svm->vmcb->control.exit_info_2 &
2700 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2701 reason = TASK_SWITCH_IRET;
2702 else if (svm->vmcb->control.exit_info_2 &
2703 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2704 reason = TASK_SWITCH_JMP;
2705 else if (idt_v)
2706 reason = TASK_SWITCH_GATE;
2707 else
2708 reason = TASK_SWITCH_CALL;
2709
2710 if (reason == TASK_SWITCH_GATE) {
2711 switch (type) {
2712 case SVM_EXITINTINFO_TYPE_NMI:
2713 svm->vcpu.arch.nmi_injected = false;
2714 break;
2715 case SVM_EXITINTINFO_TYPE_EXEPT:
2716 if (svm->vmcb->control.exit_info_2 &
2717 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2718 has_error_code = true;
2719 error_code =
2720 (u32)svm->vmcb->control.exit_info_2;
2721 }
2722 kvm_clear_exception_queue(&svm->vcpu);
2723 break;
2724 case SVM_EXITINTINFO_TYPE_INTR:
2725 kvm_clear_interrupt_queue(&svm->vcpu);
2726 break;
2727 default:
2728 break;
2729 }
2730 }
2731
2732 if (reason != TASK_SWITCH_GATE ||
2733 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2734 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2735 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2736 skip_emulated_instruction(&svm->vcpu);
2737
2738 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2739 has_error_code, error_code) == EMULATE_FAIL) {
2740 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2741 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2742 svm->vcpu.run->internal.ndata = 0;
2743 return 0;
2744 }
2745 return 1;
2746 }
2747
2748 static int cpuid_interception(struct vcpu_svm *svm)
2749 {
2750 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2751 kvm_emulate_cpuid(&svm->vcpu);
2752 return 1;
2753 }
2754
2755 static int iret_interception(struct vcpu_svm *svm)
2756 {
2757 ++svm->vcpu.stat.nmi_window_exits;
2758 clr_intercept(svm, INTERCEPT_IRET);
2759 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2760 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2761 return 1;
2762 }
2763
2764 static int invlpg_interception(struct vcpu_svm *svm)
2765 {
2766 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2767 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2768
2769 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2770 skip_emulated_instruction(&svm->vcpu);
2771 return 1;
2772 }
2773
2774 static int emulate_on_interception(struct vcpu_svm *svm)
2775 {
2776 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2777 }
2778
2779 static int rdpmc_interception(struct vcpu_svm *svm)
2780 {
2781 int err;
2782
2783 if (!static_cpu_has(X86_FEATURE_NRIPS))
2784 return emulate_on_interception(svm);
2785
2786 err = kvm_rdpmc(&svm->vcpu);
2787 kvm_complete_insn_gp(&svm->vcpu, err);
2788
2789 return 1;
2790 }
2791
2792 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2793 {
2794 unsigned long cr0 = svm->vcpu.arch.cr0;
2795 bool ret = false;
2796 u64 intercept;
2797
2798 intercept = svm->nested.intercept;
2799
2800 if (!is_guest_mode(&svm->vcpu) ||
2801 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2802 return false;
2803
2804 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2805 val &= ~SVM_CR0_SELECTIVE_MASK;
2806
2807 if (cr0 ^ val) {
2808 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2809 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2810 }
2811
2812 return ret;
2813 }
2814
2815 #define CR_VALID (1ULL << 63)
2816
2817 static int cr_interception(struct vcpu_svm *svm)
2818 {
2819 int reg, cr;
2820 unsigned long val;
2821 int err;
2822
2823 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2824 return emulate_on_interception(svm);
2825
2826 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2827 return emulate_on_interception(svm);
2828
2829 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2830 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2831
2832 err = 0;
2833 if (cr >= 16) { /* mov to cr */
2834 cr -= 16;
2835 val = kvm_register_read(&svm->vcpu, reg);
2836 switch (cr) {
2837 case 0:
2838 if (!check_selective_cr0_intercepted(svm, val))
2839 err = kvm_set_cr0(&svm->vcpu, val);
2840 else
2841 return 1;
2842
2843 break;
2844 case 3:
2845 err = kvm_set_cr3(&svm->vcpu, val);
2846 break;
2847 case 4:
2848 err = kvm_set_cr4(&svm->vcpu, val);
2849 break;
2850 case 8:
2851 err = kvm_set_cr8(&svm->vcpu, val);
2852 break;
2853 default:
2854 WARN(1, "unhandled write to CR%d", cr);
2855 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2856 return 1;
2857 }
2858 } else { /* mov from cr */
2859 switch (cr) {
2860 case 0:
2861 val = kvm_read_cr0(&svm->vcpu);
2862 break;
2863 case 2:
2864 val = svm->vcpu.arch.cr2;
2865 break;
2866 case 3:
2867 val = kvm_read_cr3(&svm->vcpu);
2868 break;
2869 case 4:
2870 val = kvm_read_cr4(&svm->vcpu);
2871 break;
2872 case 8:
2873 val = kvm_get_cr8(&svm->vcpu);
2874 break;
2875 default:
2876 WARN(1, "unhandled read from CR%d", cr);
2877 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2878 return 1;
2879 }
2880 kvm_register_write(&svm->vcpu, reg, val);
2881 }
2882 kvm_complete_insn_gp(&svm->vcpu, err);
2883
2884 return 1;
2885 }
2886
2887 static int dr_interception(struct vcpu_svm *svm)
2888 {
2889 int reg, dr;
2890 unsigned long val;
2891 int err;
2892
2893 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2894 return emulate_on_interception(svm);
2895
2896 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2897 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2898
2899 if (dr >= 16) { /* mov to DRn */
2900 val = kvm_register_read(&svm->vcpu, reg);
2901 kvm_set_dr(&svm->vcpu, dr - 16, val);
2902 } else {
2903 err = kvm_get_dr(&svm->vcpu, dr, &val);
2904 if (!err)
2905 kvm_register_write(&svm->vcpu, reg, val);
2906 }
2907
2908 skip_emulated_instruction(&svm->vcpu);
2909
2910 return 1;
2911 }
2912
2913 static int cr8_write_interception(struct vcpu_svm *svm)
2914 {
2915 struct kvm_run *kvm_run = svm->vcpu.run;
2916 int r;
2917
2918 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2919 /* instruction emulation calls kvm_set_cr8() */
2920 r = cr_interception(svm);
2921 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2922 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2923 return r;
2924 }
2925 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2926 return r;
2927 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2928 return 0;
2929 }
2930
2931 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
2932 {
2933 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2934 return vmcb->control.tsc_offset +
2935 svm_scale_tsc(vcpu, native_read_tsc());
2936 }
2937
2938 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2939 {
2940 struct vcpu_svm *svm = to_svm(vcpu);
2941
2942 switch (ecx) {
2943 case MSR_IA32_TSC: {
2944 *data = svm->vmcb->control.tsc_offset +
2945 svm_scale_tsc(vcpu, native_read_tsc());
2946
2947 break;
2948 }
2949 case MSR_STAR:
2950 *data = svm->vmcb->save.star;
2951 break;
2952 #ifdef CONFIG_X86_64
2953 case MSR_LSTAR:
2954 *data = svm->vmcb->save.lstar;
2955 break;
2956 case MSR_CSTAR:
2957 *data = svm->vmcb->save.cstar;
2958 break;
2959 case MSR_KERNEL_GS_BASE:
2960 *data = svm->vmcb->save.kernel_gs_base;
2961 break;
2962 case MSR_SYSCALL_MASK:
2963 *data = svm->vmcb->save.sfmask;
2964 break;
2965 #endif
2966 case MSR_IA32_SYSENTER_CS:
2967 *data = svm->vmcb->save.sysenter_cs;
2968 break;
2969 case MSR_IA32_SYSENTER_EIP:
2970 *data = svm->sysenter_eip;
2971 break;
2972 case MSR_IA32_SYSENTER_ESP:
2973 *data = svm->sysenter_esp;
2974 break;
2975 /*
2976 * Nobody will change the following 5 values in the VMCB so we can
2977 * safely return them on rdmsr. They will always be 0 until LBRV is
2978 * implemented.
2979 */
2980 case MSR_IA32_DEBUGCTLMSR:
2981 *data = svm->vmcb->save.dbgctl;
2982 break;
2983 case MSR_IA32_LASTBRANCHFROMIP:
2984 *data = svm->vmcb->save.br_from;
2985 break;
2986 case MSR_IA32_LASTBRANCHTOIP:
2987 *data = svm->vmcb->save.br_to;
2988 break;
2989 case MSR_IA32_LASTINTFROMIP:
2990 *data = svm->vmcb->save.last_excp_from;
2991 break;
2992 case MSR_IA32_LASTINTTOIP:
2993 *data = svm->vmcb->save.last_excp_to;
2994 break;
2995 case MSR_VM_HSAVE_PA:
2996 *data = svm->nested.hsave_msr;
2997 break;
2998 case MSR_VM_CR:
2999 *data = svm->nested.vm_cr_msr;
3000 break;
3001 case MSR_IA32_UCODE_REV:
3002 *data = 0x01000065;
3003 break;
3004 default:
3005 return kvm_get_msr_common(vcpu, ecx, data);
3006 }
3007 return 0;
3008 }
3009
3010 static int rdmsr_interception(struct vcpu_svm *svm)
3011 {
3012 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3013 u64 data;
3014
3015 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3016 trace_kvm_msr_read_ex(ecx);
3017 kvm_inject_gp(&svm->vcpu, 0);
3018 } else {
3019 trace_kvm_msr_read(ecx, data);
3020
3021 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3022 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3023 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3024 skip_emulated_instruction(&svm->vcpu);
3025 }
3026 return 1;
3027 }
3028
3029 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3030 {
3031 struct vcpu_svm *svm = to_svm(vcpu);
3032 int svm_dis, chg_mask;
3033
3034 if (data & ~SVM_VM_CR_VALID_MASK)
3035 return 1;
3036
3037 chg_mask = SVM_VM_CR_VALID_MASK;
3038
3039 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3040 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3041
3042 svm->nested.vm_cr_msr &= ~chg_mask;
3043 svm->nested.vm_cr_msr |= (data & chg_mask);
3044
3045 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3046
3047 /* check for svm_disable while efer.svme is set */
3048 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3049 return 1;
3050
3051 return 0;
3052 }
3053
3054 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3055 {
3056 struct vcpu_svm *svm = to_svm(vcpu);
3057
3058 switch (ecx) {
3059 case MSR_IA32_TSC:
3060 kvm_write_tsc(vcpu, data);
3061 break;
3062 case MSR_STAR:
3063 svm->vmcb->save.star = data;
3064 break;
3065 #ifdef CONFIG_X86_64
3066 case MSR_LSTAR:
3067 svm->vmcb->save.lstar = data;
3068 break;
3069 case MSR_CSTAR:
3070 svm->vmcb->save.cstar = data;
3071 break;
3072 case MSR_KERNEL_GS_BASE:
3073 svm->vmcb->save.kernel_gs_base = data;
3074 break;
3075 case MSR_SYSCALL_MASK:
3076 svm->vmcb->save.sfmask = data;
3077 break;
3078 #endif
3079 case MSR_IA32_SYSENTER_CS:
3080 svm->vmcb->save.sysenter_cs = data;
3081 break;
3082 case MSR_IA32_SYSENTER_EIP:
3083 svm->sysenter_eip = data;
3084 svm->vmcb->save.sysenter_eip = data;
3085 break;
3086 case MSR_IA32_SYSENTER_ESP:
3087 svm->sysenter_esp = data;
3088 svm->vmcb->save.sysenter_esp = data;
3089 break;
3090 case MSR_IA32_DEBUGCTLMSR:
3091 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3092 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3093 __func__, data);
3094 break;
3095 }
3096 if (data & DEBUGCTL_RESERVED_BITS)
3097 return 1;
3098
3099 svm->vmcb->save.dbgctl = data;
3100 mark_dirty(svm->vmcb, VMCB_LBR);
3101 if (data & (1ULL<<0))
3102 svm_enable_lbrv(svm);
3103 else
3104 svm_disable_lbrv(svm);
3105 break;
3106 case MSR_VM_HSAVE_PA:
3107 svm->nested.hsave_msr = data;
3108 break;
3109 case MSR_VM_CR:
3110 return svm_set_vm_cr(vcpu, data);
3111 case MSR_VM_IGNNE:
3112 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3113 break;
3114 default:
3115 return kvm_set_msr_common(vcpu, ecx, data);
3116 }
3117 return 0;
3118 }
3119
3120 static int wrmsr_interception(struct vcpu_svm *svm)
3121 {
3122 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3123 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3124 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3125
3126
3127 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3128 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3129 trace_kvm_msr_write_ex(ecx, data);
3130 kvm_inject_gp(&svm->vcpu, 0);
3131 } else {
3132 trace_kvm_msr_write(ecx, data);
3133 skip_emulated_instruction(&svm->vcpu);
3134 }
3135 return 1;
3136 }
3137
3138 static int msr_interception(struct vcpu_svm *svm)
3139 {
3140 if (svm->vmcb->control.exit_info_1)
3141 return wrmsr_interception(svm);
3142 else
3143 return rdmsr_interception(svm);
3144 }
3145
3146 static int interrupt_window_interception(struct vcpu_svm *svm)
3147 {
3148 struct kvm_run *kvm_run = svm->vcpu.run;
3149
3150 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3151 svm_clear_vintr(svm);
3152 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3153 mark_dirty(svm->vmcb, VMCB_INTR);
3154 /*
3155 * If the user space waits to inject interrupts, exit as soon as
3156 * possible
3157 */
3158 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3159 kvm_run->request_interrupt_window &&
3160 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3161 ++svm->vcpu.stat.irq_window_exits;
3162 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3163 return 0;
3164 }
3165
3166 return 1;
3167 }
3168
3169 static int pause_interception(struct vcpu_svm *svm)
3170 {
3171 kvm_vcpu_on_spin(&(svm->vcpu));
3172 return 1;
3173 }
3174
3175 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3176 [SVM_EXIT_READ_CR0] = cr_interception,
3177 [SVM_EXIT_READ_CR3] = cr_interception,
3178 [SVM_EXIT_READ_CR4] = cr_interception,
3179 [SVM_EXIT_READ_CR8] = cr_interception,
3180 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3181 [SVM_EXIT_WRITE_CR0] = cr_interception,
3182 [SVM_EXIT_WRITE_CR3] = cr_interception,
3183 [SVM_EXIT_WRITE_CR4] = cr_interception,
3184 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3185 [SVM_EXIT_READ_DR0] = dr_interception,
3186 [SVM_EXIT_READ_DR1] = dr_interception,
3187 [SVM_EXIT_READ_DR2] = dr_interception,
3188 [SVM_EXIT_READ_DR3] = dr_interception,
3189 [SVM_EXIT_READ_DR4] = dr_interception,
3190 [SVM_EXIT_READ_DR5] = dr_interception,
3191 [SVM_EXIT_READ_DR6] = dr_interception,
3192 [SVM_EXIT_READ_DR7] = dr_interception,
3193 [SVM_EXIT_WRITE_DR0] = dr_interception,
3194 [SVM_EXIT_WRITE_DR1] = dr_interception,
3195 [SVM_EXIT_WRITE_DR2] = dr_interception,
3196 [SVM_EXIT_WRITE_DR3] = dr_interception,
3197 [SVM_EXIT_WRITE_DR4] = dr_interception,
3198 [SVM_EXIT_WRITE_DR5] = dr_interception,
3199 [SVM_EXIT_WRITE_DR6] = dr_interception,
3200 [SVM_EXIT_WRITE_DR7] = dr_interception,
3201 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3202 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3203 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3204 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3205 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3206 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3207 [SVM_EXIT_INTR] = intr_interception,
3208 [SVM_EXIT_NMI] = nmi_interception,
3209 [SVM_EXIT_SMI] = nop_on_interception,
3210 [SVM_EXIT_INIT] = nop_on_interception,
3211 [SVM_EXIT_VINTR] = interrupt_window_interception,
3212 [SVM_EXIT_RDPMC] = rdpmc_interception,
3213 [SVM_EXIT_CPUID] = cpuid_interception,
3214 [SVM_EXIT_IRET] = iret_interception,
3215 [SVM_EXIT_INVD] = emulate_on_interception,
3216 [SVM_EXIT_PAUSE] = pause_interception,
3217 [SVM_EXIT_HLT] = halt_interception,
3218 [SVM_EXIT_INVLPG] = invlpg_interception,
3219 [SVM_EXIT_INVLPGA] = invlpga_interception,
3220 [SVM_EXIT_IOIO] = io_interception,
3221 [SVM_EXIT_MSR] = msr_interception,
3222 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3223 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3224 [SVM_EXIT_VMRUN] = vmrun_interception,
3225 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3226 [SVM_EXIT_VMLOAD] = vmload_interception,
3227 [SVM_EXIT_VMSAVE] = vmsave_interception,
3228 [SVM_EXIT_STGI] = stgi_interception,
3229 [SVM_EXIT_CLGI] = clgi_interception,
3230 [SVM_EXIT_SKINIT] = skinit_interception,
3231 [SVM_EXIT_WBINVD] = emulate_on_interception,
3232 [SVM_EXIT_MONITOR] = invalid_op_interception,
3233 [SVM_EXIT_MWAIT] = invalid_op_interception,
3234 [SVM_EXIT_XSETBV] = xsetbv_interception,
3235 [SVM_EXIT_NPF] = pf_interception,
3236 };
3237
3238 static void dump_vmcb(struct kvm_vcpu *vcpu)
3239 {
3240 struct vcpu_svm *svm = to_svm(vcpu);
3241 struct vmcb_control_area *control = &svm->vmcb->control;
3242 struct vmcb_save_area *save = &svm->vmcb->save;
3243
3244 pr_err("VMCB Control Area:\n");
3245 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3246 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3247 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3248 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3249 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3250 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3251 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3252 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3253 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3254 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3255 pr_err("%-20s%d\n", "asid:", control->asid);
3256 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3257 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3258 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3259 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3260 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3261 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3262 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3263 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3264 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3265 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3266 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3267 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3268 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3269 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3270 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3271 pr_err("VMCB State Save Area:\n");
3272 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3273 "es:",
3274 save->es.selector, save->es.attrib,
3275 save->es.limit, save->es.base);
3276 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3277 "cs:",
3278 save->cs.selector, save->cs.attrib,
3279 save->cs.limit, save->cs.base);
3280 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3281 "ss:",
3282 save->ss.selector, save->ss.attrib,
3283 save->ss.limit, save->ss.base);
3284 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3285 "ds:",
3286 save->ds.selector, save->ds.attrib,
3287 save->ds.limit, save->ds.base);
3288 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3289 "fs:",
3290 save->fs.selector, save->fs.attrib,
3291 save->fs.limit, save->fs.base);
3292 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3293 "gs:",
3294 save->gs.selector, save->gs.attrib,
3295 save->gs.limit, save->gs.base);
3296 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3297 "gdtr:",
3298 save->gdtr.selector, save->gdtr.attrib,
3299 save->gdtr.limit, save->gdtr.base);
3300 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3301 "ldtr:",
3302 save->ldtr.selector, save->ldtr.attrib,
3303 save->ldtr.limit, save->ldtr.base);
3304 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3305 "idtr:",
3306 save->idtr.selector, save->idtr.attrib,
3307 save->idtr.limit, save->idtr.base);
3308 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3309 "tr:",
3310 save->tr.selector, save->tr.attrib,
3311 save->tr.limit, save->tr.base);
3312 pr_err("cpl: %d efer: %016llx\n",
3313 save->cpl, save->efer);
3314 pr_err("%-15s %016llx %-13s %016llx\n",
3315 "cr0:", save->cr0, "cr2:", save->cr2);
3316 pr_err("%-15s %016llx %-13s %016llx\n",
3317 "cr3:", save->cr3, "cr4:", save->cr4);
3318 pr_err("%-15s %016llx %-13s %016llx\n",
3319 "dr6:", save->dr6, "dr7:", save->dr7);
3320 pr_err("%-15s %016llx %-13s %016llx\n",
3321 "rip:", save->rip, "rflags:", save->rflags);
3322 pr_err("%-15s %016llx %-13s %016llx\n",
3323 "rsp:", save->rsp, "rax:", save->rax);
3324 pr_err("%-15s %016llx %-13s %016llx\n",
3325 "star:", save->star, "lstar:", save->lstar);
3326 pr_err("%-15s %016llx %-13s %016llx\n",
3327 "cstar:", save->cstar, "sfmask:", save->sfmask);
3328 pr_err("%-15s %016llx %-13s %016llx\n",
3329 "kernel_gs_base:", save->kernel_gs_base,
3330 "sysenter_cs:", save->sysenter_cs);
3331 pr_err("%-15s %016llx %-13s %016llx\n",
3332 "sysenter_esp:", save->sysenter_esp,
3333 "sysenter_eip:", save->sysenter_eip);
3334 pr_err("%-15s %016llx %-13s %016llx\n",
3335 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3336 pr_err("%-15s %016llx %-13s %016llx\n",
3337 "br_from:", save->br_from, "br_to:", save->br_to);
3338 pr_err("%-15s %016llx %-13s %016llx\n",
3339 "excp_from:", save->last_excp_from,
3340 "excp_to:", save->last_excp_to);
3341 }
3342
3343 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3344 {
3345 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3346
3347 *info1 = control->exit_info_1;
3348 *info2 = control->exit_info_2;
3349 }
3350
3351 static int handle_exit(struct kvm_vcpu *vcpu)
3352 {
3353 struct vcpu_svm *svm = to_svm(vcpu);
3354 struct kvm_run *kvm_run = vcpu->run;
3355 u32 exit_code = svm->vmcb->control.exit_code;
3356
3357 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3358 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3359 if (npt_enabled)
3360 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3361
3362 if (unlikely(svm->nested.exit_required)) {
3363 nested_svm_vmexit(svm);
3364 svm->nested.exit_required = false;
3365
3366 return 1;
3367 }
3368
3369 if (is_guest_mode(vcpu)) {
3370 int vmexit;
3371
3372 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3373 svm->vmcb->control.exit_info_1,
3374 svm->vmcb->control.exit_info_2,
3375 svm->vmcb->control.exit_int_info,
3376 svm->vmcb->control.exit_int_info_err,
3377 KVM_ISA_SVM);
3378
3379 vmexit = nested_svm_exit_special(svm);
3380
3381 if (vmexit == NESTED_EXIT_CONTINUE)
3382 vmexit = nested_svm_exit_handled(svm);
3383
3384 if (vmexit == NESTED_EXIT_DONE)
3385 return 1;
3386 }
3387
3388 svm_complete_interrupts(svm);
3389
3390 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3391 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3392 kvm_run->fail_entry.hardware_entry_failure_reason
3393 = svm->vmcb->control.exit_code;
3394 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3395 dump_vmcb(vcpu);
3396 return 0;
3397 }
3398
3399 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3400 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3401 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3402 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3403 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3404 "exit_code 0x%x\n",
3405 __func__, svm->vmcb->control.exit_int_info,
3406 exit_code);
3407
3408 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3409 || !svm_exit_handlers[exit_code]) {
3410 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3411 kvm_run->hw.hardware_exit_reason = exit_code;
3412 return 0;
3413 }
3414
3415 return svm_exit_handlers[exit_code](svm);
3416 }
3417
3418 static void reload_tss(struct kvm_vcpu *vcpu)
3419 {
3420 int cpu = raw_smp_processor_id();
3421
3422 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3423 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3424 load_TR_desc();
3425 }
3426
3427 static void pre_svm_run(struct vcpu_svm *svm)
3428 {
3429 int cpu = raw_smp_processor_id();
3430
3431 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3432
3433 /* FIXME: handle wraparound of asid_generation */
3434 if (svm->asid_generation != sd->asid_generation)
3435 new_asid(svm, sd);
3436 }
3437
3438 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3439 {
3440 struct vcpu_svm *svm = to_svm(vcpu);
3441
3442 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3443 vcpu->arch.hflags |= HF_NMI_MASK;
3444 set_intercept(svm, INTERCEPT_IRET);
3445 ++vcpu->stat.nmi_injections;
3446 }
3447
3448 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3449 {
3450 struct vmcb_control_area *control;
3451
3452 control = &svm->vmcb->control;
3453 control->int_vector = irq;
3454 control->int_ctl &= ~V_INTR_PRIO_MASK;
3455 control->int_ctl |= V_IRQ_MASK |
3456 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3457 mark_dirty(svm->vmcb, VMCB_INTR);
3458 }
3459
3460 static void svm_set_irq(struct kvm_vcpu *vcpu)
3461 {
3462 struct vcpu_svm *svm = to_svm(vcpu);
3463
3464 BUG_ON(!(gif_set(svm)));
3465
3466 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3467 ++vcpu->stat.irq_injections;
3468
3469 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3470 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3471 }
3472
3473 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3474 {
3475 struct vcpu_svm *svm = to_svm(vcpu);
3476
3477 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3478 return;
3479
3480 if (irr == -1)
3481 return;
3482
3483 if (tpr >= irr)
3484 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3485 }
3486
3487 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3488 {
3489 struct vcpu_svm *svm = to_svm(vcpu);
3490 struct vmcb *vmcb = svm->vmcb;
3491 int ret;
3492 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3493 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3494 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3495
3496 return ret;
3497 }
3498
3499 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3500 {
3501 struct vcpu_svm *svm = to_svm(vcpu);
3502
3503 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3504 }
3505
3506 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3507 {
3508 struct vcpu_svm *svm = to_svm(vcpu);
3509
3510 if (masked) {
3511 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3512 set_intercept(svm, INTERCEPT_IRET);
3513 } else {
3514 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3515 clr_intercept(svm, INTERCEPT_IRET);
3516 }
3517 }
3518
3519 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3520 {
3521 struct vcpu_svm *svm = to_svm(vcpu);
3522 struct vmcb *vmcb = svm->vmcb;
3523 int ret;
3524
3525 if (!gif_set(svm) ||
3526 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3527 return 0;
3528
3529 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3530
3531 if (is_guest_mode(vcpu))
3532 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3533
3534 return ret;
3535 }
3536
3537 static void enable_irq_window(struct kvm_vcpu *vcpu)
3538 {
3539 struct vcpu_svm *svm = to_svm(vcpu);
3540
3541 /*
3542 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3543 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3544 * get that intercept, this function will be called again though and
3545 * we'll get the vintr intercept.
3546 */
3547 if (gif_set(svm) && nested_svm_intr(svm)) {
3548 svm_set_vintr(svm);
3549 svm_inject_irq(svm, 0x0);
3550 }
3551 }
3552
3553 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3554 {
3555 struct vcpu_svm *svm = to_svm(vcpu);
3556
3557 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3558 == HF_NMI_MASK)
3559 return; /* IRET will cause a vm exit */
3560
3561 /*
3562 * Something prevents NMI from been injected. Single step over possible
3563 * problem (IRET or exception injection or interrupt shadow)
3564 */
3565 svm->nmi_singlestep = true;
3566 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3567 update_db_intercept(vcpu);
3568 }
3569
3570 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3571 {
3572 return 0;
3573 }
3574
3575 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3576 {
3577 struct vcpu_svm *svm = to_svm(vcpu);
3578
3579 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3580 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3581 else
3582 svm->asid_generation--;
3583 }
3584
3585 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3586 {
3587 }
3588
3589 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3590 {
3591 struct vcpu_svm *svm = to_svm(vcpu);
3592
3593 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3594 return;
3595
3596 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3597 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3598 kvm_set_cr8(vcpu, cr8);
3599 }
3600 }
3601
3602 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3603 {
3604 struct vcpu_svm *svm = to_svm(vcpu);
3605 u64 cr8;
3606
3607 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3608 return;
3609
3610 cr8 = kvm_get_cr8(vcpu);
3611 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3612 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3613 }
3614
3615 static void svm_complete_interrupts(struct vcpu_svm *svm)
3616 {
3617 u8 vector;
3618 int type;
3619 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3620 unsigned int3_injected = svm->int3_injected;
3621
3622 svm->int3_injected = 0;
3623
3624 /*
3625 * If we've made progress since setting HF_IRET_MASK, we've
3626 * executed an IRET and can allow NMI injection.
3627 */
3628 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3629 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3630 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3631 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3632 }
3633
3634 svm->vcpu.arch.nmi_injected = false;
3635 kvm_clear_exception_queue(&svm->vcpu);
3636 kvm_clear_interrupt_queue(&svm->vcpu);
3637
3638 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3639 return;
3640
3641 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3642
3643 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3644 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3645
3646 switch (type) {
3647 case SVM_EXITINTINFO_TYPE_NMI:
3648 svm->vcpu.arch.nmi_injected = true;
3649 break;
3650 case SVM_EXITINTINFO_TYPE_EXEPT:
3651 /*
3652 * In case of software exceptions, do not reinject the vector,
3653 * but re-execute the instruction instead. Rewind RIP first
3654 * if we emulated INT3 before.
3655 */
3656 if (kvm_exception_is_soft(vector)) {
3657 if (vector == BP_VECTOR && int3_injected &&
3658 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3659 kvm_rip_write(&svm->vcpu,
3660 kvm_rip_read(&svm->vcpu) -
3661 int3_injected);
3662 break;
3663 }
3664 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3665 u32 err = svm->vmcb->control.exit_int_info_err;
3666 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3667
3668 } else
3669 kvm_requeue_exception(&svm->vcpu, vector);
3670 break;
3671 case SVM_EXITINTINFO_TYPE_INTR:
3672 kvm_queue_interrupt(&svm->vcpu, vector, false);
3673 break;
3674 default:
3675 break;
3676 }
3677 }
3678
3679 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3680 {
3681 struct vcpu_svm *svm = to_svm(vcpu);
3682 struct vmcb_control_area *control = &svm->vmcb->control;
3683
3684 control->exit_int_info = control->event_inj;
3685 control->exit_int_info_err = control->event_inj_err;
3686 control->event_inj = 0;
3687 svm_complete_interrupts(svm);
3688 }
3689
3690 #ifdef CONFIG_X86_64
3691 #define R "r"
3692 #else
3693 #define R "e"
3694 #endif
3695
3696 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3697 {
3698 struct vcpu_svm *svm = to_svm(vcpu);
3699
3700 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3701 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3702 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3703
3704 /*
3705 * A vmexit emulation is required before the vcpu can be executed
3706 * again.
3707 */
3708 if (unlikely(svm->nested.exit_required))
3709 return;
3710
3711 pre_svm_run(svm);
3712
3713 sync_lapic_to_cr8(vcpu);
3714
3715 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3716
3717 clgi();
3718
3719 local_irq_enable();
3720
3721 asm volatile (
3722 "push %%"R"bp; \n\t"
3723 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3724 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3725 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3726 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3727 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3728 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3729 #ifdef CONFIG_X86_64
3730 "mov %c[r8](%[svm]), %%r8 \n\t"
3731 "mov %c[r9](%[svm]), %%r9 \n\t"
3732 "mov %c[r10](%[svm]), %%r10 \n\t"
3733 "mov %c[r11](%[svm]), %%r11 \n\t"
3734 "mov %c[r12](%[svm]), %%r12 \n\t"
3735 "mov %c[r13](%[svm]), %%r13 \n\t"
3736 "mov %c[r14](%[svm]), %%r14 \n\t"
3737 "mov %c[r15](%[svm]), %%r15 \n\t"
3738 #endif
3739
3740 /* Enter guest mode */
3741 "push %%"R"ax \n\t"
3742 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3743 __ex(SVM_VMLOAD) "\n\t"
3744 __ex(SVM_VMRUN) "\n\t"
3745 __ex(SVM_VMSAVE) "\n\t"
3746 "pop %%"R"ax \n\t"
3747
3748 /* Save guest registers, load host registers */
3749 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3750 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3751 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3752 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3753 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3754 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3755 #ifdef CONFIG_X86_64
3756 "mov %%r8, %c[r8](%[svm]) \n\t"
3757 "mov %%r9, %c[r9](%[svm]) \n\t"
3758 "mov %%r10, %c[r10](%[svm]) \n\t"
3759 "mov %%r11, %c[r11](%[svm]) \n\t"
3760 "mov %%r12, %c[r12](%[svm]) \n\t"
3761 "mov %%r13, %c[r13](%[svm]) \n\t"
3762 "mov %%r14, %c[r14](%[svm]) \n\t"
3763 "mov %%r15, %c[r15](%[svm]) \n\t"
3764 #endif
3765 "pop %%"R"bp"
3766 :
3767 : [svm]"a"(svm),
3768 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3769 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3770 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3771 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3772 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3773 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3774 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3775 #ifdef CONFIG_X86_64
3776 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3777 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3778 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3779 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3780 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3781 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3782 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3783 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3784 #endif
3785 : "cc", "memory"
3786 , R"bx", R"cx", R"dx", R"si", R"di"
3787 #ifdef CONFIG_X86_64
3788 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3789 #endif
3790 );
3791
3792 #ifdef CONFIG_X86_64
3793 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3794 #else
3795 loadsegment(fs, svm->host.fs);
3796 #ifndef CONFIG_X86_32_LAZY_GS
3797 loadsegment(gs, svm->host.gs);
3798 #endif
3799 #endif
3800
3801 reload_tss(vcpu);
3802
3803 local_irq_disable();
3804
3805 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3806 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3807 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3808 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3809
3810 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3811
3812 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3813 kvm_before_handle_nmi(&svm->vcpu);
3814
3815 stgi();
3816
3817 /* Any pending NMI will happen here */
3818
3819 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3820 kvm_after_handle_nmi(&svm->vcpu);
3821
3822 sync_cr8_to_lapic(vcpu);
3823
3824 svm->next_rip = 0;
3825
3826 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3827
3828 /* if exit due to PF check for async PF */
3829 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3830 svm->apf_reason = kvm_read_and_reset_pf_reason();
3831
3832 if (npt_enabled) {
3833 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3834 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3835 }
3836
3837 /*
3838 * We need to handle MC intercepts here before the vcpu has a chance to
3839 * change the physical cpu
3840 */
3841 if (unlikely(svm->vmcb->control.exit_code ==
3842 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3843 svm_handle_mce(svm);
3844
3845 mark_all_clean(svm->vmcb);
3846 }
3847
3848 #undef R
3849
3850 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3851 {
3852 struct vcpu_svm *svm = to_svm(vcpu);
3853
3854 svm->vmcb->save.cr3 = root;
3855 mark_dirty(svm->vmcb, VMCB_CR);
3856 svm_flush_tlb(vcpu);
3857 }
3858
3859 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3860 {
3861 struct vcpu_svm *svm = to_svm(vcpu);
3862
3863 svm->vmcb->control.nested_cr3 = root;
3864 mark_dirty(svm->vmcb, VMCB_NPT);
3865
3866 /* Also sync guest cr3 here in case we live migrate */
3867 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3868 mark_dirty(svm->vmcb, VMCB_CR);
3869
3870 svm_flush_tlb(vcpu);
3871 }
3872
3873 static int is_disabled(void)
3874 {
3875 u64 vm_cr;
3876
3877 rdmsrl(MSR_VM_CR, vm_cr);
3878 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3879 return 1;
3880
3881 return 0;
3882 }
3883
3884 static void
3885 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3886 {
3887 /*
3888 * Patch in the VMMCALL instruction:
3889 */
3890 hypercall[0] = 0x0f;
3891 hypercall[1] = 0x01;
3892 hypercall[2] = 0xd9;
3893 }
3894
3895 static void svm_check_processor_compat(void *rtn)
3896 {
3897 *(int *)rtn = 0;
3898 }
3899
3900 static bool svm_cpu_has_accelerated_tpr(void)
3901 {
3902 return false;
3903 }
3904
3905 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3906 {
3907 return 0;
3908 }
3909
3910 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3911 {
3912 }
3913
3914 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3915 {
3916 switch (func) {
3917 case 0x80000001:
3918 if (nested)
3919 entry->ecx |= (1 << 2); /* Set SVM bit */
3920 break;
3921 case 0x8000000A:
3922 entry->eax = 1; /* SVM revision 1 */
3923 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3924 ASID emulation to nested SVM */
3925 entry->ecx = 0; /* Reserved */
3926 entry->edx = 0; /* Per default do not support any
3927 additional features */
3928
3929 /* Support next_rip if host supports it */
3930 if (boot_cpu_has(X86_FEATURE_NRIPS))
3931 entry->edx |= SVM_FEATURE_NRIP;
3932
3933 /* Support NPT for the guest if enabled */
3934 if (npt_enabled)
3935 entry->edx |= SVM_FEATURE_NPT;
3936
3937 break;
3938 }
3939 }
3940
3941 static int svm_get_lpage_level(void)
3942 {
3943 return PT_PDPE_LEVEL;
3944 }
3945
3946 static bool svm_rdtscp_supported(void)
3947 {
3948 return false;
3949 }
3950
3951 static bool svm_has_wbinvd_exit(void)
3952 {
3953 return true;
3954 }
3955
3956 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3957 {
3958 struct vcpu_svm *svm = to_svm(vcpu);
3959
3960 set_exception_intercept(svm, NM_VECTOR);
3961 update_cr0_intercept(svm);
3962 }
3963
3964 #define PRE_EX(exit) { .exit_code = (exit), \
3965 .stage = X86_ICPT_PRE_EXCEPT, }
3966 #define POST_EX(exit) { .exit_code = (exit), \
3967 .stage = X86_ICPT_POST_EXCEPT, }
3968 #define POST_MEM(exit) { .exit_code = (exit), \
3969 .stage = X86_ICPT_POST_MEMACCESS, }
3970
3971 static struct __x86_intercept {
3972 u32 exit_code;
3973 enum x86_intercept_stage stage;
3974 } x86_intercept_map[] = {
3975 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3976 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3977 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3978 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3979 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3980 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3981 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3982 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3983 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3984 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3985 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3986 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3987 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3988 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3989 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3990 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3991 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3992 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3993 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3994 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3995 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3996 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3997 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3998 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3999 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4000 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4001 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4002 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4003 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4004 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4005 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4006 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4007 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4008 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4009 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4010 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4011 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4012 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4013 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4014 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4015 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4016 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4017 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4018 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4019 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4020 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4021 };
4022
4023 #undef PRE_EX
4024 #undef POST_EX
4025 #undef POST_MEM
4026
4027 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4028 struct x86_instruction_info *info,
4029 enum x86_intercept_stage stage)
4030 {
4031 struct vcpu_svm *svm = to_svm(vcpu);
4032 int vmexit, ret = X86EMUL_CONTINUE;
4033 struct __x86_intercept icpt_info;
4034 struct vmcb *vmcb = svm->vmcb;
4035
4036 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4037 goto out;
4038
4039 icpt_info = x86_intercept_map[info->intercept];
4040
4041 if (stage != icpt_info.stage)
4042 goto out;
4043
4044 switch (icpt_info.exit_code) {
4045 case SVM_EXIT_READ_CR0:
4046 if (info->intercept == x86_intercept_cr_read)
4047 icpt_info.exit_code += info->modrm_reg;
4048 break;
4049 case SVM_EXIT_WRITE_CR0: {
4050 unsigned long cr0, val;
4051 u64 intercept;
4052
4053 if (info->intercept == x86_intercept_cr_write)
4054 icpt_info.exit_code += info->modrm_reg;
4055
4056 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4057 break;
4058
4059 intercept = svm->nested.intercept;
4060
4061 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4062 break;
4063
4064 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4065 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4066
4067 if (info->intercept == x86_intercept_lmsw) {
4068 cr0 &= 0xfUL;
4069 val &= 0xfUL;
4070 /* lmsw can't clear PE - catch this here */
4071 if (cr0 & X86_CR0_PE)
4072 val |= X86_CR0_PE;
4073 }
4074
4075 if (cr0 ^ val)
4076 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4077
4078 break;
4079 }
4080 case SVM_EXIT_READ_DR0:
4081 case SVM_EXIT_WRITE_DR0:
4082 icpt_info.exit_code += info->modrm_reg;
4083 break;
4084 case SVM_EXIT_MSR:
4085 if (info->intercept == x86_intercept_wrmsr)
4086 vmcb->control.exit_info_1 = 1;
4087 else
4088 vmcb->control.exit_info_1 = 0;
4089 break;
4090 case SVM_EXIT_PAUSE:
4091 /*
4092 * We get this for NOP only, but pause
4093 * is rep not, check this here
4094 */
4095 if (info->rep_prefix != REPE_PREFIX)
4096 goto out;
4097 case SVM_EXIT_IOIO: {
4098 u64 exit_info;
4099 u32 bytes;
4100
4101 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4102
4103 if (info->intercept == x86_intercept_in ||
4104 info->intercept == x86_intercept_ins) {
4105 exit_info |= SVM_IOIO_TYPE_MASK;
4106 bytes = info->src_bytes;
4107 } else {
4108 bytes = info->dst_bytes;
4109 }
4110
4111 if (info->intercept == x86_intercept_outs ||
4112 info->intercept == x86_intercept_ins)
4113 exit_info |= SVM_IOIO_STR_MASK;
4114
4115 if (info->rep_prefix)
4116 exit_info |= SVM_IOIO_REP_MASK;
4117
4118 bytes = min(bytes, 4u);
4119
4120 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4121
4122 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4123
4124 vmcb->control.exit_info_1 = exit_info;
4125 vmcb->control.exit_info_2 = info->next_rip;
4126
4127 break;
4128 }
4129 default:
4130 break;
4131 }
4132
4133 vmcb->control.next_rip = info->next_rip;
4134 vmcb->control.exit_code = icpt_info.exit_code;
4135 vmexit = nested_svm_exit_handled(svm);
4136
4137 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4138 : X86EMUL_CONTINUE;
4139
4140 out:
4141 return ret;
4142 }
4143
4144 static struct kvm_x86_ops svm_x86_ops = {
4145 .cpu_has_kvm_support = has_svm,
4146 .disabled_by_bios = is_disabled,
4147 .hardware_setup = svm_hardware_setup,
4148 .hardware_unsetup = svm_hardware_unsetup,
4149 .check_processor_compatibility = svm_check_processor_compat,
4150 .hardware_enable = svm_hardware_enable,
4151 .hardware_disable = svm_hardware_disable,
4152 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4153
4154 .vcpu_create = svm_create_vcpu,
4155 .vcpu_free = svm_free_vcpu,
4156 .vcpu_reset = svm_vcpu_reset,
4157
4158 .prepare_guest_switch = svm_prepare_guest_switch,
4159 .vcpu_load = svm_vcpu_load,
4160 .vcpu_put = svm_vcpu_put,
4161
4162 .set_guest_debug = svm_guest_debug,
4163 .get_msr = svm_get_msr,
4164 .set_msr = svm_set_msr,
4165 .get_segment_base = svm_get_segment_base,
4166 .get_segment = svm_get_segment,
4167 .set_segment = svm_set_segment,
4168 .get_cpl = svm_get_cpl,
4169 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4170 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4171 .decache_cr3 = svm_decache_cr3,
4172 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4173 .set_cr0 = svm_set_cr0,
4174 .set_cr3 = svm_set_cr3,
4175 .set_cr4 = svm_set_cr4,
4176 .set_efer = svm_set_efer,
4177 .get_idt = svm_get_idt,
4178 .set_idt = svm_set_idt,
4179 .get_gdt = svm_get_gdt,
4180 .set_gdt = svm_set_gdt,
4181 .set_dr7 = svm_set_dr7,
4182 .cache_reg = svm_cache_reg,
4183 .get_rflags = svm_get_rflags,
4184 .set_rflags = svm_set_rflags,
4185 .fpu_activate = svm_fpu_activate,
4186 .fpu_deactivate = svm_fpu_deactivate,
4187
4188 .tlb_flush = svm_flush_tlb,
4189
4190 .run = svm_vcpu_run,
4191 .handle_exit = handle_exit,
4192 .skip_emulated_instruction = skip_emulated_instruction,
4193 .set_interrupt_shadow = svm_set_interrupt_shadow,
4194 .get_interrupt_shadow = svm_get_interrupt_shadow,
4195 .patch_hypercall = svm_patch_hypercall,
4196 .set_irq = svm_set_irq,
4197 .set_nmi = svm_inject_nmi,
4198 .queue_exception = svm_queue_exception,
4199 .cancel_injection = svm_cancel_injection,
4200 .interrupt_allowed = svm_interrupt_allowed,
4201 .nmi_allowed = svm_nmi_allowed,
4202 .get_nmi_mask = svm_get_nmi_mask,
4203 .set_nmi_mask = svm_set_nmi_mask,
4204 .enable_nmi_window = enable_nmi_window,
4205 .enable_irq_window = enable_irq_window,
4206 .update_cr8_intercept = update_cr8_intercept,
4207
4208 .set_tss_addr = svm_set_tss_addr,
4209 .get_tdp_level = get_npt_level,
4210 .get_mt_mask = svm_get_mt_mask,
4211
4212 .get_exit_info = svm_get_exit_info,
4213
4214 .get_lpage_level = svm_get_lpage_level,
4215
4216 .cpuid_update = svm_cpuid_update,
4217
4218 .rdtscp_supported = svm_rdtscp_supported,
4219
4220 .set_supported_cpuid = svm_set_supported_cpuid,
4221
4222 .has_wbinvd_exit = svm_has_wbinvd_exit,
4223
4224 .set_tsc_khz = svm_set_tsc_khz,
4225 .write_tsc_offset = svm_write_tsc_offset,
4226 .adjust_tsc_offset = svm_adjust_tsc_offset,
4227 .compute_tsc_offset = svm_compute_tsc_offset,
4228 .read_l1_tsc = svm_read_l1_tsc,
4229
4230 .set_tdp_cr3 = set_tdp_cr3,
4231
4232 .check_intercept = svm_check_intercept,
4233 };
4234
4235 static int __init svm_init(void)
4236 {
4237 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4238 __alignof__(struct vcpu_svm), THIS_MODULE);
4239 }
4240
4241 static void __exit svm_exit(void)
4242 {
4243 kvm_exit();
4244 }
4245
4246 module_init(svm_init)
4247 module_exit(svm_exit)