]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
KVM: MMU: Do not unconditionally read PDPTE from guest memory
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_TSC_RATE (1 << 4)
55 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
56 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
57 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
58 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
59
60 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
61 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
62 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
63
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
65
66 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
67 #define TSC_RATIO_MIN 0x0000000000000001ULL
68 #define TSC_RATIO_MAX 0x000000ffffffffffULL
69
70 static bool erratum_383_found __read_mostly;
71
72 static const u32 host_save_user_msrs[] = {
73 #ifdef CONFIG_X86_64
74 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
75 MSR_FS_BASE,
76 #endif
77 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
78 };
79
80 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
81
82 struct kvm_vcpu;
83
84 struct nested_state {
85 struct vmcb *hsave;
86 u64 hsave_msr;
87 u64 vm_cr_msr;
88 u64 vmcb;
89
90 /* These are the merged vectors */
91 u32 *msrpm;
92
93 /* gpa pointers to the real vectors */
94 u64 vmcb_msrpm;
95 u64 vmcb_iopm;
96
97 /* A VMEXIT is required but not yet emulated */
98 bool exit_required;
99
100 /* cache for intercepts of the guest */
101 u32 intercept_cr;
102 u32 intercept_dr;
103 u32 intercept_exceptions;
104 u64 intercept;
105
106 /* Nested Paging related state */
107 u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS 16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114 struct kvm_vcpu vcpu;
115 struct vmcb *vmcb;
116 unsigned long vmcb_pa;
117 struct svm_cpu_data *svm_data;
118 uint64_t asid_generation;
119 uint64_t sysenter_esp;
120 uint64_t sysenter_eip;
121
122 u64 next_rip;
123
124 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125 struct {
126 u16 fs;
127 u16 gs;
128 u16 ldt;
129 u64 gs_base;
130 } host;
131
132 u32 *msrpm;
133
134 ulong nmi_iret_rip;
135
136 struct nested_state nested;
137
138 bool nmi_singlestep;
139
140 unsigned int3_injected;
141 unsigned long int3_rip;
142 u32 apf_reason;
143
144 u64 tsc_ratio;
145 };
146
147 static DEFINE_PER_CPU(u64, current_tsc_ratio);
148 #define TSC_RATIO_DEFAULT 0x0100000000ULL
149
150 #define MSR_INVALID 0xffffffffU
151
152 static struct svm_direct_access_msrs {
153 u32 index; /* Index of the MSR */
154 bool always; /* True if intercept is always on */
155 } direct_access_msrs[] = {
156 { .index = MSR_STAR, .always = true },
157 { .index = MSR_IA32_SYSENTER_CS, .always = true },
158 #ifdef CONFIG_X86_64
159 { .index = MSR_GS_BASE, .always = true },
160 { .index = MSR_FS_BASE, .always = true },
161 { .index = MSR_KERNEL_GS_BASE, .always = true },
162 { .index = MSR_LSTAR, .always = true },
163 { .index = MSR_CSTAR, .always = true },
164 { .index = MSR_SYSCALL_MASK, .always = true },
165 #endif
166 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
167 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
168 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
169 { .index = MSR_IA32_LASTINTTOIP, .always = false },
170 { .index = MSR_INVALID, .always = false },
171 };
172
173 /* enable NPT for AMD64 and X86 with PAE */
174 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
175 static bool npt_enabled = true;
176 #else
177 static bool npt_enabled;
178 #endif
179 static int npt = 1;
180
181 module_param(npt, int, S_IRUGO);
182
183 static int nested = 1;
184 module_param(nested, int, S_IRUGO);
185
186 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
187 static void svm_complete_interrupts(struct vcpu_svm *svm);
188
189 static int nested_svm_exit_handled(struct vcpu_svm *svm);
190 static int nested_svm_intercept(struct vcpu_svm *svm);
191 static int nested_svm_vmexit(struct vcpu_svm *svm);
192 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
193 bool has_error_code, u32 error_code);
194 static u64 __scale_tsc(u64 ratio, u64 tsc);
195
196 enum {
197 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
198 pause filter count */
199 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
200 VMCB_ASID, /* ASID */
201 VMCB_INTR, /* int_ctl, int_vector */
202 VMCB_NPT, /* npt_en, nCR3, gPAT */
203 VMCB_CR, /* CR0, CR3, CR4, EFER */
204 VMCB_DR, /* DR6, DR7 */
205 VMCB_DT, /* GDT, IDT */
206 VMCB_SEG, /* CS, DS, SS, ES, CPL */
207 VMCB_CR2, /* CR2 only */
208 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
209 VMCB_DIRTY_MAX,
210 };
211
212 /* TPR and CR2 are always written before VMRUN */
213 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
214
215 static inline void mark_all_dirty(struct vmcb *vmcb)
216 {
217 vmcb->control.clean = 0;
218 }
219
220 static inline void mark_all_clean(struct vmcb *vmcb)
221 {
222 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
223 & ~VMCB_ALWAYS_DIRTY_MASK;
224 }
225
226 static inline void mark_dirty(struct vmcb *vmcb, int bit)
227 {
228 vmcb->control.clean &= ~(1 << bit);
229 }
230
231 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
232 {
233 return container_of(vcpu, struct vcpu_svm, vcpu);
234 }
235
236 static void recalc_intercepts(struct vcpu_svm *svm)
237 {
238 struct vmcb_control_area *c, *h;
239 struct nested_state *g;
240
241 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
242
243 if (!is_guest_mode(&svm->vcpu))
244 return;
245
246 c = &svm->vmcb->control;
247 h = &svm->nested.hsave->control;
248 g = &svm->nested;
249
250 c->intercept_cr = h->intercept_cr | g->intercept_cr;
251 c->intercept_dr = h->intercept_dr | g->intercept_dr;
252 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
253 c->intercept = h->intercept | g->intercept;
254 }
255
256 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
257 {
258 if (is_guest_mode(&svm->vcpu))
259 return svm->nested.hsave;
260 else
261 return svm->vmcb;
262 }
263
264 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
265 {
266 struct vmcb *vmcb = get_host_vmcb(svm);
267
268 vmcb->control.intercept_cr |= (1U << bit);
269
270 recalc_intercepts(svm);
271 }
272
273 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
274 {
275 struct vmcb *vmcb = get_host_vmcb(svm);
276
277 vmcb->control.intercept_cr &= ~(1U << bit);
278
279 recalc_intercepts(svm);
280 }
281
282 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 return vmcb->control.intercept_cr & (1U << bit);
287 }
288
289 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
290 {
291 struct vmcb *vmcb = get_host_vmcb(svm);
292
293 vmcb->control.intercept_dr |= (1U << bit);
294
295 recalc_intercepts(svm);
296 }
297
298 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
299 {
300 struct vmcb *vmcb = get_host_vmcb(svm);
301
302 vmcb->control.intercept_dr &= ~(1U << bit);
303
304 recalc_intercepts(svm);
305 }
306
307 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_exceptions |= (1U << bit);
312
313 recalc_intercepts(svm);
314 }
315
316 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
317 {
318 struct vmcb *vmcb = get_host_vmcb(svm);
319
320 vmcb->control.intercept_exceptions &= ~(1U << bit);
321
322 recalc_intercepts(svm);
323 }
324
325 static inline void set_intercept(struct vcpu_svm *svm, int bit)
326 {
327 struct vmcb *vmcb = get_host_vmcb(svm);
328
329 vmcb->control.intercept |= (1ULL << bit);
330
331 recalc_intercepts(svm);
332 }
333
334 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
335 {
336 struct vmcb *vmcb = get_host_vmcb(svm);
337
338 vmcb->control.intercept &= ~(1ULL << bit);
339
340 recalc_intercepts(svm);
341 }
342
343 static inline void enable_gif(struct vcpu_svm *svm)
344 {
345 svm->vcpu.arch.hflags |= HF_GIF_MASK;
346 }
347
348 static inline void disable_gif(struct vcpu_svm *svm)
349 {
350 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
351 }
352
353 static inline bool gif_set(struct vcpu_svm *svm)
354 {
355 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
356 }
357
358 static unsigned long iopm_base;
359
360 struct kvm_ldttss_desc {
361 u16 limit0;
362 u16 base0;
363 unsigned base1:8, type:5, dpl:2, p:1;
364 unsigned limit1:4, zero0:3, g:1, base2:8;
365 u32 base3;
366 u32 zero1;
367 } __attribute__((packed));
368
369 struct svm_cpu_data {
370 int cpu;
371
372 u64 asid_generation;
373 u32 max_asid;
374 u32 next_asid;
375 struct kvm_ldttss_desc *tss_desc;
376
377 struct page *save_area;
378 };
379
380 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
381
382 struct svm_init_data {
383 int cpu;
384 int r;
385 };
386
387 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
388
389 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
390 #define MSRS_RANGE_SIZE 2048
391 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
392
393 static u32 svm_msrpm_offset(u32 msr)
394 {
395 u32 offset;
396 int i;
397
398 for (i = 0; i < NUM_MSR_MAPS; i++) {
399 if (msr < msrpm_ranges[i] ||
400 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
401 continue;
402
403 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
404 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
405
406 /* Now we have the u8 offset - but need the u32 offset */
407 return offset / 4;
408 }
409
410 /* MSR not in any range */
411 return MSR_INVALID;
412 }
413
414 #define MAX_INST_SIZE 15
415
416 static inline void clgi(void)
417 {
418 asm volatile (__ex(SVM_CLGI));
419 }
420
421 static inline void stgi(void)
422 {
423 asm volatile (__ex(SVM_STGI));
424 }
425
426 static inline void invlpga(unsigned long addr, u32 asid)
427 {
428 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
429 }
430
431 static int get_npt_level(void)
432 {
433 #ifdef CONFIG_X86_64
434 return PT64_ROOT_LEVEL;
435 #else
436 return PT32E_ROOT_LEVEL;
437 #endif
438 }
439
440 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
441 {
442 vcpu->arch.efer = efer;
443 if (!npt_enabled && !(efer & EFER_LMA))
444 efer &= ~EFER_LME;
445
446 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
447 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
448 }
449
450 static int is_external_interrupt(u32 info)
451 {
452 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
453 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
454 }
455
456 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
457 {
458 struct vcpu_svm *svm = to_svm(vcpu);
459 u32 ret = 0;
460
461 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
462 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
463 return ret & mask;
464 }
465
466 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
467 {
468 struct vcpu_svm *svm = to_svm(vcpu);
469
470 if (mask == 0)
471 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
472 else
473 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
474
475 }
476
477 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
478 {
479 struct vcpu_svm *svm = to_svm(vcpu);
480
481 if (svm->vmcb->control.next_rip != 0)
482 svm->next_rip = svm->vmcb->control.next_rip;
483
484 if (!svm->next_rip) {
485 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
486 EMULATE_DONE)
487 printk(KERN_DEBUG "%s: NOP\n", __func__);
488 return;
489 }
490 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
491 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
492 __func__, kvm_rip_read(vcpu), svm->next_rip);
493
494 kvm_rip_write(vcpu, svm->next_rip);
495 svm_set_interrupt_shadow(vcpu, 0);
496 }
497
498 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
499 bool has_error_code, u32 error_code,
500 bool reinject)
501 {
502 struct vcpu_svm *svm = to_svm(vcpu);
503
504 /*
505 * If we are within a nested VM we'd better #VMEXIT and let the guest
506 * handle the exception
507 */
508 if (!reinject &&
509 nested_svm_check_exception(svm, nr, has_error_code, error_code))
510 return;
511
512 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
513 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
514
515 /*
516 * For guest debugging where we have to reinject #BP if some
517 * INT3 is guest-owned:
518 * Emulate nRIP by moving RIP forward. Will fail if injection
519 * raises a fault that is not intercepted. Still better than
520 * failing in all cases.
521 */
522 skip_emulated_instruction(&svm->vcpu);
523 rip = kvm_rip_read(&svm->vcpu);
524 svm->int3_rip = rip + svm->vmcb->save.cs.base;
525 svm->int3_injected = rip - old_rip;
526 }
527
528 svm->vmcb->control.event_inj = nr
529 | SVM_EVTINJ_VALID
530 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
531 | SVM_EVTINJ_TYPE_EXEPT;
532 svm->vmcb->control.event_inj_err = error_code;
533 }
534
535 static void svm_init_erratum_383(void)
536 {
537 u32 low, high;
538 int err;
539 u64 val;
540
541 if (!cpu_has_amd_erratum(amd_erratum_383))
542 return;
543
544 /* Use _safe variants to not break nested virtualization */
545 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
546 if (err)
547 return;
548
549 val |= (1ULL << 47);
550
551 low = lower_32_bits(val);
552 high = upper_32_bits(val);
553
554 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
555
556 erratum_383_found = true;
557 }
558
559 static int has_svm(void)
560 {
561 const char *msg;
562
563 if (!cpu_has_svm(&msg)) {
564 printk(KERN_INFO "has_svm: %s\n", msg);
565 return 0;
566 }
567
568 return 1;
569 }
570
571 static void svm_hardware_disable(void *garbage)
572 {
573 /* Make sure we clean up behind us */
574 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
575 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
576
577 cpu_svm_disable();
578 }
579
580 static int svm_hardware_enable(void *garbage)
581 {
582
583 struct svm_cpu_data *sd;
584 uint64_t efer;
585 struct desc_ptr gdt_descr;
586 struct desc_struct *gdt;
587 int me = raw_smp_processor_id();
588
589 rdmsrl(MSR_EFER, efer);
590 if (efer & EFER_SVME)
591 return -EBUSY;
592
593 if (!has_svm()) {
594 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
595 me);
596 return -EINVAL;
597 }
598 sd = per_cpu(svm_data, me);
599
600 if (!sd) {
601 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
602 me);
603 return -EINVAL;
604 }
605
606 sd->asid_generation = 1;
607 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
608 sd->next_asid = sd->max_asid + 1;
609
610 native_store_gdt(&gdt_descr);
611 gdt = (struct desc_struct *)gdt_descr.address;
612 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
613
614 wrmsrl(MSR_EFER, efer | EFER_SVME);
615
616 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
617
618 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
619 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
620 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
621 }
622
623 svm_init_erratum_383();
624
625 return 0;
626 }
627
628 static void svm_cpu_uninit(int cpu)
629 {
630 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
631
632 if (!sd)
633 return;
634
635 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
636 __free_page(sd->save_area);
637 kfree(sd);
638 }
639
640 static int svm_cpu_init(int cpu)
641 {
642 struct svm_cpu_data *sd;
643 int r;
644
645 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
646 if (!sd)
647 return -ENOMEM;
648 sd->cpu = cpu;
649 sd->save_area = alloc_page(GFP_KERNEL);
650 r = -ENOMEM;
651 if (!sd->save_area)
652 goto err_1;
653
654 per_cpu(svm_data, cpu) = sd;
655
656 return 0;
657
658 err_1:
659 kfree(sd);
660 return r;
661
662 }
663
664 static bool valid_msr_intercept(u32 index)
665 {
666 int i;
667
668 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
669 if (direct_access_msrs[i].index == index)
670 return true;
671
672 return false;
673 }
674
675 static void set_msr_interception(u32 *msrpm, unsigned msr,
676 int read, int write)
677 {
678 u8 bit_read, bit_write;
679 unsigned long tmp;
680 u32 offset;
681
682 /*
683 * If this warning triggers extend the direct_access_msrs list at the
684 * beginning of the file
685 */
686 WARN_ON(!valid_msr_intercept(msr));
687
688 offset = svm_msrpm_offset(msr);
689 bit_read = 2 * (msr & 0x0f);
690 bit_write = 2 * (msr & 0x0f) + 1;
691 tmp = msrpm[offset];
692
693 BUG_ON(offset == MSR_INVALID);
694
695 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
696 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
697
698 msrpm[offset] = tmp;
699 }
700
701 static void svm_vcpu_init_msrpm(u32 *msrpm)
702 {
703 int i;
704
705 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
706
707 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
708 if (!direct_access_msrs[i].always)
709 continue;
710
711 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
712 }
713 }
714
715 static void add_msr_offset(u32 offset)
716 {
717 int i;
718
719 for (i = 0; i < MSRPM_OFFSETS; ++i) {
720
721 /* Offset already in list? */
722 if (msrpm_offsets[i] == offset)
723 return;
724
725 /* Slot used by another offset? */
726 if (msrpm_offsets[i] != MSR_INVALID)
727 continue;
728
729 /* Add offset to list */
730 msrpm_offsets[i] = offset;
731
732 return;
733 }
734
735 /*
736 * If this BUG triggers the msrpm_offsets table has an overflow. Just
737 * increase MSRPM_OFFSETS in this case.
738 */
739 BUG();
740 }
741
742 static void init_msrpm_offsets(void)
743 {
744 int i;
745
746 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
747
748 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
749 u32 offset;
750
751 offset = svm_msrpm_offset(direct_access_msrs[i].index);
752 BUG_ON(offset == MSR_INVALID);
753
754 add_msr_offset(offset);
755 }
756 }
757
758 static void svm_enable_lbrv(struct vcpu_svm *svm)
759 {
760 u32 *msrpm = svm->msrpm;
761
762 svm->vmcb->control.lbr_ctl = 1;
763 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
764 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
765 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
766 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
767 }
768
769 static void svm_disable_lbrv(struct vcpu_svm *svm)
770 {
771 u32 *msrpm = svm->msrpm;
772
773 svm->vmcb->control.lbr_ctl = 0;
774 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
775 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
776 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
777 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
778 }
779
780 static __init int svm_hardware_setup(void)
781 {
782 int cpu;
783 struct page *iopm_pages;
784 void *iopm_va;
785 int r;
786
787 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
788
789 if (!iopm_pages)
790 return -ENOMEM;
791
792 iopm_va = page_address(iopm_pages);
793 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
794 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
795
796 init_msrpm_offsets();
797
798 if (boot_cpu_has(X86_FEATURE_NX))
799 kvm_enable_efer_bits(EFER_NX);
800
801 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
802 kvm_enable_efer_bits(EFER_FFXSR);
803
804 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
805 u64 max;
806
807 kvm_has_tsc_control = true;
808
809 /*
810 * Make sure the user can only configure tsc_khz values that
811 * fit into a signed integer.
812 * A min value is not calculated needed because it will always
813 * be 1 on all machines and a value of 0 is used to disable
814 * tsc-scaling for the vcpu.
815 */
816 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
817
818 kvm_max_guest_tsc_khz = max;
819 }
820
821 if (nested) {
822 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
823 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
824 }
825
826 for_each_possible_cpu(cpu) {
827 r = svm_cpu_init(cpu);
828 if (r)
829 goto err;
830 }
831
832 if (!boot_cpu_has(X86_FEATURE_NPT))
833 npt_enabled = false;
834
835 if (npt_enabled && !npt) {
836 printk(KERN_INFO "kvm: Nested Paging disabled\n");
837 npt_enabled = false;
838 }
839
840 if (npt_enabled) {
841 printk(KERN_INFO "kvm: Nested Paging enabled\n");
842 kvm_enable_tdp();
843 } else
844 kvm_disable_tdp();
845
846 return 0;
847
848 err:
849 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
850 iopm_base = 0;
851 return r;
852 }
853
854 static __exit void svm_hardware_unsetup(void)
855 {
856 int cpu;
857
858 for_each_possible_cpu(cpu)
859 svm_cpu_uninit(cpu);
860
861 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
862 iopm_base = 0;
863 }
864
865 static void init_seg(struct vmcb_seg *seg)
866 {
867 seg->selector = 0;
868 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
869 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
870 seg->limit = 0xffff;
871 seg->base = 0;
872 }
873
874 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
875 {
876 seg->selector = 0;
877 seg->attrib = SVM_SELECTOR_P_MASK | type;
878 seg->limit = 0xffff;
879 seg->base = 0;
880 }
881
882 static u64 __scale_tsc(u64 ratio, u64 tsc)
883 {
884 u64 mult, frac, _tsc;
885
886 mult = ratio >> 32;
887 frac = ratio & ((1ULL << 32) - 1);
888
889 _tsc = tsc;
890 _tsc *= mult;
891 _tsc += (tsc >> 32) * frac;
892 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
893
894 return _tsc;
895 }
896
897 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
898 {
899 struct vcpu_svm *svm = to_svm(vcpu);
900 u64 _tsc = tsc;
901
902 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
903 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
904
905 return _tsc;
906 }
907
908 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
909 {
910 struct vcpu_svm *svm = to_svm(vcpu);
911 u64 ratio;
912 u64 khz;
913
914 /* TSC scaling supported? */
915 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
916 return;
917
918 /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
919 if (user_tsc_khz == 0) {
920 vcpu->arch.virtual_tsc_khz = 0;
921 svm->tsc_ratio = TSC_RATIO_DEFAULT;
922 return;
923 }
924
925 khz = user_tsc_khz;
926
927 /* TSC scaling required - calculate ratio */
928 ratio = khz << 32;
929 do_div(ratio, tsc_khz);
930
931 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
932 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
933 user_tsc_khz);
934 return;
935 }
936 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
937 svm->tsc_ratio = ratio;
938 }
939
940 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
941 {
942 struct vcpu_svm *svm = to_svm(vcpu);
943 u64 g_tsc_offset = 0;
944
945 if (is_guest_mode(vcpu)) {
946 g_tsc_offset = svm->vmcb->control.tsc_offset -
947 svm->nested.hsave->control.tsc_offset;
948 svm->nested.hsave->control.tsc_offset = offset;
949 }
950
951 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
952
953 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
954 }
955
956 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
957 {
958 struct vcpu_svm *svm = to_svm(vcpu);
959
960 svm->vmcb->control.tsc_offset += adjustment;
961 if (is_guest_mode(vcpu))
962 svm->nested.hsave->control.tsc_offset += adjustment;
963 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
964 }
965
966 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
967 {
968 u64 tsc;
969
970 tsc = svm_scale_tsc(vcpu, native_read_tsc());
971
972 return target_tsc - tsc;
973 }
974
975 static void init_vmcb(struct vcpu_svm *svm)
976 {
977 struct vmcb_control_area *control = &svm->vmcb->control;
978 struct vmcb_save_area *save = &svm->vmcb->save;
979
980 svm->vcpu.fpu_active = 1;
981 svm->vcpu.arch.hflags = 0;
982
983 set_cr_intercept(svm, INTERCEPT_CR0_READ);
984 set_cr_intercept(svm, INTERCEPT_CR3_READ);
985 set_cr_intercept(svm, INTERCEPT_CR4_READ);
986 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
987 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
988 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
989 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
990
991 set_dr_intercept(svm, INTERCEPT_DR0_READ);
992 set_dr_intercept(svm, INTERCEPT_DR1_READ);
993 set_dr_intercept(svm, INTERCEPT_DR2_READ);
994 set_dr_intercept(svm, INTERCEPT_DR3_READ);
995 set_dr_intercept(svm, INTERCEPT_DR4_READ);
996 set_dr_intercept(svm, INTERCEPT_DR5_READ);
997 set_dr_intercept(svm, INTERCEPT_DR6_READ);
998 set_dr_intercept(svm, INTERCEPT_DR7_READ);
999
1000 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1001 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1002 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1003 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1004 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1005 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1006 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1007 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1008
1009 set_exception_intercept(svm, PF_VECTOR);
1010 set_exception_intercept(svm, UD_VECTOR);
1011 set_exception_intercept(svm, MC_VECTOR);
1012
1013 set_intercept(svm, INTERCEPT_INTR);
1014 set_intercept(svm, INTERCEPT_NMI);
1015 set_intercept(svm, INTERCEPT_SMI);
1016 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1017 set_intercept(svm, INTERCEPT_CPUID);
1018 set_intercept(svm, INTERCEPT_INVD);
1019 set_intercept(svm, INTERCEPT_HLT);
1020 set_intercept(svm, INTERCEPT_INVLPG);
1021 set_intercept(svm, INTERCEPT_INVLPGA);
1022 set_intercept(svm, INTERCEPT_IOIO_PROT);
1023 set_intercept(svm, INTERCEPT_MSR_PROT);
1024 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1025 set_intercept(svm, INTERCEPT_SHUTDOWN);
1026 set_intercept(svm, INTERCEPT_VMRUN);
1027 set_intercept(svm, INTERCEPT_VMMCALL);
1028 set_intercept(svm, INTERCEPT_VMLOAD);
1029 set_intercept(svm, INTERCEPT_VMSAVE);
1030 set_intercept(svm, INTERCEPT_STGI);
1031 set_intercept(svm, INTERCEPT_CLGI);
1032 set_intercept(svm, INTERCEPT_SKINIT);
1033 set_intercept(svm, INTERCEPT_WBINVD);
1034 set_intercept(svm, INTERCEPT_MONITOR);
1035 set_intercept(svm, INTERCEPT_MWAIT);
1036 set_intercept(svm, INTERCEPT_XSETBV);
1037
1038 control->iopm_base_pa = iopm_base;
1039 control->msrpm_base_pa = __pa(svm->msrpm);
1040 control->int_ctl = V_INTR_MASKING_MASK;
1041
1042 init_seg(&save->es);
1043 init_seg(&save->ss);
1044 init_seg(&save->ds);
1045 init_seg(&save->fs);
1046 init_seg(&save->gs);
1047
1048 save->cs.selector = 0xf000;
1049 /* Executable/Readable Code Segment */
1050 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1051 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1052 save->cs.limit = 0xffff;
1053 /*
1054 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1055 * be consistent with it.
1056 *
1057 * Replace when we have real mode working for vmx.
1058 */
1059 save->cs.base = 0xf0000;
1060
1061 save->gdtr.limit = 0xffff;
1062 save->idtr.limit = 0xffff;
1063
1064 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1065 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1066
1067 svm_set_efer(&svm->vcpu, 0);
1068 save->dr6 = 0xffff0ff0;
1069 save->dr7 = 0x400;
1070 kvm_set_rflags(&svm->vcpu, 2);
1071 save->rip = 0x0000fff0;
1072 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1073
1074 /*
1075 * This is the guest-visible cr0 value.
1076 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1077 */
1078 svm->vcpu.arch.cr0 = 0;
1079 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1080
1081 save->cr4 = X86_CR4_PAE;
1082 /* rdx = ?? */
1083
1084 if (npt_enabled) {
1085 /* Setup VMCB for Nested Paging */
1086 control->nested_ctl = 1;
1087 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
1088 clr_intercept(svm, INTERCEPT_INVLPG);
1089 clr_exception_intercept(svm, PF_VECTOR);
1090 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1091 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1092 save->g_pat = 0x0007040600070406ULL;
1093 save->cr3 = 0;
1094 save->cr4 = 0;
1095 }
1096 svm->asid_generation = 0;
1097
1098 svm->nested.vmcb = 0;
1099 svm->vcpu.arch.hflags = 0;
1100
1101 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1102 control->pause_filter_count = 3000;
1103 set_intercept(svm, INTERCEPT_PAUSE);
1104 }
1105
1106 mark_all_dirty(svm->vmcb);
1107
1108 enable_gif(svm);
1109 }
1110
1111 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1112 {
1113 struct vcpu_svm *svm = to_svm(vcpu);
1114
1115 init_vmcb(svm);
1116
1117 if (!kvm_vcpu_is_bsp(vcpu)) {
1118 kvm_rip_write(vcpu, 0);
1119 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1120 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1121 }
1122 vcpu->arch.regs_avail = ~0;
1123 vcpu->arch.regs_dirty = ~0;
1124
1125 return 0;
1126 }
1127
1128 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1129 {
1130 struct vcpu_svm *svm;
1131 struct page *page;
1132 struct page *msrpm_pages;
1133 struct page *hsave_page;
1134 struct page *nested_msrpm_pages;
1135 int err;
1136
1137 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1138 if (!svm) {
1139 err = -ENOMEM;
1140 goto out;
1141 }
1142
1143 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1144
1145 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1146 if (err)
1147 goto free_svm;
1148
1149 err = -ENOMEM;
1150 page = alloc_page(GFP_KERNEL);
1151 if (!page)
1152 goto uninit;
1153
1154 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1155 if (!msrpm_pages)
1156 goto free_page1;
1157
1158 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159 if (!nested_msrpm_pages)
1160 goto free_page2;
1161
1162 hsave_page = alloc_page(GFP_KERNEL);
1163 if (!hsave_page)
1164 goto free_page3;
1165
1166 svm->nested.hsave = page_address(hsave_page);
1167
1168 svm->msrpm = page_address(msrpm_pages);
1169 svm_vcpu_init_msrpm(svm->msrpm);
1170
1171 svm->nested.msrpm = page_address(nested_msrpm_pages);
1172 svm_vcpu_init_msrpm(svm->nested.msrpm);
1173
1174 svm->vmcb = page_address(page);
1175 clear_page(svm->vmcb);
1176 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1177 svm->asid_generation = 0;
1178 init_vmcb(svm);
1179 kvm_write_tsc(&svm->vcpu, 0);
1180
1181 err = fx_init(&svm->vcpu);
1182 if (err)
1183 goto free_page4;
1184
1185 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1186 if (kvm_vcpu_is_bsp(&svm->vcpu))
1187 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1188
1189 return &svm->vcpu;
1190
1191 free_page4:
1192 __free_page(hsave_page);
1193 free_page3:
1194 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1195 free_page2:
1196 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1197 free_page1:
1198 __free_page(page);
1199 uninit:
1200 kvm_vcpu_uninit(&svm->vcpu);
1201 free_svm:
1202 kmem_cache_free(kvm_vcpu_cache, svm);
1203 out:
1204 return ERR_PTR(err);
1205 }
1206
1207 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1208 {
1209 struct vcpu_svm *svm = to_svm(vcpu);
1210
1211 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1212 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1213 __free_page(virt_to_page(svm->nested.hsave));
1214 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1215 kvm_vcpu_uninit(vcpu);
1216 kmem_cache_free(kvm_vcpu_cache, svm);
1217 }
1218
1219 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1220 {
1221 struct vcpu_svm *svm = to_svm(vcpu);
1222 int i;
1223
1224 if (unlikely(cpu != vcpu->cpu)) {
1225 svm->asid_generation = 0;
1226 mark_all_dirty(svm->vmcb);
1227 }
1228
1229 #ifdef CONFIG_X86_64
1230 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1231 #endif
1232 savesegment(fs, svm->host.fs);
1233 savesegment(gs, svm->host.gs);
1234 svm->host.ldt = kvm_read_ldt();
1235
1236 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1237 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1238
1239 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1240 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1241 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1242 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1243 }
1244 }
1245
1246 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1247 {
1248 struct vcpu_svm *svm = to_svm(vcpu);
1249 int i;
1250
1251 ++vcpu->stat.host_state_reload;
1252 kvm_load_ldt(svm->host.ldt);
1253 #ifdef CONFIG_X86_64
1254 loadsegment(fs, svm->host.fs);
1255 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1256 load_gs_index(svm->host.gs);
1257 #else
1258 #ifdef CONFIG_X86_32_LAZY_GS
1259 loadsegment(gs, svm->host.gs);
1260 #endif
1261 #endif
1262 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1263 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1264 }
1265
1266 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1267 {
1268 return to_svm(vcpu)->vmcb->save.rflags;
1269 }
1270
1271 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1272 {
1273 to_svm(vcpu)->vmcb->save.rflags = rflags;
1274 }
1275
1276 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1277 {
1278 switch (reg) {
1279 case VCPU_EXREG_PDPTR:
1280 BUG_ON(!npt_enabled);
1281 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1282 break;
1283 default:
1284 BUG();
1285 }
1286 }
1287
1288 static void svm_set_vintr(struct vcpu_svm *svm)
1289 {
1290 set_intercept(svm, INTERCEPT_VINTR);
1291 }
1292
1293 static void svm_clear_vintr(struct vcpu_svm *svm)
1294 {
1295 clr_intercept(svm, INTERCEPT_VINTR);
1296 }
1297
1298 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1299 {
1300 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1301
1302 switch (seg) {
1303 case VCPU_SREG_CS: return &save->cs;
1304 case VCPU_SREG_DS: return &save->ds;
1305 case VCPU_SREG_ES: return &save->es;
1306 case VCPU_SREG_FS: return &save->fs;
1307 case VCPU_SREG_GS: return &save->gs;
1308 case VCPU_SREG_SS: return &save->ss;
1309 case VCPU_SREG_TR: return &save->tr;
1310 case VCPU_SREG_LDTR: return &save->ldtr;
1311 }
1312 BUG();
1313 return NULL;
1314 }
1315
1316 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1317 {
1318 struct vmcb_seg *s = svm_seg(vcpu, seg);
1319
1320 return s->base;
1321 }
1322
1323 static void svm_get_segment(struct kvm_vcpu *vcpu,
1324 struct kvm_segment *var, int seg)
1325 {
1326 struct vmcb_seg *s = svm_seg(vcpu, seg);
1327
1328 var->base = s->base;
1329 var->limit = s->limit;
1330 var->selector = s->selector;
1331 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1332 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1333 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1334 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1335 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1336 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1337 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1338 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1339
1340 /*
1341 * AMD's VMCB does not have an explicit unusable field, so emulate it
1342 * for cross vendor migration purposes by "not present"
1343 */
1344 var->unusable = !var->present || (var->type == 0);
1345
1346 switch (seg) {
1347 case VCPU_SREG_CS:
1348 /*
1349 * SVM always stores 0 for the 'G' bit in the CS selector in
1350 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1351 * Intel's VMENTRY has a check on the 'G' bit.
1352 */
1353 var->g = s->limit > 0xfffff;
1354 break;
1355 case VCPU_SREG_TR:
1356 /*
1357 * Work around a bug where the busy flag in the tr selector
1358 * isn't exposed
1359 */
1360 var->type |= 0x2;
1361 break;
1362 case VCPU_SREG_DS:
1363 case VCPU_SREG_ES:
1364 case VCPU_SREG_FS:
1365 case VCPU_SREG_GS:
1366 /*
1367 * The accessed bit must always be set in the segment
1368 * descriptor cache, although it can be cleared in the
1369 * descriptor, the cached bit always remains at 1. Since
1370 * Intel has a check on this, set it here to support
1371 * cross-vendor migration.
1372 */
1373 if (!var->unusable)
1374 var->type |= 0x1;
1375 break;
1376 case VCPU_SREG_SS:
1377 /*
1378 * On AMD CPUs sometimes the DB bit in the segment
1379 * descriptor is left as 1, although the whole segment has
1380 * been made unusable. Clear it here to pass an Intel VMX
1381 * entry check when cross vendor migrating.
1382 */
1383 if (var->unusable)
1384 var->db = 0;
1385 break;
1386 }
1387 }
1388
1389 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1390 {
1391 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1392
1393 return save->cpl;
1394 }
1395
1396 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1397 {
1398 struct vcpu_svm *svm = to_svm(vcpu);
1399
1400 dt->size = svm->vmcb->save.idtr.limit;
1401 dt->address = svm->vmcb->save.idtr.base;
1402 }
1403
1404 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1405 {
1406 struct vcpu_svm *svm = to_svm(vcpu);
1407
1408 svm->vmcb->save.idtr.limit = dt->size;
1409 svm->vmcb->save.idtr.base = dt->address ;
1410 mark_dirty(svm->vmcb, VMCB_DT);
1411 }
1412
1413 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1414 {
1415 struct vcpu_svm *svm = to_svm(vcpu);
1416
1417 dt->size = svm->vmcb->save.gdtr.limit;
1418 dt->address = svm->vmcb->save.gdtr.base;
1419 }
1420
1421 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1422 {
1423 struct vcpu_svm *svm = to_svm(vcpu);
1424
1425 svm->vmcb->save.gdtr.limit = dt->size;
1426 svm->vmcb->save.gdtr.base = dt->address ;
1427 mark_dirty(svm->vmcb, VMCB_DT);
1428 }
1429
1430 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1431 {
1432 }
1433
1434 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1435 {
1436 }
1437
1438 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441
1442 static void update_cr0_intercept(struct vcpu_svm *svm)
1443 {
1444 ulong gcr0 = svm->vcpu.arch.cr0;
1445 u64 *hcr0 = &svm->vmcb->save.cr0;
1446
1447 if (!svm->vcpu.fpu_active)
1448 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1449 else
1450 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1451 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1452
1453 mark_dirty(svm->vmcb, VMCB_CR);
1454
1455 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1456 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1457 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1458 } else {
1459 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1460 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1461 }
1462 }
1463
1464 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1465 {
1466 struct vcpu_svm *svm = to_svm(vcpu);
1467
1468 #ifdef CONFIG_X86_64
1469 if (vcpu->arch.efer & EFER_LME) {
1470 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1471 vcpu->arch.efer |= EFER_LMA;
1472 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1473 }
1474
1475 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1476 vcpu->arch.efer &= ~EFER_LMA;
1477 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1478 }
1479 }
1480 #endif
1481 vcpu->arch.cr0 = cr0;
1482
1483 if (!npt_enabled)
1484 cr0 |= X86_CR0_PG | X86_CR0_WP;
1485
1486 if (!vcpu->fpu_active)
1487 cr0 |= X86_CR0_TS;
1488 /*
1489 * re-enable caching here because the QEMU bios
1490 * does not do it - this results in some delay at
1491 * reboot
1492 */
1493 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1494 svm->vmcb->save.cr0 = cr0;
1495 mark_dirty(svm->vmcb, VMCB_CR);
1496 update_cr0_intercept(svm);
1497 }
1498
1499 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1500 {
1501 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1502 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1503
1504 if (cr4 & X86_CR4_VMXE)
1505 return 1;
1506
1507 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1508 svm_flush_tlb(vcpu);
1509
1510 vcpu->arch.cr4 = cr4;
1511 if (!npt_enabled)
1512 cr4 |= X86_CR4_PAE;
1513 cr4 |= host_cr4_mce;
1514 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1515 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1516 return 0;
1517 }
1518
1519 static void svm_set_segment(struct kvm_vcpu *vcpu,
1520 struct kvm_segment *var, int seg)
1521 {
1522 struct vcpu_svm *svm = to_svm(vcpu);
1523 struct vmcb_seg *s = svm_seg(vcpu, seg);
1524
1525 s->base = var->base;
1526 s->limit = var->limit;
1527 s->selector = var->selector;
1528 if (var->unusable)
1529 s->attrib = 0;
1530 else {
1531 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1532 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1533 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1534 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1535 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1536 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1537 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1538 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1539 }
1540 if (seg == VCPU_SREG_CS)
1541 svm->vmcb->save.cpl
1542 = (svm->vmcb->save.cs.attrib
1543 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1544
1545 mark_dirty(svm->vmcb, VMCB_SEG);
1546 }
1547
1548 static void update_db_intercept(struct kvm_vcpu *vcpu)
1549 {
1550 struct vcpu_svm *svm = to_svm(vcpu);
1551
1552 clr_exception_intercept(svm, DB_VECTOR);
1553 clr_exception_intercept(svm, BP_VECTOR);
1554
1555 if (svm->nmi_singlestep)
1556 set_exception_intercept(svm, DB_VECTOR);
1557
1558 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1559 if (vcpu->guest_debug &
1560 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1561 set_exception_intercept(svm, DB_VECTOR);
1562 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1563 set_exception_intercept(svm, BP_VECTOR);
1564 } else
1565 vcpu->guest_debug = 0;
1566 }
1567
1568 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1569 {
1570 struct vcpu_svm *svm = to_svm(vcpu);
1571
1572 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1573 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1574 else
1575 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1576
1577 mark_dirty(svm->vmcb, VMCB_DR);
1578
1579 update_db_intercept(vcpu);
1580 }
1581
1582 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1583 {
1584 if (sd->next_asid > sd->max_asid) {
1585 ++sd->asid_generation;
1586 sd->next_asid = 1;
1587 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1588 }
1589
1590 svm->asid_generation = sd->asid_generation;
1591 svm->vmcb->control.asid = sd->next_asid++;
1592
1593 mark_dirty(svm->vmcb, VMCB_ASID);
1594 }
1595
1596 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1597 {
1598 struct vcpu_svm *svm = to_svm(vcpu);
1599
1600 svm->vmcb->save.dr7 = value;
1601 mark_dirty(svm->vmcb, VMCB_DR);
1602 }
1603
1604 static int pf_interception(struct vcpu_svm *svm)
1605 {
1606 u64 fault_address = svm->vmcb->control.exit_info_2;
1607 u32 error_code;
1608 int r = 1;
1609
1610 switch (svm->apf_reason) {
1611 default:
1612 error_code = svm->vmcb->control.exit_info_1;
1613
1614 trace_kvm_page_fault(fault_address, error_code);
1615 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1616 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1617 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1618 svm->vmcb->control.insn_bytes,
1619 svm->vmcb->control.insn_len);
1620 break;
1621 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1622 svm->apf_reason = 0;
1623 local_irq_disable();
1624 kvm_async_pf_task_wait(fault_address);
1625 local_irq_enable();
1626 break;
1627 case KVM_PV_REASON_PAGE_READY:
1628 svm->apf_reason = 0;
1629 local_irq_disable();
1630 kvm_async_pf_task_wake(fault_address);
1631 local_irq_enable();
1632 break;
1633 }
1634 return r;
1635 }
1636
1637 static int db_interception(struct vcpu_svm *svm)
1638 {
1639 struct kvm_run *kvm_run = svm->vcpu.run;
1640
1641 if (!(svm->vcpu.guest_debug &
1642 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1643 !svm->nmi_singlestep) {
1644 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1645 return 1;
1646 }
1647
1648 if (svm->nmi_singlestep) {
1649 svm->nmi_singlestep = false;
1650 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1651 svm->vmcb->save.rflags &=
1652 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1653 update_db_intercept(&svm->vcpu);
1654 }
1655
1656 if (svm->vcpu.guest_debug &
1657 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1658 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1659 kvm_run->debug.arch.pc =
1660 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1661 kvm_run->debug.arch.exception = DB_VECTOR;
1662 return 0;
1663 }
1664
1665 return 1;
1666 }
1667
1668 static int bp_interception(struct vcpu_svm *svm)
1669 {
1670 struct kvm_run *kvm_run = svm->vcpu.run;
1671
1672 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1673 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1674 kvm_run->debug.arch.exception = BP_VECTOR;
1675 return 0;
1676 }
1677
1678 static int ud_interception(struct vcpu_svm *svm)
1679 {
1680 int er;
1681
1682 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1683 if (er != EMULATE_DONE)
1684 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1685 return 1;
1686 }
1687
1688 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1689 {
1690 struct vcpu_svm *svm = to_svm(vcpu);
1691
1692 clr_exception_intercept(svm, NM_VECTOR);
1693
1694 svm->vcpu.fpu_active = 1;
1695 update_cr0_intercept(svm);
1696 }
1697
1698 static int nm_interception(struct vcpu_svm *svm)
1699 {
1700 svm_fpu_activate(&svm->vcpu);
1701 return 1;
1702 }
1703
1704 static bool is_erratum_383(void)
1705 {
1706 int err, i;
1707 u64 value;
1708
1709 if (!erratum_383_found)
1710 return false;
1711
1712 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1713 if (err)
1714 return false;
1715
1716 /* Bit 62 may or may not be set for this mce */
1717 value &= ~(1ULL << 62);
1718
1719 if (value != 0xb600000000010015ULL)
1720 return false;
1721
1722 /* Clear MCi_STATUS registers */
1723 for (i = 0; i < 6; ++i)
1724 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1725
1726 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1727 if (!err) {
1728 u32 low, high;
1729
1730 value &= ~(1ULL << 2);
1731 low = lower_32_bits(value);
1732 high = upper_32_bits(value);
1733
1734 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1735 }
1736
1737 /* Flush tlb to evict multi-match entries */
1738 __flush_tlb_all();
1739
1740 return true;
1741 }
1742
1743 static void svm_handle_mce(struct vcpu_svm *svm)
1744 {
1745 if (is_erratum_383()) {
1746 /*
1747 * Erratum 383 triggered. Guest state is corrupt so kill the
1748 * guest.
1749 */
1750 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1751
1752 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1753
1754 return;
1755 }
1756
1757 /*
1758 * On an #MC intercept the MCE handler is not called automatically in
1759 * the host. So do it by hand here.
1760 */
1761 asm volatile (
1762 "int $0x12\n");
1763 /* not sure if we ever come back to this point */
1764
1765 return;
1766 }
1767
1768 static int mc_interception(struct vcpu_svm *svm)
1769 {
1770 return 1;
1771 }
1772
1773 static int shutdown_interception(struct vcpu_svm *svm)
1774 {
1775 struct kvm_run *kvm_run = svm->vcpu.run;
1776
1777 /*
1778 * VMCB is undefined after a SHUTDOWN intercept
1779 * so reinitialize it.
1780 */
1781 clear_page(svm->vmcb);
1782 init_vmcb(svm);
1783
1784 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1785 return 0;
1786 }
1787
1788 static int io_interception(struct vcpu_svm *svm)
1789 {
1790 struct kvm_vcpu *vcpu = &svm->vcpu;
1791 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1792 int size, in, string;
1793 unsigned port;
1794
1795 ++svm->vcpu.stat.io_exits;
1796 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1797 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1798 if (string || in)
1799 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1800
1801 port = io_info >> 16;
1802 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1803 svm->next_rip = svm->vmcb->control.exit_info_2;
1804 skip_emulated_instruction(&svm->vcpu);
1805
1806 return kvm_fast_pio_out(vcpu, size, port);
1807 }
1808
1809 static int nmi_interception(struct vcpu_svm *svm)
1810 {
1811 return 1;
1812 }
1813
1814 static int intr_interception(struct vcpu_svm *svm)
1815 {
1816 ++svm->vcpu.stat.irq_exits;
1817 return 1;
1818 }
1819
1820 static int nop_on_interception(struct vcpu_svm *svm)
1821 {
1822 return 1;
1823 }
1824
1825 static int halt_interception(struct vcpu_svm *svm)
1826 {
1827 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1828 skip_emulated_instruction(&svm->vcpu);
1829 return kvm_emulate_halt(&svm->vcpu);
1830 }
1831
1832 static int vmmcall_interception(struct vcpu_svm *svm)
1833 {
1834 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1835 skip_emulated_instruction(&svm->vcpu);
1836 kvm_emulate_hypercall(&svm->vcpu);
1837 return 1;
1838 }
1839
1840 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1841 {
1842 struct vcpu_svm *svm = to_svm(vcpu);
1843
1844 return svm->nested.nested_cr3;
1845 }
1846
1847 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1848 {
1849 struct vcpu_svm *svm = to_svm(vcpu);
1850 u64 cr3 = svm->nested.nested_cr3;
1851 u64 pdpte;
1852 int ret;
1853
1854 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1855 offset_in_page(cr3) + index * 8, 8);
1856 if (ret)
1857 return 0;
1858 return pdpte;
1859 }
1860
1861 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1862 unsigned long root)
1863 {
1864 struct vcpu_svm *svm = to_svm(vcpu);
1865
1866 svm->vmcb->control.nested_cr3 = root;
1867 mark_dirty(svm->vmcb, VMCB_NPT);
1868 svm_flush_tlb(vcpu);
1869 }
1870
1871 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1872 struct x86_exception *fault)
1873 {
1874 struct vcpu_svm *svm = to_svm(vcpu);
1875
1876 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1877 svm->vmcb->control.exit_code_hi = 0;
1878 svm->vmcb->control.exit_info_1 = fault->error_code;
1879 svm->vmcb->control.exit_info_2 = fault->address;
1880
1881 nested_svm_vmexit(svm);
1882 }
1883
1884 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1885 {
1886 int r;
1887
1888 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1889
1890 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1891 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1892 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1893 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1894 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1895 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1896
1897 return r;
1898 }
1899
1900 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1901 {
1902 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1903 }
1904
1905 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1906 {
1907 if (!(svm->vcpu.arch.efer & EFER_SVME)
1908 || !is_paging(&svm->vcpu)) {
1909 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1910 return 1;
1911 }
1912
1913 if (svm->vmcb->save.cpl) {
1914 kvm_inject_gp(&svm->vcpu, 0);
1915 return 1;
1916 }
1917
1918 return 0;
1919 }
1920
1921 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1922 bool has_error_code, u32 error_code)
1923 {
1924 int vmexit;
1925
1926 if (!is_guest_mode(&svm->vcpu))
1927 return 0;
1928
1929 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1930 svm->vmcb->control.exit_code_hi = 0;
1931 svm->vmcb->control.exit_info_1 = error_code;
1932 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1933
1934 vmexit = nested_svm_intercept(svm);
1935 if (vmexit == NESTED_EXIT_DONE)
1936 svm->nested.exit_required = true;
1937
1938 return vmexit;
1939 }
1940
1941 /* This function returns true if it is save to enable the irq window */
1942 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1943 {
1944 if (!is_guest_mode(&svm->vcpu))
1945 return true;
1946
1947 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1948 return true;
1949
1950 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1951 return false;
1952
1953 /*
1954 * if vmexit was already requested (by intercepted exception
1955 * for instance) do not overwrite it with "external interrupt"
1956 * vmexit.
1957 */
1958 if (svm->nested.exit_required)
1959 return false;
1960
1961 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1962 svm->vmcb->control.exit_info_1 = 0;
1963 svm->vmcb->control.exit_info_2 = 0;
1964
1965 if (svm->nested.intercept & 1ULL) {
1966 /*
1967 * The #vmexit can't be emulated here directly because this
1968 * code path runs with irqs and preemtion disabled. A
1969 * #vmexit emulation might sleep. Only signal request for
1970 * the #vmexit here.
1971 */
1972 svm->nested.exit_required = true;
1973 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1974 return false;
1975 }
1976
1977 return true;
1978 }
1979
1980 /* This function returns true if it is save to enable the nmi window */
1981 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1982 {
1983 if (!is_guest_mode(&svm->vcpu))
1984 return true;
1985
1986 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1987 return true;
1988
1989 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1990 svm->nested.exit_required = true;
1991
1992 return false;
1993 }
1994
1995 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1996 {
1997 struct page *page;
1998
1999 might_sleep();
2000
2001 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2002 if (is_error_page(page))
2003 goto error;
2004
2005 *_page = page;
2006
2007 return kmap(page);
2008
2009 error:
2010 kvm_release_page_clean(page);
2011 kvm_inject_gp(&svm->vcpu, 0);
2012
2013 return NULL;
2014 }
2015
2016 static void nested_svm_unmap(struct page *page)
2017 {
2018 kunmap(page);
2019 kvm_release_page_dirty(page);
2020 }
2021
2022 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2023 {
2024 unsigned port;
2025 u8 val, bit;
2026 u64 gpa;
2027
2028 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2029 return NESTED_EXIT_HOST;
2030
2031 port = svm->vmcb->control.exit_info_1 >> 16;
2032 gpa = svm->nested.vmcb_iopm + (port / 8);
2033 bit = port % 8;
2034 val = 0;
2035
2036 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2037 val &= (1 << bit);
2038
2039 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2040 }
2041
2042 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2043 {
2044 u32 offset, msr, value;
2045 int write, mask;
2046
2047 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2048 return NESTED_EXIT_HOST;
2049
2050 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2051 offset = svm_msrpm_offset(msr);
2052 write = svm->vmcb->control.exit_info_1 & 1;
2053 mask = 1 << ((2 * (msr & 0xf)) + write);
2054
2055 if (offset == MSR_INVALID)
2056 return NESTED_EXIT_DONE;
2057
2058 /* Offset is in 32 bit units but need in 8 bit units */
2059 offset *= 4;
2060
2061 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2062 return NESTED_EXIT_DONE;
2063
2064 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2065 }
2066
2067 static int nested_svm_exit_special(struct vcpu_svm *svm)
2068 {
2069 u32 exit_code = svm->vmcb->control.exit_code;
2070
2071 switch (exit_code) {
2072 case SVM_EXIT_INTR:
2073 case SVM_EXIT_NMI:
2074 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2075 return NESTED_EXIT_HOST;
2076 case SVM_EXIT_NPF:
2077 /* For now we are always handling NPFs when using them */
2078 if (npt_enabled)
2079 return NESTED_EXIT_HOST;
2080 break;
2081 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2082 /* When we're shadowing, trap PFs, but not async PF */
2083 if (!npt_enabled && svm->apf_reason == 0)
2084 return NESTED_EXIT_HOST;
2085 break;
2086 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2087 nm_interception(svm);
2088 break;
2089 default:
2090 break;
2091 }
2092
2093 return NESTED_EXIT_CONTINUE;
2094 }
2095
2096 /*
2097 * If this function returns true, this #vmexit was already handled
2098 */
2099 static int nested_svm_intercept(struct vcpu_svm *svm)
2100 {
2101 u32 exit_code = svm->vmcb->control.exit_code;
2102 int vmexit = NESTED_EXIT_HOST;
2103
2104 switch (exit_code) {
2105 case SVM_EXIT_MSR:
2106 vmexit = nested_svm_exit_handled_msr(svm);
2107 break;
2108 case SVM_EXIT_IOIO:
2109 vmexit = nested_svm_intercept_ioio(svm);
2110 break;
2111 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2112 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2113 if (svm->nested.intercept_cr & bit)
2114 vmexit = NESTED_EXIT_DONE;
2115 break;
2116 }
2117 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2118 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2119 if (svm->nested.intercept_dr & bit)
2120 vmexit = NESTED_EXIT_DONE;
2121 break;
2122 }
2123 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2124 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2125 if (svm->nested.intercept_exceptions & excp_bits)
2126 vmexit = NESTED_EXIT_DONE;
2127 /* async page fault always cause vmexit */
2128 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2129 svm->apf_reason != 0)
2130 vmexit = NESTED_EXIT_DONE;
2131 break;
2132 }
2133 case SVM_EXIT_ERR: {
2134 vmexit = NESTED_EXIT_DONE;
2135 break;
2136 }
2137 default: {
2138 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2139 if (svm->nested.intercept & exit_bits)
2140 vmexit = NESTED_EXIT_DONE;
2141 }
2142 }
2143
2144 return vmexit;
2145 }
2146
2147 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2148 {
2149 int vmexit;
2150
2151 vmexit = nested_svm_intercept(svm);
2152
2153 if (vmexit == NESTED_EXIT_DONE)
2154 nested_svm_vmexit(svm);
2155
2156 return vmexit;
2157 }
2158
2159 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2160 {
2161 struct vmcb_control_area *dst = &dst_vmcb->control;
2162 struct vmcb_control_area *from = &from_vmcb->control;
2163
2164 dst->intercept_cr = from->intercept_cr;
2165 dst->intercept_dr = from->intercept_dr;
2166 dst->intercept_exceptions = from->intercept_exceptions;
2167 dst->intercept = from->intercept;
2168 dst->iopm_base_pa = from->iopm_base_pa;
2169 dst->msrpm_base_pa = from->msrpm_base_pa;
2170 dst->tsc_offset = from->tsc_offset;
2171 dst->asid = from->asid;
2172 dst->tlb_ctl = from->tlb_ctl;
2173 dst->int_ctl = from->int_ctl;
2174 dst->int_vector = from->int_vector;
2175 dst->int_state = from->int_state;
2176 dst->exit_code = from->exit_code;
2177 dst->exit_code_hi = from->exit_code_hi;
2178 dst->exit_info_1 = from->exit_info_1;
2179 dst->exit_info_2 = from->exit_info_2;
2180 dst->exit_int_info = from->exit_int_info;
2181 dst->exit_int_info_err = from->exit_int_info_err;
2182 dst->nested_ctl = from->nested_ctl;
2183 dst->event_inj = from->event_inj;
2184 dst->event_inj_err = from->event_inj_err;
2185 dst->nested_cr3 = from->nested_cr3;
2186 dst->lbr_ctl = from->lbr_ctl;
2187 }
2188
2189 static int nested_svm_vmexit(struct vcpu_svm *svm)
2190 {
2191 struct vmcb *nested_vmcb;
2192 struct vmcb *hsave = svm->nested.hsave;
2193 struct vmcb *vmcb = svm->vmcb;
2194 struct page *page;
2195
2196 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2197 vmcb->control.exit_info_1,
2198 vmcb->control.exit_info_2,
2199 vmcb->control.exit_int_info,
2200 vmcb->control.exit_int_info_err,
2201 KVM_ISA_SVM);
2202
2203 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2204 if (!nested_vmcb)
2205 return 1;
2206
2207 /* Exit Guest-Mode */
2208 leave_guest_mode(&svm->vcpu);
2209 svm->nested.vmcb = 0;
2210
2211 /* Give the current vmcb to the guest */
2212 disable_gif(svm);
2213
2214 nested_vmcb->save.es = vmcb->save.es;
2215 nested_vmcb->save.cs = vmcb->save.cs;
2216 nested_vmcb->save.ss = vmcb->save.ss;
2217 nested_vmcb->save.ds = vmcb->save.ds;
2218 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2219 nested_vmcb->save.idtr = vmcb->save.idtr;
2220 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2221 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2222 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2223 nested_vmcb->save.cr2 = vmcb->save.cr2;
2224 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2225 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2226 nested_vmcb->save.rip = vmcb->save.rip;
2227 nested_vmcb->save.rsp = vmcb->save.rsp;
2228 nested_vmcb->save.rax = vmcb->save.rax;
2229 nested_vmcb->save.dr7 = vmcb->save.dr7;
2230 nested_vmcb->save.dr6 = vmcb->save.dr6;
2231 nested_vmcb->save.cpl = vmcb->save.cpl;
2232
2233 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2234 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2235 nested_vmcb->control.int_state = vmcb->control.int_state;
2236 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2237 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2238 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2239 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2240 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2241 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2242 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2243
2244 /*
2245 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2246 * to make sure that we do not lose injected events. So check event_inj
2247 * here and copy it to exit_int_info if it is valid.
2248 * Exit_int_info and event_inj can't be both valid because the case
2249 * below only happens on a VMRUN instruction intercept which has
2250 * no valid exit_int_info set.
2251 */
2252 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2253 struct vmcb_control_area *nc = &nested_vmcb->control;
2254
2255 nc->exit_int_info = vmcb->control.event_inj;
2256 nc->exit_int_info_err = vmcb->control.event_inj_err;
2257 }
2258
2259 nested_vmcb->control.tlb_ctl = 0;
2260 nested_vmcb->control.event_inj = 0;
2261 nested_vmcb->control.event_inj_err = 0;
2262
2263 /* We always set V_INTR_MASKING and remember the old value in hflags */
2264 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2265 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2266
2267 /* Restore the original control entries */
2268 copy_vmcb_control_area(vmcb, hsave);
2269
2270 kvm_clear_exception_queue(&svm->vcpu);
2271 kvm_clear_interrupt_queue(&svm->vcpu);
2272
2273 svm->nested.nested_cr3 = 0;
2274
2275 /* Restore selected save entries */
2276 svm->vmcb->save.es = hsave->save.es;
2277 svm->vmcb->save.cs = hsave->save.cs;
2278 svm->vmcb->save.ss = hsave->save.ss;
2279 svm->vmcb->save.ds = hsave->save.ds;
2280 svm->vmcb->save.gdtr = hsave->save.gdtr;
2281 svm->vmcb->save.idtr = hsave->save.idtr;
2282 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2283 svm_set_efer(&svm->vcpu, hsave->save.efer);
2284 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2285 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2286 if (npt_enabled) {
2287 svm->vmcb->save.cr3 = hsave->save.cr3;
2288 svm->vcpu.arch.cr3 = hsave->save.cr3;
2289 } else {
2290 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2291 }
2292 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2293 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2294 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2295 svm->vmcb->save.dr7 = 0;
2296 svm->vmcb->save.cpl = 0;
2297 svm->vmcb->control.exit_int_info = 0;
2298
2299 mark_all_dirty(svm->vmcb);
2300
2301 nested_svm_unmap(page);
2302
2303 nested_svm_uninit_mmu_context(&svm->vcpu);
2304 kvm_mmu_reset_context(&svm->vcpu);
2305 kvm_mmu_load(&svm->vcpu);
2306
2307 return 0;
2308 }
2309
2310 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2311 {
2312 /*
2313 * This function merges the msr permission bitmaps of kvm and the
2314 * nested vmcb. It is omptimized in that it only merges the parts where
2315 * the kvm msr permission bitmap may contain zero bits
2316 */
2317 int i;
2318
2319 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2320 return true;
2321
2322 for (i = 0; i < MSRPM_OFFSETS; i++) {
2323 u32 value, p;
2324 u64 offset;
2325
2326 if (msrpm_offsets[i] == 0xffffffff)
2327 break;
2328
2329 p = msrpm_offsets[i];
2330 offset = svm->nested.vmcb_msrpm + (p * 4);
2331
2332 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2333 return false;
2334
2335 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2336 }
2337
2338 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2339
2340 return true;
2341 }
2342
2343 static bool nested_vmcb_checks(struct vmcb *vmcb)
2344 {
2345 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2346 return false;
2347
2348 if (vmcb->control.asid == 0)
2349 return false;
2350
2351 if (vmcb->control.nested_ctl && !npt_enabled)
2352 return false;
2353
2354 return true;
2355 }
2356
2357 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2358 {
2359 struct vmcb *nested_vmcb;
2360 struct vmcb *hsave = svm->nested.hsave;
2361 struct vmcb *vmcb = svm->vmcb;
2362 struct page *page;
2363 u64 vmcb_gpa;
2364
2365 vmcb_gpa = svm->vmcb->save.rax;
2366
2367 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2368 if (!nested_vmcb)
2369 return false;
2370
2371 if (!nested_vmcb_checks(nested_vmcb)) {
2372 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2373 nested_vmcb->control.exit_code_hi = 0;
2374 nested_vmcb->control.exit_info_1 = 0;
2375 nested_vmcb->control.exit_info_2 = 0;
2376
2377 nested_svm_unmap(page);
2378
2379 return false;
2380 }
2381
2382 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2383 nested_vmcb->save.rip,
2384 nested_vmcb->control.int_ctl,
2385 nested_vmcb->control.event_inj,
2386 nested_vmcb->control.nested_ctl);
2387
2388 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2389 nested_vmcb->control.intercept_cr >> 16,
2390 nested_vmcb->control.intercept_exceptions,
2391 nested_vmcb->control.intercept);
2392
2393 /* Clear internal status */
2394 kvm_clear_exception_queue(&svm->vcpu);
2395 kvm_clear_interrupt_queue(&svm->vcpu);
2396
2397 /*
2398 * Save the old vmcb, so we don't need to pick what we save, but can
2399 * restore everything when a VMEXIT occurs
2400 */
2401 hsave->save.es = vmcb->save.es;
2402 hsave->save.cs = vmcb->save.cs;
2403 hsave->save.ss = vmcb->save.ss;
2404 hsave->save.ds = vmcb->save.ds;
2405 hsave->save.gdtr = vmcb->save.gdtr;
2406 hsave->save.idtr = vmcb->save.idtr;
2407 hsave->save.efer = svm->vcpu.arch.efer;
2408 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2409 hsave->save.cr4 = svm->vcpu.arch.cr4;
2410 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2411 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2412 hsave->save.rsp = vmcb->save.rsp;
2413 hsave->save.rax = vmcb->save.rax;
2414 if (npt_enabled)
2415 hsave->save.cr3 = vmcb->save.cr3;
2416 else
2417 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2418
2419 copy_vmcb_control_area(hsave, vmcb);
2420
2421 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2422 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2423 else
2424 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2425
2426 if (nested_vmcb->control.nested_ctl) {
2427 kvm_mmu_unload(&svm->vcpu);
2428 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2429 nested_svm_init_mmu_context(&svm->vcpu);
2430 }
2431
2432 /* Load the nested guest state */
2433 svm->vmcb->save.es = nested_vmcb->save.es;
2434 svm->vmcb->save.cs = nested_vmcb->save.cs;
2435 svm->vmcb->save.ss = nested_vmcb->save.ss;
2436 svm->vmcb->save.ds = nested_vmcb->save.ds;
2437 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2438 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2439 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2440 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2441 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2442 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2443 if (npt_enabled) {
2444 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2445 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2446 } else
2447 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2448
2449 /* Guest paging mode is active - reset mmu */
2450 kvm_mmu_reset_context(&svm->vcpu);
2451
2452 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2453 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2454 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2455 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2456
2457 /* In case we don't even reach vcpu_run, the fields are not updated */
2458 svm->vmcb->save.rax = nested_vmcb->save.rax;
2459 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2460 svm->vmcb->save.rip = nested_vmcb->save.rip;
2461 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2462 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2463 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2464
2465 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2466 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2467
2468 /* cache intercepts */
2469 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2470 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2471 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2472 svm->nested.intercept = nested_vmcb->control.intercept;
2473
2474 svm_flush_tlb(&svm->vcpu);
2475 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2476 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2477 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2478 else
2479 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2480
2481 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2482 /* We only want the cr8 intercept bits of the guest */
2483 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2484 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2485 }
2486
2487 /* We don't want to see VMMCALLs from a nested guest */
2488 clr_intercept(svm, INTERCEPT_VMMCALL);
2489
2490 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2491 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2492 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2493 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2494 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2495 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2496
2497 nested_svm_unmap(page);
2498
2499 /* Enter Guest-Mode */
2500 enter_guest_mode(&svm->vcpu);
2501
2502 /*
2503 * Merge guest and host intercepts - must be called with vcpu in
2504 * guest-mode to take affect here
2505 */
2506 recalc_intercepts(svm);
2507
2508 svm->nested.vmcb = vmcb_gpa;
2509
2510 enable_gif(svm);
2511
2512 mark_all_dirty(svm->vmcb);
2513
2514 return true;
2515 }
2516
2517 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2518 {
2519 to_vmcb->save.fs = from_vmcb->save.fs;
2520 to_vmcb->save.gs = from_vmcb->save.gs;
2521 to_vmcb->save.tr = from_vmcb->save.tr;
2522 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2523 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2524 to_vmcb->save.star = from_vmcb->save.star;
2525 to_vmcb->save.lstar = from_vmcb->save.lstar;
2526 to_vmcb->save.cstar = from_vmcb->save.cstar;
2527 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2528 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2529 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2530 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2531 }
2532
2533 static int vmload_interception(struct vcpu_svm *svm)
2534 {
2535 struct vmcb *nested_vmcb;
2536 struct page *page;
2537
2538 if (nested_svm_check_permissions(svm))
2539 return 1;
2540
2541 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2542 if (!nested_vmcb)
2543 return 1;
2544
2545 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2546 skip_emulated_instruction(&svm->vcpu);
2547
2548 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2549 nested_svm_unmap(page);
2550
2551 return 1;
2552 }
2553
2554 static int vmsave_interception(struct vcpu_svm *svm)
2555 {
2556 struct vmcb *nested_vmcb;
2557 struct page *page;
2558
2559 if (nested_svm_check_permissions(svm))
2560 return 1;
2561
2562 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2563 if (!nested_vmcb)
2564 return 1;
2565
2566 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2567 skip_emulated_instruction(&svm->vcpu);
2568
2569 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2570 nested_svm_unmap(page);
2571
2572 return 1;
2573 }
2574
2575 static int vmrun_interception(struct vcpu_svm *svm)
2576 {
2577 if (nested_svm_check_permissions(svm))
2578 return 1;
2579
2580 /* Save rip after vmrun instruction */
2581 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2582
2583 if (!nested_svm_vmrun(svm))
2584 return 1;
2585
2586 if (!nested_svm_vmrun_msrpm(svm))
2587 goto failed;
2588
2589 return 1;
2590
2591 failed:
2592
2593 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2594 svm->vmcb->control.exit_code_hi = 0;
2595 svm->vmcb->control.exit_info_1 = 0;
2596 svm->vmcb->control.exit_info_2 = 0;
2597
2598 nested_svm_vmexit(svm);
2599
2600 return 1;
2601 }
2602
2603 static int stgi_interception(struct vcpu_svm *svm)
2604 {
2605 if (nested_svm_check_permissions(svm))
2606 return 1;
2607
2608 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2609 skip_emulated_instruction(&svm->vcpu);
2610 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2611
2612 enable_gif(svm);
2613
2614 return 1;
2615 }
2616
2617 static int clgi_interception(struct vcpu_svm *svm)
2618 {
2619 if (nested_svm_check_permissions(svm))
2620 return 1;
2621
2622 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2623 skip_emulated_instruction(&svm->vcpu);
2624
2625 disable_gif(svm);
2626
2627 /* After a CLGI no interrupts should come */
2628 svm_clear_vintr(svm);
2629 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2630
2631 mark_dirty(svm->vmcb, VMCB_INTR);
2632
2633 return 1;
2634 }
2635
2636 static int invlpga_interception(struct vcpu_svm *svm)
2637 {
2638 struct kvm_vcpu *vcpu = &svm->vcpu;
2639
2640 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2641 vcpu->arch.regs[VCPU_REGS_RAX]);
2642
2643 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2644 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2645
2646 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2647 skip_emulated_instruction(&svm->vcpu);
2648 return 1;
2649 }
2650
2651 static int skinit_interception(struct vcpu_svm *svm)
2652 {
2653 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2654
2655 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2656 return 1;
2657 }
2658
2659 static int xsetbv_interception(struct vcpu_svm *svm)
2660 {
2661 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2662 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2663
2664 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2665 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666 skip_emulated_instruction(&svm->vcpu);
2667 }
2668
2669 return 1;
2670 }
2671
2672 static int invalid_op_interception(struct vcpu_svm *svm)
2673 {
2674 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2675 return 1;
2676 }
2677
2678 static int task_switch_interception(struct vcpu_svm *svm)
2679 {
2680 u16 tss_selector;
2681 int reason;
2682 int int_type = svm->vmcb->control.exit_int_info &
2683 SVM_EXITINTINFO_TYPE_MASK;
2684 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2685 uint32_t type =
2686 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2687 uint32_t idt_v =
2688 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2689 bool has_error_code = false;
2690 u32 error_code = 0;
2691
2692 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2693
2694 if (svm->vmcb->control.exit_info_2 &
2695 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2696 reason = TASK_SWITCH_IRET;
2697 else if (svm->vmcb->control.exit_info_2 &
2698 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2699 reason = TASK_SWITCH_JMP;
2700 else if (idt_v)
2701 reason = TASK_SWITCH_GATE;
2702 else
2703 reason = TASK_SWITCH_CALL;
2704
2705 if (reason == TASK_SWITCH_GATE) {
2706 switch (type) {
2707 case SVM_EXITINTINFO_TYPE_NMI:
2708 svm->vcpu.arch.nmi_injected = false;
2709 break;
2710 case SVM_EXITINTINFO_TYPE_EXEPT:
2711 if (svm->vmcb->control.exit_info_2 &
2712 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2713 has_error_code = true;
2714 error_code =
2715 (u32)svm->vmcb->control.exit_info_2;
2716 }
2717 kvm_clear_exception_queue(&svm->vcpu);
2718 break;
2719 case SVM_EXITINTINFO_TYPE_INTR:
2720 kvm_clear_interrupt_queue(&svm->vcpu);
2721 break;
2722 default:
2723 break;
2724 }
2725 }
2726
2727 if (reason != TASK_SWITCH_GATE ||
2728 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2729 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2730 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2731 skip_emulated_instruction(&svm->vcpu);
2732
2733 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2734 has_error_code, error_code) == EMULATE_FAIL) {
2735 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2736 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2737 svm->vcpu.run->internal.ndata = 0;
2738 return 0;
2739 }
2740 return 1;
2741 }
2742
2743 static int cpuid_interception(struct vcpu_svm *svm)
2744 {
2745 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2746 kvm_emulate_cpuid(&svm->vcpu);
2747 return 1;
2748 }
2749
2750 static int iret_interception(struct vcpu_svm *svm)
2751 {
2752 ++svm->vcpu.stat.nmi_window_exits;
2753 clr_intercept(svm, INTERCEPT_IRET);
2754 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2755 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2756 return 1;
2757 }
2758
2759 static int invlpg_interception(struct vcpu_svm *svm)
2760 {
2761 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2762 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2763
2764 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2765 skip_emulated_instruction(&svm->vcpu);
2766 return 1;
2767 }
2768
2769 static int emulate_on_interception(struct vcpu_svm *svm)
2770 {
2771 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2772 }
2773
2774 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2775 {
2776 unsigned long cr0 = svm->vcpu.arch.cr0;
2777 bool ret = false;
2778 u64 intercept;
2779
2780 intercept = svm->nested.intercept;
2781
2782 if (!is_guest_mode(&svm->vcpu) ||
2783 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2784 return false;
2785
2786 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2787 val &= ~SVM_CR0_SELECTIVE_MASK;
2788
2789 if (cr0 ^ val) {
2790 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2791 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2792 }
2793
2794 return ret;
2795 }
2796
2797 #define CR_VALID (1ULL << 63)
2798
2799 static int cr_interception(struct vcpu_svm *svm)
2800 {
2801 int reg, cr;
2802 unsigned long val;
2803 int err;
2804
2805 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2806 return emulate_on_interception(svm);
2807
2808 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2809 return emulate_on_interception(svm);
2810
2811 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2812 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2813
2814 err = 0;
2815 if (cr >= 16) { /* mov to cr */
2816 cr -= 16;
2817 val = kvm_register_read(&svm->vcpu, reg);
2818 switch (cr) {
2819 case 0:
2820 if (!check_selective_cr0_intercepted(svm, val))
2821 err = kvm_set_cr0(&svm->vcpu, val);
2822 else
2823 return 1;
2824
2825 break;
2826 case 3:
2827 err = kvm_set_cr3(&svm->vcpu, val);
2828 break;
2829 case 4:
2830 err = kvm_set_cr4(&svm->vcpu, val);
2831 break;
2832 case 8:
2833 err = kvm_set_cr8(&svm->vcpu, val);
2834 break;
2835 default:
2836 WARN(1, "unhandled write to CR%d", cr);
2837 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2838 return 1;
2839 }
2840 } else { /* mov from cr */
2841 switch (cr) {
2842 case 0:
2843 val = kvm_read_cr0(&svm->vcpu);
2844 break;
2845 case 2:
2846 val = svm->vcpu.arch.cr2;
2847 break;
2848 case 3:
2849 val = kvm_read_cr3(&svm->vcpu);
2850 break;
2851 case 4:
2852 val = kvm_read_cr4(&svm->vcpu);
2853 break;
2854 case 8:
2855 val = kvm_get_cr8(&svm->vcpu);
2856 break;
2857 default:
2858 WARN(1, "unhandled read from CR%d", cr);
2859 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2860 return 1;
2861 }
2862 kvm_register_write(&svm->vcpu, reg, val);
2863 }
2864 kvm_complete_insn_gp(&svm->vcpu, err);
2865
2866 return 1;
2867 }
2868
2869 static int dr_interception(struct vcpu_svm *svm)
2870 {
2871 int reg, dr;
2872 unsigned long val;
2873 int err;
2874
2875 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2876 return emulate_on_interception(svm);
2877
2878 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2879 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2880
2881 if (dr >= 16) { /* mov to DRn */
2882 val = kvm_register_read(&svm->vcpu, reg);
2883 kvm_set_dr(&svm->vcpu, dr - 16, val);
2884 } else {
2885 err = kvm_get_dr(&svm->vcpu, dr, &val);
2886 if (!err)
2887 kvm_register_write(&svm->vcpu, reg, val);
2888 }
2889
2890 skip_emulated_instruction(&svm->vcpu);
2891
2892 return 1;
2893 }
2894
2895 static int cr8_write_interception(struct vcpu_svm *svm)
2896 {
2897 struct kvm_run *kvm_run = svm->vcpu.run;
2898 int r;
2899
2900 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2901 /* instruction emulation calls kvm_set_cr8() */
2902 r = cr_interception(svm);
2903 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2904 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2905 return r;
2906 }
2907 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2908 return r;
2909 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2910 return 0;
2911 }
2912
2913 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2914 {
2915 struct vcpu_svm *svm = to_svm(vcpu);
2916
2917 switch (ecx) {
2918 case MSR_IA32_TSC: {
2919 struct vmcb *vmcb = get_host_vmcb(svm);
2920
2921 *data = vmcb->control.tsc_offset +
2922 svm_scale_tsc(vcpu, native_read_tsc());
2923
2924 break;
2925 }
2926 case MSR_STAR:
2927 *data = svm->vmcb->save.star;
2928 break;
2929 #ifdef CONFIG_X86_64
2930 case MSR_LSTAR:
2931 *data = svm->vmcb->save.lstar;
2932 break;
2933 case MSR_CSTAR:
2934 *data = svm->vmcb->save.cstar;
2935 break;
2936 case MSR_KERNEL_GS_BASE:
2937 *data = svm->vmcb->save.kernel_gs_base;
2938 break;
2939 case MSR_SYSCALL_MASK:
2940 *data = svm->vmcb->save.sfmask;
2941 break;
2942 #endif
2943 case MSR_IA32_SYSENTER_CS:
2944 *data = svm->vmcb->save.sysenter_cs;
2945 break;
2946 case MSR_IA32_SYSENTER_EIP:
2947 *data = svm->sysenter_eip;
2948 break;
2949 case MSR_IA32_SYSENTER_ESP:
2950 *data = svm->sysenter_esp;
2951 break;
2952 /*
2953 * Nobody will change the following 5 values in the VMCB so we can
2954 * safely return them on rdmsr. They will always be 0 until LBRV is
2955 * implemented.
2956 */
2957 case MSR_IA32_DEBUGCTLMSR:
2958 *data = svm->vmcb->save.dbgctl;
2959 break;
2960 case MSR_IA32_LASTBRANCHFROMIP:
2961 *data = svm->vmcb->save.br_from;
2962 break;
2963 case MSR_IA32_LASTBRANCHTOIP:
2964 *data = svm->vmcb->save.br_to;
2965 break;
2966 case MSR_IA32_LASTINTFROMIP:
2967 *data = svm->vmcb->save.last_excp_from;
2968 break;
2969 case MSR_IA32_LASTINTTOIP:
2970 *data = svm->vmcb->save.last_excp_to;
2971 break;
2972 case MSR_VM_HSAVE_PA:
2973 *data = svm->nested.hsave_msr;
2974 break;
2975 case MSR_VM_CR:
2976 *data = svm->nested.vm_cr_msr;
2977 break;
2978 case MSR_IA32_UCODE_REV:
2979 *data = 0x01000065;
2980 break;
2981 default:
2982 return kvm_get_msr_common(vcpu, ecx, data);
2983 }
2984 return 0;
2985 }
2986
2987 static int rdmsr_interception(struct vcpu_svm *svm)
2988 {
2989 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2990 u64 data;
2991
2992 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2993 trace_kvm_msr_read_ex(ecx);
2994 kvm_inject_gp(&svm->vcpu, 0);
2995 } else {
2996 trace_kvm_msr_read(ecx, data);
2997
2998 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2999 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3000 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3001 skip_emulated_instruction(&svm->vcpu);
3002 }
3003 return 1;
3004 }
3005
3006 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3007 {
3008 struct vcpu_svm *svm = to_svm(vcpu);
3009 int svm_dis, chg_mask;
3010
3011 if (data & ~SVM_VM_CR_VALID_MASK)
3012 return 1;
3013
3014 chg_mask = SVM_VM_CR_VALID_MASK;
3015
3016 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3017 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3018
3019 svm->nested.vm_cr_msr &= ~chg_mask;
3020 svm->nested.vm_cr_msr |= (data & chg_mask);
3021
3022 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3023
3024 /* check for svm_disable while efer.svme is set */
3025 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3026 return 1;
3027
3028 return 0;
3029 }
3030
3031 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3032 {
3033 struct vcpu_svm *svm = to_svm(vcpu);
3034
3035 switch (ecx) {
3036 case MSR_IA32_TSC:
3037 kvm_write_tsc(vcpu, data);
3038 break;
3039 case MSR_STAR:
3040 svm->vmcb->save.star = data;
3041 break;
3042 #ifdef CONFIG_X86_64
3043 case MSR_LSTAR:
3044 svm->vmcb->save.lstar = data;
3045 break;
3046 case MSR_CSTAR:
3047 svm->vmcb->save.cstar = data;
3048 break;
3049 case MSR_KERNEL_GS_BASE:
3050 svm->vmcb->save.kernel_gs_base = data;
3051 break;
3052 case MSR_SYSCALL_MASK:
3053 svm->vmcb->save.sfmask = data;
3054 break;
3055 #endif
3056 case MSR_IA32_SYSENTER_CS:
3057 svm->vmcb->save.sysenter_cs = data;
3058 break;
3059 case MSR_IA32_SYSENTER_EIP:
3060 svm->sysenter_eip = data;
3061 svm->vmcb->save.sysenter_eip = data;
3062 break;
3063 case MSR_IA32_SYSENTER_ESP:
3064 svm->sysenter_esp = data;
3065 svm->vmcb->save.sysenter_esp = data;
3066 break;
3067 case MSR_IA32_DEBUGCTLMSR:
3068 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3069 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3070 __func__, data);
3071 break;
3072 }
3073 if (data & DEBUGCTL_RESERVED_BITS)
3074 return 1;
3075
3076 svm->vmcb->save.dbgctl = data;
3077 mark_dirty(svm->vmcb, VMCB_LBR);
3078 if (data & (1ULL<<0))
3079 svm_enable_lbrv(svm);
3080 else
3081 svm_disable_lbrv(svm);
3082 break;
3083 case MSR_VM_HSAVE_PA:
3084 svm->nested.hsave_msr = data;
3085 break;
3086 case MSR_VM_CR:
3087 return svm_set_vm_cr(vcpu, data);
3088 case MSR_VM_IGNNE:
3089 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3090 break;
3091 default:
3092 return kvm_set_msr_common(vcpu, ecx, data);
3093 }
3094 return 0;
3095 }
3096
3097 static int wrmsr_interception(struct vcpu_svm *svm)
3098 {
3099 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3100 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3101 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3102
3103
3104 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3105 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3106 trace_kvm_msr_write_ex(ecx, data);
3107 kvm_inject_gp(&svm->vcpu, 0);
3108 } else {
3109 trace_kvm_msr_write(ecx, data);
3110 skip_emulated_instruction(&svm->vcpu);
3111 }
3112 return 1;
3113 }
3114
3115 static int msr_interception(struct vcpu_svm *svm)
3116 {
3117 if (svm->vmcb->control.exit_info_1)
3118 return wrmsr_interception(svm);
3119 else
3120 return rdmsr_interception(svm);
3121 }
3122
3123 static int interrupt_window_interception(struct vcpu_svm *svm)
3124 {
3125 struct kvm_run *kvm_run = svm->vcpu.run;
3126
3127 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3128 svm_clear_vintr(svm);
3129 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3130 mark_dirty(svm->vmcb, VMCB_INTR);
3131 /*
3132 * If the user space waits to inject interrupts, exit as soon as
3133 * possible
3134 */
3135 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3136 kvm_run->request_interrupt_window &&
3137 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3138 ++svm->vcpu.stat.irq_window_exits;
3139 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3140 return 0;
3141 }
3142
3143 return 1;
3144 }
3145
3146 static int pause_interception(struct vcpu_svm *svm)
3147 {
3148 kvm_vcpu_on_spin(&(svm->vcpu));
3149 return 1;
3150 }
3151
3152 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3153 [SVM_EXIT_READ_CR0] = cr_interception,
3154 [SVM_EXIT_READ_CR3] = cr_interception,
3155 [SVM_EXIT_READ_CR4] = cr_interception,
3156 [SVM_EXIT_READ_CR8] = cr_interception,
3157 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3158 [SVM_EXIT_WRITE_CR0] = cr_interception,
3159 [SVM_EXIT_WRITE_CR3] = cr_interception,
3160 [SVM_EXIT_WRITE_CR4] = cr_interception,
3161 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3162 [SVM_EXIT_READ_DR0] = dr_interception,
3163 [SVM_EXIT_READ_DR1] = dr_interception,
3164 [SVM_EXIT_READ_DR2] = dr_interception,
3165 [SVM_EXIT_READ_DR3] = dr_interception,
3166 [SVM_EXIT_READ_DR4] = dr_interception,
3167 [SVM_EXIT_READ_DR5] = dr_interception,
3168 [SVM_EXIT_READ_DR6] = dr_interception,
3169 [SVM_EXIT_READ_DR7] = dr_interception,
3170 [SVM_EXIT_WRITE_DR0] = dr_interception,
3171 [SVM_EXIT_WRITE_DR1] = dr_interception,
3172 [SVM_EXIT_WRITE_DR2] = dr_interception,
3173 [SVM_EXIT_WRITE_DR3] = dr_interception,
3174 [SVM_EXIT_WRITE_DR4] = dr_interception,
3175 [SVM_EXIT_WRITE_DR5] = dr_interception,
3176 [SVM_EXIT_WRITE_DR6] = dr_interception,
3177 [SVM_EXIT_WRITE_DR7] = dr_interception,
3178 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3179 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3180 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3181 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3182 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3183 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3184 [SVM_EXIT_INTR] = intr_interception,
3185 [SVM_EXIT_NMI] = nmi_interception,
3186 [SVM_EXIT_SMI] = nop_on_interception,
3187 [SVM_EXIT_INIT] = nop_on_interception,
3188 [SVM_EXIT_VINTR] = interrupt_window_interception,
3189 [SVM_EXIT_CPUID] = cpuid_interception,
3190 [SVM_EXIT_IRET] = iret_interception,
3191 [SVM_EXIT_INVD] = emulate_on_interception,
3192 [SVM_EXIT_PAUSE] = pause_interception,
3193 [SVM_EXIT_HLT] = halt_interception,
3194 [SVM_EXIT_INVLPG] = invlpg_interception,
3195 [SVM_EXIT_INVLPGA] = invlpga_interception,
3196 [SVM_EXIT_IOIO] = io_interception,
3197 [SVM_EXIT_MSR] = msr_interception,
3198 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3199 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3200 [SVM_EXIT_VMRUN] = vmrun_interception,
3201 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3202 [SVM_EXIT_VMLOAD] = vmload_interception,
3203 [SVM_EXIT_VMSAVE] = vmsave_interception,
3204 [SVM_EXIT_STGI] = stgi_interception,
3205 [SVM_EXIT_CLGI] = clgi_interception,
3206 [SVM_EXIT_SKINIT] = skinit_interception,
3207 [SVM_EXIT_WBINVD] = emulate_on_interception,
3208 [SVM_EXIT_MONITOR] = invalid_op_interception,
3209 [SVM_EXIT_MWAIT] = invalid_op_interception,
3210 [SVM_EXIT_XSETBV] = xsetbv_interception,
3211 [SVM_EXIT_NPF] = pf_interception,
3212 };
3213
3214 static void dump_vmcb(struct kvm_vcpu *vcpu)
3215 {
3216 struct vcpu_svm *svm = to_svm(vcpu);
3217 struct vmcb_control_area *control = &svm->vmcb->control;
3218 struct vmcb_save_area *save = &svm->vmcb->save;
3219
3220 pr_err("VMCB Control Area:\n");
3221 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3222 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3223 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3224 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3225 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3226 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3227 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3228 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3229 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3230 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3231 pr_err("%-20s%d\n", "asid:", control->asid);
3232 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3233 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3234 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3235 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3236 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3237 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3238 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3239 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3240 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3241 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3242 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3243 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3244 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3245 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3246 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3247 pr_err("VMCB State Save Area:\n");
3248 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3249 "es:",
3250 save->es.selector, save->es.attrib,
3251 save->es.limit, save->es.base);
3252 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3253 "cs:",
3254 save->cs.selector, save->cs.attrib,
3255 save->cs.limit, save->cs.base);
3256 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3257 "ss:",
3258 save->ss.selector, save->ss.attrib,
3259 save->ss.limit, save->ss.base);
3260 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3261 "ds:",
3262 save->ds.selector, save->ds.attrib,
3263 save->ds.limit, save->ds.base);
3264 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3265 "fs:",
3266 save->fs.selector, save->fs.attrib,
3267 save->fs.limit, save->fs.base);
3268 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3269 "gs:",
3270 save->gs.selector, save->gs.attrib,
3271 save->gs.limit, save->gs.base);
3272 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3273 "gdtr:",
3274 save->gdtr.selector, save->gdtr.attrib,
3275 save->gdtr.limit, save->gdtr.base);
3276 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3277 "ldtr:",
3278 save->ldtr.selector, save->ldtr.attrib,
3279 save->ldtr.limit, save->ldtr.base);
3280 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3281 "idtr:",
3282 save->idtr.selector, save->idtr.attrib,
3283 save->idtr.limit, save->idtr.base);
3284 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3285 "tr:",
3286 save->tr.selector, save->tr.attrib,
3287 save->tr.limit, save->tr.base);
3288 pr_err("cpl: %d efer: %016llx\n",
3289 save->cpl, save->efer);
3290 pr_err("%-15s %016llx %-13s %016llx\n",
3291 "cr0:", save->cr0, "cr2:", save->cr2);
3292 pr_err("%-15s %016llx %-13s %016llx\n",
3293 "cr3:", save->cr3, "cr4:", save->cr4);
3294 pr_err("%-15s %016llx %-13s %016llx\n",
3295 "dr6:", save->dr6, "dr7:", save->dr7);
3296 pr_err("%-15s %016llx %-13s %016llx\n",
3297 "rip:", save->rip, "rflags:", save->rflags);
3298 pr_err("%-15s %016llx %-13s %016llx\n",
3299 "rsp:", save->rsp, "rax:", save->rax);
3300 pr_err("%-15s %016llx %-13s %016llx\n",
3301 "star:", save->star, "lstar:", save->lstar);
3302 pr_err("%-15s %016llx %-13s %016llx\n",
3303 "cstar:", save->cstar, "sfmask:", save->sfmask);
3304 pr_err("%-15s %016llx %-13s %016llx\n",
3305 "kernel_gs_base:", save->kernel_gs_base,
3306 "sysenter_cs:", save->sysenter_cs);
3307 pr_err("%-15s %016llx %-13s %016llx\n",
3308 "sysenter_esp:", save->sysenter_esp,
3309 "sysenter_eip:", save->sysenter_eip);
3310 pr_err("%-15s %016llx %-13s %016llx\n",
3311 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3312 pr_err("%-15s %016llx %-13s %016llx\n",
3313 "br_from:", save->br_from, "br_to:", save->br_to);
3314 pr_err("%-15s %016llx %-13s %016llx\n",
3315 "excp_from:", save->last_excp_from,
3316 "excp_to:", save->last_excp_to);
3317 }
3318
3319 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3320 {
3321 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3322
3323 *info1 = control->exit_info_1;
3324 *info2 = control->exit_info_2;
3325 }
3326
3327 static int handle_exit(struct kvm_vcpu *vcpu)
3328 {
3329 struct vcpu_svm *svm = to_svm(vcpu);
3330 struct kvm_run *kvm_run = vcpu->run;
3331 u32 exit_code = svm->vmcb->control.exit_code;
3332
3333 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3334
3335 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3336 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3337 if (npt_enabled)
3338 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3339
3340 if (unlikely(svm->nested.exit_required)) {
3341 nested_svm_vmexit(svm);
3342 svm->nested.exit_required = false;
3343
3344 return 1;
3345 }
3346
3347 if (is_guest_mode(vcpu)) {
3348 int vmexit;
3349
3350 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3351 svm->vmcb->control.exit_info_1,
3352 svm->vmcb->control.exit_info_2,
3353 svm->vmcb->control.exit_int_info,
3354 svm->vmcb->control.exit_int_info_err,
3355 KVM_ISA_SVM);
3356
3357 vmexit = nested_svm_exit_special(svm);
3358
3359 if (vmexit == NESTED_EXIT_CONTINUE)
3360 vmexit = nested_svm_exit_handled(svm);
3361
3362 if (vmexit == NESTED_EXIT_DONE)
3363 return 1;
3364 }
3365
3366 svm_complete_interrupts(svm);
3367
3368 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3369 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3370 kvm_run->fail_entry.hardware_entry_failure_reason
3371 = svm->vmcb->control.exit_code;
3372 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3373 dump_vmcb(vcpu);
3374 return 0;
3375 }
3376
3377 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3378 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3379 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3380 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3381 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3382 "exit_code 0x%x\n",
3383 __func__, svm->vmcb->control.exit_int_info,
3384 exit_code);
3385
3386 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3387 || !svm_exit_handlers[exit_code]) {
3388 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3389 kvm_run->hw.hardware_exit_reason = exit_code;
3390 return 0;
3391 }
3392
3393 return svm_exit_handlers[exit_code](svm);
3394 }
3395
3396 static void reload_tss(struct kvm_vcpu *vcpu)
3397 {
3398 int cpu = raw_smp_processor_id();
3399
3400 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3401 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3402 load_TR_desc();
3403 }
3404
3405 static void pre_svm_run(struct vcpu_svm *svm)
3406 {
3407 int cpu = raw_smp_processor_id();
3408
3409 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3410
3411 /* FIXME: handle wraparound of asid_generation */
3412 if (svm->asid_generation != sd->asid_generation)
3413 new_asid(svm, sd);
3414 }
3415
3416 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3417 {
3418 struct vcpu_svm *svm = to_svm(vcpu);
3419
3420 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3421 vcpu->arch.hflags |= HF_NMI_MASK;
3422 set_intercept(svm, INTERCEPT_IRET);
3423 ++vcpu->stat.nmi_injections;
3424 }
3425
3426 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3427 {
3428 struct vmcb_control_area *control;
3429
3430 control = &svm->vmcb->control;
3431 control->int_vector = irq;
3432 control->int_ctl &= ~V_INTR_PRIO_MASK;
3433 control->int_ctl |= V_IRQ_MASK |
3434 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3435 mark_dirty(svm->vmcb, VMCB_INTR);
3436 }
3437
3438 static void svm_set_irq(struct kvm_vcpu *vcpu)
3439 {
3440 struct vcpu_svm *svm = to_svm(vcpu);
3441
3442 BUG_ON(!(gif_set(svm)));
3443
3444 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3445 ++vcpu->stat.irq_injections;
3446
3447 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3448 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3449 }
3450
3451 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3452 {
3453 struct vcpu_svm *svm = to_svm(vcpu);
3454
3455 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3456 return;
3457
3458 if (irr == -1)
3459 return;
3460
3461 if (tpr >= irr)
3462 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3463 }
3464
3465 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3466 {
3467 struct vcpu_svm *svm = to_svm(vcpu);
3468 struct vmcb *vmcb = svm->vmcb;
3469 int ret;
3470 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3471 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3472 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3473
3474 return ret;
3475 }
3476
3477 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3478 {
3479 struct vcpu_svm *svm = to_svm(vcpu);
3480
3481 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3482 }
3483
3484 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3485 {
3486 struct vcpu_svm *svm = to_svm(vcpu);
3487
3488 if (masked) {
3489 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3490 set_intercept(svm, INTERCEPT_IRET);
3491 } else {
3492 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3493 clr_intercept(svm, INTERCEPT_IRET);
3494 }
3495 }
3496
3497 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3498 {
3499 struct vcpu_svm *svm = to_svm(vcpu);
3500 struct vmcb *vmcb = svm->vmcb;
3501 int ret;
3502
3503 if (!gif_set(svm) ||
3504 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3505 return 0;
3506
3507 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3508
3509 if (is_guest_mode(vcpu))
3510 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3511
3512 return ret;
3513 }
3514
3515 static void enable_irq_window(struct kvm_vcpu *vcpu)
3516 {
3517 struct vcpu_svm *svm = to_svm(vcpu);
3518
3519 /*
3520 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3521 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3522 * get that intercept, this function will be called again though and
3523 * we'll get the vintr intercept.
3524 */
3525 if (gif_set(svm) && nested_svm_intr(svm)) {
3526 svm_set_vintr(svm);
3527 svm_inject_irq(svm, 0x0);
3528 }
3529 }
3530
3531 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3532 {
3533 struct vcpu_svm *svm = to_svm(vcpu);
3534
3535 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3536 == HF_NMI_MASK)
3537 return; /* IRET will cause a vm exit */
3538
3539 /*
3540 * Something prevents NMI from been injected. Single step over possible
3541 * problem (IRET or exception injection or interrupt shadow)
3542 */
3543 svm->nmi_singlestep = true;
3544 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3545 update_db_intercept(vcpu);
3546 }
3547
3548 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3549 {
3550 return 0;
3551 }
3552
3553 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3554 {
3555 struct vcpu_svm *svm = to_svm(vcpu);
3556
3557 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3558 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3559 else
3560 svm->asid_generation--;
3561 }
3562
3563 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3564 {
3565 }
3566
3567 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3568 {
3569 struct vcpu_svm *svm = to_svm(vcpu);
3570
3571 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3572 return;
3573
3574 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3575 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3576 kvm_set_cr8(vcpu, cr8);
3577 }
3578 }
3579
3580 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3581 {
3582 struct vcpu_svm *svm = to_svm(vcpu);
3583 u64 cr8;
3584
3585 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3586 return;
3587
3588 cr8 = kvm_get_cr8(vcpu);
3589 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3590 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3591 }
3592
3593 static void svm_complete_interrupts(struct vcpu_svm *svm)
3594 {
3595 u8 vector;
3596 int type;
3597 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3598 unsigned int3_injected = svm->int3_injected;
3599
3600 svm->int3_injected = 0;
3601
3602 /*
3603 * If we've made progress since setting HF_IRET_MASK, we've
3604 * executed an IRET and can allow NMI injection.
3605 */
3606 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3607 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3608 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3609 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3610 }
3611
3612 svm->vcpu.arch.nmi_injected = false;
3613 kvm_clear_exception_queue(&svm->vcpu);
3614 kvm_clear_interrupt_queue(&svm->vcpu);
3615
3616 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3617 return;
3618
3619 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3620
3621 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3622 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3623
3624 switch (type) {
3625 case SVM_EXITINTINFO_TYPE_NMI:
3626 svm->vcpu.arch.nmi_injected = true;
3627 break;
3628 case SVM_EXITINTINFO_TYPE_EXEPT:
3629 /*
3630 * In case of software exceptions, do not reinject the vector,
3631 * but re-execute the instruction instead. Rewind RIP first
3632 * if we emulated INT3 before.
3633 */
3634 if (kvm_exception_is_soft(vector)) {
3635 if (vector == BP_VECTOR && int3_injected &&
3636 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3637 kvm_rip_write(&svm->vcpu,
3638 kvm_rip_read(&svm->vcpu) -
3639 int3_injected);
3640 break;
3641 }
3642 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3643 u32 err = svm->vmcb->control.exit_int_info_err;
3644 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3645
3646 } else
3647 kvm_requeue_exception(&svm->vcpu, vector);
3648 break;
3649 case SVM_EXITINTINFO_TYPE_INTR:
3650 kvm_queue_interrupt(&svm->vcpu, vector, false);
3651 break;
3652 default:
3653 break;
3654 }
3655 }
3656
3657 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3658 {
3659 struct vcpu_svm *svm = to_svm(vcpu);
3660 struct vmcb_control_area *control = &svm->vmcb->control;
3661
3662 control->exit_int_info = control->event_inj;
3663 control->exit_int_info_err = control->event_inj_err;
3664 control->event_inj = 0;
3665 svm_complete_interrupts(svm);
3666 }
3667
3668 #ifdef CONFIG_X86_64
3669 #define R "r"
3670 #else
3671 #define R "e"
3672 #endif
3673
3674 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3675 {
3676 struct vcpu_svm *svm = to_svm(vcpu);
3677
3678 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3679 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3680 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3681
3682 /*
3683 * A vmexit emulation is required before the vcpu can be executed
3684 * again.
3685 */
3686 if (unlikely(svm->nested.exit_required))
3687 return;
3688
3689 pre_svm_run(svm);
3690
3691 sync_lapic_to_cr8(vcpu);
3692
3693 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3694
3695 clgi();
3696
3697 local_irq_enable();
3698
3699 asm volatile (
3700 "push %%"R"bp; \n\t"
3701 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3702 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3703 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3704 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3705 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3706 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3707 #ifdef CONFIG_X86_64
3708 "mov %c[r8](%[svm]), %%r8 \n\t"
3709 "mov %c[r9](%[svm]), %%r9 \n\t"
3710 "mov %c[r10](%[svm]), %%r10 \n\t"
3711 "mov %c[r11](%[svm]), %%r11 \n\t"
3712 "mov %c[r12](%[svm]), %%r12 \n\t"
3713 "mov %c[r13](%[svm]), %%r13 \n\t"
3714 "mov %c[r14](%[svm]), %%r14 \n\t"
3715 "mov %c[r15](%[svm]), %%r15 \n\t"
3716 #endif
3717
3718 /* Enter guest mode */
3719 "push %%"R"ax \n\t"
3720 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3721 __ex(SVM_VMLOAD) "\n\t"
3722 __ex(SVM_VMRUN) "\n\t"
3723 __ex(SVM_VMSAVE) "\n\t"
3724 "pop %%"R"ax \n\t"
3725
3726 /* Save guest registers, load host registers */
3727 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3728 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3729 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3730 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3731 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3732 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3733 #ifdef CONFIG_X86_64
3734 "mov %%r8, %c[r8](%[svm]) \n\t"
3735 "mov %%r9, %c[r9](%[svm]) \n\t"
3736 "mov %%r10, %c[r10](%[svm]) \n\t"
3737 "mov %%r11, %c[r11](%[svm]) \n\t"
3738 "mov %%r12, %c[r12](%[svm]) \n\t"
3739 "mov %%r13, %c[r13](%[svm]) \n\t"
3740 "mov %%r14, %c[r14](%[svm]) \n\t"
3741 "mov %%r15, %c[r15](%[svm]) \n\t"
3742 #endif
3743 "pop %%"R"bp"
3744 :
3745 : [svm]"a"(svm),
3746 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3747 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3748 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3749 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3750 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3751 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3752 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3753 #ifdef CONFIG_X86_64
3754 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3755 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3756 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3757 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3758 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3759 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3760 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3761 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3762 #endif
3763 : "cc", "memory"
3764 , R"bx", R"cx", R"dx", R"si", R"di"
3765 #ifdef CONFIG_X86_64
3766 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3767 #endif
3768 );
3769
3770 #ifdef CONFIG_X86_64
3771 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3772 #else
3773 loadsegment(fs, svm->host.fs);
3774 #ifndef CONFIG_X86_32_LAZY_GS
3775 loadsegment(gs, svm->host.gs);
3776 #endif
3777 #endif
3778
3779 reload_tss(vcpu);
3780
3781 local_irq_disable();
3782
3783 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3784 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3785 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3786 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3787
3788 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3789 kvm_before_handle_nmi(&svm->vcpu);
3790
3791 stgi();
3792
3793 /* Any pending NMI will happen here */
3794
3795 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3796 kvm_after_handle_nmi(&svm->vcpu);
3797
3798 sync_cr8_to_lapic(vcpu);
3799
3800 svm->next_rip = 0;
3801
3802 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3803
3804 /* if exit due to PF check for async PF */
3805 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3806 svm->apf_reason = kvm_read_and_reset_pf_reason();
3807
3808 if (npt_enabled) {
3809 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3810 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3811 }
3812
3813 /*
3814 * We need to handle MC intercepts here before the vcpu has a chance to
3815 * change the physical cpu
3816 */
3817 if (unlikely(svm->vmcb->control.exit_code ==
3818 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3819 svm_handle_mce(svm);
3820
3821 mark_all_clean(svm->vmcb);
3822 }
3823
3824 #undef R
3825
3826 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3827 {
3828 struct vcpu_svm *svm = to_svm(vcpu);
3829
3830 svm->vmcb->save.cr3 = root;
3831 mark_dirty(svm->vmcb, VMCB_CR);
3832 svm_flush_tlb(vcpu);
3833 }
3834
3835 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3836 {
3837 struct vcpu_svm *svm = to_svm(vcpu);
3838
3839 svm->vmcb->control.nested_cr3 = root;
3840 mark_dirty(svm->vmcb, VMCB_NPT);
3841
3842 /* Also sync guest cr3 here in case we live migrate */
3843 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3844 mark_dirty(svm->vmcb, VMCB_CR);
3845
3846 svm_flush_tlb(vcpu);
3847 }
3848
3849 static int is_disabled(void)
3850 {
3851 u64 vm_cr;
3852
3853 rdmsrl(MSR_VM_CR, vm_cr);
3854 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3855 return 1;
3856
3857 return 0;
3858 }
3859
3860 static void
3861 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3862 {
3863 /*
3864 * Patch in the VMMCALL instruction:
3865 */
3866 hypercall[0] = 0x0f;
3867 hypercall[1] = 0x01;
3868 hypercall[2] = 0xd9;
3869 }
3870
3871 static void svm_check_processor_compat(void *rtn)
3872 {
3873 *(int *)rtn = 0;
3874 }
3875
3876 static bool svm_cpu_has_accelerated_tpr(void)
3877 {
3878 return false;
3879 }
3880
3881 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3882 {
3883 return 0;
3884 }
3885
3886 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3887 {
3888 }
3889
3890 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3891 {
3892 switch (func) {
3893 case 0x80000001:
3894 if (nested)
3895 entry->ecx |= (1 << 2); /* Set SVM bit */
3896 break;
3897 case 0x8000000A:
3898 entry->eax = 1; /* SVM revision 1 */
3899 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3900 ASID emulation to nested SVM */
3901 entry->ecx = 0; /* Reserved */
3902 entry->edx = 0; /* Per default do not support any
3903 additional features */
3904
3905 /* Support next_rip if host supports it */
3906 if (boot_cpu_has(X86_FEATURE_NRIPS))
3907 entry->edx |= SVM_FEATURE_NRIP;
3908
3909 /* Support NPT for the guest if enabled */
3910 if (npt_enabled)
3911 entry->edx |= SVM_FEATURE_NPT;
3912
3913 break;
3914 }
3915 }
3916
3917 static int svm_get_lpage_level(void)
3918 {
3919 return PT_PDPE_LEVEL;
3920 }
3921
3922 static bool svm_rdtscp_supported(void)
3923 {
3924 return false;
3925 }
3926
3927 static bool svm_has_wbinvd_exit(void)
3928 {
3929 return true;
3930 }
3931
3932 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3933 {
3934 struct vcpu_svm *svm = to_svm(vcpu);
3935
3936 set_exception_intercept(svm, NM_VECTOR);
3937 update_cr0_intercept(svm);
3938 }
3939
3940 #define PRE_EX(exit) { .exit_code = (exit), \
3941 .stage = X86_ICPT_PRE_EXCEPT, }
3942 #define POST_EX(exit) { .exit_code = (exit), \
3943 .stage = X86_ICPT_POST_EXCEPT, }
3944 #define POST_MEM(exit) { .exit_code = (exit), \
3945 .stage = X86_ICPT_POST_MEMACCESS, }
3946
3947 static struct __x86_intercept {
3948 u32 exit_code;
3949 enum x86_intercept_stage stage;
3950 } x86_intercept_map[] = {
3951 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3952 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3953 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3954 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3955 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3956 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3957 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3958 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3959 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3960 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3961 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3962 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3963 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3964 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3965 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3966 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3967 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3968 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3969 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3970 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3971 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3972 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3973 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3974 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3975 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3976 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3977 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3978 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3979 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3980 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3981 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3982 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3983 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3984 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3985 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3986 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3987 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3988 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3989 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3990 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3991 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3992 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3993 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3994 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3995 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
3996 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
3997 };
3998
3999 #undef PRE_EX
4000 #undef POST_EX
4001 #undef POST_MEM
4002
4003 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4004 struct x86_instruction_info *info,
4005 enum x86_intercept_stage stage)
4006 {
4007 struct vcpu_svm *svm = to_svm(vcpu);
4008 int vmexit, ret = X86EMUL_CONTINUE;
4009 struct __x86_intercept icpt_info;
4010 struct vmcb *vmcb = svm->vmcb;
4011
4012 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4013 goto out;
4014
4015 icpt_info = x86_intercept_map[info->intercept];
4016
4017 if (stage != icpt_info.stage)
4018 goto out;
4019
4020 switch (icpt_info.exit_code) {
4021 case SVM_EXIT_READ_CR0:
4022 if (info->intercept == x86_intercept_cr_read)
4023 icpt_info.exit_code += info->modrm_reg;
4024 break;
4025 case SVM_EXIT_WRITE_CR0: {
4026 unsigned long cr0, val;
4027 u64 intercept;
4028
4029 if (info->intercept == x86_intercept_cr_write)
4030 icpt_info.exit_code += info->modrm_reg;
4031
4032 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4033 break;
4034
4035 intercept = svm->nested.intercept;
4036
4037 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4038 break;
4039
4040 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4041 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4042
4043 if (info->intercept == x86_intercept_lmsw) {
4044 cr0 &= 0xfUL;
4045 val &= 0xfUL;
4046 /* lmsw can't clear PE - catch this here */
4047 if (cr0 & X86_CR0_PE)
4048 val |= X86_CR0_PE;
4049 }
4050
4051 if (cr0 ^ val)
4052 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4053
4054 break;
4055 }
4056 case SVM_EXIT_READ_DR0:
4057 case SVM_EXIT_WRITE_DR0:
4058 icpt_info.exit_code += info->modrm_reg;
4059 break;
4060 case SVM_EXIT_MSR:
4061 if (info->intercept == x86_intercept_wrmsr)
4062 vmcb->control.exit_info_1 = 1;
4063 else
4064 vmcb->control.exit_info_1 = 0;
4065 break;
4066 case SVM_EXIT_PAUSE:
4067 /*
4068 * We get this for NOP only, but pause
4069 * is rep not, check this here
4070 */
4071 if (info->rep_prefix != REPE_PREFIX)
4072 goto out;
4073 case SVM_EXIT_IOIO: {
4074 u64 exit_info;
4075 u32 bytes;
4076
4077 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4078
4079 if (info->intercept == x86_intercept_in ||
4080 info->intercept == x86_intercept_ins) {
4081 exit_info |= SVM_IOIO_TYPE_MASK;
4082 bytes = info->src_bytes;
4083 } else {
4084 bytes = info->dst_bytes;
4085 }
4086
4087 if (info->intercept == x86_intercept_outs ||
4088 info->intercept == x86_intercept_ins)
4089 exit_info |= SVM_IOIO_STR_MASK;
4090
4091 if (info->rep_prefix)
4092 exit_info |= SVM_IOIO_REP_MASK;
4093
4094 bytes = min(bytes, 4u);
4095
4096 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4097
4098 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4099
4100 vmcb->control.exit_info_1 = exit_info;
4101 vmcb->control.exit_info_2 = info->next_rip;
4102
4103 break;
4104 }
4105 default:
4106 break;
4107 }
4108
4109 vmcb->control.next_rip = info->next_rip;
4110 vmcb->control.exit_code = icpt_info.exit_code;
4111 vmexit = nested_svm_exit_handled(svm);
4112
4113 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4114 : X86EMUL_CONTINUE;
4115
4116 out:
4117 return ret;
4118 }
4119
4120 static struct kvm_x86_ops svm_x86_ops = {
4121 .cpu_has_kvm_support = has_svm,
4122 .disabled_by_bios = is_disabled,
4123 .hardware_setup = svm_hardware_setup,
4124 .hardware_unsetup = svm_hardware_unsetup,
4125 .check_processor_compatibility = svm_check_processor_compat,
4126 .hardware_enable = svm_hardware_enable,
4127 .hardware_disable = svm_hardware_disable,
4128 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4129
4130 .vcpu_create = svm_create_vcpu,
4131 .vcpu_free = svm_free_vcpu,
4132 .vcpu_reset = svm_vcpu_reset,
4133
4134 .prepare_guest_switch = svm_prepare_guest_switch,
4135 .vcpu_load = svm_vcpu_load,
4136 .vcpu_put = svm_vcpu_put,
4137
4138 .set_guest_debug = svm_guest_debug,
4139 .get_msr = svm_get_msr,
4140 .set_msr = svm_set_msr,
4141 .get_segment_base = svm_get_segment_base,
4142 .get_segment = svm_get_segment,
4143 .set_segment = svm_set_segment,
4144 .get_cpl = svm_get_cpl,
4145 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4146 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4147 .decache_cr3 = svm_decache_cr3,
4148 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4149 .set_cr0 = svm_set_cr0,
4150 .set_cr3 = svm_set_cr3,
4151 .set_cr4 = svm_set_cr4,
4152 .set_efer = svm_set_efer,
4153 .get_idt = svm_get_idt,
4154 .set_idt = svm_set_idt,
4155 .get_gdt = svm_get_gdt,
4156 .set_gdt = svm_set_gdt,
4157 .set_dr7 = svm_set_dr7,
4158 .cache_reg = svm_cache_reg,
4159 .get_rflags = svm_get_rflags,
4160 .set_rflags = svm_set_rflags,
4161 .fpu_activate = svm_fpu_activate,
4162 .fpu_deactivate = svm_fpu_deactivate,
4163
4164 .tlb_flush = svm_flush_tlb,
4165
4166 .run = svm_vcpu_run,
4167 .handle_exit = handle_exit,
4168 .skip_emulated_instruction = skip_emulated_instruction,
4169 .set_interrupt_shadow = svm_set_interrupt_shadow,
4170 .get_interrupt_shadow = svm_get_interrupt_shadow,
4171 .patch_hypercall = svm_patch_hypercall,
4172 .set_irq = svm_set_irq,
4173 .set_nmi = svm_inject_nmi,
4174 .queue_exception = svm_queue_exception,
4175 .cancel_injection = svm_cancel_injection,
4176 .interrupt_allowed = svm_interrupt_allowed,
4177 .nmi_allowed = svm_nmi_allowed,
4178 .get_nmi_mask = svm_get_nmi_mask,
4179 .set_nmi_mask = svm_set_nmi_mask,
4180 .enable_nmi_window = enable_nmi_window,
4181 .enable_irq_window = enable_irq_window,
4182 .update_cr8_intercept = update_cr8_intercept,
4183
4184 .set_tss_addr = svm_set_tss_addr,
4185 .get_tdp_level = get_npt_level,
4186 .get_mt_mask = svm_get_mt_mask,
4187
4188 .get_exit_info = svm_get_exit_info,
4189
4190 .get_lpage_level = svm_get_lpage_level,
4191
4192 .cpuid_update = svm_cpuid_update,
4193
4194 .rdtscp_supported = svm_rdtscp_supported,
4195
4196 .set_supported_cpuid = svm_set_supported_cpuid,
4197
4198 .has_wbinvd_exit = svm_has_wbinvd_exit,
4199
4200 .set_tsc_khz = svm_set_tsc_khz,
4201 .write_tsc_offset = svm_write_tsc_offset,
4202 .adjust_tsc_offset = svm_adjust_tsc_offset,
4203 .compute_tsc_offset = svm_compute_tsc_offset,
4204
4205 .set_tdp_cr3 = set_tdp_cr3,
4206
4207 .check_intercept = svm_check_intercept,
4208 };
4209
4210 static int __init svm_init(void)
4211 {
4212 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4213 __alignof__(struct vcpu_svm), THIS_MODULE);
4214 }
4215
4216 static void __exit svm_exit(void)
4217 {
4218 kvm_exit();
4219 }
4220
4221 module_init(svm_init)
4222 module_exit(svm_exit)