]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
kvm/x86: split ioapic-handled and EOI exit bitmaps
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96 struct vmcb *hsave;
97 u64 hsave_msr;
98 u64 vm_cr_msr;
99 u64 vmcb;
100
101 /* These are the merged vectors */
102 u32 *msrpm;
103
104 /* gpa pointers to the real vectors */
105 u64 vmcb_msrpm;
106 u64 vmcb_iopm;
107
108 /* A VMEXIT is required but not yet emulated */
109 bool exit_required;
110
111 /* cache for intercepts of the guest */
112 u32 intercept_cr;
113 u32 intercept_dr;
114 u32 intercept_exceptions;
115 u64 intercept;
116
117 /* Nested Paging related state */
118 u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS 16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
127 */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131 struct kvm_vcpu vcpu;
132 struct vmcb *vmcb;
133 unsigned long vmcb_pa;
134 struct svm_cpu_data *svm_data;
135 uint64_t asid_generation;
136 uint64_t sysenter_esp;
137 uint64_t sysenter_eip;
138
139 u64 next_rip;
140
141 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142 struct {
143 u16 fs;
144 u16 gs;
145 u16 ldt;
146 u64 gs_base;
147 } host;
148
149 u32 *msrpm;
150
151 ulong nmi_iret_rip;
152
153 struct nested_state nested;
154
155 bool nmi_singlestep;
156
157 unsigned int3_injected;
158 unsigned long int3_rip;
159 u32 apf_reason;
160
161 /* cached guest cpuid flags for faster access */
162 bool nrips_enabled : 1;
163 };
164
165 static DEFINE_PER_CPU(u64, current_tsc_ratio);
166 #define TSC_RATIO_DEFAULT 0x0100000000ULL
167
168 #define MSR_INVALID 0xffffffffU
169
170 static const struct svm_direct_access_msrs {
171 u32 index; /* Index of the MSR */
172 bool always; /* True if intercept is always on */
173 } direct_access_msrs[] = {
174 { .index = MSR_STAR, .always = true },
175 { .index = MSR_IA32_SYSENTER_CS, .always = true },
176 #ifdef CONFIG_X86_64
177 { .index = MSR_GS_BASE, .always = true },
178 { .index = MSR_FS_BASE, .always = true },
179 { .index = MSR_KERNEL_GS_BASE, .always = true },
180 { .index = MSR_LSTAR, .always = true },
181 { .index = MSR_CSTAR, .always = true },
182 { .index = MSR_SYSCALL_MASK, .always = true },
183 #endif
184 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
185 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
186 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
187 { .index = MSR_IA32_LASTINTTOIP, .always = false },
188 { .index = MSR_INVALID, .always = false },
189 };
190
191 /* enable NPT for AMD64 and X86 with PAE */
192 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193 static bool npt_enabled = true;
194 #else
195 static bool npt_enabled;
196 #endif
197
198 /* allow nested paging (virtualized MMU) for all guests */
199 static int npt = true;
200 module_param(npt, int, S_IRUGO);
201
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205
206 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
207 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
208 static void svm_complete_interrupts(struct vcpu_svm *svm);
209
210 static int nested_svm_exit_handled(struct vcpu_svm *svm);
211 static int nested_svm_intercept(struct vcpu_svm *svm);
212 static int nested_svm_vmexit(struct vcpu_svm *svm);
213 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
214 bool has_error_code, u32 error_code);
215
216 enum {
217 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218 pause filter count */
219 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
220 VMCB_ASID, /* ASID */
221 VMCB_INTR, /* int_ctl, int_vector */
222 VMCB_NPT, /* npt_en, nCR3, gPAT */
223 VMCB_CR, /* CR0, CR3, CR4, EFER */
224 VMCB_DR, /* DR6, DR7 */
225 VMCB_DT, /* GDT, IDT */
226 VMCB_SEG, /* CS, DS, SS, ES, CPL */
227 VMCB_CR2, /* CR2 only */
228 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229 VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237 vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243 & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248 vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253 return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258 struct vmcb_control_area *c, *h;
259 struct nested_state *g;
260
261 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263 if (!is_guest_mode(&svm->vcpu))
264 return;
265
266 c = &svm->vmcb->control;
267 h = &svm->nested.hsave->control;
268 g = &svm->nested;
269
270 c->intercept_cr = h->intercept_cr | g->intercept_cr;
271 c->intercept_dr = h->intercept_dr | g->intercept_dr;
272 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273 c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278 if (is_guest_mode(&svm->vcpu))
279 return svm->nested.hsave;
280 else
281 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286 struct vmcb *vmcb = get_host_vmcb(svm);
287
288 vmcb->control.intercept_cr |= (1U << bit);
289
290 recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295 struct vmcb *vmcb = get_host_vmcb(svm);
296
297 vmcb->control.intercept_cr &= ~(1U << bit);
298
299 recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304 struct vmcb *vmcb = get_host_vmcb(svm);
305
306 return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311 struct vmcb *vmcb = get_host_vmcb(svm);
312
313 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314 | (1 << INTERCEPT_DR1_READ)
315 | (1 << INTERCEPT_DR2_READ)
316 | (1 << INTERCEPT_DR3_READ)
317 | (1 << INTERCEPT_DR4_READ)
318 | (1 << INTERCEPT_DR5_READ)
319 | (1 << INTERCEPT_DR6_READ)
320 | (1 << INTERCEPT_DR7_READ)
321 | (1 << INTERCEPT_DR0_WRITE)
322 | (1 << INTERCEPT_DR1_WRITE)
323 | (1 << INTERCEPT_DR2_WRITE)
324 | (1 << INTERCEPT_DR3_WRITE)
325 | (1 << INTERCEPT_DR4_WRITE)
326 | (1 << INTERCEPT_DR5_WRITE)
327 | (1 << INTERCEPT_DR6_WRITE)
328 | (1 << INTERCEPT_DR7_WRITE);
329
330 recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335 struct vmcb *vmcb = get_host_vmcb(svm);
336
337 vmcb->control.intercept_dr = 0;
338
339 recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344 struct vmcb *vmcb = get_host_vmcb(svm);
345
346 vmcb->control.intercept_exceptions |= (1U << bit);
347
348 recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353 struct vmcb *vmcb = get_host_vmcb(svm);
354
355 vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357 recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362 struct vmcb *vmcb = get_host_vmcb(svm);
363
364 vmcb->control.intercept |= (1ULL << bit);
365
366 recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371 struct vmcb *vmcb = get_host_vmcb(svm);
372
373 vmcb->control.intercept &= ~(1ULL << bit);
374
375 recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380 svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396 u16 limit0;
397 u16 base0;
398 unsigned base1:8, type:5, dpl:2, p:1;
399 unsigned limit1:4, zero0:3, g:1, base2:8;
400 u32 base3;
401 u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405 int cpu;
406
407 u64 asid_generation;
408 u32 max_asid;
409 u32 next_asid;
410 struct kvm_ldttss_desc *tss_desc;
411
412 struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418 int cpu;
419 int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430 u32 offset;
431 int i;
432
433 for (i = 0; i < NUM_MSR_MAPS; i++) {
434 if (msr < msrpm_ranges[i] ||
435 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436 continue;
437
438 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
440
441 /* Now we have the u8 offset - but need the u32 offset */
442 return offset / 4;
443 }
444
445 /* MSR not in any range */
446 return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453 asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458 asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469 return PT64_ROOT_LEVEL;
470 #else
471 return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477 vcpu->arch.efer = efer;
478 if (!npt_enabled && !(efer & EFER_LMA))
479 efer &= ~EFER_LME;
480
481 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493 struct vcpu_svm *svm = to_svm(vcpu);
494 u32 ret = 0;
495
496 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498 return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503 struct vcpu_svm *svm = to_svm(vcpu);
504
505 if (mask == 0)
506 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507 else
508 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514 struct vcpu_svm *svm = to_svm(vcpu);
515
516 if (svm->vmcb->control.next_rip != 0) {
517 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518 svm->next_rip = svm->vmcb->control.next_rip;
519 }
520
521 if (!svm->next_rip) {
522 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523 EMULATE_DONE)
524 printk(KERN_DEBUG "%s: NOP\n", __func__);
525 return;
526 }
527 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529 __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531 kvm_rip_write(vcpu, svm->next_rip);
532 svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536 bool has_error_code, u32 error_code,
537 bool reinject)
538 {
539 struct vcpu_svm *svm = to_svm(vcpu);
540
541 /*
542 * If we are within a nested VM we'd better #VMEXIT and let the guest
543 * handle the exception
544 */
545 if (!reinject &&
546 nested_svm_check_exception(svm, nr, has_error_code, error_code))
547 return;
548
549 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552 /*
553 * For guest debugging where we have to reinject #BP if some
554 * INT3 is guest-owned:
555 * Emulate nRIP by moving RIP forward. Will fail if injection
556 * raises a fault that is not intercepted. Still better than
557 * failing in all cases.
558 */
559 skip_emulated_instruction(&svm->vcpu);
560 rip = kvm_rip_read(&svm->vcpu);
561 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562 svm->int3_injected = rip - old_rip;
563 }
564
565 svm->vmcb->control.event_inj = nr
566 | SVM_EVTINJ_VALID
567 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568 | SVM_EVTINJ_TYPE_EXEPT;
569 svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574 u32 low, high;
575 int err;
576 u64 val;
577
578 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579 return;
580
581 /* Use _safe variants to not break nested virtualization */
582 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583 if (err)
584 return;
585
586 val |= (1ULL << 47);
587
588 low = lower_32_bits(val);
589 high = upper_32_bits(val);
590
591 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593 erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598 /*
599 * Guests should see errata 400 and 415 as fixed (assuming that
600 * HLT and IO instructions are intercepted).
601 */
602 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605 /*
606 * By increasing VCPU's osvw.length to 3 we are telling the guest that
607 * all osvw.status bits inside that length, including bit 0 (which is
608 * reserved for erratum 298), are valid. However, if host processor's
609 * osvw_len is 0 then osvw_status[0] carries no information. We need to
610 * be conservative here and therefore we tell the guest that erratum 298
611 * is present (because we really don't know).
612 */
613 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619 const char *msg;
620
621 if (!cpu_has_svm(&msg)) {
622 printk(KERN_INFO "has_svm: %s\n", msg);
623 return 0;
624 }
625
626 return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631 /* Make sure we clean up behind us */
632 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635 cpu_svm_disable();
636
637 amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643 struct svm_cpu_data *sd;
644 uint64_t efer;
645 struct desc_ptr gdt_descr;
646 struct desc_struct *gdt;
647 int me = raw_smp_processor_id();
648
649 rdmsrl(MSR_EFER, efer);
650 if (efer & EFER_SVME)
651 return -EBUSY;
652
653 if (!has_svm()) {
654 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655 return -EINVAL;
656 }
657 sd = per_cpu(svm_data, me);
658 if (!sd) {
659 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660 return -EINVAL;
661 }
662
663 sd->asid_generation = 1;
664 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665 sd->next_asid = sd->max_asid + 1;
666
667 native_store_gdt(&gdt_descr);
668 gdt = (struct desc_struct *)gdt_descr.address;
669 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671 wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678 }
679
680
681 /*
682 * Get OSVW bits.
683 *
684 * Note that it is possible to have a system with mixed processor
685 * revisions and therefore different OSVW bits. If bits are not the same
686 * on different processors then choose the worst case (i.e. if erratum
687 * is present on one processor and not on another then assume that the
688 * erratum is present everywhere).
689 */
690 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691 uint64_t len, status = 0;
692 int err;
693
694 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695 if (!err)
696 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697 &err);
698
699 if (err)
700 osvw_status = osvw_len = 0;
701 else {
702 if (len < osvw_len)
703 osvw_len = len;
704 osvw_status |= status;
705 osvw_status &= (1ULL << osvw_len) - 1;
706 }
707 } else
708 osvw_status = osvw_len = 0;
709
710 svm_init_erratum_383();
711
712 amd_pmu_enable_virt();
713
714 return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721 if (!sd)
722 return;
723
724 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725 __free_page(sd->save_area);
726 kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731 struct svm_cpu_data *sd;
732 int r;
733
734 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735 if (!sd)
736 return -ENOMEM;
737 sd->cpu = cpu;
738 sd->save_area = alloc_page(GFP_KERNEL);
739 r = -ENOMEM;
740 if (!sd->save_area)
741 goto err_1;
742
743 per_cpu(svm_data, cpu) = sd;
744
745 return 0;
746
747 err_1:
748 kfree(sd);
749 return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755 int i;
756
757 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758 if (direct_access_msrs[i].index == index)
759 return true;
760
761 return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765 int read, int write)
766 {
767 u8 bit_read, bit_write;
768 unsigned long tmp;
769 u32 offset;
770
771 /*
772 * If this warning triggers extend the direct_access_msrs list at the
773 * beginning of the file
774 */
775 WARN_ON(!valid_msr_intercept(msr));
776
777 offset = svm_msrpm_offset(msr);
778 bit_read = 2 * (msr & 0x0f);
779 bit_write = 2 * (msr & 0x0f) + 1;
780 tmp = msrpm[offset];
781
782 BUG_ON(offset == MSR_INVALID);
783
784 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
785 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787 msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792 int i;
793
794 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797 if (!direct_access_msrs[i].always)
798 continue;
799
800 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801 }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806 int i;
807
808 for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810 /* Offset already in list? */
811 if (msrpm_offsets[i] == offset)
812 return;
813
814 /* Slot used by another offset? */
815 if (msrpm_offsets[i] != MSR_INVALID)
816 continue;
817
818 /* Add offset to list */
819 msrpm_offsets[i] = offset;
820
821 return;
822 }
823
824 /*
825 * If this BUG triggers the msrpm_offsets table has an overflow. Just
826 * increase MSRPM_OFFSETS in this case.
827 */
828 BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833 int i;
834
835 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838 u32 offset;
839
840 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841 BUG_ON(offset == MSR_INVALID);
842
843 add_msr_offset(offset);
844 }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849 u32 *msrpm = svm->msrpm;
850
851 svm->vmcb->control.lbr_ctl = 1;
852 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860 u32 *msrpm = svm->msrpm;
861
862 svm->vmcb->control.lbr_ctl = 0;
863 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 static __init int svm_hardware_setup(void)
870 {
871 int cpu;
872 struct page *iopm_pages;
873 void *iopm_va;
874 int r;
875
876 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877
878 if (!iopm_pages)
879 return -ENOMEM;
880
881 iopm_va = page_address(iopm_pages);
882 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884
885 init_msrpm_offsets();
886
887 if (boot_cpu_has(X86_FEATURE_NX))
888 kvm_enable_efer_bits(EFER_NX);
889
890 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891 kvm_enable_efer_bits(EFER_FFXSR);
892
893 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894 kvm_has_tsc_control = true;
895 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
896 kvm_tsc_scaling_ratio_frac_bits = 32;
897 }
898
899 if (nested) {
900 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
901 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
902 }
903
904 for_each_possible_cpu(cpu) {
905 r = svm_cpu_init(cpu);
906 if (r)
907 goto err;
908 }
909
910 if (!boot_cpu_has(X86_FEATURE_NPT))
911 npt_enabled = false;
912
913 if (npt_enabled && !npt) {
914 printk(KERN_INFO "kvm: Nested Paging disabled\n");
915 npt_enabled = false;
916 }
917
918 if (npt_enabled) {
919 printk(KERN_INFO "kvm: Nested Paging enabled\n");
920 kvm_enable_tdp();
921 } else
922 kvm_disable_tdp();
923
924 return 0;
925
926 err:
927 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
928 iopm_base = 0;
929 return r;
930 }
931
932 static __exit void svm_hardware_unsetup(void)
933 {
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 svm_cpu_uninit(cpu);
938
939 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
940 iopm_base = 0;
941 }
942
943 static void init_seg(struct vmcb_seg *seg)
944 {
945 seg->selector = 0;
946 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
947 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
948 seg->limit = 0xffff;
949 seg->base = 0;
950 }
951
952 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
953 {
954 seg->selector = 0;
955 seg->attrib = SVM_SELECTOR_P_MASK | type;
956 seg->limit = 0xffff;
957 seg->base = 0;
958 }
959
960 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
961 {
962 struct vcpu_svm *svm = to_svm(vcpu);
963
964 return svm->vmcb->control.tsc_offset;
965 }
966
967 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
968 {
969 struct vcpu_svm *svm = to_svm(vcpu);
970 u64 g_tsc_offset = 0;
971
972 if (is_guest_mode(vcpu)) {
973 g_tsc_offset = svm->vmcb->control.tsc_offset -
974 svm->nested.hsave->control.tsc_offset;
975 svm->nested.hsave->control.tsc_offset = offset;
976 } else
977 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
978 svm->vmcb->control.tsc_offset,
979 offset);
980
981 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
982
983 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
984 }
985
986 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
987 {
988 struct vcpu_svm *svm = to_svm(vcpu);
989
990 svm->vmcb->control.tsc_offset += adjustment;
991 if (is_guest_mode(vcpu))
992 svm->nested.hsave->control.tsc_offset += adjustment;
993 else
994 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
995 svm->vmcb->control.tsc_offset - adjustment,
996 svm->vmcb->control.tsc_offset);
997
998 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
999 }
1000
1001 static void init_vmcb(struct vcpu_svm *svm)
1002 {
1003 struct vmcb_control_area *control = &svm->vmcb->control;
1004 struct vmcb_save_area *save = &svm->vmcb->save;
1005
1006 svm->vcpu.fpu_active = 1;
1007 svm->vcpu.arch.hflags = 0;
1008
1009 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1010 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1011 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1012 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1013 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1014 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1015 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1016
1017 set_dr_intercepts(svm);
1018
1019 set_exception_intercept(svm, PF_VECTOR);
1020 set_exception_intercept(svm, UD_VECTOR);
1021 set_exception_intercept(svm, MC_VECTOR);
1022 set_exception_intercept(svm, AC_VECTOR);
1023 set_exception_intercept(svm, DB_VECTOR);
1024
1025 set_intercept(svm, INTERCEPT_INTR);
1026 set_intercept(svm, INTERCEPT_NMI);
1027 set_intercept(svm, INTERCEPT_SMI);
1028 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1029 set_intercept(svm, INTERCEPT_RDPMC);
1030 set_intercept(svm, INTERCEPT_CPUID);
1031 set_intercept(svm, INTERCEPT_INVD);
1032 set_intercept(svm, INTERCEPT_HLT);
1033 set_intercept(svm, INTERCEPT_INVLPG);
1034 set_intercept(svm, INTERCEPT_INVLPGA);
1035 set_intercept(svm, INTERCEPT_IOIO_PROT);
1036 set_intercept(svm, INTERCEPT_MSR_PROT);
1037 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1038 set_intercept(svm, INTERCEPT_SHUTDOWN);
1039 set_intercept(svm, INTERCEPT_VMRUN);
1040 set_intercept(svm, INTERCEPT_VMMCALL);
1041 set_intercept(svm, INTERCEPT_VMLOAD);
1042 set_intercept(svm, INTERCEPT_VMSAVE);
1043 set_intercept(svm, INTERCEPT_STGI);
1044 set_intercept(svm, INTERCEPT_CLGI);
1045 set_intercept(svm, INTERCEPT_SKINIT);
1046 set_intercept(svm, INTERCEPT_WBINVD);
1047 set_intercept(svm, INTERCEPT_MONITOR);
1048 set_intercept(svm, INTERCEPT_MWAIT);
1049 set_intercept(svm, INTERCEPT_XSETBV);
1050
1051 control->iopm_base_pa = iopm_base;
1052 control->msrpm_base_pa = __pa(svm->msrpm);
1053 control->int_ctl = V_INTR_MASKING_MASK;
1054
1055 init_seg(&save->es);
1056 init_seg(&save->ss);
1057 init_seg(&save->ds);
1058 init_seg(&save->fs);
1059 init_seg(&save->gs);
1060
1061 save->cs.selector = 0xf000;
1062 save->cs.base = 0xffff0000;
1063 /* Executable/Readable Code Segment */
1064 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1065 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1066 save->cs.limit = 0xffff;
1067
1068 save->gdtr.limit = 0xffff;
1069 save->idtr.limit = 0xffff;
1070
1071 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1072 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1073
1074 svm_set_efer(&svm->vcpu, 0);
1075 save->dr6 = 0xffff0ff0;
1076 kvm_set_rflags(&svm->vcpu, 2);
1077 save->rip = 0x0000fff0;
1078 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079
1080 /*
1081 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1082 * It also updates the guest-visible cr0 value.
1083 */
1084 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1085 kvm_mmu_reset_context(&svm->vcpu);
1086
1087 save->cr4 = X86_CR4_PAE;
1088 /* rdx = ?? */
1089
1090 if (npt_enabled) {
1091 /* Setup VMCB for Nested Paging */
1092 control->nested_ctl = 1;
1093 clr_intercept(svm, INTERCEPT_INVLPG);
1094 clr_exception_intercept(svm, PF_VECTOR);
1095 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097 save->g_pat = svm->vcpu.arch.pat;
1098 save->cr3 = 0;
1099 save->cr4 = 0;
1100 }
1101 svm->asid_generation = 0;
1102
1103 svm->nested.vmcb = 0;
1104 svm->vcpu.arch.hflags = 0;
1105
1106 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107 control->pause_filter_count = 3000;
1108 set_intercept(svm, INTERCEPT_PAUSE);
1109 }
1110
1111 mark_all_dirty(svm->vmcb);
1112
1113 enable_gif(svm);
1114 }
1115
1116 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1117 {
1118 struct vcpu_svm *svm = to_svm(vcpu);
1119 u32 dummy;
1120 u32 eax = 1;
1121
1122 if (!init_event) {
1123 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1124 MSR_IA32_APICBASE_ENABLE;
1125 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1126 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1127 }
1128 init_vmcb(svm);
1129
1130 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1131 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1132 }
1133
1134 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1135 {
1136 struct vcpu_svm *svm;
1137 struct page *page;
1138 struct page *msrpm_pages;
1139 struct page *hsave_page;
1140 struct page *nested_msrpm_pages;
1141 int err;
1142
1143 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1144 if (!svm) {
1145 err = -ENOMEM;
1146 goto out;
1147 }
1148
1149 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1150 if (err)
1151 goto free_svm;
1152
1153 err = -ENOMEM;
1154 page = alloc_page(GFP_KERNEL);
1155 if (!page)
1156 goto uninit;
1157
1158 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159 if (!msrpm_pages)
1160 goto free_page1;
1161
1162 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1163 if (!nested_msrpm_pages)
1164 goto free_page2;
1165
1166 hsave_page = alloc_page(GFP_KERNEL);
1167 if (!hsave_page)
1168 goto free_page3;
1169
1170 svm->nested.hsave = page_address(hsave_page);
1171
1172 svm->msrpm = page_address(msrpm_pages);
1173 svm_vcpu_init_msrpm(svm->msrpm);
1174
1175 svm->nested.msrpm = page_address(nested_msrpm_pages);
1176 svm_vcpu_init_msrpm(svm->nested.msrpm);
1177
1178 svm->vmcb = page_address(page);
1179 clear_page(svm->vmcb);
1180 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1181 svm->asid_generation = 0;
1182 init_vmcb(svm);
1183
1184 svm_init_osvw(&svm->vcpu);
1185
1186 return &svm->vcpu;
1187
1188 free_page3:
1189 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1190 free_page2:
1191 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1192 free_page1:
1193 __free_page(page);
1194 uninit:
1195 kvm_vcpu_uninit(&svm->vcpu);
1196 free_svm:
1197 kmem_cache_free(kvm_vcpu_cache, svm);
1198 out:
1199 return ERR_PTR(err);
1200 }
1201
1202 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1203 {
1204 struct vcpu_svm *svm = to_svm(vcpu);
1205
1206 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1207 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1208 __free_page(virt_to_page(svm->nested.hsave));
1209 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1210 kvm_vcpu_uninit(vcpu);
1211 kmem_cache_free(kvm_vcpu_cache, svm);
1212 }
1213
1214 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1215 {
1216 struct vcpu_svm *svm = to_svm(vcpu);
1217 int i;
1218
1219 if (unlikely(cpu != vcpu->cpu)) {
1220 svm->asid_generation = 0;
1221 mark_all_dirty(svm->vmcb);
1222 }
1223
1224 #ifdef CONFIG_X86_64
1225 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1226 #endif
1227 savesegment(fs, svm->host.fs);
1228 savesegment(gs, svm->host.gs);
1229 svm->host.ldt = kvm_read_ldt();
1230
1231 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1232 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1233
1234 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1235 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1236 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1237 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1238 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1239 }
1240 }
1241 }
1242
1243 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1244 {
1245 struct vcpu_svm *svm = to_svm(vcpu);
1246 int i;
1247
1248 ++vcpu->stat.host_state_reload;
1249 kvm_load_ldt(svm->host.ldt);
1250 #ifdef CONFIG_X86_64
1251 loadsegment(fs, svm->host.fs);
1252 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1253 load_gs_index(svm->host.gs);
1254 #else
1255 #ifdef CONFIG_X86_32_LAZY_GS
1256 loadsegment(gs, svm->host.gs);
1257 #endif
1258 #endif
1259 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1260 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1261 }
1262
1263 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1264 {
1265 return to_svm(vcpu)->vmcb->save.rflags;
1266 }
1267
1268 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1269 {
1270 /*
1271 * Any change of EFLAGS.VM is accompained by a reload of SS
1272 * (caused by either a task switch or an inter-privilege IRET),
1273 * so we do not need to update the CPL here.
1274 */
1275 to_svm(vcpu)->vmcb->save.rflags = rflags;
1276 }
1277
1278 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1279 {
1280 switch (reg) {
1281 case VCPU_EXREG_PDPTR:
1282 BUG_ON(!npt_enabled);
1283 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1284 break;
1285 default:
1286 BUG();
1287 }
1288 }
1289
1290 static void svm_set_vintr(struct vcpu_svm *svm)
1291 {
1292 set_intercept(svm, INTERCEPT_VINTR);
1293 }
1294
1295 static void svm_clear_vintr(struct vcpu_svm *svm)
1296 {
1297 clr_intercept(svm, INTERCEPT_VINTR);
1298 }
1299
1300 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1301 {
1302 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1303
1304 switch (seg) {
1305 case VCPU_SREG_CS: return &save->cs;
1306 case VCPU_SREG_DS: return &save->ds;
1307 case VCPU_SREG_ES: return &save->es;
1308 case VCPU_SREG_FS: return &save->fs;
1309 case VCPU_SREG_GS: return &save->gs;
1310 case VCPU_SREG_SS: return &save->ss;
1311 case VCPU_SREG_TR: return &save->tr;
1312 case VCPU_SREG_LDTR: return &save->ldtr;
1313 }
1314 BUG();
1315 return NULL;
1316 }
1317
1318 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1319 {
1320 struct vmcb_seg *s = svm_seg(vcpu, seg);
1321
1322 return s->base;
1323 }
1324
1325 static void svm_get_segment(struct kvm_vcpu *vcpu,
1326 struct kvm_segment *var, int seg)
1327 {
1328 struct vmcb_seg *s = svm_seg(vcpu, seg);
1329
1330 var->base = s->base;
1331 var->limit = s->limit;
1332 var->selector = s->selector;
1333 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1334 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1335 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1336 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1337 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1338 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1339 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1340
1341 /*
1342 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1343 * However, the SVM spec states that the G bit is not observed by the
1344 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1345 * So let's synthesize a legal G bit for all segments, this helps
1346 * running KVM nested. It also helps cross-vendor migration, because
1347 * Intel's vmentry has a check on the 'G' bit.
1348 */
1349 var->g = s->limit > 0xfffff;
1350
1351 /*
1352 * AMD's VMCB does not have an explicit unusable field, so emulate it
1353 * for cross vendor migration purposes by "not present"
1354 */
1355 var->unusable = !var->present || (var->type == 0);
1356
1357 switch (seg) {
1358 case VCPU_SREG_TR:
1359 /*
1360 * Work around a bug where the busy flag in the tr selector
1361 * isn't exposed
1362 */
1363 var->type |= 0x2;
1364 break;
1365 case VCPU_SREG_DS:
1366 case VCPU_SREG_ES:
1367 case VCPU_SREG_FS:
1368 case VCPU_SREG_GS:
1369 /*
1370 * The accessed bit must always be set in the segment
1371 * descriptor cache, although it can be cleared in the
1372 * descriptor, the cached bit always remains at 1. Since
1373 * Intel has a check on this, set it here to support
1374 * cross-vendor migration.
1375 */
1376 if (!var->unusable)
1377 var->type |= 0x1;
1378 break;
1379 case VCPU_SREG_SS:
1380 /*
1381 * On AMD CPUs sometimes the DB bit in the segment
1382 * descriptor is left as 1, although the whole segment has
1383 * been made unusable. Clear it here to pass an Intel VMX
1384 * entry check when cross vendor migrating.
1385 */
1386 if (var->unusable)
1387 var->db = 0;
1388 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1389 break;
1390 }
1391 }
1392
1393 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1394 {
1395 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1396
1397 return save->cpl;
1398 }
1399
1400 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1401 {
1402 struct vcpu_svm *svm = to_svm(vcpu);
1403
1404 dt->size = svm->vmcb->save.idtr.limit;
1405 dt->address = svm->vmcb->save.idtr.base;
1406 }
1407
1408 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1409 {
1410 struct vcpu_svm *svm = to_svm(vcpu);
1411
1412 svm->vmcb->save.idtr.limit = dt->size;
1413 svm->vmcb->save.idtr.base = dt->address ;
1414 mark_dirty(svm->vmcb, VMCB_DT);
1415 }
1416
1417 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1418 {
1419 struct vcpu_svm *svm = to_svm(vcpu);
1420
1421 dt->size = svm->vmcb->save.gdtr.limit;
1422 dt->address = svm->vmcb->save.gdtr.base;
1423 }
1424
1425 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1426 {
1427 struct vcpu_svm *svm = to_svm(vcpu);
1428
1429 svm->vmcb->save.gdtr.limit = dt->size;
1430 svm->vmcb->save.gdtr.base = dt->address ;
1431 mark_dirty(svm->vmcb, VMCB_DT);
1432 }
1433
1434 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1435 {
1436 }
1437
1438 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441
1442 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1443 {
1444 }
1445
1446 static void update_cr0_intercept(struct vcpu_svm *svm)
1447 {
1448 ulong gcr0 = svm->vcpu.arch.cr0;
1449 u64 *hcr0 = &svm->vmcb->save.cr0;
1450
1451 if (!svm->vcpu.fpu_active)
1452 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1453 else
1454 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1455 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1456
1457 mark_dirty(svm->vmcb, VMCB_CR);
1458
1459 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1460 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1461 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1462 } else {
1463 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1464 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1465 }
1466 }
1467
1468 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1469 {
1470 struct vcpu_svm *svm = to_svm(vcpu);
1471
1472 #ifdef CONFIG_X86_64
1473 if (vcpu->arch.efer & EFER_LME) {
1474 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1475 vcpu->arch.efer |= EFER_LMA;
1476 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1477 }
1478
1479 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1480 vcpu->arch.efer &= ~EFER_LMA;
1481 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1482 }
1483 }
1484 #endif
1485 vcpu->arch.cr0 = cr0;
1486
1487 if (!npt_enabled)
1488 cr0 |= X86_CR0_PG | X86_CR0_WP;
1489
1490 if (!vcpu->fpu_active)
1491 cr0 |= X86_CR0_TS;
1492 /*
1493 * re-enable caching here because the QEMU bios
1494 * does not do it - this results in some delay at
1495 * reboot
1496 */
1497 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1498 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499 svm->vmcb->save.cr0 = cr0;
1500 mark_dirty(svm->vmcb, VMCB_CR);
1501 update_cr0_intercept(svm);
1502 }
1503
1504 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505 {
1506 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1507 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508
1509 if (cr4 & X86_CR4_VMXE)
1510 return 1;
1511
1512 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513 svm_flush_tlb(vcpu);
1514
1515 vcpu->arch.cr4 = cr4;
1516 if (!npt_enabled)
1517 cr4 |= X86_CR4_PAE;
1518 cr4 |= host_cr4_mce;
1519 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521 return 0;
1522 }
1523
1524 static void svm_set_segment(struct kvm_vcpu *vcpu,
1525 struct kvm_segment *var, int seg)
1526 {
1527 struct vcpu_svm *svm = to_svm(vcpu);
1528 struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530 s->base = var->base;
1531 s->limit = var->limit;
1532 s->selector = var->selector;
1533 if (var->unusable)
1534 s->attrib = 0;
1535 else {
1536 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544 }
1545
1546 /*
1547 * This is always accurate, except if SYSRET returned to a segment
1548 * with SS.DPL != 3. Intel does not have this quirk, and always
1549 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1550 * would entail passing the CPL to userspace and back.
1551 */
1552 if (seg == VCPU_SREG_SS)
1553 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1554
1555 mark_dirty(svm->vmcb, VMCB_SEG);
1556 }
1557
1558 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1559 {
1560 struct vcpu_svm *svm = to_svm(vcpu);
1561
1562 clr_exception_intercept(svm, BP_VECTOR);
1563
1564 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1565 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1566 set_exception_intercept(svm, BP_VECTOR);
1567 } else
1568 vcpu->guest_debug = 0;
1569 }
1570
1571 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1572 {
1573 if (sd->next_asid > sd->max_asid) {
1574 ++sd->asid_generation;
1575 sd->next_asid = 1;
1576 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1577 }
1578
1579 svm->asid_generation = sd->asid_generation;
1580 svm->vmcb->control.asid = sd->next_asid++;
1581
1582 mark_dirty(svm->vmcb, VMCB_ASID);
1583 }
1584
1585 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1586 {
1587 return to_svm(vcpu)->vmcb->save.dr6;
1588 }
1589
1590 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1591 {
1592 struct vcpu_svm *svm = to_svm(vcpu);
1593
1594 svm->vmcb->save.dr6 = value;
1595 mark_dirty(svm->vmcb, VMCB_DR);
1596 }
1597
1598 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1599 {
1600 struct vcpu_svm *svm = to_svm(vcpu);
1601
1602 get_debugreg(vcpu->arch.db[0], 0);
1603 get_debugreg(vcpu->arch.db[1], 1);
1604 get_debugreg(vcpu->arch.db[2], 2);
1605 get_debugreg(vcpu->arch.db[3], 3);
1606 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1607 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1608
1609 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1610 set_dr_intercepts(svm);
1611 }
1612
1613 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1614 {
1615 struct vcpu_svm *svm = to_svm(vcpu);
1616
1617 svm->vmcb->save.dr7 = value;
1618 mark_dirty(svm->vmcb, VMCB_DR);
1619 }
1620
1621 static int pf_interception(struct vcpu_svm *svm)
1622 {
1623 u64 fault_address = svm->vmcb->control.exit_info_2;
1624 u32 error_code;
1625 int r = 1;
1626
1627 switch (svm->apf_reason) {
1628 default:
1629 error_code = svm->vmcb->control.exit_info_1;
1630
1631 trace_kvm_page_fault(fault_address, error_code);
1632 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1633 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1634 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1635 svm->vmcb->control.insn_bytes,
1636 svm->vmcb->control.insn_len);
1637 break;
1638 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1639 svm->apf_reason = 0;
1640 local_irq_disable();
1641 kvm_async_pf_task_wait(fault_address);
1642 local_irq_enable();
1643 break;
1644 case KVM_PV_REASON_PAGE_READY:
1645 svm->apf_reason = 0;
1646 local_irq_disable();
1647 kvm_async_pf_task_wake(fault_address);
1648 local_irq_enable();
1649 break;
1650 }
1651 return r;
1652 }
1653
1654 static int db_interception(struct vcpu_svm *svm)
1655 {
1656 struct kvm_run *kvm_run = svm->vcpu.run;
1657
1658 if (!(svm->vcpu.guest_debug &
1659 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1660 !svm->nmi_singlestep) {
1661 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1662 return 1;
1663 }
1664
1665 if (svm->nmi_singlestep) {
1666 svm->nmi_singlestep = false;
1667 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1668 svm->vmcb->save.rflags &=
1669 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1670 }
1671
1672 if (svm->vcpu.guest_debug &
1673 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1674 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1675 kvm_run->debug.arch.pc =
1676 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1677 kvm_run->debug.arch.exception = DB_VECTOR;
1678 return 0;
1679 }
1680
1681 return 1;
1682 }
1683
1684 static int bp_interception(struct vcpu_svm *svm)
1685 {
1686 struct kvm_run *kvm_run = svm->vcpu.run;
1687
1688 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1689 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1690 kvm_run->debug.arch.exception = BP_VECTOR;
1691 return 0;
1692 }
1693
1694 static int ud_interception(struct vcpu_svm *svm)
1695 {
1696 int er;
1697
1698 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1699 if (er != EMULATE_DONE)
1700 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1701 return 1;
1702 }
1703
1704 static int ac_interception(struct vcpu_svm *svm)
1705 {
1706 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1707 return 1;
1708 }
1709
1710 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1711 {
1712 struct vcpu_svm *svm = to_svm(vcpu);
1713
1714 clr_exception_intercept(svm, NM_VECTOR);
1715
1716 svm->vcpu.fpu_active = 1;
1717 update_cr0_intercept(svm);
1718 }
1719
1720 static int nm_interception(struct vcpu_svm *svm)
1721 {
1722 svm_fpu_activate(&svm->vcpu);
1723 return 1;
1724 }
1725
1726 static bool is_erratum_383(void)
1727 {
1728 int err, i;
1729 u64 value;
1730
1731 if (!erratum_383_found)
1732 return false;
1733
1734 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1735 if (err)
1736 return false;
1737
1738 /* Bit 62 may or may not be set for this mce */
1739 value &= ~(1ULL << 62);
1740
1741 if (value != 0xb600000000010015ULL)
1742 return false;
1743
1744 /* Clear MCi_STATUS registers */
1745 for (i = 0; i < 6; ++i)
1746 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1747
1748 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1749 if (!err) {
1750 u32 low, high;
1751
1752 value &= ~(1ULL << 2);
1753 low = lower_32_bits(value);
1754 high = upper_32_bits(value);
1755
1756 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1757 }
1758
1759 /* Flush tlb to evict multi-match entries */
1760 __flush_tlb_all();
1761
1762 return true;
1763 }
1764
1765 static void svm_handle_mce(struct vcpu_svm *svm)
1766 {
1767 if (is_erratum_383()) {
1768 /*
1769 * Erratum 383 triggered. Guest state is corrupt so kill the
1770 * guest.
1771 */
1772 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1773
1774 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1775
1776 return;
1777 }
1778
1779 /*
1780 * On an #MC intercept the MCE handler is not called automatically in
1781 * the host. So do it by hand here.
1782 */
1783 asm volatile (
1784 "int $0x12\n");
1785 /* not sure if we ever come back to this point */
1786
1787 return;
1788 }
1789
1790 static int mc_interception(struct vcpu_svm *svm)
1791 {
1792 return 1;
1793 }
1794
1795 static int shutdown_interception(struct vcpu_svm *svm)
1796 {
1797 struct kvm_run *kvm_run = svm->vcpu.run;
1798
1799 /*
1800 * VMCB is undefined after a SHUTDOWN intercept
1801 * so reinitialize it.
1802 */
1803 clear_page(svm->vmcb);
1804 init_vmcb(svm);
1805
1806 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1807 return 0;
1808 }
1809
1810 static int io_interception(struct vcpu_svm *svm)
1811 {
1812 struct kvm_vcpu *vcpu = &svm->vcpu;
1813 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1814 int size, in, string;
1815 unsigned port;
1816
1817 ++svm->vcpu.stat.io_exits;
1818 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1819 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1820 if (string || in)
1821 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1822
1823 port = io_info >> 16;
1824 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1825 svm->next_rip = svm->vmcb->control.exit_info_2;
1826 skip_emulated_instruction(&svm->vcpu);
1827
1828 return kvm_fast_pio_out(vcpu, size, port);
1829 }
1830
1831 static int nmi_interception(struct vcpu_svm *svm)
1832 {
1833 return 1;
1834 }
1835
1836 static int intr_interception(struct vcpu_svm *svm)
1837 {
1838 ++svm->vcpu.stat.irq_exits;
1839 return 1;
1840 }
1841
1842 static int nop_on_interception(struct vcpu_svm *svm)
1843 {
1844 return 1;
1845 }
1846
1847 static int halt_interception(struct vcpu_svm *svm)
1848 {
1849 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1850 return kvm_emulate_halt(&svm->vcpu);
1851 }
1852
1853 static int vmmcall_interception(struct vcpu_svm *svm)
1854 {
1855 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1856 kvm_emulate_hypercall(&svm->vcpu);
1857 return 1;
1858 }
1859
1860 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1861 {
1862 struct vcpu_svm *svm = to_svm(vcpu);
1863
1864 return svm->nested.nested_cr3;
1865 }
1866
1867 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1868 {
1869 struct vcpu_svm *svm = to_svm(vcpu);
1870 u64 cr3 = svm->nested.nested_cr3;
1871 u64 pdpte;
1872 int ret;
1873
1874 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1875 offset_in_page(cr3) + index * 8, 8);
1876 if (ret)
1877 return 0;
1878 return pdpte;
1879 }
1880
1881 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1882 unsigned long root)
1883 {
1884 struct vcpu_svm *svm = to_svm(vcpu);
1885
1886 svm->vmcb->control.nested_cr3 = root;
1887 mark_dirty(svm->vmcb, VMCB_NPT);
1888 svm_flush_tlb(vcpu);
1889 }
1890
1891 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1892 struct x86_exception *fault)
1893 {
1894 struct vcpu_svm *svm = to_svm(vcpu);
1895
1896 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1897 /*
1898 * TODO: track the cause of the nested page fault, and
1899 * correctly fill in the high bits of exit_info_1.
1900 */
1901 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1902 svm->vmcb->control.exit_code_hi = 0;
1903 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1904 svm->vmcb->control.exit_info_2 = fault->address;
1905 }
1906
1907 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1908 svm->vmcb->control.exit_info_1 |= fault->error_code;
1909
1910 /*
1911 * The present bit is always zero for page structure faults on real
1912 * hardware.
1913 */
1914 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1915 svm->vmcb->control.exit_info_1 &= ~1;
1916
1917 nested_svm_vmexit(svm);
1918 }
1919
1920 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1921 {
1922 WARN_ON(mmu_is_nested(vcpu));
1923 kvm_init_shadow_mmu(vcpu);
1924 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1925 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1926 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1927 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1928 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1929 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1930 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1931 }
1932
1933 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1934 {
1935 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1936 }
1937
1938 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1939 {
1940 if (!(svm->vcpu.arch.efer & EFER_SVME)
1941 || !is_paging(&svm->vcpu)) {
1942 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1943 return 1;
1944 }
1945
1946 if (svm->vmcb->save.cpl) {
1947 kvm_inject_gp(&svm->vcpu, 0);
1948 return 1;
1949 }
1950
1951 return 0;
1952 }
1953
1954 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1955 bool has_error_code, u32 error_code)
1956 {
1957 int vmexit;
1958
1959 if (!is_guest_mode(&svm->vcpu))
1960 return 0;
1961
1962 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1963 svm->vmcb->control.exit_code_hi = 0;
1964 svm->vmcb->control.exit_info_1 = error_code;
1965 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1966
1967 vmexit = nested_svm_intercept(svm);
1968 if (vmexit == NESTED_EXIT_DONE)
1969 svm->nested.exit_required = true;
1970
1971 return vmexit;
1972 }
1973
1974 /* This function returns true if it is save to enable the irq window */
1975 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1976 {
1977 if (!is_guest_mode(&svm->vcpu))
1978 return true;
1979
1980 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1981 return true;
1982
1983 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1984 return false;
1985
1986 /*
1987 * if vmexit was already requested (by intercepted exception
1988 * for instance) do not overwrite it with "external interrupt"
1989 * vmexit.
1990 */
1991 if (svm->nested.exit_required)
1992 return false;
1993
1994 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1995 svm->vmcb->control.exit_info_1 = 0;
1996 svm->vmcb->control.exit_info_2 = 0;
1997
1998 if (svm->nested.intercept & 1ULL) {
1999 /*
2000 * The #vmexit can't be emulated here directly because this
2001 * code path runs with irqs and preemption disabled. A
2002 * #vmexit emulation might sleep. Only signal request for
2003 * the #vmexit here.
2004 */
2005 svm->nested.exit_required = true;
2006 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2007 return false;
2008 }
2009
2010 return true;
2011 }
2012
2013 /* This function returns true if it is save to enable the nmi window */
2014 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2015 {
2016 if (!is_guest_mode(&svm->vcpu))
2017 return true;
2018
2019 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2020 return true;
2021
2022 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2023 svm->nested.exit_required = true;
2024
2025 return false;
2026 }
2027
2028 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2029 {
2030 struct page *page;
2031
2032 might_sleep();
2033
2034 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2035 if (is_error_page(page))
2036 goto error;
2037
2038 *_page = page;
2039
2040 return kmap(page);
2041
2042 error:
2043 kvm_inject_gp(&svm->vcpu, 0);
2044
2045 return NULL;
2046 }
2047
2048 static void nested_svm_unmap(struct page *page)
2049 {
2050 kunmap(page);
2051 kvm_release_page_dirty(page);
2052 }
2053
2054 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2055 {
2056 unsigned port, size, iopm_len;
2057 u16 val, mask;
2058 u8 start_bit;
2059 u64 gpa;
2060
2061 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2062 return NESTED_EXIT_HOST;
2063
2064 port = svm->vmcb->control.exit_info_1 >> 16;
2065 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2066 SVM_IOIO_SIZE_SHIFT;
2067 gpa = svm->nested.vmcb_iopm + (port / 8);
2068 start_bit = port % 8;
2069 iopm_len = (start_bit + size > 8) ? 2 : 1;
2070 mask = (0xf >> (4 - size)) << start_bit;
2071 val = 0;
2072
2073 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2074 return NESTED_EXIT_DONE;
2075
2076 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2077 }
2078
2079 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2080 {
2081 u32 offset, msr, value;
2082 int write, mask;
2083
2084 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2085 return NESTED_EXIT_HOST;
2086
2087 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2088 offset = svm_msrpm_offset(msr);
2089 write = svm->vmcb->control.exit_info_1 & 1;
2090 mask = 1 << ((2 * (msr & 0xf)) + write);
2091
2092 if (offset == MSR_INVALID)
2093 return NESTED_EXIT_DONE;
2094
2095 /* Offset is in 32 bit units but need in 8 bit units */
2096 offset *= 4;
2097
2098 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2099 return NESTED_EXIT_DONE;
2100
2101 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2102 }
2103
2104 static int nested_svm_exit_special(struct vcpu_svm *svm)
2105 {
2106 u32 exit_code = svm->vmcb->control.exit_code;
2107
2108 switch (exit_code) {
2109 case SVM_EXIT_INTR:
2110 case SVM_EXIT_NMI:
2111 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2112 return NESTED_EXIT_HOST;
2113 case SVM_EXIT_NPF:
2114 /* For now we are always handling NPFs when using them */
2115 if (npt_enabled)
2116 return NESTED_EXIT_HOST;
2117 break;
2118 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2119 /* When we're shadowing, trap PFs, but not async PF */
2120 if (!npt_enabled && svm->apf_reason == 0)
2121 return NESTED_EXIT_HOST;
2122 break;
2123 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2124 nm_interception(svm);
2125 break;
2126 default:
2127 break;
2128 }
2129
2130 return NESTED_EXIT_CONTINUE;
2131 }
2132
2133 /*
2134 * If this function returns true, this #vmexit was already handled
2135 */
2136 static int nested_svm_intercept(struct vcpu_svm *svm)
2137 {
2138 u32 exit_code = svm->vmcb->control.exit_code;
2139 int vmexit = NESTED_EXIT_HOST;
2140
2141 switch (exit_code) {
2142 case SVM_EXIT_MSR:
2143 vmexit = nested_svm_exit_handled_msr(svm);
2144 break;
2145 case SVM_EXIT_IOIO:
2146 vmexit = nested_svm_intercept_ioio(svm);
2147 break;
2148 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2149 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2150 if (svm->nested.intercept_cr & bit)
2151 vmexit = NESTED_EXIT_DONE;
2152 break;
2153 }
2154 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2155 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2156 if (svm->nested.intercept_dr & bit)
2157 vmexit = NESTED_EXIT_DONE;
2158 break;
2159 }
2160 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2161 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2162 if (svm->nested.intercept_exceptions & excp_bits)
2163 vmexit = NESTED_EXIT_DONE;
2164 /* async page fault always cause vmexit */
2165 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2166 svm->apf_reason != 0)
2167 vmexit = NESTED_EXIT_DONE;
2168 break;
2169 }
2170 case SVM_EXIT_ERR: {
2171 vmexit = NESTED_EXIT_DONE;
2172 break;
2173 }
2174 default: {
2175 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2176 if (svm->nested.intercept & exit_bits)
2177 vmexit = NESTED_EXIT_DONE;
2178 }
2179 }
2180
2181 return vmexit;
2182 }
2183
2184 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2185 {
2186 int vmexit;
2187
2188 vmexit = nested_svm_intercept(svm);
2189
2190 if (vmexit == NESTED_EXIT_DONE)
2191 nested_svm_vmexit(svm);
2192
2193 return vmexit;
2194 }
2195
2196 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2197 {
2198 struct vmcb_control_area *dst = &dst_vmcb->control;
2199 struct vmcb_control_area *from = &from_vmcb->control;
2200
2201 dst->intercept_cr = from->intercept_cr;
2202 dst->intercept_dr = from->intercept_dr;
2203 dst->intercept_exceptions = from->intercept_exceptions;
2204 dst->intercept = from->intercept;
2205 dst->iopm_base_pa = from->iopm_base_pa;
2206 dst->msrpm_base_pa = from->msrpm_base_pa;
2207 dst->tsc_offset = from->tsc_offset;
2208 dst->asid = from->asid;
2209 dst->tlb_ctl = from->tlb_ctl;
2210 dst->int_ctl = from->int_ctl;
2211 dst->int_vector = from->int_vector;
2212 dst->int_state = from->int_state;
2213 dst->exit_code = from->exit_code;
2214 dst->exit_code_hi = from->exit_code_hi;
2215 dst->exit_info_1 = from->exit_info_1;
2216 dst->exit_info_2 = from->exit_info_2;
2217 dst->exit_int_info = from->exit_int_info;
2218 dst->exit_int_info_err = from->exit_int_info_err;
2219 dst->nested_ctl = from->nested_ctl;
2220 dst->event_inj = from->event_inj;
2221 dst->event_inj_err = from->event_inj_err;
2222 dst->nested_cr3 = from->nested_cr3;
2223 dst->lbr_ctl = from->lbr_ctl;
2224 }
2225
2226 static int nested_svm_vmexit(struct vcpu_svm *svm)
2227 {
2228 struct vmcb *nested_vmcb;
2229 struct vmcb *hsave = svm->nested.hsave;
2230 struct vmcb *vmcb = svm->vmcb;
2231 struct page *page;
2232
2233 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2234 vmcb->control.exit_info_1,
2235 vmcb->control.exit_info_2,
2236 vmcb->control.exit_int_info,
2237 vmcb->control.exit_int_info_err,
2238 KVM_ISA_SVM);
2239
2240 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2241 if (!nested_vmcb)
2242 return 1;
2243
2244 /* Exit Guest-Mode */
2245 leave_guest_mode(&svm->vcpu);
2246 svm->nested.vmcb = 0;
2247
2248 /* Give the current vmcb to the guest */
2249 disable_gif(svm);
2250
2251 nested_vmcb->save.es = vmcb->save.es;
2252 nested_vmcb->save.cs = vmcb->save.cs;
2253 nested_vmcb->save.ss = vmcb->save.ss;
2254 nested_vmcb->save.ds = vmcb->save.ds;
2255 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2256 nested_vmcb->save.idtr = vmcb->save.idtr;
2257 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2258 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2259 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2260 nested_vmcb->save.cr2 = vmcb->save.cr2;
2261 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2262 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2263 nested_vmcb->save.rip = vmcb->save.rip;
2264 nested_vmcb->save.rsp = vmcb->save.rsp;
2265 nested_vmcb->save.rax = vmcb->save.rax;
2266 nested_vmcb->save.dr7 = vmcb->save.dr7;
2267 nested_vmcb->save.dr6 = vmcb->save.dr6;
2268 nested_vmcb->save.cpl = vmcb->save.cpl;
2269
2270 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2271 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2272 nested_vmcb->control.int_state = vmcb->control.int_state;
2273 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2274 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2275 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2276 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2277 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2278 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2279
2280 if (svm->nrips_enabled)
2281 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2282
2283 /*
2284 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2285 * to make sure that we do not lose injected events. So check event_inj
2286 * here and copy it to exit_int_info if it is valid.
2287 * Exit_int_info and event_inj can't be both valid because the case
2288 * below only happens on a VMRUN instruction intercept which has
2289 * no valid exit_int_info set.
2290 */
2291 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2292 struct vmcb_control_area *nc = &nested_vmcb->control;
2293
2294 nc->exit_int_info = vmcb->control.event_inj;
2295 nc->exit_int_info_err = vmcb->control.event_inj_err;
2296 }
2297
2298 nested_vmcb->control.tlb_ctl = 0;
2299 nested_vmcb->control.event_inj = 0;
2300 nested_vmcb->control.event_inj_err = 0;
2301
2302 /* We always set V_INTR_MASKING and remember the old value in hflags */
2303 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2304 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2305
2306 /* Restore the original control entries */
2307 copy_vmcb_control_area(vmcb, hsave);
2308
2309 kvm_clear_exception_queue(&svm->vcpu);
2310 kvm_clear_interrupt_queue(&svm->vcpu);
2311
2312 svm->nested.nested_cr3 = 0;
2313
2314 /* Restore selected save entries */
2315 svm->vmcb->save.es = hsave->save.es;
2316 svm->vmcb->save.cs = hsave->save.cs;
2317 svm->vmcb->save.ss = hsave->save.ss;
2318 svm->vmcb->save.ds = hsave->save.ds;
2319 svm->vmcb->save.gdtr = hsave->save.gdtr;
2320 svm->vmcb->save.idtr = hsave->save.idtr;
2321 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2322 svm_set_efer(&svm->vcpu, hsave->save.efer);
2323 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2324 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2325 if (npt_enabled) {
2326 svm->vmcb->save.cr3 = hsave->save.cr3;
2327 svm->vcpu.arch.cr3 = hsave->save.cr3;
2328 } else {
2329 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2330 }
2331 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2332 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2333 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2334 svm->vmcb->save.dr7 = 0;
2335 svm->vmcb->save.cpl = 0;
2336 svm->vmcb->control.exit_int_info = 0;
2337
2338 mark_all_dirty(svm->vmcb);
2339
2340 nested_svm_unmap(page);
2341
2342 nested_svm_uninit_mmu_context(&svm->vcpu);
2343 kvm_mmu_reset_context(&svm->vcpu);
2344 kvm_mmu_load(&svm->vcpu);
2345
2346 return 0;
2347 }
2348
2349 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2350 {
2351 /*
2352 * This function merges the msr permission bitmaps of kvm and the
2353 * nested vmcb. It is optimized in that it only merges the parts where
2354 * the kvm msr permission bitmap may contain zero bits
2355 */
2356 int i;
2357
2358 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2359 return true;
2360
2361 for (i = 0; i < MSRPM_OFFSETS; i++) {
2362 u32 value, p;
2363 u64 offset;
2364
2365 if (msrpm_offsets[i] == 0xffffffff)
2366 break;
2367
2368 p = msrpm_offsets[i];
2369 offset = svm->nested.vmcb_msrpm + (p * 4);
2370
2371 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2372 return false;
2373
2374 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2375 }
2376
2377 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2378
2379 return true;
2380 }
2381
2382 static bool nested_vmcb_checks(struct vmcb *vmcb)
2383 {
2384 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2385 return false;
2386
2387 if (vmcb->control.asid == 0)
2388 return false;
2389
2390 if (vmcb->control.nested_ctl && !npt_enabled)
2391 return false;
2392
2393 return true;
2394 }
2395
2396 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2397 {
2398 struct vmcb *nested_vmcb;
2399 struct vmcb *hsave = svm->nested.hsave;
2400 struct vmcb *vmcb = svm->vmcb;
2401 struct page *page;
2402 u64 vmcb_gpa;
2403
2404 vmcb_gpa = svm->vmcb->save.rax;
2405
2406 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2407 if (!nested_vmcb)
2408 return false;
2409
2410 if (!nested_vmcb_checks(nested_vmcb)) {
2411 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2412 nested_vmcb->control.exit_code_hi = 0;
2413 nested_vmcb->control.exit_info_1 = 0;
2414 nested_vmcb->control.exit_info_2 = 0;
2415
2416 nested_svm_unmap(page);
2417
2418 return false;
2419 }
2420
2421 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2422 nested_vmcb->save.rip,
2423 nested_vmcb->control.int_ctl,
2424 nested_vmcb->control.event_inj,
2425 nested_vmcb->control.nested_ctl);
2426
2427 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2428 nested_vmcb->control.intercept_cr >> 16,
2429 nested_vmcb->control.intercept_exceptions,
2430 nested_vmcb->control.intercept);
2431
2432 /* Clear internal status */
2433 kvm_clear_exception_queue(&svm->vcpu);
2434 kvm_clear_interrupt_queue(&svm->vcpu);
2435
2436 /*
2437 * Save the old vmcb, so we don't need to pick what we save, but can
2438 * restore everything when a VMEXIT occurs
2439 */
2440 hsave->save.es = vmcb->save.es;
2441 hsave->save.cs = vmcb->save.cs;
2442 hsave->save.ss = vmcb->save.ss;
2443 hsave->save.ds = vmcb->save.ds;
2444 hsave->save.gdtr = vmcb->save.gdtr;
2445 hsave->save.idtr = vmcb->save.idtr;
2446 hsave->save.efer = svm->vcpu.arch.efer;
2447 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2448 hsave->save.cr4 = svm->vcpu.arch.cr4;
2449 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2450 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2451 hsave->save.rsp = vmcb->save.rsp;
2452 hsave->save.rax = vmcb->save.rax;
2453 if (npt_enabled)
2454 hsave->save.cr3 = vmcb->save.cr3;
2455 else
2456 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2457
2458 copy_vmcb_control_area(hsave, vmcb);
2459
2460 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2461 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2462 else
2463 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2464
2465 if (nested_vmcb->control.nested_ctl) {
2466 kvm_mmu_unload(&svm->vcpu);
2467 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2468 nested_svm_init_mmu_context(&svm->vcpu);
2469 }
2470
2471 /* Load the nested guest state */
2472 svm->vmcb->save.es = nested_vmcb->save.es;
2473 svm->vmcb->save.cs = nested_vmcb->save.cs;
2474 svm->vmcb->save.ss = nested_vmcb->save.ss;
2475 svm->vmcb->save.ds = nested_vmcb->save.ds;
2476 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2477 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2478 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2479 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2480 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2481 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2482 if (npt_enabled) {
2483 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2484 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2485 } else
2486 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2487
2488 /* Guest paging mode is active - reset mmu */
2489 kvm_mmu_reset_context(&svm->vcpu);
2490
2491 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2492 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2493 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2494 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2495
2496 /* In case we don't even reach vcpu_run, the fields are not updated */
2497 svm->vmcb->save.rax = nested_vmcb->save.rax;
2498 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2499 svm->vmcb->save.rip = nested_vmcb->save.rip;
2500 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2501 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2502 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2503
2504 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2505 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2506
2507 /* cache intercepts */
2508 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2509 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2510 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2511 svm->nested.intercept = nested_vmcb->control.intercept;
2512
2513 svm_flush_tlb(&svm->vcpu);
2514 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2515 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2516 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2517 else
2518 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2519
2520 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2521 /* We only want the cr8 intercept bits of the guest */
2522 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2523 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2524 }
2525
2526 /* We don't want to see VMMCALLs from a nested guest */
2527 clr_intercept(svm, INTERCEPT_VMMCALL);
2528
2529 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2530 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2531 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2532 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2533 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2534 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2535
2536 nested_svm_unmap(page);
2537
2538 /* Enter Guest-Mode */
2539 enter_guest_mode(&svm->vcpu);
2540
2541 /*
2542 * Merge guest and host intercepts - must be called with vcpu in
2543 * guest-mode to take affect here
2544 */
2545 recalc_intercepts(svm);
2546
2547 svm->nested.vmcb = vmcb_gpa;
2548
2549 enable_gif(svm);
2550
2551 mark_all_dirty(svm->vmcb);
2552
2553 return true;
2554 }
2555
2556 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2557 {
2558 to_vmcb->save.fs = from_vmcb->save.fs;
2559 to_vmcb->save.gs = from_vmcb->save.gs;
2560 to_vmcb->save.tr = from_vmcb->save.tr;
2561 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2562 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2563 to_vmcb->save.star = from_vmcb->save.star;
2564 to_vmcb->save.lstar = from_vmcb->save.lstar;
2565 to_vmcb->save.cstar = from_vmcb->save.cstar;
2566 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2567 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2568 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2569 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2570 }
2571
2572 static int vmload_interception(struct vcpu_svm *svm)
2573 {
2574 struct vmcb *nested_vmcb;
2575 struct page *page;
2576
2577 if (nested_svm_check_permissions(svm))
2578 return 1;
2579
2580 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2581 if (!nested_vmcb)
2582 return 1;
2583
2584 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2585 skip_emulated_instruction(&svm->vcpu);
2586
2587 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2588 nested_svm_unmap(page);
2589
2590 return 1;
2591 }
2592
2593 static int vmsave_interception(struct vcpu_svm *svm)
2594 {
2595 struct vmcb *nested_vmcb;
2596 struct page *page;
2597
2598 if (nested_svm_check_permissions(svm))
2599 return 1;
2600
2601 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2602 if (!nested_vmcb)
2603 return 1;
2604
2605 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2606 skip_emulated_instruction(&svm->vcpu);
2607
2608 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2609 nested_svm_unmap(page);
2610
2611 return 1;
2612 }
2613
2614 static int vmrun_interception(struct vcpu_svm *svm)
2615 {
2616 if (nested_svm_check_permissions(svm))
2617 return 1;
2618
2619 /* Save rip after vmrun instruction */
2620 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2621
2622 if (!nested_svm_vmrun(svm))
2623 return 1;
2624
2625 if (!nested_svm_vmrun_msrpm(svm))
2626 goto failed;
2627
2628 return 1;
2629
2630 failed:
2631
2632 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2633 svm->vmcb->control.exit_code_hi = 0;
2634 svm->vmcb->control.exit_info_1 = 0;
2635 svm->vmcb->control.exit_info_2 = 0;
2636
2637 nested_svm_vmexit(svm);
2638
2639 return 1;
2640 }
2641
2642 static int stgi_interception(struct vcpu_svm *svm)
2643 {
2644 if (nested_svm_check_permissions(svm))
2645 return 1;
2646
2647 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2648 skip_emulated_instruction(&svm->vcpu);
2649 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2650
2651 enable_gif(svm);
2652
2653 return 1;
2654 }
2655
2656 static int clgi_interception(struct vcpu_svm *svm)
2657 {
2658 if (nested_svm_check_permissions(svm))
2659 return 1;
2660
2661 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662 skip_emulated_instruction(&svm->vcpu);
2663
2664 disable_gif(svm);
2665
2666 /* After a CLGI no interrupts should come */
2667 svm_clear_vintr(svm);
2668 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2669
2670 mark_dirty(svm->vmcb, VMCB_INTR);
2671
2672 return 1;
2673 }
2674
2675 static int invlpga_interception(struct vcpu_svm *svm)
2676 {
2677 struct kvm_vcpu *vcpu = &svm->vcpu;
2678
2679 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2680 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2681
2682 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2683 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2684
2685 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2686 skip_emulated_instruction(&svm->vcpu);
2687 return 1;
2688 }
2689
2690 static int skinit_interception(struct vcpu_svm *svm)
2691 {
2692 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2693
2694 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2695 return 1;
2696 }
2697
2698 static int wbinvd_interception(struct vcpu_svm *svm)
2699 {
2700 kvm_emulate_wbinvd(&svm->vcpu);
2701 return 1;
2702 }
2703
2704 static int xsetbv_interception(struct vcpu_svm *svm)
2705 {
2706 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2707 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2708
2709 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2710 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2711 skip_emulated_instruction(&svm->vcpu);
2712 }
2713
2714 return 1;
2715 }
2716
2717 static int task_switch_interception(struct vcpu_svm *svm)
2718 {
2719 u16 tss_selector;
2720 int reason;
2721 int int_type = svm->vmcb->control.exit_int_info &
2722 SVM_EXITINTINFO_TYPE_MASK;
2723 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2724 uint32_t type =
2725 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2726 uint32_t idt_v =
2727 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2728 bool has_error_code = false;
2729 u32 error_code = 0;
2730
2731 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2732
2733 if (svm->vmcb->control.exit_info_2 &
2734 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2735 reason = TASK_SWITCH_IRET;
2736 else if (svm->vmcb->control.exit_info_2 &
2737 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2738 reason = TASK_SWITCH_JMP;
2739 else if (idt_v)
2740 reason = TASK_SWITCH_GATE;
2741 else
2742 reason = TASK_SWITCH_CALL;
2743
2744 if (reason == TASK_SWITCH_GATE) {
2745 switch (type) {
2746 case SVM_EXITINTINFO_TYPE_NMI:
2747 svm->vcpu.arch.nmi_injected = false;
2748 break;
2749 case SVM_EXITINTINFO_TYPE_EXEPT:
2750 if (svm->vmcb->control.exit_info_2 &
2751 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2752 has_error_code = true;
2753 error_code =
2754 (u32)svm->vmcb->control.exit_info_2;
2755 }
2756 kvm_clear_exception_queue(&svm->vcpu);
2757 break;
2758 case SVM_EXITINTINFO_TYPE_INTR:
2759 kvm_clear_interrupt_queue(&svm->vcpu);
2760 break;
2761 default:
2762 break;
2763 }
2764 }
2765
2766 if (reason != TASK_SWITCH_GATE ||
2767 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2768 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2769 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2770 skip_emulated_instruction(&svm->vcpu);
2771
2772 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2773 int_vec = -1;
2774
2775 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2776 has_error_code, error_code) == EMULATE_FAIL) {
2777 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2778 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2779 svm->vcpu.run->internal.ndata = 0;
2780 return 0;
2781 }
2782 return 1;
2783 }
2784
2785 static int cpuid_interception(struct vcpu_svm *svm)
2786 {
2787 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2788 kvm_emulate_cpuid(&svm->vcpu);
2789 return 1;
2790 }
2791
2792 static int iret_interception(struct vcpu_svm *svm)
2793 {
2794 ++svm->vcpu.stat.nmi_window_exits;
2795 clr_intercept(svm, INTERCEPT_IRET);
2796 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2797 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2798 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799 return 1;
2800 }
2801
2802 static int invlpg_interception(struct vcpu_svm *svm)
2803 {
2804 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2805 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2806
2807 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2808 skip_emulated_instruction(&svm->vcpu);
2809 return 1;
2810 }
2811
2812 static int emulate_on_interception(struct vcpu_svm *svm)
2813 {
2814 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2815 }
2816
2817 static int rdpmc_interception(struct vcpu_svm *svm)
2818 {
2819 int err;
2820
2821 if (!static_cpu_has(X86_FEATURE_NRIPS))
2822 return emulate_on_interception(svm);
2823
2824 err = kvm_rdpmc(&svm->vcpu);
2825 kvm_complete_insn_gp(&svm->vcpu, err);
2826
2827 return 1;
2828 }
2829
2830 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2831 unsigned long val)
2832 {
2833 unsigned long cr0 = svm->vcpu.arch.cr0;
2834 bool ret = false;
2835 u64 intercept;
2836
2837 intercept = svm->nested.intercept;
2838
2839 if (!is_guest_mode(&svm->vcpu) ||
2840 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2841 return false;
2842
2843 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2844 val &= ~SVM_CR0_SELECTIVE_MASK;
2845
2846 if (cr0 ^ val) {
2847 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2848 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2849 }
2850
2851 return ret;
2852 }
2853
2854 #define CR_VALID (1ULL << 63)
2855
2856 static int cr_interception(struct vcpu_svm *svm)
2857 {
2858 int reg, cr;
2859 unsigned long val;
2860 int err;
2861
2862 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863 return emulate_on_interception(svm);
2864
2865 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2866 return emulate_on_interception(svm);
2867
2868 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2869 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2870 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2871 else
2872 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2873
2874 err = 0;
2875 if (cr >= 16) { /* mov to cr */
2876 cr -= 16;
2877 val = kvm_register_read(&svm->vcpu, reg);
2878 switch (cr) {
2879 case 0:
2880 if (!check_selective_cr0_intercepted(svm, val))
2881 err = kvm_set_cr0(&svm->vcpu, val);
2882 else
2883 return 1;
2884
2885 break;
2886 case 3:
2887 err = kvm_set_cr3(&svm->vcpu, val);
2888 break;
2889 case 4:
2890 err = kvm_set_cr4(&svm->vcpu, val);
2891 break;
2892 case 8:
2893 err = kvm_set_cr8(&svm->vcpu, val);
2894 break;
2895 default:
2896 WARN(1, "unhandled write to CR%d", cr);
2897 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2898 return 1;
2899 }
2900 } else { /* mov from cr */
2901 switch (cr) {
2902 case 0:
2903 val = kvm_read_cr0(&svm->vcpu);
2904 break;
2905 case 2:
2906 val = svm->vcpu.arch.cr2;
2907 break;
2908 case 3:
2909 val = kvm_read_cr3(&svm->vcpu);
2910 break;
2911 case 4:
2912 val = kvm_read_cr4(&svm->vcpu);
2913 break;
2914 case 8:
2915 val = kvm_get_cr8(&svm->vcpu);
2916 break;
2917 default:
2918 WARN(1, "unhandled read from CR%d", cr);
2919 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2920 return 1;
2921 }
2922 kvm_register_write(&svm->vcpu, reg, val);
2923 }
2924 kvm_complete_insn_gp(&svm->vcpu, err);
2925
2926 return 1;
2927 }
2928
2929 static int dr_interception(struct vcpu_svm *svm)
2930 {
2931 int reg, dr;
2932 unsigned long val;
2933
2934 if (svm->vcpu.guest_debug == 0) {
2935 /*
2936 * No more DR vmexits; force a reload of the debug registers
2937 * and reenter on this instruction. The next vmexit will
2938 * retrieve the full state of the debug registers.
2939 */
2940 clr_dr_intercepts(svm);
2941 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2942 return 1;
2943 }
2944
2945 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2946 return emulate_on_interception(svm);
2947
2948 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2949 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2950
2951 if (dr >= 16) { /* mov to DRn */
2952 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2953 return 1;
2954 val = kvm_register_read(&svm->vcpu, reg);
2955 kvm_set_dr(&svm->vcpu, dr - 16, val);
2956 } else {
2957 if (!kvm_require_dr(&svm->vcpu, dr))
2958 return 1;
2959 kvm_get_dr(&svm->vcpu, dr, &val);
2960 kvm_register_write(&svm->vcpu, reg, val);
2961 }
2962
2963 skip_emulated_instruction(&svm->vcpu);
2964
2965 return 1;
2966 }
2967
2968 static int cr8_write_interception(struct vcpu_svm *svm)
2969 {
2970 struct kvm_run *kvm_run = svm->vcpu.run;
2971 int r;
2972
2973 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2974 /* instruction emulation calls kvm_set_cr8() */
2975 r = cr_interception(svm);
2976 if (lapic_in_kernel(&svm->vcpu))
2977 return r;
2978 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2979 return r;
2980 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2981 return 0;
2982 }
2983
2984 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2985 {
2986 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2987 return vmcb->control.tsc_offset + host_tsc;
2988 }
2989
2990 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2991 {
2992 struct vcpu_svm *svm = to_svm(vcpu);
2993
2994 switch (msr_info->index) {
2995 case MSR_IA32_TSC: {
2996 msr_info->data = svm->vmcb->control.tsc_offset +
2997 kvm_scale_tsc(vcpu, rdtsc());
2998
2999 break;
3000 }
3001 case MSR_STAR:
3002 msr_info->data = svm->vmcb->save.star;
3003 break;
3004 #ifdef CONFIG_X86_64
3005 case MSR_LSTAR:
3006 msr_info->data = svm->vmcb->save.lstar;
3007 break;
3008 case MSR_CSTAR:
3009 msr_info->data = svm->vmcb->save.cstar;
3010 break;
3011 case MSR_KERNEL_GS_BASE:
3012 msr_info->data = svm->vmcb->save.kernel_gs_base;
3013 break;
3014 case MSR_SYSCALL_MASK:
3015 msr_info->data = svm->vmcb->save.sfmask;
3016 break;
3017 #endif
3018 case MSR_IA32_SYSENTER_CS:
3019 msr_info->data = svm->vmcb->save.sysenter_cs;
3020 break;
3021 case MSR_IA32_SYSENTER_EIP:
3022 msr_info->data = svm->sysenter_eip;
3023 break;
3024 case MSR_IA32_SYSENTER_ESP:
3025 msr_info->data = svm->sysenter_esp;
3026 break;
3027 /*
3028 * Nobody will change the following 5 values in the VMCB so we can
3029 * safely return them on rdmsr. They will always be 0 until LBRV is
3030 * implemented.
3031 */
3032 case MSR_IA32_DEBUGCTLMSR:
3033 msr_info->data = svm->vmcb->save.dbgctl;
3034 break;
3035 case MSR_IA32_LASTBRANCHFROMIP:
3036 msr_info->data = svm->vmcb->save.br_from;
3037 break;
3038 case MSR_IA32_LASTBRANCHTOIP:
3039 msr_info->data = svm->vmcb->save.br_to;
3040 break;
3041 case MSR_IA32_LASTINTFROMIP:
3042 msr_info->data = svm->vmcb->save.last_excp_from;
3043 break;
3044 case MSR_IA32_LASTINTTOIP:
3045 msr_info->data = svm->vmcb->save.last_excp_to;
3046 break;
3047 case MSR_VM_HSAVE_PA:
3048 msr_info->data = svm->nested.hsave_msr;
3049 break;
3050 case MSR_VM_CR:
3051 msr_info->data = svm->nested.vm_cr_msr;
3052 break;
3053 case MSR_IA32_UCODE_REV:
3054 msr_info->data = 0x01000065;
3055 break;
3056 default:
3057 return kvm_get_msr_common(vcpu, msr_info);
3058 }
3059 return 0;
3060 }
3061
3062 static int rdmsr_interception(struct vcpu_svm *svm)
3063 {
3064 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3065 struct msr_data msr_info;
3066
3067 msr_info.index = ecx;
3068 msr_info.host_initiated = false;
3069 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3070 trace_kvm_msr_read_ex(ecx);
3071 kvm_inject_gp(&svm->vcpu, 0);
3072 } else {
3073 trace_kvm_msr_read(ecx, msr_info.data);
3074
3075 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3076 msr_info.data & 0xffffffff);
3077 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3078 msr_info.data >> 32);
3079 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3080 skip_emulated_instruction(&svm->vcpu);
3081 }
3082 return 1;
3083 }
3084
3085 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3086 {
3087 struct vcpu_svm *svm = to_svm(vcpu);
3088 int svm_dis, chg_mask;
3089
3090 if (data & ~SVM_VM_CR_VALID_MASK)
3091 return 1;
3092
3093 chg_mask = SVM_VM_CR_VALID_MASK;
3094
3095 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3096 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3097
3098 svm->nested.vm_cr_msr &= ~chg_mask;
3099 svm->nested.vm_cr_msr |= (data & chg_mask);
3100
3101 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3102
3103 /* check for svm_disable while efer.svme is set */
3104 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3105 return 1;
3106
3107 return 0;
3108 }
3109
3110 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3111 {
3112 struct vcpu_svm *svm = to_svm(vcpu);
3113
3114 u32 ecx = msr->index;
3115 u64 data = msr->data;
3116 switch (ecx) {
3117 case MSR_IA32_TSC:
3118 kvm_write_tsc(vcpu, msr);
3119 break;
3120 case MSR_STAR:
3121 svm->vmcb->save.star = data;
3122 break;
3123 #ifdef CONFIG_X86_64
3124 case MSR_LSTAR:
3125 svm->vmcb->save.lstar = data;
3126 break;
3127 case MSR_CSTAR:
3128 svm->vmcb->save.cstar = data;
3129 break;
3130 case MSR_KERNEL_GS_BASE:
3131 svm->vmcb->save.kernel_gs_base = data;
3132 break;
3133 case MSR_SYSCALL_MASK:
3134 svm->vmcb->save.sfmask = data;
3135 break;
3136 #endif
3137 case MSR_IA32_SYSENTER_CS:
3138 svm->vmcb->save.sysenter_cs = data;
3139 break;
3140 case MSR_IA32_SYSENTER_EIP:
3141 svm->sysenter_eip = data;
3142 svm->vmcb->save.sysenter_eip = data;
3143 break;
3144 case MSR_IA32_SYSENTER_ESP:
3145 svm->sysenter_esp = data;
3146 svm->vmcb->save.sysenter_esp = data;
3147 break;
3148 case MSR_IA32_DEBUGCTLMSR:
3149 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3150 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3151 __func__, data);
3152 break;
3153 }
3154 if (data & DEBUGCTL_RESERVED_BITS)
3155 return 1;
3156
3157 svm->vmcb->save.dbgctl = data;
3158 mark_dirty(svm->vmcb, VMCB_LBR);
3159 if (data & (1ULL<<0))
3160 svm_enable_lbrv(svm);
3161 else
3162 svm_disable_lbrv(svm);
3163 break;
3164 case MSR_VM_HSAVE_PA:
3165 svm->nested.hsave_msr = data;
3166 break;
3167 case MSR_VM_CR:
3168 return svm_set_vm_cr(vcpu, data);
3169 case MSR_VM_IGNNE:
3170 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3171 break;
3172 default:
3173 return kvm_set_msr_common(vcpu, msr);
3174 }
3175 return 0;
3176 }
3177
3178 static int wrmsr_interception(struct vcpu_svm *svm)
3179 {
3180 struct msr_data msr;
3181 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3182 u64 data = kvm_read_edx_eax(&svm->vcpu);
3183
3184 msr.data = data;
3185 msr.index = ecx;
3186 msr.host_initiated = false;
3187
3188 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3189 if (kvm_set_msr(&svm->vcpu, &msr)) {
3190 trace_kvm_msr_write_ex(ecx, data);
3191 kvm_inject_gp(&svm->vcpu, 0);
3192 } else {
3193 trace_kvm_msr_write(ecx, data);
3194 skip_emulated_instruction(&svm->vcpu);
3195 }
3196 return 1;
3197 }
3198
3199 static int msr_interception(struct vcpu_svm *svm)
3200 {
3201 if (svm->vmcb->control.exit_info_1)
3202 return wrmsr_interception(svm);
3203 else
3204 return rdmsr_interception(svm);
3205 }
3206
3207 static int interrupt_window_interception(struct vcpu_svm *svm)
3208 {
3209 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3210 svm_clear_vintr(svm);
3211 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3212 mark_dirty(svm->vmcb, VMCB_INTR);
3213 ++svm->vcpu.stat.irq_window_exits;
3214 return 1;
3215 }
3216
3217 static int pause_interception(struct vcpu_svm *svm)
3218 {
3219 kvm_vcpu_on_spin(&(svm->vcpu));
3220 return 1;
3221 }
3222
3223 static int nop_interception(struct vcpu_svm *svm)
3224 {
3225 skip_emulated_instruction(&(svm->vcpu));
3226 return 1;
3227 }
3228
3229 static int monitor_interception(struct vcpu_svm *svm)
3230 {
3231 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3232 return nop_interception(svm);
3233 }
3234
3235 static int mwait_interception(struct vcpu_svm *svm)
3236 {
3237 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3238 return nop_interception(svm);
3239 }
3240
3241 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3242 [SVM_EXIT_READ_CR0] = cr_interception,
3243 [SVM_EXIT_READ_CR3] = cr_interception,
3244 [SVM_EXIT_READ_CR4] = cr_interception,
3245 [SVM_EXIT_READ_CR8] = cr_interception,
3246 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3247 [SVM_EXIT_WRITE_CR0] = cr_interception,
3248 [SVM_EXIT_WRITE_CR3] = cr_interception,
3249 [SVM_EXIT_WRITE_CR4] = cr_interception,
3250 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3251 [SVM_EXIT_READ_DR0] = dr_interception,
3252 [SVM_EXIT_READ_DR1] = dr_interception,
3253 [SVM_EXIT_READ_DR2] = dr_interception,
3254 [SVM_EXIT_READ_DR3] = dr_interception,
3255 [SVM_EXIT_READ_DR4] = dr_interception,
3256 [SVM_EXIT_READ_DR5] = dr_interception,
3257 [SVM_EXIT_READ_DR6] = dr_interception,
3258 [SVM_EXIT_READ_DR7] = dr_interception,
3259 [SVM_EXIT_WRITE_DR0] = dr_interception,
3260 [SVM_EXIT_WRITE_DR1] = dr_interception,
3261 [SVM_EXIT_WRITE_DR2] = dr_interception,
3262 [SVM_EXIT_WRITE_DR3] = dr_interception,
3263 [SVM_EXIT_WRITE_DR4] = dr_interception,
3264 [SVM_EXIT_WRITE_DR5] = dr_interception,
3265 [SVM_EXIT_WRITE_DR6] = dr_interception,
3266 [SVM_EXIT_WRITE_DR7] = dr_interception,
3267 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3268 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3269 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3270 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3271 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3272 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3273 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3274 [SVM_EXIT_INTR] = intr_interception,
3275 [SVM_EXIT_NMI] = nmi_interception,
3276 [SVM_EXIT_SMI] = nop_on_interception,
3277 [SVM_EXIT_INIT] = nop_on_interception,
3278 [SVM_EXIT_VINTR] = interrupt_window_interception,
3279 [SVM_EXIT_RDPMC] = rdpmc_interception,
3280 [SVM_EXIT_CPUID] = cpuid_interception,
3281 [SVM_EXIT_IRET] = iret_interception,
3282 [SVM_EXIT_INVD] = emulate_on_interception,
3283 [SVM_EXIT_PAUSE] = pause_interception,
3284 [SVM_EXIT_HLT] = halt_interception,
3285 [SVM_EXIT_INVLPG] = invlpg_interception,
3286 [SVM_EXIT_INVLPGA] = invlpga_interception,
3287 [SVM_EXIT_IOIO] = io_interception,
3288 [SVM_EXIT_MSR] = msr_interception,
3289 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3290 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3291 [SVM_EXIT_VMRUN] = vmrun_interception,
3292 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3293 [SVM_EXIT_VMLOAD] = vmload_interception,
3294 [SVM_EXIT_VMSAVE] = vmsave_interception,
3295 [SVM_EXIT_STGI] = stgi_interception,
3296 [SVM_EXIT_CLGI] = clgi_interception,
3297 [SVM_EXIT_SKINIT] = skinit_interception,
3298 [SVM_EXIT_WBINVD] = wbinvd_interception,
3299 [SVM_EXIT_MONITOR] = monitor_interception,
3300 [SVM_EXIT_MWAIT] = mwait_interception,
3301 [SVM_EXIT_XSETBV] = xsetbv_interception,
3302 [SVM_EXIT_NPF] = pf_interception,
3303 [SVM_EXIT_RSM] = emulate_on_interception,
3304 };
3305
3306 static void dump_vmcb(struct kvm_vcpu *vcpu)
3307 {
3308 struct vcpu_svm *svm = to_svm(vcpu);
3309 struct vmcb_control_area *control = &svm->vmcb->control;
3310 struct vmcb_save_area *save = &svm->vmcb->save;
3311
3312 pr_err("VMCB Control Area:\n");
3313 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3314 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3315 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3316 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3317 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3318 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3319 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3320 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323 pr_err("%-20s%d\n", "asid:", control->asid);
3324 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3336 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3337 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3338 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3339 pr_err("VMCB State Save Area:\n");
3340 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3341 "es:",
3342 save->es.selector, save->es.attrib,
3343 save->es.limit, save->es.base);
3344 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3345 "cs:",
3346 save->cs.selector, save->cs.attrib,
3347 save->cs.limit, save->cs.base);
3348 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3349 "ss:",
3350 save->ss.selector, save->ss.attrib,
3351 save->ss.limit, save->ss.base);
3352 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353 "ds:",
3354 save->ds.selector, save->ds.attrib,
3355 save->ds.limit, save->ds.base);
3356 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357 "fs:",
3358 save->fs.selector, save->fs.attrib,
3359 save->fs.limit, save->fs.base);
3360 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361 "gs:",
3362 save->gs.selector, save->gs.attrib,
3363 save->gs.limit, save->gs.base);
3364 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365 "gdtr:",
3366 save->gdtr.selector, save->gdtr.attrib,
3367 save->gdtr.limit, save->gdtr.base);
3368 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369 "ldtr:",
3370 save->ldtr.selector, save->ldtr.attrib,
3371 save->ldtr.limit, save->ldtr.base);
3372 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373 "idtr:",
3374 save->idtr.selector, save->idtr.attrib,
3375 save->idtr.limit, save->idtr.base);
3376 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377 "tr:",
3378 save->tr.selector, save->tr.attrib,
3379 save->tr.limit, save->tr.base);
3380 pr_err("cpl: %d efer: %016llx\n",
3381 save->cpl, save->efer);
3382 pr_err("%-15s %016llx %-13s %016llx\n",
3383 "cr0:", save->cr0, "cr2:", save->cr2);
3384 pr_err("%-15s %016llx %-13s %016llx\n",
3385 "cr3:", save->cr3, "cr4:", save->cr4);
3386 pr_err("%-15s %016llx %-13s %016llx\n",
3387 "dr6:", save->dr6, "dr7:", save->dr7);
3388 pr_err("%-15s %016llx %-13s %016llx\n",
3389 "rip:", save->rip, "rflags:", save->rflags);
3390 pr_err("%-15s %016llx %-13s %016llx\n",
3391 "rsp:", save->rsp, "rax:", save->rax);
3392 pr_err("%-15s %016llx %-13s %016llx\n",
3393 "star:", save->star, "lstar:", save->lstar);
3394 pr_err("%-15s %016llx %-13s %016llx\n",
3395 "cstar:", save->cstar, "sfmask:", save->sfmask);
3396 pr_err("%-15s %016llx %-13s %016llx\n",
3397 "kernel_gs_base:", save->kernel_gs_base,
3398 "sysenter_cs:", save->sysenter_cs);
3399 pr_err("%-15s %016llx %-13s %016llx\n",
3400 "sysenter_esp:", save->sysenter_esp,
3401 "sysenter_eip:", save->sysenter_eip);
3402 pr_err("%-15s %016llx %-13s %016llx\n",
3403 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3404 pr_err("%-15s %016llx %-13s %016llx\n",
3405 "br_from:", save->br_from, "br_to:", save->br_to);
3406 pr_err("%-15s %016llx %-13s %016llx\n",
3407 "excp_from:", save->last_excp_from,
3408 "excp_to:", save->last_excp_to);
3409 }
3410
3411 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3412 {
3413 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3414
3415 *info1 = control->exit_info_1;
3416 *info2 = control->exit_info_2;
3417 }
3418
3419 static int handle_exit(struct kvm_vcpu *vcpu)
3420 {
3421 struct vcpu_svm *svm = to_svm(vcpu);
3422 struct kvm_run *kvm_run = vcpu->run;
3423 u32 exit_code = svm->vmcb->control.exit_code;
3424
3425 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3426 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3427 if (npt_enabled)
3428 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3429
3430 if (unlikely(svm->nested.exit_required)) {
3431 nested_svm_vmexit(svm);
3432 svm->nested.exit_required = false;
3433
3434 return 1;
3435 }
3436
3437 if (is_guest_mode(vcpu)) {
3438 int vmexit;
3439
3440 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3441 svm->vmcb->control.exit_info_1,
3442 svm->vmcb->control.exit_info_2,
3443 svm->vmcb->control.exit_int_info,
3444 svm->vmcb->control.exit_int_info_err,
3445 KVM_ISA_SVM);
3446
3447 vmexit = nested_svm_exit_special(svm);
3448
3449 if (vmexit == NESTED_EXIT_CONTINUE)
3450 vmexit = nested_svm_exit_handled(svm);
3451
3452 if (vmexit == NESTED_EXIT_DONE)
3453 return 1;
3454 }
3455
3456 svm_complete_interrupts(svm);
3457
3458 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3459 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3460 kvm_run->fail_entry.hardware_entry_failure_reason
3461 = svm->vmcb->control.exit_code;
3462 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3463 dump_vmcb(vcpu);
3464 return 0;
3465 }
3466
3467 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3468 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3469 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3470 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3471 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3472 "exit_code 0x%x\n",
3473 __func__, svm->vmcb->control.exit_int_info,
3474 exit_code);
3475
3476 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3477 || !svm_exit_handlers[exit_code]) {
3478 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3479 kvm_queue_exception(vcpu, UD_VECTOR);
3480 return 1;
3481 }
3482
3483 return svm_exit_handlers[exit_code](svm);
3484 }
3485
3486 static void reload_tss(struct kvm_vcpu *vcpu)
3487 {
3488 int cpu = raw_smp_processor_id();
3489
3490 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3491 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3492 load_TR_desc();
3493 }
3494
3495 static void pre_svm_run(struct vcpu_svm *svm)
3496 {
3497 int cpu = raw_smp_processor_id();
3498
3499 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3500
3501 /* FIXME: handle wraparound of asid_generation */
3502 if (svm->asid_generation != sd->asid_generation)
3503 new_asid(svm, sd);
3504 }
3505
3506 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3507 {
3508 struct vcpu_svm *svm = to_svm(vcpu);
3509
3510 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3511 vcpu->arch.hflags |= HF_NMI_MASK;
3512 set_intercept(svm, INTERCEPT_IRET);
3513 ++vcpu->stat.nmi_injections;
3514 }
3515
3516 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3517 {
3518 struct vmcb_control_area *control;
3519
3520 control = &svm->vmcb->control;
3521 control->int_vector = irq;
3522 control->int_ctl &= ~V_INTR_PRIO_MASK;
3523 control->int_ctl |= V_IRQ_MASK |
3524 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3525 mark_dirty(svm->vmcb, VMCB_INTR);
3526 }
3527
3528 static void svm_set_irq(struct kvm_vcpu *vcpu)
3529 {
3530 struct vcpu_svm *svm = to_svm(vcpu);
3531
3532 BUG_ON(!(gif_set(svm)));
3533
3534 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3535 ++vcpu->stat.irq_injections;
3536
3537 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3538 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3539 }
3540
3541 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3542 {
3543 struct vcpu_svm *svm = to_svm(vcpu);
3544
3545 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3546 return;
3547
3548 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3549
3550 if (irr == -1)
3551 return;
3552
3553 if (tpr >= irr)
3554 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3555 }
3556
3557 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3558 {
3559 return;
3560 }
3561
3562 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3563 {
3564 return 0;
3565 }
3566
3567 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3568 {
3569 return;
3570 }
3571
3572 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3573 {
3574 return;
3575 }
3576
3577 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3578 {
3579 struct vcpu_svm *svm = to_svm(vcpu);
3580 struct vmcb *vmcb = svm->vmcb;
3581 int ret;
3582 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3583 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3584 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3585
3586 return ret;
3587 }
3588
3589 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3590 {
3591 struct vcpu_svm *svm = to_svm(vcpu);
3592
3593 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3594 }
3595
3596 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3597 {
3598 struct vcpu_svm *svm = to_svm(vcpu);
3599
3600 if (masked) {
3601 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3602 set_intercept(svm, INTERCEPT_IRET);
3603 } else {
3604 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3605 clr_intercept(svm, INTERCEPT_IRET);
3606 }
3607 }
3608
3609 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3610 {
3611 struct vcpu_svm *svm = to_svm(vcpu);
3612 struct vmcb *vmcb = svm->vmcb;
3613 int ret;
3614
3615 if (!gif_set(svm) ||
3616 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3617 return 0;
3618
3619 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3620
3621 if (is_guest_mode(vcpu))
3622 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3623
3624 return ret;
3625 }
3626
3627 static void enable_irq_window(struct kvm_vcpu *vcpu)
3628 {
3629 struct vcpu_svm *svm = to_svm(vcpu);
3630
3631 /*
3632 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3633 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3634 * get that intercept, this function will be called again though and
3635 * we'll get the vintr intercept.
3636 */
3637 if (gif_set(svm) && nested_svm_intr(svm)) {
3638 svm_set_vintr(svm);
3639 svm_inject_irq(svm, 0x0);
3640 }
3641 }
3642
3643 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3644 {
3645 struct vcpu_svm *svm = to_svm(vcpu);
3646
3647 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3648 == HF_NMI_MASK)
3649 return; /* IRET will cause a vm exit */
3650
3651 /*
3652 * Something prevents NMI from been injected. Single step over possible
3653 * problem (IRET or exception injection or interrupt shadow)
3654 */
3655 svm->nmi_singlestep = true;
3656 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3657 }
3658
3659 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3660 {
3661 return 0;
3662 }
3663
3664 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3665 {
3666 struct vcpu_svm *svm = to_svm(vcpu);
3667
3668 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3669 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3670 else
3671 svm->asid_generation--;
3672 }
3673
3674 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3675 {
3676 }
3677
3678 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3679 {
3680 struct vcpu_svm *svm = to_svm(vcpu);
3681
3682 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3683 return;
3684
3685 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3686 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3687 kvm_set_cr8(vcpu, cr8);
3688 }
3689 }
3690
3691 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3692 {
3693 struct vcpu_svm *svm = to_svm(vcpu);
3694 u64 cr8;
3695
3696 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3697 return;
3698
3699 cr8 = kvm_get_cr8(vcpu);
3700 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3701 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3702 }
3703
3704 static void svm_complete_interrupts(struct vcpu_svm *svm)
3705 {
3706 u8 vector;
3707 int type;
3708 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3709 unsigned int3_injected = svm->int3_injected;
3710
3711 svm->int3_injected = 0;
3712
3713 /*
3714 * If we've made progress since setting HF_IRET_MASK, we've
3715 * executed an IRET and can allow NMI injection.
3716 */
3717 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3718 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3719 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3720 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3721 }
3722
3723 svm->vcpu.arch.nmi_injected = false;
3724 kvm_clear_exception_queue(&svm->vcpu);
3725 kvm_clear_interrupt_queue(&svm->vcpu);
3726
3727 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3728 return;
3729
3730 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3731
3732 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3733 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3734
3735 switch (type) {
3736 case SVM_EXITINTINFO_TYPE_NMI:
3737 svm->vcpu.arch.nmi_injected = true;
3738 break;
3739 case SVM_EXITINTINFO_TYPE_EXEPT:
3740 /*
3741 * In case of software exceptions, do not reinject the vector,
3742 * but re-execute the instruction instead. Rewind RIP first
3743 * if we emulated INT3 before.
3744 */
3745 if (kvm_exception_is_soft(vector)) {
3746 if (vector == BP_VECTOR && int3_injected &&
3747 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3748 kvm_rip_write(&svm->vcpu,
3749 kvm_rip_read(&svm->vcpu) -
3750 int3_injected);
3751 break;
3752 }
3753 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3754 u32 err = svm->vmcb->control.exit_int_info_err;
3755 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3756
3757 } else
3758 kvm_requeue_exception(&svm->vcpu, vector);
3759 break;
3760 case SVM_EXITINTINFO_TYPE_INTR:
3761 kvm_queue_interrupt(&svm->vcpu, vector, false);
3762 break;
3763 default:
3764 break;
3765 }
3766 }
3767
3768 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3769 {
3770 struct vcpu_svm *svm = to_svm(vcpu);
3771 struct vmcb_control_area *control = &svm->vmcb->control;
3772
3773 control->exit_int_info = control->event_inj;
3774 control->exit_int_info_err = control->event_inj_err;
3775 control->event_inj = 0;
3776 svm_complete_interrupts(svm);
3777 }
3778
3779 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3780 {
3781 struct vcpu_svm *svm = to_svm(vcpu);
3782
3783 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3784 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3785 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3786
3787 /*
3788 * A vmexit emulation is required before the vcpu can be executed
3789 * again.
3790 */
3791 if (unlikely(svm->nested.exit_required))
3792 return;
3793
3794 pre_svm_run(svm);
3795
3796 sync_lapic_to_cr8(vcpu);
3797
3798 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3799
3800 clgi();
3801
3802 local_irq_enable();
3803
3804 asm volatile (
3805 "push %%" _ASM_BP "; \n\t"
3806 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3807 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3808 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3809 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3810 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3811 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3812 #ifdef CONFIG_X86_64
3813 "mov %c[r8](%[svm]), %%r8 \n\t"
3814 "mov %c[r9](%[svm]), %%r9 \n\t"
3815 "mov %c[r10](%[svm]), %%r10 \n\t"
3816 "mov %c[r11](%[svm]), %%r11 \n\t"
3817 "mov %c[r12](%[svm]), %%r12 \n\t"
3818 "mov %c[r13](%[svm]), %%r13 \n\t"
3819 "mov %c[r14](%[svm]), %%r14 \n\t"
3820 "mov %c[r15](%[svm]), %%r15 \n\t"
3821 #endif
3822
3823 /* Enter guest mode */
3824 "push %%" _ASM_AX " \n\t"
3825 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3826 __ex(SVM_VMLOAD) "\n\t"
3827 __ex(SVM_VMRUN) "\n\t"
3828 __ex(SVM_VMSAVE) "\n\t"
3829 "pop %%" _ASM_AX " \n\t"
3830
3831 /* Save guest registers, load host registers */
3832 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3833 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3834 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3835 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3836 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3837 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3838 #ifdef CONFIG_X86_64
3839 "mov %%r8, %c[r8](%[svm]) \n\t"
3840 "mov %%r9, %c[r9](%[svm]) \n\t"
3841 "mov %%r10, %c[r10](%[svm]) \n\t"
3842 "mov %%r11, %c[r11](%[svm]) \n\t"
3843 "mov %%r12, %c[r12](%[svm]) \n\t"
3844 "mov %%r13, %c[r13](%[svm]) \n\t"
3845 "mov %%r14, %c[r14](%[svm]) \n\t"
3846 "mov %%r15, %c[r15](%[svm]) \n\t"
3847 #endif
3848 "pop %%" _ASM_BP
3849 :
3850 : [svm]"a"(svm),
3851 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3852 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3853 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3854 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3855 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3856 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3857 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3858 #ifdef CONFIG_X86_64
3859 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3860 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3861 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3862 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3863 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3864 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3865 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3866 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3867 #endif
3868 : "cc", "memory"
3869 #ifdef CONFIG_X86_64
3870 , "rbx", "rcx", "rdx", "rsi", "rdi"
3871 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3872 #else
3873 , "ebx", "ecx", "edx", "esi", "edi"
3874 #endif
3875 );
3876
3877 #ifdef CONFIG_X86_64
3878 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3879 #else
3880 loadsegment(fs, svm->host.fs);
3881 #ifndef CONFIG_X86_32_LAZY_GS
3882 loadsegment(gs, svm->host.gs);
3883 #endif
3884 #endif
3885
3886 reload_tss(vcpu);
3887
3888 local_irq_disable();
3889
3890 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3891 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3892 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3893 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3894
3895 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3896
3897 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3898 kvm_before_handle_nmi(&svm->vcpu);
3899
3900 stgi();
3901
3902 /* Any pending NMI will happen here */
3903
3904 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3905 kvm_after_handle_nmi(&svm->vcpu);
3906
3907 sync_cr8_to_lapic(vcpu);
3908
3909 svm->next_rip = 0;
3910
3911 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3912
3913 /* if exit due to PF check for async PF */
3914 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3915 svm->apf_reason = kvm_read_and_reset_pf_reason();
3916
3917 if (npt_enabled) {
3918 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3919 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3920 }
3921
3922 /*
3923 * We need to handle MC intercepts here before the vcpu has a chance to
3924 * change the physical cpu
3925 */
3926 if (unlikely(svm->vmcb->control.exit_code ==
3927 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3928 svm_handle_mce(svm);
3929
3930 mark_all_clean(svm->vmcb);
3931 }
3932
3933 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934 {
3935 struct vcpu_svm *svm = to_svm(vcpu);
3936
3937 svm->vmcb->save.cr3 = root;
3938 mark_dirty(svm->vmcb, VMCB_CR);
3939 svm_flush_tlb(vcpu);
3940 }
3941
3942 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3943 {
3944 struct vcpu_svm *svm = to_svm(vcpu);
3945
3946 svm->vmcb->control.nested_cr3 = root;
3947 mark_dirty(svm->vmcb, VMCB_NPT);
3948
3949 /* Also sync guest cr3 here in case we live migrate */
3950 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3951 mark_dirty(svm->vmcb, VMCB_CR);
3952
3953 svm_flush_tlb(vcpu);
3954 }
3955
3956 static int is_disabled(void)
3957 {
3958 u64 vm_cr;
3959
3960 rdmsrl(MSR_VM_CR, vm_cr);
3961 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3962 return 1;
3963
3964 return 0;
3965 }
3966
3967 static void
3968 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3969 {
3970 /*
3971 * Patch in the VMMCALL instruction:
3972 */
3973 hypercall[0] = 0x0f;
3974 hypercall[1] = 0x01;
3975 hypercall[2] = 0xd9;
3976 }
3977
3978 static void svm_check_processor_compat(void *rtn)
3979 {
3980 *(int *)rtn = 0;
3981 }
3982
3983 static bool svm_cpu_has_accelerated_tpr(void)
3984 {
3985 return false;
3986 }
3987
3988 static bool svm_has_high_real_mode_segbase(void)
3989 {
3990 return true;
3991 }
3992
3993 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3994 {
3995 return 0;
3996 }
3997
3998 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3999 {
4000 struct vcpu_svm *svm = to_svm(vcpu);
4001
4002 /* Update nrips enabled cache */
4003 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4004 }
4005
4006 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4007 {
4008 switch (func) {
4009 case 0x80000001:
4010 if (nested)
4011 entry->ecx |= (1 << 2); /* Set SVM bit */
4012 break;
4013 case 0x8000000A:
4014 entry->eax = 1; /* SVM revision 1 */
4015 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4016 ASID emulation to nested SVM */
4017 entry->ecx = 0; /* Reserved */
4018 entry->edx = 0; /* Per default do not support any
4019 additional features */
4020
4021 /* Support next_rip if host supports it */
4022 if (boot_cpu_has(X86_FEATURE_NRIPS))
4023 entry->edx |= SVM_FEATURE_NRIP;
4024
4025 /* Support NPT for the guest if enabled */
4026 if (npt_enabled)
4027 entry->edx |= SVM_FEATURE_NPT;
4028
4029 break;
4030 }
4031 }
4032
4033 static int svm_get_lpage_level(void)
4034 {
4035 return PT_PDPE_LEVEL;
4036 }
4037
4038 static bool svm_rdtscp_supported(void)
4039 {
4040 return false;
4041 }
4042
4043 static bool svm_invpcid_supported(void)
4044 {
4045 return false;
4046 }
4047
4048 static bool svm_mpx_supported(void)
4049 {
4050 return false;
4051 }
4052
4053 static bool svm_xsaves_supported(void)
4054 {
4055 return false;
4056 }
4057
4058 static bool svm_has_wbinvd_exit(void)
4059 {
4060 return true;
4061 }
4062
4063 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4064 {
4065 struct vcpu_svm *svm = to_svm(vcpu);
4066
4067 set_exception_intercept(svm, NM_VECTOR);
4068 update_cr0_intercept(svm);
4069 }
4070
4071 #define PRE_EX(exit) { .exit_code = (exit), \
4072 .stage = X86_ICPT_PRE_EXCEPT, }
4073 #define POST_EX(exit) { .exit_code = (exit), \
4074 .stage = X86_ICPT_POST_EXCEPT, }
4075 #define POST_MEM(exit) { .exit_code = (exit), \
4076 .stage = X86_ICPT_POST_MEMACCESS, }
4077
4078 static const struct __x86_intercept {
4079 u32 exit_code;
4080 enum x86_intercept_stage stage;
4081 } x86_intercept_map[] = {
4082 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4083 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4084 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4085 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4086 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4087 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4088 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4089 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4090 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4091 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4092 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4093 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4094 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4095 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4096 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4097 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4098 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4099 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4100 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4101 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4102 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4103 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4104 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4105 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4106 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4107 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4108 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4109 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4110 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4111 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4112 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4113 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4114 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4115 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4116 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4117 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4118 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4119 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4120 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4121 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4122 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4123 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4124 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4125 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4126 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4127 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4128 };
4129
4130 #undef PRE_EX
4131 #undef POST_EX
4132 #undef POST_MEM
4133
4134 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4135 struct x86_instruction_info *info,
4136 enum x86_intercept_stage stage)
4137 {
4138 struct vcpu_svm *svm = to_svm(vcpu);
4139 int vmexit, ret = X86EMUL_CONTINUE;
4140 struct __x86_intercept icpt_info;
4141 struct vmcb *vmcb = svm->vmcb;
4142
4143 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4144 goto out;
4145
4146 icpt_info = x86_intercept_map[info->intercept];
4147
4148 if (stage != icpt_info.stage)
4149 goto out;
4150
4151 switch (icpt_info.exit_code) {
4152 case SVM_EXIT_READ_CR0:
4153 if (info->intercept == x86_intercept_cr_read)
4154 icpt_info.exit_code += info->modrm_reg;
4155 break;
4156 case SVM_EXIT_WRITE_CR0: {
4157 unsigned long cr0, val;
4158 u64 intercept;
4159
4160 if (info->intercept == x86_intercept_cr_write)
4161 icpt_info.exit_code += info->modrm_reg;
4162
4163 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4164 info->intercept == x86_intercept_clts)
4165 break;
4166
4167 intercept = svm->nested.intercept;
4168
4169 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4170 break;
4171
4172 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4173 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4174
4175 if (info->intercept == x86_intercept_lmsw) {
4176 cr0 &= 0xfUL;
4177 val &= 0xfUL;
4178 /* lmsw can't clear PE - catch this here */
4179 if (cr0 & X86_CR0_PE)
4180 val |= X86_CR0_PE;
4181 }
4182
4183 if (cr0 ^ val)
4184 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4185
4186 break;
4187 }
4188 case SVM_EXIT_READ_DR0:
4189 case SVM_EXIT_WRITE_DR0:
4190 icpt_info.exit_code += info->modrm_reg;
4191 break;
4192 case SVM_EXIT_MSR:
4193 if (info->intercept == x86_intercept_wrmsr)
4194 vmcb->control.exit_info_1 = 1;
4195 else
4196 vmcb->control.exit_info_1 = 0;
4197 break;
4198 case SVM_EXIT_PAUSE:
4199 /*
4200 * We get this for NOP only, but pause
4201 * is rep not, check this here
4202 */
4203 if (info->rep_prefix != REPE_PREFIX)
4204 goto out;
4205 case SVM_EXIT_IOIO: {
4206 u64 exit_info;
4207 u32 bytes;
4208
4209 if (info->intercept == x86_intercept_in ||
4210 info->intercept == x86_intercept_ins) {
4211 exit_info = ((info->src_val & 0xffff) << 16) |
4212 SVM_IOIO_TYPE_MASK;
4213 bytes = info->dst_bytes;
4214 } else {
4215 exit_info = (info->dst_val & 0xffff) << 16;
4216 bytes = info->src_bytes;
4217 }
4218
4219 if (info->intercept == x86_intercept_outs ||
4220 info->intercept == x86_intercept_ins)
4221 exit_info |= SVM_IOIO_STR_MASK;
4222
4223 if (info->rep_prefix)
4224 exit_info |= SVM_IOIO_REP_MASK;
4225
4226 bytes = min(bytes, 4u);
4227
4228 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4229
4230 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4231
4232 vmcb->control.exit_info_1 = exit_info;
4233 vmcb->control.exit_info_2 = info->next_rip;
4234
4235 break;
4236 }
4237 default:
4238 break;
4239 }
4240
4241 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4242 if (static_cpu_has(X86_FEATURE_NRIPS))
4243 vmcb->control.next_rip = info->next_rip;
4244 vmcb->control.exit_code = icpt_info.exit_code;
4245 vmexit = nested_svm_exit_handled(svm);
4246
4247 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4248 : X86EMUL_CONTINUE;
4249
4250 out:
4251 return ret;
4252 }
4253
4254 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4255 {
4256 local_irq_enable();
4257 }
4258
4259 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4260 {
4261 }
4262
4263 static struct kvm_x86_ops svm_x86_ops = {
4264 .cpu_has_kvm_support = has_svm,
4265 .disabled_by_bios = is_disabled,
4266 .hardware_setup = svm_hardware_setup,
4267 .hardware_unsetup = svm_hardware_unsetup,
4268 .check_processor_compatibility = svm_check_processor_compat,
4269 .hardware_enable = svm_hardware_enable,
4270 .hardware_disable = svm_hardware_disable,
4271 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4273
4274 .vcpu_create = svm_create_vcpu,
4275 .vcpu_free = svm_free_vcpu,
4276 .vcpu_reset = svm_vcpu_reset,
4277
4278 .prepare_guest_switch = svm_prepare_guest_switch,
4279 .vcpu_load = svm_vcpu_load,
4280 .vcpu_put = svm_vcpu_put,
4281
4282 .update_bp_intercept = update_bp_intercept,
4283 .get_msr = svm_get_msr,
4284 .set_msr = svm_set_msr,
4285 .get_segment_base = svm_get_segment_base,
4286 .get_segment = svm_get_segment,
4287 .set_segment = svm_set_segment,
4288 .get_cpl = svm_get_cpl,
4289 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4290 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4291 .decache_cr3 = svm_decache_cr3,
4292 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4293 .set_cr0 = svm_set_cr0,
4294 .set_cr3 = svm_set_cr3,
4295 .set_cr4 = svm_set_cr4,
4296 .set_efer = svm_set_efer,
4297 .get_idt = svm_get_idt,
4298 .set_idt = svm_set_idt,
4299 .get_gdt = svm_get_gdt,
4300 .set_gdt = svm_set_gdt,
4301 .get_dr6 = svm_get_dr6,
4302 .set_dr6 = svm_set_dr6,
4303 .set_dr7 = svm_set_dr7,
4304 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4305 .cache_reg = svm_cache_reg,
4306 .get_rflags = svm_get_rflags,
4307 .set_rflags = svm_set_rflags,
4308 .fpu_activate = svm_fpu_activate,
4309 .fpu_deactivate = svm_fpu_deactivate,
4310
4311 .tlb_flush = svm_flush_tlb,
4312
4313 .run = svm_vcpu_run,
4314 .handle_exit = handle_exit,
4315 .skip_emulated_instruction = skip_emulated_instruction,
4316 .set_interrupt_shadow = svm_set_interrupt_shadow,
4317 .get_interrupt_shadow = svm_get_interrupt_shadow,
4318 .patch_hypercall = svm_patch_hypercall,
4319 .set_irq = svm_set_irq,
4320 .set_nmi = svm_inject_nmi,
4321 .queue_exception = svm_queue_exception,
4322 .cancel_injection = svm_cancel_injection,
4323 .interrupt_allowed = svm_interrupt_allowed,
4324 .nmi_allowed = svm_nmi_allowed,
4325 .get_nmi_mask = svm_get_nmi_mask,
4326 .set_nmi_mask = svm_set_nmi_mask,
4327 .enable_nmi_window = enable_nmi_window,
4328 .enable_irq_window = enable_irq_window,
4329 .update_cr8_intercept = update_cr8_intercept,
4330 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4331 .cpu_uses_apicv = svm_cpu_uses_apicv,
4332 .load_eoi_exitmap = svm_load_eoi_exitmap,
4333 .sync_pir_to_irr = svm_sync_pir_to_irr,
4334
4335 .set_tss_addr = svm_set_tss_addr,
4336 .get_tdp_level = get_npt_level,
4337 .get_mt_mask = svm_get_mt_mask,
4338
4339 .get_exit_info = svm_get_exit_info,
4340
4341 .get_lpage_level = svm_get_lpage_level,
4342
4343 .cpuid_update = svm_cpuid_update,
4344
4345 .rdtscp_supported = svm_rdtscp_supported,
4346 .invpcid_supported = svm_invpcid_supported,
4347 .mpx_supported = svm_mpx_supported,
4348 .xsaves_supported = svm_xsaves_supported,
4349
4350 .set_supported_cpuid = svm_set_supported_cpuid,
4351
4352 .has_wbinvd_exit = svm_has_wbinvd_exit,
4353
4354 .read_tsc_offset = svm_read_tsc_offset,
4355 .write_tsc_offset = svm_write_tsc_offset,
4356 .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4357 .read_l1_tsc = svm_read_l1_tsc,
4358
4359 .set_tdp_cr3 = set_tdp_cr3,
4360
4361 .check_intercept = svm_check_intercept,
4362 .handle_external_intr = svm_handle_external_intr,
4363
4364 .sched_in = svm_sched_in,
4365
4366 .pmu_ops = &amd_pmu_ops,
4367 };
4368
4369 static int __init svm_init(void)
4370 {
4371 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4372 __alignof__(struct vcpu_svm), THIS_MODULE);
4373 }
4374
4375 static void __exit svm_exit(void)
4376 {
4377 kvm_exit();
4378 }
4379
4380 module_init(svm_init)
4381 module_exit(svm_exit)