]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/svm.c
x86/bugs: Add AMD's SPEC_CTRL MSR usage
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84 #define SVM_AVIC_DOORBELL 0xc001011b
85
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141 };
142
143 struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
152
153 struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
163
164 /* These are the merged vectors */
165 u32 *msrpm;
166
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
170
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
173
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
179
180 /* Nested Paging related state */
181 u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
190 */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
202
203 u64 msr_decfg;
204
205 u64 next_rip;
206
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
214
215 u64 spec_ctrl;
216 /*
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
220 */
221 u64 virt_spec_ctrl;
222
223 u32 *msrpm;
224
225 ulong nmi_iret_rip;
226
227 struct nested_state nested;
228
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
231
232 unsigned int3_injected;
233 unsigned long int3_rip;
234
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
237
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254 };
255
256 /*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
274
275 #define MSR_INVALID 0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 #ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290 #endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
317 *
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
335 */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
392
393 enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
409 */
410 VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
429 };
430
431
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434 return container_of(kvm, struct kvm_svm, kvm);
435 }
436
437 static inline bool svm_sev_enabled(void)
438 {
439 return max_sev_asid;
440 }
441
442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
445
446 return sev->active;
447 }
448
449 static inline int sev_get_asid(struct kvm *kvm)
450 {
451 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
452
453 return sev->asid;
454 }
455
456 static inline void mark_all_dirty(struct vmcb *vmcb)
457 {
458 vmcb->control.clean = 0;
459 }
460
461 static inline void mark_all_clean(struct vmcb *vmcb)
462 {
463 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
464 & ~VMCB_ALWAYS_DIRTY_MASK;
465 }
466
467 static inline void mark_dirty(struct vmcb *vmcb, int bit)
468 {
469 vmcb->control.clean &= ~(1 << bit);
470 }
471
472 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
473 {
474 return container_of(vcpu, struct vcpu_svm, vcpu);
475 }
476
477 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
478 {
479 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
480 mark_dirty(svm->vmcb, VMCB_AVIC);
481 }
482
483 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
484 {
485 struct vcpu_svm *svm = to_svm(vcpu);
486 u64 *entry = svm->avic_physical_id_cache;
487
488 if (!entry)
489 return false;
490
491 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
492 }
493
494 static void recalc_intercepts(struct vcpu_svm *svm)
495 {
496 struct vmcb_control_area *c, *h;
497 struct nested_state *g;
498
499 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
500
501 if (!is_guest_mode(&svm->vcpu))
502 return;
503
504 c = &svm->vmcb->control;
505 h = &svm->nested.hsave->control;
506 g = &svm->nested;
507
508 c->intercept_cr = h->intercept_cr | g->intercept_cr;
509 c->intercept_dr = h->intercept_dr | g->intercept_dr;
510 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
511 c->intercept = h->intercept | g->intercept;
512 }
513
514 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
515 {
516 if (is_guest_mode(&svm->vcpu))
517 return svm->nested.hsave;
518 else
519 return svm->vmcb;
520 }
521
522 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
523 {
524 struct vmcb *vmcb = get_host_vmcb(svm);
525
526 vmcb->control.intercept_cr |= (1U << bit);
527
528 recalc_intercepts(svm);
529 }
530
531 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
532 {
533 struct vmcb *vmcb = get_host_vmcb(svm);
534
535 vmcb->control.intercept_cr &= ~(1U << bit);
536
537 recalc_intercepts(svm);
538 }
539
540 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
541 {
542 struct vmcb *vmcb = get_host_vmcb(svm);
543
544 return vmcb->control.intercept_cr & (1U << bit);
545 }
546
547 static inline void set_dr_intercepts(struct vcpu_svm *svm)
548 {
549 struct vmcb *vmcb = get_host_vmcb(svm);
550
551 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
552 | (1 << INTERCEPT_DR1_READ)
553 | (1 << INTERCEPT_DR2_READ)
554 | (1 << INTERCEPT_DR3_READ)
555 | (1 << INTERCEPT_DR4_READ)
556 | (1 << INTERCEPT_DR5_READ)
557 | (1 << INTERCEPT_DR6_READ)
558 | (1 << INTERCEPT_DR7_READ)
559 | (1 << INTERCEPT_DR0_WRITE)
560 | (1 << INTERCEPT_DR1_WRITE)
561 | (1 << INTERCEPT_DR2_WRITE)
562 | (1 << INTERCEPT_DR3_WRITE)
563 | (1 << INTERCEPT_DR4_WRITE)
564 | (1 << INTERCEPT_DR5_WRITE)
565 | (1 << INTERCEPT_DR6_WRITE)
566 | (1 << INTERCEPT_DR7_WRITE);
567
568 recalc_intercepts(svm);
569 }
570
571 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
572 {
573 struct vmcb *vmcb = get_host_vmcb(svm);
574
575 vmcb->control.intercept_dr = 0;
576
577 recalc_intercepts(svm);
578 }
579
580 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
581 {
582 struct vmcb *vmcb = get_host_vmcb(svm);
583
584 vmcb->control.intercept_exceptions |= (1U << bit);
585
586 recalc_intercepts(svm);
587 }
588
589 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
590 {
591 struct vmcb *vmcb = get_host_vmcb(svm);
592
593 vmcb->control.intercept_exceptions &= ~(1U << bit);
594
595 recalc_intercepts(svm);
596 }
597
598 static inline void set_intercept(struct vcpu_svm *svm, int bit)
599 {
600 struct vmcb *vmcb = get_host_vmcb(svm);
601
602 vmcb->control.intercept |= (1ULL << bit);
603
604 recalc_intercepts(svm);
605 }
606
607 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
608 {
609 struct vmcb *vmcb = get_host_vmcb(svm);
610
611 vmcb->control.intercept &= ~(1ULL << bit);
612
613 recalc_intercepts(svm);
614 }
615
616 static inline bool vgif_enabled(struct vcpu_svm *svm)
617 {
618 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
619 }
620
621 static inline void enable_gif(struct vcpu_svm *svm)
622 {
623 if (vgif_enabled(svm))
624 svm->vmcb->control.int_ctl |= V_GIF_MASK;
625 else
626 svm->vcpu.arch.hflags |= HF_GIF_MASK;
627 }
628
629 static inline void disable_gif(struct vcpu_svm *svm)
630 {
631 if (vgif_enabled(svm))
632 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
633 else
634 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
635 }
636
637 static inline bool gif_set(struct vcpu_svm *svm)
638 {
639 if (vgif_enabled(svm))
640 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
641 else
642 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
643 }
644
645 static unsigned long iopm_base;
646
647 struct kvm_ldttss_desc {
648 u16 limit0;
649 u16 base0;
650 unsigned base1:8, type:5, dpl:2, p:1;
651 unsigned limit1:4, zero0:3, g:1, base2:8;
652 u32 base3;
653 u32 zero1;
654 } __attribute__((packed));
655
656 struct svm_cpu_data {
657 int cpu;
658
659 u64 asid_generation;
660 u32 max_asid;
661 u32 next_asid;
662 u32 min_asid;
663 struct kvm_ldttss_desc *tss_desc;
664
665 struct page *save_area;
666 struct vmcb *current_vmcb;
667
668 /* index = sev_asid, value = vmcb pointer */
669 struct vmcb **sev_vmcbs;
670 };
671
672 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
673
674 struct svm_init_data {
675 int cpu;
676 int r;
677 };
678
679 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
680
681 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
682 #define MSRS_RANGE_SIZE 2048
683 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
684
685 static u32 svm_msrpm_offset(u32 msr)
686 {
687 u32 offset;
688 int i;
689
690 for (i = 0; i < NUM_MSR_MAPS; i++) {
691 if (msr < msrpm_ranges[i] ||
692 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
693 continue;
694
695 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
696 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
697
698 /* Now we have the u8 offset - but need the u32 offset */
699 return offset / 4;
700 }
701
702 /* MSR not in any range */
703 return MSR_INVALID;
704 }
705
706 #define MAX_INST_SIZE 15
707
708 static inline void clgi(void)
709 {
710 asm volatile (__ex(SVM_CLGI));
711 }
712
713 static inline void stgi(void)
714 {
715 asm volatile (__ex(SVM_STGI));
716 }
717
718 static inline void invlpga(unsigned long addr, u32 asid)
719 {
720 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
721 }
722
723 static int get_npt_level(struct kvm_vcpu *vcpu)
724 {
725 #ifdef CONFIG_X86_64
726 return PT64_ROOT_4LEVEL;
727 #else
728 return PT32E_ROOT_LEVEL;
729 #endif
730 }
731
732 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
733 {
734 vcpu->arch.efer = efer;
735 if (!npt_enabled && !(efer & EFER_LMA))
736 efer &= ~EFER_LME;
737
738 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
739 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
740 }
741
742 static int is_external_interrupt(u32 info)
743 {
744 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
745 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
746 }
747
748 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
749 {
750 struct vcpu_svm *svm = to_svm(vcpu);
751 u32 ret = 0;
752
753 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
754 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
755 return ret;
756 }
757
758 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
759 {
760 struct vcpu_svm *svm = to_svm(vcpu);
761
762 if (mask == 0)
763 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
764 else
765 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
766
767 }
768
769 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
770 {
771 struct vcpu_svm *svm = to_svm(vcpu);
772
773 if (svm->vmcb->control.next_rip != 0) {
774 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
775 svm->next_rip = svm->vmcb->control.next_rip;
776 }
777
778 if (!svm->next_rip) {
779 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
780 EMULATE_DONE)
781 printk(KERN_DEBUG "%s: NOP\n", __func__);
782 return;
783 }
784 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
785 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
786 __func__, kvm_rip_read(vcpu), svm->next_rip);
787
788 kvm_rip_write(vcpu, svm->next_rip);
789 svm_set_interrupt_shadow(vcpu, 0);
790 }
791
792 static void svm_queue_exception(struct kvm_vcpu *vcpu)
793 {
794 struct vcpu_svm *svm = to_svm(vcpu);
795 unsigned nr = vcpu->arch.exception.nr;
796 bool has_error_code = vcpu->arch.exception.has_error_code;
797 bool reinject = vcpu->arch.exception.injected;
798 u32 error_code = vcpu->arch.exception.error_code;
799
800 /*
801 * If we are within a nested VM we'd better #VMEXIT and let the guest
802 * handle the exception
803 */
804 if (!reinject &&
805 nested_svm_check_exception(svm, nr, has_error_code, error_code))
806 return;
807
808 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
809 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
810
811 /*
812 * For guest debugging where we have to reinject #BP if some
813 * INT3 is guest-owned:
814 * Emulate nRIP by moving RIP forward. Will fail if injection
815 * raises a fault that is not intercepted. Still better than
816 * failing in all cases.
817 */
818 skip_emulated_instruction(&svm->vcpu);
819 rip = kvm_rip_read(&svm->vcpu);
820 svm->int3_rip = rip + svm->vmcb->save.cs.base;
821 svm->int3_injected = rip - old_rip;
822 }
823
824 svm->vmcb->control.event_inj = nr
825 | SVM_EVTINJ_VALID
826 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
827 | SVM_EVTINJ_TYPE_EXEPT;
828 svm->vmcb->control.event_inj_err = error_code;
829 }
830
831 static void svm_init_erratum_383(void)
832 {
833 u32 low, high;
834 int err;
835 u64 val;
836
837 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
838 return;
839
840 /* Use _safe variants to not break nested virtualization */
841 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
842 if (err)
843 return;
844
845 val |= (1ULL << 47);
846
847 low = lower_32_bits(val);
848 high = upper_32_bits(val);
849
850 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
851
852 erratum_383_found = true;
853 }
854
855 static void svm_init_osvw(struct kvm_vcpu *vcpu)
856 {
857 /*
858 * Guests should see errata 400 and 415 as fixed (assuming that
859 * HLT and IO instructions are intercepted).
860 */
861 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
862 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
863
864 /*
865 * By increasing VCPU's osvw.length to 3 we are telling the guest that
866 * all osvw.status bits inside that length, including bit 0 (which is
867 * reserved for erratum 298), are valid. However, if host processor's
868 * osvw_len is 0 then osvw_status[0] carries no information. We need to
869 * be conservative here and therefore we tell the guest that erratum 298
870 * is present (because we really don't know).
871 */
872 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
873 vcpu->arch.osvw.status |= 1;
874 }
875
876 static int has_svm(void)
877 {
878 const char *msg;
879
880 if (!cpu_has_svm(&msg)) {
881 printk(KERN_INFO "has_svm: %s\n", msg);
882 return 0;
883 }
884
885 return 1;
886 }
887
888 static void svm_hardware_disable(void)
889 {
890 /* Make sure we clean up behind us */
891 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
892 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
893
894 cpu_svm_disable();
895
896 amd_pmu_disable_virt();
897 }
898
899 static int svm_hardware_enable(void)
900 {
901
902 struct svm_cpu_data *sd;
903 uint64_t efer;
904 struct desc_struct *gdt;
905 int me = raw_smp_processor_id();
906
907 rdmsrl(MSR_EFER, efer);
908 if (efer & EFER_SVME)
909 return -EBUSY;
910
911 if (!has_svm()) {
912 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
913 return -EINVAL;
914 }
915 sd = per_cpu(svm_data, me);
916 if (!sd) {
917 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
918 return -EINVAL;
919 }
920
921 sd->asid_generation = 1;
922 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
923 sd->next_asid = sd->max_asid + 1;
924 sd->min_asid = max_sev_asid + 1;
925
926 gdt = get_current_gdt_rw();
927 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
928
929 wrmsrl(MSR_EFER, efer | EFER_SVME);
930
931 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
932
933 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
934 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
935 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
936 }
937
938
939 /*
940 * Get OSVW bits.
941 *
942 * Note that it is possible to have a system with mixed processor
943 * revisions and therefore different OSVW bits. If bits are not the same
944 * on different processors then choose the worst case (i.e. if erratum
945 * is present on one processor and not on another then assume that the
946 * erratum is present everywhere).
947 */
948 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
949 uint64_t len, status = 0;
950 int err;
951
952 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
953 if (!err)
954 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
955 &err);
956
957 if (err)
958 osvw_status = osvw_len = 0;
959 else {
960 if (len < osvw_len)
961 osvw_len = len;
962 osvw_status |= status;
963 osvw_status &= (1ULL << osvw_len) - 1;
964 }
965 } else
966 osvw_status = osvw_len = 0;
967
968 svm_init_erratum_383();
969
970 amd_pmu_enable_virt();
971
972 return 0;
973 }
974
975 static void svm_cpu_uninit(int cpu)
976 {
977 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
978
979 if (!sd)
980 return;
981
982 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
983 kfree(sd->sev_vmcbs);
984 __free_page(sd->save_area);
985 kfree(sd);
986 }
987
988 static int svm_cpu_init(int cpu)
989 {
990 struct svm_cpu_data *sd;
991 int r;
992
993 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
994 if (!sd)
995 return -ENOMEM;
996 sd->cpu = cpu;
997 r = -ENOMEM;
998 sd->save_area = alloc_page(GFP_KERNEL);
999 if (!sd->save_area)
1000 goto err_1;
1001
1002 if (svm_sev_enabled()) {
1003 r = -ENOMEM;
1004 sd->sev_vmcbs = kmalloc((max_sev_asid + 1) * sizeof(void *), GFP_KERNEL);
1005 if (!sd->sev_vmcbs)
1006 goto err_1;
1007 }
1008
1009 per_cpu(svm_data, cpu) = sd;
1010
1011 return 0;
1012
1013 err_1:
1014 kfree(sd);
1015 return r;
1016
1017 }
1018
1019 static bool valid_msr_intercept(u32 index)
1020 {
1021 int i;
1022
1023 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1024 if (direct_access_msrs[i].index == index)
1025 return true;
1026
1027 return false;
1028 }
1029
1030 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1031 {
1032 u8 bit_write;
1033 unsigned long tmp;
1034 u32 offset;
1035 u32 *msrpm;
1036
1037 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1038 to_svm(vcpu)->msrpm;
1039
1040 offset = svm_msrpm_offset(msr);
1041 bit_write = 2 * (msr & 0x0f) + 1;
1042 tmp = msrpm[offset];
1043
1044 BUG_ON(offset == MSR_INVALID);
1045
1046 return !!test_bit(bit_write, &tmp);
1047 }
1048
1049 static void set_msr_interception(u32 *msrpm, unsigned msr,
1050 int read, int write)
1051 {
1052 u8 bit_read, bit_write;
1053 unsigned long tmp;
1054 u32 offset;
1055
1056 /*
1057 * If this warning triggers extend the direct_access_msrs list at the
1058 * beginning of the file
1059 */
1060 WARN_ON(!valid_msr_intercept(msr));
1061
1062 offset = svm_msrpm_offset(msr);
1063 bit_read = 2 * (msr & 0x0f);
1064 bit_write = 2 * (msr & 0x0f) + 1;
1065 tmp = msrpm[offset];
1066
1067 BUG_ON(offset == MSR_INVALID);
1068
1069 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1070 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1071
1072 msrpm[offset] = tmp;
1073 }
1074
1075 static void svm_vcpu_init_msrpm(u32 *msrpm)
1076 {
1077 int i;
1078
1079 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1080
1081 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1082 if (!direct_access_msrs[i].always)
1083 continue;
1084
1085 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1086 }
1087 }
1088
1089 static void add_msr_offset(u32 offset)
1090 {
1091 int i;
1092
1093 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1094
1095 /* Offset already in list? */
1096 if (msrpm_offsets[i] == offset)
1097 return;
1098
1099 /* Slot used by another offset? */
1100 if (msrpm_offsets[i] != MSR_INVALID)
1101 continue;
1102
1103 /* Add offset to list */
1104 msrpm_offsets[i] = offset;
1105
1106 return;
1107 }
1108
1109 /*
1110 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1111 * increase MSRPM_OFFSETS in this case.
1112 */
1113 BUG();
1114 }
1115
1116 static void init_msrpm_offsets(void)
1117 {
1118 int i;
1119
1120 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1121
1122 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1123 u32 offset;
1124
1125 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1126 BUG_ON(offset == MSR_INVALID);
1127
1128 add_msr_offset(offset);
1129 }
1130 }
1131
1132 static void svm_enable_lbrv(struct vcpu_svm *svm)
1133 {
1134 u32 *msrpm = svm->msrpm;
1135
1136 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1137 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1138 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1139 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1140 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1141 }
1142
1143 static void svm_disable_lbrv(struct vcpu_svm *svm)
1144 {
1145 u32 *msrpm = svm->msrpm;
1146
1147 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1148 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1149 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1150 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1151 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1152 }
1153
1154 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1155 {
1156 svm->nmi_singlestep = false;
1157
1158 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1159 /* Clear our flags if they were not set by the guest */
1160 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1161 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1162 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1163 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1164 }
1165 }
1166
1167 /* Note:
1168 * This hash table is used to map VM_ID to a struct kvm_svm,
1169 * when handling AMD IOMMU GALOG notification to schedule in
1170 * a particular vCPU.
1171 */
1172 #define SVM_VM_DATA_HASH_BITS 8
1173 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1174 static u32 next_vm_id = 0;
1175 static bool next_vm_id_wrapped = 0;
1176 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1177
1178 /* Note:
1179 * This function is called from IOMMU driver to notify
1180 * SVM to schedule in a particular vCPU of a particular VM.
1181 */
1182 static int avic_ga_log_notifier(u32 ga_tag)
1183 {
1184 unsigned long flags;
1185 struct kvm_svm *kvm_svm;
1186 struct kvm_vcpu *vcpu = NULL;
1187 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1188 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1189
1190 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1191
1192 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1193 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1194 if (kvm_svm->avic_vm_id != vm_id)
1195 continue;
1196 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1197 break;
1198 }
1199 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1200
1201 /* Note:
1202 * At this point, the IOMMU should have already set the pending
1203 * bit in the vAPIC backing page. So, we just need to schedule
1204 * in the vcpu.
1205 */
1206 if (vcpu)
1207 kvm_vcpu_wake_up(vcpu);
1208
1209 return 0;
1210 }
1211
1212 static __init int sev_hardware_setup(void)
1213 {
1214 struct sev_user_data_status *status;
1215 int rc;
1216
1217 /* Maximum number of encrypted guests supported simultaneously */
1218 max_sev_asid = cpuid_ecx(0x8000001F);
1219
1220 if (!max_sev_asid)
1221 return 1;
1222
1223 /* Minimum ASID value that should be used for SEV guest */
1224 min_sev_asid = cpuid_edx(0x8000001F);
1225
1226 /* Initialize SEV ASID bitmap */
1227 sev_asid_bitmap = kcalloc(BITS_TO_LONGS(max_sev_asid),
1228 sizeof(unsigned long), GFP_KERNEL);
1229 if (!sev_asid_bitmap)
1230 return 1;
1231
1232 status = kmalloc(sizeof(*status), GFP_KERNEL);
1233 if (!status)
1234 return 1;
1235
1236 /*
1237 * Check SEV platform status.
1238 *
1239 * PLATFORM_STATUS can be called in any state, if we failed to query
1240 * the PLATFORM status then either PSP firmware does not support SEV
1241 * feature or SEV firmware is dead.
1242 */
1243 rc = sev_platform_status(status, NULL);
1244 if (rc)
1245 goto err;
1246
1247 pr_info("SEV supported\n");
1248
1249 err:
1250 kfree(status);
1251 return rc;
1252 }
1253
1254 static void grow_ple_window(struct kvm_vcpu *vcpu)
1255 {
1256 struct vcpu_svm *svm = to_svm(vcpu);
1257 struct vmcb_control_area *control = &svm->vmcb->control;
1258 int old = control->pause_filter_count;
1259
1260 control->pause_filter_count = __grow_ple_window(old,
1261 pause_filter_count,
1262 pause_filter_count_grow,
1263 pause_filter_count_max);
1264
1265 if (control->pause_filter_count != old)
1266 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1267
1268 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1269 control->pause_filter_count, old);
1270 }
1271
1272 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1273 {
1274 struct vcpu_svm *svm = to_svm(vcpu);
1275 struct vmcb_control_area *control = &svm->vmcb->control;
1276 int old = control->pause_filter_count;
1277
1278 control->pause_filter_count =
1279 __shrink_ple_window(old,
1280 pause_filter_count,
1281 pause_filter_count_shrink,
1282 pause_filter_count);
1283 if (control->pause_filter_count != old)
1284 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1285
1286 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1287 control->pause_filter_count, old);
1288 }
1289
1290 static __init int svm_hardware_setup(void)
1291 {
1292 int cpu;
1293 struct page *iopm_pages;
1294 void *iopm_va;
1295 int r;
1296
1297 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1298
1299 if (!iopm_pages)
1300 return -ENOMEM;
1301
1302 iopm_va = page_address(iopm_pages);
1303 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1304 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1305
1306 init_msrpm_offsets();
1307
1308 if (boot_cpu_has(X86_FEATURE_NX))
1309 kvm_enable_efer_bits(EFER_NX);
1310
1311 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1312 kvm_enable_efer_bits(EFER_FFXSR);
1313
1314 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1315 kvm_has_tsc_control = true;
1316 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1317 kvm_tsc_scaling_ratio_frac_bits = 32;
1318 }
1319
1320 /* Check for pause filtering support */
1321 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1322 pause_filter_count = 0;
1323 pause_filter_thresh = 0;
1324 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1325 pause_filter_thresh = 0;
1326 }
1327
1328 if (nested) {
1329 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1330 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1331 }
1332
1333 if (sev) {
1334 if (boot_cpu_has(X86_FEATURE_SEV) &&
1335 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1336 r = sev_hardware_setup();
1337 if (r)
1338 sev = false;
1339 } else {
1340 sev = false;
1341 }
1342 }
1343
1344 for_each_possible_cpu(cpu) {
1345 r = svm_cpu_init(cpu);
1346 if (r)
1347 goto err;
1348 }
1349
1350 if (!boot_cpu_has(X86_FEATURE_NPT))
1351 npt_enabled = false;
1352
1353 if (npt_enabled && !npt) {
1354 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1355 npt_enabled = false;
1356 }
1357
1358 if (npt_enabled) {
1359 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1360 kvm_enable_tdp();
1361 } else
1362 kvm_disable_tdp();
1363
1364 if (avic) {
1365 if (!npt_enabled ||
1366 !boot_cpu_has(X86_FEATURE_AVIC) ||
1367 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1368 avic = false;
1369 } else {
1370 pr_info("AVIC enabled\n");
1371
1372 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1373 }
1374 }
1375
1376 if (vls) {
1377 if (!npt_enabled ||
1378 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1379 !IS_ENABLED(CONFIG_X86_64)) {
1380 vls = false;
1381 } else {
1382 pr_info("Virtual VMLOAD VMSAVE supported\n");
1383 }
1384 }
1385
1386 if (vgif) {
1387 if (!boot_cpu_has(X86_FEATURE_VGIF))
1388 vgif = false;
1389 else
1390 pr_info("Virtual GIF supported\n");
1391 }
1392
1393 return 0;
1394
1395 err:
1396 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1397 iopm_base = 0;
1398 return r;
1399 }
1400
1401 static __exit void svm_hardware_unsetup(void)
1402 {
1403 int cpu;
1404
1405 if (svm_sev_enabled())
1406 kfree(sev_asid_bitmap);
1407
1408 for_each_possible_cpu(cpu)
1409 svm_cpu_uninit(cpu);
1410
1411 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1412 iopm_base = 0;
1413 }
1414
1415 static void init_seg(struct vmcb_seg *seg)
1416 {
1417 seg->selector = 0;
1418 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1419 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1420 seg->limit = 0xffff;
1421 seg->base = 0;
1422 }
1423
1424 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1425 {
1426 seg->selector = 0;
1427 seg->attrib = SVM_SELECTOR_P_MASK | type;
1428 seg->limit = 0xffff;
1429 seg->base = 0;
1430 }
1431
1432 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1433 {
1434 struct vcpu_svm *svm = to_svm(vcpu);
1435
1436 if (is_guest_mode(vcpu))
1437 return svm->nested.hsave->control.tsc_offset;
1438
1439 return vcpu->arch.tsc_offset;
1440 }
1441
1442 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1443 {
1444 struct vcpu_svm *svm = to_svm(vcpu);
1445 u64 g_tsc_offset = 0;
1446
1447 if (is_guest_mode(vcpu)) {
1448 /* Write L1's TSC offset. */
1449 g_tsc_offset = svm->vmcb->control.tsc_offset -
1450 svm->nested.hsave->control.tsc_offset;
1451 svm->nested.hsave->control.tsc_offset = offset;
1452 } else
1453 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1454 svm->vmcb->control.tsc_offset,
1455 offset);
1456
1457 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1458
1459 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1460 }
1461
1462 static void avic_init_vmcb(struct vcpu_svm *svm)
1463 {
1464 struct vmcb *vmcb = svm->vmcb;
1465 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1466 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1467 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1468 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1469
1470 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1471 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1472 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1473 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1474 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1475 }
1476
1477 static void init_vmcb(struct vcpu_svm *svm)
1478 {
1479 struct vmcb_control_area *control = &svm->vmcb->control;
1480 struct vmcb_save_area *save = &svm->vmcb->save;
1481
1482 svm->vcpu.arch.hflags = 0;
1483
1484 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1485 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1486 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1487 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1488 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1489 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1490 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1491 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1492
1493 set_dr_intercepts(svm);
1494
1495 set_exception_intercept(svm, PF_VECTOR);
1496 set_exception_intercept(svm, UD_VECTOR);
1497 set_exception_intercept(svm, MC_VECTOR);
1498 set_exception_intercept(svm, AC_VECTOR);
1499 set_exception_intercept(svm, DB_VECTOR);
1500 /*
1501 * Guest access to VMware backdoor ports could legitimately
1502 * trigger #GP because of TSS I/O permission bitmap.
1503 * We intercept those #GP and allow access to them anyway
1504 * as VMware does.
1505 */
1506 if (enable_vmware_backdoor)
1507 set_exception_intercept(svm, GP_VECTOR);
1508
1509 set_intercept(svm, INTERCEPT_INTR);
1510 set_intercept(svm, INTERCEPT_NMI);
1511 set_intercept(svm, INTERCEPT_SMI);
1512 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1513 set_intercept(svm, INTERCEPT_RDPMC);
1514 set_intercept(svm, INTERCEPT_CPUID);
1515 set_intercept(svm, INTERCEPT_INVD);
1516 set_intercept(svm, INTERCEPT_INVLPG);
1517 set_intercept(svm, INTERCEPT_INVLPGA);
1518 set_intercept(svm, INTERCEPT_IOIO_PROT);
1519 set_intercept(svm, INTERCEPT_MSR_PROT);
1520 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1521 set_intercept(svm, INTERCEPT_SHUTDOWN);
1522 set_intercept(svm, INTERCEPT_VMRUN);
1523 set_intercept(svm, INTERCEPT_VMMCALL);
1524 set_intercept(svm, INTERCEPT_VMLOAD);
1525 set_intercept(svm, INTERCEPT_VMSAVE);
1526 set_intercept(svm, INTERCEPT_STGI);
1527 set_intercept(svm, INTERCEPT_CLGI);
1528 set_intercept(svm, INTERCEPT_SKINIT);
1529 set_intercept(svm, INTERCEPT_WBINVD);
1530 set_intercept(svm, INTERCEPT_XSETBV);
1531 set_intercept(svm, INTERCEPT_RSM);
1532
1533 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1534 set_intercept(svm, INTERCEPT_MONITOR);
1535 set_intercept(svm, INTERCEPT_MWAIT);
1536 }
1537
1538 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1539 set_intercept(svm, INTERCEPT_HLT);
1540
1541 control->iopm_base_pa = __sme_set(iopm_base);
1542 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1543 control->int_ctl = V_INTR_MASKING_MASK;
1544
1545 init_seg(&save->es);
1546 init_seg(&save->ss);
1547 init_seg(&save->ds);
1548 init_seg(&save->fs);
1549 init_seg(&save->gs);
1550
1551 save->cs.selector = 0xf000;
1552 save->cs.base = 0xffff0000;
1553 /* Executable/Readable Code Segment */
1554 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1555 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1556 save->cs.limit = 0xffff;
1557
1558 save->gdtr.limit = 0xffff;
1559 save->idtr.limit = 0xffff;
1560
1561 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1562 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1563
1564 svm_set_efer(&svm->vcpu, 0);
1565 save->dr6 = 0xffff0ff0;
1566 kvm_set_rflags(&svm->vcpu, 2);
1567 save->rip = 0x0000fff0;
1568 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1569
1570 /*
1571 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1572 * It also updates the guest-visible cr0 value.
1573 */
1574 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1575 kvm_mmu_reset_context(&svm->vcpu);
1576
1577 save->cr4 = X86_CR4_PAE;
1578 /* rdx = ?? */
1579
1580 if (npt_enabled) {
1581 /* Setup VMCB for Nested Paging */
1582 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1583 clr_intercept(svm, INTERCEPT_INVLPG);
1584 clr_exception_intercept(svm, PF_VECTOR);
1585 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1586 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1587 save->g_pat = svm->vcpu.arch.pat;
1588 save->cr3 = 0;
1589 save->cr4 = 0;
1590 }
1591 svm->asid_generation = 0;
1592
1593 svm->nested.vmcb = 0;
1594 svm->vcpu.arch.hflags = 0;
1595
1596 if (pause_filter_count) {
1597 control->pause_filter_count = pause_filter_count;
1598 if (pause_filter_thresh)
1599 control->pause_filter_thresh = pause_filter_thresh;
1600 set_intercept(svm, INTERCEPT_PAUSE);
1601 } else {
1602 clr_intercept(svm, INTERCEPT_PAUSE);
1603 }
1604
1605 if (kvm_vcpu_apicv_active(&svm->vcpu))
1606 avic_init_vmcb(svm);
1607
1608 /*
1609 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1610 * in VMCB and clear intercepts to avoid #VMEXIT.
1611 */
1612 if (vls) {
1613 clr_intercept(svm, INTERCEPT_VMLOAD);
1614 clr_intercept(svm, INTERCEPT_VMSAVE);
1615 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1616 }
1617
1618 if (vgif) {
1619 clr_intercept(svm, INTERCEPT_STGI);
1620 clr_intercept(svm, INTERCEPT_CLGI);
1621 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1622 }
1623
1624 if (sev_guest(svm->vcpu.kvm)) {
1625 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1626 clr_exception_intercept(svm, UD_VECTOR);
1627 }
1628
1629 mark_all_dirty(svm->vmcb);
1630
1631 enable_gif(svm);
1632
1633 }
1634
1635 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1636 unsigned int index)
1637 {
1638 u64 *avic_physical_id_table;
1639 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1640
1641 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1642 return NULL;
1643
1644 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1645
1646 return &avic_physical_id_table[index];
1647 }
1648
1649 /**
1650 * Note:
1651 * AVIC hardware walks the nested page table to check permissions,
1652 * but does not use the SPA address specified in the leaf page
1653 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1654 * field of the VMCB. Therefore, we set up the
1655 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1656 */
1657 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1658 {
1659 struct kvm *kvm = vcpu->kvm;
1660 int ret;
1661
1662 if (kvm->arch.apic_access_page_done)
1663 return 0;
1664
1665 ret = x86_set_memory_region(kvm,
1666 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1667 APIC_DEFAULT_PHYS_BASE,
1668 PAGE_SIZE);
1669 if (ret)
1670 return ret;
1671
1672 kvm->arch.apic_access_page_done = true;
1673 return 0;
1674 }
1675
1676 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1677 {
1678 int ret;
1679 u64 *entry, new_entry;
1680 int id = vcpu->vcpu_id;
1681 struct vcpu_svm *svm = to_svm(vcpu);
1682
1683 ret = avic_init_access_page(vcpu);
1684 if (ret)
1685 return ret;
1686
1687 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1688 return -EINVAL;
1689
1690 if (!svm->vcpu.arch.apic->regs)
1691 return -EINVAL;
1692
1693 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1694
1695 /* Setting AVIC backing page address in the phy APIC ID table */
1696 entry = avic_get_physical_id_entry(vcpu, id);
1697 if (!entry)
1698 return -EINVAL;
1699
1700 new_entry = READ_ONCE(*entry);
1701 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1702 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1703 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1704 WRITE_ONCE(*entry, new_entry);
1705
1706 svm->avic_physical_id_cache = entry;
1707
1708 return 0;
1709 }
1710
1711 static void __sev_asid_free(int asid)
1712 {
1713 struct svm_cpu_data *sd;
1714 int cpu, pos;
1715
1716 pos = asid - 1;
1717 clear_bit(pos, sev_asid_bitmap);
1718
1719 for_each_possible_cpu(cpu) {
1720 sd = per_cpu(svm_data, cpu);
1721 sd->sev_vmcbs[pos] = NULL;
1722 }
1723 }
1724
1725 static void sev_asid_free(struct kvm *kvm)
1726 {
1727 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1728
1729 __sev_asid_free(sev->asid);
1730 }
1731
1732 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1733 {
1734 struct sev_data_decommission *decommission;
1735 struct sev_data_deactivate *data;
1736
1737 if (!handle)
1738 return;
1739
1740 data = kzalloc(sizeof(*data), GFP_KERNEL);
1741 if (!data)
1742 return;
1743
1744 /* deactivate handle */
1745 data->handle = handle;
1746 sev_guest_deactivate(data, NULL);
1747
1748 wbinvd_on_all_cpus();
1749 sev_guest_df_flush(NULL);
1750 kfree(data);
1751
1752 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1753 if (!decommission)
1754 return;
1755
1756 /* decommission handle */
1757 decommission->handle = handle;
1758 sev_guest_decommission(decommission, NULL);
1759
1760 kfree(decommission);
1761 }
1762
1763 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1764 unsigned long ulen, unsigned long *n,
1765 int write)
1766 {
1767 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1768 unsigned long npages, npinned, size;
1769 unsigned long locked, lock_limit;
1770 struct page **pages;
1771 int first, last;
1772
1773 /* Calculate number of pages. */
1774 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1775 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1776 npages = (last - first + 1);
1777
1778 locked = sev->pages_locked + npages;
1779 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1780 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1781 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1782 return NULL;
1783 }
1784
1785 /* Avoid using vmalloc for smaller buffers. */
1786 size = npages * sizeof(struct page *);
1787 if (size > PAGE_SIZE)
1788 pages = vmalloc(size);
1789 else
1790 pages = kmalloc(size, GFP_KERNEL);
1791
1792 if (!pages)
1793 return NULL;
1794
1795 /* Pin the user virtual address. */
1796 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1797 if (npinned != npages) {
1798 pr_err("SEV: Failure locking %lu pages.\n", npages);
1799 goto err;
1800 }
1801
1802 *n = npages;
1803 sev->pages_locked = locked;
1804
1805 return pages;
1806
1807 err:
1808 if (npinned > 0)
1809 release_pages(pages, npinned);
1810
1811 kvfree(pages);
1812 return NULL;
1813 }
1814
1815 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1816 unsigned long npages)
1817 {
1818 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1819
1820 release_pages(pages, npages);
1821 kvfree(pages);
1822 sev->pages_locked -= npages;
1823 }
1824
1825 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1826 {
1827 uint8_t *page_virtual;
1828 unsigned long i;
1829
1830 if (npages == 0 || pages == NULL)
1831 return;
1832
1833 for (i = 0; i < npages; i++) {
1834 page_virtual = kmap_atomic(pages[i]);
1835 clflush_cache_range(page_virtual, PAGE_SIZE);
1836 kunmap_atomic(page_virtual);
1837 }
1838 }
1839
1840 static void __unregister_enc_region_locked(struct kvm *kvm,
1841 struct enc_region *region)
1842 {
1843 /*
1844 * The guest may change the memory encryption attribute from C=0 -> C=1
1845 * or vice versa for this memory range. Lets make sure caches are
1846 * flushed to ensure that guest data gets written into memory with
1847 * correct C-bit.
1848 */
1849 sev_clflush_pages(region->pages, region->npages);
1850
1851 sev_unpin_memory(kvm, region->pages, region->npages);
1852 list_del(&region->list);
1853 kfree(region);
1854 }
1855
1856 static struct kvm *svm_vm_alloc(void)
1857 {
1858 struct kvm_svm *kvm_svm = kzalloc(sizeof(struct kvm_svm), GFP_KERNEL);
1859 return &kvm_svm->kvm;
1860 }
1861
1862 static void svm_vm_free(struct kvm *kvm)
1863 {
1864 kfree(to_kvm_svm(kvm));
1865 }
1866
1867 static void sev_vm_destroy(struct kvm *kvm)
1868 {
1869 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1870 struct list_head *head = &sev->regions_list;
1871 struct list_head *pos, *q;
1872
1873 if (!sev_guest(kvm))
1874 return;
1875
1876 mutex_lock(&kvm->lock);
1877
1878 /*
1879 * if userspace was terminated before unregistering the memory regions
1880 * then lets unpin all the registered memory.
1881 */
1882 if (!list_empty(head)) {
1883 list_for_each_safe(pos, q, head) {
1884 __unregister_enc_region_locked(kvm,
1885 list_entry(pos, struct enc_region, list));
1886 }
1887 }
1888
1889 mutex_unlock(&kvm->lock);
1890
1891 sev_unbind_asid(kvm, sev->handle);
1892 sev_asid_free(kvm);
1893 }
1894
1895 static void avic_vm_destroy(struct kvm *kvm)
1896 {
1897 unsigned long flags;
1898 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1899
1900 if (!avic)
1901 return;
1902
1903 if (kvm_svm->avic_logical_id_table_page)
1904 __free_page(kvm_svm->avic_logical_id_table_page);
1905 if (kvm_svm->avic_physical_id_table_page)
1906 __free_page(kvm_svm->avic_physical_id_table_page);
1907
1908 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1909 hash_del(&kvm_svm->hnode);
1910 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1911 }
1912
1913 static void svm_vm_destroy(struct kvm *kvm)
1914 {
1915 avic_vm_destroy(kvm);
1916 sev_vm_destroy(kvm);
1917 }
1918
1919 static int avic_vm_init(struct kvm *kvm)
1920 {
1921 unsigned long flags;
1922 int err = -ENOMEM;
1923 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1924 struct kvm_svm *k2;
1925 struct page *p_page;
1926 struct page *l_page;
1927 u32 vm_id;
1928
1929 if (!avic)
1930 return 0;
1931
1932 /* Allocating physical APIC ID table (4KB) */
1933 p_page = alloc_page(GFP_KERNEL);
1934 if (!p_page)
1935 goto free_avic;
1936
1937 kvm_svm->avic_physical_id_table_page = p_page;
1938 clear_page(page_address(p_page));
1939
1940 /* Allocating logical APIC ID table (4KB) */
1941 l_page = alloc_page(GFP_KERNEL);
1942 if (!l_page)
1943 goto free_avic;
1944
1945 kvm_svm->avic_logical_id_table_page = l_page;
1946 clear_page(page_address(l_page));
1947
1948 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1949 again:
1950 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1951 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1952 next_vm_id_wrapped = 1;
1953 goto again;
1954 }
1955 /* Is it still in use? Only possible if wrapped at least once */
1956 if (next_vm_id_wrapped) {
1957 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1958 if (k2->avic_vm_id == vm_id)
1959 goto again;
1960 }
1961 }
1962 kvm_svm->avic_vm_id = vm_id;
1963 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1964 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1965
1966 return 0;
1967
1968 free_avic:
1969 avic_vm_destroy(kvm);
1970 return err;
1971 }
1972
1973 static inline int
1974 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1975 {
1976 int ret = 0;
1977 unsigned long flags;
1978 struct amd_svm_iommu_ir *ir;
1979 struct vcpu_svm *svm = to_svm(vcpu);
1980
1981 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1982 return 0;
1983
1984 /*
1985 * Here, we go through the per-vcpu ir_list to update all existing
1986 * interrupt remapping table entry targeting this vcpu.
1987 */
1988 spin_lock_irqsave(&svm->ir_list_lock, flags);
1989
1990 if (list_empty(&svm->ir_list))
1991 goto out;
1992
1993 list_for_each_entry(ir, &svm->ir_list, node) {
1994 ret = amd_iommu_update_ga(cpu, r, ir->data);
1995 if (ret)
1996 break;
1997 }
1998 out:
1999 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2000 return ret;
2001 }
2002
2003 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2004 {
2005 u64 entry;
2006 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2007 int h_physical_id = kvm_cpu_get_apicid(cpu);
2008 struct vcpu_svm *svm = to_svm(vcpu);
2009
2010 if (!kvm_vcpu_apicv_active(vcpu))
2011 return;
2012
2013 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2014 return;
2015
2016 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2017 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2018
2019 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2020 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2021
2022 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2023 if (svm->avic_is_running)
2024 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2025
2026 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2027 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2028 svm->avic_is_running);
2029 }
2030
2031 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2032 {
2033 u64 entry;
2034 struct vcpu_svm *svm = to_svm(vcpu);
2035
2036 if (!kvm_vcpu_apicv_active(vcpu))
2037 return;
2038
2039 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2040 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2041 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2042
2043 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2044 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2045 }
2046
2047 /**
2048 * This function is called during VCPU halt/unhalt.
2049 */
2050 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2051 {
2052 struct vcpu_svm *svm = to_svm(vcpu);
2053
2054 svm->avic_is_running = is_run;
2055 if (is_run)
2056 avic_vcpu_load(vcpu, vcpu->cpu);
2057 else
2058 avic_vcpu_put(vcpu);
2059 }
2060
2061 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2062 {
2063 struct vcpu_svm *svm = to_svm(vcpu);
2064 u32 dummy;
2065 u32 eax = 1;
2066
2067 vcpu->arch.microcode_version = 0x01000065;
2068 svm->spec_ctrl = 0;
2069 svm->virt_spec_ctrl = 0;
2070
2071 if (!init_event) {
2072 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2073 MSR_IA32_APICBASE_ENABLE;
2074 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2075 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2076 }
2077 init_vmcb(svm);
2078
2079 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2080 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2081
2082 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2083 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2084 }
2085
2086 static int avic_init_vcpu(struct vcpu_svm *svm)
2087 {
2088 int ret;
2089
2090 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2091 return 0;
2092
2093 ret = avic_init_backing_page(&svm->vcpu);
2094 if (ret)
2095 return ret;
2096
2097 INIT_LIST_HEAD(&svm->ir_list);
2098 spin_lock_init(&svm->ir_list_lock);
2099
2100 return ret;
2101 }
2102
2103 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2104 {
2105 struct vcpu_svm *svm;
2106 struct page *page;
2107 struct page *msrpm_pages;
2108 struct page *hsave_page;
2109 struct page *nested_msrpm_pages;
2110 int err;
2111
2112 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2113 if (!svm) {
2114 err = -ENOMEM;
2115 goto out;
2116 }
2117
2118 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2119 if (err)
2120 goto free_svm;
2121
2122 err = -ENOMEM;
2123 page = alloc_page(GFP_KERNEL);
2124 if (!page)
2125 goto uninit;
2126
2127 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2128 if (!msrpm_pages)
2129 goto free_page1;
2130
2131 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2132 if (!nested_msrpm_pages)
2133 goto free_page2;
2134
2135 hsave_page = alloc_page(GFP_KERNEL);
2136 if (!hsave_page)
2137 goto free_page3;
2138
2139 err = avic_init_vcpu(svm);
2140 if (err)
2141 goto free_page4;
2142
2143 /* We initialize this flag to true to make sure that the is_running
2144 * bit would be set the first time the vcpu is loaded.
2145 */
2146 svm->avic_is_running = true;
2147
2148 svm->nested.hsave = page_address(hsave_page);
2149
2150 svm->msrpm = page_address(msrpm_pages);
2151 svm_vcpu_init_msrpm(svm->msrpm);
2152
2153 svm->nested.msrpm = page_address(nested_msrpm_pages);
2154 svm_vcpu_init_msrpm(svm->nested.msrpm);
2155
2156 svm->vmcb = page_address(page);
2157 clear_page(svm->vmcb);
2158 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2159 svm->asid_generation = 0;
2160 init_vmcb(svm);
2161
2162 svm_init_osvw(&svm->vcpu);
2163
2164 return &svm->vcpu;
2165
2166 free_page4:
2167 __free_page(hsave_page);
2168 free_page3:
2169 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2170 free_page2:
2171 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2172 free_page1:
2173 __free_page(page);
2174 uninit:
2175 kvm_vcpu_uninit(&svm->vcpu);
2176 free_svm:
2177 kmem_cache_free(kvm_vcpu_cache, svm);
2178 out:
2179 return ERR_PTR(err);
2180 }
2181
2182 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2183 {
2184 struct vcpu_svm *svm = to_svm(vcpu);
2185
2186 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2187 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2188 __free_page(virt_to_page(svm->nested.hsave));
2189 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2190 kvm_vcpu_uninit(vcpu);
2191 kmem_cache_free(kvm_vcpu_cache, svm);
2192 /*
2193 * The vmcb page can be recycled, causing a false negative in
2194 * svm_vcpu_load(). So do a full IBPB now.
2195 */
2196 indirect_branch_prediction_barrier();
2197 }
2198
2199 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2200 {
2201 struct vcpu_svm *svm = to_svm(vcpu);
2202 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2203 int i;
2204
2205 if (unlikely(cpu != vcpu->cpu)) {
2206 svm->asid_generation = 0;
2207 mark_all_dirty(svm->vmcb);
2208 }
2209
2210 #ifdef CONFIG_X86_64
2211 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2212 #endif
2213 savesegment(fs, svm->host.fs);
2214 savesegment(gs, svm->host.gs);
2215 svm->host.ldt = kvm_read_ldt();
2216
2217 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2218 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2219
2220 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2221 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2222 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2223 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2224 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2225 }
2226 }
2227 /* This assumes that the kernel never uses MSR_TSC_AUX */
2228 if (static_cpu_has(X86_FEATURE_RDTSCP))
2229 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2230
2231 if (sd->current_vmcb != svm->vmcb) {
2232 sd->current_vmcb = svm->vmcb;
2233 indirect_branch_prediction_barrier();
2234 }
2235 avic_vcpu_load(vcpu, cpu);
2236 }
2237
2238 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2239 {
2240 struct vcpu_svm *svm = to_svm(vcpu);
2241 int i;
2242
2243 avic_vcpu_put(vcpu);
2244
2245 ++vcpu->stat.host_state_reload;
2246 kvm_load_ldt(svm->host.ldt);
2247 #ifdef CONFIG_X86_64
2248 loadsegment(fs, svm->host.fs);
2249 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2250 load_gs_index(svm->host.gs);
2251 #else
2252 #ifdef CONFIG_X86_32_LAZY_GS
2253 loadsegment(gs, svm->host.gs);
2254 #endif
2255 #endif
2256 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2257 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2258 }
2259
2260 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2261 {
2262 avic_set_running(vcpu, false);
2263 }
2264
2265 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2266 {
2267 avic_set_running(vcpu, true);
2268 }
2269
2270 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2271 {
2272 struct vcpu_svm *svm = to_svm(vcpu);
2273 unsigned long rflags = svm->vmcb->save.rflags;
2274
2275 if (svm->nmi_singlestep) {
2276 /* Hide our flags if they were not set by the guest */
2277 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2278 rflags &= ~X86_EFLAGS_TF;
2279 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2280 rflags &= ~X86_EFLAGS_RF;
2281 }
2282 return rflags;
2283 }
2284
2285 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2286 {
2287 if (to_svm(vcpu)->nmi_singlestep)
2288 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2289
2290 /*
2291 * Any change of EFLAGS.VM is accompanied by a reload of SS
2292 * (caused by either a task switch or an inter-privilege IRET),
2293 * so we do not need to update the CPL here.
2294 */
2295 to_svm(vcpu)->vmcb->save.rflags = rflags;
2296 }
2297
2298 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2299 {
2300 switch (reg) {
2301 case VCPU_EXREG_PDPTR:
2302 BUG_ON(!npt_enabled);
2303 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2304 break;
2305 default:
2306 BUG();
2307 }
2308 }
2309
2310 static void svm_set_vintr(struct vcpu_svm *svm)
2311 {
2312 set_intercept(svm, INTERCEPT_VINTR);
2313 }
2314
2315 static void svm_clear_vintr(struct vcpu_svm *svm)
2316 {
2317 clr_intercept(svm, INTERCEPT_VINTR);
2318 }
2319
2320 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2321 {
2322 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2323
2324 switch (seg) {
2325 case VCPU_SREG_CS: return &save->cs;
2326 case VCPU_SREG_DS: return &save->ds;
2327 case VCPU_SREG_ES: return &save->es;
2328 case VCPU_SREG_FS: return &save->fs;
2329 case VCPU_SREG_GS: return &save->gs;
2330 case VCPU_SREG_SS: return &save->ss;
2331 case VCPU_SREG_TR: return &save->tr;
2332 case VCPU_SREG_LDTR: return &save->ldtr;
2333 }
2334 BUG();
2335 return NULL;
2336 }
2337
2338 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2339 {
2340 struct vmcb_seg *s = svm_seg(vcpu, seg);
2341
2342 return s->base;
2343 }
2344
2345 static void svm_get_segment(struct kvm_vcpu *vcpu,
2346 struct kvm_segment *var, int seg)
2347 {
2348 struct vmcb_seg *s = svm_seg(vcpu, seg);
2349
2350 var->base = s->base;
2351 var->limit = s->limit;
2352 var->selector = s->selector;
2353 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2354 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2355 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2356 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2357 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2358 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2359 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2360
2361 /*
2362 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2363 * However, the SVM spec states that the G bit is not observed by the
2364 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2365 * So let's synthesize a legal G bit for all segments, this helps
2366 * running KVM nested. It also helps cross-vendor migration, because
2367 * Intel's vmentry has a check on the 'G' bit.
2368 */
2369 var->g = s->limit > 0xfffff;
2370
2371 /*
2372 * AMD's VMCB does not have an explicit unusable field, so emulate it
2373 * for cross vendor migration purposes by "not present"
2374 */
2375 var->unusable = !var->present;
2376
2377 switch (seg) {
2378 case VCPU_SREG_TR:
2379 /*
2380 * Work around a bug where the busy flag in the tr selector
2381 * isn't exposed
2382 */
2383 var->type |= 0x2;
2384 break;
2385 case VCPU_SREG_DS:
2386 case VCPU_SREG_ES:
2387 case VCPU_SREG_FS:
2388 case VCPU_SREG_GS:
2389 /*
2390 * The accessed bit must always be set in the segment
2391 * descriptor cache, although it can be cleared in the
2392 * descriptor, the cached bit always remains at 1. Since
2393 * Intel has a check on this, set it here to support
2394 * cross-vendor migration.
2395 */
2396 if (!var->unusable)
2397 var->type |= 0x1;
2398 break;
2399 case VCPU_SREG_SS:
2400 /*
2401 * On AMD CPUs sometimes the DB bit in the segment
2402 * descriptor is left as 1, although the whole segment has
2403 * been made unusable. Clear it here to pass an Intel VMX
2404 * entry check when cross vendor migrating.
2405 */
2406 if (var->unusable)
2407 var->db = 0;
2408 /* This is symmetric with svm_set_segment() */
2409 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2410 break;
2411 }
2412 }
2413
2414 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2415 {
2416 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2417
2418 return save->cpl;
2419 }
2420
2421 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2422 {
2423 struct vcpu_svm *svm = to_svm(vcpu);
2424
2425 dt->size = svm->vmcb->save.idtr.limit;
2426 dt->address = svm->vmcb->save.idtr.base;
2427 }
2428
2429 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430 {
2431 struct vcpu_svm *svm = to_svm(vcpu);
2432
2433 svm->vmcb->save.idtr.limit = dt->size;
2434 svm->vmcb->save.idtr.base = dt->address ;
2435 mark_dirty(svm->vmcb, VMCB_DT);
2436 }
2437
2438 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2439 {
2440 struct vcpu_svm *svm = to_svm(vcpu);
2441
2442 dt->size = svm->vmcb->save.gdtr.limit;
2443 dt->address = svm->vmcb->save.gdtr.base;
2444 }
2445
2446 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447 {
2448 struct vcpu_svm *svm = to_svm(vcpu);
2449
2450 svm->vmcb->save.gdtr.limit = dt->size;
2451 svm->vmcb->save.gdtr.base = dt->address ;
2452 mark_dirty(svm->vmcb, VMCB_DT);
2453 }
2454
2455 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2456 {
2457 }
2458
2459 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2460 {
2461 }
2462
2463 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2464 {
2465 }
2466
2467 static void update_cr0_intercept(struct vcpu_svm *svm)
2468 {
2469 ulong gcr0 = svm->vcpu.arch.cr0;
2470 u64 *hcr0 = &svm->vmcb->save.cr0;
2471
2472 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2473 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2474
2475 mark_dirty(svm->vmcb, VMCB_CR);
2476
2477 if (gcr0 == *hcr0) {
2478 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2479 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2480 } else {
2481 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2482 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2483 }
2484 }
2485
2486 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2487 {
2488 struct vcpu_svm *svm = to_svm(vcpu);
2489
2490 #ifdef CONFIG_X86_64
2491 if (vcpu->arch.efer & EFER_LME) {
2492 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2493 vcpu->arch.efer |= EFER_LMA;
2494 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2495 }
2496
2497 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2498 vcpu->arch.efer &= ~EFER_LMA;
2499 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2500 }
2501 }
2502 #endif
2503 vcpu->arch.cr0 = cr0;
2504
2505 if (!npt_enabled)
2506 cr0 |= X86_CR0_PG | X86_CR0_WP;
2507
2508 /*
2509 * re-enable caching here because the QEMU bios
2510 * does not do it - this results in some delay at
2511 * reboot
2512 */
2513 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2514 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2515 svm->vmcb->save.cr0 = cr0;
2516 mark_dirty(svm->vmcb, VMCB_CR);
2517 update_cr0_intercept(svm);
2518 }
2519
2520 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2521 {
2522 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2523 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2524
2525 if (cr4 & X86_CR4_VMXE)
2526 return 1;
2527
2528 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2529 svm_flush_tlb(vcpu, true);
2530
2531 vcpu->arch.cr4 = cr4;
2532 if (!npt_enabled)
2533 cr4 |= X86_CR4_PAE;
2534 cr4 |= host_cr4_mce;
2535 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2536 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2537 return 0;
2538 }
2539
2540 static void svm_set_segment(struct kvm_vcpu *vcpu,
2541 struct kvm_segment *var, int seg)
2542 {
2543 struct vcpu_svm *svm = to_svm(vcpu);
2544 struct vmcb_seg *s = svm_seg(vcpu, seg);
2545
2546 s->base = var->base;
2547 s->limit = var->limit;
2548 s->selector = var->selector;
2549 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2550 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2551 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2552 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2553 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2554 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2555 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2556 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2557
2558 /*
2559 * This is always accurate, except if SYSRET returned to a segment
2560 * with SS.DPL != 3. Intel does not have this quirk, and always
2561 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2562 * would entail passing the CPL to userspace and back.
2563 */
2564 if (seg == VCPU_SREG_SS)
2565 /* This is symmetric with svm_get_segment() */
2566 svm->vmcb->save.cpl = (var->dpl & 3);
2567
2568 mark_dirty(svm->vmcb, VMCB_SEG);
2569 }
2570
2571 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2572 {
2573 struct vcpu_svm *svm = to_svm(vcpu);
2574
2575 clr_exception_intercept(svm, BP_VECTOR);
2576
2577 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2578 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2579 set_exception_intercept(svm, BP_VECTOR);
2580 } else
2581 vcpu->guest_debug = 0;
2582 }
2583
2584 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2585 {
2586 if (sd->next_asid > sd->max_asid) {
2587 ++sd->asid_generation;
2588 sd->next_asid = sd->min_asid;
2589 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2590 }
2591
2592 svm->asid_generation = sd->asid_generation;
2593 svm->vmcb->control.asid = sd->next_asid++;
2594
2595 mark_dirty(svm->vmcb, VMCB_ASID);
2596 }
2597
2598 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2599 {
2600 return to_svm(vcpu)->vmcb->save.dr6;
2601 }
2602
2603 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2604 {
2605 struct vcpu_svm *svm = to_svm(vcpu);
2606
2607 svm->vmcb->save.dr6 = value;
2608 mark_dirty(svm->vmcb, VMCB_DR);
2609 }
2610
2611 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2612 {
2613 struct vcpu_svm *svm = to_svm(vcpu);
2614
2615 get_debugreg(vcpu->arch.db[0], 0);
2616 get_debugreg(vcpu->arch.db[1], 1);
2617 get_debugreg(vcpu->arch.db[2], 2);
2618 get_debugreg(vcpu->arch.db[3], 3);
2619 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2620 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2621
2622 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2623 set_dr_intercepts(svm);
2624 }
2625
2626 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2627 {
2628 struct vcpu_svm *svm = to_svm(vcpu);
2629
2630 svm->vmcb->save.dr7 = value;
2631 mark_dirty(svm->vmcb, VMCB_DR);
2632 }
2633
2634 static int pf_interception(struct vcpu_svm *svm)
2635 {
2636 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2637 u64 error_code = svm->vmcb->control.exit_info_1;
2638
2639 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2640 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2641 svm->vmcb->control.insn_bytes : NULL,
2642 svm->vmcb->control.insn_len);
2643 }
2644
2645 static int npf_interception(struct vcpu_svm *svm)
2646 {
2647 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2648 u64 error_code = svm->vmcb->control.exit_info_1;
2649
2650 trace_kvm_page_fault(fault_address, error_code);
2651 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2652 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2653 svm->vmcb->control.insn_bytes : NULL,
2654 svm->vmcb->control.insn_len);
2655 }
2656
2657 static int db_interception(struct vcpu_svm *svm)
2658 {
2659 struct kvm_run *kvm_run = svm->vcpu.run;
2660
2661 if (!(svm->vcpu.guest_debug &
2662 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2663 !svm->nmi_singlestep) {
2664 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2665 return 1;
2666 }
2667
2668 if (svm->nmi_singlestep) {
2669 disable_nmi_singlestep(svm);
2670 }
2671
2672 if (svm->vcpu.guest_debug &
2673 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2674 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2675 kvm_run->debug.arch.pc =
2676 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2677 kvm_run->debug.arch.exception = DB_VECTOR;
2678 return 0;
2679 }
2680
2681 return 1;
2682 }
2683
2684 static int bp_interception(struct vcpu_svm *svm)
2685 {
2686 struct kvm_run *kvm_run = svm->vcpu.run;
2687
2688 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2689 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2690 kvm_run->debug.arch.exception = BP_VECTOR;
2691 return 0;
2692 }
2693
2694 static int ud_interception(struct vcpu_svm *svm)
2695 {
2696 return handle_ud(&svm->vcpu);
2697 }
2698
2699 static int ac_interception(struct vcpu_svm *svm)
2700 {
2701 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2702 return 1;
2703 }
2704
2705 static int gp_interception(struct vcpu_svm *svm)
2706 {
2707 struct kvm_vcpu *vcpu = &svm->vcpu;
2708 u32 error_code = svm->vmcb->control.exit_info_1;
2709 int er;
2710
2711 WARN_ON_ONCE(!enable_vmware_backdoor);
2712
2713 er = emulate_instruction(vcpu,
2714 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2715 if (er == EMULATE_USER_EXIT)
2716 return 0;
2717 else if (er != EMULATE_DONE)
2718 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2719 return 1;
2720 }
2721
2722 static bool is_erratum_383(void)
2723 {
2724 int err, i;
2725 u64 value;
2726
2727 if (!erratum_383_found)
2728 return false;
2729
2730 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2731 if (err)
2732 return false;
2733
2734 /* Bit 62 may or may not be set for this mce */
2735 value &= ~(1ULL << 62);
2736
2737 if (value != 0xb600000000010015ULL)
2738 return false;
2739
2740 /* Clear MCi_STATUS registers */
2741 for (i = 0; i < 6; ++i)
2742 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2743
2744 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2745 if (!err) {
2746 u32 low, high;
2747
2748 value &= ~(1ULL << 2);
2749 low = lower_32_bits(value);
2750 high = upper_32_bits(value);
2751
2752 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2753 }
2754
2755 /* Flush tlb to evict multi-match entries */
2756 __flush_tlb_all();
2757
2758 return true;
2759 }
2760
2761 static void svm_handle_mce(struct vcpu_svm *svm)
2762 {
2763 if (is_erratum_383()) {
2764 /*
2765 * Erratum 383 triggered. Guest state is corrupt so kill the
2766 * guest.
2767 */
2768 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2769
2770 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2771
2772 return;
2773 }
2774
2775 /*
2776 * On an #MC intercept the MCE handler is not called automatically in
2777 * the host. So do it by hand here.
2778 */
2779 asm volatile (
2780 "int $0x12\n");
2781 /* not sure if we ever come back to this point */
2782
2783 return;
2784 }
2785
2786 static int mc_interception(struct vcpu_svm *svm)
2787 {
2788 return 1;
2789 }
2790
2791 static int shutdown_interception(struct vcpu_svm *svm)
2792 {
2793 struct kvm_run *kvm_run = svm->vcpu.run;
2794
2795 /*
2796 * VMCB is undefined after a SHUTDOWN intercept
2797 * so reinitialize it.
2798 */
2799 clear_page(svm->vmcb);
2800 init_vmcb(svm);
2801
2802 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2803 return 0;
2804 }
2805
2806 static int io_interception(struct vcpu_svm *svm)
2807 {
2808 struct kvm_vcpu *vcpu = &svm->vcpu;
2809 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2810 int size, in, string;
2811 unsigned port;
2812
2813 ++svm->vcpu.stat.io_exits;
2814 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2815 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2816 if (string)
2817 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2818
2819 port = io_info >> 16;
2820 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2821 svm->next_rip = svm->vmcb->control.exit_info_2;
2822
2823 return kvm_fast_pio(&svm->vcpu, size, port, in);
2824 }
2825
2826 static int nmi_interception(struct vcpu_svm *svm)
2827 {
2828 return 1;
2829 }
2830
2831 static int intr_interception(struct vcpu_svm *svm)
2832 {
2833 ++svm->vcpu.stat.irq_exits;
2834 return 1;
2835 }
2836
2837 static int nop_on_interception(struct vcpu_svm *svm)
2838 {
2839 return 1;
2840 }
2841
2842 static int halt_interception(struct vcpu_svm *svm)
2843 {
2844 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2845 return kvm_emulate_halt(&svm->vcpu);
2846 }
2847
2848 static int vmmcall_interception(struct vcpu_svm *svm)
2849 {
2850 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2851 return kvm_emulate_hypercall(&svm->vcpu);
2852 }
2853
2854 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2855 {
2856 struct vcpu_svm *svm = to_svm(vcpu);
2857
2858 return svm->nested.nested_cr3;
2859 }
2860
2861 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2862 {
2863 struct vcpu_svm *svm = to_svm(vcpu);
2864 u64 cr3 = svm->nested.nested_cr3;
2865 u64 pdpte;
2866 int ret;
2867
2868 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2869 offset_in_page(cr3) + index * 8, 8);
2870 if (ret)
2871 return 0;
2872 return pdpte;
2873 }
2874
2875 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2876 unsigned long root)
2877 {
2878 struct vcpu_svm *svm = to_svm(vcpu);
2879
2880 svm->vmcb->control.nested_cr3 = __sme_set(root);
2881 mark_dirty(svm->vmcb, VMCB_NPT);
2882 svm_flush_tlb(vcpu, true);
2883 }
2884
2885 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2886 struct x86_exception *fault)
2887 {
2888 struct vcpu_svm *svm = to_svm(vcpu);
2889
2890 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2891 /*
2892 * TODO: track the cause of the nested page fault, and
2893 * correctly fill in the high bits of exit_info_1.
2894 */
2895 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2896 svm->vmcb->control.exit_code_hi = 0;
2897 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2898 svm->vmcb->control.exit_info_2 = fault->address;
2899 }
2900
2901 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2902 svm->vmcb->control.exit_info_1 |= fault->error_code;
2903
2904 /*
2905 * The present bit is always zero for page structure faults on real
2906 * hardware.
2907 */
2908 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2909 svm->vmcb->control.exit_info_1 &= ~1;
2910
2911 nested_svm_vmexit(svm);
2912 }
2913
2914 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2915 {
2916 WARN_ON(mmu_is_nested(vcpu));
2917 kvm_init_shadow_mmu(vcpu);
2918 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2919 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2920 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2921 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2922 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2923 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2924 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2925 }
2926
2927 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2928 {
2929 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2930 }
2931
2932 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2933 {
2934 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2935 !is_paging(&svm->vcpu)) {
2936 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2937 return 1;
2938 }
2939
2940 if (svm->vmcb->save.cpl) {
2941 kvm_inject_gp(&svm->vcpu, 0);
2942 return 1;
2943 }
2944
2945 return 0;
2946 }
2947
2948 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2949 bool has_error_code, u32 error_code)
2950 {
2951 int vmexit;
2952
2953 if (!is_guest_mode(&svm->vcpu))
2954 return 0;
2955
2956 vmexit = nested_svm_intercept(svm);
2957 if (vmexit != NESTED_EXIT_DONE)
2958 return 0;
2959
2960 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2961 svm->vmcb->control.exit_code_hi = 0;
2962 svm->vmcb->control.exit_info_1 = error_code;
2963
2964 /*
2965 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2966 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2967 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2968 * written only when inject_pending_event runs (DR6 would written here
2969 * too). This should be conditional on a new capability---if the
2970 * capability is disabled, kvm_multiple_exception would write the
2971 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2972 */
2973 if (svm->vcpu.arch.exception.nested_apf)
2974 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2975 else
2976 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2977
2978 svm->nested.exit_required = true;
2979 return vmexit;
2980 }
2981
2982 /* This function returns true if it is save to enable the irq window */
2983 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2984 {
2985 if (!is_guest_mode(&svm->vcpu))
2986 return true;
2987
2988 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2989 return true;
2990
2991 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2992 return false;
2993
2994 /*
2995 * if vmexit was already requested (by intercepted exception
2996 * for instance) do not overwrite it with "external interrupt"
2997 * vmexit.
2998 */
2999 if (svm->nested.exit_required)
3000 return false;
3001
3002 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3003 svm->vmcb->control.exit_info_1 = 0;
3004 svm->vmcb->control.exit_info_2 = 0;
3005
3006 if (svm->nested.intercept & 1ULL) {
3007 /*
3008 * The #vmexit can't be emulated here directly because this
3009 * code path runs with irqs and preemption disabled. A
3010 * #vmexit emulation might sleep. Only signal request for
3011 * the #vmexit here.
3012 */
3013 svm->nested.exit_required = true;
3014 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3015 return false;
3016 }
3017
3018 return true;
3019 }
3020
3021 /* This function returns true if it is save to enable the nmi window */
3022 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3023 {
3024 if (!is_guest_mode(&svm->vcpu))
3025 return true;
3026
3027 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3028 return true;
3029
3030 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3031 svm->nested.exit_required = true;
3032
3033 return false;
3034 }
3035
3036 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3037 {
3038 struct page *page;
3039
3040 might_sleep();
3041
3042 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3043 if (is_error_page(page))
3044 goto error;
3045
3046 *_page = page;
3047
3048 return kmap(page);
3049
3050 error:
3051 kvm_inject_gp(&svm->vcpu, 0);
3052
3053 return NULL;
3054 }
3055
3056 static void nested_svm_unmap(struct page *page)
3057 {
3058 kunmap(page);
3059 kvm_release_page_dirty(page);
3060 }
3061
3062 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3063 {
3064 unsigned port, size, iopm_len;
3065 u16 val, mask;
3066 u8 start_bit;
3067 u64 gpa;
3068
3069 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3070 return NESTED_EXIT_HOST;
3071
3072 port = svm->vmcb->control.exit_info_1 >> 16;
3073 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3074 SVM_IOIO_SIZE_SHIFT;
3075 gpa = svm->nested.vmcb_iopm + (port / 8);
3076 start_bit = port % 8;
3077 iopm_len = (start_bit + size > 8) ? 2 : 1;
3078 mask = (0xf >> (4 - size)) << start_bit;
3079 val = 0;
3080
3081 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3082 return NESTED_EXIT_DONE;
3083
3084 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3085 }
3086
3087 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3088 {
3089 u32 offset, msr, value;
3090 int write, mask;
3091
3092 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3093 return NESTED_EXIT_HOST;
3094
3095 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3096 offset = svm_msrpm_offset(msr);
3097 write = svm->vmcb->control.exit_info_1 & 1;
3098 mask = 1 << ((2 * (msr & 0xf)) + write);
3099
3100 if (offset == MSR_INVALID)
3101 return NESTED_EXIT_DONE;
3102
3103 /* Offset is in 32 bit units but need in 8 bit units */
3104 offset *= 4;
3105
3106 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3107 return NESTED_EXIT_DONE;
3108
3109 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3110 }
3111
3112 /* DB exceptions for our internal use must not cause vmexit */
3113 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3114 {
3115 unsigned long dr6;
3116
3117 /* if we're not singlestepping, it's not ours */
3118 if (!svm->nmi_singlestep)
3119 return NESTED_EXIT_DONE;
3120
3121 /* if it's not a singlestep exception, it's not ours */
3122 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3123 return NESTED_EXIT_DONE;
3124 if (!(dr6 & DR6_BS))
3125 return NESTED_EXIT_DONE;
3126
3127 /* if the guest is singlestepping, it should get the vmexit */
3128 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3129 disable_nmi_singlestep(svm);
3130 return NESTED_EXIT_DONE;
3131 }
3132
3133 /* it's ours, the nested hypervisor must not see this one */
3134 return NESTED_EXIT_HOST;
3135 }
3136
3137 static int nested_svm_exit_special(struct vcpu_svm *svm)
3138 {
3139 u32 exit_code = svm->vmcb->control.exit_code;
3140
3141 switch (exit_code) {
3142 case SVM_EXIT_INTR:
3143 case SVM_EXIT_NMI:
3144 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3145 return NESTED_EXIT_HOST;
3146 case SVM_EXIT_NPF:
3147 /* For now we are always handling NPFs when using them */
3148 if (npt_enabled)
3149 return NESTED_EXIT_HOST;
3150 break;
3151 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3152 /* When we're shadowing, trap PFs, but not async PF */
3153 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3154 return NESTED_EXIT_HOST;
3155 break;
3156 default:
3157 break;
3158 }
3159
3160 return NESTED_EXIT_CONTINUE;
3161 }
3162
3163 /*
3164 * If this function returns true, this #vmexit was already handled
3165 */
3166 static int nested_svm_intercept(struct vcpu_svm *svm)
3167 {
3168 u32 exit_code = svm->vmcb->control.exit_code;
3169 int vmexit = NESTED_EXIT_HOST;
3170
3171 switch (exit_code) {
3172 case SVM_EXIT_MSR:
3173 vmexit = nested_svm_exit_handled_msr(svm);
3174 break;
3175 case SVM_EXIT_IOIO:
3176 vmexit = nested_svm_intercept_ioio(svm);
3177 break;
3178 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3179 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3180 if (svm->nested.intercept_cr & bit)
3181 vmexit = NESTED_EXIT_DONE;
3182 break;
3183 }
3184 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3185 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3186 if (svm->nested.intercept_dr & bit)
3187 vmexit = NESTED_EXIT_DONE;
3188 break;
3189 }
3190 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3191 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3192 if (svm->nested.intercept_exceptions & excp_bits) {
3193 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3194 vmexit = nested_svm_intercept_db(svm);
3195 else
3196 vmexit = NESTED_EXIT_DONE;
3197 }
3198 /* async page fault always cause vmexit */
3199 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3200 svm->vcpu.arch.exception.nested_apf != 0)
3201 vmexit = NESTED_EXIT_DONE;
3202 break;
3203 }
3204 case SVM_EXIT_ERR: {
3205 vmexit = NESTED_EXIT_DONE;
3206 break;
3207 }
3208 default: {
3209 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3210 if (svm->nested.intercept & exit_bits)
3211 vmexit = NESTED_EXIT_DONE;
3212 }
3213 }
3214
3215 return vmexit;
3216 }
3217
3218 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3219 {
3220 int vmexit;
3221
3222 vmexit = nested_svm_intercept(svm);
3223
3224 if (vmexit == NESTED_EXIT_DONE)
3225 nested_svm_vmexit(svm);
3226
3227 return vmexit;
3228 }
3229
3230 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3231 {
3232 struct vmcb_control_area *dst = &dst_vmcb->control;
3233 struct vmcb_control_area *from = &from_vmcb->control;
3234
3235 dst->intercept_cr = from->intercept_cr;
3236 dst->intercept_dr = from->intercept_dr;
3237 dst->intercept_exceptions = from->intercept_exceptions;
3238 dst->intercept = from->intercept;
3239 dst->iopm_base_pa = from->iopm_base_pa;
3240 dst->msrpm_base_pa = from->msrpm_base_pa;
3241 dst->tsc_offset = from->tsc_offset;
3242 dst->asid = from->asid;
3243 dst->tlb_ctl = from->tlb_ctl;
3244 dst->int_ctl = from->int_ctl;
3245 dst->int_vector = from->int_vector;
3246 dst->int_state = from->int_state;
3247 dst->exit_code = from->exit_code;
3248 dst->exit_code_hi = from->exit_code_hi;
3249 dst->exit_info_1 = from->exit_info_1;
3250 dst->exit_info_2 = from->exit_info_2;
3251 dst->exit_int_info = from->exit_int_info;
3252 dst->exit_int_info_err = from->exit_int_info_err;
3253 dst->nested_ctl = from->nested_ctl;
3254 dst->event_inj = from->event_inj;
3255 dst->event_inj_err = from->event_inj_err;
3256 dst->nested_cr3 = from->nested_cr3;
3257 dst->virt_ext = from->virt_ext;
3258 }
3259
3260 static int nested_svm_vmexit(struct vcpu_svm *svm)
3261 {
3262 struct vmcb *nested_vmcb;
3263 struct vmcb *hsave = svm->nested.hsave;
3264 struct vmcb *vmcb = svm->vmcb;
3265 struct page *page;
3266
3267 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3268 vmcb->control.exit_info_1,
3269 vmcb->control.exit_info_2,
3270 vmcb->control.exit_int_info,
3271 vmcb->control.exit_int_info_err,
3272 KVM_ISA_SVM);
3273
3274 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3275 if (!nested_vmcb)
3276 return 1;
3277
3278 /* Exit Guest-Mode */
3279 leave_guest_mode(&svm->vcpu);
3280 svm->nested.vmcb = 0;
3281
3282 /* Give the current vmcb to the guest */
3283 disable_gif(svm);
3284
3285 nested_vmcb->save.es = vmcb->save.es;
3286 nested_vmcb->save.cs = vmcb->save.cs;
3287 nested_vmcb->save.ss = vmcb->save.ss;
3288 nested_vmcb->save.ds = vmcb->save.ds;
3289 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3290 nested_vmcb->save.idtr = vmcb->save.idtr;
3291 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3292 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3293 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3294 nested_vmcb->save.cr2 = vmcb->save.cr2;
3295 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3296 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3297 nested_vmcb->save.rip = vmcb->save.rip;
3298 nested_vmcb->save.rsp = vmcb->save.rsp;
3299 nested_vmcb->save.rax = vmcb->save.rax;
3300 nested_vmcb->save.dr7 = vmcb->save.dr7;
3301 nested_vmcb->save.dr6 = vmcb->save.dr6;
3302 nested_vmcb->save.cpl = vmcb->save.cpl;
3303
3304 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3305 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3306 nested_vmcb->control.int_state = vmcb->control.int_state;
3307 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3308 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3309 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3310 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3311 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3312 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3313
3314 if (svm->nrips_enabled)
3315 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3316
3317 /*
3318 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3319 * to make sure that we do not lose injected events. So check event_inj
3320 * here and copy it to exit_int_info if it is valid.
3321 * Exit_int_info and event_inj can't be both valid because the case
3322 * below only happens on a VMRUN instruction intercept which has
3323 * no valid exit_int_info set.
3324 */
3325 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3326 struct vmcb_control_area *nc = &nested_vmcb->control;
3327
3328 nc->exit_int_info = vmcb->control.event_inj;
3329 nc->exit_int_info_err = vmcb->control.event_inj_err;
3330 }
3331
3332 nested_vmcb->control.tlb_ctl = 0;
3333 nested_vmcb->control.event_inj = 0;
3334 nested_vmcb->control.event_inj_err = 0;
3335
3336 /* We always set V_INTR_MASKING and remember the old value in hflags */
3337 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3338 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3339
3340 /* Restore the original control entries */
3341 copy_vmcb_control_area(vmcb, hsave);
3342
3343 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3344 kvm_clear_exception_queue(&svm->vcpu);
3345 kvm_clear_interrupt_queue(&svm->vcpu);
3346
3347 svm->nested.nested_cr3 = 0;
3348
3349 /* Restore selected save entries */
3350 svm->vmcb->save.es = hsave->save.es;
3351 svm->vmcb->save.cs = hsave->save.cs;
3352 svm->vmcb->save.ss = hsave->save.ss;
3353 svm->vmcb->save.ds = hsave->save.ds;
3354 svm->vmcb->save.gdtr = hsave->save.gdtr;
3355 svm->vmcb->save.idtr = hsave->save.idtr;
3356 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3357 svm_set_efer(&svm->vcpu, hsave->save.efer);
3358 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3359 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3360 if (npt_enabled) {
3361 svm->vmcb->save.cr3 = hsave->save.cr3;
3362 svm->vcpu.arch.cr3 = hsave->save.cr3;
3363 } else {
3364 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3365 }
3366 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3367 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3368 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3369 svm->vmcb->save.dr7 = 0;
3370 svm->vmcb->save.cpl = 0;
3371 svm->vmcb->control.exit_int_info = 0;
3372
3373 mark_all_dirty(svm->vmcb);
3374
3375 nested_svm_unmap(page);
3376
3377 nested_svm_uninit_mmu_context(&svm->vcpu);
3378 kvm_mmu_reset_context(&svm->vcpu);
3379 kvm_mmu_load(&svm->vcpu);
3380
3381 return 0;
3382 }
3383
3384 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3385 {
3386 /*
3387 * This function merges the msr permission bitmaps of kvm and the
3388 * nested vmcb. It is optimized in that it only merges the parts where
3389 * the kvm msr permission bitmap may contain zero bits
3390 */
3391 int i;
3392
3393 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3394 return true;
3395
3396 for (i = 0; i < MSRPM_OFFSETS; i++) {
3397 u32 value, p;
3398 u64 offset;
3399
3400 if (msrpm_offsets[i] == 0xffffffff)
3401 break;
3402
3403 p = msrpm_offsets[i];
3404 offset = svm->nested.vmcb_msrpm + (p * 4);
3405
3406 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3407 return false;
3408
3409 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3410 }
3411
3412 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3413
3414 return true;
3415 }
3416
3417 static bool nested_vmcb_checks(struct vmcb *vmcb)
3418 {
3419 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3420 return false;
3421
3422 if (vmcb->control.asid == 0)
3423 return false;
3424
3425 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3426 !npt_enabled)
3427 return false;
3428
3429 return true;
3430 }
3431
3432 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3433 struct vmcb *nested_vmcb, struct page *page)
3434 {
3435 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3436 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3437 else
3438 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3439
3440 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3441 kvm_mmu_unload(&svm->vcpu);
3442 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3443 nested_svm_init_mmu_context(&svm->vcpu);
3444 }
3445
3446 /* Load the nested guest state */
3447 svm->vmcb->save.es = nested_vmcb->save.es;
3448 svm->vmcb->save.cs = nested_vmcb->save.cs;
3449 svm->vmcb->save.ss = nested_vmcb->save.ss;
3450 svm->vmcb->save.ds = nested_vmcb->save.ds;
3451 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3452 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3453 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3454 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3455 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3456 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3457 if (npt_enabled) {
3458 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3459 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3460 } else
3461 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3462
3463 /* Guest paging mode is active - reset mmu */
3464 kvm_mmu_reset_context(&svm->vcpu);
3465
3466 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3467 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3468 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3469 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3470
3471 /* In case we don't even reach vcpu_run, the fields are not updated */
3472 svm->vmcb->save.rax = nested_vmcb->save.rax;
3473 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3474 svm->vmcb->save.rip = nested_vmcb->save.rip;
3475 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3476 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3477 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3478
3479 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3480 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3481
3482 /* cache intercepts */
3483 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3484 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3485 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3486 svm->nested.intercept = nested_vmcb->control.intercept;
3487
3488 svm_flush_tlb(&svm->vcpu, true);
3489 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3490 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3491 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3492 else
3493 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3494
3495 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3496 /* We only want the cr8 intercept bits of the guest */
3497 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3498 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3499 }
3500
3501 /* We don't want to see VMMCALLs from a nested guest */
3502 clr_intercept(svm, INTERCEPT_VMMCALL);
3503
3504 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3505 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3506
3507 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3508 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3509 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3510 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3511 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3512
3513 nested_svm_unmap(page);
3514
3515 /* Enter Guest-Mode */
3516 enter_guest_mode(&svm->vcpu);
3517
3518 /*
3519 * Merge guest and host intercepts - must be called with vcpu in
3520 * guest-mode to take affect here
3521 */
3522 recalc_intercepts(svm);
3523
3524 svm->nested.vmcb = vmcb_gpa;
3525
3526 enable_gif(svm);
3527
3528 mark_all_dirty(svm->vmcb);
3529 }
3530
3531 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3532 {
3533 struct vmcb *nested_vmcb;
3534 struct vmcb *hsave = svm->nested.hsave;
3535 struct vmcb *vmcb = svm->vmcb;
3536 struct page *page;
3537 u64 vmcb_gpa;
3538
3539 vmcb_gpa = svm->vmcb->save.rax;
3540
3541 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3542 if (!nested_vmcb)
3543 return false;
3544
3545 if (!nested_vmcb_checks(nested_vmcb)) {
3546 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3547 nested_vmcb->control.exit_code_hi = 0;
3548 nested_vmcb->control.exit_info_1 = 0;
3549 nested_vmcb->control.exit_info_2 = 0;
3550
3551 nested_svm_unmap(page);
3552
3553 return false;
3554 }
3555
3556 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3557 nested_vmcb->save.rip,
3558 nested_vmcb->control.int_ctl,
3559 nested_vmcb->control.event_inj,
3560 nested_vmcb->control.nested_ctl);
3561
3562 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3563 nested_vmcb->control.intercept_cr >> 16,
3564 nested_vmcb->control.intercept_exceptions,
3565 nested_vmcb->control.intercept);
3566
3567 /* Clear internal status */
3568 kvm_clear_exception_queue(&svm->vcpu);
3569 kvm_clear_interrupt_queue(&svm->vcpu);
3570
3571 /*
3572 * Save the old vmcb, so we don't need to pick what we save, but can
3573 * restore everything when a VMEXIT occurs
3574 */
3575 hsave->save.es = vmcb->save.es;
3576 hsave->save.cs = vmcb->save.cs;
3577 hsave->save.ss = vmcb->save.ss;
3578 hsave->save.ds = vmcb->save.ds;
3579 hsave->save.gdtr = vmcb->save.gdtr;
3580 hsave->save.idtr = vmcb->save.idtr;
3581 hsave->save.efer = svm->vcpu.arch.efer;
3582 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3583 hsave->save.cr4 = svm->vcpu.arch.cr4;
3584 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3585 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3586 hsave->save.rsp = vmcb->save.rsp;
3587 hsave->save.rax = vmcb->save.rax;
3588 if (npt_enabled)
3589 hsave->save.cr3 = vmcb->save.cr3;
3590 else
3591 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3592
3593 copy_vmcb_control_area(hsave, vmcb);
3594
3595 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3596
3597 return true;
3598 }
3599
3600 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3601 {
3602 to_vmcb->save.fs = from_vmcb->save.fs;
3603 to_vmcb->save.gs = from_vmcb->save.gs;
3604 to_vmcb->save.tr = from_vmcb->save.tr;
3605 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3606 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3607 to_vmcb->save.star = from_vmcb->save.star;
3608 to_vmcb->save.lstar = from_vmcb->save.lstar;
3609 to_vmcb->save.cstar = from_vmcb->save.cstar;
3610 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3611 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3612 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3613 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3614 }
3615
3616 static int vmload_interception(struct vcpu_svm *svm)
3617 {
3618 struct vmcb *nested_vmcb;
3619 struct page *page;
3620 int ret;
3621
3622 if (nested_svm_check_permissions(svm))
3623 return 1;
3624
3625 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3626 if (!nested_vmcb)
3627 return 1;
3628
3629 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3630 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3631
3632 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3633 nested_svm_unmap(page);
3634
3635 return ret;
3636 }
3637
3638 static int vmsave_interception(struct vcpu_svm *svm)
3639 {
3640 struct vmcb *nested_vmcb;
3641 struct page *page;
3642 int ret;
3643
3644 if (nested_svm_check_permissions(svm))
3645 return 1;
3646
3647 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3648 if (!nested_vmcb)
3649 return 1;
3650
3651 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3652 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3653
3654 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3655 nested_svm_unmap(page);
3656
3657 return ret;
3658 }
3659
3660 static int vmrun_interception(struct vcpu_svm *svm)
3661 {
3662 if (nested_svm_check_permissions(svm))
3663 return 1;
3664
3665 /* Save rip after vmrun instruction */
3666 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3667
3668 if (!nested_svm_vmrun(svm))
3669 return 1;
3670
3671 if (!nested_svm_vmrun_msrpm(svm))
3672 goto failed;
3673
3674 return 1;
3675
3676 failed:
3677
3678 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3679 svm->vmcb->control.exit_code_hi = 0;
3680 svm->vmcb->control.exit_info_1 = 0;
3681 svm->vmcb->control.exit_info_2 = 0;
3682
3683 nested_svm_vmexit(svm);
3684
3685 return 1;
3686 }
3687
3688 static int stgi_interception(struct vcpu_svm *svm)
3689 {
3690 int ret;
3691
3692 if (nested_svm_check_permissions(svm))
3693 return 1;
3694
3695 /*
3696 * If VGIF is enabled, the STGI intercept is only added to
3697 * detect the opening of the SMI/NMI window; remove it now.
3698 */
3699 if (vgif_enabled(svm))
3700 clr_intercept(svm, INTERCEPT_STGI);
3701
3702 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3703 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3704 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3705
3706 enable_gif(svm);
3707
3708 return ret;
3709 }
3710
3711 static int clgi_interception(struct vcpu_svm *svm)
3712 {
3713 int ret;
3714
3715 if (nested_svm_check_permissions(svm))
3716 return 1;
3717
3718 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3719 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720
3721 disable_gif(svm);
3722
3723 /* After a CLGI no interrupts should come */
3724 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3725 svm_clear_vintr(svm);
3726 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3727 mark_dirty(svm->vmcb, VMCB_INTR);
3728 }
3729
3730 return ret;
3731 }
3732
3733 static int invlpga_interception(struct vcpu_svm *svm)
3734 {
3735 struct kvm_vcpu *vcpu = &svm->vcpu;
3736
3737 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3738 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3739
3740 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3741 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3742
3743 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3744 return kvm_skip_emulated_instruction(&svm->vcpu);
3745 }
3746
3747 static int skinit_interception(struct vcpu_svm *svm)
3748 {
3749 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3750
3751 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3752 return 1;
3753 }
3754
3755 static int wbinvd_interception(struct vcpu_svm *svm)
3756 {
3757 return kvm_emulate_wbinvd(&svm->vcpu);
3758 }
3759
3760 static int xsetbv_interception(struct vcpu_svm *svm)
3761 {
3762 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3763 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3764
3765 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3766 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3767 return kvm_skip_emulated_instruction(&svm->vcpu);
3768 }
3769
3770 return 1;
3771 }
3772
3773 static int task_switch_interception(struct vcpu_svm *svm)
3774 {
3775 u16 tss_selector;
3776 int reason;
3777 int int_type = svm->vmcb->control.exit_int_info &
3778 SVM_EXITINTINFO_TYPE_MASK;
3779 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3780 uint32_t type =
3781 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3782 uint32_t idt_v =
3783 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3784 bool has_error_code = false;
3785 u32 error_code = 0;
3786
3787 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3788
3789 if (svm->vmcb->control.exit_info_2 &
3790 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3791 reason = TASK_SWITCH_IRET;
3792 else if (svm->vmcb->control.exit_info_2 &
3793 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3794 reason = TASK_SWITCH_JMP;
3795 else if (idt_v)
3796 reason = TASK_SWITCH_GATE;
3797 else
3798 reason = TASK_SWITCH_CALL;
3799
3800 if (reason == TASK_SWITCH_GATE) {
3801 switch (type) {
3802 case SVM_EXITINTINFO_TYPE_NMI:
3803 svm->vcpu.arch.nmi_injected = false;
3804 break;
3805 case SVM_EXITINTINFO_TYPE_EXEPT:
3806 if (svm->vmcb->control.exit_info_2 &
3807 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3808 has_error_code = true;
3809 error_code =
3810 (u32)svm->vmcb->control.exit_info_2;
3811 }
3812 kvm_clear_exception_queue(&svm->vcpu);
3813 break;
3814 case SVM_EXITINTINFO_TYPE_INTR:
3815 kvm_clear_interrupt_queue(&svm->vcpu);
3816 break;
3817 default:
3818 break;
3819 }
3820 }
3821
3822 if (reason != TASK_SWITCH_GATE ||
3823 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3824 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3825 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3826 skip_emulated_instruction(&svm->vcpu);
3827
3828 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3829 int_vec = -1;
3830
3831 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3832 has_error_code, error_code) == EMULATE_FAIL) {
3833 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3834 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3835 svm->vcpu.run->internal.ndata = 0;
3836 return 0;
3837 }
3838 return 1;
3839 }
3840
3841 static int cpuid_interception(struct vcpu_svm *svm)
3842 {
3843 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3844 return kvm_emulate_cpuid(&svm->vcpu);
3845 }
3846
3847 static int iret_interception(struct vcpu_svm *svm)
3848 {
3849 ++svm->vcpu.stat.nmi_window_exits;
3850 clr_intercept(svm, INTERCEPT_IRET);
3851 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3852 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3853 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3854 return 1;
3855 }
3856
3857 static int invlpg_interception(struct vcpu_svm *svm)
3858 {
3859 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3860 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3861
3862 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3863 return kvm_skip_emulated_instruction(&svm->vcpu);
3864 }
3865
3866 static int emulate_on_interception(struct vcpu_svm *svm)
3867 {
3868 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3869 }
3870
3871 static int rsm_interception(struct vcpu_svm *svm)
3872 {
3873 return x86_emulate_instruction(&svm->vcpu, 0, 0,
3874 rsm_ins_bytes, 2) == EMULATE_DONE;
3875 }
3876
3877 static int rdpmc_interception(struct vcpu_svm *svm)
3878 {
3879 int err;
3880
3881 if (!static_cpu_has(X86_FEATURE_NRIPS))
3882 return emulate_on_interception(svm);
3883
3884 err = kvm_rdpmc(&svm->vcpu);
3885 return kvm_complete_insn_gp(&svm->vcpu, err);
3886 }
3887
3888 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3889 unsigned long val)
3890 {
3891 unsigned long cr0 = svm->vcpu.arch.cr0;
3892 bool ret = false;
3893 u64 intercept;
3894
3895 intercept = svm->nested.intercept;
3896
3897 if (!is_guest_mode(&svm->vcpu) ||
3898 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3899 return false;
3900
3901 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3902 val &= ~SVM_CR0_SELECTIVE_MASK;
3903
3904 if (cr0 ^ val) {
3905 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3906 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3907 }
3908
3909 return ret;
3910 }
3911
3912 #define CR_VALID (1ULL << 63)
3913
3914 static int cr_interception(struct vcpu_svm *svm)
3915 {
3916 int reg, cr;
3917 unsigned long val;
3918 int err;
3919
3920 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3921 return emulate_on_interception(svm);
3922
3923 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3924 return emulate_on_interception(svm);
3925
3926 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3927 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3928 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3929 else
3930 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3931
3932 err = 0;
3933 if (cr >= 16) { /* mov to cr */
3934 cr -= 16;
3935 val = kvm_register_read(&svm->vcpu, reg);
3936 switch (cr) {
3937 case 0:
3938 if (!check_selective_cr0_intercepted(svm, val))
3939 err = kvm_set_cr0(&svm->vcpu, val);
3940 else
3941 return 1;
3942
3943 break;
3944 case 3:
3945 err = kvm_set_cr3(&svm->vcpu, val);
3946 break;
3947 case 4:
3948 err = kvm_set_cr4(&svm->vcpu, val);
3949 break;
3950 case 8:
3951 err = kvm_set_cr8(&svm->vcpu, val);
3952 break;
3953 default:
3954 WARN(1, "unhandled write to CR%d", cr);
3955 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3956 return 1;
3957 }
3958 } else { /* mov from cr */
3959 switch (cr) {
3960 case 0:
3961 val = kvm_read_cr0(&svm->vcpu);
3962 break;
3963 case 2:
3964 val = svm->vcpu.arch.cr2;
3965 break;
3966 case 3:
3967 val = kvm_read_cr3(&svm->vcpu);
3968 break;
3969 case 4:
3970 val = kvm_read_cr4(&svm->vcpu);
3971 break;
3972 case 8:
3973 val = kvm_get_cr8(&svm->vcpu);
3974 break;
3975 default:
3976 WARN(1, "unhandled read from CR%d", cr);
3977 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3978 return 1;
3979 }
3980 kvm_register_write(&svm->vcpu, reg, val);
3981 }
3982 return kvm_complete_insn_gp(&svm->vcpu, err);
3983 }
3984
3985 static int dr_interception(struct vcpu_svm *svm)
3986 {
3987 int reg, dr;
3988 unsigned long val;
3989
3990 if (svm->vcpu.guest_debug == 0) {
3991 /*
3992 * No more DR vmexits; force a reload of the debug registers
3993 * and reenter on this instruction. The next vmexit will
3994 * retrieve the full state of the debug registers.
3995 */
3996 clr_dr_intercepts(svm);
3997 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3998 return 1;
3999 }
4000
4001 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4002 return emulate_on_interception(svm);
4003
4004 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4005 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4006
4007 if (dr >= 16) { /* mov to DRn */
4008 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4009 return 1;
4010 val = kvm_register_read(&svm->vcpu, reg);
4011 kvm_set_dr(&svm->vcpu, dr - 16, val);
4012 } else {
4013 if (!kvm_require_dr(&svm->vcpu, dr))
4014 return 1;
4015 kvm_get_dr(&svm->vcpu, dr, &val);
4016 kvm_register_write(&svm->vcpu, reg, val);
4017 }
4018
4019 return kvm_skip_emulated_instruction(&svm->vcpu);
4020 }
4021
4022 static int cr8_write_interception(struct vcpu_svm *svm)
4023 {
4024 struct kvm_run *kvm_run = svm->vcpu.run;
4025 int r;
4026
4027 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4028 /* instruction emulation calls kvm_set_cr8() */
4029 r = cr_interception(svm);
4030 if (lapic_in_kernel(&svm->vcpu))
4031 return r;
4032 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4033 return r;
4034 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4035 return 0;
4036 }
4037
4038 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4039 {
4040 msr->data = 0;
4041
4042 switch (msr->index) {
4043 case MSR_F10H_DECFG:
4044 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4045 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4046 break;
4047 default:
4048 return 1;
4049 }
4050
4051 return 0;
4052 }
4053
4054 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4055 {
4056 struct vcpu_svm *svm = to_svm(vcpu);
4057
4058 switch (msr_info->index) {
4059 case MSR_STAR:
4060 msr_info->data = svm->vmcb->save.star;
4061 break;
4062 #ifdef CONFIG_X86_64
4063 case MSR_LSTAR:
4064 msr_info->data = svm->vmcb->save.lstar;
4065 break;
4066 case MSR_CSTAR:
4067 msr_info->data = svm->vmcb->save.cstar;
4068 break;
4069 case MSR_KERNEL_GS_BASE:
4070 msr_info->data = svm->vmcb->save.kernel_gs_base;
4071 break;
4072 case MSR_SYSCALL_MASK:
4073 msr_info->data = svm->vmcb->save.sfmask;
4074 break;
4075 #endif
4076 case MSR_IA32_SYSENTER_CS:
4077 msr_info->data = svm->vmcb->save.sysenter_cs;
4078 break;
4079 case MSR_IA32_SYSENTER_EIP:
4080 msr_info->data = svm->sysenter_eip;
4081 break;
4082 case MSR_IA32_SYSENTER_ESP:
4083 msr_info->data = svm->sysenter_esp;
4084 break;
4085 case MSR_TSC_AUX:
4086 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4087 return 1;
4088 msr_info->data = svm->tsc_aux;
4089 break;
4090 /*
4091 * Nobody will change the following 5 values in the VMCB so we can
4092 * safely return them on rdmsr. They will always be 0 until LBRV is
4093 * implemented.
4094 */
4095 case MSR_IA32_DEBUGCTLMSR:
4096 msr_info->data = svm->vmcb->save.dbgctl;
4097 break;
4098 case MSR_IA32_LASTBRANCHFROMIP:
4099 msr_info->data = svm->vmcb->save.br_from;
4100 break;
4101 case MSR_IA32_LASTBRANCHTOIP:
4102 msr_info->data = svm->vmcb->save.br_to;
4103 break;
4104 case MSR_IA32_LASTINTFROMIP:
4105 msr_info->data = svm->vmcb->save.last_excp_from;
4106 break;
4107 case MSR_IA32_LASTINTTOIP:
4108 msr_info->data = svm->vmcb->save.last_excp_to;
4109 break;
4110 case MSR_VM_HSAVE_PA:
4111 msr_info->data = svm->nested.hsave_msr;
4112 break;
4113 case MSR_VM_CR:
4114 msr_info->data = svm->nested.vm_cr_msr;
4115 break;
4116 case MSR_IA32_SPEC_CTRL:
4117 if (!msr_info->host_initiated &&
4118 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4119 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4120 return 1;
4121
4122 msr_info->data = svm->spec_ctrl;
4123 break;
4124 case MSR_AMD64_VIRT_SPEC_CTRL:
4125 if (!msr_info->host_initiated &&
4126 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4127 return 1;
4128
4129 msr_info->data = svm->virt_spec_ctrl;
4130 break;
4131 case MSR_F15H_IC_CFG: {
4132
4133 int family, model;
4134
4135 family = guest_cpuid_family(vcpu);
4136 model = guest_cpuid_model(vcpu);
4137
4138 if (family < 0 || model < 0)
4139 return kvm_get_msr_common(vcpu, msr_info);
4140
4141 msr_info->data = 0;
4142
4143 if (family == 0x15 &&
4144 (model >= 0x2 && model < 0x20))
4145 msr_info->data = 0x1E;
4146 }
4147 break;
4148 case MSR_F10H_DECFG:
4149 msr_info->data = svm->msr_decfg;
4150 break;
4151 default:
4152 return kvm_get_msr_common(vcpu, msr_info);
4153 }
4154 return 0;
4155 }
4156
4157 static int rdmsr_interception(struct vcpu_svm *svm)
4158 {
4159 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4160 struct msr_data msr_info;
4161
4162 msr_info.index = ecx;
4163 msr_info.host_initiated = false;
4164 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4165 trace_kvm_msr_read_ex(ecx);
4166 kvm_inject_gp(&svm->vcpu, 0);
4167 return 1;
4168 } else {
4169 trace_kvm_msr_read(ecx, msr_info.data);
4170
4171 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4172 msr_info.data & 0xffffffff);
4173 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4174 msr_info.data >> 32);
4175 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4176 return kvm_skip_emulated_instruction(&svm->vcpu);
4177 }
4178 }
4179
4180 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4181 {
4182 struct vcpu_svm *svm = to_svm(vcpu);
4183 int svm_dis, chg_mask;
4184
4185 if (data & ~SVM_VM_CR_VALID_MASK)
4186 return 1;
4187
4188 chg_mask = SVM_VM_CR_VALID_MASK;
4189
4190 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4191 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4192
4193 svm->nested.vm_cr_msr &= ~chg_mask;
4194 svm->nested.vm_cr_msr |= (data & chg_mask);
4195
4196 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4197
4198 /* check for svm_disable while efer.svme is set */
4199 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4200 return 1;
4201
4202 return 0;
4203 }
4204
4205 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4206 {
4207 struct vcpu_svm *svm = to_svm(vcpu);
4208
4209 u32 ecx = msr->index;
4210 u64 data = msr->data;
4211 switch (ecx) {
4212 case MSR_IA32_CR_PAT:
4213 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4214 return 1;
4215 vcpu->arch.pat = data;
4216 svm->vmcb->save.g_pat = data;
4217 mark_dirty(svm->vmcb, VMCB_NPT);
4218 break;
4219 case MSR_IA32_SPEC_CTRL:
4220 if (!msr->host_initiated &&
4221 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4222 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4223 return 1;
4224
4225 /* The STIBP bit doesn't fault even if it's not advertised */
4226 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4227 return 1;
4228
4229 svm->spec_ctrl = data;
4230
4231 if (!data)
4232 break;
4233
4234 /*
4235 * For non-nested:
4236 * When it's written (to non-zero) for the first time, pass
4237 * it through.
4238 *
4239 * For nested:
4240 * The handling of the MSR bitmap for L2 guests is done in
4241 * nested_svm_vmrun_msrpm.
4242 * We update the L1 MSR bit as well since it will end up
4243 * touching the MSR anyway now.
4244 */
4245 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4246 break;
4247 case MSR_IA32_PRED_CMD:
4248 if (!msr->host_initiated &&
4249 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4250 return 1;
4251
4252 if (data & ~PRED_CMD_IBPB)
4253 return 1;
4254
4255 if (!data)
4256 break;
4257
4258 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4259 if (is_guest_mode(vcpu))
4260 break;
4261 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4262 break;
4263 case MSR_AMD64_VIRT_SPEC_CTRL:
4264 if (!msr->host_initiated &&
4265 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4266 return 1;
4267
4268 if (data & ~SPEC_CTRL_SSBD)
4269 return 1;
4270
4271 svm->virt_spec_ctrl = data;
4272 break;
4273 case MSR_STAR:
4274 svm->vmcb->save.star = data;
4275 break;
4276 #ifdef CONFIG_X86_64
4277 case MSR_LSTAR:
4278 svm->vmcb->save.lstar = data;
4279 break;
4280 case MSR_CSTAR:
4281 svm->vmcb->save.cstar = data;
4282 break;
4283 case MSR_KERNEL_GS_BASE:
4284 svm->vmcb->save.kernel_gs_base = data;
4285 break;
4286 case MSR_SYSCALL_MASK:
4287 svm->vmcb->save.sfmask = data;
4288 break;
4289 #endif
4290 case MSR_IA32_SYSENTER_CS:
4291 svm->vmcb->save.sysenter_cs = data;
4292 break;
4293 case MSR_IA32_SYSENTER_EIP:
4294 svm->sysenter_eip = data;
4295 svm->vmcb->save.sysenter_eip = data;
4296 break;
4297 case MSR_IA32_SYSENTER_ESP:
4298 svm->sysenter_esp = data;
4299 svm->vmcb->save.sysenter_esp = data;
4300 break;
4301 case MSR_TSC_AUX:
4302 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4303 return 1;
4304
4305 /*
4306 * This is rare, so we update the MSR here instead of using
4307 * direct_access_msrs. Doing that would require a rdmsr in
4308 * svm_vcpu_put.
4309 */
4310 svm->tsc_aux = data;
4311 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4312 break;
4313 case MSR_IA32_DEBUGCTLMSR:
4314 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4315 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4316 __func__, data);
4317 break;
4318 }
4319 if (data & DEBUGCTL_RESERVED_BITS)
4320 return 1;
4321
4322 svm->vmcb->save.dbgctl = data;
4323 mark_dirty(svm->vmcb, VMCB_LBR);
4324 if (data & (1ULL<<0))
4325 svm_enable_lbrv(svm);
4326 else
4327 svm_disable_lbrv(svm);
4328 break;
4329 case MSR_VM_HSAVE_PA:
4330 svm->nested.hsave_msr = data;
4331 break;
4332 case MSR_VM_CR:
4333 return svm_set_vm_cr(vcpu, data);
4334 case MSR_VM_IGNNE:
4335 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4336 break;
4337 case MSR_F10H_DECFG: {
4338 struct kvm_msr_entry msr_entry;
4339
4340 msr_entry.index = msr->index;
4341 if (svm_get_msr_feature(&msr_entry))
4342 return 1;
4343
4344 /* Check the supported bits */
4345 if (data & ~msr_entry.data)
4346 return 1;
4347
4348 /* Don't allow the guest to change a bit, #GP */
4349 if (!msr->host_initiated && (data ^ msr_entry.data))
4350 return 1;
4351
4352 svm->msr_decfg = data;
4353 break;
4354 }
4355 case MSR_IA32_APICBASE:
4356 if (kvm_vcpu_apicv_active(vcpu))
4357 avic_update_vapic_bar(to_svm(vcpu), data);
4358 /* Follow through */
4359 default:
4360 return kvm_set_msr_common(vcpu, msr);
4361 }
4362 return 0;
4363 }
4364
4365 static int wrmsr_interception(struct vcpu_svm *svm)
4366 {
4367 struct msr_data msr;
4368 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4369 u64 data = kvm_read_edx_eax(&svm->vcpu);
4370
4371 msr.data = data;
4372 msr.index = ecx;
4373 msr.host_initiated = false;
4374
4375 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4376 if (kvm_set_msr(&svm->vcpu, &msr)) {
4377 trace_kvm_msr_write_ex(ecx, data);
4378 kvm_inject_gp(&svm->vcpu, 0);
4379 return 1;
4380 } else {
4381 trace_kvm_msr_write(ecx, data);
4382 return kvm_skip_emulated_instruction(&svm->vcpu);
4383 }
4384 }
4385
4386 static int msr_interception(struct vcpu_svm *svm)
4387 {
4388 if (svm->vmcb->control.exit_info_1)
4389 return wrmsr_interception(svm);
4390 else
4391 return rdmsr_interception(svm);
4392 }
4393
4394 static int interrupt_window_interception(struct vcpu_svm *svm)
4395 {
4396 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4397 svm_clear_vintr(svm);
4398 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4399 mark_dirty(svm->vmcb, VMCB_INTR);
4400 ++svm->vcpu.stat.irq_window_exits;
4401 return 1;
4402 }
4403
4404 static int pause_interception(struct vcpu_svm *svm)
4405 {
4406 struct kvm_vcpu *vcpu = &svm->vcpu;
4407 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4408
4409 if (pause_filter_thresh)
4410 grow_ple_window(vcpu);
4411
4412 kvm_vcpu_on_spin(vcpu, in_kernel);
4413 return 1;
4414 }
4415
4416 static int nop_interception(struct vcpu_svm *svm)
4417 {
4418 return kvm_skip_emulated_instruction(&(svm->vcpu));
4419 }
4420
4421 static int monitor_interception(struct vcpu_svm *svm)
4422 {
4423 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4424 return nop_interception(svm);
4425 }
4426
4427 static int mwait_interception(struct vcpu_svm *svm)
4428 {
4429 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4430 return nop_interception(svm);
4431 }
4432
4433 enum avic_ipi_failure_cause {
4434 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4435 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4436 AVIC_IPI_FAILURE_INVALID_TARGET,
4437 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4438 };
4439
4440 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4441 {
4442 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4443 u32 icrl = svm->vmcb->control.exit_info_1;
4444 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4445 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4446 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4447
4448 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4449
4450 switch (id) {
4451 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4452 /*
4453 * AVIC hardware handles the generation of
4454 * IPIs when the specified Message Type is Fixed
4455 * (also known as fixed delivery mode) and
4456 * the Trigger Mode is edge-triggered. The hardware
4457 * also supports self and broadcast delivery modes
4458 * specified via the Destination Shorthand(DSH)
4459 * field of the ICRL. Logical and physical APIC ID
4460 * formats are supported. All other IPI types cause
4461 * a #VMEXIT, which needs to emulated.
4462 */
4463 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4464 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4465 break;
4466 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4467 int i;
4468 struct kvm_vcpu *vcpu;
4469 struct kvm *kvm = svm->vcpu.kvm;
4470 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4471
4472 /*
4473 * At this point, we expect that the AVIC HW has already
4474 * set the appropriate IRR bits on the valid target
4475 * vcpus. So, we just need to kick the appropriate vcpu.
4476 */
4477 kvm_for_each_vcpu(i, vcpu, kvm) {
4478 bool m = kvm_apic_match_dest(vcpu, apic,
4479 icrl & KVM_APIC_SHORT_MASK,
4480 GET_APIC_DEST_FIELD(icrh),
4481 icrl & KVM_APIC_DEST_MASK);
4482
4483 if (m && !avic_vcpu_is_running(vcpu))
4484 kvm_vcpu_wake_up(vcpu);
4485 }
4486 break;
4487 }
4488 case AVIC_IPI_FAILURE_INVALID_TARGET:
4489 break;
4490 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4491 WARN_ONCE(1, "Invalid backing page\n");
4492 break;
4493 default:
4494 pr_err("Unknown IPI interception\n");
4495 }
4496
4497 return 1;
4498 }
4499
4500 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4501 {
4502 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4503 int index;
4504 u32 *logical_apic_id_table;
4505 int dlid = GET_APIC_LOGICAL_ID(ldr);
4506
4507 if (!dlid)
4508 return NULL;
4509
4510 if (flat) { /* flat */
4511 index = ffs(dlid) - 1;
4512 if (index > 7)
4513 return NULL;
4514 } else { /* cluster */
4515 int cluster = (dlid & 0xf0) >> 4;
4516 int apic = ffs(dlid & 0x0f) - 1;
4517
4518 if ((apic < 0) || (apic > 7) ||
4519 (cluster >= 0xf))
4520 return NULL;
4521 index = (cluster << 2) + apic;
4522 }
4523
4524 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4525
4526 return &logical_apic_id_table[index];
4527 }
4528
4529 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4530 bool valid)
4531 {
4532 bool flat;
4533 u32 *entry, new_entry;
4534
4535 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4536 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4537 if (!entry)
4538 return -EINVAL;
4539
4540 new_entry = READ_ONCE(*entry);
4541 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4542 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4543 if (valid)
4544 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4545 else
4546 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4547 WRITE_ONCE(*entry, new_entry);
4548
4549 return 0;
4550 }
4551
4552 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4553 {
4554 int ret;
4555 struct vcpu_svm *svm = to_svm(vcpu);
4556 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4557
4558 if (!ldr)
4559 return 1;
4560
4561 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4562 if (ret && svm->ldr_reg) {
4563 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4564 svm->ldr_reg = 0;
4565 } else {
4566 svm->ldr_reg = ldr;
4567 }
4568 return ret;
4569 }
4570
4571 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4572 {
4573 u64 *old, *new;
4574 struct vcpu_svm *svm = to_svm(vcpu);
4575 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4576 u32 id = (apic_id_reg >> 24) & 0xff;
4577
4578 if (vcpu->vcpu_id == id)
4579 return 0;
4580
4581 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4582 new = avic_get_physical_id_entry(vcpu, id);
4583 if (!new || !old)
4584 return 1;
4585
4586 /* We need to move physical_id_entry to new offset */
4587 *new = *old;
4588 *old = 0ULL;
4589 to_svm(vcpu)->avic_physical_id_cache = new;
4590
4591 /*
4592 * Also update the guest physical APIC ID in the logical
4593 * APIC ID table entry if already setup the LDR.
4594 */
4595 if (svm->ldr_reg)
4596 avic_handle_ldr_update(vcpu);
4597
4598 return 0;
4599 }
4600
4601 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4602 {
4603 struct vcpu_svm *svm = to_svm(vcpu);
4604 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4605 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4606 u32 mod = (dfr >> 28) & 0xf;
4607
4608 /*
4609 * We assume that all local APICs are using the same type.
4610 * If this changes, we need to flush the AVIC logical
4611 * APID id table.
4612 */
4613 if (kvm_svm->ldr_mode == mod)
4614 return 0;
4615
4616 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4617 kvm_svm->ldr_mode = mod;
4618
4619 if (svm->ldr_reg)
4620 avic_handle_ldr_update(vcpu);
4621 return 0;
4622 }
4623
4624 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4625 {
4626 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4627 u32 offset = svm->vmcb->control.exit_info_1 &
4628 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4629
4630 switch (offset) {
4631 case APIC_ID:
4632 if (avic_handle_apic_id_update(&svm->vcpu))
4633 return 0;
4634 break;
4635 case APIC_LDR:
4636 if (avic_handle_ldr_update(&svm->vcpu))
4637 return 0;
4638 break;
4639 case APIC_DFR:
4640 avic_handle_dfr_update(&svm->vcpu);
4641 break;
4642 default:
4643 break;
4644 }
4645
4646 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4647
4648 return 1;
4649 }
4650
4651 static bool is_avic_unaccelerated_access_trap(u32 offset)
4652 {
4653 bool ret = false;
4654
4655 switch (offset) {
4656 case APIC_ID:
4657 case APIC_EOI:
4658 case APIC_RRR:
4659 case APIC_LDR:
4660 case APIC_DFR:
4661 case APIC_SPIV:
4662 case APIC_ESR:
4663 case APIC_ICR:
4664 case APIC_LVTT:
4665 case APIC_LVTTHMR:
4666 case APIC_LVTPC:
4667 case APIC_LVT0:
4668 case APIC_LVT1:
4669 case APIC_LVTERR:
4670 case APIC_TMICT:
4671 case APIC_TDCR:
4672 ret = true;
4673 break;
4674 default:
4675 break;
4676 }
4677 return ret;
4678 }
4679
4680 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4681 {
4682 int ret = 0;
4683 u32 offset = svm->vmcb->control.exit_info_1 &
4684 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4685 u32 vector = svm->vmcb->control.exit_info_2 &
4686 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4687 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4688 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4689 bool trap = is_avic_unaccelerated_access_trap(offset);
4690
4691 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4692 trap, write, vector);
4693 if (trap) {
4694 /* Handling Trap */
4695 WARN_ONCE(!write, "svm: Handling trap read.\n");
4696 ret = avic_unaccel_trap_write(svm);
4697 } else {
4698 /* Handling Fault */
4699 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4700 }
4701
4702 return ret;
4703 }
4704
4705 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4706 [SVM_EXIT_READ_CR0] = cr_interception,
4707 [SVM_EXIT_READ_CR3] = cr_interception,
4708 [SVM_EXIT_READ_CR4] = cr_interception,
4709 [SVM_EXIT_READ_CR8] = cr_interception,
4710 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4711 [SVM_EXIT_WRITE_CR0] = cr_interception,
4712 [SVM_EXIT_WRITE_CR3] = cr_interception,
4713 [SVM_EXIT_WRITE_CR4] = cr_interception,
4714 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4715 [SVM_EXIT_READ_DR0] = dr_interception,
4716 [SVM_EXIT_READ_DR1] = dr_interception,
4717 [SVM_EXIT_READ_DR2] = dr_interception,
4718 [SVM_EXIT_READ_DR3] = dr_interception,
4719 [SVM_EXIT_READ_DR4] = dr_interception,
4720 [SVM_EXIT_READ_DR5] = dr_interception,
4721 [SVM_EXIT_READ_DR6] = dr_interception,
4722 [SVM_EXIT_READ_DR7] = dr_interception,
4723 [SVM_EXIT_WRITE_DR0] = dr_interception,
4724 [SVM_EXIT_WRITE_DR1] = dr_interception,
4725 [SVM_EXIT_WRITE_DR2] = dr_interception,
4726 [SVM_EXIT_WRITE_DR3] = dr_interception,
4727 [SVM_EXIT_WRITE_DR4] = dr_interception,
4728 [SVM_EXIT_WRITE_DR5] = dr_interception,
4729 [SVM_EXIT_WRITE_DR6] = dr_interception,
4730 [SVM_EXIT_WRITE_DR7] = dr_interception,
4731 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4732 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4733 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4734 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4735 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4736 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4737 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4738 [SVM_EXIT_INTR] = intr_interception,
4739 [SVM_EXIT_NMI] = nmi_interception,
4740 [SVM_EXIT_SMI] = nop_on_interception,
4741 [SVM_EXIT_INIT] = nop_on_interception,
4742 [SVM_EXIT_VINTR] = interrupt_window_interception,
4743 [SVM_EXIT_RDPMC] = rdpmc_interception,
4744 [SVM_EXIT_CPUID] = cpuid_interception,
4745 [SVM_EXIT_IRET] = iret_interception,
4746 [SVM_EXIT_INVD] = emulate_on_interception,
4747 [SVM_EXIT_PAUSE] = pause_interception,
4748 [SVM_EXIT_HLT] = halt_interception,
4749 [SVM_EXIT_INVLPG] = invlpg_interception,
4750 [SVM_EXIT_INVLPGA] = invlpga_interception,
4751 [SVM_EXIT_IOIO] = io_interception,
4752 [SVM_EXIT_MSR] = msr_interception,
4753 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4754 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4755 [SVM_EXIT_VMRUN] = vmrun_interception,
4756 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4757 [SVM_EXIT_VMLOAD] = vmload_interception,
4758 [SVM_EXIT_VMSAVE] = vmsave_interception,
4759 [SVM_EXIT_STGI] = stgi_interception,
4760 [SVM_EXIT_CLGI] = clgi_interception,
4761 [SVM_EXIT_SKINIT] = skinit_interception,
4762 [SVM_EXIT_WBINVD] = wbinvd_interception,
4763 [SVM_EXIT_MONITOR] = monitor_interception,
4764 [SVM_EXIT_MWAIT] = mwait_interception,
4765 [SVM_EXIT_XSETBV] = xsetbv_interception,
4766 [SVM_EXIT_NPF] = npf_interception,
4767 [SVM_EXIT_RSM] = rsm_interception,
4768 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4769 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4770 };
4771
4772 static void dump_vmcb(struct kvm_vcpu *vcpu)
4773 {
4774 struct vcpu_svm *svm = to_svm(vcpu);
4775 struct vmcb_control_area *control = &svm->vmcb->control;
4776 struct vmcb_save_area *save = &svm->vmcb->save;
4777
4778 pr_err("VMCB Control Area:\n");
4779 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4780 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4781 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4782 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4783 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4784 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4785 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4786 pr_err("%-20s%d\n", "pause filter threshold:",
4787 control->pause_filter_thresh);
4788 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4789 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4790 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4791 pr_err("%-20s%d\n", "asid:", control->asid);
4792 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4793 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4794 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4795 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4796 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4797 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4798 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4799 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4800 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4801 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4802 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4803 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4804 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4805 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4806 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4807 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4808 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4809 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4810 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4811 pr_err("VMCB State Save Area:\n");
4812 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4813 "es:",
4814 save->es.selector, save->es.attrib,
4815 save->es.limit, save->es.base);
4816 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4817 "cs:",
4818 save->cs.selector, save->cs.attrib,
4819 save->cs.limit, save->cs.base);
4820 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4821 "ss:",
4822 save->ss.selector, save->ss.attrib,
4823 save->ss.limit, save->ss.base);
4824 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4825 "ds:",
4826 save->ds.selector, save->ds.attrib,
4827 save->ds.limit, save->ds.base);
4828 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4829 "fs:",
4830 save->fs.selector, save->fs.attrib,
4831 save->fs.limit, save->fs.base);
4832 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4833 "gs:",
4834 save->gs.selector, save->gs.attrib,
4835 save->gs.limit, save->gs.base);
4836 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4837 "gdtr:",
4838 save->gdtr.selector, save->gdtr.attrib,
4839 save->gdtr.limit, save->gdtr.base);
4840 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4841 "ldtr:",
4842 save->ldtr.selector, save->ldtr.attrib,
4843 save->ldtr.limit, save->ldtr.base);
4844 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4845 "idtr:",
4846 save->idtr.selector, save->idtr.attrib,
4847 save->idtr.limit, save->idtr.base);
4848 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4849 "tr:",
4850 save->tr.selector, save->tr.attrib,
4851 save->tr.limit, save->tr.base);
4852 pr_err("cpl: %d efer: %016llx\n",
4853 save->cpl, save->efer);
4854 pr_err("%-15s %016llx %-13s %016llx\n",
4855 "cr0:", save->cr0, "cr2:", save->cr2);
4856 pr_err("%-15s %016llx %-13s %016llx\n",
4857 "cr3:", save->cr3, "cr4:", save->cr4);
4858 pr_err("%-15s %016llx %-13s %016llx\n",
4859 "dr6:", save->dr6, "dr7:", save->dr7);
4860 pr_err("%-15s %016llx %-13s %016llx\n",
4861 "rip:", save->rip, "rflags:", save->rflags);
4862 pr_err("%-15s %016llx %-13s %016llx\n",
4863 "rsp:", save->rsp, "rax:", save->rax);
4864 pr_err("%-15s %016llx %-13s %016llx\n",
4865 "star:", save->star, "lstar:", save->lstar);
4866 pr_err("%-15s %016llx %-13s %016llx\n",
4867 "cstar:", save->cstar, "sfmask:", save->sfmask);
4868 pr_err("%-15s %016llx %-13s %016llx\n",
4869 "kernel_gs_base:", save->kernel_gs_base,
4870 "sysenter_cs:", save->sysenter_cs);
4871 pr_err("%-15s %016llx %-13s %016llx\n",
4872 "sysenter_esp:", save->sysenter_esp,
4873 "sysenter_eip:", save->sysenter_eip);
4874 pr_err("%-15s %016llx %-13s %016llx\n",
4875 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4876 pr_err("%-15s %016llx %-13s %016llx\n",
4877 "br_from:", save->br_from, "br_to:", save->br_to);
4878 pr_err("%-15s %016llx %-13s %016llx\n",
4879 "excp_from:", save->last_excp_from,
4880 "excp_to:", save->last_excp_to);
4881 }
4882
4883 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4884 {
4885 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4886
4887 *info1 = control->exit_info_1;
4888 *info2 = control->exit_info_2;
4889 }
4890
4891 static int handle_exit(struct kvm_vcpu *vcpu)
4892 {
4893 struct vcpu_svm *svm = to_svm(vcpu);
4894 struct kvm_run *kvm_run = vcpu->run;
4895 u32 exit_code = svm->vmcb->control.exit_code;
4896
4897 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4898
4899 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4900 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4901 if (npt_enabled)
4902 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4903
4904 if (unlikely(svm->nested.exit_required)) {
4905 nested_svm_vmexit(svm);
4906 svm->nested.exit_required = false;
4907
4908 return 1;
4909 }
4910
4911 if (is_guest_mode(vcpu)) {
4912 int vmexit;
4913
4914 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4915 svm->vmcb->control.exit_info_1,
4916 svm->vmcb->control.exit_info_2,
4917 svm->vmcb->control.exit_int_info,
4918 svm->vmcb->control.exit_int_info_err,
4919 KVM_ISA_SVM);
4920
4921 vmexit = nested_svm_exit_special(svm);
4922
4923 if (vmexit == NESTED_EXIT_CONTINUE)
4924 vmexit = nested_svm_exit_handled(svm);
4925
4926 if (vmexit == NESTED_EXIT_DONE)
4927 return 1;
4928 }
4929
4930 svm_complete_interrupts(svm);
4931
4932 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4933 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4934 kvm_run->fail_entry.hardware_entry_failure_reason
4935 = svm->vmcb->control.exit_code;
4936 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4937 dump_vmcb(vcpu);
4938 return 0;
4939 }
4940
4941 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4942 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4943 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4944 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4945 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4946 "exit_code 0x%x\n",
4947 __func__, svm->vmcb->control.exit_int_info,
4948 exit_code);
4949
4950 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4951 || !svm_exit_handlers[exit_code]) {
4952 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4953 kvm_queue_exception(vcpu, UD_VECTOR);
4954 return 1;
4955 }
4956
4957 return svm_exit_handlers[exit_code](svm);
4958 }
4959
4960 static void reload_tss(struct kvm_vcpu *vcpu)
4961 {
4962 int cpu = raw_smp_processor_id();
4963
4964 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4965 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4966 load_TR_desc();
4967 }
4968
4969 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4970 {
4971 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4972 int asid = sev_get_asid(svm->vcpu.kvm);
4973
4974 /* Assign the asid allocated with this SEV guest */
4975 svm->vmcb->control.asid = asid;
4976
4977 /*
4978 * Flush guest TLB:
4979 *
4980 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4981 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4982 */
4983 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4984 svm->last_cpu == cpu)
4985 return;
4986
4987 svm->last_cpu = cpu;
4988 sd->sev_vmcbs[asid] = svm->vmcb;
4989 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4990 mark_dirty(svm->vmcb, VMCB_ASID);
4991 }
4992
4993 static void pre_svm_run(struct vcpu_svm *svm)
4994 {
4995 int cpu = raw_smp_processor_id();
4996
4997 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4998
4999 if (sev_guest(svm->vcpu.kvm))
5000 return pre_sev_run(svm, cpu);
5001
5002 /* FIXME: handle wraparound of asid_generation */
5003 if (svm->asid_generation != sd->asid_generation)
5004 new_asid(svm, sd);
5005 }
5006
5007 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5008 {
5009 struct vcpu_svm *svm = to_svm(vcpu);
5010
5011 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5012 vcpu->arch.hflags |= HF_NMI_MASK;
5013 set_intercept(svm, INTERCEPT_IRET);
5014 ++vcpu->stat.nmi_injections;
5015 }
5016
5017 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5018 {
5019 struct vmcb_control_area *control;
5020
5021 /* The following fields are ignored when AVIC is enabled */
5022 control = &svm->vmcb->control;
5023 control->int_vector = irq;
5024 control->int_ctl &= ~V_INTR_PRIO_MASK;
5025 control->int_ctl |= V_IRQ_MASK |
5026 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5027 mark_dirty(svm->vmcb, VMCB_INTR);
5028 }
5029
5030 static void svm_set_irq(struct kvm_vcpu *vcpu)
5031 {
5032 struct vcpu_svm *svm = to_svm(vcpu);
5033
5034 BUG_ON(!(gif_set(svm)));
5035
5036 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5037 ++vcpu->stat.irq_injections;
5038
5039 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5040 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5041 }
5042
5043 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5044 {
5045 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5046 }
5047
5048 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5049 {
5050 struct vcpu_svm *svm = to_svm(vcpu);
5051
5052 if (svm_nested_virtualize_tpr(vcpu) ||
5053 kvm_vcpu_apicv_active(vcpu))
5054 return;
5055
5056 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5057
5058 if (irr == -1)
5059 return;
5060
5061 if (tpr >= irr)
5062 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5063 }
5064
5065 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
5066 {
5067 return;
5068 }
5069
5070 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5071 {
5072 return avic && irqchip_split(vcpu->kvm);
5073 }
5074
5075 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5076 {
5077 }
5078
5079 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5080 {
5081 }
5082
5083 /* Note: Currently only used by Hyper-V. */
5084 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5085 {
5086 struct vcpu_svm *svm = to_svm(vcpu);
5087 struct vmcb *vmcb = svm->vmcb;
5088
5089 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5090 return;
5091
5092 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5093 mark_dirty(vmcb, VMCB_INTR);
5094 }
5095
5096 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5097 {
5098 return;
5099 }
5100
5101 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5102 {
5103 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5104 smp_mb__after_atomic();
5105
5106 if (avic_vcpu_is_running(vcpu))
5107 wrmsrl(SVM_AVIC_DOORBELL,
5108 kvm_cpu_get_apicid(vcpu->cpu));
5109 else
5110 kvm_vcpu_wake_up(vcpu);
5111 }
5112
5113 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5114 {
5115 unsigned long flags;
5116 struct amd_svm_iommu_ir *cur;
5117
5118 spin_lock_irqsave(&svm->ir_list_lock, flags);
5119 list_for_each_entry(cur, &svm->ir_list, node) {
5120 if (cur->data != pi->ir_data)
5121 continue;
5122 list_del(&cur->node);
5123 kfree(cur);
5124 break;
5125 }
5126 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5127 }
5128
5129 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5130 {
5131 int ret = 0;
5132 unsigned long flags;
5133 struct amd_svm_iommu_ir *ir;
5134
5135 /**
5136 * In some cases, the existing irte is updaed and re-set,
5137 * so we need to check here if it's already been * added
5138 * to the ir_list.
5139 */
5140 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5141 struct kvm *kvm = svm->vcpu.kvm;
5142 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5143 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5144 struct vcpu_svm *prev_svm;
5145
5146 if (!prev_vcpu) {
5147 ret = -EINVAL;
5148 goto out;
5149 }
5150
5151 prev_svm = to_svm(prev_vcpu);
5152 svm_ir_list_del(prev_svm, pi);
5153 }
5154
5155 /**
5156 * Allocating new amd_iommu_pi_data, which will get
5157 * add to the per-vcpu ir_list.
5158 */
5159 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5160 if (!ir) {
5161 ret = -ENOMEM;
5162 goto out;
5163 }
5164 ir->data = pi->ir_data;
5165
5166 spin_lock_irqsave(&svm->ir_list_lock, flags);
5167 list_add(&ir->node, &svm->ir_list);
5168 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5169 out:
5170 return ret;
5171 }
5172
5173 /**
5174 * Note:
5175 * The HW cannot support posting multicast/broadcast
5176 * interrupts to a vCPU. So, we still use legacy interrupt
5177 * remapping for these kind of interrupts.
5178 *
5179 * For lowest-priority interrupts, we only support
5180 * those with single CPU as the destination, e.g. user
5181 * configures the interrupts via /proc/irq or uses
5182 * irqbalance to make the interrupts single-CPU.
5183 */
5184 static int
5185 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5186 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5187 {
5188 struct kvm_lapic_irq irq;
5189 struct kvm_vcpu *vcpu = NULL;
5190
5191 kvm_set_msi_irq(kvm, e, &irq);
5192
5193 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5194 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5195 __func__, irq.vector);
5196 return -1;
5197 }
5198
5199 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5200 irq.vector);
5201 *svm = to_svm(vcpu);
5202 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5203 vcpu_info->vector = irq.vector;
5204
5205 return 0;
5206 }
5207
5208 /*
5209 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5210 *
5211 * @kvm: kvm
5212 * @host_irq: host irq of the interrupt
5213 * @guest_irq: gsi of the interrupt
5214 * @set: set or unset PI
5215 * returns 0 on success, < 0 on failure
5216 */
5217 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5218 uint32_t guest_irq, bool set)
5219 {
5220 struct kvm_kernel_irq_routing_entry *e;
5221 struct kvm_irq_routing_table *irq_rt;
5222 int idx, ret = -EINVAL;
5223
5224 if (!kvm_arch_has_assigned_device(kvm) ||
5225 !irq_remapping_cap(IRQ_POSTING_CAP))
5226 return 0;
5227
5228 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5229 __func__, host_irq, guest_irq, set);
5230
5231 idx = srcu_read_lock(&kvm->irq_srcu);
5232 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5233 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5234
5235 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5236 struct vcpu_data vcpu_info;
5237 struct vcpu_svm *svm = NULL;
5238
5239 if (e->type != KVM_IRQ_ROUTING_MSI)
5240 continue;
5241
5242 /**
5243 * Here, we setup with legacy mode in the following cases:
5244 * 1. When cannot target interrupt to a specific vcpu.
5245 * 2. Unsetting posted interrupt.
5246 * 3. APIC virtialization is disabled for the vcpu.
5247 */
5248 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5249 kvm_vcpu_apicv_active(&svm->vcpu)) {
5250 struct amd_iommu_pi_data pi;
5251
5252 /* Try to enable guest_mode in IRTE */
5253 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5254 AVIC_HPA_MASK);
5255 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5256 svm->vcpu.vcpu_id);
5257 pi.is_guest_mode = true;
5258 pi.vcpu_data = &vcpu_info;
5259 ret = irq_set_vcpu_affinity(host_irq, &pi);
5260
5261 /**
5262 * Here, we successfully setting up vcpu affinity in
5263 * IOMMU guest mode. Now, we need to store the posted
5264 * interrupt information in a per-vcpu ir_list so that
5265 * we can reference to them directly when we update vcpu
5266 * scheduling information in IOMMU irte.
5267 */
5268 if (!ret && pi.is_guest_mode)
5269 svm_ir_list_add(svm, &pi);
5270 } else {
5271 /* Use legacy mode in IRTE */
5272 struct amd_iommu_pi_data pi;
5273
5274 /**
5275 * Here, pi is used to:
5276 * - Tell IOMMU to use legacy mode for this interrupt.
5277 * - Retrieve ga_tag of prior interrupt remapping data.
5278 */
5279 pi.is_guest_mode = false;
5280 ret = irq_set_vcpu_affinity(host_irq, &pi);
5281
5282 /**
5283 * Check if the posted interrupt was previously
5284 * setup with the guest_mode by checking if the ga_tag
5285 * was cached. If so, we need to clean up the per-vcpu
5286 * ir_list.
5287 */
5288 if (!ret && pi.prev_ga_tag) {
5289 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5290 struct kvm_vcpu *vcpu;
5291
5292 vcpu = kvm_get_vcpu_by_id(kvm, id);
5293 if (vcpu)
5294 svm_ir_list_del(to_svm(vcpu), &pi);
5295 }
5296 }
5297
5298 if (!ret && svm) {
5299 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5300 e->gsi, vcpu_info.vector,
5301 vcpu_info.pi_desc_addr, set);
5302 }
5303
5304 if (ret < 0) {
5305 pr_err("%s: failed to update PI IRTE\n", __func__);
5306 goto out;
5307 }
5308 }
5309
5310 ret = 0;
5311 out:
5312 srcu_read_unlock(&kvm->irq_srcu, idx);
5313 return ret;
5314 }
5315
5316 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5317 {
5318 struct vcpu_svm *svm = to_svm(vcpu);
5319 struct vmcb *vmcb = svm->vmcb;
5320 int ret;
5321 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5322 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5323 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5324
5325 return ret;
5326 }
5327
5328 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5329 {
5330 struct vcpu_svm *svm = to_svm(vcpu);
5331
5332 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5333 }
5334
5335 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5336 {
5337 struct vcpu_svm *svm = to_svm(vcpu);
5338
5339 if (masked) {
5340 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5341 set_intercept(svm, INTERCEPT_IRET);
5342 } else {
5343 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5344 clr_intercept(svm, INTERCEPT_IRET);
5345 }
5346 }
5347
5348 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5349 {
5350 struct vcpu_svm *svm = to_svm(vcpu);
5351 struct vmcb *vmcb = svm->vmcb;
5352 int ret;
5353
5354 if (!gif_set(svm) ||
5355 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5356 return 0;
5357
5358 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5359
5360 if (is_guest_mode(vcpu))
5361 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5362
5363 return ret;
5364 }
5365
5366 static void enable_irq_window(struct kvm_vcpu *vcpu)
5367 {
5368 struct vcpu_svm *svm = to_svm(vcpu);
5369
5370 if (kvm_vcpu_apicv_active(vcpu))
5371 return;
5372
5373 /*
5374 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5375 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5376 * get that intercept, this function will be called again though and
5377 * we'll get the vintr intercept. However, if the vGIF feature is
5378 * enabled, the STGI interception will not occur. Enable the irq
5379 * window under the assumption that the hardware will set the GIF.
5380 */
5381 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5382 svm_set_vintr(svm);
5383 svm_inject_irq(svm, 0x0);
5384 }
5385 }
5386
5387 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5388 {
5389 struct vcpu_svm *svm = to_svm(vcpu);
5390
5391 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5392 == HF_NMI_MASK)
5393 return; /* IRET will cause a vm exit */
5394
5395 if (!gif_set(svm)) {
5396 if (vgif_enabled(svm))
5397 set_intercept(svm, INTERCEPT_STGI);
5398 return; /* STGI will cause a vm exit */
5399 }
5400
5401 if (svm->nested.exit_required)
5402 return; /* we're not going to run the guest yet */
5403
5404 /*
5405 * Something prevents NMI from been injected. Single step over possible
5406 * problem (IRET or exception injection or interrupt shadow)
5407 */
5408 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5409 svm->nmi_singlestep = true;
5410 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5411 }
5412
5413 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5414 {
5415 return 0;
5416 }
5417
5418 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5419 {
5420 return 0;
5421 }
5422
5423 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5424 {
5425 struct vcpu_svm *svm = to_svm(vcpu);
5426
5427 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5428 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5429 else
5430 svm->asid_generation--;
5431 }
5432
5433 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5434 {
5435 }
5436
5437 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5438 {
5439 struct vcpu_svm *svm = to_svm(vcpu);
5440
5441 if (svm_nested_virtualize_tpr(vcpu))
5442 return;
5443
5444 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5445 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5446 kvm_set_cr8(vcpu, cr8);
5447 }
5448 }
5449
5450 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5451 {
5452 struct vcpu_svm *svm = to_svm(vcpu);
5453 u64 cr8;
5454
5455 if (svm_nested_virtualize_tpr(vcpu) ||
5456 kvm_vcpu_apicv_active(vcpu))
5457 return;
5458
5459 cr8 = kvm_get_cr8(vcpu);
5460 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5461 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5462 }
5463
5464 static void svm_complete_interrupts(struct vcpu_svm *svm)
5465 {
5466 u8 vector;
5467 int type;
5468 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5469 unsigned int3_injected = svm->int3_injected;
5470
5471 svm->int3_injected = 0;
5472
5473 /*
5474 * If we've made progress since setting HF_IRET_MASK, we've
5475 * executed an IRET and can allow NMI injection.
5476 */
5477 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5478 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5479 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5480 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5481 }
5482
5483 svm->vcpu.arch.nmi_injected = false;
5484 kvm_clear_exception_queue(&svm->vcpu);
5485 kvm_clear_interrupt_queue(&svm->vcpu);
5486
5487 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5488 return;
5489
5490 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5491
5492 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5493 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5494
5495 switch (type) {
5496 case SVM_EXITINTINFO_TYPE_NMI:
5497 svm->vcpu.arch.nmi_injected = true;
5498 break;
5499 case SVM_EXITINTINFO_TYPE_EXEPT:
5500 /*
5501 * In case of software exceptions, do not reinject the vector,
5502 * but re-execute the instruction instead. Rewind RIP first
5503 * if we emulated INT3 before.
5504 */
5505 if (kvm_exception_is_soft(vector)) {
5506 if (vector == BP_VECTOR && int3_injected &&
5507 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5508 kvm_rip_write(&svm->vcpu,
5509 kvm_rip_read(&svm->vcpu) -
5510 int3_injected);
5511 break;
5512 }
5513 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5514 u32 err = svm->vmcb->control.exit_int_info_err;
5515 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5516
5517 } else
5518 kvm_requeue_exception(&svm->vcpu, vector);
5519 break;
5520 case SVM_EXITINTINFO_TYPE_INTR:
5521 kvm_queue_interrupt(&svm->vcpu, vector, false);
5522 break;
5523 default:
5524 break;
5525 }
5526 }
5527
5528 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5529 {
5530 struct vcpu_svm *svm = to_svm(vcpu);
5531 struct vmcb_control_area *control = &svm->vmcb->control;
5532
5533 control->exit_int_info = control->event_inj;
5534 control->exit_int_info_err = control->event_inj_err;
5535 control->event_inj = 0;
5536 svm_complete_interrupts(svm);
5537 }
5538
5539 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5540 {
5541 struct vcpu_svm *svm = to_svm(vcpu);
5542
5543 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5544 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5545 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5546
5547 /*
5548 * A vmexit emulation is required before the vcpu can be executed
5549 * again.
5550 */
5551 if (unlikely(svm->nested.exit_required))
5552 return;
5553
5554 /*
5555 * Disable singlestep if we're injecting an interrupt/exception.
5556 * We don't want our modified rflags to be pushed on the stack where
5557 * we might not be able to easily reset them if we disabled NMI
5558 * singlestep later.
5559 */
5560 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5561 /*
5562 * Event injection happens before external interrupts cause a
5563 * vmexit and interrupts are disabled here, so smp_send_reschedule
5564 * is enough to force an immediate vmexit.
5565 */
5566 disable_nmi_singlestep(svm);
5567 smp_send_reschedule(vcpu->cpu);
5568 }
5569
5570 pre_svm_run(svm);
5571
5572 sync_lapic_to_cr8(vcpu);
5573
5574 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5575
5576 clgi();
5577
5578 local_irq_enable();
5579
5580 /*
5581 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5582 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5583 * is no need to worry about the conditional branch over the wrmsr
5584 * being speculatively taken.
5585 */
5586 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5587
5588 asm volatile (
5589 "push %%" _ASM_BP "; \n\t"
5590 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5591 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5592 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5593 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5594 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5595 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5596 #ifdef CONFIG_X86_64
5597 "mov %c[r8](%[svm]), %%r8 \n\t"
5598 "mov %c[r9](%[svm]), %%r9 \n\t"
5599 "mov %c[r10](%[svm]), %%r10 \n\t"
5600 "mov %c[r11](%[svm]), %%r11 \n\t"
5601 "mov %c[r12](%[svm]), %%r12 \n\t"
5602 "mov %c[r13](%[svm]), %%r13 \n\t"
5603 "mov %c[r14](%[svm]), %%r14 \n\t"
5604 "mov %c[r15](%[svm]), %%r15 \n\t"
5605 #endif
5606
5607 /* Enter guest mode */
5608 "push %%" _ASM_AX " \n\t"
5609 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5610 __ex(SVM_VMLOAD) "\n\t"
5611 __ex(SVM_VMRUN) "\n\t"
5612 __ex(SVM_VMSAVE) "\n\t"
5613 "pop %%" _ASM_AX " \n\t"
5614
5615 /* Save guest registers, load host registers */
5616 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5617 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5618 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5619 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5620 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5621 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5622 #ifdef CONFIG_X86_64
5623 "mov %%r8, %c[r8](%[svm]) \n\t"
5624 "mov %%r9, %c[r9](%[svm]) \n\t"
5625 "mov %%r10, %c[r10](%[svm]) \n\t"
5626 "mov %%r11, %c[r11](%[svm]) \n\t"
5627 "mov %%r12, %c[r12](%[svm]) \n\t"
5628 "mov %%r13, %c[r13](%[svm]) \n\t"
5629 "mov %%r14, %c[r14](%[svm]) \n\t"
5630 "mov %%r15, %c[r15](%[svm]) \n\t"
5631 #endif
5632 /*
5633 * Clear host registers marked as clobbered to prevent
5634 * speculative use.
5635 */
5636 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5637 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5638 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5639 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5640 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5641 #ifdef CONFIG_X86_64
5642 "xor %%r8, %%r8 \n\t"
5643 "xor %%r9, %%r9 \n\t"
5644 "xor %%r10, %%r10 \n\t"
5645 "xor %%r11, %%r11 \n\t"
5646 "xor %%r12, %%r12 \n\t"
5647 "xor %%r13, %%r13 \n\t"
5648 "xor %%r14, %%r14 \n\t"
5649 "xor %%r15, %%r15 \n\t"
5650 #endif
5651 "pop %%" _ASM_BP
5652 :
5653 : [svm]"a"(svm),
5654 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5655 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5656 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5657 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5658 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5659 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5660 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5661 #ifdef CONFIG_X86_64
5662 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5663 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5664 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5665 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5666 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5667 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5668 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5669 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5670 #endif
5671 : "cc", "memory"
5672 #ifdef CONFIG_X86_64
5673 , "rbx", "rcx", "rdx", "rsi", "rdi"
5674 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5675 #else
5676 , "ebx", "ecx", "edx", "esi", "edi"
5677 #endif
5678 );
5679
5680 /* Eliminate branch target predictions from guest mode */
5681 vmexit_fill_RSB();
5682
5683 #ifdef CONFIG_X86_64
5684 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5685 #else
5686 loadsegment(fs, svm->host.fs);
5687 #ifndef CONFIG_X86_32_LAZY_GS
5688 loadsegment(gs, svm->host.gs);
5689 #endif
5690 #endif
5691
5692 /*
5693 * We do not use IBRS in the kernel. If this vCPU has used the
5694 * SPEC_CTRL MSR it may have left it on; save the value and
5695 * turn it off. This is much more efficient than blindly adding
5696 * it to the atomic save/restore list. Especially as the former
5697 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5698 *
5699 * For non-nested case:
5700 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5701 * save it.
5702 *
5703 * For nested case:
5704 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5705 * save it.
5706 */
5707 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5708 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5709
5710 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5711
5712 reload_tss(vcpu);
5713
5714 local_irq_disable();
5715
5716 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5717 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5718 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5719 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5720
5721 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5722 kvm_before_interrupt(&svm->vcpu);
5723
5724 stgi();
5725
5726 /* Any pending NMI will happen here */
5727
5728 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5729 kvm_after_interrupt(&svm->vcpu);
5730
5731 sync_cr8_to_lapic(vcpu);
5732
5733 svm->next_rip = 0;
5734
5735 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5736
5737 /* if exit due to PF check for async PF */
5738 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5739 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5740
5741 if (npt_enabled) {
5742 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5743 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5744 }
5745
5746 /*
5747 * We need to handle MC intercepts here before the vcpu has a chance to
5748 * change the physical cpu
5749 */
5750 if (unlikely(svm->vmcb->control.exit_code ==
5751 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5752 svm_handle_mce(svm);
5753
5754 mark_all_clean(svm->vmcb);
5755 }
5756 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5757
5758 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5759 {
5760 struct vcpu_svm *svm = to_svm(vcpu);
5761
5762 svm->vmcb->save.cr3 = __sme_set(root);
5763 mark_dirty(svm->vmcb, VMCB_CR);
5764 svm_flush_tlb(vcpu, true);
5765 }
5766
5767 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5768 {
5769 struct vcpu_svm *svm = to_svm(vcpu);
5770
5771 svm->vmcb->control.nested_cr3 = __sme_set(root);
5772 mark_dirty(svm->vmcb, VMCB_NPT);
5773
5774 /* Also sync guest cr3 here in case we live migrate */
5775 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5776 mark_dirty(svm->vmcb, VMCB_CR);
5777
5778 svm_flush_tlb(vcpu, true);
5779 }
5780
5781 static int is_disabled(void)
5782 {
5783 u64 vm_cr;
5784
5785 rdmsrl(MSR_VM_CR, vm_cr);
5786 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5787 return 1;
5788
5789 return 0;
5790 }
5791
5792 static void
5793 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5794 {
5795 /*
5796 * Patch in the VMMCALL instruction:
5797 */
5798 hypercall[0] = 0x0f;
5799 hypercall[1] = 0x01;
5800 hypercall[2] = 0xd9;
5801 }
5802
5803 static void svm_check_processor_compat(void *rtn)
5804 {
5805 *(int *)rtn = 0;
5806 }
5807
5808 static bool svm_cpu_has_accelerated_tpr(void)
5809 {
5810 return false;
5811 }
5812
5813 static bool svm_has_emulated_msr(int index)
5814 {
5815 return true;
5816 }
5817
5818 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5819 {
5820 return 0;
5821 }
5822
5823 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5824 {
5825 struct vcpu_svm *svm = to_svm(vcpu);
5826
5827 /* Update nrips enabled cache */
5828 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5829
5830 if (!kvm_vcpu_apicv_active(vcpu))
5831 return;
5832
5833 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5834 }
5835
5836 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5837 {
5838 switch (func) {
5839 case 0x1:
5840 if (avic)
5841 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5842 break;
5843 case 0x80000001:
5844 if (nested)
5845 entry->ecx |= (1 << 2); /* Set SVM bit */
5846 break;
5847 case 0x8000000A:
5848 entry->eax = 1; /* SVM revision 1 */
5849 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5850 ASID emulation to nested SVM */
5851 entry->ecx = 0; /* Reserved */
5852 entry->edx = 0; /* Per default do not support any
5853 additional features */
5854
5855 /* Support next_rip if host supports it */
5856 if (boot_cpu_has(X86_FEATURE_NRIPS))
5857 entry->edx |= SVM_FEATURE_NRIP;
5858
5859 /* Support NPT for the guest if enabled */
5860 if (npt_enabled)
5861 entry->edx |= SVM_FEATURE_NPT;
5862
5863 break;
5864 case 0x8000001F:
5865 /* Support memory encryption cpuid if host supports it */
5866 if (boot_cpu_has(X86_FEATURE_SEV))
5867 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5868 &entry->ecx, &entry->edx);
5869
5870 }
5871 }
5872
5873 static int svm_get_lpage_level(void)
5874 {
5875 return PT_PDPE_LEVEL;
5876 }
5877
5878 static bool svm_rdtscp_supported(void)
5879 {
5880 return boot_cpu_has(X86_FEATURE_RDTSCP);
5881 }
5882
5883 static bool svm_invpcid_supported(void)
5884 {
5885 return false;
5886 }
5887
5888 static bool svm_mpx_supported(void)
5889 {
5890 return false;
5891 }
5892
5893 static bool svm_xsaves_supported(void)
5894 {
5895 return false;
5896 }
5897
5898 static bool svm_umip_emulated(void)
5899 {
5900 return false;
5901 }
5902
5903 static bool svm_has_wbinvd_exit(void)
5904 {
5905 return true;
5906 }
5907
5908 #define PRE_EX(exit) { .exit_code = (exit), \
5909 .stage = X86_ICPT_PRE_EXCEPT, }
5910 #define POST_EX(exit) { .exit_code = (exit), \
5911 .stage = X86_ICPT_POST_EXCEPT, }
5912 #define POST_MEM(exit) { .exit_code = (exit), \
5913 .stage = X86_ICPT_POST_MEMACCESS, }
5914
5915 static const struct __x86_intercept {
5916 u32 exit_code;
5917 enum x86_intercept_stage stage;
5918 } x86_intercept_map[] = {
5919 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5920 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5921 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5922 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5923 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5924 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5925 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5926 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5927 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5928 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5929 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5930 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5931 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5932 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5933 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5934 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5935 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5936 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5937 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5938 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5939 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5940 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5941 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5942 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5943 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5944 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5945 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5946 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5947 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5948 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5949 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5950 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5951 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5952 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5953 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5954 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5955 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5956 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5957 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5958 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5959 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5960 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5961 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5962 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5963 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5964 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5965 };
5966
5967 #undef PRE_EX
5968 #undef POST_EX
5969 #undef POST_MEM
5970
5971 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5972 struct x86_instruction_info *info,
5973 enum x86_intercept_stage stage)
5974 {
5975 struct vcpu_svm *svm = to_svm(vcpu);
5976 int vmexit, ret = X86EMUL_CONTINUE;
5977 struct __x86_intercept icpt_info;
5978 struct vmcb *vmcb = svm->vmcb;
5979
5980 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5981 goto out;
5982
5983 icpt_info = x86_intercept_map[info->intercept];
5984
5985 if (stage != icpt_info.stage)
5986 goto out;
5987
5988 switch (icpt_info.exit_code) {
5989 case SVM_EXIT_READ_CR0:
5990 if (info->intercept == x86_intercept_cr_read)
5991 icpt_info.exit_code += info->modrm_reg;
5992 break;
5993 case SVM_EXIT_WRITE_CR0: {
5994 unsigned long cr0, val;
5995 u64 intercept;
5996
5997 if (info->intercept == x86_intercept_cr_write)
5998 icpt_info.exit_code += info->modrm_reg;
5999
6000 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6001 info->intercept == x86_intercept_clts)
6002 break;
6003
6004 intercept = svm->nested.intercept;
6005
6006 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6007 break;
6008
6009 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6010 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6011
6012 if (info->intercept == x86_intercept_lmsw) {
6013 cr0 &= 0xfUL;
6014 val &= 0xfUL;
6015 /* lmsw can't clear PE - catch this here */
6016 if (cr0 & X86_CR0_PE)
6017 val |= X86_CR0_PE;
6018 }
6019
6020 if (cr0 ^ val)
6021 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6022
6023 break;
6024 }
6025 case SVM_EXIT_READ_DR0:
6026 case SVM_EXIT_WRITE_DR0:
6027 icpt_info.exit_code += info->modrm_reg;
6028 break;
6029 case SVM_EXIT_MSR:
6030 if (info->intercept == x86_intercept_wrmsr)
6031 vmcb->control.exit_info_1 = 1;
6032 else
6033 vmcb->control.exit_info_1 = 0;
6034 break;
6035 case SVM_EXIT_PAUSE:
6036 /*
6037 * We get this for NOP only, but pause
6038 * is rep not, check this here
6039 */
6040 if (info->rep_prefix != REPE_PREFIX)
6041 goto out;
6042 break;
6043 case SVM_EXIT_IOIO: {
6044 u64 exit_info;
6045 u32 bytes;
6046
6047 if (info->intercept == x86_intercept_in ||
6048 info->intercept == x86_intercept_ins) {
6049 exit_info = ((info->src_val & 0xffff) << 16) |
6050 SVM_IOIO_TYPE_MASK;
6051 bytes = info->dst_bytes;
6052 } else {
6053 exit_info = (info->dst_val & 0xffff) << 16;
6054 bytes = info->src_bytes;
6055 }
6056
6057 if (info->intercept == x86_intercept_outs ||
6058 info->intercept == x86_intercept_ins)
6059 exit_info |= SVM_IOIO_STR_MASK;
6060
6061 if (info->rep_prefix)
6062 exit_info |= SVM_IOIO_REP_MASK;
6063
6064 bytes = min(bytes, 4u);
6065
6066 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6067
6068 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6069
6070 vmcb->control.exit_info_1 = exit_info;
6071 vmcb->control.exit_info_2 = info->next_rip;
6072
6073 break;
6074 }
6075 default:
6076 break;
6077 }
6078
6079 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6080 if (static_cpu_has(X86_FEATURE_NRIPS))
6081 vmcb->control.next_rip = info->next_rip;
6082 vmcb->control.exit_code = icpt_info.exit_code;
6083 vmexit = nested_svm_exit_handled(svm);
6084
6085 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6086 : X86EMUL_CONTINUE;
6087
6088 out:
6089 return ret;
6090 }
6091
6092 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6093 {
6094 local_irq_enable();
6095 /*
6096 * We must have an instruction with interrupts enabled, so
6097 * the timer interrupt isn't delayed by the interrupt shadow.
6098 */
6099 asm("nop");
6100 local_irq_disable();
6101 }
6102
6103 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6104 {
6105 if (pause_filter_thresh)
6106 shrink_ple_window(vcpu);
6107 }
6108
6109 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6110 {
6111 if (avic_handle_apic_id_update(vcpu) != 0)
6112 return;
6113 if (avic_handle_dfr_update(vcpu) != 0)
6114 return;
6115 avic_handle_ldr_update(vcpu);
6116 }
6117
6118 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6119 {
6120 /* [63:9] are reserved. */
6121 vcpu->arch.mcg_cap &= 0x1ff;
6122 }
6123
6124 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6125 {
6126 struct vcpu_svm *svm = to_svm(vcpu);
6127
6128 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6129 if (!gif_set(svm))
6130 return 0;
6131
6132 if (is_guest_mode(&svm->vcpu) &&
6133 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6134 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6135 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6136 svm->nested.exit_required = true;
6137 return 0;
6138 }
6139
6140 return 1;
6141 }
6142
6143 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6144 {
6145 struct vcpu_svm *svm = to_svm(vcpu);
6146 int ret;
6147
6148 if (is_guest_mode(vcpu)) {
6149 /* FED8h - SVM Guest */
6150 put_smstate(u64, smstate, 0x7ed8, 1);
6151 /* FEE0h - SVM Guest VMCB Physical Address */
6152 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6153
6154 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6155 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6156 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6157
6158 ret = nested_svm_vmexit(svm);
6159 if (ret)
6160 return ret;
6161 }
6162 return 0;
6163 }
6164
6165 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6166 {
6167 struct vcpu_svm *svm = to_svm(vcpu);
6168 struct vmcb *nested_vmcb;
6169 struct page *page;
6170 struct {
6171 u64 guest;
6172 u64 vmcb;
6173 } svm_state_save;
6174 int ret;
6175
6176 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6177 sizeof(svm_state_save));
6178 if (ret)
6179 return ret;
6180
6181 if (svm_state_save.guest) {
6182 vcpu->arch.hflags &= ~HF_SMM_MASK;
6183 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6184 if (nested_vmcb)
6185 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6186 else
6187 ret = 1;
6188 vcpu->arch.hflags |= HF_SMM_MASK;
6189 }
6190 return ret;
6191 }
6192
6193 static int enable_smi_window(struct kvm_vcpu *vcpu)
6194 {
6195 struct vcpu_svm *svm = to_svm(vcpu);
6196
6197 if (!gif_set(svm)) {
6198 if (vgif_enabled(svm))
6199 set_intercept(svm, INTERCEPT_STGI);
6200 /* STGI will cause a vm exit */
6201 return 1;
6202 }
6203 return 0;
6204 }
6205
6206 static int sev_asid_new(void)
6207 {
6208 int pos;
6209
6210 /*
6211 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6212 */
6213 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6214 if (pos >= max_sev_asid)
6215 return -EBUSY;
6216
6217 set_bit(pos, sev_asid_bitmap);
6218 return pos + 1;
6219 }
6220
6221 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6222 {
6223 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6224 int asid, ret;
6225
6226 ret = -EBUSY;
6227 asid = sev_asid_new();
6228 if (asid < 0)
6229 return ret;
6230
6231 ret = sev_platform_init(&argp->error);
6232 if (ret)
6233 goto e_free;
6234
6235 sev->active = true;
6236 sev->asid = asid;
6237 INIT_LIST_HEAD(&sev->regions_list);
6238
6239 return 0;
6240
6241 e_free:
6242 __sev_asid_free(asid);
6243 return ret;
6244 }
6245
6246 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6247 {
6248 struct sev_data_activate *data;
6249 int asid = sev_get_asid(kvm);
6250 int ret;
6251
6252 wbinvd_on_all_cpus();
6253
6254 ret = sev_guest_df_flush(error);
6255 if (ret)
6256 return ret;
6257
6258 data = kzalloc(sizeof(*data), GFP_KERNEL);
6259 if (!data)
6260 return -ENOMEM;
6261
6262 /* activate ASID on the given handle */
6263 data->handle = handle;
6264 data->asid = asid;
6265 ret = sev_guest_activate(data, error);
6266 kfree(data);
6267
6268 return ret;
6269 }
6270
6271 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6272 {
6273 struct fd f;
6274 int ret;
6275
6276 f = fdget(fd);
6277 if (!f.file)
6278 return -EBADF;
6279
6280 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6281
6282 fdput(f);
6283 return ret;
6284 }
6285
6286 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6287 {
6288 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6289
6290 return __sev_issue_cmd(sev->fd, id, data, error);
6291 }
6292
6293 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6294 {
6295 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6296 struct sev_data_launch_start *start;
6297 struct kvm_sev_launch_start params;
6298 void *dh_blob, *session_blob;
6299 int *error = &argp->error;
6300 int ret;
6301
6302 if (!sev_guest(kvm))
6303 return -ENOTTY;
6304
6305 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6306 return -EFAULT;
6307
6308 start = kzalloc(sizeof(*start), GFP_KERNEL);
6309 if (!start)
6310 return -ENOMEM;
6311
6312 dh_blob = NULL;
6313 if (params.dh_uaddr) {
6314 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6315 if (IS_ERR(dh_blob)) {
6316 ret = PTR_ERR(dh_blob);
6317 goto e_free;
6318 }
6319
6320 start->dh_cert_address = __sme_set(__pa(dh_blob));
6321 start->dh_cert_len = params.dh_len;
6322 }
6323
6324 session_blob = NULL;
6325 if (params.session_uaddr) {
6326 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6327 if (IS_ERR(session_blob)) {
6328 ret = PTR_ERR(session_blob);
6329 goto e_free_dh;
6330 }
6331
6332 start->session_address = __sme_set(__pa(session_blob));
6333 start->session_len = params.session_len;
6334 }
6335
6336 start->handle = params.handle;
6337 start->policy = params.policy;
6338
6339 /* create memory encryption context */
6340 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6341 if (ret)
6342 goto e_free_session;
6343
6344 /* Bind ASID to this guest */
6345 ret = sev_bind_asid(kvm, start->handle, error);
6346 if (ret)
6347 goto e_free_session;
6348
6349 /* return handle to userspace */
6350 params.handle = start->handle;
6351 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6352 sev_unbind_asid(kvm, start->handle);
6353 ret = -EFAULT;
6354 goto e_free_session;
6355 }
6356
6357 sev->handle = start->handle;
6358 sev->fd = argp->sev_fd;
6359
6360 e_free_session:
6361 kfree(session_blob);
6362 e_free_dh:
6363 kfree(dh_blob);
6364 e_free:
6365 kfree(start);
6366 return ret;
6367 }
6368
6369 static int get_num_contig_pages(int idx, struct page **inpages,
6370 unsigned long npages)
6371 {
6372 unsigned long paddr, next_paddr;
6373 int i = idx + 1, pages = 1;
6374
6375 /* find the number of contiguous pages starting from idx */
6376 paddr = __sme_page_pa(inpages[idx]);
6377 while (i < npages) {
6378 next_paddr = __sme_page_pa(inpages[i++]);
6379 if ((paddr + PAGE_SIZE) == next_paddr) {
6380 pages++;
6381 paddr = next_paddr;
6382 continue;
6383 }
6384 break;
6385 }
6386
6387 return pages;
6388 }
6389
6390 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6391 {
6392 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6393 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6394 struct kvm_sev_launch_update_data params;
6395 struct sev_data_launch_update_data *data;
6396 struct page **inpages;
6397 int i, ret, pages;
6398
6399 if (!sev_guest(kvm))
6400 return -ENOTTY;
6401
6402 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6403 return -EFAULT;
6404
6405 data = kzalloc(sizeof(*data), GFP_KERNEL);
6406 if (!data)
6407 return -ENOMEM;
6408
6409 vaddr = params.uaddr;
6410 size = params.len;
6411 vaddr_end = vaddr + size;
6412
6413 /* Lock the user memory. */
6414 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6415 if (!inpages) {
6416 ret = -ENOMEM;
6417 goto e_free;
6418 }
6419
6420 /*
6421 * The LAUNCH_UPDATE command will perform in-place encryption of the
6422 * memory content (i.e it will write the same memory region with C=1).
6423 * It's possible that the cache may contain the data with C=0, i.e.,
6424 * unencrypted so invalidate it first.
6425 */
6426 sev_clflush_pages(inpages, npages);
6427
6428 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6429 int offset, len;
6430
6431 /*
6432 * If the user buffer is not page-aligned, calculate the offset
6433 * within the page.
6434 */
6435 offset = vaddr & (PAGE_SIZE - 1);
6436
6437 /* Calculate the number of pages that can be encrypted in one go. */
6438 pages = get_num_contig_pages(i, inpages, npages);
6439
6440 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6441
6442 data->handle = sev->handle;
6443 data->len = len;
6444 data->address = __sme_page_pa(inpages[i]) + offset;
6445 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6446 if (ret)
6447 goto e_unpin;
6448
6449 size -= len;
6450 next_vaddr = vaddr + len;
6451 }
6452
6453 e_unpin:
6454 /* content of memory is updated, mark pages dirty */
6455 for (i = 0; i < npages; i++) {
6456 set_page_dirty_lock(inpages[i]);
6457 mark_page_accessed(inpages[i]);
6458 }
6459 /* unlock the user pages */
6460 sev_unpin_memory(kvm, inpages, npages);
6461 e_free:
6462 kfree(data);
6463 return ret;
6464 }
6465
6466 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6467 {
6468 void __user *measure = (void __user *)(uintptr_t)argp->data;
6469 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6470 struct sev_data_launch_measure *data;
6471 struct kvm_sev_launch_measure params;
6472 void __user *p = NULL;
6473 void *blob = NULL;
6474 int ret;
6475
6476 if (!sev_guest(kvm))
6477 return -ENOTTY;
6478
6479 if (copy_from_user(&params, measure, sizeof(params)))
6480 return -EFAULT;
6481
6482 data = kzalloc(sizeof(*data), GFP_KERNEL);
6483 if (!data)
6484 return -ENOMEM;
6485
6486 /* User wants to query the blob length */
6487 if (!params.len)
6488 goto cmd;
6489
6490 p = (void __user *)(uintptr_t)params.uaddr;
6491 if (p) {
6492 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6493 ret = -EINVAL;
6494 goto e_free;
6495 }
6496
6497 ret = -ENOMEM;
6498 blob = kmalloc(params.len, GFP_KERNEL);
6499 if (!blob)
6500 goto e_free;
6501
6502 data->address = __psp_pa(blob);
6503 data->len = params.len;
6504 }
6505
6506 cmd:
6507 data->handle = sev->handle;
6508 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6509
6510 /*
6511 * If we query the session length, FW responded with expected data.
6512 */
6513 if (!params.len)
6514 goto done;
6515
6516 if (ret)
6517 goto e_free_blob;
6518
6519 if (blob) {
6520 if (copy_to_user(p, blob, params.len))
6521 ret = -EFAULT;
6522 }
6523
6524 done:
6525 params.len = data->len;
6526 if (copy_to_user(measure, &params, sizeof(params)))
6527 ret = -EFAULT;
6528 e_free_blob:
6529 kfree(blob);
6530 e_free:
6531 kfree(data);
6532 return ret;
6533 }
6534
6535 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6536 {
6537 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6538 struct sev_data_launch_finish *data;
6539 int ret;
6540
6541 if (!sev_guest(kvm))
6542 return -ENOTTY;
6543
6544 data = kzalloc(sizeof(*data), GFP_KERNEL);
6545 if (!data)
6546 return -ENOMEM;
6547
6548 data->handle = sev->handle;
6549 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6550
6551 kfree(data);
6552 return ret;
6553 }
6554
6555 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6556 {
6557 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6558 struct kvm_sev_guest_status params;
6559 struct sev_data_guest_status *data;
6560 int ret;
6561
6562 if (!sev_guest(kvm))
6563 return -ENOTTY;
6564
6565 data = kzalloc(sizeof(*data), GFP_KERNEL);
6566 if (!data)
6567 return -ENOMEM;
6568
6569 data->handle = sev->handle;
6570 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6571 if (ret)
6572 goto e_free;
6573
6574 params.policy = data->policy;
6575 params.state = data->state;
6576 params.handle = data->handle;
6577
6578 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6579 ret = -EFAULT;
6580 e_free:
6581 kfree(data);
6582 return ret;
6583 }
6584
6585 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6586 unsigned long dst, int size,
6587 int *error, bool enc)
6588 {
6589 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6590 struct sev_data_dbg *data;
6591 int ret;
6592
6593 data = kzalloc(sizeof(*data), GFP_KERNEL);
6594 if (!data)
6595 return -ENOMEM;
6596
6597 data->handle = sev->handle;
6598 data->dst_addr = dst;
6599 data->src_addr = src;
6600 data->len = size;
6601
6602 ret = sev_issue_cmd(kvm,
6603 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6604 data, error);
6605 kfree(data);
6606 return ret;
6607 }
6608
6609 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6610 unsigned long dst_paddr, int sz, int *err)
6611 {
6612 int offset;
6613
6614 /*
6615 * Its safe to read more than we are asked, caller should ensure that
6616 * destination has enough space.
6617 */
6618 src_paddr = round_down(src_paddr, 16);
6619 offset = src_paddr & 15;
6620 sz = round_up(sz + offset, 16);
6621
6622 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6623 }
6624
6625 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6626 unsigned long __user dst_uaddr,
6627 unsigned long dst_paddr,
6628 int size, int *err)
6629 {
6630 struct page *tpage = NULL;
6631 int ret, offset;
6632
6633 /* if inputs are not 16-byte then use intermediate buffer */
6634 if (!IS_ALIGNED(dst_paddr, 16) ||
6635 !IS_ALIGNED(paddr, 16) ||
6636 !IS_ALIGNED(size, 16)) {
6637 tpage = (void *)alloc_page(GFP_KERNEL);
6638 if (!tpage)
6639 return -ENOMEM;
6640
6641 dst_paddr = __sme_page_pa(tpage);
6642 }
6643
6644 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6645 if (ret)
6646 goto e_free;
6647
6648 if (tpage) {
6649 offset = paddr & 15;
6650 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6651 page_address(tpage) + offset, size))
6652 ret = -EFAULT;
6653 }
6654
6655 e_free:
6656 if (tpage)
6657 __free_page(tpage);
6658
6659 return ret;
6660 }
6661
6662 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6663 unsigned long __user vaddr,
6664 unsigned long dst_paddr,
6665 unsigned long __user dst_vaddr,
6666 int size, int *error)
6667 {
6668 struct page *src_tpage = NULL;
6669 struct page *dst_tpage = NULL;
6670 int ret, len = size;
6671
6672 /* If source buffer is not aligned then use an intermediate buffer */
6673 if (!IS_ALIGNED(vaddr, 16)) {
6674 src_tpage = alloc_page(GFP_KERNEL);
6675 if (!src_tpage)
6676 return -ENOMEM;
6677
6678 if (copy_from_user(page_address(src_tpage),
6679 (void __user *)(uintptr_t)vaddr, size)) {
6680 __free_page(src_tpage);
6681 return -EFAULT;
6682 }
6683
6684 paddr = __sme_page_pa(src_tpage);
6685 }
6686
6687 /*
6688 * If destination buffer or length is not aligned then do read-modify-write:
6689 * - decrypt destination in an intermediate buffer
6690 * - copy the source buffer in an intermediate buffer
6691 * - use the intermediate buffer as source buffer
6692 */
6693 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6694 int dst_offset;
6695
6696 dst_tpage = alloc_page(GFP_KERNEL);
6697 if (!dst_tpage) {
6698 ret = -ENOMEM;
6699 goto e_free;
6700 }
6701
6702 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6703 __sme_page_pa(dst_tpage), size, error);
6704 if (ret)
6705 goto e_free;
6706
6707 /*
6708 * If source is kernel buffer then use memcpy() otherwise
6709 * copy_from_user().
6710 */
6711 dst_offset = dst_paddr & 15;
6712
6713 if (src_tpage)
6714 memcpy(page_address(dst_tpage) + dst_offset,
6715 page_address(src_tpage), size);
6716 else {
6717 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6718 (void __user *)(uintptr_t)vaddr, size)) {
6719 ret = -EFAULT;
6720 goto e_free;
6721 }
6722 }
6723
6724 paddr = __sme_page_pa(dst_tpage);
6725 dst_paddr = round_down(dst_paddr, 16);
6726 len = round_up(size, 16);
6727 }
6728
6729 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6730
6731 e_free:
6732 if (src_tpage)
6733 __free_page(src_tpage);
6734 if (dst_tpage)
6735 __free_page(dst_tpage);
6736 return ret;
6737 }
6738
6739 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6740 {
6741 unsigned long vaddr, vaddr_end, next_vaddr;
6742 unsigned long dst_vaddr, dst_vaddr_end;
6743 struct page **src_p, **dst_p;
6744 struct kvm_sev_dbg debug;
6745 unsigned long n;
6746 int ret, size;
6747
6748 if (!sev_guest(kvm))
6749 return -ENOTTY;
6750
6751 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6752 return -EFAULT;
6753
6754 vaddr = debug.src_uaddr;
6755 size = debug.len;
6756 vaddr_end = vaddr + size;
6757 dst_vaddr = debug.dst_uaddr;
6758 dst_vaddr_end = dst_vaddr + size;
6759
6760 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6761 int len, s_off, d_off;
6762
6763 /* lock userspace source and destination page */
6764 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6765 if (!src_p)
6766 return -EFAULT;
6767
6768 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6769 if (!dst_p) {
6770 sev_unpin_memory(kvm, src_p, n);
6771 return -EFAULT;
6772 }
6773
6774 /*
6775 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6776 * memory content (i.e it will write the same memory region with C=1).
6777 * It's possible that the cache may contain the data with C=0, i.e.,
6778 * unencrypted so invalidate it first.
6779 */
6780 sev_clflush_pages(src_p, 1);
6781 sev_clflush_pages(dst_p, 1);
6782
6783 /*
6784 * Since user buffer may not be page aligned, calculate the
6785 * offset within the page.
6786 */
6787 s_off = vaddr & ~PAGE_MASK;
6788 d_off = dst_vaddr & ~PAGE_MASK;
6789 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6790
6791 if (dec)
6792 ret = __sev_dbg_decrypt_user(kvm,
6793 __sme_page_pa(src_p[0]) + s_off,
6794 dst_vaddr,
6795 __sme_page_pa(dst_p[0]) + d_off,
6796 len, &argp->error);
6797 else
6798 ret = __sev_dbg_encrypt_user(kvm,
6799 __sme_page_pa(src_p[0]) + s_off,
6800 vaddr,
6801 __sme_page_pa(dst_p[0]) + d_off,
6802 dst_vaddr,
6803 len, &argp->error);
6804
6805 sev_unpin_memory(kvm, src_p, 1);
6806 sev_unpin_memory(kvm, dst_p, 1);
6807
6808 if (ret)
6809 goto err;
6810
6811 next_vaddr = vaddr + len;
6812 dst_vaddr = dst_vaddr + len;
6813 size -= len;
6814 }
6815 err:
6816 return ret;
6817 }
6818
6819 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6820 {
6821 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6822 struct sev_data_launch_secret *data;
6823 struct kvm_sev_launch_secret params;
6824 struct page **pages;
6825 void *blob, *hdr;
6826 unsigned long n;
6827 int ret, offset;
6828
6829 if (!sev_guest(kvm))
6830 return -ENOTTY;
6831
6832 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6833 return -EFAULT;
6834
6835 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6836 if (!pages)
6837 return -ENOMEM;
6838
6839 /*
6840 * The secret must be copied into contiguous memory region, lets verify
6841 * that userspace memory pages are contiguous before we issue command.
6842 */
6843 if (get_num_contig_pages(0, pages, n) != n) {
6844 ret = -EINVAL;
6845 goto e_unpin_memory;
6846 }
6847
6848 ret = -ENOMEM;
6849 data = kzalloc(sizeof(*data), GFP_KERNEL);
6850 if (!data)
6851 goto e_unpin_memory;
6852
6853 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6854 data->guest_address = __sme_page_pa(pages[0]) + offset;
6855 data->guest_len = params.guest_len;
6856
6857 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6858 if (IS_ERR(blob)) {
6859 ret = PTR_ERR(blob);
6860 goto e_free;
6861 }
6862
6863 data->trans_address = __psp_pa(blob);
6864 data->trans_len = params.trans_len;
6865
6866 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6867 if (IS_ERR(hdr)) {
6868 ret = PTR_ERR(hdr);
6869 goto e_free_blob;
6870 }
6871 data->hdr_address = __psp_pa(hdr);
6872 data->hdr_len = params.hdr_len;
6873
6874 data->handle = sev->handle;
6875 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6876
6877 kfree(hdr);
6878
6879 e_free_blob:
6880 kfree(blob);
6881 e_free:
6882 kfree(data);
6883 e_unpin_memory:
6884 sev_unpin_memory(kvm, pages, n);
6885 return ret;
6886 }
6887
6888 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6889 {
6890 struct kvm_sev_cmd sev_cmd;
6891 int r;
6892
6893 if (!svm_sev_enabled())
6894 return -ENOTTY;
6895
6896 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6897 return -EFAULT;
6898
6899 mutex_lock(&kvm->lock);
6900
6901 switch (sev_cmd.id) {
6902 case KVM_SEV_INIT:
6903 r = sev_guest_init(kvm, &sev_cmd);
6904 break;
6905 case KVM_SEV_LAUNCH_START:
6906 r = sev_launch_start(kvm, &sev_cmd);
6907 break;
6908 case KVM_SEV_LAUNCH_UPDATE_DATA:
6909 r = sev_launch_update_data(kvm, &sev_cmd);
6910 break;
6911 case KVM_SEV_LAUNCH_MEASURE:
6912 r = sev_launch_measure(kvm, &sev_cmd);
6913 break;
6914 case KVM_SEV_LAUNCH_FINISH:
6915 r = sev_launch_finish(kvm, &sev_cmd);
6916 break;
6917 case KVM_SEV_GUEST_STATUS:
6918 r = sev_guest_status(kvm, &sev_cmd);
6919 break;
6920 case KVM_SEV_DBG_DECRYPT:
6921 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6922 break;
6923 case KVM_SEV_DBG_ENCRYPT:
6924 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6925 break;
6926 case KVM_SEV_LAUNCH_SECRET:
6927 r = sev_launch_secret(kvm, &sev_cmd);
6928 break;
6929 default:
6930 r = -EINVAL;
6931 goto out;
6932 }
6933
6934 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6935 r = -EFAULT;
6936
6937 out:
6938 mutex_unlock(&kvm->lock);
6939 return r;
6940 }
6941
6942 static int svm_register_enc_region(struct kvm *kvm,
6943 struct kvm_enc_region *range)
6944 {
6945 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6946 struct enc_region *region;
6947 int ret = 0;
6948
6949 if (!sev_guest(kvm))
6950 return -ENOTTY;
6951
6952 region = kzalloc(sizeof(*region), GFP_KERNEL);
6953 if (!region)
6954 return -ENOMEM;
6955
6956 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6957 if (!region->pages) {
6958 ret = -ENOMEM;
6959 goto e_free;
6960 }
6961
6962 /*
6963 * The guest may change the memory encryption attribute from C=0 -> C=1
6964 * or vice versa for this memory range. Lets make sure caches are
6965 * flushed to ensure that guest data gets written into memory with
6966 * correct C-bit.
6967 */
6968 sev_clflush_pages(region->pages, region->npages);
6969
6970 region->uaddr = range->addr;
6971 region->size = range->size;
6972
6973 mutex_lock(&kvm->lock);
6974 list_add_tail(&region->list, &sev->regions_list);
6975 mutex_unlock(&kvm->lock);
6976
6977 return ret;
6978
6979 e_free:
6980 kfree(region);
6981 return ret;
6982 }
6983
6984 static struct enc_region *
6985 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6986 {
6987 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6988 struct list_head *head = &sev->regions_list;
6989 struct enc_region *i;
6990
6991 list_for_each_entry(i, head, list) {
6992 if (i->uaddr == range->addr &&
6993 i->size == range->size)
6994 return i;
6995 }
6996
6997 return NULL;
6998 }
6999
7000
7001 static int svm_unregister_enc_region(struct kvm *kvm,
7002 struct kvm_enc_region *range)
7003 {
7004 struct enc_region *region;
7005 int ret;
7006
7007 mutex_lock(&kvm->lock);
7008
7009 if (!sev_guest(kvm)) {
7010 ret = -ENOTTY;
7011 goto failed;
7012 }
7013
7014 region = find_enc_region(kvm, range);
7015 if (!region) {
7016 ret = -EINVAL;
7017 goto failed;
7018 }
7019
7020 __unregister_enc_region_locked(kvm, region);
7021
7022 mutex_unlock(&kvm->lock);
7023 return 0;
7024
7025 failed:
7026 mutex_unlock(&kvm->lock);
7027 return ret;
7028 }
7029
7030 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7031 .cpu_has_kvm_support = has_svm,
7032 .disabled_by_bios = is_disabled,
7033 .hardware_setup = svm_hardware_setup,
7034 .hardware_unsetup = svm_hardware_unsetup,
7035 .check_processor_compatibility = svm_check_processor_compat,
7036 .hardware_enable = svm_hardware_enable,
7037 .hardware_disable = svm_hardware_disable,
7038 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7039 .has_emulated_msr = svm_has_emulated_msr,
7040
7041 .vcpu_create = svm_create_vcpu,
7042 .vcpu_free = svm_free_vcpu,
7043 .vcpu_reset = svm_vcpu_reset,
7044
7045 .vm_alloc = svm_vm_alloc,
7046 .vm_free = svm_vm_free,
7047 .vm_init = avic_vm_init,
7048 .vm_destroy = svm_vm_destroy,
7049
7050 .prepare_guest_switch = svm_prepare_guest_switch,
7051 .vcpu_load = svm_vcpu_load,
7052 .vcpu_put = svm_vcpu_put,
7053 .vcpu_blocking = svm_vcpu_blocking,
7054 .vcpu_unblocking = svm_vcpu_unblocking,
7055
7056 .update_bp_intercept = update_bp_intercept,
7057 .get_msr_feature = svm_get_msr_feature,
7058 .get_msr = svm_get_msr,
7059 .set_msr = svm_set_msr,
7060 .get_segment_base = svm_get_segment_base,
7061 .get_segment = svm_get_segment,
7062 .set_segment = svm_set_segment,
7063 .get_cpl = svm_get_cpl,
7064 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7065 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7066 .decache_cr3 = svm_decache_cr3,
7067 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7068 .set_cr0 = svm_set_cr0,
7069 .set_cr3 = svm_set_cr3,
7070 .set_cr4 = svm_set_cr4,
7071 .set_efer = svm_set_efer,
7072 .get_idt = svm_get_idt,
7073 .set_idt = svm_set_idt,
7074 .get_gdt = svm_get_gdt,
7075 .set_gdt = svm_set_gdt,
7076 .get_dr6 = svm_get_dr6,
7077 .set_dr6 = svm_set_dr6,
7078 .set_dr7 = svm_set_dr7,
7079 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7080 .cache_reg = svm_cache_reg,
7081 .get_rflags = svm_get_rflags,
7082 .set_rflags = svm_set_rflags,
7083
7084 .tlb_flush = svm_flush_tlb,
7085
7086 .run = svm_vcpu_run,
7087 .handle_exit = handle_exit,
7088 .skip_emulated_instruction = skip_emulated_instruction,
7089 .set_interrupt_shadow = svm_set_interrupt_shadow,
7090 .get_interrupt_shadow = svm_get_interrupt_shadow,
7091 .patch_hypercall = svm_patch_hypercall,
7092 .set_irq = svm_set_irq,
7093 .set_nmi = svm_inject_nmi,
7094 .queue_exception = svm_queue_exception,
7095 .cancel_injection = svm_cancel_injection,
7096 .interrupt_allowed = svm_interrupt_allowed,
7097 .nmi_allowed = svm_nmi_allowed,
7098 .get_nmi_mask = svm_get_nmi_mask,
7099 .set_nmi_mask = svm_set_nmi_mask,
7100 .enable_nmi_window = enable_nmi_window,
7101 .enable_irq_window = enable_irq_window,
7102 .update_cr8_intercept = update_cr8_intercept,
7103 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
7104 .get_enable_apicv = svm_get_enable_apicv,
7105 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7106 .load_eoi_exitmap = svm_load_eoi_exitmap,
7107 .hwapic_irr_update = svm_hwapic_irr_update,
7108 .hwapic_isr_update = svm_hwapic_isr_update,
7109 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7110 .apicv_post_state_restore = avic_post_state_restore,
7111
7112 .set_tss_addr = svm_set_tss_addr,
7113 .set_identity_map_addr = svm_set_identity_map_addr,
7114 .get_tdp_level = get_npt_level,
7115 .get_mt_mask = svm_get_mt_mask,
7116
7117 .get_exit_info = svm_get_exit_info,
7118
7119 .get_lpage_level = svm_get_lpage_level,
7120
7121 .cpuid_update = svm_cpuid_update,
7122
7123 .rdtscp_supported = svm_rdtscp_supported,
7124 .invpcid_supported = svm_invpcid_supported,
7125 .mpx_supported = svm_mpx_supported,
7126 .xsaves_supported = svm_xsaves_supported,
7127 .umip_emulated = svm_umip_emulated,
7128
7129 .set_supported_cpuid = svm_set_supported_cpuid,
7130
7131 .has_wbinvd_exit = svm_has_wbinvd_exit,
7132
7133 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7134 .write_tsc_offset = svm_write_tsc_offset,
7135
7136 .set_tdp_cr3 = set_tdp_cr3,
7137
7138 .check_intercept = svm_check_intercept,
7139 .handle_external_intr = svm_handle_external_intr,
7140
7141 .sched_in = svm_sched_in,
7142
7143 .pmu_ops = &amd_pmu_ops,
7144 .deliver_posted_interrupt = svm_deliver_avic_intr,
7145 .update_pi_irte = svm_update_pi_irte,
7146 .setup_mce = svm_setup_mce,
7147
7148 .smi_allowed = svm_smi_allowed,
7149 .pre_enter_smm = svm_pre_enter_smm,
7150 .pre_leave_smm = svm_pre_leave_smm,
7151 .enable_smi_window = enable_smi_window,
7152
7153 .mem_enc_op = svm_mem_enc_op,
7154 .mem_enc_reg_region = svm_register_enc_region,
7155 .mem_enc_unreg_region = svm_unregister_enc_region,
7156 };
7157
7158 static int __init svm_init(void)
7159 {
7160 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7161 __alignof__(struct vcpu_svm), THIS_MODULE);
7162 }
7163
7164 static void __exit svm_exit(void)
7165 {
7166 kvm_exit();
7167 }
7168
7169 module_init(svm_init)
7170 module_exit(svm_exit)