]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/svm.c
Merge tag 'kvmarm-fixes-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmar...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / svm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50
51 #include <asm/virtext.h>
52 #include "trace.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_SVM),
61 {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
67
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
78
79 #define SVM_AVIC_DOORBELL 0xc001011b
80
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
96 */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121 MSR_FS_BASE,
122 #endif
123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124 MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_sev_info {
130 bool active; /* SEV enabled guest */
131 unsigned int asid; /* ASID used for this guest */
132 unsigned int handle; /* SEV firmware handle */
133 int fd; /* SEV device fd */
134 unsigned long pages_locked; /* Number of pages locked */
135 struct list_head regions_list; /* List of registered regions */
136 };
137
138 struct kvm_svm {
139 struct kvm kvm;
140
141 /* Struct members for AVIC */
142 u32 avic_vm_id;
143 struct page *avic_logical_id_table_page;
144 struct page *avic_physical_id_table_page;
145 struct hlist_node hnode;
146
147 struct kvm_sev_info sev_info;
148 };
149
150 struct kvm_vcpu;
151
152 struct nested_state {
153 struct vmcb *hsave;
154 u64 hsave_msr;
155 u64 vm_cr_msr;
156 u64 vmcb;
157
158 /* These are the merged vectors */
159 u32 *msrpm;
160
161 /* gpa pointers to the real vectors */
162 u64 vmcb_msrpm;
163 u64 vmcb_iopm;
164
165 /* A VMEXIT is required but not yet emulated */
166 bool exit_required;
167
168 /* cache for intercepts of the guest */
169 u32 intercept_cr;
170 u32 intercept_dr;
171 u32 intercept_exceptions;
172 u64 intercept;
173
174 /* Nested Paging related state */
175 u64 nested_cr3;
176 };
177
178 #define MSRPM_OFFSETS 16
179 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
180
181 /*
182 * Set osvw_len to higher value when updated Revision Guides
183 * are published and we know what the new status bits are
184 */
185 static uint64_t osvw_len = 4, osvw_status;
186
187 struct vcpu_svm {
188 struct kvm_vcpu vcpu;
189 struct vmcb *vmcb;
190 unsigned long vmcb_pa;
191 struct svm_cpu_data *svm_data;
192 uint64_t asid_generation;
193 uint64_t sysenter_esp;
194 uint64_t sysenter_eip;
195 uint64_t tsc_aux;
196
197 u64 msr_decfg;
198
199 u64 next_rip;
200
201 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
202 struct {
203 u16 fs;
204 u16 gs;
205 u16 ldt;
206 u64 gs_base;
207 } host;
208
209 u64 spec_ctrl;
210 /*
211 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
212 * translated into the appropriate L2_CFG bits on the host to
213 * perform speculative control.
214 */
215 u64 virt_spec_ctrl;
216
217 u32 *msrpm;
218
219 ulong nmi_iret_rip;
220
221 struct nested_state nested;
222
223 bool nmi_singlestep;
224 u64 nmi_singlestep_guest_rflags;
225
226 unsigned int3_injected;
227 unsigned long int3_rip;
228
229 /* cached guest cpuid flags for faster access */
230 bool nrips_enabled : 1;
231
232 u32 ldr_reg;
233 u32 dfr_reg;
234 struct page *avic_backing_page;
235 u64 *avic_physical_id_cache;
236 bool avic_is_running;
237
238 /*
239 * Per-vcpu list of struct amd_svm_iommu_ir:
240 * This is used mainly to store interrupt remapping information used
241 * when update the vcpu affinity. This avoids the need to scan for
242 * IRTE and try to match ga_tag in the IOMMU driver.
243 */
244 struct list_head ir_list;
245 spinlock_t ir_list_lock;
246
247 /* which host CPU was used for running this vcpu */
248 unsigned int last_cpu;
249 };
250
251 /*
252 * This is a wrapper of struct amd_iommu_ir_data.
253 */
254 struct amd_svm_iommu_ir {
255 struct list_head node; /* Used by SVM for per-vcpu ir_list */
256 void *data; /* Storing pointer to struct amd_ir_data */
257 };
258
259 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
260 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
262
263 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
264 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
265 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
266 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
267
268 static DEFINE_PER_CPU(u64, current_tsc_ratio);
269 #define TSC_RATIO_DEFAULT 0x0100000000ULL
270
271 #define MSR_INVALID 0xffffffffU
272
273 static const struct svm_direct_access_msrs {
274 u32 index; /* Index of the MSR */
275 bool always; /* True if intercept is always on */
276 } direct_access_msrs[] = {
277 { .index = MSR_STAR, .always = true },
278 { .index = MSR_IA32_SYSENTER_CS, .always = true },
279 #ifdef CONFIG_X86_64
280 { .index = MSR_GS_BASE, .always = true },
281 { .index = MSR_FS_BASE, .always = true },
282 { .index = MSR_KERNEL_GS_BASE, .always = true },
283 { .index = MSR_LSTAR, .always = true },
284 { .index = MSR_CSTAR, .always = true },
285 { .index = MSR_SYSCALL_MASK, .always = true },
286 #endif
287 { .index = MSR_IA32_SPEC_CTRL, .always = false },
288 { .index = MSR_IA32_PRED_CMD, .always = false },
289 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
290 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
291 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
292 { .index = MSR_IA32_LASTINTTOIP, .always = false },
293 { .index = MSR_INVALID, .always = false },
294 };
295
296 /* enable NPT for AMD64 and X86 with PAE */
297 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
298 static bool npt_enabled = true;
299 #else
300 static bool npt_enabled;
301 #endif
302
303 /*
304 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
305 * pause_filter_count: On processors that support Pause filtering(indicated
306 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
307 * count value. On VMRUN this value is loaded into an internal counter.
308 * Each time a pause instruction is executed, this counter is decremented
309 * until it reaches zero at which time a #VMEXIT is generated if pause
310 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
311 * Intercept Filtering for more details.
312 * This also indicate if ple logic enabled.
313 *
314 * pause_filter_thresh: In addition, some processor families support advanced
315 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
316 * the amount of time a guest is allowed to execute in a pause loop.
317 * In this mode, a 16-bit pause filter threshold field is added in the
318 * VMCB. The threshold value is a cycle count that is used to reset the
319 * pause counter. As with simple pause filtering, VMRUN loads the pause
320 * count value from VMCB into an internal counter. Then, on each pause
321 * instruction the hardware checks the elapsed number of cycles since
322 * the most recent pause instruction against the pause filter threshold.
323 * If the elapsed cycle count is greater than the pause filter threshold,
324 * then the internal pause count is reloaded from the VMCB and execution
325 * continues. If the elapsed cycle count is less than the pause filter
326 * threshold, then the internal pause count is decremented. If the count
327 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
328 * triggered. If advanced pause filtering is supported and pause filter
329 * threshold field is set to zero, the filter will operate in the simpler,
330 * count only mode.
331 */
332
333 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
334 module_param(pause_filter_thresh, ushort, 0444);
335
336 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
337 module_param(pause_filter_count, ushort, 0444);
338
339 /* Default doubles per-vcpu window every exit. */
340 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
341 module_param(pause_filter_count_grow, ushort, 0444);
342
343 /* Default resets per-vcpu window every exit to pause_filter_count. */
344 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
345 module_param(pause_filter_count_shrink, ushort, 0444);
346
347 /* Default is to compute the maximum so we can never overflow. */
348 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
349 module_param(pause_filter_count_max, ushort, 0444);
350
351 /* allow nested paging (virtualized MMU) for all guests */
352 static int npt = true;
353 module_param(npt, int, S_IRUGO);
354
355 /* allow nested virtualization in KVM/SVM */
356 static int nested = true;
357 module_param(nested, int, S_IRUGO);
358
359 /* enable / disable AVIC */
360 static int avic;
361 #ifdef CONFIG_X86_LOCAL_APIC
362 module_param(avic, int, S_IRUGO);
363 #endif
364
365 /* enable/disable Next RIP Save */
366 static int nrips = true;
367 module_param(nrips, int, 0444);
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static bool __read_mostly dump_invalid_vmcb = 0;
382 module_param(dump_invalid_vmcb, bool, 0644);
383
384 static u8 rsm_ins_bytes[] = "\x0f\xaa";
385
386 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
387 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
388 static void svm_complete_interrupts(struct vcpu_svm *svm);
389
390 static int nested_svm_exit_handled(struct vcpu_svm *svm);
391 static int nested_svm_intercept(struct vcpu_svm *svm);
392 static int nested_svm_vmexit(struct vcpu_svm *svm);
393 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
394 bool has_error_code, u32 error_code);
395
396 enum {
397 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
398 pause filter count */
399 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
400 VMCB_ASID, /* ASID */
401 VMCB_INTR, /* int_ctl, int_vector */
402 VMCB_NPT, /* npt_en, nCR3, gPAT */
403 VMCB_CR, /* CR0, CR3, CR4, EFER */
404 VMCB_DR, /* DR6, DR7 */
405 VMCB_DT, /* GDT, IDT */
406 VMCB_SEG, /* CS, DS, SS, ES, CPL */
407 VMCB_CR2, /* CR2 only */
408 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
409 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
410 * AVIC PHYSICAL_TABLE pointer,
411 * AVIC LOGICAL_TABLE pointer
412 */
413 VMCB_DIRTY_MAX,
414 };
415
416 /* TPR and CR2 are always written before VMRUN */
417 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
418
419 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
420
421 static unsigned int max_sev_asid;
422 static unsigned int min_sev_asid;
423 static unsigned long *sev_asid_bitmap;
424 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
425
426 struct enc_region {
427 struct list_head list;
428 unsigned long npages;
429 struct page **pages;
430 unsigned long uaddr;
431 unsigned long size;
432 };
433
434
435 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
436 {
437 return container_of(kvm, struct kvm_svm, kvm);
438 }
439
440 static inline bool svm_sev_enabled(void)
441 {
442 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
443 }
444
445 static inline bool sev_guest(struct kvm *kvm)
446 {
447 #ifdef CONFIG_KVM_AMD_SEV
448 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
449
450 return sev->active;
451 #else
452 return false;
453 #endif
454 }
455
456 static inline int sev_get_asid(struct kvm *kvm)
457 {
458 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
459
460 return sev->asid;
461 }
462
463 static inline void mark_all_dirty(struct vmcb *vmcb)
464 {
465 vmcb->control.clean = 0;
466 }
467
468 static inline void mark_all_clean(struct vmcb *vmcb)
469 {
470 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
471 & ~VMCB_ALWAYS_DIRTY_MASK;
472 }
473
474 static inline void mark_dirty(struct vmcb *vmcb, int bit)
475 {
476 vmcb->control.clean &= ~(1 << bit);
477 }
478
479 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
480 {
481 return container_of(vcpu, struct vcpu_svm, vcpu);
482 }
483
484 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
485 {
486 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
487 mark_dirty(svm->vmcb, VMCB_AVIC);
488 }
489
490 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
491 {
492 struct vcpu_svm *svm = to_svm(vcpu);
493 u64 *entry = svm->avic_physical_id_cache;
494
495 if (!entry)
496 return false;
497
498 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
499 }
500
501 static void recalc_intercepts(struct vcpu_svm *svm)
502 {
503 struct vmcb_control_area *c, *h;
504 struct nested_state *g;
505
506 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
507
508 if (!is_guest_mode(&svm->vcpu))
509 return;
510
511 c = &svm->vmcb->control;
512 h = &svm->nested.hsave->control;
513 g = &svm->nested;
514
515 c->intercept_cr = h->intercept_cr | g->intercept_cr;
516 c->intercept_dr = h->intercept_dr | g->intercept_dr;
517 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
518 c->intercept = h->intercept | g->intercept;
519 }
520
521 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
522 {
523 if (is_guest_mode(&svm->vcpu))
524 return svm->nested.hsave;
525 else
526 return svm->vmcb;
527 }
528
529 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
530 {
531 struct vmcb *vmcb = get_host_vmcb(svm);
532
533 vmcb->control.intercept_cr |= (1U << bit);
534
535 recalc_intercepts(svm);
536 }
537
538 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
539 {
540 struct vmcb *vmcb = get_host_vmcb(svm);
541
542 vmcb->control.intercept_cr &= ~(1U << bit);
543
544 recalc_intercepts(svm);
545 }
546
547 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
548 {
549 struct vmcb *vmcb = get_host_vmcb(svm);
550
551 return vmcb->control.intercept_cr & (1U << bit);
552 }
553
554 static inline void set_dr_intercepts(struct vcpu_svm *svm)
555 {
556 struct vmcb *vmcb = get_host_vmcb(svm);
557
558 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
559 | (1 << INTERCEPT_DR1_READ)
560 | (1 << INTERCEPT_DR2_READ)
561 | (1 << INTERCEPT_DR3_READ)
562 | (1 << INTERCEPT_DR4_READ)
563 | (1 << INTERCEPT_DR5_READ)
564 | (1 << INTERCEPT_DR6_READ)
565 | (1 << INTERCEPT_DR7_READ)
566 | (1 << INTERCEPT_DR0_WRITE)
567 | (1 << INTERCEPT_DR1_WRITE)
568 | (1 << INTERCEPT_DR2_WRITE)
569 | (1 << INTERCEPT_DR3_WRITE)
570 | (1 << INTERCEPT_DR4_WRITE)
571 | (1 << INTERCEPT_DR5_WRITE)
572 | (1 << INTERCEPT_DR6_WRITE)
573 | (1 << INTERCEPT_DR7_WRITE);
574
575 recalc_intercepts(svm);
576 }
577
578 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
579 {
580 struct vmcb *vmcb = get_host_vmcb(svm);
581
582 vmcb->control.intercept_dr = 0;
583
584 recalc_intercepts(svm);
585 }
586
587 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
588 {
589 struct vmcb *vmcb = get_host_vmcb(svm);
590
591 vmcb->control.intercept_exceptions |= (1U << bit);
592
593 recalc_intercepts(svm);
594 }
595
596 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
597 {
598 struct vmcb *vmcb = get_host_vmcb(svm);
599
600 vmcb->control.intercept_exceptions &= ~(1U << bit);
601
602 recalc_intercepts(svm);
603 }
604
605 static inline void set_intercept(struct vcpu_svm *svm, int bit)
606 {
607 struct vmcb *vmcb = get_host_vmcb(svm);
608
609 vmcb->control.intercept |= (1ULL << bit);
610
611 recalc_intercepts(svm);
612 }
613
614 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
615 {
616 struct vmcb *vmcb = get_host_vmcb(svm);
617
618 vmcb->control.intercept &= ~(1ULL << bit);
619
620 recalc_intercepts(svm);
621 }
622
623 static inline bool vgif_enabled(struct vcpu_svm *svm)
624 {
625 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
626 }
627
628 static inline void enable_gif(struct vcpu_svm *svm)
629 {
630 if (vgif_enabled(svm))
631 svm->vmcb->control.int_ctl |= V_GIF_MASK;
632 else
633 svm->vcpu.arch.hflags |= HF_GIF_MASK;
634 }
635
636 static inline void disable_gif(struct vcpu_svm *svm)
637 {
638 if (vgif_enabled(svm))
639 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
640 else
641 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
642 }
643
644 static inline bool gif_set(struct vcpu_svm *svm)
645 {
646 if (vgif_enabled(svm))
647 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
648 else
649 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
650 }
651
652 static unsigned long iopm_base;
653
654 struct kvm_ldttss_desc {
655 u16 limit0;
656 u16 base0;
657 unsigned base1:8, type:5, dpl:2, p:1;
658 unsigned limit1:4, zero0:3, g:1, base2:8;
659 u32 base3;
660 u32 zero1;
661 } __attribute__((packed));
662
663 struct svm_cpu_data {
664 int cpu;
665
666 u64 asid_generation;
667 u32 max_asid;
668 u32 next_asid;
669 u32 min_asid;
670 struct kvm_ldttss_desc *tss_desc;
671
672 struct page *save_area;
673 struct vmcb *current_vmcb;
674
675 /* index = sev_asid, value = vmcb pointer */
676 struct vmcb **sev_vmcbs;
677 };
678
679 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
680
681 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
682
683 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
684 #define MSRS_RANGE_SIZE 2048
685 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
686
687 static u32 svm_msrpm_offset(u32 msr)
688 {
689 u32 offset;
690 int i;
691
692 for (i = 0; i < NUM_MSR_MAPS; i++) {
693 if (msr < msrpm_ranges[i] ||
694 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
695 continue;
696
697 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
698 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
699
700 /* Now we have the u8 offset - but need the u32 offset */
701 return offset / 4;
702 }
703
704 /* MSR not in any range */
705 return MSR_INVALID;
706 }
707
708 #define MAX_INST_SIZE 15
709
710 static inline void clgi(void)
711 {
712 asm volatile (__ex("clgi"));
713 }
714
715 static inline void stgi(void)
716 {
717 asm volatile (__ex("stgi"));
718 }
719
720 static inline void invlpga(unsigned long addr, u32 asid)
721 {
722 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
723 }
724
725 static int get_npt_level(struct kvm_vcpu *vcpu)
726 {
727 #ifdef CONFIG_X86_64
728 return PT64_ROOT_4LEVEL;
729 #else
730 return PT32E_ROOT_LEVEL;
731 #endif
732 }
733
734 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
735 {
736 vcpu->arch.efer = efer;
737
738 if (!npt_enabled) {
739 /* Shadow paging assumes NX to be available. */
740 efer |= EFER_NX;
741
742 if (!(efer & EFER_LMA))
743 efer &= ~EFER_LME;
744 }
745
746 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
747 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
748 }
749
750 static int is_external_interrupt(u32 info)
751 {
752 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
753 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
754 }
755
756 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
757 {
758 struct vcpu_svm *svm = to_svm(vcpu);
759 u32 ret = 0;
760
761 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
762 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
763 return ret;
764 }
765
766 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
767 {
768 struct vcpu_svm *svm = to_svm(vcpu);
769
770 if (mask == 0)
771 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
772 else
773 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
774
775 }
776
777 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
778 {
779 struct vcpu_svm *svm = to_svm(vcpu);
780
781 if (nrips && svm->vmcb->control.next_rip != 0) {
782 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
783 svm->next_rip = svm->vmcb->control.next_rip;
784 }
785
786 if (!svm->next_rip) {
787 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
788 return 0;
789 } else {
790 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
791 pr_err("%s: ip 0x%lx next 0x%llx\n",
792 __func__, kvm_rip_read(vcpu), svm->next_rip);
793 kvm_rip_write(vcpu, svm->next_rip);
794 }
795 svm_set_interrupt_shadow(vcpu, 0);
796
797 return 1;
798 }
799
800 static void svm_queue_exception(struct kvm_vcpu *vcpu)
801 {
802 struct vcpu_svm *svm = to_svm(vcpu);
803 unsigned nr = vcpu->arch.exception.nr;
804 bool has_error_code = vcpu->arch.exception.has_error_code;
805 bool reinject = vcpu->arch.exception.injected;
806 u32 error_code = vcpu->arch.exception.error_code;
807
808 /*
809 * If we are within a nested VM we'd better #VMEXIT and let the guest
810 * handle the exception
811 */
812 if (!reinject &&
813 nested_svm_check_exception(svm, nr, has_error_code, error_code))
814 return;
815
816 kvm_deliver_exception_payload(&svm->vcpu);
817
818 if (nr == BP_VECTOR && !nrips) {
819 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
820
821 /*
822 * For guest debugging where we have to reinject #BP if some
823 * INT3 is guest-owned:
824 * Emulate nRIP by moving RIP forward. Will fail if injection
825 * raises a fault that is not intercepted. Still better than
826 * failing in all cases.
827 */
828 (void)skip_emulated_instruction(&svm->vcpu);
829 rip = kvm_rip_read(&svm->vcpu);
830 svm->int3_rip = rip + svm->vmcb->save.cs.base;
831 svm->int3_injected = rip - old_rip;
832 }
833
834 svm->vmcb->control.event_inj = nr
835 | SVM_EVTINJ_VALID
836 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
837 | SVM_EVTINJ_TYPE_EXEPT;
838 svm->vmcb->control.event_inj_err = error_code;
839 }
840
841 static void svm_init_erratum_383(void)
842 {
843 u32 low, high;
844 int err;
845 u64 val;
846
847 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
848 return;
849
850 /* Use _safe variants to not break nested virtualization */
851 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
852 if (err)
853 return;
854
855 val |= (1ULL << 47);
856
857 low = lower_32_bits(val);
858 high = upper_32_bits(val);
859
860 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
861
862 erratum_383_found = true;
863 }
864
865 static void svm_init_osvw(struct kvm_vcpu *vcpu)
866 {
867 /*
868 * Guests should see errata 400 and 415 as fixed (assuming that
869 * HLT and IO instructions are intercepted).
870 */
871 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
872 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
873
874 /*
875 * By increasing VCPU's osvw.length to 3 we are telling the guest that
876 * all osvw.status bits inside that length, including bit 0 (which is
877 * reserved for erratum 298), are valid. However, if host processor's
878 * osvw_len is 0 then osvw_status[0] carries no information. We need to
879 * be conservative here and therefore we tell the guest that erratum 298
880 * is present (because we really don't know).
881 */
882 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
883 vcpu->arch.osvw.status |= 1;
884 }
885
886 static int has_svm(void)
887 {
888 const char *msg;
889
890 if (!cpu_has_svm(&msg)) {
891 printk(KERN_INFO "has_svm: %s\n", msg);
892 return 0;
893 }
894
895 return 1;
896 }
897
898 static void svm_hardware_disable(void)
899 {
900 /* Make sure we clean up behind us */
901 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
902 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
903
904 cpu_svm_disable();
905
906 amd_pmu_disable_virt();
907 }
908
909 static int svm_hardware_enable(void)
910 {
911
912 struct svm_cpu_data *sd;
913 uint64_t efer;
914 struct desc_struct *gdt;
915 int me = raw_smp_processor_id();
916
917 rdmsrl(MSR_EFER, efer);
918 if (efer & EFER_SVME)
919 return -EBUSY;
920
921 if (!has_svm()) {
922 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
923 return -EINVAL;
924 }
925 sd = per_cpu(svm_data, me);
926 if (!sd) {
927 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
928 return -EINVAL;
929 }
930
931 sd->asid_generation = 1;
932 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
933 sd->next_asid = sd->max_asid + 1;
934 sd->min_asid = max_sev_asid + 1;
935
936 gdt = get_current_gdt_rw();
937 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
938
939 wrmsrl(MSR_EFER, efer | EFER_SVME);
940
941 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
942
943 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
945 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
946 }
947
948
949 /*
950 * Get OSVW bits.
951 *
952 * Note that it is possible to have a system with mixed processor
953 * revisions and therefore different OSVW bits. If bits are not the same
954 * on different processors then choose the worst case (i.e. if erratum
955 * is present on one processor and not on another then assume that the
956 * erratum is present everywhere).
957 */
958 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
959 uint64_t len, status = 0;
960 int err;
961
962 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
963 if (!err)
964 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
965 &err);
966
967 if (err)
968 osvw_status = osvw_len = 0;
969 else {
970 if (len < osvw_len)
971 osvw_len = len;
972 osvw_status |= status;
973 osvw_status &= (1ULL << osvw_len) - 1;
974 }
975 } else
976 osvw_status = osvw_len = 0;
977
978 svm_init_erratum_383();
979
980 amd_pmu_enable_virt();
981
982 return 0;
983 }
984
985 static void svm_cpu_uninit(int cpu)
986 {
987 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
988
989 if (!sd)
990 return;
991
992 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
993 kfree(sd->sev_vmcbs);
994 __free_page(sd->save_area);
995 kfree(sd);
996 }
997
998 static int svm_cpu_init(int cpu)
999 {
1000 struct svm_cpu_data *sd;
1001 int r;
1002
1003 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1004 if (!sd)
1005 return -ENOMEM;
1006 sd->cpu = cpu;
1007 r = -ENOMEM;
1008 sd->save_area = alloc_page(GFP_KERNEL);
1009 if (!sd->save_area)
1010 goto err_1;
1011
1012 if (svm_sev_enabled()) {
1013 r = -ENOMEM;
1014 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1015 sizeof(void *),
1016 GFP_KERNEL);
1017 if (!sd->sev_vmcbs)
1018 goto err_1;
1019 }
1020
1021 per_cpu(svm_data, cpu) = sd;
1022
1023 return 0;
1024
1025 err_1:
1026 kfree(sd);
1027 return r;
1028
1029 }
1030
1031 static bool valid_msr_intercept(u32 index)
1032 {
1033 int i;
1034
1035 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1036 if (direct_access_msrs[i].index == index)
1037 return true;
1038
1039 return false;
1040 }
1041
1042 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1043 {
1044 u8 bit_write;
1045 unsigned long tmp;
1046 u32 offset;
1047 u32 *msrpm;
1048
1049 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1050 to_svm(vcpu)->msrpm;
1051
1052 offset = svm_msrpm_offset(msr);
1053 bit_write = 2 * (msr & 0x0f) + 1;
1054 tmp = msrpm[offset];
1055
1056 BUG_ON(offset == MSR_INVALID);
1057
1058 return !!test_bit(bit_write, &tmp);
1059 }
1060
1061 static void set_msr_interception(u32 *msrpm, unsigned msr,
1062 int read, int write)
1063 {
1064 u8 bit_read, bit_write;
1065 unsigned long tmp;
1066 u32 offset;
1067
1068 /*
1069 * If this warning triggers extend the direct_access_msrs list at the
1070 * beginning of the file
1071 */
1072 WARN_ON(!valid_msr_intercept(msr));
1073
1074 offset = svm_msrpm_offset(msr);
1075 bit_read = 2 * (msr & 0x0f);
1076 bit_write = 2 * (msr & 0x0f) + 1;
1077 tmp = msrpm[offset];
1078
1079 BUG_ON(offset == MSR_INVALID);
1080
1081 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1082 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1083
1084 msrpm[offset] = tmp;
1085 }
1086
1087 static void svm_vcpu_init_msrpm(u32 *msrpm)
1088 {
1089 int i;
1090
1091 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1092
1093 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1094 if (!direct_access_msrs[i].always)
1095 continue;
1096
1097 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1098 }
1099 }
1100
1101 static void add_msr_offset(u32 offset)
1102 {
1103 int i;
1104
1105 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1106
1107 /* Offset already in list? */
1108 if (msrpm_offsets[i] == offset)
1109 return;
1110
1111 /* Slot used by another offset? */
1112 if (msrpm_offsets[i] != MSR_INVALID)
1113 continue;
1114
1115 /* Add offset to list */
1116 msrpm_offsets[i] = offset;
1117
1118 return;
1119 }
1120
1121 /*
1122 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1123 * increase MSRPM_OFFSETS in this case.
1124 */
1125 BUG();
1126 }
1127
1128 static void init_msrpm_offsets(void)
1129 {
1130 int i;
1131
1132 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1133
1134 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1135 u32 offset;
1136
1137 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1138 BUG_ON(offset == MSR_INVALID);
1139
1140 add_msr_offset(offset);
1141 }
1142 }
1143
1144 static void svm_enable_lbrv(struct vcpu_svm *svm)
1145 {
1146 u32 *msrpm = svm->msrpm;
1147
1148 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1149 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1150 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1151 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1152 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1153 }
1154
1155 static void svm_disable_lbrv(struct vcpu_svm *svm)
1156 {
1157 u32 *msrpm = svm->msrpm;
1158
1159 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1160 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1161 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1162 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1163 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1164 }
1165
1166 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1167 {
1168 svm->nmi_singlestep = false;
1169
1170 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1171 /* Clear our flags if they were not set by the guest */
1172 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1173 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1174 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1175 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1176 }
1177 }
1178
1179 /* Note:
1180 * This hash table is used to map VM_ID to a struct kvm_svm,
1181 * when handling AMD IOMMU GALOG notification to schedule in
1182 * a particular vCPU.
1183 */
1184 #define SVM_VM_DATA_HASH_BITS 8
1185 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1186 static u32 next_vm_id = 0;
1187 static bool next_vm_id_wrapped = 0;
1188 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1189
1190 /* Note:
1191 * This function is called from IOMMU driver to notify
1192 * SVM to schedule in a particular vCPU of a particular VM.
1193 */
1194 static int avic_ga_log_notifier(u32 ga_tag)
1195 {
1196 unsigned long flags;
1197 struct kvm_svm *kvm_svm;
1198 struct kvm_vcpu *vcpu = NULL;
1199 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1200 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1201
1202 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1203
1204 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1205 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1206 if (kvm_svm->avic_vm_id != vm_id)
1207 continue;
1208 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1209 break;
1210 }
1211 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1212
1213 /* Note:
1214 * At this point, the IOMMU should have already set the pending
1215 * bit in the vAPIC backing page. So, we just need to schedule
1216 * in the vcpu.
1217 */
1218 if (vcpu)
1219 kvm_vcpu_wake_up(vcpu);
1220
1221 return 0;
1222 }
1223
1224 static __init int sev_hardware_setup(void)
1225 {
1226 struct sev_user_data_status *status;
1227 int rc;
1228
1229 /* Maximum number of encrypted guests supported simultaneously */
1230 max_sev_asid = cpuid_ecx(0x8000001F);
1231
1232 if (!max_sev_asid)
1233 return 1;
1234
1235 /* Minimum ASID value that should be used for SEV guest */
1236 min_sev_asid = cpuid_edx(0x8000001F);
1237
1238 /* Initialize SEV ASID bitmap */
1239 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1240 if (!sev_asid_bitmap)
1241 return 1;
1242
1243 status = kmalloc(sizeof(*status), GFP_KERNEL);
1244 if (!status)
1245 return 1;
1246
1247 /*
1248 * Check SEV platform status.
1249 *
1250 * PLATFORM_STATUS can be called in any state, if we failed to query
1251 * the PLATFORM status then either PSP firmware does not support SEV
1252 * feature or SEV firmware is dead.
1253 */
1254 rc = sev_platform_status(status, NULL);
1255 if (rc)
1256 goto err;
1257
1258 pr_info("SEV supported\n");
1259
1260 err:
1261 kfree(status);
1262 return rc;
1263 }
1264
1265 static void grow_ple_window(struct kvm_vcpu *vcpu)
1266 {
1267 struct vcpu_svm *svm = to_svm(vcpu);
1268 struct vmcb_control_area *control = &svm->vmcb->control;
1269 int old = control->pause_filter_count;
1270
1271 control->pause_filter_count = __grow_ple_window(old,
1272 pause_filter_count,
1273 pause_filter_count_grow,
1274 pause_filter_count_max);
1275
1276 if (control->pause_filter_count != old) {
1277 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1278 trace_kvm_ple_window_update(vcpu->vcpu_id,
1279 control->pause_filter_count, old);
1280 }
1281 }
1282
1283 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1284 {
1285 struct vcpu_svm *svm = to_svm(vcpu);
1286 struct vmcb_control_area *control = &svm->vmcb->control;
1287 int old = control->pause_filter_count;
1288
1289 control->pause_filter_count =
1290 __shrink_ple_window(old,
1291 pause_filter_count,
1292 pause_filter_count_shrink,
1293 pause_filter_count);
1294 if (control->pause_filter_count != old) {
1295 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1296 trace_kvm_ple_window_update(vcpu->vcpu_id,
1297 control->pause_filter_count, old);
1298 }
1299 }
1300
1301 static __init int svm_hardware_setup(void)
1302 {
1303 int cpu;
1304 struct page *iopm_pages;
1305 void *iopm_va;
1306 int r;
1307
1308 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1309
1310 if (!iopm_pages)
1311 return -ENOMEM;
1312
1313 iopm_va = page_address(iopm_pages);
1314 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1315 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1316
1317 init_msrpm_offsets();
1318
1319 if (boot_cpu_has(X86_FEATURE_NX))
1320 kvm_enable_efer_bits(EFER_NX);
1321
1322 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1323 kvm_enable_efer_bits(EFER_FFXSR);
1324
1325 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1326 kvm_has_tsc_control = true;
1327 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1328 kvm_tsc_scaling_ratio_frac_bits = 32;
1329 }
1330
1331 /* Check for pause filtering support */
1332 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1333 pause_filter_count = 0;
1334 pause_filter_thresh = 0;
1335 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1336 pause_filter_thresh = 0;
1337 }
1338
1339 if (nested) {
1340 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1341 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1342 }
1343
1344 if (sev) {
1345 if (boot_cpu_has(X86_FEATURE_SEV) &&
1346 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1347 r = sev_hardware_setup();
1348 if (r)
1349 sev = false;
1350 } else {
1351 sev = false;
1352 }
1353 }
1354
1355 for_each_possible_cpu(cpu) {
1356 r = svm_cpu_init(cpu);
1357 if (r)
1358 goto err;
1359 }
1360
1361 if (!boot_cpu_has(X86_FEATURE_NPT))
1362 npt_enabled = false;
1363
1364 if (npt_enabled && !npt) {
1365 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1366 npt_enabled = false;
1367 }
1368
1369 if (npt_enabled) {
1370 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1371 kvm_enable_tdp();
1372 } else
1373 kvm_disable_tdp();
1374
1375 if (nrips) {
1376 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1377 nrips = false;
1378 }
1379
1380 if (avic) {
1381 if (!npt_enabled ||
1382 !boot_cpu_has(X86_FEATURE_AVIC) ||
1383 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1384 avic = false;
1385 } else {
1386 pr_info("AVIC enabled\n");
1387
1388 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1389 }
1390 }
1391
1392 if (vls) {
1393 if (!npt_enabled ||
1394 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1395 !IS_ENABLED(CONFIG_X86_64)) {
1396 vls = false;
1397 } else {
1398 pr_info("Virtual VMLOAD VMSAVE supported\n");
1399 }
1400 }
1401
1402 if (vgif) {
1403 if (!boot_cpu_has(X86_FEATURE_VGIF))
1404 vgif = false;
1405 else
1406 pr_info("Virtual GIF supported\n");
1407 }
1408
1409 return 0;
1410
1411 err:
1412 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1413 iopm_base = 0;
1414 return r;
1415 }
1416
1417 static __exit void svm_hardware_unsetup(void)
1418 {
1419 int cpu;
1420
1421 if (svm_sev_enabled())
1422 bitmap_free(sev_asid_bitmap);
1423
1424 for_each_possible_cpu(cpu)
1425 svm_cpu_uninit(cpu);
1426
1427 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1428 iopm_base = 0;
1429 }
1430
1431 static void init_seg(struct vmcb_seg *seg)
1432 {
1433 seg->selector = 0;
1434 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1435 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1436 seg->limit = 0xffff;
1437 seg->base = 0;
1438 }
1439
1440 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1441 {
1442 seg->selector = 0;
1443 seg->attrib = SVM_SELECTOR_P_MASK | type;
1444 seg->limit = 0xffff;
1445 seg->base = 0;
1446 }
1447
1448 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1449 {
1450 struct vcpu_svm *svm = to_svm(vcpu);
1451
1452 if (is_guest_mode(vcpu))
1453 return svm->nested.hsave->control.tsc_offset;
1454
1455 return vcpu->arch.tsc_offset;
1456 }
1457
1458 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1459 {
1460 struct vcpu_svm *svm = to_svm(vcpu);
1461 u64 g_tsc_offset = 0;
1462
1463 if (is_guest_mode(vcpu)) {
1464 /* Write L1's TSC offset. */
1465 g_tsc_offset = svm->vmcb->control.tsc_offset -
1466 svm->nested.hsave->control.tsc_offset;
1467 svm->nested.hsave->control.tsc_offset = offset;
1468 }
1469
1470 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1471 svm->vmcb->control.tsc_offset - g_tsc_offset,
1472 offset);
1473
1474 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1475
1476 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1477 return svm->vmcb->control.tsc_offset;
1478 }
1479
1480 static void avic_init_vmcb(struct vcpu_svm *svm)
1481 {
1482 struct vmcb *vmcb = svm->vmcb;
1483 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1484 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1485 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1486 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1487
1488 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1489 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1490 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1491 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1492 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1493 }
1494
1495 static void init_vmcb(struct vcpu_svm *svm)
1496 {
1497 struct vmcb_control_area *control = &svm->vmcb->control;
1498 struct vmcb_save_area *save = &svm->vmcb->save;
1499
1500 svm->vcpu.arch.hflags = 0;
1501
1502 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1503 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1504 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1505 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1506 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1507 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1508 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1509 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1510
1511 set_dr_intercepts(svm);
1512
1513 set_exception_intercept(svm, PF_VECTOR);
1514 set_exception_intercept(svm, UD_VECTOR);
1515 set_exception_intercept(svm, MC_VECTOR);
1516 set_exception_intercept(svm, AC_VECTOR);
1517 set_exception_intercept(svm, DB_VECTOR);
1518 /*
1519 * Guest access to VMware backdoor ports could legitimately
1520 * trigger #GP because of TSS I/O permission bitmap.
1521 * We intercept those #GP and allow access to them anyway
1522 * as VMware does.
1523 */
1524 if (enable_vmware_backdoor)
1525 set_exception_intercept(svm, GP_VECTOR);
1526
1527 set_intercept(svm, INTERCEPT_INTR);
1528 set_intercept(svm, INTERCEPT_NMI);
1529 set_intercept(svm, INTERCEPT_SMI);
1530 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1531 set_intercept(svm, INTERCEPT_RDPMC);
1532 set_intercept(svm, INTERCEPT_CPUID);
1533 set_intercept(svm, INTERCEPT_INVD);
1534 set_intercept(svm, INTERCEPT_INVLPG);
1535 set_intercept(svm, INTERCEPT_INVLPGA);
1536 set_intercept(svm, INTERCEPT_IOIO_PROT);
1537 set_intercept(svm, INTERCEPT_MSR_PROT);
1538 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1539 set_intercept(svm, INTERCEPT_SHUTDOWN);
1540 set_intercept(svm, INTERCEPT_VMRUN);
1541 set_intercept(svm, INTERCEPT_VMMCALL);
1542 set_intercept(svm, INTERCEPT_VMLOAD);
1543 set_intercept(svm, INTERCEPT_VMSAVE);
1544 set_intercept(svm, INTERCEPT_STGI);
1545 set_intercept(svm, INTERCEPT_CLGI);
1546 set_intercept(svm, INTERCEPT_SKINIT);
1547 set_intercept(svm, INTERCEPT_WBINVD);
1548 set_intercept(svm, INTERCEPT_XSETBV);
1549 set_intercept(svm, INTERCEPT_RDPRU);
1550 set_intercept(svm, INTERCEPT_RSM);
1551
1552 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1553 set_intercept(svm, INTERCEPT_MONITOR);
1554 set_intercept(svm, INTERCEPT_MWAIT);
1555 }
1556
1557 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1558 set_intercept(svm, INTERCEPT_HLT);
1559
1560 control->iopm_base_pa = __sme_set(iopm_base);
1561 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1562 control->int_ctl = V_INTR_MASKING_MASK;
1563
1564 init_seg(&save->es);
1565 init_seg(&save->ss);
1566 init_seg(&save->ds);
1567 init_seg(&save->fs);
1568 init_seg(&save->gs);
1569
1570 save->cs.selector = 0xf000;
1571 save->cs.base = 0xffff0000;
1572 /* Executable/Readable Code Segment */
1573 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1574 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1575 save->cs.limit = 0xffff;
1576
1577 save->gdtr.limit = 0xffff;
1578 save->idtr.limit = 0xffff;
1579
1580 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1581 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1582
1583 svm_set_efer(&svm->vcpu, 0);
1584 save->dr6 = 0xffff0ff0;
1585 kvm_set_rflags(&svm->vcpu, 2);
1586 save->rip = 0x0000fff0;
1587 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1588
1589 /*
1590 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1591 * It also updates the guest-visible cr0 value.
1592 */
1593 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1594 kvm_mmu_reset_context(&svm->vcpu);
1595
1596 save->cr4 = X86_CR4_PAE;
1597 /* rdx = ?? */
1598
1599 if (npt_enabled) {
1600 /* Setup VMCB for Nested Paging */
1601 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1602 clr_intercept(svm, INTERCEPT_INVLPG);
1603 clr_exception_intercept(svm, PF_VECTOR);
1604 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1605 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1606 save->g_pat = svm->vcpu.arch.pat;
1607 save->cr3 = 0;
1608 save->cr4 = 0;
1609 }
1610 svm->asid_generation = 0;
1611
1612 svm->nested.vmcb = 0;
1613 svm->vcpu.arch.hflags = 0;
1614
1615 if (pause_filter_count) {
1616 control->pause_filter_count = pause_filter_count;
1617 if (pause_filter_thresh)
1618 control->pause_filter_thresh = pause_filter_thresh;
1619 set_intercept(svm, INTERCEPT_PAUSE);
1620 } else {
1621 clr_intercept(svm, INTERCEPT_PAUSE);
1622 }
1623
1624 if (kvm_vcpu_apicv_active(&svm->vcpu))
1625 avic_init_vmcb(svm);
1626
1627 /*
1628 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1629 * in VMCB and clear intercepts to avoid #VMEXIT.
1630 */
1631 if (vls) {
1632 clr_intercept(svm, INTERCEPT_VMLOAD);
1633 clr_intercept(svm, INTERCEPT_VMSAVE);
1634 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1635 }
1636
1637 if (vgif) {
1638 clr_intercept(svm, INTERCEPT_STGI);
1639 clr_intercept(svm, INTERCEPT_CLGI);
1640 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1641 }
1642
1643 if (sev_guest(svm->vcpu.kvm)) {
1644 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1645 clr_exception_intercept(svm, UD_VECTOR);
1646 }
1647
1648 mark_all_dirty(svm->vmcb);
1649
1650 enable_gif(svm);
1651
1652 }
1653
1654 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1655 unsigned int index)
1656 {
1657 u64 *avic_physical_id_table;
1658 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1659
1660 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1661 return NULL;
1662
1663 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1664
1665 return &avic_physical_id_table[index];
1666 }
1667
1668 /**
1669 * Note:
1670 * AVIC hardware walks the nested page table to check permissions,
1671 * but does not use the SPA address specified in the leaf page
1672 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1673 * field of the VMCB. Therefore, we set up the
1674 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1675 */
1676 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1677 {
1678 struct kvm *kvm = vcpu->kvm;
1679 int ret = 0;
1680
1681 mutex_lock(&kvm->slots_lock);
1682 if (kvm->arch.apic_access_page_done)
1683 goto out;
1684
1685 ret = __x86_set_memory_region(kvm,
1686 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1687 APIC_DEFAULT_PHYS_BASE,
1688 PAGE_SIZE);
1689 if (ret)
1690 goto out;
1691
1692 kvm->arch.apic_access_page_done = true;
1693 out:
1694 mutex_unlock(&kvm->slots_lock);
1695 return ret;
1696 }
1697
1698 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1699 {
1700 int ret;
1701 u64 *entry, new_entry;
1702 int id = vcpu->vcpu_id;
1703 struct vcpu_svm *svm = to_svm(vcpu);
1704
1705 ret = avic_init_access_page(vcpu);
1706 if (ret)
1707 return ret;
1708
1709 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1710 return -EINVAL;
1711
1712 if (!svm->vcpu.arch.apic->regs)
1713 return -EINVAL;
1714
1715 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1716
1717 /* Setting AVIC backing page address in the phy APIC ID table */
1718 entry = avic_get_physical_id_entry(vcpu, id);
1719 if (!entry)
1720 return -EINVAL;
1721
1722 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1723 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1724 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1725 WRITE_ONCE(*entry, new_entry);
1726
1727 svm->avic_physical_id_cache = entry;
1728
1729 return 0;
1730 }
1731
1732 static void __sev_asid_free(int asid)
1733 {
1734 struct svm_cpu_data *sd;
1735 int cpu, pos;
1736
1737 pos = asid - 1;
1738 clear_bit(pos, sev_asid_bitmap);
1739
1740 for_each_possible_cpu(cpu) {
1741 sd = per_cpu(svm_data, cpu);
1742 sd->sev_vmcbs[pos] = NULL;
1743 }
1744 }
1745
1746 static void sev_asid_free(struct kvm *kvm)
1747 {
1748 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1749
1750 __sev_asid_free(sev->asid);
1751 }
1752
1753 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1754 {
1755 struct sev_data_decommission *decommission;
1756 struct sev_data_deactivate *data;
1757
1758 if (!handle)
1759 return;
1760
1761 data = kzalloc(sizeof(*data), GFP_KERNEL);
1762 if (!data)
1763 return;
1764
1765 /* deactivate handle */
1766 data->handle = handle;
1767 sev_guest_deactivate(data, NULL);
1768
1769 wbinvd_on_all_cpus();
1770 sev_guest_df_flush(NULL);
1771 kfree(data);
1772
1773 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1774 if (!decommission)
1775 return;
1776
1777 /* decommission handle */
1778 decommission->handle = handle;
1779 sev_guest_decommission(decommission, NULL);
1780
1781 kfree(decommission);
1782 }
1783
1784 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1785 unsigned long ulen, unsigned long *n,
1786 int write)
1787 {
1788 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1789 unsigned long npages, npinned, size;
1790 unsigned long locked, lock_limit;
1791 struct page **pages;
1792 unsigned long first, last;
1793
1794 if (ulen == 0 || uaddr + ulen < uaddr)
1795 return NULL;
1796
1797 /* Calculate number of pages. */
1798 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1799 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1800 npages = (last - first + 1);
1801
1802 locked = sev->pages_locked + npages;
1803 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1804 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1805 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1806 return NULL;
1807 }
1808
1809 /* Avoid using vmalloc for smaller buffers. */
1810 size = npages * sizeof(struct page *);
1811 if (size > PAGE_SIZE)
1812 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1813 PAGE_KERNEL);
1814 else
1815 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1816
1817 if (!pages)
1818 return NULL;
1819
1820 /* Pin the user virtual address. */
1821 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1822 if (npinned != npages) {
1823 pr_err("SEV: Failure locking %lu pages.\n", npages);
1824 goto err;
1825 }
1826
1827 *n = npages;
1828 sev->pages_locked = locked;
1829
1830 return pages;
1831
1832 err:
1833 if (npinned > 0)
1834 release_pages(pages, npinned);
1835
1836 kvfree(pages);
1837 return NULL;
1838 }
1839
1840 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1841 unsigned long npages)
1842 {
1843 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1844
1845 release_pages(pages, npages);
1846 kvfree(pages);
1847 sev->pages_locked -= npages;
1848 }
1849
1850 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1851 {
1852 uint8_t *page_virtual;
1853 unsigned long i;
1854
1855 if (npages == 0 || pages == NULL)
1856 return;
1857
1858 for (i = 0; i < npages; i++) {
1859 page_virtual = kmap_atomic(pages[i]);
1860 clflush_cache_range(page_virtual, PAGE_SIZE);
1861 kunmap_atomic(page_virtual);
1862 }
1863 }
1864
1865 static void __unregister_enc_region_locked(struct kvm *kvm,
1866 struct enc_region *region)
1867 {
1868 /*
1869 * The guest may change the memory encryption attribute from C=0 -> C=1
1870 * or vice versa for this memory range. Lets make sure caches are
1871 * flushed to ensure that guest data gets written into memory with
1872 * correct C-bit.
1873 */
1874 sev_clflush_pages(region->pages, region->npages);
1875
1876 sev_unpin_memory(kvm, region->pages, region->npages);
1877 list_del(&region->list);
1878 kfree(region);
1879 }
1880
1881 static struct kvm *svm_vm_alloc(void)
1882 {
1883 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1884 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1885 PAGE_KERNEL);
1886 return &kvm_svm->kvm;
1887 }
1888
1889 static void svm_vm_free(struct kvm *kvm)
1890 {
1891 vfree(to_kvm_svm(kvm));
1892 }
1893
1894 static void sev_vm_destroy(struct kvm *kvm)
1895 {
1896 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1897 struct list_head *head = &sev->regions_list;
1898 struct list_head *pos, *q;
1899
1900 if (!sev_guest(kvm))
1901 return;
1902
1903 mutex_lock(&kvm->lock);
1904
1905 /*
1906 * if userspace was terminated before unregistering the memory regions
1907 * then lets unpin all the registered memory.
1908 */
1909 if (!list_empty(head)) {
1910 list_for_each_safe(pos, q, head) {
1911 __unregister_enc_region_locked(kvm,
1912 list_entry(pos, struct enc_region, list));
1913 }
1914 }
1915
1916 mutex_unlock(&kvm->lock);
1917
1918 sev_unbind_asid(kvm, sev->handle);
1919 sev_asid_free(kvm);
1920 }
1921
1922 static void avic_vm_destroy(struct kvm *kvm)
1923 {
1924 unsigned long flags;
1925 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1926
1927 if (!avic)
1928 return;
1929
1930 if (kvm_svm->avic_logical_id_table_page)
1931 __free_page(kvm_svm->avic_logical_id_table_page);
1932 if (kvm_svm->avic_physical_id_table_page)
1933 __free_page(kvm_svm->avic_physical_id_table_page);
1934
1935 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1936 hash_del(&kvm_svm->hnode);
1937 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1938 }
1939
1940 static void svm_vm_destroy(struct kvm *kvm)
1941 {
1942 avic_vm_destroy(kvm);
1943 sev_vm_destroy(kvm);
1944 }
1945
1946 static int avic_vm_init(struct kvm *kvm)
1947 {
1948 unsigned long flags;
1949 int err = -ENOMEM;
1950 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1951 struct kvm_svm *k2;
1952 struct page *p_page;
1953 struct page *l_page;
1954 u32 vm_id;
1955
1956 if (!avic)
1957 return 0;
1958
1959 /* Allocating physical APIC ID table (4KB) */
1960 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1961 if (!p_page)
1962 goto free_avic;
1963
1964 kvm_svm->avic_physical_id_table_page = p_page;
1965 clear_page(page_address(p_page));
1966
1967 /* Allocating logical APIC ID table (4KB) */
1968 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1969 if (!l_page)
1970 goto free_avic;
1971
1972 kvm_svm->avic_logical_id_table_page = l_page;
1973 clear_page(page_address(l_page));
1974
1975 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1976 again:
1977 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1978 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1979 next_vm_id_wrapped = 1;
1980 goto again;
1981 }
1982 /* Is it still in use? Only possible if wrapped at least once */
1983 if (next_vm_id_wrapped) {
1984 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1985 if (k2->avic_vm_id == vm_id)
1986 goto again;
1987 }
1988 }
1989 kvm_svm->avic_vm_id = vm_id;
1990 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1991 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1992
1993 return 0;
1994
1995 free_avic:
1996 avic_vm_destroy(kvm);
1997 return err;
1998 }
1999
2000 static inline int
2001 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2002 {
2003 int ret = 0;
2004 unsigned long flags;
2005 struct amd_svm_iommu_ir *ir;
2006 struct vcpu_svm *svm = to_svm(vcpu);
2007
2008 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2009 return 0;
2010
2011 /*
2012 * Here, we go through the per-vcpu ir_list to update all existing
2013 * interrupt remapping table entry targeting this vcpu.
2014 */
2015 spin_lock_irqsave(&svm->ir_list_lock, flags);
2016
2017 if (list_empty(&svm->ir_list))
2018 goto out;
2019
2020 list_for_each_entry(ir, &svm->ir_list, node) {
2021 ret = amd_iommu_update_ga(cpu, r, ir->data);
2022 if (ret)
2023 break;
2024 }
2025 out:
2026 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2027 return ret;
2028 }
2029
2030 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2031 {
2032 u64 entry;
2033 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2034 int h_physical_id = kvm_cpu_get_apicid(cpu);
2035 struct vcpu_svm *svm = to_svm(vcpu);
2036
2037 if (!kvm_vcpu_apicv_active(vcpu))
2038 return;
2039
2040 /*
2041 * Since the host physical APIC id is 8 bits,
2042 * we can support host APIC ID upto 255.
2043 */
2044 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2045 return;
2046
2047 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2049
2050 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2051 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2052
2053 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054 if (svm->avic_is_running)
2055 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2056
2057 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2058 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2059 svm->avic_is_running);
2060 }
2061
2062 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2063 {
2064 u64 entry;
2065 struct vcpu_svm *svm = to_svm(vcpu);
2066
2067 if (!kvm_vcpu_apicv_active(vcpu))
2068 return;
2069
2070 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2071 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2072 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2073
2074 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2075 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2076 }
2077
2078 /**
2079 * This function is called during VCPU halt/unhalt.
2080 */
2081 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2082 {
2083 struct vcpu_svm *svm = to_svm(vcpu);
2084
2085 svm->avic_is_running = is_run;
2086 if (is_run)
2087 avic_vcpu_load(vcpu, vcpu->cpu);
2088 else
2089 avic_vcpu_put(vcpu);
2090 }
2091
2092 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2093 {
2094 struct vcpu_svm *svm = to_svm(vcpu);
2095 u32 dummy;
2096 u32 eax = 1;
2097
2098 vcpu->arch.microcode_version = 0x01000065;
2099 svm->spec_ctrl = 0;
2100 svm->virt_spec_ctrl = 0;
2101
2102 if (!init_event) {
2103 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2104 MSR_IA32_APICBASE_ENABLE;
2105 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2106 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2107 }
2108 init_vmcb(svm);
2109
2110 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2111 kvm_rdx_write(vcpu, eax);
2112
2113 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2114 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2115 }
2116
2117 static int avic_init_vcpu(struct vcpu_svm *svm)
2118 {
2119 int ret;
2120
2121 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2122 return 0;
2123
2124 ret = avic_init_backing_page(&svm->vcpu);
2125 if (ret)
2126 return ret;
2127
2128 INIT_LIST_HEAD(&svm->ir_list);
2129 spin_lock_init(&svm->ir_list_lock);
2130 svm->dfr_reg = APIC_DFR_FLAT;
2131
2132 return ret;
2133 }
2134
2135 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2136 {
2137 struct vcpu_svm *svm;
2138 struct page *page;
2139 struct page *msrpm_pages;
2140 struct page *hsave_page;
2141 struct page *nested_msrpm_pages;
2142 int err;
2143
2144 BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2145 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2146
2147 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2148 if (!svm) {
2149 err = -ENOMEM;
2150 goto out;
2151 }
2152
2153 svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2154 GFP_KERNEL_ACCOUNT);
2155 if (!svm->vcpu.arch.user_fpu) {
2156 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2157 err = -ENOMEM;
2158 goto free_partial_svm;
2159 }
2160
2161 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2162 GFP_KERNEL_ACCOUNT);
2163 if (!svm->vcpu.arch.guest_fpu) {
2164 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2165 err = -ENOMEM;
2166 goto free_user_fpu;
2167 }
2168
2169 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2170 if (err)
2171 goto free_svm;
2172
2173 err = -ENOMEM;
2174 page = alloc_page(GFP_KERNEL_ACCOUNT);
2175 if (!page)
2176 goto uninit;
2177
2178 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2179 if (!msrpm_pages)
2180 goto free_page1;
2181
2182 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2183 if (!nested_msrpm_pages)
2184 goto free_page2;
2185
2186 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2187 if (!hsave_page)
2188 goto free_page3;
2189
2190 err = avic_init_vcpu(svm);
2191 if (err)
2192 goto free_page4;
2193
2194 /* We initialize this flag to true to make sure that the is_running
2195 * bit would be set the first time the vcpu is loaded.
2196 */
2197 svm->avic_is_running = true;
2198
2199 svm->nested.hsave = page_address(hsave_page);
2200
2201 svm->msrpm = page_address(msrpm_pages);
2202 svm_vcpu_init_msrpm(svm->msrpm);
2203
2204 svm->nested.msrpm = page_address(nested_msrpm_pages);
2205 svm_vcpu_init_msrpm(svm->nested.msrpm);
2206
2207 svm->vmcb = page_address(page);
2208 clear_page(svm->vmcb);
2209 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2210 svm->asid_generation = 0;
2211 init_vmcb(svm);
2212
2213 svm_init_osvw(&svm->vcpu);
2214
2215 return &svm->vcpu;
2216
2217 free_page4:
2218 __free_page(hsave_page);
2219 free_page3:
2220 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2221 free_page2:
2222 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2223 free_page1:
2224 __free_page(page);
2225 uninit:
2226 kvm_vcpu_uninit(&svm->vcpu);
2227 free_svm:
2228 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2229 free_user_fpu:
2230 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2231 free_partial_svm:
2232 kmem_cache_free(kvm_vcpu_cache, svm);
2233 out:
2234 return ERR_PTR(err);
2235 }
2236
2237 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2238 {
2239 int i;
2240
2241 for_each_online_cpu(i)
2242 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2243 }
2244
2245 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2246 {
2247 struct vcpu_svm *svm = to_svm(vcpu);
2248
2249 /*
2250 * The vmcb page can be recycled, causing a false negative in
2251 * svm_vcpu_load(). So, ensure that no logical CPU has this
2252 * vmcb page recorded as its current vmcb.
2253 */
2254 svm_clear_current_vmcb(svm->vmcb);
2255
2256 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2257 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2258 __free_page(virt_to_page(svm->nested.hsave));
2259 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2260 kvm_vcpu_uninit(vcpu);
2261 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2262 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2263 kmem_cache_free(kvm_vcpu_cache, svm);
2264 }
2265
2266 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2267 {
2268 struct vcpu_svm *svm = to_svm(vcpu);
2269 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2270 int i;
2271
2272 if (unlikely(cpu != vcpu->cpu)) {
2273 svm->asid_generation = 0;
2274 mark_all_dirty(svm->vmcb);
2275 }
2276
2277 #ifdef CONFIG_X86_64
2278 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2279 #endif
2280 savesegment(fs, svm->host.fs);
2281 savesegment(gs, svm->host.gs);
2282 svm->host.ldt = kvm_read_ldt();
2283
2284 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2285 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2286
2287 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2288 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2289 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2290 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2291 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2292 }
2293 }
2294 /* This assumes that the kernel never uses MSR_TSC_AUX */
2295 if (static_cpu_has(X86_FEATURE_RDTSCP))
2296 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2297
2298 if (sd->current_vmcb != svm->vmcb) {
2299 sd->current_vmcb = svm->vmcb;
2300 indirect_branch_prediction_barrier();
2301 }
2302 avic_vcpu_load(vcpu, cpu);
2303 }
2304
2305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2306 {
2307 struct vcpu_svm *svm = to_svm(vcpu);
2308 int i;
2309
2310 avic_vcpu_put(vcpu);
2311
2312 ++vcpu->stat.host_state_reload;
2313 kvm_load_ldt(svm->host.ldt);
2314 #ifdef CONFIG_X86_64
2315 loadsegment(fs, svm->host.fs);
2316 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2317 load_gs_index(svm->host.gs);
2318 #else
2319 #ifdef CONFIG_X86_32_LAZY_GS
2320 loadsegment(gs, svm->host.gs);
2321 #endif
2322 #endif
2323 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2324 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2325 }
2326
2327 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2328 {
2329 avic_set_running(vcpu, false);
2330 }
2331
2332 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2333 {
2334 avic_set_running(vcpu, true);
2335 }
2336
2337 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2338 {
2339 struct vcpu_svm *svm = to_svm(vcpu);
2340 unsigned long rflags = svm->vmcb->save.rflags;
2341
2342 if (svm->nmi_singlestep) {
2343 /* Hide our flags if they were not set by the guest */
2344 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2345 rflags &= ~X86_EFLAGS_TF;
2346 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2347 rflags &= ~X86_EFLAGS_RF;
2348 }
2349 return rflags;
2350 }
2351
2352 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2353 {
2354 if (to_svm(vcpu)->nmi_singlestep)
2355 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2356
2357 /*
2358 * Any change of EFLAGS.VM is accompanied by a reload of SS
2359 * (caused by either a task switch or an inter-privilege IRET),
2360 * so we do not need to update the CPL here.
2361 */
2362 to_svm(vcpu)->vmcb->save.rflags = rflags;
2363 }
2364
2365 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2366 {
2367 switch (reg) {
2368 case VCPU_EXREG_PDPTR:
2369 BUG_ON(!npt_enabled);
2370 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2371 break;
2372 default:
2373 BUG();
2374 }
2375 }
2376
2377 static void svm_set_vintr(struct vcpu_svm *svm)
2378 {
2379 set_intercept(svm, INTERCEPT_VINTR);
2380 }
2381
2382 static void svm_clear_vintr(struct vcpu_svm *svm)
2383 {
2384 clr_intercept(svm, INTERCEPT_VINTR);
2385 }
2386
2387 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2388 {
2389 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2390
2391 switch (seg) {
2392 case VCPU_SREG_CS: return &save->cs;
2393 case VCPU_SREG_DS: return &save->ds;
2394 case VCPU_SREG_ES: return &save->es;
2395 case VCPU_SREG_FS: return &save->fs;
2396 case VCPU_SREG_GS: return &save->gs;
2397 case VCPU_SREG_SS: return &save->ss;
2398 case VCPU_SREG_TR: return &save->tr;
2399 case VCPU_SREG_LDTR: return &save->ldtr;
2400 }
2401 BUG();
2402 return NULL;
2403 }
2404
2405 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2406 {
2407 struct vmcb_seg *s = svm_seg(vcpu, seg);
2408
2409 return s->base;
2410 }
2411
2412 static void svm_get_segment(struct kvm_vcpu *vcpu,
2413 struct kvm_segment *var, int seg)
2414 {
2415 struct vmcb_seg *s = svm_seg(vcpu, seg);
2416
2417 var->base = s->base;
2418 var->limit = s->limit;
2419 var->selector = s->selector;
2420 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2421 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2422 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2423 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2424 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2425 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2426 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2427
2428 /*
2429 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2430 * However, the SVM spec states that the G bit is not observed by the
2431 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2432 * So let's synthesize a legal G bit for all segments, this helps
2433 * running KVM nested. It also helps cross-vendor migration, because
2434 * Intel's vmentry has a check on the 'G' bit.
2435 */
2436 var->g = s->limit > 0xfffff;
2437
2438 /*
2439 * AMD's VMCB does not have an explicit unusable field, so emulate it
2440 * for cross vendor migration purposes by "not present"
2441 */
2442 var->unusable = !var->present;
2443
2444 switch (seg) {
2445 case VCPU_SREG_TR:
2446 /*
2447 * Work around a bug where the busy flag in the tr selector
2448 * isn't exposed
2449 */
2450 var->type |= 0x2;
2451 break;
2452 case VCPU_SREG_DS:
2453 case VCPU_SREG_ES:
2454 case VCPU_SREG_FS:
2455 case VCPU_SREG_GS:
2456 /*
2457 * The accessed bit must always be set in the segment
2458 * descriptor cache, although it can be cleared in the
2459 * descriptor, the cached bit always remains at 1. Since
2460 * Intel has a check on this, set it here to support
2461 * cross-vendor migration.
2462 */
2463 if (!var->unusable)
2464 var->type |= 0x1;
2465 break;
2466 case VCPU_SREG_SS:
2467 /*
2468 * On AMD CPUs sometimes the DB bit in the segment
2469 * descriptor is left as 1, although the whole segment has
2470 * been made unusable. Clear it here to pass an Intel VMX
2471 * entry check when cross vendor migrating.
2472 */
2473 if (var->unusable)
2474 var->db = 0;
2475 /* This is symmetric with svm_set_segment() */
2476 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2477 break;
2478 }
2479 }
2480
2481 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2482 {
2483 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2484
2485 return save->cpl;
2486 }
2487
2488 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2489 {
2490 struct vcpu_svm *svm = to_svm(vcpu);
2491
2492 dt->size = svm->vmcb->save.idtr.limit;
2493 dt->address = svm->vmcb->save.idtr.base;
2494 }
2495
2496 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2497 {
2498 struct vcpu_svm *svm = to_svm(vcpu);
2499
2500 svm->vmcb->save.idtr.limit = dt->size;
2501 svm->vmcb->save.idtr.base = dt->address ;
2502 mark_dirty(svm->vmcb, VMCB_DT);
2503 }
2504
2505 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2506 {
2507 struct vcpu_svm *svm = to_svm(vcpu);
2508
2509 dt->size = svm->vmcb->save.gdtr.limit;
2510 dt->address = svm->vmcb->save.gdtr.base;
2511 }
2512
2513 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2514 {
2515 struct vcpu_svm *svm = to_svm(vcpu);
2516
2517 svm->vmcb->save.gdtr.limit = dt->size;
2518 svm->vmcb->save.gdtr.base = dt->address ;
2519 mark_dirty(svm->vmcb, VMCB_DT);
2520 }
2521
2522 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2523 {
2524 }
2525
2526 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2527 {
2528 }
2529
2530 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2531 {
2532 }
2533
2534 static void update_cr0_intercept(struct vcpu_svm *svm)
2535 {
2536 ulong gcr0 = svm->vcpu.arch.cr0;
2537 u64 *hcr0 = &svm->vmcb->save.cr0;
2538
2539 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2540 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2541
2542 mark_dirty(svm->vmcb, VMCB_CR);
2543
2544 if (gcr0 == *hcr0) {
2545 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2546 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2547 } else {
2548 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2549 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2550 }
2551 }
2552
2553 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2554 {
2555 struct vcpu_svm *svm = to_svm(vcpu);
2556
2557 #ifdef CONFIG_X86_64
2558 if (vcpu->arch.efer & EFER_LME) {
2559 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2560 vcpu->arch.efer |= EFER_LMA;
2561 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2562 }
2563
2564 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2565 vcpu->arch.efer &= ~EFER_LMA;
2566 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2567 }
2568 }
2569 #endif
2570 vcpu->arch.cr0 = cr0;
2571
2572 if (!npt_enabled)
2573 cr0 |= X86_CR0_PG | X86_CR0_WP;
2574
2575 /*
2576 * re-enable caching here because the QEMU bios
2577 * does not do it - this results in some delay at
2578 * reboot
2579 */
2580 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2581 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2582 svm->vmcb->save.cr0 = cr0;
2583 mark_dirty(svm->vmcb, VMCB_CR);
2584 update_cr0_intercept(svm);
2585 }
2586
2587 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2588 {
2589 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2590 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2591
2592 if (cr4 & X86_CR4_VMXE)
2593 return 1;
2594
2595 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2596 svm_flush_tlb(vcpu, true);
2597
2598 vcpu->arch.cr4 = cr4;
2599 if (!npt_enabled)
2600 cr4 |= X86_CR4_PAE;
2601 cr4 |= host_cr4_mce;
2602 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2603 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2604 return 0;
2605 }
2606
2607 static void svm_set_segment(struct kvm_vcpu *vcpu,
2608 struct kvm_segment *var, int seg)
2609 {
2610 struct vcpu_svm *svm = to_svm(vcpu);
2611 struct vmcb_seg *s = svm_seg(vcpu, seg);
2612
2613 s->base = var->base;
2614 s->limit = var->limit;
2615 s->selector = var->selector;
2616 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2617 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2618 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2619 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2620 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2621 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2622 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2623 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2624
2625 /*
2626 * This is always accurate, except if SYSRET returned to a segment
2627 * with SS.DPL != 3. Intel does not have this quirk, and always
2628 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2629 * would entail passing the CPL to userspace and back.
2630 */
2631 if (seg == VCPU_SREG_SS)
2632 /* This is symmetric with svm_get_segment() */
2633 svm->vmcb->save.cpl = (var->dpl & 3);
2634
2635 mark_dirty(svm->vmcb, VMCB_SEG);
2636 }
2637
2638 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2639 {
2640 struct vcpu_svm *svm = to_svm(vcpu);
2641
2642 clr_exception_intercept(svm, BP_VECTOR);
2643
2644 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2645 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2646 set_exception_intercept(svm, BP_VECTOR);
2647 } else
2648 vcpu->guest_debug = 0;
2649 }
2650
2651 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2652 {
2653 if (sd->next_asid > sd->max_asid) {
2654 ++sd->asid_generation;
2655 sd->next_asid = sd->min_asid;
2656 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2657 }
2658
2659 svm->asid_generation = sd->asid_generation;
2660 svm->vmcb->control.asid = sd->next_asid++;
2661
2662 mark_dirty(svm->vmcb, VMCB_ASID);
2663 }
2664
2665 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2666 {
2667 return to_svm(vcpu)->vmcb->save.dr6;
2668 }
2669
2670 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2671 {
2672 struct vcpu_svm *svm = to_svm(vcpu);
2673
2674 svm->vmcb->save.dr6 = value;
2675 mark_dirty(svm->vmcb, VMCB_DR);
2676 }
2677
2678 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2679 {
2680 struct vcpu_svm *svm = to_svm(vcpu);
2681
2682 get_debugreg(vcpu->arch.db[0], 0);
2683 get_debugreg(vcpu->arch.db[1], 1);
2684 get_debugreg(vcpu->arch.db[2], 2);
2685 get_debugreg(vcpu->arch.db[3], 3);
2686 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2687 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2688
2689 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2690 set_dr_intercepts(svm);
2691 }
2692
2693 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2694 {
2695 struct vcpu_svm *svm = to_svm(vcpu);
2696
2697 svm->vmcb->save.dr7 = value;
2698 mark_dirty(svm->vmcb, VMCB_DR);
2699 }
2700
2701 static int pf_interception(struct vcpu_svm *svm)
2702 {
2703 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2704 u64 error_code = svm->vmcb->control.exit_info_1;
2705
2706 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2707 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2708 svm->vmcb->control.insn_bytes : NULL,
2709 svm->vmcb->control.insn_len);
2710 }
2711
2712 static int npf_interception(struct vcpu_svm *svm)
2713 {
2714 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2715 u64 error_code = svm->vmcb->control.exit_info_1;
2716
2717 trace_kvm_page_fault(fault_address, error_code);
2718 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2719 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2720 svm->vmcb->control.insn_bytes : NULL,
2721 svm->vmcb->control.insn_len);
2722 }
2723
2724 static int db_interception(struct vcpu_svm *svm)
2725 {
2726 struct kvm_run *kvm_run = svm->vcpu.run;
2727 struct kvm_vcpu *vcpu = &svm->vcpu;
2728
2729 if (!(svm->vcpu.guest_debug &
2730 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2731 !svm->nmi_singlestep) {
2732 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2733 return 1;
2734 }
2735
2736 if (svm->nmi_singlestep) {
2737 disable_nmi_singlestep(svm);
2738 /* Make sure we check for pending NMIs upon entry */
2739 kvm_make_request(KVM_REQ_EVENT, vcpu);
2740 }
2741
2742 if (svm->vcpu.guest_debug &
2743 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2744 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2745 kvm_run->debug.arch.pc =
2746 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2747 kvm_run->debug.arch.exception = DB_VECTOR;
2748 return 0;
2749 }
2750
2751 return 1;
2752 }
2753
2754 static int bp_interception(struct vcpu_svm *svm)
2755 {
2756 struct kvm_run *kvm_run = svm->vcpu.run;
2757
2758 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2759 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2760 kvm_run->debug.arch.exception = BP_VECTOR;
2761 return 0;
2762 }
2763
2764 static int ud_interception(struct vcpu_svm *svm)
2765 {
2766 return handle_ud(&svm->vcpu);
2767 }
2768
2769 static int ac_interception(struct vcpu_svm *svm)
2770 {
2771 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2772 return 1;
2773 }
2774
2775 static int gp_interception(struct vcpu_svm *svm)
2776 {
2777 struct kvm_vcpu *vcpu = &svm->vcpu;
2778 u32 error_code = svm->vmcb->control.exit_info_1;
2779
2780 WARN_ON_ONCE(!enable_vmware_backdoor);
2781
2782 /*
2783 * VMware backdoor emulation on #GP interception only handles IN{S},
2784 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2785 */
2786 if (error_code) {
2787 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2788 return 1;
2789 }
2790 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2791 }
2792
2793 static bool is_erratum_383(void)
2794 {
2795 int err, i;
2796 u64 value;
2797
2798 if (!erratum_383_found)
2799 return false;
2800
2801 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2802 if (err)
2803 return false;
2804
2805 /* Bit 62 may or may not be set for this mce */
2806 value &= ~(1ULL << 62);
2807
2808 if (value != 0xb600000000010015ULL)
2809 return false;
2810
2811 /* Clear MCi_STATUS registers */
2812 for (i = 0; i < 6; ++i)
2813 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2814
2815 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2816 if (!err) {
2817 u32 low, high;
2818
2819 value &= ~(1ULL << 2);
2820 low = lower_32_bits(value);
2821 high = upper_32_bits(value);
2822
2823 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2824 }
2825
2826 /* Flush tlb to evict multi-match entries */
2827 __flush_tlb_all();
2828
2829 return true;
2830 }
2831
2832 static void svm_handle_mce(struct vcpu_svm *svm)
2833 {
2834 if (is_erratum_383()) {
2835 /*
2836 * Erratum 383 triggered. Guest state is corrupt so kill the
2837 * guest.
2838 */
2839 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2840
2841 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2842
2843 return;
2844 }
2845
2846 /*
2847 * On an #MC intercept the MCE handler is not called automatically in
2848 * the host. So do it by hand here.
2849 */
2850 asm volatile (
2851 "int $0x12\n");
2852 /* not sure if we ever come back to this point */
2853
2854 return;
2855 }
2856
2857 static int mc_interception(struct vcpu_svm *svm)
2858 {
2859 return 1;
2860 }
2861
2862 static int shutdown_interception(struct vcpu_svm *svm)
2863 {
2864 struct kvm_run *kvm_run = svm->vcpu.run;
2865
2866 /*
2867 * VMCB is undefined after a SHUTDOWN intercept
2868 * so reinitialize it.
2869 */
2870 clear_page(svm->vmcb);
2871 init_vmcb(svm);
2872
2873 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2874 return 0;
2875 }
2876
2877 static int io_interception(struct vcpu_svm *svm)
2878 {
2879 struct kvm_vcpu *vcpu = &svm->vcpu;
2880 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2881 int size, in, string;
2882 unsigned port;
2883
2884 ++svm->vcpu.stat.io_exits;
2885 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2886 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2887 if (string)
2888 return kvm_emulate_instruction(vcpu, 0);
2889
2890 port = io_info >> 16;
2891 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2892 svm->next_rip = svm->vmcb->control.exit_info_2;
2893
2894 return kvm_fast_pio(&svm->vcpu, size, port, in);
2895 }
2896
2897 static int nmi_interception(struct vcpu_svm *svm)
2898 {
2899 return 1;
2900 }
2901
2902 static int intr_interception(struct vcpu_svm *svm)
2903 {
2904 ++svm->vcpu.stat.irq_exits;
2905 return 1;
2906 }
2907
2908 static int nop_on_interception(struct vcpu_svm *svm)
2909 {
2910 return 1;
2911 }
2912
2913 static int halt_interception(struct vcpu_svm *svm)
2914 {
2915 return kvm_emulate_halt(&svm->vcpu);
2916 }
2917
2918 static int vmmcall_interception(struct vcpu_svm *svm)
2919 {
2920 return kvm_emulate_hypercall(&svm->vcpu);
2921 }
2922
2923 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2924 {
2925 struct vcpu_svm *svm = to_svm(vcpu);
2926
2927 return svm->nested.nested_cr3;
2928 }
2929
2930 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2931 {
2932 struct vcpu_svm *svm = to_svm(vcpu);
2933 u64 cr3 = svm->nested.nested_cr3;
2934 u64 pdpte;
2935 int ret;
2936
2937 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2938 offset_in_page(cr3) + index * 8, 8);
2939 if (ret)
2940 return 0;
2941 return pdpte;
2942 }
2943
2944 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2945 unsigned long root)
2946 {
2947 struct vcpu_svm *svm = to_svm(vcpu);
2948
2949 svm->vmcb->control.nested_cr3 = __sme_set(root);
2950 mark_dirty(svm->vmcb, VMCB_NPT);
2951 }
2952
2953 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2954 struct x86_exception *fault)
2955 {
2956 struct vcpu_svm *svm = to_svm(vcpu);
2957
2958 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2959 /*
2960 * TODO: track the cause of the nested page fault, and
2961 * correctly fill in the high bits of exit_info_1.
2962 */
2963 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2964 svm->vmcb->control.exit_code_hi = 0;
2965 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2966 svm->vmcb->control.exit_info_2 = fault->address;
2967 }
2968
2969 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2970 svm->vmcb->control.exit_info_1 |= fault->error_code;
2971
2972 /*
2973 * The present bit is always zero for page structure faults on real
2974 * hardware.
2975 */
2976 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2977 svm->vmcb->control.exit_info_1 &= ~1;
2978
2979 nested_svm_vmexit(svm);
2980 }
2981
2982 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2983 {
2984 WARN_ON(mmu_is_nested(vcpu));
2985
2986 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2987 kvm_init_shadow_mmu(vcpu);
2988 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2989 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2990 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2991 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2992 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2993 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2994 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2995 }
2996
2997 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2998 {
2999 vcpu->arch.mmu = &vcpu->arch.root_mmu;
3000 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3001 }
3002
3003 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3004 {
3005 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3006 !is_paging(&svm->vcpu)) {
3007 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3008 return 1;
3009 }
3010
3011 if (svm->vmcb->save.cpl) {
3012 kvm_inject_gp(&svm->vcpu, 0);
3013 return 1;
3014 }
3015
3016 return 0;
3017 }
3018
3019 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3020 bool has_error_code, u32 error_code)
3021 {
3022 int vmexit;
3023
3024 if (!is_guest_mode(&svm->vcpu))
3025 return 0;
3026
3027 vmexit = nested_svm_intercept(svm);
3028 if (vmexit != NESTED_EXIT_DONE)
3029 return 0;
3030
3031 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3032 svm->vmcb->control.exit_code_hi = 0;
3033 svm->vmcb->control.exit_info_1 = error_code;
3034
3035 /*
3036 * EXITINFO2 is undefined for all exception intercepts other
3037 * than #PF.
3038 */
3039 if (svm->vcpu.arch.exception.nested_apf)
3040 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3041 else if (svm->vcpu.arch.exception.has_payload)
3042 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3043 else
3044 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3045
3046 svm->nested.exit_required = true;
3047 return vmexit;
3048 }
3049
3050 /* This function returns true if it is save to enable the irq window */
3051 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3052 {
3053 if (!is_guest_mode(&svm->vcpu))
3054 return true;
3055
3056 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3057 return true;
3058
3059 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3060 return false;
3061
3062 /*
3063 * if vmexit was already requested (by intercepted exception
3064 * for instance) do not overwrite it with "external interrupt"
3065 * vmexit.
3066 */
3067 if (svm->nested.exit_required)
3068 return false;
3069
3070 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3071 svm->vmcb->control.exit_info_1 = 0;
3072 svm->vmcb->control.exit_info_2 = 0;
3073
3074 if (svm->nested.intercept & 1ULL) {
3075 /*
3076 * The #vmexit can't be emulated here directly because this
3077 * code path runs with irqs and preemption disabled. A
3078 * #vmexit emulation might sleep. Only signal request for
3079 * the #vmexit here.
3080 */
3081 svm->nested.exit_required = true;
3082 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3083 return false;
3084 }
3085
3086 return true;
3087 }
3088
3089 /* This function returns true if it is save to enable the nmi window */
3090 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3091 {
3092 if (!is_guest_mode(&svm->vcpu))
3093 return true;
3094
3095 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3096 return true;
3097
3098 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3099 svm->nested.exit_required = true;
3100
3101 return false;
3102 }
3103
3104 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3105 {
3106 unsigned port, size, iopm_len;
3107 u16 val, mask;
3108 u8 start_bit;
3109 u64 gpa;
3110
3111 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3112 return NESTED_EXIT_HOST;
3113
3114 port = svm->vmcb->control.exit_info_1 >> 16;
3115 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3116 SVM_IOIO_SIZE_SHIFT;
3117 gpa = svm->nested.vmcb_iopm + (port / 8);
3118 start_bit = port % 8;
3119 iopm_len = (start_bit + size > 8) ? 2 : 1;
3120 mask = (0xf >> (4 - size)) << start_bit;
3121 val = 0;
3122
3123 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3124 return NESTED_EXIT_DONE;
3125
3126 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3127 }
3128
3129 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3130 {
3131 u32 offset, msr, value;
3132 int write, mask;
3133
3134 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3135 return NESTED_EXIT_HOST;
3136
3137 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3138 offset = svm_msrpm_offset(msr);
3139 write = svm->vmcb->control.exit_info_1 & 1;
3140 mask = 1 << ((2 * (msr & 0xf)) + write);
3141
3142 if (offset == MSR_INVALID)
3143 return NESTED_EXIT_DONE;
3144
3145 /* Offset is in 32 bit units but need in 8 bit units */
3146 offset *= 4;
3147
3148 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3149 return NESTED_EXIT_DONE;
3150
3151 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3152 }
3153
3154 /* DB exceptions for our internal use must not cause vmexit */
3155 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3156 {
3157 unsigned long dr6;
3158
3159 /* if we're not singlestepping, it's not ours */
3160 if (!svm->nmi_singlestep)
3161 return NESTED_EXIT_DONE;
3162
3163 /* if it's not a singlestep exception, it's not ours */
3164 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3165 return NESTED_EXIT_DONE;
3166 if (!(dr6 & DR6_BS))
3167 return NESTED_EXIT_DONE;
3168
3169 /* if the guest is singlestepping, it should get the vmexit */
3170 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3171 disable_nmi_singlestep(svm);
3172 return NESTED_EXIT_DONE;
3173 }
3174
3175 /* it's ours, the nested hypervisor must not see this one */
3176 return NESTED_EXIT_HOST;
3177 }
3178
3179 static int nested_svm_exit_special(struct vcpu_svm *svm)
3180 {
3181 u32 exit_code = svm->vmcb->control.exit_code;
3182
3183 switch (exit_code) {
3184 case SVM_EXIT_INTR:
3185 case SVM_EXIT_NMI:
3186 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3187 return NESTED_EXIT_HOST;
3188 case SVM_EXIT_NPF:
3189 /* For now we are always handling NPFs when using them */
3190 if (npt_enabled)
3191 return NESTED_EXIT_HOST;
3192 break;
3193 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3194 /* When we're shadowing, trap PFs, but not async PF */
3195 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3196 return NESTED_EXIT_HOST;
3197 break;
3198 default:
3199 break;
3200 }
3201
3202 return NESTED_EXIT_CONTINUE;
3203 }
3204
3205 /*
3206 * If this function returns true, this #vmexit was already handled
3207 */
3208 static int nested_svm_intercept(struct vcpu_svm *svm)
3209 {
3210 u32 exit_code = svm->vmcb->control.exit_code;
3211 int vmexit = NESTED_EXIT_HOST;
3212
3213 switch (exit_code) {
3214 case SVM_EXIT_MSR:
3215 vmexit = nested_svm_exit_handled_msr(svm);
3216 break;
3217 case SVM_EXIT_IOIO:
3218 vmexit = nested_svm_intercept_ioio(svm);
3219 break;
3220 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3221 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3222 if (svm->nested.intercept_cr & bit)
3223 vmexit = NESTED_EXIT_DONE;
3224 break;
3225 }
3226 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3227 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3228 if (svm->nested.intercept_dr & bit)
3229 vmexit = NESTED_EXIT_DONE;
3230 break;
3231 }
3232 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3233 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3234 if (svm->nested.intercept_exceptions & excp_bits) {
3235 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3236 vmexit = nested_svm_intercept_db(svm);
3237 else
3238 vmexit = NESTED_EXIT_DONE;
3239 }
3240 /* async page fault always cause vmexit */
3241 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3242 svm->vcpu.arch.exception.nested_apf != 0)
3243 vmexit = NESTED_EXIT_DONE;
3244 break;
3245 }
3246 case SVM_EXIT_ERR: {
3247 vmexit = NESTED_EXIT_DONE;
3248 break;
3249 }
3250 default: {
3251 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3252 if (svm->nested.intercept & exit_bits)
3253 vmexit = NESTED_EXIT_DONE;
3254 }
3255 }
3256
3257 return vmexit;
3258 }
3259
3260 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3261 {
3262 int vmexit;
3263
3264 vmexit = nested_svm_intercept(svm);
3265
3266 if (vmexit == NESTED_EXIT_DONE)
3267 nested_svm_vmexit(svm);
3268
3269 return vmexit;
3270 }
3271
3272 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3273 {
3274 struct vmcb_control_area *dst = &dst_vmcb->control;
3275 struct vmcb_control_area *from = &from_vmcb->control;
3276
3277 dst->intercept_cr = from->intercept_cr;
3278 dst->intercept_dr = from->intercept_dr;
3279 dst->intercept_exceptions = from->intercept_exceptions;
3280 dst->intercept = from->intercept;
3281 dst->iopm_base_pa = from->iopm_base_pa;
3282 dst->msrpm_base_pa = from->msrpm_base_pa;
3283 dst->tsc_offset = from->tsc_offset;
3284 dst->asid = from->asid;
3285 dst->tlb_ctl = from->tlb_ctl;
3286 dst->int_ctl = from->int_ctl;
3287 dst->int_vector = from->int_vector;
3288 dst->int_state = from->int_state;
3289 dst->exit_code = from->exit_code;
3290 dst->exit_code_hi = from->exit_code_hi;
3291 dst->exit_info_1 = from->exit_info_1;
3292 dst->exit_info_2 = from->exit_info_2;
3293 dst->exit_int_info = from->exit_int_info;
3294 dst->exit_int_info_err = from->exit_int_info_err;
3295 dst->nested_ctl = from->nested_ctl;
3296 dst->event_inj = from->event_inj;
3297 dst->event_inj_err = from->event_inj_err;
3298 dst->nested_cr3 = from->nested_cr3;
3299 dst->virt_ext = from->virt_ext;
3300 dst->pause_filter_count = from->pause_filter_count;
3301 dst->pause_filter_thresh = from->pause_filter_thresh;
3302 }
3303
3304 static int nested_svm_vmexit(struct vcpu_svm *svm)
3305 {
3306 int rc;
3307 struct vmcb *nested_vmcb;
3308 struct vmcb *hsave = svm->nested.hsave;
3309 struct vmcb *vmcb = svm->vmcb;
3310 struct kvm_host_map map;
3311
3312 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3313 vmcb->control.exit_info_1,
3314 vmcb->control.exit_info_2,
3315 vmcb->control.exit_int_info,
3316 vmcb->control.exit_int_info_err,
3317 KVM_ISA_SVM);
3318
3319 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3320 if (rc) {
3321 if (rc == -EINVAL)
3322 kvm_inject_gp(&svm->vcpu, 0);
3323 return 1;
3324 }
3325
3326 nested_vmcb = map.hva;
3327
3328 /* Exit Guest-Mode */
3329 leave_guest_mode(&svm->vcpu);
3330 svm->nested.vmcb = 0;
3331
3332 /* Give the current vmcb to the guest */
3333 disable_gif(svm);
3334
3335 nested_vmcb->save.es = vmcb->save.es;
3336 nested_vmcb->save.cs = vmcb->save.cs;
3337 nested_vmcb->save.ss = vmcb->save.ss;
3338 nested_vmcb->save.ds = vmcb->save.ds;
3339 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3340 nested_vmcb->save.idtr = vmcb->save.idtr;
3341 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3342 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3343 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3344 nested_vmcb->save.cr2 = vmcb->save.cr2;
3345 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3346 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3347 nested_vmcb->save.rip = vmcb->save.rip;
3348 nested_vmcb->save.rsp = vmcb->save.rsp;
3349 nested_vmcb->save.rax = vmcb->save.rax;
3350 nested_vmcb->save.dr7 = vmcb->save.dr7;
3351 nested_vmcb->save.dr6 = vmcb->save.dr6;
3352 nested_vmcb->save.cpl = vmcb->save.cpl;
3353
3354 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3355 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3356 nested_vmcb->control.int_state = vmcb->control.int_state;
3357 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3358 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3359 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3360 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3361 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3362 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3363
3364 if (svm->nrips_enabled)
3365 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3366
3367 /*
3368 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3369 * to make sure that we do not lose injected events. So check event_inj
3370 * here and copy it to exit_int_info if it is valid.
3371 * Exit_int_info and event_inj can't be both valid because the case
3372 * below only happens on a VMRUN instruction intercept which has
3373 * no valid exit_int_info set.
3374 */
3375 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3376 struct vmcb_control_area *nc = &nested_vmcb->control;
3377
3378 nc->exit_int_info = vmcb->control.event_inj;
3379 nc->exit_int_info_err = vmcb->control.event_inj_err;
3380 }
3381
3382 nested_vmcb->control.tlb_ctl = 0;
3383 nested_vmcb->control.event_inj = 0;
3384 nested_vmcb->control.event_inj_err = 0;
3385
3386 nested_vmcb->control.pause_filter_count =
3387 svm->vmcb->control.pause_filter_count;
3388 nested_vmcb->control.pause_filter_thresh =
3389 svm->vmcb->control.pause_filter_thresh;
3390
3391 /* We always set V_INTR_MASKING and remember the old value in hflags */
3392 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3393 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3394
3395 /* Restore the original control entries */
3396 copy_vmcb_control_area(vmcb, hsave);
3397
3398 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3399 kvm_clear_exception_queue(&svm->vcpu);
3400 kvm_clear_interrupt_queue(&svm->vcpu);
3401
3402 svm->nested.nested_cr3 = 0;
3403
3404 /* Restore selected save entries */
3405 svm->vmcb->save.es = hsave->save.es;
3406 svm->vmcb->save.cs = hsave->save.cs;
3407 svm->vmcb->save.ss = hsave->save.ss;
3408 svm->vmcb->save.ds = hsave->save.ds;
3409 svm->vmcb->save.gdtr = hsave->save.gdtr;
3410 svm->vmcb->save.idtr = hsave->save.idtr;
3411 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3412 svm_set_efer(&svm->vcpu, hsave->save.efer);
3413 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3414 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3415 if (npt_enabled) {
3416 svm->vmcb->save.cr3 = hsave->save.cr3;
3417 svm->vcpu.arch.cr3 = hsave->save.cr3;
3418 } else {
3419 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3420 }
3421 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3422 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3423 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3424 svm->vmcb->save.dr7 = 0;
3425 svm->vmcb->save.cpl = 0;
3426 svm->vmcb->control.exit_int_info = 0;
3427
3428 mark_all_dirty(svm->vmcb);
3429
3430 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3431
3432 nested_svm_uninit_mmu_context(&svm->vcpu);
3433 kvm_mmu_reset_context(&svm->vcpu);
3434 kvm_mmu_load(&svm->vcpu);
3435
3436 /*
3437 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3438 * doesn't end up in L1.
3439 */
3440 svm->vcpu.arch.nmi_injected = false;
3441 kvm_clear_exception_queue(&svm->vcpu);
3442 kvm_clear_interrupt_queue(&svm->vcpu);
3443
3444 return 0;
3445 }
3446
3447 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3448 {
3449 /*
3450 * This function merges the msr permission bitmaps of kvm and the
3451 * nested vmcb. It is optimized in that it only merges the parts where
3452 * the kvm msr permission bitmap may contain zero bits
3453 */
3454 int i;
3455
3456 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3457 return true;
3458
3459 for (i = 0; i < MSRPM_OFFSETS; i++) {
3460 u32 value, p;
3461 u64 offset;
3462
3463 if (msrpm_offsets[i] == 0xffffffff)
3464 break;
3465
3466 p = msrpm_offsets[i];
3467 offset = svm->nested.vmcb_msrpm + (p * 4);
3468
3469 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3470 return false;
3471
3472 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3473 }
3474
3475 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3476
3477 return true;
3478 }
3479
3480 static bool nested_vmcb_checks(struct vmcb *vmcb)
3481 {
3482 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3483 return false;
3484
3485 if (vmcb->control.asid == 0)
3486 return false;
3487
3488 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3489 !npt_enabled)
3490 return false;
3491
3492 return true;
3493 }
3494
3495 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3496 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3497 {
3498 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3499 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3500 else
3501 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3502
3503 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3504 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3505 nested_svm_init_mmu_context(&svm->vcpu);
3506 }
3507
3508 /* Load the nested guest state */
3509 svm->vmcb->save.es = nested_vmcb->save.es;
3510 svm->vmcb->save.cs = nested_vmcb->save.cs;
3511 svm->vmcb->save.ss = nested_vmcb->save.ss;
3512 svm->vmcb->save.ds = nested_vmcb->save.ds;
3513 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3514 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3515 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3516 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3517 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3518 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3519 if (npt_enabled) {
3520 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3521 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3522 } else
3523 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3524
3525 /* Guest paging mode is active - reset mmu */
3526 kvm_mmu_reset_context(&svm->vcpu);
3527
3528 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3529 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3530 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3531 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3532
3533 /* In case we don't even reach vcpu_run, the fields are not updated */
3534 svm->vmcb->save.rax = nested_vmcb->save.rax;
3535 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3536 svm->vmcb->save.rip = nested_vmcb->save.rip;
3537 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3538 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3539 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3540
3541 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3542 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3543
3544 /* cache intercepts */
3545 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3546 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3547 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3548 svm->nested.intercept = nested_vmcb->control.intercept;
3549
3550 svm_flush_tlb(&svm->vcpu, true);
3551 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3552 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3553 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3554 else
3555 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3556
3557 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3558 /* We only want the cr8 intercept bits of the guest */
3559 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3560 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3561 }
3562
3563 /* We don't want to see VMMCALLs from a nested guest */
3564 clr_intercept(svm, INTERCEPT_VMMCALL);
3565
3566 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3567 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3568
3569 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3570 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3571 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3572 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3573 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3574
3575 svm->vmcb->control.pause_filter_count =
3576 nested_vmcb->control.pause_filter_count;
3577 svm->vmcb->control.pause_filter_thresh =
3578 nested_vmcb->control.pause_filter_thresh;
3579
3580 kvm_vcpu_unmap(&svm->vcpu, map, true);
3581
3582 /* Enter Guest-Mode */
3583 enter_guest_mode(&svm->vcpu);
3584
3585 /*
3586 * Merge guest and host intercepts - must be called with vcpu in
3587 * guest-mode to take affect here
3588 */
3589 recalc_intercepts(svm);
3590
3591 svm->nested.vmcb = vmcb_gpa;
3592
3593 enable_gif(svm);
3594
3595 mark_all_dirty(svm->vmcb);
3596 }
3597
3598 static int nested_svm_vmrun(struct vcpu_svm *svm)
3599 {
3600 int ret;
3601 struct vmcb *nested_vmcb;
3602 struct vmcb *hsave = svm->nested.hsave;
3603 struct vmcb *vmcb = svm->vmcb;
3604 struct kvm_host_map map;
3605 u64 vmcb_gpa;
3606
3607 vmcb_gpa = svm->vmcb->save.rax;
3608
3609 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3610 if (ret == -EINVAL) {
3611 kvm_inject_gp(&svm->vcpu, 0);
3612 return 1;
3613 } else if (ret) {
3614 return kvm_skip_emulated_instruction(&svm->vcpu);
3615 }
3616
3617 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3618
3619 nested_vmcb = map.hva;
3620
3621 if (!nested_vmcb_checks(nested_vmcb)) {
3622 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3623 nested_vmcb->control.exit_code_hi = 0;
3624 nested_vmcb->control.exit_info_1 = 0;
3625 nested_vmcb->control.exit_info_2 = 0;
3626
3627 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3628
3629 return ret;
3630 }
3631
3632 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3633 nested_vmcb->save.rip,
3634 nested_vmcb->control.int_ctl,
3635 nested_vmcb->control.event_inj,
3636 nested_vmcb->control.nested_ctl);
3637
3638 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3639 nested_vmcb->control.intercept_cr >> 16,
3640 nested_vmcb->control.intercept_exceptions,
3641 nested_vmcb->control.intercept);
3642
3643 /* Clear internal status */
3644 kvm_clear_exception_queue(&svm->vcpu);
3645 kvm_clear_interrupt_queue(&svm->vcpu);
3646
3647 /*
3648 * Save the old vmcb, so we don't need to pick what we save, but can
3649 * restore everything when a VMEXIT occurs
3650 */
3651 hsave->save.es = vmcb->save.es;
3652 hsave->save.cs = vmcb->save.cs;
3653 hsave->save.ss = vmcb->save.ss;
3654 hsave->save.ds = vmcb->save.ds;
3655 hsave->save.gdtr = vmcb->save.gdtr;
3656 hsave->save.idtr = vmcb->save.idtr;
3657 hsave->save.efer = svm->vcpu.arch.efer;
3658 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3659 hsave->save.cr4 = svm->vcpu.arch.cr4;
3660 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3661 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3662 hsave->save.rsp = vmcb->save.rsp;
3663 hsave->save.rax = vmcb->save.rax;
3664 if (npt_enabled)
3665 hsave->save.cr3 = vmcb->save.cr3;
3666 else
3667 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3668
3669 copy_vmcb_control_area(hsave, vmcb);
3670
3671 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3672
3673 if (!nested_svm_vmrun_msrpm(svm)) {
3674 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3675 svm->vmcb->control.exit_code_hi = 0;
3676 svm->vmcb->control.exit_info_1 = 0;
3677 svm->vmcb->control.exit_info_2 = 0;
3678
3679 nested_svm_vmexit(svm);
3680 }
3681
3682 return ret;
3683 }
3684
3685 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3686 {
3687 to_vmcb->save.fs = from_vmcb->save.fs;
3688 to_vmcb->save.gs = from_vmcb->save.gs;
3689 to_vmcb->save.tr = from_vmcb->save.tr;
3690 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3691 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3692 to_vmcb->save.star = from_vmcb->save.star;
3693 to_vmcb->save.lstar = from_vmcb->save.lstar;
3694 to_vmcb->save.cstar = from_vmcb->save.cstar;
3695 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3696 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3697 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3698 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3699 }
3700
3701 static int vmload_interception(struct vcpu_svm *svm)
3702 {
3703 struct vmcb *nested_vmcb;
3704 struct kvm_host_map map;
3705 int ret;
3706
3707 if (nested_svm_check_permissions(svm))
3708 return 1;
3709
3710 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3711 if (ret) {
3712 if (ret == -EINVAL)
3713 kvm_inject_gp(&svm->vcpu, 0);
3714 return 1;
3715 }
3716
3717 nested_vmcb = map.hva;
3718
3719 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720
3721 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3722 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3723
3724 return ret;
3725 }
3726
3727 static int vmsave_interception(struct vcpu_svm *svm)
3728 {
3729 struct vmcb *nested_vmcb;
3730 struct kvm_host_map map;
3731 int ret;
3732
3733 if (nested_svm_check_permissions(svm))
3734 return 1;
3735
3736 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3737 if (ret) {
3738 if (ret == -EINVAL)
3739 kvm_inject_gp(&svm->vcpu, 0);
3740 return 1;
3741 }
3742
3743 nested_vmcb = map.hva;
3744
3745 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3746
3747 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3748 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3749
3750 return ret;
3751 }
3752
3753 static int vmrun_interception(struct vcpu_svm *svm)
3754 {
3755 if (nested_svm_check_permissions(svm))
3756 return 1;
3757
3758 return nested_svm_vmrun(svm);
3759 }
3760
3761 static int stgi_interception(struct vcpu_svm *svm)
3762 {
3763 int ret;
3764
3765 if (nested_svm_check_permissions(svm))
3766 return 1;
3767
3768 /*
3769 * If VGIF is enabled, the STGI intercept is only added to
3770 * detect the opening of the SMI/NMI window; remove it now.
3771 */
3772 if (vgif_enabled(svm))
3773 clr_intercept(svm, INTERCEPT_STGI);
3774
3775 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3776 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3777
3778 enable_gif(svm);
3779
3780 return ret;
3781 }
3782
3783 static int clgi_interception(struct vcpu_svm *svm)
3784 {
3785 int ret;
3786
3787 if (nested_svm_check_permissions(svm))
3788 return 1;
3789
3790 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3791
3792 disable_gif(svm);
3793
3794 /* After a CLGI no interrupts should come */
3795 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3796 svm_clear_vintr(svm);
3797 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3798 mark_dirty(svm->vmcb, VMCB_INTR);
3799 }
3800
3801 return ret;
3802 }
3803
3804 static int invlpga_interception(struct vcpu_svm *svm)
3805 {
3806 struct kvm_vcpu *vcpu = &svm->vcpu;
3807
3808 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3809 kvm_rax_read(&svm->vcpu));
3810
3811 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3812 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3813
3814 return kvm_skip_emulated_instruction(&svm->vcpu);
3815 }
3816
3817 static int skinit_interception(struct vcpu_svm *svm)
3818 {
3819 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3820
3821 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3822 return 1;
3823 }
3824
3825 static int wbinvd_interception(struct vcpu_svm *svm)
3826 {
3827 return kvm_emulate_wbinvd(&svm->vcpu);
3828 }
3829
3830 static int xsetbv_interception(struct vcpu_svm *svm)
3831 {
3832 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3833 u32 index = kvm_rcx_read(&svm->vcpu);
3834
3835 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3836 return kvm_skip_emulated_instruction(&svm->vcpu);
3837 }
3838
3839 return 1;
3840 }
3841
3842 static int rdpru_interception(struct vcpu_svm *svm)
3843 {
3844 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3845 return 1;
3846 }
3847
3848 static int task_switch_interception(struct vcpu_svm *svm)
3849 {
3850 u16 tss_selector;
3851 int reason;
3852 int int_type = svm->vmcb->control.exit_int_info &
3853 SVM_EXITINTINFO_TYPE_MASK;
3854 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3855 uint32_t type =
3856 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3857 uint32_t idt_v =
3858 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3859 bool has_error_code = false;
3860 u32 error_code = 0;
3861
3862 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3863
3864 if (svm->vmcb->control.exit_info_2 &
3865 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3866 reason = TASK_SWITCH_IRET;
3867 else if (svm->vmcb->control.exit_info_2 &
3868 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3869 reason = TASK_SWITCH_JMP;
3870 else if (idt_v)
3871 reason = TASK_SWITCH_GATE;
3872 else
3873 reason = TASK_SWITCH_CALL;
3874
3875 if (reason == TASK_SWITCH_GATE) {
3876 switch (type) {
3877 case SVM_EXITINTINFO_TYPE_NMI:
3878 svm->vcpu.arch.nmi_injected = false;
3879 break;
3880 case SVM_EXITINTINFO_TYPE_EXEPT:
3881 if (svm->vmcb->control.exit_info_2 &
3882 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3883 has_error_code = true;
3884 error_code =
3885 (u32)svm->vmcb->control.exit_info_2;
3886 }
3887 kvm_clear_exception_queue(&svm->vcpu);
3888 break;
3889 case SVM_EXITINTINFO_TYPE_INTR:
3890 kvm_clear_interrupt_queue(&svm->vcpu);
3891 break;
3892 default:
3893 break;
3894 }
3895 }
3896
3897 if (reason != TASK_SWITCH_GATE ||
3898 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3899 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3900 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3901 if (!skip_emulated_instruction(&svm->vcpu))
3902 return 0;
3903 }
3904
3905 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3906 int_vec = -1;
3907
3908 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3909 has_error_code, error_code);
3910 }
3911
3912 static int cpuid_interception(struct vcpu_svm *svm)
3913 {
3914 return kvm_emulate_cpuid(&svm->vcpu);
3915 }
3916
3917 static int iret_interception(struct vcpu_svm *svm)
3918 {
3919 ++svm->vcpu.stat.nmi_window_exits;
3920 clr_intercept(svm, INTERCEPT_IRET);
3921 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3922 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3923 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3924 return 1;
3925 }
3926
3927 static int invlpg_interception(struct vcpu_svm *svm)
3928 {
3929 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3930 return kvm_emulate_instruction(&svm->vcpu, 0);
3931
3932 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3933 return kvm_skip_emulated_instruction(&svm->vcpu);
3934 }
3935
3936 static int emulate_on_interception(struct vcpu_svm *svm)
3937 {
3938 return kvm_emulate_instruction(&svm->vcpu, 0);
3939 }
3940
3941 static int rsm_interception(struct vcpu_svm *svm)
3942 {
3943 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3944 }
3945
3946 static int rdpmc_interception(struct vcpu_svm *svm)
3947 {
3948 int err;
3949
3950 if (!nrips)
3951 return emulate_on_interception(svm);
3952
3953 err = kvm_rdpmc(&svm->vcpu);
3954 return kvm_complete_insn_gp(&svm->vcpu, err);
3955 }
3956
3957 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3958 unsigned long val)
3959 {
3960 unsigned long cr0 = svm->vcpu.arch.cr0;
3961 bool ret = false;
3962 u64 intercept;
3963
3964 intercept = svm->nested.intercept;
3965
3966 if (!is_guest_mode(&svm->vcpu) ||
3967 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3968 return false;
3969
3970 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3971 val &= ~SVM_CR0_SELECTIVE_MASK;
3972
3973 if (cr0 ^ val) {
3974 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3975 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3976 }
3977
3978 return ret;
3979 }
3980
3981 #define CR_VALID (1ULL << 63)
3982
3983 static int cr_interception(struct vcpu_svm *svm)
3984 {
3985 int reg, cr;
3986 unsigned long val;
3987 int err;
3988
3989 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3990 return emulate_on_interception(svm);
3991
3992 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3993 return emulate_on_interception(svm);
3994
3995 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3996 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3997 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3998 else
3999 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4000
4001 err = 0;
4002 if (cr >= 16) { /* mov to cr */
4003 cr -= 16;
4004 val = kvm_register_read(&svm->vcpu, reg);
4005 switch (cr) {
4006 case 0:
4007 if (!check_selective_cr0_intercepted(svm, val))
4008 err = kvm_set_cr0(&svm->vcpu, val);
4009 else
4010 return 1;
4011
4012 break;
4013 case 3:
4014 err = kvm_set_cr3(&svm->vcpu, val);
4015 break;
4016 case 4:
4017 err = kvm_set_cr4(&svm->vcpu, val);
4018 break;
4019 case 8:
4020 err = kvm_set_cr8(&svm->vcpu, val);
4021 break;
4022 default:
4023 WARN(1, "unhandled write to CR%d", cr);
4024 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4025 return 1;
4026 }
4027 } else { /* mov from cr */
4028 switch (cr) {
4029 case 0:
4030 val = kvm_read_cr0(&svm->vcpu);
4031 break;
4032 case 2:
4033 val = svm->vcpu.arch.cr2;
4034 break;
4035 case 3:
4036 val = kvm_read_cr3(&svm->vcpu);
4037 break;
4038 case 4:
4039 val = kvm_read_cr4(&svm->vcpu);
4040 break;
4041 case 8:
4042 val = kvm_get_cr8(&svm->vcpu);
4043 break;
4044 default:
4045 WARN(1, "unhandled read from CR%d", cr);
4046 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4047 return 1;
4048 }
4049 kvm_register_write(&svm->vcpu, reg, val);
4050 }
4051 return kvm_complete_insn_gp(&svm->vcpu, err);
4052 }
4053
4054 static int dr_interception(struct vcpu_svm *svm)
4055 {
4056 int reg, dr;
4057 unsigned long val;
4058
4059 if (svm->vcpu.guest_debug == 0) {
4060 /*
4061 * No more DR vmexits; force a reload of the debug registers
4062 * and reenter on this instruction. The next vmexit will
4063 * retrieve the full state of the debug registers.
4064 */
4065 clr_dr_intercepts(svm);
4066 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4067 return 1;
4068 }
4069
4070 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4071 return emulate_on_interception(svm);
4072
4073 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4074 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4075
4076 if (dr >= 16) { /* mov to DRn */
4077 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4078 return 1;
4079 val = kvm_register_read(&svm->vcpu, reg);
4080 kvm_set_dr(&svm->vcpu, dr - 16, val);
4081 } else {
4082 if (!kvm_require_dr(&svm->vcpu, dr))
4083 return 1;
4084 kvm_get_dr(&svm->vcpu, dr, &val);
4085 kvm_register_write(&svm->vcpu, reg, val);
4086 }
4087
4088 return kvm_skip_emulated_instruction(&svm->vcpu);
4089 }
4090
4091 static int cr8_write_interception(struct vcpu_svm *svm)
4092 {
4093 struct kvm_run *kvm_run = svm->vcpu.run;
4094 int r;
4095
4096 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4097 /* instruction emulation calls kvm_set_cr8() */
4098 r = cr_interception(svm);
4099 if (lapic_in_kernel(&svm->vcpu))
4100 return r;
4101 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4102 return r;
4103 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4104 return 0;
4105 }
4106
4107 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4108 {
4109 msr->data = 0;
4110
4111 switch (msr->index) {
4112 case MSR_F10H_DECFG:
4113 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4114 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4115 break;
4116 default:
4117 return 1;
4118 }
4119
4120 return 0;
4121 }
4122
4123 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4124 {
4125 struct vcpu_svm *svm = to_svm(vcpu);
4126
4127 switch (msr_info->index) {
4128 case MSR_STAR:
4129 msr_info->data = svm->vmcb->save.star;
4130 break;
4131 #ifdef CONFIG_X86_64
4132 case MSR_LSTAR:
4133 msr_info->data = svm->vmcb->save.lstar;
4134 break;
4135 case MSR_CSTAR:
4136 msr_info->data = svm->vmcb->save.cstar;
4137 break;
4138 case MSR_KERNEL_GS_BASE:
4139 msr_info->data = svm->vmcb->save.kernel_gs_base;
4140 break;
4141 case MSR_SYSCALL_MASK:
4142 msr_info->data = svm->vmcb->save.sfmask;
4143 break;
4144 #endif
4145 case MSR_IA32_SYSENTER_CS:
4146 msr_info->data = svm->vmcb->save.sysenter_cs;
4147 break;
4148 case MSR_IA32_SYSENTER_EIP:
4149 msr_info->data = svm->sysenter_eip;
4150 break;
4151 case MSR_IA32_SYSENTER_ESP:
4152 msr_info->data = svm->sysenter_esp;
4153 break;
4154 case MSR_TSC_AUX:
4155 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4156 return 1;
4157 msr_info->data = svm->tsc_aux;
4158 break;
4159 /*
4160 * Nobody will change the following 5 values in the VMCB so we can
4161 * safely return them on rdmsr. They will always be 0 until LBRV is
4162 * implemented.
4163 */
4164 case MSR_IA32_DEBUGCTLMSR:
4165 msr_info->data = svm->vmcb->save.dbgctl;
4166 break;
4167 case MSR_IA32_LASTBRANCHFROMIP:
4168 msr_info->data = svm->vmcb->save.br_from;
4169 break;
4170 case MSR_IA32_LASTBRANCHTOIP:
4171 msr_info->data = svm->vmcb->save.br_to;
4172 break;
4173 case MSR_IA32_LASTINTFROMIP:
4174 msr_info->data = svm->vmcb->save.last_excp_from;
4175 break;
4176 case MSR_IA32_LASTINTTOIP:
4177 msr_info->data = svm->vmcb->save.last_excp_to;
4178 break;
4179 case MSR_VM_HSAVE_PA:
4180 msr_info->data = svm->nested.hsave_msr;
4181 break;
4182 case MSR_VM_CR:
4183 msr_info->data = svm->nested.vm_cr_msr;
4184 break;
4185 case MSR_IA32_SPEC_CTRL:
4186 if (!msr_info->host_initiated &&
4187 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4188 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4189 return 1;
4190
4191 msr_info->data = svm->spec_ctrl;
4192 break;
4193 case MSR_AMD64_VIRT_SPEC_CTRL:
4194 if (!msr_info->host_initiated &&
4195 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4196 return 1;
4197
4198 msr_info->data = svm->virt_spec_ctrl;
4199 break;
4200 case MSR_F15H_IC_CFG: {
4201
4202 int family, model;
4203
4204 family = guest_cpuid_family(vcpu);
4205 model = guest_cpuid_model(vcpu);
4206
4207 if (family < 0 || model < 0)
4208 return kvm_get_msr_common(vcpu, msr_info);
4209
4210 msr_info->data = 0;
4211
4212 if (family == 0x15 &&
4213 (model >= 0x2 && model < 0x20))
4214 msr_info->data = 0x1E;
4215 }
4216 break;
4217 case MSR_F10H_DECFG:
4218 msr_info->data = svm->msr_decfg;
4219 break;
4220 default:
4221 return kvm_get_msr_common(vcpu, msr_info);
4222 }
4223 return 0;
4224 }
4225
4226 static int rdmsr_interception(struct vcpu_svm *svm)
4227 {
4228 return kvm_emulate_rdmsr(&svm->vcpu);
4229 }
4230
4231 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4232 {
4233 struct vcpu_svm *svm = to_svm(vcpu);
4234 int svm_dis, chg_mask;
4235
4236 if (data & ~SVM_VM_CR_VALID_MASK)
4237 return 1;
4238
4239 chg_mask = SVM_VM_CR_VALID_MASK;
4240
4241 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4242 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4243
4244 svm->nested.vm_cr_msr &= ~chg_mask;
4245 svm->nested.vm_cr_msr |= (data & chg_mask);
4246
4247 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4248
4249 /* check for svm_disable while efer.svme is set */
4250 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4251 return 1;
4252
4253 return 0;
4254 }
4255
4256 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4257 {
4258 struct vcpu_svm *svm = to_svm(vcpu);
4259
4260 u32 ecx = msr->index;
4261 u64 data = msr->data;
4262 switch (ecx) {
4263 case MSR_IA32_CR_PAT:
4264 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4265 return 1;
4266 vcpu->arch.pat = data;
4267 svm->vmcb->save.g_pat = data;
4268 mark_dirty(svm->vmcb, VMCB_NPT);
4269 break;
4270 case MSR_IA32_SPEC_CTRL:
4271 if (!msr->host_initiated &&
4272 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4273 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4274 return 1;
4275
4276 /* The STIBP bit doesn't fault even if it's not advertised */
4277 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4278 return 1;
4279
4280 svm->spec_ctrl = data;
4281
4282 if (!data)
4283 break;
4284
4285 /*
4286 * For non-nested:
4287 * When it's written (to non-zero) for the first time, pass
4288 * it through.
4289 *
4290 * For nested:
4291 * The handling of the MSR bitmap for L2 guests is done in
4292 * nested_svm_vmrun_msrpm.
4293 * We update the L1 MSR bit as well since it will end up
4294 * touching the MSR anyway now.
4295 */
4296 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4297 break;
4298 case MSR_IA32_PRED_CMD:
4299 if (!msr->host_initiated &&
4300 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4301 return 1;
4302
4303 if (data & ~PRED_CMD_IBPB)
4304 return 1;
4305
4306 if (!data)
4307 break;
4308
4309 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4310 if (is_guest_mode(vcpu))
4311 break;
4312 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4313 break;
4314 case MSR_AMD64_VIRT_SPEC_CTRL:
4315 if (!msr->host_initiated &&
4316 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4317 return 1;
4318
4319 if (data & ~SPEC_CTRL_SSBD)
4320 return 1;
4321
4322 svm->virt_spec_ctrl = data;
4323 break;
4324 case MSR_STAR:
4325 svm->vmcb->save.star = data;
4326 break;
4327 #ifdef CONFIG_X86_64
4328 case MSR_LSTAR:
4329 svm->vmcb->save.lstar = data;
4330 break;
4331 case MSR_CSTAR:
4332 svm->vmcb->save.cstar = data;
4333 break;
4334 case MSR_KERNEL_GS_BASE:
4335 svm->vmcb->save.kernel_gs_base = data;
4336 break;
4337 case MSR_SYSCALL_MASK:
4338 svm->vmcb->save.sfmask = data;
4339 break;
4340 #endif
4341 case MSR_IA32_SYSENTER_CS:
4342 svm->vmcb->save.sysenter_cs = data;
4343 break;
4344 case MSR_IA32_SYSENTER_EIP:
4345 svm->sysenter_eip = data;
4346 svm->vmcb->save.sysenter_eip = data;
4347 break;
4348 case MSR_IA32_SYSENTER_ESP:
4349 svm->sysenter_esp = data;
4350 svm->vmcb->save.sysenter_esp = data;
4351 break;
4352 case MSR_TSC_AUX:
4353 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4354 return 1;
4355
4356 /*
4357 * This is rare, so we update the MSR here instead of using
4358 * direct_access_msrs. Doing that would require a rdmsr in
4359 * svm_vcpu_put.
4360 */
4361 svm->tsc_aux = data;
4362 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4363 break;
4364 case MSR_IA32_DEBUGCTLMSR:
4365 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4366 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4367 __func__, data);
4368 break;
4369 }
4370 if (data & DEBUGCTL_RESERVED_BITS)
4371 return 1;
4372
4373 svm->vmcb->save.dbgctl = data;
4374 mark_dirty(svm->vmcb, VMCB_LBR);
4375 if (data & (1ULL<<0))
4376 svm_enable_lbrv(svm);
4377 else
4378 svm_disable_lbrv(svm);
4379 break;
4380 case MSR_VM_HSAVE_PA:
4381 svm->nested.hsave_msr = data;
4382 break;
4383 case MSR_VM_CR:
4384 return svm_set_vm_cr(vcpu, data);
4385 case MSR_VM_IGNNE:
4386 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4387 break;
4388 case MSR_F10H_DECFG: {
4389 struct kvm_msr_entry msr_entry;
4390
4391 msr_entry.index = msr->index;
4392 if (svm_get_msr_feature(&msr_entry))
4393 return 1;
4394
4395 /* Check the supported bits */
4396 if (data & ~msr_entry.data)
4397 return 1;
4398
4399 /* Don't allow the guest to change a bit, #GP */
4400 if (!msr->host_initiated && (data ^ msr_entry.data))
4401 return 1;
4402
4403 svm->msr_decfg = data;
4404 break;
4405 }
4406 case MSR_IA32_APICBASE:
4407 if (kvm_vcpu_apicv_active(vcpu))
4408 avic_update_vapic_bar(to_svm(vcpu), data);
4409 /* Fall through */
4410 default:
4411 return kvm_set_msr_common(vcpu, msr);
4412 }
4413 return 0;
4414 }
4415
4416 static int wrmsr_interception(struct vcpu_svm *svm)
4417 {
4418 return kvm_emulate_wrmsr(&svm->vcpu);
4419 }
4420
4421 static int msr_interception(struct vcpu_svm *svm)
4422 {
4423 if (svm->vmcb->control.exit_info_1)
4424 return wrmsr_interception(svm);
4425 else
4426 return rdmsr_interception(svm);
4427 }
4428
4429 static int interrupt_window_interception(struct vcpu_svm *svm)
4430 {
4431 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4432 svm_clear_vintr(svm);
4433 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4434 mark_dirty(svm->vmcb, VMCB_INTR);
4435 ++svm->vcpu.stat.irq_window_exits;
4436 return 1;
4437 }
4438
4439 static int pause_interception(struct vcpu_svm *svm)
4440 {
4441 struct kvm_vcpu *vcpu = &svm->vcpu;
4442 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4443
4444 if (pause_filter_thresh)
4445 grow_ple_window(vcpu);
4446
4447 kvm_vcpu_on_spin(vcpu, in_kernel);
4448 return 1;
4449 }
4450
4451 static int nop_interception(struct vcpu_svm *svm)
4452 {
4453 return kvm_skip_emulated_instruction(&(svm->vcpu));
4454 }
4455
4456 static int monitor_interception(struct vcpu_svm *svm)
4457 {
4458 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4459 return nop_interception(svm);
4460 }
4461
4462 static int mwait_interception(struct vcpu_svm *svm)
4463 {
4464 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4465 return nop_interception(svm);
4466 }
4467
4468 enum avic_ipi_failure_cause {
4469 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4470 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4471 AVIC_IPI_FAILURE_INVALID_TARGET,
4472 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4473 };
4474
4475 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4476 {
4477 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4478 u32 icrl = svm->vmcb->control.exit_info_1;
4479 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4480 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4481 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4482
4483 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4484
4485 switch (id) {
4486 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4487 /*
4488 * AVIC hardware handles the generation of
4489 * IPIs when the specified Message Type is Fixed
4490 * (also known as fixed delivery mode) and
4491 * the Trigger Mode is edge-triggered. The hardware
4492 * also supports self and broadcast delivery modes
4493 * specified via the Destination Shorthand(DSH)
4494 * field of the ICRL. Logical and physical APIC ID
4495 * formats are supported. All other IPI types cause
4496 * a #VMEXIT, which needs to emulated.
4497 */
4498 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4499 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4500 break;
4501 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4502 int i;
4503 struct kvm_vcpu *vcpu;
4504 struct kvm *kvm = svm->vcpu.kvm;
4505 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4506
4507 /*
4508 * At this point, we expect that the AVIC HW has already
4509 * set the appropriate IRR bits on the valid target
4510 * vcpus. So, we just need to kick the appropriate vcpu.
4511 */
4512 kvm_for_each_vcpu(i, vcpu, kvm) {
4513 bool m = kvm_apic_match_dest(vcpu, apic,
4514 icrl & KVM_APIC_SHORT_MASK,
4515 GET_APIC_DEST_FIELD(icrh),
4516 icrl & KVM_APIC_DEST_MASK);
4517
4518 if (m && !avic_vcpu_is_running(vcpu))
4519 kvm_vcpu_wake_up(vcpu);
4520 }
4521 break;
4522 }
4523 case AVIC_IPI_FAILURE_INVALID_TARGET:
4524 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4525 index, svm->vcpu.vcpu_id, icrh, icrl);
4526 break;
4527 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4528 WARN_ONCE(1, "Invalid backing page\n");
4529 break;
4530 default:
4531 pr_err("Unknown IPI interception\n");
4532 }
4533
4534 return 1;
4535 }
4536
4537 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4538 {
4539 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4540 int index;
4541 u32 *logical_apic_id_table;
4542 int dlid = GET_APIC_LOGICAL_ID(ldr);
4543
4544 if (!dlid)
4545 return NULL;
4546
4547 if (flat) { /* flat */
4548 index = ffs(dlid) - 1;
4549 if (index > 7)
4550 return NULL;
4551 } else { /* cluster */
4552 int cluster = (dlid & 0xf0) >> 4;
4553 int apic = ffs(dlid & 0x0f) - 1;
4554
4555 if ((apic < 0) || (apic > 7) ||
4556 (cluster >= 0xf))
4557 return NULL;
4558 index = (cluster << 2) + apic;
4559 }
4560
4561 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4562
4563 return &logical_apic_id_table[index];
4564 }
4565
4566 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4567 {
4568 bool flat;
4569 u32 *entry, new_entry;
4570
4571 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4572 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4573 if (!entry)
4574 return -EINVAL;
4575
4576 new_entry = READ_ONCE(*entry);
4577 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4578 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4579 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4580 WRITE_ONCE(*entry, new_entry);
4581
4582 return 0;
4583 }
4584
4585 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4586 {
4587 struct vcpu_svm *svm = to_svm(vcpu);
4588 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4589 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4590
4591 if (entry)
4592 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4593 }
4594
4595 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4596 {
4597 int ret = 0;
4598 struct vcpu_svm *svm = to_svm(vcpu);
4599 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4600 u32 id = kvm_xapic_id(vcpu->arch.apic);
4601
4602 if (ldr == svm->ldr_reg)
4603 return 0;
4604
4605 avic_invalidate_logical_id_entry(vcpu);
4606
4607 if (ldr)
4608 ret = avic_ldr_write(vcpu, id, ldr);
4609
4610 if (!ret)
4611 svm->ldr_reg = ldr;
4612
4613 return ret;
4614 }
4615
4616 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4617 {
4618 u64 *old, *new;
4619 struct vcpu_svm *svm = to_svm(vcpu);
4620 u32 id = kvm_xapic_id(vcpu->arch.apic);
4621
4622 if (vcpu->vcpu_id == id)
4623 return 0;
4624
4625 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4626 new = avic_get_physical_id_entry(vcpu, id);
4627 if (!new || !old)
4628 return 1;
4629
4630 /* We need to move physical_id_entry to new offset */
4631 *new = *old;
4632 *old = 0ULL;
4633 to_svm(vcpu)->avic_physical_id_cache = new;
4634
4635 /*
4636 * Also update the guest physical APIC ID in the logical
4637 * APIC ID table entry if already setup the LDR.
4638 */
4639 if (svm->ldr_reg)
4640 avic_handle_ldr_update(vcpu);
4641
4642 return 0;
4643 }
4644
4645 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4646 {
4647 struct vcpu_svm *svm = to_svm(vcpu);
4648 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4649
4650 if (svm->dfr_reg == dfr)
4651 return;
4652
4653 avic_invalidate_logical_id_entry(vcpu);
4654 svm->dfr_reg = dfr;
4655 }
4656
4657 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4658 {
4659 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4660 u32 offset = svm->vmcb->control.exit_info_1 &
4661 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4662
4663 switch (offset) {
4664 case APIC_ID:
4665 if (avic_handle_apic_id_update(&svm->vcpu))
4666 return 0;
4667 break;
4668 case APIC_LDR:
4669 if (avic_handle_ldr_update(&svm->vcpu))
4670 return 0;
4671 break;
4672 case APIC_DFR:
4673 avic_handle_dfr_update(&svm->vcpu);
4674 break;
4675 default:
4676 break;
4677 }
4678
4679 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4680
4681 return 1;
4682 }
4683
4684 static bool is_avic_unaccelerated_access_trap(u32 offset)
4685 {
4686 bool ret = false;
4687
4688 switch (offset) {
4689 case APIC_ID:
4690 case APIC_EOI:
4691 case APIC_RRR:
4692 case APIC_LDR:
4693 case APIC_DFR:
4694 case APIC_SPIV:
4695 case APIC_ESR:
4696 case APIC_ICR:
4697 case APIC_LVTT:
4698 case APIC_LVTTHMR:
4699 case APIC_LVTPC:
4700 case APIC_LVT0:
4701 case APIC_LVT1:
4702 case APIC_LVTERR:
4703 case APIC_TMICT:
4704 case APIC_TDCR:
4705 ret = true;
4706 break;
4707 default:
4708 break;
4709 }
4710 return ret;
4711 }
4712
4713 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4714 {
4715 int ret = 0;
4716 u32 offset = svm->vmcb->control.exit_info_1 &
4717 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4718 u32 vector = svm->vmcb->control.exit_info_2 &
4719 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4720 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4721 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4722 bool trap = is_avic_unaccelerated_access_trap(offset);
4723
4724 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4725 trap, write, vector);
4726 if (trap) {
4727 /* Handling Trap */
4728 WARN_ONCE(!write, "svm: Handling trap read.\n");
4729 ret = avic_unaccel_trap_write(svm);
4730 } else {
4731 /* Handling Fault */
4732 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4733 }
4734
4735 return ret;
4736 }
4737
4738 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4739 [SVM_EXIT_READ_CR0] = cr_interception,
4740 [SVM_EXIT_READ_CR3] = cr_interception,
4741 [SVM_EXIT_READ_CR4] = cr_interception,
4742 [SVM_EXIT_READ_CR8] = cr_interception,
4743 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4744 [SVM_EXIT_WRITE_CR0] = cr_interception,
4745 [SVM_EXIT_WRITE_CR3] = cr_interception,
4746 [SVM_EXIT_WRITE_CR4] = cr_interception,
4747 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4748 [SVM_EXIT_READ_DR0] = dr_interception,
4749 [SVM_EXIT_READ_DR1] = dr_interception,
4750 [SVM_EXIT_READ_DR2] = dr_interception,
4751 [SVM_EXIT_READ_DR3] = dr_interception,
4752 [SVM_EXIT_READ_DR4] = dr_interception,
4753 [SVM_EXIT_READ_DR5] = dr_interception,
4754 [SVM_EXIT_READ_DR6] = dr_interception,
4755 [SVM_EXIT_READ_DR7] = dr_interception,
4756 [SVM_EXIT_WRITE_DR0] = dr_interception,
4757 [SVM_EXIT_WRITE_DR1] = dr_interception,
4758 [SVM_EXIT_WRITE_DR2] = dr_interception,
4759 [SVM_EXIT_WRITE_DR3] = dr_interception,
4760 [SVM_EXIT_WRITE_DR4] = dr_interception,
4761 [SVM_EXIT_WRITE_DR5] = dr_interception,
4762 [SVM_EXIT_WRITE_DR6] = dr_interception,
4763 [SVM_EXIT_WRITE_DR7] = dr_interception,
4764 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4765 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4766 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4767 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4768 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4769 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4770 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4771 [SVM_EXIT_INTR] = intr_interception,
4772 [SVM_EXIT_NMI] = nmi_interception,
4773 [SVM_EXIT_SMI] = nop_on_interception,
4774 [SVM_EXIT_INIT] = nop_on_interception,
4775 [SVM_EXIT_VINTR] = interrupt_window_interception,
4776 [SVM_EXIT_RDPMC] = rdpmc_interception,
4777 [SVM_EXIT_CPUID] = cpuid_interception,
4778 [SVM_EXIT_IRET] = iret_interception,
4779 [SVM_EXIT_INVD] = emulate_on_interception,
4780 [SVM_EXIT_PAUSE] = pause_interception,
4781 [SVM_EXIT_HLT] = halt_interception,
4782 [SVM_EXIT_INVLPG] = invlpg_interception,
4783 [SVM_EXIT_INVLPGA] = invlpga_interception,
4784 [SVM_EXIT_IOIO] = io_interception,
4785 [SVM_EXIT_MSR] = msr_interception,
4786 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4787 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4788 [SVM_EXIT_VMRUN] = vmrun_interception,
4789 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4790 [SVM_EXIT_VMLOAD] = vmload_interception,
4791 [SVM_EXIT_VMSAVE] = vmsave_interception,
4792 [SVM_EXIT_STGI] = stgi_interception,
4793 [SVM_EXIT_CLGI] = clgi_interception,
4794 [SVM_EXIT_SKINIT] = skinit_interception,
4795 [SVM_EXIT_WBINVD] = wbinvd_interception,
4796 [SVM_EXIT_MONITOR] = monitor_interception,
4797 [SVM_EXIT_MWAIT] = mwait_interception,
4798 [SVM_EXIT_XSETBV] = xsetbv_interception,
4799 [SVM_EXIT_RDPRU] = rdpru_interception,
4800 [SVM_EXIT_NPF] = npf_interception,
4801 [SVM_EXIT_RSM] = rsm_interception,
4802 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4803 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4804 };
4805
4806 static void dump_vmcb(struct kvm_vcpu *vcpu)
4807 {
4808 struct vcpu_svm *svm = to_svm(vcpu);
4809 struct vmcb_control_area *control = &svm->vmcb->control;
4810 struct vmcb_save_area *save = &svm->vmcb->save;
4811
4812 if (!dump_invalid_vmcb) {
4813 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4814 return;
4815 }
4816
4817 pr_err("VMCB Control Area:\n");
4818 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4819 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4820 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4821 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4822 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4823 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4824 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4825 pr_err("%-20s%d\n", "pause filter threshold:",
4826 control->pause_filter_thresh);
4827 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4828 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4829 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4830 pr_err("%-20s%d\n", "asid:", control->asid);
4831 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4832 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4833 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4834 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4835 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4836 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4837 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4838 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4839 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4840 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4841 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4842 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4843 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4844 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4845 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4846 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4847 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4848 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4849 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4850 pr_err("VMCB State Save Area:\n");
4851 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 "es:",
4853 save->es.selector, save->es.attrib,
4854 save->es.limit, save->es.base);
4855 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 "cs:",
4857 save->cs.selector, save->cs.attrib,
4858 save->cs.limit, save->cs.base);
4859 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4860 "ss:",
4861 save->ss.selector, save->ss.attrib,
4862 save->ss.limit, save->ss.base);
4863 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4864 "ds:",
4865 save->ds.selector, save->ds.attrib,
4866 save->ds.limit, save->ds.base);
4867 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4868 "fs:",
4869 save->fs.selector, save->fs.attrib,
4870 save->fs.limit, save->fs.base);
4871 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4872 "gs:",
4873 save->gs.selector, save->gs.attrib,
4874 save->gs.limit, save->gs.base);
4875 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4876 "gdtr:",
4877 save->gdtr.selector, save->gdtr.attrib,
4878 save->gdtr.limit, save->gdtr.base);
4879 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4880 "ldtr:",
4881 save->ldtr.selector, save->ldtr.attrib,
4882 save->ldtr.limit, save->ldtr.base);
4883 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4884 "idtr:",
4885 save->idtr.selector, save->idtr.attrib,
4886 save->idtr.limit, save->idtr.base);
4887 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4888 "tr:",
4889 save->tr.selector, save->tr.attrib,
4890 save->tr.limit, save->tr.base);
4891 pr_err("cpl: %d efer: %016llx\n",
4892 save->cpl, save->efer);
4893 pr_err("%-15s %016llx %-13s %016llx\n",
4894 "cr0:", save->cr0, "cr2:", save->cr2);
4895 pr_err("%-15s %016llx %-13s %016llx\n",
4896 "cr3:", save->cr3, "cr4:", save->cr4);
4897 pr_err("%-15s %016llx %-13s %016llx\n",
4898 "dr6:", save->dr6, "dr7:", save->dr7);
4899 pr_err("%-15s %016llx %-13s %016llx\n",
4900 "rip:", save->rip, "rflags:", save->rflags);
4901 pr_err("%-15s %016llx %-13s %016llx\n",
4902 "rsp:", save->rsp, "rax:", save->rax);
4903 pr_err("%-15s %016llx %-13s %016llx\n",
4904 "star:", save->star, "lstar:", save->lstar);
4905 pr_err("%-15s %016llx %-13s %016llx\n",
4906 "cstar:", save->cstar, "sfmask:", save->sfmask);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "kernel_gs_base:", save->kernel_gs_base,
4909 "sysenter_cs:", save->sysenter_cs);
4910 pr_err("%-15s %016llx %-13s %016llx\n",
4911 "sysenter_esp:", save->sysenter_esp,
4912 "sysenter_eip:", save->sysenter_eip);
4913 pr_err("%-15s %016llx %-13s %016llx\n",
4914 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4915 pr_err("%-15s %016llx %-13s %016llx\n",
4916 "br_from:", save->br_from, "br_to:", save->br_to);
4917 pr_err("%-15s %016llx %-13s %016llx\n",
4918 "excp_from:", save->last_excp_from,
4919 "excp_to:", save->last_excp_to);
4920 }
4921
4922 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4923 {
4924 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4925
4926 *info1 = control->exit_info_1;
4927 *info2 = control->exit_info_2;
4928 }
4929
4930 static int handle_exit(struct kvm_vcpu *vcpu)
4931 {
4932 struct vcpu_svm *svm = to_svm(vcpu);
4933 struct kvm_run *kvm_run = vcpu->run;
4934 u32 exit_code = svm->vmcb->control.exit_code;
4935
4936 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4937
4938 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4939 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4940 if (npt_enabled)
4941 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4942
4943 if (unlikely(svm->nested.exit_required)) {
4944 nested_svm_vmexit(svm);
4945 svm->nested.exit_required = false;
4946
4947 return 1;
4948 }
4949
4950 if (is_guest_mode(vcpu)) {
4951 int vmexit;
4952
4953 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4954 svm->vmcb->control.exit_info_1,
4955 svm->vmcb->control.exit_info_2,
4956 svm->vmcb->control.exit_int_info,
4957 svm->vmcb->control.exit_int_info_err,
4958 KVM_ISA_SVM);
4959
4960 vmexit = nested_svm_exit_special(svm);
4961
4962 if (vmexit == NESTED_EXIT_CONTINUE)
4963 vmexit = nested_svm_exit_handled(svm);
4964
4965 if (vmexit == NESTED_EXIT_DONE)
4966 return 1;
4967 }
4968
4969 svm_complete_interrupts(svm);
4970
4971 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4972 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4973 kvm_run->fail_entry.hardware_entry_failure_reason
4974 = svm->vmcb->control.exit_code;
4975 dump_vmcb(vcpu);
4976 return 0;
4977 }
4978
4979 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4980 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4981 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4982 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4983 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4984 "exit_code 0x%x\n",
4985 __func__, svm->vmcb->control.exit_int_info,
4986 exit_code);
4987
4988 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4989 || !svm_exit_handlers[exit_code]) {
4990 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4991 dump_vmcb(vcpu);
4992 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4993 vcpu->run->internal.suberror =
4994 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
4995 vcpu->run->internal.ndata = 1;
4996 vcpu->run->internal.data[0] = exit_code;
4997 return 0;
4998 }
4999
5000 return svm_exit_handlers[exit_code](svm);
5001 }
5002
5003 static void reload_tss(struct kvm_vcpu *vcpu)
5004 {
5005 int cpu = raw_smp_processor_id();
5006
5007 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5008 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5009 load_TR_desc();
5010 }
5011
5012 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5013 {
5014 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5015 int asid = sev_get_asid(svm->vcpu.kvm);
5016
5017 /* Assign the asid allocated with this SEV guest */
5018 svm->vmcb->control.asid = asid;
5019
5020 /*
5021 * Flush guest TLB:
5022 *
5023 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5024 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5025 */
5026 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5027 svm->last_cpu == cpu)
5028 return;
5029
5030 svm->last_cpu = cpu;
5031 sd->sev_vmcbs[asid] = svm->vmcb;
5032 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5033 mark_dirty(svm->vmcb, VMCB_ASID);
5034 }
5035
5036 static void pre_svm_run(struct vcpu_svm *svm)
5037 {
5038 int cpu = raw_smp_processor_id();
5039
5040 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041
5042 if (sev_guest(svm->vcpu.kvm))
5043 return pre_sev_run(svm, cpu);
5044
5045 /* FIXME: handle wraparound of asid_generation */
5046 if (svm->asid_generation != sd->asid_generation)
5047 new_asid(svm, sd);
5048 }
5049
5050 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5051 {
5052 struct vcpu_svm *svm = to_svm(vcpu);
5053
5054 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5055 vcpu->arch.hflags |= HF_NMI_MASK;
5056 set_intercept(svm, INTERCEPT_IRET);
5057 ++vcpu->stat.nmi_injections;
5058 }
5059
5060 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5061 {
5062 struct vmcb_control_area *control;
5063
5064 /* The following fields are ignored when AVIC is enabled */
5065 control = &svm->vmcb->control;
5066 control->int_vector = irq;
5067 control->int_ctl &= ~V_INTR_PRIO_MASK;
5068 control->int_ctl |= V_IRQ_MASK |
5069 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5070 mark_dirty(svm->vmcb, VMCB_INTR);
5071 }
5072
5073 static void svm_set_irq(struct kvm_vcpu *vcpu)
5074 {
5075 struct vcpu_svm *svm = to_svm(vcpu);
5076
5077 BUG_ON(!(gif_set(svm)));
5078
5079 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5080 ++vcpu->stat.irq_injections;
5081
5082 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5083 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5084 }
5085
5086 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5087 {
5088 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5089 }
5090
5091 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5092 {
5093 struct vcpu_svm *svm = to_svm(vcpu);
5094
5095 if (svm_nested_virtualize_tpr(vcpu) ||
5096 kvm_vcpu_apicv_active(vcpu))
5097 return;
5098
5099 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5100
5101 if (irr == -1)
5102 return;
5103
5104 if (tpr >= irr)
5105 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5106 }
5107
5108 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5109 {
5110 return;
5111 }
5112
5113 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5114 {
5115 return avic && irqchip_split(vcpu->kvm);
5116 }
5117
5118 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5119 {
5120 }
5121
5122 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5123 {
5124 }
5125
5126 /* Note: Currently only used by Hyper-V. */
5127 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5128 {
5129 struct vcpu_svm *svm = to_svm(vcpu);
5130 struct vmcb *vmcb = svm->vmcb;
5131
5132 if (kvm_vcpu_apicv_active(vcpu))
5133 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5134 else
5135 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5136 mark_dirty(vmcb, VMCB_AVIC);
5137 }
5138
5139 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5140 {
5141 return;
5142 }
5143
5144 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5145 {
5146 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5147 smp_mb__after_atomic();
5148
5149 if (avic_vcpu_is_running(vcpu)) {
5150 int cpuid = vcpu->cpu;
5151
5152 if (cpuid != get_cpu())
5153 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5154 put_cpu();
5155 } else
5156 kvm_vcpu_wake_up(vcpu);
5157 }
5158
5159 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5160 {
5161 return false;
5162 }
5163
5164 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5165 {
5166 unsigned long flags;
5167 struct amd_svm_iommu_ir *cur;
5168
5169 spin_lock_irqsave(&svm->ir_list_lock, flags);
5170 list_for_each_entry(cur, &svm->ir_list, node) {
5171 if (cur->data != pi->ir_data)
5172 continue;
5173 list_del(&cur->node);
5174 kfree(cur);
5175 break;
5176 }
5177 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5178 }
5179
5180 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5181 {
5182 int ret = 0;
5183 unsigned long flags;
5184 struct amd_svm_iommu_ir *ir;
5185
5186 /**
5187 * In some cases, the existing irte is updaed and re-set,
5188 * so we need to check here if it's already been * added
5189 * to the ir_list.
5190 */
5191 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5192 struct kvm *kvm = svm->vcpu.kvm;
5193 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5194 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5195 struct vcpu_svm *prev_svm;
5196
5197 if (!prev_vcpu) {
5198 ret = -EINVAL;
5199 goto out;
5200 }
5201
5202 prev_svm = to_svm(prev_vcpu);
5203 svm_ir_list_del(prev_svm, pi);
5204 }
5205
5206 /**
5207 * Allocating new amd_iommu_pi_data, which will get
5208 * add to the per-vcpu ir_list.
5209 */
5210 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5211 if (!ir) {
5212 ret = -ENOMEM;
5213 goto out;
5214 }
5215 ir->data = pi->ir_data;
5216
5217 spin_lock_irqsave(&svm->ir_list_lock, flags);
5218 list_add(&ir->node, &svm->ir_list);
5219 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5220 out:
5221 return ret;
5222 }
5223
5224 /**
5225 * Note:
5226 * The HW cannot support posting multicast/broadcast
5227 * interrupts to a vCPU. So, we still use legacy interrupt
5228 * remapping for these kind of interrupts.
5229 *
5230 * For lowest-priority interrupts, we only support
5231 * those with single CPU as the destination, e.g. user
5232 * configures the interrupts via /proc/irq or uses
5233 * irqbalance to make the interrupts single-CPU.
5234 */
5235 static int
5236 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5237 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5238 {
5239 struct kvm_lapic_irq irq;
5240 struct kvm_vcpu *vcpu = NULL;
5241
5242 kvm_set_msi_irq(kvm, e, &irq);
5243
5244 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5245 !kvm_irq_is_postable(&irq)) {
5246 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5247 __func__, irq.vector);
5248 return -1;
5249 }
5250
5251 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5252 irq.vector);
5253 *svm = to_svm(vcpu);
5254 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5255 vcpu_info->vector = irq.vector;
5256
5257 return 0;
5258 }
5259
5260 /*
5261 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5262 *
5263 * @kvm: kvm
5264 * @host_irq: host irq of the interrupt
5265 * @guest_irq: gsi of the interrupt
5266 * @set: set or unset PI
5267 * returns 0 on success, < 0 on failure
5268 */
5269 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5270 uint32_t guest_irq, bool set)
5271 {
5272 struct kvm_kernel_irq_routing_entry *e;
5273 struct kvm_irq_routing_table *irq_rt;
5274 int idx, ret = -EINVAL;
5275
5276 if (!kvm_arch_has_assigned_device(kvm) ||
5277 !irq_remapping_cap(IRQ_POSTING_CAP))
5278 return 0;
5279
5280 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5281 __func__, host_irq, guest_irq, set);
5282
5283 idx = srcu_read_lock(&kvm->irq_srcu);
5284 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5285 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5286
5287 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5288 struct vcpu_data vcpu_info;
5289 struct vcpu_svm *svm = NULL;
5290
5291 if (e->type != KVM_IRQ_ROUTING_MSI)
5292 continue;
5293
5294 /**
5295 * Here, we setup with legacy mode in the following cases:
5296 * 1. When cannot target interrupt to a specific vcpu.
5297 * 2. Unsetting posted interrupt.
5298 * 3. APIC virtialization is disabled for the vcpu.
5299 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5300 */
5301 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5302 kvm_vcpu_apicv_active(&svm->vcpu)) {
5303 struct amd_iommu_pi_data pi;
5304
5305 /* Try to enable guest_mode in IRTE */
5306 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5307 AVIC_HPA_MASK);
5308 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5309 svm->vcpu.vcpu_id);
5310 pi.is_guest_mode = true;
5311 pi.vcpu_data = &vcpu_info;
5312 ret = irq_set_vcpu_affinity(host_irq, &pi);
5313
5314 /**
5315 * Here, we successfully setting up vcpu affinity in
5316 * IOMMU guest mode. Now, we need to store the posted
5317 * interrupt information in a per-vcpu ir_list so that
5318 * we can reference to them directly when we update vcpu
5319 * scheduling information in IOMMU irte.
5320 */
5321 if (!ret && pi.is_guest_mode)
5322 svm_ir_list_add(svm, &pi);
5323 } else {
5324 /* Use legacy mode in IRTE */
5325 struct amd_iommu_pi_data pi;
5326
5327 /**
5328 * Here, pi is used to:
5329 * - Tell IOMMU to use legacy mode for this interrupt.
5330 * - Retrieve ga_tag of prior interrupt remapping data.
5331 */
5332 pi.is_guest_mode = false;
5333 ret = irq_set_vcpu_affinity(host_irq, &pi);
5334
5335 /**
5336 * Check if the posted interrupt was previously
5337 * setup with the guest_mode by checking if the ga_tag
5338 * was cached. If so, we need to clean up the per-vcpu
5339 * ir_list.
5340 */
5341 if (!ret && pi.prev_ga_tag) {
5342 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5343 struct kvm_vcpu *vcpu;
5344
5345 vcpu = kvm_get_vcpu_by_id(kvm, id);
5346 if (vcpu)
5347 svm_ir_list_del(to_svm(vcpu), &pi);
5348 }
5349 }
5350
5351 if (!ret && svm) {
5352 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5353 e->gsi, vcpu_info.vector,
5354 vcpu_info.pi_desc_addr, set);
5355 }
5356
5357 if (ret < 0) {
5358 pr_err("%s: failed to update PI IRTE\n", __func__);
5359 goto out;
5360 }
5361 }
5362
5363 ret = 0;
5364 out:
5365 srcu_read_unlock(&kvm->irq_srcu, idx);
5366 return ret;
5367 }
5368
5369 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5370 {
5371 struct vcpu_svm *svm = to_svm(vcpu);
5372 struct vmcb *vmcb = svm->vmcb;
5373 int ret;
5374 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5375 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5376 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5377
5378 return ret;
5379 }
5380
5381 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5382 {
5383 struct vcpu_svm *svm = to_svm(vcpu);
5384
5385 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5386 }
5387
5388 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5389 {
5390 struct vcpu_svm *svm = to_svm(vcpu);
5391
5392 if (masked) {
5393 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5394 set_intercept(svm, INTERCEPT_IRET);
5395 } else {
5396 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5397 clr_intercept(svm, INTERCEPT_IRET);
5398 }
5399 }
5400
5401 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5402 {
5403 struct vcpu_svm *svm = to_svm(vcpu);
5404 struct vmcb *vmcb = svm->vmcb;
5405 int ret;
5406
5407 if (!gif_set(svm) ||
5408 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5409 return 0;
5410
5411 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5412
5413 if (is_guest_mode(vcpu))
5414 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5415
5416 return ret;
5417 }
5418
5419 static void enable_irq_window(struct kvm_vcpu *vcpu)
5420 {
5421 struct vcpu_svm *svm = to_svm(vcpu);
5422
5423 if (kvm_vcpu_apicv_active(vcpu))
5424 return;
5425
5426 /*
5427 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5428 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5429 * get that intercept, this function will be called again though and
5430 * we'll get the vintr intercept. However, if the vGIF feature is
5431 * enabled, the STGI interception will not occur. Enable the irq
5432 * window under the assumption that the hardware will set the GIF.
5433 */
5434 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5435 svm_set_vintr(svm);
5436 svm_inject_irq(svm, 0x0);
5437 }
5438 }
5439
5440 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5441 {
5442 struct vcpu_svm *svm = to_svm(vcpu);
5443
5444 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5445 == HF_NMI_MASK)
5446 return; /* IRET will cause a vm exit */
5447
5448 if (!gif_set(svm)) {
5449 if (vgif_enabled(svm))
5450 set_intercept(svm, INTERCEPT_STGI);
5451 return; /* STGI will cause a vm exit */
5452 }
5453
5454 if (svm->nested.exit_required)
5455 return; /* we're not going to run the guest yet */
5456
5457 /*
5458 * Something prevents NMI from been injected. Single step over possible
5459 * problem (IRET or exception injection or interrupt shadow)
5460 */
5461 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5462 svm->nmi_singlestep = true;
5463 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5464 }
5465
5466 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5467 {
5468 return 0;
5469 }
5470
5471 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5472 {
5473 return 0;
5474 }
5475
5476 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5477 {
5478 struct vcpu_svm *svm = to_svm(vcpu);
5479
5480 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5481 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5482 else
5483 svm->asid_generation--;
5484 }
5485
5486 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5487 {
5488 struct vcpu_svm *svm = to_svm(vcpu);
5489
5490 invlpga(gva, svm->vmcb->control.asid);
5491 }
5492
5493 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5494 {
5495 }
5496
5497 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5498 {
5499 struct vcpu_svm *svm = to_svm(vcpu);
5500
5501 if (svm_nested_virtualize_tpr(vcpu))
5502 return;
5503
5504 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5505 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5506 kvm_set_cr8(vcpu, cr8);
5507 }
5508 }
5509
5510 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5511 {
5512 struct vcpu_svm *svm = to_svm(vcpu);
5513 u64 cr8;
5514
5515 if (svm_nested_virtualize_tpr(vcpu) ||
5516 kvm_vcpu_apicv_active(vcpu))
5517 return;
5518
5519 cr8 = kvm_get_cr8(vcpu);
5520 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5521 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5522 }
5523
5524 static void svm_complete_interrupts(struct vcpu_svm *svm)
5525 {
5526 u8 vector;
5527 int type;
5528 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5529 unsigned int3_injected = svm->int3_injected;
5530
5531 svm->int3_injected = 0;
5532
5533 /*
5534 * If we've made progress since setting HF_IRET_MASK, we've
5535 * executed an IRET and can allow NMI injection.
5536 */
5537 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5538 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5539 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5540 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5541 }
5542
5543 svm->vcpu.arch.nmi_injected = false;
5544 kvm_clear_exception_queue(&svm->vcpu);
5545 kvm_clear_interrupt_queue(&svm->vcpu);
5546
5547 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5548 return;
5549
5550 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5551
5552 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5553 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5554
5555 switch (type) {
5556 case SVM_EXITINTINFO_TYPE_NMI:
5557 svm->vcpu.arch.nmi_injected = true;
5558 break;
5559 case SVM_EXITINTINFO_TYPE_EXEPT:
5560 /*
5561 * In case of software exceptions, do not reinject the vector,
5562 * but re-execute the instruction instead. Rewind RIP first
5563 * if we emulated INT3 before.
5564 */
5565 if (kvm_exception_is_soft(vector)) {
5566 if (vector == BP_VECTOR && int3_injected &&
5567 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5568 kvm_rip_write(&svm->vcpu,
5569 kvm_rip_read(&svm->vcpu) -
5570 int3_injected);
5571 break;
5572 }
5573 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5574 u32 err = svm->vmcb->control.exit_int_info_err;
5575 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5576
5577 } else
5578 kvm_requeue_exception(&svm->vcpu, vector);
5579 break;
5580 case SVM_EXITINTINFO_TYPE_INTR:
5581 kvm_queue_interrupt(&svm->vcpu, vector, false);
5582 break;
5583 default:
5584 break;
5585 }
5586 }
5587
5588 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5589 {
5590 struct vcpu_svm *svm = to_svm(vcpu);
5591 struct vmcb_control_area *control = &svm->vmcb->control;
5592
5593 control->exit_int_info = control->event_inj;
5594 control->exit_int_info_err = control->event_inj_err;
5595 control->event_inj = 0;
5596 svm_complete_interrupts(svm);
5597 }
5598
5599 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5600 {
5601 struct vcpu_svm *svm = to_svm(vcpu);
5602
5603 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5604 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5605 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5606
5607 /*
5608 * A vmexit emulation is required before the vcpu can be executed
5609 * again.
5610 */
5611 if (unlikely(svm->nested.exit_required))
5612 return;
5613
5614 /*
5615 * Disable singlestep if we're injecting an interrupt/exception.
5616 * We don't want our modified rflags to be pushed on the stack where
5617 * we might not be able to easily reset them if we disabled NMI
5618 * singlestep later.
5619 */
5620 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5621 /*
5622 * Event injection happens before external interrupts cause a
5623 * vmexit and interrupts are disabled here, so smp_send_reschedule
5624 * is enough to force an immediate vmexit.
5625 */
5626 disable_nmi_singlestep(svm);
5627 smp_send_reschedule(vcpu->cpu);
5628 }
5629
5630 pre_svm_run(svm);
5631
5632 sync_lapic_to_cr8(vcpu);
5633
5634 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5635
5636 clgi();
5637 kvm_load_guest_xcr0(vcpu);
5638
5639 if (lapic_in_kernel(vcpu) &&
5640 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5641 kvm_wait_lapic_expire(vcpu);
5642
5643 /*
5644 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5645 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5646 * is no need to worry about the conditional branch over the wrmsr
5647 * being speculatively taken.
5648 */
5649 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5650
5651 local_irq_enable();
5652
5653 asm volatile (
5654 "push %%" _ASM_BP "; \n\t"
5655 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5656 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5657 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5658 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5659 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5660 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5661 #ifdef CONFIG_X86_64
5662 "mov %c[r8](%[svm]), %%r8 \n\t"
5663 "mov %c[r9](%[svm]), %%r9 \n\t"
5664 "mov %c[r10](%[svm]), %%r10 \n\t"
5665 "mov %c[r11](%[svm]), %%r11 \n\t"
5666 "mov %c[r12](%[svm]), %%r12 \n\t"
5667 "mov %c[r13](%[svm]), %%r13 \n\t"
5668 "mov %c[r14](%[svm]), %%r14 \n\t"
5669 "mov %c[r15](%[svm]), %%r15 \n\t"
5670 #endif
5671
5672 /* Enter guest mode */
5673 "push %%" _ASM_AX " \n\t"
5674 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5675 __ex("vmload %%" _ASM_AX) "\n\t"
5676 __ex("vmrun %%" _ASM_AX) "\n\t"
5677 __ex("vmsave %%" _ASM_AX) "\n\t"
5678 "pop %%" _ASM_AX " \n\t"
5679
5680 /* Save guest registers, load host registers */
5681 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5682 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5683 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5684 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5685 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5686 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5687 #ifdef CONFIG_X86_64
5688 "mov %%r8, %c[r8](%[svm]) \n\t"
5689 "mov %%r9, %c[r9](%[svm]) \n\t"
5690 "mov %%r10, %c[r10](%[svm]) \n\t"
5691 "mov %%r11, %c[r11](%[svm]) \n\t"
5692 "mov %%r12, %c[r12](%[svm]) \n\t"
5693 "mov %%r13, %c[r13](%[svm]) \n\t"
5694 "mov %%r14, %c[r14](%[svm]) \n\t"
5695 "mov %%r15, %c[r15](%[svm]) \n\t"
5696 /*
5697 * Clear host registers marked as clobbered to prevent
5698 * speculative use.
5699 */
5700 "xor %%r8d, %%r8d \n\t"
5701 "xor %%r9d, %%r9d \n\t"
5702 "xor %%r10d, %%r10d \n\t"
5703 "xor %%r11d, %%r11d \n\t"
5704 "xor %%r12d, %%r12d \n\t"
5705 "xor %%r13d, %%r13d \n\t"
5706 "xor %%r14d, %%r14d \n\t"
5707 "xor %%r15d, %%r15d \n\t"
5708 #endif
5709 "xor %%ebx, %%ebx \n\t"
5710 "xor %%ecx, %%ecx \n\t"
5711 "xor %%edx, %%edx \n\t"
5712 "xor %%esi, %%esi \n\t"
5713 "xor %%edi, %%edi \n\t"
5714 "pop %%" _ASM_BP
5715 :
5716 : [svm]"a"(svm),
5717 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5718 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5719 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5720 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5721 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5722 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5723 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5724 #ifdef CONFIG_X86_64
5725 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5726 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5727 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5728 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5729 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5730 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5731 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5732 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5733 #endif
5734 : "cc", "memory"
5735 #ifdef CONFIG_X86_64
5736 , "rbx", "rcx", "rdx", "rsi", "rdi"
5737 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5738 #else
5739 , "ebx", "ecx", "edx", "esi", "edi"
5740 #endif
5741 );
5742
5743 /* Eliminate branch target predictions from guest mode */
5744 vmexit_fill_RSB();
5745
5746 #ifdef CONFIG_X86_64
5747 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5748 #else
5749 loadsegment(fs, svm->host.fs);
5750 #ifndef CONFIG_X86_32_LAZY_GS
5751 loadsegment(gs, svm->host.gs);
5752 #endif
5753 #endif
5754
5755 /*
5756 * We do not use IBRS in the kernel. If this vCPU has used the
5757 * SPEC_CTRL MSR it may have left it on; save the value and
5758 * turn it off. This is much more efficient than blindly adding
5759 * it to the atomic save/restore list. Especially as the former
5760 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5761 *
5762 * For non-nested case:
5763 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5764 * save it.
5765 *
5766 * For nested case:
5767 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5768 * save it.
5769 */
5770 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5771 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5772
5773 reload_tss(vcpu);
5774
5775 local_irq_disable();
5776
5777 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5778
5779 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5780 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5781 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5782 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5783
5784 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5785 kvm_before_interrupt(&svm->vcpu);
5786
5787 kvm_put_guest_xcr0(vcpu);
5788 stgi();
5789
5790 /* Any pending NMI will happen here */
5791
5792 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5793 kvm_after_interrupt(&svm->vcpu);
5794
5795 sync_cr8_to_lapic(vcpu);
5796
5797 svm->next_rip = 0;
5798
5799 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5800
5801 /* if exit due to PF check for async PF */
5802 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5803 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5804
5805 if (npt_enabled) {
5806 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5807 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5808 }
5809
5810 /*
5811 * We need to handle MC intercepts here before the vcpu has a chance to
5812 * change the physical cpu
5813 */
5814 if (unlikely(svm->vmcb->control.exit_code ==
5815 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5816 svm_handle_mce(svm);
5817
5818 mark_all_clean(svm->vmcb);
5819 }
5820 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5821
5822 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5823 {
5824 struct vcpu_svm *svm = to_svm(vcpu);
5825
5826 svm->vmcb->save.cr3 = __sme_set(root);
5827 mark_dirty(svm->vmcb, VMCB_CR);
5828 }
5829
5830 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5831 {
5832 struct vcpu_svm *svm = to_svm(vcpu);
5833
5834 svm->vmcb->control.nested_cr3 = __sme_set(root);
5835 mark_dirty(svm->vmcb, VMCB_NPT);
5836
5837 /* Also sync guest cr3 here in case we live migrate */
5838 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5839 mark_dirty(svm->vmcb, VMCB_CR);
5840 }
5841
5842 static int is_disabled(void)
5843 {
5844 u64 vm_cr;
5845
5846 rdmsrl(MSR_VM_CR, vm_cr);
5847 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5848 return 1;
5849
5850 return 0;
5851 }
5852
5853 static void
5854 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5855 {
5856 /*
5857 * Patch in the VMMCALL instruction:
5858 */
5859 hypercall[0] = 0x0f;
5860 hypercall[1] = 0x01;
5861 hypercall[2] = 0xd9;
5862 }
5863
5864 static int __init svm_check_processor_compat(void)
5865 {
5866 return 0;
5867 }
5868
5869 static bool svm_cpu_has_accelerated_tpr(void)
5870 {
5871 return false;
5872 }
5873
5874 static bool svm_has_emulated_msr(int index)
5875 {
5876 switch (index) {
5877 case MSR_IA32_MCG_EXT_CTL:
5878 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5879 return false;
5880 default:
5881 break;
5882 }
5883
5884 return true;
5885 }
5886
5887 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5888 {
5889 return 0;
5890 }
5891
5892 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5893 {
5894 struct vcpu_svm *svm = to_svm(vcpu);
5895
5896 /* Update nrips enabled cache */
5897 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5898
5899 if (!kvm_vcpu_apicv_active(vcpu))
5900 return;
5901
5902 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5903 }
5904
5905 #define F(x) bit(X86_FEATURE_##x)
5906
5907 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5908 {
5909 switch (func) {
5910 case 0x1:
5911 if (avic)
5912 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5913 break;
5914 case 0x80000001:
5915 if (nested)
5916 entry->ecx |= (1 << 2); /* Set SVM bit */
5917 break;
5918 case 0x80000008:
5919 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5920 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5921 entry->ebx |= F(VIRT_SSBD);
5922 break;
5923 case 0x8000000A:
5924 entry->eax = 1; /* SVM revision 1 */
5925 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5926 ASID emulation to nested SVM */
5927 entry->ecx = 0; /* Reserved */
5928 entry->edx = 0; /* Per default do not support any
5929 additional features */
5930
5931 /* Support next_rip if host supports it */
5932 if (boot_cpu_has(X86_FEATURE_NRIPS))
5933 entry->edx |= F(NRIPS);
5934
5935 /* Support NPT for the guest if enabled */
5936 if (npt_enabled)
5937 entry->edx |= F(NPT);
5938
5939 break;
5940 case 0x8000001F:
5941 /* Support memory encryption cpuid if host supports it */
5942 if (boot_cpu_has(X86_FEATURE_SEV))
5943 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5944 &entry->ecx, &entry->edx);
5945
5946 }
5947 }
5948
5949 static int svm_get_lpage_level(void)
5950 {
5951 return PT_PDPE_LEVEL;
5952 }
5953
5954 static bool svm_rdtscp_supported(void)
5955 {
5956 return boot_cpu_has(X86_FEATURE_RDTSCP);
5957 }
5958
5959 static bool svm_invpcid_supported(void)
5960 {
5961 return false;
5962 }
5963
5964 static bool svm_mpx_supported(void)
5965 {
5966 return false;
5967 }
5968
5969 static bool svm_xsaves_supported(void)
5970 {
5971 return false;
5972 }
5973
5974 static bool svm_umip_emulated(void)
5975 {
5976 return false;
5977 }
5978
5979 static bool svm_pt_supported(void)
5980 {
5981 return false;
5982 }
5983
5984 static bool svm_has_wbinvd_exit(void)
5985 {
5986 return true;
5987 }
5988
5989 #define PRE_EX(exit) { .exit_code = (exit), \
5990 .stage = X86_ICPT_PRE_EXCEPT, }
5991 #define POST_EX(exit) { .exit_code = (exit), \
5992 .stage = X86_ICPT_POST_EXCEPT, }
5993 #define POST_MEM(exit) { .exit_code = (exit), \
5994 .stage = X86_ICPT_POST_MEMACCESS, }
5995
5996 static const struct __x86_intercept {
5997 u32 exit_code;
5998 enum x86_intercept_stage stage;
5999 } x86_intercept_map[] = {
6000 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6001 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6002 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6003 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6004 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6005 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6006 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6007 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6008 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6009 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6010 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6011 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6012 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6013 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6014 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6015 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6016 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6017 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6018 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6019 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6020 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6021 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6022 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6023 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6024 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6025 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6026 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6027 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6028 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6029 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6030 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6031 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6032 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6033 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6034 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6035 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6036 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6037 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6038 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6039 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6040 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6041 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6042 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6043 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6044 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6045 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6046 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6047 };
6048
6049 #undef PRE_EX
6050 #undef POST_EX
6051 #undef POST_MEM
6052
6053 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6054 struct x86_instruction_info *info,
6055 enum x86_intercept_stage stage)
6056 {
6057 struct vcpu_svm *svm = to_svm(vcpu);
6058 int vmexit, ret = X86EMUL_CONTINUE;
6059 struct __x86_intercept icpt_info;
6060 struct vmcb *vmcb = svm->vmcb;
6061
6062 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6063 goto out;
6064
6065 icpt_info = x86_intercept_map[info->intercept];
6066
6067 if (stage != icpt_info.stage)
6068 goto out;
6069
6070 switch (icpt_info.exit_code) {
6071 case SVM_EXIT_READ_CR0:
6072 if (info->intercept == x86_intercept_cr_read)
6073 icpt_info.exit_code += info->modrm_reg;
6074 break;
6075 case SVM_EXIT_WRITE_CR0: {
6076 unsigned long cr0, val;
6077 u64 intercept;
6078
6079 if (info->intercept == x86_intercept_cr_write)
6080 icpt_info.exit_code += info->modrm_reg;
6081
6082 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6083 info->intercept == x86_intercept_clts)
6084 break;
6085
6086 intercept = svm->nested.intercept;
6087
6088 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6089 break;
6090
6091 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6092 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6093
6094 if (info->intercept == x86_intercept_lmsw) {
6095 cr0 &= 0xfUL;
6096 val &= 0xfUL;
6097 /* lmsw can't clear PE - catch this here */
6098 if (cr0 & X86_CR0_PE)
6099 val |= X86_CR0_PE;
6100 }
6101
6102 if (cr0 ^ val)
6103 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6104
6105 break;
6106 }
6107 case SVM_EXIT_READ_DR0:
6108 case SVM_EXIT_WRITE_DR0:
6109 icpt_info.exit_code += info->modrm_reg;
6110 break;
6111 case SVM_EXIT_MSR:
6112 if (info->intercept == x86_intercept_wrmsr)
6113 vmcb->control.exit_info_1 = 1;
6114 else
6115 vmcb->control.exit_info_1 = 0;
6116 break;
6117 case SVM_EXIT_PAUSE:
6118 /*
6119 * We get this for NOP only, but pause
6120 * is rep not, check this here
6121 */
6122 if (info->rep_prefix != REPE_PREFIX)
6123 goto out;
6124 break;
6125 case SVM_EXIT_IOIO: {
6126 u64 exit_info;
6127 u32 bytes;
6128
6129 if (info->intercept == x86_intercept_in ||
6130 info->intercept == x86_intercept_ins) {
6131 exit_info = ((info->src_val & 0xffff) << 16) |
6132 SVM_IOIO_TYPE_MASK;
6133 bytes = info->dst_bytes;
6134 } else {
6135 exit_info = (info->dst_val & 0xffff) << 16;
6136 bytes = info->src_bytes;
6137 }
6138
6139 if (info->intercept == x86_intercept_outs ||
6140 info->intercept == x86_intercept_ins)
6141 exit_info |= SVM_IOIO_STR_MASK;
6142
6143 if (info->rep_prefix)
6144 exit_info |= SVM_IOIO_REP_MASK;
6145
6146 bytes = min(bytes, 4u);
6147
6148 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6149
6150 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6151
6152 vmcb->control.exit_info_1 = exit_info;
6153 vmcb->control.exit_info_2 = info->next_rip;
6154
6155 break;
6156 }
6157 default:
6158 break;
6159 }
6160
6161 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6162 if (static_cpu_has(X86_FEATURE_NRIPS))
6163 vmcb->control.next_rip = info->next_rip;
6164 vmcb->control.exit_code = icpt_info.exit_code;
6165 vmexit = nested_svm_exit_handled(svm);
6166
6167 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6168 : X86EMUL_CONTINUE;
6169
6170 out:
6171 return ret;
6172 }
6173
6174 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6175 {
6176
6177 }
6178
6179 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6180 {
6181 if (pause_filter_thresh)
6182 shrink_ple_window(vcpu);
6183 }
6184
6185 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6186 {
6187 if (avic_handle_apic_id_update(vcpu) != 0)
6188 return;
6189 avic_handle_dfr_update(vcpu);
6190 avic_handle_ldr_update(vcpu);
6191 }
6192
6193 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6194 {
6195 /* [63:9] are reserved. */
6196 vcpu->arch.mcg_cap &= 0x1ff;
6197 }
6198
6199 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6200 {
6201 struct vcpu_svm *svm = to_svm(vcpu);
6202
6203 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6204 if (!gif_set(svm))
6205 return 0;
6206
6207 if (is_guest_mode(&svm->vcpu) &&
6208 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6209 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6210 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6211 svm->nested.exit_required = true;
6212 return 0;
6213 }
6214
6215 return 1;
6216 }
6217
6218 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6219 {
6220 struct vcpu_svm *svm = to_svm(vcpu);
6221 int ret;
6222
6223 if (is_guest_mode(vcpu)) {
6224 /* FED8h - SVM Guest */
6225 put_smstate(u64, smstate, 0x7ed8, 1);
6226 /* FEE0h - SVM Guest VMCB Physical Address */
6227 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6228
6229 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6230 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6231 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6232
6233 ret = nested_svm_vmexit(svm);
6234 if (ret)
6235 return ret;
6236 }
6237 return 0;
6238 }
6239
6240 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6241 {
6242 struct vcpu_svm *svm = to_svm(vcpu);
6243 struct vmcb *nested_vmcb;
6244 struct kvm_host_map map;
6245 u64 guest;
6246 u64 vmcb;
6247
6248 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6249 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6250
6251 if (guest) {
6252 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6253 return 1;
6254 nested_vmcb = map.hva;
6255 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6256 }
6257 return 0;
6258 }
6259
6260 static int enable_smi_window(struct kvm_vcpu *vcpu)
6261 {
6262 struct vcpu_svm *svm = to_svm(vcpu);
6263
6264 if (!gif_set(svm)) {
6265 if (vgif_enabled(svm))
6266 set_intercept(svm, INTERCEPT_STGI);
6267 /* STGI will cause a vm exit */
6268 return 1;
6269 }
6270 return 0;
6271 }
6272
6273 static int sev_asid_new(void)
6274 {
6275 int pos;
6276
6277 /*
6278 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6279 */
6280 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6281 if (pos >= max_sev_asid)
6282 return -EBUSY;
6283
6284 set_bit(pos, sev_asid_bitmap);
6285 return pos + 1;
6286 }
6287
6288 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6289 {
6290 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6291 int asid, ret;
6292
6293 ret = -EBUSY;
6294 if (unlikely(sev->active))
6295 return ret;
6296
6297 asid = sev_asid_new();
6298 if (asid < 0)
6299 return ret;
6300
6301 ret = sev_platform_init(&argp->error);
6302 if (ret)
6303 goto e_free;
6304
6305 sev->active = true;
6306 sev->asid = asid;
6307 INIT_LIST_HEAD(&sev->regions_list);
6308
6309 return 0;
6310
6311 e_free:
6312 __sev_asid_free(asid);
6313 return ret;
6314 }
6315
6316 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6317 {
6318 struct sev_data_activate *data;
6319 int asid = sev_get_asid(kvm);
6320 int ret;
6321
6322 wbinvd_on_all_cpus();
6323
6324 ret = sev_guest_df_flush(error);
6325 if (ret)
6326 return ret;
6327
6328 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6329 if (!data)
6330 return -ENOMEM;
6331
6332 /* activate ASID on the given handle */
6333 data->handle = handle;
6334 data->asid = asid;
6335 ret = sev_guest_activate(data, error);
6336 kfree(data);
6337
6338 return ret;
6339 }
6340
6341 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6342 {
6343 struct fd f;
6344 int ret;
6345
6346 f = fdget(fd);
6347 if (!f.file)
6348 return -EBADF;
6349
6350 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6351
6352 fdput(f);
6353 return ret;
6354 }
6355
6356 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6357 {
6358 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6359
6360 return __sev_issue_cmd(sev->fd, id, data, error);
6361 }
6362
6363 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6364 {
6365 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6366 struct sev_data_launch_start *start;
6367 struct kvm_sev_launch_start params;
6368 void *dh_blob, *session_blob;
6369 int *error = &argp->error;
6370 int ret;
6371
6372 if (!sev_guest(kvm))
6373 return -ENOTTY;
6374
6375 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6376 return -EFAULT;
6377
6378 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6379 if (!start)
6380 return -ENOMEM;
6381
6382 dh_blob = NULL;
6383 if (params.dh_uaddr) {
6384 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6385 if (IS_ERR(dh_blob)) {
6386 ret = PTR_ERR(dh_blob);
6387 goto e_free;
6388 }
6389
6390 start->dh_cert_address = __sme_set(__pa(dh_blob));
6391 start->dh_cert_len = params.dh_len;
6392 }
6393
6394 session_blob = NULL;
6395 if (params.session_uaddr) {
6396 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6397 if (IS_ERR(session_blob)) {
6398 ret = PTR_ERR(session_blob);
6399 goto e_free_dh;
6400 }
6401
6402 start->session_address = __sme_set(__pa(session_blob));
6403 start->session_len = params.session_len;
6404 }
6405
6406 start->handle = params.handle;
6407 start->policy = params.policy;
6408
6409 /* create memory encryption context */
6410 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6411 if (ret)
6412 goto e_free_session;
6413
6414 /* Bind ASID to this guest */
6415 ret = sev_bind_asid(kvm, start->handle, error);
6416 if (ret)
6417 goto e_free_session;
6418
6419 /* return handle to userspace */
6420 params.handle = start->handle;
6421 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6422 sev_unbind_asid(kvm, start->handle);
6423 ret = -EFAULT;
6424 goto e_free_session;
6425 }
6426
6427 sev->handle = start->handle;
6428 sev->fd = argp->sev_fd;
6429
6430 e_free_session:
6431 kfree(session_blob);
6432 e_free_dh:
6433 kfree(dh_blob);
6434 e_free:
6435 kfree(start);
6436 return ret;
6437 }
6438
6439 static unsigned long get_num_contig_pages(unsigned long idx,
6440 struct page **inpages, unsigned long npages)
6441 {
6442 unsigned long paddr, next_paddr;
6443 unsigned long i = idx + 1, pages = 1;
6444
6445 /* find the number of contiguous pages starting from idx */
6446 paddr = __sme_page_pa(inpages[idx]);
6447 while (i < npages) {
6448 next_paddr = __sme_page_pa(inpages[i++]);
6449 if ((paddr + PAGE_SIZE) == next_paddr) {
6450 pages++;
6451 paddr = next_paddr;
6452 continue;
6453 }
6454 break;
6455 }
6456
6457 return pages;
6458 }
6459
6460 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6461 {
6462 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6463 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6464 struct kvm_sev_launch_update_data params;
6465 struct sev_data_launch_update_data *data;
6466 struct page **inpages;
6467 int ret;
6468
6469 if (!sev_guest(kvm))
6470 return -ENOTTY;
6471
6472 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6473 return -EFAULT;
6474
6475 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6476 if (!data)
6477 return -ENOMEM;
6478
6479 vaddr = params.uaddr;
6480 size = params.len;
6481 vaddr_end = vaddr + size;
6482
6483 /* Lock the user memory. */
6484 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6485 if (!inpages) {
6486 ret = -ENOMEM;
6487 goto e_free;
6488 }
6489
6490 /*
6491 * The LAUNCH_UPDATE command will perform in-place encryption of the
6492 * memory content (i.e it will write the same memory region with C=1).
6493 * It's possible that the cache may contain the data with C=0, i.e.,
6494 * unencrypted so invalidate it first.
6495 */
6496 sev_clflush_pages(inpages, npages);
6497
6498 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6499 int offset, len;
6500
6501 /*
6502 * If the user buffer is not page-aligned, calculate the offset
6503 * within the page.
6504 */
6505 offset = vaddr & (PAGE_SIZE - 1);
6506
6507 /* Calculate the number of pages that can be encrypted in one go. */
6508 pages = get_num_contig_pages(i, inpages, npages);
6509
6510 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6511
6512 data->handle = sev->handle;
6513 data->len = len;
6514 data->address = __sme_page_pa(inpages[i]) + offset;
6515 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6516 if (ret)
6517 goto e_unpin;
6518
6519 size -= len;
6520 next_vaddr = vaddr + len;
6521 }
6522
6523 e_unpin:
6524 /* content of memory is updated, mark pages dirty */
6525 for (i = 0; i < npages; i++) {
6526 set_page_dirty_lock(inpages[i]);
6527 mark_page_accessed(inpages[i]);
6528 }
6529 /* unlock the user pages */
6530 sev_unpin_memory(kvm, inpages, npages);
6531 e_free:
6532 kfree(data);
6533 return ret;
6534 }
6535
6536 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6537 {
6538 void __user *measure = (void __user *)(uintptr_t)argp->data;
6539 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6540 struct sev_data_launch_measure *data;
6541 struct kvm_sev_launch_measure params;
6542 void __user *p = NULL;
6543 void *blob = NULL;
6544 int ret;
6545
6546 if (!sev_guest(kvm))
6547 return -ENOTTY;
6548
6549 if (copy_from_user(&params, measure, sizeof(params)))
6550 return -EFAULT;
6551
6552 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6553 if (!data)
6554 return -ENOMEM;
6555
6556 /* User wants to query the blob length */
6557 if (!params.len)
6558 goto cmd;
6559
6560 p = (void __user *)(uintptr_t)params.uaddr;
6561 if (p) {
6562 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6563 ret = -EINVAL;
6564 goto e_free;
6565 }
6566
6567 ret = -ENOMEM;
6568 blob = kmalloc(params.len, GFP_KERNEL);
6569 if (!blob)
6570 goto e_free;
6571
6572 data->address = __psp_pa(blob);
6573 data->len = params.len;
6574 }
6575
6576 cmd:
6577 data->handle = sev->handle;
6578 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6579
6580 /*
6581 * If we query the session length, FW responded with expected data.
6582 */
6583 if (!params.len)
6584 goto done;
6585
6586 if (ret)
6587 goto e_free_blob;
6588
6589 if (blob) {
6590 if (copy_to_user(p, blob, params.len))
6591 ret = -EFAULT;
6592 }
6593
6594 done:
6595 params.len = data->len;
6596 if (copy_to_user(measure, &params, sizeof(params)))
6597 ret = -EFAULT;
6598 e_free_blob:
6599 kfree(blob);
6600 e_free:
6601 kfree(data);
6602 return ret;
6603 }
6604
6605 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6606 {
6607 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6608 struct sev_data_launch_finish *data;
6609 int ret;
6610
6611 if (!sev_guest(kvm))
6612 return -ENOTTY;
6613
6614 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6615 if (!data)
6616 return -ENOMEM;
6617
6618 data->handle = sev->handle;
6619 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6620
6621 kfree(data);
6622 return ret;
6623 }
6624
6625 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6626 {
6627 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6628 struct kvm_sev_guest_status params;
6629 struct sev_data_guest_status *data;
6630 int ret;
6631
6632 if (!sev_guest(kvm))
6633 return -ENOTTY;
6634
6635 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6636 if (!data)
6637 return -ENOMEM;
6638
6639 data->handle = sev->handle;
6640 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6641 if (ret)
6642 goto e_free;
6643
6644 params.policy = data->policy;
6645 params.state = data->state;
6646 params.handle = data->handle;
6647
6648 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6649 ret = -EFAULT;
6650 e_free:
6651 kfree(data);
6652 return ret;
6653 }
6654
6655 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6656 unsigned long dst, int size,
6657 int *error, bool enc)
6658 {
6659 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6660 struct sev_data_dbg *data;
6661 int ret;
6662
6663 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6664 if (!data)
6665 return -ENOMEM;
6666
6667 data->handle = sev->handle;
6668 data->dst_addr = dst;
6669 data->src_addr = src;
6670 data->len = size;
6671
6672 ret = sev_issue_cmd(kvm,
6673 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6674 data, error);
6675 kfree(data);
6676 return ret;
6677 }
6678
6679 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6680 unsigned long dst_paddr, int sz, int *err)
6681 {
6682 int offset;
6683
6684 /*
6685 * Its safe to read more than we are asked, caller should ensure that
6686 * destination has enough space.
6687 */
6688 src_paddr = round_down(src_paddr, 16);
6689 offset = src_paddr & 15;
6690 sz = round_up(sz + offset, 16);
6691
6692 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6693 }
6694
6695 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6696 unsigned long __user dst_uaddr,
6697 unsigned long dst_paddr,
6698 int size, int *err)
6699 {
6700 struct page *tpage = NULL;
6701 int ret, offset;
6702
6703 /* if inputs are not 16-byte then use intermediate buffer */
6704 if (!IS_ALIGNED(dst_paddr, 16) ||
6705 !IS_ALIGNED(paddr, 16) ||
6706 !IS_ALIGNED(size, 16)) {
6707 tpage = (void *)alloc_page(GFP_KERNEL);
6708 if (!tpage)
6709 return -ENOMEM;
6710
6711 dst_paddr = __sme_page_pa(tpage);
6712 }
6713
6714 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6715 if (ret)
6716 goto e_free;
6717
6718 if (tpage) {
6719 offset = paddr & 15;
6720 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6721 page_address(tpage) + offset, size))
6722 ret = -EFAULT;
6723 }
6724
6725 e_free:
6726 if (tpage)
6727 __free_page(tpage);
6728
6729 return ret;
6730 }
6731
6732 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6733 unsigned long __user vaddr,
6734 unsigned long dst_paddr,
6735 unsigned long __user dst_vaddr,
6736 int size, int *error)
6737 {
6738 struct page *src_tpage = NULL;
6739 struct page *dst_tpage = NULL;
6740 int ret, len = size;
6741
6742 /* If source buffer is not aligned then use an intermediate buffer */
6743 if (!IS_ALIGNED(vaddr, 16)) {
6744 src_tpage = alloc_page(GFP_KERNEL);
6745 if (!src_tpage)
6746 return -ENOMEM;
6747
6748 if (copy_from_user(page_address(src_tpage),
6749 (void __user *)(uintptr_t)vaddr, size)) {
6750 __free_page(src_tpage);
6751 return -EFAULT;
6752 }
6753
6754 paddr = __sme_page_pa(src_tpage);
6755 }
6756
6757 /*
6758 * If destination buffer or length is not aligned then do read-modify-write:
6759 * - decrypt destination in an intermediate buffer
6760 * - copy the source buffer in an intermediate buffer
6761 * - use the intermediate buffer as source buffer
6762 */
6763 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6764 int dst_offset;
6765
6766 dst_tpage = alloc_page(GFP_KERNEL);
6767 if (!dst_tpage) {
6768 ret = -ENOMEM;
6769 goto e_free;
6770 }
6771
6772 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6773 __sme_page_pa(dst_tpage), size, error);
6774 if (ret)
6775 goto e_free;
6776
6777 /*
6778 * If source is kernel buffer then use memcpy() otherwise
6779 * copy_from_user().
6780 */
6781 dst_offset = dst_paddr & 15;
6782
6783 if (src_tpage)
6784 memcpy(page_address(dst_tpage) + dst_offset,
6785 page_address(src_tpage), size);
6786 else {
6787 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6788 (void __user *)(uintptr_t)vaddr, size)) {
6789 ret = -EFAULT;
6790 goto e_free;
6791 }
6792 }
6793
6794 paddr = __sme_page_pa(dst_tpage);
6795 dst_paddr = round_down(dst_paddr, 16);
6796 len = round_up(size, 16);
6797 }
6798
6799 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6800
6801 e_free:
6802 if (src_tpage)
6803 __free_page(src_tpage);
6804 if (dst_tpage)
6805 __free_page(dst_tpage);
6806 return ret;
6807 }
6808
6809 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6810 {
6811 unsigned long vaddr, vaddr_end, next_vaddr;
6812 unsigned long dst_vaddr;
6813 struct page **src_p, **dst_p;
6814 struct kvm_sev_dbg debug;
6815 unsigned long n;
6816 unsigned int size;
6817 int ret;
6818
6819 if (!sev_guest(kvm))
6820 return -ENOTTY;
6821
6822 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6823 return -EFAULT;
6824
6825 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6826 return -EINVAL;
6827 if (!debug.dst_uaddr)
6828 return -EINVAL;
6829
6830 vaddr = debug.src_uaddr;
6831 size = debug.len;
6832 vaddr_end = vaddr + size;
6833 dst_vaddr = debug.dst_uaddr;
6834
6835 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6836 int len, s_off, d_off;
6837
6838 /* lock userspace source and destination page */
6839 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6840 if (!src_p)
6841 return -EFAULT;
6842
6843 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6844 if (!dst_p) {
6845 sev_unpin_memory(kvm, src_p, n);
6846 return -EFAULT;
6847 }
6848
6849 /*
6850 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6851 * memory content (i.e it will write the same memory region with C=1).
6852 * It's possible that the cache may contain the data with C=0, i.e.,
6853 * unencrypted so invalidate it first.
6854 */
6855 sev_clflush_pages(src_p, 1);
6856 sev_clflush_pages(dst_p, 1);
6857
6858 /*
6859 * Since user buffer may not be page aligned, calculate the
6860 * offset within the page.
6861 */
6862 s_off = vaddr & ~PAGE_MASK;
6863 d_off = dst_vaddr & ~PAGE_MASK;
6864 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6865
6866 if (dec)
6867 ret = __sev_dbg_decrypt_user(kvm,
6868 __sme_page_pa(src_p[0]) + s_off,
6869 dst_vaddr,
6870 __sme_page_pa(dst_p[0]) + d_off,
6871 len, &argp->error);
6872 else
6873 ret = __sev_dbg_encrypt_user(kvm,
6874 __sme_page_pa(src_p[0]) + s_off,
6875 vaddr,
6876 __sme_page_pa(dst_p[0]) + d_off,
6877 dst_vaddr,
6878 len, &argp->error);
6879
6880 sev_unpin_memory(kvm, src_p, n);
6881 sev_unpin_memory(kvm, dst_p, n);
6882
6883 if (ret)
6884 goto err;
6885
6886 next_vaddr = vaddr + len;
6887 dst_vaddr = dst_vaddr + len;
6888 size -= len;
6889 }
6890 err:
6891 return ret;
6892 }
6893
6894 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6895 {
6896 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6897 struct sev_data_launch_secret *data;
6898 struct kvm_sev_launch_secret params;
6899 struct page **pages;
6900 void *blob, *hdr;
6901 unsigned long n;
6902 int ret, offset;
6903
6904 if (!sev_guest(kvm))
6905 return -ENOTTY;
6906
6907 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6908 return -EFAULT;
6909
6910 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6911 if (!pages)
6912 return -ENOMEM;
6913
6914 /*
6915 * The secret must be copied into contiguous memory region, lets verify
6916 * that userspace memory pages are contiguous before we issue command.
6917 */
6918 if (get_num_contig_pages(0, pages, n) != n) {
6919 ret = -EINVAL;
6920 goto e_unpin_memory;
6921 }
6922
6923 ret = -ENOMEM;
6924 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6925 if (!data)
6926 goto e_unpin_memory;
6927
6928 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6929 data->guest_address = __sme_page_pa(pages[0]) + offset;
6930 data->guest_len = params.guest_len;
6931
6932 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6933 if (IS_ERR(blob)) {
6934 ret = PTR_ERR(blob);
6935 goto e_free;
6936 }
6937
6938 data->trans_address = __psp_pa(blob);
6939 data->trans_len = params.trans_len;
6940
6941 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6942 if (IS_ERR(hdr)) {
6943 ret = PTR_ERR(hdr);
6944 goto e_free_blob;
6945 }
6946 data->hdr_address = __psp_pa(hdr);
6947 data->hdr_len = params.hdr_len;
6948
6949 data->handle = sev->handle;
6950 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6951
6952 kfree(hdr);
6953
6954 e_free_blob:
6955 kfree(blob);
6956 e_free:
6957 kfree(data);
6958 e_unpin_memory:
6959 sev_unpin_memory(kvm, pages, n);
6960 return ret;
6961 }
6962
6963 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6964 {
6965 struct kvm_sev_cmd sev_cmd;
6966 int r;
6967
6968 if (!svm_sev_enabled())
6969 return -ENOTTY;
6970
6971 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6972 return -EFAULT;
6973
6974 mutex_lock(&kvm->lock);
6975
6976 switch (sev_cmd.id) {
6977 case KVM_SEV_INIT:
6978 r = sev_guest_init(kvm, &sev_cmd);
6979 break;
6980 case KVM_SEV_LAUNCH_START:
6981 r = sev_launch_start(kvm, &sev_cmd);
6982 break;
6983 case KVM_SEV_LAUNCH_UPDATE_DATA:
6984 r = sev_launch_update_data(kvm, &sev_cmd);
6985 break;
6986 case KVM_SEV_LAUNCH_MEASURE:
6987 r = sev_launch_measure(kvm, &sev_cmd);
6988 break;
6989 case KVM_SEV_LAUNCH_FINISH:
6990 r = sev_launch_finish(kvm, &sev_cmd);
6991 break;
6992 case KVM_SEV_GUEST_STATUS:
6993 r = sev_guest_status(kvm, &sev_cmd);
6994 break;
6995 case KVM_SEV_DBG_DECRYPT:
6996 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6997 break;
6998 case KVM_SEV_DBG_ENCRYPT:
6999 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7000 break;
7001 case KVM_SEV_LAUNCH_SECRET:
7002 r = sev_launch_secret(kvm, &sev_cmd);
7003 break;
7004 default:
7005 r = -EINVAL;
7006 goto out;
7007 }
7008
7009 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7010 r = -EFAULT;
7011
7012 out:
7013 mutex_unlock(&kvm->lock);
7014 return r;
7015 }
7016
7017 static int svm_register_enc_region(struct kvm *kvm,
7018 struct kvm_enc_region *range)
7019 {
7020 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7021 struct enc_region *region;
7022 int ret = 0;
7023
7024 if (!sev_guest(kvm))
7025 return -ENOTTY;
7026
7027 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7028 return -EINVAL;
7029
7030 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7031 if (!region)
7032 return -ENOMEM;
7033
7034 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7035 if (!region->pages) {
7036 ret = -ENOMEM;
7037 goto e_free;
7038 }
7039
7040 /*
7041 * The guest may change the memory encryption attribute from C=0 -> C=1
7042 * or vice versa for this memory range. Lets make sure caches are
7043 * flushed to ensure that guest data gets written into memory with
7044 * correct C-bit.
7045 */
7046 sev_clflush_pages(region->pages, region->npages);
7047
7048 region->uaddr = range->addr;
7049 region->size = range->size;
7050
7051 mutex_lock(&kvm->lock);
7052 list_add_tail(&region->list, &sev->regions_list);
7053 mutex_unlock(&kvm->lock);
7054
7055 return ret;
7056
7057 e_free:
7058 kfree(region);
7059 return ret;
7060 }
7061
7062 static struct enc_region *
7063 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7064 {
7065 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7066 struct list_head *head = &sev->regions_list;
7067 struct enc_region *i;
7068
7069 list_for_each_entry(i, head, list) {
7070 if (i->uaddr == range->addr &&
7071 i->size == range->size)
7072 return i;
7073 }
7074
7075 return NULL;
7076 }
7077
7078
7079 static int svm_unregister_enc_region(struct kvm *kvm,
7080 struct kvm_enc_region *range)
7081 {
7082 struct enc_region *region;
7083 int ret;
7084
7085 mutex_lock(&kvm->lock);
7086
7087 if (!sev_guest(kvm)) {
7088 ret = -ENOTTY;
7089 goto failed;
7090 }
7091
7092 region = find_enc_region(kvm, range);
7093 if (!region) {
7094 ret = -EINVAL;
7095 goto failed;
7096 }
7097
7098 __unregister_enc_region_locked(kvm, region);
7099
7100 mutex_unlock(&kvm->lock);
7101 return 0;
7102
7103 failed:
7104 mutex_unlock(&kvm->lock);
7105 return ret;
7106 }
7107
7108 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7109 {
7110 unsigned long cr4 = kvm_read_cr4(vcpu);
7111 bool smep = cr4 & X86_CR4_SMEP;
7112 bool smap = cr4 & X86_CR4_SMAP;
7113 bool is_user = svm_get_cpl(vcpu) == 3;
7114
7115 /*
7116 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7117 *
7118 * Errata:
7119 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7120 * possible that CPU microcode implementing DecodeAssist will fail
7121 * to read bytes of instruction which caused #NPF. In this case,
7122 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7123 * return 0 instead of the correct guest instruction bytes.
7124 *
7125 * This happens because CPU microcode reading instruction bytes
7126 * uses a special opcode which attempts to read data using CPL=0
7127 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7128 * fault, it gives up and returns no instruction bytes.
7129 *
7130 * Detection:
7131 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7132 * returned 0 in GuestIntrBytes field of the VMCB.
7133 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7134 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7135 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7136 * a SMEP fault instead of #NPF).
7137 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7138 * As most guests enable SMAP if they have also enabled SMEP, use above
7139 * logic in order to attempt minimize false-positive of detecting errata
7140 * while still preserving all cases semantic correctness.
7141 *
7142 * Workaround:
7143 * To determine what instruction the guest was executing, the hypervisor
7144 * will have to decode the instruction at the instruction pointer.
7145 *
7146 * In non SEV guest, hypervisor will be able to read the guest
7147 * memory to decode the instruction pointer when insn_len is zero
7148 * so we return true to indicate that decoding is possible.
7149 *
7150 * But in the SEV guest, the guest memory is encrypted with the
7151 * guest specific key and hypervisor will not be able to decode the
7152 * instruction pointer so we will not able to workaround it. Lets
7153 * print the error and request to kill the guest.
7154 */
7155 if (smap && (!smep || is_user)) {
7156 if (!sev_guest(vcpu->kvm))
7157 return true;
7158
7159 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7160 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7161 }
7162
7163 return false;
7164 }
7165
7166 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7167 {
7168 struct vcpu_svm *svm = to_svm(vcpu);
7169
7170 /*
7171 * TODO: Last condition latch INIT signals on vCPU when
7172 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7173 * To properly emulate the INIT intercept, SVM should implement
7174 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7175 * there if an INIT signal is pending.
7176 */
7177 return !gif_set(svm) ||
7178 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7179 }
7180
7181 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7182 .cpu_has_kvm_support = has_svm,
7183 .disabled_by_bios = is_disabled,
7184 .hardware_setup = svm_hardware_setup,
7185 .hardware_unsetup = svm_hardware_unsetup,
7186 .check_processor_compatibility = svm_check_processor_compat,
7187 .hardware_enable = svm_hardware_enable,
7188 .hardware_disable = svm_hardware_disable,
7189 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7190 .has_emulated_msr = svm_has_emulated_msr,
7191
7192 .vcpu_create = svm_create_vcpu,
7193 .vcpu_free = svm_free_vcpu,
7194 .vcpu_reset = svm_vcpu_reset,
7195
7196 .vm_alloc = svm_vm_alloc,
7197 .vm_free = svm_vm_free,
7198 .vm_init = avic_vm_init,
7199 .vm_destroy = svm_vm_destroy,
7200
7201 .prepare_guest_switch = svm_prepare_guest_switch,
7202 .vcpu_load = svm_vcpu_load,
7203 .vcpu_put = svm_vcpu_put,
7204 .vcpu_blocking = svm_vcpu_blocking,
7205 .vcpu_unblocking = svm_vcpu_unblocking,
7206
7207 .update_bp_intercept = update_bp_intercept,
7208 .get_msr_feature = svm_get_msr_feature,
7209 .get_msr = svm_get_msr,
7210 .set_msr = svm_set_msr,
7211 .get_segment_base = svm_get_segment_base,
7212 .get_segment = svm_get_segment,
7213 .set_segment = svm_set_segment,
7214 .get_cpl = svm_get_cpl,
7215 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7216 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7217 .decache_cr3 = svm_decache_cr3,
7218 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7219 .set_cr0 = svm_set_cr0,
7220 .set_cr3 = svm_set_cr3,
7221 .set_cr4 = svm_set_cr4,
7222 .set_efer = svm_set_efer,
7223 .get_idt = svm_get_idt,
7224 .set_idt = svm_set_idt,
7225 .get_gdt = svm_get_gdt,
7226 .set_gdt = svm_set_gdt,
7227 .get_dr6 = svm_get_dr6,
7228 .set_dr6 = svm_set_dr6,
7229 .set_dr7 = svm_set_dr7,
7230 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7231 .cache_reg = svm_cache_reg,
7232 .get_rflags = svm_get_rflags,
7233 .set_rflags = svm_set_rflags,
7234
7235 .tlb_flush = svm_flush_tlb,
7236 .tlb_flush_gva = svm_flush_tlb_gva,
7237
7238 .run = svm_vcpu_run,
7239 .handle_exit = handle_exit,
7240 .skip_emulated_instruction = skip_emulated_instruction,
7241 .set_interrupt_shadow = svm_set_interrupt_shadow,
7242 .get_interrupt_shadow = svm_get_interrupt_shadow,
7243 .patch_hypercall = svm_patch_hypercall,
7244 .set_irq = svm_set_irq,
7245 .set_nmi = svm_inject_nmi,
7246 .queue_exception = svm_queue_exception,
7247 .cancel_injection = svm_cancel_injection,
7248 .interrupt_allowed = svm_interrupt_allowed,
7249 .nmi_allowed = svm_nmi_allowed,
7250 .get_nmi_mask = svm_get_nmi_mask,
7251 .set_nmi_mask = svm_set_nmi_mask,
7252 .enable_nmi_window = enable_nmi_window,
7253 .enable_irq_window = enable_irq_window,
7254 .update_cr8_intercept = update_cr8_intercept,
7255 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7256 .get_enable_apicv = svm_get_enable_apicv,
7257 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7258 .load_eoi_exitmap = svm_load_eoi_exitmap,
7259 .hwapic_irr_update = svm_hwapic_irr_update,
7260 .hwapic_isr_update = svm_hwapic_isr_update,
7261 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7262 .apicv_post_state_restore = avic_post_state_restore,
7263
7264 .set_tss_addr = svm_set_tss_addr,
7265 .set_identity_map_addr = svm_set_identity_map_addr,
7266 .get_tdp_level = get_npt_level,
7267 .get_mt_mask = svm_get_mt_mask,
7268
7269 .get_exit_info = svm_get_exit_info,
7270
7271 .get_lpage_level = svm_get_lpage_level,
7272
7273 .cpuid_update = svm_cpuid_update,
7274
7275 .rdtscp_supported = svm_rdtscp_supported,
7276 .invpcid_supported = svm_invpcid_supported,
7277 .mpx_supported = svm_mpx_supported,
7278 .xsaves_supported = svm_xsaves_supported,
7279 .umip_emulated = svm_umip_emulated,
7280 .pt_supported = svm_pt_supported,
7281
7282 .set_supported_cpuid = svm_set_supported_cpuid,
7283
7284 .has_wbinvd_exit = svm_has_wbinvd_exit,
7285
7286 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7287 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7288
7289 .set_tdp_cr3 = set_tdp_cr3,
7290
7291 .check_intercept = svm_check_intercept,
7292 .handle_exit_irqoff = svm_handle_exit_irqoff,
7293
7294 .request_immediate_exit = __kvm_request_immediate_exit,
7295
7296 .sched_in = svm_sched_in,
7297
7298 .pmu_ops = &amd_pmu_ops,
7299 .deliver_posted_interrupt = svm_deliver_avic_intr,
7300 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7301 .update_pi_irte = svm_update_pi_irte,
7302 .setup_mce = svm_setup_mce,
7303
7304 .smi_allowed = svm_smi_allowed,
7305 .pre_enter_smm = svm_pre_enter_smm,
7306 .pre_leave_smm = svm_pre_leave_smm,
7307 .enable_smi_window = enable_smi_window,
7308
7309 .mem_enc_op = svm_mem_enc_op,
7310 .mem_enc_reg_region = svm_register_enc_region,
7311 .mem_enc_unreg_region = svm_unregister_enc_region,
7312
7313 .nested_enable_evmcs = NULL,
7314 .nested_get_evmcs_version = NULL,
7315
7316 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7317
7318 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7319 };
7320
7321 static int __init svm_init(void)
7322 {
7323 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7324 __alignof__(struct vcpu_svm), THIS_MODULE);
7325 }
7326
7327 static void __exit svm_exit(void)
7328 {
7329 kvm_exit();
7330 }
7331
7332 module_init(svm_init)
7333 module_exit(svm_exit)