]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
Merge git://git.infradead.org/mtd-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
51
52 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
53 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
54 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
55
56 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
57
58 static const u32 host_save_user_msrs[] = {
59 #ifdef CONFIG_X86_64
60 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
61 MSR_FS_BASE,
62 #endif
63 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
64 };
65
66 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
67
68 struct kvm_vcpu;
69
70 struct nested_state {
71 struct vmcb *hsave;
72 u64 hsave_msr;
73 u64 vmcb;
74
75 /* These are the merged vectors */
76 u32 *msrpm;
77
78 /* gpa pointers to the real vectors */
79 u64 vmcb_msrpm;
80
81 /* A VMEXIT is required but not yet emulated */
82 bool exit_required;
83
84 /* cache for intercepts of the guest */
85 u16 intercept_cr_read;
86 u16 intercept_cr_write;
87 u16 intercept_dr_read;
88 u16 intercept_dr_write;
89 u32 intercept_exceptions;
90 u64 intercept;
91
92 };
93
94 struct vcpu_svm {
95 struct kvm_vcpu vcpu;
96 struct vmcb *vmcb;
97 unsigned long vmcb_pa;
98 struct svm_cpu_data *svm_data;
99 uint64_t asid_generation;
100 uint64_t sysenter_esp;
101 uint64_t sysenter_eip;
102
103 u64 next_rip;
104
105 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
106 u64 host_gs_base;
107
108 u32 *msrpm;
109
110 struct nested_state nested;
111
112 bool nmi_singlestep;
113 };
114
115 /* enable NPT for AMD64 and X86 with PAE */
116 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
117 static bool npt_enabled = true;
118 #else
119 static bool npt_enabled = false;
120 #endif
121 static int npt = 1;
122
123 module_param(npt, int, S_IRUGO);
124
125 static int nested = 1;
126 module_param(nested, int, S_IRUGO);
127
128 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
129 static void svm_complete_interrupts(struct vcpu_svm *svm);
130
131 static int nested_svm_exit_handled(struct vcpu_svm *svm);
132 static int nested_svm_vmexit(struct vcpu_svm *svm);
133 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
134 bool has_error_code, u32 error_code);
135
136 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
137 {
138 return container_of(vcpu, struct vcpu_svm, vcpu);
139 }
140
141 static inline bool is_nested(struct vcpu_svm *svm)
142 {
143 return svm->nested.vmcb;
144 }
145
146 static inline void enable_gif(struct vcpu_svm *svm)
147 {
148 svm->vcpu.arch.hflags |= HF_GIF_MASK;
149 }
150
151 static inline void disable_gif(struct vcpu_svm *svm)
152 {
153 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
154 }
155
156 static inline bool gif_set(struct vcpu_svm *svm)
157 {
158 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
159 }
160
161 static unsigned long iopm_base;
162
163 struct kvm_ldttss_desc {
164 u16 limit0;
165 u16 base0;
166 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
167 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
168 u32 base3;
169 u32 zero1;
170 } __attribute__((packed));
171
172 struct svm_cpu_data {
173 int cpu;
174
175 u64 asid_generation;
176 u32 max_asid;
177 u32 next_asid;
178 struct kvm_ldttss_desc *tss_desc;
179
180 struct page *save_area;
181 };
182
183 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
184 static uint32_t svm_features;
185
186 struct svm_init_data {
187 int cpu;
188 int r;
189 };
190
191 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
192
193 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
194 #define MSRS_RANGE_SIZE 2048
195 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
196
197 #define MAX_INST_SIZE 15
198
199 static inline u32 svm_has(u32 feat)
200 {
201 return svm_features & feat;
202 }
203
204 static inline void clgi(void)
205 {
206 asm volatile (__ex(SVM_CLGI));
207 }
208
209 static inline void stgi(void)
210 {
211 asm volatile (__ex(SVM_STGI));
212 }
213
214 static inline void invlpga(unsigned long addr, u32 asid)
215 {
216 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
217 }
218
219 static inline void force_new_asid(struct kvm_vcpu *vcpu)
220 {
221 to_svm(vcpu)->asid_generation--;
222 }
223
224 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
225 {
226 force_new_asid(vcpu);
227 }
228
229 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
230 {
231 if (!npt_enabled && !(efer & EFER_LMA))
232 efer &= ~EFER_LME;
233
234 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
235 vcpu->arch.efer = efer;
236 }
237
238 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
239 bool has_error_code, u32 error_code)
240 {
241 struct vcpu_svm *svm = to_svm(vcpu);
242
243 /* If we are within a nested VM we'd better #VMEXIT and let the
244 guest handle the exception */
245 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
246 return;
247
248 svm->vmcb->control.event_inj = nr
249 | SVM_EVTINJ_VALID
250 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
251 | SVM_EVTINJ_TYPE_EXEPT;
252 svm->vmcb->control.event_inj_err = error_code;
253 }
254
255 static int is_external_interrupt(u32 info)
256 {
257 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
258 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
259 }
260
261 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
262 {
263 struct vcpu_svm *svm = to_svm(vcpu);
264 u32 ret = 0;
265
266 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
267 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
268 return ret & mask;
269 }
270
271 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
272 {
273 struct vcpu_svm *svm = to_svm(vcpu);
274
275 if (mask == 0)
276 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
277 else
278 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
279
280 }
281
282 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
283 {
284 struct vcpu_svm *svm = to_svm(vcpu);
285
286 if (!svm->next_rip) {
287 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
288 EMULATE_DONE)
289 printk(KERN_DEBUG "%s: NOP\n", __func__);
290 return;
291 }
292 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
293 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
294 __func__, kvm_rip_read(vcpu), svm->next_rip);
295
296 kvm_rip_write(vcpu, svm->next_rip);
297 svm_set_interrupt_shadow(vcpu, 0);
298 }
299
300 static int has_svm(void)
301 {
302 const char *msg;
303
304 if (!cpu_has_svm(&msg)) {
305 printk(KERN_INFO "has_svm: %s\n", msg);
306 return 0;
307 }
308
309 return 1;
310 }
311
312 static void svm_hardware_disable(void *garbage)
313 {
314 cpu_svm_disable();
315 }
316
317 static int svm_hardware_enable(void *garbage)
318 {
319
320 struct svm_cpu_data *sd;
321 uint64_t efer;
322 struct descriptor_table gdt_descr;
323 struct desc_struct *gdt;
324 int me = raw_smp_processor_id();
325
326 rdmsrl(MSR_EFER, efer);
327 if (efer & EFER_SVME)
328 return -EBUSY;
329
330 if (!has_svm()) {
331 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
332 me);
333 return -EINVAL;
334 }
335 sd = per_cpu(svm_data, me);
336
337 if (!sd) {
338 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
339 me);
340 return -EINVAL;
341 }
342
343 sd->asid_generation = 1;
344 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
345 sd->next_asid = sd->max_asid + 1;
346
347 kvm_get_gdt(&gdt_descr);
348 gdt = (struct desc_struct *)gdt_descr.base;
349 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
350
351 wrmsrl(MSR_EFER, efer | EFER_SVME);
352
353 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
354
355 return 0;
356 }
357
358 static void svm_cpu_uninit(int cpu)
359 {
360 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
361
362 if (!sd)
363 return;
364
365 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
366 __free_page(sd->save_area);
367 kfree(sd);
368 }
369
370 static int svm_cpu_init(int cpu)
371 {
372 struct svm_cpu_data *sd;
373 int r;
374
375 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
376 if (!sd)
377 return -ENOMEM;
378 sd->cpu = cpu;
379 sd->save_area = alloc_page(GFP_KERNEL);
380 r = -ENOMEM;
381 if (!sd->save_area)
382 goto err_1;
383
384 per_cpu(svm_data, cpu) = sd;
385
386 return 0;
387
388 err_1:
389 kfree(sd);
390 return r;
391
392 }
393
394 static void set_msr_interception(u32 *msrpm, unsigned msr,
395 int read, int write)
396 {
397 int i;
398
399 for (i = 0; i < NUM_MSR_MAPS; i++) {
400 if (msr >= msrpm_ranges[i] &&
401 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
402 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
403 msrpm_ranges[i]) * 2;
404
405 u32 *base = msrpm + (msr_offset / 32);
406 u32 msr_shift = msr_offset % 32;
407 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
408 *base = (*base & ~(0x3 << msr_shift)) |
409 (mask << msr_shift);
410 return;
411 }
412 }
413 BUG();
414 }
415
416 static void svm_vcpu_init_msrpm(u32 *msrpm)
417 {
418 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
419
420 #ifdef CONFIG_X86_64
421 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
422 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
423 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
424 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
425 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
426 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
427 #endif
428 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
429 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
430 }
431
432 static void svm_enable_lbrv(struct vcpu_svm *svm)
433 {
434 u32 *msrpm = svm->msrpm;
435
436 svm->vmcb->control.lbr_ctl = 1;
437 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
438 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
439 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
440 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
441 }
442
443 static void svm_disable_lbrv(struct vcpu_svm *svm)
444 {
445 u32 *msrpm = svm->msrpm;
446
447 svm->vmcb->control.lbr_ctl = 0;
448 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
449 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
450 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
451 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
452 }
453
454 static __init int svm_hardware_setup(void)
455 {
456 int cpu;
457 struct page *iopm_pages;
458 void *iopm_va;
459 int r;
460
461 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
462
463 if (!iopm_pages)
464 return -ENOMEM;
465
466 iopm_va = page_address(iopm_pages);
467 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
468 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
469
470 if (boot_cpu_has(X86_FEATURE_NX))
471 kvm_enable_efer_bits(EFER_NX);
472
473 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
474 kvm_enable_efer_bits(EFER_FFXSR);
475
476 if (nested) {
477 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
478 kvm_enable_efer_bits(EFER_SVME);
479 }
480
481 for_each_possible_cpu(cpu) {
482 r = svm_cpu_init(cpu);
483 if (r)
484 goto err;
485 }
486
487 svm_features = cpuid_edx(SVM_CPUID_FUNC);
488
489 if (!svm_has(SVM_FEATURE_NPT))
490 npt_enabled = false;
491
492 if (npt_enabled && !npt) {
493 printk(KERN_INFO "kvm: Nested Paging disabled\n");
494 npt_enabled = false;
495 }
496
497 if (npt_enabled) {
498 printk(KERN_INFO "kvm: Nested Paging enabled\n");
499 kvm_enable_tdp();
500 } else
501 kvm_disable_tdp();
502
503 return 0;
504
505 err:
506 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
507 iopm_base = 0;
508 return r;
509 }
510
511 static __exit void svm_hardware_unsetup(void)
512 {
513 int cpu;
514
515 for_each_possible_cpu(cpu)
516 svm_cpu_uninit(cpu);
517
518 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
519 iopm_base = 0;
520 }
521
522 static void init_seg(struct vmcb_seg *seg)
523 {
524 seg->selector = 0;
525 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
526 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
527 seg->limit = 0xffff;
528 seg->base = 0;
529 }
530
531 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
532 {
533 seg->selector = 0;
534 seg->attrib = SVM_SELECTOR_P_MASK | type;
535 seg->limit = 0xffff;
536 seg->base = 0;
537 }
538
539 static void init_vmcb(struct vcpu_svm *svm)
540 {
541 struct vmcb_control_area *control = &svm->vmcb->control;
542 struct vmcb_save_area *save = &svm->vmcb->save;
543
544 svm->vcpu.fpu_active = 1;
545
546 control->intercept_cr_read = INTERCEPT_CR0_MASK |
547 INTERCEPT_CR3_MASK |
548 INTERCEPT_CR4_MASK;
549
550 control->intercept_cr_write = INTERCEPT_CR0_MASK |
551 INTERCEPT_CR3_MASK |
552 INTERCEPT_CR4_MASK |
553 INTERCEPT_CR8_MASK;
554
555 control->intercept_dr_read = INTERCEPT_DR0_MASK |
556 INTERCEPT_DR1_MASK |
557 INTERCEPT_DR2_MASK |
558 INTERCEPT_DR3_MASK |
559 INTERCEPT_DR4_MASK |
560 INTERCEPT_DR5_MASK |
561 INTERCEPT_DR6_MASK |
562 INTERCEPT_DR7_MASK;
563
564 control->intercept_dr_write = INTERCEPT_DR0_MASK |
565 INTERCEPT_DR1_MASK |
566 INTERCEPT_DR2_MASK |
567 INTERCEPT_DR3_MASK |
568 INTERCEPT_DR4_MASK |
569 INTERCEPT_DR5_MASK |
570 INTERCEPT_DR6_MASK |
571 INTERCEPT_DR7_MASK;
572
573 control->intercept_exceptions = (1 << PF_VECTOR) |
574 (1 << UD_VECTOR) |
575 (1 << MC_VECTOR);
576
577
578 control->intercept = (1ULL << INTERCEPT_INTR) |
579 (1ULL << INTERCEPT_NMI) |
580 (1ULL << INTERCEPT_SMI) |
581 (1ULL << INTERCEPT_SELECTIVE_CR0) |
582 (1ULL << INTERCEPT_CPUID) |
583 (1ULL << INTERCEPT_INVD) |
584 (1ULL << INTERCEPT_HLT) |
585 (1ULL << INTERCEPT_INVLPG) |
586 (1ULL << INTERCEPT_INVLPGA) |
587 (1ULL << INTERCEPT_IOIO_PROT) |
588 (1ULL << INTERCEPT_MSR_PROT) |
589 (1ULL << INTERCEPT_TASK_SWITCH) |
590 (1ULL << INTERCEPT_SHUTDOWN) |
591 (1ULL << INTERCEPT_VMRUN) |
592 (1ULL << INTERCEPT_VMMCALL) |
593 (1ULL << INTERCEPT_VMLOAD) |
594 (1ULL << INTERCEPT_VMSAVE) |
595 (1ULL << INTERCEPT_STGI) |
596 (1ULL << INTERCEPT_CLGI) |
597 (1ULL << INTERCEPT_SKINIT) |
598 (1ULL << INTERCEPT_WBINVD) |
599 (1ULL << INTERCEPT_MONITOR) |
600 (1ULL << INTERCEPT_MWAIT);
601
602 control->iopm_base_pa = iopm_base;
603 control->msrpm_base_pa = __pa(svm->msrpm);
604 control->tsc_offset = 0;
605 control->int_ctl = V_INTR_MASKING_MASK;
606
607 init_seg(&save->es);
608 init_seg(&save->ss);
609 init_seg(&save->ds);
610 init_seg(&save->fs);
611 init_seg(&save->gs);
612
613 save->cs.selector = 0xf000;
614 /* Executable/Readable Code Segment */
615 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
616 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
617 save->cs.limit = 0xffff;
618 /*
619 * cs.base should really be 0xffff0000, but vmx can't handle that, so
620 * be consistent with it.
621 *
622 * Replace when we have real mode working for vmx.
623 */
624 save->cs.base = 0xf0000;
625
626 save->gdtr.limit = 0xffff;
627 save->idtr.limit = 0xffff;
628
629 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
630 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
631
632 save->efer = EFER_SVME;
633 save->dr6 = 0xffff0ff0;
634 save->dr7 = 0x400;
635 save->rflags = 2;
636 save->rip = 0x0000fff0;
637 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
638
639 /* This is the guest-visible cr0 value.
640 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
641 */
642 svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
643 kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
644
645 save->cr4 = X86_CR4_PAE;
646 /* rdx = ?? */
647
648 if (npt_enabled) {
649 /* Setup VMCB for Nested Paging */
650 control->nested_ctl = 1;
651 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
652 (1ULL << INTERCEPT_INVLPG));
653 control->intercept_exceptions &= ~(1 << PF_VECTOR);
654 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
655 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
656 save->g_pat = 0x0007040600070406ULL;
657 save->cr3 = 0;
658 save->cr4 = 0;
659 }
660 force_new_asid(&svm->vcpu);
661
662 svm->nested.vmcb = 0;
663 svm->vcpu.arch.hflags = 0;
664
665 if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
666 control->pause_filter_count = 3000;
667 control->intercept |= (1ULL << INTERCEPT_PAUSE);
668 }
669
670 enable_gif(svm);
671 }
672
673 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
674 {
675 struct vcpu_svm *svm = to_svm(vcpu);
676
677 init_vmcb(svm);
678
679 if (!kvm_vcpu_is_bsp(vcpu)) {
680 kvm_rip_write(vcpu, 0);
681 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
682 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
683 }
684 vcpu->arch.regs_avail = ~0;
685 vcpu->arch.regs_dirty = ~0;
686
687 return 0;
688 }
689
690 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
691 {
692 struct vcpu_svm *svm;
693 struct page *page;
694 struct page *msrpm_pages;
695 struct page *hsave_page;
696 struct page *nested_msrpm_pages;
697 int err;
698
699 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
700 if (!svm) {
701 err = -ENOMEM;
702 goto out;
703 }
704
705 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
706 if (err)
707 goto free_svm;
708
709 err = -ENOMEM;
710 page = alloc_page(GFP_KERNEL);
711 if (!page)
712 goto uninit;
713
714 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
715 if (!msrpm_pages)
716 goto free_page1;
717
718 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
719 if (!nested_msrpm_pages)
720 goto free_page2;
721
722 hsave_page = alloc_page(GFP_KERNEL);
723 if (!hsave_page)
724 goto free_page3;
725
726 svm->nested.hsave = page_address(hsave_page);
727
728 svm->msrpm = page_address(msrpm_pages);
729 svm_vcpu_init_msrpm(svm->msrpm);
730
731 svm->nested.msrpm = page_address(nested_msrpm_pages);
732
733 svm->vmcb = page_address(page);
734 clear_page(svm->vmcb);
735 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
736 svm->asid_generation = 0;
737 init_vmcb(svm);
738
739 fx_init(&svm->vcpu);
740 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
741 if (kvm_vcpu_is_bsp(&svm->vcpu))
742 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
743
744 return &svm->vcpu;
745
746 free_page3:
747 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
748 free_page2:
749 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
750 free_page1:
751 __free_page(page);
752 uninit:
753 kvm_vcpu_uninit(&svm->vcpu);
754 free_svm:
755 kmem_cache_free(kvm_vcpu_cache, svm);
756 out:
757 return ERR_PTR(err);
758 }
759
760 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
761 {
762 struct vcpu_svm *svm = to_svm(vcpu);
763
764 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
765 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
766 __free_page(virt_to_page(svm->nested.hsave));
767 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
768 kvm_vcpu_uninit(vcpu);
769 kmem_cache_free(kvm_vcpu_cache, svm);
770 }
771
772 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
773 {
774 struct vcpu_svm *svm = to_svm(vcpu);
775 int i;
776
777 if (unlikely(cpu != vcpu->cpu)) {
778 u64 delta;
779
780 if (check_tsc_unstable()) {
781 /*
782 * Make sure that the guest sees a monotonically
783 * increasing TSC.
784 */
785 delta = vcpu->arch.host_tsc - native_read_tsc();
786 svm->vmcb->control.tsc_offset += delta;
787 if (is_nested(svm))
788 svm->nested.hsave->control.tsc_offset += delta;
789 }
790 vcpu->cpu = cpu;
791 kvm_migrate_timers(vcpu);
792 svm->asid_generation = 0;
793 }
794
795 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
796 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
797 }
798
799 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
800 {
801 struct vcpu_svm *svm = to_svm(vcpu);
802 int i;
803
804 ++vcpu->stat.host_state_reload;
805 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
806 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
807
808 vcpu->arch.host_tsc = native_read_tsc();
809 }
810
811 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
812 {
813 return to_svm(vcpu)->vmcb->save.rflags;
814 }
815
816 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
817 {
818 to_svm(vcpu)->vmcb->save.rflags = rflags;
819 }
820
821 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
822 {
823 switch (reg) {
824 case VCPU_EXREG_PDPTR:
825 BUG_ON(!npt_enabled);
826 load_pdptrs(vcpu, vcpu->arch.cr3);
827 break;
828 default:
829 BUG();
830 }
831 }
832
833 static void svm_set_vintr(struct vcpu_svm *svm)
834 {
835 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
836 }
837
838 static void svm_clear_vintr(struct vcpu_svm *svm)
839 {
840 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
841 }
842
843 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
844 {
845 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
846
847 switch (seg) {
848 case VCPU_SREG_CS: return &save->cs;
849 case VCPU_SREG_DS: return &save->ds;
850 case VCPU_SREG_ES: return &save->es;
851 case VCPU_SREG_FS: return &save->fs;
852 case VCPU_SREG_GS: return &save->gs;
853 case VCPU_SREG_SS: return &save->ss;
854 case VCPU_SREG_TR: return &save->tr;
855 case VCPU_SREG_LDTR: return &save->ldtr;
856 }
857 BUG();
858 return NULL;
859 }
860
861 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
862 {
863 struct vmcb_seg *s = svm_seg(vcpu, seg);
864
865 return s->base;
866 }
867
868 static void svm_get_segment(struct kvm_vcpu *vcpu,
869 struct kvm_segment *var, int seg)
870 {
871 struct vmcb_seg *s = svm_seg(vcpu, seg);
872
873 var->base = s->base;
874 var->limit = s->limit;
875 var->selector = s->selector;
876 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
877 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
878 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
879 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
880 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
881 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
882 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
883 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
884
885 /* AMD's VMCB does not have an explicit unusable field, so emulate it
886 * for cross vendor migration purposes by "not present"
887 */
888 var->unusable = !var->present || (var->type == 0);
889
890 switch (seg) {
891 case VCPU_SREG_CS:
892 /*
893 * SVM always stores 0 for the 'G' bit in the CS selector in
894 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
895 * Intel's VMENTRY has a check on the 'G' bit.
896 */
897 var->g = s->limit > 0xfffff;
898 break;
899 case VCPU_SREG_TR:
900 /*
901 * Work around a bug where the busy flag in the tr selector
902 * isn't exposed
903 */
904 var->type |= 0x2;
905 break;
906 case VCPU_SREG_DS:
907 case VCPU_SREG_ES:
908 case VCPU_SREG_FS:
909 case VCPU_SREG_GS:
910 /*
911 * The accessed bit must always be set in the segment
912 * descriptor cache, although it can be cleared in the
913 * descriptor, the cached bit always remains at 1. Since
914 * Intel has a check on this, set it here to support
915 * cross-vendor migration.
916 */
917 if (!var->unusable)
918 var->type |= 0x1;
919 break;
920 case VCPU_SREG_SS:
921 /* On AMD CPUs sometimes the DB bit in the segment
922 * descriptor is left as 1, although the whole segment has
923 * been made unusable. Clear it here to pass an Intel VMX
924 * entry check when cross vendor migrating.
925 */
926 if (var->unusable)
927 var->db = 0;
928 break;
929 }
930 }
931
932 static int svm_get_cpl(struct kvm_vcpu *vcpu)
933 {
934 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
935
936 return save->cpl;
937 }
938
939 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
940 {
941 struct vcpu_svm *svm = to_svm(vcpu);
942
943 dt->limit = svm->vmcb->save.idtr.limit;
944 dt->base = svm->vmcb->save.idtr.base;
945 }
946
947 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
948 {
949 struct vcpu_svm *svm = to_svm(vcpu);
950
951 svm->vmcb->save.idtr.limit = dt->limit;
952 svm->vmcb->save.idtr.base = dt->base ;
953 }
954
955 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
956 {
957 struct vcpu_svm *svm = to_svm(vcpu);
958
959 dt->limit = svm->vmcb->save.gdtr.limit;
960 dt->base = svm->vmcb->save.gdtr.base;
961 }
962
963 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
964 {
965 struct vcpu_svm *svm = to_svm(vcpu);
966
967 svm->vmcb->save.gdtr.limit = dt->limit;
968 svm->vmcb->save.gdtr.base = dt->base ;
969 }
970
971 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
972 {
973 }
974
975 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
976 {
977 }
978
979 static void update_cr0_intercept(struct vcpu_svm *svm)
980 {
981 ulong gcr0 = svm->vcpu.arch.cr0;
982 u64 *hcr0 = &svm->vmcb->save.cr0;
983
984 if (!svm->vcpu.fpu_active)
985 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
986 else
987 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
988 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
989
990
991 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
992 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
993 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
994 } else {
995 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
996 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
997 }
998 }
999
1000 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1001 {
1002 struct vcpu_svm *svm = to_svm(vcpu);
1003
1004 #ifdef CONFIG_X86_64
1005 if (vcpu->arch.efer & EFER_LME) {
1006 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1007 vcpu->arch.efer |= EFER_LMA;
1008 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1009 }
1010
1011 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1012 vcpu->arch.efer &= ~EFER_LMA;
1013 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1014 }
1015 }
1016 #endif
1017 vcpu->arch.cr0 = cr0;
1018
1019 if (!npt_enabled)
1020 cr0 |= X86_CR0_PG | X86_CR0_WP;
1021
1022 if (!vcpu->fpu_active)
1023 cr0 |= X86_CR0_TS;
1024 /*
1025 * re-enable caching here because the QEMU bios
1026 * does not do it - this results in some delay at
1027 * reboot
1028 */
1029 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1030 svm->vmcb->save.cr0 = cr0;
1031 update_cr0_intercept(svm);
1032 }
1033
1034 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1035 {
1036 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1037 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1038
1039 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1040 force_new_asid(vcpu);
1041
1042 vcpu->arch.cr4 = cr4;
1043 if (!npt_enabled)
1044 cr4 |= X86_CR4_PAE;
1045 cr4 |= host_cr4_mce;
1046 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1047 }
1048
1049 static void svm_set_segment(struct kvm_vcpu *vcpu,
1050 struct kvm_segment *var, int seg)
1051 {
1052 struct vcpu_svm *svm = to_svm(vcpu);
1053 struct vmcb_seg *s = svm_seg(vcpu, seg);
1054
1055 s->base = var->base;
1056 s->limit = var->limit;
1057 s->selector = var->selector;
1058 if (var->unusable)
1059 s->attrib = 0;
1060 else {
1061 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1062 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1063 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1064 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1065 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1066 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1067 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1068 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1069 }
1070 if (seg == VCPU_SREG_CS)
1071 svm->vmcb->save.cpl
1072 = (svm->vmcb->save.cs.attrib
1073 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1074
1075 }
1076
1077 static void update_db_intercept(struct kvm_vcpu *vcpu)
1078 {
1079 struct vcpu_svm *svm = to_svm(vcpu);
1080
1081 svm->vmcb->control.intercept_exceptions &=
1082 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1083
1084 if (svm->nmi_singlestep)
1085 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1086
1087 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1088 if (vcpu->guest_debug &
1089 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1090 svm->vmcb->control.intercept_exceptions |=
1091 1 << DB_VECTOR;
1092 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1093 svm->vmcb->control.intercept_exceptions |=
1094 1 << BP_VECTOR;
1095 } else
1096 vcpu->guest_debug = 0;
1097 }
1098
1099 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1100 {
1101 struct vcpu_svm *svm = to_svm(vcpu);
1102
1103 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1104 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1105 else
1106 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1107
1108 update_db_intercept(vcpu);
1109 }
1110
1111 static void load_host_msrs(struct kvm_vcpu *vcpu)
1112 {
1113 #ifdef CONFIG_X86_64
1114 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1115 #endif
1116 }
1117
1118 static void save_host_msrs(struct kvm_vcpu *vcpu)
1119 {
1120 #ifdef CONFIG_X86_64
1121 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1122 #endif
1123 }
1124
1125 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1126 {
1127 if (sd->next_asid > sd->max_asid) {
1128 ++sd->asid_generation;
1129 sd->next_asid = 1;
1130 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1131 }
1132
1133 svm->asid_generation = sd->asid_generation;
1134 svm->vmcb->control.asid = sd->next_asid++;
1135 }
1136
1137 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1138 {
1139 struct vcpu_svm *svm = to_svm(vcpu);
1140
1141 switch (dr) {
1142 case 0 ... 3:
1143 *dest = vcpu->arch.db[dr];
1144 break;
1145 case 4:
1146 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1147 return EMULATE_FAIL; /* will re-inject UD */
1148 /* fall through */
1149 case 6:
1150 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1151 *dest = vcpu->arch.dr6;
1152 else
1153 *dest = svm->vmcb->save.dr6;
1154 break;
1155 case 5:
1156 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1157 return EMULATE_FAIL; /* will re-inject UD */
1158 /* fall through */
1159 case 7:
1160 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1161 *dest = vcpu->arch.dr7;
1162 else
1163 *dest = svm->vmcb->save.dr7;
1164 break;
1165 }
1166
1167 return EMULATE_DONE;
1168 }
1169
1170 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1171 {
1172 struct vcpu_svm *svm = to_svm(vcpu);
1173
1174 switch (dr) {
1175 case 0 ... 3:
1176 vcpu->arch.db[dr] = value;
1177 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1178 vcpu->arch.eff_db[dr] = value;
1179 break;
1180 case 4:
1181 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1182 return EMULATE_FAIL; /* will re-inject UD */
1183 /* fall through */
1184 case 6:
1185 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1186 break;
1187 case 5:
1188 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1189 return EMULATE_FAIL; /* will re-inject UD */
1190 /* fall through */
1191 case 7:
1192 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1193 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1194 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1195 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1196 }
1197 break;
1198 }
1199
1200 return EMULATE_DONE;
1201 }
1202
1203 static int pf_interception(struct vcpu_svm *svm)
1204 {
1205 u64 fault_address;
1206 u32 error_code;
1207
1208 fault_address = svm->vmcb->control.exit_info_2;
1209 error_code = svm->vmcb->control.exit_info_1;
1210
1211 trace_kvm_page_fault(fault_address, error_code);
1212 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1213 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1214 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1215 }
1216
1217 static int db_interception(struct vcpu_svm *svm)
1218 {
1219 struct kvm_run *kvm_run = svm->vcpu.run;
1220
1221 if (!(svm->vcpu.guest_debug &
1222 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1223 !svm->nmi_singlestep) {
1224 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1225 return 1;
1226 }
1227
1228 if (svm->nmi_singlestep) {
1229 svm->nmi_singlestep = false;
1230 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1231 svm->vmcb->save.rflags &=
1232 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1233 update_db_intercept(&svm->vcpu);
1234 }
1235
1236 if (svm->vcpu.guest_debug &
1237 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1238 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1239 kvm_run->debug.arch.pc =
1240 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1241 kvm_run->debug.arch.exception = DB_VECTOR;
1242 return 0;
1243 }
1244
1245 return 1;
1246 }
1247
1248 static int bp_interception(struct vcpu_svm *svm)
1249 {
1250 struct kvm_run *kvm_run = svm->vcpu.run;
1251
1252 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1253 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1254 kvm_run->debug.arch.exception = BP_VECTOR;
1255 return 0;
1256 }
1257
1258 static int ud_interception(struct vcpu_svm *svm)
1259 {
1260 int er;
1261
1262 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1263 if (er != EMULATE_DONE)
1264 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1265 return 1;
1266 }
1267
1268 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1269 {
1270 struct vcpu_svm *svm = to_svm(vcpu);
1271 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1272 svm->vcpu.fpu_active = 1;
1273 update_cr0_intercept(svm);
1274 }
1275
1276 static int nm_interception(struct vcpu_svm *svm)
1277 {
1278 svm_fpu_activate(&svm->vcpu);
1279 return 1;
1280 }
1281
1282 static int mc_interception(struct vcpu_svm *svm)
1283 {
1284 /*
1285 * On an #MC intercept the MCE handler is not called automatically in
1286 * the host. So do it by hand here.
1287 */
1288 asm volatile (
1289 "int $0x12\n");
1290 /* not sure if we ever come back to this point */
1291
1292 return 1;
1293 }
1294
1295 static int shutdown_interception(struct vcpu_svm *svm)
1296 {
1297 struct kvm_run *kvm_run = svm->vcpu.run;
1298
1299 /*
1300 * VMCB is undefined after a SHUTDOWN intercept
1301 * so reinitialize it.
1302 */
1303 clear_page(svm->vmcb);
1304 init_vmcb(svm);
1305
1306 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1307 return 0;
1308 }
1309
1310 static int io_interception(struct vcpu_svm *svm)
1311 {
1312 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1313 int size, in, string;
1314 unsigned port;
1315
1316 ++svm->vcpu.stat.io_exits;
1317
1318 svm->next_rip = svm->vmcb->control.exit_info_2;
1319
1320 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1321
1322 if (string) {
1323 if (emulate_instruction(&svm->vcpu,
1324 0, 0, 0) == EMULATE_DO_MMIO)
1325 return 0;
1326 return 1;
1327 }
1328
1329 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1330 port = io_info >> 16;
1331 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1332
1333 skip_emulated_instruction(&svm->vcpu);
1334 return kvm_emulate_pio(&svm->vcpu, in, size, port);
1335 }
1336
1337 static int nmi_interception(struct vcpu_svm *svm)
1338 {
1339 return 1;
1340 }
1341
1342 static int intr_interception(struct vcpu_svm *svm)
1343 {
1344 ++svm->vcpu.stat.irq_exits;
1345 return 1;
1346 }
1347
1348 static int nop_on_interception(struct vcpu_svm *svm)
1349 {
1350 return 1;
1351 }
1352
1353 static int halt_interception(struct vcpu_svm *svm)
1354 {
1355 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1356 skip_emulated_instruction(&svm->vcpu);
1357 return kvm_emulate_halt(&svm->vcpu);
1358 }
1359
1360 static int vmmcall_interception(struct vcpu_svm *svm)
1361 {
1362 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1363 skip_emulated_instruction(&svm->vcpu);
1364 kvm_emulate_hypercall(&svm->vcpu);
1365 return 1;
1366 }
1367
1368 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1369 {
1370 if (!(svm->vcpu.arch.efer & EFER_SVME)
1371 || !is_paging(&svm->vcpu)) {
1372 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1373 return 1;
1374 }
1375
1376 if (svm->vmcb->save.cpl) {
1377 kvm_inject_gp(&svm->vcpu, 0);
1378 return 1;
1379 }
1380
1381 return 0;
1382 }
1383
1384 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1385 bool has_error_code, u32 error_code)
1386 {
1387 if (!is_nested(svm))
1388 return 0;
1389
1390 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1391 svm->vmcb->control.exit_code_hi = 0;
1392 svm->vmcb->control.exit_info_1 = error_code;
1393 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1394
1395 return nested_svm_exit_handled(svm);
1396 }
1397
1398 static inline int nested_svm_intr(struct vcpu_svm *svm)
1399 {
1400 if (!is_nested(svm))
1401 return 0;
1402
1403 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1404 return 0;
1405
1406 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1407 return 0;
1408
1409 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1410
1411 if (svm->nested.intercept & 1ULL) {
1412 /*
1413 * The #vmexit can't be emulated here directly because this
1414 * code path runs with irqs and preemtion disabled. A
1415 * #vmexit emulation might sleep. Only signal request for
1416 * the #vmexit here.
1417 */
1418 svm->nested.exit_required = true;
1419 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1420 return 1;
1421 }
1422
1423 return 0;
1424 }
1425
1426 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1427 {
1428 struct page *page;
1429
1430 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1431 if (is_error_page(page))
1432 goto error;
1433
1434 return kmap_atomic(page, idx);
1435
1436 error:
1437 kvm_release_page_clean(page);
1438 kvm_inject_gp(&svm->vcpu, 0);
1439
1440 return NULL;
1441 }
1442
1443 static void nested_svm_unmap(void *addr, enum km_type idx)
1444 {
1445 struct page *page;
1446
1447 if (!addr)
1448 return;
1449
1450 page = kmap_atomic_to_page(addr);
1451
1452 kunmap_atomic(addr, idx);
1453 kvm_release_page_dirty(page);
1454 }
1455
1456 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1457 {
1458 u32 param = svm->vmcb->control.exit_info_1 & 1;
1459 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1460 bool ret = false;
1461 u32 t0, t1;
1462 u8 *msrpm;
1463
1464 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1465 return false;
1466
1467 msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1468
1469 if (!msrpm)
1470 goto out;
1471
1472 switch (msr) {
1473 case 0 ... 0x1fff:
1474 t0 = (msr * 2) % 8;
1475 t1 = msr / 8;
1476 break;
1477 case 0xc0000000 ... 0xc0001fff:
1478 t0 = (8192 + msr - 0xc0000000) * 2;
1479 t1 = (t0 / 8);
1480 t0 %= 8;
1481 break;
1482 case 0xc0010000 ... 0xc0011fff:
1483 t0 = (16384 + msr - 0xc0010000) * 2;
1484 t1 = (t0 / 8);
1485 t0 %= 8;
1486 break;
1487 default:
1488 ret = true;
1489 goto out;
1490 }
1491
1492 ret = msrpm[t1] & ((1 << param) << t0);
1493
1494 out:
1495 nested_svm_unmap(msrpm, KM_USER0);
1496
1497 return ret;
1498 }
1499
1500 static int nested_svm_exit_special(struct vcpu_svm *svm)
1501 {
1502 u32 exit_code = svm->vmcb->control.exit_code;
1503
1504 switch (exit_code) {
1505 case SVM_EXIT_INTR:
1506 case SVM_EXIT_NMI:
1507 return NESTED_EXIT_HOST;
1508 /* For now we are always handling NPFs when using them */
1509 case SVM_EXIT_NPF:
1510 if (npt_enabled)
1511 return NESTED_EXIT_HOST;
1512 break;
1513 /* When we're shadowing, trap PFs */
1514 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1515 if (!npt_enabled)
1516 return NESTED_EXIT_HOST;
1517 break;
1518 default:
1519 break;
1520 }
1521
1522 return NESTED_EXIT_CONTINUE;
1523 }
1524
1525 /*
1526 * If this function returns true, this #vmexit was already handled
1527 */
1528 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1529 {
1530 u32 exit_code = svm->vmcb->control.exit_code;
1531 int vmexit = NESTED_EXIT_HOST;
1532
1533 switch (exit_code) {
1534 case SVM_EXIT_MSR:
1535 vmexit = nested_svm_exit_handled_msr(svm);
1536 break;
1537 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1538 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1539 if (svm->nested.intercept_cr_read & cr_bits)
1540 vmexit = NESTED_EXIT_DONE;
1541 break;
1542 }
1543 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1544 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1545 if (svm->nested.intercept_cr_write & cr_bits)
1546 vmexit = NESTED_EXIT_DONE;
1547 break;
1548 }
1549 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1550 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1551 if (svm->nested.intercept_dr_read & dr_bits)
1552 vmexit = NESTED_EXIT_DONE;
1553 break;
1554 }
1555 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1556 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1557 if (svm->nested.intercept_dr_write & dr_bits)
1558 vmexit = NESTED_EXIT_DONE;
1559 break;
1560 }
1561 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1562 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1563 if (svm->nested.intercept_exceptions & excp_bits)
1564 vmexit = NESTED_EXIT_DONE;
1565 break;
1566 }
1567 default: {
1568 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1569 if (svm->nested.intercept & exit_bits)
1570 vmexit = NESTED_EXIT_DONE;
1571 }
1572 }
1573
1574 if (vmexit == NESTED_EXIT_DONE) {
1575 nested_svm_vmexit(svm);
1576 }
1577
1578 return vmexit;
1579 }
1580
1581 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1582 {
1583 struct vmcb_control_area *dst = &dst_vmcb->control;
1584 struct vmcb_control_area *from = &from_vmcb->control;
1585
1586 dst->intercept_cr_read = from->intercept_cr_read;
1587 dst->intercept_cr_write = from->intercept_cr_write;
1588 dst->intercept_dr_read = from->intercept_dr_read;
1589 dst->intercept_dr_write = from->intercept_dr_write;
1590 dst->intercept_exceptions = from->intercept_exceptions;
1591 dst->intercept = from->intercept;
1592 dst->iopm_base_pa = from->iopm_base_pa;
1593 dst->msrpm_base_pa = from->msrpm_base_pa;
1594 dst->tsc_offset = from->tsc_offset;
1595 dst->asid = from->asid;
1596 dst->tlb_ctl = from->tlb_ctl;
1597 dst->int_ctl = from->int_ctl;
1598 dst->int_vector = from->int_vector;
1599 dst->int_state = from->int_state;
1600 dst->exit_code = from->exit_code;
1601 dst->exit_code_hi = from->exit_code_hi;
1602 dst->exit_info_1 = from->exit_info_1;
1603 dst->exit_info_2 = from->exit_info_2;
1604 dst->exit_int_info = from->exit_int_info;
1605 dst->exit_int_info_err = from->exit_int_info_err;
1606 dst->nested_ctl = from->nested_ctl;
1607 dst->event_inj = from->event_inj;
1608 dst->event_inj_err = from->event_inj_err;
1609 dst->nested_cr3 = from->nested_cr3;
1610 dst->lbr_ctl = from->lbr_ctl;
1611 }
1612
1613 static int nested_svm_vmexit(struct vcpu_svm *svm)
1614 {
1615 struct vmcb *nested_vmcb;
1616 struct vmcb *hsave = svm->nested.hsave;
1617 struct vmcb *vmcb = svm->vmcb;
1618
1619 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1620 vmcb->control.exit_info_1,
1621 vmcb->control.exit_info_2,
1622 vmcb->control.exit_int_info,
1623 vmcb->control.exit_int_info_err);
1624
1625 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1626 if (!nested_vmcb)
1627 return 1;
1628
1629 /* Give the current vmcb to the guest */
1630 disable_gif(svm);
1631
1632 nested_vmcb->save.es = vmcb->save.es;
1633 nested_vmcb->save.cs = vmcb->save.cs;
1634 nested_vmcb->save.ss = vmcb->save.ss;
1635 nested_vmcb->save.ds = vmcb->save.ds;
1636 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1637 nested_vmcb->save.idtr = vmcb->save.idtr;
1638 if (npt_enabled)
1639 nested_vmcb->save.cr3 = vmcb->save.cr3;
1640 nested_vmcb->save.cr2 = vmcb->save.cr2;
1641 nested_vmcb->save.rflags = vmcb->save.rflags;
1642 nested_vmcb->save.rip = vmcb->save.rip;
1643 nested_vmcb->save.rsp = vmcb->save.rsp;
1644 nested_vmcb->save.rax = vmcb->save.rax;
1645 nested_vmcb->save.dr7 = vmcb->save.dr7;
1646 nested_vmcb->save.dr6 = vmcb->save.dr6;
1647 nested_vmcb->save.cpl = vmcb->save.cpl;
1648
1649 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1650 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1651 nested_vmcb->control.int_state = vmcb->control.int_state;
1652 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1653 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1654 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1655 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1656 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1657 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1658
1659 /*
1660 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1661 * to make sure that we do not lose injected events. So check event_inj
1662 * here and copy it to exit_int_info if it is valid.
1663 * Exit_int_info and event_inj can't be both valid because the case
1664 * below only happens on a VMRUN instruction intercept which has
1665 * no valid exit_int_info set.
1666 */
1667 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1668 struct vmcb_control_area *nc = &nested_vmcb->control;
1669
1670 nc->exit_int_info = vmcb->control.event_inj;
1671 nc->exit_int_info_err = vmcb->control.event_inj_err;
1672 }
1673
1674 nested_vmcb->control.tlb_ctl = 0;
1675 nested_vmcb->control.event_inj = 0;
1676 nested_vmcb->control.event_inj_err = 0;
1677
1678 /* We always set V_INTR_MASKING and remember the old value in hflags */
1679 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1680 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1681
1682 /* Restore the original control entries */
1683 copy_vmcb_control_area(vmcb, hsave);
1684
1685 kvm_clear_exception_queue(&svm->vcpu);
1686 kvm_clear_interrupt_queue(&svm->vcpu);
1687
1688 /* Restore selected save entries */
1689 svm->vmcb->save.es = hsave->save.es;
1690 svm->vmcb->save.cs = hsave->save.cs;
1691 svm->vmcb->save.ss = hsave->save.ss;
1692 svm->vmcb->save.ds = hsave->save.ds;
1693 svm->vmcb->save.gdtr = hsave->save.gdtr;
1694 svm->vmcb->save.idtr = hsave->save.idtr;
1695 svm->vmcb->save.rflags = hsave->save.rflags;
1696 svm_set_efer(&svm->vcpu, hsave->save.efer);
1697 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1698 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1699 if (npt_enabled) {
1700 svm->vmcb->save.cr3 = hsave->save.cr3;
1701 svm->vcpu.arch.cr3 = hsave->save.cr3;
1702 } else {
1703 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1704 }
1705 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1706 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1707 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1708 svm->vmcb->save.dr7 = 0;
1709 svm->vmcb->save.cpl = 0;
1710 svm->vmcb->control.exit_int_info = 0;
1711
1712 /* Exit nested SVM mode */
1713 svm->nested.vmcb = 0;
1714
1715 nested_svm_unmap(nested_vmcb, KM_USER0);
1716
1717 kvm_mmu_reset_context(&svm->vcpu);
1718 kvm_mmu_load(&svm->vcpu);
1719
1720 return 0;
1721 }
1722
1723 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1724 {
1725 u32 *nested_msrpm;
1726 int i;
1727
1728 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1729 if (!nested_msrpm)
1730 return false;
1731
1732 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1733 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1734
1735 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1736
1737 nested_svm_unmap(nested_msrpm, KM_USER0);
1738
1739 return true;
1740 }
1741
1742 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1743 {
1744 struct vmcb *nested_vmcb;
1745 struct vmcb *hsave = svm->nested.hsave;
1746 struct vmcb *vmcb = svm->vmcb;
1747
1748 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1749 if (!nested_vmcb)
1750 return false;
1751
1752 /* nested_vmcb is our indicator if nested SVM is activated */
1753 svm->nested.vmcb = svm->vmcb->save.rax;
1754
1755 trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1756 nested_vmcb->save.rip,
1757 nested_vmcb->control.int_ctl,
1758 nested_vmcb->control.event_inj,
1759 nested_vmcb->control.nested_ctl);
1760
1761 /* Clear internal status */
1762 kvm_clear_exception_queue(&svm->vcpu);
1763 kvm_clear_interrupt_queue(&svm->vcpu);
1764
1765 /* Save the old vmcb, so we don't need to pick what we save, but
1766 can restore everything when a VMEXIT occurs */
1767 hsave->save.es = vmcb->save.es;
1768 hsave->save.cs = vmcb->save.cs;
1769 hsave->save.ss = vmcb->save.ss;
1770 hsave->save.ds = vmcb->save.ds;
1771 hsave->save.gdtr = vmcb->save.gdtr;
1772 hsave->save.idtr = vmcb->save.idtr;
1773 hsave->save.efer = svm->vcpu.arch.efer;
1774 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
1775 hsave->save.cr4 = svm->vcpu.arch.cr4;
1776 hsave->save.rflags = vmcb->save.rflags;
1777 hsave->save.rip = svm->next_rip;
1778 hsave->save.rsp = vmcb->save.rsp;
1779 hsave->save.rax = vmcb->save.rax;
1780 if (npt_enabled)
1781 hsave->save.cr3 = vmcb->save.cr3;
1782 else
1783 hsave->save.cr3 = svm->vcpu.arch.cr3;
1784
1785 copy_vmcb_control_area(hsave, vmcb);
1786
1787 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1788 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1789 else
1790 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1791
1792 /* Load the nested guest state */
1793 svm->vmcb->save.es = nested_vmcb->save.es;
1794 svm->vmcb->save.cs = nested_vmcb->save.cs;
1795 svm->vmcb->save.ss = nested_vmcb->save.ss;
1796 svm->vmcb->save.ds = nested_vmcb->save.ds;
1797 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1798 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1799 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1800 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1801 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1802 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1803 if (npt_enabled) {
1804 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1805 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1806 } else {
1807 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1808 kvm_mmu_reset_context(&svm->vcpu);
1809 }
1810 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1811 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1812 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1813 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1814 /* In case we don't even reach vcpu_run, the fields are not updated */
1815 svm->vmcb->save.rax = nested_vmcb->save.rax;
1816 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1817 svm->vmcb->save.rip = nested_vmcb->save.rip;
1818 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1819 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1820 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1821
1822 /* We don't want a nested guest to be more powerful than the guest,
1823 so all intercepts are ORed */
1824 svm->vmcb->control.intercept_cr_read |=
1825 nested_vmcb->control.intercept_cr_read;
1826 svm->vmcb->control.intercept_cr_write |=
1827 nested_vmcb->control.intercept_cr_write;
1828 svm->vmcb->control.intercept_dr_read |=
1829 nested_vmcb->control.intercept_dr_read;
1830 svm->vmcb->control.intercept_dr_write |=
1831 nested_vmcb->control.intercept_dr_write;
1832 svm->vmcb->control.intercept_exceptions |=
1833 nested_vmcb->control.intercept_exceptions;
1834
1835 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1836
1837 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1838
1839 /* cache intercepts */
1840 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1841 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1842 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1843 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1844 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1845 svm->nested.intercept = nested_vmcb->control.intercept;
1846
1847 force_new_asid(&svm->vcpu);
1848 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1849 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1850 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1851 else
1852 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1853
1854 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1855 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1856 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1857 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1858 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1859
1860 nested_svm_unmap(nested_vmcb, KM_USER0);
1861
1862 enable_gif(svm);
1863
1864 return true;
1865 }
1866
1867 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1868 {
1869 to_vmcb->save.fs = from_vmcb->save.fs;
1870 to_vmcb->save.gs = from_vmcb->save.gs;
1871 to_vmcb->save.tr = from_vmcb->save.tr;
1872 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1873 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1874 to_vmcb->save.star = from_vmcb->save.star;
1875 to_vmcb->save.lstar = from_vmcb->save.lstar;
1876 to_vmcb->save.cstar = from_vmcb->save.cstar;
1877 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1878 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1879 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1880 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1881 }
1882
1883 static int vmload_interception(struct vcpu_svm *svm)
1884 {
1885 struct vmcb *nested_vmcb;
1886
1887 if (nested_svm_check_permissions(svm))
1888 return 1;
1889
1890 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1891 skip_emulated_instruction(&svm->vcpu);
1892
1893 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1894 if (!nested_vmcb)
1895 return 1;
1896
1897 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1898 nested_svm_unmap(nested_vmcb, KM_USER0);
1899
1900 return 1;
1901 }
1902
1903 static int vmsave_interception(struct vcpu_svm *svm)
1904 {
1905 struct vmcb *nested_vmcb;
1906
1907 if (nested_svm_check_permissions(svm))
1908 return 1;
1909
1910 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1911 skip_emulated_instruction(&svm->vcpu);
1912
1913 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1914 if (!nested_vmcb)
1915 return 1;
1916
1917 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1918 nested_svm_unmap(nested_vmcb, KM_USER0);
1919
1920 return 1;
1921 }
1922
1923 static int vmrun_interception(struct vcpu_svm *svm)
1924 {
1925 if (nested_svm_check_permissions(svm))
1926 return 1;
1927
1928 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1929 skip_emulated_instruction(&svm->vcpu);
1930
1931 if (!nested_svm_vmrun(svm))
1932 return 1;
1933
1934 if (!nested_svm_vmrun_msrpm(svm))
1935 goto failed;
1936
1937 return 1;
1938
1939 failed:
1940
1941 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1942 svm->vmcb->control.exit_code_hi = 0;
1943 svm->vmcb->control.exit_info_1 = 0;
1944 svm->vmcb->control.exit_info_2 = 0;
1945
1946 nested_svm_vmexit(svm);
1947
1948 return 1;
1949 }
1950
1951 static int stgi_interception(struct vcpu_svm *svm)
1952 {
1953 if (nested_svm_check_permissions(svm))
1954 return 1;
1955
1956 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1957 skip_emulated_instruction(&svm->vcpu);
1958
1959 enable_gif(svm);
1960
1961 return 1;
1962 }
1963
1964 static int clgi_interception(struct vcpu_svm *svm)
1965 {
1966 if (nested_svm_check_permissions(svm))
1967 return 1;
1968
1969 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1970 skip_emulated_instruction(&svm->vcpu);
1971
1972 disable_gif(svm);
1973
1974 /* After a CLGI no interrupts should come */
1975 svm_clear_vintr(svm);
1976 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1977
1978 return 1;
1979 }
1980
1981 static int invlpga_interception(struct vcpu_svm *svm)
1982 {
1983 struct kvm_vcpu *vcpu = &svm->vcpu;
1984
1985 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1986 vcpu->arch.regs[VCPU_REGS_RAX]);
1987
1988 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1989 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1990
1991 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1992 skip_emulated_instruction(&svm->vcpu);
1993 return 1;
1994 }
1995
1996 static int skinit_interception(struct vcpu_svm *svm)
1997 {
1998 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1999
2000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2001 return 1;
2002 }
2003
2004 static int invalid_op_interception(struct vcpu_svm *svm)
2005 {
2006 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2007 return 1;
2008 }
2009
2010 static int task_switch_interception(struct vcpu_svm *svm)
2011 {
2012 u16 tss_selector;
2013 int reason;
2014 int int_type = svm->vmcb->control.exit_int_info &
2015 SVM_EXITINTINFO_TYPE_MASK;
2016 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2017 uint32_t type =
2018 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2019 uint32_t idt_v =
2020 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2021
2022 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2023
2024 if (svm->vmcb->control.exit_info_2 &
2025 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2026 reason = TASK_SWITCH_IRET;
2027 else if (svm->vmcb->control.exit_info_2 &
2028 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2029 reason = TASK_SWITCH_JMP;
2030 else if (idt_v)
2031 reason = TASK_SWITCH_GATE;
2032 else
2033 reason = TASK_SWITCH_CALL;
2034
2035 if (reason == TASK_SWITCH_GATE) {
2036 switch (type) {
2037 case SVM_EXITINTINFO_TYPE_NMI:
2038 svm->vcpu.arch.nmi_injected = false;
2039 break;
2040 case SVM_EXITINTINFO_TYPE_EXEPT:
2041 kvm_clear_exception_queue(&svm->vcpu);
2042 break;
2043 case SVM_EXITINTINFO_TYPE_INTR:
2044 kvm_clear_interrupt_queue(&svm->vcpu);
2045 break;
2046 default:
2047 break;
2048 }
2049 }
2050
2051 if (reason != TASK_SWITCH_GATE ||
2052 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2053 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2054 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2055 skip_emulated_instruction(&svm->vcpu);
2056
2057 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2058 }
2059
2060 static int cpuid_interception(struct vcpu_svm *svm)
2061 {
2062 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2063 kvm_emulate_cpuid(&svm->vcpu);
2064 return 1;
2065 }
2066
2067 static int iret_interception(struct vcpu_svm *svm)
2068 {
2069 ++svm->vcpu.stat.nmi_window_exits;
2070 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2071 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2072 return 1;
2073 }
2074
2075 static int invlpg_interception(struct vcpu_svm *svm)
2076 {
2077 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2078 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2079 return 1;
2080 }
2081
2082 static int emulate_on_interception(struct vcpu_svm *svm)
2083 {
2084 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2085 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2086 return 1;
2087 }
2088
2089 static int cr8_write_interception(struct vcpu_svm *svm)
2090 {
2091 struct kvm_run *kvm_run = svm->vcpu.run;
2092
2093 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2094 /* instruction emulation calls kvm_set_cr8() */
2095 emulate_instruction(&svm->vcpu, 0, 0, 0);
2096 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2097 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2098 return 1;
2099 }
2100 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2101 return 1;
2102 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2103 return 0;
2104 }
2105
2106 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2107 {
2108 struct vcpu_svm *svm = to_svm(vcpu);
2109
2110 switch (ecx) {
2111 case MSR_IA32_TSC: {
2112 u64 tsc_offset;
2113
2114 if (is_nested(svm))
2115 tsc_offset = svm->nested.hsave->control.tsc_offset;
2116 else
2117 tsc_offset = svm->vmcb->control.tsc_offset;
2118
2119 *data = tsc_offset + native_read_tsc();
2120 break;
2121 }
2122 case MSR_K6_STAR:
2123 *data = svm->vmcb->save.star;
2124 break;
2125 #ifdef CONFIG_X86_64
2126 case MSR_LSTAR:
2127 *data = svm->vmcb->save.lstar;
2128 break;
2129 case MSR_CSTAR:
2130 *data = svm->vmcb->save.cstar;
2131 break;
2132 case MSR_KERNEL_GS_BASE:
2133 *data = svm->vmcb->save.kernel_gs_base;
2134 break;
2135 case MSR_SYSCALL_MASK:
2136 *data = svm->vmcb->save.sfmask;
2137 break;
2138 #endif
2139 case MSR_IA32_SYSENTER_CS:
2140 *data = svm->vmcb->save.sysenter_cs;
2141 break;
2142 case MSR_IA32_SYSENTER_EIP:
2143 *data = svm->sysenter_eip;
2144 break;
2145 case MSR_IA32_SYSENTER_ESP:
2146 *data = svm->sysenter_esp;
2147 break;
2148 /* Nobody will change the following 5 values in the VMCB so
2149 we can safely return them on rdmsr. They will always be 0
2150 until LBRV is implemented. */
2151 case MSR_IA32_DEBUGCTLMSR:
2152 *data = svm->vmcb->save.dbgctl;
2153 break;
2154 case MSR_IA32_LASTBRANCHFROMIP:
2155 *data = svm->vmcb->save.br_from;
2156 break;
2157 case MSR_IA32_LASTBRANCHTOIP:
2158 *data = svm->vmcb->save.br_to;
2159 break;
2160 case MSR_IA32_LASTINTFROMIP:
2161 *data = svm->vmcb->save.last_excp_from;
2162 break;
2163 case MSR_IA32_LASTINTTOIP:
2164 *data = svm->vmcb->save.last_excp_to;
2165 break;
2166 case MSR_VM_HSAVE_PA:
2167 *data = svm->nested.hsave_msr;
2168 break;
2169 case MSR_VM_CR:
2170 *data = 0;
2171 break;
2172 case MSR_IA32_UCODE_REV:
2173 *data = 0x01000065;
2174 break;
2175 default:
2176 return kvm_get_msr_common(vcpu, ecx, data);
2177 }
2178 return 0;
2179 }
2180
2181 static int rdmsr_interception(struct vcpu_svm *svm)
2182 {
2183 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2184 u64 data;
2185
2186 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2187 trace_kvm_msr_read_ex(ecx);
2188 kvm_inject_gp(&svm->vcpu, 0);
2189 } else {
2190 trace_kvm_msr_read(ecx, data);
2191
2192 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2193 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2194 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2195 skip_emulated_instruction(&svm->vcpu);
2196 }
2197 return 1;
2198 }
2199
2200 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2201 {
2202 struct vcpu_svm *svm = to_svm(vcpu);
2203
2204 switch (ecx) {
2205 case MSR_IA32_TSC: {
2206 u64 tsc_offset = data - native_read_tsc();
2207 u64 g_tsc_offset = 0;
2208
2209 if (is_nested(svm)) {
2210 g_tsc_offset = svm->vmcb->control.tsc_offset -
2211 svm->nested.hsave->control.tsc_offset;
2212 svm->nested.hsave->control.tsc_offset = tsc_offset;
2213 }
2214
2215 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2216
2217 break;
2218 }
2219 case MSR_K6_STAR:
2220 svm->vmcb->save.star = data;
2221 break;
2222 #ifdef CONFIG_X86_64
2223 case MSR_LSTAR:
2224 svm->vmcb->save.lstar = data;
2225 break;
2226 case MSR_CSTAR:
2227 svm->vmcb->save.cstar = data;
2228 break;
2229 case MSR_KERNEL_GS_BASE:
2230 svm->vmcb->save.kernel_gs_base = data;
2231 break;
2232 case MSR_SYSCALL_MASK:
2233 svm->vmcb->save.sfmask = data;
2234 break;
2235 #endif
2236 case MSR_IA32_SYSENTER_CS:
2237 svm->vmcb->save.sysenter_cs = data;
2238 break;
2239 case MSR_IA32_SYSENTER_EIP:
2240 svm->sysenter_eip = data;
2241 svm->vmcb->save.sysenter_eip = data;
2242 break;
2243 case MSR_IA32_SYSENTER_ESP:
2244 svm->sysenter_esp = data;
2245 svm->vmcb->save.sysenter_esp = data;
2246 break;
2247 case MSR_IA32_DEBUGCTLMSR:
2248 if (!svm_has(SVM_FEATURE_LBRV)) {
2249 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2250 __func__, data);
2251 break;
2252 }
2253 if (data & DEBUGCTL_RESERVED_BITS)
2254 return 1;
2255
2256 svm->vmcb->save.dbgctl = data;
2257 if (data & (1ULL<<0))
2258 svm_enable_lbrv(svm);
2259 else
2260 svm_disable_lbrv(svm);
2261 break;
2262 case MSR_VM_HSAVE_PA:
2263 svm->nested.hsave_msr = data;
2264 break;
2265 case MSR_VM_CR:
2266 case MSR_VM_IGNNE:
2267 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2268 break;
2269 default:
2270 return kvm_set_msr_common(vcpu, ecx, data);
2271 }
2272 return 0;
2273 }
2274
2275 static int wrmsr_interception(struct vcpu_svm *svm)
2276 {
2277 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2278 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2279 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2280
2281
2282 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2283 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2284 trace_kvm_msr_write_ex(ecx, data);
2285 kvm_inject_gp(&svm->vcpu, 0);
2286 } else {
2287 trace_kvm_msr_write(ecx, data);
2288 skip_emulated_instruction(&svm->vcpu);
2289 }
2290 return 1;
2291 }
2292
2293 static int msr_interception(struct vcpu_svm *svm)
2294 {
2295 if (svm->vmcb->control.exit_info_1)
2296 return wrmsr_interception(svm);
2297 else
2298 return rdmsr_interception(svm);
2299 }
2300
2301 static int interrupt_window_interception(struct vcpu_svm *svm)
2302 {
2303 struct kvm_run *kvm_run = svm->vcpu.run;
2304
2305 svm_clear_vintr(svm);
2306 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2307 /*
2308 * If the user space waits to inject interrupts, exit as soon as
2309 * possible
2310 */
2311 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2312 kvm_run->request_interrupt_window &&
2313 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2314 ++svm->vcpu.stat.irq_window_exits;
2315 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2316 return 0;
2317 }
2318
2319 return 1;
2320 }
2321
2322 static int pause_interception(struct vcpu_svm *svm)
2323 {
2324 kvm_vcpu_on_spin(&(svm->vcpu));
2325 return 1;
2326 }
2327
2328 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2329 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2330 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2331 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2332 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2333 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2334 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2335 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2336 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2337 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2338 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2339 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2340 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2341 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2342 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2343 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2344 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2345 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2346 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2347 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2348 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2349 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2350 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2351 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2352 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2353 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2354 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2355 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2356 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2357 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2358 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2359 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2360 [SVM_EXIT_INTR] = intr_interception,
2361 [SVM_EXIT_NMI] = nmi_interception,
2362 [SVM_EXIT_SMI] = nop_on_interception,
2363 [SVM_EXIT_INIT] = nop_on_interception,
2364 [SVM_EXIT_VINTR] = interrupt_window_interception,
2365 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2366 [SVM_EXIT_CPUID] = cpuid_interception,
2367 [SVM_EXIT_IRET] = iret_interception,
2368 [SVM_EXIT_INVD] = emulate_on_interception,
2369 [SVM_EXIT_PAUSE] = pause_interception,
2370 [SVM_EXIT_HLT] = halt_interception,
2371 [SVM_EXIT_INVLPG] = invlpg_interception,
2372 [SVM_EXIT_INVLPGA] = invlpga_interception,
2373 [SVM_EXIT_IOIO] = io_interception,
2374 [SVM_EXIT_MSR] = msr_interception,
2375 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2376 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2377 [SVM_EXIT_VMRUN] = vmrun_interception,
2378 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2379 [SVM_EXIT_VMLOAD] = vmload_interception,
2380 [SVM_EXIT_VMSAVE] = vmsave_interception,
2381 [SVM_EXIT_STGI] = stgi_interception,
2382 [SVM_EXIT_CLGI] = clgi_interception,
2383 [SVM_EXIT_SKINIT] = skinit_interception,
2384 [SVM_EXIT_WBINVD] = emulate_on_interception,
2385 [SVM_EXIT_MONITOR] = invalid_op_interception,
2386 [SVM_EXIT_MWAIT] = invalid_op_interception,
2387 [SVM_EXIT_NPF] = pf_interception,
2388 };
2389
2390 static int handle_exit(struct kvm_vcpu *vcpu)
2391 {
2392 struct vcpu_svm *svm = to_svm(vcpu);
2393 struct kvm_run *kvm_run = vcpu->run;
2394 u32 exit_code = svm->vmcb->control.exit_code;
2395
2396 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2397
2398 if (unlikely(svm->nested.exit_required)) {
2399 nested_svm_vmexit(svm);
2400 svm->nested.exit_required = false;
2401
2402 return 1;
2403 }
2404
2405 if (is_nested(svm)) {
2406 int vmexit;
2407
2408 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2409 svm->vmcb->control.exit_info_1,
2410 svm->vmcb->control.exit_info_2,
2411 svm->vmcb->control.exit_int_info,
2412 svm->vmcb->control.exit_int_info_err);
2413
2414 vmexit = nested_svm_exit_special(svm);
2415
2416 if (vmexit == NESTED_EXIT_CONTINUE)
2417 vmexit = nested_svm_exit_handled(svm);
2418
2419 if (vmexit == NESTED_EXIT_DONE)
2420 return 1;
2421 }
2422
2423 svm_complete_interrupts(svm);
2424
2425 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2426 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2427 if (npt_enabled)
2428 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2429
2430 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2431 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2432 kvm_run->fail_entry.hardware_entry_failure_reason
2433 = svm->vmcb->control.exit_code;
2434 return 0;
2435 }
2436
2437 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2438 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2439 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2440 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2441 "exit_code 0x%x\n",
2442 __func__, svm->vmcb->control.exit_int_info,
2443 exit_code);
2444
2445 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2446 || !svm_exit_handlers[exit_code]) {
2447 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2448 kvm_run->hw.hardware_exit_reason = exit_code;
2449 return 0;
2450 }
2451
2452 return svm_exit_handlers[exit_code](svm);
2453 }
2454
2455 static void reload_tss(struct kvm_vcpu *vcpu)
2456 {
2457 int cpu = raw_smp_processor_id();
2458
2459 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2460 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2461 load_TR_desc();
2462 }
2463
2464 static void pre_svm_run(struct vcpu_svm *svm)
2465 {
2466 int cpu = raw_smp_processor_id();
2467
2468 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2469
2470 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2471 /* FIXME: handle wraparound of asid_generation */
2472 if (svm->asid_generation != sd->asid_generation)
2473 new_asid(svm, sd);
2474 }
2475
2476 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2477 {
2478 struct vcpu_svm *svm = to_svm(vcpu);
2479
2480 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2481 vcpu->arch.hflags |= HF_NMI_MASK;
2482 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2483 ++vcpu->stat.nmi_injections;
2484 }
2485
2486 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2487 {
2488 struct vmcb_control_area *control;
2489
2490 trace_kvm_inj_virq(irq);
2491
2492 ++svm->vcpu.stat.irq_injections;
2493 control = &svm->vmcb->control;
2494 control->int_vector = irq;
2495 control->int_ctl &= ~V_INTR_PRIO_MASK;
2496 control->int_ctl |= V_IRQ_MASK |
2497 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2498 }
2499
2500 static void svm_set_irq(struct kvm_vcpu *vcpu)
2501 {
2502 struct vcpu_svm *svm = to_svm(vcpu);
2503
2504 BUG_ON(!(gif_set(svm)));
2505
2506 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2507 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2508 }
2509
2510 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2511 {
2512 struct vcpu_svm *svm = to_svm(vcpu);
2513
2514 if (irr == -1)
2515 return;
2516
2517 if (tpr >= irr)
2518 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2519 }
2520
2521 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2522 {
2523 struct vcpu_svm *svm = to_svm(vcpu);
2524 struct vmcb *vmcb = svm->vmcb;
2525 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2526 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2527 }
2528
2529 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2530 {
2531 struct vcpu_svm *svm = to_svm(vcpu);
2532
2533 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2534 }
2535
2536 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2537 {
2538 struct vcpu_svm *svm = to_svm(vcpu);
2539
2540 if (masked) {
2541 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2542 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2543 } else {
2544 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2545 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2546 }
2547 }
2548
2549 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2550 {
2551 struct vcpu_svm *svm = to_svm(vcpu);
2552 struct vmcb *vmcb = svm->vmcb;
2553 int ret;
2554
2555 if (!gif_set(svm) ||
2556 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2557 return 0;
2558
2559 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2560
2561 if (is_nested(svm))
2562 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2563
2564 return ret;
2565 }
2566
2567 static void enable_irq_window(struct kvm_vcpu *vcpu)
2568 {
2569 struct vcpu_svm *svm = to_svm(vcpu);
2570
2571 nested_svm_intr(svm);
2572
2573 /* In case GIF=0 we can't rely on the CPU to tell us when
2574 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2575 * The next time we get that intercept, this function will be
2576 * called again though and we'll get the vintr intercept. */
2577 if (gif_set(svm)) {
2578 svm_set_vintr(svm);
2579 svm_inject_irq(svm, 0x0);
2580 }
2581 }
2582
2583 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2584 {
2585 struct vcpu_svm *svm = to_svm(vcpu);
2586
2587 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2588 == HF_NMI_MASK)
2589 return; /* IRET will cause a vm exit */
2590
2591 /* Something prevents NMI from been injected. Single step over
2592 possible problem (IRET or exception injection or interrupt
2593 shadow) */
2594 svm->nmi_singlestep = true;
2595 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2596 update_db_intercept(vcpu);
2597 }
2598
2599 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2600 {
2601 return 0;
2602 }
2603
2604 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2605 {
2606 force_new_asid(vcpu);
2607 }
2608
2609 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2610 {
2611 }
2612
2613 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2614 {
2615 struct vcpu_svm *svm = to_svm(vcpu);
2616
2617 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2618 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2619 kvm_set_cr8(vcpu, cr8);
2620 }
2621 }
2622
2623 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2624 {
2625 struct vcpu_svm *svm = to_svm(vcpu);
2626 u64 cr8;
2627
2628 cr8 = kvm_get_cr8(vcpu);
2629 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2630 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2631 }
2632
2633 static void svm_complete_interrupts(struct vcpu_svm *svm)
2634 {
2635 u8 vector;
2636 int type;
2637 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2638
2639 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2640 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2641
2642 svm->vcpu.arch.nmi_injected = false;
2643 kvm_clear_exception_queue(&svm->vcpu);
2644 kvm_clear_interrupt_queue(&svm->vcpu);
2645
2646 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2647 return;
2648
2649 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2650 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2651
2652 switch (type) {
2653 case SVM_EXITINTINFO_TYPE_NMI:
2654 svm->vcpu.arch.nmi_injected = true;
2655 break;
2656 case SVM_EXITINTINFO_TYPE_EXEPT:
2657 /* In case of software exception do not reinject an exception
2658 vector, but re-execute and instruction instead */
2659 if (is_nested(svm))
2660 break;
2661 if (kvm_exception_is_soft(vector))
2662 break;
2663 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2664 u32 err = svm->vmcb->control.exit_int_info_err;
2665 kvm_queue_exception_e(&svm->vcpu, vector, err);
2666
2667 } else
2668 kvm_queue_exception(&svm->vcpu, vector);
2669 break;
2670 case SVM_EXITINTINFO_TYPE_INTR:
2671 kvm_queue_interrupt(&svm->vcpu, vector, false);
2672 break;
2673 default:
2674 break;
2675 }
2676 }
2677
2678 #ifdef CONFIG_X86_64
2679 #define R "r"
2680 #else
2681 #define R "e"
2682 #endif
2683
2684 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2685 {
2686 struct vcpu_svm *svm = to_svm(vcpu);
2687 u16 fs_selector;
2688 u16 gs_selector;
2689 u16 ldt_selector;
2690
2691 /*
2692 * A vmexit emulation is required before the vcpu can be executed
2693 * again.
2694 */
2695 if (unlikely(svm->nested.exit_required))
2696 return;
2697
2698 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2699 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2700 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2701
2702 pre_svm_run(svm);
2703
2704 sync_lapic_to_cr8(vcpu);
2705
2706 save_host_msrs(vcpu);
2707 fs_selector = kvm_read_fs();
2708 gs_selector = kvm_read_gs();
2709 ldt_selector = kvm_read_ldt();
2710 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2711 /* required for live migration with NPT */
2712 if (npt_enabled)
2713 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2714
2715 clgi();
2716
2717 local_irq_enable();
2718
2719 asm volatile (
2720 "push %%"R"bp; \n\t"
2721 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2722 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2723 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2724 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2725 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2726 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2727 #ifdef CONFIG_X86_64
2728 "mov %c[r8](%[svm]), %%r8 \n\t"
2729 "mov %c[r9](%[svm]), %%r9 \n\t"
2730 "mov %c[r10](%[svm]), %%r10 \n\t"
2731 "mov %c[r11](%[svm]), %%r11 \n\t"
2732 "mov %c[r12](%[svm]), %%r12 \n\t"
2733 "mov %c[r13](%[svm]), %%r13 \n\t"
2734 "mov %c[r14](%[svm]), %%r14 \n\t"
2735 "mov %c[r15](%[svm]), %%r15 \n\t"
2736 #endif
2737
2738 /* Enter guest mode */
2739 "push %%"R"ax \n\t"
2740 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2741 __ex(SVM_VMLOAD) "\n\t"
2742 __ex(SVM_VMRUN) "\n\t"
2743 __ex(SVM_VMSAVE) "\n\t"
2744 "pop %%"R"ax \n\t"
2745
2746 /* Save guest registers, load host registers */
2747 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2748 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2749 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2750 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2751 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2752 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2753 #ifdef CONFIG_X86_64
2754 "mov %%r8, %c[r8](%[svm]) \n\t"
2755 "mov %%r9, %c[r9](%[svm]) \n\t"
2756 "mov %%r10, %c[r10](%[svm]) \n\t"
2757 "mov %%r11, %c[r11](%[svm]) \n\t"
2758 "mov %%r12, %c[r12](%[svm]) \n\t"
2759 "mov %%r13, %c[r13](%[svm]) \n\t"
2760 "mov %%r14, %c[r14](%[svm]) \n\t"
2761 "mov %%r15, %c[r15](%[svm]) \n\t"
2762 #endif
2763 "pop %%"R"bp"
2764 :
2765 : [svm]"a"(svm),
2766 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2767 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2768 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2769 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2770 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2771 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2772 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2773 #ifdef CONFIG_X86_64
2774 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2775 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2776 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2777 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2778 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2779 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2780 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2781 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2782 #endif
2783 : "cc", "memory"
2784 , R"bx", R"cx", R"dx", R"si", R"di"
2785 #ifdef CONFIG_X86_64
2786 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2787 #endif
2788 );
2789
2790 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2791 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2792 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2793 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2794
2795 kvm_load_fs(fs_selector);
2796 kvm_load_gs(gs_selector);
2797 kvm_load_ldt(ldt_selector);
2798 load_host_msrs(vcpu);
2799
2800 reload_tss(vcpu);
2801
2802 local_irq_disable();
2803
2804 stgi();
2805
2806 sync_cr8_to_lapic(vcpu);
2807
2808 svm->next_rip = 0;
2809
2810 if (npt_enabled) {
2811 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2812 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2813 }
2814 }
2815
2816 #undef R
2817
2818 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2819 {
2820 struct vcpu_svm *svm = to_svm(vcpu);
2821
2822 if (npt_enabled) {
2823 svm->vmcb->control.nested_cr3 = root;
2824 force_new_asid(vcpu);
2825 return;
2826 }
2827
2828 svm->vmcb->save.cr3 = root;
2829 force_new_asid(vcpu);
2830 }
2831
2832 static int is_disabled(void)
2833 {
2834 u64 vm_cr;
2835
2836 rdmsrl(MSR_VM_CR, vm_cr);
2837 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2838 return 1;
2839
2840 return 0;
2841 }
2842
2843 static void
2844 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2845 {
2846 /*
2847 * Patch in the VMMCALL instruction:
2848 */
2849 hypercall[0] = 0x0f;
2850 hypercall[1] = 0x01;
2851 hypercall[2] = 0xd9;
2852 }
2853
2854 static void svm_check_processor_compat(void *rtn)
2855 {
2856 *(int *)rtn = 0;
2857 }
2858
2859 static bool svm_cpu_has_accelerated_tpr(void)
2860 {
2861 return false;
2862 }
2863
2864 static int get_npt_level(void)
2865 {
2866 #ifdef CONFIG_X86_64
2867 return PT64_ROOT_LEVEL;
2868 #else
2869 return PT32E_ROOT_LEVEL;
2870 #endif
2871 }
2872
2873 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2874 {
2875 return 0;
2876 }
2877
2878 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2879 {
2880 }
2881
2882 static const struct trace_print_flags svm_exit_reasons_str[] = {
2883 { SVM_EXIT_READ_CR0, "read_cr0" },
2884 { SVM_EXIT_READ_CR3, "read_cr3" },
2885 { SVM_EXIT_READ_CR4, "read_cr4" },
2886 { SVM_EXIT_READ_CR8, "read_cr8" },
2887 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2888 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2889 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2890 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2891 { SVM_EXIT_READ_DR0, "read_dr0" },
2892 { SVM_EXIT_READ_DR1, "read_dr1" },
2893 { SVM_EXIT_READ_DR2, "read_dr2" },
2894 { SVM_EXIT_READ_DR3, "read_dr3" },
2895 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2896 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2897 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2898 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2899 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2900 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2901 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2902 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2903 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2904 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2905 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2906 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2907 { SVM_EXIT_INTR, "interrupt" },
2908 { SVM_EXIT_NMI, "nmi" },
2909 { SVM_EXIT_SMI, "smi" },
2910 { SVM_EXIT_INIT, "init" },
2911 { SVM_EXIT_VINTR, "vintr" },
2912 { SVM_EXIT_CPUID, "cpuid" },
2913 { SVM_EXIT_INVD, "invd" },
2914 { SVM_EXIT_HLT, "hlt" },
2915 { SVM_EXIT_INVLPG, "invlpg" },
2916 { SVM_EXIT_INVLPGA, "invlpga" },
2917 { SVM_EXIT_IOIO, "io" },
2918 { SVM_EXIT_MSR, "msr" },
2919 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2920 { SVM_EXIT_SHUTDOWN, "shutdown" },
2921 { SVM_EXIT_VMRUN, "vmrun" },
2922 { SVM_EXIT_VMMCALL, "hypercall" },
2923 { SVM_EXIT_VMLOAD, "vmload" },
2924 { SVM_EXIT_VMSAVE, "vmsave" },
2925 { SVM_EXIT_STGI, "stgi" },
2926 { SVM_EXIT_CLGI, "clgi" },
2927 { SVM_EXIT_SKINIT, "skinit" },
2928 { SVM_EXIT_WBINVD, "wbinvd" },
2929 { SVM_EXIT_MONITOR, "monitor" },
2930 { SVM_EXIT_MWAIT, "mwait" },
2931 { SVM_EXIT_NPF, "npf" },
2932 { -1, NULL }
2933 };
2934
2935 static int svm_get_lpage_level(void)
2936 {
2937 return PT_PDPE_LEVEL;
2938 }
2939
2940 static bool svm_rdtscp_supported(void)
2941 {
2942 return false;
2943 }
2944
2945 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
2946 {
2947 struct vcpu_svm *svm = to_svm(vcpu);
2948
2949 update_cr0_intercept(svm);
2950 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
2951 }
2952
2953 static struct kvm_x86_ops svm_x86_ops = {
2954 .cpu_has_kvm_support = has_svm,
2955 .disabled_by_bios = is_disabled,
2956 .hardware_setup = svm_hardware_setup,
2957 .hardware_unsetup = svm_hardware_unsetup,
2958 .check_processor_compatibility = svm_check_processor_compat,
2959 .hardware_enable = svm_hardware_enable,
2960 .hardware_disable = svm_hardware_disable,
2961 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2962
2963 .vcpu_create = svm_create_vcpu,
2964 .vcpu_free = svm_free_vcpu,
2965 .vcpu_reset = svm_vcpu_reset,
2966
2967 .prepare_guest_switch = svm_prepare_guest_switch,
2968 .vcpu_load = svm_vcpu_load,
2969 .vcpu_put = svm_vcpu_put,
2970
2971 .set_guest_debug = svm_guest_debug,
2972 .get_msr = svm_get_msr,
2973 .set_msr = svm_set_msr,
2974 .get_segment_base = svm_get_segment_base,
2975 .get_segment = svm_get_segment,
2976 .set_segment = svm_set_segment,
2977 .get_cpl = svm_get_cpl,
2978 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2979 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
2980 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2981 .set_cr0 = svm_set_cr0,
2982 .set_cr3 = svm_set_cr3,
2983 .set_cr4 = svm_set_cr4,
2984 .set_efer = svm_set_efer,
2985 .get_idt = svm_get_idt,
2986 .set_idt = svm_set_idt,
2987 .get_gdt = svm_get_gdt,
2988 .set_gdt = svm_set_gdt,
2989 .get_dr = svm_get_dr,
2990 .set_dr = svm_set_dr,
2991 .cache_reg = svm_cache_reg,
2992 .get_rflags = svm_get_rflags,
2993 .set_rflags = svm_set_rflags,
2994 .fpu_activate = svm_fpu_activate,
2995 .fpu_deactivate = svm_fpu_deactivate,
2996
2997 .tlb_flush = svm_flush_tlb,
2998
2999 .run = svm_vcpu_run,
3000 .handle_exit = handle_exit,
3001 .skip_emulated_instruction = skip_emulated_instruction,
3002 .set_interrupt_shadow = svm_set_interrupt_shadow,
3003 .get_interrupt_shadow = svm_get_interrupt_shadow,
3004 .patch_hypercall = svm_patch_hypercall,
3005 .set_irq = svm_set_irq,
3006 .set_nmi = svm_inject_nmi,
3007 .queue_exception = svm_queue_exception,
3008 .interrupt_allowed = svm_interrupt_allowed,
3009 .nmi_allowed = svm_nmi_allowed,
3010 .get_nmi_mask = svm_get_nmi_mask,
3011 .set_nmi_mask = svm_set_nmi_mask,
3012 .enable_nmi_window = enable_nmi_window,
3013 .enable_irq_window = enable_irq_window,
3014 .update_cr8_intercept = update_cr8_intercept,
3015
3016 .set_tss_addr = svm_set_tss_addr,
3017 .get_tdp_level = get_npt_level,
3018 .get_mt_mask = svm_get_mt_mask,
3019
3020 .exit_reasons_str = svm_exit_reasons_str,
3021 .get_lpage_level = svm_get_lpage_level,
3022
3023 .cpuid_update = svm_cpuid_update,
3024
3025 .rdtscp_supported = svm_rdtscp_supported,
3026 };
3027
3028 static int __init svm_init(void)
3029 {
3030 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3031 THIS_MODULE);
3032 }
3033
3034 static void __exit svm_exit(void)
3035 {
3036 kvm_exit();
3037 }
3038
3039 module_init(svm_init)
3040 module_exit(svm_exit)