]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Add support for AMD's OSVW feature in guests
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_TSC_RATE (1 << 4)
55 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
56 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
57 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
58 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
59
60 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
61 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
62 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
63
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
65
66 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
67 #define TSC_RATIO_MIN 0x0000000000000001ULL
68 #define TSC_RATIO_MAX 0x000000ffffffffffULL
69
70 static bool erratum_383_found __read_mostly;
71
72 static const u32 host_save_user_msrs[] = {
73 #ifdef CONFIG_X86_64
74 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
75 MSR_FS_BASE,
76 #endif
77 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
78 };
79
80 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
81
82 struct kvm_vcpu;
83
84 struct nested_state {
85 struct vmcb *hsave;
86 u64 hsave_msr;
87 u64 vm_cr_msr;
88 u64 vmcb;
89
90 /* These are the merged vectors */
91 u32 *msrpm;
92
93 /* gpa pointers to the real vectors */
94 u64 vmcb_msrpm;
95 u64 vmcb_iopm;
96
97 /* A VMEXIT is required but not yet emulated */
98 bool exit_required;
99
100 /* cache for intercepts of the guest */
101 u32 intercept_cr;
102 u32 intercept_dr;
103 u32 intercept_exceptions;
104 u64 intercept;
105
106 /* Nested Paging related state */
107 u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS 16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 /*
114 * Set osvw_len to higher value when updated Revision Guides
115 * are published and we know what the new status bits are
116 */
117 static uint64_t osvw_len = 4, osvw_status;
118
119 struct vcpu_svm {
120 struct kvm_vcpu vcpu;
121 struct vmcb *vmcb;
122 unsigned long vmcb_pa;
123 struct svm_cpu_data *svm_data;
124 uint64_t asid_generation;
125 uint64_t sysenter_esp;
126 uint64_t sysenter_eip;
127
128 u64 next_rip;
129
130 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
131 struct {
132 u16 fs;
133 u16 gs;
134 u16 ldt;
135 u64 gs_base;
136 } host;
137
138 u32 *msrpm;
139
140 ulong nmi_iret_rip;
141
142 struct nested_state nested;
143
144 bool nmi_singlestep;
145
146 unsigned int3_injected;
147 unsigned long int3_rip;
148 u32 apf_reason;
149
150 u64 tsc_ratio;
151 };
152
153 static DEFINE_PER_CPU(u64, current_tsc_ratio);
154 #define TSC_RATIO_DEFAULT 0x0100000000ULL
155
156 #define MSR_INVALID 0xffffffffU
157
158 static struct svm_direct_access_msrs {
159 u32 index; /* Index of the MSR */
160 bool always; /* True if intercept is always on */
161 } direct_access_msrs[] = {
162 { .index = MSR_STAR, .always = true },
163 { .index = MSR_IA32_SYSENTER_CS, .always = true },
164 #ifdef CONFIG_X86_64
165 { .index = MSR_GS_BASE, .always = true },
166 { .index = MSR_FS_BASE, .always = true },
167 { .index = MSR_KERNEL_GS_BASE, .always = true },
168 { .index = MSR_LSTAR, .always = true },
169 { .index = MSR_CSTAR, .always = true },
170 { .index = MSR_SYSCALL_MASK, .always = true },
171 #endif
172 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
173 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
174 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
175 { .index = MSR_IA32_LASTINTTOIP, .always = false },
176 { .index = MSR_INVALID, .always = false },
177 };
178
179 /* enable NPT for AMD64 and X86 with PAE */
180 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
181 static bool npt_enabled = true;
182 #else
183 static bool npt_enabled;
184 #endif
185 static int npt = 1;
186
187 module_param(npt, int, S_IRUGO);
188
189 static int nested = 1;
190 module_param(nested, int, S_IRUGO);
191
192 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
193 static void svm_complete_interrupts(struct vcpu_svm *svm);
194
195 static int nested_svm_exit_handled(struct vcpu_svm *svm);
196 static int nested_svm_intercept(struct vcpu_svm *svm);
197 static int nested_svm_vmexit(struct vcpu_svm *svm);
198 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
199 bool has_error_code, u32 error_code);
200 static u64 __scale_tsc(u64 ratio, u64 tsc);
201
202 enum {
203 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
204 pause filter count */
205 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
206 VMCB_ASID, /* ASID */
207 VMCB_INTR, /* int_ctl, int_vector */
208 VMCB_NPT, /* npt_en, nCR3, gPAT */
209 VMCB_CR, /* CR0, CR3, CR4, EFER */
210 VMCB_DR, /* DR6, DR7 */
211 VMCB_DT, /* GDT, IDT */
212 VMCB_SEG, /* CS, DS, SS, ES, CPL */
213 VMCB_CR2, /* CR2 only */
214 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
215 VMCB_DIRTY_MAX,
216 };
217
218 /* TPR and CR2 are always written before VMRUN */
219 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
220
221 static inline void mark_all_dirty(struct vmcb *vmcb)
222 {
223 vmcb->control.clean = 0;
224 }
225
226 static inline void mark_all_clean(struct vmcb *vmcb)
227 {
228 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
229 & ~VMCB_ALWAYS_DIRTY_MASK;
230 }
231
232 static inline void mark_dirty(struct vmcb *vmcb, int bit)
233 {
234 vmcb->control.clean &= ~(1 << bit);
235 }
236
237 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
238 {
239 return container_of(vcpu, struct vcpu_svm, vcpu);
240 }
241
242 static void recalc_intercepts(struct vcpu_svm *svm)
243 {
244 struct vmcb_control_area *c, *h;
245 struct nested_state *g;
246
247 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
248
249 if (!is_guest_mode(&svm->vcpu))
250 return;
251
252 c = &svm->vmcb->control;
253 h = &svm->nested.hsave->control;
254 g = &svm->nested;
255
256 c->intercept_cr = h->intercept_cr | g->intercept_cr;
257 c->intercept_dr = h->intercept_dr | g->intercept_dr;
258 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
259 c->intercept = h->intercept | g->intercept;
260 }
261
262 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
263 {
264 if (is_guest_mode(&svm->vcpu))
265 return svm->nested.hsave;
266 else
267 return svm->vmcb;
268 }
269
270 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
271 {
272 struct vmcb *vmcb = get_host_vmcb(svm);
273
274 vmcb->control.intercept_cr |= (1U << bit);
275
276 recalc_intercepts(svm);
277 }
278
279 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
280 {
281 struct vmcb *vmcb = get_host_vmcb(svm);
282
283 vmcb->control.intercept_cr &= ~(1U << bit);
284
285 recalc_intercepts(svm);
286 }
287
288 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
289 {
290 struct vmcb *vmcb = get_host_vmcb(svm);
291
292 return vmcb->control.intercept_cr & (1U << bit);
293 }
294
295 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
296 {
297 struct vmcb *vmcb = get_host_vmcb(svm);
298
299 vmcb->control.intercept_dr |= (1U << bit);
300
301 recalc_intercepts(svm);
302 }
303
304 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
305 {
306 struct vmcb *vmcb = get_host_vmcb(svm);
307
308 vmcb->control.intercept_dr &= ~(1U << bit);
309
310 recalc_intercepts(svm);
311 }
312
313 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
314 {
315 struct vmcb *vmcb = get_host_vmcb(svm);
316
317 vmcb->control.intercept_exceptions |= (1U << bit);
318
319 recalc_intercepts(svm);
320 }
321
322 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
323 {
324 struct vmcb *vmcb = get_host_vmcb(svm);
325
326 vmcb->control.intercept_exceptions &= ~(1U << bit);
327
328 recalc_intercepts(svm);
329 }
330
331 static inline void set_intercept(struct vcpu_svm *svm, int bit)
332 {
333 struct vmcb *vmcb = get_host_vmcb(svm);
334
335 vmcb->control.intercept |= (1ULL << bit);
336
337 recalc_intercepts(svm);
338 }
339
340 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
341 {
342 struct vmcb *vmcb = get_host_vmcb(svm);
343
344 vmcb->control.intercept &= ~(1ULL << bit);
345
346 recalc_intercepts(svm);
347 }
348
349 static inline void enable_gif(struct vcpu_svm *svm)
350 {
351 svm->vcpu.arch.hflags |= HF_GIF_MASK;
352 }
353
354 static inline void disable_gif(struct vcpu_svm *svm)
355 {
356 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
357 }
358
359 static inline bool gif_set(struct vcpu_svm *svm)
360 {
361 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
362 }
363
364 static unsigned long iopm_base;
365
366 struct kvm_ldttss_desc {
367 u16 limit0;
368 u16 base0;
369 unsigned base1:8, type:5, dpl:2, p:1;
370 unsigned limit1:4, zero0:3, g:1, base2:8;
371 u32 base3;
372 u32 zero1;
373 } __attribute__((packed));
374
375 struct svm_cpu_data {
376 int cpu;
377
378 u64 asid_generation;
379 u32 max_asid;
380 u32 next_asid;
381 struct kvm_ldttss_desc *tss_desc;
382
383 struct page *save_area;
384 };
385
386 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
387
388 struct svm_init_data {
389 int cpu;
390 int r;
391 };
392
393 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
394
395 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
396 #define MSRS_RANGE_SIZE 2048
397 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
398
399 static u32 svm_msrpm_offset(u32 msr)
400 {
401 u32 offset;
402 int i;
403
404 for (i = 0; i < NUM_MSR_MAPS; i++) {
405 if (msr < msrpm_ranges[i] ||
406 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
407 continue;
408
409 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
410 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
411
412 /* Now we have the u8 offset - but need the u32 offset */
413 return offset / 4;
414 }
415
416 /* MSR not in any range */
417 return MSR_INVALID;
418 }
419
420 #define MAX_INST_SIZE 15
421
422 static inline void clgi(void)
423 {
424 asm volatile (__ex(SVM_CLGI));
425 }
426
427 static inline void stgi(void)
428 {
429 asm volatile (__ex(SVM_STGI));
430 }
431
432 static inline void invlpga(unsigned long addr, u32 asid)
433 {
434 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
435 }
436
437 static int get_npt_level(void)
438 {
439 #ifdef CONFIG_X86_64
440 return PT64_ROOT_LEVEL;
441 #else
442 return PT32E_ROOT_LEVEL;
443 #endif
444 }
445
446 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
447 {
448 vcpu->arch.efer = efer;
449 if (!npt_enabled && !(efer & EFER_LMA))
450 efer &= ~EFER_LME;
451
452 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
453 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
454 }
455
456 static int is_external_interrupt(u32 info)
457 {
458 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
459 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
460 }
461
462 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
463 {
464 struct vcpu_svm *svm = to_svm(vcpu);
465 u32 ret = 0;
466
467 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
468 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
469 return ret & mask;
470 }
471
472 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474 struct vcpu_svm *svm = to_svm(vcpu);
475
476 if (mask == 0)
477 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
478 else
479 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
480
481 }
482
483 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
484 {
485 struct vcpu_svm *svm = to_svm(vcpu);
486
487 if (svm->vmcb->control.next_rip != 0)
488 svm->next_rip = svm->vmcb->control.next_rip;
489
490 if (!svm->next_rip) {
491 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
492 EMULATE_DONE)
493 printk(KERN_DEBUG "%s: NOP\n", __func__);
494 return;
495 }
496 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
497 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
498 __func__, kvm_rip_read(vcpu), svm->next_rip);
499
500 kvm_rip_write(vcpu, svm->next_rip);
501 svm_set_interrupt_shadow(vcpu, 0);
502 }
503
504 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
505 bool has_error_code, u32 error_code,
506 bool reinject)
507 {
508 struct vcpu_svm *svm = to_svm(vcpu);
509
510 /*
511 * If we are within a nested VM we'd better #VMEXIT and let the guest
512 * handle the exception
513 */
514 if (!reinject &&
515 nested_svm_check_exception(svm, nr, has_error_code, error_code))
516 return;
517
518 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
519 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
520
521 /*
522 * For guest debugging where we have to reinject #BP if some
523 * INT3 is guest-owned:
524 * Emulate nRIP by moving RIP forward. Will fail if injection
525 * raises a fault that is not intercepted. Still better than
526 * failing in all cases.
527 */
528 skip_emulated_instruction(&svm->vcpu);
529 rip = kvm_rip_read(&svm->vcpu);
530 svm->int3_rip = rip + svm->vmcb->save.cs.base;
531 svm->int3_injected = rip - old_rip;
532 }
533
534 svm->vmcb->control.event_inj = nr
535 | SVM_EVTINJ_VALID
536 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
537 | SVM_EVTINJ_TYPE_EXEPT;
538 svm->vmcb->control.event_inj_err = error_code;
539 }
540
541 static void svm_init_erratum_383(void)
542 {
543 u32 low, high;
544 int err;
545 u64 val;
546
547 if (!cpu_has_amd_erratum(amd_erratum_383))
548 return;
549
550 /* Use _safe variants to not break nested virtualization */
551 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
552 if (err)
553 return;
554
555 val |= (1ULL << 47);
556
557 low = lower_32_bits(val);
558 high = upper_32_bits(val);
559
560 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
561
562 erratum_383_found = true;
563 }
564
565 static void svm_init_osvw(struct kvm_vcpu *vcpu)
566 {
567 /*
568 * Guests should see errata 400 and 415 as fixed (assuming that
569 * HLT and IO instructions are intercepted).
570 */
571 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
572 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
573
574 /*
575 * By increasing VCPU's osvw.length to 3 we are telling the guest that
576 * all osvw.status bits inside that length, including bit 0 (which is
577 * reserved for erratum 298), are valid. However, if host processor's
578 * osvw_len is 0 then osvw_status[0] carries no information. We need to
579 * be conservative here and therefore we tell the guest that erratum 298
580 * is present (because we really don't know).
581 */
582 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
583 vcpu->arch.osvw.status |= 1;
584 }
585
586 static int has_svm(void)
587 {
588 const char *msg;
589
590 if (!cpu_has_svm(&msg)) {
591 printk(KERN_INFO "has_svm: %s\n", msg);
592 return 0;
593 }
594
595 return 1;
596 }
597
598 static void svm_hardware_disable(void *garbage)
599 {
600 /* Make sure we clean up behind us */
601 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
602 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
603
604 cpu_svm_disable();
605 }
606
607 static int svm_hardware_enable(void *garbage)
608 {
609
610 struct svm_cpu_data *sd;
611 uint64_t efer;
612 struct desc_ptr gdt_descr;
613 struct desc_struct *gdt;
614 int me = raw_smp_processor_id();
615
616 rdmsrl(MSR_EFER, efer);
617 if (efer & EFER_SVME)
618 return -EBUSY;
619
620 if (!has_svm()) {
621 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
622 me);
623 return -EINVAL;
624 }
625 sd = per_cpu(svm_data, me);
626
627 if (!sd) {
628 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
629 me);
630 return -EINVAL;
631 }
632
633 sd->asid_generation = 1;
634 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
635 sd->next_asid = sd->max_asid + 1;
636
637 native_store_gdt(&gdt_descr);
638 gdt = (struct desc_struct *)gdt_descr.address;
639 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
640
641 wrmsrl(MSR_EFER, efer | EFER_SVME);
642
643 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
644
645 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
646 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
647 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
648 }
649
650
651 /*
652 * Get OSVW bits.
653 *
654 * Note that it is possible to have a system with mixed processor
655 * revisions and therefore different OSVW bits. If bits are not the same
656 * on different processors then choose the worst case (i.e. if erratum
657 * is present on one processor and not on another then assume that the
658 * erratum is present everywhere).
659 */
660 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
661 uint64_t len, status = 0;
662 int err;
663
664 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
665 if (!err)
666 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
667 &err);
668
669 if (err)
670 osvw_status = osvw_len = 0;
671 else {
672 if (len < osvw_len)
673 osvw_len = len;
674 osvw_status |= status;
675 osvw_status &= (1ULL << osvw_len) - 1;
676 }
677 } else
678 osvw_status = osvw_len = 0;
679
680 svm_init_erratum_383();
681
682 return 0;
683 }
684
685 static void svm_cpu_uninit(int cpu)
686 {
687 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
688
689 if (!sd)
690 return;
691
692 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
693 __free_page(sd->save_area);
694 kfree(sd);
695 }
696
697 static int svm_cpu_init(int cpu)
698 {
699 struct svm_cpu_data *sd;
700 int r;
701
702 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
703 if (!sd)
704 return -ENOMEM;
705 sd->cpu = cpu;
706 sd->save_area = alloc_page(GFP_KERNEL);
707 r = -ENOMEM;
708 if (!sd->save_area)
709 goto err_1;
710
711 per_cpu(svm_data, cpu) = sd;
712
713 return 0;
714
715 err_1:
716 kfree(sd);
717 return r;
718
719 }
720
721 static bool valid_msr_intercept(u32 index)
722 {
723 int i;
724
725 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
726 if (direct_access_msrs[i].index == index)
727 return true;
728
729 return false;
730 }
731
732 static void set_msr_interception(u32 *msrpm, unsigned msr,
733 int read, int write)
734 {
735 u8 bit_read, bit_write;
736 unsigned long tmp;
737 u32 offset;
738
739 /*
740 * If this warning triggers extend the direct_access_msrs list at the
741 * beginning of the file
742 */
743 WARN_ON(!valid_msr_intercept(msr));
744
745 offset = svm_msrpm_offset(msr);
746 bit_read = 2 * (msr & 0x0f);
747 bit_write = 2 * (msr & 0x0f) + 1;
748 tmp = msrpm[offset];
749
750 BUG_ON(offset == MSR_INVALID);
751
752 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
753 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
754
755 msrpm[offset] = tmp;
756 }
757
758 static void svm_vcpu_init_msrpm(u32 *msrpm)
759 {
760 int i;
761
762 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
763
764 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
765 if (!direct_access_msrs[i].always)
766 continue;
767
768 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
769 }
770 }
771
772 static void add_msr_offset(u32 offset)
773 {
774 int i;
775
776 for (i = 0; i < MSRPM_OFFSETS; ++i) {
777
778 /* Offset already in list? */
779 if (msrpm_offsets[i] == offset)
780 return;
781
782 /* Slot used by another offset? */
783 if (msrpm_offsets[i] != MSR_INVALID)
784 continue;
785
786 /* Add offset to list */
787 msrpm_offsets[i] = offset;
788
789 return;
790 }
791
792 /*
793 * If this BUG triggers the msrpm_offsets table has an overflow. Just
794 * increase MSRPM_OFFSETS in this case.
795 */
796 BUG();
797 }
798
799 static void init_msrpm_offsets(void)
800 {
801 int i;
802
803 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
804
805 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
806 u32 offset;
807
808 offset = svm_msrpm_offset(direct_access_msrs[i].index);
809 BUG_ON(offset == MSR_INVALID);
810
811 add_msr_offset(offset);
812 }
813 }
814
815 static void svm_enable_lbrv(struct vcpu_svm *svm)
816 {
817 u32 *msrpm = svm->msrpm;
818
819 svm->vmcb->control.lbr_ctl = 1;
820 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
821 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
822 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
823 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
824 }
825
826 static void svm_disable_lbrv(struct vcpu_svm *svm)
827 {
828 u32 *msrpm = svm->msrpm;
829
830 svm->vmcb->control.lbr_ctl = 0;
831 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
832 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
833 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
834 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
835 }
836
837 static __init int svm_hardware_setup(void)
838 {
839 int cpu;
840 struct page *iopm_pages;
841 void *iopm_va;
842 int r;
843
844 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
845
846 if (!iopm_pages)
847 return -ENOMEM;
848
849 iopm_va = page_address(iopm_pages);
850 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
851 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
852
853 init_msrpm_offsets();
854
855 if (boot_cpu_has(X86_FEATURE_NX))
856 kvm_enable_efer_bits(EFER_NX);
857
858 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
859 kvm_enable_efer_bits(EFER_FFXSR);
860
861 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
862 u64 max;
863
864 kvm_has_tsc_control = true;
865
866 /*
867 * Make sure the user can only configure tsc_khz values that
868 * fit into a signed integer.
869 * A min value is not calculated needed because it will always
870 * be 1 on all machines and a value of 0 is used to disable
871 * tsc-scaling for the vcpu.
872 */
873 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
874
875 kvm_max_guest_tsc_khz = max;
876 }
877
878 if (nested) {
879 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
880 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
881 }
882
883 for_each_possible_cpu(cpu) {
884 r = svm_cpu_init(cpu);
885 if (r)
886 goto err;
887 }
888
889 if (!boot_cpu_has(X86_FEATURE_NPT))
890 npt_enabled = false;
891
892 if (npt_enabled && !npt) {
893 printk(KERN_INFO "kvm: Nested Paging disabled\n");
894 npt_enabled = false;
895 }
896
897 if (npt_enabled) {
898 printk(KERN_INFO "kvm: Nested Paging enabled\n");
899 kvm_enable_tdp();
900 } else
901 kvm_disable_tdp();
902
903 return 0;
904
905 err:
906 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
907 iopm_base = 0;
908 return r;
909 }
910
911 static __exit void svm_hardware_unsetup(void)
912 {
913 int cpu;
914
915 for_each_possible_cpu(cpu)
916 svm_cpu_uninit(cpu);
917
918 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
919 iopm_base = 0;
920 }
921
922 static void init_seg(struct vmcb_seg *seg)
923 {
924 seg->selector = 0;
925 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
926 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
927 seg->limit = 0xffff;
928 seg->base = 0;
929 }
930
931 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
932 {
933 seg->selector = 0;
934 seg->attrib = SVM_SELECTOR_P_MASK | type;
935 seg->limit = 0xffff;
936 seg->base = 0;
937 }
938
939 static u64 __scale_tsc(u64 ratio, u64 tsc)
940 {
941 u64 mult, frac, _tsc;
942
943 mult = ratio >> 32;
944 frac = ratio & ((1ULL << 32) - 1);
945
946 _tsc = tsc;
947 _tsc *= mult;
948 _tsc += (tsc >> 32) * frac;
949 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
950
951 return _tsc;
952 }
953
954 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
955 {
956 struct vcpu_svm *svm = to_svm(vcpu);
957 u64 _tsc = tsc;
958
959 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
960 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
961
962 return _tsc;
963 }
964
965 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
966 {
967 struct vcpu_svm *svm = to_svm(vcpu);
968 u64 ratio;
969 u64 khz;
970
971 /* TSC scaling supported? */
972 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
973 return;
974
975 /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
976 if (user_tsc_khz == 0) {
977 vcpu->arch.virtual_tsc_khz = 0;
978 svm->tsc_ratio = TSC_RATIO_DEFAULT;
979 return;
980 }
981
982 khz = user_tsc_khz;
983
984 /* TSC scaling required - calculate ratio */
985 ratio = khz << 32;
986 do_div(ratio, tsc_khz);
987
988 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
989 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
990 user_tsc_khz);
991 return;
992 }
993 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
994 svm->tsc_ratio = ratio;
995 }
996
997 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
998 {
999 struct vcpu_svm *svm = to_svm(vcpu);
1000 u64 g_tsc_offset = 0;
1001
1002 if (is_guest_mode(vcpu)) {
1003 g_tsc_offset = svm->vmcb->control.tsc_offset -
1004 svm->nested.hsave->control.tsc_offset;
1005 svm->nested.hsave->control.tsc_offset = offset;
1006 }
1007
1008 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1009
1010 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1011 }
1012
1013 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1014 {
1015 struct vcpu_svm *svm = to_svm(vcpu);
1016
1017 svm->vmcb->control.tsc_offset += adjustment;
1018 if (is_guest_mode(vcpu))
1019 svm->nested.hsave->control.tsc_offset += adjustment;
1020 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1021 }
1022
1023 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1024 {
1025 u64 tsc;
1026
1027 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1028
1029 return target_tsc - tsc;
1030 }
1031
1032 static void init_vmcb(struct vcpu_svm *svm)
1033 {
1034 struct vmcb_control_area *control = &svm->vmcb->control;
1035 struct vmcb_save_area *save = &svm->vmcb->save;
1036
1037 svm->vcpu.fpu_active = 1;
1038 svm->vcpu.arch.hflags = 0;
1039
1040 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1041 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1042 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1043 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1044 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1045 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1046 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1047
1048 set_dr_intercept(svm, INTERCEPT_DR0_READ);
1049 set_dr_intercept(svm, INTERCEPT_DR1_READ);
1050 set_dr_intercept(svm, INTERCEPT_DR2_READ);
1051 set_dr_intercept(svm, INTERCEPT_DR3_READ);
1052 set_dr_intercept(svm, INTERCEPT_DR4_READ);
1053 set_dr_intercept(svm, INTERCEPT_DR5_READ);
1054 set_dr_intercept(svm, INTERCEPT_DR6_READ);
1055 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1056
1057 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1058 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1059 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1060 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1061 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1062 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1063 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1064 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1065
1066 set_exception_intercept(svm, PF_VECTOR);
1067 set_exception_intercept(svm, UD_VECTOR);
1068 set_exception_intercept(svm, MC_VECTOR);
1069
1070 set_intercept(svm, INTERCEPT_INTR);
1071 set_intercept(svm, INTERCEPT_NMI);
1072 set_intercept(svm, INTERCEPT_SMI);
1073 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1074 set_intercept(svm, INTERCEPT_RDPMC);
1075 set_intercept(svm, INTERCEPT_CPUID);
1076 set_intercept(svm, INTERCEPT_INVD);
1077 set_intercept(svm, INTERCEPT_HLT);
1078 set_intercept(svm, INTERCEPT_INVLPG);
1079 set_intercept(svm, INTERCEPT_INVLPGA);
1080 set_intercept(svm, INTERCEPT_IOIO_PROT);
1081 set_intercept(svm, INTERCEPT_MSR_PROT);
1082 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1083 set_intercept(svm, INTERCEPT_SHUTDOWN);
1084 set_intercept(svm, INTERCEPT_VMRUN);
1085 set_intercept(svm, INTERCEPT_VMMCALL);
1086 set_intercept(svm, INTERCEPT_VMLOAD);
1087 set_intercept(svm, INTERCEPT_VMSAVE);
1088 set_intercept(svm, INTERCEPT_STGI);
1089 set_intercept(svm, INTERCEPT_CLGI);
1090 set_intercept(svm, INTERCEPT_SKINIT);
1091 set_intercept(svm, INTERCEPT_WBINVD);
1092 set_intercept(svm, INTERCEPT_MONITOR);
1093 set_intercept(svm, INTERCEPT_MWAIT);
1094 set_intercept(svm, INTERCEPT_XSETBV);
1095
1096 control->iopm_base_pa = iopm_base;
1097 control->msrpm_base_pa = __pa(svm->msrpm);
1098 control->int_ctl = V_INTR_MASKING_MASK;
1099
1100 init_seg(&save->es);
1101 init_seg(&save->ss);
1102 init_seg(&save->ds);
1103 init_seg(&save->fs);
1104 init_seg(&save->gs);
1105
1106 save->cs.selector = 0xf000;
1107 /* Executable/Readable Code Segment */
1108 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1109 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1110 save->cs.limit = 0xffff;
1111 /*
1112 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1113 * be consistent with it.
1114 *
1115 * Replace when we have real mode working for vmx.
1116 */
1117 save->cs.base = 0xf0000;
1118
1119 save->gdtr.limit = 0xffff;
1120 save->idtr.limit = 0xffff;
1121
1122 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1123 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1124
1125 svm_set_efer(&svm->vcpu, 0);
1126 save->dr6 = 0xffff0ff0;
1127 save->dr7 = 0x400;
1128 kvm_set_rflags(&svm->vcpu, 2);
1129 save->rip = 0x0000fff0;
1130 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1131
1132 /*
1133 * This is the guest-visible cr0 value.
1134 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1135 */
1136 svm->vcpu.arch.cr0 = 0;
1137 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1138
1139 save->cr4 = X86_CR4_PAE;
1140 /* rdx = ?? */
1141
1142 if (npt_enabled) {
1143 /* Setup VMCB for Nested Paging */
1144 control->nested_ctl = 1;
1145 clr_intercept(svm, INTERCEPT_INVLPG);
1146 clr_exception_intercept(svm, PF_VECTOR);
1147 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1148 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1149 save->g_pat = 0x0007040600070406ULL;
1150 save->cr3 = 0;
1151 save->cr4 = 0;
1152 }
1153 svm->asid_generation = 0;
1154
1155 svm->nested.vmcb = 0;
1156 svm->vcpu.arch.hflags = 0;
1157
1158 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1159 control->pause_filter_count = 3000;
1160 set_intercept(svm, INTERCEPT_PAUSE);
1161 }
1162
1163 mark_all_dirty(svm->vmcb);
1164
1165 enable_gif(svm);
1166 }
1167
1168 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1169 {
1170 struct vcpu_svm *svm = to_svm(vcpu);
1171
1172 init_vmcb(svm);
1173
1174 if (!kvm_vcpu_is_bsp(vcpu)) {
1175 kvm_rip_write(vcpu, 0);
1176 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1177 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1178 }
1179 vcpu->arch.regs_avail = ~0;
1180 vcpu->arch.regs_dirty = ~0;
1181
1182 return 0;
1183 }
1184
1185 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1186 {
1187 struct vcpu_svm *svm;
1188 struct page *page;
1189 struct page *msrpm_pages;
1190 struct page *hsave_page;
1191 struct page *nested_msrpm_pages;
1192 int err;
1193
1194 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1195 if (!svm) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199
1200 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1201
1202 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1203 if (err)
1204 goto free_svm;
1205
1206 err = -ENOMEM;
1207 page = alloc_page(GFP_KERNEL);
1208 if (!page)
1209 goto uninit;
1210
1211 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1212 if (!msrpm_pages)
1213 goto free_page1;
1214
1215 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1216 if (!nested_msrpm_pages)
1217 goto free_page2;
1218
1219 hsave_page = alloc_page(GFP_KERNEL);
1220 if (!hsave_page)
1221 goto free_page3;
1222
1223 svm->nested.hsave = page_address(hsave_page);
1224
1225 svm->msrpm = page_address(msrpm_pages);
1226 svm_vcpu_init_msrpm(svm->msrpm);
1227
1228 svm->nested.msrpm = page_address(nested_msrpm_pages);
1229 svm_vcpu_init_msrpm(svm->nested.msrpm);
1230
1231 svm->vmcb = page_address(page);
1232 clear_page(svm->vmcb);
1233 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1234 svm->asid_generation = 0;
1235 init_vmcb(svm);
1236 kvm_write_tsc(&svm->vcpu, 0);
1237
1238 err = fx_init(&svm->vcpu);
1239 if (err)
1240 goto free_page4;
1241
1242 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1243 if (kvm_vcpu_is_bsp(&svm->vcpu))
1244 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1245
1246 svm_init_osvw(&svm->vcpu);
1247
1248 return &svm->vcpu;
1249
1250 free_page4:
1251 __free_page(hsave_page);
1252 free_page3:
1253 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1254 free_page2:
1255 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1256 free_page1:
1257 __free_page(page);
1258 uninit:
1259 kvm_vcpu_uninit(&svm->vcpu);
1260 free_svm:
1261 kmem_cache_free(kvm_vcpu_cache, svm);
1262 out:
1263 return ERR_PTR(err);
1264 }
1265
1266 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1267 {
1268 struct vcpu_svm *svm = to_svm(vcpu);
1269
1270 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1271 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1272 __free_page(virt_to_page(svm->nested.hsave));
1273 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1274 kvm_vcpu_uninit(vcpu);
1275 kmem_cache_free(kvm_vcpu_cache, svm);
1276 }
1277
1278 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1279 {
1280 struct vcpu_svm *svm = to_svm(vcpu);
1281 int i;
1282
1283 if (unlikely(cpu != vcpu->cpu)) {
1284 svm->asid_generation = 0;
1285 mark_all_dirty(svm->vmcb);
1286 }
1287
1288 #ifdef CONFIG_X86_64
1289 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1290 #endif
1291 savesegment(fs, svm->host.fs);
1292 savesegment(gs, svm->host.gs);
1293 svm->host.ldt = kvm_read_ldt();
1294
1295 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1296 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1297
1298 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1299 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1300 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1301 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1302 }
1303 }
1304
1305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1306 {
1307 struct vcpu_svm *svm = to_svm(vcpu);
1308 int i;
1309
1310 ++vcpu->stat.host_state_reload;
1311 kvm_load_ldt(svm->host.ldt);
1312 #ifdef CONFIG_X86_64
1313 loadsegment(fs, svm->host.fs);
1314 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1315 load_gs_index(svm->host.gs);
1316 #else
1317 #ifdef CONFIG_X86_32_LAZY_GS
1318 loadsegment(gs, svm->host.gs);
1319 #endif
1320 #endif
1321 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1322 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1323 }
1324
1325 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1326 {
1327 return to_svm(vcpu)->vmcb->save.rflags;
1328 }
1329
1330 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1331 {
1332 to_svm(vcpu)->vmcb->save.rflags = rflags;
1333 }
1334
1335 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1336 {
1337 switch (reg) {
1338 case VCPU_EXREG_PDPTR:
1339 BUG_ON(!npt_enabled);
1340 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1341 break;
1342 default:
1343 BUG();
1344 }
1345 }
1346
1347 static void svm_set_vintr(struct vcpu_svm *svm)
1348 {
1349 set_intercept(svm, INTERCEPT_VINTR);
1350 }
1351
1352 static void svm_clear_vintr(struct vcpu_svm *svm)
1353 {
1354 clr_intercept(svm, INTERCEPT_VINTR);
1355 }
1356
1357 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1358 {
1359 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1360
1361 switch (seg) {
1362 case VCPU_SREG_CS: return &save->cs;
1363 case VCPU_SREG_DS: return &save->ds;
1364 case VCPU_SREG_ES: return &save->es;
1365 case VCPU_SREG_FS: return &save->fs;
1366 case VCPU_SREG_GS: return &save->gs;
1367 case VCPU_SREG_SS: return &save->ss;
1368 case VCPU_SREG_TR: return &save->tr;
1369 case VCPU_SREG_LDTR: return &save->ldtr;
1370 }
1371 BUG();
1372 return NULL;
1373 }
1374
1375 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1376 {
1377 struct vmcb_seg *s = svm_seg(vcpu, seg);
1378
1379 return s->base;
1380 }
1381
1382 static void svm_get_segment(struct kvm_vcpu *vcpu,
1383 struct kvm_segment *var, int seg)
1384 {
1385 struct vmcb_seg *s = svm_seg(vcpu, seg);
1386
1387 var->base = s->base;
1388 var->limit = s->limit;
1389 var->selector = s->selector;
1390 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1391 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1392 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1393 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1394 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1395 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1396 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1397 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1398
1399 /*
1400 * AMD's VMCB does not have an explicit unusable field, so emulate it
1401 * for cross vendor migration purposes by "not present"
1402 */
1403 var->unusable = !var->present || (var->type == 0);
1404
1405 switch (seg) {
1406 case VCPU_SREG_CS:
1407 /*
1408 * SVM always stores 0 for the 'G' bit in the CS selector in
1409 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1410 * Intel's VMENTRY has a check on the 'G' bit.
1411 */
1412 var->g = s->limit > 0xfffff;
1413 break;
1414 case VCPU_SREG_TR:
1415 /*
1416 * Work around a bug where the busy flag in the tr selector
1417 * isn't exposed
1418 */
1419 var->type |= 0x2;
1420 break;
1421 case VCPU_SREG_DS:
1422 case VCPU_SREG_ES:
1423 case VCPU_SREG_FS:
1424 case VCPU_SREG_GS:
1425 /*
1426 * The accessed bit must always be set in the segment
1427 * descriptor cache, although it can be cleared in the
1428 * descriptor, the cached bit always remains at 1. Since
1429 * Intel has a check on this, set it here to support
1430 * cross-vendor migration.
1431 */
1432 if (!var->unusable)
1433 var->type |= 0x1;
1434 break;
1435 case VCPU_SREG_SS:
1436 /*
1437 * On AMD CPUs sometimes the DB bit in the segment
1438 * descriptor is left as 1, although the whole segment has
1439 * been made unusable. Clear it here to pass an Intel VMX
1440 * entry check when cross vendor migrating.
1441 */
1442 if (var->unusable)
1443 var->db = 0;
1444 break;
1445 }
1446 }
1447
1448 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1449 {
1450 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1451
1452 return save->cpl;
1453 }
1454
1455 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1456 {
1457 struct vcpu_svm *svm = to_svm(vcpu);
1458
1459 dt->size = svm->vmcb->save.idtr.limit;
1460 dt->address = svm->vmcb->save.idtr.base;
1461 }
1462
1463 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1464 {
1465 struct vcpu_svm *svm = to_svm(vcpu);
1466
1467 svm->vmcb->save.idtr.limit = dt->size;
1468 svm->vmcb->save.idtr.base = dt->address ;
1469 mark_dirty(svm->vmcb, VMCB_DT);
1470 }
1471
1472 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1473 {
1474 struct vcpu_svm *svm = to_svm(vcpu);
1475
1476 dt->size = svm->vmcb->save.gdtr.limit;
1477 dt->address = svm->vmcb->save.gdtr.base;
1478 }
1479
1480 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1481 {
1482 struct vcpu_svm *svm = to_svm(vcpu);
1483
1484 svm->vmcb->save.gdtr.limit = dt->size;
1485 svm->vmcb->save.gdtr.base = dt->address ;
1486 mark_dirty(svm->vmcb, VMCB_DT);
1487 }
1488
1489 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1490 {
1491 }
1492
1493 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1494 {
1495 }
1496
1497 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1498 {
1499 }
1500
1501 static void update_cr0_intercept(struct vcpu_svm *svm)
1502 {
1503 ulong gcr0 = svm->vcpu.arch.cr0;
1504 u64 *hcr0 = &svm->vmcb->save.cr0;
1505
1506 if (!svm->vcpu.fpu_active)
1507 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1508 else
1509 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1510 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1511
1512 mark_dirty(svm->vmcb, VMCB_CR);
1513
1514 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1515 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1516 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1517 } else {
1518 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1519 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1520 }
1521 }
1522
1523 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1524 {
1525 struct vcpu_svm *svm = to_svm(vcpu);
1526
1527 #ifdef CONFIG_X86_64
1528 if (vcpu->arch.efer & EFER_LME) {
1529 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1530 vcpu->arch.efer |= EFER_LMA;
1531 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1532 }
1533
1534 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1535 vcpu->arch.efer &= ~EFER_LMA;
1536 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1537 }
1538 }
1539 #endif
1540 vcpu->arch.cr0 = cr0;
1541
1542 if (!npt_enabled)
1543 cr0 |= X86_CR0_PG | X86_CR0_WP;
1544
1545 if (!vcpu->fpu_active)
1546 cr0 |= X86_CR0_TS;
1547 /*
1548 * re-enable caching here because the QEMU bios
1549 * does not do it - this results in some delay at
1550 * reboot
1551 */
1552 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1553 svm->vmcb->save.cr0 = cr0;
1554 mark_dirty(svm->vmcb, VMCB_CR);
1555 update_cr0_intercept(svm);
1556 }
1557
1558 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1559 {
1560 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1561 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1562
1563 if (cr4 & X86_CR4_VMXE)
1564 return 1;
1565
1566 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1567 svm_flush_tlb(vcpu);
1568
1569 vcpu->arch.cr4 = cr4;
1570 if (!npt_enabled)
1571 cr4 |= X86_CR4_PAE;
1572 cr4 |= host_cr4_mce;
1573 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1574 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1575 return 0;
1576 }
1577
1578 static void svm_set_segment(struct kvm_vcpu *vcpu,
1579 struct kvm_segment *var, int seg)
1580 {
1581 struct vcpu_svm *svm = to_svm(vcpu);
1582 struct vmcb_seg *s = svm_seg(vcpu, seg);
1583
1584 s->base = var->base;
1585 s->limit = var->limit;
1586 s->selector = var->selector;
1587 if (var->unusable)
1588 s->attrib = 0;
1589 else {
1590 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1591 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1592 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1593 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1594 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1595 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1596 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1597 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1598 }
1599 if (seg == VCPU_SREG_CS)
1600 svm->vmcb->save.cpl
1601 = (svm->vmcb->save.cs.attrib
1602 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1603
1604 mark_dirty(svm->vmcb, VMCB_SEG);
1605 }
1606
1607 static void update_db_intercept(struct kvm_vcpu *vcpu)
1608 {
1609 struct vcpu_svm *svm = to_svm(vcpu);
1610
1611 clr_exception_intercept(svm, DB_VECTOR);
1612 clr_exception_intercept(svm, BP_VECTOR);
1613
1614 if (svm->nmi_singlestep)
1615 set_exception_intercept(svm, DB_VECTOR);
1616
1617 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1618 if (vcpu->guest_debug &
1619 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1620 set_exception_intercept(svm, DB_VECTOR);
1621 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1622 set_exception_intercept(svm, BP_VECTOR);
1623 } else
1624 vcpu->guest_debug = 0;
1625 }
1626
1627 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1628 {
1629 struct vcpu_svm *svm = to_svm(vcpu);
1630
1631 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1632 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1633 else
1634 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1635
1636 mark_dirty(svm->vmcb, VMCB_DR);
1637
1638 update_db_intercept(vcpu);
1639 }
1640
1641 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1642 {
1643 if (sd->next_asid > sd->max_asid) {
1644 ++sd->asid_generation;
1645 sd->next_asid = 1;
1646 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1647 }
1648
1649 svm->asid_generation = sd->asid_generation;
1650 svm->vmcb->control.asid = sd->next_asid++;
1651
1652 mark_dirty(svm->vmcb, VMCB_ASID);
1653 }
1654
1655 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1656 {
1657 struct vcpu_svm *svm = to_svm(vcpu);
1658
1659 svm->vmcb->save.dr7 = value;
1660 mark_dirty(svm->vmcb, VMCB_DR);
1661 }
1662
1663 static int pf_interception(struct vcpu_svm *svm)
1664 {
1665 u64 fault_address = svm->vmcb->control.exit_info_2;
1666 u32 error_code;
1667 int r = 1;
1668
1669 switch (svm->apf_reason) {
1670 default:
1671 error_code = svm->vmcb->control.exit_info_1;
1672
1673 trace_kvm_page_fault(fault_address, error_code);
1674 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1675 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1676 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1677 svm->vmcb->control.insn_bytes,
1678 svm->vmcb->control.insn_len);
1679 break;
1680 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1681 svm->apf_reason = 0;
1682 local_irq_disable();
1683 kvm_async_pf_task_wait(fault_address);
1684 local_irq_enable();
1685 break;
1686 case KVM_PV_REASON_PAGE_READY:
1687 svm->apf_reason = 0;
1688 local_irq_disable();
1689 kvm_async_pf_task_wake(fault_address);
1690 local_irq_enable();
1691 break;
1692 }
1693 return r;
1694 }
1695
1696 static int db_interception(struct vcpu_svm *svm)
1697 {
1698 struct kvm_run *kvm_run = svm->vcpu.run;
1699
1700 if (!(svm->vcpu.guest_debug &
1701 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1702 !svm->nmi_singlestep) {
1703 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1704 return 1;
1705 }
1706
1707 if (svm->nmi_singlestep) {
1708 svm->nmi_singlestep = false;
1709 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1710 svm->vmcb->save.rflags &=
1711 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1712 update_db_intercept(&svm->vcpu);
1713 }
1714
1715 if (svm->vcpu.guest_debug &
1716 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1717 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1718 kvm_run->debug.arch.pc =
1719 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1720 kvm_run->debug.arch.exception = DB_VECTOR;
1721 return 0;
1722 }
1723
1724 return 1;
1725 }
1726
1727 static int bp_interception(struct vcpu_svm *svm)
1728 {
1729 struct kvm_run *kvm_run = svm->vcpu.run;
1730
1731 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1732 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1733 kvm_run->debug.arch.exception = BP_VECTOR;
1734 return 0;
1735 }
1736
1737 static int ud_interception(struct vcpu_svm *svm)
1738 {
1739 int er;
1740
1741 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1742 if (er != EMULATE_DONE)
1743 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1744 return 1;
1745 }
1746
1747 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1748 {
1749 struct vcpu_svm *svm = to_svm(vcpu);
1750
1751 clr_exception_intercept(svm, NM_VECTOR);
1752
1753 svm->vcpu.fpu_active = 1;
1754 update_cr0_intercept(svm);
1755 }
1756
1757 static int nm_interception(struct vcpu_svm *svm)
1758 {
1759 svm_fpu_activate(&svm->vcpu);
1760 return 1;
1761 }
1762
1763 static bool is_erratum_383(void)
1764 {
1765 int err, i;
1766 u64 value;
1767
1768 if (!erratum_383_found)
1769 return false;
1770
1771 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1772 if (err)
1773 return false;
1774
1775 /* Bit 62 may or may not be set for this mce */
1776 value &= ~(1ULL << 62);
1777
1778 if (value != 0xb600000000010015ULL)
1779 return false;
1780
1781 /* Clear MCi_STATUS registers */
1782 for (i = 0; i < 6; ++i)
1783 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1784
1785 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1786 if (!err) {
1787 u32 low, high;
1788
1789 value &= ~(1ULL << 2);
1790 low = lower_32_bits(value);
1791 high = upper_32_bits(value);
1792
1793 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1794 }
1795
1796 /* Flush tlb to evict multi-match entries */
1797 __flush_tlb_all();
1798
1799 return true;
1800 }
1801
1802 static void svm_handle_mce(struct vcpu_svm *svm)
1803 {
1804 if (is_erratum_383()) {
1805 /*
1806 * Erratum 383 triggered. Guest state is corrupt so kill the
1807 * guest.
1808 */
1809 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1810
1811 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1812
1813 return;
1814 }
1815
1816 /*
1817 * On an #MC intercept the MCE handler is not called automatically in
1818 * the host. So do it by hand here.
1819 */
1820 asm volatile (
1821 "int $0x12\n");
1822 /* not sure if we ever come back to this point */
1823
1824 return;
1825 }
1826
1827 static int mc_interception(struct vcpu_svm *svm)
1828 {
1829 return 1;
1830 }
1831
1832 static int shutdown_interception(struct vcpu_svm *svm)
1833 {
1834 struct kvm_run *kvm_run = svm->vcpu.run;
1835
1836 /*
1837 * VMCB is undefined after a SHUTDOWN intercept
1838 * so reinitialize it.
1839 */
1840 clear_page(svm->vmcb);
1841 init_vmcb(svm);
1842
1843 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1844 return 0;
1845 }
1846
1847 static int io_interception(struct vcpu_svm *svm)
1848 {
1849 struct kvm_vcpu *vcpu = &svm->vcpu;
1850 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1851 int size, in, string;
1852 unsigned port;
1853
1854 ++svm->vcpu.stat.io_exits;
1855 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1856 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1857 if (string || in)
1858 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1859
1860 port = io_info >> 16;
1861 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1862 svm->next_rip = svm->vmcb->control.exit_info_2;
1863 skip_emulated_instruction(&svm->vcpu);
1864
1865 return kvm_fast_pio_out(vcpu, size, port);
1866 }
1867
1868 static int nmi_interception(struct vcpu_svm *svm)
1869 {
1870 return 1;
1871 }
1872
1873 static int intr_interception(struct vcpu_svm *svm)
1874 {
1875 ++svm->vcpu.stat.irq_exits;
1876 return 1;
1877 }
1878
1879 static int nop_on_interception(struct vcpu_svm *svm)
1880 {
1881 return 1;
1882 }
1883
1884 static int halt_interception(struct vcpu_svm *svm)
1885 {
1886 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1887 skip_emulated_instruction(&svm->vcpu);
1888 return kvm_emulate_halt(&svm->vcpu);
1889 }
1890
1891 static int vmmcall_interception(struct vcpu_svm *svm)
1892 {
1893 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1894 skip_emulated_instruction(&svm->vcpu);
1895 kvm_emulate_hypercall(&svm->vcpu);
1896 return 1;
1897 }
1898
1899 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1900 {
1901 struct vcpu_svm *svm = to_svm(vcpu);
1902
1903 return svm->nested.nested_cr3;
1904 }
1905
1906 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1907 {
1908 struct vcpu_svm *svm = to_svm(vcpu);
1909 u64 cr3 = svm->nested.nested_cr3;
1910 u64 pdpte;
1911 int ret;
1912
1913 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1914 offset_in_page(cr3) + index * 8, 8);
1915 if (ret)
1916 return 0;
1917 return pdpte;
1918 }
1919
1920 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1921 unsigned long root)
1922 {
1923 struct vcpu_svm *svm = to_svm(vcpu);
1924
1925 svm->vmcb->control.nested_cr3 = root;
1926 mark_dirty(svm->vmcb, VMCB_NPT);
1927 svm_flush_tlb(vcpu);
1928 }
1929
1930 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1931 struct x86_exception *fault)
1932 {
1933 struct vcpu_svm *svm = to_svm(vcpu);
1934
1935 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1936 svm->vmcb->control.exit_code_hi = 0;
1937 svm->vmcb->control.exit_info_1 = fault->error_code;
1938 svm->vmcb->control.exit_info_2 = fault->address;
1939
1940 nested_svm_vmexit(svm);
1941 }
1942
1943 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1944 {
1945 int r;
1946
1947 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1948
1949 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1950 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1951 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1952 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1953 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1954 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1955
1956 return r;
1957 }
1958
1959 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1960 {
1961 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1962 }
1963
1964 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1965 {
1966 if (!(svm->vcpu.arch.efer & EFER_SVME)
1967 || !is_paging(&svm->vcpu)) {
1968 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1969 return 1;
1970 }
1971
1972 if (svm->vmcb->save.cpl) {
1973 kvm_inject_gp(&svm->vcpu, 0);
1974 return 1;
1975 }
1976
1977 return 0;
1978 }
1979
1980 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1981 bool has_error_code, u32 error_code)
1982 {
1983 int vmexit;
1984
1985 if (!is_guest_mode(&svm->vcpu))
1986 return 0;
1987
1988 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1989 svm->vmcb->control.exit_code_hi = 0;
1990 svm->vmcb->control.exit_info_1 = error_code;
1991 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1992
1993 vmexit = nested_svm_intercept(svm);
1994 if (vmexit == NESTED_EXIT_DONE)
1995 svm->nested.exit_required = true;
1996
1997 return vmexit;
1998 }
1999
2000 /* This function returns true if it is save to enable the irq window */
2001 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2002 {
2003 if (!is_guest_mode(&svm->vcpu))
2004 return true;
2005
2006 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2007 return true;
2008
2009 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2010 return false;
2011
2012 /*
2013 * if vmexit was already requested (by intercepted exception
2014 * for instance) do not overwrite it with "external interrupt"
2015 * vmexit.
2016 */
2017 if (svm->nested.exit_required)
2018 return false;
2019
2020 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2021 svm->vmcb->control.exit_info_1 = 0;
2022 svm->vmcb->control.exit_info_2 = 0;
2023
2024 if (svm->nested.intercept & 1ULL) {
2025 /*
2026 * The #vmexit can't be emulated here directly because this
2027 * code path runs with irqs and preemtion disabled. A
2028 * #vmexit emulation might sleep. Only signal request for
2029 * the #vmexit here.
2030 */
2031 svm->nested.exit_required = true;
2032 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2033 return false;
2034 }
2035
2036 return true;
2037 }
2038
2039 /* This function returns true if it is save to enable the nmi window */
2040 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2041 {
2042 if (!is_guest_mode(&svm->vcpu))
2043 return true;
2044
2045 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2046 return true;
2047
2048 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2049 svm->nested.exit_required = true;
2050
2051 return false;
2052 }
2053
2054 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2055 {
2056 struct page *page;
2057
2058 might_sleep();
2059
2060 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2061 if (is_error_page(page))
2062 goto error;
2063
2064 *_page = page;
2065
2066 return kmap(page);
2067
2068 error:
2069 kvm_release_page_clean(page);
2070 kvm_inject_gp(&svm->vcpu, 0);
2071
2072 return NULL;
2073 }
2074
2075 static void nested_svm_unmap(struct page *page)
2076 {
2077 kunmap(page);
2078 kvm_release_page_dirty(page);
2079 }
2080
2081 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2082 {
2083 unsigned port;
2084 u8 val, bit;
2085 u64 gpa;
2086
2087 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2088 return NESTED_EXIT_HOST;
2089
2090 port = svm->vmcb->control.exit_info_1 >> 16;
2091 gpa = svm->nested.vmcb_iopm + (port / 8);
2092 bit = port % 8;
2093 val = 0;
2094
2095 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2096 val &= (1 << bit);
2097
2098 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2099 }
2100
2101 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2102 {
2103 u32 offset, msr, value;
2104 int write, mask;
2105
2106 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2107 return NESTED_EXIT_HOST;
2108
2109 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2110 offset = svm_msrpm_offset(msr);
2111 write = svm->vmcb->control.exit_info_1 & 1;
2112 mask = 1 << ((2 * (msr & 0xf)) + write);
2113
2114 if (offset == MSR_INVALID)
2115 return NESTED_EXIT_DONE;
2116
2117 /* Offset is in 32 bit units but need in 8 bit units */
2118 offset *= 4;
2119
2120 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2121 return NESTED_EXIT_DONE;
2122
2123 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2124 }
2125
2126 static int nested_svm_exit_special(struct vcpu_svm *svm)
2127 {
2128 u32 exit_code = svm->vmcb->control.exit_code;
2129
2130 switch (exit_code) {
2131 case SVM_EXIT_INTR:
2132 case SVM_EXIT_NMI:
2133 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2134 return NESTED_EXIT_HOST;
2135 case SVM_EXIT_NPF:
2136 /* For now we are always handling NPFs when using them */
2137 if (npt_enabled)
2138 return NESTED_EXIT_HOST;
2139 break;
2140 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2141 /* When we're shadowing, trap PFs, but not async PF */
2142 if (!npt_enabled && svm->apf_reason == 0)
2143 return NESTED_EXIT_HOST;
2144 break;
2145 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2146 nm_interception(svm);
2147 break;
2148 default:
2149 break;
2150 }
2151
2152 return NESTED_EXIT_CONTINUE;
2153 }
2154
2155 /*
2156 * If this function returns true, this #vmexit was already handled
2157 */
2158 static int nested_svm_intercept(struct vcpu_svm *svm)
2159 {
2160 u32 exit_code = svm->vmcb->control.exit_code;
2161 int vmexit = NESTED_EXIT_HOST;
2162
2163 switch (exit_code) {
2164 case SVM_EXIT_MSR:
2165 vmexit = nested_svm_exit_handled_msr(svm);
2166 break;
2167 case SVM_EXIT_IOIO:
2168 vmexit = nested_svm_intercept_ioio(svm);
2169 break;
2170 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2171 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2172 if (svm->nested.intercept_cr & bit)
2173 vmexit = NESTED_EXIT_DONE;
2174 break;
2175 }
2176 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2177 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2178 if (svm->nested.intercept_dr & bit)
2179 vmexit = NESTED_EXIT_DONE;
2180 break;
2181 }
2182 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2183 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2184 if (svm->nested.intercept_exceptions & excp_bits)
2185 vmexit = NESTED_EXIT_DONE;
2186 /* async page fault always cause vmexit */
2187 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2188 svm->apf_reason != 0)
2189 vmexit = NESTED_EXIT_DONE;
2190 break;
2191 }
2192 case SVM_EXIT_ERR: {
2193 vmexit = NESTED_EXIT_DONE;
2194 break;
2195 }
2196 default: {
2197 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2198 if (svm->nested.intercept & exit_bits)
2199 vmexit = NESTED_EXIT_DONE;
2200 }
2201 }
2202
2203 return vmexit;
2204 }
2205
2206 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2207 {
2208 int vmexit;
2209
2210 vmexit = nested_svm_intercept(svm);
2211
2212 if (vmexit == NESTED_EXIT_DONE)
2213 nested_svm_vmexit(svm);
2214
2215 return vmexit;
2216 }
2217
2218 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2219 {
2220 struct vmcb_control_area *dst = &dst_vmcb->control;
2221 struct vmcb_control_area *from = &from_vmcb->control;
2222
2223 dst->intercept_cr = from->intercept_cr;
2224 dst->intercept_dr = from->intercept_dr;
2225 dst->intercept_exceptions = from->intercept_exceptions;
2226 dst->intercept = from->intercept;
2227 dst->iopm_base_pa = from->iopm_base_pa;
2228 dst->msrpm_base_pa = from->msrpm_base_pa;
2229 dst->tsc_offset = from->tsc_offset;
2230 dst->asid = from->asid;
2231 dst->tlb_ctl = from->tlb_ctl;
2232 dst->int_ctl = from->int_ctl;
2233 dst->int_vector = from->int_vector;
2234 dst->int_state = from->int_state;
2235 dst->exit_code = from->exit_code;
2236 dst->exit_code_hi = from->exit_code_hi;
2237 dst->exit_info_1 = from->exit_info_1;
2238 dst->exit_info_2 = from->exit_info_2;
2239 dst->exit_int_info = from->exit_int_info;
2240 dst->exit_int_info_err = from->exit_int_info_err;
2241 dst->nested_ctl = from->nested_ctl;
2242 dst->event_inj = from->event_inj;
2243 dst->event_inj_err = from->event_inj_err;
2244 dst->nested_cr3 = from->nested_cr3;
2245 dst->lbr_ctl = from->lbr_ctl;
2246 }
2247
2248 static int nested_svm_vmexit(struct vcpu_svm *svm)
2249 {
2250 struct vmcb *nested_vmcb;
2251 struct vmcb *hsave = svm->nested.hsave;
2252 struct vmcb *vmcb = svm->vmcb;
2253 struct page *page;
2254
2255 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2256 vmcb->control.exit_info_1,
2257 vmcb->control.exit_info_2,
2258 vmcb->control.exit_int_info,
2259 vmcb->control.exit_int_info_err,
2260 KVM_ISA_SVM);
2261
2262 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2263 if (!nested_vmcb)
2264 return 1;
2265
2266 /* Exit Guest-Mode */
2267 leave_guest_mode(&svm->vcpu);
2268 svm->nested.vmcb = 0;
2269
2270 /* Give the current vmcb to the guest */
2271 disable_gif(svm);
2272
2273 nested_vmcb->save.es = vmcb->save.es;
2274 nested_vmcb->save.cs = vmcb->save.cs;
2275 nested_vmcb->save.ss = vmcb->save.ss;
2276 nested_vmcb->save.ds = vmcb->save.ds;
2277 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2278 nested_vmcb->save.idtr = vmcb->save.idtr;
2279 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2280 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2281 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2282 nested_vmcb->save.cr2 = vmcb->save.cr2;
2283 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2284 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2285 nested_vmcb->save.rip = vmcb->save.rip;
2286 nested_vmcb->save.rsp = vmcb->save.rsp;
2287 nested_vmcb->save.rax = vmcb->save.rax;
2288 nested_vmcb->save.dr7 = vmcb->save.dr7;
2289 nested_vmcb->save.dr6 = vmcb->save.dr6;
2290 nested_vmcb->save.cpl = vmcb->save.cpl;
2291
2292 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2293 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2294 nested_vmcb->control.int_state = vmcb->control.int_state;
2295 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2296 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2297 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2298 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2299 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2300 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2301 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2302
2303 /*
2304 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2305 * to make sure that we do not lose injected events. So check event_inj
2306 * here and copy it to exit_int_info if it is valid.
2307 * Exit_int_info and event_inj can't be both valid because the case
2308 * below only happens on a VMRUN instruction intercept which has
2309 * no valid exit_int_info set.
2310 */
2311 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2312 struct vmcb_control_area *nc = &nested_vmcb->control;
2313
2314 nc->exit_int_info = vmcb->control.event_inj;
2315 nc->exit_int_info_err = vmcb->control.event_inj_err;
2316 }
2317
2318 nested_vmcb->control.tlb_ctl = 0;
2319 nested_vmcb->control.event_inj = 0;
2320 nested_vmcb->control.event_inj_err = 0;
2321
2322 /* We always set V_INTR_MASKING and remember the old value in hflags */
2323 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2324 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2325
2326 /* Restore the original control entries */
2327 copy_vmcb_control_area(vmcb, hsave);
2328
2329 kvm_clear_exception_queue(&svm->vcpu);
2330 kvm_clear_interrupt_queue(&svm->vcpu);
2331
2332 svm->nested.nested_cr3 = 0;
2333
2334 /* Restore selected save entries */
2335 svm->vmcb->save.es = hsave->save.es;
2336 svm->vmcb->save.cs = hsave->save.cs;
2337 svm->vmcb->save.ss = hsave->save.ss;
2338 svm->vmcb->save.ds = hsave->save.ds;
2339 svm->vmcb->save.gdtr = hsave->save.gdtr;
2340 svm->vmcb->save.idtr = hsave->save.idtr;
2341 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2342 svm_set_efer(&svm->vcpu, hsave->save.efer);
2343 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2344 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2345 if (npt_enabled) {
2346 svm->vmcb->save.cr3 = hsave->save.cr3;
2347 svm->vcpu.arch.cr3 = hsave->save.cr3;
2348 } else {
2349 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2350 }
2351 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2352 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2353 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2354 svm->vmcb->save.dr7 = 0;
2355 svm->vmcb->save.cpl = 0;
2356 svm->vmcb->control.exit_int_info = 0;
2357
2358 mark_all_dirty(svm->vmcb);
2359
2360 nested_svm_unmap(page);
2361
2362 nested_svm_uninit_mmu_context(&svm->vcpu);
2363 kvm_mmu_reset_context(&svm->vcpu);
2364 kvm_mmu_load(&svm->vcpu);
2365
2366 return 0;
2367 }
2368
2369 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2370 {
2371 /*
2372 * This function merges the msr permission bitmaps of kvm and the
2373 * nested vmcb. It is omptimized in that it only merges the parts where
2374 * the kvm msr permission bitmap may contain zero bits
2375 */
2376 int i;
2377
2378 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2379 return true;
2380
2381 for (i = 0; i < MSRPM_OFFSETS; i++) {
2382 u32 value, p;
2383 u64 offset;
2384
2385 if (msrpm_offsets[i] == 0xffffffff)
2386 break;
2387
2388 p = msrpm_offsets[i];
2389 offset = svm->nested.vmcb_msrpm + (p * 4);
2390
2391 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2392 return false;
2393
2394 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2395 }
2396
2397 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2398
2399 return true;
2400 }
2401
2402 static bool nested_vmcb_checks(struct vmcb *vmcb)
2403 {
2404 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2405 return false;
2406
2407 if (vmcb->control.asid == 0)
2408 return false;
2409
2410 if (vmcb->control.nested_ctl && !npt_enabled)
2411 return false;
2412
2413 return true;
2414 }
2415
2416 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2417 {
2418 struct vmcb *nested_vmcb;
2419 struct vmcb *hsave = svm->nested.hsave;
2420 struct vmcb *vmcb = svm->vmcb;
2421 struct page *page;
2422 u64 vmcb_gpa;
2423
2424 vmcb_gpa = svm->vmcb->save.rax;
2425
2426 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2427 if (!nested_vmcb)
2428 return false;
2429
2430 if (!nested_vmcb_checks(nested_vmcb)) {
2431 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2432 nested_vmcb->control.exit_code_hi = 0;
2433 nested_vmcb->control.exit_info_1 = 0;
2434 nested_vmcb->control.exit_info_2 = 0;
2435
2436 nested_svm_unmap(page);
2437
2438 return false;
2439 }
2440
2441 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2442 nested_vmcb->save.rip,
2443 nested_vmcb->control.int_ctl,
2444 nested_vmcb->control.event_inj,
2445 nested_vmcb->control.nested_ctl);
2446
2447 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2448 nested_vmcb->control.intercept_cr >> 16,
2449 nested_vmcb->control.intercept_exceptions,
2450 nested_vmcb->control.intercept);
2451
2452 /* Clear internal status */
2453 kvm_clear_exception_queue(&svm->vcpu);
2454 kvm_clear_interrupt_queue(&svm->vcpu);
2455
2456 /*
2457 * Save the old vmcb, so we don't need to pick what we save, but can
2458 * restore everything when a VMEXIT occurs
2459 */
2460 hsave->save.es = vmcb->save.es;
2461 hsave->save.cs = vmcb->save.cs;
2462 hsave->save.ss = vmcb->save.ss;
2463 hsave->save.ds = vmcb->save.ds;
2464 hsave->save.gdtr = vmcb->save.gdtr;
2465 hsave->save.idtr = vmcb->save.idtr;
2466 hsave->save.efer = svm->vcpu.arch.efer;
2467 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2468 hsave->save.cr4 = svm->vcpu.arch.cr4;
2469 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2470 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2471 hsave->save.rsp = vmcb->save.rsp;
2472 hsave->save.rax = vmcb->save.rax;
2473 if (npt_enabled)
2474 hsave->save.cr3 = vmcb->save.cr3;
2475 else
2476 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2477
2478 copy_vmcb_control_area(hsave, vmcb);
2479
2480 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2481 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2482 else
2483 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2484
2485 if (nested_vmcb->control.nested_ctl) {
2486 kvm_mmu_unload(&svm->vcpu);
2487 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2488 nested_svm_init_mmu_context(&svm->vcpu);
2489 }
2490
2491 /* Load the nested guest state */
2492 svm->vmcb->save.es = nested_vmcb->save.es;
2493 svm->vmcb->save.cs = nested_vmcb->save.cs;
2494 svm->vmcb->save.ss = nested_vmcb->save.ss;
2495 svm->vmcb->save.ds = nested_vmcb->save.ds;
2496 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2497 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2498 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2499 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2500 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2501 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2502 if (npt_enabled) {
2503 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2504 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2505 } else
2506 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2507
2508 /* Guest paging mode is active - reset mmu */
2509 kvm_mmu_reset_context(&svm->vcpu);
2510
2511 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2512 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2513 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2514 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2515
2516 /* In case we don't even reach vcpu_run, the fields are not updated */
2517 svm->vmcb->save.rax = nested_vmcb->save.rax;
2518 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2519 svm->vmcb->save.rip = nested_vmcb->save.rip;
2520 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2521 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2522 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2523
2524 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2525 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2526
2527 /* cache intercepts */
2528 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2529 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2530 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2531 svm->nested.intercept = nested_vmcb->control.intercept;
2532
2533 svm_flush_tlb(&svm->vcpu);
2534 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2535 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2536 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2537 else
2538 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2539
2540 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2541 /* We only want the cr8 intercept bits of the guest */
2542 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2543 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2544 }
2545
2546 /* We don't want to see VMMCALLs from a nested guest */
2547 clr_intercept(svm, INTERCEPT_VMMCALL);
2548
2549 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2550 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2551 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2552 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2553 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2554 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2555
2556 nested_svm_unmap(page);
2557
2558 /* Enter Guest-Mode */
2559 enter_guest_mode(&svm->vcpu);
2560
2561 /*
2562 * Merge guest and host intercepts - must be called with vcpu in
2563 * guest-mode to take affect here
2564 */
2565 recalc_intercepts(svm);
2566
2567 svm->nested.vmcb = vmcb_gpa;
2568
2569 enable_gif(svm);
2570
2571 mark_all_dirty(svm->vmcb);
2572
2573 return true;
2574 }
2575
2576 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2577 {
2578 to_vmcb->save.fs = from_vmcb->save.fs;
2579 to_vmcb->save.gs = from_vmcb->save.gs;
2580 to_vmcb->save.tr = from_vmcb->save.tr;
2581 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2582 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2583 to_vmcb->save.star = from_vmcb->save.star;
2584 to_vmcb->save.lstar = from_vmcb->save.lstar;
2585 to_vmcb->save.cstar = from_vmcb->save.cstar;
2586 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2587 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2588 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2589 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2590 }
2591
2592 static int vmload_interception(struct vcpu_svm *svm)
2593 {
2594 struct vmcb *nested_vmcb;
2595 struct page *page;
2596
2597 if (nested_svm_check_permissions(svm))
2598 return 1;
2599
2600 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2601 if (!nested_vmcb)
2602 return 1;
2603
2604 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2605 skip_emulated_instruction(&svm->vcpu);
2606
2607 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2608 nested_svm_unmap(page);
2609
2610 return 1;
2611 }
2612
2613 static int vmsave_interception(struct vcpu_svm *svm)
2614 {
2615 struct vmcb *nested_vmcb;
2616 struct page *page;
2617
2618 if (nested_svm_check_permissions(svm))
2619 return 1;
2620
2621 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2622 if (!nested_vmcb)
2623 return 1;
2624
2625 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2626 skip_emulated_instruction(&svm->vcpu);
2627
2628 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2629 nested_svm_unmap(page);
2630
2631 return 1;
2632 }
2633
2634 static int vmrun_interception(struct vcpu_svm *svm)
2635 {
2636 if (nested_svm_check_permissions(svm))
2637 return 1;
2638
2639 /* Save rip after vmrun instruction */
2640 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2641
2642 if (!nested_svm_vmrun(svm))
2643 return 1;
2644
2645 if (!nested_svm_vmrun_msrpm(svm))
2646 goto failed;
2647
2648 return 1;
2649
2650 failed:
2651
2652 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2653 svm->vmcb->control.exit_code_hi = 0;
2654 svm->vmcb->control.exit_info_1 = 0;
2655 svm->vmcb->control.exit_info_2 = 0;
2656
2657 nested_svm_vmexit(svm);
2658
2659 return 1;
2660 }
2661
2662 static int stgi_interception(struct vcpu_svm *svm)
2663 {
2664 if (nested_svm_check_permissions(svm))
2665 return 1;
2666
2667 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2668 skip_emulated_instruction(&svm->vcpu);
2669 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2670
2671 enable_gif(svm);
2672
2673 return 1;
2674 }
2675
2676 static int clgi_interception(struct vcpu_svm *svm)
2677 {
2678 if (nested_svm_check_permissions(svm))
2679 return 1;
2680
2681 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2682 skip_emulated_instruction(&svm->vcpu);
2683
2684 disable_gif(svm);
2685
2686 /* After a CLGI no interrupts should come */
2687 svm_clear_vintr(svm);
2688 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2689
2690 mark_dirty(svm->vmcb, VMCB_INTR);
2691
2692 return 1;
2693 }
2694
2695 static int invlpga_interception(struct vcpu_svm *svm)
2696 {
2697 struct kvm_vcpu *vcpu = &svm->vcpu;
2698
2699 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2700 vcpu->arch.regs[VCPU_REGS_RAX]);
2701
2702 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2703 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2704
2705 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2706 skip_emulated_instruction(&svm->vcpu);
2707 return 1;
2708 }
2709
2710 static int skinit_interception(struct vcpu_svm *svm)
2711 {
2712 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2713
2714 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2715 return 1;
2716 }
2717
2718 static int xsetbv_interception(struct vcpu_svm *svm)
2719 {
2720 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2721 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2722
2723 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2724 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2725 skip_emulated_instruction(&svm->vcpu);
2726 }
2727
2728 return 1;
2729 }
2730
2731 static int invalid_op_interception(struct vcpu_svm *svm)
2732 {
2733 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2734 return 1;
2735 }
2736
2737 static int task_switch_interception(struct vcpu_svm *svm)
2738 {
2739 u16 tss_selector;
2740 int reason;
2741 int int_type = svm->vmcb->control.exit_int_info &
2742 SVM_EXITINTINFO_TYPE_MASK;
2743 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2744 uint32_t type =
2745 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2746 uint32_t idt_v =
2747 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2748 bool has_error_code = false;
2749 u32 error_code = 0;
2750
2751 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2752
2753 if (svm->vmcb->control.exit_info_2 &
2754 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2755 reason = TASK_SWITCH_IRET;
2756 else if (svm->vmcb->control.exit_info_2 &
2757 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2758 reason = TASK_SWITCH_JMP;
2759 else if (idt_v)
2760 reason = TASK_SWITCH_GATE;
2761 else
2762 reason = TASK_SWITCH_CALL;
2763
2764 if (reason == TASK_SWITCH_GATE) {
2765 switch (type) {
2766 case SVM_EXITINTINFO_TYPE_NMI:
2767 svm->vcpu.arch.nmi_injected = false;
2768 break;
2769 case SVM_EXITINTINFO_TYPE_EXEPT:
2770 if (svm->vmcb->control.exit_info_2 &
2771 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2772 has_error_code = true;
2773 error_code =
2774 (u32)svm->vmcb->control.exit_info_2;
2775 }
2776 kvm_clear_exception_queue(&svm->vcpu);
2777 break;
2778 case SVM_EXITINTINFO_TYPE_INTR:
2779 kvm_clear_interrupt_queue(&svm->vcpu);
2780 break;
2781 default:
2782 break;
2783 }
2784 }
2785
2786 if (reason != TASK_SWITCH_GATE ||
2787 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2788 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2789 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2790 skip_emulated_instruction(&svm->vcpu);
2791
2792 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2793 has_error_code, error_code) == EMULATE_FAIL) {
2794 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2795 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2796 svm->vcpu.run->internal.ndata = 0;
2797 return 0;
2798 }
2799 return 1;
2800 }
2801
2802 static int cpuid_interception(struct vcpu_svm *svm)
2803 {
2804 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2805 kvm_emulate_cpuid(&svm->vcpu);
2806 return 1;
2807 }
2808
2809 static int iret_interception(struct vcpu_svm *svm)
2810 {
2811 ++svm->vcpu.stat.nmi_window_exits;
2812 clr_intercept(svm, INTERCEPT_IRET);
2813 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2814 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2815 return 1;
2816 }
2817
2818 static int invlpg_interception(struct vcpu_svm *svm)
2819 {
2820 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2821 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2822
2823 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2824 skip_emulated_instruction(&svm->vcpu);
2825 return 1;
2826 }
2827
2828 static int emulate_on_interception(struct vcpu_svm *svm)
2829 {
2830 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2831 }
2832
2833 static int rdpmc_interception(struct vcpu_svm *svm)
2834 {
2835 int err;
2836
2837 if (!static_cpu_has(X86_FEATURE_NRIPS))
2838 return emulate_on_interception(svm);
2839
2840 err = kvm_rdpmc(&svm->vcpu);
2841 kvm_complete_insn_gp(&svm->vcpu, err);
2842
2843 return 1;
2844 }
2845
2846 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2847 {
2848 unsigned long cr0 = svm->vcpu.arch.cr0;
2849 bool ret = false;
2850 u64 intercept;
2851
2852 intercept = svm->nested.intercept;
2853
2854 if (!is_guest_mode(&svm->vcpu) ||
2855 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2856 return false;
2857
2858 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2859 val &= ~SVM_CR0_SELECTIVE_MASK;
2860
2861 if (cr0 ^ val) {
2862 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2863 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2864 }
2865
2866 return ret;
2867 }
2868
2869 #define CR_VALID (1ULL << 63)
2870
2871 static int cr_interception(struct vcpu_svm *svm)
2872 {
2873 int reg, cr;
2874 unsigned long val;
2875 int err;
2876
2877 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2878 return emulate_on_interception(svm);
2879
2880 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2881 return emulate_on_interception(svm);
2882
2883 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2884 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2885
2886 err = 0;
2887 if (cr >= 16) { /* mov to cr */
2888 cr -= 16;
2889 val = kvm_register_read(&svm->vcpu, reg);
2890 switch (cr) {
2891 case 0:
2892 if (!check_selective_cr0_intercepted(svm, val))
2893 err = kvm_set_cr0(&svm->vcpu, val);
2894 else
2895 return 1;
2896
2897 break;
2898 case 3:
2899 err = kvm_set_cr3(&svm->vcpu, val);
2900 break;
2901 case 4:
2902 err = kvm_set_cr4(&svm->vcpu, val);
2903 break;
2904 case 8:
2905 err = kvm_set_cr8(&svm->vcpu, val);
2906 break;
2907 default:
2908 WARN(1, "unhandled write to CR%d", cr);
2909 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2910 return 1;
2911 }
2912 } else { /* mov from cr */
2913 switch (cr) {
2914 case 0:
2915 val = kvm_read_cr0(&svm->vcpu);
2916 break;
2917 case 2:
2918 val = svm->vcpu.arch.cr2;
2919 break;
2920 case 3:
2921 val = kvm_read_cr3(&svm->vcpu);
2922 break;
2923 case 4:
2924 val = kvm_read_cr4(&svm->vcpu);
2925 break;
2926 case 8:
2927 val = kvm_get_cr8(&svm->vcpu);
2928 break;
2929 default:
2930 WARN(1, "unhandled read from CR%d", cr);
2931 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2932 return 1;
2933 }
2934 kvm_register_write(&svm->vcpu, reg, val);
2935 }
2936 kvm_complete_insn_gp(&svm->vcpu, err);
2937
2938 return 1;
2939 }
2940
2941 static int dr_interception(struct vcpu_svm *svm)
2942 {
2943 int reg, dr;
2944 unsigned long val;
2945 int err;
2946
2947 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2948 return emulate_on_interception(svm);
2949
2950 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2951 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2952
2953 if (dr >= 16) { /* mov to DRn */
2954 val = kvm_register_read(&svm->vcpu, reg);
2955 kvm_set_dr(&svm->vcpu, dr - 16, val);
2956 } else {
2957 err = kvm_get_dr(&svm->vcpu, dr, &val);
2958 if (!err)
2959 kvm_register_write(&svm->vcpu, reg, val);
2960 }
2961
2962 skip_emulated_instruction(&svm->vcpu);
2963
2964 return 1;
2965 }
2966
2967 static int cr8_write_interception(struct vcpu_svm *svm)
2968 {
2969 struct kvm_run *kvm_run = svm->vcpu.run;
2970 int r;
2971
2972 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2973 /* instruction emulation calls kvm_set_cr8() */
2974 r = cr_interception(svm);
2975 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2976 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2977 return r;
2978 }
2979 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2980 return r;
2981 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2982 return 0;
2983 }
2984
2985 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
2986 {
2987 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2988 return vmcb->control.tsc_offset +
2989 svm_scale_tsc(vcpu, native_read_tsc());
2990 }
2991
2992 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2993 {
2994 struct vcpu_svm *svm = to_svm(vcpu);
2995
2996 switch (ecx) {
2997 case MSR_IA32_TSC: {
2998 *data = svm->vmcb->control.tsc_offset +
2999 svm_scale_tsc(vcpu, native_read_tsc());
3000
3001 break;
3002 }
3003 case MSR_STAR:
3004 *data = svm->vmcb->save.star;
3005 break;
3006 #ifdef CONFIG_X86_64
3007 case MSR_LSTAR:
3008 *data = svm->vmcb->save.lstar;
3009 break;
3010 case MSR_CSTAR:
3011 *data = svm->vmcb->save.cstar;
3012 break;
3013 case MSR_KERNEL_GS_BASE:
3014 *data = svm->vmcb->save.kernel_gs_base;
3015 break;
3016 case MSR_SYSCALL_MASK:
3017 *data = svm->vmcb->save.sfmask;
3018 break;
3019 #endif
3020 case MSR_IA32_SYSENTER_CS:
3021 *data = svm->vmcb->save.sysenter_cs;
3022 break;
3023 case MSR_IA32_SYSENTER_EIP:
3024 *data = svm->sysenter_eip;
3025 break;
3026 case MSR_IA32_SYSENTER_ESP:
3027 *data = svm->sysenter_esp;
3028 break;
3029 /*
3030 * Nobody will change the following 5 values in the VMCB so we can
3031 * safely return them on rdmsr. They will always be 0 until LBRV is
3032 * implemented.
3033 */
3034 case MSR_IA32_DEBUGCTLMSR:
3035 *data = svm->vmcb->save.dbgctl;
3036 break;
3037 case MSR_IA32_LASTBRANCHFROMIP:
3038 *data = svm->vmcb->save.br_from;
3039 break;
3040 case MSR_IA32_LASTBRANCHTOIP:
3041 *data = svm->vmcb->save.br_to;
3042 break;
3043 case MSR_IA32_LASTINTFROMIP:
3044 *data = svm->vmcb->save.last_excp_from;
3045 break;
3046 case MSR_IA32_LASTINTTOIP:
3047 *data = svm->vmcb->save.last_excp_to;
3048 break;
3049 case MSR_VM_HSAVE_PA:
3050 *data = svm->nested.hsave_msr;
3051 break;
3052 case MSR_VM_CR:
3053 *data = svm->nested.vm_cr_msr;
3054 break;
3055 case MSR_IA32_UCODE_REV:
3056 *data = 0x01000065;
3057 break;
3058 default:
3059 return kvm_get_msr_common(vcpu, ecx, data);
3060 }
3061 return 0;
3062 }
3063
3064 static int rdmsr_interception(struct vcpu_svm *svm)
3065 {
3066 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3067 u64 data;
3068
3069 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3070 trace_kvm_msr_read_ex(ecx);
3071 kvm_inject_gp(&svm->vcpu, 0);
3072 } else {
3073 trace_kvm_msr_read(ecx, data);
3074
3075 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3076 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3077 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3078 skip_emulated_instruction(&svm->vcpu);
3079 }
3080 return 1;
3081 }
3082
3083 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3084 {
3085 struct vcpu_svm *svm = to_svm(vcpu);
3086 int svm_dis, chg_mask;
3087
3088 if (data & ~SVM_VM_CR_VALID_MASK)
3089 return 1;
3090
3091 chg_mask = SVM_VM_CR_VALID_MASK;
3092
3093 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3094 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3095
3096 svm->nested.vm_cr_msr &= ~chg_mask;
3097 svm->nested.vm_cr_msr |= (data & chg_mask);
3098
3099 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3100
3101 /* check for svm_disable while efer.svme is set */
3102 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3103 return 1;
3104
3105 return 0;
3106 }
3107
3108 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3109 {
3110 struct vcpu_svm *svm = to_svm(vcpu);
3111
3112 switch (ecx) {
3113 case MSR_IA32_TSC:
3114 kvm_write_tsc(vcpu, data);
3115 break;
3116 case MSR_STAR:
3117 svm->vmcb->save.star = data;
3118 break;
3119 #ifdef CONFIG_X86_64
3120 case MSR_LSTAR:
3121 svm->vmcb->save.lstar = data;
3122 break;
3123 case MSR_CSTAR:
3124 svm->vmcb->save.cstar = data;
3125 break;
3126 case MSR_KERNEL_GS_BASE:
3127 svm->vmcb->save.kernel_gs_base = data;
3128 break;
3129 case MSR_SYSCALL_MASK:
3130 svm->vmcb->save.sfmask = data;
3131 break;
3132 #endif
3133 case MSR_IA32_SYSENTER_CS:
3134 svm->vmcb->save.sysenter_cs = data;
3135 break;
3136 case MSR_IA32_SYSENTER_EIP:
3137 svm->sysenter_eip = data;
3138 svm->vmcb->save.sysenter_eip = data;
3139 break;
3140 case MSR_IA32_SYSENTER_ESP:
3141 svm->sysenter_esp = data;
3142 svm->vmcb->save.sysenter_esp = data;
3143 break;
3144 case MSR_IA32_DEBUGCTLMSR:
3145 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3146 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3147 __func__, data);
3148 break;
3149 }
3150 if (data & DEBUGCTL_RESERVED_BITS)
3151 return 1;
3152
3153 svm->vmcb->save.dbgctl = data;
3154 mark_dirty(svm->vmcb, VMCB_LBR);
3155 if (data & (1ULL<<0))
3156 svm_enable_lbrv(svm);
3157 else
3158 svm_disable_lbrv(svm);
3159 break;
3160 case MSR_VM_HSAVE_PA:
3161 svm->nested.hsave_msr = data;
3162 break;
3163 case MSR_VM_CR:
3164 return svm_set_vm_cr(vcpu, data);
3165 case MSR_VM_IGNNE:
3166 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3167 break;
3168 default:
3169 return kvm_set_msr_common(vcpu, ecx, data);
3170 }
3171 return 0;
3172 }
3173
3174 static int wrmsr_interception(struct vcpu_svm *svm)
3175 {
3176 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3177 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3178 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3179
3180
3181 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3182 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3183 trace_kvm_msr_write_ex(ecx, data);
3184 kvm_inject_gp(&svm->vcpu, 0);
3185 } else {
3186 trace_kvm_msr_write(ecx, data);
3187 skip_emulated_instruction(&svm->vcpu);
3188 }
3189 return 1;
3190 }
3191
3192 static int msr_interception(struct vcpu_svm *svm)
3193 {
3194 if (svm->vmcb->control.exit_info_1)
3195 return wrmsr_interception(svm);
3196 else
3197 return rdmsr_interception(svm);
3198 }
3199
3200 static int interrupt_window_interception(struct vcpu_svm *svm)
3201 {
3202 struct kvm_run *kvm_run = svm->vcpu.run;
3203
3204 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3205 svm_clear_vintr(svm);
3206 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3207 mark_dirty(svm->vmcb, VMCB_INTR);
3208 /*
3209 * If the user space waits to inject interrupts, exit as soon as
3210 * possible
3211 */
3212 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3213 kvm_run->request_interrupt_window &&
3214 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3215 ++svm->vcpu.stat.irq_window_exits;
3216 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3217 return 0;
3218 }
3219
3220 return 1;
3221 }
3222
3223 static int pause_interception(struct vcpu_svm *svm)
3224 {
3225 kvm_vcpu_on_spin(&(svm->vcpu));
3226 return 1;
3227 }
3228
3229 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3230 [SVM_EXIT_READ_CR0] = cr_interception,
3231 [SVM_EXIT_READ_CR3] = cr_interception,
3232 [SVM_EXIT_READ_CR4] = cr_interception,
3233 [SVM_EXIT_READ_CR8] = cr_interception,
3234 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3235 [SVM_EXIT_WRITE_CR0] = cr_interception,
3236 [SVM_EXIT_WRITE_CR3] = cr_interception,
3237 [SVM_EXIT_WRITE_CR4] = cr_interception,
3238 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3239 [SVM_EXIT_READ_DR0] = dr_interception,
3240 [SVM_EXIT_READ_DR1] = dr_interception,
3241 [SVM_EXIT_READ_DR2] = dr_interception,
3242 [SVM_EXIT_READ_DR3] = dr_interception,
3243 [SVM_EXIT_READ_DR4] = dr_interception,
3244 [SVM_EXIT_READ_DR5] = dr_interception,
3245 [SVM_EXIT_READ_DR6] = dr_interception,
3246 [SVM_EXIT_READ_DR7] = dr_interception,
3247 [SVM_EXIT_WRITE_DR0] = dr_interception,
3248 [SVM_EXIT_WRITE_DR1] = dr_interception,
3249 [SVM_EXIT_WRITE_DR2] = dr_interception,
3250 [SVM_EXIT_WRITE_DR3] = dr_interception,
3251 [SVM_EXIT_WRITE_DR4] = dr_interception,
3252 [SVM_EXIT_WRITE_DR5] = dr_interception,
3253 [SVM_EXIT_WRITE_DR6] = dr_interception,
3254 [SVM_EXIT_WRITE_DR7] = dr_interception,
3255 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3256 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3257 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3258 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3259 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3260 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3261 [SVM_EXIT_INTR] = intr_interception,
3262 [SVM_EXIT_NMI] = nmi_interception,
3263 [SVM_EXIT_SMI] = nop_on_interception,
3264 [SVM_EXIT_INIT] = nop_on_interception,
3265 [SVM_EXIT_VINTR] = interrupt_window_interception,
3266 [SVM_EXIT_RDPMC] = rdpmc_interception,
3267 [SVM_EXIT_CPUID] = cpuid_interception,
3268 [SVM_EXIT_IRET] = iret_interception,
3269 [SVM_EXIT_INVD] = emulate_on_interception,
3270 [SVM_EXIT_PAUSE] = pause_interception,
3271 [SVM_EXIT_HLT] = halt_interception,
3272 [SVM_EXIT_INVLPG] = invlpg_interception,
3273 [SVM_EXIT_INVLPGA] = invlpga_interception,
3274 [SVM_EXIT_IOIO] = io_interception,
3275 [SVM_EXIT_MSR] = msr_interception,
3276 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3277 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3278 [SVM_EXIT_VMRUN] = vmrun_interception,
3279 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3280 [SVM_EXIT_VMLOAD] = vmload_interception,
3281 [SVM_EXIT_VMSAVE] = vmsave_interception,
3282 [SVM_EXIT_STGI] = stgi_interception,
3283 [SVM_EXIT_CLGI] = clgi_interception,
3284 [SVM_EXIT_SKINIT] = skinit_interception,
3285 [SVM_EXIT_WBINVD] = emulate_on_interception,
3286 [SVM_EXIT_MONITOR] = invalid_op_interception,
3287 [SVM_EXIT_MWAIT] = invalid_op_interception,
3288 [SVM_EXIT_XSETBV] = xsetbv_interception,
3289 [SVM_EXIT_NPF] = pf_interception,
3290 };
3291
3292 static void dump_vmcb(struct kvm_vcpu *vcpu)
3293 {
3294 struct vcpu_svm *svm = to_svm(vcpu);
3295 struct vmcb_control_area *control = &svm->vmcb->control;
3296 struct vmcb_save_area *save = &svm->vmcb->save;
3297
3298 pr_err("VMCB Control Area:\n");
3299 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3300 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3301 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3302 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3303 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3304 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3305 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3306 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3307 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3308 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3309 pr_err("%-20s%d\n", "asid:", control->asid);
3310 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3311 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3312 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3313 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3314 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3315 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3316 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3317 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3318 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3319 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3320 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3321 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3322 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3323 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3324 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3325 pr_err("VMCB State Save Area:\n");
3326 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327 "es:",
3328 save->es.selector, save->es.attrib,
3329 save->es.limit, save->es.base);
3330 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331 "cs:",
3332 save->cs.selector, save->cs.attrib,
3333 save->cs.limit, save->cs.base);
3334 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335 "ss:",
3336 save->ss.selector, save->ss.attrib,
3337 save->ss.limit, save->ss.base);
3338 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3339 "ds:",
3340 save->ds.selector, save->ds.attrib,
3341 save->ds.limit, save->ds.base);
3342 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3343 "fs:",
3344 save->fs.selector, save->fs.attrib,
3345 save->fs.limit, save->fs.base);
3346 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3347 "gs:",
3348 save->gs.selector, save->gs.attrib,
3349 save->gs.limit, save->gs.base);
3350 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3351 "gdtr:",
3352 save->gdtr.selector, save->gdtr.attrib,
3353 save->gdtr.limit, save->gdtr.base);
3354 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3355 "ldtr:",
3356 save->ldtr.selector, save->ldtr.attrib,
3357 save->ldtr.limit, save->ldtr.base);
3358 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3359 "idtr:",
3360 save->idtr.selector, save->idtr.attrib,
3361 save->idtr.limit, save->idtr.base);
3362 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363 "tr:",
3364 save->tr.selector, save->tr.attrib,
3365 save->tr.limit, save->tr.base);
3366 pr_err("cpl: %d efer: %016llx\n",
3367 save->cpl, save->efer);
3368 pr_err("%-15s %016llx %-13s %016llx\n",
3369 "cr0:", save->cr0, "cr2:", save->cr2);
3370 pr_err("%-15s %016llx %-13s %016llx\n",
3371 "cr3:", save->cr3, "cr4:", save->cr4);
3372 pr_err("%-15s %016llx %-13s %016llx\n",
3373 "dr6:", save->dr6, "dr7:", save->dr7);
3374 pr_err("%-15s %016llx %-13s %016llx\n",
3375 "rip:", save->rip, "rflags:", save->rflags);
3376 pr_err("%-15s %016llx %-13s %016llx\n",
3377 "rsp:", save->rsp, "rax:", save->rax);
3378 pr_err("%-15s %016llx %-13s %016llx\n",
3379 "star:", save->star, "lstar:", save->lstar);
3380 pr_err("%-15s %016llx %-13s %016llx\n",
3381 "cstar:", save->cstar, "sfmask:", save->sfmask);
3382 pr_err("%-15s %016llx %-13s %016llx\n",
3383 "kernel_gs_base:", save->kernel_gs_base,
3384 "sysenter_cs:", save->sysenter_cs);
3385 pr_err("%-15s %016llx %-13s %016llx\n",
3386 "sysenter_esp:", save->sysenter_esp,
3387 "sysenter_eip:", save->sysenter_eip);
3388 pr_err("%-15s %016llx %-13s %016llx\n",
3389 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3390 pr_err("%-15s %016llx %-13s %016llx\n",
3391 "br_from:", save->br_from, "br_to:", save->br_to);
3392 pr_err("%-15s %016llx %-13s %016llx\n",
3393 "excp_from:", save->last_excp_from,
3394 "excp_to:", save->last_excp_to);
3395 }
3396
3397 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3398 {
3399 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3400
3401 *info1 = control->exit_info_1;
3402 *info2 = control->exit_info_2;
3403 }
3404
3405 static int handle_exit(struct kvm_vcpu *vcpu)
3406 {
3407 struct vcpu_svm *svm = to_svm(vcpu);
3408 struct kvm_run *kvm_run = vcpu->run;
3409 u32 exit_code = svm->vmcb->control.exit_code;
3410
3411 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3412 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3413 if (npt_enabled)
3414 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3415
3416 if (unlikely(svm->nested.exit_required)) {
3417 nested_svm_vmexit(svm);
3418 svm->nested.exit_required = false;
3419
3420 return 1;
3421 }
3422
3423 if (is_guest_mode(vcpu)) {
3424 int vmexit;
3425
3426 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3427 svm->vmcb->control.exit_info_1,
3428 svm->vmcb->control.exit_info_2,
3429 svm->vmcb->control.exit_int_info,
3430 svm->vmcb->control.exit_int_info_err,
3431 KVM_ISA_SVM);
3432
3433 vmexit = nested_svm_exit_special(svm);
3434
3435 if (vmexit == NESTED_EXIT_CONTINUE)
3436 vmexit = nested_svm_exit_handled(svm);
3437
3438 if (vmexit == NESTED_EXIT_DONE)
3439 return 1;
3440 }
3441
3442 svm_complete_interrupts(svm);
3443
3444 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3445 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3446 kvm_run->fail_entry.hardware_entry_failure_reason
3447 = svm->vmcb->control.exit_code;
3448 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3449 dump_vmcb(vcpu);
3450 return 0;
3451 }
3452
3453 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3454 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3455 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3456 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3457 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3458 "exit_code 0x%x\n",
3459 __func__, svm->vmcb->control.exit_int_info,
3460 exit_code);
3461
3462 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3463 || !svm_exit_handlers[exit_code]) {
3464 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3465 kvm_run->hw.hardware_exit_reason = exit_code;
3466 return 0;
3467 }
3468
3469 return svm_exit_handlers[exit_code](svm);
3470 }
3471
3472 static void reload_tss(struct kvm_vcpu *vcpu)
3473 {
3474 int cpu = raw_smp_processor_id();
3475
3476 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3477 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3478 load_TR_desc();
3479 }
3480
3481 static void pre_svm_run(struct vcpu_svm *svm)
3482 {
3483 int cpu = raw_smp_processor_id();
3484
3485 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3486
3487 /* FIXME: handle wraparound of asid_generation */
3488 if (svm->asid_generation != sd->asid_generation)
3489 new_asid(svm, sd);
3490 }
3491
3492 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3493 {
3494 struct vcpu_svm *svm = to_svm(vcpu);
3495
3496 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3497 vcpu->arch.hflags |= HF_NMI_MASK;
3498 set_intercept(svm, INTERCEPT_IRET);
3499 ++vcpu->stat.nmi_injections;
3500 }
3501
3502 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3503 {
3504 struct vmcb_control_area *control;
3505
3506 control = &svm->vmcb->control;
3507 control->int_vector = irq;
3508 control->int_ctl &= ~V_INTR_PRIO_MASK;
3509 control->int_ctl |= V_IRQ_MASK |
3510 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3511 mark_dirty(svm->vmcb, VMCB_INTR);
3512 }
3513
3514 static void svm_set_irq(struct kvm_vcpu *vcpu)
3515 {
3516 struct vcpu_svm *svm = to_svm(vcpu);
3517
3518 BUG_ON(!(gif_set(svm)));
3519
3520 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3521 ++vcpu->stat.irq_injections;
3522
3523 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3524 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3525 }
3526
3527 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3528 {
3529 struct vcpu_svm *svm = to_svm(vcpu);
3530
3531 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3532 return;
3533
3534 if (irr == -1)
3535 return;
3536
3537 if (tpr >= irr)
3538 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3539 }
3540
3541 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3542 {
3543 struct vcpu_svm *svm = to_svm(vcpu);
3544 struct vmcb *vmcb = svm->vmcb;
3545 int ret;
3546 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3547 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3548 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3549
3550 return ret;
3551 }
3552
3553 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3554 {
3555 struct vcpu_svm *svm = to_svm(vcpu);
3556
3557 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3558 }
3559
3560 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3561 {
3562 struct vcpu_svm *svm = to_svm(vcpu);
3563
3564 if (masked) {
3565 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3566 set_intercept(svm, INTERCEPT_IRET);
3567 } else {
3568 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3569 clr_intercept(svm, INTERCEPT_IRET);
3570 }
3571 }
3572
3573 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3574 {
3575 struct vcpu_svm *svm = to_svm(vcpu);
3576 struct vmcb *vmcb = svm->vmcb;
3577 int ret;
3578
3579 if (!gif_set(svm) ||
3580 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3581 return 0;
3582
3583 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3584
3585 if (is_guest_mode(vcpu))
3586 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3587
3588 return ret;
3589 }
3590
3591 static void enable_irq_window(struct kvm_vcpu *vcpu)
3592 {
3593 struct vcpu_svm *svm = to_svm(vcpu);
3594
3595 /*
3596 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3597 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3598 * get that intercept, this function will be called again though and
3599 * we'll get the vintr intercept.
3600 */
3601 if (gif_set(svm) && nested_svm_intr(svm)) {
3602 svm_set_vintr(svm);
3603 svm_inject_irq(svm, 0x0);
3604 }
3605 }
3606
3607 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3608 {
3609 struct vcpu_svm *svm = to_svm(vcpu);
3610
3611 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3612 == HF_NMI_MASK)
3613 return; /* IRET will cause a vm exit */
3614
3615 /*
3616 * Something prevents NMI from been injected. Single step over possible
3617 * problem (IRET or exception injection or interrupt shadow)
3618 */
3619 svm->nmi_singlestep = true;
3620 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3621 update_db_intercept(vcpu);
3622 }
3623
3624 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3625 {
3626 return 0;
3627 }
3628
3629 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3630 {
3631 struct vcpu_svm *svm = to_svm(vcpu);
3632
3633 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3634 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3635 else
3636 svm->asid_generation--;
3637 }
3638
3639 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3640 {
3641 }
3642
3643 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3644 {
3645 struct vcpu_svm *svm = to_svm(vcpu);
3646
3647 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3648 return;
3649
3650 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3651 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3652 kvm_set_cr8(vcpu, cr8);
3653 }
3654 }
3655
3656 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3657 {
3658 struct vcpu_svm *svm = to_svm(vcpu);
3659 u64 cr8;
3660
3661 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3662 return;
3663
3664 cr8 = kvm_get_cr8(vcpu);
3665 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3666 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3667 }
3668
3669 static void svm_complete_interrupts(struct vcpu_svm *svm)
3670 {
3671 u8 vector;
3672 int type;
3673 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3674 unsigned int3_injected = svm->int3_injected;
3675
3676 svm->int3_injected = 0;
3677
3678 /*
3679 * If we've made progress since setting HF_IRET_MASK, we've
3680 * executed an IRET and can allow NMI injection.
3681 */
3682 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3683 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3684 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3685 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3686 }
3687
3688 svm->vcpu.arch.nmi_injected = false;
3689 kvm_clear_exception_queue(&svm->vcpu);
3690 kvm_clear_interrupt_queue(&svm->vcpu);
3691
3692 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3693 return;
3694
3695 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3696
3697 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3698 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3699
3700 switch (type) {
3701 case SVM_EXITINTINFO_TYPE_NMI:
3702 svm->vcpu.arch.nmi_injected = true;
3703 break;
3704 case SVM_EXITINTINFO_TYPE_EXEPT:
3705 /*
3706 * In case of software exceptions, do not reinject the vector,
3707 * but re-execute the instruction instead. Rewind RIP first
3708 * if we emulated INT3 before.
3709 */
3710 if (kvm_exception_is_soft(vector)) {
3711 if (vector == BP_VECTOR && int3_injected &&
3712 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3713 kvm_rip_write(&svm->vcpu,
3714 kvm_rip_read(&svm->vcpu) -
3715 int3_injected);
3716 break;
3717 }
3718 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3719 u32 err = svm->vmcb->control.exit_int_info_err;
3720 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3721
3722 } else
3723 kvm_requeue_exception(&svm->vcpu, vector);
3724 break;
3725 case SVM_EXITINTINFO_TYPE_INTR:
3726 kvm_queue_interrupt(&svm->vcpu, vector, false);
3727 break;
3728 default:
3729 break;
3730 }
3731 }
3732
3733 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3734 {
3735 struct vcpu_svm *svm = to_svm(vcpu);
3736 struct vmcb_control_area *control = &svm->vmcb->control;
3737
3738 control->exit_int_info = control->event_inj;
3739 control->exit_int_info_err = control->event_inj_err;
3740 control->event_inj = 0;
3741 svm_complete_interrupts(svm);
3742 }
3743
3744 #ifdef CONFIG_X86_64
3745 #define R "r"
3746 #else
3747 #define R "e"
3748 #endif
3749
3750 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3751 {
3752 struct vcpu_svm *svm = to_svm(vcpu);
3753
3754 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3755 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3756 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3757
3758 /*
3759 * A vmexit emulation is required before the vcpu can be executed
3760 * again.
3761 */
3762 if (unlikely(svm->nested.exit_required))
3763 return;
3764
3765 pre_svm_run(svm);
3766
3767 sync_lapic_to_cr8(vcpu);
3768
3769 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3770
3771 clgi();
3772
3773 local_irq_enable();
3774
3775 asm volatile (
3776 "push %%"R"bp; \n\t"
3777 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3778 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3779 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3780 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3781 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3782 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3783 #ifdef CONFIG_X86_64
3784 "mov %c[r8](%[svm]), %%r8 \n\t"
3785 "mov %c[r9](%[svm]), %%r9 \n\t"
3786 "mov %c[r10](%[svm]), %%r10 \n\t"
3787 "mov %c[r11](%[svm]), %%r11 \n\t"
3788 "mov %c[r12](%[svm]), %%r12 \n\t"
3789 "mov %c[r13](%[svm]), %%r13 \n\t"
3790 "mov %c[r14](%[svm]), %%r14 \n\t"
3791 "mov %c[r15](%[svm]), %%r15 \n\t"
3792 #endif
3793
3794 /* Enter guest mode */
3795 "push %%"R"ax \n\t"
3796 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3797 __ex(SVM_VMLOAD) "\n\t"
3798 __ex(SVM_VMRUN) "\n\t"
3799 __ex(SVM_VMSAVE) "\n\t"
3800 "pop %%"R"ax \n\t"
3801
3802 /* Save guest registers, load host registers */
3803 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3804 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3805 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3806 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3807 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3808 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3809 #ifdef CONFIG_X86_64
3810 "mov %%r8, %c[r8](%[svm]) \n\t"
3811 "mov %%r9, %c[r9](%[svm]) \n\t"
3812 "mov %%r10, %c[r10](%[svm]) \n\t"
3813 "mov %%r11, %c[r11](%[svm]) \n\t"
3814 "mov %%r12, %c[r12](%[svm]) \n\t"
3815 "mov %%r13, %c[r13](%[svm]) \n\t"
3816 "mov %%r14, %c[r14](%[svm]) \n\t"
3817 "mov %%r15, %c[r15](%[svm]) \n\t"
3818 #endif
3819 "pop %%"R"bp"
3820 :
3821 : [svm]"a"(svm),
3822 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3823 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3824 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3825 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3826 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3827 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3828 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3829 #ifdef CONFIG_X86_64
3830 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3831 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3832 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3833 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3834 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3835 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3836 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3837 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3838 #endif
3839 : "cc", "memory"
3840 , R"bx", R"cx", R"dx", R"si", R"di"
3841 #ifdef CONFIG_X86_64
3842 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3843 #endif
3844 );
3845
3846 #ifdef CONFIG_X86_64
3847 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3848 #else
3849 loadsegment(fs, svm->host.fs);
3850 #ifndef CONFIG_X86_32_LAZY_GS
3851 loadsegment(gs, svm->host.gs);
3852 #endif
3853 #endif
3854
3855 reload_tss(vcpu);
3856
3857 local_irq_disable();
3858
3859 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3860 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3861 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3862 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3863
3864 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3865
3866 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3867 kvm_before_handle_nmi(&svm->vcpu);
3868
3869 stgi();
3870
3871 /* Any pending NMI will happen here */
3872
3873 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3874 kvm_after_handle_nmi(&svm->vcpu);
3875
3876 sync_cr8_to_lapic(vcpu);
3877
3878 svm->next_rip = 0;
3879
3880 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3881
3882 /* if exit due to PF check for async PF */
3883 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3884 svm->apf_reason = kvm_read_and_reset_pf_reason();
3885
3886 if (npt_enabled) {
3887 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3888 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3889 }
3890
3891 /*
3892 * We need to handle MC intercepts here before the vcpu has a chance to
3893 * change the physical cpu
3894 */
3895 if (unlikely(svm->vmcb->control.exit_code ==
3896 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3897 svm_handle_mce(svm);
3898
3899 mark_all_clean(svm->vmcb);
3900 }
3901
3902 #undef R
3903
3904 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3905 {
3906 struct vcpu_svm *svm = to_svm(vcpu);
3907
3908 svm->vmcb->save.cr3 = root;
3909 mark_dirty(svm->vmcb, VMCB_CR);
3910 svm_flush_tlb(vcpu);
3911 }
3912
3913 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3914 {
3915 struct vcpu_svm *svm = to_svm(vcpu);
3916
3917 svm->vmcb->control.nested_cr3 = root;
3918 mark_dirty(svm->vmcb, VMCB_NPT);
3919
3920 /* Also sync guest cr3 here in case we live migrate */
3921 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3922 mark_dirty(svm->vmcb, VMCB_CR);
3923
3924 svm_flush_tlb(vcpu);
3925 }
3926
3927 static int is_disabled(void)
3928 {
3929 u64 vm_cr;
3930
3931 rdmsrl(MSR_VM_CR, vm_cr);
3932 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3933 return 1;
3934
3935 return 0;
3936 }
3937
3938 static void
3939 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3940 {
3941 /*
3942 * Patch in the VMMCALL instruction:
3943 */
3944 hypercall[0] = 0x0f;
3945 hypercall[1] = 0x01;
3946 hypercall[2] = 0xd9;
3947 }
3948
3949 static void svm_check_processor_compat(void *rtn)
3950 {
3951 *(int *)rtn = 0;
3952 }
3953
3954 static bool svm_cpu_has_accelerated_tpr(void)
3955 {
3956 return false;
3957 }
3958
3959 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3960 {
3961 return 0;
3962 }
3963
3964 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3965 {
3966 }
3967
3968 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3969 {
3970 switch (func) {
3971 case 0x80000001:
3972 if (nested)
3973 entry->ecx |= (1 << 2); /* Set SVM bit */
3974 break;
3975 case 0x8000000A:
3976 entry->eax = 1; /* SVM revision 1 */
3977 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3978 ASID emulation to nested SVM */
3979 entry->ecx = 0; /* Reserved */
3980 entry->edx = 0; /* Per default do not support any
3981 additional features */
3982
3983 /* Support next_rip if host supports it */
3984 if (boot_cpu_has(X86_FEATURE_NRIPS))
3985 entry->edx |= SVM_FEATURE_NRIP;
3986
3987 /* Support NPT for the guest if enabled */
3988 if (npt_enabled)
3989 entry->edx |= SVM_FEATURE_NPT;
3990
3991 break;
3992 }
3993 }
3994
3995 static int svm_get_lpage_level(void)
3996 {
3997 return PT_PDPE_LEVEL;
3998 }
3999
4000 static bool svm_rdtscp_supported(void)
4001 {
4002 return false;
4003 }
4004
4005 static bool svm_has_wbinvd_exit(void)
4006 {
4007 return true;
4008 }
4009
4010 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4011 {
4012 struct vcpu_svm *svm = to_svm(vcpu);
4013
4014 set_exception_intercept(svm, NM_VECTOR);
4015 update_cr0_intercept(svm);
4016 }
4017
4018 #define PRE_EX(exit) { .exit_code = (exit), \
4019 .stage = X86_ICPT_PRE_EXCEPT, }
4020 #define POST_EX(exit) { .exit_code = (exit), \
4021 .stage = X86_ICPT_POST_EXCEPT, }
4022 #define POST_MEM(exit) { .exit_code = (exit), \
4023 .stage = X86_ICPT_POST_MEMACCESS, }
4024
4025 static struct __x86_intercept {
4026 u32 exit_code;
4027 enum x86_intercept_stage stage;
4028 } x86_intercept_map[] = {
4029 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4030 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4031 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4032 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4033 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4034 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4035 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4036 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4037 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4038 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4039 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4040 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4041 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4042 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4043 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4044 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4045 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4046 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4047 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4048 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4049 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4050 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4051 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4052 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4053 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4054 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4055 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4056 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4057 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4058 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4059 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4060 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4061 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4062 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4063 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4064 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4065 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4066 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4067 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4068 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4069 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4070 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4071 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4072 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4073 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4074 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4075 };
4076
4077 #undef PRE_EX
4078 #undef POST_EX
4079 #undef POST_MEM
4080
4081 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4082 struct x86_instruction_info *info,
4083 enum x86_intercept_stage stage)
4084 {
4085 struct vcpu_svm *svm = to_svm(vcpu);
4086 int vmexit, ret = X86EMUL_CONTINUE;
4087 struct __x86_intercept icpt_info;
4088 struct vmcb *vmcb = svm->vmcb;
4089
4090 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4091 goto out;
4092
4093 icpt_info = x86_intercept_map[info->intercept];
4094
4095 if (stage != icpt_info.stage)
4096 goto out;
4097
4098 switch (icpt_info.exit_code) {
4099 case SVM_EXIT_READ_CR0:
4100 if (info->intercept == x86_intercept_cr_read)
4101 icpt_info.exit_code += info->modrm_reg;
4102 break;
4103 case SVM_EXIT_WRITE_CR0: {
4104 unsigned long cr0, val;
4105 u64 intercept;
4106
4107 if (info->intercept == x86_intercept_cr_write)
4108 icpt_info.exit_code += info->modrm_reg;
4109
4110 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4111 break;
4112
4113 intercept = svm->nested.intercept;
4114
4115 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4116 break;
4117
4118 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4119 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4120
4121 if (info->intercept == x86_intercept_lmsw) {
4122 cr0 &= 0xfUL;
4123 val &= 0xfUL;
4124 /* lmsw can't clear PE - catch this here */
4125 if (cr0 & X86_CR0_PE)
4126 val |= X86_CR0_PE;
4127 }
4128
4129 if (cr0 ^ val)
4130 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4131
4132 break;
4133 }
4134 case SVM_EXIT_READ_DR0:
4135 case SVM_EXIT_WRITE_DR0:
4136 icpt_info.exit_code += info->modrm_reg;
4137 break;
4138 case SVM_EXIT_MSR:
4139 if (info->intercept == x86_intercept_wrmsr)
4140 vmcb->control.exit_info_1 = 1;
4141 else
4142 vmcb->control.exit_info_1 = 0;
4143 break;
4144 case SVM_EXIT_PAUSE:
4145 /*
4146 * We get this for NOP only, but pause
4147 * is rep not, check this here
4148 */
4149 if (info->rep_prefix != REPE_PREFIX)
4150 goto out;
4151 case SVM_EXIT_IOIO: {
4152 u64 exit_info;
4153 u32 bytes;
4154
4155 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4156
4157 if (info->intercept == x86_intercept_in ||
4158 info->intercept == x86_intercept_ins) {
4159 exit_info |= SVM_IOIO_TYPE_MASK;
4160 bytes = info->src_bytes;
4161 } else {
4162 bytes = info->dst_bytes;
4163 }
4164
4165 if (info->intercept == x86_intercept_outs ||
4166 info->intercept == x86_intercept_ins)
4167 exit_info |= SVM_IOIO_STR_MASK;
4168
4169 if (info->rep_prefix)
4170 exit_info |= SVM_IOIO_REP_MASK;
4171
4172 bytes = min(bytes, 4u);
4173
4174 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4175
4176 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4177
4178 vmcb->control.exit_info_1 = exit_info;
4179 vmcb->control.exit_info_2 = info->next_rip;
4180
4181 break;
4182 }
4183 default:
4184 break;
4185 }
4186
4187 vmcb->control.next_rip = info->next_rip;
4188 vmcb->control.exit_code = icpt_info.exit_code;
4189 vmexit = nested_svm_exit_handled(svm);
4190
4191 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4192 : X86EMUL_CONTINUE;
4193
4194 out:
4195 return ret;
4196 }
4197
4198 static struct kvm_x86_ops svm_x86_ops = {
4199 .cpu_has_kvm_support = has_svm,
4200 .disabled_by_bios = is_disabled,
4201 .hardware_setup = svm_hardware_setup,
4202 .hardware_unsetup = svm_hardware_unsetup,
4203 .check_processor_compatibility = svm_check_processor_compat,
4204 .hardware_enable = svm_hardware_enable,
4205 .hardware_disable = svm_hardware_disable,
4206 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4207
4208 .vcpu_create = svm_create_vcpu,
4209 .vcpu_free = svm_free_vcpu,
4210 .vcpu_reset = svm_vcpu_reset,
4211
4212 .prepare_guest_switch = svm_prepare_guest_switch,
4213 .vcpu_load = svm_vcpu_load,
4214 .vcpu_put = svm_vcpu_put,
4215
4216 .set_guest_debug = svm_guest_debug,
4217 .get_msr = svm_get_msr,
4218 .set_msr = svm_set_msr,
4219 .get_segment_base = svm_get_segment_base,
4220 .get_segment = svm_get_segment,
4221 .set_segment = svm_set_segment,
4222 .get_cpl = svm_get_cpl,
4223 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4224 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4225 .decache_cr3 = svm_decache_cr3,
4226 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4227 .set_cr0 = svm_set_cr0,
4228 .set_cr3 = svm_set_cr3,
4229 .set_cr4 = svm_set_cr4,
4230 .set_efer = svm_set_efer,
4231 .get_idt = svm_get_idt,
4232 .set_idt = svm_set_idt,
4233 .get_gdt = svm_get_gdt,
4234 .set_gdt = svm_set_gdt,
4235 .set_dr7 = svm_set_dr7,
4236 .cache_reg = svm_cache_reg,
4237 .get_rflags = svm_get_rflags,
4238 .set_rflags = svm_set_rflags,
4239 .fpu_activate = svm_fpu_activate,
4240 .fpu_deactivate = svm_fpu_deactivate,
4241
4242 .tlb_flush = svm_flush_tlb,
4243
4244 .run = svm_vcpu_run,
4245 .handle_exit = handle_exit,
4246 .skip_emulated_instruction = skip_emulated_instruction,
4247 .set_interrupt_shadow = svm_set_interrupt_shadow,
4248 .get_interrupt_shadow = svm_get_interrupt_shadow,
4249 .patch_hypercall = svm_patch_hypercall,
4250 .set_irq = svm_set_irq,
4251 .set_nmi = svm_inject_nmi,
4252 .queue_exception = svm_queue_exception,
4253 .cancel_injection = svm_cancel_injection,
4254 .interrupt_allowed = svm_interrupt_allowed,
4255 .nmi_allowed = svm_nmi_allowed,
4256 .get_nmi_mask = svm_get_nmi_mask,
4257 .set_nmi_mask = svm_set_nmi_mask,
4258 .enable_nmi_window = enable_nmi_window,
4259 .enable_irq_window = enable_irq_window,
4260 .update_cr8_intercept = update_cr8_intercept,
4261
4262 .set_tss_addr = svm_set_tss_addr,
4263 .get_tdp_level = get_npt_level,
4264 .get_mt_mask = svm_get_mt_mask,
4265
4266 .get_exit_info = svm_get_exit_info,
4267
4268 .get_lpage_level = svm_get_lpage_level,
4269
4270 .cpuid_update = svm_cpuid_update,
4271
4272 .rdtscp_supported = svm_rdtscp_supported,
4273
4274 .set_supported_cpuid = svm_set_supported_cpuid,
4275
4276 .has_wbinvd_exit = svm_has_wbinvd_exit,
4277
4278 .set_tsc_khz = svm_set_tsc_khz,
4279 .write_tsc_offset = svm_write_tsc_offset,
4280 .adjust_tsc_offset = svm_adjust_tsc_offset,
4281 .compute_tsc_offset = svm_compute_tsc_offset,
4282 .read_l1_tsc = svm_read_l1_tsc,
4283
4284 .set_tdp_cr3 = set_tdp_cr3,
4285
4286 .check_intercept = svm_check_intercept,
4287 };
4288
4289 static int __init svm_init(void)
4290 {
4291 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4292 __alignof__(struct vcpu_svm), THIS_MODULE);
4293 }
4294
4295 static void __exit svm_exit(void)
4296 {
4297 kvm_exit();
4298 }
4299
4300 module_init(svm_init)
4301 module_exit(svm_exit)