]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/svm.c
Merge branch 'sh/for-2.6.29' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28
29 #include <asm/desc.h>
30
31 #include <asm/virtext.h>
32
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
34
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
37
38 #define IOPM_ALLOC_ORDER 2
39 #define MSRPM_ALLOC_ORDER 1
40
41 #define DR7_GD_MASK (1 << 13)
42 #define DR6_BD_MASK (1 << 13)
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50
51 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
52
53 /* enable NPT for AMD64 and X86 with PAE */
54 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
55 static bool npt_enabled = true;
56 #else
57 static bool npt_enabled = false;
58 #endif
59 static int npt = 1;
60
61 module_param(npt, int, S_IRUGO);
62
63 static void kvm_reput_irq(struct vcpu_svm *svm);
64 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
65
66 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
67 {
68 return container_of(vcpu, struct vcpu_svm, vcpu);
69 }
70
71 static unsigned long iopm_base;
72
73 struct kvm_ldttss_desc {
74 u16 limit0;
75 u16 base0;
76 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
77 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
78 u32 base3;
79 u32 zero1;
80 } __attribute__((packed));
81
82 struct svm_cpu_data {
83 int cpu;
84
85 u64 asid_generation;
86 u32 max_asid;
87 u32 next_asid;
88 struct kvm_ldttss_desc *tss_desc;
89
90 struct page *save_area;
91 };
92
93 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
94 static uint32_t svm_features;
95
96 struct svm_init_data {
97 int cpu;
98 int r;
99 };
100
101 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
102
103 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
104 #define MSRS_RANGE_SIZE 2048
105 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
106
107 #define MAX_INST_SIZE 15
108
109 static inline u32 svm_has(u32 feat)
110 {
111 return svm_features & feat;
112 }
113
114 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
115 {
116 int word_index = __ffs(vcpu->arch.irq_summary);
117 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
118 int irq = word_index * BITS_PER_LONG + bit_index;
119
120 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
121 if (!vcpu->arch.irq_pending[word_index])
122 clear_bit(word_index, &vcpu->arch.irq_summary);
123 return irq;
124 }
125
126 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
127 {
128 set_bit(irq, vcpu->arch.irq_pending);
129 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
130 }
131
132 static inline void clgi(void)
133 {
134 asm volatile (__ex(SVM_CLGI));
135 }
136
137 static inline void stgi(void)
138 {
139 asm volatile (__ex(SVM_STGI));
140 }
141
142 static inline void invlpga(unsigned long addr, u32 asid)
143 {
144 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
145 }
146
147 static inline unsigned long kvm_read_cr2(void)
148 {
149 unsigned long cr2;
150
151 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
152 return cr2;
153 }
154
155 static inline void kvm_write_cr2(unsigned long val)
156 {
157 asm volatile ("mov %0, %%cr2" :: "r" (val));
158 }
159
160 static inline unsigned long read_dr6(void)
161 {
162 unsigned long dr6;
163
164 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
165 return dr6;
166 }
167
168 static inline void write_dr6(unsigned long val)
169 {
170 asm volatile ("mov %0, %%dr6" :: "r" (val));
171 }
172
173 static inline unsigned long read_dr7(void)
174 {
175 unsigned long dr7;
176
177 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
178 return dr7;
179 }
180
181 static inline void write_dr7(unsigned long val)
182 {
183 asm volatile ("mov %0, %%dr7" :: "r" (val));
184 }
185
186 static inline void force_new_asid(struct kvm_vcpu *vcpu)
187 {
188 to_svm(vcpu)->asid_generation--;
189 }
190
191 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
192 {
193 force_new_asid(vcpu);
194 }
195
196 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
197 {
198 if (!npt_enabled && !(efer & EFER_LMA))
199 efer &= ~EFER_LME;
200
201 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
202 vcpu->arch.shadow_efer = efer;
203 }
204
205 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
206 bool has_error_code, u32 error_code)
207 {
208 struct vcpu_svm *svm = to_svm(vcpu);
209
210 svm->vmcb->control.event_inj = nr
211 | SVM_EVTINJ_VALID
212 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
213 | SVM_EVTINJ_TYPE_EXEPT;
214 svm->vmcb->control.event_inj_err = error_code;
215 }
216
217 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
218 {
219 struct vcpu_svm *svm = to_svm(vcpu);
220
221 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
222 }
223
224 static int is_external_interrupt(u32 info)
225 {
226 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
228 }
229
230 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
231 {
232 struct vcpu_svm *svm = to_svm(vcpu);
233
234 if (!svm->next_rip) {
235 printk(KERN_DEBUG "%s: NOP\n", __func__);
236 return;
237 }
238 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
239 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
240 __func__, kvm_rip_read(vcpu), svm->next_rip);
241
242 kvm_rip_write(vcpu, svm->next_rip);
243 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245 vcpu->arch.interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250 const char *msg;
251
252 if (!cpu_has_svm(&msg)) {
253 printk(KERN_INFO "has_svn: %s\n", msg);
254 return 0;
255 }
256
257 return 1;
258 }
259
260 static void svm_hardware_disable(void *garbage)
261 {
262 cpu_svm_disable();
263 }
264
265 static void svm_hardware_enable(void *garbage)
266 {
267
268 struct svm_cpu_data *svm_data;
269 uint64_t efer;
270 struct desc_ptr gdt_descr;
271 struct desc_struct *gdt;
272 int me = raw_smp_processor_id();
273
274 if (!has_svm()) {
275 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
276 return;
277 }
278 svm_data = per_cpu(svm_data, me);
279
280 if (!svm_data) {
281 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
282 me);
283 return;
284 }
285
286 svm_data->asid_generation = 1;
287 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
288 svm_data->next_asid = svm_data->max_asid + 1;
289
290 asm volatile ("sgdt %0" : "=m"(gdt_descr));
291 gdt = (struct desc_struct *)gdt_descr.address;
292 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
293
294 rdmsrl(MSR_EFER, efer);
295 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
296
297 wrmsrl(MSR_VM_HSAVE_PA,
298 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
299 }
300
301 static void svm_cpu_uninit(int cpu)
302 {
303 struct svm_cpu_data *svm_data
304 = per_cpu(svm_data, raw_smp_processor_id());
305
306 if (!svm_data)
307 return;
308
309 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
310 __free_page(svm_data->save_area);
311 kfree(svm_data);
312 }
313
314 static int svm_cpu_init(int cpu)
315 {
316 struct svm_cpu_data *svm_data;
317 int r;
318
319 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
320 if (!svm_data)
321 return -ENOMEM;
322 svm_data->cpu = cpu;
323 svm_data->save_area = alloc_page(GFP_KERNEL);
324 r = -ENOMEM;
325 if (!svm_data->save_area)
326 goto err_1;
327
328 per_cpu(svm_data, cpu) = svm_data;
329
330 return 0;
331
332 err_1:
333 kfree(svm_data);
334 return r;
335
336 }
337
338 static void set_msr_interception(u32 *msrpm, unsigned msr,
339 int read, int write)
340 {
341 int i;
342
343 for (i = 0; i < NUM_MSR_MAPS; i++) {
344 if (msr >= msrpm_ranges[i] &&
345 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
346 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
347 msrpm_ranges[i]) * 2;
348
349 u32 *base = msrpm + (msr_offset / 32);
350 u32 msr_shift = msr_offset % 32;
351 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
352 *base = (*base & ~(0x3 << msr_shift)) |
353 (mask << msr_shift);
354 return;
355 }
356 }
357 BUG();
358 }
359
360 static void svm_vcpu_init_msrpm(u32 *msrpm)
361 {
362 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
363
364 #ifdef CONFIG_X86_64
365 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
366 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
367 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
368 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
369 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
370 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
371 #endif
372 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
373 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
374 set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
375 set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
376 }
377
378 static void svm_enable_lbrv(struct vcpu_svm *svm)
379 {
380 u32 *msrpm = svm->msrpm;
381
382 svm->vmcb->control.lbr_ctl = 1;
383 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
384 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
385 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
386 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
387 }
388
389 static void svm_disable_lbrv(struct vcpu_svm *svm)
390 {
391 u32 *msrpm = svm->msrpm;
392
393 svm->vmcb->control.lbr_ctl = 0;
394 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
395 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
396 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
397 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
398 }
399
400 static __init int svm_hardware_setup(void)
401 {
402 int cpu;
403 struct page *iopm_pages;
404 void *iopm_va;
405 int r;
406
407 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
408
409 if (!iopm_pages)
410 return -ENOMEM;
411
412 iopm_va = page_address(iopm_pages);
413 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
414 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
415 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
416
417 if (boot_cpu_has(X86_FEATURE_NX))
418 kvm_enable_efer_bits(EFER_NX);
419
420 for_each_online_cpu(cpu) {
421 r = svm_cpu_init(cpu);
422 if (r)
423 goto err;
424 }
425
426 svm_features = cpuid_edx(SVM_CPUID_FUNC);
427
428 if (!svm_has(SVM_FEATURE_NPT))
429 npt_enabled = false;
430
431 if (npt_enabled && !npt) {
432 printk(KERN_INFO "kvm: Nested Paging disabled\n");
433 npt_enabled = false;
434 }
435
436 if (npt_enabled) {
437 printk(KERN_INFO "kvm: Nested Paging enabled\n");
438 kvm_enable_tdp();
439 } else
440 kvm_disable_tdp();
441
442 return 0;
443
444 err:
445 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
446 iopm_base = 0;
447 return r;
448 }
449
450 static __exit void svm_hardware_unsetup(void)
451 {
452 int cpu;
453
454 for_each_online_cpu(cpu)
455 svm_cpu_uninit(cpu);
456
457 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
458 iopm_base = 0;
459 }
460
461 static void init_seg(struct vmcb_seg *seg)
462 {
463 seg->selector = 0;
464 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
465 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
466 seg->limit = 0xffff;
467 seg->base = 0;
468 }
469
470 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
471 {
472 seg->selector = 0;
473 seg->attrib = SVM_SELECTOR_P_MASK | type;
474 seg->limit = 0xffff;
475 seg->base = 0;
476 }
477
478 static void init_vmcb(struct vcpu_svm *svm)
479 {
480 struct vmcb_control_area *control = &svm->vmcb->control;
481 struct vmcb_save_area *save = &svm->vmcb->save;
482
483 control->intercept_cr_read = INTERCEPT_CR0_MASK |
484 INTERCEPT_CR3_MASK |
485 INTERCEPT_CR4_MASK;
486
487 control->intercept_cr_write = INTERCEPT_CR0_MASK |
488 INTERCEPT_CR3_MASK |
489 INTERCEPT_CR4_MASK |
490 INTERCEPT_CR8_MASK;
491
492 control->intercept_dr_read = INTERCEPT_DR0_MASK |
493 INTERCEPT_DR1_MASK |
494 INTERCEPT_DR2_MASK |
495 INTERCEPT_DR3_MASK;
496
497 control->intercept_dr_write = INTERCEPT_DR0_MASK |
498 INTERCEPT_DR1_MASK |
499 INTERCEPT_DR2_MASK |
500 INTERCEPT_DR3_MASK |
501 INTERCEPT_DR5_MASK |
502 INTERCEPT_DR7_MASK;
503
504 control->intercept_exceptions = (1 << PF_VECTOR) |
505 (1 << UD_VECTOR) |
506 (1 << MC_VECTOR);
507
508
509 control->intercept = (1ULL << INTERCEPT_INTR) |
510 (1ULL << INTERCEPT_NMI) |
511 (1ULL << INTERCEPT_SMI) |
512 (1ULL << INTERCEPT_CPUID) |
513 (1ULL << INTERCEPT_INVD) |
514 (1ULL << INTERCEPT_HLT) |
515 (1ULL << INTERCEPT_INVLPG) |
516 (1ULL << INTERCEPT_INVLPGA) |
517 (1ULL << INTERCEPT_IOIO_PROT) |
518 (1ULL << INTERCEPT_MSR_PROT) |
519 (1ULL << INTERCEPT_TASK_SWITCH) |
520 (1ULL << INTERCEPT_SHUTDOWN) |
521 (1ULL << INTERCEPT_VMRUN) |
522 (1ULL << INTERCEPT_VMMCALL) |
523 (1ULL << INTERCEPT_VMLOAD) |
524 (1ULL << INTERCEPT_VMSAVE) |
525 (1ULL << INTERCEPT_STGI) |
526 (1ULL << INTERCEPT_CLGI) |
527 (1ULL << INTERCEPT_SKINIT) |
528 (1ULL << INTERCEPT_WBINVD) |
529 (1ULL << INTERCEPT_MONITOR) |
530 (1ULL << INTERCEPT_MWAIT);
531
532 control->iopm_base_pa = iopm_base;
533 control->msrpm_base_pa = __pa(svm->msrpm);
534 control->tsc_offset = 0;
535 control->int_ctl = V_INTR_MASKING_MASK;
536
537 init_seg(&save->es);
538 init_seg(&save->ss);
539 init_seg(&save->ds);
540 init_seg(&save->fs);
541 init_seg(&save->gs);
542
543 save->cs.selector = 0xf000;
544 /* Executable/Readable Code Segment */
545 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
546 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
547 save->cs.limit = 0xffff;
548 /*
549 * cs.base should really be 0xffff0000, but vmx can't handle that, so
550 * be consistent with it.
551 *
552 * Replace when we have real mode working for vmx.
553 */
554 save->cs.base = 0xf0000;
555
556 save->gdtr.limit = 0xffff;
557 save->idtr.limit = 0xffff;
558
559 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
560 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
561
562 save->efer = MSR_EFER_SVME_MASK;
563 save->dr6 = 0xffff0ff0;
564 save->dr7 = 0x400;
565 save->rflags = 2;
566 save->rip = 0x0000fff0;
567 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
568
569 /*
570 * cr0 val on cpu init should be 0x60000010, we enable cpu
571 * cache by default. the orderly way is to enable cache in bios.
572 */
573 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
574 save->cr4 = X86_CR4_PAE;
575 /* rdx = ?? */
576
577 if (npt_enabled) {
578 /* Setup VMCB for Nested Paging */
579 control->nested_ctl = 1;
580 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
581 (1ULL << INTERCEPT_INVLPG));
582 control->intercept_exceptions &= ~(1 << PF_VECTOR);
583 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
584 INTERCEPT_CR3_MASK);
585 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
586 INTERCEPT_CR3_MASK);
587 save->g_pat = 0x0007040600070406ULL;
588 /* enable caching because the QEMU Bios doesn't enable it */
589 save->cr0 = X86_CR0_ET;
590 save->cr3 = 0;
591 save->cr4 = 0;
592 }
593 force_new_asid(&svm->vcpu);
594 }
595
596 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
597 {
598 struct vcpu_svm *svm = to_svm(vcpu);
599
600 init_vmcb(svm);
601
602 if (vcpu->vcpu_id != 0) {
603 kvm_rip_write(vcpu, 0);
604 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
605 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
606 }
607 vcpu->arch.regs_avail = ~0;
608 vcpu->arch.regs_dirty = ~0;
609
610 return 0;
611 }
612
613 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
614 {
615 struct vcpu_svm *svm;
616 struct page *page;
617 struct page *msrpm_pages;
618 int err;
619
620 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
621 if (!svm) {
622 err = -ENOMEM;
623 goto out;
624 }
625
626 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
627 if (err)
628 goto free_svm;
629
630 page = alloc_page(GFP_KERNEL);
631 if (!page) {
632 err = -ENOMEM;
633 goto uninit;
634 }
635
636 err = -ENOMEM;
637 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
638 if (!msrpm_pages)
639 goto uninit;
640 svm->msrpm = page_address(msrpm_pages);
641 svm_vcpu_init_msrpm(svm->msrpm);
642
643 svm->vmcb = page_address(page);
644 clear_page(svm->vmcb);
645 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
646 svm->asid_generation = 0;
647 memset(svm->db_regs, 0, sizeof(svm->db_regs));
648 init_vmcb(svm);
649
650 fx_init(&svm->vcpu);
651 svm->vcpu.fpu_active = 1;
652 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
653 if (svm->vcpu.vcpu_id == 0)
654 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
655
656 return &svm->vcpu;
657
658 uninit:
659 kvm_vcpu_uninit(&svm->vcpu);
660 free_svm:
661 kmem_cache_free(kvm_vcpu_cache, svm);
662 out:
663 return ERR_PTR(err);
664 }
665
666 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
667 {
668 struct vcpu_svm *svm = to_svm(vcpu);
669
670 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
671 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
672 kvm_vcpu_uninit(vcpu);
673 kmem_cache_free(kvm_vcpu_cache, svm);
674 }
675
676 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
677 {
678 struct vcpu_svm *svm = to_svm(vcpu);
679 int i;
680
681 if (unlikely(cpu != vcpu->cpu)) {
682 u64 tsc_this, delta;
683
684 /*
685 * Make sure that the guest sees a monotonically
686 * increasing TSC.
687 */
688 rdtscll(tsc_this);
689 delta = vcpu->arch.host_tsc - tsc_this;
690 svm->vmcb->control.tsc_offset += delta;
691 vcpu->cpu = cpu;
692 kvm_migrate_timers(vcpu);
693 }
694
695 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
696 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
697 }
698
699 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
700 {
701 struct vcpu_svm *svm = to_svm(vcpu);
702 int i;
703
704 ++vcpu->stat.host_state_reload;
705 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
706 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
707
708 rdtscll(vcpu->arch.host_tsc);
709 }
710
711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
712 {
713 return to_svm(vcpu)->vmcb->save.rflags;
714 }
715
716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
717 {
718 to_svm(vcpu)->vmcb->save.rflags = rflags;
719 }
720
721 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
722 {
723 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
724
725 switch (seg) {
726 case VCPU_SREG_CS: return &save->cs;
727 case VCPU_SREG_DS: return &save->ds;
728 case VCPU_SREG_ES: return &save->es;
729 case VCPU_SREG_FS: return &save->fs;
730 case VCPU_SREG_GS: return &save->gs;
731 case VCPU_SREG_SS: return &save->ss;
732 case VCPU_SREG_TR: return &save->tr;
733 case VCPU_SREG_LDTR: return &save->ldtr;
734 }
735 BUG();
736 return NULL;
737 }
738
739 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
740 {
741 struct vmcb_seg *s = svm_seg(vcpu, seg);
742
743 return s->base;
744 }
745
746 static void svm_get_segment(struct kvm_vcpu *vcpu,
747 struct kvm_segment *var, int seg)
748 {
749 struct vmcb_seg *s = svm_seg(vcpu, seg);
750
751 var->base = s->base;
752 var->limit = s->limit;
753 var->selector = s->selector;
754 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
755 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
756 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
757 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
758 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
759 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
760 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
761 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
762
763 /*
764 * SVM always stores 0 for the 'G' bit in the CS selector in
765 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
766 * Intel's VMENTRY has a check on the 'G' bit.
767 */
768 if (seg == VCPU_SREG_CS)
769 var->g = s->limit > 0xfffff;
770
771 /*
772 * Work around a bug where the busy flag in the tr selector
773 * isn't exposed
774 */
775 if (seg == VCPU_SREG_TR)
776 var->type |= 0x2;
777
778 var->unusable = !var->present;
779 }
780
781 static int svm_get_cpl(struct kvm_vcpu *vcpu)
782 {
783 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
784
785 return save->cpl;
786 }
787
788 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
789 {
790 struct vcpu_svm *svm = to_svm(vcpu);
791
792 dt->limit = svm->vmcb->save.idtr.limit;
793 dt->base = svm->vmcb->save.idtr.base;
794 }
795
796 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
797 {
798 struct vcpu_svm *svm = to_svm(vcpu);
799
800 svm->vmcb->save.idtr.limit = dt->limit;
801 svm->vmcb->save.idtr.base = dt->base ;
802 }
803
804 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
805 {
806 struct vcpu_svm *svm = to_svm(vcpu);
807
808 dt->limit = svm->vmcb->save.gdtr.limit;
809 dt->base = svm->vmcb->save.gdtr.base;
810 }
811
812 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
813 {
814 struct vcpu_svm *svm = to_svm(vcpu);
815
816 svm->vmcb->save.gdtr.limit = dt->limit;
817 svm->vmcb->save.gdtr.base = dt->base ;
818 }
819
820 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
821 {
822 }
823
824 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
825 {
826 struct vcpu_svm *svm = to_svm(vcpu);
827
828 #ifdef CONFIG_X86_64
829 if (vcpu->arch.shadow_efer & EFER_LME) {
830 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
831 vcpu->arch.shadow_efer |= EFER_LMA;
832 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
833 }
834
835 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
836 vcpu->arch.shadow_efer &= ~EFER_LMA;
837 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
838 }
839 }
840 #endif
841 if (npt_enabled)
842 goto set;
843
844 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
845 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
846 vcpu->fpu_active = 1;
847 }
848
849 vcpu->arch.cr0 = cr0;
850 cr0 |= X86_CR0_PG | X86_CR0_WP;
851 if (!vcpu->fpu_active) {
852 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
853 cr0 |= X86_CR0_TS;
854 }
855 set:
856 /*
857 * re-enable caching here because the QEMU bios
858 * does not do it - this results in some delay at
859 * reboot
860 */
861 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
862 svm->vmcb->save.cr0 = cr0;
863 }
864
865 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
866 {
867 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
868 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
869
870 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
871 force_new_asid(vcpu);
872
873 vcpu->arch.cr4 = cr4;
874 if (!npt_enabled)
875 cr4 |= X86_CR4_PAE;
876 cr4 |= host_cr4_mce;
877 to_svm(vcpu)->vmcb->save.cr4 = cr4;
878 }
879
880 static void svm_set_segment(struct kvm_vcpu *vcpu,
881 struct kvm_segment *var, int seg)
882 {
883 struct vcpu_svm *svm = to_svm(vcpu);
884 struct vmcb_seg *s = svm_seg(vcpu, seg);
885
886 s->base = var->base;
887 s->limit = var->limit;
888 s->selector = var->selector;
889 if (var->unusable)
890 s->attrib = 0;
891 else {
892 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
893 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
894 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
895 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
896 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
897 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
898 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
899 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
900 }
901 if (seg == VCPU_SREG_CS)
902 svm->vmcb->save.cpl
903 = (svm->vmcb->save.cs.attrib
904 >> SVM_SELECTOR_DPL_SHIFT) & 3;
905
906 }
907
908 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
909 {
910 return -EOPNOTSUPP;
911 }
912
913 static int svm_get_irq(struct kvm_vcpu *vcpu)
914 {
915 struct vcpu_svm *svm = to_svm(vcpu);
916 u32 exit_int_info = svm->vmcb->control.exit_int_info;
917
918 if (is_external_interrupt(exit_int_info))
919 return exit_int_info & SVM_EVTINJ_VEC_MASK;
920 return -1;
921 }
922
923 static void load_host_msrs(struct kvm_vcpu *vcpu)
924 {
925 #ifdef CONFIG_X86_64
926 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
927 #endif
928 }
929
930 static void save_host_msrs(struct kvm_vcpu *vcpu)
931 {
932 #ifdef CONFIG_X86_64
933 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
934 #endif
935 }
936
937 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
938 {
939 if (svm_data->next_asid > svm_data->max_asid) {
940 ++svm_data->asid_generation;
941 svm_data->next_asid = 1;
942 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
943 }
944
945 svm->vcpu.cpu = svm_data->cpu;
946 svm->asid_generation = svm_data->asid_generation;
947 svm->vmcb->control.asid = svm_data->next_asid++;
948 }
949
950 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
951 {
952 unsigned long val = to_svm(vcpu)->db_regs[dr];
953 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
954 return val;
955 }
956
957 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
958 int *exception)
959 {
960 struct vcpu_svm *svm = to_svm(vcpu);
961
962 *exception = 0;
963
964 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
965 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
966 svm->vmcb->save.dr6 |= DR6_BD_MASK;
967 *exception = DB_VECTOR;
968 return;
969 }
970
971 switch (dr) {
972 case 0 ... 3:
973 svm->db_regs[dr] = value;
974 return;
975 case 4 ... 5:
976 if (vcpu->arch.cr4 & X86_CR4_DE) {
977 *exception = UD_VECTOR;
978 return;
979 }
980 case 7: {
981 if (value & ~((1ULL << 32) - 1)) {
982 *exception = GP_VECTOR;
983 return;
984 }
985 svm->vmcb->save.dr7 = value;
986 return;
987 }
988 default:
989 printk(KERN_DEBUG "%s: unexpected dr %u\n",
990 __func__, dr);
991 *exception = UD_VECTOR;
992 return;
993 }
994 }
995
996 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
997 {
998 u32 exit_int_info = svm->vmcb->control.exit_int_info;
999 struct kvm *kvm = svm->vcpu.kvm;
1000 u64 fault_address;
1001 u32 error_code;
1002 bool event_injection = false;
1003
1004 if (!irqchip_in_kernel(kvm) &&
1005 is_external_interrupt(exit_int_info)) {
1006 event_injection = true;
1007 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1008 }
1009
1010 fault_address = svm->vmcb->control.exit_info_2;
1011 error_code = svm->vmcb->control.exit_info_1;
1012
1013 if (!npt_enabled)
1014 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1015 (u32)fault_address, (u32)(fault_address >> 32),
1016 handler);
1017 else
1018 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1019 (u32)fault_address, (u32)(fault_address >> 32),
1020 handler);
1021 /*
1022 * FIXME: Tis shouldn't be necessary here, but there is a flush
1023 * missing in the MMU code. Until we find this bug, flush the
1024 * complete TLB here on an NPF
1025 */
1026 if (npt_enabled)
1027 svm_flush_tlb(&svm->vcpu);
1028
1029 if (!npt_enabled && event_injection)
1030 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1031 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1032 }
1033
1034 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1035 {
1036 int er;
1037
1038 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1039 if (er != EMULATE_DONE)
1040 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1041 return 1;
1042 }
1043
1044 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1045 {
1046 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1047 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1048 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1049 svm->vcpu.fpu_active = 1;
1050
1051 return 1;
1052 }
1053
1054 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1055 {
1056 /*
1057 * On an #MC intercept the MCE handler is not called automatically in
1058 * the host. So do it by hand here.
1059 */
1060 asm volatile (
1061 "int $0x12\n");
1062 /* not sure if we ever come back to this point */
1063
1064 return 1;
1065 }
1066
1067 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1068 {
1069 /*
1070 * VMCB is undefined after a SHUTDOWN intercept
1071 * so reinitialize it.
1072 */
1073 clear_page(svm->vmcb);
1074 init_vmcb(svm);
1075
1076 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1077 return 0;
1078 }
1079
1080 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1081 {
1082 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1083 int size, down, in, string, rep;
1084 unsigned port;
1085
1086 ++svm->vcpu.stat.io_exits;
1087
1088 svm->next_rip = svm->vmcb->control.exit_info_2;
1089
1090 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1091
1092 if (string) {
1093 if (emulate_instruction(&svm->vcpu,
1094 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1095 return 0;
1096 return 1;
1097 }
1098
1099 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1100 port = io_info >> 16;
1101 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1102 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1103 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1104
1105 skip_emulated_instruction(&svm->vcpu);
1106 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1107 }
1108
1109 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1110 {
1111 KVMTRACE_0D(NMI, &svm->vcpu, handler);
1112 return 1;
1113 }
1114
1115 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1116 {
1117 ++svm->vcpu.stat.irq_exits;
1118 KVMTRACE_0D(INTR, &svm->vcpu, handler);
1119 return 1;
1120 }
1121
1122 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1123 {
1124 return 1;
1125 }
1126
1127 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1128 {
1129 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1130 skip_emulated_instruction(&svm->vcpu);
1131 return kvm_emulate_halt(&svm->vcpu);
1132 }
1133
1134 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1135 {
1136 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1137 skip_emulated_instruction(&svm->vcpu);
1138 kvm_emulate_hypercall(&svm->vcpu);
1139 return 1;
1140 }
1141
1142 static int invalid_op_interception(struct vcpu_svm *svm,
1143 struct kvm_run *kvm_run)
1144 {
1145 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1146 return 1;
1147 }
1148
1149 static int task_switch_interception(struct vcpu_svm *svm,
1150 struct kvm_run *kvm_run)
1151 {
1152 u16 tss_selector;
1153
1154 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1155 if (svm->vmcb->control.exit_info_2 &
1156 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1157 return kvm_task_switch(&svm->vcpu, tss_selector,
1158 TASK_SWITCH_IRET);
1159 if (svm->vmcb->control.exit_info_2 &
1160 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1161 return kvm_task_switch(&svm->vcpu, tss_selector,
1162 TASK_SWITCH_JMP);
1163 return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1164 }
1165
1166 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1169 kvm_emulate_cpuid(&svm->vcpu);
1170 return 1;
1171 }
1172
1173 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1174 {
1175 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1176 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1177 return 1;
1178 }
1179
1180 static int emulate_on_interception(struct vcpu_svm *svm,
1181 struct kvm_run *kvm_run)
1182 {
1183 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1184 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1185 return 1;
1186 }
1187
1188 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1189 {
1190 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1191 if (irqchip_in_kernel(svm->vcpu.kvm))
1192 return 1;
1193 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1194 return 0;
1195 }
1196
1197 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1198 {
1199 struct vcpu_svm *svm = to_svm(vcpu);
1200
1201 switch (ecx) {
1202 case MSR_IA32_TIME_STAMP_COUNTER: {
1203 u64 tsc;
1204
1205 rdtscll(tsc);
1206 *data = svm->vmcb->control.tsc_offset + tsc;
1207 break;
1208 }
1209 case MSR_K6_STAR:
1210 *data = svm->vmcb->save.star;
1211 break;
1212 #ifdef CONFIG_X86_64
1213 case MSR_LSTAR:
1214 *data = svm->vmcb->save.lstar;
1215 break;
1216 case MSR_CSTAR:
1217 *data = svm->vmcb->save.cstar;
1218 break;
1219 case MSR_KERNEL_GS_BASE:
1220 *data = svm->vmcb->save.kernel_gs_base;
1221 break;
1222 case MSR_SYSCALL_MASK:
1223 *data = svm->vmcb->save.sfmask;
1224 break;
1225 #endif
1226 case MSR_IA32_SYSENTER_CS:
1227 *data = svm->vmcb->save.sysenter_cs;
1228 break;
1229 case MSR_IA32_SYSENTER_EIP:
1230 *data = svm->vmcb->save.sysenter_eip;
1231 break;
1232 case MSR_IA32_SYSENTER_ESP:
1233 *data = svm->vmcb->save.sysenter_esp;
1234 break;
1235 /* Nobody will change the following 5 values in the VMCB so
1236 we can safely return them on rdmsr. They will always be 0
1237 until LBRV is implemented. */
1238 case MSR_IA32_DEBUGCTLMSR:
1239 *data = svm->vmcb->save.dbgctl;
1240 break;
1241 case MSR_IA32_LASTBRANCHFROMIP:
1242 *data = svm->vmcb->save.br_from;
1243 break;
1244 case MSR_IA32_LASTBRANCHTOIP:
1245 *data = svm->vmcb->save.br_to;
1246 break;
1247 case MSR_IA32_LASTINTFROMIP:
1248 *data = svm->vmcb->save.last_excp_from;
1249 break;
1250 case MSR_IA32_LASTINTTOIP:
1251 *data = svm->vmcb->save.last_excp_to;
1252 break;
1253 default:
1254 return kvm_get_msr_common(vcpu, ecx, data);
1255 }
1256 return 0;
1257 }
1258
1259 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1260 {
1261 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1262 u64 data;
1263
1264 if (svm_get_msr(&svm->vcpu, ecx, &data))
1265 kvm_inject_gp(&svm->vcpu, 0);
1266 else {
1267 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1268 (u32)(data >> 32), handler);
1269
1270 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1271 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1272 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1273 skip_emulated_instruction(&svm->vcpu);
1274 }
1275 return 1;
1276 }
1277
1278 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1279 {
1280 struct vcpu_svm *svm = to_svm(vcpu);
1281
1282 switch (ecx) {
1283 case MSR_IA32_TIME_STAMP_COUNTER: {
1284 u64 tsc;
1285
1286 rdtscll(tsc);
1287 svm->vmcb->control.tsc_offset = data - tsc;
1288 break;
1289 }
1290 case MSR_K6_STAR:
1291 svm->vmcb->save.star = data;
1292 break;
1293 #ifdef CONFIG_X86_64
1294 case MSR_LSTAR:
1295 svm->vmcb->save.lstar = data;
1296 break;
1297 case MSR_CSTAR:
1298 svm->vmcb->save.cstar = data;
1299 break;
1300 case MSR_KERNEL_GS_BASE:
1301 svm->vmcb->save.kernel_gs_base = data;
1302 break;
1303 case MSR_SYSCALL_MASK:
1304 svm->vmcb->save.sfmask = data;
1305 break;
1306 #endif
1307 case MSR_IA32_SYSENTER_CS:
1308 svm->vmcb->save.sysenter_cs = data;
1309 break;
1310 case MSR_IA32_SYSENTER_EIP:
1311 svm->vmcb->save.sysenter_eip = data;
1312 break;
1313 case MSR_IA32_SYSENTER_ESP:
1314 svm->vmcb->save.sysenter_esp = data;
1315 break;
1316 case MSR_IA32_DEBUGCTLMSR:
1317 if (!svm_has(SVM_FEATURE_LBRV)) {
1318 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1319 __func__, data);
1320 break;
1321 }
1322 if (data & DEBUGCTL_RESERVED_BITS)
1323 return 1;
1324
1325 svm->vmcb->save.dbgctl = data;
1326 if (data & (1ULL<<0))
1327 svm_enable_lbrv(svm);
1328 else
1329 svm_disable_lbrv(svm);
1330 break;
1331 case MSR_K7_EVNTSEL0:
1332 case MSR_K7_EVNTSEL1:
1333 case MSR_K7_EVNTSEL2:
1334 case MSR_K7_EVNTSEL3:
1335 case MSR_K7_PERFCTR0:
1336 case MSR_K7_PERFCTR1:
1337 case MSR_K7_PERFCTR2:
1338 case MSR_K7_PERFCTR3:
1339 /*
1340 * Just discard all writes to the performance counters; this
1341 * should keep both older linux and windows 64-bit guests
1342 * happy
1343 */
1344 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
1345
1346 break;
1347 default:
1348 return kvm_set_msr_common(vcpu, ecx, data);
1349 }
1350 return 0;
1351 }
1352
1353 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1354 {
1355 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1356 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
1357 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1358
1359 KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
1360 handler);
1361
1362 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1363 if (svm_set_msr(&svm->vcpu, ecx, data))
1364 kvm_inject_gp(&svm->vcpu, 0);
1365 else
1366 skip_emulated_instruction(&svm->vcpu);
1367 return 1;
1368 }
1369
1370 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1371 {
1372 if (svm->vmcb->control.exit_info_1)
1373 return wrmsr_interception(svm, kvm_run);
1374 else
1375 return rdmsr_interception(svm, kvm_run);
1376 }
1377
1378 static int interrupt_window_interception(struct vcpu_svm *svm,
1379 struct kvm_run *kvm_run)
1380 {
1381 KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
1382
1383 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1384 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1385 /*
1386 * If the user space waits to inject interrupts, exit as soon as
1387 * possible
1388 */
1389 if (kvm_run->request_interrupt_window &&
1390 !svm->vcpu.arch.irq_summary) {
1391 ++svm->vcpu.stat.irq_window_exits;
1392 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1393 return 0;
1394 }
1395
1396 return 1;
1397 }
1398
1399 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1400 struct kvm_run *kvm_run) = {
1401 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1402 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1403 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1404 [SVM_EXIT_READ_CR8] = emulate_on_interception,
1405 /* for now: */
1406 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1407 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1408 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1409 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
1410 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1411 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1412 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1413 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1414 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1415 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1416 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1417 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1418 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1419 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1420 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1421 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1422 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1423 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
1424 [SVM_EXIT_INTR] = intr_interception,
1425 [SVM_EXIT_NMI] = nmi_interception,
1426 [SVM_EXIT_SMI] = nop_on_interception,
1427 [SVM_EXIT_INIT] = nop_on_interception,
1428 [SVM_EXIT_VINTR] = interrupt_window_interception,
1429 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1430 [SVM_EXIT_CPUID] = cpuid_interception,
1431 [SVM_EXIT_INVD] = emulate_on_interception,
1432 [SVM_EXIT_HLT] = halt_interception,
1433 [SVM_EXIT_INVLPG] = invlpg_interception,
1434 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1435 [SVM_EXIT_IOIO] = io_interception,
1436 [SVM_EXIT_MSR] = msr_interception,
1437 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1438 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1439 [SVM_EXIT_VMRUN] = invalid_op_interception,
1440 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1441 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1442 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1443 [SVM_EXIT_STGI] = invalid_op_interception,
1444 [SVM_EXIT_CLGI] = invalid_op_interception,
1445 [SVM_EXIT_SKINIT] = invalid_op_interception,
1446 [SVM_EXIT_WBINVD] = emulate_on_interception,
1447 [SVM_EXIT_MONITOR] = invalid_op_interception,
1448 [SVM_EXIT_MWAIT] = invalid_op_interception,
1449 [SVM_EXIT_NPF] = pf_interception,
1450 };
1451
1452 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1453 {
1454 struct vcpu_svm *svm = to_svm(vcpu);
1455 u32 exit_code = svm->vmcb->control.exit_code;
1456
1457 KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
1458 (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
1459
1460 if (npt_enabled) {
1461 int mmu_reload = 0;
1462 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1463 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1464 mmu_reload = 1;
1465 }
1466 vcpu->arch.cr0 = svm->vmcb->save.cr0;
1467 vcpu->arch.cr3 = svm->vmcb->save.cr3;
1468 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1469 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1470 kvm_inject_gp(vcpu, 0);
1471 return 1;
1472 }
1473 }
1474 if (mmu_reload) {
1475 kvm_mmu_reset_context(vcpu);
1476 kvm_mmu_load(vcpu);
1477 }
1478 }
1479
1480 kvm_reput_irq(svm);
1481
1482 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1483 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1484 kvm_run->fail_entry.hardware_entry_failure_reason
1485 = svm->vmcb->control.exit_code;
1486 return 0;
1487 }
1488
1489 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1490 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1491 exit_code != SVM_EXIT_NPF)
1492 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1493 "exit_code 0x%x\n",
1494 __func__, svm->vmcb->control.exit_int_info,
1495 exit_code);
1496
1497 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1498 || !svm_exit_handlers[exit_code]) {
1499 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1500 kvm_run->hw.hardware_exit_reason = exit_code;
1501 return 0;
1502 }
1503
1504 return svm_exit_handlers[exit_code](svm, kvm_run);
1505 }
1506
1507 static void reload_tss(struct kvm_vcpu *vcpu)
1508 {
1509 int cpu = raw_smp_processor_id();
1510
1511 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1512 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1513 load_TR_desc();
1514 }
1515
1516 static void pre_svm_run(struct vcpu_svm *svm)
1517 {
1518 int cpu = raw_smp_processor_id();
1519
1520 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1521
1522 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1523 if (svm->vcpu.cpu != cpu ||
1524 svm->asid_generation != svm_data->asid_generation)
1525 new_asid(svm, svm_data);
1526 }
1527
1528
1529 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1530 {
1531 struct vmcb_control_area *control;
1532
1533 KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
1534
1535 ++svm->vcpu.stat.irq_injections;
1536 control = &svm->vmcb->control;
1537 control->int_vector = irq;
1538 control->int_ctl &= ~V_INTR_PRIO_MASK;
1539 control->int_ctl |= V_IRQ_MASK |
1540 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1541 }
1542
1543 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1544 {
1545 struct vcpu_svm *svm = to_svm(vcpu);
1546
1547 svm_inject_irq(svm, irq);
1548 }
1549
1550 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
1551 {
1552 struct vcpu_svm *svm = to_svm(vcpu);
1553 struct vmcb *vmcb = svm->vmcb;
1554 int max_irr, tpr;
1555
1556 if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
1557 return;
1558
1559 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1560
1561 max_irr = kvm_lapic_find_highest_irr(vcpu);
1562 if (max_irr == -1)
1563 return;
1564
1565 tpr = kvm_lapic_get_cr8(vcpu) << 4;
1566
1567 if (tpr >= (max_irr & 0xf0))
1568 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
1569 }
1570
1571 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1572 {
1573 struct vcpu_svm *svm = to_svm(vcpu);
1574 struct vmcb *vmcb = svm->vmcb;
1575 int intr_vector = -1;
1576
1577 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1578 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1579 intr_vector = vmcb->control.exit_int_info &
1580 SVM_EVTINJ_VEC_MASK;
1581 vmcb->control.exit_int_info = 0;
1582 svm_inject_irq(svm, intr_vector);
1583 goto out;
1584 }
1585
1586 if (vmcb->control.int_ctl & V_IRQ_MASK)
1587 goto out;
1588
1589 if (!kvm_cpu_has_interrupt(vcpu))
1590 goto out;
1591
1592 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1593 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1594 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1595 /* unable to deliver irq, set pending irq */
1596 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1597 svm_inject_irq(svm, 0x0);
1598 goto out;
1599 }
1600 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1601 intr_vector = kvm_cpu_get_interrupt(vcpu);
1602 svm_inject_irq(svm, intr_vector);
1603 out:
1604 update_cr8_intercept(vcpu);
1605 }
1606
1607 static void kvm_reput_irq(struct vcpu_svm *svm)
1608 {
1609 struct vmcb_control_area *control = &svm->vmcb->control;
1610
1611 if ((control->int_ctl & V_IRQ_MASK)
1612 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1613 control->int_ctl &= ~V_IRQ_MASK;
1614 push_irq(&svm->vcpu, control->int_vector);
1615 }
1616
1617 svm->vcpu.arch.interrupt_window_open =
1618 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1619 }
1620
1621 static void svm_do_inject_vector(struct vcpu_svm *svm)
1622 {
1623 struct kvm_vcpu *vcpu = &svm->vcpu;
1624 int word_index = __ffs(vcpu->arch.irq_summary);
1625 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1626 int irq = word_index * BITS_PER_LONG + bit_index;
1627
1628 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1629 if (!vcpu->arch.irq_pending[word_index])
1630 clear_bit(word_index, &vcpu->arch.irq_summary);
1631 svm_inject_irq(svm, irq);
1632 }
1633
1634 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1635 struct kvm_run *kvm_run)
1636 {
1637 struct vcpu_svm *svm = to_svm(vcpu);
1638 struct vmcb_control_area *control = &svm->vmcb->control;
1639
1640 svm->vcpu.arch.interrupt_window_open =
1641 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1642 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1643
1644 if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1645 /*
1646 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1647 */
1648 svm_do_inject_vector(svm);
1649
1650 /*
1651 * Interrupts blocked. Wait for unblock.
1652 */
1653 if (!svm->vcpu.arch.interrupt_window_open &&
1654 (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1655 control->intercept |= 1ULL << INTERCEPT_VINTR;
1656 else
1657 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1658 }
1659
1660 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1661 {
1662 return 0;
1663 }
1664
1665 static void save_db_regs(unsigned long *db_regs)
1666 {
1667 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1668 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1669 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1670 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1671 }
1672
1673 static void load_db_regs(unsigned long *db_regs)
1674 {
1675 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1676 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1677 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1678 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1679 }
1680
1681 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1682 {
1683 force_new_asid(vcpu);
1684 }
1685
1686 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1687 {
1688 }
1689
1690 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
1691 {
1692 struct vcpu_svm *svm = to_svm(vcpu);
1693
1694 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
1695 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
1696 kvm_lapic_set_tpr(vcpu, cr8);
1697 }
1698 }
1699
1700 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
1701 {
1702 struct vcpu_svm *svm = to_svm(vcpu);
1703 u64 cr8;
1704
1705 if (!irqchip_in_kernel(vcpu->kvm))
1706 return;
1707
1708 cr8 = kvm_get_cr8(vcpu);
1709 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
1710 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
1711 }
1712
1713 #ifdef CONFIG_X86_64
1714 #define R "r"
1715 #else
1716 #define R "e"
1717 #endif
1718
1719 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1720 {
1721 struct vcpu_svm *svm = to_svm(vcpu);
1722 u16 fs_selector;
1723 u16 gs_selector;
1724 u16 ldt_selector;
1725
1726 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
1727 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
1728 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
1729
1730 pre_svm_run(svm);
1731
1732 sync_lapic_to_cr8(vcpu);
1733
1734 save_host_msrs(vcpu);
1735 fs_selector = kvm_read_fs();
1736 gs_selector = kvm_read_gs();
1737 ldt_selector = kvm_read_ldt();
1738 svm->host_cr2 = kvm_read_cr2();
1739 svm->host_dr6 = read_dr6();
1740 svm->host_dr7 = read_dr7();
1741 svm->vmcb->save.cr2 = vcpu->arch.cr2;
1742 /* required for live migration with NPT */
1743 if (npt_enabled)
1744 svm->vmcb->save.cr3 = vcpu->arch.cr3;
1745
1746 if (svm->vmcb->save.dr7 & 0xff) {
1747 write_dr7(0);
1748 save_db_regs(svm->host_db_regs);
1749 load_db_regs(svm->db_regs);
1750 }
1751
1752 clgi();
1753
1754 local_irq_enable();
1755
1756 asm volatile (
1757 "push %%"R"bp; \n\t"
1758 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
1759 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
1760 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
1761 "mov %c[rsi](%[svm]), %%"R"si \n\t"
1762 "mov %c[rdi](%[svm]), %%"R"di \n\t"
1763 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
1764 #ifdef CONFIG_X86_64
1765 "mov %c[r8](%[svm]), %%r8 \n\t"
1766 "mov %c[r9](%[svm]), %%r9 \n\t"
1767 "mov %c[r10](%[svm]), %%r10 \n\t"
1768 "mov %c[r11](%[svm]), %%r11 \n\t"
1769 "mov %c[r12](%[svm]), %%r12 \n\t"
1770 "mov %c[r13](%[svm]), %%r13 \n\t"
1771 "mov %c[r14](%[svm]), %%r14 \n\t"
1772 "mov %c[r15](%[svm]), %%r15 \n\t"
1773 #endif
1774
1775 /* Enter guest mode */
1776 "push %%"R"ax \n\t"
1777 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
1778 __ex(SVM_VMLOAD) "\n\t"
1779 __ex(SVM_VMRUN) "\n\t"
1780 __ex(SVM_VMSAVE) "\n\t"
1781 "pop %%"R"ax \n\t"
1782
1783 /* Save guest registers, load host registers */
1784 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
1785 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
1786 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
1787 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
1788 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
1789 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
1790 #ifdef CONFIG_X86_64
1791 "mov %%r8, %c[r8](%[svm]) \n\t"
1792 "mov %%r9, %c[r9](%[svm]) \n\t"
1793 "mov %%r10, %c[r10](%[svm]) \n\t"
1794 "mov %%r11, %c[r11](%[svm]) \n\t"
1795 "mov %%r12, %c[r12](%[svm]) \n\t"
1796 "mov %%r13, %c[r13](%[svm]) \n\t"
1797 "mov %%r14, %c[r14](%[svm]) \n\t"
1798 "mov %%r15, %c[r15](%[svm]) \n\t"
1799 #endif
1800 "pop %%"R"bp"
1801 :
1802 : [svm]"a"(svm),
1803 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1804 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1805 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1806 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1807 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1808 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1809 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1810 #ifdef CONFIG_X86_64
1811 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1812 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1813 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1814 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1815 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1816 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1817 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1818 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1819 #endif
1820 : "cc", "memory"
1821 , R"bx", R"cx", R"dx", R"si", R"di"
1822 #ifdef CONFIG_X86_64
1823 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1824 #endif
1825 );
1826
1827 if ((svm->vmcb->save.dr7 & 0xff))
1828 load_db_regs(svm->host_db_regs);
1829
1830 vcpu->arch.cr2 = svm->vmcb->save.cr2;
1831 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
1832 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
1833 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
1834
1835 write_dr6(svm->host_dr6);
1836 write_dr7(svm->host_dr7);
1837 kvm_write_cr2(svm->host_cr2);
1838
1839 kvm_load_fs(fs_selector);
1840 kvm_load_gs(gs_selector);
1841 kvm_load_ldt(ldt_selector);
1842 load_host_msrs(vcpu);
1843
1844 reload_tss(vcpu);
1845
1846 local_irq_disable();
1847
1848 stgi();
1849
1850 sync_cr8_to_lapic(vcpu);
1851
1852 svm->next_rip = 0;
1853 }
1854
1855 #undef R
1856
1857 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1858 {
1859 struct vcpu_svm *svm = to_svm(vcpu);
1860
1861 if (npt_enabled) {
1862 svm->vmcb->control.nested_cr3 = root;
1863 force_new_asid(vcpu);
1864 return;
1865 }
1866
1867 svm->vmcb->save.cr3 = root;
1868 force_new_asid(vcpu);
1869
1870 if (vcpu->fpu_active) {
1871 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1872 svm->vmcb->save.cr0 |= X86_CR0_TS;
1873 vcpu->fpu_active = 0;
1874 }
1875 }
1876
1877 static int is_disabled(void)
1878 {
1879 u64 vm_cr;
1880
1881 rdmsrl(MSR_VM_CR, vm_cr);
1882 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1883 return 1;
1884
1885 return 0;
1886 }
1887
1888 static void
1889 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1890 {
1891 /*
1892 * Patch in the VMMCALL instruction:
1893 */
1894 hypercall[0] = 0x0f;
1895 hypercall[1] = 0x01;
1896 hypercall[2] = 0xd9;
1897 }
1898
1899 static void svm_check_processor_compat(void *rtn)
1900 {
1901 *(int *)rtn = 0;
1902 }
1903
1904 static bool svm_cpu_has_accelerated_tpr(void)
1905 {
1906 return false;
1907 }
1908
1909 static int get_npt_level(void)
1910 {
1911 #ifdef CONFIG_X86_64
1912 return PT64_ROOT_LEVEL;
1913 #else
1914 return PT32E_ROOT_LEVEL;
1915 #endif
1916 }
1917
1918 static int svm_get_mt_mask_shift(void)
1919 {
1920 return 0;
1921 }
1922
1923 static struct kvm_x86_ops svm_x86_ops = {
1924 .cpu_has_kvm_support = has_svm,
1925 .disabled_by_bios = is_disabled,
1926 .hardware_setup = svm_hardware_setup,
1927 .hardware_unsetup = svm_hardware_unsetup,
1928 .check_processor_compatibility = svm_check_processor_compat,
1929 .hardware_enable = svm_hardware_enable,
1930 .hardware_disable = svm_hardware_disable,
1931 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1932
1933 .vcpu_create = svm_create_vcpu,
1934 .vcpu_free = svm_free_vcpu,
1935 .vcpu_reset = svm_vcpu_reset,
1936
1937 .prepare_guest_switch = svm_prepare_guest_switch,
1938 .vcpu_load = svm_vcpu_load,
1939 .vcpu_put = svm_vcpu_put,
1940
1941 .set_guest_debug = svm_guest_debug,
1942 .get_msr = svm_get_msr,
1943 .set_msr = svm_set_msr,
1944 .get_segment_base = svm_get_segment_base,
1945 .get_segment = svm_get_segment,
1946 .set_segment = svm_set_segment,
1947 .get_cpl = svm_get_cpl,
1948 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1949 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1950 .set_cr0 = svm_set_cr0,
1951 .set_cr3 = svm_set_cr3,
1952 .set_cr4 = svm_set_cr4,
1953 .set_efer = svm_set_efer,
1954 .get_idt = svm_get_idt,
1955 .set_idt = svm_set_idt,
1956 .get_gdt = svm_get_gdt,
1957 .set_gdt = svm_set_gdt,
1958 .get_dr = svm_get_dr,
1959 .set_dr = svm_set_dr,
1960 .get_rflags = svm_get_rflags,
1961 .set_rflags = svm_set_rflags,
1962
1963 .tlb_flush = svm_flush_tlb,
1964
1965 .run = svm_vcpu_run,
1966 .handle_exit = handle_exit,
1967 .skip_emulated_instruction = skip_emulated_instruction,
1968 .patch_hypercall = svm_patch_hypercall,
1969 .get_irq = svm_get_irq,
1970 .set_irq = svm_set_irq,
1971 .queue_exception = svm_queue_exception,
1972 .exception_injected = svm_exception_injected,
1973 .inject_pending_irq = svm_intr_assist,
1974 .inject_pending_vectors = do_interrupt_requests,
1975
1976 .set_tss_addr = svm_set_tss_addr,
1977 .get_tdp_level = get_npt_level,
1978 .get_mt_mask_shift = svm_get_mt_mask_shift,
1979 };
1980
1981 static int __init svm_init(void)
1982 {
1983 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1984 THIS_MODULE);
1985 }
1986
1987 static void __exit svm_exit(void)
1988 {
1989 kvm_exit();
1990 }
1991
1992 module_init(svm_init)
1993 module_exit(svm_exit)