]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kvm/svm.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84 #define SVM_AVIC_DOORBELL 0xc001011b
85
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141 };
142
143 struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
152
153 struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
163
164 /* These are the merged vectors */
165 u32 *msrpm;
166
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
170
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
173
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
179
180 /* Nested Paging related state */
181 u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
190 */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
202
203 u64 msr_decfg;
204
205 u64 next_rip;
206
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
214
215 u64 spec_ctrl;
216 /*
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
220 */
221 u64 virt_spec_ctrl;
222
223 u32 *msrpm;
224
225 ulong nmi_iret_rip;
226
227 struct nested_state nested;
228
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
231
232 unsigned int3_injected;
233 unsigned long int3_rip;
234
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
237
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254 };
255
256 /*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
274
275 #define MSR_INVALID 0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 #ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290 #endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
317 *
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
335 */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
392
393 enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
409 */
410 VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
429 };
430
431
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434 return container_of(kvm, struct kvm_svm, kvm);
435 }
436
437 static inline bool svm_sev_enabled(void)
438 {
439 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441
442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447 return sev->active;
448 #else
449 return false;
450 #endif
451 }
452
453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457 return sev->asid;
458 }
459
460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462 vmcb->control.clean = 0;
463 }
464
465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470
471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473 vmcb->control.clean &= ~(1 << bit);
474 }
475
476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478 return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480
481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486
487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489 struct vcpu_svm *svm = to_svm(vcpu);
490 u64 *entry = svm->avic_physical_id_cache;
491
492 if (!entry)
493 return false;
494
495 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497
498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500 struct vmcb_control_area *c, *h;
501 struct nested_state *g;
502
503 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505 if (!is_guest_mode(&svm->vcpu))
506 return;
507
508 c = &svm->vmcb->control;
509 h = &svm->nested.hsave->control;
510 g = &svm->nested;
511
512 c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 c->intercept = h->intercept | g->intercept;
516 }
517
518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519 {
520 if (is_guest_mode(&svm->vcpu))
521 return svm->nested.hsave;
522 else
523 return svm->vmcb;
524 }
525
526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527 {
528 struct vmcb *vmcb = get_host_vmcb(svm);
529
530 vmcb->control.intercept_cr |= (1U << bit);
531
532 recalc_intercepts(svm);
533 }
534
535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536 {
537 struct vmcb *vmcb = get_host_vmcb(svm);
538
539 vmcb->control.intercept_cr &= ~(1U << bit);
540
541 recalc_intercepts(svm);
542 }
543
544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545 {
546 struct vmcb *vmcb = get_host_vmcb(svm);
547
548 return vmcb->control.intercept_cr & (1U << bit);
549 }
550
551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
552 {
553 struct vmcb *vmcb = get_host_vmcb(svm);
554
555 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556 | (1 << INTERCEPT_DR1_READ)
557 | (1 << INTERCEPT_DR2_READ)
558 | (1 << INTERCEPT_DR3_READ)
559 | (1 << INTERCEPT_DR4_READ)
560 | (1 << INTERCEPT_DR5_READ)
561 | (1 << INTERCEPT_DR6_READ)
562 | (1 << INTERCEPT_DR7_READ)
563 | (1 << INTERCEPT_DR0_WRITE)
564 | (1 << INTERCEPT_DR1_WRITE)
565 | (1 << INTERCEPT_DR2_WRITE)
566 | (1 << INTERCEPT_DR3_WRITE)
567 | (1 << INTERCEPT_DR4_WRITE)
568 | (1 << INTERCEPT_DR5_WRITE)
569 | (1 << INTERCEPT_DR6_WRITE)
570 | (1 << INTERCEPT_DR7_WRITE);
571
572 recalc_intercepts(svm);
573 }
574
575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576 {
577 struct vmcb *vmcb = get_host_vmcb(svm);
578
579 vmcb->control.intercept_dr = 0;
580
581 recalc_intercepts(svm);
582 }
583
584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585 {
586 struct vmcb *vmcb = get_host_vmcb(svm);
587
588 vmcb->control.intercept_exceptions |= (1U << bit);
589
590 recalc_intercepts(svm);
591 }
592
593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594 {
595 struct vmcb *vmcb = get_host_vmcb(svm);
596
597 vmcb->control.intercept_exceptions &= ~(1U << bit);
598
599 recalc_intercepts(svm);
600 }
601
602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
603 {
604 struct vmcb *vmcb = get_host_vmcb(svm);
605
606 vmcb->control.intercept |= (1ULL << bit);
607
608 recalc_intercepts(svm);
609 }
610
611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612 {
613 struct vmcb *vmcb = get_host_vmcb(svm);
614
615 vmcb->control.intercept &= ~(1ULL << bit);
616
617 recalc_intercepts(svm);
618 }
619
620 static inline bool vgif_enabled(struct vcpu_svm *svm)
621 {
622 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623 }
624
625 static inline void enable_gif(struct vcpu_svm *svm)
626 {
627 if (vgif_enabled(svm))
628 svm->vmcb->control.int_ctl |= V_GIF_MASK;
629 else
630 svm->vcpu.arch.hflags |= HF_GIF_MASK;
631 }
632
633 static inline void disable_gif(struct vcpu_svm *svm)
634 {
635 if (vgif_enabled(svm))
636 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637 else
638 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639 }
640
641 static inline bool gif_set(struct vcpu_svm *svm)
642 {
643 if (vgif_enabled(svm))
644 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645 else
646 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647 }
648
649 static unsigned long iopm_base;
650
651 struct kvm_ldttss_desc {
652 u16 limit0;
653 u16 base0;
654 unsigned base1:8, type:5, dpl:2, p:1;
655 unsigned limit1:4, zero0:3, g:1, base2:8;
656 u32 base3;
657 u32 zero1;
658 } __attribute__((packed));
659
660 struct svm_cpu_data {
661 int cpu;
662
663 u64 asid_generation;
664 u32 max_asid;
665 u32 next_asid;
666 u32 min_asid;
667 struct kvm_ldttss_desc *tss_desc;
668
669 struct page *save_area;
670 struct vmcb *current_vmcb;
671
672 /* index = sev_asid, value = vmcb pointer */
673 struct vmcb **sev_vmcbs;
674 };
675
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677
678 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
679
680 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
681 #define MSRS_RANGE_SIZE 2048
682 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
683
684 static u32 svm_msrpm_offset(u32 msr)
685 {
686 u32 offset;
687 int i;
688
689 for (i = 0; i < NUM_MSR_MAPS; i++) {
690 if (msr < msrpm_ranges[i] ||
691 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
692 continue;
693
694 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
695 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
696
697 /* Now we have the u8 offset - but need the u32 offset */
698 return offset / 4;
699 }
700
701 /* MSR not in any range */
702 return MSR_INVALID;
703 }
704
705 #define MAX_INST_SIZE 15
706
707 static inline void clgi(void)
708 {
709 asm volatile (__ex("clgi"));
710 }
711
712 static inline void stgi(void)
713 {
714 asm volatile (__ex("stgi"));
715 }
716
717 static inline void invlpga(unsigned long addr, u32 asid)
718 {
719 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
720 }
721
722 static int get_npt_level(struct kvm_vcpu *vcpu)
723 {
724 #ifdef CONFIG_X86_64
725 return PT64_ROOT_4LEVEL;
726 #else
727 return PT32E_ROOT_LEVEL;
728 #endif
729 }
730
731 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
732 {
733 vcpu->arch.efer = efer;
734 if (!npt_enabled && !(efer & EFER_LMA))
735 efer &= ~EFER_LME;
736
737 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
738 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
739 }
740
741 static int is_external_interrupt(u32 info)
742 {
743 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
744 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
745 }
746
747 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
748 {
749 struct vcpu_svm *svm = to_svm(vcpu);
750 u32 ret = 0;
751
752 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
753 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
754 return ret;
755 }
756
757 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
758 {
759 struct vcpu_svm *svm = to_svm(vcpu);
760
761 if (mask == 0)
762 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
763 else
764 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
765
766 }
767
768 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
769 {
770 struct vcpu_svm *svm = to_svm(vcpu);
771
772 if (svm->vmcb->control.next_rip != 0) {
773 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
774 svm->next_rip = svm->vmcb->control.next_rip;
775 }
776
777 if (!svm->next_rip) {
778 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
779 EMULATE_DONE)
780 printk(KERN_DEBUG "%s: NOP\n", __func__);
781 return;
782 }
783 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
784 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
785 __func__, kvm_rip_read(vcpu), svm->next_rip);
786
787 kvm_rip_write(vcpu, svm->next_rip);
788 svm_set_interrupt_shadow(vcpu, 0);
789 }
790
791 static void svm_queue_exception(struct kvm_vcpu *vcpu)
792 {
793 struct vcpu_svm *svm = to_svm(vcpu);
794 unsigned nr = vcpu->arch.exception.nr;
795 bool has_error_code = vcpu->arch.exception.has_error_code;
796 bool reinject = vcpu->arch.exception.injected;
797 u32 error_code = vcpu->arch.exception.error_code;
798
799 /*
800 * If we are within a nested VM we'd better #VMEXIT and let the guest
801 * handle the exception
802 */
803 if (!reinject &&
804 nested_svm_check_exception(svm, nr, has_error_code, error_code))
805 return;
806
807 kvm_deliver_exception_payload(&svm->vcpu);
808
809 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
810 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
811
812 /*
813 * For guest debugging where we have to reinject #BP if some
814 * INT3 is guest-owned:
815 * Emulate nRIP by moving RIP forward. Will fail if injection
816 * raises a fault that is not intercepted. Still better than
817 * failing in all cases.
818 */
819 skip_emulated_instruction(&svm->vcpu);
820 rip = kvm_rip_read(&svm->vcpu);
821 svm->int3_rip = rip + svm->vmcb->save.cs.base;
822 svm->int3_injected = rip - old_rip;
823 }
824
825 svm->vmcb->control.event_inj = nr
826 | SVM_EVTINJ_VALID
827 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
828 | SVM_EVTINJ_TYPE_EXEPT;
829 svm->vmcb->control.event_inj_err = error_code;
830 }
831
832 static void svm_init_erratum_383(void)
833 {
834 u32 low, high;
835 int err;
836 u64 val;
837
838 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
839 return;
840
841 /* Use _safe variants to not break nested virtualization */
842 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
843 if (err)
844 return;
845
846 val |= (1ULL << 47);
847
848 low = lower_32_bits(val);
849 high = upper_32_bits(val);
850
851 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
852
853 erratum_383_found = true;
854 }
855
856 static void svm_init_osvw(struct kvm_vcpu *vcpu)
857 {
858 /*
859 * Guests should see errata 400 and 415 as fixed (assuming that
860 * HLT and IO instructions are intercepted).
861 */
862 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
863 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
864
865 /*
866 * By increasing VCPU's osvw.length to 3 we are telling the guest that
867 * all osvw.status bits inside that length, including bit 0 (which is
868 * reserved for erratum 298), are valid. However, if host processor's
869 * osvw_len is 0 then osvw_status[0] carries no information. We need to
870 * be conservative here and therefore we tell the guest that erratum 298
871 * is present (because we really don't know).
872 */
873 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
874 vcpu->arch.osvw.status |= 1;
875 }
876
877 static int has_svm(void)
878 {
879 const char *msg;
880
881 if (!cpu_has_svm(&msg)) {
882 printk(KERN_INFO "has_svm: %s\n", msg);
883 return 0;
884 }
885
886 return 1;
887 }
888
889 static void svm_hardware_disable(void)
890 {
891 /* Make sure we clean up behind us */
892 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
893 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
894
895 cpu_svm_disable();
896
897 amd_pmu_disable_virt();
898 }
899
900 static int svm_hardware_enable(void)
901 {
902
903 struct svm_cpu_data *sd;
904 uint64_t efer;
905 struct desc_struct *gdt;
906 int me = raw_smp_processor_id();
907
908 rdmsrl(MSR_EFER, efer);
909 if (efer & EFER_SVME)
910 return -EBUSY;
911
912 if (!has_svm()) {
913 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
914 return -EINVAL;
915 }
916 sd = per_cpu(svm_data, me);
917 if (!sd) {
918 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
919 return -EINVAL;
920 }
921
922 sd->asid_generation = 1;
923 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
924 sd->next_asid = sd->max_asid + 1;
925 sd->min_asid = max_sev_asid + 1;
926
927 gdt = get_current_gdt_rw();
928 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
929
930 wrmsrl(MSR_EFER, efer | EFER_SVME);
931
932 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
933
934 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
935 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
936 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
937 }
938
939
940 /*
941 * Get OSVW bits.
942 *
943 * Note that it is possible to have a system with mixed processor
944 * revisions and therefore different OSVW bits. If bits are not the same
945 * on different processors then choose the worst case (i.e. if erratum
946 * is present on one processor and not on another then assume that the
947 * erratum is present everywhere).
948 */
949 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
950 uint64_t len, status = 0;
951 int err;
952
953 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
954 if (!err)
955 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
956 &err);
957
958 if (err)
959 osvw_status = osvw_len = 0;
960 else {
961 if (len < osvw_len)
962 osvw_len = len;
963 osvw_status |= status;
964 osvw_status &= (1ULL << osvw_len) - 1;
965 }
966 } else
967 osvw_status = osvw_len = 0;
968
969 svm_init_erratum_383();
970
971 amd_pmu_enable_virt();
972
973 return 0;
974 }
975
976 static void svm_cpu_uninit(int cpu)
977 {
978 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
979
980 if (!sd)
981 return;
982
983 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
984 kfree(sd->sev_vmcbs);
985 __free_page(sd->save_area);
986 kfree(sd);
987 }
988
989 static int svm_cpu_init(int cpu)
990 {
991 struct svm_cpu_data *sd;
992 int r;
993
994 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
995 if (!sd)
996 return -ENOMEM;
997 sd->cpu = cpu;
998 r = -ENOMEM;
999 sd->save_area = alloc_page(GFP_KERNEL);
1000 if (!sd->save_area)
1001 goto err_1;
1002
1003 if (svm_sev_enabled()) {
1004 r = -ENOMEM;
1005 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1006 sizeof(void *),
1007 GFP_KERNEL);
1008 if (!sd->sev_vmcbs)
1009 goto err_1;
1010 }
1011
1012 per_cpu(svm_data, cpu) = sd;
1013
1014 return 0;
1015
1016 err_1:
1017 kfree(sd);
1018 return r;
1019
1020 }
1021
1022 static bool valid_msr_intercept(u32 index)
1023 {
1024 int i;
1025
1026 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1027 if (direct_access_msrs[i].index == index)
1028 return true;
1029
1030 return false;
1031 }
1032
1033 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1034 {
1035 u8 bit_write;
1036 unsigned long tmp;
1037 u32 offset;
1038 u32 *msrpm;
1039
1040 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1041 to_svm(vcpu)->msrpm;
1042
1043 offset = svm_msrpm_offset(msr);
1044 bit_write = 2 * (msr & 0x0f) + 1;
1045 tmp = msrpm[offset];
1046
1047 BUG_ON(offset == MSR_INVALID);
1048
1049 return !!test_bit(bit_write, &tmp);
1050 }
1051
1052 static void set_msr_interception(u32 *msrpm, unsigned msr,
1053 int read, int write)
1054 {
1055 u8 bit_read, bit_write;
1056 unsigned long tmp;
1057 u32 offset;
1058
1059 /*
1060 * If this warning triggers extend the direct_access_msrs list at the
1061 * beginning of the file
1062 */
1063 WARN_ON(!valid_msr_intercept(msr));
1064
1065 offset = svm_msrpm_offset(msr);
1066 bit_read = 2 * (msr & 0x0f);
1067 bit_write = 2 * (msr & 0x0f) + 1;
1068 tmp = msrpm[offset];
1069
1070 BUG_ON(offset == MSR_INVALID);
1071
1072 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1073 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1074
1075 msrpm[offset] = tmp;
1076 }
1077
1078 static void svm_vcpu_init_msrpm(u32 *msrpm)
1079 {
1080 int i;
1081
1082 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1083
1084 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1085 if (!direct_access_msrs[i].always)
1086 continue;
1087
1088 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1089 }
1090 }
1091
1092 static void add_msr_offset(u32 offset)
1093 {
1094 int i;
1095
1096 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1097
1098 /* Offset already in list? */
1099 if (msrpm_offsets[i] == offset)
1100 return;
1101
1102 /* Slot used by another offset? */
1103 if (msrpm_offsets[i] != MSR_INVALID)
1104 continue;
1105
1106 /* Add offset to list */
1107 msrpm_offsets[i] = offset;
1108
1109 return;
1110 }
1111
1112 /*
1113 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1114 * increase MSRPM_OFFSETS in this case.
1115 */
1116 BUG();
1117 }
1118
1119 static void init_msrpm_offsets(void)
1120 {
1121 int i;
1122
1123 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1124
1125 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1126 u32 offset;
1127
1128 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1129 BUG_ON(offset == MSR_INVALID);
1130
1131 add_msr_offset(offset);
1132 }
1133 }
1134
1135 static void svm_enable_lbrv(struct vcpu_svm *svm)
1136 {
1137 u32 *msrpm = svm->msrpm;
1138
1139 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1140 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1141 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1142 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1143 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1144 }
1145
1146 static void svm_disable_lbrv(struct vcpu_svm *svm)
1147 {
1148 u32 *msrpm = svm->msrpm;
1149
1150 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1151 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1152 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1153 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1154 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1155 }
1156
1157 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1158 {
1159 svm->nmi_singlestep = false;
1160
1161 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1162 /* Clear our flags if they were not set by the guest */
1163 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1164 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1165 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1166 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1167 }
1168 }
1169
1170 /* Note:
1171 * This hash table is used to map VM_ID to a struct kvm_svm,
1172 * when handling AMD IOMMU GALOG notification to schedule in
1173 * a particular vCPU.
1174 */
1175 #define SVM_VM_DATA_HASH_BITS 8
1176 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1177 static u32 next_vm_id = 0;
1178 static bool next_vm_id_wrapped = 0;
1179 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1180
1181 /* Note:
1182 * This function is called from IOMMU driver to notify
1183 * SVM to schedule in a particular vCPU of a particular VM.
1184 */
1185 static int avic_ga_log_notifier(u32 ga_tag)
1186 {
1187 unsigned long flags;
1188 struct kvm_svm *kvm_svm;
1189 struct kvm_vcpu *vcpu = NULL;
1190 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1191 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1192
1193 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1194
1195 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1196 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1197 if (kvm_svm->avic_vm_id != vm_id)
1198 continue;
1199 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1200 break;
1201 }
1202 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1203
1204 /* Note:
1205 * At this point, the IOMMU should have already set the pending
1206 * bit in the vAPIC backing page. So, we just need to schedule
1207 * in the vcpu.
1208 */
1209 if (vcpu)
1210 kvm_vcpu_wake_up(vcpu);
1211
1212 return 0;
1213 }
1214
1215 static __init int sev_hardware_setup(void)
1216 {
1217 struct sev_user_data_status *status;
1218 int rc;
1219
1220 /* Maximum number of encrypted guests supported simultaneously */
1221 max_sev_asid = cpuid_ecx(0x8000001F);
1222
1223 if (!max_sev_asid)
1224 return 1;
1225
1226 /* Minimum ASID value that should be used for SEV guest */
1227 min_sev_asid = cpuid_edx(0x8000001F);
1228
1229 /* Initialize SEV ASID bitmap */
1230 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1231 if (!sev_asid_bitmap)
1232 return 1;
1233
1234 status = kmalloc(sizeof(*status), GFP_KERNEL);
1235 if (!status)
1236 return 1;
1237
1238 /*
1239 * Check SEV platform status.
1240 *
1241 * PLATFORM_STATUS can be called in any state, if we failed to query
1242 * the PLATFORM status then either PSP firmware does not support SEV
1243 * feature or SEV firmware is dead.
1244 */
1245 rc = sev_platform_status(status, NULL);
1246 if (rc)
1247 goto err;
1248
1249 pr_info("SEV supported\n");
1250
1251 err:
1252 kfree(status);
1253 return rc;
1254 }
1255
1256 static void grow_ple_window(struct kvm_vcpu *vcpu)
1257 {
1258 struct vcpu_svm *svm = to_svm(vcpu);
1259 struct vmcb_control_area *control = &svm->vmcb->control;
1260 int old = control->pause_filter_count;
1261
1262 control->pause_filter_count = __grow_ple_window(old,
1263 pause_filter_count,
1264 pause_filter_count_grow,
1265 pause_filter_count_max);
1266
1267 if (control->pause_filter_count != old)
1268 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1269
1270 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1271 control->pause_filter_count, old);
1272 }
1273
1274 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1275 {
1276 struct vcpu_svm *svm = to_svm(vcpu);
1277 struct vmcb_control_area *control = &svm->vmcb->control;
1278 int old = control->pause_filter_count;
1279
1280 control->pause_filter_count =
1281 __shrink_ple_window(old,
1282 pause_filter_count,
1283 pause_filter_count_shrink,
1284 pause_filter_count);
1285 if (control->pause_filter_count != old)
1286 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287
1288 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1289 control->pause_filter_count, old);
1290 }
1291
1292 static __init int svm_hardware_setup(void)
1293 {
1294 int cpu;
1295 struct page *iopm_pages;
1296 void *iopm_va;
1297 int r;
1298
1299 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1300
1301 if (!iopm_pages)
1302 return -ENOMEM;
1303
1304 iopm_va = page_address(iopm_pages);
1305 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1306 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1307
1308 init_msrpm_offsets();
1309
1310 if (boot_cpu_has(X86_FEATURE_NX))
1311 kvm_enable_efer_bits(EFER_NX);
1312
1313 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1314 kvm_enable_efer_bits(EFER_FFXSR);
1315
1316 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1317 kvm_has_tsc_control = true;
1318 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1319 kvm_tsc_scaling_ratio_frac_bits = 32;
1320 }
1321
1322 /* Check for pause filtering support */
1323 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1324 pause_filter_count = 0;
1325 pause_filter_thresh = 0;
1326 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1327 pause_filter_thresh = 0;
1328 }
1329
1330 if (nested) {
1331 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1332 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1333 }
1334
1335 if (sev) {
1336 if (boot_cpu_has(X86_FEATURE_SEV) &&
1337 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1338 r = sev_hardware_setup();
1339 if (r)
1340 sev = false;
1341 } else {
1342 sev = false;
1343 }
1344 }
1345
1346 for_each_possible_cpu(cpu) {
1347 r = svm_cpu_init(cpu);
1348 if (r)
1349 goto err;
1350 }
1351
1352 if (!boot_cpu_has(X86_FEATURE_NPT))
1353 npt_enabled = false;
1354
1355 if (npt_enabled && !npt) {
1356 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1357 npt_enabled = false;
1358 }
1359
1360 if (npt_enabled) {
1361 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1362 kvm_enable_tdp();
1363 } else
1364 kvm_disable_tdp();
1365
1366 if (avic) {
1367 if (!npt_enabled ||
1368 !boot_cpu_has(X86_FEATURE_AVIC) ||
1369 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1370 avic = false;
1371 } else {
1372 pr_info("AVIC enabled\n");
1373
1374 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1375 }
1376 }
1377
1378 if (vls) {
1379 if (!npt_enabled ||
1380 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1381 !IS_ENABLED(CONFIG_X86_64)) {
1382 vls = false;
1383 } else {
1384 pr_info("Virtual VMLOAD VMSAVE supported\n");
1385 }
1386 }
1387
1388 if (vgif) {
1389 if (!boot_cpu_has(X86_FEATURE_VGIF))
1390 vgif = false;
1391 else
1392 pr_info("Virtual GIF supported\n");
1393 }
1394
1395 return 0;
1396
1397 err:
1398 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1399 iopm_base = 0;
1400 return r;
1401 }
1402
1403 static __exit void svm_hardware_unsetup(void)
1404 {
1405 int cpu;
1406
1407 if (svm_sev_enabled())
1408 bitmap_free(sev_asid_bitmap);
1409
1410 for_each_possible_cpu(cpu)
1411 svm_cpu_uninit(cpu);
1412
1413 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1414 iopm_base = 0;
1415 }
1416
1417 static void init_seg(struct vmcb_seg *seg)
1418 {
1419 seg->selector = 0;
1420 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1421 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1422 seg->limit = 0xffff;
1423 seg->base = 0;
1424 }
1425
1426 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1427 {
1428 seg->selector = 0;
1429 seg->attrib = SVM_SELECTOR_P_MASK | type;
1430 seg->limit = 0xffff;
1431 seg->base = 0;
1432 }
1433
1434 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1435 {
1436 struct vcpu_svm *svm = to_svm(vcpu);
1437
1438 if (is_guest_mode(vcpu))
1439 return svm->nested.hsave->control.tsc_offset;
1440
1441 return vcpu->arch.tsc_offset;
1442 }
1443
1444 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1445 {
1446 struct vcpu_svm *svm = to_svm(vcpu);
1447 u64 g_tsc_offset = 0;
1448
1449 if (is_guest_mode(vcpu)) {
1450 /* Write L1's TSC offset. */
1451 g_tsc_offset = svm->vmcb->control.tsc_offset -
1452 svm->nested.hsave->control.tsc_offset;
1453 svm->nested.hsave->control.tsc_offset = offset;
1454 }
1455
1456 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1457 svm->vmcb->control.tsc_offset - g_tsc_offset,
1458 offset);
1459
1460 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1461
1462 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1463 return svm->vmcb->control.tsc_offset;
1464 }
1465
1466 static void avic_init_vmcb(struct vcpu_svm *svm)
1467 {
1468 struct vmcb *vmcb = svm->vmcb;
1469 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1470 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1471 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1472 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1473
1474 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1475 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1476 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1477 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1478 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1479 }
1480
1481 static void init_vmcb(struct vcpu_svm *svm)
1482 {
1483 struct vmcb_control_area *control = &svm->vmcb->control;
1484 struct vmcb_save_area *save = &svm->vmcb->save;
1485
1486 svm->vcpu.arch.hflags = 0;
1487
1488 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1489 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1490 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1491 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1492 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1493 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1494 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1495 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1496
1497 set_dr_intercepts(svm);
1498
1499 set_exception_intercept(svm, PF_VECTOR);
1500 set_exception_intercept(svm, UD_VECTOR);
1501 set_exception_intercept(svm, MC_VECTOR);
1502 set_exception_intercept(svm, AC_VECTOR);
1503 set_exception_intercept(svm, DB_VECTOR);
1504 /*
1505 * Guest access to VMware backdoor ports could legitimately
1506 * trigger #GP because of TSS I/O permission bitmap.
1507 * We intercept those #GP and allow access to them anyway
1508 * as VMware does.
1509 */
1510 if (enable_vmware_backdoor)
1511 set_exception_intercept(svm, GP_VECTOR);
1512
1513 set_intercept(svm, INTERCEPT_INTR);
1514 set_intercept(svm, INTERCEPT_NMI);
1515 set_intercept(svm, INTERCEPT_SMI);
1516 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1517 set_intercept(svm, INTERCEPT_RDPMC);
1518 set_intercept(svm, INTERCEPT_CPUID);
1519 set_intercept(svm, INTERCEPT_INVD);
1520 set_intercept(svm, INTERCEPT_INVLPG);
1521 set_intercept(svm, INTERCEPT_INVLPGA);
1522 set_intercept(svm, INTERCEPT_IOIO_PROT);
1523 set_intercept(svm, INTERCEPT_MSR_PROT);
1524 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1525 set_intercept(svm, INTERCEPT_SHUTDOWN);
1526 set_intercept(svm, INTERCEPT_VMRUN);
1527 set_intercept(svm, INTERCEPT_VMMCALL);
1528 set_intercept(svm, INTERCEPT_VMLOAD);
1529 set_intercept(svm, INTERCEPT_VMSAVE);
1530 set_intercept(svm, INTERCEPT_STGI);
1531 set_intercept(svm, INTERCEPT_CLGI);
1532 set_intercept(svm, INTERCEPT_SKINIT);
1533 set_intercept(svm, INTERCEPT_WBINVD);
1534 set_intercept(svm, INTERCEPT_XSETBV);
1535 set_intercept(svm, INTERCEPT_RSM);
1536
1537 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1538 set_intercept(svm, INTERCEPT_MONITOR);
1539 set_intercept(svm, INTERCEPT_MWAIT);
1540 }
1541
1542 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1543 set_intercept(svm, INTERCEPT_HLT);
1544
1545 control->iopm_base_pa = __sme_set(iopm_base);
1546 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1547 control->int_ctl = V_INTR_MASKING_MASK;
1548
1549 init_seg(&save->es);
1550 init_seg(&save->ss);
1551 init_seg(&save->ds);
1552 init_seg(&save->fs);
1553 init_seg(&save->gs);
1554
1555 save->cs.selector = 0xf000;
1556 save->cs.base = 0xffff0000;
1557 /* Executable/Readable Code Segment */
1558 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1559 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1560 save->cs.limit = 0xffff;
1561
1562 save->gdtr.limit = 0xffff;
1563 save->idtr.limit = 0xffff;
1564
1565 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1566 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1567
1568 svm_set_efer(&svm->vcpu, 0);
1569 save->dr6 = 0xffff0ff0;
1570 kvm_set_rflags(&svm->vcpu, 2);
1571 save->rip = 0x0000fff0;
1572 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1573
1574 /*
1575 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1576 * It also updates the guest-visible cr0 value.
1577 */
1578 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1579 kvm_mmu_reset_context(&svm->vcpu);
1580
1581 save->cr4 = X86_CR4_PAE;
1582 /* rdx = ?? */
1583
1584 if (npt_enabled) {
1585 /* Setup VMCB for Nested Paging */
1586 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1587 clr_intercept(svm, INTERCEPT_INVLPG);
1588 clr_exception_intercept(svm, PF_VECTOR);
1589 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1590 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1591 save->g_pat = svm->vcpu.arch.pat;
1592 save->cr3 = 0;
1593 save->cr4 = 0;
1594 }
1595 svm->asid_generation = 0;
1596
1597 svm->nested.vmcb = 0;
1598 svm->vcpu.arch.hflags = 0;
1599
1600 if (pause_filter_count) {
1601 control->pause_filter_count = pause_filter_count;
1602 if (pause_filter_thresh)
1603 control->pause_filter_thresh = pause_filter_thresh;
1604 set_intercept(svm, INTERCEPT_PAUSE);
1605 } else {
1606 clr_intercept(svm, INTERCEPT_PAUSE);
1607 }
1608
1609 if (kvm_vcpu_apicv_active(&svm->vcpu))
1610 avic_init_vmcb(svm);
1611
1612 /*
1613 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1614 * in VMCB and clear intercepts to avoid #VMEXIT.
1615 */
1616 if (vls) {
1617 clr_intercept(svm, INTERCEPT_VMLOAD);
1618 clr_intercept(svm, INTERCEPT_VMSAVE);
1619 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1620 }
1621
1622 if (vgif) {
1623 clr_intercept(svm, INTERCEPT_STGI);
1624 clr_intercept(svm, INTERCEPT_CLGI);
1625 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1626 }
1627
1628 if (sev_guest(svm->vcpu.kvm)) {
1629 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1630 clr_exception_intercept(svm, UD_VECTOR);
1631 }
1632
1633 mark_all_dirty(svm->vmcb);
1634
1635 enable_gif(svm);
1636
1637 }
1638
1639 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1640 unsigned int index)
1641 {
1642 u64 *avic_physical_id_table;
1643 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1644
1645 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1646 return NULL;
1647
1648 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1649
1650 return &avic_physical_id_table[index];
1651 }
1652
1653 /**
1654 * Note:
1655 * AVIC hardware walks the nested page table to check permissions,
1656 * but does not use the SPA address specified in the leaf page
1657 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1658 * field of the VMCB. Therefore, we set up the
1659 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1660 */
1661 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1662 {
1663 struct kvm *kvm = vcpu->kvm;
1664 int ret = 0;
1665
1666 mutex_lock(&kvm->slots_lock);
1667 if (kvm->arch.apic_access_page_done)
1668 goto out;
1669
1670 ret = __x86_set_memory_region(kvm,
1671 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672 APIC_DEFAULT_PHYS_BASE,
1673 PAGE_SIZE);
1674 if (ret)
1675 goto out;
1676
1677 kvm->arch.apic_access_page_done = true;
1678 out:
1679 mutex_unlock(&kvm->slots_lock);
1680 return ret;
1681 }
1682
1683 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1684 {
1685 int ret;
1686 u64 *entry, new_entry;
1687 int id = vcpu->vcpu_id;
1688 struct vcpu_svm *svm = to_svm(vcpu);
1689
1690 ret = avic_init_access_page(vcpu);
1691 if (ret)
1692 return ret;
1693
1694 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1695 return -EINVAL;
1696
1697 if (!svm->vcpu.arch.apic->regs)
1698 return -EINVAL;
1699
1700 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1701
1702 /* Setting AVIC backing page address in the phy APIC ID table */
1703 entry = avic_get_physical_id_entry(vcpu, id);
1704 if (!entry)
1705 return -EINVAL;
1706
1707 new_entry = READ_ONCE(*entry);
1708 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1709 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1710 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1711 WRITE_ONCE(*entry, new_entry);
1712
1713 svm->avic_physical_id_cache = entry;
1714
1715 return 0;
1716 }
1717
1718 static void __sev_asid_free(int asid)
1719 {
1720 struct svm_cpu_data *sd;
1721 int cpu, pos;
1722
1723 pos = asid - 1;
1724 clear_bit(pos, sev_asid_bitmap);
1725
1726 for_each_possible_cpu(cpu) {
1727 sd = per_cpu(svm_data, cpu);
1728 sd->sev_vmcbs[pos] = NULL;
1729 }
1730 }
1731
1732 static void sev_asid_free(struct kvm *kvm)
1733 {
1734 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1735
1736 __sev_asid_free(sev->asid);
1737 }
1738
1739 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1740 {
1741 struct sev_data_decommission *decommission;
1742 struct sev_data_deactivate *data;
1743
1744 if (!handle)
1745 return;
1746
1747 data = kzalloc(sizeof(*data), GFP_KERNEL);
1748 if (!data)
1749 return;
1750
1751 /* deactivate handle */
1752 data->handle = handle;
1753 sev_guest_deactivate(data, NULL);
1754
1755 wbinvd_on_all_cpus();
1756 sev_guest_df_flush(NULL);
1757 kfree(data);
1758
1759 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1760 if (!decommission)
1761 return;
1762
1763 /* decommission handle */
1764 decommission->handle = handle;
1765 sev_guest_decommission(decommission, NULL);
1766
1767 kfree(decommission);
1768 }
1769
1770 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1771 unsigned long ulen, unsigned long *n,
1772 int write)
1773 {
1774 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1775 unsigned long npages, npinned, size;
1776 unsigned long locked, lock_limit;
1777 struct page **pages;
1778 unsigned long first, last;
1779
1780 if (ulen == 0 || uaddr + ulen < uaddr)
1781 return NULL;
1782
1783 /* Calculate number of pages. */
1784 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1785 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1786 npages = (last - first + 1);
1787
1788 locked = sev->pages_locked + npages;
1789 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1790 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1791 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1792 return NULL;
1793 }
1794
1795 /* Avoid using vmalloc for smaller buffers. */
1796 size = npages * sizeof(struct page *);
1797 if (size > PAGE_SIZE)
1798 pages = vmalloc(size);
1799 else
1800 pages = kmalloc(size, GFP_KERNEL);
1801
1802 if (!pages)
1803 return NULL;
1804
1805 /* Pin the user virtual address. */
1806 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1807 if (npinned != npages) {
1808 pr_err("SEV: Failure locking %lu pages.\n", npages);
1809 goto err;
1810 }
1811
1812 *n = npages;
1813 sev->pages_locked = locked;
1814
1815 return pages;
1816
1817 err:
1818 if (npinned > 0)
1819 release_pages(pages, npinned);
1820
1821 kvfree(pages);
1822 return NULL;
1823 }
1824
1825 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1826 unsigned long npages)
1827 {
1828 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1829
1830 release_pages(pages, npages);
1831 kvfree(pages);
1832 sev->pages_locked -= npages;
1833 }
1834
1835 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1836 {
1837 uint8_t *page_virtual;
1838 unsigned long i;
1839
1840 if (npages == 0 || pages == NULL)
1841 return;
1842
1843 for (i = 0; i < npages; i++) {
1844 page_virtual = kmap_atomic(pages[i]);
1845 clflush_cache_range(page_virtual, PAGE_SIZE);
1846 kunmap_atomic(page_virtual);
1847 }
1848 }
1849
1850 static void __unregister_enc_region_locked(struct kvm *kvm,
1851 struct enc_region *region)
1852 {
1853 /*
1854 * The guest may change the memory encryption attribute from C=0 -> C=1
1855 * or vice versa for this memory range. Lets make sure caches are
1856 * flushed to ensure that guest data gets written into memory with
1857 * correct C-bit.
1858 */
1859 sev_clflush_pages(region->pages, region->npages);
1860
1861 sev_unpin_memory(kvm, region->pages, region->npages);
1862 list_del(&region->list);
1863 kfree(region);
1864 }
1865
1866 static struct kvm *svm_vm_alloc(void)
1867 {
1868 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1869 return &kvm_svm->kvm;
1870 }
1871
1872 static void svm_vm_free(struct kvm *kvm)
1873 {
1874 vfree(to_kvm_svm(kvm));
1875 }
1876
1877 static void sev_vm_destroy(struct kvm *kvm)
1878 {
1879 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1880 struct list_head *head = &sev->regions_list;
1881 struct list_head *pos, *q;
1882
1883 if (!sev_guest(kvm))
1884 return;
1885
1886 mutex_lock(&kvm->lock);
1887
1888 /*
1889 * if userspace was terminated before unregistering the memory regions
1890 * then lets unpin all the registered memory.
1891 */
1892 if (!list_empty(head)) {
1893 list_for_each_safe(pos, q, head) {
1894 __unregister_enc_region_locked(kvm,
1895 list_entry(pos, struct enc_region, list));
1896 }
1897 }
1898
1899 mutex_unlock(&kvm->lock);
1900
1901 sev_unbind_asid(kvm, sev->handle);
1902 sev_asid_free(kvm);
1903 }
1904
1905 static void avic_vm_destroy(struct kvm *kvm)
1906 {
1907 unsigned long flags;
1908 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1909
1910 if (!avic)
1911 return;
1912
1913 if (kvm_svm->avic_logical_id_table_page)
1914 __free_page(kvm_svm->avic_logical_id_table_page);
1915 if (kvm_svm->avic_physical_id_table_page)
1916 __free_page(kvm_svm->avic_physical_id_table_page);
1917
1918 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1919 hash_del(&kvm_svm->hnode);
1920 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1921 }
1922
1923 static void svm_vm_destroy(struct kvm *kvm)
1924 {
1925 avic_vm_destroy(kvm);
1926 sev_vm_destroy(kvm);
1927 }
1928
1929 static int avic_vm_init(struct kvm *kvm)
1930 {
1931 unsigned long flags;
1932 int err = -ENOMEM;
1933 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1934 struct kvm_svm *k2;
1935 struct page *p_page;
1936 struct page *l_page;
1937 u32 vm_id;
1938
1939 if (!avic)
1940 return 0;
1941
1942 /* Allocating physical APIC ID table (4KB) */
1943 p_page = alloc_page(GFP_KERNEL);
1944 if (!p_page)
1945 goto free_avic;
1946
1947 kvm_svm->avic_physical_id_table_page = p_page;
1948 clear_page(page_address(p_page));
1949
1950 /* Allocating logical APIC ID table (4KB) */
1951 l_page = alloc_page(GFP_KERNEL);
1952 if (!l_page)
1953 goto free_avic;
1954
1955 kvm_svm->avic_logical_id_table_page = l_page;
1956 clear_page(page_address(l_page));
1957
1958 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1959 again:
1960 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1961 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1962 next_vm_id_wrapped = 1;
1963 goto again;
1964 }
1965 /* Is it still in use? Only possible if wrapped at least once */
1966 if (next_vm_id_wrapped) {
1967 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1968 if (k2->avic_vm_id == vm_id)
1969 goto again;
1970 }
1971 }
1972 kvm_svm->avic_vm_id = vm_id;
1973 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1974 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1975
1976 return 0;
1977
1978 free_avic:
1979 avic_vm_destroy(kvm);
1980 return err;
1981 }
1982
1983 static inline int
1984 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1985 {
1986 int ret = 0;
1987 unsigned long flags;
1988 struct amd_svm_iommu_ir *ir;
1989 struct vcpu_svm *svm = to_svm(vcpu);
1990
1991 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1992 return 0;
1993
1994 /*
1995 * Here, we go through the per-vcpu ir_list to update all existing
1996 * interrupt remapping table entry targeting this vcpu.
1997 */
1998 spin_lock_irqsave(&svm->ir_list_lock, flags);
1999
2000 if (list_empty(&svm->ir_list))
2001 goto out;
2002
2003 list_for_each_entry(ir, &svm->ir_list, node) {
2004 ret = amd_iommu_update_ga(cpu, r, ir->data);
2005 if (ret)
2006 break;
2007 }
2008 out:
2009 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2010 return ret;
2011 }
2012
2013 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2014 {
2015 u64 entry;
2016 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2017 int h_physical_id = kvm_cpu_get_apicid(cpu);
2018 struct vcpu_svm *svm = to_svm(vcpu);
2019
2020 if (!kvm_vcpu_apicv_active(vcpu))
2021 return;
2022
2023 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2024 return;
2025
2026 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2027 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2028
2029 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2030 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2031
2032 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033 if (svm->avic_is_running)
2034 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2035
2036 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2037 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2038 svm->avic_is_running);
2039 }
2040
2041 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2042 {
2043 u64 entry;
2044 struct vcpu_svm *svm = to_svm(vcpu);
2045
2046 if (!kvm_vcpu_apicv_active(vcpu))
2047 return;
2048
2049 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2050 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2051 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2052
2053 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2055 }
2056
2057 /**
2058 * This function is called during VCPU halt/unhalt.
2059 */
2060 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2061 {
2062 struct vcpu_svm *svm = to_svm(vcpu);
2063
2064 svm->avic_is_running = is_run;
2065 if (is_run)
2066 avic_vcpu_load(vcpu, vcpu->cpu);
2067 else
2068 avic_vcpu_put(vcpu);
2069 }
2070
2071 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2072 {
2073 struct vcpu_svm *svm = to_svm(vcpu);
2074 u32 dummy;
2075 u32 eax = 1;
2076
2077 vcpu->arch.microcode_version = 0x01000065;
2078 svm->spec_ctrl = 0;
2079 svm->virt_spec_ctrl = 0;
2080
2081 if (!init_event) {
2082 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2083 MSR_IA32_APICBASE_ENABLE;
2084 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2085 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2086 }
2087 init_vmcb(svm);
2088
2089 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2090 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2091
2092 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2093 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2094 }
2095
2096 static int avic_init_vcpu(struct vcpu_svm *svm)
2097 {
2098 int ret;
2099
2100 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2101 return 0;
2102
2103 ret = avic_init_backing_page(&svm->vcpu);
2104 if (ret)
2105 return ret;
2106
2107 INIT_LIST_HEAD(&svm->ir_list);
2108 spin_lock_init(&svm->ir_list_lock);
2109
2110 return ret;
2111 }
2112
2113 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2114 {
2115 struct vcpu_svm *svm;
2116 struct page *page;
2117 struct page *msrpm_pages;
2118 struct page *hsave_page;
2119 struct page *nested_msrpm_pages;
2120 int err;
2121
2122 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2123 if (!svm) {
2124 err = -ENOMEM;
2125 goto out;
2126 }
2127
2128 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
2129 if (!svm->vcpu.arch.guest_fpu) {
2130 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2131 err = -ENOMEM;
2132 goto free_partial_svm;
2133 }
2134
2135 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2136 if (err)
2137 goto free_svm;
2138
2139 err = -ENOMEM;
2140 page = alloc_page(GFP_KERNEL);
2141 if (!page)
2142 goto uninit;
2143
2144 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2145 if (!msrpm_pages)
2146 goto free_page1;
2147
2148 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2149 if (!nested_msrpm_pages)
2150 goto free_page2;
2151
2152 hsave_page = alloc_page(GFP_KERNEL);
2153 if (!hsave_page)
2154 goto free_page3;
2155
2156 err = avic_init_vcpu(svm);
2157 if (err)
2158 goto free_page4;
2159
2160 /* We initialize this flag to true to make sure that the is_running
2161 * bit would be set the first time the vcpu is loaded.
2162 */
2163 svm->avic_is_running = true;
2164
2165 svm->nested.hsave = page_address(hsave_page);
2166
2167 svm->msrpm = page_address(msrpm_pages);
2168 svm_vcpu_init_msrpm(svm->msrpm);
2169
2170 svm->nested.msrpm = page_address(nested_msrpm_pages);
2171 svm_vcpu_init_msrpm(svm->nested.msrpm);
2172
2173 svm->vmcb = page_address(page);
2174 clear_page(svm->vmcb);
2175 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2176 svm->asid_generation = 0;
2177 init_vmcb(svm);
2178
2179 svm_init_osvw(&svm->vcpu);
2180
2181 return &svm->vcpu;
2182
2183 free_page4:
2184 __free_page(hsave_page);
2185 free_page3:
2186 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2187 free_page2:
2188 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2189 free_page1:
2190 __free_page(page);
2191 uninit:
2192 kvm_vcpu_uninit(&svm->vcpu);
2193 free_svm:
2194 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2195 free_partial_svm:
2196 kmem_cache_free(kvm_vcpu_cache, svm);
2197 out:
2198 return ERR_PTR(err);
2199 }
2200
2201 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2202 {
2203 int i;
2204
2205 for_each_online_cpu(i)
2206 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2207 }
2208
2209 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2210 {
2211 struct vcpu_svm *svm = to_svm(vcpu);
2212
2213 /*
2214 * The vmcb page can be recycled, causing a false negative in
2215 * svm_vcpu_load(). So, ensure that no logical CPU has this
2216 * vmcb page recorded as its current vmcb.
2217 */
2218 svm_clear_current_vmcb(svm->vmcb);
2219
2220 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2221 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2222 __free_page(virt_to_page(svm->nested.hsave));
2223 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2224 kvm_vcpu_uninit(vcpu);
2225 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2226 kmem_cache_free(kvm_vcpu_cache, svm);
2227 }
2228
2229 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2230 {
2231 struct vcpu_svm *svm = to_svm(vcpu);
2232 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2233 int i;
2234
2235 if (unlikely(cpu != vcpu->cpu)) {
2236 svm->asid_generation = 0;
2237 mark_all_dirty(svm->vmcb);
2238 }
2239
2240 #ifdef CONFIG_X86_64
2241 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2242 #endif
2243 savesegment(fs, svm->host.fs);
2244 savesegment(gs, svm->host.gs);
2245 svm->host.ldt = kvm_read_ldt();
2246
2247 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2248 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2249
2250 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2251 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2252 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2253 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2254 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2255 }
2256 }
2257 /* This assumes that the kernel never uses MSR_TSC_AUX */
2258 if (static_cpu_has(X86_FEATURE_RDTSCP))
2259 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2260
2261 if (sd->current_vmcb != svm->vmcb) {
2262 sd->current_vmcb = svm->vmcb;
2263 indirect_branch_prediction_barrier();
2264 }
2265 avic_vcpu_load(vcpu, cpu);
2266 }
2267
2268 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2269 {
2270 struct vcpu_svm *svm = to_svm(vcpu);
2271 int i;
2272
2273 avic_vcpu_put(vcpu);
2274
2275 ++vcpu->stat.host_state_reload;
2276 kvm_load_ldt(svm->host.ldt);
2277 #ifdef CONFIG_X86_64
2278 loadsegment(fs, svm->host.fs);
2279 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2280 load_gs_index(svm->host.gs);
2281 #else
2282 #ifdef CONFIG_X86_32_LAZY_GS
2283 loadsegment(gs, svm->host.gs);
2284 #endif
2285 #endif
2286 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2287 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2288 }
2289
2290 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2291 {
2292 avic_set_running(vcpu, false);
2293 }
2294
2295 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2296 {
2297 avic_set_running(vcpu, true);
2298 }
2299
2300 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2301 {
2302 struct vcpu_svm *svm = to_svm(vcpu);
2303 unsigned long rflags = svm->vmcb->save.rflags;
2304
2305 if (svm->nmi_singlestep) {
2306 /* Hide our flags if they were not set by the guest */
2307 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2308 rflags &= ~X86_EFLAGS_TF;
2309 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2310 rflags &= ~X86_EFLAGS_RF;
2311 }
2312 return rflags;
2313 }
2314
2315 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2316 {
2317 if (to_svm(vcpu)->nmi_singlestep)
2318 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2319
2320 /*
2321 * Any change of EFLAGS.VM is accompanied by a reload of SS
2322 * (caused by either a task switch or an inter-privilege IRET),
2323 * so we do not need to update the CPL here.
2324 */
2325 to_svm(vcpu)->vmcb->save.rflags = rflags;
2326 }
2327
2328 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2329 {
2330 switch (reg) {
2331 case VCPU_EXREG_PDPTR:
2332 BUG_ON(!npt_enabled);
2333 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2334 break;
2335 default:
2336 BUG();
2337 }
2338 }
2339
2340 static void svm_set_vintr(struct vcpu_svm *svm)
2341 {
2342 set_intercept(svm, INTERCEPT_VINTR);
2343 }
2344
2345 static void svm_clear_vintr(struct vcpu_svm *svm)
2346 {
2347 clr_intercept(svm, INTERCEPT_VINTR);
2348 }
2349
2350 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2351 {
2352 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2353
2354 switch (seg) {
2355 case VCPU_SREG_CS: return &save->cs;
2356 case VCPU_SREG_DS: return &save->ds;
2357 case VCPU_SREG_ES: return &save->es;
2358 case VCPU_SREG_FS: return &save->fs;
2359 case VCPU_SREG_GS: return &save->gs;
2360 case VCPU_SREG_SS: return &save->ss;
2361 case VCPU_SREG_TR: return &save->tr;
2362 case VCPU_SREG_LDTR: return &save->ldtr;
2363 }
2364 BUG();
2365 return NULL;
2366 }
2367
2368 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2369 {
2370 struct vmcb_seg *s = svm_seg(vcpu, seg);
2371
2372 return s->base;
2373 }
2374
2375 static void svm_get_segment(struct kvm_vcpu *vcpu,
2376 struct kvm_segment *var, int seg)
2377 {
2378 struct vmcb_seg *s = svm_seg(vcpu, seg);
2379
2380 var->base = s->base;
2381 var->limit = s->limit;
2382 var->selector = s->selector;
2383 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2384 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2385 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2386 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2387 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2388 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2389 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2390
2391 /*
2392 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2393 * However, the SVM spec states that the G bit is not observed by the
2394 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2395 * So let's synthesize a legal G bit for all segments, this helps
2396 * running KVM nested. It also helps cross-vendor migration, because
2397 * Intel's vmentry has a check on the 'G' bit.
2398 */
2399 var->g = s->limit > 0xfffff;
2400
2401 /*
2402 * AMD's VMCB does not have an explicit unusable field, so emulate it
2403 * for cross vendor migration purposes by "not present"
2404 */
2405 var->unusable = !var->present;
2406
2407 switch (seg) {
2408 case VCPU_SREG_TR:
2409 /*
2410 * Work around a bug where the busy flag in the tr selector
2411 * isn't exposed
2412 */
2413 var->type |= 0x2;
2414 break;
2415 case VCPU_SREG_DS:
2416 case VCPU_SREG_ES:
2417 case VCPU_SREG_FS:
2418 case VCPU_SREG_GS:
2419 /*
2420 * The accessed bit must always be set in the segment
2421 * descriptor cache, although it can be cleared in the
2422 * descriptor, the cached bit always remains at 1. Since
2423 * Intel has a check on this, set it here to support
2424 * cross-vendor migration.
2425 */
2426 if (!var->unusable)
2427 var->type |= 0x1;
2428 break;
2429 case VCPU_SREG_SS:
2430 /*
2431 * On AMD CPUs sometimes the DB bit in the segment
2432 * descriptor is left as 1, although the whole segment has
2433 * been made unusable. Clear it here to pass an Intel VMX
2434 * entry check when cross vendor migrating.
2435 */
2436 if (var->unusable)
2437 var->db = 0;
2438 /* This is symmetric with svm_set_segment() */
2439 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2440 break;
2441 }
2442 }
2443
2444 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2445 {
2446 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2447
2448 return save->cpl;
2449 }
2450
2451 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2452 {
2453 struct vcpu_svm *svm = to_svm(vcpu);
2454
2455 dt->size = svm->vmcb->save.idtr.limit;
2456 dt->address = svm->vmcb->save.idtr.base;
2457 }
2458
2459 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2460 {
2461 struct vcpu_svm *svm = to_svm(vcpu);
2462
2463 svm->vmcb->save.idtr.limit = dt->size;
2464 svm->vmcb->save.idtr.base = dt->address ;
2465 mark_dirty(svm->vmcb, VMCB_DT);
2466 }
2467
2468 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2469 {
2470 struct vcpu_svm *svm = to_svm(vcpu);
2471
2472 dt->size = svm->vmcb->save.gdtr.limit;
2473 dt->address = svm->vmcb->save.gdtr.base;
2474 }
2475
2476 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2477 {
2478 struct vcpu_svm *svm = to_svm(vcpu);
2479
2480 svm->vmcb->save.gdtr.limit = dt->size;
2481 svm->vmcb->save.gdtr.base = dt->address ;
2482 mark_dirty(svm->vmcb, VMCB_DT);
2483 }
2484
2485 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2486 {
2487 }
2488
2489 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2490 {
2491 }
2492
2493 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2494 {
2495 }
2496
2497 static void update_cr0_intercept(struct vcpu_svm *svm)
2498 {
2499 ulong gcr0 = svm->vcpu.arch.cr0;
2500 u64 *hcr0 = &svm->vmcb->save.cr0;
2501
2502 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2503 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2504
2505 mark_dirty(svm->vmcb, VMCB_CR);
2506
2507 if (gcr0 == *hcr0) {
2508 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2509 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2510 } else {
2511 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2512 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2513 }
2514 }
2515
2516 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2517 {
2518 struct vcpu_svm *svm = to_svm(vcpu);
2519
2520 #ifdef CONFIG_X86_64
2521 if (vcpu->arch.efer & EFER_LME) {
2522 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2523 vcpu->arch.efer |= EFER_LMA;
2524 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2525 }
2526
2527 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2528 vcpu->arch.efer &= ~EFER_LMA;
2529 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2530 }
2531 }
2532 #endif
2533 vcpu->arch.cr0 = cr0;
2534
2535 if (!npt_enabled)
2536 cr0 |= X86_CR0_PG | X86_CR0_WP;
2537
2538 /*
2539 * re-enable caching here because the QEMU bios
2540 * does not do it - this results in some delay at
2541 * reboot
2542 */
2543 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2544 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2545 svm->vmcb->save.cr0 = cr0;
2546 mark_dirty(svm->vmcb, VMCB_CR);
2547 update_cr0_intercept(svm);
2548 }
2549
2550 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2551 {
2552 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2553 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2554
2555 if (cr4 & X86_CR4_VMXE)
2556 return 1;
2557
2558 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2559 svm_flush_tlb(vcpu, true);
2560
2561 vcpu->arch.cr4 = cr4;
2562 if (!npt_enabled)
2563 cr4 |= X86_CR4_PAE;
2564 cr4 |= host_cr4_mce;
2565 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2566 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2567 return 0;
2568 }
2569
2570 static void svm_set_segment(struct kvm_vcpu *vcpu,
2571 struct kvm_segment *var, int seg)
2572 {
2573 struct vcpu_svm *svm = to_svm(vcpu);
2574 struct vmcb_seg *s = svm_seg(vcpu, seg);
2575
2576 s->base = var->base;
2577 s->limit = var->limit;
2578 s->selector = var->selector;
2579 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2580 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2581 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2582 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2583 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2584 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2585 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2586 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2587
2588 /*
2589 * This is always accurate, except if SYSRET returned to a segment
2590 * with SS.DPL != 3. Intel does not have this quirk, and always
2591 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2592 * would entail passing the CPL to userspace and back.
2593 */
2594 if (seg == VCPU_SREG_SS)
2595 /* This is symmetric with svm_get_segment() */
2596 svm->vmcb->save.cpl = (var->dpl & 3);
2597
2598 mark_dirty(svm->vmcb, VMCB_SEG);
2599 }
2600
2601 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2602 {
2603 struct vcpu_svm *svm = to_svm(vcpu);
2604
2605 clr_exception_intercept(svm, BP_VECTOR);
2606
2607 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2608 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2609 set_exception_intercept(svm, BP_VECTOR);
2610 } else
2611 vcpu->guest_debug = 0;
2612 }
2613
2614 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2615 {
2616 if (sd->next_asid > sd->max_asid) {
2617 ++sd->asid_generation;
2618 sd->next_asid = sd->min_asid;
2619 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2620 }
2621
2622 svm->asid_generation = sd->asid_generation;
2623 svm->vmcb->control.asid = sd->next_asid++;
2624
2625 mark_dirty(svm->vmcb, VMCB_ASID);
2626 }
2627
2628 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2629 {
2630 return to_svm(vcpu)->vmcb->save.dr6;
2631 }
2632
2633 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2634 {
2635 struct vcpu_svm *svm = to_svm(vcpu);
2636
2637 svm->vmcb->save.dr6 = value;
2638 mark_dirty(svm->vmcb, VMCB_DR);
2639 }
2640
2641 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2642 {
2643 struct vcpu_svm *svm = to_svm(vcpu);
2644
2645 get_debugreg(vcpu->arch.db[0], 0);
2646 get_debugreg(vcpu->arch.db[1], 1);
2647 get_debugreg(vcpu->arch.db[2], 2);
2648 get_debugreg(vcpu->arch.db[3], 3);
2649 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2650 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2651
2652 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2653 set_dr_intercepts(svm);
2654 }
2655
2656 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2657 {
2658 struct vcpu_svm *svm = to_svm(vcpu);
2659
2660 svm->vmcb->save.dr7 = value;
2661 mark_dirty(svm->vmcb, VMCB_DR);
2662 }
2663
2664 static int pf_interception(struct vcpu_svm *svm)
2665 {
2666 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2667 u64 error_code = svm->vmcb->control.exit_info_1;
2668
2669 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2670 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2671 svm->vmcb->control.insn_bytes : NULL,
2672 svm->vmcb->control.insn_len);
2673 }
2674
2675 static int npf_interception(struct vcpu_svm *svm)
2676 {
2677 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2678 u64 error_code = svm->vmcb->control.exit_info_1;
2679
2680 trace_kvm_page_fault(fault_address, error_code);
2681 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2682 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2683 svm->vmcb->control.insn_bytes : NULL,
2684 svm->vmcb->control.insn_len);
2685 }
2686
2687 static int db_interception(struct vcpu_svm *svm)
2688 {
2689 struct kvm_run *kvm_run = svm->vcpu.run;
2690
2691 if (!(svm->vcpu.guest_debug &
2692 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2693 !svm->nmi_singlestep) {
2694 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2695 return 1;
2696 }
2697
2698 if (svm->nmi_singlestep) {
2699 disable_nmi_singlestep(svm);
2700 }
2701
2702 if (svm->vcpu.guest_debug &
2703 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2704 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2705 kvm_run->debug.arch.pc =
2706 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2707 kvm_run->debug.arch.exception = DB_VECTOR;
2708 return 0;
2709 }
2710
2711 return 1;
2712 }
2713
2714 static int bp_interception(struct vcpu_svm *svm)
2715 {
2716 struct kvm_run *kvm_run = svm->vcpu.run;
2717
2718 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2719 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2720 kvm_run->debug.arch.exception = BP_VECTOR;
2721 return 0;
2722 }
2723
2724 static int ud_interception(struct vcpu_svm *svm)
2725 {
2726 return handle_ud(&svm->vcpu);
2727 }
2728
2729 static int ac_interception(struct vcpu_svm *svm)
2730 {
2731 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2732 return 1;
2733 }
2734
2735 static int gp_interception(struct vcpu_svm *svm)
2736 {
2737 struct kvm_vcpu *vcpu = &svm->vcpu;
2738 u32 error_code = svm->vmcb->control.exit_info_1;
2739 int er;
2740
2741 WARN_ON_ONCE(!enable_vmware_backdoor);
2742
2743 er = kvm_emulate_instruction(vcpu,
2744 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2745 if (er == EMULATE_USER_EXIT)
2746 return 0;
2747 else if (er != EMULATE_DONE)
2748 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2749 return 1;
2750 }
2751
2752 static bool is_erratum_383(void)
2753 {
2754 int err, i;
2755 u64 value;
2756
2757 if (!erratum_383_found)
2758 return false;
2759
2760 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2761 if (err)
2762 return false;
2763
2764 /* Bit 62 may or may not be set for this mce */
2765 value &= ~(1ULL << 62);
2766
2767 if (value != 0xb600000000010015ULL)
2768 return false;
2769
2770 /* Clear MCi_STATUS registers */
2771 for (i = 0; i < 6; ++i)
2772 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2773
2774 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2775 if (!err) {
2776 u32 low, high;
2777
2778 value &= ~(1ULL << 2);
2779 low = lower_32_bits(value);
2780 high = upper_32_bits(value);
2781
2782 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2783 }
2784
2785 /* Flush tlb to evict multi-match entries */
2786 __flush_tlb_all();
2787
2788 return true;
2789 }
2790
2791 static void svm_handle_mce(struct vcpu_svm *svm)
2792 {
2793 if (is_erratum_383()) {
2794 /*
2795 * Erratum 383 triggered. Guest state is corrupt so kill the
2796 * guest.
2797 */
2798 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2799
2800 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2801
2802 return;
2803 }
2804
2805 /*
2806 * On an #MC intercept the MCE handler is not called automatically in
2807 * the host. So do it by hand here.
2808 */
2809 asm volatile (
2810 "int $0x12\n");
2811 /* not sure if we ever come back to this point */
2812
2813 return;
2814 }
2815
2816 static int mc_interception(struct vcpu_svm *svm)
2817 {
2818 return 1;
2819 }
2820
2821 static int shutdown_interception(struct vcpu_svm *svm)
2822 {
2823 struct kvm_run *kvm_run = svm->vcpu.run;
2824
2825 /*
2826 * VMCB is undefined after a SHUTDOWN intercept
2827 * so reinitialize it.
2828 */
2829 clear_page(svm->vmcb);
2830 init_vmcb(svm);
2831
2832 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2833 return 0;
2834 }
2835
2836 static int io_interception(struct vcpu_svm *svm)
2837 {
2838 struct kvm_vcpu *vcpu = &svm->vcpu;
2839 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2840 int size, in, string;
2841 unsigned port;
2842
2843 ++svm->vcpu.stat.io_exits;
2844 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2845 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2846 if (string)
2847 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2848
2849 port = io_info >> 16;
2850 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2851 svm->next_rip = svm->vmcb->control.exit_info_2;
2852
2853 return kvm_fast_pio(&svm->vcpu, size, port, in);
2854 }
2855
2856 static int nmi_interception(struct vcpu_svm *svm)
2857 {
2858 return 1;
2859 }
2860
2861 static int intr_interception(struct vcpu_svm *svm)
2862 {
2863 ++svm->vcpu.stat.irq_exits;
2864 return 1;
2865 }
2866
2867 static int nop_on_interception(struct vcpu_svm *svm)
2868 {
2869 return 1;
2870 }
2871
2872 static int halt_interception(struct vcpu_svm *svm)
2873 {
2874 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2875 return kvm_emulate_halt(&svm->vcpu);
2876 }
2877
2878 static int vmmcall_interception(struct vcpu_svm *svm)
2879 {
2880 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2881 return kvm_emulate_hypercall(&svm->vcpu);
2882 }
2883
2884 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2885 {
2886 struct vcpu_svm *svm = to_svm(vcpu);
2887
2888 return svm->nested.nested_cr3;
2889 }
2890
2891 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2892 {
2893 struct vcpu_svm *svm = to_svm(vcpu);
2894 u64 cr3 = svm->nested.nested_cr3;
2895 u64 pdpte;
2896 int ret;
2897
2898 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2899 offset_in_page(cr3) + index * 8, 8);
2900 if (ret)
2901 return 0;
2902 return pdpte;
2903 }
2904
2905 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2906 unsigned long root)
2907 {
2908 struct vcpu_svm *svm = to_svm(vcpu);
2909
2910 svm->vmcb->control.nested_cr3 = __sme_set(root);
2911 mark_dirty(svm->vmcb, VMCB_NPT);
2912 }
2913
2914 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2915 struct x86_exception *fault)
2916 {
2917 struct vcpu_svm *svm = to_svm(vcpu);
2918
2919 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2920 /*
2921 * TODO: track the cause of the nested page fault, and
2922 * correctly fill in the high bits of exit_info_1.
2923 */
2924 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2925 svm->vmcb->control.exit_code_hi = 0;
2926 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2927 svm->vmcb->control.exit_info_2 = fault->address;
2928 }
2929
2930 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2931 svm->vmcb->control.exit_info_1 |= fault->error_code;
2932
2933 /*
2934 * The present bit is always zero for page structure faults on real
2935 * hardware.
2936 */
2937 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2938 svm->vmcb->control.exit_info_1 &= ~1;
2939
2940 nested_svm_vmexit(svm);
2941 }
2942
2943 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2944 {
2945 WARN_ON(mmu_is_nested(vcpu));
2946
2947 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2948 kvm_init_shadow_mmu(vcpu);
2949 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2950 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2951 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2952 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2953 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2954 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2955 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2956 }
2957
2958 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2959 {
2960 vcpu->arch.mmu = &vcpu->arch.root_mmu;
2961 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2962 }
2963
2964 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2965 {
2966 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2967 !is_paging(&svm->vcpu)) {
2968 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2969 return 1;
2970 }
2971
2972 if (svm->vmcb->save.cpl) {
2973 kvm_inject_gp(&svm->vcpu, 0);
2974 return 1;
2975 }
2976
2977 return 0;
2978 }
2979
2980 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2981 bool has_error_code, u32 error_code)
2982 {
2983 int vmexit;
2984
2985 if (!is_guest_mode(&svm->vcpu))
2986 return 0;
2987
2988 vmexit = nested_svm_intercept(svm);
2989 if (vmexit != NESTED_EXIT_DONE)
2990 return 0;
2991
2992 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2993 svm->vmcb->control.exit_code_hi = 0;
2994 svm->vmcb->control.exit_info_1 = error_code;
2995
2996 /*
2997 * EXITINFO2 is undefined for all exception intercepts other
2998 * than #PF.
2999 */
3000 if (svm->vcpu.arch.exception.nested_apf)
3001 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3002 else if (svm->vcpu.arch.exception.has_payload)
3003 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3004 else
3005 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3006
3007 svm->nested.exit_required = true;
3008 return vmexit;
3009 }
3010
3011 /* This function returns true if it is save to enable the irq window */
3012 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3013 {
3014 if (!is_guest_mode(&svm->vcpu))
3015 return true;
3016
3017 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3018 return true;
3019
3020 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3021 return false;
3022
3023 /*
3024 * if vmexit was already requested (by intercepted exception
3025 * for instance) do not overwrite it with "external interrupt"
3026 * vmexit.
3027 */
3028 if (svm->nested.exit_required)
3029 return false;
3030
3031 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3032 svm->vmcb->control.exit_info_1 = 0;
3033 svm->vmcb->control.exit_info_2 = 0;
3034
3035 if (svm->nested.intercept & 1ULL) {
3036 /*
3037 * The #vmexit can't be emulated here directly because this
3038 * code path runs with irqs and preemption disabled. A
3039 * #vmexit emulation might sleep. Only signal request for
3040 * the #vmexit here.
3041 */
3042 svm->nested.exit_required = true;
3043 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3044 return false;
3045 }
3046
3047 return true;
3048 }
3049
3050 /* This function returns true if it is save to enable the nmi window */
3051 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3052 {
3053 if (!is_guest_mode(&svm->vcpu))
3054 return true;
3055
3056 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3057 return true;
3058
3059 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3060 svm->nested.exit_required = true;
3061
3062 return false;
3063 }
3064
3065 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3066 {
3067 struct page *page;
3068
3069 might_sleep();
3070
3071 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3072 if (is_error_page(page))
3073 goto error;
3074
3075 *_page = page;
3076
3077 return kmap(page);
3078
3079 error:
3080 kvm_inject_gp(&svm->vcpu, 0);
3081
3082 return NULL;
3083 }
3084
3085 static void nested_svm_unmap(struct page *page)
3086 {
3087 kunmap(page);
3088 kvm_release_page_dirty(page);
3089 }
3090
3091 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3092 {
3093 unsigned port, size, iopm_len;
3094 u16 val, mask;
3095 u8 start_bit;
3096 u64 gpa;
3097
3098 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3099 return NESTED_EXIT_HOST;
3100
3101 port = svm->vmcb->control.exit_info_1 >> 16;
3102 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3103 SVM_IOIO_SIZE_SHIFT;
3104 gpa = svm->nested.vmcb_iopm + (port / 8);
3105 start_bit = port % 8;
3106 iopm_len = (start_bit + size > 8) ? 2 : 1;
3107 mask = (0xf >> (4 - size)) << start_bit;
3108 val = 0;
3109
3110 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3111 return NESTED_EXIT_DONE;
3112
3113 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3114 }
3115
3116 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3117 {
3118 u32 offset, msr, value;
3119 int write, mask;
3120
3121 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3122 return NESTED_EXIT_HOST;
3123
3124 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3125 offset = svm_msrpm_offset(msr);
3126 write = svm->vmcb->control.exit_info_1 & 1;
3127 mask = 1 << ((2 * (msr & 0xf)) + write);
3128
3129 if (offset == MSR_INVALID)
3130 return NESTED_EXIT_DONE;
3131
3132 /* Offset is in 32 bit units but need in 8 bit units */
3133 offset *= 4;
3134
3135 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3136 return NESTED_EXIT_DONE;
3137
3138 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3139 }
3140
3141 /* DB exceptions for our internal use must not cause vmexit */
3142 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3143 {
3144 unsigned long dr6;
3145
3146 /* if we're not singlestepping, it's not ours */
3147 if (!svm->nmi_singlestep)
3148 return NESTED_EXIT_DONE;
3149
3150 /* if it's not a singlestep exception, it's not ours */
3151 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3152 return NESTED_EXIT_DONE;
3153 if (!(dr6 & DR6_BS))
3154 return NESTED_EXIT_DONE;
3155
3156 /* if the guest is singlestepping, it should get the vmexit */
3157 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3158 disable_nmi_singlestep(svm);
3159 return NESTED_EXIT_DONE;
3160 }
3161
3162 /* it's ours, the nested hypervisor must not see this one */
3163 return NESTED_EXIT_HOST;
3164 }
3165
3166 static int nested_svm_exit_special(struct vcpu_svm *svm)
3167 {
3168 u32 exit_code = svm->vmcb->control.exit_code;
3169
3170 switch (exit_code) {
3171 case SVM_EXIT_INTR:
3172 case SVM_EXIT_NMI:
3173 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3174 return NESTED_EXIT_HOST;
3175 case SVM_EXIT_NPF:
3176 /* For now we are always handling NPFs when using them */
3177 if (npt_enabled)
3178 return NESTED_EXIT_HOST;
3179 break;
3180 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3181 /* When we're shadowing, trap PFs, but not async PF */
3182 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3183 return NESTED_EXIT_HOST;
3184 break;
3185 default:
3186 break;
3187 }
3188
3189 return NESTED_EXIT_CONTINUE;
3190 }
3191
3192 /*
3193 * If this function returns true, this #vmexit was already handled
3194 */
3195 static int nested_svm_intercept(struct vcpu_svm *svm)
3196 {
3197 u32 exit_code = svm->vmcb->control.exit_code;
3198 int vmexit = NESTED_EXIT_HOST;
3199
3200 switch (exit_code) {
3201 case SVM_EXIT_MSR:
3202 vmexit = nested_svm_exit_handled_msr(svm);
3203 break;
3204 case SVM_EXIT_IOIO:
3205 vmexit = nested_svm_intercept_ioio(svm);
3206 break;
3207 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3208 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3209 if (svm->nested.intercept_cr & bit)
3210 vmexit = NESTED_EXIT_DONE;
3211 break;
3212 }
3213 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3214 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3215 if (svm->nested.intercept_dr & bit)
3216 vmexit = NESTED_EXIT_DONE;
3217 break;
3218 }
3219 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3220 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3221 if (svm->nested.intercept_exceptions & excp_bits) {
3222 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3223 vmexit = nested_svm_intercept_db(svm);
3224 else
3225 vmexit = NESTED_EXIT_DONE;
3226 }
3227 /* async page fault always cause vmexit */
3228 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3229 svm->vcpu.arch.exception.nested_apf != 0)
3230 vmexit = NESTED_EXIT_DONE;
3231 break;
3232 }
3233 case SVM_EXIT_ERR: {
3234 vmexit = NESTED_EXIT_DONE;
3235 break;
3236 }
3237 default: {
3238 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3239 if (svm->nested.intercept & exit_bits)
3240 vmexit = NESTED_EXIT_DONE;
3241 }
3242 }
3243
3244 return vmexit;
3245 }
3246
3247 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3248 {
3249 int vmexit;
3250
3251 vmexit = nested_svm_intercept(svm);
3252
3253 if (vmexit == NESTED_EXIT_DONE)
3254 nested_svm_vmexit(svm);
3255
3256 return vmexit;
3257 }
3258
3259 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3260 {
3261 struct vmcb_control_area *dst = &dst_vmcb->control;
3262 struct vmcb_control_area *from = &from_vmcb->control;
3263
3264 dst->intercept_cr = from->intercept_cr;
3265 dst->intercept_dr = from->intercept_dr;
3266 dst->intercept_exceptions = from->intercept_exceptions;
3267 dst->intercept = from->intercept;
3268 dst->iopm_base_pa = from->iopm_base_pa;
3269 dst->msrpm_base_pa = from->msrpm_base_pa;
3270 dst->tsc_offset = from->tsc_offset;
3271 dst->asid = from->asid;
3272 dst->tlb_ctl = from->tlb_ctl;
3273 dst->int_ctl = from->int_ctl;
3274 dst->int_vector = from->int_vector;
3275 dst->int_state = from->int_state;
3276 dst->exit_code = from->exit_code;
3277 dst->exit_code_hi = from->exit_code_hi;
3278 dst->exit_info_1 = from->exit_info_1;
3279 dst->exit_info_2 = from->exit_info_2;
3280 dst->exit_int_info = from->exit_int_info;
3281 dst->exit_int_info_err = from->exit_int_info_err;
3282 dst->nested_ctl = from->nested_ctl;
3283 dst->event_inj = from->event_inj;
3284 dst->event_inj_err = from->event_inj_err;
3285 dst->nested_cr3 = from->nested_cr3;
3286 dst->virt_ext = from->virt_ext;
3287 dst->pause_filter_count = from->pause_filter_count;
3288 dst->pause_filter_thresh = from->pause_filter_thresh;
3289 }
3290
3291 static int nested_svm_vmexit(struct vcpu_svm *svm)
3292 {
3293 struct vmcb *nested_vmcb;
3294 struct vmcb *hsave = svm->nested.hsave;
3295 struct vmcb *vmcb = svm->vmcb;
3296 struct page *page;
3297
3298 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3299 vmcb->control.exit_info_1,
3300 vmcb->control.exit_info_2,
3301 vmcb->control.exit_int_info,
3302 vmcb->control.exit_int_info_err,
3303 KVM_ISA_SVM);
3304
3305 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3306 if (!nested_vmcb)
3307 return 1;
3308
3309 /* Exit Guest-Mode */
3310 leave_guest_mode(&svm->vcpu);
3311 svm->nested.vmcb = 0;
3312
3313 /* Give the current vmcb to the guest */
3314 disable_gif(svm);
3315
3316 nested_vmcb->save.es = vmcb->save.es;
3317 nested_vmcb->save.cs = vmcb->save.cs;
3318 nested_vmcb->save.ss = vmcb->save.ss;
3319 nested_vmcb->save.ds = vmcb->save.ds;
3320 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3321 nested_vmcb->save.idtr = vmcb->save.idtr;
3322 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3323 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3324 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3325 nested_vmcb->save.cr2 = vmcb->save.cr2;
3326 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3327 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3328 nested_vmcb->save.rip = vmcb->save.rip;
3329 nested_vmcb->save.rsp = vmcb->save.rsp;
3330 nested_vmcb->save.rax = vmcb->save.rax;
3331 nested_vmcb->save.dr7 = vmcb->save.dr7;
3332 nested_vmcb->save.dr6 = vmcb->save.dr6;
3333 nested_vmcb->save.cpl = vmcb->save.cpl;
3334
3335 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3336 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3337 nested_vmcb->control.int_state = vmcb->control.int_state;
3338 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3339 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3340 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3341 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3342 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3343 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3344
3345 if (svm->nrips_enabled)
3346 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3347
3348 /*
3349 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3350 * to make sure that we do not lose injected events. So check event_inj
3351 * here and copy it to exit_int_info if it is valid.
3352 * Exit_int_info and event_inj can't be both valid because the case
3353 * below only happens on a VMRUN instruction intercept which has
3354 * no valid exit_int_info set.
3355 */
3356 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3357 struct vmcb_control_area *nc = &nested_vmcb->control;
3358
3359 nc->exit_int_info = vmcb->control.event_inj;
3360 nc->exit_int_info_err = vmcb->control.event_inj_err;
3361 }
3362
3363 nested_vmcb->control.tlb_ctl = 0;
3364 nested_vmcb->control.event_inj = 0;
3365 nested_vmcb->control.event_inj_err = 0;
3366
3367 nested_vmcb->control.pause_filter_count =
3368 svm->vmcb->control.pause_filter_count;
3369 nested_vmcb->control.pause_filter_thresh =
3370 svm->vmcb->control.pause_filter_thresh;
3371
3372 /* We always set V_INTR_MASKING and remember the old value in hflags */
3373 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3374 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3375
3376 /* Restore the original control entries */
3377 copy_vmcb_control_area(vmcb, hsave);
3378
3379 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3380 kvm_clear_exception_queue(&svm->vcpu);
3381 kvm_clear_interrupt_queue(&svm->vcpu);
3382
3383 svm->nested.nested_cr3 = 0;
3384
3385 /* Restore selected save entries */
3386 svm->vmcb->save.es = hsave->save.es;
3387 svm->vmcb->save.cs = hsave->save.cs;
3388 svm->vmcb->save.ss = hsave->save.ss;
3389 svm->vmcb->save.ds = hsave->save.ds;
3390 svm->vmcb->save.gdtr = hsave->save.gdtr;
3391 svm->vmcb->save.idtr = hsave->save.idtr;
3392 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3393 svm_set_efer(&svm->vcpu, hsave->save.efer);
3394 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3395 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3396 if (npt_enabled) {
3397 svm->vmcb->save.cr3 = hsave->save.cr3;
3398 svm->vcpu.arch.cr3 = hsave->save.cr3;
3399 } else {
3400 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3401 }
3402 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3403 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3404 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3405 svm->vmcb->save.dr7 = 0;
3406 svm->vmcb->save.cpl = 0;
3407 svm->vmcb->control.exit_int_info = 0;
3408
3409 mark_all_dirty(svm->vmcb);
3410
3411 nested_svm_unmap(page);
3412
3413 nested_svm_uninit_mmu_context(&svm->vcpu);
3414 kvm_mmu_reset_context(&svm->vcpu);
3415 kvm_mmu_load(&svm->vcpu);
3416
3417 /*
3418 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3419 * doesn't end up in L1.
3420 */
3421 svm->vcpu.arch.nmi_injected = false;
3422 kvm_clear_exception_queue(&svm->vcpu);
3423 kvm_clear_interrupt_queue(&svm->vcpu);
3424
3425 return 0;
3426 }
3427
3428 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3429 {
3430 /*
3431 * This function merges the msr permission bitmaps of kvm and the
3432 * nested vmcb. It is optimized in that it only merges the parts where
3433 * the kvm msr permission bitmap may contain zero bits
3434 */
3435 int i;
3436
3437 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3438 return true;
3439
3440 for (i = 0; i < MSRPM_OFFSETS; i++) {
3441 u32 value, p;
3442 u64 offset;
3443
3444 if (msrpm_offsets[i] == 0xffffffff)
3445 break;
3446
3447 p = msrpm_offsets[i];
3448 offset = svm->nested.vmcb_msrpm + (p * 4);
3449
3450 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3451 return false;
3452
3453 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3454 }
3455
3456 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3457
3458 return true;
3459 }
3460
3461 static bool nested_vmcb_checks(struct vmcb *vmcb)
3462 {
3463 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3464 return false;
3465
3466 if (vmcb->control.asid == 0)
3467 return false;
3468
3469 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3470 !npt_enabled)
3471 return false;
3472
3473 return true;
3474 }
3475
3476 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3477 struct vmcb *nested_vmcb, struct page *page)
3478 {
3479 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3480 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3481 else
3482 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3483
3484 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3485 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3486 nested_svm_init_mmu_context(&svm->vcpu);
3487 }
3488
3489 /* Load the nested guest state */
3490 svm->vmcb->save.es = nested_vmcb->save.es;
3491 svm->vmcb->save.cs = nested_vmcb->save.cs;
3492 svm->vmcb->save.ss = nested_vmcb->save.ss;
3493 svm->vmcb->save.ds = nested_vmcb->save.ds;
3494 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3495 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3496 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3497 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3498 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3499 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3500 if (npt_enabled) {
3501 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3502 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3503 } else
3504 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3505
3506 /* Guest paging mode is active - reset mmu */
3507 kvm_mmu_reset_context(&svm->vcpu);
3508
3509 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3510 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3511 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3512 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3513
3514 /* In case we don't even reach vcpu_run, the fields are not updated */
3515 svm->vmcb->save.rax = nested_vmcb->save.rax;
3516 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3517 svm->vmcb->save.rip = nested_vmcb->save.rip;
3518 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3519 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3520 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3521
3522 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3523 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3524
3525 /* cache intercepts */
3526 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3527 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3528 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3529 svm->nested.intercept = nested_vmcb->control.intercept;
3530
3531 svm_flush_tlb(&svm->vcpu, true);
3532 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3533 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3534 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3535 else
3536 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3537
3538 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3539 /* We only want the cr8 intercept bits of the guest */
3540 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3541 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3542 }
3543
3544 /* We don't want to see VMMCALLs from a nested guest */
3545 clr_intercept(svm, INTERCEPT_VMMCALL);
3546
3547 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3548 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3549
3550 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3551 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3552 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3553 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3554 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3555
3556 svm->vmcb->control.pause_filter_count =
3557 nested_vmcb->control.pause_filter_count;
3558 svm->vmcb->control.pause_filter_thresh =
3559 nested_vmcb->control.pause_filter_thresh;
3560
3561 nested_svm_unmap(page);
3562
3563 /* Enter Guest-Mode */
3564 enter_guest_mode(&svm->vcpu);
3565
3566 /*
3567 * Merge guest and host intercepts - must be called with vcpu in
3568 * guest-mode to take affect here
3569 */
3570 recalc_intercepts(svm);
3571
3572 svm->nested.vmcb = vmcb_gpa;
3573
3574 enable_gif(svm);
3575
3576 mark_all_dirty(svm->vmcb);
3577 }
3578
3579 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3580 {
3581 struct vmcb *nested_vmcb;
3582 struct vmcb *hsave = svm->nested.hsave;
3583 struct vmcb *vmcb = svm->vmcb;
3584 struct page *page;
3585 u64 vmcb_gpa;
3586
3587 vmcb_gpa = svm->vmcb->save.rax;
3588
3589 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3590 if (!nested_vmcb)
3591 return false;
3592
3593 if (!nested_vmcb_checks(nested_vmcb)) {
3594 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3595 nested_vmcb->control.exit_code_hi = 0;
3596 nested_vmcb->control.exit_info_1 = 0;
3597 nested_vmcb->control.exit_info_2 = 0;
3598
3599 nested_svm_unmap(page);
3600
3601 return false;
3602 }
3603
3604 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3605 nested_vmcb->save.rip,
3606 nested_vmcb->control.int_ctl,
3607 nested_vmcb->control.event_inj,
3608 nested_vmcb->control.nested_ctl);
3609
3610 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3611 nested_vmcb->control.intercept_cr >> 16,
3612 nested_vmcb->control.intercept_exceptions,
3613 nested_vmcb->control.intercept);
3614
3615 /* Clear internal status */
3616 kvm_clear_exception_queue(&svm->vcpu);
3617 kvm_clear_interrupt_queue(&svm->vcpu);
3618
3619 /*
3620 * Save the old vmcb, so we don't need to pick what we save, but can
3621 * restore everything when a VMEXIT occurs
3622 */
3623 hsave->save.es = vmcb->save.es;
3624 hsave->save.cs = vmcb->save.cs;
3625 hsave->save.ss = vmcb->save.ss;
3626 hsave->save.ds = vmcb->save.ds;
3627 hsave->save.gdtr = vmcb->save.gdtr;
3628 hsave->save.idtr = vmcb->save.idtr;
3629 hsave->save.efer = svm->vcpu.arch.efer;
3630 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3631 hsave->save.cr4 = svm->vcpu.arch.cr4;
3632 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3633 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3634 hsave->save.rsp = vmcb->save.rsp;
3635 hsave->save.rax = vmcb->save.rax;
3636 if (npt_enabled)
3637 hsave->save.cr3 = vmcb->save.cr3;
3638 else
3639 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3640
3641 copy_vmcb_control_area(hsave, vmcb);
3642
3643 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3644
3645 return true;
3646 }
3647
3648 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3649 {
3650 to_vmcb->save.fs = from_vmcb->save.fs;
3651 to_vmcb->save.gs = from_vmcb->save.gs;
3652 to_vmcb->save.tr = from_vmcb->save.tr;
3653 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3654 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3655 to_vmcb->save.star = from_vmcb->save.star;
3656 to_vmcb->save.lstar = from_vmcb->save.lstar;
3657 to_vmcb->save.cstar = from_vmcb->save.cstar;
3658 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3659 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3660 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3661 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3662 }
3663
3664 static int vmload_interception(struct vcpu_svm *svm)
3665 {
3666 struct vmcb *nested_vmcb;
3667 struct page *page;
3668 int ret;
3669
3670 if (nested_svm_check_permissions(svm))
3671 return 1;
3672
3673 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3674 if (!nested_vmcb)
3675 return 1;
3676
3677 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3678 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3679
3680 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3681 nested_svm_unmap(page);
3682
3683 return ret;
3684 }
3685
3686 static int vmsave_interception(struct vcpu_svm *svm)
3687 {
3688 struct vmcb *nested_vmcb;
3689 struct page *page;
3690 int ret;
3691
3692 if (nested_svm_check_permissions(svm))
3693 return 1;
3694
3695 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3696 if (!nested_vmcb)
3697 return 1;
3698
3699 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3700 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3701
3702 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3703 nested_svm_unmap(page);
3704
3705 return ret;
3706 }
3707
3708 static int vmrun_interception(struct vcpu_svm *svm)
3709 {
3710 if (nested_svm_check_permissions(svm))
3711 return 1;
3712
3713 /* Save rip after vmrun instruction */
3714 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3715
3716 if (!nested_svm_vmrun(svm))
3717 return 1;
3718
3719 if (!nested_svm_vmrun_msrpm(svm))
3720 goto failed;
3721
3722 return 1;
3723
3724 failed:
3725
3726 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3727 svm->vmcb->control.exit_code_hi = 0;
3728 svm->vmcb->control.exit_info_1 = 0;
3729 svm->vmcb->control.exit_info_2 = 0;
3730
3731 nested_svm_vmexit(svm);
3732
3733 return 1;
3734 }
3735
3736 static int stgi_interception(struct vcpu_svm *svm)
3737 {
3738 int ret;
3739
3740 if (nested_svm_check_permissions(svm))
3741 return 1;
3742
3743 /*
3744 * If VGIF is enabled, the STGI intercept is only added to
3745 * detect the opening of the SMI/NMI window; remove it now.
3746 */
3747 if (vgif_enabled(svm))
3748 clr_intercept(svm, INTERCEPT_STGI);
3749
3750 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3751 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3752 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3753
3754 enable_gif(svm);
3755
3756 return ret;
3757 }
3758
3759 static int clgi_interception(struct vcpu_svm *svm)
3760 {
3761 int ret;
3762
3763 if (nested_svm_check_permissions(svm))
3764 return 1;
3765
3766 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3767 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3768
3769 disable_gif(svm);
3770
3771 /* After a CLGI no interrupts should come */
3772 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3773 svm_clear_vintr(svm);
3774 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3775 mark_dirty(svm->vmcb, VMCB_INTR);
3776 }
3777
3778 return ret;
3779 }
3780
3781 static int invlpga_interception(struct vcpu_svm *svm)
3782 {
3783 struct kvm_vcpu *vcpu = &svm->vcpu;
3784
3785 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3786 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3787
3788 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3789 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3790
3791 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3792 return kvm_skip_emulated_instruction(&svm->vcpu);
3793 }
3794
3795 static int skinit_interception(struct vcpu_svm *svm)
3796 {
3797 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3798
3799 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3800 return 1;
3801 }
3802
3803 static int wbinvd_interception(struct vcpu_svm *svm)
3804 {
3805 return kvm_emulate_wbinvd(&svm->vcpu);
3806 }
3807
3808 static int xsetbv_interception(struct vcpu_svm *svm)
3809 {
3810 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3811 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3812
3813 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3814 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3815 return kvm_skip_emulated_instruction(&svm->vcpu);
3816 }
3817
3818 return 1;
3819 }
3820
3821 static int task_switch_interception(struct vcpu_svm *svm)
3822 {
3823 u16 tss_selector;
3824 int reason;
3825 int int_type = svm->vmcb->control.exit_int_info &
3826 SVM_EXITINTINFO_TYPE_MASK;
3827 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3828 uint32_t type =
3829 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3830 uint32_t idt_v =
3831 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3832 bool has_error_code = false;
3833 u32 error_code = 0;
3834
3835 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3836
3837 if (svm->vmcb->control.exit_info_2 &
3838 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3839 reason = TASK_SWITCH_IRET;
3840 else if (svm->vmcb->control.exit_info_2 &
3841 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3842 reason = TASK_SWITCH_JMP;
3843 else if (idt_v)
3844 reason = TASK_SWITCH_GATE;
3845 else
3846 reason = TASK_SWITCH_CALL;
3847
3848 if (reason == TASK_SWITCH_GATE) {
3849 switch (type) {
3850 case SVM_EXITINTINFO_TYPE_NMI:
3851 svm->vcpu.arch.nmi_injected = false;
3852 break;
3853 case SVM_EXITINTINFO_TYPE_EXEPT:
3854 if (svm->vmcb->control.exit_info_2 &
3855 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3856 has_error_code = true;
3857 error_code =
3858 (u32)svm->vmcb->control.exit_info_2;
3859 }
3860 kvm_clear_exception_queue(&svm->vcpu);
3861 break;
3862 case SVM_EXITINTINFO_TYPE_INTR:
3863 kvm_clear_interrupt_queue(&svm->vcpu);
3864 break;
3865 default:
3866 break;
3867 }
3868 }
3869
3870 if (reason != TASK_SWITCH_GATE ||
3871 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3872 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3873 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3874 skip_emulated_instruction(&svm->vcpu);
3875
3876 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3877 int_vec = -1;
3878
3879 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3880 has_error_code, error_code) == EMULATE_FAIL) {
3881 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3882 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3883 svm->vcpu.run->internal.ndata = 0;
3884 return 0;
3885 }
3886 return 1;
3887 }
3888
3889 static int cpuid_interception(struct vcpu_svm *svm)
3890 {
3891 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3892 return kvm_emulate_cpuid(&svm->vcpu);
3893 }
3894
3895 static int iret_interception(struct vcpu_svm *svm)
3896 {
3897 ++svm->vcpu.stat.nmi_window_exits;
3898 clr_intercept(svm, INTERCEPT_IRET);
3899 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3900 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3901 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3902 return 1;
3903 }
3904
3905 static int invlpg_interception(struct vcpu_svm *svm)
3906 {
3907 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3908 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3909
3910 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3911 return kvm_skip_emulated_instruction(&svm->vcpu);
3912 }
3913
3914 static int emulate_on_interception(struct vcpu_svm *svm)
3915 {
3916 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3917 }
3918
3919 static int rsm_interception(struct vcpu_svm *svm)
3920 {
3921 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3922 rsm_ins_bytes, 2) == EMULATE_DONE;
3923 }
3924
3925 static int rdpmc_interception(struct vcpu_svm *svm)
3926 {
3927 int err;
3928
3929 if (!static_cpu_has(X86_FEATURE_NRIPS))
3930 return emulate_on_interception(svm);
3931
3932 err = kvm_rdpmc(&svm->vcpu);
3933 return kvm_complete_insn_gp(&svm->vcpu, err);
3934 }
3935
3936 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3937 unsigned long val)
3938 {
3939 unsigned long cr0 = svm->vcpu.arch.cr0;
3940 bool ret = false;
3941 u64 intercept;
3942
3943 intercept = svm->nested.intercept;
3944
3945 if (!is_guest_mode(&svm->vcpu) ||
3946 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3947 return false;
3948
3949 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3950 val &= ~SVM_CR0_SELECTIVE_MASK;
3951
3952 if (cr0 ^ val) {
3953 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3954 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3955 }
3956
3957 return ret;
3958 }
3959
3960 #define CR_VALID (1ULL << 63)
3961
3962 static int cr_interception(struct vcpu_svm *svm)
3963 {
3964 int reg, cr;
3965 unsigned long val;
3966 int err;
3967
3968 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3969 return emulate_on_interception(svm);
3970
3971 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3972 return emulate_on_interception(svm);
3973
3974 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3975 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3976 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3977 else
3978 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3979
3980 err = 0;
3981 if (cr >= 16) { /* mov to cr */
3982 cr -= 16;
3983 val = kvm_register_read(&svm->vcpu, reg);
3984 switch (cr) {
3985 case 0:
3986 if (!check_selective_cr0_intercepted(svm, val))
3987 err = kvm_set_cr0(&svm->vcpu, val);
3988 else
3989 return 1;
3990
3991 break;
3992 case 3:
3993 err = kvm_set_cr3(&svm->vcpu, val);
3994 break;
3995 case 4:
3996 err = kvm_set_cr4(&svm->vcpu, val);
3997 break;
3998 case 8:
3999 err = kvm_set_cr8(&svm->vcpu, val);
4000 break;
4001 default:
4002 WARN(1, "unhandled write to CR%d", cr);
4003 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4004 return 1;
4005 }
4006 } else { /* mov from cr */
4007 switch (cr) {
4008 case 0:
4009 val = kvm_read_cr0(&svm->vcpu);
4010 break;
4011 case 2:
4012 val = svm->vcpu.arch.cr2;
4013 break;
4014 case 3:
4015 val = kvm_read_cr3(&svm->vcpu);
4016 break;
4017 case 4:
4018 val = kvm_read_cr4(&svm->vcpu);
4019 break;
4020 case 8:
4021 val = kvm_get_cr8(&svm->vcpu);
4022 break;
4023 default:
4024 WARN(1, "unhandled read from CR%d", cr);
4025 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4026 return 1;
4027 }
4028 kvm_register_write(&svm->vcpu, reg, val);
4029 }
4030 return kvm_complete_insn_gp(&svm->vcpu, err);
4031 }
4032
4033 static int dr_interception(struct vcpu_svm *svm)
4034 {
4035 int reg, dr;
4036 unsigned long val;
4037
4038 if (svm->vcpu.guest_debug == 0) {
4039 /*
4040 * No more DR vmexits; force a reload of the debug registers
4041 * and reenter on this instruction. The next vmexit will
4042 * retrieve the full state of the debug registers.
4043 */
4044 clr_dr_intercepts(svm);
4045 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4046 return 1;
4047 }
4048
4049 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4050 return emulate_on_interception(svm);
4051
4052 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4053 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4054
4055 if (dr >= 16) { /* mov to DRn */
4056 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4057 return 1;
4058 val = kvm_register_read(&svm->vcpu, reg);
4059 kvm_set_dr(&svm->vcpu, dr - 16, val);
4060 } else {
4061 if (!kvm_require_dr(&svm->vcpu, dr))
4062 return 1;
4063 kvm_get_dr(&svm->vcpu, dr, &val);
4064 kvm_register_write(&svm->vcpu, reg, val);
4065 }
4066
4067 return kvm_skip_emulated_instruction(&svm->vcpu);
4068 }
4069
4070 static int cr8_write_interception(struct vcpu_svm *svm)
4071 {
4072 struct kvm_run *kvm_run = svm->vcpu.run;
4073 int r;
4074
4075 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4076 /* instruction emulation calls kvm_set_cr8() */
4077 r = cr_interception(svm);
4078 if (lapic_in_kernel(&svm->vcpu))
4079 return r;
4080 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4081 return r;
4082 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4083 return 0;
4084 }
4085
4086 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4087 {
4088 msr->data = 0;
4089
4090 switch (msr->index) {
4091 case MSR_F10H_DECFG:
4092 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4093 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4094 break;
4095 default:
4096 return 1;
4097 }
4098
4099 return 0;
4100 }
4101
4102 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4103 {
4104 struct vcpu_svm *svm = to_svm(vcpu);
4105
4106 switch (msr_info->index) {
4107 case MSR_STAR:
4108 msr_info->data = svm->vmcb->save.star;
4109 break;
4110 #ifdef CONFIG_X86_64
4111 case MSR_LSTAR:
4112 msr_info->data = svm->vmcb->save.lstar;
4113 break;
4114 case MSR_CSTAR:
4115 msr_info->data = svm->vmcb->save.cstar;
4116 break;
4117 case MSR_KERNEL_GS_BASE:
4118 msr_info->data = svm->vmcb->save.kernel_gs_base;
4119 break;
4120 case MSR_SYSCALL_MASK:
4121 msr_info->data = svm->vmcb->save.sfmask;
4122 break;
4123 #endif
4124 case MSR_IA32_SYSENTER_CS:
4125 msr_info->data = svm->vmcb->save.sysenter_cs;
4126 break;
4127 case MSR_IA32_SYSENTER_EIP:
4128 msr_info->data = svm->sysenter_eip;
4129 break;
4130 case MSR_IA32_SYSENTER_ESP:
4131 msr_info->data = svm->sysenter_esp;
4132 break;
4133 case MSR_TSC_AUX:
4134 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4135 return 1;
4136 msr_info->data = svm->tsc_aux;
4137 break;
4138 /*
4139 * Nobody will change the following 5 values in the VMCB so we can
4140 * safely return them on rdmsr. They will always be 0 until LBRV is
4141 * implemented.
4142 */
4143 case MSR_IA32_DEBUGCTLMSR:
4144 msr_info->data = svm->vmcb->save.dbgctl;
4145 break;
4146 case MSR_IA32_LASTBRANCHFROMIP:
4147 msr_info->data = svm->vmcb->save.br_from;
4148 break;
4149 case MSR_IA32_LASTBRANCHTOIP:
4150 msr_info->data = svm->vmcb->save.br_to;
4151 break;
4152 case MSR_IA32_LASTINTFROMIP:
4153 msr_info->data = svm->vmcb->save.last_excp_from;
4154 break;
4155 case MSR_IA32_LASTINTTOIP:
4156 msr_info->data = svm->vmcb->save.last_excp_to;
4157 break;
4158 case MSR_VM_HSAVE_PA:
4159 msr_info->data = svm->nested.hsave_msr;
4160 break;
4161 case MSR_VM_CR:
4162 msr_info->data = svm->nested.vm_cr_msr;
4163 break;
4164 case MSR_IA32_SPEC_CTRL:
4165 if (!msr_info->host_initiated &&
4166 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4167 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4168 return 1;
4169
4170 msr_info->data = svm->spec_ctrl;
4171 break;
4172 case MSR_AMD64_VIRT_SPEC_CTRL:
4173 if (!msr_info->host_initiated &&
4174 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4175 return 1;
4176
4177 msr_info->data = svm->virt_spec_ctrl;
4178 break;
4179 case MSR_F15H_IC_CFG: {
4180
4181 int family, model;
4182
4183 family = guest_cpuid_family(vcpu);
4184 model = guest_cpuid_model(vcpu);
4185
4186 if (family < 0 || model < 0)
4187 return kvm_get_msr_common(vcpu, msr_info);
4188
4189 msr_info->data = 0;
4190
4191 if (family == 0x15 &&
4192 (model >= 0x2 && model < 0x20))
4193 msr_info->data = 0x1E;
4194 }
4195 break;
4196 case MSR_F10H_DECFG:
4197 msr_info->data = svm->msr_decfg;
4198 break;
4199 default:
4200 return kvm_get_msr_common(vcpu, msr_info);
4201 }
4202 return 0;
4203 }
4204
4205 static int rdmsr_interception(struct vcpu_svm *svm)
4206 {
4207 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4208 struct msr_data msr_info;
4209
4210 msr_info.index = ecx;
4211 msr_info.host_initiated = false;
4212 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4213 trace_kvm_msr_read_ex(ecx);
4214 kvm_inject_gp(&svm->vcpu, 0);
4215 return 1;
4216 } else {
4217 trace_kvm_msr_read(ecx, msr_info.data);
4218
4219 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4220 msr_info.data & 0xffffffff);
4221 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4222 msr_info.data >> 32);
4223 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4224 return kvm_skip_emulated_instruction(&svm->vcpu);
4225 }
4226 }
4227
4228 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4229 {
4230 struct vcpu_svm *svm = to_svm(vcpu);
4231 int svm_dis, chg_mask;
4232
4233 if (data & ~SVM_VM_CR_VALID_MASK)
4234 return 1;
4235
4236 chg_mask = SVM_VM_CR_VALID_MASK;
4237
4238 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4239 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4240
4241 svm->nested.vm_cr_msr &= ~chg_mask;
4242 svm->nested.vm_cr_msr |= (data & chg_mask);
4243
4244 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4245
4246 /* check for svm_disable while efer.svme is set */
4247 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4248 return 1;
4249
4250 return 0;
4251 }
4252
4253 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4254 {
4255 struct vcpu_svm *svm = to_svm(vcpu);
4256
4257 u32 ecx = msr->index;
4258 u64 data = msr->data;
4259 switch (ecx) {
4260 case MSR_IA32_CR_PAT:
4261 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4262 return 1;
4263 vcpu->arch.pat = data;
4264 svm->vmcb->save.g_pat = data;
4265 mark_dirty(svm->vmcb, VMCB_NPT);
4266 break;
4267 case MSR_IA32_SPEC_CTRL:
4268 if (!msr->host_initiated &&
4269 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4270 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4271 return 1;
4272
4273 /* The STIBP bit doesn't fault even if it's not advertised */
4274 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4275 return 1;
4276
4277 svm->spec_ctrl = data;
4278
4279 if (!data)
4280 break;
4281
4282 /*
4283 * For non-nested:
4284 * When it's written (to non-zero) for the first time, pass
4285 * it through.
4286 *
4287 * For nested:
4288 * The handling of the MSR bitmap for L2 guests is done in
4289 * nested_svm_vmrun_msrpm.
4290 * We update the L1 MSR bit as well since it will end up
4291 * touching the MSR anyway now.
4292 */
4293 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4294 break;
4295 case MSR_IA32_PRED_CMD:
4296 if (!msr->host_initiated &&
4297 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4298 return 1;
4299
4300 if (data & ~PRED_CMD_IBPB)
4301 return 1;
4302
4303 if (!data)
4304 break;
4305
4306 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4307 if (is_guest_mode(vcpu))
4308 break;
4309 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4310 break;
4311 case MSR_AMD64_VIRT_SPEC_CTRL:
4312 if (!msr->host_initiated &&
4313 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4314 return 1;
4315
4316 if (data & ~SPEC_CTRL_SSBD)
4317 return 1;
4318
4319 svm->virt_spec_ctrl = data;
4320 break;
4321 case MSR_STAR:
4322 svm->vmcb->save.star = data;
4323 break;
4324 #ifdef CONFIG_X86_64
4325 case MSR_LSTAR:
4326 svm->vmcb->save.lstar = data;
4327 break;
4328 case MSR_CSTAR:
4329 svm->vmcb->save.cstar = data;
4330 break;
4331 case MSR_KERNEL_GS_BASE:
4332 svm->vmcb->save.kernel_gs_base = data;
4333 break;
4334 case MSR_SYSCALL_MASK:
4335 svm->vmcb->save.sfmask = data;
4336 break;
4337 #endif
4338 case MSR_IA32_SYSENTER_CS:
4339 svm->vmcb->save.sysenter_cs = data;
4340 break;
4341 case MSR_IA32_SYSENTER_EIP:
4342 svm->sysenter_eip = data;
4343 svm->vmcb->save.sysenter_eip = data;
4344 break;
4345 case MSR_IA32_SYSENTER_ESP:
4346 svm->sysenter_esp = data;
4347 svm->vmcb->save.sysenter_esp = data;
4348 break;
4349 case MSR_TSC_AUX:
4350 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4351 return 1;
4352
4353 /*
4354 * This is rare, so we update the MSR here instead of using
4355 * direct_access_msrs. Doing that would require a rdmsr in
4356 * svm_vcpu_put.
4357 */
4358 svm->tsc_aux = data;
4359 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4360 break;
4361 case MSR_IA32_DEBUGCTLMSR:
4362 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4363 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4364 __func__, data);
4365 break;
4366 }
4367 if (data & DEBUGCTL_RESERVED_BITS)
4368 return 1;
4369
4370 svm->vmcb->save.dbgctl = data;
4371 mark_dirty(svm->vmcb, VMCB_LBR);
4372 if (data & (1ULL<<0))
4373 svm_enable_lbrv(svm);
4374 else
4375 svm_disable_lbrv(svm);
4376 break;
4377 case MSR_VM_HSAVE_PA:
4378 svm->nested.hsave_msr = data;
4379 break;
4380 case MSR_VM_CR:
4381 return svm_set_vm_cr(vcpu, data);
4382 case MSR_VM_IGNNE:
4383 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4384 break;
4385 case MSR_F10H_DECFG: {
4386 struct kvm_msr_entry msr_entry;
4387
4388 msr_entry.index = msr->index;
4389 if (svm_get_msr_feature(&msr_entry))
4390 return 1;
4391
4392 /* Check the supported bits */
4393 if (data & ~msr_entry.data)
4394 return 1;
4395
4396 /* Don't allow the guest to change a bit, #GP */
4397 if (!msr->host_initiated && (data ^ msr_entry.data))
4398 return 1;
4399
4400 svm->msr_decfg = data;
4401 break;
4402 }
4403 case MSR_IA32_APICBASE:
4404 if (kvm_vcpu_apicv_active(vcpu))
4405 avic_update_vapic_bar(to_svm(vcpu), data);
4406 /* Fall through */
4407 default:
4408 return kvm_set_msr_common(vcpu, msr);
4409 }
4410 return 0;
4411 }
4412
4413 static int wrmsr_interception(struct vcpu_svm *svm)
4414 {
4415 struct msr_data msr;
4416 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4417 u64 data = kvm_read_edx_eax(&svm->vcpu);
4418
4419 msr.data = data;
4420 msr.index = ecx;
4421 msr.host_initiated = false;
4422
4423 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4424 if (kvm_set_msr(&svm->vcpu, &msr)) {
4425 trace_kvm_msr_write_ex(ecx, data);
4426 kvm_inject_gp(&svm->vcpu, 0);
4427 return 1;
4428 } else {
4429 trace_kvm_msr_write(ecx, data);
4430 return kvm_skip_emulated_instruction(&svm->vcpu);
4431 }
4432 }
4433
4434 static int msr_interception(struct vcpu_svm *svm)
4435 {
4436 if (svm->vmcb->control.exit_info_1)
4437 return wrmsr_interception(svm);
4438 else
4439 return rdmsr_interception(svm);
4440 }
4441
4442 static int interrupt_window_interception(struct vcpu_svm *svm)
4443 {
4444 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4445 svm_clear_vintr(svm);
4446 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4447 mark_dirty(svm->vmcb, VMCB_INTR);
4448 ++svm->vcpu.stat.irq_window_exits;
4449 return 1;
4450 }
4451
4452 static int pause_interception(struct vcpu_svm *svm)
4453 {
4454 struct kvm_vcpu *vcpu = &svm->vcpu;
4455 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4456
4457 if (pause_filter_thresh)
4458 grow_ple_window(vcpu);
4459
4460 kvm_vcpu_on_spin(vcpu, in_kernel);
4461 return 1;
4462 }
4463
4464 static int nop_interception(struct vcpu_svm *svm)
4465 {
4466 return kvm_skip_emulated_instruction(&(svm->vcpu));
4467 }
4468
4469 static int monitor_interception(struct vcpu_svm *svm)
4470 {
4471 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4472 return nop_interception(svm);
4473 }
4474
4475 static int mwait_interception(struct vcpu_svm *svm)
4476 {
4477 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4478 return nop_interception(svm);
4479 }
4480
4481 enum avic_ipi_failure_cause {
4482 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4483 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4484 AVIC_IPI_FAILURE_INVALID_TARGET,
4485 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4486 };
4487
4488 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4489 {
4490 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4491 u32 icrl = svm->vmcb->control.exit_info_1;
4492 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4493 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4494 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4495
4496 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4497
4498 switch (id) {
4499 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4500 /*
4501 * AVIC hardware handles the generation of
4502 * IPIs when the specified Message Type is Fixed
4503 * (also known as fixed delivery mode) and
4504 * the Trigger Mode is edge-triggered. The hardware
4505 * also supports self and broadcast delivery modes
4506 * specified via the Destination Shorthand(DSH)
4507 * field of the ICRL. Logical and physical APIC ID
4508 * formats are supported. All other IPI types cause
4509 * a #VMEXIT, which needs to emulated.
4510 */
4511 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4512 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4513 break;
4514 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4515 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4516
4517 /*
4518 * Update ICR high and low, then emulate sending IPI,
4519 * which is handled when writing APIC_ICR.
4520 */
4521 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4522 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4523 break;
4524 }
4525 case AVIC_IPI_FAILURE_INVALID_TARGET:
4526 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4527 index, svm->vcpu.vcpu_id, icrh, icrl);
4528 break;
4529 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4530 WARN_ONCE(1, "Invalid backing page\n");
4531 break;
4532 default:
4533 pr_err("Unknown IPI interception\n");
4534 }
4535
4536 return 1;
4537 }
4538
4539 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4540 {
4541 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4542 int index;
4543 u32 *logical_apic_id_table;
4544 int dlid = GET_APIC_LOGICAL_ID(ldr);
4545
4546 if (!dlid)
4547 return NULL;
4548
4549 if (flat) { /* flat */
4550 index = ffs(dlid) - 1;
4551 if (index > 7)
4552 return NULL;
4553 } else { /* cluster */
4554 int cluster = (dlid & 0xf0) >> 4;
4555 int apic = ffs(dlid & 0x0f) - 1;
4556
4557 if ((apic < 0) || (apic > 7) ||
4558 (cluster >= 0xf))
4559 return NULL;
4560 index = (cluster << 2) + apic;
4561 }
4562
4563 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4564
4565 return &logical_apic_id_table[index];
4566 }
4567
4568 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4569 bool valid)
4570 {
4571 bool flat;
4572 u32 *entry, new_entry;
4573
4574 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4575 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4576 if (!entry)
4577 return -EINVAL;
4578
4579 new_entry = READ_ONCE(*entry);
4580 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4581 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4582 if (valid)
4583 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4584 else
4585 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4586 WRITE_ONCE(*entry, new_entry);
4587
4588 return 0;
4589 }
4590
4591 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4592 {
4593 int ret;
4594 struct vcpu_svm *svm = to_svm(vcpu);
4595 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4596
4597 if (!ldr)
4598 return 1;
4599
4600 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4601 if (ret && svm->ldr_reg) {
4602 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4603 svm->ldr_reg = 0;
4604 } else {
4605 svm->ldr_reg = ldr;
4606 }
4607 return ret;
4608 }
4609
4610 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4611 {
4612 u64 *old, *new;
4613 struct vcpu_svm *svm = to_svm(vcpu);
4614 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4615 u32 id = (apic_id_reg >> 24) & 0xff;
4616
4617 if (vcpu->vcpu_id == id)
4618 return 0;
4619
4620 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4621 new = avic_get_physical_id_entry(vcpu, id);
4622 if (!new || !old)
4623 return 1;
4624
4625 /* We need to move physical_id_entry to new offset */
4626 *new = *old;
4627 *old = 0ULL;
4628 to_svm(vcpu)->avic_physical_id_cache = new;
4629
4630 /*
4631 * Also update the guest physical APIC ID in the logical
4632 * APIC ID table entry if already setup the LDR.
4633 */
4634 if (svm->ldr_reg)
4635 avic_handle_ldr_update(vcpu);
4636
4637 return 0;
4638 }
4639
4640 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4641 {
4642 struct vcpu_svm *svm = to_svm(vcpu);
4643 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4644 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4645 u32 mod = (dfr >> 28) & 0xf;
4646
4647 /*
4648 * We assume that all local APICs are using the same type.
4649 * If this changes, we need to flush the AVIC logical
4650 * APID id table.
4651 */
4652 if (kvm_svm->ldr_mode == mod)
4653 return 0;
4654
4655 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4656 kvm_svm->ldr_mode = mod;
4657
4658 if (svm->ldr_reg)
4659 avic_handle_ldr_update(vcpu);
4660 return 0;
4661 }
4662
4663 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4664 {
4665 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4666 u32 offset = svm->vmcb->control.exit_info_1 &
4667 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4668
4669 switch (offset) {
4670 case APIC_ID:
4671 if (avic_handle_apic_id_update(&svm->vcpu))
4672 return 0;
4673 break;
4674 case APIC_LDR:
4675 if (avic_handle_ldr_update(&svm->vcpu))
4676 return 0;
4677 break;
4678 case APIC_DFR:
4679 avic_handle_dfr_update(&svm->vcpu);
4680 break;
4681 default:
4682 break;
4683 }
4684
4685 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4686
4687 return 1;
4688 }
4689
4690 static bool is_avic_unaccelerated_access_trap(u32 offset)
4691 {
4692 bool ret = false;
4693
4694 switch (offset) {
4695 case APIC_ID:
4696 case APIC_EOI:
4697 case APIC_RRR:
4698 case APIC_LDR:
4699 case APIC_DFR:
4700 case APIC_SPIV:
4701 case APIC_ESR:
4702 case APIC_ICR:
4703 case APIC_LVTT:
4704 case APIC_LVTTHMR:
4705 case APIC_LVTPC:
4706 case APIC_LVT0:
4707 case APIC_LVT1:
4708 case APIC_LVTERR:
4709 case APIC_TMICT:
4710 case APIC_TDCR:
4711 ret = true;
4712 break;
4713 default:
4714 break;
4715 }
4716 return ret;
4717 }
4718
4719 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4720 {
4721 int ret = 0;
4722 u32 offset = svm->vmcb->control.exit_info_1 &
4723 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4724 u32 vector = svm->vmcb->control.exit_info_2 &
4725 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4726 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4727 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4728 bool trap = is_avic_unaccelerated_access_trap(offset);
4729
4730 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4731 trap, write, vector);
4732 if (trap) {
4733 /* Handling Trap */
4734 WARN_ONCE(!write, "svm: Handling trap read.\n");
4735 ret = avic_unaccel_trap_write(svm);
4736 } else {
4737 /* Handling Fault */
4738 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4739 }
4740
4741 return ret;
4742 }
4743
4744 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4745 [SVM_EXIT_READ_CR0] = cr_interception,
4746 [SVM_EXIT_READ_CR3] = cr_interception,
4747 [SVM_EXIT_READ_CR4] = cr_interception,
4748 [SVM_EXIT_READ_CR8] = cr_interception,
4749 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4750 [SVM_EXIT_WRITE_CR0] = cr_interception,
4751 [SVM_EXIT_WRITE_CR3] = cr_interception,
4752 [SVM_EXIT_WRITE_CR4] = cr_interception,
4753 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4754 [SVM_EXIT_READ_DR0] = dr_interception,
4755 [SVM_EXIT_READ_DR1] = dr_interception,
4756 [SVM_EXIT_READ_DR2] = dr_interception,
4757 [SVM_EXIT_READ_DR3] = dr_interception,
4758 [SVM_EXIT_READ_DR4] = dr_interception,
4759 [SVM_EXIT_READ_DR5] = dr_interception,
4760 [SVM_EXIT_READ_DR6] = dr_interception,
4761 [SVM_EXIT_READ_DR7] = dr_interception,
4762 [SVM_EXIT_WRITE_DR0] = dr_interception,
4763 [SVM_EXIT_WRITE_DR1] = dr_interception,
4764 [SVM_EXIT_WRITE_DR2] = dr_interception,
4765 [SVM_EXIT_WRITE_DR3] = dr_interception,
4766 [SVM_EXIT_WRITE_DR4] = dr_interception,
4767 [SVM_EXIT_WRITE_DR5] = dr_interception,
4768 [SVM_EXIT_WRITE_DR6] = dr_interception,
4769 [SVM_EXIT_WRITE_DR7] = dr_interception,
4770 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4771 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4772 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4773 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4774 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4775 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4776 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4777 [SVM_EXIT_INTR] = intr_interception,
4778 [SVM_EXIT_NMI] = nmi_interception,
4779 [SVM_EXIT_SMI] = nop_on_interception,
4780 [SVM_EXIT_INIT] = nop_on_interception,
4781 [SVM_EXIT_VINTR] = interrupt_window_interception,
4782 [SVM_EXIT_RDPMC] = rdpmc_interception,
4783 [SVM_EXIT_CPUID] = cpuid_interception,
4784 [SVM_EXIT_IRET] = iret_interception,
4785 [SVM_EXIT_INVD] = emulate_on_interception,
4786 [SVM_EXIT_PAUSE] = pause_interception,
4787 [SVM_EXIT_HLT] = halt_interception,
4788 [SVM_EXIT_INVLPG] = invlpg_interception,
4789 [SVM_EXIT_INVLPGA] = invlpga_interception,
4790 [SVM_EXIT_IOIO] = io_interception,
4791 [SVM_EXIT_MSR] = msr_interception,
4792 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4793 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4794 [SVM_EXIT_VMRUN] = vmrun_interception,
4795 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4796 [SVM_EXIT_VMLOAD] = vmload_interception,
4797 [SVM_EXIT_VMSAVE] = vmsave_interception,
4798 [SVM_EXIT_STGI] = stgi_interception,
4799 [SVM_EXIT_CLGI] = clgi_interception,
4800 [SVM_EXIT_SKINIT] = skinit_interception,
4801 [SVM_EXIT_WBINVD] = wbinvd_interception,
4802 [SVM_EXIT_MONITOR] = monitor_interception,
4803 [SVM_EXIT_MWAIT] = mwait_interception,
4804 [SVM_EXIT_XSETBV] = xsetbv_interception,
4805 [SVM_EXIT_NPF] = npf_interception,
4806 [SVM_EXIT_RSM] = rsm_interception,
4807 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4808 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4809 };
4810
4811 static void dump_vmcb(struct kvm_vcpu *vcpu)
4812 {
4813 struct vcpu_svm *svm = to_svm(vcpu);
4814 struct vmcb_control_area *control = &svm->vmcb->control;
4815 struct vmcb_save_area *save = &svm->vmcb->save;
4816
4817 pr_err("VMCB Control Area:\n");
4818 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4819 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4820 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4821 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4822 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4823 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4824 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4825 pr_err("%-20s%d\n", "pause filter threshold:",
4826 control->pause_filter_thresh);
4827 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4828 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4829 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4830 pr_err("%-20s%d\n", "asid:", control->asid);
4831 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4832 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4833 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4834 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4835 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4836 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4837 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4838 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4839 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4840 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4841 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4842 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4843 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4844 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4845 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4846 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4847 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4848 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4849 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4850 pr_err("VMCB State Save Area:\n");
4851 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 "es:",
4853 save->es.selector, save->es.attrib,
4854 save->es.limit, save->es.base);
4855 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 "cs:",
4857 save->cs.selector, save->cs.attrib,
4858 save->cs.limit, save->cs.base);
4859 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4860 "ss:",
4861 save->ss.selector, save->ss.attrib,
4862 save->ss.limit, save->ss.base);
4863 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4864 "ds:",
4865 save->ds.selector, save->ds.attrib,
4866 save->ds.limit, save->ds.base);
4867 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4868 "fs:",
4869 save->fs.selector, save->fs.attrib,
4870 save->fs.limit, save->fs.base);
4871 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4872 "gs:",
4873 save->gs.selector, save->gs.attrib,
4874 save->gs.limit, save->gs.base);
4875 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4876 "gdtr:",
4877 save->gdtr.selector, save->gdtr.attrib,
4878 save->gdtr.limit, save->gdtr.base);
4879 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4880 "ldtr:",
4881 save->ldtr.selector, save->ldtr.attrib,
4882 save->ldtr.limit, save->ldtr.base);
4883 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4884 "idtr:",
4885 save->idtr.selector, save->idtr.attrib,
4886 save->idtr.limit, save->idtr.base);
4887 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4888 "tr:",
4889 save->tr.selector, save->tr.attrib,
4890 save->tr.limit, save->tr.base);
4891 pr_err("cpl: %d efer: %016llx\n",
4892 save->cpl, save->efer);
4893 pr_err("%-15s %016llx %-13s %016llx\n",
4894 "cr0:", save->cr0, "cr2:", save->cr2);
4895 pr_err("%-15s %016llx %-13s %016llx\n",
4896 "cr3:", save->cr3, "cr4:", save->cr4);
4897 pr_err("%-15s %016llx %-13s %016llx\n",
4898 "dr6:", save->dr6, "dr7:", save->dr7);
4899 pr_err("%-15s %016llx %-13s %016llx\n",
4900 "rip:", save->rip, "rflags:", save->rflags);
4901 pr_err("%-15s %016llx %-13s %016llx\n",
4902 "rsp:", save->rsp, "rax:", save->rax);
4903 pr_err("%-15s %016llx %-13s %016llx\n",
4904 "star:", save->star, "lstar:", save->lstar);
4905 pr_err("%-15s %016llx %-13s %016llx\n",
4906 "cstar:", save->cstar, "sfmask:", save->sfmask);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "kernel_gs_base:", save->kernel_gs_base,
4909 "sysenter_cs:", save->sysenter_cs);
4910 pr_err("%-15s %016llx %-13s %016llx\n",
4911 "sysenter_esp:", save->sysenter_esp,
4912 "sysenter_eip:", save->sysenter_eip);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "br_from:", save->br_from, "br_to:", save->br_to);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "excp_from:", save->last_excp_from,
4919 "excp_to:", save->last_excp_to);
4920 }
4921
4922 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4923 {
4924 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4925
4926 *info1 = control->exit_info_1;
4927 *info2 = control->exit_info_2;
4928 }
4929
4930 static int handle_exit(struct kvm_vcpu *vcpu)
4931 {
4932 struct vcpu_svm *svm = to_svm(vcpu);
4933 struct kvm_run *kvm_run = vcpu->run;
4934 u32 exit_code = svm->vmcb->control.exit_code;
4935
4936 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4937
4938 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4939 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4940 if (npt_enabled)
4941 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4942
4943 if (unlikely(svm->nested.exit_required)) {
4944 nested_svm_vmexit(svm);
4945 svm->nested.exit_required = false;
4946
4947 return 1;
4948 }
4949
4950 if (is_guest_mode(vcpu)) {
4951 int vmexit;
4952
4953 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4954 svm->vmcb->control.exit_info_1,
4955 svm->vmcb->control.exit_info_2,
4956 svm->vmcb->control.exit_int_info,
4957 svm->vmcb->control.exit_int_info_err,
4958 KVM_ISA_SVM);
4959
4960 vmexit = nested_svm_exit_special(svm);
4961
4962 if (vmexit == NESTED_EXIT_CONTINUE)
4963 vmexit = nested_svm_exit_handled(svm);
4964
4965 if (vmexit == NESTED_EXIT_DONE)
4966 return 1;
4967 }
4968
4969 svm_complete_interrupts(svm);
4970
4971 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4972 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4973 kvm_run->fail_entry.hardware_entry_failure_reason
4974 = svm->vmcb->control.exit_code;
4975 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4976 dump_vmcb(vcpu);
4977 return 0;
4978 }
4979
4980 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4981 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4982 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4983 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4984 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4985 "exit_code 0x%x\n",
4986 __func__, svm->vmcb->control.exit_int_info,
4987 exit_code);
4988
4989 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4990 || !svm_exit_handlers[exit_code]) {
4991 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4992 kvm_queue_exception(vcpu, UD_VECTOR);
4993 return 1;
4994 }
4995
4996 return svm_exit_handlers[exit_code](svm);
4997 }
4998
4999 static void reload_tss(struct kvm_vcpu *vcpu)
5000 {
5001 int cpu = raw_smp_processor_id();
5002
5003 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5004 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5005 load_TR_desc();
5006 }
5007
5008 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5009 {
5010 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5011 int asid = sev_get_asid(svm->vcpu.kvm);
5012
5013 /* Assign the asid allocated with this SEV guest */
5014 svm->vmcb->control.asid = asid;
5015
5016 /*
5017 * Flush guest TLB:
5018 *
5019 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5020 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5021 */
5022 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5023 svm->last_cpu == cpu)
5024 return;
5025
5026 svm->last_cpu = cpu;
5027 sd->sev_vmcbs[asid] = svm->vmcb;
5028 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5029 mark_dirty(svm->vmcb, VMCB_ASID);
5030 }
5031
5032 static void pre_svm_run(struct vcpu_svm *svm)
5033 {
5034 int cpu = raw_smp_processor_id();
5035
5036 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5037
5038 if (sev_guest(svm->vcpu.kvm))
5039 return pre_sev_run(svm, cpu);
5040
5041 /* FIXME: handle wraparound of asid_generation */
5042 if (svm->asid_generation != sd->asid_generation)
5043 new_asid(svm, sd);
5044 }
5045
5046 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5047 {
5048 struct vcpu_svm *svm = to_svm(vcpu);
5049
5050 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5051 vcpu->arch.hflags |= HF_NMI_MASK;
5052 set_intercept(svm, INTERCEPT_IRET);
5053 ++vcpu->stat.nmi_injections;
5054 }
5055
5056 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5057 {
5058 struct vmcb_control_area *control;
5059
5060 /* The following fields are ignored when AVIC is enabled */
5061 control = &svm->vmcb->control;
5062 control->int_vector = irq;
5063 control->int_ctl &= ~V_INTR_PRIO_MASK;
5064 control->int_ctl |= V_IRQ_MASK |
5065 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5066 mark_dirty(svm->vmcb, VMCB_INTR);
5067 }
5068
5069 static void svm_set_irq(struct kvm_vcpu *vcpu)
5070 {
5071 struct vcpu_svm *svm = to_svm(vcpu);
5072
5073 BUG_ON(!(gif_set(svm)));
5074
5075 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5076 ++vcpu->stat.irq_injections;
5077
5078 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5079 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5080 }
5081
5082 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5083 {
5084 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5085 }
5086
5087 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5088 {
5089 struct vcpu_svm *svm = to_svm(vcpu);
5090
5091 if (svm_nested_virtualize_tpr(vcpu) ||
5092 kvm_vcpu_apicv_active(vcpu))
5093 return;
5094
5095 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5096
5097 if (irr == -1)
5098 return;
5099
5100 if (tpr >= irr)
5101 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5102 }
5103
5104 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5105 {
5106 return;
5107 }
5108
5109 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5110 {
5111 return avic && irqchip_split(vcpu->kvm);
5112 }
5113
5114 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5115 {
5116 }
5117
5118 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5119 {
5120 }
5121
5122 /* Note: Currently only used by Hyper-V. */
5123 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5124 {
5125 struct vcpu_svm *svm = to_svm(vcpu);
5126 struct vmcb *vmcb = svm->vmcb;
5127
5128 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5129 return;
5130
5131 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5132 mark_dirty(vmcb, VMCB_INTR);
5133 }
5134
5135 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5136 {
5137 return;
5138 }
5139
5140 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5141 {
5142 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5143 smp_mb__after_atomic();
5144
5145 if (avic_vcpu_is_running(vcpu))
5146 wrmsrl(SVM_AVIC_DOORBELL,
5147 kvm_cpu_get_apicid(vcpu->cpu));
5148 else
5149 kvm_vcpu_wake_up(vcpu);
5150 }
5151
5152 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5153 {
5154 unsigned long flags;
5155 struct amd_svm_iommu_ir *cur;
5156
5157 spin_lock_irqsave(&svm->ir_list_lock, flags);
5158 list_for_each_entry(cur, &svm->ir_list, node) {
5159 if (cur->data != pi->ir_data)
5160 continue;
5161 list_del(&cur->node);
5162 kfree(cur);
5163 break;
5164 }
5165 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5166 }
5167
5168 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5169 {
5170 int ret = 0;
5171 unsigned long flags;
5172 struct amd_svm_iommu_ir *ir;
5173
5174 /**
5175 * In some cases, the existing irte is updaed and re-set,
5176 * so we need to check here if it's already been * added
5177 * to the ir_list.
5178 */
5179 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5180 struct kvm *kvm = svm->vcpu.kvm;
5181 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5182 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5183 struct vcpu_svm *prev_svm;
5184
5185 if (!prev_vcpu) {
5186 ret = -EINVAL;
5187 goto out;
5188 }
5189
5190 prev_svm = to_svm(prev_vcpu);
5191 svm_ir_list_del(prev_svm, pi);
5192 }
5193
5194 /**
5195 * Allocating new amd_iommu_pi_data, which will get
5196 * add to the per-vcpu ir_list.
5197 */
5198 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5199 if (!ir) {
5200 ret = -ENOMEM;
5201 goto out;
5202 }
5203 ir->data = pi->ir_data;
5204
5205 spin_lock_irqsave(&svm->ir_list_lock, flags);
5206 list_add(&ir->node, &svm->ir_list);
5207 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5208 out:
5209 return ret;
5210 }
5211
5212 /**
5213 * Note:
5214 * The HW cannot support posting multicast/broadcast
5215 * interrupts to a vCPU. So, we still use legacy interrupt
5216 * remapping for these kind of interrupts.
5217 *
5218 * For lowest-priority interrupts, we only support
5219 * those with single CPU as the destination, e.g. user
5220 * configures the interrupts via /proc/irq or uses
5221 * irqbalance to make the interrupts single-CPU.
5222 */
5223 static int
5224 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5225 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5226 {
5227 struct kvm_lapic_irq irq;
5228 struct kvm_vcpu *vcpu = NULL;
5229
5230 kvm_set_msi_irq(kvm, e, &irq);
5231
5232 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5233 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5234 __func__, irq.vector);
5235 return -1;
5236 }
5237
5238 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5239 irq.vector);
5240 *svm = to_svm(vcpu);
5241 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5242 vcpu_info->vector = irq.vector;
5243
5244 return 0;
5245 }
5246
5247 /*
5248 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5249 *
5250 * @kvm: kvm
5251 * @host_irq: host irq of the interrupt
5252 * @guest_irq: gsi of the interrupt
5253 * @set: set or unset PI
5254 * returns 0 on success, < 0 on failure
5255 */
5256 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5257 uint32_t guest_irq, bool set)
5258 {
5259 struct kvm_kernel_irq_routing_entry *e;
5260 struct kvm_irq_routing_table *irq_rt;
5261 int idx, ret = -EINVAL;
5262
5263 if (!kvm_arch_has_assigned_device(kvm) ||
5264 !irq_remapping_cap(IRQ_POSTING_CAP))
5265 return 0;
5266
5267 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5268 __func__, host_irq, guest_irq, set);
5269
5270 idx = srcu_read_lock(&kvm->irq_srcu);
5271 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5272 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5273
5274 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5275 struct vcpu_data vcpu_info;
5276 struct vcpu_svm *svm = NULL;
5277
5278 if (e->type != KVM_IRQ_ROUTING_MSI)
5279 continue;
5280
5281 /**
5282 * Here, we setup with legacy mode in the following cases:
5283 * 1. When cannot target interrupt to a specific vcpu.
5284 * 2. Unsetting posted interrupt.
5285 * 3. APIC virtialization is disabled for the vcpu.
5286 */
5287 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5288 kvm_vcpu_apicv_active(&svm->vcpu)) {
5289 struct amd_iommu_pi_data pi;
5290
5291 /* Try to enable guest_mode in IRTE */
5292 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5293 AVIC_HPA_MASK);
5294 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5295 svm->vcpu.vcpu_id);
5296 pi.is_guest_mode = true;
5297 pi.vcpu_data = &vcpu_info;
5298 ret = irq_set_vcpu_affinity(host_irq, &pi);
5299
5300 /**
5301 * Here, we successfully setting up vcpu affinity in
5302 * IOMMU guest mode. Now, we need to store the posted
5303 * interrupt information in a per-vcpu ir_list so that
5304 * we can reference to them directly when we update vcpu
5305 * scheduling information in IOMMU irte.
5306 */
5307 if (!ret && pi.is_guest_mode)
5308 svm_ir_list_add(svm, &pi);
5309 } else {
5310 /* Use legacy mode in IRTE */
5311 struct amd_iommu_pi_data pi;
5312
5313 /**
5314 * Here, pi is used to:
5315 * - Tell IOMMU to use legacy mode for this interrupt.
5316 * - Retrieve ga_tag of prior interrupt remapping data.
5317 */
5318 pi.is_guest_mode = false;
5319 ret = irq_set_vcpu_affinity(host_irq, &pi);
5320
5321 /**
5322 * Check if the posted interrupt was previously
5323 * setup with the guest_mode by checking if the ga_tag
5324 * was cached. If so, we need to clean up the per-vcpu
5325 * ir_list.
5326 */
5327 if (!ret && pi.prev_ga_tag) {
5328 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5329 struct kvm_vcpu *vcpu;
5330
5331 vcpu = kvm_get_vcpu_by_id(kvm, id);
5332 if (vcpu)
5333 svm_ir_list_del(to_svm(vcpu), &pi);
5334 }
5335 }
5336
5337 if (!ret && svm) {
5338 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5339 e->gsi, vcpu_info.vector,
5340 vcpu_info.pi_desc_addr, set);
5341 }
5342
5343 if (ret < 0) {
5344 pr_err("%s: failed to update PI IRTE\n", __func__);
5345 goto out;
5346 }
5347 }
5348
5349 ret = 0;
5350 out:
5351 srcu_read_unlock(&kvm->irq_srcu, idx);
5352 return ret;
5353 }
5354
5355 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5356 {
5357 struct vcpu_svm *svm = to_svm(vcpu);
5358 struct vmcb *vmcb = svm->vmcb;
5359 int ret;
5360 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5361 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5362 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5363
5364 return ret;
5365 }
5366
5367 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5368 {
5369 struct vcpu_svm *svm = to_svm(vcpu);
5370
5371 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5372 }
5373
5374 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5375 {
5376 struct vcpu_svm *svm = to_svm(vcpu);
5377
5378 if (masked) {
5379 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5380 set_intercept(svm, INTERCEPT_IRET);
5381 } else {
5382 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5383 clr_intercept(svm, INTERCEPT_IRET);
5384 }
5385 }
5386
5387 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5388 {
5389 struct vcpu_svm *svm = to_svm(vcpu);
5390 struct vmcb *vmcb = svm->vmcb;
5391 int ret;
5392
5393 if (!gif_set(svm) ||
5394 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5395 return 0;
5396
5397 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5398
5399 if (is_guest_mode(vcpu))
5400 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5401
5402 return ret;
5403 }
5404
5405 static void enable_irq_window(struct kvm_vcpu *vcpu)
5406 {
5407 struct vcpu_svm *svm = to_svm(vcpu);
5408
5409 if (kvm_vcpu_apicv_active(vcpu))
5410 return;
5411
5412 /*
5413 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5414 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5415 * get that intercept, this function will be called again though and
5416 * we'll get the vintr intercept. However, if the vGIF feature is
5417 * enabled, the STGI interception will not occur. Enable the irq
5418 * window under the assumption that the hardware will set the GIF.
5419 */
5420 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5421 svm_set_vintr(svm);
5422 svm_inject_irq(svm, 0x0);
5423 }
5424 }
5425
5426 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5427 {
5428 struct vcpu_svm *svm = to_svm(vcpu);
5429
5430 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5431 == HF_NMI_MASK)
5432 return; /* IRET will cause a vm exit */
5433
5434 if (!gif_set(svm)) {
5435 if (vgif_enabled(svm))
5436 set_intercept(svm, INTERCEPT_STGI);
5437 return; /* STGI will cause a vm exit */
5438 }
5439
5440 if (svm->nested.exit_required)
5441 return; /* we're not going to run the guest yet */
5442
5443 /*
5444 * Something prevents NMI from been injected. Single step over possible
5445 * problem (IRET or exception injection or interrupt shadow)
5446 */
5447 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5448 svm->nmi_singlestep = true;
5449 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5450 }
5451
5452 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5453 {
5454 return 0;
5455 }
5456
5457 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5458 {
5459 return 0;
5460 }
5461
5462 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5463 {
5464 struct vcpu_svm *svm = to_svm(vcpu);
5465
5466 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5467 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5468 else
5469 svm->asid_generation--;
5470 }
5471
5472 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5473 {
5474 struct vcpu_svm *svm = to_svm(vcpu);
5475
5476 invlpga(gva, svm->vmcb->control.asid);
5477 }
5478
5479 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5480 {
5481 }
5482
5483 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5484 {
5485 struct vcpu_svm *svm = to_svm(vcpu);
5486
5487 if (svm_nested_virtualize_tpr(vcpu))
5488 return;
5489
5490 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5491 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5492 kvm_set_cr8(vcpu, cr8);
5493 }
5494 }
5495
5496 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5497 {
5498 struct vcpu_svm *svm = to_svm(vcpu);
5499 u64 cr8;
5500
5501 if (svm_nested_virtualize_tpr(vcpu) ||
5502 kvm_vcpu_apicv_active(vcpu))
5503 return;
5504
5505 cr8 = kvm_get_cr8(vcpu);
5506 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5507 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5508 }
5509
5510 static void svm_complete_interrupts(struct vcpu_svm *svm)
5511 {
5512 u8 vector;
5513 int type;
5514 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5515 unsigned int3_injected = svm->int3_injected;
5516
5517 svm->int3_injected = 0;
5518
5519 /*
5520 * If we've made progress since setting HF_IRET_MASK, we've
5521 * executed an IRET and can allow NMI injection.
5522 */
5523 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5524 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5525 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5526 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5527 }
5528
5529 svm->vcpu.arch.nmi_injected = false;
5530 kvm_clear_exception_queue(&svm->vcpu);
5531 kvm_clear_interrupt_queue(&svm->vcpu);
5532
5533 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5534 return;
5535
5536 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5537
5538 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5539 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5540
5541 switch (type) {
5542 case SVM_EXITINTINFO_TYPE_NMI:
5543 svm->vcpu.arch.nmi_injected = true;
5544 break;
5545 case SVM_EXITINTINFO_TYPE_EXEPT:
5546 /*
5547 * In case of software exceptions, do not reinject the vector,
5548 * but re-execute the instruction instead. Rewind RIP first
5549 * if we emulated INT3 before.
5550 */
5551 if (kvm_exception_is_soft(vector)) {
5552 if (vector == BP_VECTOR && int3_injected &&
5553 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5554 kvm_rip_write(&svm->vcpu,
5555 kvm_rip_read(&svm->vcpu) -
5556 int3_injected);
5557 break;
5558 }
5559 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5560 u32 err = svm->vmcb->control.exit_int_info_err;
5561 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5562
5563 } else
5564 kvm_requeue_exception(&svm->vcpu, vector);
5565 break;
5566 case SVM_EXITINTINFO_TYPE_INTR:
5567 kvm_queue_interrupt(&svm->vcpu, vector, false);
5568 break;
5569 default:
5570 break;
5571 }
5572 }
5573
5574 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5575 {
5576 struct vcpu_svm *svm = to_svm(vcpu);
5577 struct vmcb_control_area *control = &svm->vmcb->control;
5578
5579 control->exit_int_info = control->event_inj;
5580 control->exit_int_info_err = control->event_inj_err;
5581 control->event_inj = 0;
5582 svm_complete_interrupts(svm);
5583 }
5584
5585 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5586 {
5587 struct vcpu_svm *svm = to_svm(vcpu);
5588
5589 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5590 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5591 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5592
5593 /*
5594 * A vmexit emulation is required before the vcpu can be executed
5595 * again.
5596 */
5597 if (unlikely(svm->nested.exit_required))
5598 return;
5599
5600 /*
5601 * Disable singlestep if we're injecting an interrupt/exception.
5602 * We don't want our modified rflags to be pushed on the stack where
5603 * we might not be able to easily reset them if we disabled NMI
5604 * singlestep later.
5605 */
5606 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5607 /*
5608 * Event injection happens before external interrupts cause a
5609 * vmexit and interrupts are disabled here, so smp_send_reschedule
5610 * is enough to force an immediate vmexit.
5611 */
5612 disable_nmi_singlestep(svm);
5613 smp_send_reschedule(vcpu->cpu);
5614 }
5615
5616 pre_svm_run(svm);
5617
5618 sync_lapic_to_cr8(vcpu);
5619
5620 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5621
5622 clgi();
5623
5624 /*
5625 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5626 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5627 * is no need to worry about the conditional branch over the wrmsr
5628 * being speculatively taken.
5629 */
5630 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5631
5632 local_irq_enable();
5633
5634 asm volatile (
5635 "push %%" _ASM_BP "; \n\t"
5636 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5637 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5638 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5639 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5640 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5641 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5642 #ifdef CONFIG_X86_64
5643 "mov %c[r8](%[svm]), %%r8 \n\t"
5644 "mov %c[r9](%[svm]), %%r9 \n\t"
5645 "mov %c[r10](%[svm]), %%r10 \n\t"
5646 "mov %c[r11](%[svm]), %%r11 \n\t"
5647 "mov %c[r12](%[svm]), %%r12 \n\t"
5648 "mov %c[r13](%[svm]), %%r13 \n\t"
5649 "mov %c[r14](%[svm]), %%r14 \n\t"
5650 "mov %c[r15](%[svm]), %%r15 \n\t"
5651 #endif
5652
5653 /* Enter guest mode */
5654 "push %%" _ASM_AX " \n\t"
5655 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5656 __ex("vmload %%" _ASM_AX) "\n\t"
5657 __ex("vmrun %%" _ASM_AX) "\n\t"
5658 __ex("vmsave %%" _ASM_AX) "\n\t"
5659 "pop %%" _ASM_AX " \n\t"
5660
5661 /* Save guest registers, load host registers */
5662 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5663 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5664 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5665 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5666 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5667 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5668 #ifdef CONFIG_X86_64
5669 "mov %%r8, %c[r8](%[svm]) \n\t"
5670 "mov %%r9, %c[r9](%[svm]) \n\t"
5671 "mov %%r10, %c[r10](%[svm]) \n\t"
5672 "mov %%r11, %c[r11](%[svm]) \n\t"
5673 "mov %%r12, %c[r12](%[svm]) \n\t"
5674 "mov %%r13, %c[r13](%[svm]) \n\t"
5675 "mov %%r14, %c[r14](%[svm]) \n\t"
5676 "mov %%r15, %c[r15](%[svm]) \n\t"
5677 /*
5678 * Clear host registers marked as clobbered to prevent
5679 * speculative use.
5680 */
5681 "xor %%r8d, %%r8d \n\t"
5682 "xor %%r9d, %%r9d \n\t"
5683 "xor %%r10d, %%r10d \n\t"
5684 "xor %%r11d, %%r11d \n\t"
5685 "xor %%r12d, %%r12d \n\t"
5686 "xor %%r13d, %%r13d \n\t"
5687 "xor %%r14d, %%r14d \n\t"
5688 "xor %%r15d, %%r15d \n\t"
5689 #endif
5690 "xor %%ebx, %%ebx \n\t"
5691 "xor %%ecx, %%ecx \n\t"
5692 "xor %%edx, %%edx \n\t"
5693 "xor %%esi, %%esi \n\t"
5694 "xor %%edi, %%edi \n\t"
5695 "pop %%" _ASM_BP
5696 :
5697 : [svm]"a"(svm),
5698 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5699 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5700 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5701 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5702 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5703 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5704 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5705 #ifdef CONFIG_X86_64
5706 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5707 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5708 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5709 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5710 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5711 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5712 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5713 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5714 #endif
5715 : "cc", "memory"
5716 #ifdef CONFIG_X86_64
5717 , "rbx", "rcx", "rdx", "rsi", "rdi"
5718 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5719 #else
5720 , "ebx", "ecx", "edx", "esi", "edi"
5721 #endif
5722 );
5723
5724 /* Eliminate branch target predictions from guest mode */
5725 vmexit_fill_RSB();
5726
5727 #ifdef CONFIG_X86_64
5728 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5729 #else
5730 loadsegment(fs, svm->host.fs);
5731 #ifndef CONFIG_X86_32_LAZY_GS
5732 loadsegment(gs, svm->host.gs);
5733 #endif
5734 #endif
5735
5736 /*
5737 * We do not use IBRS in the kernel. If this vCPU has used the
5738 * SPEC_CTRL MSR it may have left it on; save the value and
5739 * turn it off. This is much more efficient than blindly adding
5740 * it to the atomic save/restore list. Especially as the former
5741 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5742 *
5743 * For non-nested case:
5744 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5745 * save it.
5746 *
5747 * For nested case:
5748 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5749 * save it.
5750 */
5751 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5752 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5753
5754 reload_tss(vcpu);
5755
5756 local_irq_disable();
5757
5758 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5759
5760 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5761 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5762 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5763 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5764
5765 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5766 kvm_before_interrupt(&svm->vcpu);
5767
5768 stgi();
5769
5770 /* Any pending NMI will happen here */
5771
5772 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5773 kvm_after_interrupt(&svm->vcpu);
5774
5775 sync_cr8_to_lapic(vcpu);
5776
5777 svm->next_rip = 0;
5778
5779 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5780
5781 /* if exit due to PF check for async PF */
5782 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5783 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5784
5785 if (npt_enabled) {
5786 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5787 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5788 }
5789
5790 /*
5791 * We need to handle MC intercepts here before the vcpu has a chance to
5792 * change the physical cpu
5793 */
5794 if (unlikely(svm->vmcb->control.exit_code ==
5795 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5796 svm_handle_mce(svm);
5797
5798 mark_all_clean(svm->vmcb);
5799 }
5800 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5801
5802 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5803 {
5804 struct vcpu_svm *svm = to_svm(vcpu);
5805
5806 svm->vmcb->save.cr3 = __sme_set(root);
5807 mark_dirty(svm->vmcb, VMCB_CR);
5808 }
5809
5810 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5811 {
5812 struct vcpu_svm *svm = to_svm(vcpu);
5813
5814 svm->vmcb->control.nested_cr3 = __sme_set(root);
5815 mark_dirty(svm->vmcb, VMCB_NPT);
5816
5817 /* Also sync guest cr3 here in case we live migrate */
5818 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5819 mark_dirty(svm->vmcb, VMCB_CR);
5820 }
5821
5822 static int is_disabled(void)
5823 {
5824 u64 vm_cr;
5825
5826 rdmsrl(MSR_VM_CR, vm_cr);
5827 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5828 return 1;
5829
5830 return 0;
5831 }
5832
5833 static void
5834 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5835 {
5836 /*
5837 * Patch in the VMMCALL instruction:
5838 */
5839 hypercall[0] = 0x0f;
5840 hypercall[1] = 0x01;
5841 hypercall[2] = 0xd9;
5842 }
5843
5844 static void svm_check_processor_compat(void *rtn)
5845 {
5846 *(int *)rtn = 0;
5847 }
5848
5849 static bool svm_cpu_has_accelerated_tpr(void)
5850 {
5851 return false;
5852 }
5853
5854 static bool svm_has_emulated_msr(int index)
5855 {
5856 switch (index) {
5857 case MSR_IA32_MCG_EXT_CTL:
5858 return false;
5859 default:
5860 break;
5861 }
5862
5863 return true;
5864 }
5865
5866 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5867 {
5868 return 0;
5869 }
5870
5871 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5872 {
5873 struct vcpu_svm *svm = to_svm(vcpu);
5874
5875 /* Update nrips enabled cache */
5876 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5877
5878 if (!kvm_vcpu_apicv_active(vcpu))
5879 return;
5880
5881 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5882 }
5883
5884 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5885 {
5886 switch (func) {
5887 case 0x1:
5888 if (avic)
5889 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5890 break;
5891 case 0x80000001:
5892 if (nested)
5893 entry->ecx |= (1 << 2); /* Set SVM bit */
5894 break;
5895 case 0x8000000A:
5896 entry->eax = 1; /* SVM revision 1 */
5897 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5898 ASID emulation to nested SVM */
5899 entry->ecx = 0; /* Reserved */
5900 entry->edx = 0; /* Per default do not support any
5901 additional features */
5902
5903 /* Support next_rip if host supports it */
5904 if (boot_cpu_has(X86_FEATURE_NRIPS))
5905 entry->edx |= SVM_FEATURE_NRIP;
5906
5907 /* Support NPT for the guest if enabled */
5908 if (npt_enabled)
5909 entry->edx |= SVM_FEATURE_NPT;
5910
5911 break;
5912 case 0x8000001F:
5913 /* Support memory encryption cpuid if host supports it */
5914 if (boot_cpu_has(X86_FEATURE_SEV))
5915 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5916 &entry->ecx, &entry->edx);
5917
5918 }
5919 }
5920
5921 static int svm_get_lpage_level(void)
5922 {
5923 return PT_PDPE_LEVEL;
5924 }
5925
5926 static bool svm_rdtscp_supported(void)
5927 {
5928 return boot_cpu_has(X86_FEATURE_RDTSCP);
5929 }
5930
5931 static bool svm_invpcid_supported(void)
5932 {
5933 return false;
5934 }
5935
5936 static bool svm_mpx_supported(void)
5937 {
5938 return false;
5939 }
5940
5941 static bool svm_xsaves_supported(void)
5942 {
5943 return false;
5944 }
5945
5946 static bool svm_umip_emulated(void)
5947 {
5948 return false;
5949 }
5950
5951 static bool svm_pt_supported(void)
5952 {
5953 return false;
5954 }
5955
5956 static bool svm_has_wbinvd_exit(void)
5957 {
5958 return true;
5959 }
5960
5961 #define PRE_EX(exit) { .exit_code = (exit), \
5962 .stage = X86_ICPT_PRE_EXCEPT, }
5963 #define POST_EX(exit) { .exit_code = (exit), \
5964 .stage = X86_ICPT_POST_EXCEPT, }
5965 #define POST_MEM(exit) { .exit_code = (exit), \
5966 .stage = X86_ICPT_POST_MEMACCESS, }
5967
5968 static const struct __x86_intercept {
5969 u32 exit_code;
5970 enum x86_intercept_stage stage;
5971 } x86_intercept_map[] = {
5972 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5973 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5974 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5975 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5976 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5977 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5978 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5979 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5980 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5981 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5982 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5983 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5984 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5985 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5986 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5987 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5988 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5989 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5990 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5991 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5992 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5993 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5994 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5995 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5996 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5997 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5998 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5999 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6000 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6001 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6002 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6003 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6004 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6005 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6006 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6007 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6008 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6009 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6010 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6011 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6012 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6013 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6014 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6015 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6016 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6017 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6018 };
6019
6020 #undef PRE_EX
6021 #undef POST_EX
6022 #undef POST_MEM
6023
6024 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6025 struct x86_instruction_info *info,
6026 enum x86_intercept_stage stage)
6027 {
6028 struct vcpu_svm *svm = to_svm(vcpu);
6029 int vmexit, ret = X86EMUL_CONTINUE;
6030 struct __x86_intercept icpt_info;
6031 struct vmcb *vmcb = svm->vmcb;
6032
6033 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6034 goto out;
6035
6036 icpt_info = x86_intercept_map[info->intercept];
6037
6038 if (stage != icpt_info.stage)
6039 goto out;
6040
6041 switch (icpt_info.exit_code) {
6042 case SVM_EXIT_READ_CR0:
6043 if (info->intercept == x86_intercept_cr_read)
6044 icpt_info.exit_code += info->modrm_reg;
6045 break;
6046 case SVM_EXIT_WRITE_CR0: {
6047 unsigned long cr0, val;
6048 u64 intercept;
6049
6050 if (info->intercept == x86_intercept_cr_write)
6051 icpt_info.exit_code += info->modrm_reg;
6052
6053 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6054 info->intercept == x86_intercept_clts)
6055 break;
6056
6057 intercept = svm->nested.intercept;
6058
6059 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6060 break;
6061
6062 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6063 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6064
6065 if (info->intercept == x86_intercept_lmsw) {
6066 cr0 &= 0xfUL;
6067 val &= 0xfUL;
6068 /* lmsw can't clear PE - catch this here */
6069 if (cr0 & X86_CR0_PE)
6070 val |= X86_CR0_PE;
6071 }
6072
6073 if (cr0 ^ val)
6074 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6075
6076 break;
6077 }
6078 case SVM_EXIT_READ_DR0:
6079 case SVM_EXIT_WRITE_DR0:
6080 icpt_info.exit_code += info->modrm_reg;
6081 break;
6082 case SVM_EXIT_MSR:
6083 if (info->intercept == x86_intercept_wrmsr)
6084 vmcb->control.exit_info_1 = 1;
6085 else
6086 vmcb->control.exit_info_1 = 0;
6087 break;
6088 case SVM_EXIT_PAUSE:
6089 /*
6090 * We get this for NOP only, but pause
6091 * is rep not, check this here
6092 */
6093 if (info->rep_prefix != REPE_PREFIX)
6094 goto out;
6095 break;
6096 case SVM_EXIT_IOIO: {
6097 u64 exit_info;
6098 u32 bytes;
6099
6100 if (info->intercept == x86_intercept_in ||
6101 info->intercept == x86_intercept_ins) {
6102 exit_info = ((info->src_val & 0xffff) << 16) |
6103 SVM_IOIO_TYPE_MASK;
6104 bytes = info->dst_bytes;
6105 } else {
6106 exit_info = (info->dst_val & 0xffff) << 16;
6107 bytes = info->src_bytes;
6108 }
6109
6110 if (info->intercept == x86_intercept_outs ||
6111 info->intercept == x86_intercept_ins)
6112 exit_info |= SVM_IOIO_STR_MASK;
6113
6114 if (info->rep_prefix)
6115 exit_info |= SVM_IOIO_REP_MASK;
6116
6117 bytes = min(bytes, 4u);
6118
6119 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6120
6121 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6122
6123 vmcb->control.exit_info_1 = exit_info;
6124 vmcb->control.exit_info_2 = info->next_rip;
6125
6126 break;
6127 }
6128 default:
6129 break;
6130 }
6131
6132 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6133 if (static_cpu_has(X86_FEATURE_NRIPS))
6134 vmcb->control.next_rip = info->next_rip;
6135 vmcb->control.exit_code = icpt_info.exit_code;
6136 vmexit = nested_svm_exit_handled(svm);
6137
6138 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6139 : X86EMUL_CONTINUE;
6140
6141 out:
6142 return ret;
6143 }
6144
6145 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6146 {
6147 local_irq_enable();
6148 /*
6149 * We must have an instruction with interrupts enabled, so
6150 * the timer interrupt isn't delayed by the interrupt shadow.
6151 */
6152 asm("nop");
6153 local_irq_disable();
6154 }
6155
6156 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6157 {
6158 if (pause_filter_thresh)
6159 shrink_ple_window(vcpu);
6160 }
6161
6162 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6163 {
6164 if (avic_handle_apic_id_update(vcpu) != 0)
6165 return;
6166 if (avic_handle_dfr_update(vcpu) != 0)
6167 return;
6168 avic_handle_ldr_update(vcpu);
6169 }
6170
6171 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6172 {
6173 /* [63:9] are reserved. */
6174 vcpu->arch.mcg_cap &= 0x1ff;
6175 }
6176
6177 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6178 {
6179 struct vcpu_svm *svm = to_svm(vcpu);
6180
6181 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6182 if (!gif_set(svm))
6183 return 0;
6184
6185 if (is_guest_mode(&svm->vcpu) &&
6186 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6187 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6188 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6189 svm->nested.exit_required = true;
6190 return 0;
6191 }
6192
6193 return 1;
6194 }
6195
6196 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6197 {
6198 struct vcpu_svm *svm = to_svm(vcpu);
6199 int ret;
6200
6201 if (is_guest_mode(vcpu)) {
6202 /* FED8h - SVM Guest */
6203 put_smstate(u64, smstate, 0x7ed8, 1);
6204 /* FEE0h - SVM Guest VMCB Physical Address */
6205 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6206
6207 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6208 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6209 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6210
6211 ret = nested_svm_vmexit(svm);
6212 if (ret)
6213 return ret;
6214 }
6215 return 0;
6216 }
6217
6218 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6219 {
6220 struct vcpu_svm *svm = to_svm(vcpu);
6221 struct vmcb *nested_vmcb;
6222 struct page *page;
6223 struct {
6224 u64 guest;
6225 u64 vmcb;
6226 } svm_state_save;
6227 int ret;
6228
6229 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6230 sizeof(svm_state_save));
6231 if (ret)
6232 return ret;
6233
6234 if (svm_state_save.guest) {
6235 vcpu->arch.hflags &= ~HF_SMM_MASK;
6236 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6237 if (nested_vmcb)
6238 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6239 else
6240 ret = 1;
6241 vcpu->arch.hflags |= HF_SMM_MASK;
6242 }
6243 return ret;
6244 }
6245
6246 static int enable_smi_window(struct kvm_vcpu *vcpu)
6247 {
6248 struct vcpu_svm *svm = to_svm(vcpu);
6249
6250 if (!gif_set(svm)) {
6251 if (vgif_enabled(svm))
6252 set_intercept(svm, INTERCEPT_STGI);
6253 /* STGI will cause a vm exit */
6254 return 1;
6255 }
6256 return 0;
6257 }
6258
6259 static int sev_asid_new(void)
6260 {
6261 int pos;
6262
6263 /*
6264 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6265 */
6266 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6267 if (pos >= max_sev_asid)
6268 return -EBUSY;
6269
6270 set_bit(pos, sev_asid_bitmap);
6271 return pos + 1;
6272 }
6273
6274 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6275 {
6276 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6277 int asid, ret;
6278
6279 ret = -EBUSY;
6280 if (unlikely(sev->active))
6281 return ret;
6282
6283 asid = sev_asid_new();
6284 if (asid < 0)
6285 return ret;
6286
6287 ret = sev_platform_init(&argp->error);
6288 if (ret)
6289 goto e_free;
6290
6291 sev->active = true;
6292 sev->asid = asid;
6293 INIT_LIST_HEAD(&sev->regions_list);
6294
6295 return 0;
6296
6297 e_free:
6298 __sev_asid_free(asid);
6299 return ret;
6300 }
6301
6302 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6303 {
6304 struct sev_data_activate *data;
6305 int asid = sev_get_asid(kvm);
6306 int ret;
6307
6308 wbinvd_on_all_cpus();
6309
6310 ret = sev_guest_df_flush(error);
6311 if (ret)
6312 return ret;
6313
6314 data = kzalloc(sizeof(*data), GFP_KERNEL);
6315 if (!data)
6316 return -ENOMEM;
6317
6318 /* activate ASID on the given handle */
6319 data->handle = handle;
6320 data->asid = asid;
6321 ret = sev_guest_activate(data, error);
6322 kfree(data);
6323
6324 return ret;
6325 }
6326
6327 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6328 {
6329 struct fd f;
6330 int ret;
6331
6332 f = fdget(fd);
6333 if (!f.file)
6334 return -EBADF;
6335
6336 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6337
6338 fdput(f);
6339 return ret;
6340 }
6341
6342 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6343 {
6344 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6345
6346 return __sev_issue_cmd(sev->fd, id, data, error);
6347 }
6348
6349 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6350 {
6351 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6352 struct sev_data_launch_start *start;
6353 struct kvm_sev_launch_start params;
6354 void *dh_blob, *session_blob;
6355 int *error = &argp->error;
6356 int ret;
6357
6358 if (!sev_guest(kvm))
6359 return -ENOTTY;
6360
6361 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6362 return -EFAULT;
6363
6364 start = kzalloc(sizeof(*start), GFP_KERNEL);
6365 if (!start)
6366 return -ENOMEM;
6367
6368 dh_blob = NULL;
6369 if (params.dh_uaddr) {
6370 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6371 if (IS_ERR(dh_blob)) {
6372 ret = PTR_ERR(dh_blob);
6373 goto e_free;
6374 }
6375
6376 start->dh_cert_address = __sme_set(__pa(dh_blob));
6377 start->dh_cert_len = params.dh_len;
6378 }
6379
6380 session_blob = NULL;
6381 if (params.session_uaddr) {
6382 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6383 if (IS_ERR(session_blob)) {
6384 ret = PTR_ERR(session_blob);
6385 goto e_free_dh;
6386 }
6387
6388 start->session_address = __sme_set(__pa(session_blob));
6389 start->session_len = params.session_len;
6390 }
6391
6392 start->handle = params.handle;
6393 start->policy = params.policy;
6394
6395 /* create memory encryption context */
6396 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6397 if (ret)
6398 goto e_free_session;
6399
6400 /* Bind ASID to this guest */
6401 ret = sev_bind_asid(kvm, start->handle, error);
6402 if (ret)
6403 goto e_free_session;
6404
6405 /* return handle to userspace */
6406 params.handle = start->handle;
6407 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6408 sev_unbind_asid(kvm, start->handle);
6409 ret = -EFAULT;
6410 goto e_free_session;
6411 }
6412
6413 sev->handle = start->handle;
6414 sev->fd = argp->sev_fd;
6415
6416 e_free_session:
6417 kfree(session_blob);
6418 e_free_dh:
6419 kfree(dh_blob);
6420 e_free:
6421 kfree(start);
6422 return ret;
6423 }
6424
6425 static int get_num_contig_pages(int idx, struct page **inpages,
6426 unsigned long npages)
6427 {
6428 unsigned long paddr, next_paddr;
6429 int i = idx + 1, pages = 1;
6430
6431 /* find the number of contiguous pages starting from idx */
6432 paddr = __sme_page_pa(inpages[idx]);
6433 while (i < npages) {
6434 next_paddr = __sme_page_pa(inpages[i++]);
6435 if ((paddr + PAGE_SIZE) == next_paddr) {
6436 pages++;
6437 paddr = next_paddr;
6438 continue;
6439 }
6440 break;
6441 }
6442
6443 return pages;
6444 }
6445
6446 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6447 {
6448 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6449 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6450 struct kvm_sev_launch_update_data params;
6451 struct sev_data_launch_update_data *data;
6452 struct page **inpages;
6453 int i, ret, pages;
6454
6455 if (!sev_guest(kvm))
6456 return -ENOTTY;
6457
6458 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6459 return -EFAULT;
6460
6461 data = kzalloc(sizeof(*data), GFP_KERNEL);
6462 if (!data)
6463 return -ENOMEM;
6464
6465 vaddr = params.uaddr;
6466 size = params.len;
6467 vaddr_end = vaddr + size;
6468
6469 /* Lock the user memory. */
6470 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6471 if (!inpages) {
6472 ret = -ENOMEM;
6473 goto e_free;
6474 }
6475
6476 /*
6477 * The LAUNCH_UPDATE command will perform in-place encryption of the
6478 * memory content (i.e it will write the same memory region with C=1).
6479 * It's possible that the cache may contain the data with C=0, i.e.,
6480 * unencrypted so invalidate it first.
6481 */
6482 sev_clflush_pages(inpages, npages);
6483
6484 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6485 int offset, len;
6486
6487 /*
6488 * If the user buffer is not page-aligned, calculate the offset
6489 * within the page.
6490 */
6491 offset = vaddr & (PAGE_SIZE - 1);
6492
6493 /* Calculate the number of pages that can be encrypted in one go. */
6494 pages = get_num_contig_pages(i, inpages, npages);
6495
6496 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6497
6498 data->handle = sev->handle;
6499 data->len = len;
6500 data->address = __sme_page_pa(inpages[i]) + offset;
6501 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6502 if (ret)
6503 goto e_unpin;
6504
6505 size -= len;
6506 next_vaddr = vaddr + len;
6507 }
6508
6509 e_unpin:
6510 /* content of memory is updated, mark pages dirty */
6511 for (i = 0; i < npages; i++) {
6512 set_page_dirty_lock(inpages[i]);
6513 mark_page_accessed(inpages[i]);
6514 }
6515 /* unlock the user pages */
6516 sev_unpin_memory(kvm, inpages, npages);
6517 e_free:
6518 kfree(data);
6519 return ret;
6520 }
6521
6522 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6523 {
6524 void __user *measure = (void __user *)(uintptr_t)argp->data;
6525 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6526 struct sev_data_launch_measure *data;
6527 struct kvm_sev_launch_measure params;
6528 void __user *p = NULL;
6529 void *blob = NULL;
6530 int ret;
6531
6532 if (!sev_guest(kvm))
6533 return -ENOTTY;
6534
6535 if (copy_from_user(&params, measure, sizeof(params)))
6536 return -EFAULT;
6537
6538 data = kzalloc(sizeof(*data), GFP_KERNEL);
6539 if (!data)
6540 return -ENOMEM;
6541
6542 /* User wants to query the blob length */
6543 if (!params.len)
6544 goto cmd;
6545
6546 p = (void __user *)(uintptr_t)params.uaddr;
6547 if (p) {
6548 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6549 ret = -EINVAL;
6550 goto e_free;
6551 }
6552
6553 ret = -ENOMEM;
6554 blob = kmalloc(params.len, GFP_KERNEL);
6555 if (!blob)
6556 goto e_free;
6557
6558 data->address = __psp_pa(blob);
6559 data->len = params.len;
6560 }
6561
6562 cmd:
6563 data->handle = sev->handle;
6564 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6565
6566 /*
6567 * If we query the session length, FW responded with expected data.
6568 */
6569 if (!params.len)
6570 goto done;
6571
6572 if (ret)
6573 goto e_free_blob;
6574
6575 if (blob) {
6576 if (copy_to_user(p, blob, params.len))
6577 ret = -EFAULT;
6578 }
6579
6580 done:
6581 params.len = data->len;
6582 if (copy_to_user(measure, &params, sizeof(params)))
6583 ret = -EFAULT;
6584 e_free_blob:
6585 kfree(blob);
6586 e_free:
6587 kfree(data);
6588 return ret;
6589 }
6590
6591 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6592 {
6593 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6594 struct sev_data_launch_finish *data;
6595 int ret;
6596
6597 if (!sev_guest(kvm))
6598 return -ENOTTY;
6599
6600 data = kzalloc(sizeof(*data), GFP_KERNEL);
6601 if (!data)
6602 return -ENOMEM;
6603
6604 data->handle = sev->handle;
6605 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6606
6607 kfree(data);
6608 return ret;
6609 }
6610
6611 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6612 {
6613 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6614 struct kvm_sev_guest_status params;
6615 struct sev_data_guest_status *data;
6616 int ret;
6617
6618 if (!sev_guest(kvm))
6619 return -ENOTTY;
6620
6621 data = kzalloc(sizeof(*data), GFP_KERNEL);
6622 if (!data)
6623 return -ENOMEM;
6624
6625 data->handle = sev->handle;
6626 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6627 if (ret)
6628 goto e_free;
6629
6630 params.policy = data->policy;
6631 params.state = data->state;
6632 params.handle = data->handle;
6633
6634 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6635 ret = -EFAULT;
6636 e_free:
6637 kfree(data);
6638 return ret;
6639 }
6640
6641 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6642 unsigned long dst, int size,
6643 int *error, bool enc)
6644 {
6645 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6646 struct sev_data_dbg *data;
6647 int ret;
6648
6649 data = kzalloc(sizeof(*data), GFP_KERNEL);
6650 if (!data)
6651 return -ENOMEM;
6652
6653 data->handle = sev->handle;
6654 data->dst_addr = dst;
6655 data->src_addr = src;
6656 data->len = size;
6657
6658 ret = sev_issue_cmd(kvm,
6659 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6660 data, error);
6661 kfree(data);
6662 return ret;
6663 }
6664
6665 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6666 unsigned long dst_paddr, int sz, int *err)
6667 {
6668 int offset;
6669
6670 /*
6671 * Its safe to read more than we are asked, caller should ensure that
6672 * destination has enough space.
6673 */
6674 src_paddr = round_down(src_paddr, 16);
6675 offset = src_paddr & 15;
6676 sz = round_up(sz + offset, 16);
6677
6678 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6679 }
6680
6681 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6682 unsigned long __user dst_uaddr,
6683 unsigned long dst_paddr,
6684 int size, int *err)
6685 {
6686 struct page *tpage = NULL;
6687 int ret, offset;
6688
6689 /* if inputs are not 16-byte then use intermediate buffer */
6690 if (!IS_ALIGNED(dst_paddr, 16) ||
6691 !IS_ALIGNED(paddr, 16) ||
6692 !IS_ALIGNED(size, 16)) {
6693 tpage = (void *)alloc_page(GFP_KERNEL);
6694 if (!tpage)
6695 return -ENOMEM;
6696
6697 dst_paddr = __sme_page_pa(tpage);
6698 }
6699
6700 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6701 if (ret)
6702 goto e_free;
6703
6704 if (tpage) {
6705 offset = paddr & 15;
6706 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6707 page_address(tpage) + offset, size))
6708 ret = -EFAULT;
6709 }
6710
6711 e_free:
6712 if (tpage)
6713 __free_page(tpage);
6714
6715 return ret;
6716 }
6717
6718 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6719 unsigned long __user vaddr,
6720 unsigned long dst_paddr,
6721 unsigned long __user dst_vaddr,
6722 int size, int *error)
6723 {
6724 struct page *src_tpage = NULL;
6725 struct page *dst_tpage = NULL;
6726 int ret, len = size;
6727
6728 /* If source buffer is not aligned then use an intermediate buffer */
6729 if (!IS_ALIGNED(vaddr, 16)) {
6730 src_tpage = alloc_page(GFP_KERNEL);
6731 if (!src_tpage)
6732 return -ENOMEM;
6733
6734 if (copy_from_user(page_address(src_tpage),
6735 (void __user *)(uintptr_t)vaddr, size)) {
6736 __free_page(src_tpage);
6737 return -EFAULT;
6738 }
6739
6740 paddr = __sme_page_pa(src_tpage);
6741 }
6742
6743 /*
6744 * If destination buffer or length is not aligned then do read-modify-write:
6745 * - decrypt destination in an intermediate buffer
6746 * - copy the source buffer in an intermediate buffer
6747 * - use the intermediate buffer as source buffer
6748 */
6749 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6750 int dst_offset;
6751
6752 dst_tpage = alloc_page(GFP_KERNEL);
6753 if (!dst_tpage) {
6754 ret = -ENOMEM;
6755 goto e_free;
6756 }
6757
6758 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6759 __sme_page_pa(dst_tpage), size, error);
6760 if (ret)
6761 goto e_free;
6762
6763 /*
6764 * If source is kernel buffer then use memcpy() otherwise
6765 * copy_from_user().
6766 */
6767 dst_offset = dst_paddr & 15;
6768
6769 if (src_tpage)
6770 memcpy(page_address(dst_tpage) + dst_offset,
6771 page_address(src_tpage), size);
6772 else {
6773 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6774 (void __user *)(uintptr_t)vaddr, size)) {
6775 ret = -EFAULT;
6776 goto e_free;
6777 }
6778 }
6779
6780 paddr = __sme_page_pa(dst_tpage);
6781 dst_paddr = round_down(dst_paddr, 16);
6782 len = round_up(size, 16);
6783 }
6784
6785 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6786
6787 e_free:
6788 if (src_tpage)
6789 __free_page(src_tpage);
6790 if (dst_tpage)
6791 __free_page(dst_tpage);
6792 return ret;
6793 }
6794
6795 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6796 {
6797 unsigned long vaddr, vaddr_end, next_vaddr;
6798 unsigned long dst_vaddr;
6799 struct page **src_p, **dst_p;
6800 struct kvm_sev_dbg debug;
6801 unsigned long n;
6802 int ret, size;
6803
6804 if (!sev_guest(kvm))
6805 return -ENOTTY;
6806
6807 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6808 return -EFAULT;
6809
6810 vaddr = debug.src_uaddr;
6811 size = debug.len;
6812 vaddr_end = vaddr + size;
6813 dst_vaddr = debug.dst_uaddr;
6814
6815 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6816 int len, s_off, d_off;
6817
6818 /* lock userspace source and destination page */
6819 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6820 if (!src_p)
6821 return -EFAULT;
6822
6823 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6824 if (!dst_p) {
6825 sev_unpin_memory(kvm, src_p, n);
6826 return -EFAULT;
6827 }
6828
6829 /*
6830 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6831 * memory content (i.e it will write the same memory region with C=1).
6832 * It's possible that the cache may contain the data with C=0, i.e.,
6833 * unencrypted so invalidate it first.
6834 */
6835 sev_clflush_pages(src_p, 1);
6836 sev_clflush_pages(dst_p, 1);
6837
6838 /*
6839 * Since user buffer may not be page aligned, calculate the
6840 * offset within the page.
6841 */
6842 s_off = vaddr & ~PAGE_MASK;
6843 d_off = dst_vaddr & ~PAGE_MASK;
6844 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6845
6846 if (dec)
6847 ret = __sev_dbg_decrypt_user(kvm,
6848 __sme_page_pa(src_p[0]) + s_off,
6849 dst_vaddr,
6850 __sme_page_pa(dst_p[0]) + d_off,
6851 len, &argp->error);
6852 else
6853 ret = __sev_dbg_encrypt_user(kvm,
6854 __sme_page_pa(src_p[0]) + s_off,
6855 vaddr,
6856 __sme_page_pa(dst_p[0]) + d_off,
6857 dst_vaddr,
6858 len, &argp->error);
6859
6860 sev_unpin_memory(kvm, src_p, 1);
6861 sev_unpin_memory(kvm, dst_p, 1);
6862
6863 if (ret)
6864 goto err;
6865
6866 next_vaddr = vaddr + len;
6867 dst_vaddr = dst_vaddr + len;
6868 size -= len;
6869 }
6870 err:
6871 return ret;
6872 }
6873
6874 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6875 {
6876 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6877 struct sev_data_launch_secret *data;
6878 struct kvm_sev_launch_secret params;
6879 struct page **pages;
6880 void *blob, *hdr;
6881 unsigned long n;
6882 int ret, offset;
6883
6884 if (!sev_guest(kvm))
6885 return -ENOTTY;
6886
6887 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6888 return -EFAULT;
6889
6890 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6891 if (!pages)
6892 return -ENOMEM;
6893
6894 /*
6895 * The secret must be copied into contiguous memory region, lets verify
6896 * that userspace memory pages are contiguous before we issue command.
6897 */
6898 if (get_num_contig_pages(0, pages, n) != n) {
6899 ret = -EINVAL;
6900 goto e_unpin_memory;
6901 }
6902
6903 ret = -ENOMEM;
6904 data = kzalloc(sizeof(*data), GFP_KERNEL);
6905 if (!data)
6906 goto e_unpin_memory;
6907
6908 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6909 data->guest_address = __sme_page_pa(pages[0]) + offset;
6910 data->guest_len = params.guest_len;
6911
6912 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6913 if (IS_ERR(blob)) {
6914 ret = PTR_ERR(blob);
6915 goto e_free;
6916 }
6917
6918 data->trans_address = __psp_pa(blob);
6919 data->trans_len = params.trans_len;
6920
6921 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6922 if (IS_ERR(hdr)) {
6923 ret = PTR_ERR(hdr);
6924 goto e_free_blob;
6925 }
6926 data->hdr_address = __psp_pa(hdr);
6927 data->hdr_len = params.hdr_len;
6928
6929 data->handle = sev->handle;
6930 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6931
6932 kfree(hdr);
6933
6934 e_free_blob:
6935 kfree(blob);
6936 e_free:
6937 kfree(data);
6938 e_unpin_memory:
6939 sev_unpin_memory(kvm, pages, n);
6940 return ret;
6941 }
6942
6943 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6944 {
6945 struct kvm_sev_cmd sev_cmd;
6946 int r;
6947
6948 if (!svm_sev_enabled())
6949 return -ENOTTY;
6950
6951 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6952 return -EFAULT;
6953
6954 mutex_lock(&kvm->lock);
6955
6956 switch (sev_cmd.id) {
6957 case KVM_SEV_INIT:
6958 r = sev_guest_init(kvm, &sev_cmd);
6959 break;
6960 case KVM_SEV_LAUNCH_START:
6961 r = sev_launch_start(kvm, &sev_cmd);
6962 break;
6963 case KVM_SEV_LAUNCH_UPDATE_DATA:
6964 r = sev_launch_update_data(kvm, &sev_cmd);
6965 break;
6966 case KVM_SEV_LAUNCH_MEASURE:
6967 r = sev_launch_measure(kvm, &sev_cmd);
6968 break;
6969 case KVM_SEV_LAUNCH_FINISH:
6970 r = sev_launch_finish(kvm, &sev_cmd);
6971 break;
6972 case KVM_SEV_GUEST_STATUS:
6973 r = sev_guest_status(kvm, &sev_cmd);
6974 break;
6975 case KVM_SEV_DBG_DECRYPT:
6976 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6977 break;
6978 case KVM_SEV_DBG_ENCRYPT:
6979 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6980 break;
6981 case KVM_SEV_LAUNCH_SECRET:
6982 r = sev_launch_secret(kvm, &sev_cmd);
6983 break;
6984 default:
6985 r = -EINVAL;
6986 goto out;
6987 }
6988
6989 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6990 r = -EFAULT;
6991
6992 out:
6993 mutex_unlock(&kvm->lock);
6994 return r;
6995 }
6996
6997 static int svm_register_enc_region(struct kvm *kvm,
6998 struct kvm_enc_region *range)
6999 {
7000 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7001 struct enc_region *region;
7002 int ret = 0;
7003
7004 if (!sev_guest(kvm))
7005 return -ENOTTY;
7006
7007 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7008 return -EINVAL;
7009
7010 region = kzalloc(sizeof(*region), GFP_KERNEL);
7011 if (!region)
7012 return -ENOMEM;
7013
7014 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7015 if (!region->pages) {
7016 ret = -ENOMEM;
7017 goto e_free;
7018 }
7019
7020 /*
7021 * The guest may change the memory encryption attribute from C=0 -> C=1
7022 * or vice versa for this memory range. Lets make sure caches are
7023 * flushed to ensure that guest data gets written into memory with
7024 * correct C-bit.
7025 */
7026 sev_clflush_pages(region->pages, region->npages);
7027
7028 region->uaddr = range->addr;
7029 region->size = range->size;
7030
7031 mutex_lock(&kvm->lock);
7032 list_add_tail(&region->list, &sev->regions_list);
7033 mutex_unlock(&kvm->lock);
7034
7035 return ret;
7036
7037 e_free:
7038 kfree(region);
7039 return ret;
7040 }
7041
7042 static struct enc_region *
7043 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7044 {
7045 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7046 struct list_head *head = &sev->regions_list;
7047 struct enc_region *i;
7048
7049 list_for_each_entry(i, head, list) {
7050 if (i->uaddr == range->addr &&
7051 i->size == range->size)
7052 return i;
7053 }
7054
7055 return NULL;
7056 }
7057
7058
7059 static int svm_unregister_enc_region(struct kvm *kvm,
7060 struct kvm_enc_region *range)
7061 {
7062 struct enc_region *region;
7063 int ret;
7064
7065 mutex_lock(&kvm->lock);
7066
7067 if (!sev_guest(kvm)) {
7068 ret = -ENOTTY;
7069 goto failed;
7070 }
7071
7072 region = find_enc_region(kvm, range);
7073 if (!region) {
7074 ret = -EINVAL;
7075 goto failed;
7076 }
7077
7078 __unregister_enc_region_locked(kvm, region);
7079
7080 mutex_unlock(&kvm->lock);
7081 return 0;
7082
7083 failed:
7084 mutex_unlock(&kvm->lock);
7085 return ret;
7086 }
7087
7088 static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
7089 {
7090 /* Not supported */
7091 return 0;
7092 }
7093
7094 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7095 uint16_t *vmcs_version)
7096 {
7097 /* Intel-only feature */
7098 return -ENODEV;
7099 }
7100
7101 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7102 .cpu_has_kvm_support = has_svm,
7103 .disabled_by_bios = is_disabled,
7104 .hardware_setup = svm_hardware_setup,
7105 .hardware_unsetup = svm_hardware_unsetup,
7106 .check_processor_compatibility = svm_check_processor_compat,
7107 .hardware_enable = svm_hardware_enable,
7108 .hardware_disable = svm_hardware_disable,
7109 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7110 .has_emulated_msr = svm_has_emulated_msr,
7111
7112 .vcpu_create = svm_create_vcpu,
7113 .vcpu_free = svm_free_vcpu,
7114 .vcpu_reset = svm_vcpu_reset,
7115
7116 .vm_alloc = svm_vm_alloc,
7117 .vm_free = svm_vm_free,
7118 .vm_init = avic_vm_init,
7119 .vm_destroy = svm_vm_destroy,
7120
7121 .prepare_guest_switch = svm_prepare_guest_switch,
7122 .vcpu_load = svm_vcpu_load,
7123 .vcpu_put = svm_vcpu_put,
7124 .vcpu_blocking = svm_vcpu_blocking,
7125 .vcpu_unblocking = svm_vcpu_unblocking,
7126
7127 .update_bp_intercept = update_bp_intercept,
7128 .get_msr_feature = svm_get_msr_feature,
7129 .get_msr = svm_get_msr,
7130 .set_msr = svm_set_msr,
7131 .get_segment_base = svm_get_segment_base,
7132 .get_segment = svm_get_segment,
7133 .set_segment = svm_set_segment,
7134 .get_cpl = svm_get_cpl,
7135 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7136 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7137 .decache_cr3 = svm_decache_cr3,
7138 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7139 .set_cr0 = svm_set_cr0,
7140 .set_cr3 = svm_set_cr3,
7141 .set_cr4 = svm_set_cr4,
7142 .set_efer = svm_set_efer,
7143 .get_idt = svm_get_idt,
7144 .set_idt = svm_set_idt,
7145 .get_gdt = svm_get_gdt,
7146 .set_gdt = svm_set_gdt,
7147 .get_dr6 = svm_get_dr6,
7148 .set_dr6 = svm_set_dr6,
7149 .set_dr7 = svm_set_dr7,
7150 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7151 .cache_reg = svm_cache_reg,
7152 .get_rflags = svm_get_rflags,
7153 .set_rflags = svm_set_rflags,
7154
7155 .tlb_flush = svm_flush_tlb,
7156 .tlb_flush_gva = svm_flush_tlb_gva,
7157
7158 .run = svm_vcpu_run,
7159 .handle_exit = handle_exit,
7160 .skip_emulated_instruction = skip_emulated_instruction,
7161 .set_interrupt_shadow = svm_set_interrupt_shadow,
7162 .get_interrupt_shadow = svm_get_interrupt_shadow,
7163 .patch_hypercall = svm_patch_hypercall,
7164 .set_irq = svm_set_irq,
7165 .set_nmi = svm_inject_nmi,
7166 .queue_exception = svm_queue_exception,
7167 .cancel_injection = svm_cancel_injection,
7168 .interrupt_allowed = svm_interrupt_allowed,
7169 .nmi_allowed = svm_nmi_allowed,
7170 .get_nmi_mask = svm_get_nmi_mask,
7171 .set_nmi_mask = svm_set_nmi_mask,
7172 .enable_nmi_window = enable_nmi_window,
7173 .enable_irq_window = enable_irq_window,
7174 .update_cr8_intercept = update_cr8_intercept,
7175 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7176 .get_enable_apicv = svm_get_enable_apicv,
7177 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7178 .load_eoi_exitmap = svm_load_eoi_exitmap,
7179 .hwapic_irr_update = svm_hwapic_irr_update,
7180 .hwapic_isr_update = svm_hwapic_isr_update,
7181 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7182 .apicv_post_state_restore = avic_post_state_restore,
7183
7184 .set_tss_addr = svm_set_tss_addr,
7185 .set_identity_map_addr = svm_set_identity_map_addr,
7186 .get_tdp_level = get_npt_level,
7187 .get_mt_mask = svm_get_mt_mask,
7188
7189 .get_exit_info = svm_get_exit_info,
7190
7191 .get_lpage_level = svm_get_lpage_level,
7192
7193 .cpuid_update = svm_cpuid_update,
7194
7195 .rdtscp_supported = svm_rdtscp_supported,
7196 .invpcid_supported = svm_invpcid_supported,
7197 .mpx_supported = svm_mpx_supported,
7198 .xsaves_supported = svm_xsaves_supported,
7199 .umip_emulated = svm_umip_emulated,
7200 .pt_supported = svm_pt_supported,
7201
7202 .set_supported_cpuid = svm_set_supported_cpuid,
7203
7204 .has_wbinvd_exit = svm_has_wbinvd_exit,
7205
7206 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7207 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7208
7209 .set_tdp_cr3 = set_tdp_cr3,
7210
7211 .check_intercept = svm_check_intercept,
7212 .handle_external_intr = svm_handle_external_intr,
7213
7214 .request_immediate_exit = __kvm_request_immediate_exit,
7215
7216 .sched_in = svm_sched_in,
7217
7218 .pmu_ops = &amd_pmu_ops,
7219 .deliver_posted_interrupt = svm_deliver_avic_intr,
7220 .update_pi_irte = svm_update_pi_irte,
7221 .setup_mce = svm_setup_mce,
7222
7223 .smi_allowed = svm_smi_allowed,
7224 .pre_enter_smm = svm_pre_enter_smm,
7225 .pre_leave_smm = svm_pre_leave_smm,
7226 .enable_smi_window = enable_smi_window,
7227
7228 .mem_enc_op = svm_mem_enc_op,
7229 .mem_enc_reg_region = svm_register_enc_region,
7230 .mem_enc_unreg_region = svm_unregister_enc_region,
7231
7232 .nested_enable_evmcs = nested_enable_evmcs,
7233 .nested_get_evmcs_version = nested_get_evmcs_version,
7234 };
7235
7236 static int __init svm_init(void)
7237 {
7238 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7239 __alignof__(struct vcpu_svm), THIS_MODULE);
7240 }
7241
7242 static void __exit svm_exit(void)
7243 {
7244 kvm_exit();
7245 }
7246
7247 module_init(svm_init)
7248 module_exit(svm_exit)