]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/vmx/nested.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23 * Hyper-V requires all of these, so mark them as supported even though
24 * they are just treated the same as all-context.
25 */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
27 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
28 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
29 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
30 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35 VMX_VMREAD_BITMAP,
36 VMX_VMWRITE_BITMAP,
37 VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49 ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56 ARRAY_SIZE(shadow_read_write_fields);
57
58 void init_vmcs_shadow_fields(void)
59 {
60 int i, j;
61
62 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66 u16 field = shadow_read_only_fields[i];
67
68 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69 (i + 1 == max_shadow_read_only_fields ||
70 shadow_read_only_fields[i + 1] != field + 1))
71 pr_err("Missing field from shadow_read_only_field %x\n",
72 field + 1);
73
74 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76 if (field & 1)
77 continue;
78 #endif
79 if (j < i)
80 shadow_read_only_fields[j] = field;
81 j++;
82 }
83 max_shadow_read_only_fields = j;
84
85 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86 u16 field = shadow_read_write_fields[i];
87
88 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89 (i + 1 == max_shadow_read_write_fields ||
90 shadow_read_write_fields[i + 1] != field + 1))
91 pr_err("Missing field from shadow_read_write_field %x\n",
92 field + 1);
93
94 /*
95 * PML and the preemption timer can be emulated, but the
96 * processor cannot vmwrite to fields that don't exist
97 * on bare metal.
98 */
99 switch (field) {
100 case GUEST_PML_INDEX:
101 if (!cpu_has_vmx_pml())
102 continue;
103 break;
104 case VMX_PREEMPTION_TIMER_VALUE:
105 if (!cpu_has_vmx_preemption_timer())
106 continue;
107 break;
108 case GUEST_INTR_STATUS:
109 if (!cpu_has_vmx_apicv())
110 continue;
111 break;
112 default:
113 break;
114 }
115
116 clear_bit(field, vmx_vmwrite_bitmap);
117 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119 if (field & 1)
120 continue;
121 #endif
122 if (j < i)
123 shadow_read_write_fields[j] = field;
124 j++;
125 }
126 max_shadow_read_write_fields = j;
127 }
128
129 /*
130 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131 * set the success or error code of an emulated VMX instruction (as specified
132 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133 * instruction.
134 */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140 return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147 X86_EFLAGS_SF | X86_EFLAGS_OF))
148 | X86_EFLAGS_CF);
149 return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153 u32 vm_instruction_error)
154 {
155 struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157 /*
158 * failValid writes the error number to the current VMCS, which
159 * can't be done if there isn't a current VMCS.
160 */
161 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162 return nested_vmx_failInvalid(vcpu);
163
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_ZF);
168 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169 /*
170 * We don't need to force a shadow sync because
171 * VM_INSTRUCTION_ERROR is not shadowed
172 */
173 return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178 /* TODO: not to reset guest simply here. */
179 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186 vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 if (!vmx->nested.hv_evmcs)
194 return;
195
196 kunmap(vmx->nested.hv_evmcs_page);
197 kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198 vmx->nested.hv_evmcs_vmptr = -1ull;
199 vmx->nested.hv_evmcs_page = NULL;
200 vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205 * just stops using VMX.
206 */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209 struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212 return;
213
214 vmx->nested.vmxon = false;
215 vmx->nested.smm.vmxon = false;
216 free_vpid(vmx->nested.vpid02);
217 vmx->nested.posted_intr_nv = -1;
218 vmx->nested.current_vmptr = -1ull;
219 if (enable_shadow_vmcs) {
220 vmx_disable_shadow_vmcs(vmx);
221 vmcs_clear(vmx->vmcs01.shadow_vmcs);
222 free_vmcs(vmx->vmcs01.shadow_vmcs);
223 vmx->vmcs01.shadow_vmcs = NULL;
224 }
225 kfree(vmx->nested.cached_vmcs12);
226 kfree(vmx->nested.cached_shadow_vmcs12);
227 /* Unpin physical memory we referred to in the vmcs02 */
228 if (vmx->nested.apic_access_page) {
229 kvm_release_page_dirty(vmx->nested.apic_access_page);
230 vmx->nested.apic_access_page = NULL;
231 }
232 if (vmx->nested.virtual_apic_page) {
233 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234 vmx->nested.virtual_apic_page = NULL;
235 }
236 if (vmx->nested.pi_desc_page) {
237 kunmap(vmx->nested.pi_desc_page);
238 kvm_release_page_dirty(vmx->nested.pi_desc_page);
239 vmx->nested.pi_desc_page = NULL;
240 vmx->nested.pi_desc = NULL;
241 }
242
243 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244
245 nested_release_evmcs(vcpu);
246
247 free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252 struct vcpu_vmx *vmx = to_vmx(vcpu);
253 int cpu;
254
255 if (vmx->loaded_vmcs == vmcs)
256 return;
257
258 cpu = get_cpu();
259 vmx_vcpu_put(vcpu);
260 vmx->loaded_vmcs = vmcs;
261 vmx_vcpu_load(vcpu, cpu);
262 put_cpu();
263
264 vm_entry_controls_reset_shadow(vmx);
265 vm_exit_controls_reset_shadow(vmx);
266 vmx_segment_cache_clear(vmx);
267 }
268
269 /*
270 * Ensure that the current vmcs of the logical processor is the
271 * vmcs01 of the vcpu before calling free_nested().
272 */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275 vcpu_load(vcpu);
276 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
277 free_nested(vcpu);
278 vcpu_put(vcpu);
279 }
280
281 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
282 struct x86_exception *fault)
283 {
284 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
285 struct vcpu_vmx *vmx = to_vmx(vcpu);
286 u32 exit_reason;
287 unsigned long exit_qualification = vcpu->arch.exit_qualification;
288
289 if (vmx->nested.pml_full) {
290 exit_reason = EXIT_REASON_PML_FULL;
291 vmx->nested.pml_full = false;
292 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
293 } else if (fault->error_code & PFERR_RSVD_MASK)
294 exit_reason = EXIT_REASON_EPT_MISCONFIG;
295 else
296 exit_reason = EXIT_REASON_EPT_VIOLATION;
297
298 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
299 vmcs12->guest_physical_address = fault->address;
300 }
301
302 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
303 {
304 WARN_ON(mmu_is_nested(vcpu));
305
306 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
307 kvm_init_shadow_ept_mmu(vcpu,
308 to_vmx(vcpu)->nested.msrs.ept_caps &
309 VMX_EPT_EXECUTE_ONLY_BIT,
310 nested_ept_ad_enabled(vcpu),
311 nested_ept_get_cr3(vcpu));
312 vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
313 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
314 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
315 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
316
317 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
318 }
319
320 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
321 {
322 vcpu->arch.mmu = &vcpu->arch.root_mmu;
323 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
324 }
325
326 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
327 u16 error_code)
328 {
329 bool inequality, bit;
330
331 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
332 inequality =
333 (error_code & vmcs12->page_fault_error_code_mask) !=
334 vmcs12->page_fault_error_code_match;
335 return inequality ^ bit;
336 }
337
338
339 /*
340 * KVM wants to inject page-faults which it got to the guest. This function
341 * checks whether in a nested guest, we need to inject them to L1 or L2.
342 */
343 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
344 {
345 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
346 unsigned int nr = vcpu->arch.exception.nr;
347 bool has_payload = vcpu->arch.exception.has_payload;
348 unsigned long payload = vcpu->arch.exception.payload;
349
350 if (nr == PF_VECTOR) {
351 if (vcpu->arch.exception.nested_apf) {
352 *exit_qual = vcpu->arch.apf.nested_apf_token;
353 return 1;
354 }
355 if (nested_vmx_is_page_fault_vmexit(vmcs12,
356 vcpu->arch.exception.error_code)) {
357 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
358 return 1;
359 }
360 } else if (vmcs12->exception_bitmap & (1u << nr)) {
361 if (nr == DB_VECTOR) {
362 if (!has_payload) {
363 payload = vcpu->arch.dr6;
364 payload &= ~(DR6_FIXED_1 | DR6_BT);
365 payload ^= DR6_RTM;
366 }
367 *exit_qual = payload;
368 } else
369 *exit_qual = 0;
370 return 1;
371 }
372
373 return 0;
374 }
375
376
377 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
378 struct x86_exception *fault)
379 {
380 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
381
382 WARN_ON(!is_guest_mode(vcpu));
383
384 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
385 !to_vmx(vcpu)->nested.nested_run_pending) {
386 vmcs12->vm_exit_intr_error_code = fault->error_code;
387 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
388 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
389 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
390 fault->address);
391 } else {
392 kvm_inject_page_fault(vcpu, fault);
393 }
394 }
395
396 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
397 {
398 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
399 }
400
401 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
402 struct vmcs12 *vmcs12)
403 {
404 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
405 return 0;
406
407 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
408 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
409 return -EINVAL;
410
411 return 0;
412 }
413
414 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
415 struct vmcs12 *vmcs12)
416 {
417 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
418 return 0;
419
420 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
421 return -EINVAL;
422
423 return 0;
424 }
425
426 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
427 struct vmcs12 *vmcs12)
428 {
429 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
430 return 0;
431
432 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
433 return -EINVAL;
434
435 return 0;
436 }
437
438 /*
439 * Check if MSR is intercepted for L01 MSR bitmap.
440 */
441 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
442 {
443 unsigned long *msr_bitmap;
444 int f = sizeof(unsigned long);
445
446 if (!cpu_has_vmx_msr_bitmap())
447 return true;
448
449 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
450
451 if (msr <= 0x1fff) {
452 return !!test_bit(msr, msr_bitmap + 0x800 / f);
453 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
454 msr &= 0x1fff;
455 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
456 }
457
458 return true;
459 }
460
461 /*
462 * If a msr is allowed by L0, we should check whether it is allowed by L1.
463 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
464 */
465 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
466 unsigned long *msr_bitmap_nested,
467 u32 msr, int type)
468 {
469 int f = sizeof(unsigned long);
470
471 /*
472 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
473 * have the write-low and read-high bitmap offsets the wrong way round.
474 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
475 */
476 if (msr <= 0x1fff) {
477 if (type & MSR_TYPE_R &&
478 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
479 /* read-low */
480 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
481
482 if (type & MSR_TYPE_W &&
483 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
484 /* write-low */
485 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
486
487 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
488 msr &= 0x1fff;
489 if (type & MSR_TYPE_R &&
490 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
491 /* read-high */
492 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
493
494 if (type & MSR_TYPE_W &&
495 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
496 /* write-high */
497 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
498
499 }
500 }
501
502 /*
503 * Merge L0's and L1's MSR bitmap, return false to indicate that
504 * we do not use the hardware.
505 */
506 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
507 struct vmcs12 *vmcs12)
508 {
509 int msr;
510 struct page *page;
511 unsigned long *msr_bitmap_l1;
512 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
513 /*
514 * pred_cmd & spec_ctrl are trying to verify two things:
515 *
516 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
517 * ensures that we do not accidentally generate an L02 MSR bitmap
518 * from the L12 MSR bitmap that is too permissive.
519 * 2. That L1 or L2s have actually used the MSR. This avoids
520 * unnecessarily merging of the bitmap if the MSR is unused. This
521 * works properly because we only update the L01 MSR bitmap lazily.
522 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
523 * updated to reflect this when L1 (or its L2s) actually write to
524 * the MSR.
525 */
526 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
527 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
528
529 /* Nothing to do if the MSR bitmap is not in use. */
530 if (!cpu_has_vmx_msr_bitmap() ||
531 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
532 return false;
533
534 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
535 !pred_cmd && !spec_ctrl)
536 return false;
537
538 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
539 if (is_error_page(page))
540 return false;
541
542 msr_bitmap_l1 = (unsigned long *)kmap(page);
543 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
544 /*
545 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
546 * just lets the processor take the value from the virtual-APIC page;
547 * take those 256 bits directly from the L1 bitmap.
548 */
549 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550 unsigned word = msr / BITS_PER_LONG;
551 msr_bitmap_l0[word] = msr_bitmap_l1[word];
552 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
553 }
554 } else {
555 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
556 unsigned word = msr / BITS_PER_LONG;
557 msr_bitmap_l0[word] = ~0;
558 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
559 }
560 }
561
562 nested_vmx_disable_intercept_for_msr(
563 msr_bitmap_l1, msr_bitmap_l0,
564 X2APIC_MSR(APIC_TASKPRI),
565 MSR_TYPE_W);
566
567 if (nested_cpu_has_vid(vmcs12)) {
568 nested_vmx_disable_intercept_for_msr(
569 msr_bitmap_l1, msr_bitmap_l0,
570 X2APIC_MSR(APIC_EOI),
571 MSR_TYPE_W);
572 nested_vmx_disable_intercept_for_msr(
573 msr_bitmap_l1, msr_bitmap_l0,
574 X2APIC_MSR(APIC_SELF_IPI),
575 MSR_TYPE_W);
576 }
577
578 if (spec_ctrl)
579 nested_vmx_disable_intercept_for_msr(
580 msr_bitmap_l1, msr_bitmap_l0,
581 MSR_IA32_SPEC_CTRL,
582 MSR_TYPE_R | MSR_TYPE_W);
583
584 if (pred_cmd)
585 nested_vmx_disable_intercept_for_msr(
586 msr_bitmap_l1, msr_bitmap_l0,
587 MSR_IA32_PRED_CMD,
588 MSR_TYPE_W);
589
590 kunmap(page);
591 kvm_release_page_clean(page);
592
593 return true;
594 }
595
596 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
597 struct vmcs12 *vmcs12)
598 {
599 struct vmcs12 *shadow;
600 struct page *page;
601
602 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
603 vmcs12->vmcs_link_pointer == -1ull)
604 return;
605
606 shadow = get_shadow_vmcs12(vcpu);
607 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
608
609 memcpy(shadow, kmap(page), VMCS12_SIZE);
610
611 kunmap(page);
612 kvm_release_page_clean(page);
613 }
614
615 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
616 struct vmcs12 *vmcs12)
617 {
618 struct vcpu_vmx *vmx = to_vmx(vcpu);
619
620 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
621 vmcs12->vmcs_link_pointer == -1ull)
622 return;
623
624 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
625 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
626 }
627
628 /*
629 * In nested virtualization, check if L1 has set
630 * VM_EXIT_ACK_INTR_ON_EXIT
631 */
632 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
633 {
634 return get_vmcs12(vcpu)->vm_exit_controls &
635 VM_EXIT_ACK_INTR_ON_EXIT;
636 }
637
638 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
639 {
640 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
641 }
642
643 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
644 struct vmcs12 *vmcs12)
645 {
646 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
647 !page_address_valid(vcpu, vmcs12->apic_access_addr))
648 return -EINVAL;
649 else
650 return 0;
651 }
652
653 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
654 struct vmcs12 *vmcs12)
655 {
656 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
657 !nested_cpu_has_apic_reg_virt(vmcs12) &&
658 !nested_cpu_has_vid(vmcs12) &&
659 !nested_cpu_has_posted_intr(vmcs12))
660 return 0;
661
662 /*
663 * If virtualize x2apic mode is enabled,
664 * virtualize apic access must be disabled.
665 */
666 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
667 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
668 return -EINVAL;
669
670 /*
671 * If virtual interrupt delivery is enabled,
672 * we must exit on external interrupts.
673 */
674 if (nested_cpu_has_vid(vmcs12) &&
675 !nested_exit_on_intr(vcpu))
676 return -EINVAL;
677
678 /*
679 * bits 15:8 should be zero in posted_intr_nv,
680 * the descriptor address has been already checked
681 * in nested_get_vmcs12_pages.
682 *
683 * bits 5:0 of posted_intr_desc_addr should be zero.
684 */
685 if (nested_cpu_has_posted_intr(vmcs12) &&
686 (!nested_cpu_has_vid(vmcs12) ||
687 !nested_exit_intr_ack_set(vcpu) ||
688 (vmcs12->posted_intr_nv & 0xff00) ||
689 (vmcs12->posted_intr_desc_addr & 0x3f) ||
690 (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
691 return -EINVAL;
692
693 /* tpr shadow is needed by all apicv features. */
694 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
695 return -EINVAL;
696
697 return 0;
698 }
699
700 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
701 u32 count, u64 addr)
702 {
703 int maxphyaddr;
704
705 if (count == 0)
706 return 0;
707 maxphyaddr = cpuid_maxphyaddr(vcpu);
708 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
709 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
710 return -EINVAL;
711
712 return 0;
713 }
714
715 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
716 struct vmcs12 *vmcs12)
717 {
718 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
719 vmcs12->vm_exit_msr_load_addr) ||
720 nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
721 vmcs12->vm_exit_msr_store_addr))
722 return -EINVAL;
723
724 return 0;
725 }
726
727 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
728 struct vmcs12 *vmcs12)
729 {
730 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
731 vmcs12->vm_entry_msr_load_addr))
732 return -EINVAL;
733
734 return 0;
735 }
736
737 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
738 struct vmcs12 *vmcs12)
739 {
740 if (!nested_cpu_has_pml(vmcs12))
741 return 0;
742
743 if (!nested_cpu_has_ept(vmcs12) ||
744 !page_address_valid(vcpu, vmcs12->pml_address))
745 return -EINVAL;
746
747 return 0;
748 }
749
750 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
751 struct vmcs12 *vmcs12)
752 {
753 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
754 !nested_cpu_has_ept(vmcs12))
755 return -EINVAL;
756 return 0;
757 }
758
759 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
760 struct vmcs12 *vmcs12)
761 {
762 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
763 !nested_cpu_has_ept(vmcs12))
764 return -EINVAL;
765 return 0;
766 }
767
768 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
769 struct vmcs12 *vmcs12)
770 {
771 if (!nested_cpu_has_shadow_vmcs(vmcs12))
772 return 0;
773
774 if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
775 !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
776 return -EINVAL;
777
778 return 0;
779 }
780
781 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
782 struct vmx_msr_entry *e)
783 {
784 /* x2APIC MSR accesses are not allowed */
785 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
786 return -EINVAL;
787 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
788 e->index == MSR_IA32_UCODE_REV)
789 return -EINVAL;
790 if (e->reserved != 0)
791 return -EINVAL;
792 return 0;
793 }
794
795 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
796 struct vmx_msr_entry *e)
797 {
798 if (e->index == MSR_FS_BASE ||
799 e->index == MSR_GS_BASE ||
800 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
801 nested_vmx_msr_check_common(vcpu, e))
802 return -EINVAL;
803 return 0;
804 }
805
806 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
807 struct vmx_msr_entry *e)
808 {
809 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
810 nested_vmx_msr_check_common(vcpu, e))
811 return -EINVAL;
812 return 0;
813 }
814
815 /*
816 * Load guest's/host's msr at nested entry/exit.
817 * return 0 for success, entry index for failure.
818 */
819 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
820 {
821 u32 i;
822 struct vmx_msr_entry e;
823 struct msr_data msr;
824
825 msr.host_initiated = false;
826 for (i = 0; i < count; i++) {
827 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
828 &e, sizeof(e))) {
829 pr_debug_ratelimited(
830 "%s cannot read MSR entry (%u, 0x%08llx)\n",
831 __func__, i, gpa + i * sizeof(e));
832 goto fail;
833 }
834 if (nested_vmx_load_msr_check(vcpu, &e)) {
835 pr_debug_ratelimited(
836 "%s check failed (%u, 0x%x, 0x%x)\n",
837 __func__, i, e.index, e.reserved);
838 goto fail;
839 }
840 msr.index = e.index;
841 msr.data = e.value;
842 if (kvm_set_msr(vcpu, &msr)) {
843 pr_debug_ratelimited(
844 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
845 __func__, i, e.index, e.value);
846 goto fail;
847 }
848 }
849 return 0;
850 fail:
851 return i + 1;
852 }
853
854 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
855 {
856 u32 i;
857 struct vmx_msr_entry e;
858
859 for (i = 0; i < count; i++) {
860 struct msr_data msr_info;
861 if (kvm_vcpu_read_guest(vcpu,
862 gpa + i * sizeof(e),
863 &e, 2 * sizeof(u32))) {
864 pr_debug_ratelimited(
865 "%s cannot read MSR entry (%u, 0x%08llx)\n",
866 __func__, i, gpa + i * sizeof(e));
867 return -EINVAL;
868 }
869 if (nested_vmx_store_msr_check(vcpu, &e)) {
870 pr_debug_ratelimited(
871 "%s check failed (%u, 0x%x, 0x%x)\n",
872 __func__, i, e.index, e.reserved);
873 return -EINVAL;
874 }
875 msr_info.host_initiated = false;
876 msr_info.index = e.index;
877 if (kvm_get_msr(vcpu, &msr_info)) {
878 pr_debug_ratelimited(
879 "%s cannot read MSR (%u, 0x%x)\n",
880 __func__, i, e.index);
881 return -EINVAL;
882 }
883 if (kvm_vcpu_write_guest(vcpu,
884 gpa + i * sizeof(e) +
885 offsetof(struct vmx_msr_entry, value),
886 &msr_info.data, sizeof(msr_info.data))) {
887 pr_debug_ratelimited(
888 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
889 __func__, i, e.index, msr_info.data);
890 return -EINVAL;
891 }
892 }
893 return 0;
894 }
895
896 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
897 {
898 unsigned long invalid_mask;
899
900 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
901 return (val & invalid_mask) == 0;
902 }
903
904 /*
905 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
906 * emulating VM entry into a guest with EPT enabled.
907 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
908 * is assigned to entry_failure_code on failure.
909 */
910 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
911 u32 *entry_failure_code)
912 {
913 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
914 if (!nested_cr3_valid(vcpu, cr3)) {
915 *entry_failure_code = ENTRY_FAIL_DEFAULT;
916 return 1;
917 }
918
919 /*
920 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
921 * must not be dereferenced.
922 */
923 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
924 !nested_ept) {
925 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
926 *entry_failure_code = ENTRY_FAIL_PDPTE;
927 return 1;
928 }
929 }
930 }
931
932 if (!nested_ept)
933 kvm_mmu_new_cr3(vcpu, cr3, false);
934
935 vcpu->arch.cr3 = cr3;
936 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
937
938 kvm_init_mmu(vcpu, false);
939
940 return 0;
941 }
942
943 /*
944 * Returns if KVM is able to config CPU to tag TLB entries
945 * populated by L2 differently than TLB entries populated
946 * by L1.
947 *
948 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
949 *
950 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
951 * with different VPID (L1 entries are tagged with vmx->vpid
952 * while L2 entries are tagged with vmx->nested.vpid02).
953 */
954 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
955 {
956 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957
958 return nested_cpu_has_ept(vmcs12) ||
959 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
960 }
961
962 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
963 {
964 struct vcpu_vmx *vmx = to_vmx(vcpu);
965
966 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
967 }
968
969
970 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
971 {
972 return fixed_bits_valid(control, low, high);
973 }
974
975 static inline u64 vmx_control_msr(u32 low, u32 high)
976 {
977 return low | ((u64)high << 32);
978 }
979
980 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
981 {
982 superset &= mask;
983 subset &= mask;
984
985 return (superset | subset) == superset;
986 }
987
988 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
989 {
990 const u64 feature_and_reserved =
991 /* feature (except bit 48; see below) */
992 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
993 /* reserved */
994 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
995 u64 vmx_basic = vmx->nested.msrs.basic;
996
997 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
998 return -EINVAL;
999
1000 /*
1001 * KVM does not emulate a version of VMX that constrains physical
1002 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1003 */
1004 if (data & BIT_ULL(48))
1005 return -EINVAL;
1006
1007 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1008 vmx_basic_vmcs_revision_id(data))
1009 return -EINVAL;
1010
1011 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1012 return -EINVAL;
1013
1014 vmx->nested.msrs.basic = data;
1015 return 0;
1016 }
1017
1018 static int
1019 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1020 {
1021 u64 supported;
1022 u32 *lowp, *highp;
1023
1024 switch (msr_index) {
1025 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1026 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1027 highp = &vmx->nested.msrs.pinbased_ctls_high;
1028 break;
1029 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1030 lowp = &vmx->nested.msrs.procbased_ctls_low;
1031 highp = &vmx->nested.msrs.procbased_ctls_high;
1032 break;
1033 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1034 lowp = &vmx->nested.msrs.exit_ctls_low;
1035 highp = &vmx->nested.msrs.exit_ctls_high;
1036 break;
1037 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1038 lowp = &vmx->nested.msrs.entry_ctls_low;
1039 highp = &vmx->nested.msrs.entry_ctls_high;
1040 break;
1041 case MSR_IA32_VMX_PROCBASED_CTLS2:
1042 lowp = &vmx->nested.msrs.secondary_ctls_low;
1043 highp = &vmx->nested.msrs.secondary_ctls_high;
1044 break;
1045 default:
1046 BUG();
1047 }
1048
1049 supported = vmx_control_msr(*lowp, *highp);
1050
1051 /* Check must-be-1 bits are still 1. */
1052 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1053 return -EINVAL;
1054
1055 /* Check must-be-0 bits are still 0. */
1056 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1057 return -EINVAL;
1058
1059 *lowp = data;
1060 *highp = data >> 32;
1061 return 0;
1062 }
1063
1064 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1065 {
1066 const u64 feature_and_reserved_bits =
1067 /* feature */
1068 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1069 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1070 /* reserved */
1071 GENMASK_ULL(13, 9) | BIT_ULL(31);
1072 u64 vmx_misc;
1073
1074 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1075 vmx->nested.msrs.misc_high);
1076
1077 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1078 return -EINVAL;
1079
1080 if ((vmx->nested.msrs.pinbased_ctls_high &
1081 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1082 vmx_misc_preemption_timer_rate(data) !=
1083 vmx_misc_preemption_timer_rate(vmx_misc))
1084 return -EINVAL;
1085
1086 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1087 return -EINVAL;
1088
1089 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1090 return -EINVAL;
1091
1092 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1093 return -EINVAL;
1094
1095 vmx->nested.msrs.misc_low = data;
1096 vmx->nested.msrs.misc_high = data >> 32;
1097
1098 /*
1099 * If L1 has read-only VM-exit information fields, use the
1100 * less permissive vmx_vmwrite_bitmap to specify write
1101 * permissions for the shadow VMCS.
1102 */
1103 if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1104 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1105
1106 return 0;
1107 }
1108
1109 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1110 {
1111 u64 vmx_ept_vpid_cap;
1112
1113 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1114 vmx->nested.msrs.vpid_caps);
1115
1116 /* Every bit is either reserved or a feature bit. */
1117 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1118 return -EINVAL;
1119
1120 vmx->nested.msrs.ept_caps = data;
1121 vmx->nested.msrs.vpid_caps = data >> 32;
1122 return 0;
1123 }
1124
1125 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1126 {
1127 u64 *msr;
1128
1129 switch (msr_index) {
1130 case MSR_IA32_VMX_CR0_FIXED0:
1131 msr = &vmx->nested.msrs.cr0_fixed0;
1132 break;
1133 case MSR_IA32_VMX_CR4_FIXED0:
1134 msr = &vmx->nested.msrs.cr4_fixed0;
1135 break;
1136 default:
1137 BUG();
1138 }
1139
1140 /*
1141 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1142 * must be 1 in the restored value.
1143 */
1144 if (!is_bitwise_subset(data, *msr, -1ULL))
1145 return -EINVAL;
1146
1147 *msr = data;
1148 return 0;
1149 }
1150
1151 /*
1152 * Called when userspace is restoring VMX MSRs.
1153 *
1154 * Returns 0 on success, non-0 otherwise.
1155 */
1156 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1157 {
1158 struct vcpu_vmx *vmx = to_vmx(vcpu);
1159
1160 /*
1161 * Don't allow changes to the VMX capability MSRs while the vCPU
1162 * is in VMX operation.
1163 */
1164 if (vmx->nested.vmxon)
1165 return -EBUSY;
1166
1167 switch (msr_index) {
1168 case MSR_IA32_VMX_BASIC:
1169 return vmx_restore_vmx_basic(vmx, data);
1170 case MSR_IA32_VMX_PINBASED_CTLS:
1171 case MSR_IA32_VMX_PROCBASED_CTLS:
1172 case MSR_IA32_VMX_EXIT_CTLS:
1173 case MSR_IA32_VMX_ENTRY_CTLS:
1174 /*
1175 * The "non-true" VMX capability MSRs are generated from the
1176 * "true" MSRs, so we do not support restoring them directly.
1177 *
1178 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1179 * should restore the "true" MSRs with the must-be-1 bits
1180 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1181 * DEFAULT SETTINGS".
1182 */
1183 return -EINVAL;
1184 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1185 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1186 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1187 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1188 case MSR_IA32_VMX_PROCBASED_CTLS2:
1189 return vmx_restore_control_msr(vmx, msr_index, data);
1190 case MSR_IA32_VMX_MISC:
1191 return vmx_restore_vmx_misc(vmx, data);
1192 case MSR_IA32_VMX_CR0_FIXED0:
1193 case MSR_IA32_VMX_CR4_FIXED0:
1194 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1195 case MSR_IA32_VMX_CR0_FIXED1:
1196 case MSR_IA32_VMX_CR4_FIXED1:
1197 /*
1198 * These MSRs are generated based on the vCPU's CPUID, so we
1199 * do not support restoring them directly.
1200 */
1201 return -EINVAL;
1202 case MSR_IA32_VMX_EPT_VPID_CAP:
1203 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1204 case MSR_IA32_VMX_VMCS_ENUM:
1205 vmx->nested.msrs.vmcs_enum = data;
1206 return 0;
1207 default:
1208 /*
1209 * The rest of the VMX capability MSRs do not support restore.
1210 */
1211 return -EINVAL;
1212 }
1213 }
1214
1215 /* Returns 0 on success, non-0 otherwise. */
1216 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1217 {
1218 switch (msr_index) {
1219 case MSR_IA32_VMX_BASIC:
1220 *pdata = msrs->basic;
1221 break;
1222 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1223 case MSR_IA32_VMX_PINBASED_CTLS:
1224 *pdata = vmx_control_msr(
1225 msrs->pinbased_ctls_low,
1226 msrs->pinbased_ctls_high);
1227 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1228 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1229 break;
1230 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1231 case MSR_IA32_VMX_PROCBASED_CTLS:
1232 *pdata = vmx_control_msr(
1233 msrs->procbased_ctls_low,
1234 msrs->procbased_ctls_high);
1235 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1236 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1237 break;
1238 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1239 case MSR_IA32_VMX_EXIT_CTLS:
1240 *pdata = vmx_control_msr(
1241 msrs->exit_ctls_low,
1242 msrs->exit_ctls_high);
1243 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1244 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1245 break;
1246 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1247 case MSR_IA32_VMX_ENTRY_CTLS:
1248 *pdata = vmx_control_msr(
1249 msrs->entry_ctls_low,
1250 msrs->entry_ctls_high);
1251 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1252 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1253 break;
1254 case MSR_IA32_VMX_MISC:
1255 *pdata = vmx_control_msr(
1256 msrs->misc_low,
1257 msrs->misc_high);
1258 break;
1259 case MSR_IA32_VMX_CR0_FIXED0:
1260 *pdata = msrs->cr0_fixed0;
1261 break;
1262 case MSR_IA32_VMX_CR0_FIXED1:
1263 *pdata = msrs->cr0_fixed1;
1264 break;
1265 case MSR_IA32_VMX_CR4_FIXED0:
1266 *pdata = msrs->cr4_fixed0;
1267 break;
1268 case MSR_IA32_VMX_CR4_FIXED1:
1269 *pdata = msrs->cr4_fixed1;
1270 break;
1271 case MSR_IA32_VMX_VMCS_ENUM:
1272 *pdata = msrs->vmcs_enum;
1273 break;
1274 case MSR_IA32_VMX_PROCBASED_CTLS2:
1275 *pdata = vmx_control_msr(
1276 msrs->secondary_ctls_low,
1277 msrs->secondary_ctls_high);
1278 break;
1279 case MSR_IA32_VMX_EPT_VPID_CAP:
1280 *pdata = msrs->ept_caps |
1281 ((u64)msrs->vpid_caps << 32);
1282 break;
1283 case MSR_IA32_VMX_VMFUNC:
1284 *pdata = msrs->vmfunc_controls;
1285 break;
1286 default:
1287 return 1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Copy the writable VMCS shadow fields back to the VMCS12, in case
1295 * they have been modified by the L1 guest. Note that the "read-only"
1296 * VM-exit information fields are actually writable if the vCPU is
1297 * configured to support "VMWRITE to any supported field in the VMCS."
1298 */
1299 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1300 {
1301 const u16 *fields[] = {
1302 shadow_read_write_fields,
1303 shadow_read_only_fields
1304 };
1305 const int max_fields[] = {
1306 max_shadow_read_write_fields,
1307 max_shadow_read_only_fields
1308 };
1309 int i, q;
1310 unsigned long field;
1311 u64 field_value;
1312 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1313
1314 preempt_disable();
1315
1316 vmcs_load(shadow_vmcs);
1317
1318 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1319 for (i = 0; i < max_fields[q]; i++) {
1320 field = fields[q][i];
1321 field_value = __vmcs_readl(field);
1322 vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1323 }
1324 /*
1325 * Skip the VM-exit information fields if they are read-only.
1326 */
1327 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1328 break;
1329 }
1330
1331 vmcs_clear(shadow_vmcs);
1332 vmcs_load(vmx->loaded_vmcs->vmcs);
1333
1334 preempt_enable();
1335 }
1336
1337 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1338 {
1339 const u16 *fields[] = {
1340 shadow_read_write_fields,
1341 shadow_read_only_fields
1342 };
1343 const int max_fields[] = {
1344 max_shadow_read_write_fields,
1345 max_shadow_read_only_fields
1346 };
1347 int i, q;
1348 unsigned long field;
1349 u64 field_value = 0;
1350 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1351
1352 vmcs_load(shadow_vmcs);
1353
1354 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1355 for (i = 0; i < max_fields[q]; i++) {
1356 field = fields[q][i];
1357 vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1358 __vmcs_writel(field, field_value);
1359 }
1360 }
1361
1362 vmcs_clear(shadow_vmcs);
1363 vmcs_load(vmx->loaded_vmcs->vmcs);
1364 }
1365
1366 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1369 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1370
1371 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1372 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1373 vmcs12->guest_rip = evmcs->guest_rip;
1374
1375 if (unlikely(!(evmcs->hv_clean_fields &
1376 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1377 vmcs12->guest_rsp = evmcs->guest_rsp;
1378 vmcs12->guest_rflags = evmcs->guest_rflags;
1379 vmcs12->guest_interruptibility_info =
1380 evmcs->guest_interruptibility_info;
1381 }
1382
1383 if (unlikely(!(evmcs->hv_clean_fields &
1384 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1385 vmcs12->cpu_based_vm_exec_control =
1386 evmcs->cpu_based_vm_exec_control;
1387 }
1388
1389 if (unlikely(!(evmcs->hv_clean_fields &
1390 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1391 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1392 }
1393
1394 if (unlikely(!(evmcs->hv_clean_fields &
1395 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1396 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1397 }
1398
1399 if (unlikely(!(evmcs->hv_clean_fields &
1400 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1401 vmcs12->vm_entry_intr_info_field =
1402 evmcs->vm_entry_intr_info_field;
1403 vmcs12->vm_entry_exception_error_code =
1404 evmcs->vm_entry_exception_error_code;
1405 vmcs12->vm_entry_instruction_len =
1406 evmcs->vm_entry_instruction_len;
1407 }
1408
1409 if (unlikely(!(evmcs->hv_clean_fields &
1410 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1411 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1412 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1413 vmcs12->host_cr0 = evmcs->host_cr0;
1414 vmcs12->host_cr3 = evmcs->host_cr3;
1415 vmcs12->host_cr4 = evmcs->host_cr4;
1416 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1417 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1418 vmcs12->host_rip = evmcs->host_rip;
1419 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1420 vmcs12->host_es_selector = evmcs->host_es_selector;
1421 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1422 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1423 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1424 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1425 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1426 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1427 }
1428
1429 if (unlikely(!(evmcs->hv_clean_fields &
1430 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1431 vmcs12->pin_based_vm_exec_control =
1432 evmcs->pin_based_vm_exec_control;
1433 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1434 vmcs12->secondary_vm_exec_control =
1435 evmcs->secondary_vm_exec_control;
1436 }
1437
1438 if (unlikely(!(evmcs->hv_clean_fields &
1439 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1440 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1441 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1442 }
1443
1444 if (unlikely(!(evmcs->hv_clean_fields &
1445 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1446 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1447 }
1448
1449 if (unlikely(!(evmcs->hv_clean_fields &
1450 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1451 vmcs12->guest_es_base = evmcs->guest_es_base;
1452 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1453 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1454 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1455 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1456 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1457 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1458 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1459 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1460 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1461 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1462 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1463 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1464 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1465 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1466 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1467 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1468 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1469 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1470 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1471 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1472 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1473 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1474 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1475 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1476 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1477 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1478 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1479 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1480 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1481 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1482 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1483 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1484 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1485 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1486 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1487 }
1488
1489 if (unlikely(!(evmcs->hv_clean_fields &
1490 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1491 vmcs12->tsc_offset = evmcs->tsc_offset;
1492 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1493 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1494 }
1495
1496 if (unlikely(!(evmcs->hv_clean_fields &
1497 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1498 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1499 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1500 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1501 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1502 vmcs12->guest_cr0 = evmcs->guest_cr0;
1503 vmcs12->guest_cr3 = evmcs->guest_cr3;
1504 vmcs12->guest_cr4 = evmcs->guest_cr4;
1505 vmcs12->guest_dr7 = evmcs->guest_dr7;
1506 }
1507
1508 if (unlikely(!(evmcs->hv_clean_fields &
1509 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1510 vmcs12->host_fs_base = evmcs->host_fs_base;
1511 vmcs12->host_gs_base = evmcs->host_gs_base;
1512 vmcs12->host_tr_base = evmcs->host_tr_base;
1513 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1514 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1515 vmcs12->host_rsp = evmcs->host_rsp;
1516 }
1517
1518 if (unlikely(!(evmcs->hv_clean_fields &
1519 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1520 vmcs12->ept_pointer = evmcs->ept_pointer;
1521 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1522 }
1523
1524 if (unlikely(!(evmcs->hv_clean_fields &
1525 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1526 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1527 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1528 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1529 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1530 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1531 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1532 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1533 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1534 vmcs12->guest_pending_dbg_exceptions =
1535 evmcs->guest_pending_dbg_exceptions;
1536 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1537 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1538 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1539 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1540 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1541 }
1542
1543 /*
1544 * Not used?
1545 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1546 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1547 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1548 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1549 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1550 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1551 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1552 * vmcs12->page_fault_error_code_mask =
1553 * evmcs->page_fault_error_code_mask;
1554 * vmcs12->page_fault_error_code_match =
1555 * evmcs->page_fault_error_code_match;
1556 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1557 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1558 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1559 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1560 */
1561
1562 /*
1563 * Read only fields:
1564 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1565 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1566 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1567 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1568 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1569 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1570 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1571 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1572 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1573 * vmcs12->exit_qualification = evmcs->exit_qualification;
1574 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1575 *
1576 * Not present in struct vmcs12:
1577 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1578 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1579 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1580 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1581 */
1582
1583 return 0;
1584 }
1585
1586 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1587 {
1588 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1589 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1590
1591 /*
1592 * Should not be changed by KVM:
1593 *
1594 * evmcs->host_es_selector = vmcs12->host_es_selector;
1595 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1596 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1597 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1598 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1599 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1600 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1601 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1602 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1603 * evmcs->host_cr0 = vmcs12->host_cr0;
1604 * evmcs->host_cr3 = vmcs12->host_cr3;
1605 * evmcs->host_cr4 = vmcs12->host_cr4;
1606 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1607 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1608 * evmcs->host_rip = vmcs12->host_rip;
1609 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1610 * evmcs->host_fs_base = vmcs12->host_fs_base;
1611 * evmcs->host_gs_base = vmcs12->host_gs_base;
1612 * evmcs->host_tr_base = vmcs12->host_tr_base;
1613 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1614 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1615 * evmcs->host_rsp = vmcs12->host_rsp;
1616 * sync_vmcs12() doesn't read these:
1617 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1618 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1619 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1620 * evmcs->ept_pointer = vmcs12->ept_pointer;
1621 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1622 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1623 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1624 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1625 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1626 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1627 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1628 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1629 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1630 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1631 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1632 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1633 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1634 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1635 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1636 * evmcs->page_fault_error_code_mask =
1637 * vmcs12->page_fault_error_code_mask;
1638 * evmcs->page_fault_error_code_match =
1639 * vmcs12->page_fault_error_code_match;
1640 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1641 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1642 * evmcs->tsc_offset = vmcs12->tsc_offset;
1643 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1644 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1645 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1646 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1647 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1648 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1649 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1650 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1651 *
1652 * Not present in struct vmcs12:
1653 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1654 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1655 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1656 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1657 */
1658
1659 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1660 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1661 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1662 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1663 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1664 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1665 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1666 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1667
1668 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1669 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1670 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1671 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1672 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1673 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1674 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1675 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1676 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1677 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1678
1679 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1680 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1681 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1682 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1683 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1684 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1685 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1686 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1687
1688 evmcs->guest_es_base = vmcs12->guest_es_base;
1689 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1690 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1691 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1692 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1693 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1694 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1695 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1696 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1697 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1698
1699 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1700 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1701
1702 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1703 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1704 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1705 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1706
1707 evmcs->guest_pending_dbg_exceptions =
1708 vmcs12->guest_pending_dbg_exceptions;
1709 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1710 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1711
1712 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1713 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1714
1715 evmcs->guest_cr0 = vmcs12->guest_cr0;
1716 evmcs->guest_cr3 = vmcs12->guest_cr3;
1717 evmcs->guest_cr4 = vmcs12->guest_cr4;
1718 evmcs->guest_dr7 = vmcs12->guest_dr7;
1719
1720 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1721
1722 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1723 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1724 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1725 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1726 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1727 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1728 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1729 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1730
1731 evmcs->exit_qualification = vmcs12->exit_qualification;
1732
1733 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1734 evmcs->guest_rsp = vmcs12->guest_rsp;
1735 evmcs->guest_rflags = vmcs12->guest_rflags;
1736
1737 evmcs->guest_interruptibility_info =
1738 vmcs12->guest_interruptibility_info;
1739 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1740 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1741 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1742 evmcs->vm_entry_exception_error_code =
1743 vmcs12->vm_entry_exception_error_code;
1744 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1745
1746 evmcs->guest_rip = vmcs12->guest_rip;
1747
1748 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1749
1750 return 0;
1751 }
1752
1753 /*
1754 * This is an equivalent of the nested hypervisor executing the vmptrld
1755 * instruction.
1756 */
1757 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1758 bool from_launch)
1759 {
1760 struct vcpu_vmx *vmx = to_vmx(vcpu);
1761 struct hv_vp_assist_page assist_page;
1762
1763 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1764 return 1;
1765
1766 if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1767 return 1;
1768
1769 if (unlikely(!assist_page.enlighten_vmentry))
1770 return 1;
1771
1772 if (unlikely(assist_page.current_nested_vmcs !=
1773 vmx->nested.hv_evmcs_vmptr)) {
1774
1775 if (!vmx->nested.hv_evmcs)
1776 vmx->nested.current_vmptr = -1ull;
1777
1778 nested_release_evmcs(vcpu);
1779
1780 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1781 vcpu, assist_page.current_nested_vmcs);
1782
1783 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1784 return 0;
1785
1786 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1787
1788 /*
1789 * Currently, KVM only supports eVMCS version 1
1790 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1791 * value to first u32 field of eVMCS which should specify eVMCS
1792 * VersionNumber.
1793 *
1794 * Guest should be aware of supported eVMCS versions by host by
1795 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1796 * expected to set this CPUID leaf according to the value
1797 * returned in vmcs_version from nested_enable_evmcs().
1798 *
1799 * However, it turns out that Microsoft Hyper-V fails to comply
1800 * to their own invented interface: When Hyper-V use eVMCS, it
1801 * just sets first u32 field of eVMCS to revision_id specified
1802 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1803 * which is one of the supported versions specified in
1804 * CPUID.0x4000000A.EAX[0:15].
1805 *
1806 * To overcome Hyper-V bug, we accept here either a supported
1807 * eVMCS version or VMCS12 revision_id as valid values for first
1808 * u32 field of eVMCS.
1809 */
1810 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1811 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1812 nested_release_evmcs(vcpu);
1813 return 0;
1814 }
1815
1816 vmx->nested.dirty_vmcs12 = true;
1817 /*
1818 * As we keep L2 state for one guest only 'hv_clean_fields' mask
1819 * can't be used when we switch between them. Reset it here for
1820 * simplicity.
1821 */
1822 vmx->nested.hv_evmcs->hv_clean_fields &=
1823 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1824 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1825
1826 /*
1827 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1828 * reloaded from guest's memory (read only fields, fields not
1829 * present in struct hv_enlightened_vmcs, ...). Make sure there
1830 * are no leftovers.
1831 */
1832 if (from_launch) {
1833 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1834 memset(vmcs12, 0, sizeof(*vmcs12));
1835 vmcs12->hdr.revision_id = VMCS12_REVISION;
1836 }
1837
1838 }
1839 return 1;
1840 }
1841
1842 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1843 {
1844 struct vcpu_vmx *vmx = to_vmx(vcpu);
1845
1846 /*
1847 * hv_evmcs may end up being not mapped after migration (when
1848 * L2 was running), map it here to make sure vmcs12 changes are
1849 * properly reflected.
1850 */
1851 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1852 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1853
1854 if (vmx->nested.hv_evmcs) {
1855 copy_vmcs12_to_enlightened(vmx);
1856 /* All fields are clean */
1857 vmx->nested.hv_evmcs->hv_clean_fields |=
1858 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1859 } else {
1860 copy_vmcs12_to_shadow(vmx);
1861 }
1862
1863 vmx->nested.need_vmcs12_sync = false;
1864 }
1865
1866 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1867 {
1868 struct vcpu_vmx *vmx =
1869 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1870
1871 vmx->nested.preemption_timer_expired = true;
1872 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1873 kvm_vcpu_kick(&vmx->vcpu);
1874
1875 return HRTIMER_NORESTART;
1876 }
1877
1878 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1879 {
1880 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1881 struct vcpu_vmx *vmx = to_vmx(vcpu);
1882
1883 /*
1884 * A timer value of zero is architecturally guaranteed to cause
1885 * a VMExit prior to executing any instructions in the guest.
1886 */
1887 if (preemption_timeout == 0) {
1888 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1889 return;
1890 }
1891
1892 if (vcpu->arch.virtual_tsc_khz == 0)
1893 return;
1894
1895 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1896 preemption_timeout *= 1000000;
1897 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1898 hrtimer_start(&vmx->nested.preemption_timer,
1899 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1900 }
1901
1902 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1903 {
1904 if (vmx->nested.nested_run_pending &&
1905 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1906 return vmcs12->guest_ia32_efer;
1907 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1908 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1909 else
1910 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1911 }
1912
1913 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1914 {
1915 /*
1916 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1917 * according to L0's settings (vmcs12 is irrelevant here). Host
1918 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1919 * will be set as needed prior to VMLAUNCH/VMRESUME.
1920 */
1921 if (vmx->nested.vmcs02_initialized)
1922 return;
1923 vmx->nested.vmcs02_initialized = true;
1924
1925 /*
1926 * We don't care what the EPTP value is we just need to guarantee
1927 * it's valid so we don't get a false positive when doing early
1928 * consistency checks.
1929 */
1930 if (enable_ept && nested_early_check)
1931 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1932
1933 /* All VMFUNCs are currently emulated through L0 vmexits. */
1934 if (cpu_has_vmx_vmfunc())
1935 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1936
1937 if (cpu_has_vmx_posted_intr())
1938 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1939
1940 if (cpu_has_vmx_msr_bitmap())
1941 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1942
1943 if (enable_pml)
1944 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1945
1946 /*
1947 * Set the MSR load/store lists to match L0's settings. Only the
1948 * addresses are constant (for vmcs02), the counts can change based
1949 * on L2's behavior, e.g. switching to/from long mode.
1950 */
1951 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1952 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1953 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1954
1955 vmx_set_constant_host_state(vmx);
1956 }
1957
1958 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1959 struct vmcs12 *vmcs12)
1960 {
1961 prepare_vmcs02_constant_state(vmx);
1962
1963 vmcs_write64(VMCS_LINK_POINTER, -1ull);
1964
1965 if (enable_vpid) {
1966 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1967 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1968 else
1969 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1970 }
1971 }
1972
1973 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1974 {
1975 u32 exec_control, vmcs12_exec_ctrl;
1976 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1977
1978 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1979 prepare_vmcs02_early_full(vmx, vmcs12);
1980
1981 /*
1982 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1983 * entry, but only if the current (host) sp changed from the value
1984 * we wrote last (vmx->host_rsp). This cache is no longer relevant
1985 * if we switch vmcs, and rather than hold a separate cache per vmcs,
1986 * here we just force the write to happen on entry. host_rsp will
1987 * also be written unconditionally by nested_vmx_check_vmentry_hw()
1988 * if we are doing early consistency checks via hardware.
1989 */
1990 vmx->host_rsp = 0;
1991
1992 /*
1993 * PIN CONTROLS
1994 */
1995 exec_control = vmcs12->pin_based_vm_exec_control;
1996
1997 /* Preemption timer setting is computed directly in vmx_vcpu_run. */
1998 exec_control |= vmcs_config.pin_based_exec_ctrl;
1999 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2000 vmx->loaded_vmcs->hv_timer_armed = false;
2001
2002 /* Posted interrupts setting is only taken from vmcs12. */
2003 if (nested_cpu_has_posted_intr(vmcs12)) {
2004 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2005 vmx->nested.pi_pending = false;
2006 } else {
2007 exec_control &= ~PIN_BASED_POSTED_INTR;
2008 }
2009 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2010
2011 /*
2012 * EXEC CONTROLS
2013 */
2014 exec_control = vmx_exec_control(vmx); /* L0's desires */
2015 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2016 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2017 exec_control &= ~CPU_BASED_TPR_SHADOW;
2018 exec_control |= vmcs12->cpu_based_vm_exec_control;
2019
2020 /*
2021 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2022 * nested_get_vmcs12_pages can't fix it up, the illegal value
2023 * will result in a VM entry failure.
2024 */
2025 if (exec_control & CPU_BASED_TPR_SHADOW) {
2026 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2027 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2028 } else {
2029 #ifdef CONFIG_X86_64
2030 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2031 CPU_BASED_CR8_STORE_EXITING;
2032 #endif
2033 }
2034
2035 /*
2036 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2037 * for I/O port accesses.
2038 */
2039 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2040 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2041 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2042
2043 /*
2044 * SECONDARY EXEC CONTROLS
2045 */
2046 if (cpu_has_secondary_exec_ctrls()) {
2047 exec_control = vmx->secondary_exec_control;
2048
2049 /* Take the following fields only from vmcs12 */
2050 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2051 SECONDARY_EXEC_ENABLE_INVPCID |
2052 SECONDARY_EXEC_RDTSCP |
2053 SECONDARY_EXEC_XSAVES |
2054 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2055 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2056 SECONDARY_EXEC_ENABLE_VMFUNC);
2057 if (nested_cpu_has(vmcs12,
2058 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2059 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2060 ~SECONDARY_EXEC_ENABLE_PML;
2061 exec_control |= vmcs12_exec_ctrl;
2062 }
2063
2064 /* VMCS shadowing for L2 is emulated for now */
2065 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2066
2067 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2068 vmcs_write16(GUEST_INTR_STATUS,
2069 vmcs12->guest_intr_status);
2070
2071 /*
2072 * Write an illegal value to APIC_ACCESS_ADDR. Later,
2073 * nested_get_vmcs12_pages will either fix it up or
2074 * remove the VM execution control.
2075 */
2076 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2077 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2078
2079 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2080 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2081
2082 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2083 }
2084
2085 /*
2086 * ENTRY CONTROLS
2087 *
2088 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2089 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2090 * on the related bits (if supported by the CPU) in the hope that
2091 * we can avoid VMWrites during vmx_set_efer().
2092 */
2093 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2094 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2095 if (cpu_has_load_ia32_efer()) {
2096 if (guest_efer & EFER_LMA)
2097 exec_control |= VM_ENTRY_IA32E_MODE;
2098 if (guest_efer != host_efer)
2099 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2100 }
2101 vm_entry_controls_init(vmx, exec_control);
2102
2103 /*
2104 * EXIT CONTROLS
2105 *
2106 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2107 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2108 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2109 */
2110 exec_control = vmx_vmexit_ctrl();
2111 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2112 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2113 vm_exit_controls_init(vmx, exec_control);
2114
2115 /*
2116 * Conceptually we want to copy the PML address and index from
2117 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2118 * since we always flush the log on each vmexit and never change
2119 * the PML address (once set), this happens to be equivalent to
2120 * simply resetting the index in vmcs02.
2121 */
2122 if (enable_pml)
2123 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2124
2125 /*
2126 * Interrupt/Exception Fields
2127 */
2128 if (vmx->nested.nested_run_pending) {
2129 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2130 vmcs12->vm_entry_intr_info_field);
2131 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2132 vmcs12->vm_entry_exception_error_code);
2133 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2134 vmcs12->vm_entry_instruction_len);
2135 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2136 vmcs12->guest_interruptibility_info);
2137 vmx->loaded_vmcs->nmi_known_unmasked =
2138 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2139 } else {
2140 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2141 }
2142 }
2143
2144 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2145 {
2146 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2147
2148 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2149 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2150 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2151 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2152 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2153 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2154 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2155 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2156 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2157 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2158 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2159 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2160 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2161 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2162 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2163 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2164 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2165 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2166 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2167 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2168 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2169 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2170 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2171 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2172 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2173 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2174 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2175 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2176 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2177 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2178 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2179 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2180 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2181 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2182 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2183 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2184 }
2185
2186 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2187 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2188 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2189 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2190 vmcs12->guest_pending_dbg_exceptions);
2191 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2192 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2193
2194 /*
2195 * L1 may access the L2's PDPTR, so save them to construct
2196 * vmcs12
2197 */
2198 if (enable_ept) {
2199 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2200 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2201 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2202 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2203 }
2204 }
2205
2206 if (nested_cpu_has_xsaves(vmcs12))
2207 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2208
2209 /*
2210 * Whether page-faults are trapped is determined by a combination of
2211 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2212 * If enable_ept, L0 doesn't care about page faults and we should
2213 * set all of these to L1's desires. However, if !enable_ept, L0 does
2214 * care about (at least some) page faults, and because it is not easy
2215 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2216 * to exit on each and every L2 page fault. This is done by setting
2217 * MASK=MATCH=0 and (see below) EB.PF=1.
2218 * Note that below we don't need special code to set EB.PF beyond the
2219 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2220 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2221 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2222 */
2223 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2224 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2225 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2226 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2227
2228 if (cpu_has_vmx_apicv()) {
2229 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2230 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2231 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2232 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2233 }
2234
2235 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2236 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2237
2238 set_cr4_guest_host_mask(vmx);
2239
2240 if (kvm_mpx_supported()) {
2241 if (vmx->nested.nested_run_pending &&
2242 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2243 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2244 else
2245 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2246 }
2247 }
2248
2249 /*
2250 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2251 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2252 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2253 * guest in a way that will both be appropriate to L1's requests, and our
2254 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2255 * function also has additional necessary side-effects, like setting various
2256 * vcpu->arch fields.
2257 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2258 * is assigned to entry_failure_code on failure.
2259 */
2260 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2261 u32 *entry_failure_code)
2262 {
2263 struct vcpu_vmx *vmx = to_vmx(vcpu);
2264 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2265
2266 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2267 prepare_vmcs02_full(vmx, vmcs12);
2268 vmx->nested.dirty_vmcs12 = false;
2269 }
2270
2271 /*
2272 * First, the fields that are shadowed. This must be kept in sync
2273 * with vmcs_shadow_fields.h.
2274 */
2275 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2276 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2277 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2278 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2279 }
2280
2281 if (vmx->nested.nested_run_pending &&
2282 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2283 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2284 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2285 } else {
2286 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2287 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2288 }
2289 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2290
2291 vmx->nested.preemption_timer_expired = false;
2292 if (nested_cpu_has_preemption_timer(vmcs12))
2293 vmx_start_preemption_timer(vcpu);
2294
2295 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2296 * bitwise-or of what L1 wants to trap for L2, and what we want to
2297 * trap. Note that CR0.TS also needs updating - we do this later.
2298 */
2299 update_exception_bitmap(vcpu);
2300 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2301 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2302
2303 if (vmx->nested.nested_run_pending &&
2304 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2305 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2306 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2307 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2308 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2309 }
2310
2311 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2312
2313 if (kvm_has_tsc_control)
2314 decache_tsc_multiplier(vmx);
2315
2316 if (enable_vpid) {
2317 /*
2318 * There is no direct mapping between vpid02 and vpid12, the
2319 * vpid02 is per-vCPU for L0 and reused while the value of
2320 * vpid12 is changed w/ one invvpid during nested vmentry.
2321 * The vpid12 is allocated by L1 for L2, so it will not
2322 * influence global bitmap(for vpid01 and vpid02 allocation)
2323 * even if spawn a lot of nested vCPUs.
2324 */
2325 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2326 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2327 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2328 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2329 }
2330 } else {
2331 /*
2332 * If L1 use EPT, then L0 needs to execute INVEPT on
2333 * EPTP02 instead of EPTP01. Therefore, delay TLB
2334 * flush until vmcs02->eptp is fully updated by
2335 * KVM_REQ_LOAD_CR3. Note that this assumes
2336 * KVM_REQ_TLB_FLUSH is evaluated after
2337 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2338 */
2339 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2340 }
2341 }
2342
2343 if (nested_cpu_has_ept(vmcs12))
2344 nested_ept_init_mmu_context(vcpu);
2345 else if (nested_cpu_has2(vmcs12,
2346 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2347 vmx_flush_tlb(vcpu, true);
2348
2349 /*
2350 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2351 * bits which we consider mandatory enabled.
2352 * The CR0_READ_SHADOW is what L2 should have expected to read given
2353 * the specifications by L1; It's not enough to take
2354 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2355 * have more bits than L1 expected.
2356 */
2357 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2358 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2359
2360 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2361 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2362
2363 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2364 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2365 vmx_set_efer(vcpu, vcpu->arch.efer);
2366
2367 /*
2368 * Guest state is invalid and unrestricted guest is disabled,
2369 * which means L1 attempted VMEntry to L2 with invalid state.
2370 * Fail the VMEntry.
2371 */
2372 if (vmx->emulation_required) {
2373 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2374 return 1;
2375 }
2376
2377 /* Shadow page tables on either EPT or shadow page tables. */
2378 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2379 entry_failure_code))
2380 return 1;
2381
2382 if (!enable_ept)
2383 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2384
2385 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2386 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2387 return 0;
2388 }
2389
2390 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2391 {
2392 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2393 nested_cpu_has_virtual_nmis(vmcs12))
2394 return -EINVAL;
2395
2396 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2397 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2398 return -EINVAL;
2399
2400 return 0;
2401 }
2402
2403 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2404 {
2405 struct vcpu_vmx *vmx = to_vmx(vcpu);
2406 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2407
2408 /* Check for memory type validity */
2409 switch (address & VMX_EPTP_MT_MASK) {
2410 case VMX_EPTP_MT_UC:
2411 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2412 return false;
2413 break;
2414 case VMX_EPTP_MT_WB:
2415 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2416 return false;
2417 break;
2418 default:
2419 return false;
2420 }
2421
2422 /* only 4 levels page-walk length are valid */
2423 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2424 return false;
2425
2426 /* Reserved bits should not be set */
2427 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2428 return false;
2429
2430 /* AD, if set, should be supported */
2431 if (address & VMX_EPTP_AD_ENABLE_BIT) {
2432 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2433 return false;
2434 }
2435
2436 return true;
2437 }
2438
2439 /*
2440 * Checks related to VM-Execution Control Fields
2441 */
2442 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2443 struct vmcs12 *vmcs12)
2444 {
2445 struct vcpu_vmx *vmx = to_vmx(vcpu);
2446
2447 if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2448 vmx->nested.msrs.pinbased_ctls_low,
2449 vmx->nested.msrs.pinbased_ctls_high) ||
2450 !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2451 vmx->nested.msrs.procbased_ctls_low,
2452 vmx->nested.msrs.procbased_ctls_high))
2453 return -EINVAL;
2454
2455 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2456 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2457 vmx->nested.msrs.secondary_ctls_low,
2458 vmx->nested.msrs.secondary_ctls_high))
2459 return -EINVAL;
2460
2461 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2462 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2463 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2464 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2465 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2466 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2467 nested_vmx_check_nmi_controls(vmcs12) ||
2468 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2469 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2470 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2471 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2472 (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2473 return -EINVAL;
2474
2475 if (nested_cpu_has_ept(vmcs12) &&
2476 !valid_ept_address(vcpu, vmcs12->ept_pointer))
2477 return -EINVAL;
2478
2479 if (nested_cpu_has_vmfunc(vmcs12)) {
2480 if (vmcs12->vm_function_control &
2481 ~vmx->nested.msrs.vmfunc_controls)
2482 return -EINVAL;
2483
2484 if (nested_cpu_has_eptp_switching(vmcs12)) {
2485 if (!nested_cpu_has_ept(vmcs12) ||
2486 !page_address_valid(vcpu, vmcs12->eptp_list_address))
2487 return -EINVAL;
2488 }
2489 }
2490
2491 return 0;
2492 }
2493
2494 /*
2495 * Checks related to VM-Exit Control Fields
2496 */
2497 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2498 struct vmcs12 *vmcs12)
2499 {
2500 struct vcpu_vmx *vmx = to_vmx(vcpu);
2501
2502 if (!vmx_control_verify(vmcs12->vm_exit_controls,
2503 vmx->nested.msrs.exit_ctls_low,
2504 vmx->nested.msrs.exit_ctls_high) ||
2505 nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2506 return -EINVAL;
2507
2508 return 0;
2509 }
2510
2511 /*
2512 * Checks related to VM-Entry Control Fields
2513 */
2514 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2515 struct vmcs12 *vmcs12)
2516 {
2517 struct vcpu_vmx *vmx = to_vmx(vcpu);
2518
2519 if (!vmx_control_verify(vmcs12->vm_entry_controls,
2520 vmx->nested.msrs.entry_ctls_low,
2521 vmx->nested.msrs.entry_ctls_high))
2522 return -EINVAL;
2523
2524 /*
2525 * From the Intel SDM, volume 3:
2526 * Fields relevant to VM-entry event injection must be set properly.
2527 * These fields are the VM-entry interruption-information field, the
2528 * VM-entry exception error code, and the VM-entry instruction length.
2529 */
2530 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2531 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2532 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2533 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2534 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2535 bool should_have_error_code;
2536 bool urg = nested_cpu_has2(vmcs12,
2537 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2538 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2539
2540 /* VM-entry interruption-info field: interruption type */
2541 if (intr_type == INTR_TYPE_RESERVED ||
2542 (intr_type == INTR_TYPE_OTHER_EVENT &&
2543 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2544 return -EINVAL;
2545
2546 /* VM-entry interruption-info field: vector */
2547 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2548 (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2549 (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2550 return -EINVAL;
2551
2552 /* VM-entry interruption-info field: deliver error code */
2553 should_have_error_code =
2554 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2555 x86_exception_has_error_code(vector);
2556 if (has_error_code != should_have_error_code)
2557 return -EINVAL;
2558
2559 /* VM-entry exception error code */
2560 if (has_error_code &&
2561 vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2562 return -EINVAL;
2563
2564 /* VM-entry interruption-info field: reserved bits */
2565 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2566 return -EINVAL;
2567
2568 /* VM-entry instruction length */
2569 switch (intr_type) {
2570 case INTR_TYPE_SOFT_EXCEPTION:
2571 case INTR_TYPE_SOFT_INTR:
2572 case INTR_TYPE_PRIV_SW_EXCEPTION:
2573 if ((vmcs12->vm_entry_instruction_len > 15) ||
2574 (vmcs12->vm_entry_instruction_len == 0 &&
2575 !nested_cpu_has_zero_length_injection(vcpu)))
2576 return -EINVAL;
2577 }
2578 }
2579
2580 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2581 return -EINVAL;
2582
2583 return 0;
2584 }
2585
2586 /*
2587 * Checks related to Host Control Registers and MSRs
2588 */
2589 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2590 struct vmcs12 *vmcs12)
2591 {
2592 bool ia32e;
2593
2594 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2595 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2596 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2597 return -EINVAL;
2598 /*
2599 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2600 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2601 * the values of the LMA and LME bits in the field must each be that of
2602 * the host address-space size VM-exit control.
2603 */
2604 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2605 ia32e = (vmcs12->vm_exit_controls &
2606 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2607 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2608 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2609 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2610 return -EINVAL;
2611 }
2612
2613 return 0;
2614 }
2615
2616 /*
2617 * Checks related to Guest Non-register State
2618 */
2619 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2620 {
2621 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2622 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2623 return -EINVAL;
2624
2625 return 0;
2626 }
2627
2628 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2629 struct vmcs12 *vmcs12)
2630 {
2631 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2632 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2633 nested_check_vm_entry_controls(vcpu, vmcs12))
2634 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2635
2636 if (nested_check_host_control_regs(vcpu, vmcs12))
2637 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2638
2639 if (nested_check_guest_non_reg_state(vmcs12))
2640 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2641
2642 return 0;
2643 }
2644
2645 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2646 struct vmcs12 *vmcs12)
2647 {
2648 int r;
2649 struct page *page;
2650 struct vmcs12 *shadow;
2651
2652 if (vmcs12->vmcs_link_pointer == -1ull)
2653 return 0;
2654
2655 if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2656 return -EINVAL;
2657
2658 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2659 if (is_error_page(page))
2660 return -EINVAL;
2661
2662 r = 0;
2663 shadow = kmap(page);
2664 if (shadow->hdr.revision_id != VMCS12_REVISION ||
2665 shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2666 r = -EINVAL;
2667 kunmap(page);
2668 kvm_release_page_clean(page);
2669 return r;
2670 }
2671
2672 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2673 struct vmcs12 *vmcs12,
2674 u32 *exit_qual)
2675 {
2676 bool ia32e;
2677
2678 *exit_qual = ENTRY_FAIL_DEFAULT;
2679
2680 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2681 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2682 return 1;
2683
2684 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2685 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2686 return 1;
2687 }
2688
2689 /*
2690 * If the load IA32_EFER VM-entry control is 1, the following checks
2691 * are performed on the field for the IA32_EFER MSR:
2692 * - Bits reserved in the IA32_EFER MSR must be 0.
2693 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2694 * the IA-32e mode guest VM-exit control. It must also be identical
2695 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2696 * CR0.PG) is 1.
2697 */
2698 if (to_vmx(vcpu)->nested.nested_run_pending &&
2699 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2700 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2701 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2702 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2703 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2704 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2705 return 1;
2706 }
2707
2708 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2709 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2710 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2711 return 1;
2712
2713 return 0;
2714 }
2715
2716 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2717 {
2718 struct vcpu_vmx *vmx = to_vmx(vcpu);
2719 unsigned long cr3, cr4;
2720
2721 if (!nested_early_check)
2722 return 0;
2723
2724 if (vmx->msr_autoload.host.nr)
2725 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2726 if (vmx->msr_autoload.guest.nr)
2727 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2728
2729 preempt_disable();
2730
2731 vmx_prepare_switch_to_guest(vcpu);
2732
2733 /*
2734 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2735 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
2736 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2737 * there is no need to preserve other bits or save/restore the field.
2738 */
2739 vmcs_writel(GUEST_RFLAGS, 0);
2740
2741 cr3 = __get_current_cr3_fast();
2742 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2743 vmcs_writel(HOST_CR3, cr3);
2744 vmx->loaded_vmcs->host_state.cr3 = cr3;
2745 }
2746
2747 cr4 = cr4_read_shadow();
2748 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2749 vmcs_writel(HOST_CR4, cr4);
2750 vmx->loaded_vmcs->host_state.cr4 = cr4;
2751 }
2752
2753 vmx->__launched = vmx->loaded_vmcs->launched;
2754
2755 asm(
2756 /* Set HOST_RSP */
2757 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2758 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
2759 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2760 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2761
2762 /* Check if vmlaunch or vmresume is needed */
2763 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
2764
2765 "call vmx_vmenter\n\t"
2766
2767 /* Set vmx->fail accordingly */
2768 "setbe %c[fail](%% " _ASM_CX")\n\t"
2769 : ASM_CALL_CONSTRAINT
2770 : "c"(vmx), "d"((unsigned long)HOST_RSP),
2771 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2772 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2773 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2774 [wordsize]"i"(sizeof(ulong))
2775 : "rax", "cc", "memory"
2776 );
2777
2778 preempt_enable();
2779
2780 if (vmx->msr_autoload.host.nr)
2781 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2782 if (vmx->msr_autoload.guest.nr)
2783 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2784
2785 if (vmx->fail) {
2786 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2787 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2788 vmx->fail = 0;
2789 return 1;
2790 }
2791
2792 /*
2793 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2794 */
2795 local_irq_enable();
2796 if (hw_breakpoint_active())
2797 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2798
2799 /*
2800 * A non-failing VMEntry means we somehow entered guest mode with
2801 * an illegal RIP, and that's just the tip of the iceberg. There
2802 * is no telling what memory has been modified or what state has
2803 * been exposed to unknown code. Hitting this all but guarantees
2804 * a (very critical) hardware issue.
2805 */
2806 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2807 VMX_EXIT_REASONS_FAILED_VMENTRY));
2808
2809 return 0;
2810 }
2811 STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2812
2813
2814 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2815 struct vmcs12 *vmcs12);
2816
2817 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2818 {
2819 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2820 struct vcpu_vmx *vmx = to_vmx(vcpu);
2821 struct page *page;
2822 u64 hpa;
2823
2824 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2825 /*
2826 * Translate L1 physical address to host physical
2827 * address for vmcs02. Keep the page pinned, so this
2828 * physical address remains valid. We keep a reference
2829 * to it so we can release it later.
2830 */
2831 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2832 kvm_release_page_dirty(vmx->nested.apic_access_page);
2833 vmx->nested.apic_access_page = NULL;
2834 }
2835 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2836 /*
2837 * If translation failed, no matter: This feature asks
2838 * to exit when accessing the given address, and if it
2839 * can never be accessed, this feature won't do
2840 * anything anyway.
2841 */
2842 if (!is_error_page(page)) {
2843 vmx->nested.apic_access_page = page;
2844 hpa = page_to_phys(vmx->nested.apic_access_page);
2845 vmcs_write64(APIC_ACCESS_ADDR, hpa);
2846 } else {
2847 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2848 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2849 }
2850 }
2851
2852 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2853 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2854 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2855 vmx->nested.virtual_apic_page = NULL;
2856 }
2857 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2858
2859 /*
2860 * If translation failed, VM entry will fail because
2861 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2862 * Failing the vm entry is _not_ what the processor
2863 * does but it's basically the only possibility we
2864 * have. We could still enter the guest if CR8 load
2865 * exits are enabled, CR8 store exits are enabled, and
2866 * virtualize APIC access is disabled; in this case
2867 * the processor would never use the TPR shadow and we
2868 * could simply clear the bit from the execution
2869 * control. But such a configuration is useless, so
2870 * let's keep the code simple.
2871 */
2872 if (!is_error_page(page)) {
2873 vmx->nested.virtual_apic_page = page;
2874 hpa = page_to_phys(vmx->nested.virtual_apic_page);
2875 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2876 }
2877 }
2878
2879 if (nested_cpu_has_posted_intr(vmcs12)) {
2880 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2881 kunmap(vmx->nested.pi_desc_page);
2882 kvm_release_page_dirty(vmx->nested.pi_desc_page);
2883 vmx->nested.pi_desc_page = NULL;
2884 vmx->nested.pi_desc = NULL;
2885 vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2886 }
2887 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2888 if (is_error_page(page))
2889 return;
2890 vmx->nested.pi_desc_page = page;
2891 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2892 vmx->nested.pi_desc =
2893 (struct pi_desc *)((void *)vmx->nested.pi_desc +
2894 (unsigned long)(vmcs12->posted_intr_desc_addr &
2895 (PAGE_SIZE - 1)));
2896 vmcs_write64(POSTED_INTR_DESC_ADDR,
2897 page_to_phys(vmx->nested.pi_desc_page) +
2898 (unsigned long)(vmcs12->posted_intr_desc_addr &
2899 (PAGE_SIZE - 1)));
2900 }
2901 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2902 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2903 CPU_BASED_USE_MSR_BITMAPS);
2904 else
2905 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2906 CPU_BASED_USE_MSR_BITMAPS);
2907 }
2908
2909 /*
2910 * Intel's VMX Instruction Reference specifies a common set of prerequisites
2911 * for running VMX instructions (except VMXON, whose prerequisites are
2912 * slightly different). It also specifies what exception to inject otherwise.
2913 * Note that many of these exceptions have priority over VM exits, so they
2914 * don't have to be checked again here.
2915 */
2916 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2917 {
2918 if (!to_vmx(vcpu)->nested.vmxon) {
2919 kvm_queue_exception(vcpu, UD_VECTOR);
2920 return 0;
2921 }
2922
2923 if (vmx_get_cpl(vcpu)) {
2924 kvm_inject_gp(vcpu, 0);
2925 return 0;
2926 }
2927
2928 return 1;
2929 }
2930
2931 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2932 {
2933 u8 rvi = vmx_get_rvi();
2934 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2935
2936 return ((rvi & 0xf0) > (vppr & 0xf0));
2937 }
2938
2939 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2940 struct vmcs12 *vmcs12);
2941
2942 /*
2943 * If from_vmentry is false, this is being called from state restore (either RSM
2944 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
2945 + *
2946 + * Returns:
2947 + * 0 - success, i.e. proceed with actual VMEnter
2948 + * 1 - consistency check VMExit
2949 + * -1 - consistency check VMFail
2950 */
2951 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2952 {
2953 struct vcpu_vmx *vmx = to_vmx(vcpu);
2954 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2955 bool evaluate_pending_interrupts;
2956 u32 exit_reason = EXIT_REASON_INVALID_STATE;
2957 u32 exit_qual;
2958
2959 evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2960 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2961 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2962 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2963
2964 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2965 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2966 if (kvm_mpx_supported() &&
2967 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2968 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2969
2970 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2971
2972 prepare_vmcs02_early(vmx, vmcs12);
2973
2974 if (from_vmentry) {
2975 nested_get_vmcs12_pages(vcpu);
2976
2977 if (nested_vmx_check_vmentry_hw(vcpu)) {
2978 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2979 return -1;
2980 }
2981
2982 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2983 goto vmentry_fail_vmexit;
2984 }
2985
2986 enter_guest_mode(vcpu);
2987 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2988 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2989
2990 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2991 goto vmentry_fail_vmexit_guest_mode;
2992
2993 if (from_vmentry) {
2994 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2995 exit_qual = nested_vmx_load_msr(vcpu,
2996 vmcs12->vm_entry_msr_load_addr,
2997 vmcs12->vm_entry_msr_load_count);
2998 if (exit_qual)
2999 goto vmentry_fail_vmexit_guest_mode;
3000 } else {
3001 /*
3002 * The MMU is not initialized to point at the right entities yet and
3003 * "get pages" would need to read data from the guest (i.e. we will
3004 * need to perform gpa to hpa translation). Request a call
3005 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3006 * have already been set at vmentry time and should not be reset.
3007 */
3008 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3009 }
3010
3011 /*
3012 * If L1 had a pending IRQ/NMI until it executed
3013 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3014 * disallowed (e.g. interrupts disabled), L0 needs to
3015 * evaluate if this pending event should cause an exit from L2
3016 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3017 * intercept EXTERNAL_INTERRUPT).
3018 *
3019 * Usually this would be handled by the processor noticing an
3020 * IRQ/NMI window request, or checking RVI during evaluation of
3021 * pending virtual interrupts. However, this setting was done
3022 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3023 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3024 */
3025 if (unlikely(evaluate_pending_interrupts))
3026 kvm_make_request(KVM_REQ_EVENT, vcpu);
3027
3028 /*
3029 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3030 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3031 * returned as far as L1 is concerned. It will only return (and set
3032 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3033 */
3034 return 0;
3035
3036 /*
3037 * A failed consistency check that leads to a VMExit during L1's
3038 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3039 * 26.7 "VM-entry failures during or after loading guest state".
3040 */
3041 vmentry_fail_vmexit_guest_mode:
3042 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3043 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3044 leave_guest_mode(vcpu);
3045
3046 vmentry_fail_vmexit:
3047 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3048
3049 if (!from_vmentry)
3050 return 1;
3051
3052 load_vmcs12_host_state(vcpu, vmcs12);
3053 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3054 vmcs12->exit_qualification = exit_qual;
3055 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3056 vmx->nested.need_vmcs12_sync = true;
3057 return 1;
3058 }
3059
3060 /*
3061 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3062 * for running an L2 nested guest.
3063 */
3064 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3065 {
3066 struct vmcs12 *vmcs12;
3067 struct vcpu_vmx *vmx = to_vmx(vcpu);
3068 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3069 int ret;
3070
3071 if (!nested_vmx_check_permission(vcpu))
3072 return 1;
3073
3074 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3075 return 1;
3076
3077 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3078 return nested_vmx_failInvalid(vcpu);
3079
3080 vmcs12 = get_vmcs12(vcpu);
3081
3082 /*
3083 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3084 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3085 * rather than RFLAGS.ZF, and no error number is stored to the
3086 * VM-instruction error field.
3087 */
3088 if (vmcs12->hdr.shadow_vmcs)
3089 return nested_vmx_failInvalid(vcpu);
3090
3091 if (vmx->nested.hv_evmcs) {
3092 copy_enlightened_to_vmcs12(vmx);
3093 /* Enlightened VMCS doesn't have launch state */
3094 vmcs12->launch_state = !launch;
3095 } else if (enable_shadow_vmcs) {
3096 copy_shadow_to_vmcs12(vmx);
3097 }
3098
3099 /*
3100 * The nested entry process starts with enforcing various prerequisites
3101 * on vmcs12 as required by the Intel SDM, and act appropriately when
3102 * they fail: As the SDM explains, some conditions should cause the
3103 * instruction to fail, while others will cause the instruction to seem
3104 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3105 * To speed up the normal (success) code path, we should avoid checking
3106 * for misconfigurations which will anyway be caught by the processor
3107 * when using the merged vmcs02.
3108 */
3109 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3110 return nested_vmx_failValid(vcpu,
3111 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3112
3113 if (vmcs12->launch_state == launch)
3114 return nested_vmx_failValid(vcpu,
3115 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3116 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3117
3118 ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3119 if (ret)
3120 return nested_vmx_failValid(vcpu, ret);
3121
3122 /*
3123 * We're finally done with prerequisite checking, and can start with
3124 * the nested entry.
3125 */
3126 vmx->nested.nested_run_pending = 1;
3127 ret = nested_vmx_enter_non_root_mode(vcpu, true);
3128 vmx->nested.nested_run_pending = !ret;
3129 if (ret > 0)
3130 return 1;
3131 else if (ret)
3132 return nested_vmx_failValid(vcpu,
3133 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3134
3135 /* Hide L1D cache contents from the nested guest. */
3136 vmx->vcpu.arch.l1tf_flush_l1d = true;
3137
3138 /*
3139 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3140 * also be used as part of restoring nVMX state for
3141 * snapshot restore (migration).
3142 *
3143 * In this flow, it is assumed that vmcs12 cache was
3144 * trasferred as part of captured nVMX state and should
3145 * therefore not be read from guest memory (which may not
3146 * exist on destination host yet).
3147 */
3148 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3149
3150 /*
3151 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3152 * awakened by event injection or by an NMI-window VM-exit or
3153 * by an interrupt-window VM-exit, halt the vcpu.
3154 */
3155 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3156 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3157 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3158 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3159 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3160 vmx->nested.nested_run_pending = 0;
3161 return kvm_vcpu_halt(vcpu);
3162 }
3163 return 1;
3164 }
3165
3166 /*
3167 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3168 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3169 * This function returns the new value we should put in vmcs12.guest_cr0.
3170 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3171 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3172 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3173 * didn't trap the bit, because if L1 did, so would L0).
3174 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3175 * been modified by L2, and L1 knows it. So just leave the old value of
3176 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3177 * isn't relevant, because if L0 traps this bit it can set it to anything.
3178 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3179 * changed these bits, and therefore they need to be updated, but L0
3180 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3181 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3182 */
3183 static inline unsigned long
3184 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3185 {
3186 return
3187 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3188 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3189 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3190 vcpu->arch.cr0_guest_owned_bits));
3191 }
3192
3193 static inline unsigned long
3194 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3195 {
3196 return
3197 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3198 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3199 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3200 vcpu->arch.cr4_guest_owned_bits));
3201 }
3202
3203 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3204 struct vmcs12 *vmcs12)
3205 {
3206 u32 idt_vectoring;
3207 unsigned int nr;
3208
3209 if (vcpu->arch.exception.injected) {
3210 nr = vcpu->arch.exception.nr;
3211 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3212
3213 if (kvm_exception_is_soft(nr)) {
3214 vmcs12->vm_exit_instruction_len =
3215 vcpu->arch.event_exit_inst_len;
3216 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3217 } else
3218 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3219
3220 if (vcpu->arch.exception.has_error_code) {
3221 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3222 vmcs12->idt_vectoring_error_code =
3223 vcpu->arch.exception.error_code;
3224 }
3225
3226 vmcs12->idt_vectoring_info_field = idt_vectoring;
3227 } else if (vcpu->arch.nmi_injected) {
3228 vmcs12->idt_vectoring_info_field =
3229 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3230 } else if (vcpu->arch.interrupt.injected) {
3231 nr = vcpu->arch.interrupt.nr;
3232 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3233
3234 if (vcpu->arch.interrupt.soft) {
3235 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3236 vmcs12->vm_entry_instruction_len =
3237 vcpu->arch.event_exit_inst_len;
3238 } else
3239 idt_vectoring |= INTR_TYPE_EXT_INTR;
3240
3241 vmcs12->idt_vectoring_info_field = idt_vectoring;
3242 }
3243 }
3244
3245
3246 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3247 {
3248 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3249 gfn_t gfn;
3250
3251 /*
3252 * Don't need to mark the APIC access page dirty; it is never
3253 * written to by the CPU during APIC virtualization.
3254 */
3255
3256 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3257 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3258 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3259 }
3260
3261 if (nested_cpu_has_posted_intr(vmcs12)) {
3262 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3263 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3264 }
3265 }
3266
3267 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3268 {
3269 struct vcpu_vmx *vmx = to_vmx(vcpu);
3270 int max_irr;
3271 void *vapic_page;
3272 u16 status;
3273
3274 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3275 return;
3276
3277 vmx->nested.pi_pending = false;
3278 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3279 return;
3280
3281 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3282 if (max_irr != 256) {
3283 vapic_page = kmap(vmx->nested.virtual_apic_page);
3284 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3285 vapic_page, &max_irr);
3286 kunmap(vmx->nested.virtual_apic_page);
3287
3288 status = vmcs_read16(GUEST_INTR_STATUS);
3289 if ((u8)max_irr > ((u8)status & 0xff)) {
3290 status &= ~0xff;
3291 status |= (u8)max_irr;
3292 vmcs_write16(GUEST_INTR_STATUS, status);
3293 }
3294 }
3295
3296 nested_mark_vmcs12_pages_dirty(vcpu);
3297 }
3298
3299 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3300 unsigned long exit_qual)
3301 {
3302 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3303 unsigned int nr = vcpu->arch.exception.nr;
3304 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3305
3306 if (vcpu->arch.exception.has_error_code) {
3307 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3308 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3309 }
3310
3311 if (kvm_exception_is_soft(nr))
3312 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3313 else
3314 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3315
3316 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3317 vmx_get_nmi_mask(vcpu))
3318 intr_info |= INTR_INFO_UNBLOCK_NMI;
3319
3320 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3321 }
3322
3323 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3324 {
3325 struct vcpu_vmx *vmx = to_vmx(vcpu);
3326 unsigned long exit_qual;
3327 bool block_nested_events =
3328 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3329
3330 if (vcpu->arch.exception.pending &&
3331 nested_vmx_check_exception(vcpu, &exit_qual)) {
3332 if (block_nested_events)
3333 return -EBUSY;
3334 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3335 return 0;
3336 }
3337
3338 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3339 vmx->nested.preemption_timer_expired) {
3340 if (block_nested_events)
3341 return -EBUSY;
3342 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3343 return 0;
3344 }
3345
3346 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3347 if (block_nested_events)
3348 return -EBUSY;
3349 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3350 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3351 INTR_INFO_VALID_MASK, 0);
3352 /*
3353 * The NMI-triggered VM exit counts as injection:
3354 * clear this one and block further NMIs.
3355 */
3356 vcpu->arch.nmi_pending = 0;
3357 vmx_set_nmi_mask(vcpu, true);
3358 return 0;
3359 }
3360
3361 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3362 nested_exit_on_intr(vcpu)) {
3363 if (block_nested_events)
3364 return -EBUSY;
3365 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3366 return 0;
3367 }
3368
3369 vmx_complete_nested_posted_interrupt(vcpu);
3370 return 0;
3371 }
3372
3373 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3374 {
3375 ktime_t remaining =
3376 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3377 u64 value;
3378
3379 if (ktime_to_ns(remaining) <= 0)
3380 return 0;
3381
3382 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3383 do_div(value, 1000000);
3384 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3385 }
3386
3387 /*
3388 * Update the guest state fields of vmcs12 to reflect changes that
3389 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3390 * VM-entry controls is also updated, since this is really a guest
3391 * state bit.)
3392 */
3393 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3394 {
3395 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3396 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3397
3398 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3399 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3400 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3401
3402 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3403 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3404 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3405 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3406 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3407 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3408 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3409 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3410 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3411 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3412 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3413 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3414 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3415 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3416 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3417 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3418 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3419 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3420 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3421 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3422 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3423 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3424 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3425 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3426 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3427 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3428 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3429 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3430 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3431 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3432 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3433 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3434 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3435 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3436 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3437 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3438
3439 vmcs12->guest_interruptibility_info =
3440 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3441 vmcs12->guest_pending_dbg_exceptions =
3442 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3443 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3444 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3445 else
3446 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3447
3448 if (nested_cpu_has_preemption_timer(vmcs12)) {
3449 if (vmcs12->vm_exit_controls &
3450 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3451 vmcs12->vmx_preemption_timer_value =
3452 vmx_get_preemption_timer_value(vcpu);
3453 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3454 }
3455
3456 /*
3457 * In some cases (usually, nested EPT), L2 is allowed to change its
3458 * own CR3 without exiting. If it has changed it, we must keep it.
3459 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3460 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3461 *
3462 * Additionally, restore L2's PDPTR to vmcs12.
3463 */
3464 if (enable_ept) {
3465 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3466 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3467 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3468 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3469 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3470 }
3471
3472 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3473
3474 if (nested_cpu_has_vid(vmcs12))
3475 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3476
3477 vmcs12->vm_entry_controls =
3478 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3479 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3480
3481 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3482 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3483 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3484 }
3485
3486 /* TODO: These cannot have changed unless we have MSR bitmaps and
3487 * the relevant bit asks not to trap the change */
3488 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3489 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3490 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3491 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3492 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3493 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3494 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3495 if (kvm_mpx_supported())
3496 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3497 }
3498
3499 /*
3500 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3501 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3502 * and this function updates it to reflect the changes to the guest state while
3503 * L2 was running (and perhaps made some exits which were handled directly by L0
3504 * without going back to L1), and to reflect the exit reason.
3505 * Note that we do not have to copy here all VMCS fields, just those that
3506 * could have changed by the L2 guest or the exit - i.e., the guest-state and
3507 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3508 * which already writes to vmcs12 directly.
3509 */
3510 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3511 u32 exit_reason, u32 exit_intr_info,
3512 unsigned long exit_qualification)
3513 {
3514 /* update guest state fields: */
3515 sync_vmcs12(vcpu, vmcs12);
3516
3517 /* update exit information fields: */
3518
3519 vmcs12->vm_exit_reason = exit_reason;
3520 vmcs12->exit_qualification = exit_qualification;
3521 vmcs12->vm_exit_intr_info = exit_intr_info;
3522
3523 vmcs12->idt_vectoring_info_field = 0;
3524 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3525 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3526
3527 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3528 vmcs12->launch_state = 1;
3529
3530 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3531 * instead of reading the real value. */
3532 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3533
3534 /*
3535 * Transfer the event that L0 or L1 may wanted to inject into
3536 * L2 to IDT_VECTORING_INFO_FIELD.
3537 */
3538 vmcs12_save_pending_event(vcpu, vmcs12);
3539
3540 /*
3541 * According to spec, there's no need to store the guest's
3542 * MSRs if the exit is due to a VM-entry failure that occurs
3543 * during or after loading the guest state. Since this exit
3544 * does not fall in that category, we need to save the MSRs.
3545 */
3546 if (nested_vmx_store_msr(vcpu,
3547 vmcs12->vm_exit_msr_store_addr,
3548 vmcs12->vm_exit_msr_store_count))
3549 nested_vmx_abort(vcpu,
3550 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3551 }
3552
3553 /*
3554 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3555 * preserved above and would only end up incorrectly in L1.
3556 */
3557 vcpu->arch.nmi_injected = false;
3558 kvm_clear_exception_queue(vcpu);
3559 kvm_clear_interrupt_queue(vcpu);
3560 }
3561
3562 /*
3563 * A part of what we need to when the nested L2 guest exits and we want to
3564 * run its L1 parent, is to reset L1's guest state to the host state specified
3565 * in vmcs12.
3566 * This function is to be called not only on normal nested exit, but also on
3567 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3568 * Failures During or After Loading Guest State").
3569 * This function should be called when the active VMCS is L1's (vmcs01).
3570 */
3571 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3572 struct vmcs12 *vmcs12)
3573 {
3574 struct kvm_segment seg;
3575 u32 entry_failure_code;
3576
3577 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3578 vcpu->arch.efer = vmcs12->host_ia32_efer;
3579 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3580 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3581 else
3582 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3583 vmx_set_efer(vcpu, vcpu->arch.efer);
3584
3585 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3586 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3587 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3588 vmx_set_interrupt_shadow(vcpu, 0);
3589
3590 /*
3591 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3592 * actually changed, because vmx_set_cr0 refers to efer set above.
3593 *
3594 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3595 * (KVM doesn't change it);
3596 */
3597 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3598 vmx_set_cr0(vcpu, vmcs12->host_cr0);
3599
3600 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
3601 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3602 vmx_set_cr4(vcpu, vmcs12->host_cr4);
3603
3604 nested_ept_uninit_mmu_context(vcpu);
3605
3606 /*
3607 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3608 * couldn't have changed.
3609 */
3610 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3611 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3612
3613 if (!enable_ept)
3614 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3615
3616 /*
3617 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3618 * VMEntry/VMExit. Thus, no need to flush TLB.
3619 *
3620 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3621 * flushed on every VMEntry/VMExit.
3622 *
3623 * Otherwise, we can preserve TLB entries as long as we are
3624 * able to tag L1 TLB entries differently than L2 TLB entries.
3625 *
3626 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3627 * and therefore we request the TLB flush to happen only after VMCS EPTP
3628 * has been set by KVM_REQ_LOAD_CR3.
3629 */
3630 if (enable_vpid &&
3631 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3632 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3633 }
3634
3635 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3636 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3637 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3638 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3639 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3640 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3641 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3642
3643 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
3644 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3645 vmcs_write64(GUEST_BNDCFGS, 0);
3646
3647 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3648 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3649 vcpu->arch.pat = vmcs12->host_ia32_pat;
3650 }
3651 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3652 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3653 vmcs12->host_ia32_perf_global_ctrl);
3654
3655 /* Set L1 segment info according to Intel SDM
3656 27.5.2 Loading Host Segment and Descriptor-Table Registers */
3657 seg = (struct kvm_segment) {
3658 .base = 0,
3659 .limit = 0xFFFFFFFF,
3660 .selector = vmcs12->host_cs_selector,
3661 .type = 11,
3662 .present = 1,
3663 .s = 1,
3664 .g = 1
3665 };
3666 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3667 seg.l = 1;
3668 else
3669 seg.db = 1;
3670 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3671 seg = (struct kvm_segment) {
3672 .base = 0,
3673 .limit = 0xFFFFFFFF,
3674 .type = 3,
3675 .present = 1,
3676 .s = 1,
3677 .db = 1,
3678 .g = 1
3679 };
3680 seg.selector = vmcs12->host_ds_selector;
3681 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3682 seg.selector = vmcs12->host_es_selector;
3683 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3684 seg.selector = vmcs12->host_ss_selector;
3685 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3686 seg.selector = vmcs12->host_fs_selector;
3687 seg.base = vmcs12->host_fs_base;
3688 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3689 seg.selector = vmcs12->host_gs_selector;
3690 seg.base = vmcs12->host_gs_base;
3691 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3692 seg = (struct kvm_segment) {
3693 .base = vmcs12->host_tr_base,
3694 .limit = 0x67,
3695 .selector = vmcs12->host_tr_selector,
3696 .type = 11,
3697 .present = 1
3698 };
3699 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3700
3701 kvm_set_dr(vcpu, 7, 0x400);
3702 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3703
3704 if (cpu_has_vmx_msr_bitmap())
3705 vmx_update_msr_bitmap(vcpu);
3706
3707 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3708 vmcs12->vm_exit_msr_load_count))
3709 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3710 }
3711
3712 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3713 {
3714 struct shared_msr_entry *efer_msr;
3715 unsigned int i;
3716
3717 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3718 return vmcs_read64(GUEST_IA32_EFER);
3719
3720 if (cpu_has_load_ia32_efer())
3721 return host_efer;
3722
3723 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3724 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3725 return vmx->msr_autoload.guest.val[i].value;
3726 }
3727
3728 efer_msr = find_msr_entry(vmx, MSR_EFER);
3729 if (efer_msr)
3730 return efer_msr->data;
3731
3732 return host_efer;
3733 }
3734
3735 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3736 {
3737 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738 struct vcpu_vmx *vmx = to_vmx(vcpu);
3739 struct vmx_msr_entry g, h;
3740 struct msr_data msr;
3741 gpa_t gpa;
3742 u32 i, j;
3743
3744 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3745
3746 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3747 /*
3748 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3749 * as vmcs01.GUEST_DR7 contains a userspace defined value
3750 * and vcpu->arch.dr7 is not squirreled away before the
3751 * nested VMENTER (not worth adding a variable in nested_vmx).
3752 */
3753 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3754 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3755 else
3756 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3757 }
3758
3759 /*
3760 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3761 * handle a variety of side effects to KVM's software model.
3762 */
3763 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3764
3765 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3766 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3767
3768 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3769 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3770
3771 nested_ept_uninit_mmu_context(vcpu);
3772 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3773 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3774
3775 /*
3776 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3777 * from vmcs01 (if necessary). The PDPTRs are not loaded on
3778 * VMFail, like everything else we just need to ensure our
3779 * software model is up-to-date.
3780 */
3781 ept_save_pdptrs(vcpu);
3782
3783 kvm_mmu_reset_context(vcpu);
3784
3785 if (cpu_has_vmx_msr_bitmap())
3786 vmx_update_msr_bitmap(vcpu);
3787
3788 /*
3789 * This nasty bit of open coding is a compromise between blindly
3790 * loading L1's MSRs using the exit load lists (incorrect emulation
3791 * of VMFail), leaving the nested VM's MSRs in the software model
3792 * (incorrect behavior) and snapshotting the modified MSRs (too
3793 * expensive since the lists are unbound by hardware). For each
3794 * MSR that was (prematurely) loaded from the nested VMEntry load
3795 * list, reload it from the exit load list if it exists and differs
3796 * from the guest value. The intent is to stuff host state as
3797 * silently as possible, not to fully process the exit load list.
3798 */
3799 msr.host_initiated = false;
3800 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3801 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3802 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3803 pr_debug_ratelimited(
3804 "%s read MSR index failed (%u, 0x%08llx)\n",
3805 __func__, i, gpa);
3806 goto vmabort;
3807 }
3808
3809 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3810 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3811 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3812 pr_debug_ratelimited(
3813 "%s read MSR failed (%u, 0x%08llx)\n",
3814 __func__, j, gpa);
3815 goto vmabort;
3816 }
3817 if (h.index != g.index)
3818 continue;
3819 if (h.value == g.value)
3820 break;
3821
3822 if (nested_vmx_load_msr_check(vcpu, &h)) {
3823 pr_debug_ratelimited(
3824 "%s check failed (%u, 0x%x, 0x%x)\n",
3825 __func__, j, h.index, h.reserved);
3826 goto vmabort;
3827 }
3828
3829 msr.index = h.index;
3830 msr.data = h.value;
3831 if (kvm_set_msr(vcpu, &msr)) {
3832 pr_debug_ratelimited(
3833 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3834 __func__, j, h.index, h.value);
3835 goto vmabort;
3836 }
3837 }
3838 }
3839
3840 return;
3841
3842 vmabort:
3843 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3844 }
3845
3846 /*
3847 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3848 * and modify vmcs12 to make it see what it would expect to see there if
3849 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3850 */
3851 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3852 u32 exit_intr_info, unsigned long exit_qualification)
3853 {
3854 struct vcpu_vmx *vmx = to_vmx(vcpu);
3855 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3856
3857 /* trying to cancel vmlaunch/vmresume is a bug */
3858 WARN_ON_ONCE(vmx->nested.nested_run_pending);
3859
3860 leave_guest_mode(vcpu);
3861
3862 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3863 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3864
3865 if (likely(!vmx->fail)) {
3866 if (exit_reason == -1)
3867 sync_vmcs12(vcpu, vmcs12);
3868 else
3869 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3870 exit_qualification);
3871
3872 /*
3873 * Must happen outside of sync_vmcs12() as it will
3874 * also be used to capture vmcs12 cache as part of
3875 * capturing nVMX state for snapshot (migration).
3876 *
3877 * Otherwise, this flush will dirty guest memory at a
3878 * point it is already assumed by user-space to be
3879 * immutable.
3880 */
3881 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3882 } else {
3883 /*
3884 * The only expected VM-instruction error is "VM entry with
3885 * invalid control field(s)." Anything else indicates a
3886 * problem with L0. And we should never get here with a
3887 * VMFail of any type if early consistency checks are enabled.
3888 */
3889 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3890 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3891 WARN_ON_ONCE(nested_early_check);
3892 }
3893
3894 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3895
3896 /* Update any VMCS fields that might have changed while L2 ran */
3897 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3898 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3899 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3900
3901 if (kvm_has_tsc_control)
3902 decache_tsc_multiplier(vmx);
3903
3904 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3905 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3906 vmx_set_virtual_apic_mode(vcpu);
3907 } else if (!nested_cpu_has_ept(vmcs12) &&
3908 nested_cpu_has2(vmcs12,
3909 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3910 vmx_flush_tlb(vcpu, true);
3911 }
3912
3913 /* This is needed for same reason as it was needed in prepare_vmcs02 */
3914 vmx->host_rsp = 0;
3915
3916 /* Unpin physical memory we referred to in vmcs02 */
3917 if (vmx->nested.apic_access_page) {
3918 kvm_release_page_dirty(vmx->nested.apic_access_page);
3919 vmx->nested.apic_access_page = NULL;
3920 }
3921 if (vmx->nested.virtual_apic_page) {
3922 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3923 vmx->nested.virtual_apic_page = NULL;
3924 }
3925 if (vmx->nested.pi_desc_page) {
3926 kunmap(vmx->nested.pi_desc_page);
3927 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3928 vmx->nested.pi_desc_page = NULL;
3929 vmx->nested.pi_desc = NULL;
3930 }
3931
3932 /*
3933 * We are now running in L2, mmu_notifier will force to reload the
3934 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3935 */
3936 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3937
3938 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3939 vmx->nested.need_vmcs12_sync = true;
3940
3941 /* in case we halted in L2 */
3942 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3943
3944 if (likely(!vmx->fail)) {
3945 /*
3946 * TODO: SDM says that with acknowledge interrupt on
3947 * exit, bit 31 of the VM-exit interrupt information
3948 * (valid interrupt) is always set to 1 on
3949 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3950 * need kvm_cpu_has_interrupt(). See the commit
3951 * message for details.
3952 */
3953 if (nested_exit_intr_ack_set(vcpu) &&
3954 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3955 kvm_cpu_has_interrupt(vcpu)) {
3956 int irq = kvm_cpu_get_interrupt(vcpu);
3957 WARN_ON(irq < 0);
3958 vmcs12->vm_exit_intr_info = irq |
3959 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3960 }
3961
3962 if (exit_reason != -1)
3963 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3964 vmcs12->exit_qualification,
3965 vmcs12->idt_vectoring_info_field,
3966 vmcs12->vm_exit_intr_info,
3967 vmcs12->vm_exit_intr_error_code,
3968 KVM_ISA_VMX);
3969
3970 load_vmcs12_host_state(vcpu, vmcs12);
3971
3972 return;
3973 }
3974
3975 /*
3976 * After an early L2 VM-entry failure, we're now back
3977 * in L1 which thinks it just finished a VMLAUNCH or
3978 * VMRESUME instruction, so we need to set the failure
3979 * flag and the VM-instruction error field of the VMCS
3980 * accordingly, and skip the emulated instruction.
3981 */
3982 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3983
3984 /*
3985 * Restore L1's host state to KVM's software model. We're here
3986 * because a consistency check was caught by hardware, which
3987 * means some amount of guest state has been propagated to KVM's
3988 * model and needs to be unwound to the host's state.
3989 */
3990 nested_vmx_restore_host_state(vcpu);
3991
3992 vmx->fail = 0;
3993 }
3994
3995 /*
3996 * Decode the memory-address operand of a vmx instruction, as recorded on an
3997 * exit caused by such an instruction (run by a guest hypervisor).
3998 * On success, returns 0. When the operand is invalid, returns 1 and throws
3999 * #UD or #GP.
4000 */
4001 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4002 u32 vmx_instruction_info, bool wr, gva_t *ret)
4003 {
4004 gva_t off;
4005 bool exn;
4006 struct kvm_segment s;
4007
4008 /*
4009 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4010 * Execution", on an exit, vmx_instruction_info holds most of the
4011 * addressing components of the operand. Only the displacement part
4012 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4013 * For how an actual address is calculated from all these components,
4014 * refer to Vol. 1, "Operand Addressing".
4015 */
4016 int scaling = vmx_instruction_info & 3;
4017 int addr_size = (vmx_instruction_info >> 7) & 7;
4018 bool is_reg = vmx_instruction_info & (1u << 10);
4019 int seg_reg = (vmx_instruction_info >> 15) & 7;
4020 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4021 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4022 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4023 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4024
4025 if (is_reg) {
4026 kvm_queue_exception(vcpu, UD_VECTOR);
4027 return 1;
4028 }
4029
4030 /* Addr = segment_base + offset */
4031 /* offset = base + [index * scale] + displacement */
4032 off = exit_qualification; /* holds the displacement */
4033 if (base_is_valid)
4034 off += kvm_register_read(vcpu, base_reg);
4035 if (index_is_valid)
4036 off += kvm_register_read(vcpu, index_reg)<<scaling;
4037 vmx_get_segment(vcpu, &s, seg_reg);
4038 *ret = s.base + off;
4039
4040 if (addr_size == 1) /* 32 bit */
4041 *ret &= 0xffffffff;
4042
4043 /* Checks for #GP/#SS exceptions. */
4044 exn = false;
4045 if (is_long_mode(vcpu)) {
4046 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4047 * non-canonical form. This is the only check on the memory
4048 * destination for long mode!
4049 */
4050 exn = is_noncanonical_address(*ret, vcpu);
4051 } else if (is_protmode(vcpu)) {
4052 /* Protected mode: apply checks for segment validity in the
4053 * following order:
4054 * - segment type check (#GP(0) may be thrown)
4055 * - usability check (#GP(0)/#SS(0))
4056 * - limit check (#GP(0)/#SS(0))
4057 */
4058 if (wr)
4059 /* #GP(0) if the destination operand is located in a
4060 * read-only data segment or any code segment.
4061 */
4062 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4063 else
4064 /* #GP(0) if the source operand is located in an
4065 * execute-only code segment
4066 */
4067 exn = ((s.type & 0xa) == 8);
4068 if (exn) {
4069 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4070 return 1;
4071 }
4072 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4073 */
4074 exn = (s.unusable != 0);
4075 /* Protected mode: #GP(0)/#SS(0) if the memory
4076 * operand is outside the segment limit.
4077 */
4078 exn = exn || (off + sizeof(u64) > s.limit);
4079 }
4080 if (exn) {
4081 kvm_queue_exception_e(vcpu,
4082 seg_reg == VCPU_SREG_SS ?
4083 SS_VECTOR : GP_VECTOR,
4084 0);
4085 return 1;
4086 }
4087
4088 return 0;
4089 }
4090
4091 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4092 {
4093 gva_t gva;
4094 struct x86_exception e;
4095
4096 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4097 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4098 return 1;
4099
4100 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4101 kvm_inject_page_fault(vcpu, &e);
4102 return 1;
4103 }
4104
4105 return 0;
4106 }
4107
4108 /*
4109 * Allocate a shadow VMCS and associate it with the currently loaded
4110 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4111 * VMCS is also VMCLEARed, so that it is ready for use.
4112 */
4113 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4114 {
4115 struct vcpu_vmx *vmx = to_vmx(vcpu);
4116 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4117
4118 /*
4119 * We should allocate a shadow vmcs for vmcs01 only when L1
4120 * executes VMXON and free it when L1 executes VMXOFF.
4121 * As it is invalid to execute VMXON twice, we shouldn't reach
4122 * here when vmcs01 already have an allocated shadow vmcs.
4123 */
4124 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4125
4126 if (!loaded_vmcs->shadow_vmcs) {
4127 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4128 if (loaded_vmcs->shadow_vmcs)
4129 vmcs_clear(loaded_vmcs->shadow_vmcs);
4130 }
4131 return loaded_vmcs->shadow_vmcs;
4132 }
4133
4134 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4135 {
4136 struct vcpu_vmx *vmx = to_vmx(vcpu);
4137 int r;
4138
4139 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4140 if (r < 0)
4141 goto out_vmcs02;
4142
4143 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
4144 if (!vmx->nested.cached_vmcs12)
4145 goto out_cached_vmcs12;
4146
4147 vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
4148 if (!vmx->nested.cached_shadow_vmcs12)
4149 goto out_cached_shadow_vmcs12;
4150
4151 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4152 goto out_shadow_vmcs;
4153
4154 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4155 HRTIMER_MODE_REL_PINNED);
4156 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4157
4158 vmx->nested.vpid02 = allocate_vpid();
4159
4160 vmx->nested.vmcs02_initialized = false;
4161 vmx->nested.vmxon = true;
4162
4163 if (pt_mode == PT_MODE_HOST_GUEST) {
4164 vmx->pt_desc.guest.ctl = 0;
4165 pt_update_intercept_for_msr(vmx);
4166 }
4167
4168 return 0;
4169
4170 out_shadow_vmcs:
4171 kfree(vmx->nested.cached_shadow_vmcs12);
4172
4173 out_cached_shadow_vmcs12:
4174 kfree(vmx->nested.cached_vmcs12);
4175
4176 out_cached_vmcs12:
4177 free_loaded_vmcs(&vmx->nested.vmcs02);
4178
4179 out_vmcs02:
4180 return -ENOMEM;
4181 }
4182
4183 /*
4184 * Emulate the VMXON instruction.
4185 * Currently, we just remember that VMX is active, and do not save or even
4186 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4187 * do not currently need to store anything in that guest-allocated memory
4188 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4189 * argument is different from the VMXON pointer (which the spec says they do).
4190 */
4191 static int handle_vmon(struct kvm_vcpu *vcpu)
4192 {
4193 int ret;
4194 gpa_t vmptr;
4195 struct page *page;
4196 struct vcpu_vmx *vmx = to_vmx(vcpu);
4197 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4198 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4199
4200 /*
4201 * The Intel VMX Instruction Reference lists a bunch of bits that are
4202 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4203 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4204 * Otherwise, we should fail with #UD. But most faulting conditions
4205 * have already been checked by hardware, prior to the VM-exit for
4206 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4207 * that bit set to 1 in non-root mode.
4208 */
4209 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4210 kvm_queue_exception(vcpu, UD_VECTOR);
4211 return 1;
4212 }
4213
4214 /* CPL=0 must be checked manually. */
4215 if (vmx_get_cpl(vcpu)) {
4216 kvm_inject_gp(vcpu, 0);
4217 return 1;
4218 }
4219
4220 if (vmx->nested.vmxon)
4221 return nested_vmx_failValid(vcpu,
4222 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4223
4224 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4225 != VMXON_NEEDED_FEATURES) {
4226 kvm_inject_gp(vcpu, 0);
4227 return 1;
4228 }
4229
4230 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4231 return 1;
4232
4233 /*
4234 * SDM 3: 24.11.5
4235 * The first 4 bytes of VMXON region contain the supported
4236 * VMCS revision identifier
4237 *
4238 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4239 * which replaces physical address width with 32
4240 */
4241 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4242 return nested_vmx_failInvalid(vcpu);
4243
4244 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4245 if (is_error_page(page))
4246 return nested_vmx_failInvalid(vcpu);
4247
4248 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4249 kunmap(page);
4250 kvm_release_page_clean(page);
4251 return nested_vmx_failInvalid(vcpu);
4252 }
4253 kunmap(page);
4254 kvm_release_page_clean(page);
4255
4256 vmx->nested.vmxon_ptr = vmptr;
4257 ret = enter_vmx_operation(vcpu);
4258 if (ret)
4259 return ret;
4260
4261 return nested_vmx_succeed(vcpu);
4262 }
4263
4264 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4265 {
4266 struct vcpu_vmx *vmx = to_vmx(vcpu);
4267
4268 if (vmx->nested.current_vmptr == -1ull)
4269 return;
4270
4271 if (enable_shadow_vmcs) {
4272 /* copy to memory all shadowed fields in case
4273 they were modified */
4274 copy_shadow_to_vmcs12(vmx);
4275 vmx->nested.need_vmcs12_sync = false;
4276 vmx_disable_shadow_vmcs(vmx);
4277 }
4278 vmx->nested.posted_intr_nv = -1;
4279
4280 /* Flush VMCS12 to guest memory */
4281 kvm_vcpu_write_guest_page(vcpu,
4282 vmx->nested.current_vmptr >> PAGE_SHIFT,
4283 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4284
4285 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4286
4287 vmx->nested.current_vmptr = -1ull;
4288 }
4289
4290 /* Emulate the VMXOFF instruction */
4291 static int handle_vmoff(struct kvm_vcpu *vcpu)
4292 {
4293 if (!nested_vmx_check_permission(vcpu))
4294 return 1;
4295 free_nested(vcpu);
4296 return nested_vmx_succeed(vcpu);
4297 }
4298
4299 /* Emulate the VMCLEAR instruction */
4300 static int handle_vmclear(struct kvm_vcpu *vcpu)
4301 {
4302 struct vcpu_vmx *vmx = to_vmx(vcpu);
4303 u32 zero = 0;
4304 gpa_t vmptr;
4305
4306 if (!nested_vmx_check_permission(vcpu))
4307 return 1;
4308
4309 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4310 return 1;
4311
4312 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4313 return nested_vmx_failValid(vcpu,
4314 VMXERR_VMCLEAR_INVALID_ADDRESS);
4315
4316 if (vmptr == vmx->nested.vmxon_ptr)
4317 return nested_vmx_failValid(vcpu,
4318 VMXERR_VMCLEAR_VMXON_POINTER);
4319
4320 if (vmx->nested.hv_evmcs_page) {
4321 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4322 nested_release_evmcs(vcpu);
4323 } else {
4324 if (vmptr == vmx->nested.current_vmptr)
4325 nested_release_vmcs12(vcpu);
4326
4327 kvm_vcpu_write_guest(vcpu,
4328 vmptr + offsetof(struct vmcs12,
4329 launch_state),
4330 &zero, sizeof(zero));
4331 }
4332
4333 return nested_vmx_succeed(vcpu);
4334 }
4335
4336 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4337
4338 /* Emulate the VMLAUNCH instruction */
4339 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4340 {
4341 return nested_vmx_run(vcpu, true);
4342 }
4343
4344 /* Emulate the VMRESUME instruction */
4345 static int handle_vmresume(struct kvm_vcpu *vcpu)
4346 {
4347
4348 return nested_vmx_run(vcpu, false);
4349 }
4350
4351 static int handle_vmread(struct kvm_vcpu *vcpu)
4352 {
4353 unsigned long field;
4354 u64 field_value;
4355 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4356 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4357 gva_t gva = 0;
4358 struct vmcs12 *vmcs12;
4359
4360 if (!nested_vmx_check_permission(vcpu))
4361 return 1;
4362
4363 if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4364 return nested_vmx_failInvalid(vcpu);
4365
4366 if (!is_guest_mode(vcpu))
4367 vmcs12 = get_vmcs12(vcpu);
4368 else {
4369 /*
4370 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4371 * to shadowed-field sets the ALU flags for VMfailInvalid.
4372 */
4373 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4374 return nested_vmx_failInvalid(vcpu);
4375 vmcs12 = get_shadow_vmcs12(vcpu);
4376 }
4377
4378 /* Decode instruction info and find the field to read */
4379 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4380 /* Read the field, zero-extended to a u64 field_value */
4381 if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4382 return nested_vmx_failValid(vcpu,
4383 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4384
4385 /*
4386 * Now copy part of this value to register or memory, as requested.
4387 * Note that the number of bits actually copied is 32 or 64 depending
4388 * on the guest's mode (32 or 64 bit), not on the given field's length.
4389 */
4390 if (vmx_instruction_info & (1u << 10)) {
4391 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4392 field_value);
4393 } else {
4394 if (get_vmx_mem_address(vcpu, exit_qualification,
4395 vmx_instruction_info, true, &gva))
4396 return 1;
4397 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4398 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4399 (is_long_mode(vcpu) ? 8 : 4), NULL);
4400 }
4401
4402 return nested_vmx_succeed(vcpu);
4403 }
4404
4405
4406 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4407 {
4408 unsigned long field;
4409 gva_t gva;
4410 struct vcpu_vmx *vmx = to_vmx(vcpu);
4411 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4412 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4413
4414 /* The value to write might be 32 or 64 bits, depending on L1's long
4415 * mode, and eventually we need to write that into a field of several
4416 * possible lengths. The code below first zero-extends the value to 64
4417 * bit (field_value), and then copies only the appropriate number of
4418 * bits into the vmcs12 field.
4419 */
4420 u64 field_value = 0;
4421 struct x86_exception e;
4422 struct vmcs12 *vmcs12;
4423
4424 if (!nested_vmx_check_permission(vcpu))
4425 return 1;
4426
4427 if (vmx->nested.current_vmptr == -1ull)
4428 return nested_vmx_failInvalid(vcpu);
4429
4430 if (vmx_instruction_info & (1u << 10))
4431 field_value = kvm_register_readl(vcpu,
4432 (((vmx_instruction_info) >> 3) & 0xf));
4433 else {
4434 if (get_vmx_mem_address(vcpu, exit_qualification,
4435 vmx_instruction_info, false, &gva))
4436 return 1;
4437 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4438 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4439 kvm_inject_page_fault(vcpu, &e);
4440 return 1;
4441 }
4442 }
4443
4444
4445 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4446 /*
4447 * If the vCPU supports "VMWRITE to any supported field in the
4448 * VMCS," then the "read-only" fields are actually read/write.
4449 */
4450 if (vmcs_field_readonly(field) &&
4451 !nested_cpu_has_vmwrite_any_field(vcpu))
4452 return nested_vmx_failValid(vcpu,
4453 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4454
4455 if (!is_guest_mode(vcpu))
4456 vmcs12 = get_vmcs12(vcpu);
4457 else {
4458 /*
4459 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4460 * to shadowed-field sets the ALU flags for VMfailInvalid.
4461 */
4462 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4463 return nested_vmx_failInvalid(vcpu);
4464 vmcs12 = get_shadow_vmcs12(vcpu);
4465 }
4466
4467 if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4468 return nested_vmx_failValid(vcpu,
4469 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4470
4471 /*
4472 * Do not track vmcs12 dirty-state if in guest-mode
4473 * as we actually dirty shadow vmcs12 instead of vmcs12.
4474 */
4475 if (!is_guest_mode(vcpu)) {
4476 switch (field) {
4477 #define SHADOW_FIELD_RW(x) case x:
4478 #include "vmcs_shadow_fields.h"
4479 /*
4480 * The fields that can be updated by L1 without a vmexit are
4481 * always updated in the vmcs02, the others go down the slow
4482 * path of prepare_vmcs02.
4483 */
4484 break;
4485 default:
4486 vmx->nested.dirty_vmcs12 = true;
4487 break;
4488 }
4489 }
4490
4491 return nested_vmx_succeed(vcpu);
4492 }
4493
4494 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4495 {
4496 vmx->nested.current_vmptr = vmptr;
4497 if (enable_shadow_vmcs) {
4498 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4499 SECONDARY_EXEC_SHADOW_VMCS);
4500 vmcs_write64(VMCS_LINK_POINTER,
4501 __pa(vmx->vmcs01.shadow_vmcs));
4502 vmx->nested.need_vmcs12_sync = true;
4503 }
4504 vmx->nested.dirty_vmcs12 = true;
4505 }
4506
4507 /* Emulate the VMPTRLD instruction */
4508 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4509 {
4510 struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 gpa_t vmptr;
4512
4513 if (!nested_vmx_check_permission(vcpu))
4514 return 1;
4515
4516 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4517 return 1;
4518
4519 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4520 return nested_vmx_failValid(vcpu,
4521 VMXERR_VMPTRLD_INVALID_ADDRESS);
4522
4523 if (vmptr == vmx->nested.vmxon_ptr)
4524 return nested_vmx_failValid(vcpu,
4525 VMXERR_VMPTRLD_VMXON_POINTER);
4526
4527 /* Forbid normal VMPTRLD if Enlightened version was used */
4528 if (vmx->nested.hv_evmcs)
4529 return 1;
4530
4531 if (vmx->nested.current_vmptr != vmptr) {
4532 struct vmcs12 *new_vmcs12;
4533 struct page *page;
4534
4535 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4536 if (is_error_page(page)) {
4537 /*
4538 * Reads from an unbacked page return all 1s,
4539 * which means that the 32 bits located at the
4540 * given physical address won't match the required
4541 * VMCS12_REVISION identifier.
4542 */
4543 nested_vmx_failValid(vcpu,
4544 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4545 return kvm_skip_emulated_instruction(vcpu);
4546 }
4547 new_vmcs12 = kmap(page);
4548 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4549 (new_vmcs12->hdr.shadow_vmcs &&
4550 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4551 kunmap(page);
4552 kvm_release_page_clean(page);
4553 return nested_vmx_failValid(vcpu,
4554 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4555 }
4556
4557 nested_release_vmcs12(vcpu);
4558
4559 /*
4560 * Load VMCS12 from guest memory since it is not already
4561 * cached.
4562 */
4563 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4564 kunmap(page);
4565 kvm_release_page_clean(page);
4566
4567 set_current_vmptr(vmx, vmptr);
4568 }
4569
4570 return nested_vmx_succeed(vcpu);
4571 }
4572
4573 /* Emulate the VMPTRST instruction */
4574 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4575 {
4576 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4577 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4578 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4579 struct x86_exception e;
4580 gva_t gva;
4581
4582 if (!nested_vmx_check_permission(vcpu))
4583 return 1;
4584
4585 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4586 return 1;
4587
4588 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4589 return 1;
4590 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4591 if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4592 sizeof(gpa_t), &e)) {
4593 kvm_inject_page_fault(vcpu, &e);
4594 return 1;
4595 }
4596 return nested_vmx_succeed(vcpu);
4597 }
4598
4599 /* Emulate the INVEPT instruction */
4600 static int handle_invept(struct kvm_vcpu *vcpu)
4601 {
4602 struct vcpu_vmx *vmx = to_vmx(vcpu);
4603 u32 vmx_instruction_info, types;
4604 unsigned long type;
4605 gva_t gva;
4606 struct x86_exception e;
4607 struct {
4608 u64 eptp, gpa;
4609 } operand;
4610
4611 if (!(vmx->nested.msrs.secondary_ctls_high &
4612 SECONDARY_EXEC_ENABLE_EPT) ||
4613 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4614 kvm_queue_exception(vcpu, UD_VECTOR);
4615 return 1;
4616 }
4617
4618 if (!nested_vmx_check_permission(vcpu))
4619 return 1;
4620
4621 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4622 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4623
4624 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4625
4626 if (type >= 32 || !(types & (1 << type)))
4627 return nested_vmx_failValid(vcpu,
4628 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4629
4630 /* According to the Intel VMX instruction reference, the memory
4631 * operand is read even if it isn't needed (e.g., for type==global)
4632 */
4633 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4634 vmx_instruction_info, false, &gva))
4635 return 1;
4636 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4637 kvm_inject_page_fault(vcpu, &e);
4638 return 1;
4639 }
4640
4641 switch (type) {
4642 case VMX_EPT_EXTENT_GLOBAL:
4643 /*
4644 * TODO: track mappings and invalidate
4645 * single context requests appropriately
4646 */
4647 case VMX_EPT_EXTENT_CONTEXT:
4648 kvm_mmu_sync_roots(vcpu);
4649 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4650 break;
4651 default:
4652 BUG_ON(1);
4653 break;
4654 }
4655
4656 return nested_vmx_succeed(vcpu);
4657 }
4658
4659 static int handle_invvpid(struct kvm_vcpu *vcpu)
4660 {
4661 struct vcpu_vmx *vmx = to_vmx(vcpu);
4662 u32 vmx_instruction_info;
4663 unsigned long type, types;
4664 gva_t gva;
4665 struct x86_exception e;
4666 struct {
4667 u64 vpid;
4668 u64 gla;
4669 } operand;
4670 u16 vpid02;
4671
4672 if (!(vmx->nested.msrs.secondary_ctls_high &
4673 SECONDARY_EXEC_ENABLE_VPID) ||
4674 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4675 kvm_queue_exception(vcpu, UD_VECTOR);
4676 return 1;
4677 }
4678
4679 if (!nested_vmx_check_permission(vcpu))
4680 return 1;
4681
4682 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4683 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4684
4685 types = (vmx->nested.msrs.vpid_caps &
4686 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4687
4688 if (type >= 32 || !(types & (1 << type)))
4689 return nested_vmx_failValid(vcpu,
4690 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4691
4692 /* according to the intel vmx instruction reference, the memory
4693 * operand is read even if it isn't needed (e.g., for type==global)
4694 */
4695 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4696 vmx_instruction_info, false, &gva))
4697 return 1;
4698 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4699 kvm_inject_page_fault(vcpu, &e);
4700 return 1;
4701 }
4702 if (operand.vpid >> 16)
4703 return nested_vmx_failValid(vcpu,
4704 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4705
4706 vpid02 = nested_get_vpid02(vcpu);
4707 switch (type) {
4708 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4709 if (!operand.vpid ||
4710 is_noncanonical_address(operand.gla, vcpu))
4711 return nested_vmx_failValid(vcpu,
4712 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4713 if (cpu_has_vmx_invvpid_individual_addr()) {
4714 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4715 vpid02, operand.gla);
4716 } else
4717 __vmx_flush_tlb(vcpu, vpid02, false);
4718 break;
4719 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4720 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4721 if (!operand.vpid)
4722 return nested_vmx_failValid(vcpu,
4723 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4724 __vmx_flush_tlb(vcpu, vpid02, false);
4725 break;
4726 case VMX_VPID_EXTENT_ALL_CONTEXT:
4727 __vmx_flush_tlb(vcpu, vpid02, false);
4728 break;
4729 default:
4730 WARN_ON_ONCE(1);
4731 return kvm_skip_emulated_instruction(vcpu);
4732 }
4733
4734 return nested_vmx_succeed(vcpu);
4735 }
4736
4737 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4738 struct vmcs12 *vmcs12)
4739 {
4740 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4741 u64 address;
4742 bool accessed_dirty;
4743 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4744
4745 if (!nested_cpu_has_eptp_switching(vmcs12) ||
4746 !nested_cpu_has_ept(vmcs12))
4747 return 1;
4748
4749 if (index >= VMFUNC_EPTP_ENTRIES)
4750 return 1;
4751
4752
4753 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4754 &address, index * 8, 8))
4755 return 1;
4756
4757 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4758
4759 /*
4760 * If the (L2) guest does a vmfunc to the currently
4761 * active ept pointer, we don't have to do anything else
4762 */
4763 if (vmcs12->ept_pointer != address) {
4764 if (!valid_ept_address(vcpu, address))
4765 return 1;
4766
4767 kvm_mmu_unload(vcpu);
4768 mmu->ept_ad = accessed_dirty;
4769 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4770 vmcs12->ept_pointer = address;
4771 /*
4772 * TODO: Check what's the correct approach in case
4773 * mmu reload fails. Currently, we just let the next
4774 * reload potentially fail
4775 */
4776 kvm_mmu_reload(vcpu);
4777 }
4778
4779 return 0;
4780 }
4781
4782 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4783 {
4784 struct vcpu_vmx *vmx = to_vmx(vcpu);
4785 struct vmcs12 *vmcs12;
4786 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4787
4788 /*
4789 * VMFUNC is only supported for nested guests, but we always enable the
4790 * secondary control for simplicity; for non-nested mode, fake that we
4791 * didn't by injecting #UD.
4792 */
4793 if (!is_guest_mode(vcpu)) {
4794 kvm_queue_exception(vcpu, UD_VECTOR);
4795 return 1;
4796 }
4797
4798 vmcs12 = get_vmcs12(vcpu);
4799 if ((vmcs12->vm_function_control & (1 << function)) == 0)
4800 goto fail;
4801
4802 switch (function) {
4803 case 0:
4804 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4805 goto fail;
4806 break;
4807 default:
4808 goto fail;
4809 }
4810 return kvm_skip_emulated_instruction(vcpu);
4811
4812 fail:
4813 nested_vmx_vmexit(vcpu, vmx->exit_reason,
4814 vmcs_read32(VM_EXIT_INTR_INFO),
4815 vmcs_readl(EXIT_QUALIFICATION));
4816 return 1;
4817 }
4818
4819
4820 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4821 struct vmcs12 *vmcs12)
4822 {
4823 unsigned long exit_qualification;
4824 gpa_t bitmap, last_bitmap;
4825 unsigned int port;
4826 int size;
4827 u8 b;
4828
4829 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4830 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4831
4832 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4833
4834 port = exit_qualification >> 16;
4835 size = (exit_qualification & 7) + 1;
4836
4837 last_bitmap = (gpa_t)-1;
4838 b = -1;
4839
4840 while (size > 0) {
4841 if (port < 0x8000)
4842 bitmap = vmcs12->io_bitmap_a;
4843 else if (port < 0x10000)
4844 bitmap = vmcs12->io_bitmap_b;
4845 else
4846 return true;
4847 bitmap += (port & 0x7fff) / 8;
4848
4849 if (last_bitmap != bitmap)
4850 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4851 return true;
4852 if (b & (1 << (port & 7)))
4853 return true;
4854
4855 port++;
4856 size--;
4857 last_bitmap = bitmap;
4858 }
4859
4860 return false;
4861 }
4862
4863 /*
4864 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4865 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4866 * disinterest in the current event (read or write a specific MSR) by using an
4867 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4868 */
4869 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4870 struct vmcs12 *vmcs12, u32 exit_reason)
4871 {
4872 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4873 gpa_t bitmap;
4874
4875 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4876 return true;
4877
4878 /*
4879 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4880 * for the four combinations of read/write and low/high MSR numbers.
4881 * First we need to figure out which of the four to use:
4882 */
4883 bitmap = vmcs12->msr_bitmap;
4884 if (exit_reason == EXIT_REASON_MSR_WRITE)
4885 bitmap += 2048;
4886 if (msr_index >= 0xc0000000) {
4887 msr_index -= 0xc0000000;
4888 bitmap += 1024;
4889 }
4890
4891 /* Then read the msr_index'th bit from this bitmap: */
4892 if (msr_index < 1024*8) {
4893 unsigned char b;
4894 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4895 return true;
4896 return 1 & (b >> (msr_index & 7));
4897 } else
4898 return true; /* let L1 handle the wrong parameter */
4899 }
4900
4901 /*
4902 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4903 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4904 * intercept (via guest_host_mask etc.) the current event.
4905 */
4906 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4907 struct vmcs12 *vmcs12)
4908 {
4909 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4910 int cr = exit_qualification & 15;
4911 int reg;
4912 unsigned long val;
4913
4914 switch ((exit_qualification >> 4) & 3) {
4915 case 0: /* mov to cr */
4916 reg = (exit_qualification >> 8) & 15;
4917 val = kvm_register_readl(vcpu, reg);
4918 switch (cr) {
4919 case 0:
4920 if (vmcs12->cr0_guest_host_mask &
4921 (val ^ vmcs12->cr0_read_shadow))
4922 return true;
4923 break;
4924 case 3:
4925 if ((vmcs12->cr3_target_count >= 1 &&
4926 vmcs12->cr3_target_value0 == val) ||
4927 (vmcs12->cr3_target_count >= 2 &&
4928 vmcs12->cr3_target_value1 == val) ||
4929 (vmcs12->cr3_target_count >= 3 &&
4930 vmcs12->cr3_target_value2 == val) ||
4931 (vmcs12->cr3_target_count >= 4 &&
4932 vmcs12->cr3_target_value3 == val))
4933 return false;
4934 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4935 return true;
4936 break;
4937 case 4:
4938 if (vmcs12->cr4_guest_host_mask &
4939 (vmcs12->cr4_read_shadow ^ val))
4940 return true;
4941 break;
4942 case 8:
4943 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4944 return true;
4945 break;
4946 }
4947 break;
4948 case 2: /* clts */
4949 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4950 (vmcs12->cr0_read_shadow & X86_CR0_TS))
4951 return true;
4952 break;
4953 case 1: /* mov from cr */
4954 switch (cr) {
4955 case 3:
4956 if (vmcs12->cpu_based_vm_exec_control &
4957 CPU_BASED_CR3_STORE_EXITING)
4958 return true;
4959 break;
4960 case 8:
4961 if (vmcs12->cpu_based_vm_exec_control &
4962 CPU_BASED_CR8_STORE_EXITING)
4963 return true;
4964 break;
4965 }
4966 break;
4967 case 3: /* lmsw */
4968 /*
4969 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4970 * cr0. Other attempted changes are ignored, with no exit.
4971 */
4972 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4973 if (vmcs12->cr0_guest_host_mask & 0xe &
4974 (val ^ vmcs12->cr0_read_shadow))
4975 return true;
4976 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4977 !(vmcs12->cr0_read_shadow & 0x1) &&
4978 (val & 0x1))
4979 return true;
4980 break;
4981 }
4982 return false;
4983 }
4984
4985 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4986 struct vmcs12 *vmcs12, gpa_t bitmap)
4987 {
4988 u32 vmx_instruction_info;
4989 unsigned long field;
4990 u8 b;
4991
4992 if (!nested_cpu_has_shadow_vmcs(vmcs12))
4993 return true;
4994
4995 /* Decode instruction info and find the field to access */
4996 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4997 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4998
4999 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5000 if (field >> 15)
5001 return true;
5002
5003 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5004 return true;
5005
5006 return 1 & (b >> (field & 7));
5007 }
5008
5009 /*
5010 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5011 * should handle it ourselves in L0 (and then continue L2). Only call this
5012 * when in is_guest_mode (L2).
5013 */
5014 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5015 {
5016 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5017 struct vcpu_vmx *vmx = to_vmx(vcpu);
5018 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5019
5020 if (vmx->nested.nested_run_pending)
5021 return false;
5022
5023 if (unlikely(vmx->fail)) {
5024 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5025 vmcs_read32(VM_INSTRUCTION_ERROR));
5026 return true;
5027 }
5028
5029 /*
5030 * The host physical addresses of some pages of guest memory
5031 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5032 * Page). The CPU may write to these pages via their host
5033 * physical address while L2 is running, bypassing any
5034 * address-translation-based dirty tracking (e.g. EPT write
5035 * protection).
5036 *
5037 * Mark them dirty on every exit from L2 to prevent them from
5038 * getting out of sync with dirty tracking.
5039 */
5040 nested_mark_vmcs12_pages_dirty(vcpu);
5041
5042 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5043 vmcs_readl(EXIT_QUALIFICATION),
5044 vmx->idt_vectoring_info,
5045 intr_info,
5046 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5047 KVM_ISA_VMX);
5048
5049 switch (exit_reason) {
5050 case EXIT_REASON_EXCEPTION_NMI:
5051 if (is_nmi(intr_info))
5052 return false;
5053 else if (is_page_fault(intr_info))
5054 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5055 else if (is_debug(intr_info) &&
5056 vcpu->guest_debug &
5057 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5058 return false;
5059 else if (is_breakpoint(intr_info) &&
5060 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5061 return false;
5062 return vmcs12->exception_bitmap &
5063 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5064 case EXIT_REASON_EXTERNAL_INTERRUPT:
5065 return false;
5066 case EXIT_REASON_TRIPLE_FAULT:
5067 return true;
5068 case EXIT_REASON_PENDING_INTERRUPT:
5069 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5070 case EXIT_REASON_NMI_WINDOW:
5071 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5072 case EXIT_REASON_TASK_SWITCH:
5073 return true;
5074 case EXIT_REASON_CPUID:
5075 return true;
5076 case EXIT_REASON_HLT:
5077 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5078 case EXIT_REASON_INVD:
5079 return true;
5080 case EXIT_REASON_INVLPG:
5081 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5082 case EXIT_REASON_RDPMC:
5083 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5084 case EXIT_REASON_RDRAND:
5085 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5086 case EXIT_REASON_RDSEED:
5087 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5088 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5089 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5090 case EXIT_REASON_VMREAD:
5091 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5092 vmcs12->vmread_bitmap);
5093 case EXIT_REASON_VMWRITE:
5094 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5095 vmcs12->vmwrite_bitmap);
5096 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5097 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5098 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5099 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5100 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5101 /*
5102 * VMX instructions trap unconditionally. This allows L1 to
5103 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5104 */
5105 return true;
5106 case EXIT_REASON_CR_ACCESS:
5107 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5108 case EXIT_REASON_DR_ACCESS:
5109 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5110 case EXIT_REASON_IO_INSTRUCTION:
5111 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5112 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5113 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5114 case EXIT_REASON_MSR_READ:
5115 case EXIT_REASON_MSR_WRITE:
5116 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5117 case EXIT_REASON_INVALID_STATE:
5118 return true;
5119 case EXIT_REASON_MWAIT_INSTRUCTION:
5120 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5121 case EXIT_REASON_MONITOR_TRAP_FLAG:
5122 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5123 case EXIT_REASON_MONITOR_INSTRUCTION:
5124 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5125 case EXIT_REASON_PAUSE_INSTRUCTION:
5126 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5127 nested_cpu_has2(vmcs12,
5128 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5129 case EXIT_REASON_MCE_DURING_VMENTRY:
5130 return false;
5131 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5132 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5133 case EXIT_REASON_APIC_ACCESS:
5134 case EXIT_REASON_APIC_WRITE:
5135 case EXIT_REASON_EOI_INDUCED:
5136 /*
5137 * The controls for "virtualize APIC accesses," "APIC-
5138 * register virtualization," and "virtual-interrupt
5139 * delivery" only come from vmcs12.
5140 */
5141 return true;
5142 case EXIT_REASON_EPT_VIOLATION:
5143 /*
5144 * L0 always deals with the EPT violation. If nested EPT is
5145 * used, and the nested mmu code discovers that the address is
5146 * missing in the guest EPT table (EPT12), the EPT violation
5147 * will be injected with nested_ept_inject_page_fault()
5148 */
5149 return false;
5150 case EXIT_REASON_EPT_MISCONFIG:
5151 /*
5152 * L2 never uses directly L1's EPT, but rather L0's own EPT
5153 * table (shadow on EPT) or a merged EPT table that L0 built
5154 * (EPT on EPT). So any problems with the structure of the
5155 * table is L0's fault.
5156 */
5157 return false;
5158 case EXIT_REASON_INVPCID:
5159 return
5160 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5161 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5162 case EXIT_REASON_WBINVD:
5163 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5164 case EXIT_REASON_XSETBV:
5165 return true;
5166 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5167 /*
5168 * This should never happen, since it is not possible to
5169 * set XSS to a non-zero value---neither in L1 nor in L2.
5170 * If if it were, XSS would have to be checked against
5171 * the XSS exit bitmap in vmcs12.
5172 */
5173 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5174 case EXIT_REASON_PREEMPTION_TIMER:
5175 return false;
5176 case EXIT_REASON_PML_FULL:
5177 /* We emulate PML support to L1. */
5178 return false;
5179 case EXIT_REASON_VMFUNC:
5180 /* VM functions are emulated through L2->L0 vmexits. */
5181 return false;
5182 case EXIT_REASON_ENCLS:
5183 /* SGX is never exposed to L1 */
5184 return false;
5185 default:
5186 return true;
5187 }
5188 }
5189
5190
5191 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5192 struct kvm_nested_state __user *user_kvm_nested_state,
5193 u32 user_data_size)
5194 {
5195 struct vcpu_vmx *vmx;
5196 struct vmcs12 *vmcs12;
5197 struct kvm_nested_state kvm_state = {
5198 .flags = 0,
5199 .format = 0,
5200 .size = sizeof(kvm_state),
5201 .vmx.vmxon_pa = -1ull,
5202 .vmx.vmcs_pa = -1ull,
5203 };
5204
5205 if (!vcpu)
5206 return kvm_state.size + 2 * VMCS12_SIZE;
5207
5208 vmx = to_vmx(vcpu);
5209 vmcs12 = get_vmcs12(vcpu);
5210
5211 if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5212 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5213
5214 if (nested_vmx_allowed(vcpu) &&
5215 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5216 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5217 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5218
5219 if (vmx_has_valid_vmcs12(vcpu)) {
5220 kvm_state.size += VMCS12_SIZE;
5221
5222 if (is_guest_mode(vcpu) &&
5223 nested_cpu_has_shadow_vmcs(vmcs12) &&
5224 vmcs12->vmcs_link_pointer != -1ull)
5225 kvm_state.size += VMCS12_SIZE;
5226 }
5227
5228 if (vmx->nested.smm.vmxon)
5229 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5230
5231 if (vmx->nested.smm.guest_mode)
5232 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5233
5234 if (is_guest_mode(vcpu)) {
5235 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5236
5237 if (vmx->nested.nested_run_pending)
5238 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5239 }
5240 }
5241
5242 if (user_data_size < kvm_state.size)
5243 goto out;
5244
5245 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5246 return -EFAULT;
5247
5248 if (!vmx_has_valid_vmcs12(vcpu))
5249 goto out;
5250
5251 /*
5252 * When running L2, the authoritative vmcs12 state is in the
5253 * vmcs02. When running L1, the authoritative vmcs12 state is
5254 * in the shadow or enlightened vmcs linked to vmcs01, unless
5255 * need_vmcs12_sync is set, in which case, the authoritative
5256 * vmcs12 state is in the vmcs12 already.
5257 */
5258 if (is_guest_mode(vcpu)) {
5259 sync_vmcs12(vcpu, vmcs12);
5260 } else if (!vmx->nested.need_vmcs12_sync) {
5261 if (vmx->nested.hv_evmcs)
5262 copy_enlightened_to_vmcs12(vmx);
5263 else if (enable_shadow_vmcs)
5264 copy_shadow_to_vmcs12(vmx);
5265 }
5266
5267 if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
5268 return -EFAULT;
5269
5270 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5271 vmcs12->vmcs_link_pointer != -1ull) {
5272 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5273 get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
5274 return -EFAULT;
5275 }
5276
5277 out:
5278 return kvm_state.size;
5279 }
5280
5281 /*
5282 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5283 */
5284 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5285 {
5286 if (is_guest_mode(vcpu)) {
5287 to_vmx(vcpu)->nested.nested_run_pending = 0;
5288 nested_vmx_vmexit(vcpu, -1, 0, 0);
5289 }
5290 free_nested(vcpu);
5291 }
5292
5293 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5294 struct kvm_nested_state __user *user_kvm_nested_state,
5295 struct kvm_nested_state *kvm_state)
5296 {
5297 struct vcpu_vmx *vmx = to_vmx(vcpu);
5298 struct vmcs12 *vmcs12;
5299 u32 exit_qual;
5300 int ret;
5301
5302 if (kvm_state->format != 0)
5303 return -EINVAL;
5304
5305 if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5306 nested_enable_evmcs(vcpu, NULL);
5307
5308 if (!nested_vmx_allowed(vcpu))
5309 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5310
5311 if (kvm_state->vmx.vmxon_pa == -1ull) {
5312 if (kvm_state->vmx.smm.flags)
5313 return -EINVAL;
5314
5315 if (kvm_state->vmx.vmcs_pa != -1ull)
5316 return -EINVAL;
5317
5318 vmx_leave_nested(vcpu);
5319 return 0;
5320 }
5321
5322 if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5323 return -EINVAL;
5324
5325 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5326 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5327 return -EINVAL;
5328
5329 if (kvm_state->vmx.smm.flags &
5330 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5331 return -EINVAL;
5332
5333 /*
5334 * SMM temporarily disables VMX, so we cannot be in guest mode,
5335 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
5336 * must be zero.
5337 */
5338 if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5339 return -EINVAL;
5340
5341 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5342 !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5343 return -EINVAL;
5344
5345 vmx_leave_nested(vcpu);
5346 if (kvm_state->vmx.vmxon_pa == -1ull)
5347 return 0;
5348
5349 vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5350 ret = enter_vmx_operation(vcpu);
5351 if (ret)
5352 return ret;
5353
5354 /* Empty 'VMXON' state is permitted */
5355 if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5356 return 0;
5357
5358 if (kvm_state->vmx.vmcs_pa != -1ull) {
5359 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5360 !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5361 return -EINVAL;
5362
5363 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5364 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5365 /*
5366 * Sync eVMCS upon entry as we may not have
5367 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5368 */
5369 vmx->nested.need_vmcs12_sync = true;
5370 } else {
5371 return -EINVAL;
5372 }
5373
5374 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5375 vmx->nested.smm.vmxon = true;
5376 vmx->nested.vmxon = false;
5377
5378 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5379 vmx->nested.smm.guest_mode = true;
5380 }
5381
5382 vmcs12 = get_vmcs12(vcpu);
5383 if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5384 return -EFAULT;
5385
5386 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5387 return -EINVAL;
5388
5389 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5390 return 0;
5391
5392 vmx->nested.nested_run_pending =
5393 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5394
5395 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5396 vmcs12->vmcs_link_pointer != -1ull) {
5397 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5398
5399 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5400 return -EINVAL;
5401
5402 if (copy_from_user(shadow_vmcs12,
5403 user_kvm_nested_state->data + VMCS12_SIZE,
5404 sizeof(*vmcs12)))
5405 return -EFAULT;
5406
5407 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5408 !shadow_vmcs12->hdr.shadow_vmcs)
5409 return -EINVAL;
5410 }
5411
5412 if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5413 nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5414 return -EINVAL;
5415
5416 vmx->nested.dirty_vmcs12 = true;
5417 ret = nested_vmx_enter_non_root_mode(vcpu, false);
5418 if (ret)
5419 return -EINVAL;
5420
5421 return 0;
5422 }
5423
5424 void nested_vmx_vcpu_setup(void)
5425 {
5426 if (enable_shadow_vmcs) {
5427 /*
5428 * At vCPU creation, "VMWRITE to any supported field
5429 * in the VMCS" is supported, so use the more
5430 * permissive vmx_vmread_bitmap to specify both read
5431 * and write permissions for the shadow VMCS.
5432 */
5433 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5434 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5435 }
5436 }
5437
5438 /*
5439 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5440 * returned for the various VMX controls MSRs when nested VMX is enabled.
5441 * The same values should also be used to verify that vmcs12 control fields are
5442 * valid during nested entry from L1 to L2.
5443 * Each of these control msrs has a low and high 32-bit half: A low bit is on
5444 * if the corresponding bit in the (32-bit) control field *must* be on, and a
5445 * bit in the high half is on if the corresponding bit in the control field
5446 * may be on. See also vmx_control_verify().
5447 */
5448 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5449 bool apicv)
5450 {
5451 /*
5452 * Note that as a general rule, the high half of the MSRs (bits in
5453 * the control fields which may be 1) should be initialized by the
5454 * intersection of the underlying hardware's MSR (i.e., features which
5455 * can be supported) and the list of features we want to expose -
5456 * because they are known to be properly supported in our code.
5457 * Also, usually, the low half of the MSRs (bits which must be 1) can
5458 * be set to 0, meaning that L1 may turn off any of these bits. The
5459 * reason is that if one of these bits is necessary, it will appear
5460 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5461 * fields of vmcs01 and vmcs02, will turn these bits off - and
5462 * nested_vmx_exit_reflected() will not pass related exits to L1.
5463 * These rules have exceptions below.
5464 */
5465
5466 /* pin-based controls */
5467 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5468 msrs->pinbased_ctls_low,
5469 msrs->pinbased_ctls_high);
5470 msrs->pinbased_ctls_low |=
5471 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5472 msrs->pinbased_ctls_high &=
5473 PIN_BASED_EXT_INTR_MASK |
5474 PIN_BASED_NMI_EXITING |
5475 PIN_BASED_VIRTUAL_NMIS |
5476 (apicv ? PIN_BASED_POSTED_INTR : 0);
5477 msrs->pinbased_ctls_high |=
5478 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5479 PIN_BASED_VMX_PREEMPTION_TIMER;
5480
5481 /* exit controls */
5482 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5483 msrs->exit_ctls_low,
5484 msrs->exit_ctls_high);
5485 msrs->exit_ctls_low =
5486 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5487
5488 msrs->exit_ctls_high &=
5489 #ifdef CONFIG_X86_64
5490 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5491 #endif
5492 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5493 msrs->exit_ctls_high |=
5494 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5495 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5496 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5497
5498 /* We support free control of debug control saving. */
5499 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5500
5501 /* entry controls */
5502 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5503 msrs->entry_ctls_low,
5504 msrs->entry_ctls_high);
5505 msrs->entry_ctls_low =
5506 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5507 msrs->entry_ctls_high &=
5508 #ifdef CONFIG_X86_64
5509 VM_ENTRY_IA32E_MODE |
5510 #endif
5511 VM_ENTRY_LOAD_IA32_PAT;
5512 msrs->entry_ctls_high |=
5513 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5514
5515 /* We support free control of debug control loading. */
5516 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5517
5518 /* cpu-based controls */
5519 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5520 msrs->procbased_ctls_low,
5521 msrs->procbased_ctls_high);
5522 msrs->procbased_ctls_low =
5523 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5524 msrs->procbased_ctls_high &=
5525 CPU_BASED_VIRTUAL_INTR_PENDING |
5526 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5527 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5528 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5529 CPU_BASED_CR3_STORE_EXITING |
5530 #ifdef CONFIG_X86_64
5531 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5532 #endif
5533 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5534 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5535 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5536 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5537 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5538 /*
5539 * We can allow some features even when not supported by the
5540 * hardware. For example, L1 can specify an MSR bitmap - and we
5541 * can use it to avoid exits to L1 - even when L0 runs L2
5542 * without MSR bitmaps.
5543 */
5544 msrs->procbased_ctls_high |=
5545 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5546 CPU_BASED_USE_MSR_BITMAPS;
5547
5548 /* We support free control of CR3 access interception. */
5549 msrs->procbased_ctls_low &=
5550 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5551
5552 /*
5553 * secondary cpu-based controls. Do not include those that
5554 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5555 */
5556 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5557 msrs->secondary_ctls_low,
5558 msrs->secondary_ctls_high);
5559 msrs->secondary_ctls_low = 0;
5560 msrs->secondary_ctls_high &=
5561 SECONDARY_EXEC_DESC |
5562 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5563 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5564 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5565 SECONDARY_EXEC_WBINVD_EXITING;
5566
5567 /*
5568 * We can emulate "VMCS shadowing," even if the hardware
5569 * doesn't support it.
5570 */
5571 msrs->secondary_ctls_high |=
5572 SECONDARY_EXEC_SHADOW_VMCS;
5573
5574 if (enable_ept) {
5575 /* nested EPT: emulate EPT also to L1 */
5576 msrs->secondary_ctls_high |=
5577 SECONDARY_EXEC_ENABLE_EPT;
5578 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5579 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5580 if (cpu_has_vmx_ept_execute_only())
5581 msrs->ept_caps |=
5582 VMX_EPT_EXECUTE_ONLY_BIT;
5583 msrs->ept_caps &= ept_caps;
5584 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5585 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5586 VMX_EPT_1GB_PAGE_BIT;
5587 if (enable_ept_ad_bits) {
5588 msrs->secondary_ctls_high |=
5589 SECONDARY_EXEC_ENABLE_PML;
5590 msrs->ept_caps |= VMX_EPT_AD_BIT;
5591 }
5592 }
5593
5594 if (cpu_has_vmx_vmfunc()) {
5595 msrs->secondary_ctls_high |=
5596 SECONDARY_EXEC_ENABLE_VMFUNC;
5597 /*
5598 * Advertise EPTP switching unconditionally
5599 * since we emulate it
5600 */
5601 if (enable_ept)
5602 msrs->vmfunc_controls =
5603 VMX_VMFUNC_EPTP_SWITCHING;
5604 }
5605
5606 /*
5607 * Old versions of KVM use the single-context version without
5608 * checking for support, so declare that it is supported even
5609 * though it is treated as global context. The alternative is
5610 * not failing the single-context invvpid, and it is worse.
5611 */
5612 if (enable_vpid) {
5613 msrs->secondary_ctls_high |=
5614 SECONDARY_EXEC_ENABLE_VPID;
5615 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5616 VMX_VPID_EXTENT_SUPPORTED_MASK;
5617 }
5618
5619 if (enable_unrestricted_guest)
5620 msrs->secondary_ctls_high |=
5621 SECONDARY_EXEC_UNRESTRICTED_GUEST;
5622
5623 if (flexpriority_enabled)
5624 msrs->secondary_ctls_high |=
5625 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5626
5627 /* miscellaneous data */
5628 rdmsr(MSR_IA32_VMX_MISC,
5629 msrs->misc_low,
5630 msrs->misc_high);
5631 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5632 msrs->misc_low |=
5633 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5634 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5635 VMX_MISC_ACTIVITY_HLT;
5636 msrs->misc_high = 0;
5637
5638 /*
5639 * This MSR reports some information about VMX support. We
5640 * should return information about the VMX we emulate for the
5641 * guest, and the VMCS structure we give it - not about the
5642 * VMX support of the underlying hardware.
5643 */
5644 msrs->basic =
5645 VMCS12_REVISION |
5646 VMX_BASIC_TRUE_CTLS |
5647 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5648 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5649
5650 if (cpu_has_vmx_basic_inout())
5651 msrs->basic |= VMX_BASIC_INOUT;
5652
5653 /*
5654 * These MSRs specify bits which the guest must keep fixed on
5655 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5656 * We picked the standard core2 setting.
5657 */
5658 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5659 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
5660 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5661 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5662
5663 /* These MSRs specify bits which the guest must keep fixed off. */
5664 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5665 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5666
5667 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5668 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5669 }
5670
5671 void nested_vmx_hardware_unsetup(void)
5672 {
5673 int i;
5674
5675 if (enable_shadow_vmcs) {
5676 for (i = 0; i < VMX_BITMAP_NR; i++)
5677 free_page((unsigned long)vmx_bitmap[i]);
5678 }
5679 }
5680
5681 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5682 {
5683 int i;
5684
5685 if (!cpu_has_vmx_shadow_vmcs())
5686 enable_shadow_vmcs = 0;
5687 if (enable_shadow_vmcs) {
5688 for (i = 0; i < VMX_BITMAP_NR; i++) {
5689 vmx_bitmap[i] = (unsigned long *)
5690 __get_free_page(GFP_KERNEL);
5691 if (!vmx_bitmap[i]) {
5692 nested_vmx_hardware_unsetup();
5693 return -ENOMEM;
5694 }
5695 }
5696
5697 init_vmcs_shadow_fields();
5698 }
5699
5700 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
5701 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5702 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
5703 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
5704 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
5705 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
5706 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
5707 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
5708 exit_handlers[EXIT_REASON_VMON] = handle_vmon,
5709 exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
5710 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
5711 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
5712
5713 kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5714 kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5715 kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5716 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5717 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5718 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5719
5720 return 0;
5721 }