2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
20 #include "kvm_cache_regs.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
33 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
47 #define SVM_FEATURE_NPT (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
53 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
54 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
56 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58 static const u32 host_save_user_msrs
[] = {
60 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
63 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
66 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
75 /* These are the merged vectors */
78 /* gpa pointers to the real vectors */
81 /* A VMEXIT is required but not yet emulated */
84 /* cache for intercepts of the guest */
85 u16 intercept_cr_read
;
86 u16 intercept_cr_write
;
87 u16 intercept_dr_read
;
88 u16 intercept_dr_write
;
89 u32 intercept_exceptions
;
97 unsigned long vmcb_pa
;
98 struct svm_cpu_data
*svm_data
;
99 uint64_t asid_generation
;
100 uint64_t sysenter_esp
;
101 uint64_t sysenter_eip
;
105 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
110 struct nested_state nested
;
115 /* enable NPT for AMD64 and X86 with PAE */
116 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
117 static bool npt_enabled
= true;
119 static bool npt_enabled
= false;
123 module_param(npt
, int, S_IRUGO
);
125 static int nested
= 1;
126 module_param(nested
, int, S_IRUGO
);
128 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
129 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
131 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
132 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
133 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
134 bool has_error_code
, u32 error_code
);
136 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
138 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
141 static inline bool is_nested(struct vcpu_svm
*svm
)
143 return svm
->nested
.vmcb
;
146 static inline void enable_gif(struct vcpu_svm
*svm
)
148 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
151 static inline void disable_gif(struct vcpu_svm
*svm
)
153 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
156 static inline bool gif_set(struct vcpu_svm
*svm
)
158 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
161 static unsigned long iopm_base
;
163 struct kvm_ldttss_desc
{
166 unsigned base1
: 8, type
: 5, dpl
: 2, p
: 1;
167 unsigned limit1
: 4, zero0
: 3, g
: 1, base2
: 8;
170 } __attribute__((packed
));
172 struct svm_cpu_data
{
178 struct kvm_ldttss_desc
*tss_desc
;
180 struct page
*save_area
;
183 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
184 static uint32_t svm_features
;
186 struct svm_init_data
{
191 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
193 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
194 #define MSRS_RANGE_SIZE 2048
195 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
197 #define MAX_INST_SIZE 15
199 static inline u32
svm_has(u32 feat
)
201 return svm_features
& feat
;
204 static inline void clgi(void)
206 asm volatile (__ex(SVM_CLGI
));
209 static inline void stgi(void)
211 asm volatile (__ex(SVM_STGI
));
214 static inline void invlpga(unsigned long addr
, u32 asid
)
216 asm volatile (__ex(SVM_INVLPGA
) :: "a"(addr
), "c"(asid
));
219 static inline void force_new_asid(struct kvm_vcpu
*vcpu
)
221 to_svm(vcpu
)->asid_generation
--;
224 static inline void flush_guest_tlb(struct kvm_vcpu
*vcpu
)
226 force_new_asid(vcpu
);
229 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
231 if (!npt_enabled
&& !(efer
& EFER_LMA
))
234 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
235 vcpu
->arch
.efer
= efer
;
238 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
239 bool has_error_code
, u32 error_code
)
241 struct vcpu_svm
*svm
= to_svm(vcpu
);
243 /* If we are within a nested VM we'd better #VMEXIT and let the
244 guest handle the exception */
245 if (nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
248 svm
->vmcb
->control
.event_inj
= nr
250 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
251 | SVM_EVTINJ_TYPE_EXEPT
;
252 svm
->vmcb
->control
.event_inj_err
= error_code
;
255 static int is_external_interrupt(u32 info
)
257 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
258 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
261 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
263 struct vcpu_svm
*svm
= to_svm(vcpu
);
266 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
267 ret
|= X86_SHADOW_INT_STI
| X86_SHADOW_INT_MOV_SS
;
271 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
273 struct vcpu_svm
*svm
= to_svm(vcpu
);
276 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
278 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
282 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
284 struct vcpu_svm
*svm
= to_svm(vcpu
);
286 if (!svm
->next_rip
) {
287 if (emulate_instruction(vcpu
, 0, 0, EMULTYPE_SKIP
) !=
289 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
292 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
293 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
294 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
296 kvm_rip_write(vcpu
, svm
->next_rip
);
297 svm_set_interrupt_shadow(vcpu
, 0);
300 static int has_svm(void)
304 if (!cpu_has_svm(&msg
)) {
305 printk(KERN_INFO
"has_svm: %s\n", msg
);
312 static void svm_hardware_disable(void *garbage
)
317 static int svm_hardware_enable(void *garbage
)
320 struct svm_cpu_data
*sd
;
322 struct descriptor_table gdt_descr
;
323 struct desc_struct
*gdt
;
324 int me
= raw_smp_processor_id();
326 rdmsrl(MSR_EFER
, efer
);
327 if (efer
& EFER_SVME
)
331 printk(KERN_ERR
"svm_hardware_enable: err EOPNOTSUPP on %d\n",
335 sd
= per_cpu(svm_data
, me
);
338 printk(KERN_ERR
"svm_hardware_enable: svm_data is NULL on %d\n",
343 sd
->asid_generation
= 1;
344 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
345 sd
->next_asid
= sd
->max_asid
+ 1;
347 kvm_get_gdt(&gdt_descr
);
348 gdt
= (struct desc_struct
*)gdt_descr
.base
;
349 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
351 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
353 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
358 static void svm_cpu_uninit(int cpu
)
360 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
365 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
366 __free_page(sd
->save_area
);
370 static int svm_cpu_init(int cpu
)
372 struct svm_cpu_data
*sd
;
375 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
379 sd
->save_area
= alloc_page(GFP_KERNEL
);
384 per_cpu(svm_data
, cpu
) = sd
;
394 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
399 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
400 if (msr
>= msrpm_ranges
[i
] &&
401 msr
< msrpm_ranges
[i
] + MSRS_IN_RANGE
) {
402 u32 msr_offset
= (i
* MSRS_IN_RANGE
+ msr
-
403 msrpm_ranges
[i
]) * 2;
405 u32
*base
= msrpm
+ (msr_offset
/ 32);
406 u32 msr_shift
= msr_offset
% 32;
407 u32 mask
= ((write
) ? 0 : 2) | ((read
) ? 0 : 1);
408 *base
= (*base
& ~(0x3 << msr_shift
)) |
416 static void svm_vcpu_init_msrpm(u32
*msrpm
)
418 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
421 set_msr_interception(msrpm
, MSR_GS_BASE
, 1, 1);
422 set_msr_interception(msrpm
, MSR_FS_BASE
, 1, 1);
423 set_msr_interception(msrpm
, MSR_KERNEL_GS_BASE
, 1, 1);
424 set_msr_interception(msrpm
, MSR_LSTAR
, 1, 1);
425 set_msr_interception(msrpm
, MSR_CSTAR
, 1, 1);
426 set_msr_interception(msrpm
, MSR_SYSCALL_MASK
, 1, 1);
428 set_msr_interception(msrpm
, MSR_K6_STAR
, 1, 1);
429 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_CS
, 1, 1);
432 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
434 u32
*msrpm
= svm
->msrpm
;
436 svm
->vmcb
->control
.lbr_ctl
= 1;
437 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
438 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
439 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
440 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
443 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
445 u32
*msrpm
= svm
->msrpm
;
447 svm
->vmcb
->control
.lbr_ctl
= 0;
448 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
449 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
450 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
451 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
454 static __init
int svm_hardware_setup(void)
457 struct page
*iopm_pages
;
461 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
466 iopm_va
= page_address(iopm_pages
);
467 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
468 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
470 if (boot_cpu_has(X86_FEATURE_NX
))
471 kvm_enable_efer_bits(EFER_NX
);
473 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
474 kvm_enable_efer_bits(EFER_FFXSR
);
477 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
478 kvm_enable_efer_bits(EFER_SVME
);
481 for_each_possible_cpu(cpu
) {
482 r
= svm_cpu_init(cpu
);
487 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
489 if (!svm_has(SVM_FEATURE_NPT
))
492 if (npt_enabled
&& !npt
) {
493 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
498 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
506 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
511 static __exit
void svm_hardware_unsetup(void)
515 for_each_possible_cpu(cpu
)
518 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
522 static void init_seg(struct vmcb_seg
*seg
)
525 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
526 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
531 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
534 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
539 static void init_vmcb(struct vcpu_svm
*svm
)
541 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
542 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
544 svm
->vcpu
.fpu_active
= 1;
546 control
->intercept_cr_read
= INTERCEPT_CR0_MASK
|
550 control
->intercept_cr_write
= INTERCEPT_CR0_MASK
|
555 control
->intercept_dr_read
= INTERCEPT_DR0_MASK
|
564 control
->intercept_dr_write
= INTERCEPT_DR0_MASK
|
573 control
->intercept_exceptions
= (1 << PF_VECTOR
) |
578 control
->intercept
= (1ULL << INTERCEPT_INTR
) |
579 (1ULL << INTERCEPT_NMI
) |
580 (1ULL << INTERCEPT_SMI
) |
581 (1ULL << INTERCEPT_SELECTIVE_CR0
) |
582 (1ULL << INTERCEPT_CPUID
) |
583 (1ULL << INTERCEPT_INVD
) |
584 (1ULL << INTERCEPT_HLT
) |
585 (1ULL << INTERCEPT_INVLPG
) |
586 (1ULL << INTERCEPT_INVLPGA
) |
587 (1ULL << INTERCEPT_IOIO_PROT
) |
588 (1ULL << INTERCEPT_MSR_PROT
) |
589 (1ULL << INTERCEPT_TASK_SWITCH
) |
590 (1ULL << INTERCEPT_SHUTDOWN
) |
591 (1ULL << INTERCEPT_VMRUN
) |
592 (1ULL << INTERCEPT_VMMCALL
) |
593 (1ULL << INTERCEPT_VMLOAD
) |
594 (1ULL << INTERCEPT_VMSAVE
) |
595 (1ULL << INTERCEPT_STGI
) |
596 (1ULL << INTERCEPT_CLGI
) |
597 (1ULL << INTERCEPT_SKINIT
) |
598 (1ULL << INTERCEPT_WBINVD
) |
599 (1ULL << INTERCEPT_MONITOR
) |
600 (1ULL << INTERCEPT_MWAIT
);
602 control
->iopm_base_pa
= iopm_base
;
603 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
604 control
->tsc_offset
= 0;
605 control
->int_ctl
= V_INTR_MASKING_MASK
;
613 save
->cs
.selector
= 0xf000;
614 /* Executable/Readable Code Segment */
615 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
616 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
617 save
->cs
.limit
= 0xffff;
619 * cs.base should really be 0xffff0000, but vmx can't handle that, so
620 * be consistent with it.
622 * Replace when we have real mode working for vmx.
624 save
->cs
.base
= 0xf0000;
626 save
->gdtr
.limit
= 0xffff;
627 save
->idtr
.limit
= 0xffff;
629 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
630 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
632 save
->efer
= EFER_SVME
;
633 save
->dr6
= 0xffff0ff0;
636 save
->rip
= 0x0000fff0;
637 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
639 /* This is the guest-visible cr0 value.
640 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
642 svm
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
643 kvm_set_cr0(&svm
->vcpu
, svm
->vcpu
.arch
.cr0
);
645 save
->cr4
= X86_CR4_PAE
;
649 /* Setup VMCB for Nested Paging */
650 control
->nested_ctl
= 1;
651 control
->intercept
&= ~((1ULL << INTERCEPT_TASK_SWITCH
) |
652 (1ULL << INTERCEPT_INVLPG
));
653 control
->intercept_exceptions
&= ~(1 << PF_VECTOR
);
654 control
->intercept_cr_read
&= ~INTERCEPT_CR3_MASK
;
655 control
->intercept_cr_write
&= ~INTERCEPT_CR3_MASK
;
656 save
->g_pat
= 0x0007040600070406ULL
;
660 force_new_asid(&svm
->vcpu
);
662 svm
->nested
.vmcb
= 0;
663 svm
->vcpu
.arch
.hflags
= 0;
665 if (svm_has(SVM_FEATURE_PAUSE_FILTER
)) {
666 control
->pause_filter_count
= 3000;
667 control
->intercept
|= (1ULL << INTERCEPT_PAUSE
);
673 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
675 struct vcpu_svm
*svm
= to_svm(vcpu
);
679 if (!kvm_vcpu_is_bsp(vcpu
)) {
680 kvm_rip_write(vcpu
, 0);
681 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
682 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
684 vcpu
->arch
.regs_avail
= ~0;
685 vcpu
->arch
.regs_dirty
= ~0;
690 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
692 struct vcpu_svm
*svm
;
694 struct page
*msrpm_pages
;
695 struct page
*hsave_page
;
696 struct page
*nested_msrpm_pages
;
699 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
705 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
710 page
= alloc_page(GFP_KERNEL
);
714 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
718 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
719 if (!nested_msrpm_pages
)
722 hsave_page
= alloc_page(GFP_KERNEL
);
726 svm
->nested
.hsave
= page_address(hsave_page
);
728 svm
->msrpm
= page_address(msrpm_pages
);
729 svm_vcpu_init_msrpm(svm
->msrpm
);
731 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
733 svm
->vmcb
= page_address(page
);
734 clear_page(svm
->vmcb
);
735 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
736 svm
->asid_generation
= 0;
740 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
741 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
742 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
747 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
749 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
753 kvm_vcpu_uninit(&svm
->vcpu
);
755 kmem_cache_free(kvm_vcpu_cache
, svm
);
760 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
762 struct vcpu_svm
*svm
= to_svm(vcpu
);
764 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
765 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
766 __free_page(virt_to_page(svm
->nested
.hsave
));
767 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
768 kvm_vcpu_uninit(vcpu
);
769 kmem_cache_free(kvm_vcpu_cache
, svm
);
772 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
774 struct vcpu_svm
*svm
= to_svm(vcpu
);
777 if (unlikely(cpu
!= vcpu
->cpu
)) {
780 if (check_tsc_unstable()) {
782 * Make sure that the guest sees a monotonically
785 delta
= vcpu
->arch
.host_tsc
- native_read_tsc();
786 svm
->vmcb
->control
.tsc_offset
+= delta
;
788 svm
->nested
.hsave
->control
.tsc_offset
+= delta
;
791 kvm_migrate_timers(vcpu
);
792 svm
->asid_generation
= 0;
795 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
796 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
799 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
801 struct vcpu_svm
*svm
= to_svm(vcpu
);
804 ++vcpu
->stat
.host_state_reload
;
805 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
806 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
808 vcpu
->arch
.host_tsc
= native_read_tsc();
811 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
813 return to_svm(vcpu
)->vmcb
->save
.rflags
;
816 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
818 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
821 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
824 case VCPU_EXREG_PDPTR
:
825 BUG_ON(!npt_enabled
);
826 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
833 static void svm_set_vintr(struct vcpu_svm
*svm
)
835 svm
->vmcb
->control
.intercept
|= 1ULL << INTERCEPT_VINTR
;
838 static void svm_clear_vintr(struct vcpu_svm
*svm
)
840 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_VINTR
);
843 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
845 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
848 case VCPU_SREG_CS
: return &save
->cs
;
849 case VCPU_SREG_DS
: return &save
->ds
;
850 case VCPU_SREG_ES
: return &save
->es
;
851 case VCPU_SREG_FS
: return &save
->fs
;
852 case VCPU_SREG_GS
: return &save
->gs
;
853 case VCPU_SREG_SS
: return &save
->ss
;
854 case VCPU_SREG_TR
: return &save
->tr
;
855 case VCPU_SREG_LDTR
: return &save
->ldtr
;
861 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
863 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
868 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
869 struct kvm_segment
*var
, int seg
)
871 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
874 var
->limit
= s
->limit
;
875 var
->selector
= s
->selector
;
876 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
877 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
878 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
879 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
880 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
881 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
882 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
883 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
885 /* AMD's VMCB does not have an explicit unusable field, so emulate it
886 * for cross vendor migration purposes by "not present"
888 var
->unusable
= !var
->present
|| (var
->type
== 0);
893 * SVM always stores 0 for the 'G' bit in the CS selector in
894 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
895 * Intel's VMENTRY has a check on the 'G' bit.
897 var
->g
= s
->limit
> 0xfffff;
901 * Work around a bug where the busy flag in the tr selector
911 * The accessed bit must always be set in the segment
912 * descriptor cache, although it can be cleared in the
913 * descriptor, the cached bit always remains at 1. Since
914 * Intel has a check on this, set it here to support
915 * cross-vendor migration.
921 /* On AMD CPUs sometimes the DB bit in the segment
922 * descriptor is left as 1, although the whole segment has
923 * been made unusable. Clear it here to pass an Intel VMX
924 * entry check when cross vendor migrating.
932 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
934 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
939 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
941 struct vcpu_svm
*svm
= to_svm(vcpu
);
943 dt
->limit
= svm
->vmcb
->save
.idtr
.limit
;
944 dt
->base
= svm
->vmcb
->save
.idtr
.base
;
947 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
949 struct vcpu_svm
*svm
= to_svm(vcpu
);
951 svm
->vmcb
->save
.idtr
.limit
= dt
->limit
;
952 svm
->vmcb
->save
.idtr
.base
= dt
->base
;
955 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
957 struct vcpu_svm
*svm
= to_svm(vcpu
);
959 dt
->limit
= svm
->vmcb
->save
.gdtr
.limit
;
960 dt
->base
= svm
->vmcb
->save
.gdtr
.base
;
963 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
965 struct vcpu_svm
*svm
= to_svm(vcpu
);
967 svm
->vmcb
->save
.gdtr
.limit
= dt
->limit
;
968 svm
->vmcb
->save
.gdtr
.base
= dt
->base
;
971 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
975 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
979 static void update_cr0_intercept(struct vcpu_svm
*svm
)
981 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
982 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
984 if (!svm
->vcpu
.fpu_active
)
985 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
987 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
988 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
991 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
992 svm
->vmcb
->control
.intercept_cr_read
&= ~INTERCEPT_CR0_MASK
;
993 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR0_MASK
;
995 svm
->vmcb
->control
.intercept_cr_read
|= INTERCEPT_CR0_MASK
;
996 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR0_MASK
;
1000 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1002 struct vcpu_svm
*svm
= to_svm(vcpu
);
1004 #ifdef CONFIG_X86_64
1005 if (vcpu
->arch
.efer
& EFER_LME
) {
1006 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1007 vcpu
->arch
.efer
|= EFER_LMA
;
1008 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1011 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1012 vcpu
->arch
.efer
&= ~EFER_LMA
;
1013 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1017 vcpu
->arch
.cr0
= cr0
;
1020 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1022 if (!vcpu
->fpu_active
)
1025 * re-enable caching here because the QEMU bios
1026 * does not do it - this results in some delay at
1029 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1030 svm
->vmcb
->save
.cr0
= cr0
;
1031 update_cr0_intercept(svm
);
1034 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1036 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1037 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1039 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1040 force_new_asid(vcpu
);
1042 vcpu
->arch
.cr4
= cr4
;
1045 cr4
|= host_cr4_mce
;
1046 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1049 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1050 struct kvm_segment
*var
, int seg
)
1052 struct vcpu_svm
*svm
= to_svm(vcpu
);
1053 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1055 s
->base
= var
->base
;
1056 s
->limit
= var
->limit
;
1057 s
->selector
= var
->selector
;
1061 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1062 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1063 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1064 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1065 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1066 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1067 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1068 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1070 if (seg
== VCPU_SREG_CS
)
1072 = (svm
->vmcb
->save
.cs
.attrib
1073 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1077 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1079 struct vcpu_svm
*svm
= to_svm(vcpu
);
1081 svm
->vmcb
->control
.intercept_exceptions
&=
1082 ~((1 << DB_VECTOR
) | (1 << BP_VECTOR
));
1084 if (svm
->nmi_singlestep
)
1085 svm
->vmcb
->control
.intercept_exceptions
|= (1 << DB_VECTOR
);
1087 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1088 if (vcpu
->guest_debug
&
1089 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1090 svm
->vmcb
->control
.intercept_exceptions
|=
1092 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1093 svm
->vmcb
->control
.intercept_exceptions
|=
1096 vcpu
->guest_debug
= 0;
1099 static void svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1101 struct vcpu_svm
*svm
= to_svm(vcpu
);
1103 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1104 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1106 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1108 update_db_intercept(vcpu
);
1111 static void load_host_msrs(struct kvm_vcpu
*vcpu
)
1113 #ifdef CONFIG_X86_64
1114 wrmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1118 static void save_host_msrs(struct kvm_vcpu
*vcpu
)
1120 #ifdef CONFIG_X86_64
1121 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1125 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1127 if (sd
->next_asid
> sd
->max_asid
) {
1128 ++sd
->asid_generation
;
1130 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1133 svm
->asid_generation
= sd
->asid_generation
;
1134 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1137 static int svm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *dest
)
1139 struct vcpu_svm
*svm
= to_svm(vcpu
);
1143 *dest
= vcpu
->arch
.db
[dr
];
1146 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
1147 return EMULATE_FAIL
; /* will re-inject UD */
1150 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1151 *dest
= vcpu
->arch
.dr6
;
1153 *dest
= svm
->vmcb
->save
.dr6
;
1156 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
1157 return EMULATE_FAIL
; /* will re-inject UD */
1160 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1161 *dest
= vcpu
->arch
.dr7
;
1163 *dest
= svm
->vmcb
->save
.dr7
;
1167 return EMULATE_DONE
;
1170 static int svm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long value
)
1172 struct vcpu_svm
*svm
= to_svm(vcpu
);
1176 vcpu
->arch
.db
[dr
] = value
;
1177 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1178 vcpu
->arch
.eff_db
[dr
] = value
;
1181 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
1182 return EMULATE_FAIL
; /* will re-inject UD */
1185 vcpu
->arch
.dr6
= (value
& DR6_VOLATILE
) | DR6_FIXED_1
;
1188 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
1189 return EMULATE_FAIL
; /* will re-inject UD */
1192 vcpu
->arch
.dr7
= (value
& DR7_VOLATILE
) | DR7_FIXED_1
;
1193 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1194 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1195 vcpu
->arch
.switch_db_regs
= (value
& DR7_BP_EN_MASK
);
1200 return EMULATE_DONE
;
1203 static int pf_interception(struct vcpu_svm
*svm
)
1208 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1209 error_code
= svm
->vmcb
->control
.exit_info_1
;
1211 trace_kvm_page_fault(fault_address
, error_code
);
1212 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1213 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1214 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
);
1217 static int db_interception(struct vcpu_svm
*svm
)
1219 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1221 if (!(svm
->vcpu
.guest_debug
&
1222 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1223 !svm
->nmi_singlestep
) {
1224 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1228 if (svm
->nmi_singlestep
) {
1229 svm
->nmi_singlestep
= false;
1230 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1231 svm
->vmcb
->save
.rflags
&=
1232 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1233 update_db_intercept(&svm
->vcpu
);
1236 if (svm
->vcpu
.guest_debug
&
1237 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)){
1238 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1239 kvm_run
->debug
.arch
.pc
=
1240 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1241 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1248 static int bp_interception(struct vcpu_svm
*svm
)
1250 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1252 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1253 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1254 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1258 static int ud_interception(struct vcpu_svm
*svm
)
1262 er
= emulate_instruction(&svm
->vcpu
, 0, 0, EMULTYPE_TRAP_UD
);
1263 if (er
!= EMULATE_DONE
)
1264 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1268 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1270 struct vcpu_svm
*svm
= to_svm(vcpu
);
1271 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
1272 svm
->vcpu
.fpu_active
= 1;
1273 update_cr0_intercept(svm
);
1276 static int nm_interception(struct vcpu_svm
*svm
)
1278 svm_fpu_activate(&svm
->vcpu
);
1282 static int mc_interception(struct vcpu_svm
*svm
)
1285 * On an #MC intercept the MCE handler is not called automatically in
1286 * the host. So do it by hand here.
1290 /* not sure if we ever come back to this point */
1295 static int shutdown_interception(struct vcpu_svm
*svm
)
1297 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1300 * VMCB is undefined after a SHUTDOWN intercept
1301 * so reinitialize it.
1303 clear_page(svm
->vmcb
);
1306 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1310 static int io_interception(struct vcpu_svm
*svm
)
1312 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1313 int size
, in
, string
;
1316 ++svm
->vcpu
.stat
.io_exits
;
1318 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1320 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1323 if (emulate_instruction(&svm
->vcpu
,
1324 0, 0, 0) == EMULATE_DO_MMIO
)
1329 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1330 port
= io_info
>> 16;
1331 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1333 skip_emulated_instruction(&svm
->vcpu
);
1334 return kvm_emulate_pio(&svm
->vcpu
, in
, size
, port
);
1337 static int nmi_interception(struct vcpu_svm
*svm
)
1342 static int intr_interception(struct vcpu_svm
*svm
)
1344 ++svm
->vcpu
.stat
.irq_exits
;
1348 static int nop_on_interception(struct vcpu_svm
*svm
)
1353 static int halt_interception(struct vcpu_svm
*svm
)
1355 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1356 skip_emulated_instruction(&svm
->vcpu
);
1357 return kvm_emulate_halt(&svm
->vcpu
);
1360 static int vmmcall_interception(struct vcpu_svm
*svm
)
1362 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1363 skip_emulated_instruction(&svm
->vcpu
);
1364 kvm_emulate_hypercall(&svm
->vcpu
);
1368 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1370 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1371 || !is_paging(&svm
->vcpu
)) {
1372 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1376 if (svm
->vmcb
->save
.cpl
) {
1377 kvm_inject_gp(&svm
->vcpu
, 0);
1384 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1385 bool has_error_code
, u32 error_code
)
1387 if (!is_nested(svm
))
1390 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1391 svm
->vmcb
->control
.exit_code_hi
= 0;
1392 svm
->vmcb
->control
.exit_info_1
= error_code
;
1393 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1395 return nested_svm_exit_handled(svm
);
1398 static inline int nested_svm_intr(struct vcpu_svm
*svm
)
1400 if (!is_nested(svm
))
1403 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1406 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1409 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1411 if (svm
->nested
.intercept
& 1ULL) {
1413 * The #vmexit can't be emulated here directly because this
1414 * code path runs with irqs and preemtion disabled. A
1415 * #vmexit emulation might sleep. Only signal request for
1418 svm
->nested
.exit_required
= true;
1419 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
1426 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, enum km_type idx
)
1430 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1431 if (is_error_page(page
))
1434 return kmap_atomic(page
, idx
);
1437 kvm_release_page_clean(page
);
1438 kvm_inject_gp(&svm
->vcpu
, 0);
1443 static void nested_svm_unmap(void *addr
, enum km_type idx
)
1450 page
= kmap_atomic_to_page(addr
);
1452 kunmap_atomic(addr
, idx
);
1453 kvm_release_page_dirty(page
);
1456 static bool nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
1458 u32 param
= svm
->vmcb
->control
.exit_info_1
& 1;
1459 u32 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1464 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1467 msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1477 case 0xc0000000 ... 0xc0001fff:
1478 t0
= (8192 + msr
- 0xc0000000) * 2;
1482 case 0xc0010000 ... 0xc0011fff:
1483 t0
= (16384 + msr
- 0xc0010000) * 2;
1492 ret
= msrpm
[t1
] & ((1 << param
) << t0
);
1495 nested_svm_unmap(msrpm
, KM_USER0
);
1500 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
1502 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1504 switch (exit_code
) {
1507 return NESTED_EXIT_HOST
;
1508 /* For now we are always handling NPFs when using them */
1511 return NESTED_EXIT_HOST
;
1513 /* When we're shadowing, trap PFs */
1514 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1516 return NESTED_EXIT_HOST
;
1522 return NESTED_EXIT_CONTINUE
;
1526 * If this function returns true, this #vmexit was already handled
1528 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
1530 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1531 int vmexit
= NESTED_EXIT_HOST
;
1533 switch (exit_code
) {
1535 vmexit
= nested_svm_exit_handled_msr(svm
);
1537 case SVM_EXIT_READ_CR0
... SVM_EXIT_READ_CR8
: {
1538 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_READ_CR0
);
1539 if (svm
->nested
.intercept_cr_read
& cr_bits
)
1540 vmexit
= NESTED_EXIT_DONE
;
1543 case SVM_EXIT_WRITE_CR0
... SVM_EXIT_WRITE_CR8
: {
1544 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_CR0
);
1545 if (svm
->nested
.intercept_cr_write
& cr_bits
)
1546 vmexit
= NESTED_EXIT_DONE
;
1549 case SVM_EXIT_READ_DR0
... SVM_EXIT_READ_DR7
: {
1550 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_READ_DR0
);
1551 if (svm
->nested
.intercept_dr_read
& dr_bits
)
1552 vmexit
= NESTED_EXIT_DONE
;
1555 case SVM_EXIT_WRITE_DR0
... SVM_EXIT_WRITE_DR7
: {
1556 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_DR0
);
1557 if (svm
->nested
.intercept_dr_write
& dr_bits
)
1558 vmexit
= NESTED_EXIT_DONE
;
1561 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
1562 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
1563 if (svm
->nested
.intercept_exceptions
& excp_bits
)
1564 vmexit
= NESTED_EXIT_DONE
;
1568 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
1569 if (svm
->nested
.intercept
& exit_bits
)
1570 vmexit
= NESTED_EXIT_DONE
;
1574 if (vmexit
== NESTED_EXIT_DONE
) {
1575 nested_svm_vmexit(svm
);
1581 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
1583 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
1584 struct vmcb_control_area
*from
= &from_vmcb
->control
;
1586 dst
->intercept_cr_read
= from
->intercept_cr_read
;
1587 dst
->intercept_cr_write
= from
->intercept_cr_write
;
1588 dst
->intercept_dr_read
= from
->intercept_dr_read
;
1589 dst
->intercept_dr_write
= from
->intercept_dr_write
;
1590 dst
->intercept_exceptions
= from
->intercept_exceptions
;
1591 dst
->intercept
= from
->intercept
;
1592 dst
->iopm_base_pa
= from
->iopm_base_pa
;
1593 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
1594 dst
->tsc_offset
= from
->tsc_offset
;
1595 dst
->asid
= from
->asid
;
1596 dst
->tlb_ctl
= from
->tlb_ctl
;
1597 dst
->int_ctl
= from
->int_ctl
;
1598 dst
->int_vector
= from
->int_vector
;
1599 dst
->int_state
= from
->int_state
;
1600 dst
->exit_code
= from
->exit_code
;
1601 dst
->exit_code_hi
= from
->exit_code_hi
;
1602 dst
->exit_info_1
= from
->exit_info_1
;
1603 dst
->exit_info_2
= from
->exit_info_2
;
1604 dst
->exit_int_info
= from
->exit_int_info
;
1605 dst
->exit_int_info_err
= from
->exit_int_info_err
;
1606 dst
->nested_ctl
= from
->nested_ctl
;
1607 dst
->event_inj
= from
->event_inj
;
1608 dst
->event_inj_err
= from
->event_inj_err
;
1609 dst
->nested_cr3
= from
->nested_cr3
;
1610 dst
->lbr_ctl
= from
->lbr_ctl
;
1613 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
1615 struct vmcb
*nested_vmcb
;
1616 struct vmcb
*hsave
= svm
->nested
.hsave
;
1617 struct vmcb
*vmcb
= svm
->vmcb
;
1619 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
1620 vmcb
->control
.exit_info_1
,
1621 vmcb
->control
.exit_info_2
,
1622 vmcb
->control
.exit_int_info
,
1623 vmcb
->control
.exit_int_info_err
);
1625 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, KM_USER0
);
1629 /* Give the current vmcb to the guest */
1632 nested_vmcb
->save
.es
= vmcb
->save
.es
;
1633 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
1634 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
1635 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
1636 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
1637 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
1639 nested_vmcb
->save
.cr3
= vmcb
->save
.cr3
;
1640 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
1641 nested_vmcb
->save
.rflags
= vmcb
->save
.rflags
;
1642 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
1643 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
1644 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
1645 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
1646 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
1647 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
1649 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
1650 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
1651 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
1652 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
1653 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
1654 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
1655 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
1656 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
1657 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
1660 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1661 * to make sure that we do not lose injected events. So check event_inj
1662 * here and copy it to exit_int_info if it is valid.
1663 * Exit_int_info and event_inj can't be both valid because the case
1664 * below only happens on a VMRUN instruction intercept which has
1665 * no valid exit_int_info set.
1667 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
1668 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
1670 nc
->exit_int_info
= vmcb
->control
.event_inj
;
1671 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
1674 nested_vmcb
->control
.tlb_ctl
= 0;
1675 nested_vmcb
->control
.event_inj
= 0;
1676 nested_vmcb
->control
.event_inj_err
= 0;
1678 /* We always set V_INTR_MASKING and remember the old value in hflags */
1679 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1680 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
1682 /* Restore the original control entries */
1683 copy_vmcb_control_area(vmcb
, hsave
);
1685 kvm_clear_exception_queue(&svm
->vcpu
);
1686 kvm_clear_interrupt_queue(&svm
->vcpu
);
1688 /* Restore selected save entries */
1689 svm
->vmcb
->save
.es
= hsave
->save
.es
;
1690 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
1691 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
1692 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
1693 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
1694 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
1695 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
1696 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
1697 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
1698 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
1700 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
1701 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
1703 kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
1705 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
1706 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
1707 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
1708 svm
->vmcb
->save
.dr7
= 0;
1709 svm
->vmcb
->save
.cpl
= 0;
1710 svm
->vmcb
->control
.exit_int_info
= 0;
1712 /* Exit nested SVM mode */
1713 svm
->nested
.vmcb
= 0;
1715 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1717 kvm_mmu_reset_context(&svm
->vcpu
);
1718 kvm_mmu_load(&svm
->vcpu
);
1723 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
1728 nested_msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1732 for (i
=0; i
< PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
) / 4; i
++)
1733 svm
->nested
.msrpm
[i
] = svm
->msrpm
[i
] | nested_msrpm
[i
];
1735 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
1737 nested_svm_unmap(nested_msrpm
, KM_USER0
);
1742 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
1744 struct vmcb
*nested_vmcb
;
1745 struct vmcb
*hsave
= svm
->nested
.hsave
;
1746 struct vmcb
*vmcb
= svm
->vmcb
;
1748 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1752 /* nested_vmcb is our indicator if nested SVM is activated */
1753 svm
->nested
.vmcb
= svm
->vmcb
->save
.rax
;
1755 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
- 3, svm
->nested
.vmcb
,
1756 nested_vmcb
->save
.rip
,
1757 nested_vmcb
->control
.int_ctl
,
1758 nested_vmcb
->control
.event_inj
,
1759 nested_vmcb
->control
.nested_ctl
);
1761 /* Clear internal status */
1762 kvm_clear_exception_queue(&svm
->vcpu
);
1763 kvm_clear_interrupt_queue(&svm
->vcpu
);
1765 /* Save the old vmcb, so we don't need to pick what we save, but
1766 can restore everything when a VMEXIT occurs */
1767 hsave
->save
.es
= vmcb
->save
.es
;
1768 hsave
->save
.cs
= vmcb
->save
.cs
;
1769 hsave
->save
.ss
= vmcb
->save
.ss
;
1770 hsave
->save
.ds
= vmcb
->save
.ds
;
1771 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
1772 hsave
->save
.idtr
= vmcb
->save
.idtr
;
1773 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
1774 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
1775 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
1776 hsave
->save
.rflags
= vmcb
->save
.rflags
;
1777 hsave
->save
.rip
= svm
->next_rip
;
1778 hsave
->save
.rsp
= vmcb
->save
.rsp
;
1779 hsave
->save
.rax
= vmcb
->save
.rax
;
1781 hsave
->save
.cr3
= vmcb
->save
.cr3
;
1783 hsave
->save
.cr3
= svm
->vcpu
.arch
.cr3
;
1785 copy_vmcb_control_area(hsave
, vmcb
);
1787 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
1788 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
1790 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
1792 /* Load the nested guest state */
1793 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
1794 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
1795 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
1796 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
1797 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
1798 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
1799 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
1800 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
1801 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
1802 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
1804 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
1805 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
1807 kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
1808 kvm_mmu_reset_context(&svm
->vcpu
);
1810 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
1811 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
1812 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
1813 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
1814 /* In case we don't even reach vcpu_run, the fields are not updated */
1815 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
1816 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
1817 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
1818 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
1819 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
1820 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
1822 /* We don't want a nested guest to be more powerful than the guest,
1823 so all intercepts are ORed */
1824 svm
->vmcb
->control
.intercept_cr_read
|=
1825 nested_vmcb
->control
.intercept_cr_read
;
1826 svm
->vmcb
->control
.intercept_cr_write
|=
1827 nested_vmcb
->control
.intercept_cr_write
;
1828 svm
->vmcb
->control
.intercept_dr_read
|=
1829 nested_vmcb
->control
.intercept_dr_read
;
1830 svm
->vmcb
->control
.intercept_dr_write
|=
1831 nested_vmcb
->control
.intercept_dr_write
;
1832 svm
->vmcb
->control
.intercept_exceptions
|=
1833 nested_vmcb
->control
.intercept_exceptions
;
1835 svm
->vmcb
->control
.intercept
|= nested_vmcb
->control
.intercept
;
1837 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
;
1839 /* cache intercepts */
1840 svm
->nested
.intercept_cr_read
= nested_vmcb
->control
.intercept_cr_read
;
1841 svm
->nested
.intercept_cr_write
= nested_vmcb
->control
.intercept_cr_write
;
1842 svm
->nested
.intercept_dr_read
= nested_vmcb
->control
.intercept_dr_read
;
1843 svm
->nested
.intercept_dr_write
= nested_vmcb
->control
.intercept_dr_write
;
1844 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
1845 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
1847 force_new_asid(&svm
->vcpu
);
1848 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
1849 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
1850 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
1852 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
1854 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
1855 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
1856 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
1857 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
1858 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
1860 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1867 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
1869 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
1870 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
1871 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
1872 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
1873 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
1874 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
1875 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
1876 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
1877 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
1878 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
1879 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
1880 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
1883 static int vmload_interception(struct vcpu_svm
*svm
)
1885 struct vmcb
*nested_vmcb
;
1887 if (nested_svm_check_permissions(svm
))
1890 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1891 skip_emulated_instruction(&svm
->vcpu
);
1893 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1897 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
1898 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1903 static int vmsave_interception(struct vcpu_svm
*svm
)
1905 struct vmcb
*nested_vmcb
;
1907 if (nested_svm_check_permissions(svm
))
1910 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1911 skip_emulated_instruction(&svm
->vcpu
);
1913 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1917 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
1918 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1923 static int vmrun_interception(struct vcpu_svm
*svm
)
1925 if (nested_svm_check_permissions(svm
))
1928 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1929 skip_emulated_instruction(&svm
->vcpu
);
1931 if (!nested_svm_vmrun(svm
))
1934 if (!nested_svm_vmrun_msrpm(svm
))
1941 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
1942 svm
->vmcb
->control
.exit_code_hi
= 0;
1943 svm
->vmcb
->control
.exit_info_1
= 0;
1944 svm
->vmcb
->control
.exit_info_2
= 0;
1946 nested_svm_vmexit(svm
);
1951 static int stgi_interception(struct vcpu_svm
*svm
)
1953 if (nested_svm_check_permissions(svm
))
1956 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1957 skip_emulated_instruction(&svm
->vcpu
);
1964 static int clgi_interception(struct vcpu_svm
*svm
)
1966 if (nested_svm_check_permissions(svm
))
1969 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1970 skip_emulated_instruction(&svm
->vcpu
);
1974 /* After a CLGI no interrupts should come */
1975 svm_clear_vintr(svm
);
1976 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1981 static int invlpga_interception(struct vcpu_svm
*svm
)
1983 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1985 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
1986 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
1988 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1989 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
1991 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1992 skip_emulated_instruction(&svm
->vcpu
);
1996 static int skinit_interception(struct vcpu_svm
*svm
)
1998 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2000 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2004 static int invalid_op_interception(struct vcpu_svm
*svm
)
2006 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2010 static int task_switch_interception(struct vcpu_svm
*svm
)
2014 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2015 SVM_EXITINTINFO_TYPE_MASK
;
2016 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2018 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2020 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2022 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2024 if (svm
->vmcb
->control
.exit_info_2
&
2025 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2026 reason
= TASK_SWITCH_IRET
;
2027 else if (svm
->vmcb
->control
.exit_info_2
&
2028 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2029 reason
= TASK_SWITCH_JMP
;
2031 reason
= TASK_SWITCH_GATE
;
2033 reason
= TASK_SWITCH_CALL
;
2035 if (reason
== TASK_SWITCH_GATE
) {
2037 case SVM_EXITINTINFO_TYPE_NMI
:
2038 svm
->vcpu
.arch
.nmi_injected
= false;
2040 case SVM_EXITINTINFO_TYPE_EXEPT
:
2041 kvm_clear_exception_queue(&svm
->vcpu
);
2043 case SVM_EXITINTINFO_TYPE_INTR
:
2044 kvm_clear_interrupt_queue(&svm
->vcpu
);
2051 if (reason
!= TASK_SWITCH_GATE
||
2052 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2053 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2054 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2055 skip_emulated_instruction(&svm
->vcpu
);
2057 return kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
);
2060 static int cpuid_interception(struct vcpu_svm
*svm
)
2062 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2063 kvm_emulate_cpuid(&svm
->vcpu
);
2067 static int iret_interception(struct vcpu_svm
*svm
)
2069 ++svm
->vcpu
.stat
.nmi_window_exits
;
2070 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_IRET
);
2071 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2075 static int invlpg_interception(struct vcpu_svm
*svm
)
2077 if (emulate_instruction(&svm
->vcpu
, 0, 0, 0) != EMULATE_DONE
)
2078 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2082 static int emulate_on_interception(struct vcpu_svm
*svm
)
2084 if (emulate_instruction(&svm
->vcpu
, 0, 0, 0) != EMULATE_DONE
)
2085 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2089 static int cr8_write_interception(struct vcpu_svm
*svm
)
2091 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2093 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2094 /* instruction emulation calls kvm_set_cr8() */
2095 emulate_instruction(&svm
->vcpu
, 0, 0, 0);
2096 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2097 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR8_MASK
;
2100 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2102 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2106 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2108 struct vcpu_svm
*svm
= to_svm(vcpu
);
2111 case MSR_IA32_TSC
: {
2115 tsc_offset
= svm
->nested
.hsave
->control
.tsc_offset
;
2117 tsc_offset
= svm
->vmcb
->control
.tsc_offset
;
2119 *data
= tsc_offset
+ native_read_tsc();
2123 *data
= svm
->vmcb
->save
.star
;
2125 #ifdef CONFIG_X86_64
2127 *data
= svm
->vmcb
->save
.lstar
;
2130 *data
= svm
->vmcb
->save
.cstar
;
2132 case MSR_KERNEL_GS_BASE
:
2133 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2135 case MSR_SYSCALL_MASK
:
2136 *data
= svm
->vmcb
->save
.sfmask
;
2139 case MSR_IA32_SYSENTER_CS
:
2140 *data
= svm
->vmcb
->save
.sysenter_cs
;
2142 case MSR_IA32_SYSENTER_EIP
:
2143 *data
= svm
->sysenter_eip
;
2145 case MSR_IA32_SYSENTER_ESP
:
2146 *data
= svm
->sysenter_esp
;
2148 /* Nobody will change the following 5 values in the VMCB so
2149 we can safely return them on rdmsr. They will always be 0
2150 until LBRV is implemented. */
2151 case MSR_IA32_DEBUGCTLMSR
:
2152 *data
= svm
->vmcb
->save
.dbgctl
;
2154 case MSR_IA32_LASTBRANCHFROMIP
:
2155 *data
= svm
->vmcb
->save
.br_from
;
2157 case MSR_IA32_LASTBRANCHTOIP
:
2158 *data
= svm
->vmcb
->save
.br_to
;
2160 case MSR_IA32_LASTINTFROMIP
:
2161 *data
= svm
->vmcb
->save
.last_excp_from
;
2163 case MSR_IA32_LASTINTTOIP
:
2164 *data
= svm
->vmcb
->save
.last_excp_to
;
2166 case MSR_VM_HSAVE_PA
:
2167 *data
= svm
->nested
.hsave_msr
;
2172 case MSR_IA32_UCODE_REV
:
2176 return kvm_get_msr_common(vcpu
, ecx
, data
);
2181 static int rdmsr_interception(struct vcpu_svm
*svm
)
2183 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2186 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
2187 trace_kvm_msr_read_ex(ecx
);
2188 kvm_inject_gp(&svm
->vcpu
, 0);
2190 trace_kvm_msr_read(ecx
, data
);
2192 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2193 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2194 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2195 skip_emulated_instruction(&svm
->vcpu
);
2200 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2202 struct vcpu_svm
*svm
= to_svm(vcpu
);
2205 case MSR_IA32_TSC
: {
2206 u64 tsc_offset
= data
- native_read_tsc();
2207 u64 g_tsc_offset
= 0;
2209 if (is_nested(svm
)) {
2210 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
2211 svm
->nested
.hsave
->control
.tsc_offset
;
2212 svm
->nested
.hsave
->control
.tsc_offset
= tsc_offset
;
2215 svm
->vmcb
->control
.tsc_offset
= tsc_offset
+ g_tsc_offset
;
2220 svm
->vmcb
->save
.star
= data
;
2222 #ifdef CONFIG_X86_64
2224 svm
->vmcb
->save
.lstar
= data
;
2227 svm
->vmcb
->save
.cstar
= data
;
2229 case MSR_KERNEL_GS_BASE
:
2230 svm
->vmcb
->save
.kernel_gs_base
= data
;
2232 case MSR_SYSCALL_MASK
:
2233 svm
->vmcb
->save
.sfmask
= data
;
2236 case MSR_IA32_SYSENTER_CS
:
2237 svm
->vmcb
->save
.sysenter_cs
= data
;
2239 case MSR_IA32_SYSENTER_EIP
:
2240 svm
->sysenter_eip
= data
;
2241 svm
->vmcb
->save
.sysenter_eip
= data
;
2243 case MSR_IA32_SYSENTER_ESP
:
2244 svm
->sysenter_esp
= data
;
2245 svm
->vmcb
->save
.sysenter_esp
= data
;
2247 case MSR_IA32_DEBUGCTLMSR
:
2248 if (!svm_has(SVM_FEATURE_LBRV
)) {
2249 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2253 if (data
& DEBUGCTL_RESERVED_BITS
)
2256 svm
->vmcb
->save
.dbgctl
= data
;
2257 if (data
& (1ULL<<0))
2258 svm_enable_lbrv(svm
);
2260 svm_disable_lbrv(svm
);
2262 case MSR_VM_HSAVE_PA
:
2263 svm
->nested
.hsave_msr
= data
;
2267 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2270 return kvm_set_msr_common(vcpu
, ecx
, data
);
2275 static int wrmsr_interception(struct vcpu_svm
*svm
)
2277 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2278 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2279 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2282 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2283 if (svm_set_msr(&svm
->vcpu
, ecx
, data
)) {
2284 trace_kvm_msr_write_ex(ecx
, data
);
2285 kvm_inject_gp(&svm
->vcpu
, 0);
2287 trace_kvm_msr_write(ecx
, data
);
2288 skip_emulated_instruction(&svm
->vcpu
);
2293 static int msr_interception(struct vcpu_svm
*svm
)
2295 if (svm
->vmcb
->control
.exit_info_1
)
2296 return wrmsr_interception(svm
);
2298 return rdmsr_interception(svm
);
2301 static int interrupt_window_interception(struct vcpu_svm
*svm
)
2303 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2305 svm_clear_vintr(svm
);
2306 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2308 * If the user space waits to inject interrupts, exit as soon as
2311 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
2312 kvm_run
->request_interrupt_window
&&
2313 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
2314 ++svm
->vcpu
.stat
.irq_window_exits
;
2315 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2322 static int pause_interception(struct vcpu_svm
*svm
)
2324 kvm_vcpu_on_spin(&(svm
->vcpu
));
2328 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
2329 [SVM_EXIT_READ_CR0
] = emulate_on_interception
,
2330 [SVM_EXIT_READ_CR3
] = emulate_on_interception
,
2331 [SVM_EXIT_READ_CR4
] = emulate_on_interception
,
2332 [SVM_EXIT_READ_CR8
] = emulate_on_interception
,
2333 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
2334 [SVM_EXIT_WRITE_CR0
] = emulate_on_interception
,
2335 [SVM_EXIT_WRITE_CR3
] = emulate_on_interception
,
2336 [SVM_EXIT_WRITE_CR4
] = emulate_on_interception
,
2337 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2338 [SVM_EXIT_READ_DR0
] = emulate_on_interception
,
2339 [SVM_EXIT_READ_DR1
] = emulate_on_interception
,
2340 [SVM_EXIT_READ_DR2
] = emulate_on_interception
,
2341 [SVM_EXIT_READ_DR3
] = emulate_on_interception
,
2342 [SVM_EXIT_READ_DR4
] = emulate_on_interception
,
2343 [SVM_EXIT_READ_DR5
] = emulate_on_interception
,
2344 [SVM_EXIT_READ_DR6
] = emulate_on_interception
,
2345 [SVM_EXIT_READ_DR7
] = emulate_on_interception
,
2346 [SVM_EXIT_WRITE_DR0
] = emulate_on_interception
,
2347 [SVM_EXIT_WRITE_DR1
] = emulate_on_interception
,
2348 [SVM_EXIT_WRITE_DR2
] = emulate_on_interception
,
2349 [SVM_EXIT_WRITE_DR3
] = emulate_on_interception
,
2350 [SVM_EXIT_WRITE_DR4
] = emulate_on_interception
,
2351 [SVM_EXIT_WRITE_DR5
] = emulate_on_interception
,
2352 [SVM_EXIT_WRITE_DR6
] = emulate_on_interception
,
2353 [SVM_EXIT_WRITE_DR7
] = emulate_on_interception
,
2354 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2355 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2356 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2357 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2358 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
2359 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2360 [SVM_EXIT_INTR
] = intr_interception
,
2361 [SVM_EXIT_NMI
] = nmi_interception
,
2362 [SVM_EXIT_SMI
] = nop_on_interception
,
2363 [SVM_EXIT_INIT
] = nop_on_interception
,
2364 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2365 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2366 [SVM_EXIT_CPUID
] = cpuid_interception
,
2367 [SVM_EXIT_IRET
] = iret_interception
,
2368 [SVM_EXIT_INVD
] = emulate_on_interception
,
2369 [SVM_EXIT_PAUSE
] = pause_interception
,
2370 [SVM_EXIT_HLT
] = halt_interception
,
2371 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2372 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
2373 [SVM_EXIT_IOIO
] = io_interception
,
2374 [SVM_EXIT_MSR
] = msr_interception
,
2375 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2376 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2377 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2378 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2379 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2380 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2381 [SVM_EXIT_STGI
] = stgi_interception
,
2382 [SVM_EXIT_CLGI
] = clgi_interception
,
2383 [SVM_EXIT_SKINIT
] = skinit_interception
,
2384 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
2385 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
2386 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
2387 [SVM_EXIT_NPF
] = pf_interception
,
2390 static int handle_exit(struct kvm_vcpu
*vcpu
)
2392 struct vcpu_svm
*svm
= to_svm(vcpu
);
2393 struct kvm_run
*kvm_run
= vcpu
->run
;
2394 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2396 trace_kvm_exit(exit_code
, svm
->vmcb
->save
.rip
);
2398 if (unlikely(svm
->nested
.exit_required
)) {
2399 nested_svm_vmexit(svm
);
2400 svm
->nested
.exit_required
= false;
2405 if (is_nested(svm
)) {
2408 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
2409 svm
->vmcb
->control
.exit_info_1
,
2410 svm
->vmcb
->control
.exit_info_2
,
2411 svm
->vmcb
->control
.exit_int_info
,
2412 svm
->vmcb
->control
.exit_int_info_err
);
2414 vmexit
= nested_svm_exit_special(svm
);
2416 if (vmexit
== NESTED_EXIT_CONTINUE
)
2417 vmexit
= nested_svm_exit_handled(svm
);
2419 if (vmexit
== NESTED_EXIT_DONE
)
2423 svm_complete_interrupts(svm
);
2425 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR0_MASK
))
2426 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2428 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2430 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2431 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2432 kvm_run
->fail_entry
.hardware_entry_failure_reason
2433 = svm
->vmcb
->control
.exit_code
;
2437 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2438 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2439 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
)
2440 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
2442 __func__
, svm
->vmcb
->control
.exit_int_info
,
2445 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2446 || !svm_exit_handlers
[exit_code
]) {
2447 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2448 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
2452 return svm_exit_handlers
[exit_code
](svm
);
2455 static void reload_tss(struct kvm_vcpu
*vcpu
)
2457 int cpu
= raw_smp_processor_id();
2459 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
2460 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2464 static void pre_svm_run(struct vcpu_svm
*svm
)
2466 int cpu
= raw_smp_processor_id();
2468 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
2470 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
2471 /* FIXME: handle wraparound of asid_generation */
2472 if (svm
->asid_generation
!= sd
->asid_generation
)
2476 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
2478 struct vcpu_svm
*svm
= to_svm(vcpu
);
2480 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
2481 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
2482 svm
->vmcb
->control
.intercept
|= (1ULL << INTERCEPT_IRET
);
2483 ++vcpu
->stat
.nmi_injections
;
2486 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
2488 struct vmcb_control_area
*control
;
2490 trace_kvm_inj_virq(irq
);
2492 ++svm
->vcpu
.stat
.irq_injections
;
2493 control
= &svm
->vmcb
->control
;
2494 control
->int_vector
= irq
;
2495 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
2496 control
->int_ctl
|= V_IRQ_MASK
|
2497 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
2500 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
2502 struct vcpu_svm
*svm
= to_svm(vcpu
);
2504 BUG_ON(!(gif_set(svm
)));
2506 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
2507 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
2510 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
2512 struct vcpu_svm
*svm
= to_svm(vcpu
);
2518 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR8_MASK
;
2521 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
2523 struct vcpu_svm
*svm
= to_svm(vcpu
);
2524 struct vmcb
*vmcb
= svm
->vmcb
;
2525 return !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2526 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2529 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
2531 struct vcpu_svm
*svm
= to_svm(vcpu
);
2533 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2536 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
2538 struct vcpu_svm
*svm
= to_svm(vcpu
);
2541 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
2542 svm
->vmcb
->control
.intercept
|= (1ULL << INTERCEPT_IRET
);
2544 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
2545 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_IRET
);
2549 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2551 struct vcpu_svm
*svm
= to_svm(vcpu
);
2552 struct vmcb
*vmcb
= svm
->vmcb
;
2555 if (!gif_set(svm
) ||
2556 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
2559 ret
= !!(vmcb
->save
.rflags
& X86_EFLAGS_IF
);
2562 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
2567 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2569 struct vcpu_svm
*svm
= to_svm(vcpu
);
2571 nested_svm_intr(svm
);
2573 /* In case GIF=0 we can't rely on the CPU to tell us when
2574 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2575 * The next time we get that intercept, this function will be
2576 * called again though and we'll get the vintr intercept. */
2579 svm_inject_irq(svm
, 0x0);
2583 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2585 struct vcpu_svm
*svm
= to_svm(vcpu
);
2587 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
2589 return; /* IRET will cause a vm exit */
2591 /* Something prevents NMI from been injected. Single step over
2592 possible problem (IRET or exception injection or interrupt
2594 svm
->nmi_singlestep
= true;
2595 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2596 update_db_intercept(vcpu
);
2599 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2604 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
2606 force_new_asid(vcpu
);
2609 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
2613 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
2615 struct vcpu_svm
*svm
= to_svm(vcpu
);
2617 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR8_MASK
)) {
2618 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
2619 kvm_set_cr8(vcpu
, cr8
);
2623 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
2625 struct vcpu_svm
*svm
= to_svm(vcpu
);
2628 cr8
= kvm_get_cr8(vcpu
);
2629 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
2630 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
2633 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
2637 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
2639 if (svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
2640 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
2642 svm
->vcpu
.arch
.nmi_injected
= false;
2643 kvm_clear_exception_queue(&svm
->vcpu
);
2644 kvm_clear_interrupt_queue(&svm
->vcpu
);
2646 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
2649 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
2650 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
2653 case SVM_EXITINTINFO_TYPE_NMI
:
2654 svm
->vcpu
.arch
.nmi_injected
= true;
2656 case SVM_EXITINTINFO_TYPE_EXEPT
:
2657 /* In case of software exception do not reinject an exception
2658 vector, but re-execute and instruction instead */
2661 if (kvm_exception_is_soft(vector
))
2663 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
2664 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
2665 kvm_queue_exception_e(&svm
->vcpu
, vector
, err
);
2668 kvm_queue_exception(&svm
->vcpu
, vector
);
2670 case SVM_EXITINTINFO_TYPE_INTR
:
2671 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
2678 #ifdef CONFIG_X86_64
2684 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
2686 struct vcpu_svm
*svm
= to_svm(vcpu
);
2692 * A vmexit emulation is required before the vcpu can be executed
2695 if (unlikely(svm
->nested
.exit_required
))
2698 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2699 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2700 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
2704 sync_lapic_to_cr8(vcpu
);
2706 save_host_msrs(vcpu
);
2707 fs_selector
= kvm_read_fs();
2708 gs_selector
= kvm_read_gs();
2709 ldt_selector
= kvm_read_ldt();
2710 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
2711 /* required for live migration with NPT */
2713 svm
->vmcb
->save
.cr3
= vcpu
->arch
.cr3
;
2720 "push %%"R
"bp; \n\t"
2721 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
2722 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
2723 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
2724 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
2725 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
2726 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
2727 #ifdef CONFIG_X86_64
2728 "mov %c[r8](%[svm]), %%r8 \n\t"
2729 "mov %c[r9](%[svm]), %%r9 \n\t"
2730 "mov %c[r10](%[svm]), %%r10 \n\t"
2731 "mov %c[r11](%[svm]), %%r11 \n\t"
2732 "mov %c[r12](%[svm]), %%r12 \n\t"
2733 "mov %c[r13](%[svm]), %%r13 \n\t"
2734 "mov %c[r14](%[svm]), %%r14 \n\t"
2735 "mov %c[r15](%[svm]), %%r15 \n\t"
2738 /* Enter guest mode */
2740 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
2741 __ex(SVM_VMLOAD
) "\n\t"
2742 __ex(SVM_VMRUN
) "\n\t"
2743 __ex(SVM_VMSAVE
) "\n\t"
2746 /* Save guest registers, load host registers */
2747 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
2748 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
2749 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
2750 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
2751 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
2752 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
2753 #ifdef CONFIG_X86_64
2754 "mov %%r8, %c[r8](%[svm]) \n\t"
2755 "mov %%r9, %c[r9](%[svm]) \n\t"
2756 "mov %%r10, %c[r10](%[svm]) \n\t"
2757 "mov %%r11, %c[r11](%[svm]) \n\t"
2758 "mov %%r12, %c[r12](%[svm]) \n\t"
2759 "mov %%r13, %c[r13](%[svm]) \n\t"
2760 "mov %%r14, %c[r14](%[svm]) \n\t"
2761 "mov %%r15, %c[r15](%[svm]) \n\t"
2766 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
2767 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2768 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2769 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2770 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2771 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2772 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
2773 #ifdef CONFIG_X86_64
2774 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2775 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2776 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2777 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2778 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2779 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2780 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2781 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
2784 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
2785 #ifdef CONFIG_X86_64
2786 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2790 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
2791 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
2792 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
2793 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
2795 kvm_load_fs(fs_selector
);
2796 kvm_load_gs(gs_selector
);
2797 kvm_load_ldt(ldt_selector
);
2798 load_host_msrs(vcpu
);
2802 local_irq_disable();
2806 sync_cr8_to_lapic(vcpu
);
2811 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
2812 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
2818 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
2820 struct vcpu_svm
*svm
= to_svm(vcpu
);
2823 svm
->vmcb
->control
.nested_cr3
= root
;
2824 force_new_asid(vcpu
);
2828 svm
->vmcb
->save
.cr3
= root
;
2829 force_new_asid(vcpu
);
2832 static int is_disabled(void)
2836 rdmsrl(MSR_VM_CR
, vm_cr
);
2837 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
2844 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2847 * Patch in the VMMCALL instruction:
2849 hypercall
[0] = 0x0f;
2850 hypercall
[1] = 0x01;
2851 hypercall
[2] = 0xd9;
2854 static void svm_check_processor_compat(void *rtn
)
2859 static bool svm_cpu_has_accelerated_tpr(void)
2864 static int get_npt_level(void)
2866 #ifdef CONFIG_X86_64
2867 return PT64_ROOT_LEVEL
;
2869 return PT32E_ROOT_LEVEL
;
2873 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
2878 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
2882 static const struct trace_print_flags svm_exit_reasons_str
[] = {
2883 { SVM_EXIT_READ_CR0
, "read_cr0" },
2884 { SVM_EXIT_READ_CR3
, "read_cr3" },
2885 { SVM_EXIT_READ_CR4
, "read_cr4" },
2886 { SVM_EXIT_READ_CR8
, "read_cr8" },
2887 { SVM_EXIT_WRITE_CR0
, "write_cr0" },
2888 { SVM_EXIT_WRITE_CR3
, "write_cr3" },
2889 { SVM_EXIT_WRITE_CR4
, "write_cr4" },
2890 { SVM_EXIT_WRITE_CR8
, "write_cr8" },
2891 { SVM_EXIT_READ_DR0
, "read_dr0" },
2892 { SVM_EXIT_READ_DR1
, "read_dr1" },
2893 { SVM_EXIT_READ_DR2
, "read_dr2" },
2894 { SVM_EXIT_READ_DR3
, "read_dr3" },
2895 { SVM_EXIT_WRITE_DR0
, "write_dr0" },
2896 { SVM_EXIT_WRITE_DR1
, "write_dr1" },
2897 { SVM_EXIT_WRITE_DR2
, "write_dr2" },
2898 { SVM_EXIT_WRITE_DR3
, "write_dr3" },
2899 { SVM_EXIT_WRITE_DR5
, "write_dr5" },
2900 { SVM_EXIT_WRITE_DR7
, "write_dr7" },
2901 { SVM_EXIT_EXCP_BASE
+ DB_VECTOR
, "DB excp" },
2902 { SVM_EXIT_EXCP_BASE
+ BP_VECTOR
, "BP excp" },
2903 { SVM_EXIT_EXCP_BASE
+ UD_VECTOR
, "UD excp" },
2904 { SVM_EXIT_EXCP_BASE
+ PF_VECTOR
, "PF excp" },
2905 { SVM_EXIT_EXCP_BASE
+ NM_VECTOR
, "NM excp" },
2906 { SVM_EXIT_EXCP_BASE
+ MC_VECTOR
, "MC excp" },
2907 { SVM_EXIT_INTR
, "interrupt" },
2908 { SVM_EXIT_NMI
, "nmi" },
2909 { SVM_EXIT_SMI
, "smi" },
2910 { SVM_EXIT_INIT
, "init" },
2911 { SVM_EXIT_VINTR
, "vintr" },
2912 { SVM_EXIT_CPUID
, "cpuid" },
2913 { SVM_EXIT_INVD
, "invd" },
2914 { SVM_EXIT_HLT
, "hlt" },
2915 { SVM_EXIT_INVLPG
, "invlpg" },
2916 { SVM_EXIT_INVLPGA
, "invlpga" },
2917 { SVM_EXIT_IOIO
, "io" },
2918 { SVM_EXIT_MSR
, "msr" },
2919 { SVM_EXIT_TASK_SWITCH
, "task_switch" },
2920 { SVM_EXIT_SHUTDOWN
, "shutdown" },
2921 { SVM_EXIT_VMRUN
, "vmrun" },
2922 { SVM_EXIT_VMMCALL
, "hypercall" },
2923 { SVM_EXIT_VMLOAD
, "vmload" },
2924 { SVM_EXIT_VMSAVE
, "vmsave" },
2925 { SVM_EXIT_STGI
, "stgi" },
2926 { SVM_EXIT_CLGI
, "clgi" },
2927 { SVM_EXIT_SKINIT
, "skinit" },
2928 { SVM_EXIT_WBINVD
, "wbinvd" },
2929 { SVM_EXIT_MONITOR
, "monitor" },
2930 { SVM_EXIT_MWAIT
, "mwait" },
2931 { SVM_EXIT_NPF
, "npf" },
2935 static int svm_get_lpage_level(void)
2937 return PT_PDPE_LEVEL
;
2940 static bool svm_rdtscp_supported(void)
2945 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
2947 struct vcpu_svm
*svm
= to_svm(vcpu
);
2949 update_cr0_intercept(svm
);
2950 svm
->vmcb
->control
.intercept_exceptions
|= 1 << NM_VECTOR
;
2953 static struct kvm_x86_ops svm_x86_ops
= {
2954 .cpu_has_kvm_support
= has_svm
,
2955 .disabled_by_bios
= is_disabled
,
2956 .hardware_setup
= svm_hardware_setup
,
2957 .hardware_unsetup
= svm_hardware_unsetup
,
2958 .check_processor_compatibility
= svm_check_processor_compat
,
2959 .hardware_enable
= svm_hardware_enable
,
2960 .hardware_disable
= svm_hardware_disable
,
2961 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
2963 .vcpu_create
= svm_create_vcpu
,
2964 .vcpu_free
= svm_free_vcpu
,
2965 .vcpu_reset
= svm_vcpu_reset
,
2967 .prepare_guest_switch
= svm_prepare_guest_switch
,
2968 .vcpu_load
= svm_vcpu_load
,
2969 .vcpu_put
= svm_vcpu_put
,
2971 .set_guest_debug
= svm_guest_debug
,
2972 .get_msr
= svm_get_msr
,
2973 .set_msr
= svm_set_msr
,
2974 .get_segment_base
= svm_get_segment_base
,
2975 .get_segment
= svm_get_segment
,
2976 .set_segment
= svm_set_segment
,
2977 .get_cpl
= svm_get_cpl
,
2978 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
2979 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
2980 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
2981 .set_cr0
= svm_set_cr0
,
2982 .set_cr3
= svm_set_cr3
,
2983 .set_cr4
= svm_set_cr4
,
2984 .set_efer
= svm_set_efer
,
2985 .get_idt
= svm_get_idt
,
2986 .set_idt
= svm_set_idt
,
2987 .get_gdt
= svm_get_gdt
,
2988 .set_gdt
= svm_set_gdt
,
2989 .get_dr
= svm_get_dr
,
2990 .set_dr
= svm_set_dr
,
2991 .cache_reg
= svm_cache_reg
,
2992 .get_rflags
= svm_get_rflags
,
2993 .set_rflags
= svm_set_rflags
,
2994 .fpu_activate
= svm_fpu_activate
,
2995 .fpu_deactivate
= svm_fpu_deactivate
,
2997 .tlb_flush
= svm_flush_tlb
,
2999 .run
= svm_vcpu_run
,
3000 .handle_exit
= handle_exit
,
3001 .skip_emulated_instruction
= skip_emulated_instruction
,
3002 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
3003 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
3004 .patch_hypercall
= svm_patch_hypercall
,
3005 .set_irq
= svm_set_irq
,
3006 .set_nmi
= svm_inject_nmi
,
3007 .queue_exception
= svm_queue_exception
,
3008 .interrupt_allowed
= svm_interrupt_allowed
,
3009 .nmi_allowed
= svm_nmi_allowed
,
3010 .get_nmi_mask
= svm_get_nmi_mask
,
3011 .set_nmi_mask
= svm_set_nmi_mask
,
3012 .enable_nmi_window
= enable_nmi_window
,
3013 .enable_irq_window
= enable_irq_window
,
3014 .update_cr8_intercept
= update_cr8_intercept
,
3016 .set_tss_addr
= svm_set_tss_addr
,
3017 .get_tdp_level
= get_npt_level
,
3018 .get_mt_mask
= svm_get_mt_mask
,
3020 .exit_reasons_str
= svm_exit_reasons_str
,
3021 .get_lpage_level
= svm_get_lpage_level
,
3023 .cpuid_update
= svm_cpuid_update
,
3025 .rdtscp_supported
= svm_rdtscp_supported
,
3028 static int __init
svm_init(void)
3030 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
3034 static void __exit
svm_exit(void)
3039 module_init(svm_init
)
3040 module_exit(svm_exit
)