]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/vmx/nested.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28 * Hyper-V requires all of these, so mark them as supported even though
29 * they are just treated the same as all-context.
30 */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
32 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
33 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
34 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
35 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40 VMX_VMREAD_BITMAP,
41 VMX_VMWRITE_BITMAP,
42 VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50 u16 encoding;
51 u16 offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69 int i, j;
70
71 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 u16 field = entry.encoding;
77
78 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 (i + 1 == max_shadow_read_only_fields ||
80 shadow_read_only_fields[i + 1].encoding != field + 1))
81 pr_err("Missing field from shadow_read_only_field %x\n",
82 field + 1);
83
84 clear_bit(field, vmx_vmread_bitmap);
85 if (field & 1)
86 #ifdef CONFIG_X86_64
87 continue;
88 #else
89 entry.offset += sizeof(u32);
90 #endif
91 shadow_read_only_fields[j++] = entry;
92 }
93 max_shadow_read_only_fields = j;
94
95 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 u16 field = entry.encoding;
98
99 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 (i + 1 == max_shadow_read_write_fields ||
101 shadow_read_write_fields[i + 1].encoding != field + 1))
102 pr_err("Missing field from shadow_read_write_field %x\n",
103 field + 1);
104
105 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 field <= GUEST_TR_AR_BYTES,
107 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109 /*
110 * PML and the preemption timer can be emulated, but the
111 * processor cannot vmwrite to fields that don't exist
112 * on bare metal.
113 */
114 switch (field) {
115 case GUEST_PML_INDEX:
116 if (!cpu_has_vmx_pml())
117 continue;
118 break;
119 case VMX_PREEMPTION_TIMER_VALUE:
120 if (!cpu_has_vmx_preemption_timer())
121 continue;
122 break;
123 case GUEST_INTR_STATUS:
124 if (!cpu_has_vmx_apicv())
125 continue;
126 break;
127 default:
128 break;
129 }
130
131 clear_bit(field, vmx_vmwrite_bitmap);
132 clear_bit(field, vmx_vmread_bitmap);
133 if (field & 1)
134 #ifdef CONFIG_X86_64
135 continue;
136 #else
137 entry.offset += sizeof(u32);
138 #endif
139 shadow_read_write_fields[j++] = entry;
140 }
141 max_shadow_read_write_fields = j;
142 }
143
144 /*
145 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146 * set the success or error code of an emulated VMX instruction (as specified
147 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148 * instruction.
149 */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 X86_EFLAGS_SF | X86_EFLAGS_OF))
163 | X86_EFLAGS_CF);
164 return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 u32 vm_instruction_error)
169 {
170 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 X86_EFLAGS_SF | X86_EFLAGS_OF))
173 | X86_EFLAGS_ZF);
174 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 /*
176 * We don't need to force sync to shadow VMCS because
177 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178 * fields and thus must be synced.
179 */
180 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183 return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188 struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190 /*
191 * failValid writes the error number to the current VMCS, which
192 * can't be done if there isn't a current VMCS.
193 */
194 if (vmx->nested.current_vmptr == -1ull &&
195 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 return nested_vmx_failInvalid(vcpu);
197
198 return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 /* TODO: not to reset guest simply here. */
204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231 vmx->nested.hv_evmcs = NULL;
232 }
233
234 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 struct loaded_vmcs *prev)
239 {
240 struct vmcs_host_state *dest, *src;
241
242 if (unlikely(!vmx->guest_state_loaded))
243 return;
244
245 src = &prev->host_state;
246 dest = &vmx->loaded_vmcs->host_state;
247
248 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 dest->ds_sel = src->ds_sel;
252 dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 struct vcpu_vmx *vmx = to_vmx(vcpu);
259 struct loaded_vmcs *prev;
260 int cpu;
261
262 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 return;
264
265 cpu = get_cpu();
266 prev = vmx->loaded_vmcs;
267 vmx->loaded_vmcs = vmcs;
268 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 vmx_sync_vmcs_host_state(vmx, prev);
270 put_cpu();
271
272 vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277 * just stops using VMX.
278 */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 return;
288
289 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291 vmx->nested.vmxon = false;
292 vmx->nested.smm.vmxon = false;
293 free_vpid(vmx->nested.vpid02);
294 vmx->nested.posted_intr_nv = -1;
295 vmx->nested.current_vmptr = -1ull;
296 if (enable_shadow_vmcs) {
297 vmx_disable_shadow_vmcs(vmx);
298 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 free_vmcs(vmx->vmcs01.shadow_vmcs);
300 vmx->vmcs01.shadow_vmcs = NULL;
301 }
302 kfree(vmx->nested.cached_vmcs12);
303 vmx->nested.cached_vmcs12 = NULL;
304 kfree(vmx->nested.cached_shadow_vmcs12);
305 vmx->nested.cached_shadow_vmcs12 = NULL;
306 /* Unpin physical memory we referred to in the vmcs02 */
307 if (vmx->nested.apic_access_page) {
308 kvm_release_page_clean(vmx->nested.apic_access_page);
309 vmx->nested.apic_access_page = NULL;
310 }
311 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 vmx->nested.pi_desc = NULL;
314
315 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317 nested_release_evmcs(vcpu);
318
319 free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323 * Ensure that the current vmcs of the logical processor is the
324 * vmcs01 of the vcpu before calling free_nested().
325 */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 vcpu_load(vcpu);
329 vmx_leave_nested(vcpu);
330 vcpu_put(vcpu);
331 }
332
333 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
334
335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337 return VALID_PAGE(root_hpa) &&
338 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340
341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342 gpa_t addr)
343 {
344 uint i;
345 struct kvm_mmu_root_info *cached_root;
346
347 WARN_ON_ONCE(!mmu_is_nested(vcpu));
348
349 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350 cached_root = &vcpu->arch.mmu->prev_roots[i];
351
352 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353 eptp))
354 vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355 }
356 }
357
358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359 struct x86_exception *fault)
360 {
361 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362 struct vcpu_vmx *vmx = to_vmx(vcpu);
363 u32 vm_exit_reason;
364 unsigned long exit_qualification = vcpu->arch.exit_qualification;
365
366 if (vmx->nested.pml_full) {
367 vm_exit_reason = EXIT_REASON_PML_FULL;
368 vmx->nested.pml_full = false;
369 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370 } else {
371 if (fault->error_code & PFERR_RSVD_MASK)
372 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373 else
374 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375
376 /*
377 * Although the caller (kvm_inject_emulated_page_fault) would
378 * have already synced the faulting address in the shadow EPT
379 * tables for the current EPTP12, we also need to sync it for
380 * any other cached EPTP02s based on the same EP4TA, since the
381 * TLB associates mappings to the EP4TA rather than the full EPTP.
382 */
383 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384 fault->address);
385 }
386
387 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388 vmcs12->guest_physical_address = fault->address;
389 }
390
391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393 kvm_init_shadow_ept_mmu(vcpu,
394 to_vmx(vcpu)->nested.msrs.ept_caps &
395 VMX_EPT_EXECUTE_ONLY_BIT,
396 nested_ept_ad_enabled(vcpu),
397 nested_ept_get_eptp(vcpu));
398 }
399
400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402 WARN_ON(mmu_is_nested(vcpu));
403
404 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405 nested_ept_new_eptp(vcpu);
406 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
407 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
409
410 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
411 }
412
413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415 vcpu->arch.mmu = &vcpu->arch.root_mmu;
416 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418
419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420 u16 error_code)
421 {
422 bool inequality, bit;
423
424 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425 inequality =
426 (error_code & vmcs12->page_fault_error_code_mask) !=
427 vmcs12->page_fault_error_code_match;
428 return inequality ^ bit;
429 }
430
431
432 /*
433 * KVM wants to inject page-faults which it got to the guest. This function
434 * checks whether in a nested guest, we need to inject them to L1 or L2.
435 */
436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439 unsigned int nr = vcpu->arch.exception.nr;
440 bool has_payload = vcpu->arch.exception.has_payload;
441 unsigned long payload = vcpu->arch.exception.payload;
442
443 if (nr == PF_VECTOR) {
444 if (vcpu->arch.exception.nested_apf) {
445 *exit_qual = vcpu->arch.apf.nested_apf_token;
446 return 1;
447 }
448 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449 vcpu->arch.exception.error_code)) {
450 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
451 return 1;
452 }
453 } else if (vmcs12->exception_bitmap & (1u << nr)) {
454 if (nr == DB_VECTOR) {
455 if (!has_payload) {
456 payload = vcpu->arch.dr6;
457 payload &= ~DR6_BT;
458 payload ^= DR6_ACTIVE_LOW;
459 }
460 *exit_qual = payload;
461 } else
462 *exit_qual = 0;
463 return 1;
464 }
465
466 return 0;
467 }
468
469
470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471 struct x86_exception *fault)
472 {
473 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474
475 WARN_ON(!is_guest_mode(vcpu));
476
477 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478 !to_vmx(vcpu)->nested.nested_run_pending) {
479 vmcs12->vm_exit_intr_error_code = fault->error_code;
480 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483 fault->address);
484 } else {
485 kvm_inject_page_fault(vcpu, fault);
486 }
487 }
488
489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490 struct vmcs12 *vmcs12)
491 {
492 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493 return 0;
494
495 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497 return -EINVAL;
498
499 return 0;
500 }
501
502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503 struct vmcs12 *vmcs12)
504 {
505 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506 return 0;
507
508 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509 return -EINVAL;
510
511 return 0;
512 }
513
514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515 struct vmcs12 *vmcs12)
516 {
517 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518 return 0;
519
520 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521 return -EINVAL;
522
523 return 0;
524 }
525
526 /*
527 * Check if MSR is intercepted for L01 MSR bitmap.
528 */
529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
530 {
531 unsigned long *msr_bitmap;
532 int f = sizeof(unsigned long);
533
534 if (!cpu_has_vmx_msr_bitmap())
535 return true;
536
537 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
538
539 if (msr <= 0x1fff) {
540 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
542 msr &= 0x1fff;
543 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
544 }
545
546 return true;
547 }
548
549 /*
550 * If a msr is allowed by L0, we should check whether it is allowed by L1.
551 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
552 */
553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554 unsigned long *msr_bitmap_nested,
555 u32 msr, int type)
556 {
557 int f = sizeof(unsigned long);
558
559 /*
560 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561 * have the write-low and read-high bitmap offsets the wrong way round.
562 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
563 */
564 if (msr <= 0x1fff) {
565 if (type & MSR_TYPE_R &&
566 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
567 /* read-low */
568 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
569
570 if (type & MSR_TYPE_W &&
571 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
572 /* write-low */
573 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
574
575 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
576 msr &= 0x1fff;
577 if (type & MSR_TYPE_R &&
578 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
579 /* read-high */
580 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
581
582 if (type & MSR_TYPE_W &&
583 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
584 /* write-high */
585 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
586
587 }
588 }
589
590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
591 {
592 int msr;
593
594 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595 unsigned word = msr / BITS_PER_LONG;
596
597 msr_bitmap[word] = ~0;
598 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
599 }
600 }
601
602 /*
603 * Merge L0's and L1's MSR bitmap, return false to indicate that
604 * we do not use the hardware.
605 */
606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607 struct vmcs12 *vmcs12)
608 {
609 int msr;
610 unsigned long *msr_bitmap_l1;
611 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
613
614 /* Nothing to do if the MSR bitmap is not in use. */
615 if (!cpu_has_vmx_msr_bitmap() ||
616 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
617 return false;
618
619 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
620 return false;
621
622 msr_bitmap_l1 = (unsigned long *)map->hva;
623
624 /*
625 * To keep the control flow simple, pay eight 8-byte writes (sixteen
626 * 4-byte writes on 32-bit systems) up front to enable intercepts for
627 * the x2APIC MSR range and selectively disable them below.
628 */
629 enable_x2apic_msr_intercepts(msr_bitmap_l0);
630
631 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
633 /*
634 * L0 need not intercept reads for MSRs between 0x800
635 * and 0x8ff, it just lets the processor take the value
636 * from the virtual-APIC page; take those 256 bits
637 * directly from the L1 bitmap.
638 */
639 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640 unsigned word = msr / BITS_PER_LONG;
641
642 msr_bitmap_l0[word] = msr_bitmap_l1[word];
643 }
644 }
645
646 nested_vmx_disable_intercept_for_msr(
647 msr_bitmap_l1, msr_bitmap_l0,
648 X2APIC_MSR(APIC_TASKPRI),
649 MSR_TYPE_R | MSR_TYPE_W);
650
651 if (nested_cpu_has_vid(vmcs12)) {
652 nested_vmx_disable_intercept_for_msr(
653 msr_bitmap_l1, msr_bitmap_l0,
654 X2APIC_MSR(APIC_EOI),
655 MSR_TYPE_W);
656 nested_vmx_disable_intercept_for_msr(
657 msr_bitmap_l1, msr_bitmap_l0,
658 X2APIC_MSR(APIC_SELF_IPI),
659 MSR_TYPE_W);
660 }
661 }
662
663 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
664 #ifdef CONFIG_X86_64
665 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666 MSR_FS_BASE, MSR_TYPE_RW);
667
668 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669 MSR_GS_BASE, MSR_TYPE_RW);
670
671 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
673 #endif
674
675 /*
676 * Checking the L0->L1 bitmap is trying to verify two things:
677 *
678 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679 * ensures that we do not accidentally generate an L02 MSR bitmap
680 * from the L12 MSR bitmap that is too permissive.
681 * 2. That L1 or L2s have actually used the MSR. This avoids
682 * unnecessarily merging of the bitmap if the MSR is unused. This
683 * works properly because we only update the L01 MSR bitmap lazily.
684 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685 * updated to reflect this when L1 (or its L2s) actually write to
686 * the MSR.
687 */
688 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689 nested_vmx_disable_intercept_for_msr(
690 msr_bitmap_l1, msr_bitmap_l0,
691 MSR_IA32_SPEC_CTRL,
692 MSR_TYPE_R | MSR_TYPE_W);
693
694 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695 nested_vmx_disable_intercept_for_msr(
696 msr_bitmap_l1, msr_bitmap_l0,
697 MSR_IA32_PRED_CMD,
698 MSR_TYPE_W);
699
700 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
701
702 return true;
703 }
704
705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
707 {
708 struct kvm_host_map map;
709 struct vmcs12 *shadow;
710
711 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712 vmcs12->vmcs_link_pointer == -1ull)
713 return;
714
715 shadow = get_shadow_vmcs12(vcpu);
716
717 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
718 return;
719
720 memcpy(shadow, map.hva, VMCS12_SIZE);
721 kvm_vcpu_unmap(vcpu, &map, false);
722 }
723
724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
726 {
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
728
729 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730 vmcs12->vmcs_link_pointer == -1ull)
731 return;
732
733 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
735 }
736
737 /*
738 * In nested virtualization, check if L1 has set
739 * VM_EXIT_ACK_INTR_ON_EXIT
740 */
741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
742 {
743 return get_vmcs12(vcpu)->vm_exit_controls &
744 VM_EXIT_ACK_INTR_ON_EXIT;
745 }
746
747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748 struct vmcs12 *vmcs12)
749 {
750 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
752 return -EINVAL;
753 else
754 return 0;
755 }
756
757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758 struct vmcs12 *vmcs12)
759 {
760 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761 !nested_cpu_has_apic_reg_virt(vmcs12) &&
762 !nested_cpu_has_vid(vmcs12) &&
763 !nested_cpu_has_posted_intr(vmcs12))
764 return 0;
765
766 /*
767 * If virtualize x2apic mode is enabled,
768 * virtualize apic access must be disabled.
769 */
770 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
772 return -EINVAL;
773
774 /*
775 * If virtual interrupt delivery is enabled,
776 * we must exit on external interrupts.
777 */
778 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
779 return -EINVAL;
780
781 /*
782 * bits 15:8 should be zero in posted_intr_nv,
783 * the descriptor address has been already checked
784 * in nested_get_vmcs12_pages.
785 *
786 * bits 5:0 of posted_intr_desc_addr should be zero.
787 */
788 if (nested_cpu_has_posted_intr(vmcs12) &&
789 (CC(!nested_cpu_has_vid(vmcs12)) ||
790 CC(!nested_exit_intr_ack_set(vcpu)) ||
791 CC((vmcs12->posted_intr_nv & 0xff00)) ||
792 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
793 return -EINVAL;
794
795 /* tpr shadow is needed by all apicv features. */
796 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
797 return -EINVAL;
798
799 return 0;
800 }
801
802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
803 u32 count, u64 addr)
804 {
805 if (count == 0)
806 return 0;
807
808 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
810 return -EINVAL;
811
812 return 0;
813 }
814
815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816 struct vmcs12 *vmcs12)
817 {
818 if (CC(nested_vmx_check_msr_switch(vcpu,
819 vmcs12->vm_exit_msr_load_count,
820 vmcs12->vm_exit_msr_load_addr)) ||
821 CC(nested_vmx_check_msr_switch(vcpu,
822 vmcs12->vm_exit_msr_store_count,
823 vmcs12->vm_exit_msr_store_addr)))
824 return -EINVAL;
825
826 return 0;
827 }
828
829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830 struct vmcs12 *vmcs12)
831 {
832 if (CC(nested_vmx_check_msr_switch(vcpu,
833 vmcs12->vm_entry_msr_load_count,
834 vmcs12->vm_entry_msr_load_addr)))
835 return -EINVAL;
836
837 return 0;
838 }
839
840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
842 {
843 if (!nested_cpu_has_pml(vmcs12))
844 return 0;
845
846 if (CC(!nested_cpu_has_ept(vmcs12)) ||
847 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
848 return -EINVAL;
849
850 return 0;
851 }
852
853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854 struct vmcs12 *vmcs12)
855 {
856 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857 !nested_cpu_has_ept(vmcs12)))
858 return -EINVAL;
859 return 0;
860 }
861
862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863 struct vmcs12 *vmcs12)
864 {
865 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866 !nested_cpu_has_ept(vmcs12)))
867 return -EINVAL;
868 return 0;
869 }
870
871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872 struct vmcs12 *vmcs12)
873 {
874 if (!nested_cpu_has_shadow_vmcs(vmcs12))
875 return 0;
876
877 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
879 return -EINVAL;
880
881 return 0;
882 }
883
884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885 struct vmx_msr_entry *e)
886 {
887 /* x2APIC MSR accesses are not allowed */
888 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
889 return -EINVAL;
890 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891 CC(e->index == MSR_IA32_UCODE_REV))
892 return -EINVAL;
893 if (CC(e->reserved != 0))
894 return -EINVAL;
895 return 0;
896 }
897
898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899 struct vmx_msr_entry *e)
900 {
901 if (CC(e->index == MSR_FS_BASE) ||
902 CC(e->index == MSR_GS_BASE) ||
903 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904 nested_vmx_msr_check_common(vcpu, e))
905 return -EINVAL;
906 return 0;
907 }
908
909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
911 {
912 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913 nested_vmx_msr_check_common(vcpu, e))
914 return -EINVAL;
915 return 0;
916 }
917
918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
919 {
920 struct vcpu_vmx *vmx = to_vmx(vcpu);
921 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922 vmx->nested.msrs.misc_high);
923
924 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
925 }
926
927 /*
928 * Load guest's/host's msr at nested entry/exit.
929 * return 0 for success, entry index for failure.
930 *
931 * One of the failure modes for MSR load/store is when a list exceeds the
932 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933 * as possible, process all valid entries before failing rather than precheck
934 * for a capacity violation.
935 */
936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
937 {
938 u32 i;
939 struct vmx_msr_entry e;
940 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
941
942 for (i = 0; i < count; i++) {
943 if (unlikely(i >= max_msr_list_size))
944 goto fail;
945
946 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
947 &e, sizeof(e))) {
948 pr_debug_ratelimited(
949 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950 __func__, i, gpa + i * sizeof(e));
951 goto fail;
952 }
953 if (nested_vmx_load_msr_check(vcpu, &e)) {
954 pr_debug_ratelimited(
955 "%s check failed (%u, 0x%x, 0x%x)\n",
956 __func__, i, e.index, e.reserved);
957 goto fail;
958 }
959 if (kvm_set_msr(vcpu, e.index, e.value)) {
960 pr_debug_ratelimited(
961 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962 __func__, i, e.index, e.value);
963 goto fail;
964 }
965 }
966 return 0;
967 fail:
968 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
969 return i + 1;
970 }
971
972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
973 u32 msr_index,
974 u64 *data)
975 {
976 struct vcpu_vmx *vmx = to_vmx(vcpu);
977
978 /*
979 * If the L0 hypervisor stored a more accurate value for the TSC that
980 * does not include the time taken for emulation of the L2->L1
981 * VM-exit in L0, use the more accurate value.
982 */
983 if (msr_index == MSR_IA32_TSC) {
984 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
985 MSR_IA32_TSC);
986
987 if (i >= 0) {
988 u64 val = vmx->msr_autostore.guest.val[i].value;
989
990 *data = kvm_read_l1_tsc(vcpu, val);
991 return true;
992 }
993 }
994
995 if (kvm_get_msr(vcpu, msr_index, data)) {
996 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
997 msr_index);
998 return false;
999 }
1000 return true;
1001 }
1002
1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004 struct vmx_msr_entry *e)
1005 {
1006 if (kvm_vcpu_read_guest(vcpu,
1007 gpa + i * sizeof(*e),
1008 e, 2 * sizeof(u32))) {
1009 pr_debug_ratelimited(
1010 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011 __func__, i, gpa + i * sizeof(*e));
1012 return false;
1013 }
1014 if (nested_vmx_store_msr_check(vcpu, e)) {
1015 pr_debug_ratelimited(
1016 "%s check failed (%u, 0x%x, 0x%x)\n",
1017 __func__, i, e->index, e->reserved);
1018 return false;
1019 }
1020 return true;
1021 }
1022
1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024 {
1025 u64 data;
1026 u32 i;
1027 struct vmx_msr_entry e;
1028 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030 for (i = 0; i < count; i++) {
1031 if (unlikely(i >= max_msr_list_size))
1032 return -EINVAL;
1033
1034 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 return -EINVAL;
1036
1037 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038 return -EINVAL;
1039
1040 if (kvm_vcpu_write_guest(vcpu,
1041 gpa + i * sizeof(e) +
1042 offsetof(struct vmx_msr_entry, value),
1043 &data, sizeof(data))) {
1044 pr_debug_ratelimited(
1045 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046 __func__, i, e.index, data);
1047 return -EINVAL;
1048 }
1049 }
1050 return 0;
1051 }
1052
1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054 {
1055 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056 u32 count = vmcs12->vm_exit_msr_store_count;
1057 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058 struct vmx_msr_entry e;
1059 u32 i;
1060
1061 for (i = 0; i < count; i++) {
1062 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063 return false;
1064
1065 if (e.index == msr_index)
1066 return true;
1067 }
1068 return false;
1069 }
1070
1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072 u32 msr_index)
1073 {
1074 struct vcpu_vmx *vmx = to_vmx(vcpu);
1075 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076 bool in_vmcs12_store_list;
1077 int msr_autostore_slot;
1078 bool in_autostore_list;
1079 int last;
1080
1081 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082 in_autostore_list = msr_autostore_slot >= 0;
1083 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085 if (in_vmcs12_store_list && !in_autostore_list) {
1086 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087 /*
1088 * Emulated VMEntry does not fail here. Instead a less
1089 * accurate value will be returned by
1090 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091 * instead of reading the value from the vmcs02 VMExit
1092 * MSR-store area.
1093 */
1094 pr_warn_ratelimited(
1095 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1096 msr_index);
1097 return;
1098 }
1099 last = autostore->nr++;
1100 autostore->val[last].index = msr_index;
1101 } else if (!in_vmcs12_store_list && in_autostore_list) {
1102 last = --autostore->nr;
1103 autostore->val[msr_autostore_slot] = autostore->val[last];
1104 }
1105 }
1106
1107 /*
1108 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1109 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1110 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111 * @entry_failure_code.
1112 */
1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114 bool nested_ept, bool reload_pdptrs,
1115 enum vm_entry_failure_code *entry_failure_code)
1116 {
1117 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119 return -EINVAL;
1120 }
1121
1122 /*
1123 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124 * must not be dereferenced.
1125 */
1126 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127 CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128 *entry_failure_code = ENTRY_FAIL_PDPTE;
1129 return -EINVAL;
1130 }
1131
1132 if (!nested_ept)
1133 kvm_mmu_new_pgd(vcpu, cr3);
1134
1135 vcpu->arch.cr3 = cr3;
1136 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139 kvm_init_mmu(vcpu);
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * Returns if KVM is able to config CPU to tag TLB entries
1146 * populated by L2 differently than TLB entries populated
1147 * by L1.
1148 *
1149 * If L0 uses EPT, L1 and L2 run with different EPTP because
1150 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151 * are tagged with different EPTP.
1152 *
1153 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154 * with different VPID (L1 entries are tagged with vmx->vpid
1155 * while L2 entries are tagged with vmx->nested.vpid02).
1156 */
1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158 {
1159 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161 return enable_ept ||
1162 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163 }
1164
1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166 struct vmcs12 *vmcs12,
1167 bool is_vmenter)
1168 {
1169 struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171 /*
1172 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174 * full TLB flush from the guest's perspective. This is required even
1175 * if VPID is disabled in the host as KVM may need to synchronize the
1176 * MMU in response to the guest TLB flush.
1177 *
1178 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179 * EPT is a special snowflake, as guest-physical mappings aren't
1180 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1182 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183 * those mappings.
1184 */
1185 if (!nested_cpu_has_vpid(vmcs12)) {
1186 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 return;
1188 }
1189
1190 /* L2 should never have a VPID if VPID is disabled. */
1191 WARN_ON(!enable_vpid);
1192
1193 /*
1194 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196 * a VPID for L2, flush the current context as the effective ASID is
1197 * common to both L1 and L2.
1198 *
1199 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201 * redundant flushes further down the nested pipeline.
1202 *
1203 * If a TLB flush isn't required due to any of the above, and vpid12 is
1204 * changing then the new "virtual" VPID (vpid12) will reuse the same
1205 * "real" VPID (vpid02), and so needs to be flushed. There's no direct
1206 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207 * all nested vCPUs. Remember, a flush on VM-Enter does not invalidate
1208 * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209 */
1210 if (!nested_has_guest_tlb_tag(vcpu)) {
1211 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212 } else if (is_vmenter &&
1213 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215 vpid_sync_context(nested_get_vpid02(vcpu));
1216 }
1217 }
1218
1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220 {
1221 superset &= mask;
1222 subset &= mask;
1223
1224 return (superset | subset) == superset;
1225 }
1226
1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228 {
1229 const u64 feature_and_reserved =
1230 /* feature (except bit 48; see below) */
1231 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232 /* reserved */
1233 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234 u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237 return -EINVAL;
1238
1239 /*
1240 * KVM does not emulate a version of VMX that constrains physical
1241 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242 */
1243 if (data & BIT_ULL(48))
1244 return -EINVAL;
1245
1246 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247 vmx_basic_vmcs_revision_id(data))
1248 return -EINVAL;
1249
1250 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251 return -EINVAL;
1252
1253 vmx->nested.msrs.basic = data;
1254 return 0;
1255 }
1256
1257 static int
1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260 u64 supported;
1261 u32 *lowp, *highp;
1262
1263 switch (msr_index) {
1264 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266 highp = &vmx->nested.msrs.pinbased_ctls_high;
1267 break;
1268 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270 highp = &vmx->nested.msrs.procbased_ctls_high;
1271 break;
1272 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273 lowp = &vmx->nested.msrs.exit_ctls_low;
1274 highp = &vmx->nested.msrs.exit_ctls_high;
1275 break;
1276 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277 lowp = &vmx->nested.msrs.entry_ctls_low;
1278 highp = &vmx->nested.msrs.entry_ctls_high;
1279 break;
1280 case MSR_IA32_VMX_PROCBASED_CTLS2:
1281 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282 highp = &vmx->nested.msrs.secondary_ctls_high;
1283 break;
1284 default:
1285 BUG();
1286 }
1287
1288 supported = vmx_control_msr(*lowp, *highp);
1289
1290 /* Check must-be-1 bits are still 1. */
1291 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292 return -EINVAL;
1293
1294 /* Check must-be-0 bits are still 0. */
1295 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296 return -EINVAL;
1297
1298 *lowp = data;
1299 *highp = data >> 32;
1300 return 0;
1301 }
1302
1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304 {
1305 const u64 feature_and_reserved_bits =
1306 /* feature */
1307 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309 /* reserved */
1310 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311 u64 vmx_misc;
1312
1313 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314 vmx->nested.msrs.misc_high);
1315
1316 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317 return -EINVAL;
1318
1319 if ((vmx->nested.msrs.pinbased_ctls_high &
1320 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321 vmx_misc_preemption_timer_rate(data) !=
1322 vmx_misc_preemption_timer_rate(vmx_misc))
1323 return -EINVAL;
1324
1325 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326 return -EINVAL;
1327
1328 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329 return -EINVAL;
1330
1331 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332 return -EINVAL;
1333
1334 vmx->nested.msrs.misc_low = data;
1335 vmx->nested.msrs.misc_high = data >> 32;
1336
1337 return 0;
1338 }
1339
1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341 {
1342 u64 vmx_ept_vpid_cap;
1343
1344 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345 vmx->nested.msrs.vpid_caps);
1346
1347 /* Every bit is either reserved or a feature bit. */
1348 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349 return -EINVAL;
1350
1351 vmx->nested.msrs.ept_caps = data;
1352 vmx->nested.msrs.vpid_caps = data >> 32;
1353 return 0;
1354 }
1355
1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357 {
1358 u64 *msr;
1359
1360 switch (msr_index) {
1361 case MSR_IA32_VMX_CR0_FIXED0:
1362 msr = &vmx->nested.msrs.cr0_fixed0;
1363 break;
1364 case MSR_IA32_VMX_CR4_FIXED0:
1365 msr = &vmx->nested.msrs.cr4_fixed0;
1366 break;
1367 default:
1368 BUG();
1369 }
1370
1371 /*
1372 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373 * must be 1 in the restored value.
1374 */
1375 if (!is_bitwise_subset(data, *msr, -1ULL))
1376 return -EINVAL;
1377
1378 *msr = data;
1379 return 0;
1380 }
1381
1382 /*
1383 * Called when userspace is restoring VMX MSRs.
1384 *
1385 * Returns 0 on success, non-0 otherwise.
1386 */
1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388 {
1389 struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391 /*
1392 * Don't allow changes to the VMX capability MSRs while the vCPU
1393 * is in VMX operation.
1394 */
1395 if (vmx->nested.vmxon)
1396 return -EBUSY;
1397
1398 switch (msr_index) {
1399 case MSR_IA32_VMX_BASIC:
1400 return vmx_restore_vmx_basic(vmx, data);
1401 case MSR_IA32_VMX_PINBASED_CTLS:
1402 case MSR_IA32_VMX_PROCBASED_CTLS:
1403 case MSR_IA32_VMX_EXIT_CTLS:
1404 case MSR_IA32_VMX_ENTRY_CTLS:
1405 /*
1406 * The "non-true" VMX capability MSRs are generated from the
1407 * "true" MSRs, so we do not support restoring them directly.
1408 *
1409 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410 * should restore the "true" MSRs with the must-be-1 bits
1411 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412 * DEFAULT SETTINGS".
1413 */
1414 return -EINVAL;
1415 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419 case MSR_IA32_VMX_PROCBASED_CTLS2:
1420 return vmx_restore_control_msr(vmx, msr_index, data);
1421 case MSR_IA32_VMX_MISC:
1422 return vmx_restore_vmx_misc(vmx, data);
1423 case MSR_IA32_VMX_CR0_FIXED0:
1424 case MSR_IA32_VMX_CR4_FIXED0:
1425 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426 case MSR_IA32_VMX_CR0_FIXED1:
1427 case MSR_IA32_VMX_CR4_FIXED1:
1428 /*
1429 * These MSRs are generated based on the vCPU's CPUID, so we
1430 * do not support restoring them directly.
1431 */
1432 return -EINVAL;
1433 case MSR_IA32_VMX_EPT_VPID_CAP:
1434 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435 case MSR_IA32_VMX_VMCS_ENUM:
1436 vmx->nested.msrs.vmcs_enum = data;
1437 return 0;
1438 case MSR_IA32_VMX_VMFUNC:
1439 if (data & ~vmx->nested.msrs.vmfunc_controls)
1440 return -EINVAL;
1441 vmx->nested.msrs.vmfunc_controls = data;
1442 return 0;
1443 default:
1444 /*
1445 * The rest of the VMX capability MSRs do not support restore.
1446 */
1447 return -EINVAL;
1448 }
1449 }
1450
1451 /* Returns 0 on success, non-0 otherwise. */
1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453 {
1454 switch (msr_index) {
1455 case MSR_IA32_VMX_BASIC:
1456 *pdata = msrs->basic;
1457 break;
1458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459 case MSR_IA32_VMX_PINBASED_CTLS:
1460 *pdata = vmx_control_msr(
1461 msrs->pinbased_ctls_low,
1462 msrs->pinbased_ctls_high);
1463 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465 break;
1466 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467 case MSR_IA32_VMX_PROCBASED_CTLS:
1468 *pdata = vmx_control_msr(
1469 msrs->procbased_ctls_low,
1470 msrs->procbased_ctls_high);
1471 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473 break;
1474 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475 case MSR_IA32_VMX_EXIT_CTLS:
1476 *pdata = vmx_control_msr(
1477 msrs->exit_ctls_low,
1478 msrs->exit_ctls_high);
1479 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481 break;
1482 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483 case MSR_IA32_VMX_ENTRY_CTLS:
1484 *pdata = vmx_control_msr(
1485 msrs->entry_ctls_low,
1486 msrs->entry_ctls_high);
1487 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489 break;
1490 case MSR_IA32_VMX_MISC:
1491 *pdata = vmx_control_msr(
1492 msrs->misc_low,
1493 msrs->misc_high);
1494 break;
1495 case MSR_IA32_VMX_CR0_FIXED0:
1496 *pdata = msrs->cr0_fixed0;
1497 break;
1498 case MSR_IA32_VMX_CR0_FIXED1:
1499 *pdata = msrs->cr0_fixed1;
1500 break;
1501 case MSR_IA32_VMX_CR4_FIXED0:
1502 *pdata = msrs->cr4_fixed0;
1503 break;
1504 case MSR_IA32_VMX_CR4_FIXED1:
1505 *pdata = msrs->cr4_fixed1;
1506 break;
1507 case MSR_IA32_VMX_VMCS_ENUM:
1508 *pdata = msrs->vmcs_enum;
1509 break;
1510 case MSR_IA32_VMX_PROCBASED_CTLS2:
1511 *pdata = vmx_control_msr(
1512 msrs->secondary_ctls_low,
1513 msrs->secondary_ctls_high);
1514 break;
1515 case MSR_IA32_VMX_EPT_VPID_CAP:
1516 *pdata = msrs->ept_caps |
1517 ((u64)msrs->vpid_caps << 32);
1518 break;
1519 case MSR_IA32_VMX_VMFUNC:
1520 *pdata = msrs->vmfunc_controls;
1521 break;
1522 default:
1523 return 1;
1524 }
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531 * been modified by the L1 guest. Note, "writable" in this context means
1532 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534 * VM-exit information fields (which are actually writable if the vCPU is
1535 * configured to support "VMWRITE to any supported field in the VMCS").
1536 */
1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538 {
1539 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541 struct shadow_vmcs_field field;
1542 unsigned long val;
1543 int i;
1544
1545 if (WARN_ON(!shadow_vmcs))
1546 return;
1547
1548 preempt_disable();
1549
1550 vmcs_load(shadow_vmcs);
1551
1552 for (i = 0; i < max_shadow_read_write_fields; i++) {
1553 field = shadow_read_write_fields[i];
1554 val = __vmcs_readl(field.encoding);
1555 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556 }
1557
1558 vmcs_clear(shadow_vmcs);
1559 vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561 preempt_enable();
1562 }
1563
1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565 {
1566 const struct shadow_vmcs_field *fields[] = {
1567 shadow_read_write_fields,
1568 shadow_read_only_fields
1569 };
1570 const int max_fields[] = {
1571 max_shadow_read_write_fields,
1572 max_shadow_read_only_fields
1573 };
1574 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576 struct shadow_vmcs_field field;
1577 unsigned long val;
1578 int i, q;
1579
1580 if (WARN_ON(!shadow_vmcs))
1581 return;
1582
1583 vmcs_load(shadow_vmcs);
1584
1585 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586 for (i = 0; i < max_fields[q]; i++) {
1587 field = fields[q][i];
1588 val = vmcs12_read_any(vmcs12, field.encoding,
1589 field.offset);
1590 __vmcs_writel(field.encoding, val);
1591 }
1592 }
1593
1594 vmcs_clear(shadow_vmcs);
1595 vmcs_load(vmx->loaded_vmcs->vmcs);
1596 }
1597
1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599 {
1600 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605 vmcs12->guest_rip = evmcs->guest_rip;
1606
1607 if (unlikely(!(hv_clean_fields &
1608 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609 vmcs12->guest_rsp = evmcs->guest_rsp;
1610 vmcs12->guest_rflags = evmcs->guest_rflags;
1611 vmcs12->guest_interruptibility_info =
1612 evmcs->guest_interruptibility_info;
1613 }
1614
1615 if (unlikely(!(hv_clean_fields &
1616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617 vmcs12->cpu_based_vm_exec_control =
1618 evmcs->cpu_based_vm_exec_control;
1619 }
1620
1621 if (unlikely(!(hv_clean_fields &
1622 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624 }
1625
1626 if (unlikely(!(hv_clean_fields &
1627 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629 }
1630
1631 if (unlikely(!(hv_clean_fields &
1632 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633 vmcs12->vm_entry_intr_info_field =
1634 evmcs->vm_entry_intr_info_field;
1635 vmcs12->vm_entry_exception_error_code =
1636 evmcs->vm_entry_exception_error_code;
1637 vmcs12->vm_entry_instruction_len =
1638 evmcs->vm_entry_instruction_len;
1639 }
1640
1641 if (unlikely(!(hv_clean_fields &
1642 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645 vmcs12->host_cr0 = evmcs->host_cr0;
1646 vmcs12->host_cr3 = evmcs->host_cr3;
1647 vmcs12->host_cr4 = evmcs->host_cr4;
1648 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650 vmcs12->host_rip = evmcs->host_rip;
1651 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652 vmcs12->host_es_selector = evmcs->host_es_selector;
1653 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659 }
1660
1661 if (unlikely(!(hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663 vmcs12->pin_based_vm_exec_control =
1664 evmcs->pin_based_vm_exec_control;
1665 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666 vmcs12->secondary_vm_exec_control =
1667 evmcs->secondary_vm_exec_control;
1668 }
1669
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674 }
1675
1676 if (unlikely(!(hv_clean_fields &
1677 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679 }
1680
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683 vmcs12->guest_es_base = evmcs->guest_es_base;
1684 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719 }
1720
1721 if (unlikely(!(hv_clean_fields &
1722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723 vmcs12->tsc_offset = evmcs->tsc_offset;
1724 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726 }
1727
1728 if (unlikely(!(hv_clean_fields &
1729 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738 }
1739
1740 if (unlikely(!(hv_clean_fields &
1741 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742 vmcs12->host_fs_base = evmcs->host_fs_base;
1743 vmcs12->host_gs_base = evmcs->host_gs_base;
1744 vmcs12->host_tr_base = evmcs->host_tr_base;
1745 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747 vmcs12->host_rsp = evmcs->host_rsp;
1748 }
1749
1750 if (unlikely(!(hv_clean_fields &
1751 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752 vmcs12->ept_pointer = evmcs->ept_pointer;
1753 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754 }
1755
1756 if (unlikely(!(hv_clean_fields &
1757 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766 vmcs12->guest_pending_dbg_exceptions =
1767 evmcs->guest_pending_dbg_exceptions;
1768 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773 }
1774
1775 /*
1776 * Not used?
1777 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780 * vmcs12->page_fault_error_code_mask =
1781 * evmcs->page_fault_error_code_mask;
1782 * vmcs12->page_fault_error_code_match =
1783 * evmcs->page_fault_error_code_match;
1784 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788 */
1789
1790 /*
1791 * Read only fields:
1792 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801 * vmcs12->exit_qualification = evmcs->exit_qualification;
1802 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803 *
1804 * Not present in struct vmcs12:
1805 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809 */
1810
1811 return;
1812 }
1813
1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815 {
1816 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819 /*
1820 * Should not be changed by KVM:
1821 *
1822 * evmcs->host_es_selector = vmcs12->host_es_selector;
1823 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831 * evmcs->host_cr0 = vmcs12->host_cr0;
1832 * evmcs->host_cr3 = vmcs12->host_cr3;
1833 * evmcs->host_cr4 = vmcs12->host_cr4;
1834 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836 * evmcs->host_rip = vmcs12->host_rip;
1837 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838 * evmcs->host_fs_base = vmcs12->host_fs_base;
1839 * evmcs->host_gs_base = vmcs12->host_gs_base;
1840 * evmcs->host_tr_base = vmcs12->host_tr_base;
1841 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843 * evmcs->host_rsp = vmcs12->host_rsp;
1844 * sync_vmcs02_to_vmcs12() doesn't read these:
1845 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848 * evmcs->ept_pointer = vmcs12->ept_pointer;
1849 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860 * evmcs->page_fault_error_code_mask =
1861 * vmcs12->page_fault_error_code_mask;
1862 * evmcs->page_fault_error_code_match =
1863 * vmcs12->page_fault_error_code_match;
1864 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866 * evmcs->tsc_offset = vmcs12->tsc_offset;
1867 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875 *
1876 * Not present in struct vmcs12:
1877 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881 */
1882
1883 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912 evmcs->guest_es_base = vmcs12->guest_es_base;
1913 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931 evmcs->guest_pending_dbg_exceptions =
1932 vmcs12->guest_pending_dbg_exceptions;
1933 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939 evmcs->guest_cr0 = vmcs12->guest_cr0;
1940 evmcs->guest_cr3 = vmcs12->guest_cr3;
1941 evmcs->guest_cr4 = vmcs12->guest_cr4;
1942 evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955 evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958 evmcs->guest_rsp = vmcs12->guest_rsp;
1959 evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961 evmcs->guest_interruptibility_info =
1962 vmcs12->guest_interruptibility_info;
1963 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966 evmcs->vm_entry_exception_error_code =
1967 vmcs12->vm_entry_exception_error_code;
1968 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970 evmcs->guest_rip = vmcs12->guest_rip;
1971
1972 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974 return;
1975 }
1976
1977 /*
1978 * This is an equivalent of the nested hypervisor executing the vmptrld
1979 * instruction.
1980 */
1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982 struct kvm_vcpu *vcpu, bool from_launch)
1983 {
1984 struct vcpu_vmx *vmx = to_vmx(vcpu);
1985 bool evmcs_gpa_changed = false;
1986 u64 evmcs_gpa;
1987
1988 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989 return EVMPTRLD_DISABLED;
1990
1991 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992 nested_release_evmcs(vcpu);
1993 return EVMPTRLD_DISABLED;
1994 }
1995
1996 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997 vmx->nested.current_vmptr = -1ull;
1998
1999 nested_release_evmcs(vcpu);
2000
2001 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002 &vmx->nested.hv_evmcs_map))
2003 return EVMPTRLD_ERROR;
2004
2005 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007 /*
2008 * Currently, KVM only supports eVMCS version 1
2009 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010 * value to first u32 field of eVMCS which should specify eVMCS
2011 * VersionNumber.
2012 *
2013 * Guest should be aware of supported eVMCS versions by host by
2014 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015 * expected to set this CPUID leaf according to the value
2016 * returned in vmcs_version from nested_enable_evmcs().
2017 *
2018 * However, it turns out that Microsoft Hyper-V fails to comply
2019 * to their own invented interface: When Hyper-V use eVMCS, it
2020 * just sets first u32 field of eVMCS to revision_id specified
2021 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022 * which is one of the supported versions specified in
2023 * CPUID.0x4000000A.EAX[0:15].
2024 *
2025 * To overcome Hyper-V bug, we accept here either a supported
2026 * eVMCS version or VMCS12 revision_id as valid values for first
2027 * u32 field of eVMCS.
2028 */
2029 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031 nested_release_evmcs(vcpu);
2032 return EVMPTRLD_VMFAIL;
2033 }
2034
2035 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037 evmcs_gpa_changed = true;
2038 /*
2039 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040 * reloaded from guest's memory (read only fields, fields not
2041 * present in struct hv_enlightened_vmcs, ...). Make sure there
2042 * are no leftovers.
2043 */
2044 if (from_launch) {
2045 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046 memset(vmcs12, 0, sizeof(*vmcs12));
2047 vmcs12->hdr.revision_id = VMCS12_REVISION;
2048 }
2049
2050 }
2051
2052 /*
2053 * Clean fields data can't be used on VMLAUNCH and when we switch
2054 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055 */
2056 if (from_launch || evmcs_gpa_changed)
2057 vmx->nested.hv_evmcs->hv_clean_fields &=
2058 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060 return EVMPTRLD_SUCCEEDED;
2061 }
2062
2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 {
2065 struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068 copy_vmcs12_to_enlightened(vmx);
2069 else
2070 copy_vmcs12_to_shadow(vmx);
2071
2072 vmx->nested.need_vmcs12_to_shadow_sync = false;
2073 }
2074
2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076 {
2077 struct vcpu_vmx *vmx =
2078 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080 vmx->nested.preemption_timer_expired = true;
2081 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082 kvm_vcpu_kick(&vmx->vcpu);
2083
2084 return HRTIMER_NORESTART;
2085 }
2086
2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088 {
2089 struct vcpu_vmx *vmx = to_vmx(vcpu);
2090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095 if (!vmx->nested.has_preemption_timer_deadline) {
2096 vmx->nested.preemption_timer_deadline =
2097 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098 vmx->nested.has_preemption_timer_deadline = true;
2099 }
2100 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101 }
2102
2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104 u64 preemption_timeout)
2105 {
2106 struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108 /*
2109 * A timer value of zero is architecturally guaranteed to cause
2110 * a VMExit prior to executing any instructions in the guest.
2111 */
2112 if (preemption_timeout == 0) {
2113 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114 return;
2115 }
2116
2117 if (vcpu->arch.virtual_tsc_khz == 0)
2118 return;
2119
2120 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121 preemption_timeout *= 1000000;
2122 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123 hrtimer_start(&vmx->nested.preemption_timer,
2124 ktime_add_ns(ktime_get(), preemption_timeout),
2125 HRTIMER_MODE_ABS_PINNED);
2126 }
2127
2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129 {
2130 if (vmx->nested.nested_run_pending &&
2131 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132 return vmcs12->guest_ia32_efer;
2133 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135 else
2136 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137 }
2138
2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140 {
2141 /*
2142 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143 * according to L0's settings (vmcs12 is irrelevant here). Host
2144 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145 * will be set as needed prior to VMLAUNCH/VMRESUME.
2146 */
2147 if (vmx->nested.vmcs02_initialized)
2148 return;
2149 vmx->nested.vmcs02_initialized = true;
2150
2151 /*
2152 * We don't care what the EPTP value is we just need to guarantee
2153 * it's valid so we don't get a false positive when doing early
2154 * consistency checks.
2155 */
2156 if (enable_ept && nested_early_check)
2157 vmcs_write64(EPT_POINTER,
2158 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160 /* All VMFUNCs are currently emulated through L0 vmexits. */
2161 if (cpu_has_vmx_vmfunc())
2162 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164 if (cpu_has_vmx_posted_intr())
2165 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167 if (cpu_has_vmx_msr_bitmap())
2168 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170 /*
2171 * PML is emulated for L2, but never enabled in hardware as the MMU
2172 * handles A/D emulation. Disabling PML for L2 also avoids having to
2173 * deal with filtering out L2 GPAs from the buffer.
2174 */
2175 if (enable_pml) {
2176 vmcs_write64(PML_ADDRESS, 0);
2177 vmcs_write16(GUEST_PML_INDEX, -1);
2178 }
2179
2180 if (cpu_has_vmx_encls_vmexit())
2181 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183 /*
2184 * Set the MSR load/store lists to match L0's settings. Only the
2185 * addresses are constant (for vmcs02), the counts can change based
2186 * on L2's behavior, e.g. switching to/from long mode.
2187 */
2188 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192 vmx_set_constant_host_state(vmx);
2193 }
2194
2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196 struct vmcs12 *vmcs12)
2197 {
2198 prepare_vmcs02_constant_state(vmx);
2199
2200 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202 if (enable_vpid) {
2203 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205 else
2206 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207 }
2208 }
2209
2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2211 struct vmcs12 *vmcs12)
2212 {
2213 u32 exec_control;
2214 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2215
2216 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2217 prepare_vmcs02_early_rare(vmx, vmcs12);
2218
2219 /*
2220 * PIN CONTROLS
2221 */
2222 exec_control = __pin_controls_get(vmcs01);
2223 exec_control |= (vmcs12->pin_based_vm_exec_control &
2224 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2225
2226 /* Posted interrupts setting is only taken from vmcs12. */
2227 vmx->nested.pi_pending = false;
2228 if (nested_cpu_has_posted_intr(vmcs12))
2229 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2230 else
2231 exec_control &= ~PIN_BASED_POSTED_INTR;
2232 pin_controls_set(vmx, exec_control);
2233
2234 /*
2235 * EXEC CONTROLS
2236 */
2237 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2238 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240 exec_control &= ~CPU_BASED_TPR_SHADOW;
2241 exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243 vmx->nested.l1_tpr_threshold = -1;
2244 if (exec_control & CPU_BASED_TPR_SHADOW)
2245 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2247 else
2248 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249 CPU_BASED_CR8_STORE_EXITING;
2250 #endif
2251
2252 /*
2253 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254 * for I/O port accesses.
2255 */
2256 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259 /*
2260 * This bit will be computed in nested_get_vmcs12_pages, because
2261 * we do not have access to L1's MSR bitmap yet. For now, keep
2262 * the same bit as before, hoping to avoid multiple VMWRITEs that
2263 * only set/clear this bit.
2264 */
2265 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268 exec_controls_set(vmx, exec_control);
2269
2270 /*
2271 * SECONDARY EXEC CONTROLS
2272 */
2273 if (cpu_has_secondary_exec_ctrls()) {
2274 exec_control = __secondary_exec_controls_get(vmcs01);
2275
2276 /* Take the following fields only from vmcs12 */
2277 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2279 SECONDARY_EXEC_ENABLE_INVPCID |
2280 SECONDARY_EXEC_ENABLE_RDTSCP |
2281 SECONDARY_EXEC_XSAVES |
2282 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2283 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2284 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2285 SECONDARY_EXEC_ENABLE_VMFUNC |
2286 SECONDARY_EXEC_TSC_SCALING |
2287 SECONDARY_EXEC_DESC);
2288
2289 if (nested_cpu_has(vmcs12,
2290 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2291 exec_control |= vmcs12->secondary_vm_exec_control;
2292
2293 /* PML is emulated and never enabled in hardware for L2. */
2294 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2295
2296 /* VMCS shadowing for L2 is emulated for now */
2297 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2298
2299 /*
2300 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2301 * will not have to rewrite the controls just for this bit.
2302 */
2303 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2304 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2305 exec_control |= SECONDARY_EXEC_DESC;
2306
2307 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2308 vmcs_write16(GUEST_INTR_STATUS,
2309 vmcs12->guest_intr_status);
2310
2311 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2312 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2313
2314 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2315 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2316
2317 secondary_exec_controls_set(vmx, exec_control);
2318 }
2319
2320 /*
2321 * ENTRY CONTROLS
2322 *
2323 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325 * on the related bits (if supported by the CPU) in the hope that
2326 * we can avoid VMWrites during vmx_set_efer().
2327 */
2328 exec_control = __vm_entry_controls_get(vmcs01);
2329 exec_control |= vmcs12->vm_entry_controls;
2330 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2331 if (cpu_has_load_ia32_efer()) {
2332 if (guest_efer & EFER_LMA)
2333 exec_control |= VM_ENTRY_IA32E_MODE;
2334 if (guest_efer != host_efer)
2335 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2336 }
2337 vm_entry_controls_set(vmx, exec_control);
2338
2339 /*
2340 * EXIT CONTROLS
2341 *
2342 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2343 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2344 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2345 */
2346 exec_control = __vm_exit_controls_get(vmcs01);
2347 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2348 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2349 else
2350 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2351 vm_exit_controls_set(vmx, exec_control);
2352
2353 /*
2354 * Interrupt/Exception Fields
2355 */
2356 if (vmx->nested.nested_run_pending) {
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358 vmcs12->vm_entry_intr_info_field);
2359 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2360 vmcs12->vm_entry_exception_error_code);
2361 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2362 vmcs12->vm_entry_instruction_len);
2363 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2364 vmcs12->guest_interruptibility_info);
2365 vmx->loaded_vmcs->nmi_known_unmasked =
2366 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2367 } else {
2368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2369 }
2370 }
2371
2372 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2373 {
2374 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2375
2376 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2377 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2378 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2379 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2380 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2381 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2382 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2383 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2384 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2385 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2386 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2387 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2388 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2389 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2390 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2391 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2392 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2393 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2394 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2395 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2396 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2397 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2398 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2399 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2400 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2401 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2402 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2403 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2404 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2405 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2406 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2407 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2408 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2409 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2410 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2411 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2412 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2413 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2414
2415 vmx->segment_cache.bitmask = 0;
2416 }
2417
2418 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2419 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2420 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2421 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2422 vmcs12->guest_pending_dbg_exceptions);
2423 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2424 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2425
2426 /*
2427 * L1 may access the L2's PDPTR, so save them to construct
2428 * vmcs12
2429 */
2430 if (enable_ept) {
2431 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2432 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2433 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2434 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2435 }
2436
2437 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2438 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2439 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2440 }
2441
2442 if (nested_cpu_has_xsaves(vmcs12))
2443 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2444
2445 /*
2446 * Whether page-faults are trapped is determined by a combination of
2447 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2448 * doesn't care about page faults then we should set all of these to
2449 * L1's desires. However, if L0 does care about (some) page faults, it
2450 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2451 * simply ask to exit on each and every L2 page fault. This is done by
2452 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2453 * Note that below we don't need special code to set EB.PF beyond the
2454 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2455 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2456 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2457 */
2458 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2459 /*
2460 * TODO: if both L0 and L1 need the same MASK and MATCH,
2461 * go ahead and use it?
2462 */
2463 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2464 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2465 } else {
2466 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2467 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2468 }
2469
2470 if (cpu_has_vmx_apicv()) {
2471 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2472 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2473 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2474 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2475 }
2476
2477 /*
2478 * Make sure the msr_autostore list is up to date before we set the
2479 * count in the vmcs02.
2480 */
2481 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2482
2483 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2484 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2485 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2486
2487 set_cr4_guest_host_mask(vmx);
2488 }
2489
2490 /*
2491 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2492 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2493 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2494 * guest in a way that will both be appropriate to L1's requests, and our
2495 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2496 * function also has additional necessary side-effects, like setting various
2497 * vcpu->arch fields.
2498 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2499 * is assigned to entry_failure_code on failure.
2500 */
2501 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2502 bool from_vmentry,
2503 enum vm_entry_failure_code *entry_failure_code)
2504 {
2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
2506 bool load_guest_pdptrs_vmcs12 = false;
2507
2508 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2509 prepare_vmcs02_rare(vmx, vmcs12);
2510 vmx->nested.dirty_vmcs12 = false;
2511
2512 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2513 !(vmx->nested.hv_evmcs->hv_clean_fields &
2514 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2515 }
2516
2517 if (vmx->nested.nested_run_pending &&
2518 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2519 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2520 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2521 } else {
2522 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2523 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2524 }
2525 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2526 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2527 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2528 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2529
2530 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2531 * bitwise-or of what L1 wants to trap for L2, and what we want to
2532 * trap. Note that CR0.TS also needs updating - we do this later.
2533 */
2534 vmx_update_exception_bitmap(vcpu);
2535 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2536 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2537
2538 if (vmx->nested.nested_run_pending &&
2539 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2540 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2541 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2542 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2543 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2544 }
2545
2546 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2547 vcpu->arch.l1_tsc_offset,
2548 vmx_get_l2_tsc_offset(vcpu),
2549 vmx_get_l2_tsc_multiplier(vcpu));
2550
2551 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552 vcpu->arch.l1_tsc_scaling_ratio,
2553 vmx_get_l2_tsc_multiplier(vcpu));
2554
2555 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2556 if (kvm_has_tsc_control)
2557 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2558
2559 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2560
2561 if (nested_cpu_has_ept(vmcs12))
2562 nested_ept_init_mmu_context(vcpu);
2563
2564 /*
2565 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2566 * bits which we consider mandatory enabled.
2567 * The CR0_READ_SHADOW is what L2 should have expected to read given
2568 * the specifications by L1; It's not enough to take
2569 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2570 * have more bits than L1 expected.
2571 */
2572 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2573 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2574
2575 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2576 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2577
2578 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2579 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2580 vmx_set_efer(vcpu, vcpu->arch.efer);
2581
2582 /*
2583 * Guest state is invalid and unrestricted guest is disabled,
2584 * which means L1 attempted VMEntry to L2 with invalid state.
2585 * Fail the VMEntry.
2586 */
2587 if (CC(!vmx_guest_state_valid(vcpu))) {
2588 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2589 return -EINVAL;
2590 }
2591
2592 /* Shadow page tables on either EPT or shadow page tables. */
2593 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2594 from_vmentry, entry_failure_code))
2595 return -EINVAL;
2596
2597 /*
2598 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2599 * on nested VM-Exit, which can occur without actually running L2 and
2600 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2601 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2602 * transition to HLT instead of running L2.
2603 */
2604 if (enable_ept)
2605 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2606
2607 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2608 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2609 is_pae_paging(vcpu)) {
2610 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2611 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2612 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2613 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2614 }
2615
2616 if (!enable_ept)
2617 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2618
2619 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2620 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2621 vmcs12->guest_ia32_perf_global_ctrl)))
2622 return -EINVAL;
2623
2624 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2625 kvm_rip_write(vcpu, vmcs12->guest_rip);
2626
2627 /*
2628 * It was observed that genuine Hyper-V running in L1 doesn't reset
2629 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2630 * bits when it changes a field in eVMCS. Mark all fields as clean
2631 * here.
2632 */
2633 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2634 vmx->nested.hv_evmcs->hv_clean_fields |=
2635 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2636
2637 return 0;
2638 }
2639
2640 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2641 {
2642 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2643 nested_cpu_has_virtual_nmis(vmcs12)))
2644 return -EINVAL;
2645
2646 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2647 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2648 return -EINVAL;
2649
2650 return 0;
2651 }
2652
2653 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2654 {
2655 struct vcpu_vmx *vmx = to_vmx(vcpu);
2656
2657 /* Check for memory type validity */
2658 switch (new_eptp & VMX_EPTP_MT_MASK) {
2659 case VMX_EPTP_MT_UC:
2660 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2661 return false;
2662 break;
2663 case VMX_EPTP_MT_WB:
2664 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2665 return false;
2666 break;
2667 default:
2668 return false;
2669 }
2670
2671 /* Page-walk levels validity. */
2672 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2673 case VMX_EPTP_PWL_5:
2674 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2675 return false;
2676 break;
2677 case VMX_EPTP_PWL_4:
2678 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2679 return false;
2680 break;
2681 default:
2682 return false;
2683 }
2684
2685 /* Reserved bits should not be set */
2686 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2687 return false;
2688
2689 /* AD, if set, should be supported */
2690 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2691 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2692 return false;
2693 }
2694
2695 return true;
2696 }
2697
2698 /*
2699 * Checks related to VM-Execution Control Fields
2700 */
2701 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2702 struct vmcs12 *vmcs12)
2703 {
2704 struct vcpu_vmx *vmx = to_vmx(vcpu);
2705
2706 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2707 vmx->nested.msrs.pinbased_ctls_low,
2708 vmx->nested.msrs.pinbased_ctls_high)) ||
2709 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2710 vmx->nested.msrs.procbased_ctls_low,
2711 vmx->nested.msrs.procbased_ctls_high)))
2712 return -EINVAL;
2713
2714 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2715 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2716 vmx->nested.msrs.secondary_ctls_low,
2717 vmx->nested.msrs.secondary_ctls_high)))
2718 return -EINVAL;
2719
2720 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2721 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2722 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2723 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2724 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2725 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2726 nested_vmx_check_nmi_controls(vmcs12) ||
2727 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2728 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2729 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2730 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2731 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2732 return -EINVAL;
2733
2734 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2735 nested_cpu_has_save_preemption_timer(vmcs12))
2736 return -EINVAL;
2737
2738 if (nested_cpu_has_ept(vmcs12) &&
2739 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2740 return -EINVAL;
2741
2742 if (nested_cpu_has_vmfunc(vmcs12)) {
2743 if (CC(vmcs12->vm_function_control &
2744 ~vmx->nested.msrs.vmfunc_controls))
2745 return -EINVAL;
2746
2747 if (nested_cpu_has_eptp_switching(vmcs12)) {
2748 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2749 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2750 return -EINVAL;
2751 }
2752 }
2753
2754 return 0;
2755 }
2756
2757 /*
2758 * Checks related to VM-Exit Control Fields
2759 */
2760 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2761 struct vmcs12 *vmcs12)
2762 {
2763 struct vcpu_vmx *vmx = to_vmx(vcpu);
2764
2765 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2766 vmx->nested.msrs.exit_ctls_low,
2767 vmx->nested.msrs.exit_ctls_high)) ||
2768 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2769 return -EINVAL;
2770
2771 return 0;
2772 }
2773
2774 /*
2775 * Checks related to VM-Entry Control Fields
2776 */
2777 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2778 struct vmcs12 *vmcs12)
2779 {
2780 struct vcpu_vmx *vmx = to_vmx(vcpu);
2781
2782 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2783 vmx->nested.msrs.entry_ctls_low,
2784 vmx->nested.msrs.entry_ctls_high)))
2785 return -EINVAL;
2786
2787 /*
2788 * From the Intel SDM, volume 3:
2789 * Fields relevant to VM-entry event injection must be set properly.
2790 * These fields are the VM-entry interruption-information field, the
2791 * VM-entry exception error code, and the VM-entry instruction length.
2792 */
2793 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2794 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2795 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2796 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2797 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2798 bool should_have_error_code;
2799 bool urg = nested_cpu_has2(vmcs12,
2800 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2801 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2802
2803 /* VM-entry interruption-info field: interruption type */
2804 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2805 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2806 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2807 return -EINVAL;
2808
2809 /* VM-entry interruption-info field: vector */
2810 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2811 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2812 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2813 return -EINVAL;
2814
2815 /* VM-entry interruption-info field: deliver error code */
2816 should_have_error_code =
2817 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2818 x86_exception_has_error_code(vector);
2819 if (CC(has_error_code != should_have_error_code))
2820 return -EINVAL;
2821
2822 /* VM-entry exception error code */
2823 if (CC(has_error_code &&
2824 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2825 return -EINVAL;
2826
2827 /* VM-entry interruption-info field: reserved bits */
2828 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2829 return -EINVAL;
2830
2831 /* VM-entry instruction length */
2832 switch (intr_type) {
2833 case INTR_TYPE_SOFT_EXCEPTION:
2834 case INTR_TYPE_SOFT_INTR:
2835 case INTR_TYPE_PRIV_SW_EXCEPTION:
2836 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2837 CC(vmcs12->vm_entry_instruction_len == 0 &&
2838 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2839 return -EINVAL;
2840 }
2841 }
2842
2843 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2844 return -EINVAL;
2845
2846 return 0;
2847 }
2848
2849 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2850 struct vmcs12 *vmcs12)
2851 {
2852 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2853 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2854 nested_check_vm_entry_controls(vcpu, vmcs12))
2855 return -EINVAL;
2856
2857 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2858 return nested_evmcs_check_controls(vmcs12);
2859
2860 return 0;
2861 }
2862
2863 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2864 struct vmcs12 *vmcs12)
2865 {
2866 bool ia32e;
2867
2868 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2869 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2870 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2871 return -EINVAL;
2872
2873 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2874 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2875 return -EINVAL;
2876
2877 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2878 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2879 return -EINVAL;
2880
2881 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2882 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2883 vmcs12->host_ia32_perf_global_ctrl)))
2884 return -EINVAL;
2885
2886 #ifdef CONFIG_X86_64
2887 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2888 #else
2889 ia32e = false;
2890 #endif
2891
2892 if (ia32e) {
2893 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2894 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2895 return -EINVAL;
2896 } else {
2897 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2898 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2899 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2900 CC((vmcs12->host_rip) >> 32))
2901 return -EINVAL;
2902 }
2903
2904 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2905 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2906 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2907 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2908 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2909 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911 CC(vmcs12->host_cs_selector == 0) ||
2912 CC(vmcs12->host_tr_selector == 0) ||
2913 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2914 return -EINVAL;
2915
2916 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2917 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2918 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2919 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2920 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2921 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2922 return -EINVAL;
2923
2924 /*
2925 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2926 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2927 * the values of the LMA and LME bits in the field must each be that of
2928 * the host address-space size VM-exit control.
2929 */
2930 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2931 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2932 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2933 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2934 return -EINVAL;
2935 }
2936
2937 return 0;
2938 }
2939
2940 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2941 struct vmcs12 *vmcs12)
2942 {
2943 int r = 0;
2944 struct vmcs12 *shadow;
2945 struct kvm_host_map map;
2946
2947 if (vmcs12->vmcs_link_pointer == -1ull)
2948 return 0;
2949
2950 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2951 return -EINVAL;
2952
2953 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2954 return -EINVAL;
2955
2956 shadow = map.hva;
2957
2958 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2959 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2960 r = -EINVAL;
2961
2962 kvm_vcpu_unmap(vcpu, &map, false);
2963 return r;
2964 }
2965
2966 /*
2967 * Checks related to Guest Non-register State
2968 */
2969 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2970 {
2971 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2972 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2973 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2974 return -EINVAL;
2975
2976 return 0;
2977 }
2978
2979 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2980 struct vmcs12 *vmcs12,
2981 enum vm_entry_failure_code *entry_failure_code)
2982 {
2983 bool ia32e;
2984
2985 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2986
2987 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2988 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2989 return -EINVAL;
2990
2991 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2992 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2993 return -EINVAL;
2994
2995 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2996 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2997 return -EINVAL;
2998
2999 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3000 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3001 return -EINVAL;
3002 }
3003
3004 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3005 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3006 vmcs12->guest_ia32_perf_global_ctrl)))
3007 return -EINVAL;
3008
3009 /*
3010 * If the load IA32_EFER VM-entry control is 1, the following checks
3011 * are performed on the field for the IA32_EFER MSR:
3012 * - Bits reserved in the IA32_EFER MSR must be 0.
3013 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3014 * the IA-32e mode guest VM-exit control. It must also be identical
3015 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3016 * CR0.PG) is 1.
3017 */
3018 if (to_vmx(vcpu)->nested.nested_run_pending &&
3019 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3020 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3021 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3022 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3023 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3024 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3025 return -EINVAL;
3026 }
3027
3028 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3029 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3030 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3031 return -EINVAL;
3032
3033 if (nested_check_guest_non_reg_state(vmcs12))
3034 return -EINVAL;
3035
3036 return 0;
3037 }
3038
3039 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3040 {
3041 struct vcpu_vmx *vmx = to_vmx(vcpu);
3042 unsigned long cr3, cr4;
3043 bool vm_fail;
3044
3045 if (!nested_early_check)
3046 return 0;
3047
3048 if (vmx->msr_autoload.host.nr)
3049 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3050 if (vmx->msr_autoload.guest.nr)
3051 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3052
3053 preempt_disable();
3054
3055 vmx_prepare_switch_to_guest(vcpu);
3056
3057 /*
3058 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3059 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3060 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3061 * there is no need to preserve other bits or save/restore the field.
3062 */
3063 vmcs_writel(GUEST_RFLAGS, 0);
3064
3065 cr3 = __get_current_cr3_fast();
3066 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3067 vmcs_writel(HOST_CR3, cr3);
3068 vmx->loaded_vmcs->host_state.cr3 = cr3;
3069 }
3070
3071 cr4 = cr4_read_shadow();
3072 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3073 vmcs_writel(HOST_CR4, cr4);
3074 vmx->loaded_vmcs->host_state.cr4 = cr4;
3075 }
3076
3077 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3078 vmx->loaded_vmcs->launched);
3079
3080 if (vmx->msr_autoload.host.nr)
3081 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3082 if (vmx->msr_autoload.guest.nr)
3083 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3084
3085 if (vm_fail) {
3086 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3087
3088 preempt_enable();
3089
3090 trace_kvm_nested_vmenter_failed(
3091 "early hardware check VM-instruction error: ", error);
3092 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3093 return 1;
3094 }
3095
3096 /*
3097 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3098 */
3099 if (hw_breakpoint_active())
3100 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3101 local_irq_enable();
3102 preempt_enable();
3103
3104 /*
3105 * A non-failing VMEntry means we somehow entered guest mode with
3106 * an illegal RIP, and that's just the tip of the iceberg. There
3107 * is no telling what memory has been modified or what state has
3108 * been exposed to unknown code. Hitting this all but guarantees
3109 * a (very critical) hardware issue.
3110 */
3111 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3112 VMX_EXIT_REASONS_FAILED_VMENTRY));
3113
3114 return 0;
3115 }
3116
3117 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3118 {
3119 struct vcpu_vmx *vmx = to_vmx(vcpu);
3120
3121 /*
3122 * hv_evmcs may end up being not mapped after migration (when
3123 * L2 was running), map it here to make sure vmcs12 changes are
3124 * properly reflected.
3125 */
3126 if (vmx->nested.enlightened_vmcs_enabled &&
3127 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3128 enum nested_evmptrld_status evmptrld_status =
3129 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3130
3131 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3132 evmptrld_status == EVMPTRLD_ERROR)
3133 return false;
3134
3135 /*
3136 * Post migration VMCS12 always provides the most actual
3137 * information, copy it to eVMCS upon entry.
3138 */
3139 vmx->nested.need_vmcs12_to_shadow_sync = true;
3140 }
3141
3142 return true;
3143 }
3144
3145 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3146 {
3147 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149 struct kvm_host_map *map;
3150 struct page *page;
3151 u64 hpa;
3152
3153 if (!vcpu->arch.pdptrs_from_userspace &&
3154 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3155 /*
3156 * Reload the guest's PDPTRs since after a migration
3157 * the guest CR3 might be restored prior to setting the nested
3158 * state which can lead to a load of wrong PDPTRs.
3159 */
3160 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3161 return false;
3162 }
3163
3164
3165 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3166 /*
3167 * Translate L1 physical address to host physical
3168 * address for vmcs02. Keep the page pinned, so this
3169 * physical address remains valid. We keep a reference
3170 * to it so we can release it later.
3171 */
3172 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3173 kvm_release_page_clean(vmx->nested.apic_access_page);
3174 vmx->nested.apic_access_page = NULL;
3175 }
3176 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3177 if (!is_error_page(page)) {
3178 vmx->nested.apic_access_page = page;
3179 hpa = page_to_phys(vmx->nested.apic_access_page);
3180 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3181 } else {
3182 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3183 __func__);
3184 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3185 vcpu->run->internal.suberror =
3186 KVM_INTERNAL_ERROR_EMULATION;
3187 vcpu->run->internal.ndata = 0;
3188 return false;
3189 }
3190 }
3191
3192 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3193 map = &vmx->nested.virtual_apic_map;
3194
3195 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3196 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3197 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3198 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3199 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3200 /*
3201 * The processor will never use the TPR shadow, simply
3202 * clear the bit from the execution control. Such a
3203 * configuration is useless, but it happens in tests.
3204 * For any other configuration, failing the vm entry is
3205 * _not_ what the processor does but it's basically the
3206 * only possibility we have.
3207 */
3208 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3209 } else {
3210 /*
3211 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3212 * force VM-Entry to fail.
3213 */
3214 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3215 }
3216 }
3217
3218 if (nested_cpu_has_posted_intr(vmcs12)) {
3219 map = &vmx->nested.pi_desc_map;
3220
3221 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3222 vmx->nested.pi_desc =
3223 (struct pi_desc *)(((void *)map->hva) +
3224 offset_in_page(vmcs12->posted_intr_desc_addr));
3225 vmcs_write64(POSTED_INTR_DESC_ADDR,
3226 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3227 } else {
3228 /*
3229 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3230 * access the contents of the VMCS12 posted interrupt
3231 * descriptor. (Note that KVM may do this when it
3232 * should not, per the architectural specification.)
3233 */
3234 vmx->nested.pi_desc = NULL;
3235 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3236 }
3237 }
3238 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3239 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3240 else
3241 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3242
3243 return true;
3244 }
3245
3246 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3247 {
3248 if (!nested_get_evmcs_page(vcpu)) {
3249 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3250 __func__);
3251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3252 vcpu->run->internal.suberror =
3253 KVM_INTERNAL_ERROR_EMULATION;
3254 vcpu->run->internal.ndata = 0;
3255
3256 return false;
3257 }
3258
3259 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3260 return false;
3261
3262 return true;
3263 }
3264
3265 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3266 {
3267 struct vmcs12 *vmcs12;
3268 struct vcpu_vmx *vmx = to_vmx(vcpu);
3269 gpa_t dst;
3270
3271 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3272 return 0;
3273
3274 if (WARN_ON_ONCE(vmx->nested.pml_full))
3275 return 1;
3276
3277 /*
3278 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3279 * set is already checked as part of A/D emulation.
3280 */
3281 vmcs12 = get_vmcs12(vcpu);
3282 if (!nested_cpu_has_pml(vmcs12))
3283 return 0;
3284
3285 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3286 vmx->nested.pml_full = true;
3287 return 1;
3288 }
3289
3290 gpa &= ~0xFFFull;
3291 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3292
3293 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3294 offset_in_page(dst), sizeof(gpa)))
3295 return 0;
3296
3297 vmcs12->guest_pml_index--;
3298
3299 return 0;
3300 }
3301
3302 /*
3303 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3304 * for running VMX instructions (except VMXON, whose prerequisites are
3305 * slightly different). It also specifies what exception to inject otherwise.
3306 * Note that many of these exceptions have priority over VM exits, so they
3307 * don't have to be checked again here.
3308 */
3309 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3310 {
3311 if (!to_vmx(vcpu)->nested.vmxon) {
3312 kvm_queue_exception(vcpu, UD_VECTOR);
3313 return 0;
3314 }
3315
3316 if (vmx_get_cpl(vcpu)) {
3317 kvm_inject_gp(vcpu, 0);
3318 return 0;
3319 }
3320
3321 return 1;
3322 }
3323
3324 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3325 {
3326 u8 rvi = vmx_get_rvi();
3327 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3328
3329 return ((rvi & 0xf0) > (vppr & 0xf0));
3330 }
3331
3332 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3333 struct vmcs12 *vmcs12);
3334
3335 /*
3336 * If from_vmentry is false, this is being called from state restore (either RSM
3337 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3338 *
3339 * Returns:
3340 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3341 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3342 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3343 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3344 */
3345 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3346 bool from_vmentry)
3347 {
3348 struct vcpu_vmx *vmx = to_vmx(vcpu);
3349 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3350 enum vm_entry_failure_code entry_failure_code;
3351 bool evaluate_pending_interrupts;
3352 union vmx_exit_reason exit_reason = {
3353 .basic = EXIT_REASON_INVALID_STATE,
3354 .failed_vmentry = 1,
3355 };
3356 u32 failed_index;
3357
3358 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3359 kvm_vcpu_flush_tlb_current(vcpu);
3360
3361 evaluate_pending_interrupts = exec_controls_get(vmx) &
3362 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3363 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3364 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3365
3366 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3367 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3368 if (kvm_mpx_supported() &&
3369 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3370 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3371
3372 /*
3373 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3374 * nested early checks are disabled. In the event of a "late" VM-Fail,
3375 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3376 * software model to the pre-VMEntry host state. When EPT is disabled,
3377 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3378 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3379 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3380 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3381 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3382 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3383 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3384 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3385 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3386 * path would need to manually save/restore vmcs01.GUEST_CR3.
3387 */
3388 if (!enable_ept && !nested_early_check)
3389 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3390
3391 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3392
3393 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3394
3395 if (from_vmentry) {
3396 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3397 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3398 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3399 }
3400
3401 if (nested_vmx_check_vmentry_hw(vcpu)) {
3402 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3403 return NVMX_VMENTRY_VMFAIL;
3404 }
3405
3406 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3407 &entry_failure_code)) {
3408 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3409 vmcs12->exit_qualification = entry_failure_code;
3410 goto vmentry_fail_vmexit;
3411 }
3412 }
3413
3414 enter_guest_mode(vcpu);
3415
3416 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3417 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418 vmcs12->exit_qualification = entry_failure_code;
3419 goto vmentry_fail_vmexit_guest_mode;
3420 }
3421
3422 if (from_vmentry) {
3423 failed_index = nested_vmx_load_msr(vcpu,
3424 vmcs12->vm_entry_msr_load_addr,
3425 vmcs12->vm_entry_msr_load_count);
3426 if (failed_index) {
3427 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3428 vmcs12->exit_qualification = failed_index;
3429 goto vmentry_fail_vmexit_guest_mode;
3430 }
3431 } else {
3432 /*
3433 * The MMU is not initialized to point at the right entities yet and
3434 * "get pages" would need to read data from the guest (i.e. we will
3435 * need to perform gpa to hpa translation). Request a call
3436 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3437 * have already been set at vmentry time and should not be reset.
3438 */
3439 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3440 }
3441
3442 /*
3443 * If L1 had a pending IRQ/NMI until it executed
3444 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3445 * disallowed (e.g. interrupts disabled), L0 needs to
3446 * evaluate if this pending event should cause an exit from L2
3447 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3448 * intercept EXTERNAL_INTERRUPT).
3449 *
3450 * Usually this would be handled by the processor noticing an
3451 * IRQ/NMI window request, or checking RVI during evaluation of
3452 * pending virtual interrupts. However, this setting was done
3453 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3454 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3455 */
3456 if (unlikely(evaluate_pending_interrupts))
3457 kvm_make_request(KVM_REQ_EVENT, vcpu);
3458
3459 /*
3460 * Do not start the preemption timer hrtimer until after we know
3461 * we are successful, so that only nested_vmx_vmexit needs to cancel
3462 * the timer.
3463 */
3464 vmx->nested.preemption_timer_expired = false;
3465 if (nested_cpu_has_preemption_timer(vmcs12)) {
3466 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3467 vmx_start_preemption_timer(vcpu, timer_value);
3468 }
3469
3470 /*
3471 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3472 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3473 * returned as far as L1 is concerned. It will only return (and set
3474 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3475 */
3476 return NVMX_VMENTRY_SUCCESS;
3477
3478 /*
3479 * A failed consistency check that leads to a VMExit during L1's
3480 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3481 * 26.7 "VM-entry failures during or after loading guest state".
3482 */
3483 vmentry_fail_vmexit_guest_mode:
3484 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3485 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3486 leave_guest_mode(vcpu);
3487
3488 vmentry_fail_vmexit:
3489 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3490
3491 if (!from_vmentry)
3492 return NVMX_VMENTRY_VMEXIT;
3493
3494 load_vmcs12_host_state(vcpu, vmcs12);
3495 vmcs12->vm_exit_reason = exit_reason.full;
3496 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3497 vmx->nested.need_vmcs12_to_shadow_sync = true;
3498 return NVMX_VMENTRY_VMEXIT;
3499 }
3500
3501 /*
3502 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3503 * for running an L2 nested guest.
3504 */
3505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3506 {
3507 struct vmcs12 *vmcs12;
3508 enum nvmx_vmentry_status status;
3509 struct vcpu_vmx *vmx = to_vmx(vcpu);
3510 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3511 enum nested_evmptrld_status evmptrld_status;
3512
3513 if (!nested_vmx_check_permission(vcpu))
3514 return 1;
3515
3516 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3517 if (evmptrld_status == EVMPTRLD_ERROR) {
3518 kvm_queue_exception(vcpu, UD_VECTOR);
3519 return 1;
3520 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3521 return nested_vmx_failInvalid(vcpu);
3522 }
3523
3524 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3525 vmx->nested.current_vmptr == -1ull))
3526 return nested_vmx_failInvalid(vcpu);
3527
3528 vmcs12 = get_vmcs12(vcpu);
3529
3530 /*
3531 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3532 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3533 * rather than RFLAGS.ZF, and no error number is stored to the
3534 * VM-instruction error field.
3535 */
3536 if (CC(vmcs12->hdr.shadow_vmcs))
3537 return nested_vmx_failInvalid(vcpu);
3538
3539 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3540 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3541 /* Enlightened VMCS doesn't have launch state */
3542 vmcs12->launch_state = !launch;
3543 } else if (enable_shadow_vmcs) {
3544 copy_shadow_to_vmcs12(vmx);
3545 }
3546
3547 /*
3548 * The nested entry process starts with enforcing various prerequisites
3549 * on vmcs12 as required by the Intel SDM, and act appropriately when
3550 * they fail: As the SDM explains, some conditions should cause the
3551 * instruction to fail, while others will cause the instruction to seem
3552 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3553 * To speed up the normal (success) code path, we should avoid checking
3554 * for misconfigurations which will anyway be caught by the processor
3555 * when using the merged vmcs02.
3556 */
3557 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3558 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3559
3560 if (CC(vmcs12->launch_state == launch))
3561 return nested_vmx_fail(vcpu,
3562 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3563 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3564
3565 if (nested_vmx_check_controls(vcpu, vmcs12))
3566 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3567
3568 if (nested_vmx_check_host_state(vcpu, vmcs12))
3569 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3570
3571 /*
3572 * We're finally done with prerequisite checking, and can start with
3573 * the nested entry.
3574 */
3575 vmx->nested.nested_run_pending = 1;
3576 vmx->nested.has_preemption_timer_deadline = false;
3577 status = nested_vmx_enter_non_root_mode(vcpu, true);
3578 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3579 goto vmentry_failed;
3580
3581 /* Emulate processing of posted interrupts on VM-Enter. */
3582 if (nested_cpu_has_posted_intr(vmcs12) &&
3583 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3584 vmx->nested.pi_pending = true;
3585 kvm_make_request(KVM_REQ_EVENT, vcpu);
3586 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3587 }
3588
3589 /* Hide L1D cache contents from the nested guest. */
3590 vmx->vcpu.arch.l1tf_flush_l1d = true;
3591
3592 /*
3593 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3594 * also be used as part of restoring nVMX state for
3595 * snapshot restore (migration).
3596 *
3597 * In this flow, it is assumed that vmcs12 cache was
3598 * transferred as part of captured nVMX state and should
3599 * therefore not be read from guest memory (which may not
3600 * exist on destination host yet).
3601 */
3602 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3603
3604 switch (vmcs12->guest_activity_state) {
3605 case GUEST_ACTIVITY_HLT:
3606 /*
3607 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3608 * awakened by event injection or by an NMI-window VM-exit or
3609 * by an interrupt-window VM-exit, halt the vcpu.
3610 */
3611 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3612 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3613 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3614 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3615 vmx->nested.nested_run_pending = 0;
3616 return kvm_vcpu_halt(vcpu);
3617 }
3618 break;
3619 case GUEST_ACTIVITY_WAIT_SIPI:
3620 vmx->nested.nested_run_pending = 0;
3621 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3622 break;
3623 default:
3624 break;
3625 }
3626
3627 return 1;
3628
3629 vmentry_failed:
3630 vmx->nested.nested_run_pending = 0;
3631 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3632 return 0;
3633 if (status == NVMX_VMENTRY_VMEXIT)
3634 return 1;
3635 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3636 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3637 }
3638
3639 /*
3640 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3641 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3642 * This function returns the new value we should put in vmcs12.guest_cr0.
3643 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3644 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3645 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3646 * didn't trap the bit, because if L1 did, so would L0).
3647 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3648 * been modified by L2, and L1 knows it. So just leave the old value of
3649 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3650 * isn't relevant, because if L0 traps this bit it can set it to anything.
3651 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3652 * changed these bits, and therefore they need to be updated, but L0
3653 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3654 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3655 */
3656 static inline unsigned long
3657 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3658 {
3659 return
3660 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3661 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3662 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3663 vcpu->arch.cr0_guest_owned_bits));
3664 }
3665
3666 static inline unsigned long
3667 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3668 {
3669 return
3670 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3671 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3672 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3673 vcpu->arch.cr4_guest_owned_bits));
3674 }
3675
3676 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3677 struct vmcs12 *vmcs12)
3678 {
3679 u32 idt_vectoring;
3680 unsigned int nr;
3681
3682 if (vcpu->arch.exception.injected) {
3683 nr = vcpu->arch.exception.nr;
3684 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3685
3686 if (kvm_exception_is_soft(nr)) {
3687 vmcs12->vm_exit_instruction_len =
3688 vcpu->arch.event_exit_inst_len;
3689 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3690 } else
3691 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3692
3693 if (vcpu->arch.exception.has_error_code) {
3694 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3695 vmcs12->idt_vectoring_error_code =
3696 vcpu->arch.exception.error_code;
3697 }
3698
3699 vmcs12->idt_vectoring_info_field = idt_vectoring;
3700 } else if (vcpu->arch.nmi_injected) {
3701 vmcs12->idt_vectoring_info_field =
3702 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3703 } else if (vcpu->arch.interrupt.injected) {
3704 nr = vcpu->arch.interrupt.nr;
3705 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3706
3707 if (vcpu->arch.interrupt.soft) {
3708 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3709 vmcs12->vm_entry_instruction_len =
3710 vcpu->arch.event_exit_inst_len;
3711 } else
3712 idt_vectoring |= INTR_TYPE_EXT_INTR;
3713
3714 vmcs12->idt_vectoring_info_field = idt_vectoring;
3715 }
3716 }
3717
3718
3719 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3720 {
3721 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3722 gfn_t gfn;
3723
3724 /*
3725 * Don't need to mark the APIC access page dirty; it is never
3726 * written to by the CPU during APIC virtualization.
3727 */
3728
3729 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3730 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3731 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3732 }
3733
3734 if (nested_cpu_has_posted_intr(vmcs12)) {
3735 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3736 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3737 }
3738 }
3739
3740 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3741 {
3742 struct vcpu_vmx *vmx = to_vmx(vcpu);
3743 int max_irr;
3744 void *vapic_page;
3745 u16 status;
3746
3747 if (!vmx->nested.pi_pending)
3748 return 0;
3749
3750 if (!vmx->nested.pi_desc)
3751 goto mmio_needed;
3752
3753 vmx->nested.pi_pending = false;
3754
3755 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3756 return 0;
3757
3758 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3759 if (max_irr != 256) {
3760 vapic_page = vmx->nested.virtual_apic_map.hva;
3761 if (!vapic_page)
3762 goto mmio_needed;
3763
3764 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3765 vapic_page, &max_irr);
3766 status = vmcs_read16(GUEST_INTR_STATUS);
3767 if ((u8)max_irr > ((u8)status & 0xff)) {
3768 status &= ~0xff;
3769 status |= (u8)max_irr;
3770 vmcs_write16(GUEST_INTR_STATUS, status);
3771 }
3772 }
3773
3774 nested_mark_vmcs12_pages_dirty(vcpu);
3775 return 0;
3776
3777 mmio_needed:
3778 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3779 return -ENXIO;
3780 }
3781
3782 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3783 unsigned long exit_qual)
3784 {
3785 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3786 unsigned int nr = vcpu->arch.exception.nr;
3787 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3788
3789 if (vcpu->arch.exception.has_error_code) {
3790 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3791 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3792 }
3793
3794 if (kvm_exception_is_soft(nr))
3795 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3796 else
3797 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3798
3799 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3800 vmx_get_nmi_mask(vcpu))
3801 intr_info |= INTR_INFO_UNBLOCK_NMI;
3802
3803 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3804 }
3805
3806 /*
3807 * Returns true if a debug trap is pending delivery.
3808 *
3809 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3810 * exception may be inferred from the presence of an exception payload.
3811 */
3812 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3813 {
3814 return vcpu->arch.exception.pending &&
3815 vcpu->arch.exception.nr == DB_VECTOR &&
3816 vcpu->arch.exception.payload;
3817 }
3818
3819 /*
3820 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3821 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3822 * represents these debug traps with a payload that is said to be compatible
3823 * with the 'pending debug exceptions' field, write the payload to the VMCS
3824 * field if a VM-exit is delivered before the debug trap.
3825 */
3826 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3827 {
3828 if (vmx_pending_dbg_trap(vcpu))
3829 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3830 vcpu->arch.exception.payload);
3831 }
3832
3833 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3834 {
3835 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3836 to_vmx(vcpu)->nested.preemption_timer_expired;
3837 }
3838
3839 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3840 {
3841 struct vcpu_vmx *vmx = to_vmx(vcpu);
3842 unsigned long exit_qual;
3843 bool block_nested_events =
3844 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3845 bool mtf_pending = vmx->nested.mtf_pending;
3846 struct kvm_lapic *apic = vcpu->arch.apic;
3847
3848 /*
3849 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3850 * this state is discarded.
3851 */
3852 if (!block_nested_events)
3853 vmx->nested.mtf_pending = false;
3854
3855 if (lapic_in_kernel(vcpu) &&
3856 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3857 if (block_nested_events)
3858 return -EBUSY;
3859 nested_vmx_update_pending_dbg(vcpu);
3860 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3861 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3862 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3863 return 0;
3864 }
3865
3866 if (lapic_in_kernel(vcpu) &&
3867 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3868 if (block_nested_events)
3869 return -EBUSY;
3870
3871 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3872 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3873 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3874 apic->sipi_vector & 0xFFUL);
3875 return 0;
3876 }
3877
3878 /*
3879 * Process any exceptions that are not debug traps before MTF.
3880 *
3881 * Note that only a pending nested run can block a pending exception.
3882 * Otherwise an injected NMI/interrupt should either be
3883 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3884 * while delivering the pending exception.
3885 */
3886
3887 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3888 if (vmx->nested.nested_run_pending)
3889 return -EBUSY;
3890 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3891 goto no_vmexit;
3892 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3893 return 0;
3894 }
3895
3896 if (mtf_pending) {
3897 if (block_nested_events)
3898 return -EBUSY;
3899 nested_vmx_update_pending_dbg(vcpu);
3900 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3901 return 0;
3902 }
3903
3904 if (vcpu->arch.exception.pending) {
3905 if (vmx->nested.nested_run_pending)
3906 return -EBUSY;
3907 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3908 goto no_vmexit;
3909 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3910 return 0;
3911 }
3912
3913 if (nested_vmx_preemption_timer_pending(vcpu)) {
3914 if (block_nested_events)
3915 return -EBUSY;
3916 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3917 return 0;
3918 }
3919
3920 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3921 if (block_nested_events)
3922 return -EBUSY;
3923 goto no_vmexit;
3924 }
3925
3926 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3927 if (block_nested_events)
3928 return -EBUSY;
3929 if (!nested_exit_on_nmi(vcpu))
3930 goto no_vmexit;
3931
3932 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3933 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3934 INTR_INFO_VALID_MASK, 0);
3935 /*
3936 * The NMI-triggered VM exit counts as injection:
3937 * clear this one and block further NMIs.
3938 */
3939 vcpu->arch.nmi_pending = 0;
3940 vmx_set_nmi_mask(vcpu, true);
3941 return 0;
3942 }
3943
3944 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3945 if (block_nested_events)
3946 return -EBUSY;
3947 if (!nested_exit_on_intr(vcpu))
3948 goto no_vmexit;
3949 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3950 return 0;
3951 }
3952
3953 no_vmexit:
3954 return vmx_complete_nested_posted_interrupt(vcpu);
3955 }
3956
3957 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3958 {
3959 ktime_t remaining =
3960 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3961 u64 value;
3962
3963 if (ktime_to_ns(remaining) <= 0)
3964 return 0;
3965
3966 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3967 do_div(value, 1000000);
3968 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3969 }
3970
3971 static bool is_vmcs12_ext_field(unsigned long field)
3972 {
3973 switch (field) {
3974 case GUEST_ES_SELECTOR:
3975 case GUEST_CS_SELECTOR:
3976 case GUEST_SS_SELECTOR:
3977 case GUEST_DS_SELECTOR:
3978 case GUEST_FS_SELECTOR:
3979 case GUEST_GS_SELECTOR:
3980 case GUEST_LDTR_SELECTOR:
3981 case GUEST_TR_SELECTOR:
3982 case GUEST_ES_LIMIT:
3983 case GUEST_CS_LIMIT:
3984 case GUEST_SS_LIMIT:
3985 case GUEST_DS_LIMIT:
3986 case GUEST_FS_LIMIT:
3987 case GUEST_GS_LIMIT:
3988 case GUEST_LDTR_LIMIT:
3989 case GUEST_TR_LIMIT:
3990 case GUEST_GDTR_LIMIT:
3991 case GUEST_IDTR_LIMIT:
3992 case GUEST_ES_AR_BYTES:
3993 case GUEST_DS_AR_BYTES:
3994 case GUEST_FS_AR_BYTES:
3995 case GUEST_GS_AR_BYTES:
3996 case GUEST_LDTR_AR_BYTES:
3997 case GUEST_TR_AR_BYTES:
3998 case GUEST_ES_BASE:
3999 case GUEST_CS_BASE:
4000 case GUEST_SS_BASE:
4001 case GUEST_DS_BASE:
4002 case GUEST_FS_BASE:
4003 case GUEST_GS_BASE:
4004 case GUEST_LDTR_BASE:
4005 case GUEST_TR_BASE:
4006 case GUEST_GDTR_BASE:
4007 case GUEST_IDTR_BASE:
4008 case GUEST_PENDING_DBG_EXCEPTIONS:
4009 case GUEST_BNDCFGS:
4010 return true;
4011 default:
4012 break;
4013 }
4014
4015 return false;
4016 }
4017
4018 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4019 struct vmcs12 *vmcs12)
4020 {
4021 struct vcpu_vmx *vmx = to_vmx(vcpu);
4022
4023 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4024 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4025 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4026 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4027 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4028 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4029 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4030 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4031 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4032 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4033 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4034 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4035 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4036 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4037 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4038 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4039 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4040 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4041 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4042 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4043 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4044 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4045 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4046 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4047 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4048 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4049 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4050 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4051 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4052 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4053 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4054 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4055 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4056 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4057 vmcs12->guest_pending_dbg_exceptions =
4058 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4059 if (kvm_mpx_supported())
4060 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4061
4062 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4063 }
4064
4065 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4066 struct vmcs12 *vmcs12)
4067 {
4068 struct vcpu_vmx *vmx = to_vmx(vcpu);
4069 int cpu;
4070
4071 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4072 return;
4073
4074
4075 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4076
4077 cpu = get_cpu();
4078 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4079 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4080
4081 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4082
4083 vmx->loaded_vmcs = &vmx->vmcs01;
4084 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4085 put_cpu();
4086 }
4087
4088 /*
4089 * Update the guest state fields of vmcs12 to reflect changes that
4090 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4091 * VM-entry controls is also updated, since this is really a guest
4092 * state bit.)
4093 */
4094 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4095 {
4096 struct vcpu_vmx *vmx = to_vmx(vcpu);
4097
4098 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4099 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4100
4101 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4102 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4103
4104 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4105 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4106
4107 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4108 vmcs12->guest_rip = kvm_rip_read(vcpu);
4109 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4110
4111 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4112 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4113
4114 vmcs12->guest_interruptibility_info =
4115 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4116
4117 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4118 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4119 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4120 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4121 else
4122 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4123
4124 if (nested_cpu_has_preemption_timer(vmcs12) &&
4125 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4126 !vmx->nested.nested_run_pending)
4127 vmcs12->vmx_preemption_timer_value =
4128 vmx_get_preemption_timer_value(vcpu);
4129
4130 /*
4131 * In some cases (usually, nested EPT), L2 is allowed to change its
4132 * own CR3 without exiting. If it has changed it, we must keep it.
4133 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4134 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4135 *
4136 * Additionally, restore L2's PDPTR to vmcs12.
4137 */
4138 if (enable_ept) {
4139 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4140 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4141 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4142 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4143 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4144 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4145 }
4146 }
4147
4148 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4149
4150 if (nested_cpu_has_vid(vmcs12))
4151 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4152
4153 vmcs12->vm_entry_controls =
4154 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4155 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4156
4157 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4158 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4159
4160 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4161 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4162 }
4163
4164 /*
4165 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4166 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4167 * and this function updates it to reflect the changes to the guest state while
4168 * L2 was running (and perhaps made some exits which were handled directly by L0
4169 * without going back to L1), and to reflect the exit reason.
4170 * Note that we do not have to copy here all VMCS fields, just those that
4171 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4172 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4173 * which already writes to vmcs12 directly.
4174 */
4175 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4176 u32 vm_exit_reason, u32 exit_intr_info,
4177 unsigned long exit_qualification)
4178 {
4179 /* update exit information fields: */
4180 vmcs12->vm_exit_reason = vm_exit_reason;
4181 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4182 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4183 vmcs12->exit_qualification = exit_qualification;
4184 vmcs12->vm_exit_intr_info = exit_intr_info;
4185
4186 vmcs12->idt_vectoring_info_field = 0;
4187 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4188 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4189
4190 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4191 vmcs12->launch_state = 1;
4192
4193 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4194 * instead of reading the real value. */
4195 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4196
4197 /*
4198 * Transfer the event that L0 or L1 may wanted to inject into
4199 * L2 to IDT_VECTORING_INFO_FIELD.
4200 */
4201 vmcs12_save_pending_event(vcpu, vmcs12);
4202
4203 /*
4204 * According to spec, there's no need to store the guest's
4205 * MSRs if the exit is due to a VM-entry failure that occurs
4206 * during or after loading the guest state. Since this exit
4207 * does not fall in that category, we need to save the MSRs.
4208 */
4209 if (nested_vmx_store_msr(vcpu,
4210 vmcs12->vm_exit_msr_store_addr,
4211 vmcs12->vm_exit_msr_store_count))
4212 nested_vmx_abort(vcpu,
4213 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4214 }
4215
4216 /*
4217 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4218 * preserved above and would only end up incorrectly in L1.
4219 */
4220 vcpu->arch.nmi_injected = false;
4221 kvm_clear_exception_queue(vcpu);
4222 kvm_clear_interrupt_queue(vcpu);
4223 }
4224
4225 /*
4226 * A part of what we need to when the nested L2 guest exits and we want to
4227 * run its L1 parent, is to reset L1's guest state to the host state specified
4228 * in vmcs12.
4229 * This function is to be called not only on normal nested exit, but also on
4230 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4231 * Failures During or After Loading Guest State").
4232 * This function should be called when the active VMCS is L1's (vmcs01).
4233 */
4234 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4235 struct vmcs12 *vmcs12)
4236 {
4237 enum vm_entry_failure_code ignored;
4238 struct kvm_segment seg;
4239
4240 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4241 vcpu->arch.efer = vmcs12->host_ia32_efer;
4242 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4243 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4244 else
4245 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4246 vmx_set_efer(vcpu, vcpu->arch.efer);
4247
4248 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4249 kvm_rip_write(vcpu, vmcs12->host_rip);
4250 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4251 vmx_set_interrupt_shadow(vcpu, 0);
4252
4253 /*
4254 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4255 * actually changed, because vmx_set_cr0 refers to efer set above.
4256 *
4257 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4258 * (KVM doesn't change it);
4259 */
4260 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4261 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4262
4263 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4264 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4265 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4266
4267 nested_ept_uninit_mmu_context(vcpu);
4268
4269 /*
4270 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4271 * couldn't have changed.
4272 */
4273 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4274 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4275
4276 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4277
4278 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4279 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4280 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4281 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4282 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4283 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4284 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4285
4286 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4287 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4288 vmcs_write64(GUEST_BNDCFGS, 0);
4289
4290 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4291 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4292 vcpu->arch.pat = vmcs12->host_ia32_pat;
4293 }
4294 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4295 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4296 vmcs12->host_ia32_perf_global_ctrl));
4297
4298 /* Set L1 segment info according to Intel SDM
4299 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4300 seg = (struct kvm_segment) {
4301 .base = 0,
4302 .limit = 0xFFFFFFFF,
4303 .selector = vmcs12->host_cs_selector,
4304 .type = 11,
4305 .present = 1,
4306 .s = 1,
4307 .g = 1
4308 };
4309 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4310 seg.l = 1;
4311 else
4312 seg.db = 1;
4313 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4314 seg = (struct kvm_segment) {
4315 .base = 0,
4316 .limit = 0xFFFFFFFF,
4317 .type = 3,
4318 .present = 1,
4319 .s = 1,
4320 .db = 1,
4321 .g = 1
4322 };
4323 seg.selector = vmcs12->host_ds_selector;
4324 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4325 seg.selector = vmcs12->host_es_selector;
4326 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4327 seg.selector = vmcs12->host_ss_selector;
4328 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4329 seg.selector = vmcs12->host_fs_selector;
4330 seg.base = vmcs12->host_fs_base;
4331 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4332 seg.selector = vmcs12->host_gs_selector;
4333 seg.base = vmcs12->host_gs_base;
4334 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4335 seg = (struct kvm_segment) {
4336 .base = vmcs12->host_tr_base,
4337 .limit = 0x67,
4338 .selector = vmcs12->host_tr_selector,
4339 .type = 11,
4340 .present = 1
4341 };
4342 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4343
4344 memset(&seg, 0, sizeof(seg));
4345 seg.unusable = 1;
4346 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4347
4348 kvm_set_dr(vcpu, 7, 0x400);
4349 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4350
4351 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4352 vmcs12->vm_exit_msr_load_count))
4353 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4354 }
4355
4356 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4357 {
4358 struct vmx_uret_msr *efer_msr;
4359 unsigned int i;
4360
4361 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4362 return vmcs_read64(GUEST_IA32_EFER);
4363
4364 if (cpu_has_load_ia32_efer())
4365 return host_efer;
4366
4367 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4368 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4369 return vmx->msr_autoload.guest.val[i].value;
4370 }
4371
4372 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4373 if (efer_msr)
4374 return efer_msr->data;
4375
4376 return host_efer;
4377 }
4378
4379 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4380 {
4381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4382 struct vcpu_vmx *vmx = to_vmx(vcpu);
4383 struct vmx_msr_entry g, h;
4384 gpa_t gpa;
4385 u32 i, j;
4386
4387 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4388
4389 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4390 /*
4391 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4392 * as vmcs01.GUEST_DR7 contains a userspace defined value
4393 * and vcpu->arch.dr7 is not squirreled away before the
4394 * nested VMENTER (not worth adding a variable in nested_vmx).
4395 */
4396 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4397 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4398 else
4399 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4400 }
4401
4402 /*
4403 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4404 * handle a variety of side effects to KVM's software model.
4405 */
4406 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4407
4408 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4409 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4410
4411 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4412 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4413
4414 nested_ept_uninit_mmu_context(vcpu);
4415 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4416 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4417
4418 /*
4419 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4420 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4421 * VMFail, like everything else we just need to ensure our
4422 * software model is up-to-date.
4423 */
4424 if (enable_ept && is_pae_paging(vcpu))
4425 ept_save_pdptrs(vcpu);
4426
4427 kvm_mmu_reset_context(vcpu);
4428
4429 /*
4430 * This nasty bit of open coding is a compromise between blindly
4431 * loading L1's MSRs using the exit load lists (incorrect emulation
4432 * of VMFail), leaving the nested VM's MSRs in the software model
4433 * (incorrect behavior) and snapshotting the modified MSRs (too
4434 * expensive since the lists are unbound by hardware). For each
4435 * MSR that was (prematurely) loaded from the nested VMEntry load
4436 * list, reload it from the exit load list if it exists and differs
4437 * from the guest value. The intent is to stuff host state as
4438 * silently as possible, not to fully process the exit load list.
4439 */
4440 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4441 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4442 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4443 pr_debug_ratelimited(
4444 "%s read MSR index failed (%u, 0x%08llx)\n",
4445 __func__, i, gpa);
4446 goto vmabort;
4447 }
4448
4449 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4450 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4451 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4452 pr_debug_ratelimited(
4453 "%s read MSR failed (%u, 0x%08llx)\n",
4454 __func__, j, gpa);
4455 goto vmabort;
4456 }
4457 if (h.index != g.index)
4458 continue;
4459 if (h.value == g.value)
4460 break;
4461
4462 if (nested_vmx_load_msr_check(vcpu, &h)) {
4463 pr_debug_ratelimited(
4464 "%s check failed (%u, 0x%x, 0x%x)\n",
4465 __func__, j, h.index, h.reserved);
4466 goto vmabort;
4467 }
4468
4469 if (kvm_set_msr(vcpu, h.index, h.value)) {
4470 pr_debug_ratelimited(
4471 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4472 __func__, j, h.index, h.value);
4473 goto vmabort;
4474 }
4475 }
4476 }
4477
4478 return;
4479
4480 vmabort:
4481 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4482 }
4483
4484 /*
4485 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4486 * and modify vmcs12 to make it see what it would expect to see there if
4487 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4488 */
4489 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4490 u32 exit_intr_info, unsigned long exit_qualification)
4491 {
4492 struct vcpu_vmx *vmx = to_vmx(vcpu);
4493 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4494
4495 /* trying to cancel vmlaunch/vmresume is a bug */
4496 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4497
4498 /* Similarly, triple faults in L2 should never escape. */
4499 WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4500
4501 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4502 /*
4503 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4504 * Enlightened VMCS after migration and we still need to
4505 * do that when something is forcing L2->L1 exit prior to
4506 * the first L2 run.
4507 */
4508 (void)nested_get_evmcs_page(vcpu);
4509 }
4510
4511 /* Service the TLB flush request for L2 before switching to L1. */
4512 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4513 kvm_vcpu_flush_tlb_current(vcpu);
4514
4515 /*
4516 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4517 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4518 * up-to-date before switching to L1.
4519 */
4520 if (enable_ept && is_pae_paging(vcpu))
4521 vmx_ept_load_pdptrs(vcpu);
4522
4523 leave_guest_mode(vcpu);
4524
4525 if (nested_cpu_has_preemption_timer(vmcs12))
4526 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4527
4528 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4529 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4530 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4531 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4532 }
4533
4534 if (likely(!vmx->fail)) {
4535 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4536
4537 if (vm_exit_reason != -1)
4538 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4539 exit_intr_info, exit_qualification);
4540
4541 /*
4542 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4543 * also be used to capture vmcs12 cache as part of
4544 * capturing nVMX state for snapshot (migration).
4545 *
4546 * Otherwise, this flush will dirty guest memory at a
4547 * point it is already assumed by user-space to be
4548 * immutable.
4549 */
4550 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4551 } else {
4552 /*
4553 * The only expected VM-instruction error is "VM entry with
4554 * invalid control field(s)." Anything else indicates a
4555 * problem with L0. And we should never get here with a
4556 * VMFail of any type if early consistency checks are enabled.
4557 */
4558 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4559 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4560 WARN_ON_ONCE(nested_early_check);
4561 }
4562
4563 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4564
4565 /* Update any VMCS fields that might have changed while L2 ran */
4566 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4567 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4568 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4569 if (kvm_has_tsc_control)
4570 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4571
4572 if (vmx->nested.l1_tpr_threshold != -1)
4573 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4574
4575 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4576 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4577 vmx_set_virtual_apic_mode(vcpu);
4578 }
4579
4580 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4581 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4582 vmx_update_cpu_dirty_logging(vcpu);
4583 }
4584
4585 /* Unpin physical memory we referred to in vmcs02 */
4586 if (vmx->nested.apic_access_page) {
4587 kvm_release_page_clean(vmx->nested.apic_access_page);
4588 vmx->nested.apic_access_page = NULL;
4589 }
4590 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4591 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4592 vmx->nested.pi_desc = NULL;
4593
4594 if (vmx->nested.reload_vmcs01_apic_access_page) {
4595 vmx->nested.reload_vmcs01_apic_access_page = false;
4596 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4597 }
4598
4599 if ((vm_exit_reason != -1) &&
4600 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4601 vmx->nested.need_vmcs12_to_shadow_sync = true;
4602
4603 /* in case we halted in L2 */
4604 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4605
4606 if (likely(!vmx->fail)) {
4607 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4608 nested_exit_intr_ack_set(vcpu)) {
4609 int irq = kvm_cpu_get_interrupt(vcpu);
4610 WARN_ON(irq < 0);
4611 vmcs12->vm_exit_intr_info = irq |
4612 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4613 }
4614
4615 if (vm_exit_reason != -1)
4616 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4617 vmcs12->exit_qualification,
4618 vmcs12->idt_vectoring_info_field,
4619 vmcs12->vm_exit_intr_info,
4620 vmcs12->vm_exit_intr_error_code,
4621 KVM_ISA_VMX);
4622
4623 load_vmcs12_host_state(vcpu, vmcs12);
4624
4625 return;
4626 }
4627
4628 /*
4629 * After an early L2 VM-entry failure, we're now back
4630 * in L1 which thinks it just finished a VMLAUNCH or
4631 * VMRESUME instruction, so we need to set the failure
4632 * flag and the VM-instruction error field of the VMCS
4633 * accordingly, and skip the emulated instruction.
4634 */
4635 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4636
4637 /*
4638 * Restore L1's host state to KVM's software model. We're here
4639 * because a consistency check was caught by hardware, which
4640 * means some amount of guest state has been propagated to KVM's
4641 * model and needs to be unwound to the host's state.
4642 */
4643 nested_vmx_restore_host_state(vcpu);
4644
4645 vmx->fail = 0;
4646 }
4647
4648 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4649 {
4650 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4651 }
4652
4653 /*
4654 * Decode the memory-address operand of a vmx instruction, as recorded on an
4655 * exit caused by such an instruction (run by a guest hypervisor).
4656 * On success, returns 0. When the operand is invalid, returns 1 and throws
4657 * #UD, #GP, or #SS.
4658 */
4659 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4660 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4661 {
4662 gva_t off;
4663 bool exn;
4664 struct kvm_segment s;
4665
4666 /*
4667 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4668 * Execution", on an exit, vmx_instruction_info holds most of the
4669 * addressing components of the operand. Only the displacement part
4670 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4671 * For how an actual address is calculated from all these components,
4672 * refer to Vol. 1, "Operand Addressing".
4673 */
4674 int scaling = vmx_instruction_info & 3;
4675 int addr_size = (vmx_instruction_info >> 7) & 7;
4676 bool is_reg = vmx_instruction_info & (1u << 10);
4677 int seg_reg = (vmx_instruction_info >> 15) & 7;
4678 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4679 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4680 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4681 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4682
4683 if (is_reg) {
4684 kvm_queue_exception(vcpu, UD_VECTOR);
4685 return 1;
4686 }
4687
4688 /* Addr = segment_base + offset */
4689 /* offset = base + [index * scale] + displacement */
4690 off = exit_qualification; /* holds the displacement */
4691 if (addr_size == 1)
4692 off = (gva_t)sign_extend64(off, 31);
4693 else if (addr_size == 0)
4694 off = (gva_t)sign_extend64(off, 15);
4695 if (base_is_valid)
4696 off += kvm_register_read(vcpu, base_reg);
4697 if (index_is_valid)
4698 off += kvm_register_read(vcpu, index_reg) << scaling;
4699 vmx_get_segment(vcpu, &s, seg_reg);
4700
4701 /*
4702 * The effective address, i.e. @off, of a memory operand is truncated
4703 * based on the address size of the instruction. Note that this is
4704 * the *effective address*, i.e. the address prior to accounting for
4705 * the segment's base.
4706 */
4707 if (addr_size == 1) /* 32 bit */
4708 off &= 0xffffffff;
4709 else if (addr_size == 0) /* 16 bit */
4710 off &= 0xffff;
4711
4712 /* Checks for #GP/#SS exceptions. */
4713 exn = false;
4714 if (is_long_mode(vcpu)) {
4715 /*
4716 * The virtual/linear address is never truncated in 64-bit
4717 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4718 * address when using FS/GS with a non-zero base.
4719 */
4720 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4721 *ret = s.base + off;
4722 else
4723 *ret = off;
4724
4725 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4726 * non-canonical form. This is the only check on the memory
4727 * destination for long mode!
4728 */
4729 exn = is_noncanonical_address(*ret, vcpu);
4730 } else {
4731 /*
4732 * When not in long mode, the virtual/linear address is
4733 * unconditionally truncated to 32 bits regardless of the
4734 * address size.
4735 */
4736 *ret = (s.base + off) & 0xffffffff;
4737
4738 /* Protected mode: apply checks for segment validity in the
4739 * following order:
4740 * - segment type check (#GP(0) may be thrown)
4741 * - usability check (#GP(0)/#SS(0))
4742 * - limit check (#GP(0)/#SS(0))
4743 */
4744 if (wr)
4745 /* #GP(0) if the destination operand is located in a
4746 * read-only data segment or any code segment.
4747 */
4748 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4749 else
4750 /* #GP(0) if the source operand is located in an
4751 * execute-only code segment
4752 */
4753 exn = ((s.type & 0xa) == 8);
4754 if (exn) {
4755 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4756 return 1;
4757 }
4758 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4759 */
4760 exn = (s.unusable != 0);
4761
4762 /*
4763 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4764 * outside the segment limit. All CPUs that support VMX ignore
4765 * limit checks for flat segments, i.e. segments with base==0,
4766 * limit==0xffffffff and of type expand-up data or code.
4767 */
4768 if (!(s.base == 0 && s.limit == 0xffffffff &&
4769 ((s.type & 8) || !(s.type & 4))))
4770 exn = exn || ((u64)off + len - 1 > s.limit);
4771 }
4772 if (exn) {
4773 kvm_queue_exception_e(vcpu,
4774 seg_reg == VCPU_SREG_SS ?
4775 SS_VECTOR : GP_VECTOR,
4776 0);
4777 return 1;
4778 }
4779
4780 return 0;
4781 }
4782
4783 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4784 {
4785 struct vcpu_vmx *vmx;
4786
4787 if (!nested_vmx_allowed(vcpu))
4788 return;
4789
4790 vmx = to_vmx(vcpu);
4791 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4792 vmx->nested.msrs.entry_ctls_high |=
4793 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4794 vmx->nested.msrs.exit_ctls_high |=
4795 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4796 } else {
4797 vmx->nested.msrs.entry_ctls_high &=
4798 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4799 vmx->nested.msrs.exit_ctls_high &=
4800 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4801 }
4802 }
4803
4804 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4805 int *ret)
4806 {
4807 gva_t gva;
4808 struct x86_exception e;
4809 int r;
4810
4811 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4812 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4813 sizeof(*vmpointer), &gva)) {
4814 *ret = 1;
4815 return -EINVAL;
4816 }
4817
4818 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4819 if (r != X86EMUL_CONTINUE) {
4820 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4821 return -EINVAL;
4822 }
4823
4824 return 0;
4825 }
4826
4827 /*
4828 * Allocate a shadow VMCS and associate it with the currently loaded
4829 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4830 * VMCS is also VMCLEARed, so that it is ready for use.
4831 */
4832 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4833 {
4834 struct vcpu_vmx *vmx = to_vmx(vcpu);
4835 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4836
4837 /*
4838 * We should allocate a shadow vmcs for vmcs01 only when L1
4839 * executes VMXON and free it when L1 executes VMXOFF.
4840 * As it is invalid to execute VMXON twice, we shouldn't reach
4841 * here when vmcs01 already have an allocated shadow vmcs.
4842 */
4843 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4844
4845 if (!loaded_vmcs->shadow_vmcs) {
4846 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4847 if (loaded_vmcs->shadow_vmcs)
4848 vmcs_clear(loaded_vmcs->shadow_vmcs);
4849 }
4850 return loaded_vmcs->shadow_vmcs;
4851 }
4852
4853 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4854 {
4855 struct vcpu_vmx *vmx = to_vmx(vcpu);
4856 int r;
4857
4858 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4859 if (r < 0)
4860 goto out_vmcs02;
4861
4862 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4863 if (!vmx->nested.cached_vmcs12)
4864 goto out_cached_vmcs12;
4865
4866 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4867 if (!vmx->nested.cached_shadow_vmcs12)
4868 goto out_cached_shadow_vmcs12;
4869
4870 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4871 goto out_shadow_vmcs;
4872
4873 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4874 HRTIMER_MODE_ABS_PINNED);
4875 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4876
4877 vmx->nested.vpid02 = allocate_vpid();
4878
4879 vmx->nested.vmcs02_initialized = false;
4880 vmx->nested.vmxon = true;
4881
4882 if (vmx_pt_mode_is_host_guest()) {
4883 vmx->pt_desc.guest.ctl = 0;
4884 pt_update_intercept_for_msr(vcpu);
4885 }
4886
4887 return 0;
4888
4889 out_shadow_vmcs:
4890 kfree(vmx->nested.cached_shadow_vmcs12);
4891
4892 out_cached_shadow_vmcs12:
4893 kfree(vmx->nested.cached_vmcs12);
4894
4895 out_cached_vmcs12:
4896 free_loaded_vmcs(&vmx->nested.vmcs02);
4897
4898 out_vmcs02:
4899 return -ENOMEM;
4900 }
4901
4902 /*
4903 * Emulate the VMXON instruction.
4904 * Currently, we just remember that VMX is active, and do not save or even
4905 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4906 * do not currently need to store anything in that guest-allocated memory
4907 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4908 * argument is different from the VMXON pointer (which the spec says they do).
4909 */
4910 static int handle_vmon(struct kvm_vcpu *vcpu)
4911 {
4912 int ret;
4913 gpa_t vmptr;
4914 uint32_t revision;
4915 struct vcpu_vmx *vmx = to_vmx(vcpu);
4916 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4917 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4918
4919 /*
4920 * The Intel VMX Instruction Reference lists a bunch of bits that are
4921 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4922 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4923 * Otherwise, we should fail with #UD. But most faulting conditions
4924 * have already been checked by hardware, prior to the VM-exit for
4925 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4926 * that bit set to 1 in non-root mode.
4927 */
4928 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4929 kvm_queue_exception(vcpu, UD_VECTOR);
4930 return 1;
4931 }
4932
4933 /* CPL=0 must be checked manually. */
4934 if (vmx_get_cpl(vcpu)) {
4935 kvm_inject_gp(vcpu, 0);
4936 return 1;
4937 }
4938
4939 if (vmx->nested.vmxon)
4940 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4941
4942 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4943 != VMXON_NEEDED_FEATURES) {
4944 kvm_inject_gp(vcpu, 0);
4945 return 1;
4946 }
4947
4948 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4949 return ret;
4950
4951 /*
4952 * SDM 3: 24.11.5
4953 * The first 4 bytes of VMXON region contain the supported
4954 * VMCS revision identifier
4955 *
4956 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4957 * which replaces physical address width with 32
4958 */
4959 if (!page_address_valid(vcpu, vmptr))
4960 return nested_vmx_failInvalid(vcpu);
4961
4962 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4963 revision != VMCS12_REVISION)
4964 return nested_vmx_failInvalid(vcpu);
4965
4966 vmx->nested.vmxon_ptr = vmptr;
4967 ret = enter_vmx_operation(vcpu);
4968 if (ret)
4969 return ret;
4970
4971 return nested_vmx_succeed(vcpu);
4972 }
4973
4974 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4975 {
4976 struct vcpu_vmx *vmx = to_vmx(vcpu);
4977
4978 if (vmx->nested.current_vmptr == -1ull)
4979 return;
4980
4981 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4982
4983 if (enable_shadow_vmcs) {
4984 /* copy to memory all shadowed fields in case
4985 they were modified */
4986 copy_shadow_to_vmcs12(vmx);
4987 vmx_disable_shadow_vmcs(vmx);
4988 }
4989 vmx->nested.posted_intr_nv = -1;
4990
4991 /* Flush VMCS12 to guest memory */
4992 kvm_vcpu_write_guest_page(vcpu,
4993 vmx->nested.current_vmptr >> PAGE_SHIFT,
4994 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4995
4996 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4997
4998 vmx->nested.current_vmptr = -1ull;
4999 }
5000
5001 /* Emulate the VMXOFF instruction */
5002 static int handle_vmoff(struct kvm_vcpu *vcpu)
5003 {
5004 if (!nested_vmx_check_permission(vcpu))
5005 return 1;
5006
5007 free_nested(vcpu);
5008
5009 /* Process a latched INIT during time CPU was in VMX operation */
5010 kvm_make_request(KVM_REQ_EVENT, vcpu);
5011
5012 return nested_vmx_succeed(vcpu);
5013 }
5014
5015 /* Emulate the VMCLEAR instruction */
5016 static int handle_vmclear(struct kvm_vcpu *vcpu)
5017 {
5018 struct vcpu_vmx *vmx = to_vmx(vcpu);
5019 u32 zero = 0;
5020 gpa_t vmptr;
5021 u64 evmcs_gpa;
5022 int r;
5023
5024 if (!nested_vmx_check_permission(vcpu))
5025 return 1;
5026
5027 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5028 return r;
5029
5030 if (!page_address_valid(vcpu, vmptr))
5031 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5032
5033 if (vmptr == vmx->nested.vmxon_ptr)
5034 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5035
5036 /*
5037 * When Enlightened VMEntry is enabled on the calling CPU we treat
5038 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5039 * way to distinguish it from VMCS12) and we must not corrupt it by
5040 * writing to the non-existent 'launch_state' field. The area doesn't
5041 * have to be the currently active EVMCS on the calling CPU and there's
5042 * nothing KVM has to do to transition it from 'active' to 'non-active'
5043 * state. It is possible that the area will stay mapped as
5044 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5045 */
5046 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5047 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5048 if (vmptr == vmx->nested.current_vmptr)
5049 nested_release_vmcs12(vcpu);
5050
5051 kvm_vcpu_write_guest(vcpu,
5052 vmptr + offsetof(struct vmcs12,
5053 launch_state),
5054 &zero, sizeof(zero));
5055 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5056 nested_release_evmcs(vcpu);
5057 }
5058
5059 return nested_vmx_succeed(vcpu);
5060 }
5061
5062 /* Emulate the VMLAUNCH instruction */
5063 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5064 {
5065 return nested_vmx_run(vcpu, true);
5066 }
5067
5068 /* Emulate the VMRESUME instruction */
5069 static int handle_vmresume(struct kvm_vcpu *vcpu)
5070 {
5071
5072 return nested_vmx_run(vcpu, false);
5073 }
5074
5075 static int handle_vmread(struct kvm_vcpu *vcpu)
5076 {
5077 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5078 : get_vmcs12(vcpu);
5079 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5080 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5081 struct vcpu_vmx *vmx = to_vmx(vcpu);
5082 struct x86_exception e;
5083 unsigned long field;
5084 u64 value;
5085 gva_t gva = 0;
5086 short offset;
5087 int len, r;
5088
5089 if (!nested_vmx_check_permission(vcpu))
5090 return 1;
5091
5092 /*
5093 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5094 * any VMREAD sets the ALU flags for VMfailInvalid.
5095 */
5096 if (vmx->nested.current_vmptr == -1ull ||
5097 (is_guest_mode(vcpu) &&
5098 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5099 return nested_vmx_failInvalid(vcpu);
5100
5101 /* Decode instruction info and find the field to read */
5102 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5103
5104 offset = vmcs_field_to_offset(field);
5105 if (offset < 0)
5106 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5107
5108 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5109 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5110
5111 /* Read the field, zero-extended to a u64 value */
5112 value = vmcs12_read_any(vmcs12, field, offset);
5113
5114 /*
5115 * Now copy part of this value to register or memory, as requested.
5116 * Note that the number of bits actually copied is 32 or 64 depending
5117 * on the guest's mode (32 or 64 bit), not on the given field's length.
5118 */
5119 if (instr_info & BIT(10)) {
5120 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5121 } else {
5122 len = is_64_bit_mode(vcpu) ? 8 : 4;
5123 if (get_vmx_mem_address(vcpu, exit_qualification,
5124 instr_info, true, len, &gva))
5125 return 1;
5126 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5127 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5128 if (r != X86EMUL_CONTINUE)
5129 return kvm_handle_memory_failure(vcpu, r, &e);
5130 }
5131
5132 return nested_vmx_succeed(vcpu);
5133 }
5134
5135 static bool is_shadow_field_rw(unsigned long field)
5136 {
5137 switch (field) {
5138 #define SHADOW_FIELD_RW(x, y) case x:
5139 #include "vmcs_shadow_fields.h"
5140 return true;
5141 default:
5142 break;
5143 }
5144 return false;
5145 }
5146
5147 static bool is_shadow_field_ro(unsigned long field)
5148 {
5149 switch (field) {
5150 #define SHADOW_FIELD_RO(x, y) case x:
5151 #include "vmcs_shadow_fields.h"
5152 return true;
5153 default:
5154 break;
5155 }
5156 return false;
5157 }
5158
5159 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5160 {
5161 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5162 : get_vmcs12(vcpu);
5163 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5164 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5165 struct vcpu_vmx *vmx = to_vmx(vcpu);
5166 struct x86_exception e;
5167 unsigned long field;
5168 short offset;
5169 gva_t gva;
5170 int len, r;
5171
5172 /*
5173 * The value to write might be 32 or 64 bits, depending on L1's long
5174 * mode, and eventually we need to write that into a field of several
5175 * possible lengths. The code below first zero-extends the value to 64
5176 * bit (value), and then copies only the appropriate number of
5177 * bits into the vmcs12 field.
5178 */
5179 u64 value = 0;
5180
5181 if (!nested_vmx_check_permission(vcpu))
5182 return 1;
5183
5184 /*
5185 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5186 * any VMWRITE sets the ALU flags for VMfailInvalid.
5187 */
5188 if (vmx->nested.current_vmptr == -1ull ||
5189 (is_guest_mode(vcpu) &&
5190 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5191 return nested_vmx_failInvalid(vcpu);
5192
5193 if (instr_info & BIT(10))
5194 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5195 else {
5196 len = is_64_bit_mode(vcpu) ? 8 : 4;
5197 if (get_vmx_mem_address(vcpu, exit_qualification,
5198 instr_info, false, len, &gva))
5199 return 1;
5200 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5201 if (r != X86EMUL_CONTINUE)
5202 return kvm_handle_memory_failure(vcpu, r, &e);
5203 }
5204
5205 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5206
5207 offset = vmcs_field_to_offset(field);
5208 if (offset < 0)
5209 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5210
5211 /*
5212 * If the vCPU supports "VMWRITE to any supported field in the
5213 * VMCS," then the "read-only" fields are actually read/write.
5214 */
5215 if (vmcs_field_readonly(field) &&
5216 !nested_cpu_has_vmwrite_any_field(vcpu))
5217 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5218
5219 /*
5220 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5221 * vmcs12, else we may crush a field or consume a stale value.
5222 */
5223 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5224 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5225
5226 /*
5227 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5228 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5229 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5230 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5231 * from L1 will return a different value than VMREAD from L2 (L1 sees
5232 * the stripped down value, L2 sees the full value as stored by KVM).
5233 */
5234 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5235 value &= 0x1f0ff;
5236
5237 vmcs12_write_any(vmcs12, field, offset, value);
5238
5239 /*
5240 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5241 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5242 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5243 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5244 */
5245 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5246 /*
5247 * L1 can read these fields without exiting, ensure the
5248 * shadow VMCS is up-to-date.
5249 */
5250 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5251 preempt_disable();
5252 vmcs_load(vmx->vmcs01.shadow_vmcs);
5253
5254 __vmcs_writel(field, value);
5255
5256 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5257 vmcs_load(vmx->loaded_vmcs->vmcs);
5258 preempt_enable();
5259 }
5260 vmx->nested.dirty_vmcs12 = true;
5261 }
5262
5263 return nested_vmx_succeed(vcpu);
5264 }
5265
5266 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5267 {
5268 vmx->nested.current_vmptr = vmptr;
5269 if (enable_shadow_vmcs) {
5270 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5271 vmcs_write64(VMCS_LINK_POINTER,
5272 __pa(vmx->vmcs01.shadow_vmcs));
5273 vmx->nested.need_vmcs12_to_shadow_sync = true;
5274 }
5275 vmx->nested.dirty_vmcs12 = true;
5276 }
5277
5278 /* Emulate the VMPTRLD instruction */
5279 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5280 {
5281 struct vcpu_vmx *vmx = to_vmx(vcpu);
5282 gpa_t vmptr;
5283 int r;
5284
5285 if (!nested_vmx_check_permission(vcpu))
5286 return 1;
5287
5288 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5289 return r;
5290
5291 if (!page_address_valid(vcpu, vmptr))
5292 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5293
5294 if (vmptr == vmx->nested.vmxon_ptr)
5295 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5296
5297 /* Forbid normal VMPTRLD if Enlightened version was used */
5298 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5299 return 1;
5300
5301 if (vmx->nested.current_vmptr != vmptr) {
5302 struct kvm_host_map map;
5303 struct vmcs12 *new_vmcs12;
5304
5305 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5306 /*
5307 * Reads from an unbacked page return all 1s,
5308 * which means that the 32 bits located at the
5309 * given physical address won't match the required
5310 * VMCS12_REVISION identifier.
5311 */
5312 return nested_vmx_fail(vcpu,
5313 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5314 }
5315
5316 new_vmcs12 = map.hva;
5317
5318 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5319 (new_vmcs12->hdr.shadow_vmcs &&
5320 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5321 kvm_vcpu_unmap(vcpu, &map, false);
5322 return nested_vmx_fail(vcpu,
5323 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5324 }
5325
5326 nested_release_vmcs12(vcpu);
5327
5328 /*
5329 * Load VMCS12 from guest memory since it is not already
5330 * cached.
5331 */
5332 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5333 kvm_vcpu_unmap(vcpu, &map, false);
5334
5335 set_current_vmptr(vmx, vmptr);
5336 }
5337
5338 return nested_vmx_succeed(vcpu);
5339 }
5340
5341 /* Emulate the VMPTRST instruction */
5342 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5343 {
5344 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5345 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5347 struct x86_exception e;
5348 gva_t gva;
5349 int r;
5350
5351 if (!nested_vmx_check_permission(vcpu))
5352 return 1;
5353
5354 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5355 return 1;
5356
5357 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5358 true, sizeof(gpa_t), &gva))
5359 return 1;
5360 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5361 r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5362 sizeof(gpa_t), &e);
5363 if (r != X86EMUL_CONTINUE)
5364 return kvm_handle_memory_failure(vcpu, r, &e);
5365
5366 return nested_vmx_succeed(vcpu);
5367 }
5368
5369 /* Emulate the INVEPT instruction */
5370 static int handle_invept(struct kvm_vcpu *vcpu)
5371 {
5372 struct vcpu_vmx *vmx = to_vmx(vcpu);
5373 u32 vmx_instruction_info, types;
5374 unsigned long type, roots_to_free;
5375 struct kvm_mmu *mmu;
5376 gva_t gva;
5377 struct x86_exception e;
5378 struct {
5379 u64 eptp, gpa;
5380 } operand;
5381 int i, r;
5382
5383 if (!(vmx->nested.msrs.secondary_ctls_high &
5384 SECONDARY_EXEC_ENABLE_EPT) ||
5385 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5386 kvm_queue_exception(vcpu, UD_VECTOR);
5387 return 1;
5388 }
5389
5390 if (!nested_vmx_check_permission(vcpu))
5391 return 1;
5392
5393 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5394 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5395
5396 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5397
5398 if (type >= 32 || !(types & (1 << type)))
5399 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5400
5401 /* According to the Intel VMX instruction reference, the memory
5402 * operand is read even if it isn't needed (e.g., for type==global)
5403 */
5404 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5405 vmx_instruction_info, false, sizeof(operand), &gva))
5406 return 1;
5407 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5408 if (r != X86EMUL_CONTINUE)
5409 return kvm_handle_memory_failure(vcpu, r, &e);
5410
5411 /*
5412 * Nested EPT roots are always held through guest_mmu,
5413 * not root_mmu.
5414 */
5415 mmu = &vcpu->arch.guest_mmu;
5416
5417 switch (type) {
5418 case VMX_EPT_EXTENT_CONTEXT:
5419 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5420 return nested_vmx_fail(vcpu,
5421 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5422
5423 roots_to_free = 0;
5424 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5425 operand.eptp))
5426 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5427
5428 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5429 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5430 mmu->prev_roots[i].pgd,
5431 operand.eptp))
5432 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5433 }
5434 break;
5435 case VMX_EPT_EXTENT_GLOBAL:
5436 roots_to_free = KVM_MMU_ROOTS_ALL;
5437 break;
5438 default:
5439 BUG();
5440 break;
5441 }
5442
5443 if (roots_to_free)
5444 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5445
5446 return nested_vmx_succeed(vcpu);
5447 }
5448
5449 static int handle_invvpid(struct kvm_vcpu *vcpu)
5450 {
5451 struct vcpu_vmx *vmx = to_vmx(vcpu);
5452 u32 vmx_instruction_info;
5453 unsigned long type, types;
5454 gva_t gva;
5455 struct x86_exception e;
5456 struct {
5457 u64 vpid;
5458 u64 gla;
5459 } operand;
5460 u16 vpid02;
5461 int r;
5462
5463 if (!(vmx->nested.msrs.secondary_ctls_high &
5464 SECONDARY_EXEC_ENABLE_VPID) ||
5465 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5466 kvm_queue_exception(vcpu, UD_VECTOR);
5467 return 1;
5468 }
5469
5470 if (!nested_vmx_check_permission(vcpu))
5471 return 1;
5472
5473 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5474 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5475
5476 types = (vmx->nested.msrs.vpid_caps &
5477 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5478
5479 if (type >= 32 || !(types & (1 << type)))
5480 return nested_vmx_fail(vcpu,
5481 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5482
5483 /* according to the intel vmx instruction reference, the memory
5484 * operand is read even if it isn't needed (e.g., for type==global)
5485 */
5486 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5487 vmx_instruction_info, false, sizeof(operand), &gva))
5488 return 1;
5489 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5490 if (r != X86EMUL_CONTINUE)
5491 return kvm_handle_memory_failure(vcpu, r, &e);
5492
5493 if (operand.vpid >> 16)
5494 return nested_vmx_fail(vcpu,
5495 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5496
5497 vpid02 = nested_get_vpid02(vcpu);
5498 switch (type) {
5499 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5500 if (!operand.vpid ||
5501 is_noncanonical_address(operand.gla, vcpu))
5502 return nested_vmx_fail(vcpu,
5503 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5504 vpid_sync_vcpu_addr(vpid02, operand.gla);
5505 break;
5506 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5507 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5508 if (!operand.vpid)
5509 return nested_vmx_fail(vcpu,
5510 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511 vpid_sync_context(vpid02);
5512 break;
5513 case VMX_VPID_EXTENT_ALL_CONTEXT:
5514 vpid_sync_context(vpid02);
5515 break;
5516 default:
5517 WARN_ON_ONCE(1);
5518 return kvm_skip_emulated_instruction(vcpu);
5519 }
5520
5521 /*
5522 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5523 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5524 * roots as VPIDs are not tracked in the MMU role.
5525 *
5526 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5527 * an MMU when EPT is disabled.
5528 *
5529 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5530 */
5531 if (!enable_ept)
5532 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5533
5534 return nested_vmx_succeed(vcpu);
5535 }
5536
5537 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5538 struct vmcs12 *vmcs12)
5539 {
5540 u32 index = kvm_rcx_read(vcpu);
5541 u64 new_eptp;
5542
5543 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5544 return 1;
5545 if (index >= VMFUNC_EPTP_ENTRIES)
5546 return 1;
5547
5548 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5549 &new_eptp, index * 8, 8))
5550 return 1;
5551
5552 /*
5553 * If the (L2) guest does a vmfunc to the currently
5554 * active ept pointer, we don't have to do anything else
5555 */
5556 if (vmcs12->ept_pointer != new_eptp) {
5557 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5558 return 1;
5559
5560 vmcs12->ept_pointer = new_eptp;
5561 nested_ept_new_eptp(vcpu);
5562
5563 if (!nested_cpu_has_vpid(vmcs12))
5564 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5565 }
5566
5567 return 0;
5568 }
5569
5570 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5571 {
5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
5573 struct vmcs12 *vmcs12;
5574 u32 function = kvm_rax_read(vcpu);
5575
5576 /*
5577 * VMFUNC is only supported for nested guests, but we always enable the
5578 * secondary control for simplicity; for non-nested mode, fake that we
5579 * didn't by injecting #UD.
5580 */
5581 if (!is_guest_mode(vcpu)) {
5582 kvm_queue_exception(vcpu, UD_VECTOR);
5583 return 1;
5584 }
5585
5586 vmcs12 = get_vmcs12(vcpu);
5587
5588 /*
5589 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5590 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5591 */
5592 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5593 kvm_queue_exception(vcpu, UD_VECTOR);
5594 return 1;
5595 }
5596
5597 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5598 goto fail;
5599
5600 switch (function) {
5601 case 0:
5602 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5603 goto fail;
5604 break;
5605 default:
5606 goto fail;
5607 }
5608 return kvm_skip_emulated_instruction(vcpu);
5609
5610 fail:
5611 /*
5612 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5613 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5614 * EXIT_REASON_VMFUNC as the exit reason.
5615 */
5616 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5617 vmx_get_intr_info(vcpu),
5618 vmx_get_exit_qual(vcpu));
5619 return 1;
5620 }
5621
5622 /*
5623 * Return true if an IO instruction with the specified port and size should cause
5624 * a VM-exit into L1.
5625 */
5626 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5627 int size)
5628 {
5629 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5630 gpa_t bitmap, last_bitmap;
5631 u8 b;
5632
5633 last_bitmap = (gpa_t)-1;
5634 b = -1;
5635
5636 while (size > 0) {
5637 if (port < 0x8000)
5638 bitmap = vmcs12->io_bitmap_a;
5639 else if (port < 0x10000)
5640 bitmap = vmcs12->io_bitmap_b;
5641 else
5642 return true;
5643 bitmap += (port & 0x7fff) / 8;
5644
5645 if (last_bitmap != bitmap)
5646 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5647 return true;
5648 if (b & (1 << (port & 7)))
5649 return true;
5650
5651 port++;
5652 size--;
5653 last_bitmap = bitmap;
5654 }
5655
5656 return false;
5657 }
5658
5659 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5660 struct vmcs12 *vmcs12)
5661 {
5662 unsigned long exit_qualification;
5663 unsigned short port;
5664 int size;
5665
5666 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5667 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5668
5669 exit_qualification = vmx_get_exit_qual(vcpu);
5670
5671 port = exit_qualification >> 16;
5672 size = (exit_qualification & 7) + 1;
5673
5674 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5675 }
5676
5677 /*
5678 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5679 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5680 * disinterest in the current event (read or write a specific MSR) by using an
5681 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5682 */
5683 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5684 struct vmcs12 *vmcs12,
5685 union vmx_exit_reason exit_reason)
5686 {
5687 u32 msr_index = kvm_rcx_read(vcpu);
5688 gpa_t bitmap;
5689
5690 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5691 return true;
5692
5693 /*
5694 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695 * for the four combinations of read/write and low/high MSR numbers.
5696 * First we need to figure out which of the four to use:
5697 */
5698 bitmap = vmcs12->msr_bitmap;
5699 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5700 bitmap += 2048;
5701 if (msr_index >= 0xc0000000) {
5702 msr_index -= 0xc0000000;
5703 bitmap += 1024;
5704 }
5705
5706 /* Then read the msr_index'th bit from this bitmap: */
5707 if (msr_index < 1024*8) {
5708 unsigned char b;
5709 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5710 return true;
5711 return 1 & (b >> (msr_index & 7));
5712 } else
5713 return true; /* let L1 handle the wrong parameter */
5714 }
5715
5716 /*
5717 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5718 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5719 * intercept (via guest_host_mask etc.) the current event.
5720 */
5721 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5722 struct vmcs12 *vmcs12)
5723 {
5724 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5725 int cr = exit_qualification & 15;
5726 int reg;
5727 unsigned long val;
5728
5729 switch ((exit_qualification >> 4) & 3) {
5730 case 0: /* mov to cr */
5731 reg = (exit_qualification >> 8) & 15;
5732 val = kvm_register_read(vcpu, reg);
5733 switch (cr) {
5734 case 0:
5735 if (vmcs12->cr0_guest_host_mask &
5736 (val ^ vmcs12->cr0_read_shadow))
5737 return true;
5738 break;
5739 case 3:
5740 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5741 return true;
5742 break;
5743 case 4:
5744 if (vmcs12->cr4_guest_host_mask &
5745 (vmcs12->cr4_read_shadow ^ val))
5746 return true;
5747 break;
5748 case 8:
5749 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5750 return true;
5751 break;
5752 }
5753 break;
5754 case 2: /* clts */
5755 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5756 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5757 return true;
5758 break;
5759 case 1: /* mov from cr */
5760 switch (cr) {
5761 case 3:
5762 if (vmcs12->cpu_based_vm_exec_control &
5763 CPU_BASED_CR3_STORE_EXITING)
5764 return true;
5765 break;
5766 case 8:
5767 if (vmcs12->cpu_based_vm_exec_control &
5768 CPU_BASED_CR8_STORE_EXITING)
5769 return true;
5770 break;
5771 }
5772 break;
5773 case 3: /* lmsw */
5774 /*
5775 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5776 * cr0. Other attempted changes are ignored, with no exit.
5777 */
5778 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5779 if (vmcs12->cr0_guest_host_mask & 0xe &
5780 (val ^ vmcs12->cr0_read_shadow))
5781 return true;
5782 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5783 !(vmcs12->cr0_read_shadow & 0x1) &&
5784 (val & 0x1))
5785 return true;
5786 break;
5787 }
5788 return false;
5789 }
5790
5791 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5792 struct vmcs12 *vmcs12)
5793 {
5794 u32 encls_leaf;
5795
5796 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5797 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5798 return false;
5799
5800 encls_leaf = kvm_rax_read(vcpu);
5801 if (encls_leaf > 62)
5802 encls_leaf = 63;
5803 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5804 }
5805
5806 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5807 struct vmcs12 *vmcs12, gpa_t bitmap)
5808 {
5809 u32 vmx_instruction_info;
5810 unsigned long field;
5811 u8 b;
5812
5813 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5814 return true;
5815
5816 /* Decode instruction info and find the field to access */
5817 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5818 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5819
5820 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5821 if (field >> 15)
5822 return true;
5823
5824 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5825 return true;
5826
5827 return 1 & (b >> (field & 7));
5828 }
5829
5830 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5831 {
5832 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5833
5834 if (nested_cpu_has_mtf(vmcs12))
5835 return true;
5836
5837 /*
5838 * An MTF VM-exit may be injected into the guest by setting the
5839 * interruption-type to 7 (other event) and the vector field to 0. Such
5840 * is the case regardless of the 'monitor trap flag' VM-execution
5841 * control.
5842 */
5843 return entry_intr_info == (INTR_INFO_VALID_MASK
5844 | INTR_TYPE_OTHER_EVENT);
5845 }
5846
5847 /*
5848 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5849 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5850 */
5851 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5852 union vmx_exit_reason exit_reason)
5853 {
5854 u32 intr_info;
5855
5856 switch ((u16)exit_reason.basic) {
5857 case EXIT_REASON_EXCEPTION_NMI:
5858 intr_info = vmx_get_intr_info(vcpu);
5859 if (is_nmi(intr_info))
5860 return true;
5861 else if (is_page_fault(intr_info))
5862 return vcpu->arch.apf.host_apf_flags ||
5863 vmx_need_pf_intercept(vcpu);
5864 else if (is_debug(intr_info) &&
5865 vcpu->guest_debug &
5866 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5867 return true;
5868 else if (is_breakpoint(intr_info) &&
5869 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5870 return true;
5871 else if (is_alignment_check(intr_info) &&
5872 !vmx_guest_inject_ac(vcpu))
5873 return true;
5874 return false;
5875 case EXIT_REASON_EXTERNAL_INTERRUPT:
5876 return true;
5877 case EXIT_REASON_MCE_DURING_VMENTRY:
5878 return true;
5879 case EXIT_REASON_EPT_VIOLATION:
5880 /*
5881 * L0 always deals with the EPT violation. If nested EPT is
5882 * used, and the nested mmu code discovers that the address is
5883 * missing in the guest EPT table (EPT12), the EPT violation
5884 * will be injected with nested_ept_inject_page_fault()
5885 */
5886 return true;
5887 case EXIT_REASON_EPT_MISCONFIG:
5888 /*
5889 * L2 never uses directly L1's EPT, but rather L0's own EPT
5890 * table (shadow on EPT) or a merged EPT table that L0 built
5891 * (EPT on EPT). So any problems with the structure of the
5892 * table is L0's fault.
5893 */
5894 return true;
5895 case EXIT_REASON_PREEMPTION_TIMER:
5896 return true;
5897 case EXIT_REASON_PML_FULL:
5898 /*
5899 * PML is emulated for an L1 VMM and should never be enabled in
5900 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5901 */
5902 return true;
5903 case EXIT_REASON_VMFUNC:
5904 /* VM functions are emulated through L2->L0 vmexits. */
5905 return true;
5906 default:
5907 break;
5908 }
5909 return false;
5910 }
5911
5912 /*
5913 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5914 * is_guest_mode (L2).
5915 */
5916 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5917 union vmx_exit_reason exit_reason)
5918 {
5919 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5920 u32 intr_info;
5921
5922 switch ((u16)exit_reason.basic) {
5923 case EXIT_REASON_EXCEPTION_NMI:
5924 intr_info = vmx_get_intr_info(vcpu);
5925 if (is_nmi(intr_info))
5926 return true;
5927 else if (is_page_fault(intr_info))
5928 return true;
5929 return vmcs12->exception_bitmap &
5930 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5931 case EXIT_REASON_EXTERNAL_INTERRUPT:
5932 return nested_exit_on_intr(vcpu);
5933 case EXIT_REASON_TRIPLE_FAULT:
5934 return true;
5935 case EXIT_REASON_INTERRUPT_WINDOW:
5936 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5937 case EXIT_REASON_NMI_WINDOW:
5938 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5939 case EXIT_REASON_TASK_SWITCH:
5940 return true;
5941 case EXIT_REASON_CPUID:
5942 return true;
5943 case EXIT_REASON_HLT:
5944 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5945 case EXIT_REASON_INVD:
5946 return true;
5947 case EXIT_REASON_INVLPG:
5948 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5949 case EXIT_REASON_RDPMC:
5950 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5951 case EXIT_REASON_RDRAND:
5952 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5953 case EXIT_REASON_RDSEED:
5954 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5955 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5956 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5957 case EXIT_REASON_VMREAD:
5958 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5959 vmcs12->vmread_bitmap);
5960 case EXIT_REASON_VMWRITE:
5961 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5962 vmcs12->vmwrite_bitmap);
5963 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5964 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5965 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5966 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5967 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5968 /*
5969 * VMX instructions trap unconditionally. This allows L1 to
5970 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5971 */
5972 return true;
5973 case EXIT_REASON_CR_ACCESS:
5974 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5975 case EXIT_REASON_DR_ACCESS:
5976 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5977 case EXIT_REASON_IO_INSTRUCTION:
5978 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5979 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5980 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5981 case EXIT_REASON_MSR_READ:
5982 case EXIT_REASON_MSR_WRITE:
5983 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5984 case EXIT_REASON_INVALID_STATE:
5985 return true;
5986 case EXIT_REASON_MWAIT_INSTRUCTION:
5987 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5988 case EXIT_REASON_MONITOR_TRAP_FLAG:
5989 return nested_vmx_exit_handled_mtf(vmcs12);
5990 case EXIT_REASON_MONITOR_INSTRUCTION:
5991 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5992 case EXIT_REASON_PAUSE_INSTRUCTION:
5993 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5994 nested_cpu_has2(vmcs12,
5995 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5996 case EXIT_REASON_MCE_DURING_VMENTRY:
5997 return true;
5998 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5999 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6000 case EXIT_REASON_APIC_ACCESS:
6001 case EXIT_REASON_APIC_WRITE:
6002 case EXIT_REASON_EOI_INDUCED:
6003 /*
6004 * The controls for "virtualize APIC accesses," "APIC-
6005 * register virtualization," and "virtual-interrupt
6006 * delivery" only come from vmcs12.
6007 */
6008 return true;
6009 case EXIT_REASON_INVPCID:
6010 return
6011 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6012 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6013 case EXIT_REASON_WBINVD:
6014 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6015 case EXIT_REASON_XSETBV:
6016 return true;
6017 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6018 /*
6019 * This should never happen, since it is not possible to
6020 * set XSS to a non-zero value---neither in L1 nor in L2.
6021 * If if it were, XSS would have to be checked against
6022 * the XSS exit bitmap in vmcs12.
6023 */
6024 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6025 case EXIT_REASON_UMWAIT:
6026 case EXIT_REASON_TPAUSE:
6027 return nested_cpu_has2(vmcs12,
6028 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6029 case EXIT_REASON_ENCLS:
6030 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6031 default:
6032 return true;
6033 }
6034 }
6035
6036 /*
6037 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6038 * reflected into L1.
6039 */
6040 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6041 {
6042 struct vcpu_vmx *vmx = to_vmx(vcpu);
6043 union vmx_exit_reason exit_reason = vmx->exit_reason;
6044 unsigned long exit_qual;
6045 u32 exit_intr_info;
6046
6047 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6048
6049 /*
6050 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6051 * has already loaded L2's state.
6052 */
6053 if (unlikely(vmx->fail)) {
6054 trace_kvm_nested_vmenter_failed(
6055 "hardware VM-instruction error: ",
6056 vmcs_read32(VM_INSTRUCTION_ERROR));
6057 exit_intr_info = 0;
6058 exit_qual = 0;
6059 goto reflect_vmexit;
6060 }
6061
6062 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6063
6064 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6065 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6066 return false;
6067
6068 /* If L1 doesn't want the exit, handle it in L0. */
6069 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6070 return false;
6071
6072 /*
6073 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6074 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6075 * need to be synthesized by querying the in-kernel LAPIC, but external
6076 * interrupts are never reflected to L1 so it's a non-issue.
6077 */
6078 exit_intr_info = vmx_get_intr_info(vcpu);
6079 if (is_exception_with_error_code(exit_intr_info)) {
6080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6081
6082 vmcs12->vm_exit_intr_error_code =
6083 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6084 }
6085 exit_qual = vmx_get_exit_qual(vcpu);
6086
6087 reflect_vmexit:
6088 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6089 return true;
6090 }
6091
6092 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6093 struct kvm_nested_state __user *user_kvm_nested_state,
6094 u32 user_data_size)
6095 {
6096 struct vcpu_vmx *vmx;
6097 struct vmcs12 *vmcs12;
6098 struct kvm_nested_state kvm_state = {
6099 .flags = 0,
6100 .format = KVM_STATE_NESTED_FORMAT_VMX,
6101 .size = sizeof(kvm_state),
6102 .hdr.vmx.flags = 0,
6103 .hdr.vmx.vmxon_pa = -1ull,
6104 .hdr.vmx.vmcs12_pa = -1ull,
6105 .hdr.vmx.preemption_timer_deadline = 0,
6106 };
6107 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6108 &user_kvm_nested_state->data.vmx[0];
6109
6110 if (!vcpu)
6111 return kvm_state.size + sizeof(*user_vmx_nested_state);
6112
6113 vmx = to_vmx(vcpu);
6114 vmcs12 = get_vmcs12(vcpu);
6115
6116 if (nested_vmx_allowed(vcpu) &&
6117 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6118 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6119 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6120
6121 if (vmx_has_valid_vmcs12(vcpu)) {
6122 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6123
6124 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6125 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6126 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6127
6128 if (is_guest_mode(vcpu) &&
6129 nested_cpu_has_shadow_vmcs(vmcs12) &&
6130 vmcs12->vmcs_link_pointer != -1ull)
6131 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6132 }
6133
6134 if (vmx->nested.smm.vmxon)
6135 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6136
6137 if (vmx->nested.smm.guest_mode)
6138 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6139
6140 if (is_guest_mode(vcpu)) {
6141 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6142
6143 if (vmx->nested.nested_run_pending)
6144 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6145
6146 if (vmx->nested.mtf_pending)
6147 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6148
6149 if (nested_cpu_has_preemption_timer(vmcs12) &&
6150 vmx->nested.has_preemption_timer_deadline) {
6151 kvm_state.hdr.vmx.flags |=
6152 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6153 kvm_state.hdr.vmx.preemption_timer_deadline =
6154 vmx->nested.preemption_timer_deadline;
6155 }
6156 }
6157 }
6158
6159 if (user_data_size < kvm_state.size)
6160 goto out;
6161
6162 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6163 return -EFAULT;
6164
6165 if (!vmx_has_valid_vmcs12(vcpu))
6166 goto out;
6167
6168 /*
6169 * When running L2, the authoritative vmcs12 state is in the
6170 * vmcs02. When running L1, the authoritative vmcs12 state is
6171 * in the shadow or enlightened vmcs linked to vmcs01, unless
6172 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6173 * vmcs12 state is in the vmcs12 already.
6174 */
6175 if (is_guest_mode(vcpu)) {
6176 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6177 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6178 } else {
6179 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6180 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6181 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6182 /*
6183 * L1 hypervisor is not obliged to keep eVMCS
6184 * clean fields data always up-to-date while
6185 * not in guest mode, 'hv_clean_fields' is only
6186 * supposed to be actual upon vmentry so we need
6187 * to ignore it here and do full copy.
6188 */
6189 copy_enlightened_to_vmcs12(vmx, 0);
6190 else if (enable_shadow_vmcs)
6191 copy_shadow_to_vmcs12(vmx);
6192 }
6193 }
6194
6195 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6197
6198 /*
6199 * Copy over the full allocated size of vmcs12 rather than just the size
6200 * of the struct.
6201 */
6202 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6203 return -EFAULT;
6204
6205 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206 vmcs12->vmcs_link_pointer != -1ull) {
6207 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6209 return -EFAULT;
6210 }
6211 out:
6212 return kvm_state.size;
6213 }
6214
6215 /*
6216 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6217 */
6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6219 {
6220 if (is_guest_mode(vcpu)) {
6221 to_vmx(vcpu)->nested.nested_run_pending = 0;
6222 nested_vmx_vmexit(vcpu, -1, 0, 0);
6223 }
6224 free_nested(vcpu);
6225 }
6226
6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228 struct kvm_nested_state __user *user_kvm_nested_state,
6229 struct kvm_nested_state *kvm_state)
6230 {
6231 struct vcpu_vmx *vmx = to_vmx(vcpu);
6232 struct vmcs12 *vmcs12;
6233 enum vm_entry_failure_code ignored;
6234 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235 &user_kvm_nested_state->data.vmx[0];
6236 int ret;
6237
6238 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6239 return -EINVAL;
6240
6241 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6242 if (kvm_state->hdr.vmx.smm.flags)
6243 return -EINVAL;
6244
6245 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6246 return -EINVAL;
6247
6248 /*
6249 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250 * enable eVMCS capability on vCPU. However, since then
6251 * code was changed such that flag signals vmcs12 should
6252 * be copied into eVMCS in guest memory.
6253 *
6254 * To preserve backwards compatability, allow user
6255 * to set this flag even when there is no VMXON region.
6256 */
6257 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6258 return -EINVAL;
6259 } else {
6260 if (!nested_vmx_allowed(vcpu))
6261 return -EINVAL;
6262
6263 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6264 return -EINVAL;
6265 }
6266
6267 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6269 return -EINVAL;
6270
6271 if (kvm_state->hdr.vmx.smm.flags &
6272 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6273 return -EINVAL;
6274
6275 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6276 return -EINVAL;
6277
6278 /*
6279 * SMM temporarily disables VMX, so we cannot be in guest mode,
6280 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6281 * must be zero.
6282 */
6283 if (is_smm(vcpu) ?
6284 (kvm_state->flags &
6285 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286 : kvm_state->hdr.vmx.smm.flags)
6287 return -EINVAL;
6288
6289 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6291 return -EINVAL;
6292
6293 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6295 return -EINVAL;
6296
6297 vmx_leave_nested(vcpu);
6298
6299 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6300 return 0;
6301
6302 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303 ret = enter_vmx_operation(vcpu);
6304 if (ret)
6305 return ret;
6306
6307 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6308 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309 /* See vmx_has_valid_vmcs12. */
6310 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6313 return -EINVAL;
6314 else
6315 return 0;
6316 }
6317
6318 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6319 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6321 return -EINVAL;
6322
6323 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6325 /*
6326 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328 * restored yet. EVMCS will be mapped from
6329 * nested_get_vmcs12_pages().
6330 */
6331 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6332 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6333 } else {
6334 return -EINVAL;
6335 }
6336
6337 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6338 vmx->nested.smm.vmxon = true;
6339 vmx->nested.vmxon = false;
6340
6341 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6342 vmx->nested.smm.guest_mode = true;
6343 }
6344
6345 vmcs12 = get_vmcs12(vcpu);
6346 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6347 return -EFAULT;
6348
6349 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6350 return -EINVAL;
6351
6352 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6353 return 0;
6354
6355 vmx->nested.nested_run_pending =
6356 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6357
6358 vmx->nested.mtf_pending =
6359 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6360
6361 ret = -EINVAL;
6362 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6363 vmcs12->vmcs_link_pointer != -1ull) {
6364 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6365
6366 if (kvm_state->size <
6367 sizeof(*kvm_state) +
6368 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6369 goto error_guest_mode;
6370
6371 if (copy_from_user(shadow_vmcs12,
6372 user_vmx_nested_state->shadow_vmcs12,
6373 sizeof(*shadow_vmcs12))) {
6374 ret = -EFAULT;
6375 goto error_guest_mode;
6376 }
6377
6378 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6379 !shadow_vmcs12->hdr.shadow_vmcs)
6380 goto error_guest_mode;
6381 }
6382
6383 vmx->nested.has_preemption_timer_deadline = false;
6384 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6385 vmx->nested.has_preemption_timer_deadline = true;
6386 vmx->nested.preemption_timer_deadline =
6387 kvm_state->hdr.vmx.preemption_timer_deadline;
6388 }
6389
6390 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6391 nested_vmx_check_host_state(vcpu, vmcs12) ||
6392 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6393 goto error_guest_mode;
6394
6395 vmx->nested.dirty_vmcs12 = true;
6396 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6397 if (ret)
6398 goto error_guest_mode;
6399
6400 return 0;
6401
6402 error_guest_mode:
6403 vmx->nested.nested_run_pending = 0;
6404 return ret;
6405 }
6406
6407 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6408 {
6409 if (enable_shadow_vmcs) {
6410 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6411 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6412 }
6413 }
6414
6415 /*
6416 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6417 * that madness to get the encoding for comparison.
6418 */
6419 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6420
6421 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6422 {
6423 /*
6424 * Note these are the so called "index" of the VMCS field encoding, not
6425 * the index into vmcs12.
6426 */
6427 unsigned int max_idx, idx;
6428 int i;
6429
6430 /*
6431 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6432 * vmcs12, regardless of whether or not the associated feature is
6433 * exposed to L1. Simply find the field with the highest index.
6434 */
6435 max_idx = 0;
6436 for (i = 0; i < nr_vmcs12_fields; i++) {
6437 /* The vmcs12 table is very, very sparsely populated. */
6438 if (!vmcs_field_to_offset_table[i])
6439 continue;
6440
6441 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6442 if (idx > max_idx)
6443 max_idx = idx;
6444 }
6445
6446 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6447 }
6448
6449 /*
6450 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6451 * returned for the various VMX controls MSRs when nested VMX is enabled.
6452 * The same values should also be used to verify that vmcs12 control fields are
6453 * valid during nested entry from L1 to L2.
6454 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6455 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6456 * bit in the high half is on if the corresponding bit in the control field
6457 * may be on. See also vmx_control_verify().
6458 */
6459 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6460 {
6461 /*
6462 * Note that as a general rule, the high half of the MSRs (bits in
6463 * the control fields which may be 1) should be initialized by the
6464 * intersection of the underlying hardware's MSR (i.e., features which
6465 * can be supported) and the list of features we want to expose -
6466 * because they are known to be properly supported in our code.
6467 * Also, usually, the low half of the MSRs (bits which must be 1) can
6468 * be set to 0, meaning that L1 may turn off any of these bits. The
6469 * reason is that if one of these bits is necessary, it will appear
6470 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6471 * fields of vmcs01 and vmcs02, will turn these bits off - and
6472 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6473 * These rules have exceptions below.
6474 */
6475
6476 /* pin-based controls */
6477 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6478 msrs->pinbased_ctls_low,
6479 msrs->pinbased_ctls_high);
6480 msrs->pinbased_ctls_low |=
6481 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6482 msrs->pinbased_ctls_high &=
6483 PIN_BASED_EXT_INTR_MASK |
6484 PIN_BASED_NMI_EXITING |
6485 PIN_BASED_VIRTUAL_NMIS |
6486 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6487 msrs->pinbased_ctls_high |=
6488 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6489 PIN_BASED_VMX_PREEMPTION_TIMER;
6490
6491 /* exit controls */
6492 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6493 msrs->exit_ctls_low,
6494 msrs->exit_ctls_high);
6495 msrs->exit_ctls_low =
6496 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6497
6498 msrs->exit_ctls_high &=
6499 #ifdef CONFIG_X86_64
6500 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6501 #endif
6502 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6503 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6504 msrs->exit_ctls_high |=
6505 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6506 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6507 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6508
6509 /* We support free control of debug control saving. */
6510 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6511
6512 /* entry controls */
6513 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6514 msrs->entry_ctls_low,
6515 msrs->entry_ctls_high);
6516 msrs->entry_ctls_low =
6517 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6518 msrs->entry_ctls_high &=
6519 #ifdef CONFIG_X86_64
6520 VM_ENTRY_IA32E_MODE |
6521 #endif
6522 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6523 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6524 msrs->entry_ctls_high |=
6525 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6526
6527 /* We support free control of debug control loading. */
6528 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6529
6530 /* cpu-based controls */
6531 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6532 msrs->procbased_ctls_low,
6533 msrs->procbased_ctls_high);
6534 msrs->procbased_ctls_low =
6535 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6536 msrs->procbased_ctls_high &=
6537 CPU_BASED_INTR_WINDOW_EXITING |
6538 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6539 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6540 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6541 CPU_BASED_CR3_STORE_EXITING |
6542 #ifdef CONFIG_X86_64
6543 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6544 #endif
6545 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6546 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6547 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6548 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6549 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6550 /*
6551 * We can allow some features even when not supported by the
6552 * hardware. For example, L1 can specify an MSR bitmap - and we
6553 * can use it to avoid exits to L1 - even when L0 runs L2
6554 * without MSR bitmaps.
6555 */
6556 msrs->procbased_ctls_high |=
6557 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6558 CPU_BASED_USE_MSR_BITMAPS;
6559
6560 /* We support free control of CR3 access interception. */
6561 msrs->procbased_ctls_low &=
6562 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6563
6564 /*
6565 * secondary cpu-based controls. Do not include those that
6566 * depend on CPUID bits, they are added later by
6567 * vmx_vcpu_after_set_cpuid.
6568 */
6569 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6570 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6571 msrs->secondary_ctls_low,
6572 msrs->secondary_ctls_high);
6573
6574 msrs->secondary_ctls_low = 0;
6575 msrs->secondary_ctls_high &=
6576 SECONDARY_EXEC_DESC |
6577 SECONDARY_EXEC_ENABLE_RDTSCP |
6578 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6579 SECONDARY_EXEC_WBINVD_EXITING |
6580 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6581 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6582 SECONDARY_EXEC_RDRAND_EXITING |
6583 SECONDARY_EXEC_ENABLE_INVPCID |
6584 SECONDARY_EXEC_RDSEED_EXITING |
6585 SECONDARY_EXEC_XSAVES |
6586 SECONDARY_EXEC_TSC_SCALING;
6587
6588 /*
6589 * We can emulate "VMCS shadowing," even if the hardware
6590 * doesn't support it.
6591 */
6592 msrs->secondary_ctls_high |=
6593 SECONDARY_EXEC_SHADOW_VMCS;
6594
6595 if (enable_ept) {
6596 /* nested EPT: emulate EPT also to L1 */
6597 msrs->secondary_ctls_high |=
6598 SECONDARY_EXEC_ENABLE_EPT;
6599 msrs->ept_caps =
6600 VMX_EPT_PAGE_WALK_4_BIT |
6601 VMX_EPT_PAGE_WALK_5_BIT |
6602 VMX_EPTP_WB_BIT |
6603 VMX_EPT_INVEPT_BIT |
6604 VMX_EPT_EXECUTE_ONLY_BIT;
6605
6606 msrs->ept_caps &= ept_caps;
6607 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6608 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6609 VMX_EPT_1GB_PAGE_BIT;
6610 if (enable_ept_ad_bits) {
6611 msrs->secondary_ctls_high |=
6612 SECONDARY_EXEC_ENABLE_PML;
6613 msrs->ept_caps |= VMX_EPT_AD_BIT;
6614 }
6615 }
6616
6617 if (cpu_has_vmx_vmfunc()) {
6618 msrs->secondary_ctls_high |=
6619 SECONDARY_EXEC_ENABLE_VMFUNC;
6620 /*
6621 * Advertise EPTP switching unconditionally
6622 * since we emulate it
6623 */
6624 if (enable_ept)
6625 msrs->vmfunc_controls =
6626 VMX_VMFUNC_EPTP_SWITCHING;
6627 }
6628
6629 /*
6630 * Old versions of KVM use the single-context version without
6631 * checking for support, so declare that it is supported even
6632 * though it is treated as global context. The alternative is
6633 * not failing the single-context invvpid, and it is worse.
6634 */
6635 if (enable_vpid) {
6636 msrs->secondary_ctls_high |=
6637 SECONDARY_EXEC_ENABLE_VPID;
6638 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6639 VMX_VPID_EXTENT_SUPPORTED_MASK;
6640 }
6641
6642 if (enable_unrestricted_guest)
6643 msrs->secondary_ctls_high |=
6644 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6645
6646 if (flexpriority_enabled)
6647 msrs->secondary_ctls_high |=
6648 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6649
6650 if (enable_sgx)
6651 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6652
6653 /* miscellaneous data */
6654 rdmsr(MSR_IA32_VMX_MISC,
6655 msrs->misc_low,
6656 msrs->misc_high);
6657 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6658 msrs->misc_low |=
6659 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6660 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6661 VMX_MISC_ACTIVITY_HLT |
6662 VMX_MISC_ACTIVITY_WAIT_SIPI;
6663 msrs->misc_high = 0;
6664
6665 /*
6666 * This MSR reports some information about VMX support. We
6667 * should return information about the VMX we emulate for the
6668 * guest, and the VMCS structure we give it - not about the
6669 * VMX support of the underlying hardware.
6670 */
6671 msrs->basic =
6672 VMCS12_REVISION |
6673 VMX_BASIC_TRUE_CTLS |
6674 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6675 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6676
6677 if (cpu_has_vmx_basic_inout())
6678 msrs->basic |= VMX_BASIC_INOUT;
6679
6680 /*
6681 * These MSRs specify bits which the guest must keep fixed on
6682 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6683 * We picked the standard core2 setting.
6684 */
6685 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6686 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6687 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6688 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6689
6690 /* These MSRs specify bits which the guest must keep fixed off. */
6691 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6692 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6693
6694 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6695 }
6696
6697 void nested_vmx_hardware_unsetup(void)
6698 {
6699 int i;
6700
6701 if (enable_shadow_vmcs) {
6702 for (i = 0; i < VMX_BITMAP_NR; i++)
6703 free_page((unsigned long)vmx_bitmap[i]);
6704 }
6705 }
6706
6707 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6708 {
6709 int i;
6710
6711 if (!cpu_has_vmx_shadow_vmcs())
6712 enable_shadow_vmcs = 0;
6713 if (enable_shadow_vmcs) {
6714 for (i = 0; i < VMX_BITMAP_NR; i++) {
6715 /*
6716 * The vmx_bitmap is not tied to a VM and so should
6717 * not be charged to a memcg.
6718 */
6719 vmx_bitmap[i] = (unsigned long *)
6720 __get_free_page(GFP_KERNEL);
6721 if (!vmx_bitmap[i]) {
6722 nested_vmx_hardware_unsetup();
6723 return -ENOMEM;
6724 }
6725 }
6726
6727 init_vmcs_shadow_fields();
6728 }
6729
6730 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6731 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6732 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6733 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6734 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6735 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6736 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6737 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6738 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6739 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6740 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6741 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6742
6743 return 0;
6744 }
6745
6746 struct kvm_x86_nested_ops vmx_nested_ops = {
6747 .check_events = vmx_check_nested_events,
6748 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6749 .triple_fault = nested_vmx_triple_fault,
6750 .get_state = vmx_get_nested_state,
6751 .set_state = vmx_set_nested_state,
6752 .get_nested_state_pages = vmx_get_nested_state_pages,
6753 .write_log_dirty = nested_vmx_write_pml_buffer,
6754 .enable_evmcs = nested_enable_evmcs,
6755 .get_evmcs_version = nested_get_evmcs_version,
6756 };