]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/svm.c
KVM: x86: Preserve injected TF across emulation
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_NRIP (1 << 3)
51 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52
53 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
54 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
55 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
56
57 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58
59 static const u32 host_save_user_msrs[] = {
60 #ifdef CONFIG_X86_64
61 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
62 MSR_FS_BASE,
63 #endif
64 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
65 };
66
67 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
68
69 struct kvm_vcpu;
70
71 struct nested_state {
72 struct vmcb *hsave;
73 u64 hsave_msr;
74 u64 vmcb;
75
76 /* These are the merged vectors */
77 u32 *msrpm;
78
79 /* gpa pointers to the real vectors */
80 u64 vmcb_msrpm;
81
82 /* A VMEXIT is required but not yet emulated */
83 bool exit_required;
84
85 /* cache for intercepts of the guest */
86 u16 intercept_cr_read;
87 u16 intercept_cr_write;
88 u16 intercept_dr_read;
89 u16 intercept_dr_write;
90 u32 intercept_exceptions;
91 u64 intercept;
92
93 };
94
95 struct vcpu_svm {
96 struct kvm_vcpu vcpu;
97 struct vmcb *vmcb;
98 unsigned long vmcb_pa;
99 struct svm_cpu_data *svm_data;
100 uint64_t asid_generation;
101 uint64_t sysenter_esp;
102 uint64_t sysenter_eip;
103
104 u64 next_rip;
105
106 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
107 u64 host_gs_base;
108
109 u32 *msrpm;
110
111 struct nested_state nested;
112
113 bool nmi_singlestep;
114
115 unsigned int3_injected;
116 unsigned long int3_rip;
117 };
118
119 /* enable NPT for AMD64 and X86 with PAE */
120 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
121 static bool npt_enabled = true;
122 #else
123 static bool npt_enabled = false;
124 #endif
125 static int npt = 1;
126
127 module_param(npt, int, S_IRUGO);
128
129 static int nested = 1;
130 module_param(nested, int, S_IRUGO);
131
132 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
133 static void svm_complete_interrupts(struct vcpu_svm *svm);
134
135 static int nested_svm_exit_handled(struct vcpu_svm *svm);
136 static int nested_svm_intercept(struct vcpu_svm *svm);
137 static int nested_svm_vmexit(struct vcpu_svm *svm);
138 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
139 bool has_error_code, u32 error_code);
140
141 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
142 {
143 return container_of(vcpu, struct vcpu_svm, vcpu);
144 }
145
146 static inline bool is_nested(struct vcpu_svm *svm)
147 {
148 return svm->nested.vmcb;
149 }
150
151 static inline void enable_gif(struct vcpu_svm *svm)
152 {
153 svm->vcpu.arch.hflags |= HF_GIF_MASK;
154 }
155
156 static inline void disable_gif(struct vcpu_svm *svm)
157 {
158 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
159 }
160
161 static inline bool gif_set(struct vcpu_svm *svm)
162 {
163 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
164 }
165
166 static unsigned long iopm_base;
167
168 struct kvm_ldttss_desc {
169 u16 limit0;
170 u16 base0;
171 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
172 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
173 u32 base3;
174 u32 zero1;
175 } __attribute__((packed));
176
177 struct svm_cpu_data {
178 int cpu;
179
180 u64 asid_generation;
181 u32 max_asid;
182 u32 next_asid;
183 struct kvm_ldttss_desc *tss_desc;
184
185 struct page *save_area;
186 };
187
188 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
189 static uint32_t svm_features;
190
191 struct svm_init_data {
192 int cpu;
193 int r;
194 };
195
196 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
197
198 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
199 #define MSRS_RANGE_SIZE 2048
200 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
201
202 #define MAX_INST_SIZE 15
203
204 static inline u32 svm_has(u32 feat)
205 {
206 return svm_features & feat;
207 }
208
209 static inline void clgi(void)
210 {
211 asm volatile (__ex(SVM_CLGI));
212 }
213
214 static inline void stgi(void)
215 {
216 asm volatile (__ex(SVM_STGI));
217 }
218
219 static inline void invlpga(unsigned long addr, u32 asid)
220 {
221 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
222 }
223
224 static inline void force_new_asid(struct kvm_vcpu *vcpu)
225 {
226 to_svm(vcpu)->asid_generation--;
227 }
228
229 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
230 {
231 force_new_asid(vcpu);
232 }
233
234 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
235 {
236 if (!npt_enabled && !(efer & EFER_LMA))
237 efer &= ~EFER_LME;
238
239 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
240 vcpu->arch.efer = efer;
241 }
242
243 static int is_external_interrupt(u32 info)
244 {
245 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
246 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
247 }
248
249 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
250 {
251 struct vcpu_svm *svm = to_svm(vcpu);
252 u32 ret = 0;
253
254 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
255 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
256 return ret & mask;
257 }
258
259 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
260 {
261 struct vcpu_svm *svm = to_svm(vcpu);
262
263 if (mask == 0)
264 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
265 else
266 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
267
268 }
269
270 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
271 {
272 struct vcpu_svm *svm = to_svm(vcpu);
273
274 if (!svm->next_rip) {
275 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
276 EMULATE_DONE)
277 printk(KERN_DEBUG "%s: NOP\n", __func__);
278 return;
279 }
280 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
281 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
282 __func__, kvm_rip_read(vcpu), svm->next_rip);
283
284 kvm_rip_write(vcpu, svm->next_rip);
285 svm_set_interrupt_shadow(vcpu, 0);
286 }
287
288 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
289 bool has_error_code, u32 error_code)
290 {
291 struct vcpu_svm *svm = to_svm(vcpu);
292
293 /* If we are within a nested VM we'd better #VMEXIT and let the
294 guest handle the exception */
295 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
296 return;
297
298 if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
299 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
300
301 /*
302 * For guest debugging where we have to reinject #BP if some
303 * INT3 is guest-owned:
304 * Emulate nRIP by moving RIP forward. Will fail if injection
305 * raises a fault that is not intercepted. Still better than
306 * failing in all cases.
307 */
308 skip_emulated_instruction(&svm->vcpu);
309 rip = kvm_rip_read(&svm->vcpu);
310 svm->int3_rip = rip + svm->vmcb->save.cs.base;
311 svm->int3_injected = rip - old_rip;
312 }
313
314 svm->vmcb->control.event_inj = nr
315 | SVM_EVTINJ_VALID
316 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
317 | SVM_EVTINJ_TYPE_EXEPT;
318 svm->vmcb->control.event_inj_err = error_code;
319 }
320
321 static int has_svm(void)
322 {
323 const char *msg;
324
325 if (!cpu_has_svm(&msg)) {
326 printk(KERN_INFO "has_svm: %s\n", msg);
327 return 0;
328 }
329
330 return 1;
331 }
332
333 static void svm_hardware_disable(void *garbage)
334 {
335 cpu_svm_disable();
336 }
337
338 static int svm_hardware_enable(void *garbage)
339 {
340
341 struct svm_cpu_data *sd;
342 uint64_t efer;
343 struct desc_ptr gdt_descr;
344 struct desc_struct *gdt;
345 int me = raw_smp_processor_id();
346
347 rdmsrl(MSR_EFER, efer);
348 if (efer & EFER_SVME)
349 return -EBUSY;
350
351 if (!has_svm()) {
352 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
353 me);
354 return -EINVAL;
355 }
356 sd = per_cpu(svm_data, me);
357
358 if (!sd) {
359 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
360 me);
361 return -EINVAL;
362 }
363
364 sd->asid_generation = 1;
365 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
366 sd->next_asid = sd->max_asid + 1;
367
368 kvm_get_gdt(&gdt_descr);
369 gdt = (struct desc_struct *)gdt_descr.address;
370 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
371
372 wrmsrl(MSR_EFER, efer | EFER_SVME);
373
374 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
375
376 return 0;
377 }
378
379 static void svm_cpu_uninit(int cpu)
380 {
381 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
382
383 if (!sd)
384 return;
385
386 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
387 __free_page(sd->save_area);
388 kfree(sd);
389 }
390
391 static int svm_cpu_init(int cpu)
392 {
393 struct svm_cpu_data *sd;
394 int r;
395
396 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
397 if (!sd)
398 return -ENOMEM;
399 sd->cpu = cpu;
400 sd->save_area = alloc_page(GFP_KERNEL);
401 r = -ENOMEM;
402 if (!sd->save_area)
403 goto err_1;
404
405 per_cpu(svm_data, cpu) = sd;
406
407 return 0;
408
409 err_1:
410 kfree(sd);
411 return r;
412
413 }
414
415 static void set_msr_interception(u32 *msrpm, unsigned msr,
416 int read, int write)
417 {
418 int i;
419
420 for (i = 0; i < NUM_MSR_MAPS; i++) {
421 if (msr >= msrpm_ranges[i] &&
422 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
423 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
424 msrpm_ranges[i]) * 2;
425
426 u32 *base = msrpm + (msr_offset / 32);
427 u32 msr_shift = msr_offset % 32;
428 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
429 *base = (*base & ~(0x3 << msr_shift)) |
430 (mask << msr_shift);
431 return;
432 }
433 }
434 BUG();
435 }
436
437 static void svm_vcpu_init_msrpm(u32 *msrpm)
438 {
439 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
440
441 #ifdef CONFIG_X86_64
442 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
443 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
444 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
445 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
446 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
447 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
448 #endif
449 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
450 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
451 }
452
453 static void svm_enable_lbrv(struct vcpu_svm *svm)
454 {
455 u32 *msrpm = svm->msrpm;
456
457 svm->vmcb->control.lbr_ctl = 1;
458 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
459 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
460 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
461 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
462 }
463
464 static void svm_disable_lbrv(struct vcpu_svm *svm)
465 {
466 u32 *msrpm = svm->msrpm;
467
468 svm->vmcb->control.lbr_ctl = 0;
469 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
470 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
471 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
472 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
473 }
474
475 static __init int svm_hardware_setup(void)
476 {
477 int cpu;
478 struct page *iopm_pages;
479 void *iopm_va;
480 int r;
481
482 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
483
484 if (!iopm_pages)
485 return -ENOMEM;
486
487 iopm_va = page_address(iopm_pages);
488 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
489 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
490
491 if (boot_cpu_has(X86_FEATURE_NX))
492 kvm_enable_efer_bits(EFER_NX);
493
494 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
495 kvm_enable_efer_bits(EFER_FFXSR);
496
497 if (nested) {
498 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
499 kvm_enable_efer_bits(EFER_SVME);
500 }
501
502 for_each_possible_cpu(cpu) {
503 r = svm_cpu_init(cpu);
504 if (r)
505 goto err;
506 }
507
508 svm_features = cpuid_edx(SVM_CPUID_FUNC);
509
510 if (!svm_has(SVM_FEATURE_NPT))
511 npt_enabled = false;
512
513 if (npt_enabled && !npt) {
514 printk(KERN_INFO "kvm: Nested Paging disabled\n");
515 npt_enabled = false;
516 }
517
518 if (npt_enabled) {
519 printk(KERN_INFO "kvm: Nested Paging enabled\n");
520 kvm_enable_tdp();
521 } else
522 kvm_disable_tdp();
523
524 return 0;
525
526 err:
527 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
528 iopm_base = 0;
529 return r;
530 }
531
532 static __exit void svm_hardware_unsetup(void)
533 {
534 int cpu;
535
536 for_each_possible_cpu(cpu)
537 svm_cpu_uninit(cpu);
538
539 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
540 iopm_base = 0;
541 }
542
543 static void init_seg(struct vmcb_seg *seg)
544 {
545 seg->selector = 0;
546 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
547 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
548 seg->limit = 0xffff;
549 seg->base = 0;
550 }
551
552 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
553 {
554 seg->selector = 0;
555 seg->attrib = SVM_SELECTOR_P_MASK | type;
556 seg->limit = 0xffff;
557 seg->base = 0;
558 }
559
560 static void init_vmcb(struct vcpu_svm *svm)
561 {
562 struct vmcb_control_area *control = &svm->vmcb->control;
563 struct vmcb_save_area *save = &svm->vmcb->save;
564
565 svm->vcpu.fpu_active = 1;
566
567 control->intercept_cr_read = INTERCEPT_CR0_MASK |
568 INTERCEPT_CR3_MASK |
569 INTERCEPT_CR4_MASK;
570
571 control->intercept_cr_write = INTERCEPT_CR0_MASK |
572 INTERCEPT_CR3_MASK |
573 INTERCEPT_CR4_MASK |
574 INTERCEPT_CR8_MASK;
575
576 control->intercept_dr_read = INTERCEPT_DR0_MASK |
577 INTERCEPT_DR1_MASK |
578 INTERCEPT_DR2_MASK |
579 INTERCEPT_DR3_MASK |
580 INTERCEPT_DR4_MASK |
581 INTERCEPT_DR5_MASK |
582 INTERCEPT_DR6_MASK |
583 INTERCEPT_DR7_MASK;
584
585 control->intercept_dr_write = INTERCEPT_DR0_MASK |
586 INTERCEPT_DR1_MASK |
587 INTERCEPT_DR2_MASK |
588 INTERCEPT_DR3_MASK |
589 INTERCEPT_DR4_MASK |
590 INTERCEPT_DR5_MASK |
591 INTERCEPT_DR6_MASK |
592 INTERCEPT_DR7_MASK;
593
594 control->intercept_exceptions = (1 << PF_VECTOR) |
595 (1 << UD_VECTOR) |
596 (1 << MC_VECTOR);
597
598
599 control->intercept = (1ULL << INTERCEPT_INTR) |
600 (1ULL << INTERCEPT_NMI) |
601 (1ULL << INTERCEPT_SMI) |
602 (1ULL << INTERCEPT_SELECTIVE_CR0) |
603 (1ULL << INTERCEPT_CPUID) |
604 (1ULL << INTERCEPT_INVD) |
605 (1ULL << INTERCEPT_HLT) |
606 (1ULL << INTERCEPT_INVLPG) |
607 (1ULL << INTERCEPT_INVLPGA) |
608 (1ULL << INTERCEPT_IOIO_PROT) |
609 (1ULL << INTERCEPT_MSR_PROT) |
610 (1ULL << INTERCEPT_TASK_SWITCH) |
611 (1ULL << INTERCEPT_SHUTDOWN) |
612 (1ULL << INTERCEPT_VMRUN) |
613 (1ULL << INTERCEPT_VMMCALL) |
614 (1ULL << INTERCEPT_VMLOAD) |
615 (1ULL << INTERCEPT_VMSAVE) |
616 (1ULL << INTERCEPT_STGI) |
617 (1ULL << INTERCEPT_CLGI) |
618 (1ULL << INTERCEPT_SKINIT) |
619 (1ULL << INTERCEPT_WBINVD) |
620 (1ULL << INTERCEPT_MONITOR) |
621 (1ULL << INTERCEPT_MWAIT);
622
623 control->iopm_base_pa = iopm_base;
624 control->msrpm_base_pa = __pa(svm->msrpm);
625 control->tsc_offset = 0;
626 control->int_ctl = V_INTR_MASKING_MASK;
627
628 init_seg(&save->es);
629 init_seg(&save->ss);
630 init_seg(&save->ds);
631 init_seg(&save->fs);
632 init_seg(&save->gs);
633
634 save->cs.selector = 0xf000;
635 /* Executable/Readable Code Segment */
636 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
637 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
638 save->cs.limit = 0xffff;
639 /*
640 * cs.base should really be 0xffff0000, but vmx can't handle that, so
641 * be consistent with it.
642 *
643 * Replace when we have real mode working for vmx.
644 */
645 save->cs.base = 0xf0000;
646
647 save->gdtr.limit = 0xffff;
648 save->idtr.limit = 0xffff;
649
650 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
651 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
652
653 save->efer = EFER_SVME;
654 save->dr6 = 0xffff0ff0;
655 save->dr7 = 0x400;
656 save->rflags = 2;
657 save->rip = 0x0000fff0;
658 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
659
660 /* This is the guest-visible cr0 value.
661 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
662 */
663 svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
664 kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
665
666 save->cr4 = X86_CR4_PAE;
667 /* rdx = ?? */
668
669 if (npt_enabled) {
670 /* Setup VMCB for Nested Paging */
671 control->nested_ctl = 1;
672 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
673 (1ULL << INTERCEPT_INVLPG));
674 control->intercept_exceptions &= ~(1 << PF_VECTOR);
675 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
676 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
677 save->g_pat = 0x0007040600070406ULL;
678 save->cr3 = 0;
679 save->cr4 = 0;
680 }
681 force_new_asid(&svm->vcpu);
682
683 svm->nested.vmcb = 0;
684 svm->vcpu.arch.hflags = 0;
685
686 if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
687 control->pause_filter_count = 3000;
688 control->intercept |= (1ULL << INTERCEPT_PAUSE);
689 }
690
691 enable_gif(svm);
692 }
693
694 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
695 {
696 struct vcpu_svm *svm = to_svm(vcpu);
697
698 init_vmcb(svm);
699
700 if (!kvm_vcpu_is_bsp(vcpu)) {
701 kvm_rip_write(vcpu, 0);
702 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
703 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
704 }
705 vcpu->arch.regs_avail = ~0;
706 vcpu->arch.regs_dirty = ~0;
707
708 return 0;
709 }
710
711 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
712 {
713 struct vcpu_svm *svm;
714 struct page *page;
715 struct page *msrpm_pages;
716 struct page *hsave_page;
717 struct page *nested_msrpm_pages;
718 int err;
719
720 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
721 if (!svm) {
722 err = -ENOMEM;
723 goto out;
724 }
725
726 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
727 if (err)
728 goto free_svm;
729
730 err = -ENOMEM;
731 page = alloc_page(GFP_KERNEL);
732 if (!page)
733 goto uninit;
734
735 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
736 if (!msrpm_pages)
737 goto free_page1;
738
739 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
740 if (!nested_msrpm_pages)
741 goto free_page2;
742
743 hsave_page = alloc_page(GFP_KERNEL);
744 if (!hsave_page)
745 goto free_page3;
746
747 svm->nested.hsave = page_address(hsave_page);
748
749 svm->msrpm = page_address(msrpm_pages);
750 svm_vcpu_init_msrpm(svm->msrpm);
751
752 svm->nested.msrpm = page_address(nested_msrpm_pages);
753
754 svm->vmcb = page_address(page);
755 clear_page(svm->vmcb);
756 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
757 svm->asid_generation = 0;
758 init_vmcb(svm);
759
760 fx_init(&svm->vcpu);
761 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
762 if (kvm_vcpu_is_bsp(&svm->vcpu))
763 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
764
765 return &svm->vcpu;
766
767 free_page3:
768 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
769 free_page2:
770 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
771 free_page1:
772 __free_page(page);
773 uninit:
774 kvm_vcpu_uninit(&svm->vcpu);
775 free_svm:
776 kmem_cache_free(kvm_vcpu_cache, svm);
777 out:
778 return ERR_PTR(err);
779 }
780
781 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
782 {
783 struct vcpu_svm *svm = to_svm(vcpu);
784
785 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
786 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
787 __free_page(virt_to_page(svm->nested.hsave));
788 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
789 kvm_vcpu_uninit(vcpu);
790 kmem_cache_free(kvm_vcpu_cache, svm);
791 }
792
793 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
794 {
795 struct vcpu_svm *svm = to_svm(vcpu);
796 int i;
797
798 if (unlikely(cpu != vcpu->cpu)) {
799 u64 delta;
800
801 if (check_tsc_unstable()) {
802 /*
803 * Make sure that the guest sees a monotonically
804 * increasing TSC.
805 */
806 delta = vcpu->arch.host_tsc - native_read_tsc();
807 svm->vmcb->control.tsc_offset += delta;
808 if (is_nested(svm))
809 svm->nested.hsave->control.tsc_offset += delta;
810 }
811 vcpu->cpu = cpu;
812 kvm_migrate_timers(vcpu);
813 svm->asid_generation = 0;
814 }
815
816 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
817 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
818 }
819
820 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
821 {
822 struct vcpu_svm *svm = to_svm(vcpu);
823 int i;
824
825 ++vcpu->stat.host_state_reload;
826 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
827 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
828
829 vcpu->arch.host_tsc = native_read_tsc();
830 }
831
832 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
833 {
834 return to_svm(vcpu)->vmcb->save.rflags;
835 }
836
837 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
838 {
839 to_svm(vcpu)->vmcb->save.rflags = rflags;
840 }
841
842 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
843 {
844 switch (reg) {
845 case VCPU_EXREG_PDPTR:
846 BUG_ON(!npt_enabled);
847 load_pdptrs(vcpu, vcpu->arch.cr3);
848 break;
849 default:
850 BUG();
851 }
852 }
853
854 static void svm_set_vintr(struct vcpu_svm *svm)
855 {
856 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
857 }
858
859 static void svm_clear_vintr(struct vcpu_svm *svm)
860 {
861 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
862 }
863
864 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
865 {
866 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
867
868 switch (seg) {
869 case VCPU_SREG_CS: return &save->cs;
870 case VCPU_SREG_DS: return &save->ds;
871 case VCPU_SREG_ES: return &save->es;
872 case VCPU_SREG_FS: return &save->fs;
873 case VCPU_SREG_GS: return &save->gs;
874 case VCPU_SREG_SS: return &save->ss;
875 case VCPU_SREG_TR: return &save->tr;
876 case VCPU_SREG_LDTR: return &save->ldtr;
877 }
878 BUG();
879 return NULL;
880 }
881
882 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
883 {
884 struct vmcb_seg *s = svm_seg(vcpu, seg);
885
886 return s->base;
887 }
888
889 static void svm_get_segment(struct kvm_vcpu *vcpu,
890 struct kvm_segment *var, int seg)
891 {
892 struct vmcb_seg *s = svm_seg(vcpu, seg);
893
894 var->base = s->base;
895 var->limit = s->limit;
896 var->selector = s->selector;
897 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
898 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
899 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
900 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
901 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
902 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
903 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
904 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
905
906 /* AMD's VMCB does not have an explicit unusable field, so emulate it
907 * for cross vendor migration purposes by "not present"
908 */
909 var->unusable = !var->present || (var->type == 0);
910
911 switch (seg) {
912 case VCPU_SREG_CS:
913 /*
914 * SVM always stores 0 for the 'G' bit in the CS selector in
915 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
916 * Intel's VMENTRY has a check on the 'G' bit.
917 */
918 var->g = s->limit > 0xfffff;
919 break;
920 case VCPU_SREG_TR:
921 /*
922 * Work around a bug where the busy flag in the tr selector
923 * isn't exposed
924 */
925 var->type |= 0x2;
926 break;
927 case VCPU_SREG_DS:
928 case VCPU_SREG_ES:
929 case VCPU_SREG_FS:
930 case VCPU_SREG_GS:
931 /*
932 * The accessed bit must always be set in the segment
933 * descriptor cache, although it can be cleared in the
934 * descriptor, the cached bit always remains at 1. Since
935 * Intel has a check on this, set it here to support
936 * cross-vendor migration.
937 */
938 if (!var->unusable)
939 var->type |= 0x1;
940 break;
941 case VCPU_SREG_SS:
942 /* On AMD CPUs sometimes the DB bit in the segment
943 * descriptor is left as 1, although the whole segment has
944 * been made unusable. Clear it here to pass an Intel VMX
945 * entry check when cross vendor migrating.
946 */
947 if (var->unusable)
948 var->db = 0;
949 break;
950 }
951 }
952
953 static int svm_get_cpl(struct kvm_vcpu *vcpu)
954 {
955 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
956
957 return save->cpl;
958 }
959
960 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
961 {
962 struct vcpu_svm *svm = to_svm(vcpu);
963
964 dt->size = svm->vmcb->save.idtr.limit;
965 dt->address = svm->vmcb->save.idtr.base;
966 }
967
968 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
969 {
970 struct vcpu_svm *svm = to_svm(vcpu);
971
972 svm->vmcb->save.idtr.limit = dt->size;
973 svm->vmcb->save.idtr.base = dt->address ;
974 }
975
976 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
977 {
978 struct vcpu_svm *svm = to_svm(vcpu);
979
980 dt->size = svm->vmcb->save.gdtr.limit;
981 dt->address = svm->vmcb->save.gdtr.base;
982 }
983
984 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
985 {
986 struct vcpu_svm *svm = to_svm(vcpu);
987
988 svm->vmcb->save.gdtr.limit = dt->size;
989 svm->vmcb->save.gdtr.base = dt->address ;
990 }
991
992 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
993 {
994 }
995
996 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
997 {
998 }
999
1000 static void update_cr0_intercept(struct vcpu_svm *svm)
1001 {
1002 struct vmcb *vmcb = svm->vmcb;
1003 ulong gcr0 = svm->vcpu.arch.cr0;
1004 u64 *hcr0 = &svm->vmcb->save.cr0;
1005
1006 if (!svm->vcpu.fpu_active)
1007 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1008 else
1009 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1010 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1011
1012
1013 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1014 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1015 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1016 if (is_nested(svm)) {
1017 struct vmcb *hsave = svm->nested.hsave;
1018
1019 hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1020 hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1021 vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
1022 vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1023 }
1024 } else {
1025 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1026 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1027 if (is_nested(svm)) {
1028 struct vmcb *hsave = svm->nested.hsave;
1029
1030 hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1031 hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1032 }
1033 }
1034 }
1035
1036 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1037 {
1038 struct vcpu_svm *svm = to_svm(vcpu);
1039
1040 #ifdef CONFIG_X86_64
1041 if (vcpu->arch.efer & EFER_LME) {
1042 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1043 vcpu->arch.efer |= EFER_LMA;
1044 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1045 }
1046
1047 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1048 vcpu->arch.efer &= ~EFER_LMA;
1049 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1050 }
1051 }
1052 #endif
1053 vcpu->arch.cr0 = cr0;
1054
1055 if (!npt_enabled)
1056 cr0 |= X86_CR0_PG | X86_CR0_WP;
1057
1058 if (!vcpu->fpu_active)
1059 cr0 |= X86_CR0_TS;
1060 /*
1061 * re-enable caching here because the QEMU bios
1062 * does not do it - this results in some delay at
1063 * reboot
1064 */
1065 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1066 svm->vmcb->save.cr0 = cr0;
1067 update_cr0_intercept(svm);
1068 }
1069
1070 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1071 {
1072 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1073 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1074
1075 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1076 force_new_asid(vcpu);
1077
1078 vcpu->arch.cr4 = cr4;
1079 if (!npt_enabled)
1080 cr4 |= X86_CR4_PAE;
1081 cr4 |= host_cr4_mce;
1082 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1083 }
1084
1085 static void svm_set_segment(struct kvm_vcpu *vcpu,
1086 struct kvm_segment *var, int seg)
1087 {
1088 struct vcpu_svm *svm = to_svm(vcpu);
1089 struct vmcb_seg *s = svm_seg(vcpu, seg);
1090
1091 s->base = var->base;
1092 s->limit = var->limit;
1093 s->selector = var->selector;
1094 if (var->unusable)
1095 s->attrib = 0;
1096 else {
1097 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1098 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1099 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1100 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1101 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1102 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1103 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1104 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1105 }
1106 if (seg == VCPU_SREG_CS)
1107 svm->vmcb->save.cpl
1108 = (svm->vmcb->save.cs.attrib
1109 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1110
1111 }
1112
1113 static void update_db_intercept(struct kvm_vcpu *vcpu)
1114 {
1115 struct vcpu_svm *svm = to_svm(vcpu);
1116
1117 svm->vmcb->control.intercept_exceptions &=
1118 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1119
1120 if (svm->nmi_singlestep)
1121 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1122
1123 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1124 if (vcpu->guest_debug &
1125 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1126 svm->vmcb->control.intercept_exceptions |=
1127 1 << DB_VECTOR;
1128 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1129 svm->vmcb->control.intercept_exceptions |=
1130 1 << BP_VECTOR;
1131 } else
1132 vcpu->guest_debug = 0;
1133 }
1134
1135 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1136 {
1137 struct vcpu_svm *svm = to_svm(vcpu);
1138
1139 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1140 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1141 else
1142 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1143
1144 update_db_intercept(vcpu);
1145 }
1146
1147 static void load_host_msrs(struct kvm_vcpu *vcpu)
1148 {
1149 #ifdef CONFIG_X86_64
1150 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1151 #endif
1152 }
1153
1154 static void save_host_msrs(struct kvm_vcpu *vcpu)
1155 {
1156 #ifdef CONFIG_X86_64
1157 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1158 #endif
1159 }
1160
1161 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1162 {
1163 if (sd->next_asid > sd->max_asid) {
1164 ++sd->asid_generation;
1165 sd->next_asid = 1;
1166 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1167 }
1168
1169 svm->asid_generation = sd->asid_generation;
1170 svm->vmcb->control.asid = sd->next_asid++;
1171 }
1172
1173 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1174 {
1175 struct vcpu_svm *svm = to_svm(vcpu);
1176
1177 switch (dr) {
1178 case 0 ... 3:
1179 *dest = vcpu->arch.db[dr];
1180 break;
1181 case 4:
1182 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1183 return EMULATE_FAIL; /* will re-inject UD */
1184 /* fall through */
1185 case 6:
1186 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1187 *dest = vcpu->arch.dr6;
1188 else
1189 *dest = svm->vmcb->save.dr6;
1190 break;
1191 case 5:
1192 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1193 return EMULATE_FAIL; /* will re-inject UD */
1194 /* fall through */
1195 case 7:
1196 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 *dest = vcpu->arch.dr7;
1198 else
1199 *dest = svm->vmcb->save.dr7;
1200 break;
1201 }
1202
1203 return EMULATE_DONE;
1204 }
1205
1206 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1207 {
1208 struct vcpu_svm *svm = to_svm(vcpu);
1209
1210 switch (dr) {
1211 case 0 ... 3:
1212 vcpu->arch.db[dr] = value;
1213 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1214 vcpu->arch.eff_db[dr] = value;
1215 break;
1216 case 4:
1217 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1218 return EMULATE_FAIL; /* will re-inject UD */
1219 /* fall through */
1220 case 6:
1221 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1222 break;
1223 case 5:
1224 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1225 return EMULATE_FAIL; /* will re-inject UD */
1226 /* fall through */
1227 case 7:
1228 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1229 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1230 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1231 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1232 }
1233 break;
1234 }
1235
1236 return EMULATE_DONE;
1237 }
1238
1239 static int pf_interception(struct vcpu_svm *svm)
1240 {
1241 u64 fault_address;
1242 u32 error_code;
1243
1244 fault_address = svm->vmcb->control.exit_info_2;
1245 error_code = svm->vmcb->control.exit_info_1;
1246
1247 trace_kvm_page_fault(fault_address, error_code);
1248 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1249 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1250 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1251 }
1252
1253 static int db_interception(struct vcpu_svm *svm)
1254 {
1255 struct kvm_run *kvm_run = svm->vcpu.run;
1256
1257 if (!(svm->vcpu.guest_debug &
1258 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1259 !svm->nmi_singlestep) {
1260 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1261 return 1;
1262 }
1263
1264 if (svm->nmi_singlestep) {
1265 svm->nmi_singlestep = false;
1266 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1267 svm->vmcb->save.rflags &=
1268 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1269 update_db_intercept(&svm->vcpu);
1270 }
1271
1272 if (svm->vcpu.guest_debug &
1273 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1274 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1275 kvm_run->debug.arch.pc =
1276 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1277 kvm_run->debug.arch.exception = DB_VECTOR;
1278 return 0;
1279 }
1280
1281 return 1;
1282 }
1283
1284 static int bp_interception(struct vcpu_svm *svm)
1285 {
1286 struct kvm_run *kvm_run = svm->vcpu.run;
1287
1288 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1289 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1290 kvm_run->debug.arch.exception = BP_VECTOR;
1291 return 0;
1292 }
1293
1294 static int ud_interception(struct vcpu_svm *svm)
1295 {
1296 int er;
1297
1298 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1299 if (er != EMULATE_DONE)
1300 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1301 return 1;
1302 }
1303
1304 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1305 {
1306 struct vcpu_svm *svm = to_svm(vcpu);
1307 u32 excp;
1308
1309 if (is_nested(svm)) {
1310 u32 h_excp, n_excp;
1311
1312 h_excp = svm->nested.hsave->control.intercept_exceptions;
1313 n_excp = svm->nested.intercept_exceptions;
1314 h_excp &= ~(1 << NM_VECTOR);
1315 excp = h_excp | n_excp;
1316 } else {
1317 excp = svm->vmcb->control.intercept_exceptions;
1318 excp &= ~(1 << NM_VECTOR);
1319 }
1320
1321 svm->vmcb->control.intercept_exceptions = excp;
1322
1323 svm->vcpu.fpu_active = 1;
1324 update_cr0_intercept(svm);
1325 }
1326
1327 static int nm_interception(struct vcpu_svm *svm)
1328 {
1329 svm_fpu_activate(&svm->vcpu);
1330 return 1;
1331 }
1332
1333 static int mc_interception(struct vcpu_svm *svm)
1334 {
1335 /*
1336 * On an #MC intercept the MCE handler is not called automatically in
1337 * the host. So do it by hand here.
1338 */
1339 asm volatile (
1340 "int $0x12\n");
1341 /* not sure if we ever come back to this point */
1342
1343 return 1;
1344 }
1345
1346 static int shutdown_interception(struct vcpu_svm *svm)
1347 {
1348 struct kvm_run *kvm_run = svm->vcpu.run;
1349
1350 /*
1351 * VMCB is undefined after a SHUTDOWN intercept
1352 * so reinitialize it.
1353 */
1354 clear_page(svm->vmcb);
1355 init_vmcb(svm);
1356
1357 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1358 return 0;
1359 }
1360
1361 static int io_interception(struct vcpu_svm *svm)
1362 {
1363 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1364 int size, in, string;
1365 unsigned port;
1366
1367 ++svm->vcpu.stat.io_exits;
1368
1369 svm->next_rip = svm->vmcb->control.exit_info_2;
1370
1371 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1372
1373 if (string) {
1374 if (emulate_instruction(&svm->vcpu,
1375 0, 0, 0) == EMULATE_DO_MMIO)
1376 return 0;
1377 return 1;
1378 }
1379
1380 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1381 port = io_info >> 16;
1382 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1383
1384 skip_emulated_instruction(&svm->vcpu);
1385 return kvm_emulate_pio(&svm->vcpu, in, size, port);
1386 }
1387
1388 static int nmi_interception(struct vcpu_svm *svm)
1389 {
1390 return 1;
1391 }
1392
1393 static int intr_interception(struct vcpu_svm *svm)
1394 {
1395 ++svm->vcpu.stat.irq_exits;
1396 return 1;
1397 }
1398
1399 static int nop_on_interception(struct vcpu_svm *svm)
1400 {
1401 return 1;
1402 }
1403
1404 static int halt_interception(struct vcpu_svm *svm)
1405 {
1406 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1407 skip_emulated_instruction(&svm->vcpu);
1408 return kvm_emulate_halt(&svm->vcpu);
1409 }
1410
1411 static int vmmcall_interception(struct vcpu_svm *svm)
1412 {
1413 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1414 skip_emulated_instruction(&svm->vcpu);
1415 kvm_emulate_hypercall(&svm->vcpu);
1416 return 1;
1417 }
1418
1419 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1420 {
1421 if (!(svm->vcpu.arch.efer & EFER_SVME)
1422 || !is_paging(&svm->vcpu)) {
1423 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1424 return 1;
1425 }
1426
1427 if (svm->vmcb->save.cpl) {
1428 kvm_inject_gp(&svm->vcpu, 0);
1429 return 1;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1436 bool has_error_code, u32 error_code)
1437 {
1438 int vmexit;
1439
1440 if (!is_nested(svm))
1441 return 0;
1442
1443 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1444 svm->vmcb->control.exit_code_hi = 0;
1445 svm->vmcb->control.exit_info_1 = error_code;
1446 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1447
1448 vmexit = nested_svm_intercept(svm);
1449 if (vmexit == NESTED_EXIT_DONE)
1450 svm->nested.exit_required = true;
1451
1452 return vmexit;
1453 }
1454
1455 /* This function returns true if it is save to enable the irq window */
1456 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1457 {
1458 if (!is_nested(svm))
1459 return true;
1460
1461 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1462 return true;
1463
1464 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1465 return false;
1466
1467 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1468
1469 if (svm->nested.intercept & 1ULL) {
1470 /*
1471 * The #vmexit can't be emulated here directly because this
1472 * code path runs with irqs and preemtion disabled. A
1473 * #vmexit emulation might sleep. Only signal request for
1474 * the #vmexit here.
1475 */
1476 svm->nested.exit_required = true;
1477 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1478 return false;
1479 }
1480
1481 return true;
1482 }
1483
1484 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1485 {
1486 struct page *page;
1487
1488 might_sleep();
1489
1490 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1491 if (is_error_page(page))
1492 goto error;
1493
1494 *_page = page;
1495
1496 return kmap(page);
1497
1498 error:
1499 kvm_release_page_clean(page);
1500 kvm_inject_gp(&svm->vcpu, 0);
1501
1502 return NULL;
1503 }
1504
1505 static void nested_svm_unmap(struct page *page)
1506 {
1507 kunmap(page);
1508 kvm_release_page_dirty(page);
1509 }
1510
1511 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1512 {
1513 u32 param = svm->vmcb->control.exit_info_1 & 1;
1514 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1515 bool ret = false;
1516 u32 t0, t1;
1517 u8 val;
1518
1519 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1520 return false;
1521
1522 switch (msr) {
1523 case 0 ... 0x1fff:
1524 t0 = (msr * 2) % 8;
1525 t1 = msr / 8;
1526 break;
1527 case 0xc0000000 ... 0xc0001fff:
1528 t0 = (8192 + msr - 0xc0000000) * 2;
1529 t1 = (t0 / 8);
1530 t0 %= 8;
1531 break;
1532 case 0xc0010000 ... 0xc0011fff:
1533 t0 = (16384 + msr - 0xc0010000) * 2;
1534 t1 = (t0 / 8);
1535 t0 %= 8;
1536 break;
1537 default:
1538 ret = true;
1539 goto out;
1540 }
1541
1542 if (!kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + t1, &val, 1))
1543 ret = val & ((1 << param) << t0);
1544
1545 out:
1546 return ret;
1547 }
1548
1549 static int nested_svm_exit_special(struct vcpu_svm *svm)
1550 {
1551 u32 exit_code = svm->vmcb->control.exit_code;
1552
1553 switch (exit_code) {
1554 case SVM_EXIT_INTR:
1555 case SVM_EXIT_NMI:
1556 return NESTED_EXIT_HOST;
1557 /* For now we are always handling NPFs when using them */
1558 case SVM_EXIT_NPF:
1559 if (npt_enabled)
1560 return NESTED_EXIT_HOST;
1561 break;
1562 /* When we're shadowing, trap PFs */
1563 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1564 if (!npt_enabled)
1565 return NESTED_EXIT_HOST;
1566 break;
1567 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1568 nm_interception(svm);
1569 break;
1570 default:
1571 break;
1572 }
1573
1574 return NESTED_EXIT_CONTINUE;
1575 }
1576
1577 /*
1578 * If this function returns true, this #vmexit was already handled
1579 */
1580 static int nested_svm_intercept(struct vcpu_svm *svm)
1581 {
1582 u32 exit_code = svm->vmcb->control.exit_code;
1583 int vmexit = NESTED_EXIT_HOST;
1584
1585 switch (exit_code) {
1586 case SVM_EXIT_MSR:
1587 vmexit = nested_svm_exit_handled_msr(svm);
1588 break;
1589 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1590 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1591 if (svm->nested.intercept_cr_read & cr_bits)
1592 vmexit = NESTED_EXIT_DONE;
1593 break;
1594 }
1595 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1596 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1597 if (svm->nested.intercept_cr_write & cr_bits)
1598 vmexit = NESTED_EXIT_DONE;
1599 break;
1600 }
1601 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1602 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1603 if (svm->nested.intercept_dr_read & dr_bits)
1604 vmexit = NESTED_EXIT_DONE;
1605 break;
1606 }
1607 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1608 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1609 if (svm->nested.intercept_dr_write & dr_bits)
1610 vmexit = NESTED_EXIT_DONE;
1611 break;
1612 }
1613 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1614 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1615 if (svm->nested.intercept_exceptions & excp_bits)
1616 vmexit = NESTED_EXIT_DONE;
1617 break;
1618 }
1619 default: {
1620 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1621 if (svm->nested.intercept & exit_bits)
1622 vmexit = NESTED_EXIT_DONE;
1623 }
1624 }
1625
1626 return vmexit;
1627 }
1628
1629 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1630 {
1631 int vmexit;
1632
1633 vmexit = nested_svm_intercept(svm);
1634
1635 if (vmexit == NESTED_EXIT_DONE)
1636 nested_svm_vmexit(svm);
1637
1638 return vmexit;
1639 }
1640
1641 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1642 {
1643 struct vmcb_control_area *dst = &dst_vmcb->control;
1644 struct vmcb_control_area *from = &from_vmcb->control;
1645
1646 dst->intercept_cr_read = from->intercept_cr_read;
1647 dst->intercept_cr_write = from->intercept_cr_write;
1648 dst->intercept_dr_read = from->intercept_dr_read;
1649 dst->intercept_dr_write = from->intercept_dr_write;
1650 dst->intercept_exceptions = from->intercept_exceptions;
1651 dst->intercept = from->intercept;
1652 dst->iopm_base_pa = from->iopm_base_pa;
1653 dst->msrpm_base_pa = from->msrpm_base_pa;
1654 dst->tsc_offset = from->tsc_offset;
1655 dst->asid = from->asid;
1656 dst->tlb_ctl = from->tlb_ctl;
1657 dst->int_ctl = from->int_ctl;
1658 dst->int_vector = from->int_vector;
1659 dst->int_state = from->int_state;
1660 dst->exit_code = from->exit_code;
1661 dst->exit_code_hi = from->exit_code_hi;
1662 dst->exit_info_1 = from->exit_info_1;
1663 dst->exit_info_2 = from->exit_info_2;
1664 dst->exit_int_info = from->exit_int_info;
1665 dst->exit_int_info_err = from->exit_int_info_err;
1666 dst->nested_ctl = from->nested_ctl;
1667 dst->event_inj = from->event_inj;
1668 dst->event_inj_err = from->event_inj_err;
1669 dst->nested_cr3 = from->nested_cr3;
1670 dst->lbr_ctl = from->lbr_ctl;
1671 }
1672
1673 static int nested_svm_vmexit(struct vcpu_svm *svm)
1674 {
1675 struct vmcb *nested_vmcb;
1676 struct vmcb *hsave = svm->nested.hsave;
1677 struct vmcb *vmcb = svm->vmcb;
1678 struct page *page;
1679
1680 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1681 vmcb->control.exit_info_1,
1682 vmcb->control.exit_info_2,
1683 vmcb->control.exit_int_info,
1684 vmcb->control.exit_int_info_err);
1685
1686 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1687 if (!nested_vmcb)
1688 return 1;
1689
1690 /* Exit nested SVM mode */
1691 svm->nested.vmcb = 0;
1692
1693 /* Give the current vmcb to the guest */
1694 disable_gif(svm);
1695
1696 nested_vmcb->save.es = vmcb->save.es;
1697 nested_vmcb->save.cs = vmcb->save.cs;
1698 nested_vmcb->save.ss = vmcb->save.ss;
1699 nested_vmcb->save.ds = vmcb->save.ds;
1700 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1701 nested_vmcb->save.idtr = vmcb->save.idtr;
1702 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
1703 if (npt_enabled)
1704 nested_vmcb->save.cr3 = vmcb->save.cr3;
1705 else
1706 nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
1707 nested_vmcb->save.cr2 = vmcb->save.cr2;
1708 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
1709 nested_vmcb->save.rflags = vmcb->save.rflags;
1710 nested_vmcb->save.rip = vmcb->save.rip;
1711 nested_vmcb->save.rsp = vmcb->save.rsp;
1712 nested_vmcb->save.rax = vmcb->save.rax;
1713 nested_vmcb->save.dr7 = vmcb->save.dr7;
1714 nested_vmcb->save.dr6 = vmcb->save.dr6;
1715 nested_vmcb->save.cpl = vmcb->save.cpl;
1716
1717 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1718 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1719 nested_vmcb->control.int_state = vmcb->control.int_state;
1720 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1721 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1722 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1723 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1724 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1725 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1726
1727 /*
1728 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1729 * to make sure that we do not lose injected events. So check event_inj
1730 * here and copy it to exit_int_info if it is valid.
1731 * Exit_int_info and event_inj can't be both valid because the case
1732 * below only happens on a VMRUN instruction intercept which has
1733 * no valid exit_int_info set.
1734 */
1735 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1736 struct vmcb_control_area *nc = &nested_vmcb->control;
1737
1738 nc->exit_int_info = vmcb->control.event_inj;
1739 nc->exit_int_info_err = vmcb->control.event_inj_err;
1740 }
1741
1742 nested_vmcb->control.tlb_ctl = 0;
1743 nested_vmcb->control.event_inj = 0;
1744 nested_vmcb->control.event_inj_err = 0;
1745
1746 /* We always set V_INTR_MASKING and remember the old value in hflags */
1747 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1748 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1749
1750 /* Restore the original control entries */
1751 copy_vmcb_control_area(vmcb, hsave);
1752
1753 kvm_clear_exception_queue(&svm->vcpu);
1754 kvm_clear_interrupt_queue(&svm->vcpu);
1755
1756 /* Restore selected save entries */
1757 svm->vmcb->save.es = hsave->save.es;
1758 svm->vmcb->save.cs = hsave->save.cs;
1759 svm->vmcb->save.ss = hsave->save.ss;
1760 svm->vmcb->save.ds = hsave->save.ds;
1761 svm->vmcb->save.gdtr = hsave->save.gdtr;
1762 svm->vmcb->save.idtr = hsave->save.idtr;
1763 svm->vmcb->save.rflags = hsave->save.rflags;
1764 svm_set_efer(&svm->vcpu, hsave->save.efer);
1765 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1766 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1767 if (npt_enabled) {
1768 svm->vmcb->save.cr3 = hsave->save.cr3;
1769 svm->vcpu.arch.cr3 = hsave->save.cr3;
1770 } else {
1771 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1772 }
1773 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1774 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1775 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1776 svm->vmcb->save.dr7 = 0;
1777 svm->vmcb->save.cpl = 0;
1778 svm->vmcb->control.exit_int_info = 0;
1779
1780 nested_svm_unmap(page);
1781
1782 kvm_mmu_reset_context(&svm->vcpu);
1783 kvm_mmu_load(&svm->vcpu);
1784
1785 return 0;
1786 }
1787
1788 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1789 {
1790 u32 *nested_msrpm;
1791 struct page *page;
1792 int i;
1793
1794 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, &page);
1795 if (!nested_msrpm)
1796 return false;
1797
1798 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1799 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1800
1801 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1802
1803 nested_svm_unmap(page);
1804
1805 return true;
1806 }
1807
1808 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1809 {
1810 struct vmcb *nested_vmcb;
1811 struct vmcb *hsave = svm->nested.hsave;
1812 struct vmcb *vmcb = svm->vmcb;
1813 struct page *page;
1814 u64 vmcb_gpa;
1815
1816 vmcb_gpa = svm->vmcb->save.rax;
1817
1818 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1819 if (!nested_vmcb)
1820 return false;
1821
1822 trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1823 nested_vmcb->save.rip,
1824 nested_vmcb->control.int_ctl,
1825 nested_vmcb->control.event_inj,
1826 nested_vmcb->control.nested_ctl);
1827
1828 /* Clear internal status */
1829 kvm_clear_exception_queue(&svm->vcpu);
1830 kvm_clear_interrupt_queue(&svm->vcpu);
1831
1832 /* Save the old vmcb, so we don't need to pick what we save, but
1833 can restore everything when a VMEXIT occurs */
1834 hsave->save.es = vmcb->save.es;
1835 hsave->save.cs = vmcb->save.cs;
1836 hsave->save.ss = vmcb->save.ss;
1837 hsave->save.ds = vmcb->save.ds;
1838 hsave->save.gdtr = vmcb->save.gdtr;
1839 hsave->save.idtr = vmcb->save.idtr;
1840 hsave->save.efer = svm->vcpu.arch.efer;
1841 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
1842 hsave->save.cr4 = svm->vcpu.arch.cr4;
1843 hsave->save.rflags = vmcb->save.rflags;
1844 hsave->save.rip = svm->next_rip;
1845 hsave->save.rsp = vmcb->save.rsp;
1846 hsave->save.rax = vmcb->save.rax;
1847 if (npt_enabled)
1848 hsave->save.cr3 = vmcb->save.cr3;
1849 else
1850 hsave->save.cr3 = svm->vcpu.arch.cr3;
1851
1852 copy_vmcb_control_area(hsave, vmcb);
1853
1854 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1855 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1856 else
1857 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1858
1859 /* Load the nested guest state */
1860 svm->vmcb->save.es = nested_vmcb->save.es;
1861 svm->vmcb->save.cs = nested_vmcb->save.cs;
1862 svm->vmcb->save.ss = nested_vmcb->save.ss;
1863 svm->vmcb->save.ds = nested_vmcb->save.ds;
1864 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1865 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1866 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1867 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1868 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1869 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1870 if (npt_enabled) {
1871 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1872 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1873 } else {
1874 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1875 kvm_mmu_reset_context(&svm->vcpu);
1876 }
1877 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1878 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1879 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1880 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1881 /* In case we don't even reach vcpu_run, the fields are not updated */
1882 svm->vmcb->save.rax = nested_vmcb->save.rax;
1883 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1884 svm->vmcb->save.rip = nested_vmcb->save.rip;
1885 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1886 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1887 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1888
1889 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1890
1891 /* cache intercepts */
1892 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1893 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1894 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1895 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1896 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1897 svm->nested.intercept = nested_vmcb->control.intercept;
1898
1899 force_new_asid(&svm->vcpu);
1900 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1901 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1902 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1903 else
1904 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1905
1906 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
1907 /* We only want the cr8 intercept bits of the guest */
1908 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
1909 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1910 }
1911
1912 /* We don't want a nested guest to be more powerful than the guest,
1913 so all intercepts are ORed */
1914 svm->vmcb->control.intercept_cr_read |=
1915 nested_vmcb->control.intercept_cr_read;
1916 svm->vmcb->control.intercept_cr_write |=
1917 nested_vmcb->control.intercept_cr_write;
1918 svm->vmcb->control.intercept_dr_read |=
1919 nested_vmcb->control.intercept_dr_read;
1920 svm->vmcb->control.intercept_dr_write |=
1921 nested_vmcb->control.intercept_dr_write;
1922 svm->vmcb->control.intercept_exceptions |=
1923 nested_vmcb->control.intercept_exceptions;
1924
1925 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1926
1927 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
1928 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1929 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1930 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1931 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1932 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1933
1934 nested_svm_unmap(page);
1935
1936 /* nested_vmcb is our indicator if nested SVM is activated */
1937 svm->nested.vmcb = vmcb_gpa;
1938
1939 enable_gif(svm);
1940
1941 return true;
1942 }
1943
1944 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1945 {
1946 to_vmcb->save.fs = from_vmcb->save.fs;
1947 to_vmcb->save.gs = from_vmcb->save.gs;
1948 to_vmcb->save.tr = from_vmcb->save.tr;
1949 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1950 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1951 to_vmcb->save.star = from_vmcb->save.star;
1952 to_vmcb->save.lstar = from_vmcb->save.lstar;
1953 to_vmcb->save.cstar = from_vmcb->save.cstar;
1954 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1955 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1956 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1957 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1958 }
1959
1960 static int vmload_interception(struct vcpu_svm *svm)
1961 {
1962 struct vmcb *nested_vmcb;
1963 struct page *page;
1964
1965 if (nested_svm_check_permissions(svm))
1966 return 1;
1967
1968 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1969 skip_emulated_instruction(&svm->vcpu);
1970
1971 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1972 if (!nested_vmcb)
1973 return 1;
1974
1975 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1976 nested_svm_unmap(page);
1977
1978 return 1;
1979 }
1980
1981 static int vmsave_interception(struct vcpu_svm *svm)
1982 {
1983 struct vmcb *nested_vmcb;
1984 struct page *page;
1985
1986 if (nested_svm_check_permissions(svm))
1987 return 1;
1988
1989 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1990 skip_emulated_instruction(&svm->vcpu);
1991
1992 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1993 if (!nested_vmcb)
1994 return 1;
1995
1996 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1997 nested_svm_unmap(page);
1998
1999 return 1;
2000 }
2001
2002 static int vmrun_interception(struct vcpu_svm *svm)
2003 {
2004 if (nested_svm_check_permissions(svm))
2005 return 1;
2006
2007 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2008 skip_emulated_instruction(&svm->vcpu);
2009
2010 if (!nested_svm_vmrun(svm))
2011 return 1;
2012
2013 if (!nested_svm_vmrun_msrpm(svm))
2014 goto failed;
2015
2016 return 1;
2017
2018 failed:
2019
2020 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2021 svm->vmcb->control.exit_code_hi = 0;
2022 svm->vmcb->control.exit_info_1 = 0;
2023 svm->vmcb->control.exit_info_2 = 0;
2024
2025 nested_svm_vmexit(svm);
2026
2027 return 1;
2028 }
2029
2030 static int stgi_interception(struct vcpu_svm *svm)
2031 {
2032 if (nested_svm_check_permissions(svm))
2033 return 1;
2034
2035 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2036 skip_emulated_instruction(&svm->vcpu);
2037
2038 enable_gif(svm);
2039
2040 return 1;
2041 }
2042
2043 static int clgi_interception(struct vcpu_svm *svm)
2044 {
2045 if (nested_svm_check_permissions(svm))
2046 return 1;
2047
2048 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2049 skip_emulated_instruction(&svm->vcpu);
2050
2051 disable_gif(svm);
2052
2053 /* After a CLGI no interrupts should come */
2054 svm_clear_vintr(svm);
2055 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2056
2057 return 1;
2058 }
2059
2060 static int invlpga_interception(struct vcpu_svm *svm)
2061 {
2062 struct kvm_vcpu *vcpu = &svm->vcpu;
2063
2064 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2065 vcpu->arch.regs[VCPU_REGS_RAX]);
2066
2067 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2068 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2069
2070 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2071 skip_emulated_instruction(&svm->vcpu);
2072 return 1;
2073 }
2074
2075 static int skinit_interception(struct vcpu_svm *svm)
2076 {
2077 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2078
2079 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2080 return 1;
2081 }
2082
2083 static int invalid_op_interception(struct vcpu_svm *svm)
2084 {
2085 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2086 return 1;
2087 }
2088
2089 static int task_switch_interception(struct vcpu_svm *svm)
2090 {
2091 u16 tss_selector;
2092 int reason;
2093 int int_type = svm->vmcb->control.exit_int_info &
2094 SVM_EXITINTINFO_TYPE_MASK;
2095 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2096 uint32_t type =
2097 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2098 uint32_t idt_v =
2099 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2100
2101 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2102
2103 if (svm->vmcb->control.exit_info_2 &
2104 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2105 reason = TASK_SWITCH_IRET;
2106 else if (svm->vmcb->control.exit_info_2 &
2107 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2108 reason = TASK_SWITCH_JMP;
2109 else if (idt_v)
2110 reason = TASK_SWITCH_GATE;
2111 else
2112 reason = TASK_SWITCH_CALL;
2113
2114 if (reason == TASK_SWITCH_GATE) {
2115 switch (type) {
2116 case SVM_EXITINTINFO_TYPE_NMI:
2117 svm->vcpu.arch.nmi_injected = false;
2118 break;
2119 case SVM_EXITINTINFO_TYPE_EXEPT:
2120 kvm_clear_exception_queue(&svm->vcpu);
2121 break;
2122 case SVM_EXITINTINFO_TYPE_INTR:
2123 kvm_clear_interrupt_queue(&svm->vcpu);
2124 break;
2125 default:
2126 break;
2127 }
2128 }
2129
2130 if (reason != TASK_SWITCH_GATE ||
2131 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2132 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2133 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2134 skip_emulated_instruction(&svm->vcpu);
2135
2136 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2137 }
2138
2139 static int cpuid_interception(struct vcpu_svm *svm)
2140 {
2141 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2142 kvm_emulate_cpuid(&svm->vcpu);
2143 return 1;
2144 }
2145
2146 static int iret_interception(struct vcpu_svm *svm)
2147 {
2148 ++svm->vcpu.stat.nmi_window_exits;
2149 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2150 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2151 return 1;
2152 }
2153
2154 static int invlpg_interception(struct vcpu_svm *svm)
2155 {
2156 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2157 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2158 return 1;
2159 }
2160
2161 static int emulate_on_interception(struct vcpu_svm *svm)
2162 {
2163 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2164 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2165 return 1;
2166 }
2167
2168 static int cr8_write_interception(struct vcpu_svm *svm)
2169 {
2170 struct kvm_run *kvm_run = svm->vcpu.run;
2171
2172 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2173 /* instruction emulation calls kvm_set_cr8() */
2174 emulate_instruction(&svm->vcpu, 0, 0, 0);
2175 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2176 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2177 return 1;
2178 }
2179 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2180 return 1;
2181 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2182 return 0;
2183 }
2184
2185 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2186 {
2187 struct vcpu_svm *svm = to_svm(vcpu);
2188
2189 switch (ecx) {
2190 case MSR_IA32_TSC: {
2191 u64 tsc_offset;
2192
2193 if (is_nested(svm))
2194 tsc_offset = svm->nested.hsave->control.tsc_offset;
2195 else
2196 tsc_offset = svm->vmcb->control.tsc_offset;
2197
2198 *data = tsc_offset + native_read_tsc();
2199 break;
2200 }
2201 case MSR_K6_STAR:
2202 *data = svm->vmcb->save.star;
2203 break;
2204 #ifdef CONFIG_X86_64
2205 case MSR_LSTAR:
2206 *data = svm->vmcb->save.lstar;
2207 break;
2208 case MSR_CSTAR:
2209 *data = svm->vmcb->save.cstar;
2210 break;
2211 case MSR_KERNEL_GS_BASE:
2212 *data = svm->vmcb->save.kernel_gs_base;
2213 break;
2214 case MSR_SYSCALL_MASK:
2215 *data = svm->vmcb->save.sfmask;
2216 break;
2217 #endif
2218 case MSR_IA32_SYSENTER_CS:
2219 *data = svm->vmcb->save.sysenter_cs;
2220 break;
2221 case MSR_IA32_SYSENTER_EIP:
2222 *data = svm->sysenter_eip;
2223 break;
2224 case MSR_IA32_SYSENTER_ESP:
2225 *data = svm->sysenter_esp;
2226 break;
2227 /* Nobody will change the following 5 values in the VMCB so
2228 we can safely return them on rdmsr. They will always be 0
2229 until LBRV is implemented. */
2230 case MSR_IA32_DEBUGCTLMSR:
2231 *data = svm->vmcb->save.dbgctl;
2232 break;
2233 case MSR_IA32_LASTBRANCHFROMIP:
2234 *data = svm->vmcb->save.br_from;
2235 break;
2236 case MSR_IA32_LASTBRANCHTOIP:
2237 *data = svm->vmcb->save.br_to;
2238 break;
2239 case MSR_IA32_LASTINTFROMIP:
2240 *data = svm->vmcb->save.last_excp_from;
2241 break;
2242 case MSR_IA32_LASTINTTOIP:
2243 *data = svm->vmcb->save.last_excp_to;
2244 break;
2245 case MSR_VM_HSAVE_PA:
2246 *data = svm->nested.hsave_msr;
2247 break;
2248 case MSR_VM_CR:
2249 *data = 0;
2250 break;
2251 case MSR_IA32_UCODE_REV:
2252 *data = 0x01000065;
2253 break;
2254 default:
2255 return kvm_get_msr_common(vcpu, ecx, data);
2256 }
2257 return 0;
2258 }
2259
2260 static int rdmsr_interception(struct vcpu_svm *svm)
2261 {
2262 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2263 u64 data;
2264
2265 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2266 trace_kvm_msr_read_ex(ecx);
2267 kvm_inject_gp(&svm->vcpu, 0);
2268 } else {
2269 trace_kvm_msr_read(ecx, data);
2270
2271 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2272 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2273 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2274 skip_emulated_instruction(&svm->vcpu);
2275 }
2276 return 1;
2277 }
2278
2279 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2280 {
2281 struct vcpu_svm *svm = to_svm(vcpu);
2282
2283 switch (ecx) {
2284 case MSR_IA32_TSC: {
2285 u64 tsc_offset = data - native_read_tsc();
2286 u64 g_tsc_offset = 0;
2287
2288 if (is_nested(svm)) {
2289 g_tsc_offset = svm->vmcb->control.tsc_offset -
2290 svm->nested.hsave->control.tsc_offset;
2291 svm->nested.hsave->control.tsc_offset = tsc_offset;
2292 }
2293
2294 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2295
2296 break;
2297 }
2298 case MSR_K6_STAR:
2299 svm->vmcb->save.star = data;
2300 break;
2301 #ifdef CONFIG_X86_64
2302 case MSR_LSTAR:
2303 svm->vmcb->save.lstar = data;
2304 break;
2305 case MSR_CSTAR:
2306 svm->vmcb->save.cstar = data;
2307 break;
2308 case MSR_KERNEL_GS_BASE:
2309 svm->vmcb->save.kernel_gs_base = data;
2310 break;
2311 case MSR_SYSCALL_MASK:
2312 svm->vmcb->save.sfmask = data;
2313 break;
2314 #endif
2315 case MSR_IA32_SYSENTER_CS:
2316 svm->vmcb->save.sysenter_cs = data;
2317 break;
2318 case MSR_IA32_SYSENTER_EIP:
2319 svm->sysenter_eip = data;
2320 svm->vmcb->save.sysenter_eip = data;
2321 break;
2322 case MSR_IA32_SYSENTER_ESP:
2323 svm->sysenter_esp = data;
2324 svm->vmcb->save.sysenter_esp = data;
2325 break;
2326 case MSR_IA32_DEBUGCTLMSR:
2327 if (!svm_has(SVM_FEATURE_LBRV)) {
2328 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2329 __func__, data);
2330 break;
2331 }
2332 if (data & DEBUGCTL_RESERVED_BITS)
2333 return 1;
2334
2335 svm->vmcb->save.dbgctl = data;
2336 if (data & (1ULL<<0))
2337 svm_enable_lbrv(svm);
2338 else
2339 svm_disable_lbrv(svm);
2340 break;
2341 case MSR_VM_HSAVE_PA:
2342 svm->nested.hsave_msr = data;
2343 break;
2344 case MSR_VM_CR:
2345 case MSR_VM_IGNNE:
2346 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2347 break;
2348 default:
2349 return kvm_set_msr_common(vcpu, ecx, data);
2350 }
2351 return 0;
2352 }
2353
2354 static int wrmsr_interception(struct vcpu_svm *svm)
2355 {
2356 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2357 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2358 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2359
2360
2361 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2362 if (svm_set_msr(&svm->vcpu, ecx, data)) {
2363 trace_kvm_msr_write_ex(ecx, data);
2364 kvm_inject_gp(&svm->vcpu, 0);
2365 } else {
2366 trace_kvm_msr_write(ecx, data);
2367 skip_emulated_instruction(&svm->vcpu);
2368 }
2369 return 1;
2370 }
2371
2372 static int msr_interception(struct vcpu_svm *svm)
2373 {
2374 if (svm->vmcb->control.exit_info_1)
2375 return wrmsr_interception(svm);
2376 else
2377 return rdmsr_interception(svm);
2378 }
2379
2380 static int interrupt_window_interception(struct vcpu_svm *svm)
2381 {
2382 struct kvm_run *kvm_run = svm->vcpu.run;
2383
2384 svm_clear_vintr(svm);
2385 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2386 /*
2387 * If the user space waits to inject interrupts, exit as soon as
2388 * possible
2389 */
2390 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2391 kvm_run->request_interrupt_window &&
2392 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2393 ++svm->vcpu.stat.irq_window_exits;
2394 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2395 return 0;
2396 }
2397
2398 return 1;
2399 }
2400
2401 static int pause_interception(struct vcpu_svm *svm)
2402 {
2403 kvm_vcpu_on_spin(&(svm->vcpu));
2404 return 1;
2405 }
2406
2407 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2408 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2409 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2410 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2411 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2412 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
2413 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2414 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2415 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2416 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2417 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2418 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2419 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2420 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2421 [SVM_EXIT_READ_DR4] = emulate_on_interception,
2422 [SVM_EXIT_READ_DR5] = emulate_on_interception,
2423 [SVM_EXIT_READ_DR6] = emulate_on_interception,
2424 [SVM_EXIT_READ_DR7] = emulate_on_interception,
2425 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2426 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2427 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2428 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2429 [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
2430 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2431 [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
2432 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2433 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2434 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2435 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2436 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2437 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2438 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2439 [SVM_EXIT_INTR] = intr_interception,
2440 [SVM_EXIT_NMI] = nmi_interception,
2441 [SVM_EXIT_SMI] = nop_on_interception,
2442 [SVM_EXIT_INIT] = nop_on_interception,
2443 [SVM_EXIT_VINTR] = interrupt_window_interception,
2444 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2445 [SVM_EXIT_CPUID] = cpuid_interception,
2446 [SVM_EXIT_IRET] = iret_interception,
2447 [SVM_EXIT_INVD] = emulate_on_interception,
2448 [SVM_EXIT_PAUSE] = pause_interception,
2449 [SVM_EXIT_HLT] = halt_interception,
2450 [SVM_EXIT_INVLPG] = invlpg_interception,
2451 [SVM_EXIT_INVLPGA] = invlpga_interception,
2452 [SVM_EXIT_IOIO] = io_interception,
2453 [SVM_EXIT_MSR] = msr_interception,
2454 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2455 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2456 [SVM_EXIT_VMRUN] = vmrun_interception,
2457 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2458 [SVM_EXIT_VMLOAD] = vmload_interception,
2459 [SVM_EXIT_VMSAVE] = vmsave_interception,
2460 [SVM_EXIT_STGI] = stgi_interception,
2461 [SVM_EXIT_CLGI] = clgi_interception,
2462 [SVM_EXIT_SKINIT] = skinit_interception,
2463 [SVM_EXIT_WBINVD] = emulate_on_interception,
2464 [SVM_EXIT_MONITOR] = invalid_op_interception,
2465 [SVM_EXIT_MWAIT] = invalid_op_interception,
2466 [SVM_EXIT_NPF] = pf_interception,
2467 };
2468
2469 static int handle_exit(struct kvm_vcpu *vcpu)
2470 {
2471 struct vcpu_svm *svm = to_svm(vcpu);
2472 struct kvm_run *kvm_run = vcpu->run;
2473 u32 exit_code = svm->vmcb->control.exit_code;
2474
2475 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2476
2477 if (unlikely(svm->nested.exit_required)) {
2478 nested_svm_vmexit(svm);
2479 svm->nested.exit_required = false;
2480
2481 return 1;
2482 }
2483
2484 if (is_nested(svm)) {
2485 int vmexit;
2486
2487 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2488 svm->vmcb->control.exit_info_1,
2489 svm->vmcb->control.exit_info_2,
2490 svm->vmcb->control.exit_int_info,
2491 svm->vmcb->control.exit_int_info_err);
2492
2493 vmexit = nested_svm_exit_special(svm);
2494
2495 if (vmexit == NESTED_EXIT_CONTINUE)
2496 vmexit = nested_svm_exit_handled(svm);
2497
2498 if (vmexit == NESTED_EXIT_DONE)
2499 return 1;
2500 }
2501
2502 svm_complete_interrupts(svm);
2503
2504 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2505 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2506 if (npt_enabled)
2507 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2508
2509 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2510 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2511 kvm_run->fail_entry.hardware_entry_failure_reason
2512 = svm->vmcb->control.exit_code;
2513 return 0;
2514 }
2515
2516 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2517 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2518 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2519 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2520 "exit_code 0x%x\n",
2521 __func__, svm->vmcb->control.exit_int_info,
2522 exit_code);
2523
2524 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2525 || !svm_exit_handlers[exit_code]) {
2526 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2527 kvm_run->hw.hardware_exit_reason = exit_code;
2528 return 0;
2529 }
2530
2531 return svm_exit_handlers[exit_code](svm);
2532 }
2533
2534 static void reload_tss(struct kvm_vcpu *vcpu)
2535 {
2536 int cpu = raw_smp_processor_id();
2537
2538 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2539 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2540 load_TR_desc();
2541 }
2542
2543 static void pre_svm_run(struct vcpu_svm *svm)
2544 {
2545 int cpu = raw_smp_processor_id();
2546
2547 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2548
2549 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2550 /* FIXME: handle wraparound of asid_generation */
2551 if (svm->asid_generation != sd->asid_generation)
2552 new_asid(svm, sd);
2553 }
2554
2555 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2556 {
2557 struct vcpu_svm *svm = to_svm(vcpu);
2558
2559 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2560 vcpu->arch.hflags |= HF_NMI_MASK;
2561 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2562 ++vcpu->stat.nmi_injections;
2563 }
2564
2565 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2566 {
2567 struct vmcb_control_area *control;
2568
2569 trace_kvm_inj_virq(irq);
2570
2571 ++svm->vcpu.stat.irq_injections;
2572 control = &svm->vmcb->control;
2573 control->int_vector = irq;
2574 control->int_ctl &= ~V_INTR_PRIO_MASK;
2575 control->int_ctl |= V_IRQ_MASK |
2576 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2577 }
2578
2579 static void svm_set_irq(struct kvm_vcpu *vcpu)
2580 {
2581 struct vcpu_svm *svm = to_svm(vcpu);
2582
2583 BUG_ON(!(gif_set(svm)));
2584
2585 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2586 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2587 }
2588
2589 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2590 {
2591 struct vcpu_svm *svm = to_svm(vcpu);
2592
2593 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2594 return;
2595
2596 if (irr == -1)
2597 return;
2598
2599 if (tpr >= irr)
2600 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2601 }
2602
2603 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2604 {
2605 struct vcpu_svm *svm = to_svm(vcpu);
2606 struct vmcb *vmcb = svm->vmcb;
2607 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2608 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2609 }
2610
2611 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2612 {
2613 struct vcpu_svm *svm = to_svm(vcpu);
2614
2615 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2616 }
2617
2618 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2619 {
2620 struct vcpu_svm *svm = to_svm(vcpu);
2621
2622 if (masked) {
2623 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2624 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2625 } else {
2626 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2627 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2628 }
2629 }
2630
2631 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2632 {
2633 struct vcpu_svm *svm = to_svm(vcpu);
2634 struct vmcb *vmcb = svm->vmcb;
2635 int ret;
2636
2637 if (!gif_set(svm) ||
2638 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2639 return 0;
2640
2641 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2642
2643 if (is_nested(svm))
2644 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2645
2646 return ret;
2647 }
2648
2649 static void enable_irq_window(struct kvm_vcpu *vcpu)
2650 {
2651 struct vcpu_svm *svm = to_svm(vcpu);
2652
2653 /* In case GIF=0 we can't rely on the CPU to tell us when
2654 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2655 * The next time we get that intercept, this function will be
2656 * called again though and we'll get the vintr intercept. */
2657 if (gif_set(svm) && nested_svm_intr(svm)) {
2658 svm_set_vintr(svm);
2659 svm_inject_irq(svm, 0x0);
2660 }
2661 }
2662
2663 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2664 {
2665 struct vcpu_svm *svm = to_svm(vcpu);
2666
2667 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2668 == HF_NMI_MASK)
2669 return; /* IRET will cause a vm exit */
2670
2671 /* Something prevents NMI from been injected. Single step over
2672 possible problem (IRET or exception injection or interrupt
2673 shadow) */
2674 svm->nmi_singlestep = true;
2675 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2676 update_db_intercept(vcpu);
2677 }
2678
2679 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2680 {
2681 return 0;
2682 }
2683
2684 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2685 {
2686 force_new_asid(vcpu);
2687 }
2688
2689 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2690 {
2691 }
2692
2693 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2694 {
2695 struct vcpu_svm *svm = to_svm(vcpu);
2696
2697 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2698 return;
2699
2700 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2701 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2702 kvm_set_cr8(vcpu, cr8);
2703 }
2704 }
2705
2706 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2707 {
2708 struct vcpu_svm *svm = to_svm(vcpu);
2709 u64 cr8;
2710
2711 if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2712 return;
2713
2714 cr8 = kvm_get_cr8(vcpu);
2715 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2716 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2717 }
2718
2719 static void svm_complete_interrupts(struct vcpu_svm *svm)
2720 {
2721 u8 vector;
2722 int type;
2723 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2724 unsigned int3_injected = svm->int3_injected;
2725
2726 svm->int3_injected = 0;
2727
2728 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2729 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2730
2731 svm->vcpu.arch.nmi_injected = false;
2732 kvm_clear_exception_queue(&svm->vcpu);
2733 kvm_clear_interrupt_queue(&svm->vcpu);
2734
2735 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2736 return;
2737
2738 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2739 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2740
2741 switch (type) {
2742 case SVM_EXITINTINFO_TYPE_NMI:
2743 svm->vcpu.arch.nmi_injected = true;
2744 break;
2745 case SVM_EXITINTINFO_TYPE_EXEPT:
2746 if (is_nested(svm))
2747 break;
2748 /*
2749 * In case of software exceptions, do not reinject the vector,
2750 * but re-execute the instruction instead. Rewind RIP first
2751 * if we emulated INT3 before.
2752 */
2753 if (kvm_exception_is_soft(vector)) {
2754 if (vector == BP_VECTOR && int3_injected &&
2755 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
2756 kvm_rip_write(&svm->vcpu,
2757 kvm_rip_read(&svm->vcpu) -
2758 int3_injected);
2759 break;
2760 }
2761 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2762 u32 err = svm->vmcb->control.exit_int_info_err;
2763 kvm_queue_exception_e(&svm->vcpu, vector, err);
2764
2765 } else
2766 kvm_queue_exception(&svm->vcpu, vector);
2767 break;
2768 case SVM_EXITINTINFO_TYPE_INTR:
2769 kvm_queue_interrupt(&svm->vcpu, vector, false);
2770 break;
2771 default:
2772 break;
2773 }
2774 }
2775
2776 #ifdef CONFIG_X86_64
2777 #define R "r"
2778 #else
2779 #define R "e"
2780 #endif
2781
2782 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2783 {
2784 struct vcpu_svm *svm = to_svm(vcpu);
2785 u16 fs_selector;
2786 u16 gs_selector;
2787 u16 ldt_selector;
2788
2789 /*
2790 * A vmexit emulation is required before the vcpu can be executed
2791 * again.
2792 */
2793 if (unlikely(svm->nested.exit_required))
2794 return;
2795
2796 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2797 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2798 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2799
2800 pre_svm_run(svm);
2801
2802 sync_lapic_to_cr8(vcpu);
2803
2804 save_host_msrs(vcpu);
2805 fs_selector = kvm_read_fs();
2806 gs_selector = kvm_read_gs();
2807 ldt_selector = kvm_read_ldt();
2808 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2809 /* required for live migration with NPT */
2810 if (npt_enabled)
2811 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2812
2813 clgi();
2814
2815 local_irq_enable();
2816
2817 asm volatile (
2818 "push %%"R"bp; \n\t"
2819 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2820 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2821 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2822 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2823 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2824 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2825 #ifdef CONFIG_X86_64
2826 "mov %c[r8](%[svm]), %%r8 \n\t"
2827 "mov %c[r9](%[svm]), %%r9 \n\t"
2828 "mov %c[r10](%[svm]), %%r10 \n\t"
2829 "mov %c[r11](%[svm]), %%r11 \n\t"
2830 "mov %c[r12](%[svm]), %%r12 \n\t"
2831 "mov %c[r13](%[svm]), %%r13 \n\t"
2832 "mov %c[r14](%[svm]), %%r14 \n\t"
2833 "mov %c[r15](%[svm]), %%r15 \n\t"
2834 #endif
2835
2836 /* Enter guest mode */
2837 "push %%"R"ax \n\t"
2838 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2839 __ex(SVM_VMLOAD) "\n\t"
2840 __ex(SVM_VMRUN) "\n\t"
2841 __ex(SVM_VMSAVE) "\n\t"
2842 "pop %%"R"ax \n\t"
2843
2844 /* Save guest registers, load host registers */
2845 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2846 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2847 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2848 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2849 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2850 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2851 #ifdef CONFIG_X86_64
2852 "mov %%r8, %c[r8](%[svm]) \n\t"
2853 "mov %%r9, %c[r9](%[svm]) \n\t"
2854 "mov %%r10, %c[r10](%[svm]) \n\t"
2855 "mov %%r11, %c[r11](%[svm]) \n\t"
2856 "mov %%r12, %c[r12](%[svm]) \n\t"
2857 "mov %%r13, %c[r13](%[svm]) \n\t"
2858 "mov %%r14, %c[r14](%[svm]) \n\t"
2859 "mov %%r15, %c[r15](%[svm]) \n\t"
2860 #endif
2861 "pop %%"R"bp"
2862 :
2863 : [svm]"a"(svm),
2864 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2865 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2866 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2867 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2868 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2869 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2870 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2871 #ifdef CONFIG_X86_64
2872 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2873 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2874 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2875 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2876 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2877 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2878 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2879 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2880 #endif
2881 : "cc", "memory"
2882 , R"bx", R"cx", R"dx", R"si", R"di"
2883 #ifdef CONFIG_X86_64
2884 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2885 #endif
2886 );
2887
2888 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2889 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2890 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2891 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2892
2893 kvm_load_fs(fs_selector);
2894 kvm_load_gs(gs_selector);
2895 kvm_load_ldt(ldt_selector);
2896 load_host_msrs(vcpu);
2897
2898 reload_tss(vcpu);
2899
2900 local_irq_disable();
2901
2902 stgi();
2903
2904 sync_cr8_to_lapic(vcpu);
2905
2906 svm->next_rip = 0;
2907
2908 if (npt_enabled) {
2909 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2910 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2911 }
2912 }
2913
2914 #undef R
2915
2916 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2917 {
2918 struct vcpu_svm *svm = to_svm(vcpu);
2919
2920 if (npt_enabled) {
2921 svm->vmcb->control.nested_cr3 = root;
2922 force_new_asid(vcpu);
2923 return;
2924 }
2925
2926 svm->vmcb->save.cr3 = root;
2927 force_new_asid(vcpu);
2928 }
2929
2930 static int is_disabled(void)
2931 {
2932 u64 vm_cr;
2933
2934 rdmsrl(MSR_VM_CR, vm_cr);
2935 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2936 return 1;
2937
2938 return 0;
2939 }
2940
2941 static void
2942 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2943 {
2944 /*
2945 * Patch in the VMMCALL instruction:
2946 */
2947 hypercall[0] = 0x0f;
2948 hypercall[1] = 0x01;
2949 hypercall[2] = 0xd9;
2950 }
2951
2952 static void svm_check_processor_compat(void *rtn)
2953 {
2954 *(int *)rtn = 0;
2955 }
2956
2957 static bool svm_cpu_has_accelerated_tpr(void)
2958 {
2959 return false;
2960 }
2961
2962 static int get_npt_level(void)
2963 {
2964 #ifdef CONFIG_X86_64
2965 return PT64_ROOT_LEVEL;
2966 #else
2967 return PT32E_ROOT_LEVEL;
2968 #endif
2969 }
2970
2971 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2972 {
2973 return 0;
2974 }
2975
2976 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2977 {
2978 }
2979
2980 static const struct trace_print_flags svm_exit_reasons_str[] = {
2981 { SVM_EXIT_READ_CR0, "read_cr0" },
2982 { SVM_EXIT_READ_CR3, "read_cr3" },
2983 { SVM_EXIT_READ_CR4, "read_cr4" },
2984 { SVM_EXIT_READ_CR8, "read_cr8" },
2985 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2986 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2987 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2988 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2989 { SVM_EXIT_READ_DR0, "read_dr0" },
2990 { SVM_EXIT_READ_DR1, "read_dr1" },
2991 { SVM_EXIT_READ_DR2, "read_dr2" },
2992 { SVM_EXIT_READ_DR3, "read_dr3" },
2993 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2994 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2995 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2996 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2997 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2998 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2999 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
3000 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
3001 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
3002 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
3003 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
3004 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
3005 { SVM_EXIT_INTR, "interrupt" },
3006 { SVM_EXIT_NMI, "nmi" },
3007 { SVM_EXIT_SMI, "smi" },
3008 { SVM_EXIT_INIT, "init" },
3009 { SVM_EXIT_VINTR, "vintr" },
3010 { SVM_EXIT_CPUID, "cpuid" },
3011 { SVM_EXIT_INVD, "invd" },
3012 { SVM_EXIT_HLT, "hlt" },
3013 { SVM_EXIT_INVLPG, "invlpg" },
3014 { SVM_EXIT_INVLPGA, "invlpga" },
3015 { SVM_EXIT_IOIO, "io" },
3016 { SVM_EXIT_MSR, "msr" },
3017 { SVM_EXIT_TASK_SWITCH, "task_switch" },
3018 { SVM_EXIT_SHUTDOWN, "shutdown" },
3019 { SVM_EXIT_VMRUN, "vmrun" },
3020 { SVM_EXIT_VMMCALL, "hypercall" },
3021 { SVM_EXIT_VMLOAD, "vmload" },
3022 { SVM_EXIT_VMSAVE, "vmsave" },
3023 { SVM_EXIT_STGI, "stgi" },
3024 { SVM_EXIT_CLGI, "clgi" },
3025 { SVM_EXIT_SKINIT, "skinit" },
3026 { SVM_EXIT_WBINVD, "wbinvd" },
3027 { SVM_EXIT_MONITOR, "monitor" },
3028 { SVM_EXIT_MWAIT, "mwait" },
3029 { SVM_EXIT_NPF, "npf" },
3030 { -1, NULL }
3031 };
3032
3033 static int svm_get_lpage_level(void)
3034 {
3035 return PT_PDPE_LEVEL;
3036 }
3037
3038 static bool svm_rdtscp_supported(void)
3039 {
3040 return false;
3041 }
3042
3043 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3044 {
3045 struct vcpu_svm *svm = to_svm(vcpu);
3046
3047 svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3048 if (is_nested(svm))
3049 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3050 update_cr0_intercept(svm);
3051 }
3052
3053 static struct kvm_x86_ops svm_x86_ops = {
3054 .cpu_has_kvm_support = has_svm,
3055 .disabled_by_bios = is_disabled,
3056 .hardware_setup = svm_hardware_setup,
3057 .hardware_unsetup = svm_hardware_unsetup,
3058 .check_processor_compatibility = svm_check_processor_compat,
3059 .hardware_enable = svm_hardware_enable,
3060 .hardware_disable = svm_hardware_disable,
3061 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3062
3063 .vcpu_create = svm_create_vcpu,
3064 .vcpu_free = svm_free_vcpu,
3065 .vcpu_reset = svm_vcpu_reset,
3066
3067 .prepare_guest_switch = svm_prepare_guest_switch,
3068 .vcpu_load = svm_vcpu_load,
3069 .vcpu_put = svm_vcpu_put,
3070
3071 .set_guest_debug = svm_guest_debug,
3072 .get_msr = svm_get_msr,
3073 .set_msr = svm_set_msr,
3074 .get_segment_base = svm_get_segment_base,
3075 .get_segment = svm_get_segment,
3076 .set_segment = svm_set_segment,
3077 .get_cpl = svm_get_cpl,
3078 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3079 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3080 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3081 .set_cr0 = svm_set_cr0,
3082 .set_cr3 = svm_set_cr3,
3083 .set_cr4 = svm_set_cr4,
3084 .set_efer = svm_set_efer,
3085 .get_idt = svm_get_idt,
3086 .set_idt = svm_set_idt,
3087 .get_gdt = svm_get_gdt,
3088 .set_gdt = svm_set_gdt,
3089 .get_dr = svm_get_dr,
3090 .set_dr = svm_set_dr,
3091 .cache_reg = svm_cache_reg,
3092 .get_rflags = svm_get_rflags,
3093 .set_rflags = svm_set_rflags,
3094 .fpu_activate = svm_fpu_activate,
3095 .fpu_deactivate = svm_fpu_deactivate,
3096
3097 .tlb_flush = svm_flush_tlb,
3098
3099 .run = svm_vcpu_run,
3100 .handle_exit = handle_exit,
3101 .skip_emulated_instruction = skip_emulated_instruction,
3102 .set_interrupt_shadow = svm_set_interrupt_shadow,
3103 .get_interrupt_shadow = svm_get_interrupt_shadow,
3104 .patch_hypercall = svm_patch_hypercall,
3105 .set_irq = svm_set_irq,
3106 .set_nmi = svm_inject_nmi,
3107 .queue_exception = svm_queue_exception,
3108 .interrupt_allowed = svm_interrupt_allowed,
3109 .nmi_allowed = svm_nmi_allowed,
3110 .get_nmi_mask = svm_get_nmi_mask,
3111 .set_nmi_mask = svm_set_nmi_mask,
3112 .enable_nmi_window = enable_nmi_window,
3113 .enable_irq_window = enable_irq_window,
3114 .update_cr8_intercept = update_cr8_intercept,
3115
3116 .set_tss_addr = svm_set_tss_addr,
3117 .get_tdp_level = get_npt_level,
3118 .get_mt_mask = svm_get_mt_mask,
3119
3120 .exit_reasons_str = svm_exit_reasons_str,
3121 .get_lpage_level = svm_get_lpage_level,
3122
3123 .cpuid_update = svm_cpuid_update,
3124
3125 .rdtscp_supported = svm_rdtscp_supported,
3126 };
3127
3128 static int __init svm_init(void)
3129 {
3130 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3131 THIS_MODULE);
3132 }
3133
3134 static void __exit svm_exit(void)
3135 {
3136 kvm_exit();
3137 }
3138
3139 module_init(svm_init)
3140 module_exit(svm_exit)