]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/kvm/vmx/nested.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23 * Hyper-V requires all of these, so mark them as supported even though
24 * they are just treated the same as all-context.
25 */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
27 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
28 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
29 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
30 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35 VMX_VMREAD_BITMAP,
36 VMX_VMWRITE_BITMAP,
37 VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49 ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56 ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60 int i, j;
61
62 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66 u16 field = shadow_read_only_fields[i];
67
68 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69 (i + 1 == max_shadow_read_only_fields ||
70 shadow_read_only_fields[i + 1] != field + 1))
71 pr_err("Missing field from shadow_read_only_field %x\n",
72 field + 1);
73
74 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76 if (field & 1)
77 continue;
78 #endif
79 if (j < i)
80 shadow_read_only_fields[j] = field;
81 j++;
82 }
83 max_shadow_read_only_fields = j;
84
85 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86 u16 field = shadow_read_write_fields[i];
87
88 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89 (i + 1 == max_shadow_read_write_fields ||
90 shadow_read_write_fields[i + 1] != field + 1))
91 pr_err("Missing field from shadow_read_write_field %x\n",
92 field + 1);
93
94 /*
95 * PML and the preemption timer can be emulated, but the
96 * processor cannot vmwrite to fields that don't exist
97 * on bare metal.
98 */
99 switch (field) {
100 case GUEST_PML_INDEX:
101 if (!cpu_has_vmx_pml())
102 continue;
103 break;
104 case VMX_PREEMPTION_TIMER_VALUE:
105 if (!cpu_has_vmx_preemption_timer())
106 continue;
107 break;
108 case GUEST_INTR_STATUS:
109 if (!cpu_has_vmx_apicv())
110 continue;
111 break;
112 default:
113 break;
114 }
115
116 clear_bit(field, vmx_vmwrite_bitmap);
117 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119 if (field & 1)
120 continue;
121 #endif
122 if (j < i)
123 shadow_read_write_fields[j] = field;
124 j++;
125 }
126 max_shadow_read_write_fields = j;
127 }
128
129 /*
130 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131 * set the success or error code of an emulated VMX instruction (as specified
132 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133 * instruction.
134 */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140 return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147 X86_EFLAGS_SF | X86_EFLAGS_OF))
148 | X86_EFLAGS_CF);
149 return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153 u32 vm_instruction_error)
154 {
155 struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157 /*
158 * failValid writes the error number to the current VMCS, which
159 * can't be done if there isn't a current VMCS.
160 */
161 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162 return nested_vmx_failInvalid(vcpu);
163
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_ZF);
168 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169 /*
170 * We don't need to force a shadow sync because
171 * VM_INSTRUCTION_ERROR is not shadowed
172 */
173 return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178 /* TODO: not to reset guest simply here. */
179 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186 vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 if (!vmx->nested.hv_evmcs)
194 return;
195
196 kunmap(vmx->nested.hv_evmcs_page);
197 kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198 vmx->nested.hv_evmcs_vmptr = -1ull;
199 vmx->nested.hv_evmcs_page = NULL;
200 vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205 * just stops using VMX.
206 */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209 struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212 return;
213
214 hrtimer_cancel(&vmx->nested.preemption_timer);
215 vmx->nested.vmxon = false;
216 vmx->nested.smm.vmxon = false;
217 free_vpid(vmx->nested.vpid02);
218 vmx->nested.posted_intr_nv = -1;
219 vmx->nested.current_vmptr = -1ull;
220 if (enable_shadow_vmcs) {
221 vmx_disable_shadow_vmcs(vmx);
222 vmcs_clear(vmx->vmcs01.shadow_vmcs);
223 free_vmcs(vmx->vmcs01.shadow_vmcs);
224 vmx->vmcs01.shadow_vmcs = NULL;
225 }
226 kfree(vmx->nested.cached_vmcs12);
227 kfree(vmx->nested.cached_shadow_vmcs12);
228 /* Unpin physical memory we referred to in the vmcs02 */
229 if (vmx->nested.apic_access_page) {
230 kvm_release_page_dirty(vmx->nested.apic_access_page);
231 vmx->nested.apic_access_page = NULL;
232 }
233 if (vmx->nested.virtual_apic_page) {
234 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
235 vmx->nested.virtual_apic_page = NULL;
236 }
237 if (vmx->nested.pi_desc_page) {
238 kunmap(vmx->nested.pi_desc_page);
239 kvm_release_page_dirty(vmx->nested.pi_desc_page);
240 vmx->nested.pi_desc_page = NULL;
241 vmx->nested.pi_desc = NULL;
242 }
243
244 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
245
246 nested_release_evmcs(vcpu);
247
248 free_loaded_vmcs(&vmx->nested.vmcs02);
249 }
250
251 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252 {
253 struct vcpu_vmx *vmx = to_vmx(vcpu);
254 int cpu;
255
256 if (vmx->loaded_vmcs == vmcs)
257 return;
258
259 cpu = get_cpu();
260 vmx_vcpu_put(vcpu);
261 vmx->loaded_vmcs = vmcs;
262 vmx_vcpu_load(vcpu, cpu);
263 put_cpu();
264
265 vm_entry_controls_reset_shadow(vmx);
266 vm_exit_controls_reset_shadow(vmx);
267 vmx_segment_cache_clear(vmx);
268 }
269
270 /*
271 * Ensure that the current vmcs of the logical processor is the
272 * vmcs01 of the vcpu before calling free_nested().
273 */
274 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
275 {
276 vcpu_load(vcpu);
277 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278 free_nested(vcpu);
279 vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283 struct x86_exception *fault)
284 {
285 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286 struct vcpu_vmx *vmx = to_vmx(vcpu);
287 u32 exit_reason;
288 unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290 if (vmx->nested.pml_full) {
291 exit_reason = EXIT_REASON_PML_FULL;
292 vmx->nested.pml_full = false;
293 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294 } else if (fault->error_code & PFERR_RSVD_MASK)
295 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296 else
297 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300 vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305 WARN_ON(mmu_is_nested(vcpu));
306
307 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308 kvm_init_shadow_ept_mmu(vcpu,
309 to_vmx(vcpu)->nested.msrs.ept_caps &
310 VMX_EPT_EXECUTE_ONLY_BIT,
311 nested_ept_ad_enabled(vcpu),
312 nested_ept_get_cr3(vcpu));
313 vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
314 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
315 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
317
318 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323 vcpu->arch.mmu = &vcpu->arch.root_mmu;
324 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328 u16 error_code)
329 {
330 bool inequality, bit;
331
332 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333 inequality =
334 (error_code & vmcs12->page_fault_error_code_mask) !=
335 vmcs12->page_fault_error_code_match;
336 return inequality ^ bit;
337 }
338
339
340 /*
341 * KVM wants to inject page-faults which it got to the guest. This function
342 * checks whether in a nested guest, we need to inject them to L1 or L2.
343 */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347 unsigned int nr = vcpu->arch.exception.nr;
348 bool has_payload = vcpu->arch.exception.has_payload;
349 unsigned long payload = vcpu->arch.exception.payload;
350
351 if (nr == PF_VECTOR) {
352 if (vcpu->arch.exception.nested_apf) {
353 *exit_qual = vcpu->arch.apf.nested_apf_token;
354 return 1;
355 }
356 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357 vcpu->arch.exception.error_code)) {
358 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359 return 1;
360 }
361 } else if (vmcs12->exception_bitmap & (1u << nr)) {
362 if (nr == DB_VECTOR) {
363 if (!has_payload) {
364 payload = vcpu->arch.dr6;
365 payload &= ~(DR6_FIXED_1 | DR6_BT);
366 payload ^= DR6_RTM;
367 }
368 *exit_qual = payload;
369 } else
370 *exit_qual = 0;
371 return 1;
372 }
373
374 return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379 struct x86_exception *fault)
380 {
381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383 WARN_ON(!is_guest_mode(vcpu));
384
385 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386 !to_vmx(vcpu)->nested.nested_run_pending) {
387 vmcs12->vm_exit_intr_error_code = fault->error_code;
388 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391 fault->address);
392 } else {
393 kvm_inject_page_fault(vcpu, fault);
394 }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403 struct vmcs12 *vmcs12)
404 {
405 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406 return 0;
407
408 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410 return -EINVAL;
411
412 return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416 struct vmcs12 *vmcs12)
417 {
418 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419 return 0;
420
421 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422 return -EINVAL;
423
424 return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428 struct vmcs12 *vmcs12)
429 {
430 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431 return 0;
432
433 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434 return -EINVAL;
435
436 return 0;
437 }
438
439 /*
440 * Check if MSR is intercepted for L01 MSR bitmap.
441 */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444 unsigned long *msr_bitmap;
445 int f = sizeof(unsigned long);
446
447 if (!cpu_has_vmx_msr_bitmap())
448 return true;
449
450 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452 if (msr <= 0x1fff) {
453 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455 msr &= 0x1fff;
456 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457 }
458
459 return true;
460 }
461
462 /*
463 * If a msr is allowed by L0, we should check whether it is allowed by L1.
464 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465 */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467 unsigned long *msr_bitmap_nested,
468 u32 msr, int type)
469 {
470 int f = sizeof(unsigned long);
471
472 /*
473 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474 * have the write-low and read-high bitmap offsets the wrong way round.
475 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476 */
477 if (msr <= 0x1fff) {
478 if (type & MSR_TYPE_R &&
479 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480 /* read-low */
481 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483 if (type & MSR_TYPE_W &&
484 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485 /* write-low */
486 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489 msr &= 0x1fff;
490 if (type & MSR_TYPE_R &&
491 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492 /* read-high */
493 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495 if (type & MSR_TYPE_W &&
496 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497 /* write-high */
498 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500 }
501 }
502
503 /*
504 * Merge L0's and L1's MSR bitmap, return false to indicate that
505 * we do not use the hardware.
506 */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508 struct vmcs12 *vmcs12)
509 {
510 int msr;
511 struct page *page;
512 unsigned long *msr_bitmap_l1;
513 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514 /*
515 * pred_cmd & spec_ctrl are trying to verify two things:
516 *
517 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518 * ensures that we do not accidentally generate an L02 MSR bitmap
519 * from the L12 MSR bitmap that is too permissive.
520 * 2. That L1 or L2s have actually used the MSR. This avoids
521 * unnecessarily merging of the bitmap if the MSR is unused. This
522 * works properly because we only update the L01 MSR bitmap lazily.
523 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524 * updated to reflect this when L1 (or its L2s) actually write to
525 * the MSR.
526 */
527 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530 /* Nothing to do if the MSR bitmap is not in use. */
531 if (!cpu_has_vmx_msr_bitmap() ||
532 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533 return false;
534
535 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536 !pred_cmd && !spec_ctrl)
537 return false;
538
539 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540 if (is_error_page(page))
541 return false;
542
543 msr_bitmap_l1 = (unsigned long *)kmap(page);
544 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545 /*
546 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547 * just lets the processor take the value from the virtual-APIC page;
548 * take those 256 bits directly from the L1 bitmap.
549 */
550 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551 unsigned word = msr / BITS_PER_LONG;
552 msr_bitmap_l0[word] = msr_bitmap_l1[word];
553 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554 }
555 } else {
556 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557 unsigned word = msr / BITS_PER_LONG;
558 msr_bitmap_l0[word] = ~0;
559 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560 }
561 }
562
563 nested_vmx_disable_intercept_for_msr(
564 msr_bitmap_l1, msr_bitmap_l0,
565 X2APIC_MSR(APIC_TASKPRI),
566 MSR_TYPE_W);
567
568 if (nested_cpu_has_vid(vmcs12)) {
569 nested_vmx_disable_intercept_for_msr(
570 msr_bitmap_l1, msr_bitmap_l0,
571 X2APIC_MSR(APIC_EOI),
572 MSR_TYPE_W);
573 nested_vmx_disable_intercept_for_msr(
574 msr_bitmap_l1, msr_bitmap_l0,
575 X2APIC_MSR(APIC_SELF_IPI),
576 MSR_TYPE_W);
577 }
578
579 if (spec_ctrl)
580 nested_vmx_disable_intercept_for_msr(
581 msr_bitmap_l1, msr_bitmap_l0,
582 MSR_IA32_SPEC_CTRL,
583 MSR_TYPE_R | MSR_TYPE_W);
584
585 if (pred_cmd)
586 nested_vmx_disable_intercept_for_msr(
587 msr_bitmap_l1, msr_bitmap_l0,
588 MSR_IA32_PRED_CMD,
589 MSR_TYPE_W);
590
591 kunmap(page);
592 kvm_release_page_clean(page);
593
594 return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598 struct vmcs12 *vmcs12)
599 {
600 struct vmcs12 *shadow;
601 struct page *page;
602
603 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604 vmcs12->vmcs_link_pointer == -1ull)
605 return;
606
607 shadow = get_shadow_vmcs12(vcpu);
608 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610 memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612 kunmap(page);
613 kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617 struct vmcs12 *vmcs12)
618 {
619 struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622 vmcs12->vmcs_link_pointer == -1ull)
623 return;
624
625 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630 * In nested virtualization, check if L1 has set
631 * VM_EXIT_ACK_INTR_ON_EXIT
632 */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635 return get_vmcs12(vcpu)->vm_exit_controls &
636 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645 struct vmcs12 *vmcs12)
646 {
647 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648 !page_address_valid(vcpu, vmcs12->apic_access_addr))
649 return -EINVAL;
650 else
651 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655 struct vmcs12 *vmcs12)
656 {
657 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658 !nested_cpu_has_apic_reg_virt(vmcs12) &&
659 !nested_cpu_has_vid(vmcs12) &&
660 !nested_cpu_has_posted_intr(vmcs12))
661 return 0;
662
663 /*
664 * If virtualize x2apic mode is enabled,
665 * virtualize apic access must be disabled.
666 */
667 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669 return -EINVAL;
670
671 /*
672 * If virtual interrupt delivery is enabled,
673 * we must exit on external interrupts.
674 */
675 if (nested_cpu_has_vid(vmcs12) &&
676 !nested_exit_on_intr(vcpu))
677 return -EINVAL;
678
679 /*
680 * bits 15:8 should be zero in posted_intr_nv,
681 * the descriptor address has been already checked
682 * in nested_get_vmcs12_pages.
683 *
684 * bits 5:0 of posted_intr_desc_addr should be zero.
685 */
686 if (nested_cpu_has_posted_intr(vmcs12) &&
687 (!nested_cpu_has_vid(vmcs12) ||
688 !nested_exit_intr_ack_set(vcpu) ||
689 (vmcs12->posted_intr_nv & 0xff00) ||
690 (vmcs12->posted_intr_desc_addr & 0x3f) ||
691 (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692 return -EINVAL;
693
694 /* tpr shadow is needed by all apicv features. */
695 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696 return -EINVAL;
697
698 return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702 u32 count, u64 addr)
703 {
704 int maxphyaddr;
705
706 if (count == 0)
707 return 0;
708 maxphyaddr = cpuid_maxphyaddr(vcpu);
709 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711 return -EINVAL;
712
713 return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717 struct vmcs12 *vmcs12)
718 {
719 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720 vmcs12->vm_exit_msr_load_addr) ||
721 nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722 vmcs12->vm_exit_msr_store_addr))
723 return -EINVAL;
724
725 return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729 struct vmcs12 *vmcs12)
730 {
731 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732 vmcs12->vm_entry_msr_load_addr))
733 return -EINVAL;
734
735 return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739 struct vmcs12 *vmcs12)
740 {
741 if (!nested_cpu_has_pml(vmcs12))
742 return 0;
743
744 if (!nested_cpu_has_ept(vmcs12) ||
745 !page_address_valid(vcpu, vmcs12->pml_address))
746 return -EINVAL;
747
748 return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752 struct vmcs12 *vmcs12)
753 {
754 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755 !nested_cpu_has_ept(vmcs12))
756 return -EINVAL;
757 return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761 struct vmcs12 *vmcs12)
762 {
763 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764 !nested_cpu_has_ept(vmcs12))
765 return -EINVAL;
766 return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770 struct vmcs12 *vmcs12)
771 {
772 if (!nested_cpu_has_shadow_vmcs(vmcs12))
773 return 0;
774
775 if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776 !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777 return -EINVAL;
778
779 return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783 struct vmx_msr_entry *e)
784 {
785 /* x2APIC MSR accesses are not allowed */
786 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787 return -EINVAL;
788 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789 e->index == MSR_IA32_UCODE_REV)
790 return -EINVAL;
791 if (e->reserved != 0)
792 return -EINVAL;
793 return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797 struct vmx_msr_entry *e)
798 {
799 if (e->index == MSR_FS_BASE ||
800 e->index == MSR_GS_BASE ||
801 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802 nested_vmx_msr_check_common(vcpu, e))
803 return -EINVAL;
804 return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808 struct vmx_msr_entry *e)
809 {
810 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811 nested_vmx_msr_check_common(vcpu, e))
812 return -EINVAL;
813 return 0;
814 }
815
816 /*
817 * Load guest's/host's msr at nested entry/exit.
818 * return 0 for success, entry index for failure.
819 */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822 u32 i;
823 struct vmx_msr_entry e;
824 struct msr_data msr;
825
826 msr.host_initiated = false;
827 for (i = 0; i < count; i++) {
828 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829 &e, sizeof(e))) {
830 pr_debug_ratelimited(
831 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832 __func__, i, gpa + i * sizeof(e));
833 goto fail;
834 }
835 if (nested_vmx_load_msr_check(vcpu, &e)) {
836 pr_debug_ratelimited(
837 "%s check failed (%u, 0x%x, 0x%x)\n",
838 __func__, i, e.index, e.reserved);
839 goto fail;
840 }
841 msr.index = e.index;
842 msr.data = e.value;
843 if (kvm_set_msr(vcpu, &msr)) {
844 pr_debug_ratelimited(
845 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846 __func__, i, e.index, e.value);
847 goto fail;
848 }
849 }
850 return 0;
851 fail:
852 return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857 u32 i;
858 struct vmx_msr_entry e;
859
860 for (i = 0; i < count; i++) {
861 struct msr_data msr_info;
862 if (kvm_vcpu_read_guest(vcpu,
863 gpa + i * sizeof(e),
864 &e, 2 * sizeof(u32))) {
865 pr_debug_ratelimited(
866 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867 __func__, i, gpa + i * sizeof(e));
868 return -EINVAL;
869 }
870 if (nested_vmx_store_msr_check(vcpu, &e)) {
871 pr_debug_ratelimited(
872 "%s check failed (%u, 0x%x, 0x%x)\n",
873 __func__, i, e.index, e.reserved);
874 return -EINVAL;
875 }
876 msr_info.host_initiated = false;
877 msr_info.index = e.index;
878 if (kvm_get_msr(vcpu, &msr_info)) {
879 pr_debug_ratelimited(
880 "%s cannot read MSR (%u, 0x%x)\n",
881 __func__, i, e.index);
882 return -EINVAL;
883 }
884 if (kvm_vcpu_write_guest(vcpu,
885 gpa + i * sizeof(e) +
886 offsetof(struct vmx_msr_entry, value),
887 &msr_info.data, sizeof(msr_info.data))) {
888 pr_debug_ratelimited(
889 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890 __func__, i, e.index, msr_info.data);
891 return -EINVAL;
892 }
893 }
894 return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899 unsigned long invalid_mask;
900
901 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902 return (val & invalid_mask) == 0;
903 }
904
905 /*
906 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907 * emulating VM entry into a guest with EPT enabled.
908 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909 * is assigned to entry_failure_code on failure.
910 */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912 u32 *entry_failure_code)
913 {
914 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915 if (!nested_cr3_valid(vcpu, cr3)) {
916 *entry_failure_code = ENTRY_FAIL_DEFAULT;
917 return 1;
918 }
919
920 /*
921 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922 * must not be dereferenced.
923 */
924 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925 !nested_ept) {
926 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927 *entry_failure_code = ENTRY_FAIL_PDPTE;
928 return 1;
929 }
930 }
931 }
932
933 if (!nested_ept)
934 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936 vcpu->arch.cr3 = cr3;
937 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939 kvm_init_mmu(vcpu, false);
940
941 return 0;
942 }
943
944 /*
945 * Returns if KVM is able to config CPU to tag TLB entries
946 * populated by L2 differently than TLB entries populated
947 * by L1.
948 *
949 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950 *
951 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952 * with different VPID (L1 entries are tagged with vmx->vpid
953 * while L2 entries are tagged with vmx->nested.vpid02).
954 */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959 return nested_cpu_has_ept(vmcs12) ||
960 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965 struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973 return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978 return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983 superset &= mask;
984 subset &= mask;
985
986 return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991 const u64 feature_and_reserved =
992 /* feature (except bit 48; see below) */
993 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994 /* reserved */
995 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996 u64 vmx_basic = vmx->nested.msrs.basic;
997
998 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999 return -EINVAL;
1000
1001 /*
1002 * KVM does not emulate a version of VMX that constrains physical
1003 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004 */
1005 if (data & BIT_ULL(48))
1006 return -EINVAL;
1007
1008 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009 vmx_basic_vmcs_revision_id(data))
1010 return -EINVAL;
1011
1012 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013 return -EINVAL;
1014
1015 vmx->nested.msrs.basic = data;
1016 return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022 u64 supported;
1023 u32 *lowp, *highp;
1024
1025 switch (msr_index) {
1026 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029 break;
1030 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032 highp = &vmx->nested.msrs.procbased_ctls_high;
1033 break;
1034 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035 lowp = &vmx->nested.msrs.exit_ctls_low;
1036 highp = &vmx->nested.msrs.exit_ctls_high;
1037 break;
1038 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039 lowp = &vmx->nested.msrs.entry_ctls_low;
1040 highp = &vmx->nested.msrs.entry_ctls_high;
1041 break;
1042 case MSR_IA32_VMX_PROCBASED_CTLS2:
1043 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044 highp = &vmx->nested.msrs.secondary_ctls_high;
1045 break;
1046 default:
1047 BUG();
1048 }
1049
1050 supported = vmx_control_msr(*lowp, *highp);
1051
1052 /* Check must-be-1 bits are still 1. */
1053 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054 return -EINVAL;
1055
1056 /* Check must-be-0 bits are still 0. */
1057 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058 return -EINVAL;
1059
1060 *lowp = data;
1061 *highp = data >> 32;
1062 return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067 const u64 feature_and_reserved_bits =
1068 /* feature */
1069 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071 /* reserved */
1072 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073 u64 vmx_misc;
1074
1075 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076 vmx->nested.msrs.misc_high);
1077
1078 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079 return -EINVAL;
1080
1081 if ((vmx->nested.msrs.pinbased_ctls_high &
1082 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083 vmx_misc_preemption_timer_rate(data) !=
1084 vmx_misc_preemption_timer_rate(vmx_misc))
1085 return -EINVAL;
1086
1087 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088 return -EINVAL;
1089
1090 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091 return -EINVAL;
1092
1093 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094 return -EINVAL;
1095
1096 vmx->nested.msrs.misc_low = data;
1097 vmx->nested.msrs.misc_high = data >> 32;
1098
1099 /*
1100 * If L1 has read-only VM-exit information fields, use the
1101 * less permissive vmx_vmwrite_bitmap to specify write
1102 * permissions for the shadow VMCS.
1103 */
1104 if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107 return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112 u64 vmx_ept_vpid_cap;
1113
1114 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115 vmx->nested.msrs.vpid_caps);
1116
1117 /* Every bit is either reserved or a feature bit. */
1118 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119 return -EINVAL;
1120
1121 vmx->nested.msrs.ept_caps = data;
1122 vmx->nested.msrs.vpid_caps = data >> 32;
1123 return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128 u64 *msr;
1129
1130 switch (msr_index) {
1131 case MSR_IA32_VMX_CR0_FIXED0:
1132 msr = &vmx->nested.msrs.cr0_fixed0;
1133 break;
1134 case MSR_IA32_VMX_CR4_FIXED0:
1135 msr = &vmx->nested.msrs.cr4_fixed0;
1136 break;
1137 default:
1138 BUG();
1139 }
1140
1141 /*
1142 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143 * must be 1 in the restored value.
1144 */
1145 if (!is_bitwise_subset(data, *msr, -1ULL))
1146 return -EINVAL;
1147
1148 *msr = data;
1149 return 0;
1150 }
1151
1152 /*
1153 * Called when userspace is restoring VMX MSRs.
1154 *
1155 * Returns 0 on success, non-0 otherwise.
1156 */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159 struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161 /*
1162 * Don't allow changes to the VMX capability MSRs while the vCPU
1163 * is in VMX operation.
1164 */
1165 if (vmx->nested.vmxon)
1166 return -EBUSY;
1167
1168 switch (msr_index) {
1169 case MSR_IA32_VMX_BASIC:
1170 return vmx_restore_vmx_basic(vmx, data);
1171 case MSR_IA32_VMX_PINBASED_CTLS:
1172 case MSR_IA32_VMX_PROCBASED_CTLS:
1173 case MSR_IA32_VMX_EXIT_CTLS:
1174 case MSR_IA32_VMX_ENTRY_CTLS:
1175 /*
1176 * The "non-true" VMX capability MSRs are generated from the
1177 * "true" MSRs, so we do not support restoring them directly.
1178 *
1179 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180 * should restore the "true" MSRs with the must-be-1 bits
1181 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182 * DEFAULT SETTINGS".
1183 */
1184 return -EINVAL;
1185 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189 case MSR_IA32_VMX_PROCBASED_CTLS2:
1190 return vmx_restore_control_msr(vmx, msr_index, data);
1191 case MSR_IA32_VMX_MISC:
1192 return vmx_restore_vmx_misc(vmx, data);
1193 case MSR_IA32_VMX_CR0_FIXED0:
1194 case MSR_IA32_VMX_CR4_FIXED0:
1195 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196 case MSR_IA32_VMX_CR0_FIXED1:
1197 case MSR_IA32_VMX_CR4_FIXED1:
1198 /*
1199 * These MSRs are generated based on the vCPU's CPUID, so we
1200 * do not support restoring them directly.
1201 */
1202 return -EINVAL;
1203 case MSR_IA32_VMX_EPT_VPID_CAP:
1204 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205 case MSR_IA32_VMX_VMCS_ENUM:
1206 vmx->nested.msrs.vmcs_enum = data;
1207 return 0;
1208 default:
1209 /*
1210 * The rest of the VMX capability MSRs do not support restore.
1211 */
1212 return -EINVAL;
1213 }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219 switch (msr_index) {
1220 case MSR_IA32_VMX_BASIC:
1221 *pdata = msrs->basic;
1222 break;
1223 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224 case MSR_IA32_VMX_PINBASED_CTLS:
1225 *pdata = vmx_control_msr(
1226 msrs->pinbased_ctls_low,
1227 msrs->pinbased_ctls_high);
1228 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230 break;
1231 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232 case MSR_IA32_VMX_PROCBASED_CTLS:
1233 *pdata = vmx_control_msr(
1234 msrs->procbased_ctls_low,
1235 msrs->procbased_ctls_high);
1236 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238 break;
1239 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240 case MSR_IA32_VMX_EXIT_CTLS:
1241 *pdata = vmx_control_msr(
1242 msrs->exit_ctls_low,
1243 msrs->exit_ctls_high);
1244 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246 break;
1247 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248 case MSR_IA32_VMX_ENTRY_CTLS:
1249 *pdata = vmx_control_msr(
1250 msrs->entry_ctls_low,
1251 msrs->entry_ctls_high);
1252 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254 break;
1255 case MSR_IA32_VMX_MISC:
1256 *pdata = vmx_control_msr(
1257 msrs->misc_low,
1258 msrs->misc_high);
1259 break;
1260 case MSR_IA32_VMX_CR0_FIXED0:
1261 *pdata = msrs->cr0_fixed0;
1262 break;
1263 case MSR_IA32_VMX_CR0_FIXED1:
1264 *pdata = msrs->cr0_fixed1;
1265 break;
1266 case MSR_IA32_VMX_CR4_FIXED0:
1267 *pdata = msrs->cr4_fixed0;
1268 break;
1269 case MSR_IA32_VMX_CR4_FIXED1:
1270 *pdata = msrs->cr4_fixed1;
1271 break;
1272 case MSR_IA32_VMX_VMCS_ENUM:
1273 *pdata = msrs->vmcs_enum;
1274 break;
1275 case MSR_IA32_VMX_PROCBASED_CTLS2:
1276 *pdata = vmx_control_msr(
1277 msrs->secondary_ctls_low,
1278 msrs->secondary_ctls_high);
1279 break;
1280 case MSR_IA32_VMX_EPT_VPID_CAP:
1281 *pdata = msrs->ept_caps |
1282 ((u64)msrs->vpid_caps << 32);
1283 break;
1284 case MSR_IA32_VMX_VMFUNC:
1285 *pdata = msrs->vmfunc_controls;
1286 break;
1287 default:
1288 return 1;
1289 }
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296 * they have been modified by the L1 guest. Note that the "read-only"
1297 * VM-exit information fields are actually writable if the vCPU is
1298 * configured to support "VMWRITE to any supported field in the VMCS."
1299 */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302 const u16 *fields[] = {
1303 shadow_read_write_fields,
1304 shadow_read_only_fields
1305 };
1306 const int max_fields[] = {
1307 max_shadow_read_write_fields,
1308 max_shadow_read_only_fields
1309 };
1310 int i, q;
1311 unsigned long field;
1312 u64 field_value;
1313 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315 preempt_disable();
1316
1317 vmcs_load(shadow_vmcs);
1318
1319 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320 for (i = 0; i < max_fields[q]; i++) {
1321 field = fields[q][i];
1322 field_value = __vmcs_readl(field);
1323 vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324 }
1325 /*
1326 * Skip the VM-exit information fields if they are read-only.
1327 */
1328 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329 break;
1330 }
1331
1332 vmcs_clear(shadow_vmcs);
1333 vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335 preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340 const u16 *fields[] = {
1341 shadow_read_write_fields,
1342 shadow_read_only_fields
1343 };
1344 const int max_fields[] = {
1345 max_shadow_read_write_fields,
1346 max_shadow_read_only_fields
1347 };
1348 int i, q;
1349 unsigned long field;
1350 u64 field_value = 0;
1351 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353 vmcs_load(shadow_vmcs);
1354
1355 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356 for (i = 0; i < max_fields[q]; i++) {
1357 field = fields[q][i];
1358 vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359 __vmcs_writel(field, field_value);
1360 }
1361 }
1362
1363 vmcs_clear(shadow_vmcs);
1364 vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374 vmcs12->guest_rip = evmcs->guest_rip;
1375
1376 if (unlikely(!(evmcs->hv_clean_fields &
1377 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378 vmcs12->guest_rsp = evmcs->guest_rsp;
1379 vmcs12->guest_rflags = evmcs->guest_rflags;
1380 vmcs12->guest_interruptibility_info =
1381 evmcs->guest_interruptibility_info;
1382 }
1383
1384 if (unlikely(!(evmcs->hv_clean_fields &
1385 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386 vmcs12->cpu_based_vm_exec_control =
1387 evmcs->cpu_based_vm_exec_control;
1388 }
1389
1390 if (unlikely(!(evmcs->hv_clean_fields &
1391 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393 }
1394
1395 if (unlikely(!(evmcs->hv_clean_fields &
1396 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398 }
1399
1400 if (unlikely(!(evmcs->hv_clean_fields &
1401 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402 vmcs12->vm_entry_intr_info_field =
1403 evmcs->vm_entry_intr_info_field;
1404 vmcs12->vm_entry_exception_error_code =
1405 evmcs->vm_entry_exception_error_code;
1406 vmcs12->vm_entry_instruction_len =
1407 evmcs->vm_entry_instruction_len;
1408 }
1409
1410 if (unlikely(!(evmcs->hv_clean_fields &
1411 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414 vmcs12->host_cr0 = evmcs->host_cr0;
1415 vmcs12->host_cr3 = evmcs->host_cr3;
1416 vmcs12->host_cr4 = evmcs->host_cr4;
1417 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419 vmcs12->host_rip = evmcs->host_rip;
1420 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421 vmcs12->host_es_selector = evmcs->host_es_selector;
1422 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428 }
1429
1430 if (unlikely(!(evmcs->hv_clean_fields &
1431 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432 vmcs12->pin_based_vm_exec_control =
1433 evmcs->pin_based_vm_exec_control;
1434 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435 vmcs12->secondary_vm_exec_control =
1436 evmcs->secondary_vm_exec_control;
1437 }
1438
1439 if (unlikely(!(evmcs->hv_clean_fields &
1440 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443 }
1444
1445 if (unlikely(!(evmcs->hv_clean_fields &
1446 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448 }
1449
1450 if (unlikely(!(evmcs->hv_clean_fields &
1451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452 vmcs12->guest_es_base = evmcs->guest_es_base;
1453 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488 }
1489
1490 if (unlikely(!(evmcs->hv_clean_fields &
1491 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492 vmcs12->tsc_offset = evmcs->tsc_offset;
1493 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495 }
1496
1497 if (unlikely(!(evmcs->hv_clean_fields &
1498 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507 }
1508
1509 if (unlikely(!(evmcs->hv_clean_fields &
1510 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511 vmcs12->host_fs_base = evmcs->host_fs_base;
1512 vmcs12->host_gs_base = evmcs->host_gs_base;
1513 vmcs12->host_tr_base = evmcs->host_tr_base;
1514 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516 vmcs12->host_rsp = evmcs->host_rsp;
1517 }
1518
1519 if (unlikely(!(evmcs->hv_clean_fields &
1520 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521 vmcs12->ept_pointer = evmcs->ept_pointer;
1522 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523 }
1524
1525 if (unlikely(!(evmcs->hv_clean_fields &
1526 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535 vmcs12->guest_pending_dbg_exceptions =
1536 evmcs->guest_pending_dbg_exceptions;
1537 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542 }
1543
1544 /*
1545 * Not used?
1546 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553 * vmcs12->page_fault_error_code_mask =
1554 * evmcs->page_fault_error_code_mask;
1555 * vmcs12->page_fault_error_code_match =
1556 * evmcs->page_fault_error_code_match;
1557 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561 */
1562
1563 /*
1564 * Read only fields:
1565 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574 * vmcs12->exit_qualification = evmcs->exit_qualification;
1575 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576 *
1577 * Not present in struct vmcs12:
1578 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582 */
1583
1584 return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592 /*
1593 * Should not be changed by KVM:
1594 *
1595 * evmcs->host_es_selector = vmcs12->host_es_selector;
1596 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604 * evmcs->host_cr0 = vmcs12->host_cr0;
1605 * evmcs->host_cr3 = vmcs12->host_cr3;
1606 * evmcs->host_cr4 = vmcs12->host_cr4;
1607 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609 * evmcs->host_rip = vmcs12->host_rip;
1610 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611 * evmcs->host_fs_base = vmcs12->host_fs_base;
1612 * evmcs->host_gs_base = vmcs12->host_gs_base;
1613 * evmcs->host_tr_base = vmcs12->host_tr_base;
1614 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616 * evmcs->host_rsp = vmcs12->host_rsp;
1617 * sync_vmcs12() doesn't read these:
1618 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621 * evmcs->ept_pointer = vmcs12->ept_pointer;
1622 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637 * evmcs->page_fault_error_code_mask =
1638 * vmcs12->page_fault_error_code_mask;
1639 * evmcs->page_fault_error_code_match =
1640 * vmcs12->page_fault_error_code_match;
1641 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643 * evmcs->tsc_offset = vmcs12->tsc_offset;
1644 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652 *
1653 * Not present in struct vmcs12:
1654 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658 */
1659
1660 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689 evmcs->guest_es_base = vmcs12->guest_es_base;
1690 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708 evmcs->guest_pending_dbg_exceptions =
1709 vmcs12->guest_pending_dbg_exceptions;
1710 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716 evmcs->guest_cr0 = vmcs12->guest_cr0;
1717 evmcs->guest_cr3 = vmcs12->guest_cr3;
1718 evmcs->guest_cr4 = vmcs12->guest_cr4;
1719 evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732 evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735 evmcs->guest_rsp = vmcs12->guest_rsp;
1736 evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738 evmcs->guest_interruptibility_info =
1739 vmcs12->guest_interruptibility_info;
1740 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743 evmcs->vm_entry_exception_error_code =
1744 vmcs12->vm_entry_exception_error_code;
1745 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747 evmcs->guest_rip = vmcs12->guest_rip;
1748
1749 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751 return 0;
1752 }
1753
1754 /*
1755 * This is an equivalent of the nested hypervisor executing the vmptrld
1756 * instruction.
1757 */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759 bool from_launch)
1760 {
1761 struct vcpu_vmx *vmx = to_vmx(vcpu);
1762 struct hv_vp_assist_page assist_page;
1763
1764 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765 return 1;
1766
1767 if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768 return 1;
1769
1770 if (unlikely(!assist_page.enlighten_vmentry))
1771 return 1;
1772
1773 if (unlikely(assist_page.current_nested_vmcs !=
1774 vmx->nested.hv_evmcs_vmptr)) {
1775
1776 if (!vmx->nested.hv_evmcs)
1777 vmx->nested.current_vmptr = -1ull;
1778
1779 nested_release_evmcs(vcpu);
1780
1781 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782 vcpu, assist_page.current_nested_vmcs);
1783
1784 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785 return 0;
1786
1787 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789 /*
1790 * Currently, KVM only supports eVMCS version 1
1791 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792 * value to first u32 field of eVMCS which should specify eVMCS
1793 * VersionNumber.
1794 *
1795 * Guest should be aware of supported eVMCS versions by host by
1796 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797 * expected to set this CPUID leaf according to the value
1798 * returned in vmcs_version from nested_enable_evmcs().
1799 *
1800 * However, it turns out that Microsoft Hyper-V fails to comply
1801 * to their own invented interface: When Hyper-V use eVMCS, it
1802 * just sets first u32 field of eVMCS to revision_id specified
1803 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804 * which is one of the supported versions specified in
1805 * CPUID.0x4000000A.EAX[0:15].
1806 *
1807 * To overcome Hyper-V bug, we accept here either a supported
1808 * eVMCS version or VMCS12 revision_id as valid values for first
1809 * u32 field of eVMCS.
1810 */
1811 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813 nested_release_evmcs(vcpu);
1814 return 0;
1815 }
1816
1817 vmx->nested.dirty_vmcs12 = true;
1818 /*
1819 * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820 * can't be used when we switch between them. Reset it here for
1821 * simplicity.
1822 */
1823 vmx->nested.hv_evmcs->hv_clean_fields &=
1824 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827 /*
1828 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829 * reloaded from guest's memory (read only fields, fields not
1830 * present in struct hv_enlightened_vmcs, ...). Make sure there
1831 * are no leftovers.
1832 */
1833 if (from_launch) {
1834 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835 memset(vmcs12, 0, sizeof(*vmcs12));
1836 vmcs12->hdr.revision_id = VMCS12_REVISION;
1837 }
1838
1839 }
1840 return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845 struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847 /*
1848 * hv_evmcs may end up being not mapped after migration (when
1849 * L2 was running), map it here to make sure vmcs12 changes are
1850 * properly reflected.
1851 */
1852 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855 if (vmx->nested.hv_evmcs) {
1856 copy_vmcs12_to_enlightened(vmx);
1857 /* All fields are clean */
1858 vmx->nested.hv_evmcs->hv_clean_fields |=
1859 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860 } else {
1861 copy_vmcs12_to_shadow(vmx);
1862 }
1863
1864 vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869 struct vcpu_vmx *vmx =
1870 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872 vmx->nested.preemption_timer_expired = true;
1873 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874 kvm_vcpu_kick(&vmx->vcpu);
1875
1876 return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882 struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884 /*
1885 * A timer value of zero is architecturally guaranteed to cause
1886 * a VMExit prior to executing any instructions in the guest.
1887 */
1888 if (preemption_timeout == 0) {
1889 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890 return;
1891 }
1892
1893 if (vcpu->arch.virtual_tsc_khz == 0)
1894 return;
1895
1896 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897 preemption_timeout *= 1000000;
1898 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899 hrtimer_start(&vmx->nested.preemption_timer,
1900 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905 if (vmx->nested.nested_run_pending &&
1906 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907 return vmcs12->guest_ia32_efer;
1908 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910 else
1911 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916 /*
1917 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918 * according to L0's settings (vmcs12 is irrelevant here). Host
1919 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920 * will be set as needed prior to VMLAUNCH/VMRESUME.
1921 */
1922 if (vmx->nested.vmcs02_initialized)
1923 return;
1924 vmx->nested.vmcs02_initialized = true;
1925
1926 /*
1927 * We don't care what the EPTP value is we just need to guarantee
1928 * it's valid so we don't get a false positive when doing early
1929 * consistency checks.
1930 */
1931 if (enable_ept && nested_early_check)
1932 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934 /* All VMFUNCs are currently emulated through L0 vmexits. */
1935 if (cpu_has_vmx_vmfunc())
1936 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938 if (cpu_has_vmx_posted_intr())
1939 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941 if (cpu_has_vmx_msr_bitmap())
1942 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944 if (enable_pml)
1945 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947 /*
1948 * Set the MSR load/store lists to match L0's settings. Only the
1949 * addresses are constant (for vmcs02), the counts can change based
1950 * on L2's behavior, e.g. switching to/from long mode.
1951 */
1952 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956 vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960 struct vmcs12 *vmcs12)
1961 {
1962 prepare_vmcs02_constant_state(vmx);
1963
1964 vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966 if (enable_vpid) {
1967 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969 else
1970 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971 }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976 u32 exec_control, vmcs12_exec_ctrl;
1977 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982 /*
1983 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1984 * entry, but only if the current (host) sp changed from the value
1985 * we wrote last (vmx->host_rsp). This cache is no longer relevant
1986 * if we switch vmcs, and rather than hold a separate cache per vmcs,
1987 * here we just force the write to happen on entry. host_rsp will
1988 * also be written unconditionally by nested_vmx_check_vmentry_hw()
1989 * if we are doing early consistency checks via hardware.
1990 */
1991 vmx->host_rsp = 0;
1992
1993 /*
1994 * PIN CONTROLS
1995 */
1996 exec_control = vmcs12->pin_based_vm_exec_control;
1997
1998 /* Preemption timer setting is computed directly in vmx_vcpu_run. */
1999 exec_control |= vmcs_config.pin_based_exec_ctrl;
2000 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2001 vmx->loaded_vmcs->hv_timer_armed = false;
2002
2003 /* Posted interrupts setting is only taken from vmcs12. */
2004 if (nested_cpu_has_posted_intr(vmcs12)) {
2005 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2006 vmx->nested.pi_pending = false;
2007 } else {
2008 exec_control &= ~PIN_BASED_POSTED_INTR;
2009 }
2010 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2011
2012 /*
2013 * EXEC CONTROLS
2014 */
2015 exec_control = vmx_exec_control(vmx); /* L0's desires */
2016 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2017 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2018 exec_control &= ~CPU_BASED_TPR_SHADOW;
2019 exec_control |= vmcs12->cpu_based_vm_exec_control;
2020
2021 /*
2022 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2023 * nested_get_vmcs12_pages can't fix it up, the illegal value
2024 * will result in a VM entry failure.
2025 */
2026 if (exec_control & CPU_BASED_TPR_SHADOW) {
2027 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2028 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2029 } else {
2030 #ifdef CONFIG_X86_64
2031 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2032 CPU_BASED_CR8_STORE_EXITING;
2033 #endif
2034 }
2035
2036 /*
2037 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2038 * for I/O port accesses.
2039 */
2040 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2041 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2042 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2043
2044 /*
2045 * SECONDARY EXEC CONTROLS
2046 */
2047 if (cpu_has_secondary_exec_ctrls()) {
2048 exec_control = vmx->secondary_exec_control;
2049
2050 /* Take the following fields only from vmcs12 */
2051 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2052 SECONDARY_EXEC_ENABLE_INVPCID |
2053 SECONDARY_EXEC_RDTSCP |
2054 SECONDARY_EXEC_XSAVES |
2055 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2056 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2057 SECONDARY_EXEC_ENABLE_VMFUNC);
2058 if (nested_cpu_has(vmcs12,
2059 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2060 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2061 ~SECONDARY_EXEC_ENABLE_PML;
2062 exec_control |= vmcs12_exec_ctrl;
2063 }
2064
2065 /* VMCS shadowing for L2 is emulated for now */
2066 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2067
2068 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2069 vmcs_write16(GUEST_INTR_STATUS,
2070 vmcs12->guest_intr_status);
2071
2072 /*
2073 * Write an illegal value to APIC_ACCESS_ADDR. Later,
2074 * nested_get_vmcs12_pages will either fix it up or
2075 * remove the VM execution control.
2076 */
2077 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2078 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2079
2080 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2081 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2082
2083 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2084 }
2085
2086 /*
2087 * ENTRY CONTROLS
2088 *
2089 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2090 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2091 * on the related bits (if supported by the CPU) in the hope that
2092 * we can avoid VMWrites during vmx_set_efer().
2093 */
2094 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2095 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2096 if (cpu_has_load_ia32_efer()) {
2097 if (guest_efer & EFER_LMA)
2098 exec_control |= VM_ENTRY_IA32E_MODE;
2099 if (guest_efer != host_efer)
2100 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2101 }
2102 vm_entry_controls_init(vmx, exec_control);
2103
2104 /*
2105 * EXIT CONTROLS
2106 *
2107 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2108 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2109 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2110 */
2111 exec_control = vmx_vmexit_ctrl();
2112 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2113 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2114 vm_exit_controls_init(vmx, exec_control);
2115
2116 /*
2117 * Conceptually we want to copy the PML address and index from
2118 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2119 * since we always flush the log on each vmexit and never change
2120 * the PML address (once set), this happens to be equivalent to
2121 * simply resetting the index in vmcs02.
2122 */
2123 if (enable_pml)
2124 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2125
2126 /*
2127 * Interrupt/Exception Fields
2128 */
2129 if (vmx->nested.nested_run_pending) {
2130 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2131 vmcs12->vm_entry_intr_info_field);
2132 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2133 vmcs12->vm_entry_exception_error_code);
2134 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2135 vmcs12->vm_entry_instruction_len);
2136 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2137 vmcs12->guest_interruptibility_info);
2138 vmx->loaded_vmcs->nmi_known_unmasked =
2139 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2140 } else {
2141 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2142 }
2143 }
2144
2145 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2146 {
2147 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2148
2149 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2150 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2151 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2152 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2153 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2154 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2155 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2156 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2157 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2158 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2159 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2160 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2161 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2162 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2163 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2164 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2165 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2166 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2167 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2168 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2169 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2170 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2171 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2172 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2173 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2174 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2175 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2176 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2177 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2178 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2179 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2180 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2181 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2182 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2183 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2184 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2185 }
2186
2187 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2188 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2189 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2190 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2191 vmcs12->guest_pending_dbg_exceptions);
2192 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2193 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2194
2195 /*
2196 * L1 may access the L2's PDPTR, so save them to construct
2197 * vmcs12
2198 */
2199 if (enable_ept) {
2200 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2201 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2202 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2203 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2204 }
2205 }
2206
2207 if (nested_cpu_has_xsaves(vmcs12))
2208 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2209
2210 /*
2211 * Whether page-faults are trapped is determined by a combination of
2212 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2213 * If enable_ept, L0 doesn't care about page faults and we should
2214 * set all of these to L1's desires. However, if !enable_ept, L0 does
2215 * care about (at least some) page faults, and because it is not easy
2216 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2217 * to exit on each and every L2 page fault. This is done by setting
2218 * MASK=MATCH=0 and (see below) EB.PF=1.
2219 * Note that below we don't need special code to set EB.PF beyond the
2220 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2221 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2222 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2223 */
2224 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2225 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2226 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2227 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2228
2229 if (cpu_has_vmx_apicv()) {
2230 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2231 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2232 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2233 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2234 }
2235
2236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2237 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2238
2239 set_cr4_guest_host_mask(vmx);
2240
2241 if (kvm_mpx_supported()) {
2242 if (vmx->nested.nested_run_pending &&
2243 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2244 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2245 else
2246 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2247 }
2248 }
2249
2250 /*
2251 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2252 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2253 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2254 * guest in a way that will both be appropriate to L1's requests, and our
2255 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2256 * function also has additional necessary side-effects, like setting various
2257 * vcpu->arch fields.
2258 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2259 * is assigned to entry_failure_code on failure.
2260 */
2261 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2262 u32 *entry_failure_code)
2263 {
2264 struct vcpu_vmx *vmx = to_vmx(vcpu);
2265 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2266
2267 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2268 prepare_vmcs02_full(vmx, vmcs12);
2269 vmx->nested.dirty_vmcs12 = false;
2270 }
2271
2272 /*
2273 * First, the fields that are shadowed. This must be kept in sync
2274 * with vmcs_shadow_fields.h.
2275 */
2276 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2277 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2278 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2279 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2280 }
2281
2282 if (vmx->nested.nested_run_pending &&
2283 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2284 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2285 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2286 } else {
2287 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2288 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2289 }
2290 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2291
2292 vmx->nested.preemption_timer_expired = false;
2293 if (nested_cpu_has_preemption_timer(vmcs12))
2294 vmx_start_preemption_timer(vcpu);
2295
2296 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2297 * bitwise-or of what L1 wants to trap for L2, and what we want to
2298 * trap. Note that CR0.TS also needs updating - we do this later.
2299 */
2300 update_exception_bitmap(vcpu);
2301 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2302 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2303
2304 if (vmx->nested.nested_run_pending &&
2305 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2306 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2307 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2308 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2309 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2310 }
2311
2312 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2313
2314 if (kvm_has_tsc_control)
2315 decache_tsc_multiplier(vmx);
2316
2317 if (enable_vpid) {
2318 /*
2319 * There is no direct mapping between vpid02 and vpid12, the
2320 * vpid02 is per-vCPU for L0 and reused while the value of
2321 * vpid12 is changed w/ one invvpid during nested vmentry.
2322 * The vpid12 is allocated by L1 for L2, so it will not
2323 * influence global bitmap(for vpid01 and vpid02 allocation)
2324 * even if spawn a lot of nested vCPUs.
2325 */
2326 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2327 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2328 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2329 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2330 }
2331 } else {
2332 /*
2333 * If L1 use EPT, then L0 needs to execute INVEPT on
2334 * EPTP02 instead of EPTP01. Therefore, delay TLB
2335 * flush until vmcs02->eptp is fully updated by
2336 * KVM_REQ_LOAD_CR3. Note that this assumes
2337 * KVM_REQ_TLB_FLUSH is evaluated after
2338 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2339 */
2340 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2341 }
2342 }
2343
2344 if (nested_cpu_has_ept(vmcs12))
2345 nested_ept_init_mmu_context(vcpu);
2346 else if (nested_cpu_has2(vmcs12,
2347 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2348 vmx_flush_tlb(vcpu, true);
2349
2350 /*
2351 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2352 * bits which we consider mandatory enabled.
2353 * The CR0_READ_SHADOW is what L2 should have expected to read given
2354 * the specifications by L1; It's not enough to take
2355 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2356 * have more bits than L1 expected.
2357 */
2358 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2359 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2360
2361 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2362 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2363
2364 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2365 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2366 vmx_set_efer(vcpu, vcpu->arch.efer);
2367
2368 /*
2369 * Guest state is invalid and unrestricted guest is disabled,
2370 * which means L1 attempted VMEntry to L2 with invalid state.
2371 * Fail the VMEntry.
2372 */
2373 if (vmx->emulation_required) {
2374 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2375 return 1;
2376 }
2377
2378 /* Shadow page tables on either EPT or shadow page tables. */
2379 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2380 entry_failure_code))
2381 return 1;
2382
2383 if (!enable_ept)
2384 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2385
2386 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2387 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2388 return 0;
2389 }
2390
2391 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2392 {
2393 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2394 nested_cpu_has_virtual_nmis(vmcs12))
2395 return -EINVAL;
2396
2397 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2398 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2399 return -EINVAL;
2400
2401 return 0;
2402 }
2403
2404 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2405 {
2406 struct vcpu_vmx *vmx = to_vmx(vcpu);
2407 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2408
2409 /* Check for memory type validity */
2410 switch (address & VMX_EPTP_MT_MASK) {
2411 case VMX_EPTP_MT_UC:
2412 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2413 return false;
2414 break;
2415 case VMX_EPTP_MT_WB:
2416 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2417 return false;
2418 break;
2419 default:
2420 return false;
2421 }
2422
2423 /* only 4 levels page-walk length are valid */
2424 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2425 return false;
2426
2427 /* Reserved bits should not be set */
2428 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2429 return false;
2430
2431 /* AD, if set, should be supported */
2432 if (address & VMX_EPTP_AD_ENABLE_BIT) {
2433 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2434 return false;
2435 }
2436
2437 return true;
2438 }
2439
2440 /*
2441 * Checks related to VM-Execution Control Fields
2442 */
2443 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2444 struct vmcs12 *vmcs12)
2445 {
2446 struct vcpu_vmx *vmx = to_vmx(vcpu);
2447
2448 if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2449 vmx->nested.msrs.pinbased_ctls_low,
2450 vmx->nested.msrs.pinbased_ctls_high) ||
2451 !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2452 vmx->nested.msrs.procbased_ctls_low,
2453 vmx->nested.msrs.procbased_ctls_high))
2454 return -EINVAL;
2455
2456 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2457 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2458 vmx->nested.msrs.secondary_ctls_low,
2459 vmx->nested.msrs.secondary_ctls_high))
2460 return -EINVAL;
2461
2462 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2463 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2464 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2465 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2466 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2467 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2468 nested_vmx_check_nmi_controls(vmcs12) ||
2469 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2470 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2471 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2472 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2473 (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2474 return -EINVAL;
2475
2476 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2477 nested_cpu_has_save_preemption_timer(vmcs12))
2478 return -EINVAL;
2479
2480 if (nested_cpu_has_ept(vmcs12) &&
2481 !valid_ept_address(vcpu, vmcs12->ept_pointer))
2482 return -EINVAL;
2483
2484 if (nested_cpu_has_vmfunc(vmcs12)) {
2485 if (vmcs12->vm_function_control &
2486 ~vmx->nested.msrs.vmfunc_controls)
2487 return -EINVAL;
2488
2489 if (nested_cpu_has_eptp_switching(vmcs12)) {
2490 if (!nested_cpu_has_ept(vmcs12) ||
2491 !page_address_valid(vcpu, vmcs12->eptp_list_address))
2492 return -EINVAL;
2493 }
2494 }
2495
2496 return 0;
2497 }
2498
2499 /*
2500 * Checks related to VM-Exit Control Fields
2501 */
2502 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2503 struct vmcs12 *vmcs12)
2504 {
2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
2506
2507 if (!vmx_control_verify(vmcs12->vm_exit_controls,
2508 vmx->nested.msrs.exit_ctls_low,
2509 vmx->nested.msrs.exit_ctls_high) ||
2510 nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2511 return -EINVAL;
2512
2513 return 0;
2514 }
2515
2516 /*
2517 * Checks related to VM-Entry Control Fields
2518 */
2519 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2520 struct vmcs12 *vmcs12)
2521 {
2522 struct vcpu_vmx *vmx = to_vmx(vcpu);
2523
2524 if (!vmx_control_verify(vmcs12->vm_entry_controls,
2525 vmx->nested.msrs.entry_ctls_low,
2526 vmx->nested.msrs.entry_ctls_high))
2527 return -EINVAL;
2528
2529 /*
2530 * From the Intel SDM, volume 3:
2531 * Fields relevant to VM-entry event injection must be set properly.
2532 * These fields are the VM-entry interruption-information field, the
2533 * VM-entry exception error code, and the VM-entry instruction length.
2534 */
2535 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2536 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2537 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2538 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2539 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2540 bool should_have_error_code;
2541 bool urg = nested_cpu_has2(vmcs12,
2542 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2543 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2544
2545 /* VM-entry interruption-info field: interruption type */
2546 if (intr_type == INTR_TYPE_RESERVED ||
2547 (intr_type == INTR_TYPE_OTHER_EVENT &&
2548 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2549 return -EINVAL;
2550
2551 /* VM-entry interruption-info field: vector */
2552 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2553 (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2554 (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2555 return -EINVAL;
2556
2557 /* VM-entry interruption-info field: deliver error code */
2558 should_have_error_code =
2559 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2560 x86_exception_has_error_code(vector);
2561 if (has_error_code != should_have_error_code)
2562 return -EINVAL;
2563
2564 /* VM-entry exception error code */
2565 if (has_error_code &&
2566 vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2567 return -EINVAL;
2568
2569 /* VM-entry interruption-info field: reserved bits */
2570 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2571 return -EINVAL;
2572
2573 /* VM-entry instruction length */
2574 switch (intr_type) {
2575 case INTR_TYPE_SOFT_EXCEPTION:
2576 case INTR_TYPE_SOFT_INTR:
2577 case INTR_TYPE_PRIV_SW_EXCEPTION:
2578 if ((vmcs12->vm_entry_instruction_len > 15) ||
2579 (vmcs12->vm_entry_instruction_len == 0 &&
2580 !nested_cpu_has_zero_length_injection(vcpu)))
2581 return -EINVAL;
2582 }
2583 }
2584
2585 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2586 return -EINVAL;
2587
2588 return 0;
2589 }
2590
2591 /*
2592 * Checks related to Host Control Registers and MSRs
2593 */
2594 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2595 struct vmcs12 *vmcs12)
2596 {
2597 bool ia32e;
2598
2599 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2600 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2601 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2602 return -EINVAL;
2603 /*
2604 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2605 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2606 * the values of the LMA and LME bits in the field must each be that of
2607 * the host address-space size VM-exit control.
2608 */
2609 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2610 ia32e = (vmcs12->vm_exit_controls &
2611 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2612 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2613 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2614 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2615 return -EINVAL;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /*
2622 * Checks related to Guest Non-register State
2623 */
2624 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2625 {
2626 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2627 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2628 return -EINVAL;
2629
2630 return 0;
2631 }
2632
2633 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2634 struct vmcs12 *vmcs12)
2635 {
2636 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2637 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2638 nested_check_vm_entry_controls(vcpu, vmcs12))
2639 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2640
2641 if (nested_check_host_control_regs(vcpu, vmcs12))
2642 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2643
2644 if (nested_check_guest_non_reg_state(vmcs12))
2645 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2646
2647 return 0;
2648 }
2649
2650 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2651 struct vmcs12 *vmcs12)
2652 {
2653 int r;
2654 struct page *page;
2655 struct vmcs12 *shadow;
2656
2657 if (vmcs12->vmcs_link_pointer == -1ull)
2658 return 0;
2659
2660 if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2661 return -EINVAL;
2662
2663 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2664 if (is_error_page(page))
2665 return -EINVAL;
2666
2667 r = 0;
2668 shadow = kmap(page);
2669 if (shadow->hdr.revision_id != VMCS12_REVISION ||
2670 shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2671 r = -EINVAL;
2672 kunmap(page);
2673 kvm_release_page_clean(page);
2674 return r;
2675 }
2676
2677 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2678 struct vmcs12 *vmcs12,
2679 u32 *exit_qual)
2680 {
2681 bool ia32e;
2682
2683 *exit_qual = ENTRY_FAIL_DEFAULT;
2684
2685 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2686 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2687 return 1;
2688
2689 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2690 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2691 return 1;
2692 }
2693
2694 /*
2695 * If the load IA32_EFER VM-entry control is 1, the following checks
2696 * are performed on the field for the IA32_EFER MSR:
2697 * - Bits reserved in the IA32_EFER MSR must be 0.
2698 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2699 * the IA-32e mode guest VM-exit control. It must also be identical
2700 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2701 * CR0.PG) is 1.
2702 */
2703 if (to_vmx(vcpu)->nested.nested_run_pending &&
2704 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2705 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2706 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2707 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2708 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2709 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2710 return 1;
2711 }
2712
2713 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2714 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2715 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2716 return 1;
2717
2718 return 0;
2719 }
2720
2721 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2722 {
2723 struct vcpu_vmx *vmx = to_vmx(vcpu);
2724 unsigned long cr3, cr4;
2725
2726 if (!nested_early_check)
2727 return 0;
2728
2729 if (vmx->msr_autoload.host.nr)
2730 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2731 if (vmx->msr_autoload.guest.nr)
2732 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2733
2734 preempt_disable();
2735
2736 vmx_prepare_switch_to_guest(vcpu);
2737
2738 /*
2739 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2740 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
2741 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2742 * there is no need to preserve other bits or save/restore the field.
2743 */
2744 vmcs_writel(GUEST_RFLAGS, 0);
2745
2746 cr3 = __get_current_cr3_fast();
2747 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2748 vmcs_writel(HOST_CR3, cr3);
2749 vmx->loaded_vmcs->host_state.cr3 = cr3;
2750 }
2751
2752 cr4 = cr4_read_shadow();
2753 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2754 vmcs_writel(HOST_CR4, cr4);
2755 vmx->loaded_vmcs->host_state.cr4 = cr4;
2756 }
2757
2758 vmx->__launched = vmx->loaded_vmcs->launched;
2759
2760 asm(
2761 /* Set HOST_RSP */
2762 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2763 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
2764 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2765 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2766
2767 /* Check if vmlaunch or vmresume is needed */
2768 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
2769
2770 "call vmx_vmenter\n\t"
2771
2772 /* Set vmx->fail accordingly */
2773 "setbe %c[fail](%% " _ASM_CX")\n\t"
2774 : ASM_CALL_CONSTRAINT
2775 : "c"(vmx), "d"((unsigned long)HOST_RSP),
2776 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2777 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2778 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2779 [wordsize]"i"(sizeof(ulong))
2780 : "rax", "cc", "memory"
2781 );
2782
2783 preempt_enable();
2784
2785 if (vmx->msr_autoload.host.nr)
2786 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2787 if (vmx->msr_autoload.guest.nr)
2788 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2789
2790 if (vmx->fail) {
2791 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2792 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2793 vmx->fail = 0;
2794 return 1;
2795 }
2796
2797 /*
2798 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2799 */
2800 local_irq_enable();
2801 if (hw_breakpoint_active())
2802 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2803
2804 /*
2805 * A non-failing VMEntry means we somehow entered guest mode with
2806 * an illegal RIP, and that's just the tip of the iceberg. There
2807 * is no telling what memory has been modified or what state has
2808 * been exposed to unknown code. Hitting this all but guarantees
2809 * a (very critical) hardware issue.
2810 */
2811 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2812 VMX_EXIT_REASONS_FAILED_VMENTRY));
2813
2814 return 0;
2815 }
2816 STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2817
2818
2819 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2820 struct vmcs12 *vmcs12);
2821
2822 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2823 {
2824 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2825 struct vcpu_vmx *vmx = to_vmx(vcpu);
2826 struct page *page;
2827 u64 hpa;
2828
2829 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2830 /*
2831 * Translate L1 physical address to host physical
2832 * address for vmcs02. Keep the page pinned, so this
2833 * physical address remains valid. We keep a reference
2834 * to it so we can release it later.
2835 */
2836 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2837 kvm_release_page_dirty(vmx->nested.apic_access_page);
2838 vmx->nested.apic_access_page = NULL;
2839 }
2840 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2841 /*
2842 * If translation failed, no matter: This feature asks
2843 * to exit when accessing the given address, and if it
2844 * can never be accessed, this feature won't do
2845 * anything anyway.
2846 */
2847 if (!is_error_page(page)) {
2848 vmx->nested.apic_access_page = page;
2849 hpa = page_to_phys(vmx->nested.apic_access_page);
2850 vmcs_write64(APIC_ACCESS_ADDR, hpa);
2851 } else {
2852 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2853 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2854 }
2855 }
2856
2857 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2858 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2859 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2860 vmx->nested.virtual_apic_page = NULL;
2861 }
2862 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2863
2864 /*
2865 * If translation failed, VM entry will fail because
2866 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2867 * Failing the vm entry is _not_ what the processor
2868 * does but it's basically the only possibility we
2869 * have. We could still enter the guest if CR8 load
2870 * exits are enabled, CR8 store exits are enabled, and
2871 * virtualize APIC access is disabled; in this case
2872 * the processor would never use the TPR shadow and we
2873 * could simply clear the bit from the execution
2874 * control. But such a configuration is useless, so
2875 * let's keep the code simple.
2876 */
2877 if (!is_error_page(page)) {
2878 vmx->nested.virtual_apic_page = page;
2879 hpa = page_to_phys(vmx->nested.virtual_apic_page);
2880 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2881 }
2882 }
2883
2884 if (nested_cpu_has_posted_intr(vmcs12)) {
2885 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2886 kunmap(vmx->nested.pi_desc_page);
2887 kvm_release_page_dirty(vmx->nested.pi_desc_page);
2888 vmx->nested.pi_desc_page = NULL;
2889 vmx->nested.pi_desc = NULL;
2890 vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2891 }
2892 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2893 if (is_error_page(page))
2894 return;
2895 vmx->nested.pi_desc_page = page;
2896 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2897 vmx->nested.pi_desc =
2898 (struct pi_desc *)((void *)vmx->nested.pi_desc +
2899 (unsigned long)(vmcs12->posted_intr_desc_addr &
2900 (PAGE_SIZE - 1)));
2901 vmcs_write64(POSTED_INTR_DESC_ADDR,
2902 page_to_phys(vmx->nested.pi_desc_page) +
2903 (unsigned long)(vmcs12->posted_intr_desc_addr &
2904 (PAGE_SIZE - 1)));
2905 }
2906 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2907 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2908 CPU_BASED_USE_MSR_BITMAPS);
2909 else
2910 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2911 CPU_BASED_USE_MSR_BITMAPS);
2912 }
2913
2914 /*
2915 * Intel's VMX Instruction Reference specifies a common set of prerequisites
2916 * for running VMX instructions (except VMXON, whose prerequisites are
2917 * slightly different). It also specifies what exception to inject otherwise.
2918 * Note that many of these exceptions have priority over VM exits, so they
2919 * don't have to be checked again here.
2920 */
2921 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2922 {
2923 if (!to_vmx(vcpu)->nested.vmxon) {
2924 kvm_queue_exception(vcpu, UD_VECTOR);
2925 return 0;
2926 }
2927
2928 if (vmx_get_cpl(vcpu)) {
2929 kvm_inject_gp(vcpu, 0);
2930 return 0;
2931 }
2932
2933 return 1;
2934 }
2935
2936 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2937 {
2938 u8 rvi = vmx_get_rvi();
2939 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2940
2941 return ((rvi & 0xf0) > (vppr & 0xf0));
2942 }
2943
2944 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2945 struct vmcs12 *vmcs12);
2946
2947 /*
2948 * If from_vmentry is false, this is being called from state restore (either RSM
2949 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
2950 + *
2951 + * Returns:
2952 + * 0 - success, i.e. proceed with actual VMEnter
2953 + * 1 - consistency check VMExit
2954 + * -1 - consistency check VMFail
2955 */
2956 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2957 {
2958 struct vcpu_vmx *vmx = to_vmx(vcpu);
2959 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2960 bool evaluate_pending_interrupts;
2961 u32 exit_reason = EXIT_REASON_INVALID_STATE;
2962 u32 exit_qual;
2963
2964 evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2965 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2966 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2967 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2968
2969 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2970 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2971 if (kvm_mpx_supported() &&
2972 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2973 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2974
2975 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2976
2977 prepare_vmcs02_early(vmx, vmcs12);
2978
2979 if (from_vmentry) {
2980 nested_get_vmcs12_pages(vcpu);
2981
2982 if (nested_vmx_check_vmentry_hw(vcpu)) {
2983 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2984 return -1;
2985 }
2986
2987 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2988 goto vmentry_fail_vmexit;
2989 }
2990
2991 enter_guest_mode(vcpu);
2992 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2993 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2994
2995 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2996 goto vmentry_fail_vmexit_guest_mode;
2997
2998 if (from_vmentry) {
2999 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3000 exit_qual = nested_vmx_load_msr(vcpu,
3001 vmcs12->vm_entry_msr_load_addr,
3002 vmcs12->vm_entry_msr_load_count);
3003 if (exit_qual)
3004 goto vmentry_fail_vmexit_guest_mode;
3005 } else {
3006 /*
3007 * The MMU is not initialized to point at the right entities yet and
3008 * "get pages" would need to read data from the guest (i.e. we will
3009 * need to perform gpa to hpa translation). Request a call
3010 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3011 * have already been set at vmentry time and should not be reset.
3012 */
3013 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3014 }
3015
3016 /*
3017 * If L1 had a pending IRQ/NMI until it executed
3018 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3019 * disallowed (e.g. interrupts disabled), L0 needs to
3020 * evaluate if this pending event should cause an exit from L2
3021 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3022 * intercept EXTERNAL_INTERRUPT).
3023 *
3024 * Usually this would be handled by the processor noticing an
3025 * IRQ/NMI window request, or checking RVI during evaluation of
3026 * pending virtual interrupts. However, this setting was done
3027 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3028 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3029 */
3030 if (unlikely(evaluate_pending_interrupts))
3031 kvm_make_request(KVM_REQ_EVENT, vcpu);
3032
3033 /*
3034 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3035 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3036 * returned as far as L1 is concerned. It will only return (and set
3037 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3038 */
3039 return 0;
3040
3041 /*
3042 * A failed consistency check that leads to a VMExit during L1's
3043 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3044 * 26.7 "VM-entry failures during or after loading guest state".
3045 */
3046 vmentry_fail_vmexit_guest_mode:
3047 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3048 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3049 leave_guest_mode(vcpu);
3050
3051 vmentry_fail_vmexit:
3052 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3053
3054 if (!from_vmentry)
3055 return 1;
3056
3057 load_vmcs12_host_state(vcpu, vmcs12);
3058 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3059 vmcs12->exit_qualification = exit_qual;
3060 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3061 vmx->nested.need_vmcs12_sync = true;
3062 return 1;
3063 }
3064
3065 /*
3066 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3067 * for running an L2 nested guest.
3068 */
3069 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3070 {
3071 struct vmcs12 *vmcs12;
3072 struct vcpu_vmx *vmx = to_vmx(vcpu);
3073 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3074 int ret;
3075
3076 if (!nested_vmx_check_permission(vcpu))
3077 return 1;
3078
3079 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3080 return 1;
3081
3082 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3083 return nested_vmx_failInvalid(vcpu);
3084
3085 vmcs12 = get_vmcs12(vcpu);
3086
3087 /*
3088 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3089 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3090 * rather than RFLAGS.ZF, and no error number is stored to the
3091 * VM-instruction error field.
3092 */
3093 if (vmcs12->hdr.shadow_vmcs)
3094 return nested_vmx_failInvalid(vcpu);
3095
3096 if (vmx->nested.hv_evmcs) {
3097 copy_enlightened_to_vmcs12(vmx);
3098 /* Enlightened VMCS doesn't have launch state */
3099 vmcs12->launch_state = !launch;
3100 } else if (enable_shadow_vmcs) {
3101 copy_shadow_to_vmcs12(vmx);
3102 }
3103
3104 /*
3105 * The nested entry process starts with enforcing various prerequisites
3106 * on vmcs12 as required by the Intel SDM, and act appropriately when
3107 * they fail: As the SDM explains, some conditions should cause the
3108 * instruction to fail, while others will cause the instruction to seem
3109 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3110 * To speed up the normal (success) code path, we should avoid checking
3111 * for misconfigurations which will anyway be caught by the processor
3112 * when using the merged vmcs02.
3113 */
3114 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3115 return nested_vmx_failValid(vcpu,
3116 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3117
3118 if (vmcs12->launch_state == launch)
3119 return nested_vmx_failValid(vcpu,
3120 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3121 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3122
3123 ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3124 if (ret)
3125 return nested_vmx_failValid(vcpu, ret);
3126
3127 /*
3128 * We're finally done with prerequisite checking, and can start with
3129 * the nested entry.
3130 */
3131 vmx->nested.nested_run_pending = 1;
3132 ret = nested_vmx_enter_non_root_mode(vcpu, true);
3133 vmx->nested.nested_run_pending = !ret;
3134 if (ret > 0)
3135 return 1;
3136 else if (ret)
3137 return nested_vmx_failValid(vcpu,
3138 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3139
3140 /* Hide L1D cache contents from the nested guest. */
3141 vmx->vcpu.arch.l1tf_flush_l1d = true;
3142
3143 /*
3144 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3145 * also be used as part of restoring nVMX state for
3146 * snapshot restore (migration).
3147 *
3148 * In this flow, it is assumed that vmcs12 cache was
3149 * trasferred as part of captured nVMX state and should
3150 * therefore not be read from guest memory (which may not
3151 * exist on destination host yet).
3152 */
3153 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3154
3155 /*
3156 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3157 * awakened by event injection or by an NMI-window VM-exit or
3158 * by an interrupt-window VM-exit, halt the vcpu.
3159 */
3160 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3161 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3162 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3163 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3164 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3165 vmx->nested.nested_run_pending = 0;
3166 return kvm_vcpu_halt(vcpu);
3167 }
3168 return 1;
3169 }
3170
3171 /*
3172 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3173 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3174 * This function returns the new value we should put in vmcs12.guest_cr0.
3175 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3176 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3177 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3178 * didn't trap the bit, because if L1 did, so would L0).
3179 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3180 * been modified by L2, and L1 knows it. So just leave the old value of
3181 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3182 * isn't relevant, because if L0 traps this bit it can set it to anything.
3183 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3184 * changed these bits, and therefore they need to be updated, but L0
3185 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3186 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3187 */
3188 static inline unsigned long
3189 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3190 {
3191 return
3192 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3193 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3194 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3195 vcpu->arch.cr0_guest_owned_bits));
3196 }
3197
3198 static inline unsigned long
3199 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3200 {
3201 return
3202 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3203 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3204 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3205 vcpu->arch.cr4_guest_owned_bits));
3206 }
3207
3208 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3209 struct vmcs12 *vmcs12)
3210 {
3211 u32 idt_vectoring;
3212 unsigned int nr;
3213
3214 if (vcpu->arch.exception.injected) {
3215 nr = vcpu->arch.exception.nr;
3216 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3217
3218 if (kvm_exception_is_soft(nr)) {
3219 vmcs12->vm_exit_instruction_len =
3220 vcpu->arch.event_exit_inst_len;
3221 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3222 } else
3223 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3224
3225 if (vcpu->arch.exception.has_error_code) {
3226 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3227 vmcs12->idt_vectoring_error_code =
3228 vcpu->arch.exception.error_code;
3229 }
3230
3231 vmcs12->idt_vectoring_info_field = idt_vectoring;
3232 } else if (vcpu->arch.nmi_injected) {
3233 vmcs12->idt_vectoring_info_field =
3234 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3235 } else if (vcpu->arch.interrupt.injected) {
3236 nr = vcpu->arch.interrupt.nr;
3237 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3238
3239 if (vcpu->arch.interrupt.soft) {
3240 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3241 vmcs12->vm_entry_instruction_len =
3242 vcpu->arch.event_exit_inst_len;
3243 } else
3244 idt_vectoring |= INTR_TYPE_EXT_INTR;
3245
3246 vmcs12->idt_vectoring_info_field = idt_vectoring;
3247 }
3248 }
3249
3250
3251 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3252 {
3253 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3254 gfn_t gfn;
3255
3256 /*
3257 * Don't need to mark the APIC access page dirty; it is never
3258 * written to by the CPU during APIC virtualization.
3259 */
3260
3261 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3262 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3263 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3264 }
3265
3266 if (nested_cpu_has_posted_intr(vmcs12)) {
3267 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3268 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3269 }
3270 }
3271
3272 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 int max_irr;
3276 void *vapic_page;
3277 u16 status;
3278
3279 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3280 return;
3281
3282 vmx->nested.pi_pending = false;
3283 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3284 return;
3285
3286 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3287 if (max_irr != 256) {
3288 vapic_page = kmap(vmx->nested.virtual_apic_page);
3289 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3290 vapic_page, &max_irr);
3291 kunmap(vmx->nested.virtual_apic_page);
3292
3293 status = vmcs_read16(GUEST_INTR_STATUS);
3294 if ((u8)max_irr > ((u8)status & 0xff)) {
3295 status &= ~0xff;
3296 status |= (u8)max_irr;
3297 vmcs_write16(GUEST_INTR_STATUS, status);
3298 }
3299 }
3300
3301 nested_mark_vmcs12_pages_dirty(vcpu);
3302 }
3303
3304 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3305 unsigned long exit_qual)
3306 {
3307 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3308 unsigned int nr = vcpu->arch.exception.nr;
3309 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3310
3311 if (vcpu->arch.exception.has_error_code) {
3312 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3313 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3314 }
3315
3316 if (kvm_exception_is_soft(nr))
3317 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3318 else
3319 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3320
3321 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3322 vmx_get_nmi_mask(vcpu))
3323 intr_info |= INTR_INFO_UNBLOCK_NMI;
3324
3325 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3326 }
3327
3328 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3329 {
3330 struct vcpu_vmx *vmx = to_vmx(vcpu);
3331 unsigned long exit_qual;
3332 bool block_nested_events =
3333 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3334
3335 if (vcpu->arch.exception.pending &&
3336 nested_vmx_check_exception(vcpu, &exit_qual)) {
3337 if (block_nested_events)
3338 return -EBUSY;
3339 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3340 return 0;
3341 }
3342
3343 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3344 vmx->nested.preemption_timer_expired) {
3345 if (block_nested_events)
3346 return -EBUSY;
3347 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3348 return 0;
3349 }
3350
3351 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3352 if (block_nested_events)
3353 return -EBUSY;
3354 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3355 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3356 INTR_INFO_VALID_MASK, 0);
3357 /*
3358 * The NMI-triggered VM exit counts as injection:
3359 * clear this one and block further NMIs.
3360 */
3361 vcpu->arch.nmi_pending = 0;
3362 vmx_set_nmi_mask(vcpu, true);
3363 return 0;
3364 }
3365
3366 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3367 nested_exit_on_intr(vcpu)) {
3368 if (block_nested_events)
3369 return -EBUSY;
3370 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3371 return 0;
3372 }
3373
3374 vmx_complete_nested_posted_interrupt(vcpu);
3375 return 0;
3376 }
3377
3378 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3379 {
3380 ktime_t remaining =
3381 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3382 u64 value;
3383
3384 if (ktime_to_ns(remaining) <= 0)
3385 return 0;
3386
3387 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3388 do_div(value, 1000000);
3389 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3390 }
3391
3392 /*
3393 * Update the guest state fields of vmcs12 to reflect changes that
3394 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3395 * VM-entry controls is also updated, since this is really a guest
3396 * state bit.)
3397 */
3398 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3399 {
3400 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3401 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3402
3403 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3404 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3405 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3406
3407 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3408 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3409 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3410 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3411 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3412 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3413 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3414 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3415 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3416 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3417 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3418 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3419 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3420 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3421 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3422 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3423 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3424 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3425 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3426 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3427 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3428 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3429 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3430 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3431 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3432 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3433 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3434 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3435 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3436 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3437 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3438 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3439 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3440 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3441 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3442 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3443
3444 vmcs12->guest_interruptibility_info =
3445 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3446 vmcs12->guest_pending_dbg_exceptions =
3447 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3448 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3449 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3450 else
3451 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3452
3453 if (nested_cpu_has_preemption_timer(vmcs12)) {
3454 if (vmcs12->vm_exit_controls &
3455 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3456 vmcs12->vmx_preemption_timer_value =
3457 vmx_get_preemption_timer_value(vcpu);
3458 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3459 }
3460
3461 /*
3462 * In some cases (usually, nested EPT), L2 is allowed to change its
3463 * own CR3 without exiting. If it has changed it, we must keep it.
3464 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3465 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3466 *
3467 * Additionally, restore L2's PDPTR to vmcs12.
3468 */
3469 if (enable_ept) {
3470 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3471 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3472 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3473 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3474 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3475 }
3476
3477 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3478
3479 if (nested_cpu_has_vid(vmcs12))
3480 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3481
3482 vmcs12->vm_entry_controls =
3483 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3484 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3485
3486 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3487 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3488 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3489 }
3490
3491 /* TODO: These cannot have changed unless we have MSR bitmaps and
3492 * the relevant bit asks not to trap the change */
3493 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3494 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3495 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3496 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3497 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3498 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3499 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3500 if (kvm_mpx_supported())
3501 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3502 }
3503
3504 /*
3505 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3506 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3507 * and this function updates it to reflect the changes to the guest state while
3508 * L2 was running (and perhaps made some exits which were handled directly by L0
3509 * without going back to L1), and to reflect the exit reason.
3510 * Note that we do not have to copy here all VMCS fields, just those that
3511 * could have changed by the L2 guest or the exit - i.e., the guest-state and
3512 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3513 * which already writes to vmcs12 directly.
3514 */
3515 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3516 u32 exit_reason, u32 exit_intr_info,
3517 unsigned long exit_qualification)
3518 {
3519 /* update guest state fields: */
3520 sync_vmcs12(vcpu, vmcs12);
3521
3522 /* update exit information fields: */
3523
3524 vmcs12->vm_exit_reason = exit_reason;
3525 vmcs12->exit_qualification = exit_qualification;
3526 vmcs12->vm_exit_intr_info = exit_intr_info;
3527
3528 vmcs12->idt_vectoring_info_field = 0;
3529 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3530 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3531
3532 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3533 vmcs12->launch_state = 1;
3534
3535 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3536 * instead of reading the real value. */
3537 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3538
3539 /*
3540 * Transfer the event that L0 or L1 may wanted to inject into
3541 * L2 to IDT_VECTORING_INFO_FIELD.
3542 */
3543 vmcs12_save_pending_event(vcpu, vmcs12);
3544
3545 /*
3546 * According to spec, there's no need to store the guest's
3547 * MSRs if the exit is due to a VM-entry failure that occurs
3548 * during or after loading the guest state. Since this exit
3549 * does not fall in that category, we need to save the MSRs.
3550 */
3551 if (nested_vmx_store_msr(vcpu,
3552 vmcs12->vm_exit_msr_store_addr,
3553 vmcs12->vm_exit_msr_store_count))
3554 nested_vmx_abort(vcpu,
3555 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3556 }
3557
3558 /*
3559 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3560 * preserved above and would only end up incorrectly in L1.
3561 */
3562 vcpu->arch.nmi_injected = false;
3563 kvm_clear_exception_queue(vcpu);
3564 kvm_clear_interrupt_queue(vcpu);
3565 }
3566
3567 /*
3568 * A part of what we need to when the nested L2 guest exits and we want to
3569 * run its L1 parent, is to reset L1's guest state to the host state specified
3570 * in vmcs12.
3571 * This function is to be called not only on normal nested exit, but also on
3572 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3573 * Failures During or After Loading Guest State").
3574 * This function should be called when the active VMCS is L1's (vmcs01).
3575 */
3576 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3577 struct vmcs12 *vmcs12)
3578 {
3579 struct kvm_segment seg;
3580 u32 entry_failure_code;
3581
3582 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3583 vcpu->arch.efer = vmcs12->host_ia32_efer;
3584 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3585 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3586 else
3587 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3588 vmx_set_efer(vcpu, vcpu->arch.efer);
3589
3590 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3591 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3592 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3593 vmx_set_interrupt_shadow(vcpu, 0);
3594
3595 /*
3596 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3597 * actually changed, because vmx_set_cr0 refers to efer set above.
3598 *
3599 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3600 * (KVM doesn't change it);
3601 */
3602 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3603 vmx_set_cr0(vcpu, vmcs12->host_cr0);
3604
3605 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
3606 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3607 vmx_set_cr4(vcpu, vmcs12->host_cr4);
3608
3609 nested_ept_uninit_mmu_context(vcpu);
3610
3611 /*
3612 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3613 * couldn't have changed.
3614 */
3615 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3616 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3617
3618 if (!enable_ept)
3619 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3620
3621 /*
3622 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3623 * VMEntry/VMExit. Thus, no need to flush TLB.
3624 *
3625 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3626 * flushed on every VMEntry/VMExit.
3627 *
3628 * Otherwise, we can preserve TLB entries as long as we are
3629 * able to tag L1 TLB entries differently than L2 TLB entries.
3630 *
3631 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3632 * and therefore we request the TLB flush to happen only after VMCS EPTP
3633 * has been set by KVM_REQ_LOAD_CR3.
3634 */
3635 if (enable_vpid &&
3636 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3637 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3638 }
3639
3640 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3641 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3642 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3643 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3644 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3645 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3646 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3647
3648 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
3649 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3650 vmcs_write64(GUEST_BNDCFGS, 0);
3651
3652 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3653 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3654 vcpu->arch.pat = vmcs12->host_ia32_pat;
3655 }
3656 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3657 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3658 vmcs12->host_ia32_perf_global_ctrl);
3659
3660 /* Set L1 segment info according to Intel SDM
3661 27.5.2 Loading Host Segment and Descriptor-Table Registers */
3662 seg = (struct kvm_segment) {
3663 .base = 0,
3664 .limit = 0xFFFFFFFF,
3665 .selector = vmcs12->host_cs_selector,
3666 .type = 11,
3667 .present = 1,
3668 .s = 1,
3669 .g = 1
3670 };
3671 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3672 seg.l = 1;
3673 else
3674 seg.db = 1;
3675 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3676 seg = (struct kvm_segment) {
3677 .base = 0,
3678 .limit = 0xFFFFFFFF,
3679 .type = 3,
3680 .present = 1,
3681 .s = 1,
3682 .db = 1,
3683 .g = 1
3684 };
3685 seg.selector = vmcs12->host_ds_selector;
3686 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3687 seg.selector = vmcs12->host_es_selector;
3688 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3689 seg.selector = vmcs12->host_ss_selector;
3690 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3691 seg.selector = vmcs12->host_fs_selector;
3692 seg.base = vmcs12->host_fs_base;
3693 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3694 seg.selector = vmcs12->host_gs_selector;
3695 seg.base = vmcs12->host_gs_base;
3696 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3697 seg = (struct kvm_segment) {
3698 .base = vmcs12->host_tr_base,
3699 .limit = 0x67,
3700 .selector = vmcs12->host_tr_selector,
3701 .type = 11,
3702 .present = 1
3703 };
3704 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3705
3706 kvm_set_dr(vcpu, 7, 0x400);
3707 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3708
3709 if (cpu_has_vmx_msr_bitmap())
3710 vmx_update_msr_bitmap(vcpu);
3711
3712 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3713 vmcs12->vm_exit_msr_load_count))
3714 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3715 }
3716
3717 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3718 {
3719 struct shared_msr_entry *efer_msr;
3720 unsigned int i;
3721
3722 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3723 return vmcs_read64(GUEST_IA32_EFER);
3724
3725 if (cpu_has_load_ia32_efer())
3726 return host_efer;
3727
3728 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3729 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3730 return vmx->msr_autoload.guest.val[i].value;
3731 }
3732
3733 efer_msr = find_msr_entry(vmx, MSR_EFER);
3734 if (efer_msr)
3735 return efer_msr->data;
3736
3737 return host_efer;
3738 }
3739
3740 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3741 {
3742 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3743 struct vcpu_vmx *vmx = to_vmx(vcpu);
3744 struct vmx_msr_entry g, h;
3745 struct msr_data msr;
3746 gpa_t gpa;
3747 u32 i, j;
3748
3749 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3750
3751 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3752 /*
3753 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3754 * as vmcs01.GUEST_DR7 contains a userspace defined value
3755 * and vcpu->arch.dr7 is not squirreled away before the
3756 * nested VMENTER (not worth adding a variable in nested_vmx).
3757 */
3758 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3759 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3760 else
3761 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3762 }
3763
3764 /*
3765 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3766 * handle a variety of side effects to KVM's software model.
3767 */
3768 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3769
3770 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3771 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3772
3773 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3774 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3775
3776 nested_ept_uninit_mmu_context(vcpu);
3777 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3778 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3779
3780 /*
3781 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3782 * from vmcs01 (if necessary). The PDPTRs are not loaded on
3783 * VMFail, like everything else we just need to ensure our
3784 * software model is up-to-date.
3785 */
3786 ept_save_pdptrs(vcpu);
3787
3788 kvm_mmu_reset_context(vcpu);
3789
3790 if (cpu_has_vmx_msr_bitmap())
3791 vmx_update_msr_bitmap(vcpu);
3792
3793 /*
3794 * This nasty bit of open coding is a compromise between blindly
3795 * loading L1's MSRs using the exit load lists (incorrect emulation
3796 * of VMFail), leaving the nested VM's MSRs in the software model
3797 * (incorrect behavior) and snapshotting the modified MSRs (too
3798 * expensive since the lists are unbound by hardware). For each
3799 * MSR that was (prematurely) loaded from the nested VMEntry load
3800 * list, reload it from the exit load list if it exists and differs
3801 * from the guest value. The intent is to stuff host state as
3802 * silently as possible, not to fully process the exit load list.
3803 */
3804 msr.host_initiated = false;
3805 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3806 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3807 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3808 pr_debug_ratelimited(
3809 "%s read MSR index failed (%u, 0x%08llx)\n",
3810 __func__, i, gpa);
3811 goto vmabort;
3812 }
3813
3814 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3815 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3816 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3817 pr_debug_ratelimited(
3818 "%s read MSR failed (%u, 0x%08llx)\n",
3819 __func__, j, gpa);
3820 goto vmabort;
3821 }
3822 if (h.index != g.index)
3823 continue;
3824 if (h.value == g.value)
3825 break;
3826
3827 if (nested_vmx_load_msr_check(vcpu, &h)) {
3828 pr_debug_ratelimited(
3829 "%s check failed (%u, 0x%x, 0x%x)\n",
3830 __func__, j, h.index, h.reserved);
3831 goto vmabort;
3832 }
3833
3834 msr.index = h.index;
3835 msr.data = h.value;
3836 if (kvm_set_msr(vcpu, &msr)) {
3837 pr_debug_ratelimited(
3838 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3839 __func__, j, h.index, h.value);
3840 goto vmabort;
3841 }
3842 }
3843 }
3844
3845 return;
3846
3847 vmabort:
3848 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3849 }
3850
3851 /*
3852 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3853 * and modify vmcs12 to make it see what it would expect to see there if
3854 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3855 */
3856 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3857 u32 exit_intr_info, unsigned long exit_qualification)
3858 {
3859 struct vcpu_vmx *vmx = to_vmx(vcpu);
3860 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3861
3862 /* trying to cancel vmlaunch/vmresume is a bug */
3863 WARN_ON_ONCE(vmx->nested.nested_run_pending);
3864
3865 leave_guest_mode(vcpu);
3866
3867 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3868 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3869
3870 if (likely(!vmx->fail)) {
3871 if (exit_reason == -1)
3872 sync_vmcs12(vcpu, vmcs12);
3873 else
3874 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3875 exit_qualification);
3876
3877 /*
3878 * Must happen outside of sync_vmcs12() as it will
3879 * also be used to capture vmcs12 cache as part of
3880 * capturing nVMX state for snapshot (migration).
3881 *
3882 * Otherwise, this flush will dirty guest memory at a
3883 * point it is already assumed by user-space to be
3884 * immutable.
3885 */
3886 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3887 } else {
3888 /*
3889 * The only expected VM-instruction error is "VM entry with
3890 * invalid control field(s)." Anything else indicates a
3891 * problem with L0. And we should never get here with a
3892 * VMFail of any type if early consistency checks are enabled.
3893 */
3894 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3895 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3896 WARN_ON_ONCE(nested_early_check);
3897 }
3898
3899 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3900
3901 /* Update any VMCS fields that might have changed while L2 ran */
3902 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3903 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3904 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3905
3906 if (kvm_has_tsc_control)
3907 decache_tsc_multiplier(vmx);
3908
3909 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3910 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3911 vmx_set_virtual_apic_mode(vcpu);
3912 } else if (!nested_cpu_has_ept(vmcs12) &&
3913 nested_cpu_has2(vmcs12,
3914 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3915 vmx_flush_tlb(vcpu, true);
3916 }
3917
3918 /* This is needed for same reason as it was needed in prepare_vmcs02 */
3919 vmx->host_rsp = 0;
3920
3921 /* Unpin physical memory we referred to in vmcs02 */
3922 if (vmx->nested.apic_access_page) {
3923 kvm_release_page_dirty(vmx->nested.apic_access_page);
3924 vmx->nested.apic_access_page = NULL;
3925 }
3926 if (vmx->nested.virtual_apic_page) {
3927 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3928 vmx->nested.virtual_apic_page = NULL;
3929 }
3930 if (vmx->nested.pi_desc_page) {
3931 kunmap(vmx->nested.pi_desc_page);
3932 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3933 vmx->nested.pi_desc_page = NULL;
3934 vmx->nested.pi_desc = NULL;
3935 }
3936
3937 /*
3938 * We are now running in L2, mmu_notifier will force to reload the
3939 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3940 */
3941 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3942
3943 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3944 vmx->nested.need_vmcs12_sync = true;
3945
3946 /* in case we halted in L2 */
3947 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3948
3949 if (likely(!vmx->fail)) {
3950 /*
3951 * TODO: SDM says that with acknowledge interrupt on
3952 * exit, bit 31 of the VM-exit interrupt information
3953 * (valid interrupt) is always set to 1 on
3954 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3955 * need kvm_cpu_has_interrupt(). See the commit
3956 * message for details.
3957 */
3958 if (nested_exit_intr_ack_set(vcpu) &&
3959 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3960 kvm_cpu_has_interrupt(vcpu)) {
3961 int irq = kvm_cpu_get_interrupt(vcpu);
3962 WARN_ON(irq < 0);
3963 vmcs12->vm_exit_intr_info = irq |
3964 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3965 }
3966
3967 if (exit_reason != -1)
3968 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3969 vmcs12->exit_qualification,
3970 vmcs12->idt_vectoring_info_field,
3971 vmcs12->vm_exit_intr_info,
3972 vmcs12->vm_exit_intr_error_code,
3973 KVM_ISA_VMX);
3974
3975 load_vmcs12_host_state(vcpu, vmcs12);
3976
3977 return;
3978 }
3979
3980 /*
3981 * After an early L2 VM-entry failure, we're now back
3982 * in L1 which thinks it just finished a VMLAUNCH or
3983 * VMRESUME instruction, so we need to set the failure
3984 * flag and the VM-instruction error field of the VMCS
3985 * accordingly, and skip the emulated instruction.
3986 */
3987 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3988
3989 /*
3990 * Restore L1's host state to KVM's software model. We're here
3991 * because a consistency check was caught by hardware, which
3992 * means some amount of guest state has been propagated to KVM's
3993 * model and needs to be unwound to the host's state.
3994 */
3995 nested_vmx_restore_host_state(vcpu);
3996
3997 vmx->fail = 0;
3998 }
3999
4000 /*
4001 * Decode the memory-address operand of a vmx instruction, as recorded on an
4002 * exit caused by such an instruction (run by a guest hypervisor).
4003 * On success, returns 0. When the operand is invalid, returns 1 and throws
4004 * #UD or #GP.
4005 */
4006 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4007 u32 vmx_instruction_info, bool wr, gva_t *ret)
4008 {
4009 gva_t off;
4010 bool exn;
4011 struct kvm_segment s;
4012
4013 /*
4014 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4015 * Execution", on an exit, vmx_instruction_info holds most of the
4016 * addressing components of the operand. Only the displacement part
4017 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4018 * For how an actual address is calculated from all these components,
4019 * refer to Vol. 1, "Operand Addressing".
4020 */
4021 int scaling = vmx_instruction_info & 3;
4022 int addr_size = (vmx_instruction_info >> 7) & 7;
4023 bool is_reg = vmx_instruction_info & (1u << 10);
4024 int seg_reg = (vmx_instruction_info >> 15) & 7;
4025 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4026 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4027 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4028 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4029
4030 if (is_reg) {
4031 kvm_queue_exception(vcpu, UD_VECTOR);
4032 return 1;
4033 }
4034
4035 /* Addr = segment_base + offset */
4036 /* offset = base + [index * scale] + displacement */
4037 off = exit_qualification; /* holds the displacement */
4038 if (base_is_valid)
4039 off += kvm_register_read(vcpu, base_reg);
4040 if (index_is_valid)
4041 off += kvm_register_read(vcpu, index_reg)<<scaling;
4042 vmx_get_segment(vcpu, &s, seg_reg);
4043 *ret = s.base + off;
4044
4045 if (addr_size == 1) /* 32 bit */
4046 *ret &= 0xffffffff;
4047
4048 /* Checks for #GP/#SS exceptions. */
4049 exn = false;
4050 if (is_long_mode(vcpu)) {
4051 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4052 * non-canonical form. This is the only check on the memory
4053 * destination for long mode!
4054 */
4055 exn = is_noncanonical_address(*ret, vcpu);
4056 } else if (is_protmode(vcpu)) {
4057 /* Protected mode: apply checks for segment validity in the
4058 * following order:
4059 * - segment type check (#GP(0) may be thrown)
4060 * - usability check (#GP(0)/#SS(0))
4061 * - limit check (#GP(0)/#SS(0))
4062 */
4063 if (wr)
4064 /* #GP(0) if the destination operand is located in a
4065 * read-only data segment or any code segment.
4066 */
4067 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4068 else
4069 /* #GP(0) if the source operand is located in an
4070 * execute-only code segment
4071 */
4072 exn = ((s.type & 0xa) == 8);
4073 if (exn) {
4074 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4075 return 1;
4076 }
4077 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4078 */
4079 exn = (s.unusable != 0);
4080 /* Protected mode: #GP(0)/#SS(0) if the memory
4081 * operand is outside the segment limit.
4082 */
4083 exn = exn || (off + sizeof(u64) > s.limit);
4084 }
4085 if (exn) {
4086 kvm_queue_exception_e(vcpu,
4087 seg_reg == VCPU_SREG_SS ?
4088 SS_VECTOR : GP_VECTOR,
4089 0);
4090 return 1;
4091 }
4092
4093 return 0;
4094 }
4095
4096 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4097 {
4098 gva_t gva;
4099 struct x86_exception e;
4100
4101 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4102 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4103 return 1;
4104
4105 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4106 kvm_inject_page_fault(vcpu, &e);
4107 return 1;
4108 }
4109
4110 return 0;
4111 }
4112
4113 /*
4114 * Allocate a shadow VMCS and associate it with the currently loaded
4115 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4116 * VMCS is also VMCLEARed, so that it is ready for use.
4117 */
4118 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4119 {
4120 struct vcpu_vmx *vmx = to_vmx(vcpu);
4121 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4122
4123 /*
4124 * We should allocate a shadow vmcs for vmcs01 only when L1
4125 * executes VMXON and free it when L1 executes VMXOFF.
4126 * As it is invalid to execute VMXON twice, we shouldn't reach
4127 * here when vmcs01 already have an allocated shadow vmcs.
4128 */
4129 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4130
4131 if (!loaded_vmcs->shadow_vmcs) {
4132 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4133 if (loaded_vmcs->shadow_vmcs)
4134 vmcs_clear(loaded_vmcs->shadow_vmcs);
4135 }
4136 return loaded_vmcs->shadow_vmcs;
4137 }
4138
4139 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4140 {
4141 struct vcpu_vmx *vmx = to_vmx(vcpu);
4142 int r;
4143
4144 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4145 if (r < 0)
4146 goto out_vmcs02;
4147
4148 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4149 if (!vmx->nested.cached_vmcs12)
4150 goto out_cached_vmcs12;
4151
4152 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4153 if (!vmx->nested.cached_shadow_vmcs12)
4154 goto out_cached_shadow_vmcs12;
4155
4156 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4157 goto out_shadow_vmcs;
4158
4159 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4160 HRTIMER_MODE_REL_PINNED);
4161 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4162
4163 vmx->nested.vpid02 = allocate_vpid();
4164
4165 vmx->nested.vmcs02_initialized = false;
4166 vmx->nested.vmxon = true;
4167
4168 if (pt_mode == PT_MODE_HOST_GUEST) {
4169 vmx->pt_desc.guest.ctl = 0;
4170 pt_update_intercept_for_msr(vmx);
4171 }
4172
4173 return 0;
4174
4175 out_shadow_vmcs:
4176 kfree(vmx->nested.cached_shadow_vmcs12);
4177
4178 out_cached_shadow_vmcs12:
4179 kfree(vmx->nested.cached_vmcs12);
4180
4181 out_cached_vmcs12:
4182 free_loaded_vmcs(&vmx->nested.vmcs02);
4183
4184 out_vmcs02:
4185 return -ENOMEM;
4186 }
4187
4188 /*
4189 * Emulate the VMXON instruction.
4190 * Currently, we just remember that VMX is active, and do not save or even
4191 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4192 * do not currently need to store anything in that guest-allocated memory
4193 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4194 * argument is different from the VMXON pointer (which the spec says they do).
4195 */
4196 static int handle_vmon(struct kvm_vcpu *vcpu)
4197 {
4198 int ret;
4199 gpa_t vmptr;
4200 struct page *page;
4201 struct vcpu_vmx *vmx = to_vmx(vcpu);
4202 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4203 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4204
4205 /*
4206 * The Intel VMX Instruction Reference lists a bunch of bits that are
4207 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4208 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4209 * Otherwise, we should fail with #UD. But most faulting conditions
4210 * have already been checked by hardware, prior to the VM-exit for
4211 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4212 * that bit set to 1 in non-root mode.
4213 */
4214 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4215 kvm_queue_exception(vcpu, UD_VECTOR);
4216 return 1;
4217 }
4218
4219 /* CPL=0 must be checked manually. */
4220 if (vmx_get_cpl(vcpu)) {
4221 kvm_inject_gp(vcpu, 0);
4222 return 1;
4223 }
4224
4225 if (vmx->nested.vmxon)
4226 return nested_vmx_failValid(vcpu,
4227 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4228
4229 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4230 != VMXON_NEEDED_FEATURES) {
4231 kvm_inject_gp(vcpu, 0);
4232 return 1;
4233 }
4234
4235 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4236 return 1;
4237
4238 /*
4239 * SDM 3: 24.11.5
4240 * The first 4 bytes of VMXON region contain the supported
4241 * VMCS revision identifier
4242 *
4243 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4244 * which replaces physical address width with 32
4245 */
4246 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4247 return nested_vmx_failInvalid(vcpu);
4248
4249 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4250 if (is_error_page(page))
4251 return nested_vmx_failInvalid(vcpu);
4252
4253 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4254 kunmap(page);
4255 kvm_release_page_clean(page);
4256 return nested_vmx_failInvalid(vcpu);
4257 }
4258 kunmap(page);
4259 kvm_release_page_clean(page);
4260
4261 vmx->nested.vmxon_ptr = vmptr;
4262 ret = enter_vmx_operation(vcpu);
4263 if (ret)
4264 return ret;
4265
4266 return nested_vmx_succeed(vcpu);
4267 }
4268
4269 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4270 {
4271 struct vcpu_vmx *vmx = to_vmx(vcpu);
4272
4273 if (vmx->nested.current_vmptr == -1ull)
4274 return;
4275
4276 if (enable_shadow_vmcs) {
4277 /* copy to memory all shadowed fields in case
4278 they were modified */
4279 copy_shadow_to_vmcs12(vmx);
4280 vmx->nested.need_vmcs12_sync = false;
4281 vmx_disable_shadow_vmcs(vmx);
4282 }
4283 vmx->nested.posted_intr_nv = -1;
4284
4285 /* Flush VMCS12 to guest memory */
4286 kvm_vcpu_write_guest_page(vcpu,
4287 vmx->nested.current_vmptr >> PAGE_SHIFT,
4288 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4289
4290 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4291
4292 vmx->nested.current_vmptr = -1ull;
4293 }
4294
4295 /* Emulate the VMXOFF instruction */
4296 static int handle_vmoff(struct kvm_vcpu *vcpu)
4297 {
4298 if (!nested_vmx_check_permission(vcpu))
4299 return 1;
4300 free_nested(vcpu);
4301 return nested_vmx_succeed(vcpu);
4302 }
4303
4304 /* Emulate the VMCLEAR instruction */
4305 static int handle_vmclear(struct kvm_vcpu *vcpu)
4306 {
4307 struct vcpu_vmx *vmx = to_vmx(vcpu);
4308 u32 zero = 0;
4309 gpa_t vmptr;
4310
4311 if (!nested_vmx_check_permission(vcpu))
4312 return 1;
4313
4314 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4315 return 1;
4316
4317 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4318 return nested_vmx_failValid(vcpu,
4319 VMXERR_VMCLEAR_INVALID_ADDRESS);
4320
4321 if (vmptr == vmx->nested.vmxon_ptr)
4322 return nested_vmx_failValid(vcpu,
4323 VMXERR_VMCLEAR_VMXON_POINTER);
4324
4325 if (vmx->nested.hv_evmcs_page) {
4326 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4327 nested_release_evmcs(vcpu);
4328 } else {
4329 if (vmptr == vmx->nested.current_vmptr)
4330 nested_release_vmcs12(vcpu);
4331
4332 kvm_vcpu_write_guest(vcpu,
4333 vmptr + offsetof(struct vmcs12,
4334 launch_state),
4335 &zero, sizeof(zero));
4336 }
4337
4338 return nested_vmx_succeed(vcpu);
4339 }
4340
4341 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4342
4343 /* Emulate the VMLAUNCH instruction */
4344 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4345 {
4346 return nested_vmx_run(vcpu, true);
4347 }
4348
4349 /* Emulate the VMRESUME instruction */
4350 static int handle_vmresume(struct kvm_vcpu *vcpu)
4351 {
4352
4353 return nested_vmx_run(vcpu, false);
4354 }
4355
4356 static int handle_vmread(struct kvm_vcpu *vcpu)
4357 {
4358 unsigned long field;
4359 u64 field_value;
4360 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4361 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4362 gva_t gva = 0;
4363 struct vmcs12 *vmcs12;
4364
4365 if (!nested_vmx_check_permission(vcpu))
4366 return 1;
4367
4368 if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4369 return nested_vmx_failInvalid(vcpu);
4370
4371 if (!is_guest_mode(vcpu))
4372 vmcs12 = get_vmcs12(vcpu);
4373 else {
4374 /*
4375 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4376 * to shadowed-field sets the ALU flags for VMfailInvalid.
4377 */
4378 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4379 return nested_vmx_failInvalid(vcpu);
4380 vmcs12 = get_shadow_vmcs12(vcpu);
4381 }
4382
4383 /* Decode instruction info and find the field to read */
4384 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4385 /* Read the field, zero-extended to a u64 field_value */
4386 if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4387 return nested_vmx_failValid(vcpu,
4388 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4389
4390 /*
4391 * Now copy part of this value to register or memory, as requested.
4392 * Note that the number of bits actually copied is 32 or 64 depending
4393 * on the guest's mode (32 or 64 bit), not on the given field's length.
4394 */
4395 if (vmx_instruction_info & (1u << 10)) {
4396 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4397 field_value);
4398 } else {
4399 if (get_vmx_mem_address(vcpu, exit_qualification,
4400 vmx_instruction_info, true, &gva))
4401 return 1;
4402 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4403 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4404 (is_long_mode(vcpu) ? 8 : 4), NULL);
4405 }
4406
4407 return nested_vmx_succeed(vcpu);
4408 }
4409
4410
4411 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4412 {
4413 unsigned long field;
4414 gva_t gva;
4415 struct vcpu_vmx *vmx = to_vmx(vcpu);
4416 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4417 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4418
4419 /* The value to write might be 32 or 64 bits, depending on L1's long
4420 * mode, and eventually we need to write that into a field of several
4421 * possible lengths. The code below first zero-extends the value to 64
4422 * bit (field_value), and then copies only the appropriate number of
4423 * bits into the vmcs12 field.
4424 */
4425 u64 field_value = 0;
4426 struct x86_exception e;
4427 struct vmcs12 *vmcs12;
4428
4429 if (!nested_vmx_check_permission(vcpu))
4430 return 1;
4431
4432 if (vmx->nested.current_vmptr == -1ull)
4433 return nested_vmx_failInvalid(vcpu);
4434
4435 if (vmx_instruction_info & (1u << 10))
4436 field_value = kvm_register_readl(vcpu,
4437 (((vmx_instruction_info) >> 3) & 0xf));
4438 else {
4439 if (get_vmx_mem_address(vcpu, exit_qualification,
4440 vmx_instruction_info, false, &gva))
4441 return 1;
4442 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4443 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4444 kvm_inject_page_fault(vcpu, &e);
4445 return 1;
4446 }
4447 }
4448
4449
4450 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4451 /*
4452 * If the vCPU supports "VMWRITE to any supported field in the
4453 * VMCS," then the "read-only" fields are actually read/write.
4454 */
4455 if (vmcs_field_readonly(field) &&
4456 !nested_cpu_has_vmwrite_any_field(vcpu))
4457 return nested_vmx_failValid(vcpu,
4458 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4459
4460 if (!is_guest_mode(vcpu))
4461 vmcs12 = get_vmcs12(vcpu);
4462 else {
4463 /*
4464 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4465 * to shadowed-field sets the ALU flags for VMfailInvalid.
4466 */
4467 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4468 return nested_vmx_failInvalid(vcpu);
4469 vmcs12 = get_shadow_vmcs12(vcpu);
4470 }
4471
4472 if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4473 return nested_vmx_failValid(vcpu,
4474 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4475
4476 /*
4477 * Do not track vmcs12 dirty-state if in guest-mode
4478 * as we actually dirty shadow vmcs12 instead of vmcs12.
4479 */
4480 if (!is_guest_mode(vcpu)) {
4481 switch (field) {
4482 #define SHADOW_FIELD_RW(x) case x:
4483 #include "vmcs_shadow_fields.h"
4484 /*
4485 * The fields that can be updated by L1 without a vmexit are
4486 * always updated in the vmcs02, the others go down the slow
4487 * path of prepare_vmcs02.
4488 */
4489 break;
4490 default:
4491 vmx->nested.dirty_vmcs12 = true;
4492 break;
4493 }
4494 }
4495
4496 return nested_vmx_succeed(vcpu);
4497 }
4498
4499 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4500 {
4501 vmx->nested.current_vmptr = vmptr;
4502 if (enable_shadow_vmcs) {
4503 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4504 SECONDARY_EXEC_SHADOW_VMCS);
4505 vmcs_write64(VMCS_LINK_POINTER,
4506 __pa(vmx->vmcs01.shadow_vmcs));
4507 vmx->nested.need_vmcs12_sync = true;
4508 }
4509 vmx->nested.dirty_vmcs12 = true;
4510 }
4511
4512 /* Emulate the VMPTRLD instruction */
4513 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4514 {
4515 struct vcpu_vmx *vmx = to_vmx(vcpu);
4516 gpa_t vmptr;
4517
4518 if (!nested_vmx_check_permission(vcpu))
4519 return 1;
4520
4521 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4522 return 1;
4523
4524 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4525 return nested_vmx_failValid(vcpu,
4526 VMXERR_VMPTRLD_INVALID_ADDRESS);
4527
4528 if (vmptr == vmx->nested.vmxon_ptr)
4529 return nested_vmx_failValid(vcpu,
4530 VMXERR_VMPTRLD_VMXON_POINTER);
4531
4532 /* Forbid normal VMPTRLD if Enlightened version was used */
4533 if (vmx->nested.hv_evmcs)
4534 return 1;
4535
4536 if (vmx->nested.current_vmptr != vmptr) {
4537 struct vmcs12 *new_vmcs12;
4538 struct page *page;
4539
4540 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4541 if (is_error_page(page)) {
4542 /*
4543 * Reads from an unbacked page return all 1s,
4544 * which means that the 32 bits located at the
4545 * given physical address won't match the required
4546 * VMCS12_REVISION identifier.
4547 */
4548 return nested_vmx_failValid(vcpu,
4549 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4550 }
4551 new_vmcs12 = kmap(page);
4552 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4553 (new_vmcs12->hdr.shadow_vmcs &&
4554 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4555 kunmap(page);
4556 kvm_release_page_clean(page);
4557 return nested_vmx_failValid(vcpu,
4558 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4559 }
4560
4561 nested_release_vmcs12(vcpu);
4562
4563 /*
4564 * Load VMCS12 from guest memory since it is not already
4565 * cached.
4566 */
4567 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4568 kunmap(page);
4569 kvm_release_page_clean(page);
4570
4571 set_current_vmptr(vmx, vmptr);
4572 }
4573
4574 return nested_vmx_succeed(vcpu);
4575 }
4576
4577 /* Emulate the VMPTRST instruction */
4578 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4579 {
4580 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4581 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4582 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4583 struct x86_exception e;
4584 gva_t gva;
4585
4586 if (!nested_vmx_check_permission(vcpu))
4587 return 1;
4588
4589 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4590 return 1;
4591
4592 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4593 return 1;
4594 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4595 if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4596 sizeof(gpa_t), &e)) {
4597 kvm_inject_page_fault(vcpu, &e);
4598 return 1;
4599 }
4600 return nested_vmx_succeed(vcpu);
4601 }
4602
4603 /* Emulate the INVEPT instruction */
4604 static int handle_invept(struct kvm_vcpu *vcpu)
4605 {
4606 struct vcpu_vmx *vmx = to_vmx(vcpu);
4607 u32 vmx_instruction_info, types;
4608 unsigned long type;
4609 gva_t gva;
4610 struct x86_exception e;
4611 struct {
4612 u64 eptp, gpa;
4613 } operand;
4614
4615 if (!(vmx->nested.msrs.secondary_ctls_high &
4616 SECONDARY_EXEC_ENABLE_EPT) ||
4617 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4618 kvm_queue_exception(vcpu, UD_VECTOR);
4619 return 1;
4620 }
4621
4622 if (!nested_vmx_check_permission(vcpu))
4623 return 1;
4624
4625 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4626 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4627
4628 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4629
4630 if (type >= 32 || !(types & (1 << type)))
4631 return nested_vmx_failValid(vcpu,
4632 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4633
4634 /* According to the Intel VMX instruction reference, the memory
4635 * operand is read even if it isn't needed (e.g., for type==global)
4636 */
4637 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4638 vmx_instruction_info, false, &gva))
4639 return 1;
4640 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4641 kvm_inject_page_fault(vcpu, &e);
4642 return 1;
4643 }
4644
4645 switch (type) {
4646 case VMX_EPT_EXTENT_GLOBAL:
4647 /*
4648 * TODO: track mappings and invalidate
4649 * single context requests appropriately
4650 */
4651 case VMX_EPT_EXTENT_CONTEXT:
4652 kvm_mmu_sync_roots(vcpu);
4653 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4654 break;
4655 default:
4656 BUG_ON(1);
4657 break;
4658 }
4659
4660 return nested_vmx_succeed(vcpu);
4661 }
4662
4663 static int handle_invvpid(struct kvm_vcpu *vcpu)
4664 {
4665 struct vcpu_vmx *vmx = to_vmx(vcpu);
4666 u32 vmx_instruction_info;
4667 unsigned long type, types;
4668 gva_t gva;
4669 struct x86_exception e;
4670 struct {
4671 u64 vpid;
4672 u64 gla;
4673 } operand;
4674 u16 vpid02;
4675
4676 if (!(vmx->nested.msrs.secondary_ctls_high &
4677 SECONDARY_EXEC_ENABLE_VPID) ||
4678 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4679 kvm_queue_exception(vcpu, UD_VECTOR);
4680 return 1;
4681 }
4682
4683 if (!nested_vmx_check_permission(vcpu))
4684 return 1;
4685
4686 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4687 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4688
4689 types = (vmx->nested.msrs.vpid_caps &
4690 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4691
4692 if (type >= 32 || !(types & (1 << type)))
4693 return nested_vmx_failValid(vcpu,
4694 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4695
4696 /* according to the intel vmx instruction reference, the memory
4697 * operand is read even if it isn't needed (e.g., for type==global)
4698 */
4699 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4700 vmx_instruction_info, false, &gva))
4701 return 1;
4702 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4703 kvm_inject_page_fault(vcpu, &e);
4704 return 1;
4705 }
4706 if (operand.vpid >> 16)
4707 return nested_vmx_failValid(vcpu,
4708 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4709
4710 vpid02 = nested_get_vpid02(vcpu);
4711 switch (type) {
4712 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4713 if (!operand.vpid ||
4714 is_noncanonical_address(operand.gla, vcpu))
4715 return nested_vmx_failValid(vcpu,
4716 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4717 if (cpu_has_vmx_invvpid_individual_addr()) {
4718 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4719 vpid02, operand.gla);
4720 } else
4721 __vmx_flush_tlb(vcpu, vpid02, false);
4722 break;
4723 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4724 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4725 if (!operand.vpid)
4726 return nested_vmx_failValid(vcpu,
4727 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4728 __vmx_flush_tlb(vcpu, vpid02, false);
4729 break;
4730 case VMX_VPID_EXTENT_ALL_CONTEXT:
4731 __vmx_flush_tlb(vcpu, vpid02, false);
4732 break;
4733 default:
4734 WARN_ON_ONCE(1);
4735 return kvm_skip_emulated_instruction(vcpu);
4736 }
4737
4738 return nested_vmx_succeed(vcpu);
4739 }
4740
4741 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4742 struct vmcs12 *vmcs12)
4743 {
4744 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4745 u64 address;
4746 bool accessed_dirty;
4747 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4748
4749 if (!nested_cpu_has_eptp_switching(vmcs12) ||
4750 !nested_cpu_has_ept(vmcs12))
4751 return 1;
4752
4753 if (index >= VMFUNC_EPTP_ENTRIES)
4754 return 1;
4755
4756
4757 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4758 &address, index * 8, 8))
4759 return 1;
4760
4761 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4762
4763 /*
4764 * If the (L2) guest does a vmfunc to the currently
4765 * active ept pointer, we don't have to do anything else
4766 */
4767 if (vmcs12->ept_pointer != address) {
4768 if (!valid_ept_address(vcpu, address))
4769 return 1;
4770
4771 kvm_mmu_unload(vcpu);
4772 mmu->ept_ad = accessed_dirty;
4773 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4774 vmcs12->ept_pointer = address;
4775 /*
4776 * TODO: Check what's the correct approach in case
4777 * mmu reload fails. Currently, we just let the next
4778 * reload potentially fail
4779 */
4780 kvm_mmu_reload(vcpu);
4781 }
4782
4783 return 0;
4784 }
4785
4786 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4787 {
4788 struct vcpu_vmx *vmx = to_vmx(vcpu);
4789 struct vmcs12 *vmcs12;
4790 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4791
4792 /*
4793 * VMFUNC is only supported for nested guests, but we always enable the
4794 * secondary control for simplicity; for non-nested mode, fake that we
4795 * didn't by injecting #UD.
4796 */
4797 if (!is_guest_mode(vcpu)) {
4798 kvm_queue_exception(vcpu, UD_VECTOR);
4799 return 1;
4800 }
4801
4802 vmcs12 = get_vmcs12(vcpu);
4803 if ((vmcs12->vm_function_control & (1 << function)) == 0)
4804 goto fail;
4805
4806 switch (function) {
4807 case 0:
4808 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4809 goto fail;
4810 break;
4811 default:
4812 goto fail;
4813 }
4814 return kvm_skip_emulated_instruction(vcpu);
4815
4816 fail:
4817 nested_vmx_vmexit(vcpu, vmx->exit_reason,
4818 vmcs_read32(VM_EXIT_INTR_INFO),
4819 vmcs_readl(EXIT_QUALIFICATION));
4820 return 1;
4821 }
4822
4823
4824 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4825 struct vmcs12 *vmcs12)
4826 {
4827 unsigned long exit_qualification;
4828 gpa_t bitmap, last_bitmap;
4829 unsigned int port;
4830 int size;
4831 u8 b;
4832
4833 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4834 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4835
4836 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4837
4838 port = exit_qualification >> 16;
4839 size = (exit_qualification & 7) + 1;
4840
4841 last_bitmap = (gpa_t)-1;
4842 b = -1;
4843
4844 while (size > 0) {
4845 if (port < 0x8000)
4846 bitmap = vmcs12->io_bitmap_a;
4847 else if (port < 0x10000)
4848 bitmap = vmcs12->io_bitmap_b;
4849 else
4850 return true;
4851 bitmap += (port & 0x7fff) / 8;
4852
4853 if (last_bitmap != bitmap)
4854 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4855 return true;
4856 if (b & (1 << (port & 7)))
4857 return true;
4858
4859 port++;
4860 size--;
4861 last_bitmap = bitmap;
4862 }
4863
4864 return false;
4865 }
4866
4867 /*
4868 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4869 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4870 * disinterest in the current event (read or write a specific MSR) by using an
4871 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4872 */
4873 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4874 struct vmcs12 *vmcs12, u32 exit_reason)
4875 {
4876 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4877 gpa_t bitmap;
4878
4879 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4880 return true;
4881
4882 /*
4883 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4884 * for the four combinations of read/write and low/high MSR numbers.
4885 * First we need to figure out which of the four to use:
4886 */
4887 bitmap = vmcs12->msr_bitmap;
4888 if (exit_reason == EXIT_REASON_MSR_WRITE)
4889 bitmap += 2048;
4890 if (msr_index >= 0xc0000000) {
4891 msr_index -= 0xc0000000;
4892 bitmap += 1024;
4893 }
4894
4895 /* Then read the msr_index'th bit from this bitmap: */
4896 if (msr_index < 1024*8) {
4897 unsigned char b;
4898 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4899 return true;
4900 return 1 & (b >> (msr_index & 7));
4901 } else
4902 return true; /* let L1 handle the wrong parameter */
4903 }
4904
4905 /*
4906 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4907 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4908 * intercept (via guest_host_mask etc.) the current event.
4909 */
4910 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4911 struct vmcs12 *vmcs12)
4912 {
4913 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4914 int cr = exit_qualification & 15;
4915 int reg;
4916 unsigned long val;
4917
4918 switch ((exit_qualification >> 4) & 3) {
4919 case 0: /* mov to cr */
4920 reg = (exit_qualification >> 8) & 15;
4921 val = kvm_register_readl(vcpu, reg);
4922 switch (cr) {
4923 case 0:
4924 if (vmcs12->cr0_guest_host_mask &
4925 (val ^ vmcs12->cr0_read_shadow))
4926 return true;
4927 break;
4928 case 3:
4929 if ((vmcs12->cr3_target_count >= 1 &&
4930 vmcs12->cr3_target_value0 == val) ||
4931 (vmcs12->cr3_target_count >= 2 &&
4932 vmcs12->cr3_target_value1 == val) ||
4933 (vmcs12->cr3_target_count >= 3 &&
4934 vmcs12->cr3_target_value2 == val) ||
4935 (vmcs12->cr3_target_count >= 4 &&
4936 vmcs12->cr3_target_value3 == val))
4937 return false;
4938 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4939 return true;
4940 break;
4941 case 4:
4942 if (vmcs12->cr4_guest_host_mask &
4943 (vmcs12->cr4_read_shadow ^ val))
4944 return true;
4945 break;
4946 case 8:
4947 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4948 return true;
4949 break;
4950 }
4951 break;
4952 case 2: /* clts */
4953 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4954 (vmcs12->cr0_read_shadow & X86_CR0_TS))
4955 return true;
4956 break;
4957 case 1: /* mov from cr */
4958 switch (cr) {
4959 case 3:
4960 if (vmcs12->cpu_based_vm_exec_control &
4961 CPU_BASED_CR3_STORE_EXITING)
4962 return true;
4963 break;
4964 case 8:
4965 if (vmcs12->cpu_based_vm_exec_control &
4966 CPU_BASED_CR8_STORE_EXITING)
4967 return true;
4968 break;
4969 }
4970 break;
4971 case 3: /* lmsw */
4972 /*
4973 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4974 * cr0. Other attempted changes are ignored, with no exit.
4975 */
4976 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4977 if (vmcs12->cr0_guest_host_mask & 0xe &
4978 (val ^ vmcs12->cr0_read_shadow))
4979 return true;
4980 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4981 !(vmcs12->cr0_read_shadow & 0x1) &&
4982 (val & 0x1))
4983 return true;
4984 break;
4985 }
4986 return false;
4987 }
4988
4989 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4990 struct vmcs12 *vmcs12, gpa_t bitmap)
4991 {
4992 u32 vmx_instruction_info;
4993 unsigned long field;
4994 u8 b;
4995
4996 if (!nested_cpu_has_shadow_vmcs(vmcs12))
4997 return true;
4998
4999 /* Decode instruction info and find the field to access */
5000 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5001 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5002
5003 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5004 if (field >> 15)
5005 return true;
5006
5007 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5008 return true;
5009
5010 return 1 & (b >> (field & 7));
5011 }
5012
5013 /*
5014 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5015 * should handle it ourselves in L0 (and then continue L2). Only call this
5016 * when in is_guest_mode (L2).
5017 */
5018 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5019 {
5020 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5021 struct vcpu_vmx *vmx = to_vmx(vcpu);
5022 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023
5024 if (vmx->nested.nested_run_pending)
5025 return false;
5026
5027 if (unlikely(vmx->fail)) {
5028 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5029 vmcs_read32(VM_INSTRUCTION_ERROR));
5030 return true;
5031 }
5032
5033 /*
5034 * The host physical addresses of some pages of guest memory
5035 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5036 * Page). The CPU may write to these pages via their host
5037 * physical address while L2 is running, bypassing any
5038 * address-translation-based dirty tracking (e.g. EPT write
5039 * protection).
5040 *
5041 * Mark them dirty on every exit from L2 to prevent them from
5042 * getting out of sync with dirty tracking.
5043 */
5044 nested_mark_vmcs12_pages_dirty(vcpu);
5045
5046 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5047 vmcs_readl(EXIT_QUALIFICATION),
5048 vmx->idt_vectoring_info,
5049 intr_info,
5050 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5051 KVM_ISA_VMX);
5052
5053 switch (exit_reason) {
5054 case EXIT_REASON_EXCEPTION_NMI:
5055 if (is_nmi(intr_info))
5056 return false;
5057 else if (is_page_fault(intr_info))
5058 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5059 else if (is_debug(intr_info) &&
5060 vcpu->guest_debug &
5061 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5062 return false;
5063 else if (is_breakpoint(intr_info) &&
5064 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5065 return false;
5066 return vmcs12->exception_bitmap &
5067 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5068 case EXIT_REASON_EXTERNAL_INTERRUPT:
5069 return false;
5070 case EXIT_REASON_TRIPLE_FAULT:
5071 return true;
5072 case EXIT_REASON_PENDING_INTERRUPT:
5073 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5074 case EXIT_REASON_NMI_WINDOW:
5075 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5076 case EXIT_REASON_TASK_SWITCH:
5077 return true;
5078 case EXIT_REASON_CPUID:
5079 return true;
5080 case EXIT_REASON_HLT:
5081 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5082 case EXIT_REASON_INVD:
5083 return true;
5084 case EXIT_REASON_INVLPG:
5085 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5086 case EXIT_REASON_RDPMC:
5087 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5088 case EXIT_REASON_RDRAND:
5089 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5090 case EXIT_REASON_RDSEED:
5091 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5092 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5093 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5094 case EXIT_REASON_VMREAD:
5095 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5096 vmcs12->vmread_bitmap);
5097 case EXIT_REASON_VMWRITE:
5098 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5099 vmcs12->vmwrite_bitmap);
5100 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5101 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5102 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5103 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5104 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5105 /*
5106 * VMX instructions trap unconditionally. This allows L1 to
5107 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5108 */
5109 return true;
5110 case EXIT_REASON_CR_ACCESS:
5111 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5112 case EXIT_REASON_DR_ACCESS:
5113 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5114 case EXIT_REASON_IO_INSTRUCTION:
5115 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5116 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5117 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5118 case EXIT_REASON_MSR_READ:
5119 case EXIT_REASON_MSR_WRITE:
5120 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5121 case EXIT_REASON_INVALID_STATE:
5122 return true;
5123 case EXIT_REASON_MWAIT_INSTRUCTION:
5124 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5125 case EXIT_REASON_MONITOR_TRAP_FLAG:
5126 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5127 case EXIT_REASON_MONITOR_INSTRUCTION:
5128 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5129 case EXIT_REASON_PAUSE_INSTRUCTION:
5130 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5131 nested_cpu_has2(vmcs12,
5132 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5133 case EXIT_REASON_MCE_DURING_VMENTRY:
5134 return false;
5135 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5136 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5137 case EXIT_REASON_APIC_ACCESS:
5138 case EXIT_REASON_APIC_WRITE:
5139 case EXIT_REASON_EOI_INDUCED:
5140 /*
5141 * The controls for "virtualize APIC accesses," "APIC-
5142 * register virtualization," and "virtual-interrupt
5143 * delivery" only come from vmcs12.
5144 */
5145 return true;
5146 case EXIT_REASON_EPT_VIOLATION:
5147 /*
5148 * L0 always deals with the EPT violation. If nested EPT is
5149 * used, and the nested mmu code discovers that the address is
5150 * missing in the guest EPT table (EPT12), the EPT violation
5151 * will be injected with nested_ept_inject_page_fault()
5152 */
5153 return false;
5154 case EXIT_REASON_EPT_MISCONFIG:
5155 /*
5156 * L2 never uses directly L1's EPT, but rather L0's own EPT
5157 * table (shadow on EPT) or a merged EPT table that L0 built
5158 * (EPT on EPT). So any problems with the structure of the
5159 * table is L0's fault.
5160 */
5161 return false;
5162 case EXIT_REASON_INVPCID:
5163 return
5164 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5165 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5166 case EXIT_REASON_WBINVD:
5167 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5168 case EXIT_REASON_XSETBV:
5169 return true;
5170 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5171 /*
5172 * This should never happen, since it is not possible to
5173 * set XSS to a non-zero value---neither in L1 nor in L2.
5174 * If if it were, XSS would have to be checked against
5175 * the XSS exit bitmap in vmcs12.
5176 */
5177 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5178 case EXIT_REASON_PREEMPTION_TIMER:
5179 return false;
5180 case EXIT_REASON_PML_FULL:
5181 /* We emulate PML support to L1. */
5182 return false;
5183 case EXIT_REASON_VMFUNC:
5184 /* VM functions are emulated through L2->L0 vmexits. */
5185 return false;
5186 case EXIT_REASON_ENCLS:
5187 /* SGX is never exposed to L1 */
5188 return false;
5189 default:
5190 return true;
5191 }
5192 }
5193
5194
5195 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5196 struct kvm_nested_state __user *user_kvm_nested_state,
5197 u32 user_data_size)
5198 {
5199 struct vcpu_vmx *vmx;
5200 struct vmcs12 *vmcs12;
5201 struct kvm_nested_state kvm_state = {
5202 .flags = 0,
5203 .format = 0,
5204 .size = sizeof(kvm_state),
5205 .vmx.vmxon_pa = -1ull,
5206 .vmx.vmcs_pa = -1ull,
5207 };
5208
5209 if (!vcpu)
5210 return kvm_state.size + 2 * VMCS12_SIZE;
5211
5212 vmx = to_vmx(vcpu);
5213 vmcs12 = get_vmcs12(vcpu);
5214
5215 if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5216 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5217
5218 if (nested_vmx_allowed(vcpu) &&
5219 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5220 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5221 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5222
5223 if (vmx_has_valid_vmcs12(vcpu)) {
5224 kvm_state.size += VMCS12_SIZE;
5225
5226 if (is_guest_mode(vcpu) &&
5227 nested_cpu_has_shadow_vmcs(vmcs12) &&
5228 vmcs12->vmcs_link_pointer != -1ull)
5229 kvm_state.size += VMCS12_SIZE;
5230 }
5231
5232 if (vmx->nested.smm.vmxon)
5233 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5234
5235 if (vmx->nested.smm.guest_mode)
5236 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5237
5238 if (is_guest_mode(vcpu)) {
5239 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5240
5241 if (vmx->nested.nested_run_pending)
5242 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5243 }
5244 }
5245
5246 if (user_data_size < kvm_state.size)
5247 goto out;
5248
5249 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5250 return -EFAULT;
5251
5252 if (!vmx_has_valid_vmcs12(vcpu))
5253 goto out;
5254
5255 /*
5256 * When running L2, the authoritative vmcs12 state is in the
5257 * vmcs02. When running L1, the authoritative vmcs12 state is
5258 * in the shadow or enlightened vmcs linked to vmcs01, unless
5259 * need_vmcs12_sync is set, in which case, the authoritative
5260 * vmcs12 state is in the vmcs12 already.
5261 */
5262 if (is_guest_mode(vcpu)) {
5263 sync_vmcs12(vcpu, vmcs12);
5264 } else if (!vmx->nested.need_vmcs12_sync) {
5265 if (vmx->nested.hv_evmcs)
5266 copy_enlightened_to_vmcs12(vmx);
5267 else if (enable_shadow_vmcs)
5268 copy_shadow_to_vmcs12(vmx);
5269 }
5270
5271 /*
5272 * Copy over the full allocated size of vmcs12 rather than just the size
5273 * of the struct.
5274 */
5275 if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5276 return -EFAULT;
5277
5278 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5279 vmcs12->vmcs_link_pointer != -1ull) {
5280 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5281 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5282 return -EFAULT;
5283 }
5284
5285 out:
5286 return kvm_state.size;
5287 }
5288
5289 /*
5290 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5291 */
5292 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5293 {
5294 if (is_guest_mode(vcpu)) {
5295 to_vmx(vcpu)->nested.nested_run_pending = 0;
5296 nested_vmx_vmexit(vcpu, -1, 0, 0);
5297 }
5298 free_nested(vcpu);
5299 }
5300
5301 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5302 struct kvm_nested_state __user *user_kvm_nested_state,
5303 struct kvm_nested_state *kvm_state)
5304 {
5305 struct vcpu_vmx *vmx = to_vmx(vcpu);
5306 struct vmcs12 *vmcs12;
5307 u32 exit_qual;
5308 int ret;
5309
5310 if (kvm_state->format != 0)
5311 return -EINVAL;
5312
5313 if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5314 nested_enable_evmcs(vcpu, NULL);
5315
5316 if (!nested_vmx_allowed(vcpu))
5317 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5318
5319 if (kvm_state->vmx.vmxon_pa == -1ull) {
5320 if (kvm_state->vmx.smm.flags)
5321 return -EINVAL;
5322
5323 if (kvm_state->vmx.vmcs_pa != -1ull)
5324 return -EINVAL;
5325
5326 vmx_leave_nested(vcpu);
5327 return 0;
5328 }
5329
5330 if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5331 return -EINVAL;
5332
5333 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5334 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5335 return -EINVAL;
5336
5337 if (kvm_state->vmx.smm.flags &
5338 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5339 return -EINVAL;
5340
5341 /*
5342 * SMM temporarily disables VMX, so we cannot be in guest mode,
5343 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
5344 * must be zero.
5345 */
5346 if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5347 return -EINVAL;
5348
5349 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5350 !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5351 return -EINVAL;
5352
5353 vmx_leave_nested(vcpu);
5354 if (kvm_state->vmx.vmxon_pa == -1ull)
5355 return 0;
5356
5357 vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5358 ret = enter_vmx_operation(vcpu);
5359 if (ret)
5360 return ret;
5361
5362 /* Empty 'VMXON' state is permitted */
5363 if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5364 return 0;
5365
5366 if (kvm_state->vmx.vmcs_pa != -1ull) {
5367 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5368 !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5369 return -EINVAL;
5370
5371 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5372 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5373 /*
5374 * Sync eVMCS upon entry as we may not have
5375 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5376 */
5377 vmx->nested.need_vmcs12_sync = true;
5378 } else {
5379 return -EINVAL;
5380 }
5381
5382 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5383 vmx->nested.smm.vmxon = true;
5384 vmx->nested.vmxon = false;
5385
5386 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5387 vmx->nested.smm.guest_mode = true;
5388 }
5389
5390 vmcs12 = get_vmcs12(vcpu);
5391 if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5392 return -EFAULT;
5393
5394 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5395 return -EINVAL;
5396
5397 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5398 return 0;
5399
5400 vmx->nested.nested_run_pending =
5401 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5402
5403 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5404 vmcs12->vmcs_link_pointer != -1ull) {
5405 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5406
5407 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5408 return -EINVAL;
5409
5410 if (copy_from_user(shadow_vmcs12,
5411 user_kvm_nested_state->data + VMCS12_SIZE,
5412 sizeof(*vmcs12)))
5413 return -EFAULT;
5414
5415 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5416 !shadow_vmcs12->hdr.shadow_vmcs)
5417 return -EINVAL;
5418 }
5419
5420 if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5421 nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5422 return -EINVAL;
5423
5424 vmx->nested.dirty_vmcs12 = true;
5425 ret = nested_vmx_enter_non_root_mode(vcpu, false);
5426 if (ret)
5427 return -EINVAL;
5428
5429 return 0;
5430 }
5431
5432 void nested_vmx_vcpu_setup(void)
5433 {
5434 if (enable_shadow_vmcs) {
5435 /*
5436 * At vCPU creation, "VMWRITE to any supported field
5437 * in the VMCS" is supported, so use the more
5438 * permissive vmx_vmread_bitmap to specify both read
5439 * and write permissions for the shadow VMCS.
5440 */
5441 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5442 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5443 }
5444 }
5445
5446 /*
5447 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5448 * returned for the various VMX controls MSRs when nested VMX is enabled.
5449 * The same values should also be used to verify that vmcs12 control fields are
5450 * valid during nested entry from L1 to L2.
5451 * Each of these control msrs has a low and high 32-bit half: A low bit is on
5452 * if the corresponding bit in the (32-bit) control field *must* be on, and a
5453 * bit in the high half is on if the corresponding bit in the control field
5454 * may be on. See also vmx_control_verify().
5455 */
5456 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5457 bool apicv)
5458 {
5459 /*
5460 * Note that as a general rule, the high half of the MSRs (bits in
5461 * the control fields which may be 1) should be initialized by the
5462 * intersection of the underlying hardware's MSR (i.e., features which
5463 * can be supported) and the list of features we want to expose -
5464 * because they are known to be properly supported in our code.
5465 * Also, usually, the low half of the MSRs (bits which must be 1) can
5466 * be set to 0, meaning that L1 may turn off any of these bits. The
5467 * reason is that if one of these bits is necessary, it will appear
5468 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5469 * fields of vmcs01 and vmcs02, will turn these bits off - and
5470 * nested_vmx_exit_reflected() will not pass related exits to L1.
5471 * These rules have exceptions below.
5472 */
5473
5474 /* pin-based controls */
5475 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5476 msrs->pinbased_ctls_low,
5477 msrs->pinbased_ctls_high);
5478 msrs->pinbased_ctls_low |=
5479 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5480 msrs->pinbased_ctls_high &=
5481 PIN_BASED_EXT_INTR_MASK |
5482 PIN_BASED_NMI_EXITING |
5483 PIN_BASED_VIRTUAL_NMIS |
5484 (apicv ? PIN_BASED_POSTED_INTR : 0);
5485 msrs->pinbased_ctls_high |=
5486 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5487 PIN_BASED_VMX_PREEMPTION_TIMER;
5488
5489 /* exit controls */
5490 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5491 msrs->exit_ctls_low,
5492 msrs->exit_ctls_high);
5493 msrs->exit_ctls_low =
5494 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5495
5496 msrs->exit_ctls_high &=
5497 #ifdef CONFIG_X86_64
5498 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5499 #endif
5500 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5501 msrs->exit_ctls_high |=
5502 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5503 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5504 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5505
5506 /* We support free control of debug control saving. */
5507 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5508
5509 /* entry controls */
5510 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5511 msrs->entry_ctls_low,
5512 msrs->entry_ctls_high);
5513 msrs->entry_ctls_low =
5514 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5515 msrs->entry_ctls_high &=
5516 #ifdef CONFIG_X86_64
5517 VM_ENTRY_IA32E_MODE |
5518 #endif
5519 VM_ENTRY_LOAD_IA32_PAT;
5520 msrs->entry_ctls_high |=
5521 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5522
5523 /* We support free control of debug control loading. */
5524 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5525
5526 /* cpu-based controls */
5527 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5528 msrs->procbased_ctls_low,
5529 msrs->procbased_ctls_high);
5530 msrs->procbased_ctls_low =
5531 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5532 msrs->procbased_ctls_high &=
5533 CPU_BASED_VIRTUAL_INTR_PENDING |
5534 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5535 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5536 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5537 CPU_BASED_CR3_STORE_EXITING |
5538 #ifdef CONFIG_X86_64
5539 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5540 #endif
5541 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5542 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5543 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5544 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5545 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5546 /*
5547 * We can allow some features even when not supported by the
5548 * hardware. For example, L1 can specify an MSR bitmap - and we
5549 * can use it to avoid exits to L1 - even when L0 runs L2
5550 * without MSR bitmaps.
5551 */
5552 msrs->procbased_ctls_high |=
5553 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5554 CPU_BASED_USE_MSR_BITMAPS;
5555
5556 /* We support free control of CR3 access interception. */
5557 msrs->procbased_ctls_low &=
5558 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5559
5560 /*
5561 * secondary cpu-based controls. Do not include those that
5562 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5563 */
5564 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5565 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5566 msrs->secondary_ctls_low,
5567 msrs->secondary_ctls_high);
5568
5569 msrs->secondary_ctls_low = 0;
5570 msrs->secondary_ctls_high &=
5571 SECONDARY_EXEC_DESC |
5572 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5573 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5574 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5575 SECONDARY_EXEC_WBINVD_EXITING;
5576
5577 /*
5578 * We can emulate "VMCS shadowing," even if the hardware
5579 * doesn't support it.
5580 */
5581 msrs->secondary_ctls_high |=
5582 SECONDARY_EXEC_SHADOW_VMCS;
5583
5584 if (enable_ept) {
5585 /* nested EPT: emulate EPT also to L1 */
5586 msrs->secondary_ctls_high |=
5587 SECONDARY_EXEC_ENABLE_EPT;
5588 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5589 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5590 if (cpu_has_vmx_ept_execute_only())
5591 msrs->ept_caps |=
5592 VMX_EPT_EXECUTE_ONLY_BIT;
5593 msrs->ept_caps &= ept_caps;
5594 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5595 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5596 VMX_EPT_1GB_PAGE_BIT;
5597 if (enable_ept_ad_bits) {
5598 msrs->secondary_ctls_high |=
5599 SECONDARY_EXEC_ENABLE_PML;
5600 msrs->ept_caps |= VMX_EPT_AD_BIT;
5601 }
5602 }
5603
5604 if (cpu_has_vmx_vmfunc()) {
5605 msrs->secondary_ctls_high |=
5606 SECONDARY_EXEC_ENABLE_VMFUNC;
5607 /*
5608 * Advertise EPTP switching unconditionally
5609 * since we emulate it
5610 */
5611 if (enable_ept)
5612 msrs->vmfunc_controls =
5613 VMX_VMFUNC_EPTP_SWITCHING;
5614 }
5615
5616 /*
5617 * Old versions of KVM use the single-context version without
5618 * checking for support, so declare that it is supported even
5619 * though it is treated as global context. The alternative is
5620 * not failing the single-context invvpid, and it is worse.
5621 */
5622 if (enable_vpid) {
5623 msrs->secondary_ctls_high |=
5624 SECONDARY_EXEC_ENABLE_VPID;
5625 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5626 VMX_VPID_EXTENT_SUPPORTED_MASK;
5627 }
5628
5629 if (enable_unrestricted_guest)
5630 msrs->secondary_ctls_high |=
5631 SECONDARY_EXEC_UNRESTRICTED_GUEST;
5632
5633 if (flexpriority_enabled)
5634 msrs->secondary_ctls_high |=
5635 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5636
5637 /* miscellaneous data */
5638 rdmsr(MSR_IA32_VMX_MISC,
5639 msrs->misc_low,
5640 msrs->misc_high);
5641 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5642 msrs->misc_low |=
5643 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5644 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5645 VMX_MISC_ACTIVITY_HLT;
5646 msrs->misc_high = 0;
5647
5648 /*
5649 * This MSR reports some information about VMX support. We
5650 * should return information about the VMX we emulate for the
5651 * guest, and the VMCS structure we give it - not about the
5652 * VMX support of the underlying hardware.
5653 */
5654 msrs->basic =
5655 VMCS12_REVISION |
5656 VMX_BASIC_TRUE_CTLS |
5657 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5658 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5659
5660 if (cpu_has_vmx_basic_inout())
5661 msrs->basic |= VMX_BASIC_INOUT;
5662
5663 /*
5664 * These MSRs specify bits which the guest must keep fixed on
5665 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5666 * We picked the standard core2 setting.
5667 */
5668 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5669 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
5670 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5671 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5672
5673 /* These MSRs specify bits which the guest must keep fixed off. */
5674 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5675 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5676
5677 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5678 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5679 }
5680
5681 void nested_vmx_hardware_unsetup(void)
5682 {
5683 int i;
5684
5685 if (enable_shadow_vmcs) {
5686 for (i = 0; i < VMX_BITMAP_NR; i++)
5687 free_page((unsigned long)vmx_bitmap[i]);
5688 }
5689 }
5690
5691 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5692 {
5693 int i;
5694
5695 if (!cpu_has_vmx_shadow_vmcs())
5696 enable_shadow_vmcs = 0;
5697 if (enable_shadow_vmcs) {
5698 for (i = 0; i < VMX_BITMAP_NR; i++) {
5699 vmx_bitmap[i] = (unsigned long *)
5700 __get_free_page(GFP_KERNEL);
5701 if (!vmx_bitmap[i]) {
5702 nested_vmx_hardware_unsetup();
5703 return -ENOMEM;
5704 }
5705 }
5706
5707 init_vmcs_shadow_fields();
5708 }
5709
5710 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
5711 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5712 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
5713 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
5714 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
5715 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
5716 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
5717 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
5718 exit_handlers[EXIT_REASON_VMON] = handle_vmon,
5719 exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
5720 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
5721 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
5722
5723 kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5724 kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5725 kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5726 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5727 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5728 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5729
5730 return 0;
5731 }