]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM),
50 {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 MSR_FS_BASE,
86 #endif
87 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95 struct vmcb *hsave;
96 u64 hsave_msr;
97 u64 vm_cr_msr;
98 u64 vmcb;
99
100 /* These are the merged vectors */
101 u32 *msrpm;
102
103 /* gpa pointers to the real vectors */
104 u64 vmcb_msrpm;
105 u64 vmcb_iopm;
106
107 /* A VMEXIT is required but not yet emulated */
108 bool exit_required;
109
110 /* cache for intercepts of the guest */
111 u32 intercept_cr;
112 u32 intercept_dr;
113 u32 intercept_exceptions;
114 u64 intercept;
115
116 /* Nested Paging related state */
117 u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
126 */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130 struct kvm_vcpu vcpu;
131 struct vmcb *vmcb;
132 unsigned long vmcb_pa;
133 struct svm_cpu_data *svm_data;
134 uint64_t asid_generation;
135 uint64_t sysenter_esp;
136 uint64_t sysenter_eip;
137
138 u64 next_rip;
139
140 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 struct {
142 u16 fs;
143 u16 gs;
144 u16 ldt;
145 u64 gs_base;
146 } host;
147
148 u32 *msrpm;
149
150 ulong nmi_iret_rip;
151
152 struct nested_state nested;
153
154 bool nmi_singlestep;
155
156 unsigned int3_injected;
157 unsigned long int3_rip;
158 u32 apf_reason;
159
160 u64 tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165
166 #define MSR_INVALID 0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169 u32 index; /* Index of the MSR */
170 bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 { .index = MSR_STAR, .always = true },
173 { .index = MSR_IA32_SYSENTER_CS, .always = true },
174 #ifdef CONFIG_X86_64
175 { .index = MSR_GS_BASE, .always = true },
176 { .index = MSR_FS_BASE, .always = true },
177 { .index = MSR_KERNEL_GS_BASE, .always = true },
178 { .index = MSR_LSTAR, .always = true },
179 { .index = MSR_CSTAR, .always = true },
180 { .index = MSR_SYSCALL_MASK, .always = true },
181 #endif
182 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
183 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
184 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
185 { .index = MSR_IA32_LASTINTTOIP, .always = false },
186 { .index = MSR_INVALID, .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
218 VMCB_ASID, /* ASID */
219 VMCB_INTR, /* int_ctl, int_vector */
220 VMCB_NPT, /* npt_en, nCR3, gPAT */
221 VMCB_CR, /* CR0, CR3, CR4, EFER */
222 VMCB_DR, /* DR6, DR7 */
223 VMCB_DT, /* GDT, IDT */
224 VMCB_SEG, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2, /* CR2 only */
226 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235 vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246 vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251 return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256 struct vmcb_control_area *c, *h;
257 struct nested_state *g;
258
259 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261 if (!is_guest_mode(&svm->vcpu))
262 return;
263
264 c = &svm->vmcb->control;
265 h = &svm->nested.hsave->control;
266 g = &svm->nested;
267
268 c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276 if (is_guest_mode(&svm->vcpu))
277 return svm->nested.hsave;
278 else
279 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 vmcb->control.intercept_cr |= (1U << bit);
287
288 recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 struct vmcb *vmcb = get_host_vmcb(svm);
294
295 vmcb->control.intercept_cr &= ~(1U << bit);
296
297 recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302 struct vmcb *vmcb = get_host_vmcb(svm);
303
304 return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 | (1 << INTERCEPT_DR1_READ)
313 | (1 << INTERCEPT_DR2_READ)
314 | (1 << INTERCEPT_DR3_READ)
315 | (1 << INTERCEPT_DR4_READ)
316 | (1 << INTERCEPT_DR5_READ)
317 | (1 << INTERCEPT_DR6_READ)
318 | (1 << INTERCEPT_DR7_READ)
319 | (1 << INTERCEPT_DR0_WRITE)
320 | (1 << INTERCEPT_DR1_WRITE)
321 | (1 << INTERCEPT_DR2_WRITE)
322 | (1 << INTERCEPT_DR3_WRITE)
323 | (1 << INTERCEPT_DR4_WRITE)
324 | (1 << INTERCEPT_DR5_WRITE)
325 | (1 << INTERCEPT_DR6_WRITE)
326 | (1 << INTERCEPT_DR7_WRITE);
327
328 recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333 struct vmcb *vmcb = get_host_vmcb(svm);
334
335 vmcb->control.intercept_dr = 0;
336
337 recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342 struct vmcb *vmcb = get_host_vmcb(svm);
343
344 vmcb->control.intercept_exceptions |= (1U << bit);
345
346 recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351 struct vmcb *vmcb = get_host_vmcb(svm);
352
353 vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355 recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360 struct vmcb *vmcb = get_host_vmcb(svm);
361
362 vmcb->control.intercept |= (1ULL << bit);
363
364 recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369 struct vmcb *vmcb = get_host_vmcb(svm);
370
371 vmcb->control.intercept &= ~(1ULL << bit);
372
373 recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378 svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394 u16 limit0;
395 u16 base0;
396 unsigned base1:8, type:5, dpl:2, p:1;
397 unsigned limit1:4, zero0:3, g:1, base2:8;
398 u32 base3;
399 u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403 int cpu;
404
405 u64 asid_generation;
406 u32 max_asid;
407 u32 next_asid;
408 struct kvm_ldttss_desc *tss_desc;
409
410 struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416 int cpu;
417 int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428 u32 offset;
429 int i;
430
431 for (i = 0; i < NUM_MSR_MAPS; i++) {
432 if (msr < msrpm_ranges[i] ||
433 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 continue;
435
436 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
438
439 /* Now we have the u8 offset - but need the u32 offset */
440 return offset / 4;
441 }
442
443 /* MSR not in any range */
444 return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451 asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456 asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467 return PT64_ROOT_LEVEL;
468 #else
469 return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475 vcpu->arch.efer = efer;
476 if (!npt_enabled && !(efer & EFER_LMA))
477 efer &= ~EFER_LME;
478
479 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491 struct vcpu_svm *svm = to_svm(vcpu);
492 u32 ret = 0;
493
494 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 return ret;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501 struct vcpu_svm *svm = to_svm(vcpu);
502
503 if (mask == 0)
504 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 else
506 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512 struct vcpu_svm *svm = to_svm(vcpu);
513
514 if (svm->vmcb->control.next_rip != 0)
515 svm->next_rip = svm->vmcb->control.next_rip;
516
517 if (!svm->next_rip) {
518 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519 EMULATE_DONE)
520 printk(KERN_DEBUG "%s: NOP\n", __func__);
521 return;
522 }
523 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525 __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527 kvm_rip_write(vcpu, svm->next_rip);
528 svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532 bool has_error_code, u32 error_code,
533 bool reinject)
534 {
535 struct vcpu_svm *svm = to_svm(vcpu);
536
537 /*
538 * If we are within a nested VM we'd better #VMEXIT and let the guest
539 * handle the exception
540 */
541 if (!reinject &&
542 nested_svm_check_exception(svm, nr, has_error_code, error_code))
543 return;
544
545 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548 /*
549 * For guest debugging where we have to reinject #BP if some
550 * INT3 is guest-owned:
551 * Emulate nRIP by moving RIP forward. Will fail if injection
552 * raises a fault that is not intercepted. Still better than
553 * failing in all cases.
554 */
555 skip_emulated_instruction(&svm->vcpu);
556 rip = kvm_rip_read(&svm->vcpu);
557 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558 svm->int3_injected = rip - old_rip;
559 }
560
561 svm->vmcb->control.event_inj = nr
562 | SVM_EVTINJ_VALID
563 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564 | SVM_EVTINJ_TYPE_EXEPT;
565 svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570 u32 low, high;
571 int err;
572 u64 val;
573
574 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575 return;
576
577 /* Use _safe variants to not break nested virtualization */
578 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579 if (err)
580 return;
581
582 val |= (1ULL << 47);
583
584 low = lower_32_bits(val);
585 high = upper_32_bits(val);
586
587 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589 erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594 /*
595 * Guests should see errata 400 and 415 as fixed (assuming that
596 * HLT and IO instructions are intercepted).
597 */
598 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601 /*
602 * By increasing VCPU's osvw.length to 3 we are telling the guest that
603 * all osvw.status bits inside that length, including bit 0 (which is
604 * reserved for erratum 298), are valid. However, if host processor's
605 * osvw_len is 0 then osvw_status[0] carries no information. We need to
606 * be conservative here and therefore we tell the guest that erratum 298
607 * is present (because we really don't know).
608 */
609 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615 const char *msg;
616
617 if (!cpu_has_svm(&msg)) {
618 printk(KERN_INFO "has_svm: %s\n", msg);
619 return 0;
620 }
621
622 return 1;
623 }
624
625 static void svm_hardware_disable(void)
626 {
627 /* Make sure we clean up behind us */
628 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631 cpu_svm_disable();
632
633 amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void)
637 {
638
639 struct svm_cpu_data *sd;
640 uint64_t efer;
641 struct desc_ptr gdt_descr;
642 struct desc_struct *gdt;
643 int me = raw_smp_processor_id();
644
645 rdmsrl(MSR_EFER, efer);
646 if (efer & EFER_SVME)
647 return -EBUSY;
648
649 if (!has_svm()) {
650 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651 return -EINVAL;
652 }
653 sd = per_cpu(svm_data, me);
654 if (!sd) {
655 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656 return -EINVAL;
657 }
658
659 sd->asid_generation = 1;
660 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661 sd->next_asid = sd->max_asid + 1;
662
663 native_store_gdt(&gdt_descr);
664 gdt = (struct desc_struct *)gdt_descr.address;
665 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667 wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674 }
675
676
677 /*
678 * Get OSVW bits.
679 *
680 * Note that it is possible to have a system with mixed processor
681 * revisions and therefore different OSVW bits. If bits are not the same
682 * on different processors then choose the worst case (i.e. if erratum
683 * is present on one processor and not on another then assume that the
684 * erratum is present everywhere).
685 */
686 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687 uint64_t len, status = 0;
688 int err;
689
690 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691 if (!err)
692 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693 &err);
694
695 if (err)
696 osvw_status = osvw_len = 0;
697 else {
698 if (len < osvw_len)
699 osvw_len = len;
700 osvw_status |= status;
701 osvw_status &= (1ULL << osvw_len) - 1;
702 }
703 } else
704 osvw_status = osvw_len = 0;
705
706 svm_init_erratum_383();
707
708 amd_pmu_enable_virt();
709
710 return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717 if (!sd)
718 return;
719
720 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721 __free_page(sd->save_area);
722 kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727 struct svm_cpu_data *sd;
728 int r;
729
730 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731 if (!sd)
732 return -ENOMEM;
733 sd->cpu = cpu;
734 sd->save_area = alloc_page(GFP_KERNEL);
735 r = -ENOMEM;
736 if (!sd->save_area)
737 goto err_1;
738
739 per_cpu(svm_data, cpu) = sd;
740
741 return 0;
742
743 err_1:
744 kfree(sd);
745 return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751 int i;
752
753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754 if (direct_access_msrs[i].index == index)
755 return true;
756
757 return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761 int read, int write)
762 {
763 u8 bit_read, bit_write;
764 unsigned long tmp;
765 u32 offset;
766
767 /*
768 * If this warning triggers extend the direct_access_msrs list at the
769 * beginning of the file
770 */
771 WARN_ON(!valid_msr_intercept(msr));
772
773 offset = svm_msrpm_offset(msr);
774 bit_read = 2 * (msr & 0x0f);
775 bit_write = 2 * (msr & 0x0f) + 1;
776 tmp = msrpm[offset];
777
778 BUG_ON(offset == MSR_INVALID);
779
780 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
781 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783 msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788 int i;
789
790 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793 if (!direct_access_msrs[i].always)
794 continue;
795
796 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797 }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802 int i;
803
804 for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806 /* Offset already in list? */
807 if (msrpm_offsets[i] == offset)
808 return;
809
810 /* Slot used by another offset? */
811 if (msrpm_offsets[i] != MSR_INVALID)
812 continue;
813
814 /* Add offset to list */
815 msrpm_offsets[i] = offset;
816
817 return;
818 }
819
820 /*
821 * If this BUG triggers the msrpm_offsets table has an overflow. Just
822 * increase MSRPM_OFFSETS in this case.
823 */
824 BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829 int i;
830
831 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834 u32 offset;
835
836 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837 BUG_ON(offset == MSR_INVALID);
838
839 add_msr_offset(offset);
840 }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845 u32 *msrpm = svm->msrpm;
846
847 svm->vmcb->control.lbr_ctl = 1;
848 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856 u32 *msrpm = svm->msrpm;
857
858 svm->vmcb->control.lbr_ctl = 0;
859 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867 int cpu;
868 struct page *iopm_pages;
869 void *iopm_va;
870 int r;
871
872 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874 if (!iopm_pages)
875 return -ENOMEM;
876
877 iopm_va = page_address(iopm_pages);
878 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881 init_msrpm_offsets();
882
883 if (boot_cpu_has(X86_FEATURE_NX))
884 kvm_enable_efer_bits(EFER_NX);
885
886 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887 kvm_enable_efer_bits(EFER_FFXSR);
888
889 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890 u64 max;
891
892 kvm_has_tsc_control = true;
893
894 /*
895 * Make sure the user can only configure tsc_khz values that
896 * fit into a signed integer.
897 * A min value is not calculated needed because it will always
898 * be 1 on all machines and a value of 0 is used to disable
899 * tsc-scaling for the vcpu.
900 */
901 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903 kvm_max_guest_tsc_khz = max;
904 }
905
906 if (nested) {
907 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909 }
910
911 for_each_possible_cpu(cpu) {
912 r = svm_cpu_init(cpu);
913 if (r)
914 goto err;
915 }
916
917 if (!boot_cpu_has(X86_FEATURE_NPT))
918 npt_enabled = false;
919
920 if (npt_enabled && !npt) {
921 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922 npt_enabled = false;
923 }
924
925 if (npt_enabled) {
926 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927 kvm_enable_tdp();
928 } else
929 kvm_disable_tdp();
930
931 return 0;
932
933 err:
934 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935 iopm_base = 0;
936 return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941 int cpu;
942
943 for_each_possible_cpu(cpu)
944 svm_cpu_uninit(cpu);
945
946 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947 iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952 seg->selector = 0;
953 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955 seg->limit = 0xffff;
956 seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961 seg->selector = 0;
962 seg->attrib = SVM_SELECTOR_P_MASK | type;
963 seg->limit = 0xffff;
964 seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969 u64 mult, frac, _tsc;
970
971 mult = ratio >> 32;
972 frac = ratio & ((1ULL << 32) - 1);
973
974 _tsc = tsc;
975 _tsc *= mult;
976 _tsc += (tsc >> 32) * frac;
977 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979 return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984 struct vcpu_svm *svm = to_svm(vcpu);
985 u64 _tsc = tsc;
986
987 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990 return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995 struct vcpu_svm *svm = to_svm(vcpu);
996 u64 ratio;
997 u64 khz;
998
999 /* Guest TSC same frequency as host TSC? */
1000 if (!scale) {
1001 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002 return;
1003 }
1004
1005 /* TSC scaling supported? */
1006 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007 if (user_tsc_khz > tsc_khz) {
1008 vcpu->arch.tsc_catchup = 1;
1009 vcpu->arch.tsc_always_catchup = 1;
1010 } else
1011 WARN(1, "user requested TSC rate below hardware speed\n");
1012 return;
1013 }
1014
1015 khz = user_tsc_khz;
1016
1017 /* TSC scaling required - calculate ratio */
1018 ratio = khz << 32;
1019 do_div(ratio, tsc_khz);
1020
1021 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023 user_tsc_khz);
1024 return;
1025 }
1026 svm->tsc_ratio = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031 struct vcpu_svm *svm = to_svm(vcpu);
1032
1033 return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038 struct vcpu_svm *svm = to_svm(vcpu);
1039 u64 g_tsc_offset = 0;
1040
1041 if (is_guest_mode(vcpu)) {
1042 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043 svm->nested.hsave->control.tsc_offset;
1044 svm->nested.hsave->control.tsc_offset = offset;
1045 } else
1046 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047 svm->vmcb->control.tsc_offset,
1048 offset);
1049
1050 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057 struct vcpu_svm *svm = to_svm(vcpu);
1058
1059 WARN_ON(adjustment < 0);
1060 if (host)
1061 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063 svm->vmcb->control.tsc_offset += adjustment;
1064 if (is_guest_mode(vcpu))
1065 svm->nested.hsave->control.tsc_offset += adjustment;
1066 else
1067 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068 svm->vmcb->control.tsc_offset - adjustment,
1069 svm->vmcb->control.tsc_offset);
1070
1071 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076 u64 tsc;
1077
1078 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080 return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085 struct vmcb_control_area *control = &svm->vmcb->control;
1086 struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088 svm->vcpu.fpu_active = 1;
1089 svm->vcpu.arch.hflags = 0;
1090
1091 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099 set_dr_intercepts(svm);
1100
1101 set_exception_intercept(svm, PF_VECTOR);
1102 set_exception_intercept(svm, UD_VECTOR);
1103 set_exception_intercept(svm, MC_VECTOR);
1104
1105 set_intercept(svm, INTERCEPT_INTR);
1106 set_intercept(svm, INTERCEPT_NMI);
1107 set_intercept(svm, INTERCEPT_SMI);
1108 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109 set_intercept(svm, INTERCEPT_RDPMC);
1110 set_intercept(svm, INTERCEPT_CPUID);
1111 set_intercept(svm, INTERCEPT_INVD);
1112 set_intercept(svm, INTERCEPT_HLT);
1113 set_intercept(svm, INTERCEPT_INVLPG);
1114 set_intercept(svm, INTERCEPT_INVLPGA);
1115 set_intercept(svm, INTERCEPT_IOIO_PROT);
1116 set_intercept(svm, INTERCEPT_MSR_PROT);
1117 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118 set_intercept(svm, INTERCEPT_SHUTDOWN);
1119 set_intercept(svm, INTERCEPT_VMRUN);
1120 set_intercept(svm, INTERCEPT_VMMCALL);
1121 set_intercept(svm, INTERCEPT_VMLOAD);
1122 set_intercept(svm, INTERCEPT_VMSAVE);
1123 set_intercept(svm, INTERCEPT_STGI);
1124 set_intercept(svm, INTERCEPT_CLGI);
1125 set_intercept(svm, INTERCEPT_SKINIT);
1126 set_intercept(svm, INTERCEPT_WBINVD);
1127 set_intercept(svm, INTERCEPT_MONITOR);
1128 set_intercept(svm, INTERCEPT_MWAIT);
1129 set_intercept(svm, INTERCEPT_XSETBV);
1130
1131 control->iopm_base_pa = iopm_base;
1132 control->msrpm_base_pa = __pa(svm->msrpm);
1133 control->int_ctl = V_INTR_MASKING_MASK;
1134
1135 init_seg(&save->es);
1136 init_seg(&save->ss);
1137 init_seg(&save->ds);
1138 init_seg(&save->fs);
1139 init_seg(&save->gs);
1140
1141 save->cs.selector = 0xf000;
1142 save->cs.base = 0xffff0000;
1143 /* Executable/Readable Code Segment */
1144 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146 save->cs.limit = 0xffff;
1147
1148 save->gdtr.limit = 0xffff;
1149 save->idtr.limit = 0xffff;
1150
1151 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154 svm_set_efer(&svm->vcpu, 0);
1155 save->dr6 = 0xffff0ff0;
1156 kvm_set_rflags(&svm->vcpu, 2);
1157 save->rip = 0x0000fff0;
1158 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160 /*
1161 * This is the guest-visible cr0 value.
1162 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163 */
1164 svm->vcpu.arch.cr0 = 0;
1165 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167 save->cr4 = X86_CR4_PAE;
1168 /* rdx = ?? */
1169
1170 if (npt_enabled) {
1171 /* Setup VMCB for Nested Paging */
1172 control->nested_ctl = 1;
1173 clr_intercept(svm, INTERCEPT_INVLPG);
1174 clr_exception_intercept(svm, PF_VECTOR);
1175 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177 save->g_pat = 0x0007040600070406ULL;
1178 save->cr3 = 0;
1179 save->cr4 = 0;
1180 }
1181 svm->asid_generation = 0;
1182
1183 svm->nested.vmcb = 0;
1184 svm->vcpu.arch.hflags = 0;
1185
1186 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187 control->pause_filter_count = 3000;
1188 set_intercept(svm, INTERCEPT_PAUSE);
1189 }
1190
1191 mark_all_dirty(svm->vmcb);
1192
1193 enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198 struct vcpu_svm *svm = to_svm(vcpu);
1199 u32 dummy;
1200 u32 eax = 1;
1201
1202 init_vmcb(svm);
1203
1204 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210 struct vcpu_svm *svm;
1211 struct page *page;
1212 struct page *msrpm_pages;
1213 struct page *hsave_page;
1214 struct page *nested_msrpm_pages;
1215 int err;
1216
1217 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218 if (!svm) {
1219 err = -ENOMEM;
1220 goto out;
1221 }
1222
1223 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226 if (err)
1227 goto free_svm;
1228
1229 err = -ENOMEM;
1230 page = alloc_page(GFP_KERNEL);
1231 if (!page)
1232 goto uninit;
1233
1234 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235 if (!msrpm_pages)
1236 goto free_page1;
1237
1238 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239 if (!nested_msrpm_pages)
1240 goto free_page2;
1241
1242 hsave_page = alloc_page(GFP_KERNEL);
1243 if (!hsave_page)
1244 goto free_page3;
1245
1246 svm->nested.hsave = page_address(hsave_page);
1247
1248 svm->msrpm = page_address(msrpm_pages);
1249 svm_vcpu_init_msrpm(svm->msrpm);
1250
1251 svm->nested.msrpm = page_address(nested_msrpm_pages);
1252 svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254 svm->vmcb = page_address(page);
1255 clear_page(svm->vmcb);
1256 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257 svm->asid_generation = 0;
1258 init_vmcb(svm);
1259
1260 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1261 MSR_IA32_APICBASE_ENABLE;
1262 if (kvm_vcpu_is_bsp(&svm->vcpu))
1263 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1264
1265 svm_init_osvw(&svm->vcpu);
1266
1267 return &svm->vcpu;
1268
1269 free_page3:
1270 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1271 free_page2:
1272 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1273 free_page1:
1274 __free_page(page);
1275 uninit:
1276 kvm_vcpu_uninit(&svm->vcpu);
1277 free_svm:
1278 kmem_cache_free(kvm_vcpu_cache, svm);
1279 out:
1280 return ERR_PTR(err);
1281 }
1282
1283 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1284 {
1285 struct vcpu_svm *svm = to_svm(vcpu);
1286
1287 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1288 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1289 __free_page(virt_to_page(svm->nested.hsave));
1290 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1291 kvm_vcpu_uninit(vcpu);
1292 kmem_cache_free(kvm_vcpu_cache, svm);
1293 }
1294
1295 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1296 {
1297 struct vcpu_svm *svm = to_svm(vcpu);
1298 int i;
1299
1300 if (unlikely(cpu != vcpu->cpu)) {
1301 svm->asid_generation = 0;
1302 mark_all_dirty(svm->vmcb);
1303 }
1304
1305 #ifdef CONFIG_X86_64
1306 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1307 #endif
1308 savesegment(fs, svm->host.fs);
1309 savesegment(gs, svm->host.gs);
1310 svm->host.ldt = kvm_read_ldt();
1311
1312 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1313 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1314
1315 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1316 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1317 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1318 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1319 }
1320 }
1321
1322 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1323 {
1324 struct vcpu_svm *svm = to_svm(vcpu);
1325 int i;
1326
1327 ++vcpu->stat.host_state_reload;
1328 kvm_load_ldt(svm->host.ldt);
1329 #ifdef CONFIG_X86_64
1330 loadsegment(fs, svm->host.fs);
1331 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1332 load_gs_index(svm->host.gs);
1333 #else
1334 #ifdef CONFIG_X86_32_LAZY_GS
1335 loadsegment(gs, svm->host.gs);
1336 #endif
1337 #endif
1338 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1339 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1340 }
1341
1342 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1343 {
1344 return to_svm(vcpu)->vmcb->save.rflags;
1345 }
1346
1347 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1348 {
1349 /*
1350 * Any change of EFLAGS.VM is accompained by a reload of SS
1351 * (caused by either a task switch or an inter-privilege IRET),
1352 * so we do not need to update the CPL here.
1353 */
1354 to_svm(vcpu)->vmcb->save.rflags = rflags;
1355 }
1356
1357 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1358 {
1359 switch (reg) {
1360 case VCPU_EXREG_PDPTR:
1361 BUG_ON(!npt_enabled);
1362 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1363 break;
1364 default:
1365 BUG();
1366 }
1367 }
1368
1369 static void svm_set_vintr(struct vcpu_svm *svm)
1370 {
1371 set_intercept(svm, INTERCEPT_VINTR);
1372 }
1373
1374 static void svm_clear_vintr(struct vcpu_svm *svm)
1375 {
1376 clr_intercept(svm, INTERCEPT_VINTR);
1377 }
1378
1379 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1380 {
1381 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1382
1383 switch (seg) {
1384 case VCPU_SREG_CS: return &save->cs;
1385 case VCPU_SREG_DS: return &save->ds;
1386 case VCPU_SREG_ES: return &save->es;
1387 case VCPU_SREG_FS: return &save->fs;
1388 case VCPU_SREG_GS: return &save->gs;
1389 case VCPU_SREG_SS: return &save->ss;
1390 case VCPU_SREG_TR: return &save->tr;
1391 case VCPU_SREG_LDTR: return &save->ldtr;
1392 }
1393 BUG();
1394 return NULL;
1395 }
1396
1397 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1398 {
1399 struct vmcb_seg *s = svm_seg(vcpu, seg);
1400
1401 return s->base;
1402 }
1403
1404 static void svm_get_segment(struct kvm_vcpu *vcpu,
1405 struct kvm_segment *var, int seg)
1406 {
1407 struct vmcb_seg *s = svm_seg(vcpu, seg);
1408
1409 var->base = s->base;
1410 var->limit = s->limit;
1411 var->selector = s->selector;
1412 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1413 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1414 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1415 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1416 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1417 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1418 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1419
1420 /*
1421 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1422 * However, the SVM spec states that the G bit is not observed by the
1423 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1424 * So let's synthesize a legal G bit for all segments, this helps
1425 * running KVM nested. It also helps cross-vendor migration, because
1426 * Intel's vmentry has a check on the 'G' bit.
1427 */
1428 var->g = s->limit > 0xfffff;
1429
1430 /*
1431 * AMD's VMCB does not have an explicit unusable field, so emulate it
1432 * for cross vendor migration purposes by "not present"
1433 */
1434 var->unusable = !var->present || (var->type == 0);
1435
1436 switch (seg) {
1437 case VCPU_SREG_TR:
1438 /*
1439 * Work around a bug where the busy flag in the tr selector
1440 * isn't exposed
1441 */
1442 var->type |= 0x2;
1443 break;
1444 case VCPU_SREG_DS:
1445 case VCPU_SREG_ES:
1446 case VCPU_SREG_FS:
1447 case VCPU_SREG_GS:
1448 /*
1449 * The accessed bit must always be set in the segment
1450 * descriptor cache, although it can be cleared in the
1451 * descriptor, the cached bit always remains at 1. Since
1452 * Intel has a check on this, set it here to support
1453 * cross-vendor migration.
1454 */
1455 if (!var->unusable)
1456 var->type |= 0x1;
1457 break;
1458 case VCPU_SREG_SS:
1459 /*
1460 * On AMD CPUs sometimes the DB bit in the segment
1461 * descriptor is left as 1, although the whole segment has
1462 * been made unusable. Clear it here to pass an Intel VMX
1463 * entry check when cross vendor migrating.
1464 */
1465 if (var->unusable)
1466 var->db = 0;
1467 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1468 break;
1469 }
1470 }
1471
1472 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1473 {
1474 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1475
1476 return save->cpl;
1477 }
1478
1479 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1480 {
1481 struct vcpu_svm *svm = to_svm(vcpu);
1482
1483 dt->size = svm->vmcb->save.idtr.limit;
1484 dt->address = svm->vmcb->save.idtr.base;
1485 }
1486
1487 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1488 {
1489 struct vcpu_svm *svm = to_svm(vcpu);
1490
1491 svm->vmcb->save.idtr.limit = dt->size;
1492 svm->vmcb->save.idtr.base = dt->address ;
1493 mark_dirty(svm->vmcb, VMCB_DT);
1494 }
1495
1496 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497 {
1498 struct vcpu_svm *svm = to_svm(vcpu);
1499
1500 dt->size = svm->vmcb->save.gdtr.limit;
1501 dt->address = svm->vmcb->save.gdtr.base;
1502 }
1503
1504 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505 {
1506 struct vcpu_svm *svm = to_svm(vcpu);
1507
1508 svm->vmcb->save.gdtr.limit = dt->size;
1509 svm->vmcb->save.gdtr.base = dt->address ;
1510 mark_dirty(svm->vmcb, VMCB_DT);
1511 }
1512
1513 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1514 {
1515 }
1516
1517 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1518 {
1519 }
1520
1521 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1522 {
1523 }
1524
1525 static void update_cr0_intercept(struct vcpu_svm *svm)
1526 {
1527 ulong gcr0 = svm->vcpu.arch.cr0;
1528 u64 *hcr0 = &svm->vmcb->save.cr0;
1529
1530 if (!svm->vcpu.fpu_active)
1531 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1532 else
1533 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1534 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1535
1536 mark_dirty(svm->vmcb, VMCB_CR);
1537
1538 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1539 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1540 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1541 } else {
1542 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1543 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544 }
1545 }
1546
1547 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1548 {
1549 struct vcpu_svm *svm = to_svm(vcpu);
1550
1551 #ifdef CONFIG_X86_64
1552 if (vcpu->arch.efer & EFER_LME) {
1553 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1554 vcpu->arch.efer |= EFER_LMA;
1555 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1556 }
1557
1558 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1559 vcpu->arch.efer &= ~EFER_LMA;
1560 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1561 }
1562 }
1563 #endif
1564 vcpu->arch.cr0 = cr0;
1565
1566 if (!npt_enabled)
1567 cr0 |= X86_CR0_PG | X86_CR0_WP;
1568
1569 if (!vcpu->fpu_active)
1570 cr0 |= X86_CR0_TS;
1571 /*
1572 * re-enable caching here because the QEMU bios
1573 * does not do it - this results in some delay at
1574 * reboot
1575 */
1576 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1577 svm->vmcb->save.cr0 = cr0;
1578 mark_dirty(svm->vmcb, VMCB_CR);
1579 update_cr0_intercept(svm);
1580 }
1581
1582 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1583 {
1584 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1585 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1586
1587 if (cr4 & X86_CR4_VMXE)
1588 return 1;
1589
1590 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1591 svm_flush_tlb(vcpu);
1592
1593 vcpu->arch.cr4 = cr4;
1594 if (!npt_enabled)
1595 cr4 |= X86_CR4_PAE;
1596 cr4 |= host_cr4_mce;
1597 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1598 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1599 return 0;
1600 }
1601
1602 static void svm_set_segment(struct kvm_vcpu *vcpu,
1603 struct kvm_segment *var, int seg)
1604 {
1605 struct vcpu_svm *svm = to_svm(vcpu);
1606 struct vmcb_seg *s = svm_seg(vcpu, seg);
1607
1608 s->base = var->base;
1609 s->limit = var->limit;
1610 s->selector = var->selector;
1611 if (var->unusable)
1612 s->attrib = 0;
1613 else {
1614 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1615 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1616 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1617 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1618 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1619 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1620 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1621 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1622 }
1623
1624 /*
1625 * This is always accurate, except if SYSRET returned to a segment
1626 * with SS.DPL != 3. Intel does not have this quirk, and always
1627 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1628 * would entail passing the CPL to userspace and back.
1629 */
1630 if (seg == VCPU_SREG_SS)
1631 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1632
1633 mark_dirty(svm->vmcb, VMCB_SEG);
1634 }
1635
1636 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1637 {
1638 struct vcpu_svm *svm = to_svm(vcpu);
1639
1640 clr_exception_intercept(svm, DB_VECTOR);
1641 clr_exception_intercept(svm, BP_VECTOR);
1642
1643 if (svm->nmi_singlestep)
1644 set_exception_intercept(svm, DB_VECTOR);
1645
1646 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1647 if (vcpu->guest_debug &
1648 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1649 set_exception_intercept(svm, DB_VECTOR);
1650 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1651 set_exception_intercept(svm, BP_VECTOR);
1652 } else
1653 vcpu->guest_debug = 0;
1654 }
1655
1656 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1657 {
1658 if (sd->next_asid > sd->max_asid) {
1659 ++sd->asid_generation;
1660 sd->next_asid = 1;
1661 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1662 }
1663
1664 svm->asid_generation = sd->asid_generation;
1665 svm->vmcb->control.asid = sd->next_asid++;
1666
1667 mark_dirty(svm->vmcb, VMCB_ASID);
1668 }
1669
1670 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1671 {
1672 return to_svm(vcpu)->vmcb->save.dr6;
1673 }
1674
1675 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1676 {
1677 struct vcpu_svm *svm = to_svm(vcpu);
1678
1679 svm->vmcb->save.dr6 = value;
1680 mark_dirty(svm->vmcb, VMCB_DR);
1681 }
1682
1683 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1684 {
1685 struct vcpu_svm *svm = to_svm(vcpu);
1686
1687 get_debugreg(vcpu->arch.db[0], 0);
1688 get_debugreg(vcpu->arch.db[1], 1);
1689 get_debugreg(vcpu->arch.db[2], 2);
1690 get_debugreg(vcpu->arch.db[3], 3);
1691 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1692 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1693
1694 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1695 set_dr_intercepts(svm);
1696 }
1697
1698 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1699 {
1700 struct vcpu_svm *svm = to_svm(vcpu);
1701
1702 svm->vmcb->save.dr7 = value;
1703 mark_dirty(svm->vmcb, VMCB_DR);
1704 }
1705
1706 static int pf_interception(struct vcpu_svm *svm)
1707 {
1708 u64 fault_address = svm->vmcb->control.exit_info_2;
1709 u32 error_code;
1710 int r = 1;
1711
1712 switch (svm->apf_reason) {
1713 default:
1714 error_code = svm->vmcb->control.exit_info_1;
1715
1716 trace_kvm_page_fault(fault_address, error_code);
1717 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1718 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1719 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1720 svm->vmcb->control.insn_bytes,
1721 svm->vmcb->control.insn_len);
1722 break;
1723 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1724 svm->apf_reason = 0;
1725 local_irq_disable();
1726 kvm_async_pf_task_wait(fault_address);
1727 local_irq_enable();
1728 break;
1729 case KVM_PV_REASON_PAGE_READY:
1730 svm->apf_reason = 0;
1731 local_irq_disable();
1732 kvm_async_pf_task_wake(fault_address);
1733 local_irq_enable();
1734 break;
1735 }
1736 return r;
1737 }
1738
1739 static int db_interception(struct vcpu_svm *svm)
1740 {
1741 struct kvm_run *kvm_run = svm->vcpu.run;
1742
1743 if (!(svm->vcpu.guest_debug &
1744 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1745 !svm->nmi_singlestep) {
1746 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1747 return 1;
1748 }
1749
1750 if (svm->nmi_singlestep) {
1751 svm->nmi_singlestep = false;
1752 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1753 svm->vmcb->save.rflags &=
1754 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1755 update_db_bp_intercept(&svm->vcpu);
1756 }
1757
1758 if (svm->vcpu.guest_debug &
1759 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1760 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1761 kvm_run->debug.arch.pc =
1762 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1763 kvm_run->debug.arch.exception = DB_VECTOR;
1764 return 0;
1765 }
1766
1767 return 1;
1768 }
1769
1770 static int bp_interception(struct vcpu_svm *svm)
1771 {
1772 struct kvm_run *kvm_run = svm->vcpu.run;
1773
1774 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1775 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1776 kvm_run->debug.arch.exception = BP_VECTOR;
1777 return 0;
1778 }
1779
1780 static int ud_interception(struct vcpu_svm *svm)
1781 {
1782 int er;
1783
1784 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1785 if (er != EMULATE_DONE)
1786 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1787 return 1;
1788 }
1789
1790 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1791 {
1792 struct vcpu_svm *svm = to_svm(vcpu);
1793
1794 clr_exception_intercept(svm, NM_VECTOR);
1795
1796 svm->vcpu.fpu_active = 1;
1797 update_cr0_intercept(svm);
1798 }
1799
1800 static int nm_interception(struct vcpu_svm *svm)
1801 {
1802 svm_fpu_activate(&svm->vcpu);
1803 return 1;
1804 }
1805
1806 static bool is_erratum_383(void)
1807 {
1808 int err, i;
1809 u64 value;
1810
1811 if (!erratum_383_found)
1812 return false;
1813
1814 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1815 if (err)
1816 return false;
1817
1818 /* Bit 62 may or may not be set for this mce */
1819 value &= ~(1ULL << 62);
1820
1821 if (value != 0xb600000000010015ULL)
1822 return false;
1823
1824 /* Clear MCi_STATUS registers */
1825 for (i = 0; i < 6; ++i)
1826 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1827
1828 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1829 if (!err) {
1830 u32 low, high;
1831
1832 value &= ~(1ULL << 2);
1833 low = lower_32_bits(value);
1834 high = upper_32_bits(value);
1835
1836 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1837 }
1838
1839 /* Flush tlb to evict multi-match entries */
1840 __flush_tlb_all();
1841
1842 return true;
1843 }
1844
1845 static void svm_handle_mce(struct vcpu_svm *svm)
1846 {
1847 if (is_erratum_383()) {
1848 /*
1849 * Erratum 383 triggered. Guest state is corrupt so kill the
1850 * guest.
1851 */
1852 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1853
1854 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1855
1856 return;
1857 }
1858
1859 /*
1860 * On an #MC intercept the MCE handler is not called automatically in
1861 * the host. So do it by hand here.
1862 */
1863 asm volatile (
1864 "int $0x12\n");
1865 /* not sure if we ever come back to this point */
1866
1867 return;
1868 }
1869
1870 static int mc_interception(struct vcpu_svm *svm)
1871 {
1872 return 1;
1873 }
1874
1875 static int shutdown_interception(struct vcpu_svm *svm)
1876 {
1877 struct kvm_run *kvm_run = svm->vcpu.run;
1878
1879 /*
1880 * VMCB is undefined after a SHUTDOWN intercept
1881 * so reinitialize it.
1882 */
1883 clear_page(svm->vmcb);
1884 init_vmcb(svm);
1885
1886 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1887 return 0;
1888 }
1889
1890 static int io_interception(struct vcpu_svm *svm)
1891 {
1892 struct kvm_vcpu *vcpu = &svm->vcpu;
1893 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1894 int size, in, string;
1895 unsigned port;
1896
1897 ++svm->vcpu.stat.io_exits;
1898 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1899 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1900 if (string || in)
1901 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1902
1903 port = io_info >> 16;
1904 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1905 svm->next_rip = svm->vmcb->control.exit_info_2;
1906 skip_emulated_instruction(&svm->vcpu);
1907
1908 return kvm_fast_pio_out(vcpu, size, port);
1909 }
1910
1911 static int nmi_interception(struct vcpu_svm *svm)
1912 {
1913 return 1;
1914 }
1915
1916 static int intr_interception(struct vcpu_svm *svm)
1917 {
1918 ++svm->vcpu.stat.irq_exits;
1919 return 1;
1920 }
1921
1922 static int nop_on_interception(struct vcpu_svm *svm)
1923 {
1924 return 1;
1925 }
1926
1927 static int halt_interception(struct vcpu_svm *svm)
1928 {
1929 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1930 skip_emulated_instruction(&svm->vcpu);
1931 return kvm_emulate_halt(&svm->vcpu);
1932 }
1933
1934 static int vmmcall_interception(struct vcpu_svm *svm)
1935 {
1936 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1937 skip_emulated_instruction(&svm->vcpu);
1938 kvm_emulate_hypercall(&svm->vcpu);
1939 return 1;
1940 }
1941
1942 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1943 {
1944 struct vcpu_svm *svm = to_svm(vcpu);
1945
1946 return svm->nested.nested_cr3;
1947 }
1948
1949 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1950 {
1951 struct vcpu_svm *svm = to_svm(vcpu);
1952 u64 cr3 = svm->nested.nested_cr3;
1953 u64 pdpte;
1954 int ret;
1955
1956 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1957 offset_in_page(cr3) + index * 8, 8);
1958 if (ret)
1959 return 0;
1960 return pdpte;
1961 }
1962
1963 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1964 unsigned long root)
1965 {
1966 struct vcpu_svm *svm = to_svm(vcpu);
1967
1968 svm->vmcb->control.nested_cr3 = root;
1969 mark_dirty(svm->vmcb, VMCB_NPT);
1970 svm_flush_tlb(vcpu);
1971 }
1972
1973 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1974 struct x86_exception *fault)
1975 {
1976 struct vcpu_svm *svm = to_svm(vcpu);
1977
1978 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1979 /*
1980 * TODO: track the cause of the nested page fault, and
1981 * correctly fill in the high bits of exit_info_1.
1982 */
1983 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1984 svm->vmcb->control.exit_code_hi = 0;
1985 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1986 svm->vmcb->control.exit_info_2 = fault->address;
1987 }
1988
1989 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1990 svm->vmcb->control.exit_info_1 |= fault->error_code;
1991
1992 /*
1993 * The present bit is always zero for page structure faults on real
1994 * hardware.
1995 */
1996 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1997 svm->vmcb->control.exit_info_1 &= ~1;
1998
1999 nested_svm_vmexit(svm);
2000 }
2001
2002 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2003 {
2004 kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
2005
2006 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2007 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2008 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2009 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2010 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2011 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2012 }
2013
2014 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2015 {
2016 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2017 }
2018
2019 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2020 {
2021 if (!(svm->vcpu.arch.efer & EFER_SVME)
2022 || !is_paging(&svm->vcpu)) {
2023 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2024 return 1;
2025 }
2026
2027 if (svm->vmcb->save.cpl) {
2028 kvm_inject_gp(&svm->vcpu, 0);
2029 return 1;
2030 }
2031
2032 return 0;
2033 }
2034
2035 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2036 bool has_error_code, u32 error_code)
2037 {
2038 int vmexit;
2039
2040 if (!is_guest_mode(&svm->vcpu))
2041 return 0;
2042
2043 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2044 svm->vmcb->control.exit_code_hi = 0;
2045 svm->vmcb->control.exit_info_1 = error_code;
2046 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2047
2048 vmexit = nested_svm_intercept(svm);
2049 if (vmexit == NESTED_EXIT_DONE)
2050 svm->nested.exit_required = true;
2051
2052 return vmexit;
2053 }
2054
2055 /* This function returns true if it is save to enable the irq window */
2056 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2057 {
2058 if (!is_guest_mode(&svm->vcpu))
2059 return true;
2060
2061 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2062 return true;
2063
2064 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2065 return false;
2066
2067 /*
2068 * if vmexit was already requested (by intercepted exception
2069 * for instance) do not overwrite it with "external interrupt"
2070 * vmexit.
2071 */
2072 if (svm->nested.exit_required)
2073 return false;
2074
2075 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2076 svm->vmcb->control.exit_info_1 = 0;
2077 svm->vmcb->control.exit_info_2 = 0;
2078
2079 if (svm->nested.intercept & 1ULL) {
2080 /*
2081 * The #vmexit can't be emulated here directly because this
2082 * code path runs with irqs and preemption disabled. A
2083 * #vmexit emulation might sleep. Only signal request for
2084 * the #vmexit here.
2085 */
2086 svm->nested.exit_required = true;
2087 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2088 return false;
2089 }
2090
2091 return true;
2092 }
2093
2094 /* This function returns true if it is save to enable the nmi window */
2095 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2096 {
2097 if (!is_guest_mode(&svm->vcpu))
2098 return true;
2099
2100 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2101 return true;
2102
2103 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2104 svm->nested.exit_required = true;
2105
2106 return false;
2107 }
2108
2109 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2110 {
2111 struct page *page;
2112
2113 might_sleep();
2114
2115 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2116 if (is_error_page(page))
2117 goto error;
2118
2119 *_page = page;
2120
2121 return kmap(page);
2122
2123 error:
2124 kvm_inject_gp(&svm->vcpu, 0);
2125
2126 return NULL;
2127 }
2128
2129 static void nested_svm_unmap(struct page *page)
2130 {
2131 kunmap(page);
2132 kvm_release_page_dirty(page);
2133 }
2134
2135 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2136 {
2137 unsigned port, size, iopm_len;
2138 u16 val, mask;
2139 u8 start_bit;
2140 u64 gpa;
2141
2142 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2143 return NESTED_EXIT_HOST;
2144
2145 port = svm->vmcb->control.exit_info_1 >> 16;
2146 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2147 SVM_IOIO_SIZE_SHIFT;
2148 gpa = svm->nested.vmcb_iopm + (port / 8);
2149 start_bit = port % 8;
2150 iopm_len = (start_bit + size > 8) ? 2 : 1;
2151 mask = (0xf >> (4 - size)) << start_bit;
2152 val = 0;
2153
2154 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2155 return NESTED_EXIT_DONE;
2156
2157 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2158 }
2159
2160 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2161 {
2162 u32 offset, msr, value;
2163 int write, mask;
2164
2165 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2166 return NESTED_EXIT_HOST;
2167
2168 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2169 offset = svm_msrpm_offset(msr);
2170 write = svm->vmcb->control.exit_info_1 & 1;
2171 mask = 1 << ((2 * (msr & 0xf)) + write);
2172
2173 if (offset == MSR_INVALID)
2174 return NESTED_EXIT_DONE;
2175
2176 /* Offset is in 32 bit units but need in 8 bit units */
2177 offset *= 4;
2178
2179 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2180 return NESTED_EXIT_DONE;
2181
2182 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2183 }
2184
2185 static int nested_svm_exit_special(struct vcpu_svm *svm)
2186 {
2187 u32 exit_code = svm->vmcb->control.exit_code;
2188
2189 switch (exit_code) {
2190 case SVM_EXIT_INTR:
2191 case SVM_EXIT_NMI:
2192 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2193 return NESTED_EXIT_HOST;
2194 case SVM_EXIT_NPF:
2195 /* For now we are always handling NPFs when using them */
2196 if (npt_enabled)
2197 return NESTED_EXIT_HOST;
2198 break;
2199 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2200 /* When we're shadowing, trap PFs, but not async PF */
2201 if (!npt_enabled && svm->apf_reason == 0)
2202 return NESTED_EXIT_HOST;
2203 break;
2204 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2205 nm_interception(svm);
2206 break;
2207 default:
2208 break;
2209 }
2210
2211 return NESTED_EXIT_CONTINUE;
2212 }
2213
2214 /*
2215 * If this function returns true, this #vmexit was already handled
2216 */
2217 static int nested_svm_intercept(struct vcpu_svm *svm)
2218 {
2219 u32 exit_code = svm->vmcb->control.exit_code;
2220 int vmexit = NESTED_EXIT_HOST;
2221
2222 switch (exit_code) {
2223 case SVM_EXIT_MSR:
2224 vmexit = nested_svm_exit_handled_msr(svm);
2225 break;
2226 case SVM_EXIT_IOIO:
2227 vmexit = nested_svm_intercept_ioio(svm);
2228 break;
2229 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2230 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2231 if (svm->nested.intercept_cr & bit)
2232 vmexit = NESTED_EXIT_DONE;
2233 break;
2234 }
2235 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2236 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2237 if (svm->nested.intercept_dr & bit)
2238 vmexit = NESTED_EXIT_DONE;
2239 break;
2240 }
2241 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2242 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2243 if (svm->nested.intercept_exceptions & excp_bits)
2244 vmexit = NESTED_EXIT_DONE;
2245 /* async page fault always cause vmexit */
2246 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2247 svm->apf_reason != 0)
2248 vmexit = NESTED_EXIT_DONE;
2249 break;
2250 }
2251 case SVM_EXIT_ERR: {
2252 vmexit = NESTED_EXIT_DONE;
2253 break;
2254 }
2255 default: {
2256 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2257 if (svm->nested.intercept & exit_bits)
2258 vmexit = NESTED_EXIT_DONE;
2259 }
2260 }
2261
2262 return vmexit;
2263 }
2264
2265 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2266 {
2267 int vmexit;
2268
2269 vmexit = nested_svm_intercept(svm);
2270
2271 if (vmexit == NESTED_EXIT_DONE)
2272 nested_svm_vmexit(svm);
2273
2274 return vmexit;
2275 }
2276
2277 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2278 {
2279 struct vmcb_control_area *dst = &dst_vmcb->control;
2280 struct vmcb_control_area *from = &from_vmcb->control;
2281
2282 dst->intercept_cr = from->intercept_cr;
2283 dst->intercept_dr = from->intercept_dr;
2284 dst->intercept_exceptions = from->intercept_exceptions;
2285 dst->intercept = from->intercept;
2286 dst->iopm_base_pa = from->iopm_base_pa;
2287 dst->msrpm_base_pa = from->msrpm_base_pa;
2288 dst->tsc_offset = from->tsc_offset;
2289 dst->asid = from->asid;
2290 dst->tlb_ctl = from->tlb_ctl;
2291 dst->int_ctl = from->int_ctl;
2292 dst->int_vector = from->int_vector;
2293 dst->int_state = from->int_state;
2294 dst->exit_code = from->exit_code;
2295 dst->exit_code_hi = from->exit_code_hi;
2296 dst->exit_info_1 = from->exit_info_1;
2297 dst->exit_info_2 = from->exit_info_2;
2298 dst->exit_int_info = from->exit_int_info;
2299 dst->exit_int_info_err = from->exit_int_info_err;
2300 dst->nested_ctl = from->nested_ctl;
2301 dst->event_inj = from->event_inj;
2302 dst->event_inj_err = from->event_inj_err;
2303 dst->nested_cr3 = from->nested_cr3;
2304 dst->lbr_ctl = from->lbr_ctl;
2305 }
2306
2307 static int nested_svm_vmexit(struct vcpu_svm *svm)
2308 {
2309 struct vmcb *nested_vmcb;
2310 struct vmcb *hsave = svm->nested.hsave;
2311 struct vmcb *vmcb = svm->vmcb;
2312 struct page *page;
2313
2314 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2315 vmcb->control.exit_info_1,
2316 vmcb->control.exit_info_2,
2317 vmcb->control.exit_int_info,
2318 vmcb->control.exit_int_info_err,
2319 KVM_ISA_SVM);
2320
2321 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2322 if (!nested_vmcb)
2323 return 1;
2324
2325 /* Exit Guest-Mode */
2326 leave_guest_mode(&svm->vcpu);
2327 svm->nested.vmcb = 0;
2328
2329 /* Give the current vmcb to the guest */
2330 disable_gif(svm);
2331
2332 nested_vmcb->save.es = vmcb->save.es;
2333 nested_vmcb->save.cs = vmcb->save.cs;
2334 nested_vmcb->save.ss = vmcb->save.ss;
2335 nested_vmcb->save.ds = vmcb->save.ds;
2336 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2337 nested_vmcb->save.idtr = vmcb->save.idtr;
2338 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2339 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2340 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2341 nested_vmcb->save.cr2 = vmcb->save.cr2;
2342 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2343 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2344 nested_vmcb->save.rip = vmcb->save.rip;
2345 nested_vmcb->save.rsp = vmcb->save.rsp;
2346 nested_vmcb->save.rax = vmcb->save.rax;
2347 nested_vmcb->save.dr7 = vmcb->save.dr7;
2348 nested_vmcb->save.dr6 = vmcb->save.dr6;
2349 nested_vmcb->save.cpl = vmcb->save.cpl;
2350
2351 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2352 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2353 nested_vmcb->control.int_state = vmcb->control.int_state;
2354 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2355 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2356 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2357 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2358 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2359 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2360 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2361
2362 /*
2363 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2364 * to make sure that we do not lose injected events. So check event_inj
2365 * here and copy it to exit_int_info if it is valid.
2366 * Exit_int_info and event_inj can't be both valid because the case
2367 * below only happens on a VMRUN instruction intercept which has
2368 * no valid exit_int_info set.
2369 */
2370 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2371 struct vmcb_control_area *nc = &nested_vmcb->control;
2372
2373 nc->exit_int_info = vmcb->control.event_inj;
2374 nc->exit_int_info_err = vmcb->control.event_inj_err;
2375 }
2376
2377 nested_vmcb->control.tlb_ctl = 0;
2378 nested_vmcb->control.event_inj = 0;
2379 nested_vmcb->control.event_inj_err = 0;
2380
2381 /* We always set V_INTR_MASKING and remember the old value in hflags */
2382 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2383 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2384
2385 /* Restore the original control entries */
2386 copy_vmcb_control_area(vmcb, hsave);
2387
2388 kvm_clear_exception_queue(&svm->vcpu);
2389 kvm_clear_interrupt_queue(&svm->vcpu);
2390
2391 svm->nested.nested_cr3 = 0;
2392
2393 /* Restore selected save entries */
2394 svm->vmcb->save.es = hsave->save.es;
2395 svm->vmcb->save.cs = hsave->save.cs;
2396 svm->vmcb->save.ss = hsave->save.ss;
2397 svm->vmcb->save.ds = hsave->save.ds;
2398 svm->vmcb->save.gdtr = hsave->save.gdtr;
2399 svm->vmcb->save.idtr = hsave->save.idtr;
2400 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2401 svm_set_efer(&svm->vcpu, hsave->save.efer);
2402 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2403 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2404 if (npt_enabled) {
2405 svm->vmcb->save.cr3 = hsave->save.cr3;
2406 svm->vcpu.arch.cr3 = hsave->save.cr3;
2407 } else {
2408 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2409 }
2410 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2411 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2412 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2413 svm->vmcb->save.dr7 = 0;
2414 svm->vmcb->save.cpl = 0;
2415 svm->vmcb->control.exit_int_info = 0;
2416
2417 mark_all_dirty(svm->vmcb);
2418
2419 nested_svm_unmap(page);
2420
2421 nested_svm_uninit_mmu_context(&svm->vcpu);
2422 kvm_mmu_reset_context(&svm->vcpu);
2423 kvm_mmu_load(&svm->vcpu);
2424
2425 return 0;
2426 }
2427
2428 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2429 {
2430 /*
2431 * This function merges the msr permission bitmaps of kvm and the
2432 * nested vmcb. It is optimized in that it only merges the parts where
2433 * the kvm msr permission bitmap may contain zero bits
2434 */
2435 int i;
2436
2437 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2438 return true;
2439
2440 for (i = 0; i < MSRPM_OFFSETS; i++) {
2441 u32 value, p;
2442 u64 offset;
2443
2444 if (msrpm_offsets[i] == 0xffffffff)
2445 break;
2446
2447 p = msrpm_offsets[i];
2448 offset = svm->nested.vmcb_msrpm + (p * 4);
2449
2450 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2451 return false;
2452
2453 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2454 }
2455
2456 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2457
2458 return true;
2459 }
2460
2461 static bool nested_vmcb_checks(struct vmcb *vmcb)
2462 {
2463 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2464 return false;
2465
2466 if (vmcb->control.asid == 0)
2467 return false;
2468
2469 if (vmcb->control.nested_ctl && !npt_enabled)
2470 return false;
2471
2472 return true;
2473 }
2474
2475 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2476 {
2477 struct vmcb *nested_vmcb;
2478 struct vmcb *hsave = svm->nested.hsave;
2479 struct vmcb *vmcb = svm->vmcb;
2480 struct page *page;
2481 u64 vmcb_gpa;
2482
2483 vmcb_gpa = svm->vmcb->save.rax;
2484
2485 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2486 if (!nested_vmcb)
2487 return false;
2488
2489 if (!nested_vmcb_checks(nested_vmcb)) {
2490 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2491 nested_vmcb->control.exit_code_hi = 0;
2492 nested_vmcb->control.exit_info_1 = 0;
2493 nested_vmcb->control.exit_info_2 = 0;
2494
2495 nested_svm_unmap(page);
2496
2497 return false;
2498 }
2499
2500 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2501 nested_vmcb->save.rip,
2502 nested_vmcb->control.int_ctl,
2503 nested_vmcb->control.event_inj,
2504 nested_vmcb->control.nested_ctl);
2505
2506 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2507 nested_vmcb->control.intercept_cr >> 16,
2508 nested_vmcb->control.intercept_exceptions,
2509 nested_vmcb->control.intercept);
2510
2511 /* Clear internal status */
2512 kvm_clear_exception_queue(&svm->vcpu);
2513 kvm_clear_interrupt_queue(&svm->vcpu);
2514
2515 /*
2516 * Save the old vmcb, so we don't need to pick what we save, but can
2517 * restore everything when a VMEXIT occurs
2518 */
2519 hsave->save.es = vmcb->save.es;
2520 hsave->save.cs = vmcb->save.cs;
2521 hsave->save.ss = vmcb->save.ss;
2522 hsave->save.ds = vmcb->save.ds;
2523 hsave->save.gdtr = vmcb->save.gdtr;
2524 hsave->save.idtr = vmcb->save.idtr;
2525 hsave->save.efer = svm->vcpu.arch.efer;
2526 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2527 hsave->save.cr4 = svm->vcpu.arch.cr4;
2528 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2529 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2530 hsave->save.rsp = vmcb->save.rsp;
2531 hsave->save.rax = vmcb->save.rax;
2532 if (npt_enabled)
2533 hsave->save.cr3 = vmcb->save.cr3;
2534 else
2535 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2536
2537 copy_vmcb_control_area(hsave, vmcb);
2538
2539 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2540 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2541 else
2542 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2543
2544 if (nested_vmcb->control.nested_ctl) {
2545 kvm_mmu_unload(&svm->vcpu);
2546 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2547 nested_svm_init_mmu_context(&svm->vcpu);
2548 }
2549
2550 /* Load the nested guest state */
2551 svm->vmcb->save.es = nested_vmcb->save.es;
2552 svm->vmcb->save.cs = nested_vmcb->save.cs;
2553 svm->vmcb->save.ss = nested_vmcb->save.ss;
2554 svm->vmcb->save.ds = nested_vmcb->save.ds;
2555 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2556 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2557 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2558 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2559 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2560 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2561 if (npt_enabled) {
2562 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2563 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2564 } else
2565 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2566
2567 /* Guest paging mode is active - reset mmu */
2568 kvm_mmu_reset_context(&svm->vcpu);
2569
2570 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2571 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2572 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2573 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2574
2575 /* In case we don't even reach vcpu_run, the fields are not updated */
2576 svm->vmcb->save.rax = nested_vmcb->save.rax;
2577 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2578 svm->vmcb->save.rip = nested_vmcb->save.rip;
2579 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2580 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2581 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2582
2583 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2584 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2585
2586 /* cache intercepts */
2587 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2588 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2589 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2590 svm->nested.intercept = nested_vmcb->control.intercept;
2591
2592 svm_flush_tlb(&svm->vcpu);
2593 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2594 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2595 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2596 else
2597 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2598
2599 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2600 /* We only want the cr8 intercept bits of the guest */
2601 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2602 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2603 }
2604
2605 /* We don't want to see VMMCALLs from a nested guest */
2606 clr_intercept(svm, INTERCEPT_VMMCALL);
2607
2608 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2609 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2610 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2611 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2612 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2613 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2614
2615 nested_svm_unmap(page);
2616
2617 /* Enter Guest-Mode */
2618 enter_guest_mode(&svm->vcpu);
2619
2620 /*
2621 * Merge guest and host intercepts - must be called with vcpu in
2622 * guest-mode to take affect here
2623 */
2624 recalc_intercepts(svm);
2625
2626 svm->nested.vmcb = vmcb_gpa;
2627
2628 enable_gif(svm);
2629
2630 mark_all_dirty(svm->vmcb);
2631
2632 return true;
2633 }
2634
2635 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2636 {
2637 to_vmcb->save.fs = from_vmcb->save.fs;
2638 to_vmcb->save.gs = from_vmcb->save.gs;
2639 to_vmcb->save.tr = from_vmcb->save.tr;
2640 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2641 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2642 to_vmcb->save.star = from_vmcb->save.star;
2643 to_vmcb->save.lstar = from_vmcb->save.lstar;
2644 to_vmcb->save.cstar = from_vmcb->save.cstar;
2645 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2646 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2647 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2648 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2649 }
2650
2651 static int vmload_interception(struct vcpu_svm *svm)
2652 {
2653 struct vmcb *nested_vmcb;
2654 struct page *page;
2655
2656 if (nested_svm_check_permissions(svm))
2657 return 1;
2658
2659 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2660 if (!nested_vmcb)
2661 return 1;
2662
2663 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2664 skip_emulated_instruction(&svm->vcpu);
2665
2666 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2667 nested_svm_unmap(page);
2668
2669 return 1;
2670 }
2671
2672 static int vmsave_interception(struct vcpu_svm *svm)
2673 {
2674 struct vmcb *nested_vmcb;
2675 struct page *page;
2676
2677 if (nested_svm_check_permissions(svm))
2678 return 1;
2679
2680 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2681 if (!nested_vmcb)
2682 return 1;
2683
2684 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2685 skip_emulated_instruction(&svm->vcpu);
2686
2687 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2688 nested_svm_unmap(page);
2689
2690 return 1;
2691 }
2692
2693 static int vmrun_interception(struct vcpu_svm *svm)
2694 {
2695 if (nested_svm_check_permissions(svm))
2696 return 1;
2697
2698 /* Save rip after vmrun instruction */
2699 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2700
2701 if (!nested_svm_vmrun(svm))
2702 return 1;
2703
2704 if (!nested_svm_vmrun_msrpm(svm))
2705 goto failed;
2706
2707 return 1;
2708
2709 failed:
2710
2711 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2712 svm->vmcb->control.exit_code_hi = 0;
2713 svm->vmcb->control.exit_info_1 = 0;
2714 svm->vmcb->control.exit_info_2 = 0;
2715
2716 nested_svm_vmexit(svm);
2717
2718 return 1;
2719 }
2720
2721 static int stgi_interception(struct vcpu_svm *svm)
2722 {
2723 if (nested_svm_check_permissions(svm))
2724 return 1;
2725
2726 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2727 skip_emulated_instruction(&svm->vcpu);
2728 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2729
2730 enable_gif(svm);
2731
2732 return 1;
2733 }
2734
2735 static int clgi_interception(struct vcpu_svm *svm)
2736 {
2737 if (nested_svm_check_permissions(svm))
2738 return 1;
2739
2740 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2741 skip_emulated_instruction(&svm->vcpu);
2742
2743 disable_gif(svm);
2744
2745 /* After a CLGI no interrupts should come */
2746 svm_clear_vintr(svm);
2747 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2748
2749 mark_dirty(svm->vmcb, VMCB_INTR);
2750
2751 return 1;
2752 }
2753
2754 static int invlpga_interception(struct vcpu_svm *svm)
2755 {
2756 struct kvm_vcpu *vcpu = &svm->vcpu;
2757
2758 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2759 vcpu->arch.regs[VCPU_REGS_RAX]);
2760
2761 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2762 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2763
2764 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2765 skip_emulated_instruction(&svm->vcpu);
2766 return 1;
2767 }
2768
2769 static int skinit_interception(struct vcpu_svm *svm)
2770 {
2771 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2772
2773 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2774 return 1;
2775 }
2776
2777 static int xsetbv_interception(struct vcpu_svm *svm)
2778 {
2779 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2780 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2781
2782 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2783 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2784 skip_emulated_instruction(&svm->vcpu);
2785 }
2786
2787 return 1;
2788 }
2789
2790 static int task_switch_interception(struct vcpu_svm *svm)
2791 {
2792 u16 tss_selector;
2793 int reason;
2794 int int_type = svm->vmcb->control.exit_int_info &
2795 SVM_EXITINTINFO_TYPE_MASK;
2796 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2797 uint32_t type =
2798 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2799 uint32_t idt_v =
2800 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2801 bool has_error_code = false;
2802 u32 error_code = 0;
2803
2804 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2805
2806 if (svm->vmcb->control.exit_info_2 &
2807 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2808 reason = TASK_SWITCH_IRET;
2809 else if (svm->vmcb->control.exit_info_2 &
2810 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2811 reason = TASK_SWITCH_JMP;
2812 else if (idt_v)
2813 reason = TASK_SWITCH_GATE;
2814 else
2815 reason = TASK_SWITCH_CALL;
2816
2817 if (reason == TASK_SWITCH_GATE) {
2818 switch (type) {
2819 case SVM_EXITINTINFO_TYPE_NMI:
2820 svm->vcpu.arch.nmi_injected = false;
2821 break;
2822 case SVM_EXITINTINFO_TYPE_EXEPT:
2823 if (svm->vmcb->control.exit_info_2 &
2824 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2825 has_error_code = true;
2826 error_code =
2827 (u32)svm->vmcb->control.exit_info_2;
2828 }
2829 kvm_clear_exception_queue(&svm->vcpu);
2830 break;
2831 case SVM_EXITINTINFO_TYPE_INTR:
2832 kvm_clear_interrupt_queue(&svm->vcpu);
2833 break;
2834 default:
2835 break;
2836 }
2837 }
2838
2839 if (reason != TASK_SWITCH_GATE ||
2840 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2841 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2842 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2843 skip_emulated_instruction(&svm->vcpu);
2844
2845 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2846 int_vec = -1;
2847
2848 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2849 has_error_code, error_code) == EMULATE_FAIL) {
2850 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2851 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2852 svm->vcpu.run->internal.ndata = 0;
2853 return 0;
2854 }
2855 return 1;
2856 }
2857
2858 static int cpuid_interception(struct vcpu_svm *svm)
2859 {
2860 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2861 kvm_emulate_cpuid(&svm->vcpu);
2862 return 1;
2863 }
2864
2865 static int iret_interception(struct vcpu_svm *svm)
2866 {
2867 ++svm->vcpu.stat.nmi_window_exits;
2868 clr_intercept(svm, INTERCEPT_IRET);
2869 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2870 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2871 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2872 return 1;
2873 }
2874
2875 static int invlpg_interception(struct vcpu_svm *svm)
2876 {
2877 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2878 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2879
2880 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2881 skip_emulated_instruction(&svm->vcpu);
2882 return 1;
2883 }
2884
2885 static int emulate_on_interception(struct vcpu_svm *svm)
2886 {
2887 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2888 }
2889
2890 static int rdpmc_interception(struct vcpu_svm *svm)
2891 {
2892 int err;
2893
2894 if (!static_cpu_has(X86_FEATURE_NRIPS))
2895 return emulate_on_interception(svm);
2896
2897 err = kvm_rdpmc(&svm->vcpu);
2898 kvm_complete_insn_gp(&svm->vcpu, err);
2899
2900 return 1;
2901 }
2902
2903 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2904 {
2905 unsigned long cr0 = svm->vcpu.arch.cr0;
2906 bool ret = false;
2907 u64 intercept;
2908
2909 intercept = svm->nested.intercept;
2910
2911 if (!is_guest_mode(&svm->vcpu) ||
2912 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2913 return false;
2914
2915 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2916 val &= ~SVM_CR0_SELECTIVE_MASK;
2917
2918 if (cr0 ^ val) {
2919 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2920 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2921 }
2922
2923 return ret;
2924 }
2925
2926 #define CR_VALID (1ULL << 63)
2927
2928 static int cr_interception(struct vcpu_svm *svm)
2929 {
2930 int reg, cr;
2931 unsigned long val;
2932 int err;
2933
2934 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2935 return emulate_on_interception(svm);
2936
2937 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2938 return emulate_on_interception(svm);
2939
2940 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2941 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2942
2943 err = 0;
2944 if (cr >= 16) { /* mov to cr */
2945 cr -= 16;
2946 val = kvm_register_read(&svm->vcpu, reg);
2947 switch (cr) {
2948 case 0:
2949 if (!check_selective_cr0_intercepted(svm, val))
2950 err = kvm_set_cr0(&svm->vcpu, val);
2951 else
2952 return 1;
2953
2954 break;
2955 case 3:
2956 err = kvm_set_cr3(&svm->vcpu, val);
2957 break;
2958 case 4:
2959 err = kvm_set_cr4(&svm->vcpu, val);
2960 break;
2961 case 8:
2962 err = kvm_set_cr8(&svm->vcpu, val);
2963 break;
2964 default:
2965 WARN(1, "unhandled write to CR%d", cr);
2966 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2967 return 1;
2968 }
2969 } else { /* mov from cr */
2970 switch (cr) {
2971 case 0:
2972 val = kvm_read_cr0(&svm->vcpu);
2973 break;
2974 case 2:
2975 val = svm->vcpu.arch.cr2;
2976 break;
2977 case 3:
2978 val = kvm_read_cr3(&svm->vcpu);
2979 break;
2980 case 4:
2981 val = kvm_read_cr4(&svm->vcpu);
2982 break;
2983 case 8:
2984 val = kvm_get_cr8(&svm->vcpu);
2985 break;
2986 default:
2987 WARN(1, "unhandled read from CR%d", cr);
2988 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2989 return 1;
2990 }
2991 kvm_register_write(&svm->vcpu, reg, val);
2992 }
2993 kvm_complete_insn_gp(&svm->vcpu, err);
2994
2995 return 1;
2996 }
2997
2998 static int dr_interception(struct vcpu_svm *svm)
2999 {
3000 int reg, dr;
3001 unsigned long val;
3002 int err;
3003
3004 if (svm->vcpu.guest_debug == 0) {
3005 /*
3006 * No more DR vmexits; force a reload of the debug registers
3007 * and reenter on this instruction. The next vmexit will
3008 * retrieve the full state of the debug registers.
3009 */
3010 clr_dr_intercepts(svm);
3011 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3012 return 1;
3013 }
3014
3015 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3016 return emulate_on_interception(svm);
3017
3018 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3019 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3020
3021 if (dr >= 16) { /* mov to DRn */
3022 val = kvm_register_read(&svm->vcpu, reg);
3023 kvm_set_dr(&svm->vcpu, dr - 16, val);
3024 } else {
3025 err = kvm_get_dr(&svm->vcpu, dr, &val);
3026 if (!err)
3027 kvm_register_write(&svm->vcpu, reg, val);
3028 }
3029
3030 skip_emulated_instruction(&svm->vcpu);
3031
3032 return 1;
3033 }
3034
3035 static int cr8_write_interception(struct vcpu_svm *svm)
3036 {
3037 struct kvm_run *kvm_run = svm->vcpu.run;
3038 int r;
3039
3040 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3041 /* instruction emulation calls kvm_set_cr8() */
3042 r = cr_interception(svm);
3043 if (irqchip_in_kernel(svm->vcpu.kvm))
3044 return r;
3045 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3046 return r;
3047 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3048 return 0;
3049 }
3050
3051 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3052 {
3053 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3054 return vmcb->control.tsc_offset +
3055 svm_scale_tsc(vcpu, host_tsc);
3056 }
3057
3058 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3059 {
3060 struct vcpu_svm *svm = to_svm(vcpu);
3061
3062 switch (ecx) {
3063 case MSR_IA32_TSC: {
3064 *data = svm->vmcb->control.tsc_offset +
3065 svm_scale_tsc(vcpu, native_read_tsc());
3066
3067 break;
3068 }
3069 case MSR_STAR:
3070 *data = svm->vmcb->save.star;
3071 break;
3072 #ifdef CONFIG_X86_64
3073 case MSR_LSTAR:
3074 *data = svm->vmcb->save.lstar;
3075 break;
3076 case MSR_CSTAR:
3077 *data = svm->vmcb->save.cstar;
3078 break;
3079 case MSR_KERNEL_GS_BASE:
3080 *data = svm->vmcb->save.kernel_gs_base;
3081 break;
3082 case MSR_SYSCALL_MASK:
3083 *data = svm->vmcb->save.sfmask;
3084 break;
3085 #endif
3086 case MSR_IA32_SYSENTER_CS:
3087 *data = svm->vmcb->save.sysenter_cs;
3088 break;
3089 case MSR_IA32_SYSENTER_EIP:
3090 *data = svm->sysenter_eip;
3091 break;
3092 case MSR_IA32_SYSENTER_ESP:
3093 *data = svm->sysenter_esp;
3094 break;
3095 /*
3096 * Nobody will change the following 5 values in the VMCB so we can
3097 * safely return them on rdmsr. They will always be 0 until LBRV is
3098 * implemented.
3099 */
3100 case MSR_IA32_DEBUGCTLMSR:
3101 *data = svm->vmcb->save.dbgctl;
3102 break;
3103 case MSR_IA32_LASTBRANCHFROMIP:
3104 *data = svm->vmcb->save.br_from;
3105 break;
3106 case MSR_IA32_LASTBRANCHTOIP:
3107 *data = svm->vmcb->save.br_to;
3108 break;
3109 case MSR_IA32_LASTINTFROMIP:
3110 *data = svm->vmcb->save.last_excp_from;
3111 break;
3112 case MSR_IA32_LASTINTTOIP:
3113 *data = svm->vmcb->save.last_excp_to;
3114 break;
3115 case MSR_VM_HSAVE_PA:
3116 *data = svm->nested.hsave_msr;
3117 break;
3118 case MSR_VM_CR:
3119 *data = svm->nested.vm_cr_msr;
3120 break;
3121 case MSR_IA32_UCODE_REV:
3122 *data = 0x01000065;
3123 break;
3124 default:
3125 return kvm_get_msr_common(vcpu, ecx, data);
3126 }
3127 return 0;
3128 }
3129
3130 static int rdmsr_interception(struct vcpu_svm *svm)
3131 {
3132 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3133 u64 data;
3134
3135 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3136 trace_kvm_msr_read_ex(ecx);
3137 kvm_inject_gp(&svm->vcpu, 0);
3138 } else {
3139 trace_kvm_msr_read(ecx, data);
3140
3141 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3142 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3143 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3144 skip_emulated_instruction(&svm->vcpu);
3145 }
3146 return 1;
3147 }
3148
3149 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151 struct vcpu_svm *svm = to_svm(vcpu);
3152 int svm_dis, chg_mask;
3153
3154 if (data & ~SVM_VM_CR_VALID_MASK)
3155 return 1;
3156
3157 chg_mask = SVM_VM_CR_VALID_MASK;
3158
3159 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3160 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3161
3162 svm->nested.vm_cr_msr &= ~chg_mask;
3163 svm->nested.vm_cr_msr |= (data & chg_mask);
3164
3165 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3166
3167 /* check for svm_disable while efer.svme is set */
3168 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3169 return 1;
3170
3171 return 0;
3172 }
3173
3174 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3175 {
3176 struct vcpu_svm *svm = to_svm(vcpu);
3177
3178 u32 ecx = msr->index;
3179 u64 data = msr->data;
3180 switch (ecx) {
3181 case MSR_IA32_TSC:
3182 kvm_write_tsc(vcpu, msr);
3183 break;
3184 case MSR_STAR:
3185 svm->vmcb->save.star = data;
3186 break;
3187 #ifdef CONFIG_X86_64
3188 case MSR_LSTAR:
3189 svm->vmcb->save.lstar = data;
3190 break;
3191 case MSR_CSTAR:
3192 svm->vmcb->save.cstar = data;
3193 break;
3194 case MSR_KERNEL_GS_BASE:
3195 svm->vmcb->save.kernel_gs_base = data;
3196 break;
3197 case MSR_SYSCALL_MASK:
3198 svm->vmcb->save.sfmask = data;
3199 break;
3200 #endif
3201 case MSR_IA32_SYSENTER_CS:
3202 svm->vmcb->save.sysenter_cs = data;
3203 break;
3204 case MSR_IA32_SYSENTER_EIP:
3205 svm->sysenter_eip = data;
3206 svm->vmcb->save.sysenter_eip = data;
3207 break;
3208 case MSR_IA32_SYSENTER_ESP:
3209 svm->sysenter_esp = data;
3210 svm->vmcb->save.sysenter_esp = data;
3211 break;
3212 case MSR_IA32_DEBUGCTLMSR:
3213 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3214 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3215 __func__, data);
3216 break;
3217 }
3218 if (data & DEBUGCTL_RESERVED_BITS)
3219 return 1;
3220
3221 svm->vmcb->save.dbgctl = data;
3222 mark_dirty(svm->vmcb, VMCB_LBR);
3223 if (data & (1ULL<<0))
3224 svm_enable_lbrv(svm);
3225 else
3226 svm_disable_lbrv(svm);
3227 break;
3228 case MSR_VM_HSAVE_PA:
3229 svm->nested.hsave_msr = data;
3230 break;
3231 case MSR_VM_CR:
3232 return svm_set_vm_cr(vcpu, data);
3233 case MSR_VM_IGNNE:
3234 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3235 break;
3236 default:
3237 return kvm_set_msr_common(vcpu, msr);
3238 }
3239 return 0;
3240 }
3241
3242 static int wrmsr_interception(struct vcpu_svm *svm)
3243 {
3244 struct msr_data msr;
3245 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3246 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3247 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3248
3249 msr.data = data;
3250 msr.index = ecx;
3251 msr.host_initiated = false;
3252
3253 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3254 if (kvm_set_msr(&svm->vcpu, &msr)) {
3255 trace_kvm_msr_write_ex(ecx, data);
3256 kvm_inject_gp(&svm->vcpu, 0);
3257 } else {
3258 trace_kvm_msr_write(ecx, data);
3259 skip_emulated_instruction(&svm->vcpu);
3260 }
3261 return 1;
3262 }
3263
3264 static int msr_interception(struct vcpu_svm *svm)
3265 {
3266 if (svm->vmcb->control.exit_info_1)
3267 return wrmsr_interception(svm);
3268 else
3269 return rdmsr_interception(svm);
3270 }
3271
3272 static int interrupt_window_interception(struct vcpu_svm *svm)
3273 {
3274 struct kvm_run *kvm_run = svm->vcpu.run;
3275
3276 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3277 svm_clear_vintr(svm);
3278 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3279 mark_dirty(svm->vmcb, VMCB_INTR);
3280 ++svm->vcpu.stat.irq_window_exits;
3281 /*
3282 * If the user space waits to inject interrupts, exit as soon as
3283 * possible
3284 */
3285 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3286 kvm_run->request_interrupt_window &&
3287 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3288 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3289 return 0;
3290 }
3291
3292 return 1;
3293 }
3294
3295 static int pause_interception(struct vcpu_svm *svm)
3296 {
3297 kvm_vcpu_on_spin(&(svm->vcpu));
3298 return 1;
3299 }
3300
3301 static int nop_interception(struct vcpu_svm *svm)
3302 {
3303 skip_emulated_instruction(&(svm->vcpu));
3304 return 1;
3305 }
3306
3307 static int monitor_interception(struct vcpu_svm *svm)
3308 {
3309 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3310 return nop_interception(svm);
3311 }
3312
3313 static int mwait_interception(struct vcpu_svm *svm)
3314 {
3315 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3316 return nop_interception(svm);
3317 }
3318
3319 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3320 [SVM_EXIT_READ_CR0] = cr_interception,
3321 [SVM_EXIT_READ_CR3] = cr_interception,
3322 [SVM_EXIT_READ_CR4] = cr_interception,
3323 [SVM_EXIT_READ_CR8] = cr_interception,
3324 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3325 [SVM_EXIT_WRITE_CR0] = cr_interception,
3326 [SVM_EXIT_WRITE_CR3] = cr_interception,
3327 [SVM_EXIT_WRITE_CR4] = cr_interception,
3328 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3329 [SVM_EXIT_READ_DR0] = dr_interception,
3330 [SVM_EXIT_READ_DR1] = dr_interception,
3331 [SVM_EXIT_READ_DR2] = dr_interception,
3332 [SVM_EXIT_READ_DR3] = dr_interception,
3333 [SVM_EXIT_READ_DR4] = dr_interception,
3334 [SVM_EXIT_READ_DR5] = dr_interception,
3335 [SVM_EXIT_READ_DR6] = dr_interception,
3336 [SVM_EXIT_READ_DR7] = dr_interception,
3337 [SVM_EXIT_WRITE_DR0] = dr_interception,
3338 [SVM_EXIT_WRITE_DR1] = dr_interception,
3339 [SVM_EXIT_WRITE_DR2] = dr_interception,
3340 [SVM_EXIT_WRITE_DR3] = dr_interception,
3341 [SVM_EXIT_WRITE_DR4] = dr_interception,
3342 [SVM_EXIT_WRITE_DR5] = dr_interception,
3343 [SVM_EXIT_WRITE_DR6] = dr_interception,
3344 [SVM_EXIT_WRITE_DR7] = dr_interception,
3345 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3346 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3347 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3348 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3349 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3350 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3351 [SVM_EXIT_INTR] = intr_interception,
3352 [SVM_EXIT_NMI] = nmi_interception,
3353 [SVM_EXIT_SMI] = nop_on_interception,
3354 [SVM_EXIT_INIT] = nop_on_interception,
3355 [SVM_EXIT_VINTR] = interrupt_window_interception,
3356 [SVM_EXIT_RDPMC] = rdpmc_interception,
3357 [SVM_EXIT_CPUID] = cpuid_interception,
3358 [SVM_EXIT_IRET] = iret_interception,
3359 [SVM_EXIT_INVD] = emulate_on_interception,
3360 [SVM_EXIT_PAUSE] = pause_interception,
3361 [SVM_EXIT_HLT] = halt_interception,
3362 [SVM_EXIT_INVLPG] = invlpg_interception,
3363 [SVM_EXIT_INVLPGA] = invlpga_interception,
3364 [SVM_EXIT_IOIO] = io_interception,
3365 [SVM_EXIT_MSR] = msr_interception,
3366 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3367 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3368 [SVM_EXIT_VMRUN] = vmrun_interception,
3369 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3370 [SVM_EXIT_VMLOAD] = vmload_interception,
3371 [SVM_EXIT_VMSAVE] = vmsave_interception,
3372 [SVM_EXIT_STGI] = stgi_interception,
3373 [SVM_EXIT_CLGI] = clgi_interception,
3374 [SVM_EXIT_SKINIT] = skinit_interception,
3375 [SVM_EXIT_WBINVD] = emulate_on_interception,
3376 [SVM_EXIT_MONITOR] = monitor_interception,
3377 [SVM_EXIT_MWAIT] = mwait_interception,
3378 [SVM_EXIT_XSETBV] = xsetbv_interception,
3379 [SVM_EXIT_NPF] = pf_interception,
3380 };
3381
3382 static void dump_vmcb(struct kvm_vcpu *vcpu)
3383 {
3384 struct vcpu_svm *svm = to_svm(vcpu);
3385 struct vmcb_control_area *control = &svm->vmcb->control;
3386 struct vmcb_save_area *save = &svm->vmcb->save;
3387
3388 pr_err("VMCB Control Area:\n");
3389 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3390 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3391 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3392 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3393 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3394 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3395 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3396 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3397 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3398 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3399 pr_err("%-20s%d\n", "asid:", control->asid);
3400 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3401 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3402 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3403 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3404 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3405 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3406 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3407 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3408 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3409 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3410 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3411 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3412 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3413 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3414 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3415 pr_err("VMCB State Save Area:\n");
3416 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417 "es:",
3418 save->es.selector, save->es.attrib,
3419 save->es.limit, save->es.base);
3420 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3421 "cs:",
3422 save->cs.selector, save->cs.attrib,
3423 save->cs.limit, save->cs.base);
3424 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3425 "ss:",
3426 save->ss.selector, save->ss.attrib,
3427 save->ss.limit, save->ss.base);
3428 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3429 "ds:",
3430 save->ds.selector, save->ds.attrib,
3431 save->ds.limit, save->ds.base);
3432 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3433 "fs:",
3434 save->fs.selector, save->fs.attrib,
3435 save->fs.limit, save->fs.base);
3436 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3437 "gs:",
3438 save->gs.selector, save->gs.attrib,
3439 save->gs.limit, save->gs.base);
3440 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3441 "gdtr:",
3442 save->gdtr.selector, save->gdtr.attrib,
3443 save->gdtr.limit, save->gdtr.base);
3444 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3445 "ldtr:",
3446 save->ldtr.selector, save->ldtr.attrib,
3447 save->ldtr.limit, save->ldtr.base);
3448 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3449 "idtr:",
3450 save->idtr.selector, save->idtr.attrib,
3451 save->idtr.limit, save->idtr.base);
3452 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3453 "tr:",
3454 save->tr.selector, save->tr.attrib,
3455 save->tr.limit, save->tr.base);
3456 pr_err("cpl: %d efer: %016llx\n",
3457 save->cpl, save->efer);
3458 pr_err("%-15s %016llx %-13s %016llx\n",
3459 "cr0:", save->cr0, "cr2:", save->cr2);
3460 pr_err("%-15s %016llx %-13s %016llx\n",
3461 "cr3:", save->cr3, "cr4:", save->cr4);
3462 pr_err("%-15s %016llx %-13s %016llx\n",
3463 "dr6:", save->dr6, "dr7:", save->dr7);
3464 pr_err("%-15s %016llx %-13s %016llx\n",
3465 "rip:", save->rip, "rflags:", save->rflags);
3466 pr_err("%-15s %016llx %-13s %016llx\n",
3467 "rsp:", save->rsp, "rax:", save->rax);
3468 pr_err("%-15s %016llx %-13s %016llx\n",
3469 "star:", save->star, "lstar:", save->lstar);
3470 pr_err("%-15s %016llx %-13s %016llx\n",
3471 "cstar:", save->cstar, "sfmask:", save->sfmask);
3472 pr_err("%-15s %016llx %-13s %016llx\n",
3473 "kernel_gs_base:", save->kernel_gs_base,
3474 "sysenter_cs:", save->sysenter_cs);
3475 pr_err("%-15s %016llx %-13s %016llx\n",
3476 "sysenter_esp:", save->sysenter_esp,
3477 "sysenter_eip:", save->sysenter_eip);
3478 pr_err("%-15s %016llx %-13s %016llx\n",
3479 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3480 pr_err("%-15s %016llx %-13s %016llx\n",
3481 "br_from:", save->br_from, "br_to:", save->br_to);
3482 pr_err("%-15s %016llx %-13s %016llx\n",
3483 "excp_from:", save->last_excp_from,
3484 "excp_to:", save->last_excp_to);
3485 }
3486
3487 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3488 {
3489 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3490
3491 *info1 = control->exit_info_1;
3492 *info2 = control->exit_info_2;
3493 }
3494
3495 static int handle_exit(struct kvm_vcpu *vcpu)
3496 {
3497 struct vcpu_svm *svm = to_svm(vcpu);
3498 struct kvm_run *kvm_run = vcpu->run;
3499 u32 exit_code = svm->vmcb->control.exit_code;
3500
3501 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3502 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3503 if (npt_enabled)
3504 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3505
3506 if (unlikely(svm->nested.exit_required)) {
3507 nested_svm_vmexit(svm);
3508 svm->nested.exit_required = false;
3509
3510 return 1;
3511 }
3512
3513 if (is_guest_mode(vcpu)) {
3514 int vmexit;
3515
3516 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3517 svm->vmcb->control.exit_info_1,
3518 svm->vmcb->control.exit_info_2,
3519 svm->vmcb->control.exit_int_info,
3520 svm->vmcb->control.exit_int_info_err,
3521 KVM_ISA_SVM);
3522
3523 vmexit = nested_svm_exit_special(svm);
3524
3525 if (vmexit == NESTED_EXIT_CONTINUE)
3526 vmexit = nested_svm_exit_handled(svm);
3527
3528 if (vmexit == NESTED_EXIT_DONE)
3529 return 1;
3530 }
3531
3532 svm_complete_interrupts(svm);
3533
3534 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3535 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3536 kvm_run->fail_entry.hardware_entry_failure_reason
3537 = svm->vmcb->control.exit_code;
3538 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3539 dump_vmcb(vcpu);
3540 return 0;
3541 }
3542
3543 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3544 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3545 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3546 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3547 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3548 "exit_code 0x%x\n",
3549 __func__, svm->vmcb->control.exit_int_info,
3550 exit_code);
3551
3552 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3553 || !svm_exit_handlers[exit_code]) {
3554 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3555 kvm_queue_exception(vcpu, UD_VECTOR);
3556 return 1;
3557 }
3558
3559 return svm_exit_handlers[exit_code](svm);
3560 }
3561
3562 static void reload_tss(struct kvm_vcpu *vcpu)
3563 {
3564 int cpu = raw_smp_processor_id();
3565
3566 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3567 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3568 load_TR_desc();
3569 }
3570
3571 static void pre_svm_run(struct vcpu_svm *svm)
3572 {
3573 int cpu = raw_smp_processor_id();
3574
3575 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3576
3577 /* FIXME: handle wraparound of asid_generation */
3578 if (svm->asid_generation != sd->asid_generation)
3579 new_asid(svm, sd);
3580 }
3581
3582 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3583 {
3584 struct vcpu_svm *svm = to_svm(vcpu);
3585
3586 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3587 vcpu->arch.hflags |= HF_NMI_MASK;
3588 set_intercept(svm, INTERCEPT_IRET);
3589 ++vcpu->stat.nmi_injections;
3590 }
3591
3592 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3593 {
3594 struct vmcb_control_area *control;
3595
3596 control = &svm->vmcb->control;
3597 control->int_vector = irq;
3598 control->int_ctl &= ~V_INTR_PRIO_MASK;
3599 control->int_ctl |= V_IRQ_MASK |
3600 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3601 mark_dirty(svm->vmcb, VMCB_INTR);
3602 }
3603
3604 static void svm_set_irq(struct kvm_vcpu *vcpu)
3605 {
3606 struct vcpu_svm *svm = to_svm(vcpu);
3607
3608 BUG_ON(!(gif_set(svm)));
3609
3610 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3611 ++vcpu->stat.irq_injections;
3612
3613 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3614 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3615 }
3616
3617 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3618 {
3619 struct vcpu_svm *svm = to_svm(vcpu);
3620
3621 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3622 return;
3623
3624 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3625
3626 if (irr == -1)
3627 return;
3628
3629 if (tpr >= irr)
3630 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3631 }
3632
3633 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3634 {
3635 return;
3636 }
3637
3638 static int svm_vm_has_apicv(struct kvm *kvm)
3639 {
3640 return 0;
3641 }
3642
3643 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3644 {
3645 return;
3646 }
3647
3648 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3649 {
3650 return;
3651 }
3652
3653 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3654 {
3655 return;
3656 }
3657
3658 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3659 {
3660 struct vcpu_svm *svm = to_svm(vcpu);
3661 struct vmcb *vmcb = svm->vmcb;
3662 int ret;
3663 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3664 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3665 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3666
3667 return ret;
3668 }
3669
3670 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3671 {
3672 struct vcpu_svm *svm = to_svm(vcpu);
3673
3674 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3675 }
3676
3677 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3678 {
3679 struct vcpu_svm *svm = to_svm(vcpu);
3680
3681 if (masked) {
3682 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3683 set_intercept(svm, INTERCEPT_IRET);
3684 } else {
3685 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3686 clr_intercept(svm, INTERCEPT_IRET);
3687 }
3688 }
3689
3690 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3691 {
3692 struct vcpu_svm *svm = to_svm(vcpu);
3693 struct vmcb *vmcb = svm->vmcb;
3694 int ret;
3695
3696 if (!gif_set(svm) ||
3697 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3698 return 0;
3699
3700 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3701
3702 if (is_guest_mode(vcpu))
3703 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3704
3705 return ret;
3706 }
3707
3708 static void enable_irq_window(struct kvm_vcpu *vcpu)
3709 {
3710 struct vcpu_svm *svm = to_svm(vcpu);
3711
3712 /*
3713 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3714 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3715 * get that intercept, this function will be called again though and
3716 * we'll get the vintr intercept.
3717 */
3718 if (gif_set(svm) && nested_svm_intr(svm)) {
3719 svm_set_vintr(svm);
3720 svm_inject_irq(svm, 0x0);
3721 }
3722 }
3723
3724 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3725 {
3726 struct vcpu_svm *svm = to_svm(vcpu);
3727
3728 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3729 == HF_NMI_MASK)
3730 return; /* IRET will cause a vm exit */
3731
3732 /*
3733 * Something prevents NMI from been injected. Single step over possible
3734 * problem (IRET or exception injection or interrupt shadow)
3735 */
3736 svm->nmi_singlestep = true;
3737 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3738 update_db_bp_intercept(vcpu);
3739 }
3740
3741 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3742 {
3743 return 0;
3744 }
3745
3746 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3747 {
3748 struct vcpu_svm *svm = to_svm(vcpu);
3749
3750 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3751 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3752 else
3753 svm->asid_generation--;
3754 }
3755
3756 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3757 {
3758 }
3759
3760 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3761 {
3762 struct vcpu_svm *svm = to_svm(vcpu);
3763
3764 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3765 return;
3766
3767 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3768 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3769 kvm_set_cr8(vcpu, cr8);
3770 }
3771 }
3772
3773 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3774 {
3775 struct vcpu_svm *svm = to_svm(vcpu);
3776 u64 cr8;
3777
3778 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3779 return;
3780
3781 cr8 = kvm_get_cr8(vcpu);
3782 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3783 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3784 }
3785
3786 static void svm_complete_interrupts(struct vcpu_svm *svm)
3787 {
3788 u8 vector;
3789 int type;
3790 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3791 unsigned int3_injected = svm->int3_injected;
3792
3793 svm->int3_injected = 0;
3794
3795 /*
3796 * If we've made progress since setting HF_IRET_MASK, we've
3797 * executed an IRET and can allow NMI injection.
3798 */
3799 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3800 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3801 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3802 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3803 }
3804
3805 svm->vcpu.arch.nmi_injected = false;
3806 kvm_clear_exception_queue(&svm->vcpu);
3807 kvm_clear_interrupt_queue(&svm->vcpu);
3808
3809 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3810 return;
3811
3812 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3813
3814 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3815 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3816
3817 switch (type) {
3818 case SVM_EXITINTINFO_TYPE_NMI:
3819 svm->vcpu.arch.nmi_injected = true;
3820 break;
3821 case SVM_EXITINTINFO_TYPE_EXEPT:
3822 /*
3823 * In case of software exceptions, do not reinject the vector,
3824 * but re-execute the instruction instead. Rewind RIP first
3825 * if we emulated INT3 before.
3826 */
3827 if (kvm_exception_is_soft(vector)) {
3828 if (vector == BP_VECTOR && int3_injected &&
3829 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3830 kvm_rip_write(&svm->vcpu,
3831 kvm_rip_read(&svm->vcpu) -
3832 int3_injected);
3833 break;
3834 }
3835 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3836 u32 err = svm->vmcb->control.exit_int_info_err;
3837 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3838
3839 } else
3840 kvm_requeue_exception(&svm->vcpu, vector);
3841 break;
3842 case SVM_EXITINTINFO_TYPE_INTR:
3843 kvm_queue_interrupt(&svm->vcpu, vector, false);
3844 break;
3845 default:
3846 break;
3847 }
3848 }
3849
3850 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3851 {
3852 struct vcpu_svm *svm = to_svm(vcpu);
3853 struct vmcb_control_area *control = &svm->vmcb->control;
3854
3855 control->exit_int_info = control->event_inj;
3856 control->exit_int_info_err = control->event_inj_err;
3857 control->event_inj = 0;
3858 svm_complete_interrupts(svm);
3859 }
3860
3861 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3862 {
3863 struct vcpu_svm *svm = to_svm(vcpu);
3864
3865 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3866 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3867 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3868
3869 /*
3870 * A vmexit emulation is required before the vcpu can be executed
3871 * again.
3872 */
3873 if (unlikely(svm->nested.exit_required))
3874 return;
3875
3876 pre_svm_run(svm);
3877
3878 sync_lapic_to_cr8(vcpu);
3879
3880 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3881
3882 clgi();
3883
3884 local_irq_enable();
3885
3886 asm volatile (
3887 "push %%" _ASM_BP "; \n\t"
3888 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3889 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3890 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3891 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3892 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3893 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3894 #ifdef CONFIG_X86_64
3895 "mov %c[r8](%[svm]), %%r8 \n\t"
3896 "mov %c[r9](%[svm]), %%r9 \n\t"
3897 "mov %c[r10](%[svm]), %%r10 \n\t"
3898 "mov %c[r11](%[svm]), %%r11 \n\t"
3899 "mov %c[r12](%[svm]), %%r12 \n\t"
3900 "mov %c[r13](%[svm]), %%r13 \n\t"
3901 "mov %c[r14](%[svm]), %%r14 \n\t"
3902 "mov %c[r15](%[svm]), %%r15 \n\t"
3903 #endif
3904
3905 /* Enter guest mode */
3906 "push %%" _ASM_AX " \n\t"
3907 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3908 __ex(SVM_VMLOAD) "\n\t"
3909 __ex(SVM_VMRUN) "\n\t"
3910 __ex(SVM_VMSAVE) "\n\t"
3911 "pop %%" _ASM_AX " \n\t"
3912
3913 /* Save guest registers, load host registers */
3914 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3915 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3916 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3917 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3918 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3919 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3920 #ifdef CONFIG_X86_64
3921 "mov %%r8, %c[r8](%[svm]) \n\t"
3922 "mov %%r9, %c[r9](%[svm]) \n\t"
3923 "mov %%r10, %c[r10](%[svm]) \n\t"
3924 "mov %%r11, %c[r11](%[svm]) \n\t"
3925 "mov %%r12, %c[r12](%[svm]) \n\t"
3926 "mov %%r13, %c[r13](%[svm]) \n\t"
3927 "mov %%r14, %c[r14](%[svm]) \n\t"
3928 "mov %%r15, %c[r15](%[svm]) \n\t"
3929 #endif
3930 "pop %%" _ASM_BP
3931 :
3932 : [svm]"a"(svm),
3933 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3934 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3935 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3936 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3937 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3938 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3939 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3940 #ifdef CONFIG_X86_64
3941 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3942 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3943 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3944 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3945 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3946 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3947 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3948 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3949 #endif
3950 : "cc", "memory"
3951 #ifdef CONFIG_X86_64
3952 , "rbx", "rcx", "rdx", "rsi", "rdi"
3953 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3954 #else
3955 , "ebx", "ecx", "edx", "esi", "edi"
3956 #endif
3957 );
3958
3959 #ifdef CONFIG_X86_64
3960 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3961 #else
3962 loadsegment(fs, svm->host.fs);
3963 #ifndef CONFIG_X86_32_LAZY_GS
3964 loadsegment(gs, svm->host.gs);
3965 #endif
3966 #endif
3967
3968 reload_tss(vcpu);
3969
3970 local_irq_disable();
3971
3972 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3973 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3974 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3975 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3976
3977 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3978
3979 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3980 kvm_before_handle_nmi(&svm->vcpu);
3981
3982 stgi();
3983
3984 /* Any pending NMI will happen here */
3985
3986 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3987 kvm_after_handle_nmi(&svm->vcpu);
3988
3989 sync_cr8_to_lapic(vcpu);
3990
3991 svm->next_rip = 0;
3992
3993 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3994
3995 /* if exit due to PF check for async PF */
3996 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3997 svm->apf_reason = kvm_read_and_reset_pf_reason();
3998
3999 if (npt_enabled) {
4000 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4001 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4002 }
4003
4004 /*
4005 * We need to handle MC intercepts here before the vcpu has a chance to
4006 * change the physical cpu
4007 */
4008 if (unlikely(svm->vmcb->control.exit_code ==
4009 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4010 svm_handle_mce(svm);
4011
4012 mark_all_clean(svm->vmcb);
4013 }
4014
4015 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4016 {
4017 struct vcpu_svm *svm = to_svm(vcpu);
4018
4019 svm->vmcb->save.cr3 = root;
4020 mark_dirty(svm->vmcb, VMCB_CR);
4021 svm_flush_tlb(vcpu);
4022 }
4023
4024 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4025 {
4026 struct vcpu_svm *svm = to_svm(vcpu);
4027
4028 svm->vmcb->control.nested_cr3 = root;
4029 mark_dirty(svm->vmcb, VMCB_NPT);
4030
4031 /* Also sync guest cr3 here in case we live migrate */
4032 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4033 mark_dirty(svm->vmcb, VMCB_CR);
4034
4035 svm_flush_tlb(vcpu);
4036 }
4037
4038 static int is_disabled(void)
4039 {
4040 u64 vm_cr;
4041
4042 rdmsrl(MSR_VM_CR, vm_cr);
4043 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 static void
4050 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4051 {
4052 /*
4053 * Patch in the VMMCALL instruction:
4054 */
4055 hypercall[0] = 0x0f;
4056 hypercall[1] = 0x01;
4057 hypercall[2] = 0xd9;
4058 }
4059
4060 static void svm_check_processor_compat(void *rtn)
4061 {
4062 *(int *)rtn = 0;
4063 }
4064
4065 static bool svm_cpu_has_accelerated_tpr(void)
4066 {
4067 return false;
4068 }
4069
4070 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4071 {
4072 return 0;
4073 }
4074
4075 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4076 {
4077 }
4078
4079 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4080 {
4081 switch (func) {
4082 case 0x80000001:
4083 if (nested)
4084 entry->ecx |= (1 << 2); /* Set SVM bit */
4085 break;
4086 case 0x8000000A:
4087 entry->eax = 1; /* SVM revision 1 */
4088 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4089 ASID emulation to nested SVM */
4090 entry->ecx = 0; /* Reserved */
4091 entry->edx = 0; /* Per default do not support any
4092 additional features */
4093
4094 /* Support next_rip if host supports it */
4095 if (boot_cpu_has(X86_FEATURE_NRIPS))
4096 entry->edx |= SVM_FEATURE_NRIP;
4097
4098 /* Support NPT for the guest if enabled */
4099 if (npt_enabled)
4100 entry->edx |= SVM_FEATURE_NPT;
4101
4102 break;
4103 }
4104 }
4105
4106 static int svm_get_lpage_level(void)
4107 {
4108 return PT_PDPE_LEVEL;
4109 }
4110
4111 static bool svm_rdtscp_supported(void)
4112 {
4113 return false;
4114 }
4115
4116 static bool svm_invpcid_supported(void)
4117 {
4118 return false;
4119 }
4120
4121 static bool svm_mpx_supported(void)
4122 {
4123 return false;
4124 }
4125
4126 static bool svm_has_wbinvd_exit(void)
4127 {
4128 return true;
4129 }
4130
4131 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4132 {
4133 struct vcpu_svm *svm = to_svm(vcpu);
4134
4135 set_exception_intercept(svm, NM_VECTOR);
4136 update_cr0_intercept(svm);
4137 }
4138
4139 #define PRE_EX(exit) { .exit_code = (exit), \
4140 .stage = X86_ICPT_PRE_EXCEPT, }
4141 #define POST_EX(exit) { .exit_code = (exit), \
4142 .stage = X86_ICPT_POST_EXCEPT, }
4143 #define POST_MEM(exit) { .exit_code = (exit), \
4144 .stage = X86_ICPT_POST_MEMACCESS, }
4145
4146 static const struct __x86_intercept {
4147 u32 exit_code;
4148 enum x86_intercept_stage stage;
4149 } x86_intercept_map[] = {
4150 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4151 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4152 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4153 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4154 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4155 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4156 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4157 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4158 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4159 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4160 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4161 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4162 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4163 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4164 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4165 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4166 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4167 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4168 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4169 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4170 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4171 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4172 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4173 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4174 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4175 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4176 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4177 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4178 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4179 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4180 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4181 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4182 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4183 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4184 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4185 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4186 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4187 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4188 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4189 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4190 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4191 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4192 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4193 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4194 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4195 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4196 };
4197
4198 #undef PRE_EX
4199 #undef POST_EX
4200 #undef POST_MEM
4201
4202 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4203 struct x86_instruction_info *info,
4204 enum x86_intercept_stage stage)
4205 {
4206 struct vcpu_svm *svm = to_svm(vcpu);
4207 int vmexit, ret = X86EMUL_CONTINUE;
4208 struct __x86_intercept icpt_info;
4209 struct vmcb *vmcb = svm->vmcb;
4210
4211 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4212 goto out;
4213
4214 icpt_info = x86_intercept_map[info->intercept];
4215
4216 if (stage != icpt_info.stage)
4217 goto out;
4218
4219 switch (icpt_info.exit_code) {
4220 case SVM_EXIT_READ_CR0:
4221 if (info->intercept == x86_intercept_cr_read)
4222 icpt_info.exit_code += info->modrm_reg;
4223 break;
4224 case SVM_EXIT_WRITE_CR0: {
4225 unsigned long cr0, val;
4226 u64 intercept;
4227
4228 if (info->intercept == x86_intercept_cr_write)
4229 icpt_info.exit_code += info->modrm_reg;
4230
4231 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4232 info->intercept == x86_intercept_clts)
4233 break;
4234
4235 intercept = svm->nested.intercept;
4236
4237 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4238 break;
4239
4240 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4241 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4242
4243 if (info->intercept == x86_intercept_lmsw) {
4244 cr0 &= 0xfUL;
4245 val &= 0xfUL;
4246 /* lmsw can't clear PE - catch this here */
4247 if (cr0 & X86_CR0_PE)
4248 val |= X86_CR0_PE;
4249 }
4250
4251 if (cr0 ^ val)
4252 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4253
4254 break;
4255 }
4256 case SVM_EXIT_READ_DR0:
4257 case SVM_EXIT_WRITE_DR0:
4258 icpt_info.exit_code += info->modrm_reg;
4259 break;
4260 case SVM_EXIT_MSR:
4261 if (info->intercept == x86_intercept_wrmsr)
4262 vmcb->control.exit_info_1 = 1;
4263 else
4264 vmcb->control.exit_info_1 = 0;
4265 break;
4266 case SVM_EXIT_PAUSE:
4267 /*
4268 * We get this for NOP only, but pause
4269 * is rep not, check this here
4270 */
4271 if (info->rep_prefix != REPE_PREFIX)
4272 goto out;
4273 case SVM_EXIT_IOIO: {
4274 u64 exit_info;
4275 u32 bytes;
4276
4277 if (info->intercept == x86_intercept_in ||
4278 info->intercept == x86_intercept_ins) {
4279 exit_info = ((info->src_val & 0xffff) << 16) |
4280 SVM_IOIO_TYPE_MASK;
4281 bytes = info->dst_bytes;
4282 } else {
4283 exit_info = (info->dst_val & 0xffff) << 16;
4284 bytes = info->src_bytes;
4285 }
4286
4287 if (info->intercept == x86_intercept_outs ||
4288 info->intercept == x86_intercept_ins)
4289 exit_info |= SVM_IOIO_STR_MASK;
4290
4291 if (info->rep_prefix)
4292 exit_info |= SVM_IOIO_REP_MASK;
4293
4294 bytes = min(bytes, 4u);
4295
4296 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4297
4298 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4299
4300 vmcb->control.exit_info_1 = exit_info;
4301 vmcb->control.exit_info_2 = info->next_rip;
4302
4303 break;
4304 }
4305 default:
4306 break;
4307 }
4308
4309 vmcb->control.next_rip = info->next_rip;
4310 vmcb->control.exit_code = icpt_info.exit_code;
4311 vmexit = nested_svm_exit_handled(svm);
4312
4313 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4314 : X86EMUL_CONTINUE;
4315
4316 out:
4317 return ret;
4318 }
4319
4320 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4321 {
4322 local_irq_enable();
4323 }
4324
4325 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4326 {
4327 }
4328
4329 static struct kvm_x86_ops svm_x86_ops = {
4330 .cpu_has_kvm_support = has_svm,
4331 .disabled_by_bios = is_disabled,
4332 .hardware_setup = svm_hardware_setup,
4333 .hardware_unsetup = svm_hardware_unsetup,
4334 .check_processor_compatibility = svm_check_processor_compat,
4335 .hardware_enable = svm_hardware_enable,
4336 .hardware_disable = svm_hardware_disable,
4337 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4338
4339 .vcpu_create = svm_create_vcpu,
4340 .vcpu_free = svm_free_vcpu,
4341 .vcpu_reset = svm_vcpu_reset,
4342
4343 .prepare_guest_switch = svm_prepare_guest_switch,
4344 .vcpu_load = svm_vcpu_load,
4345 .vcpu_put = svm_vcpu_put,
4346
4347 .update_db_bp_intercept = update_db_bp_intercept,
4348 .get_msr = svm_get_msr,
4349 .set_msr = svm_set_msr,
4350 .get_segment_base = svm_get_segment_base,
4351 .get_segment = svm_get_segment,
4352 .set_segment = svm_set_segment,
4353 .get_cpl = svm_get_cpl,
4354 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4355 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4356 .decache_cr3 = svm_decache_cr3,
4357 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4358 .set_cr0 = svm_set_cr0,
4359 .set_cr3 = svm_set_cr3,
4360 .set_cr4 = svm_set_cr4,
4361 .set_efer = svm_set_efer,
4362 .get_idt = svm_get_idt,
4363 .set_idt = svm_set_idt,
4364 .get_gdt = svm_get_gdt,
4365 .set_gdt = svm_set_gdt,
4366 .get_dr6 = svm_get_dr6,
4367 .set_dr6 = svm_set_dr6,
4368 .set_dr7 = svm_set_dr7,
4369 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4370 .cache_reg = svm_cache_reg,
4371 .get_rflags = svm_get_rflags,
4372 .set_rflags = svm_set_rflags,
4373 .fpu_deactivate = svm_fpu_deactivate,
4374
4375 .tlb_flush = svm_flush_tlb,
4376
4377 .run = svm_vcpu_run,
4378 .handle_exit = handle_exit,
4379 .skip_emulated_instruction = skip_emulated_instruction,
4380 .set_interrupt_shadow = svm_set_interrupt_shadow,
4381 .get_interrupt_shadow = svm_get_interrupt_shadow,
4382 .patch_hypercall = svm_patch_hypercall,
4383 .set_irq = svm_set_irq,
4384 .set_nmi = svm_inject_nmi,
4385 .queue_exception = svm_queue_exception,
4386 .cancel_injection = svm_cancel_injection,
4387 .interrupt_allowed = svm_interrupt_allowed,
4388 .nmi_allowed = svm_nmi_allowed,
4389 .get_nmi_mask = svm_get_nmi_mask,
4390 .set_nmi_mask = svm_set_nmi_mask,
4391 .enable_nmi_window = enable_nmi_window,
4392 .enable_irq_window = enable_irq_window,
4393 .update_cr8_intercept = update_cr8_intercept,
4394 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4395 .vm_has_apicv = svm_vm_has_apicv,
4396 .load_eoi_exitmap = svm_load_eoi_exitmap,
4397 .hwapic_isr_update = svm_hwapic_isr_update,
4398 .sync_pir_to_irr = svm_sync_pir_to_irr,
4399
4400 .set_tss_addr = svm_set_tss_addr,
4401 .get_tdp_level = get_npt_level,
4402 .get_mt_mask = svm_get_mt_mask,
4403
4404 .get_exit_info = svm_get_exit_info,
4405
4406 .get_lpage_level = svm_get_lpage_level,
4407
4408 .cpuid_update = svm_cpuid_update,
4409
4410 .rdtscp_supported = svm_rdtscp_supported,
4411 .invpcid_supported = svm_invpcid_supported,
4412 .mpx_supported = svm_mpx_supported,
4413
4414 .set_supported_cpuid = svm_set_supported_cpuid,
4415
4416 .has_wbinvd_exit = svm_has_wbinvd_exit,
4417
4418 .set_tsc_khz = svm_set_tsc_khz,
4419 .read_tsc_offset = svm_read_tsc_offset,
4420 .write_tsc_offset = svm_write_tsc_offset,
4421 .adjust_tsc_offset = svm_adjust_tsc_offset,
4422 .compute_tsc_offset = svm_compute_tsc_offset,
4423 .read_l1_tsc = svm_read_l1_tsc,
4424
4425 .set_tdp_cr3 = set_tdp_cr3,
4426
4427 .check_intercept = svm_check_intercept,
4428 .handle_external_intr = svm_handle_external_intr,
4429
4430 .sched_in = svm_sched_in,
4431 };
4432
4433 static int __init svm_init(void)
4434 {
4435 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4436 __alignof__(struct vcpu_svm), THIS_MODULE);
4437 }
4438
4439 static void __exit svm_exit(void)
4440 {
4441 kvm_exit();
4442 }
4443
4444 module_init(svm_init)
4445 module_exit(svm_exit)