]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/vmx/vmx.c
KVM: nVMX: promptly process interrupts delivered while in guest mode
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 {}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 enable_unrestricted_guest, bool, S_IRUGO);
95
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108 * If nested=1, nested virtualization is supported, i.e., guests may use
109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110 * use VMX instructions.
111 */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC 1
122 #define MSR_BITMAP_MODE_X2APIC_APICV 2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON \
139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
151
152 /*
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
155 */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 MSR_IA32_SPEC_CTRL,
158 MSR_IA32_PRED_CMD,
159 MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 MSR_FS_BASE,
162 MSR_GS_BASE,
163 MSR_KERNEL_GS_BASE,
164 #endif
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
168 MSR_CORE_C1_RES,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
184 */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 struct page *page;
232 unsigned int i;
233
234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 return 0;
237 }
238
239 if (!enable_ept) {
240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 return 0;
242 }
243
244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 u64 msr;
246
247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 return 0;
251 }
252 }
253
254 /* If set to auto use the default l1tf mitigation method */
255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 switch (l1tf_mitigation) {
257 case L1TF_MITIGATION_OFF:
258 l1tf = VMENTER_L1D_FLUSH_NEVER;
259 break;
260 case L1TF_MITIGATION_FLUSH_NOWARN:
261 case L1TF_MITIGATION_FLUSH:
262 case L1TF_MITIGATION_FLUSH_NOSMT:
263 l1tf = VMENTER_L1D_FLUSH_COND;
264 break;
265 case L1TF_MITIGATION_FULL:
266 case L1TF_MITIGATION_FULL_FORCE:
267 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 break;
269 }
270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 }
273
274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 /*
277 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 * lifetime and so should not be charged to a memcg.
279 */
280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 if (!page)
282 return -ENOMEM;
283 vmx_l1d_flush_pages = page_address(page);
284
285 /*
286 * Initialize each page with a different pattern in
287 * order to protect against KSM in the nested
288 * virtualization case.
289 */
290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 PAGE_SIZE);
293 }
294 }
295
296 l1tf_vmx_mitigation = l1tf;
297
298 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 static_branch_enable(&vmx_l1d_should_flush);
300 else
301 static_branch_disable(&vmx_l1d_should_flush);
302
303 if (l1tf == VMENTER_L1D_FLUSH_COND)
304 static_branch_enable(&vmx_l1d_flush_cond);
305 else
306 static_branch_disable(&vmx_l1d_flush_cond);
307 return 0;
308 }
309
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 unsigned int i;
313
314 if (s) {
315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 if (vmentry_l1d_param[i].for_parse &&
317 sysfs_streq(s, vmentry_l1d_param[i].option))
318 return i;
319 }
320 }
321 return -EINVAL;
322 }
323
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 int l1tf, ret;
327
328 l1tf = vmentry_l1d_flush_parse(s);
329 if (l1tf < 0)
330 return l1tf;
331
332 if (!boot_cpu_has(X86_BUG_L1TF))
333 return 0;
334
335 /*
336 * Has vmx_init() run already? If not then this is the pre init
337 * parameter parsing. In that case just store the value and let
338 * vmx_init() do the proper setup after enable_ept has been
339 * established.
340 */
341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 vmentry_l1d_flush_param = l1tf;
343 return 0;
344 }
345
346 mutex_lock(&vmx_l1d_flush_mutex);
347 ret = vmx_setup_l1d_flush(l1tf);
348 mutex_unlock(&vmx_l1d_flush_mutex);
349 return ret;
350 }
351
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 return sprintf(s, "???\n");
356
357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 .set = vmentry_l1d_flush_set,
362 .get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367
368 void vmx_vmexit(void);
369
370 #define vmx_insn_failed(fmt...) \
371 do { \
372 WARN_ONCE(1, fmt); \
373 pr_warn_ratelimited(fmt); \
374 } while (0)
375
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 if (fault)
379 kvm_spurious_fault();
380 else
381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 ext, vpid, gva);
404 }
405
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 ext, eptp, gpa);
410 }
411
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417 */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425
426 #define VMX_SEGMENT_FIELD(seg) \
427 [VCPU_SREG_##seg] = { \
428 .selector = GUEST_##seg##_SELECTOR, \
429 .base = GUEST_##seg##_BASE, \
430 .limit = GUEST_##seg##_LIMIT, \
431 .ar_bytes = GUEST_##seg##_AR_BYTES, \
432 }
433
434 static const struct kvm_vmx_segment_field {
435 unsigned selector;
436 unsigned base;
437 unsigned limit;
438 unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 VMX_SEGMENT_FIELD(CS),
441 VMX_SEGMENT_FIELD(DS),
442 VMX_SEGMENT_FIELD(ES),
443 VMX_SEGMENT_FIELD(FS),
444 VMX_SEGMENT_FIELD(GS),
445 VMX_SEGMENT_FIELD(SS),
446 VMX_SEGMENT_FIELD(TR),
447 VMX_SEGMENT_FIELD(LDTR),
448 };
449
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 vmx->segment_cache.bitmask = 0;
453 }
454
455 static unsigned long host_idt_base;
456
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 struct hv_enlightened_vmcs *evmcs;
464 struct hv_partition_assist_pg **p_hv_pa_pg =
465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 /*
467 * Synthetic VM-Exit is not enabled in current code and so All
468 * evmcs in singe VM shares same assist page.
469 */
470 if (!*p_hv_pa_pg)
471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472
473 if (!*p_hv_pa_pg)
474 return -ENOMEM;
475
476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477
478 evmcs->partition_assist_page =
479 __pa(*p_hv_pa_pg);
480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482
483 return 0;
484 }
485
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487
488 /*
489 * Comment's format: document - errata name - stepping - processor name.
490 * Refer from
491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492 */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
504 /*
505 * 320767.pdf - AAP86 - B1 -
506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507 */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519 /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 u32 eax = cpuid_eax(0x00000001), i;
526
527 /* Clear the reserved bits */
528 eax &= ~(0x3U << 14 | 0xfU << 28);
529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 if (eax == vmx_preemption_cpu_tfms[i])
531 return true;
532
533 return false;
534 }
535
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540
541 static inline bool report_flexpriority(void)
542 {
543 return flexpriority_enabled;
544 }
545
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 u32 i;
549
550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 if (vmx_possible_passthrough_msrs[i] == msr)
552 return i;
553
554 return -ENOENT;
555 }
556
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 bool r;
560
561 switch (msr) {
562 case 0x800 ... 0x8ff:
563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 return true;
565 case MSR_IA32_RTIT_STATUS:
566 case MSR_IA32_RTIT_OUTPUT_BASE:
567 case MSR_IA32_RTIT_OUTPUT_MASK:
568 case MSR_IA32_RTIT_CR3_MATCH:
569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 case MSR_LBR_SELECT:
572 case MSR_LBR_TOS:
573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 return true;
580 }
581
582 r = possible_passthrough_msr_slot(msr) != -ENOENT;
583
584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585
586 return r;
587 }
588
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 int i;
592
593 i = kvm_find_user_return_msr(msr);
594 if (i >= 0)
595 return &vmx->guest_uret_msrs[i];
596 return NULL;
597 }
598
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 struct vmx_uret_msr *msr, u64 data)
601 {
602 unsigned int slot = msr - vmx->guest_uret_msrs;
603 int ret = 0;
604
605 u64 old_msr_data = msr->data;
606 msr->data = data;
607 if (msr->load_into_hardware) {
608 preempt_disable();
609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 preempt_enable();
611 if (ret)
612 msr->data = old_msr_data;
613 }
614 return ret;
615 }
616
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 int cpu = raw_smp_processor_id();
621 struct loaded_vmcs *v;
622
623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 loaded_vmcss_on_cpu_link)
625 vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 struct loaded_vmcs *loaded_vmcs = arg;
632 int cpu = raw_smp_processor_id();
633
634 if (loaded_vmcs->cpu != cpu)
635 return; /* vcpu migration can race with cpu offline */
636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 per_cpu(current_vmcs, cpu) = NULL;
638
639 vmcs_clear(loaded_vmcs->vmcs);
640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 vmcs_clear(loaded_vmcs->shadow_vmcs);
642
643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644
645 /*
646 * Ensure all writes to loaded_vmcs, including deleting it from its
647 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 */
652 smp_wmb();
653
654 loaded_vmcs->cpu = -1;
655 loaded_vmcs->launched = 0;
656 }
657
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 int cpu = loaded_vmcs->cpu;
661
662 if (cpu != -1)
663 smp_call_function_single(cpu,
664 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 unsigned field)
669 {
670 bool ret;
671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672
673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 vmx->segment_cache.bitmask = 0;
676 }
677 ret = vmx->segment_cache.bitmask & mask;
678 vmx->segment_cache.bitmask |= mask;
679 return ret;
680 }
681
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 u16 *p = &vmx->segment_cache.seg[seg].selector;
685
686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 return *p;
689 }
690
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 ulong *p = &vmx->segment_cache.seg[seg].base;
694
695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 return *p;
698 }
699
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 u32 *p = &vmx->segment_cache.seg[seg].limit;
703
704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 return *p;
707 }
708
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 u32 *p = &vmx->segment_cache.seg[seg].ar;
712
713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 return *p;
716 }
717
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 u32 eb;
721
722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 /*
725 * Guest access to VMware backdoor ports could legitimately
726 * trigger #GP because of TSS I/O permission bitmap.
727 * We intercept those #GP and allow access to them anyway
728 * as VMware does.
729 */
730 if (enable_vmware_backdoor)
731 eb |= (1u << GP_VECTOR);
732 if ((vcpu->guest_debug &
733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 eb |= 1u << BP_VECTOR;
736 if (to_vmx(vcpu)->rmode.vm86_active)
737 eb = ~0;
738 if (!vmx_need_pf_intercept(vcpu))
739 eb &= ~(1u << PF_VECTOR);
740
741 /* When we are running a nested L2 guest and L1 specified for it a
742 * certain exception bitmap, we must trap the same exceptions and pass
743 * them to L1. When running L2, we will only handle the exceptions
744 * specified above if L1 did not want them.
745 */
746 if (is_guest_mode(vcpu))
747 eb |= get_vmcs12(vcpu)->exception_bitmap;
748 else {
749 int mask = 0, match = 0;
750
751 if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 /*
753 * If EPT is enabled, #PF is currently only intercepted
754 * if MAXPHYADDR is smaller on the guest than on the
755 * host. In that case we only care about present,
756 * non-reserved faults. For vmcs02, however, PFEC_MASK
757 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 */
759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 match = PFERR_PRESENT_MASK;
761 }
762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 }
765
766 vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768
769 /*
770 * Check if MSR is intercepted for currently loaded MSR bitmap.
771 */
772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
773 {
774 unsigned long *msr_bitmap;
775 int f = sizeof(unsigned long);
776
777 if (!cpu_has_vmx_msr_bitmap())
778 return true;
779
780 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
781
782 if (msr <= 0x1fff) {
783 return !!test_bit(msr, msr_bitmap + 0x800 / f);
784 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
785 msr &= 0x1fff;
786 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
787 }
788
789 return true;
790 }
791
792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
793 unsigned long entry, unsigned long exit)
794 {
795 vm_entry_controls_clearbit(vmx, entry);
796 vm_exit_controls_clearbit(vmx, exit);
797 }
798
799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
800 {
801 unsigned int i;
802
803 for (i = 0; i < m->nr; ++i) {
804 if (m->val[i].index == msr)
805 return i;
806 }
807 return -ENOENT;
808 }
809
810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
811 {
812 int i;
813 struct msr_autoload *m = &vmx->msr_autoload;
814
815 switch (msr) {
816 case MSR_EFER:
817 if (cpu_has_load_ia32_efer()) {
818 clear_atomic_switch_msr_special(vmx,
819 VM_ENTRY_LOAD_IA32_EFER,
820 VM_EXIT_LOAD_IA32_EFER);
821 return;
822 }
823 break;
824 case MSR_CORE_PERF_GLOBAL_CTRL:
825 if (cpu_has_load_perf_global_ctrl()) {
826 clear_atomic_switch_msr_special(vmx,
827 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
829 return;
830 }
831 break;
832 }
833 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
834 if (i < 0)
835 goto skip_guest;
836 --m->guest.nr;
837 m->guest.val[i] = m->guest.val[m->guest.nr];
838 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
839
840 skip_guest:
841 i = vmx_find_loadstore_msr_slot(&m->host, msr);
842 if (i < 0)
843 return;
844
845 --m->host.nr;
846 m->host.val[i] = m->host.val[m->host.nr];
847 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
848 }
849
850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
851 unsigned long entry, unsigned long exit,
852 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
853 u64 guest_val, u64 host_val)
854 {
855 vmcs_write64(guest_val_vmcs, guest_val);
856 if (host_val_vmcs != HOST_IA32_EFER)
857 vmcs_write64(host_val_vmcs, host_val);
858 vm_entry_controls_setbit(vmx, entry);
859 vm_exit_controls_setbit(vmx, exit);
860 }
861
862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
863 u64 guest_val, u64 host_val, bool entry_only)
864 {
865 int i, j = 0;
866 struct msr_autoload *m = &vmx->msr_autoload;
867
868 switch (msr) {
869 case MSR_EFER:
870 if (cpu_has_load_ia32_efer()) {
871 add_atomic_switch_msr_special(vmx,
872 VM_ENTRY_LOAD_IA32_EFER,
873 VM_EXIT_LOAD_IA32_EFER,
874 GUEST_IA32_EFER,
875 HOST_IA32_EFER,
876 guest_val, host_val);
877 return;
878 }
879 break;
880 case MSR_CORE_PERF_GLOBAL_CTRL:
881 if (cpu_has_load_perf_global_ctrl()) {
882 add_atomic_switch_msr_special(vmx,
883 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
884 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
885 GUEST_IA32_PERF_GLOBAL_CTRL,
886 HOST_IA32_PERF_GLOBAL_CTRL,
887 guest_val, host_val);
888 return;
889 }
890 break;
891 case MSR_IA32_PEBS_ENABLE:
892 /* PEBS needs a quiescent period after being disabled (to write
893 * a record). Disabling PEBS through VMX MSR swapping doesn't
894 * provide that period, so a CPU could write host's record into
895 * guest's memory.
896 */
897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
898 }
899
900 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
901 if (!entry_only)
902 j = vmx_find_loadstore_msr_slot(&m->host, msr);
903
904 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
905 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
906 printk_once(KERN_WARNING "Not enough msr switch entries. "
907 "Can't add msr %x\n", msr);
908 return;
909 }
910 if (i < 0) {
911 i = m->guest.nr++;
912 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
913 }
914 m->guest.val[i].index = msr;
915 m->guest.val[i].value = guest_val;
916
917 if (entry_only)
918 return;
919
920 if (j < 0) {
921 j = m->host.nr++;
922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924 m->host.val[j].index = msr;
925 m->host.val[j].value = host_val;
926 }
927
928 static bool update_transition_efer(struct vcpu_vmx *vmx)
929 {
930 u64 guest_efer = vmx->vcpu.arch.efer;
931 u64 ignore_bits = 0;
932 int i;
933
934 /* Shadow paging assumes NX to be available. */
935 if (!enable_ept)
936 guest_efer |= EFER_NX;
937
938 /*
939 * LMA and LME handled by hardware; SCE meaningless outside long mode.
940 */
941 ignore_bits |= EFER_SCE;
942 #ifdef CONFIG_X86_64
943 ignore_bits |= EFER_LMA | EFER_LME;
944 /* SCE is meaningful only in long mode on Intel */
945 if (guest_efer & EFER_LMA)
946 ignore_bits &= ~(u64)EFER_SCE;
947 #endif
948
949 /*
950 * On EPT, we can't emulate NX, so we must switch EFER atomically.
951 * On CPUs that support "load IA32_EFER", always switch EFER
952 * atomically, since it's faster than switching it manually.
953 */
954 if (cpu_has_load_ia32_efer() ||
955 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
956 if (!(guest_efer & EFER_LMA))
957 guest_efer &= ~EFER_LME;
958 if (guest_efer != host_efer)
959 add_atomic_switch_msr(vmx, MSR_EFER,
960 guest_efer, host_efer, false);
961 else
962 clear_atomic_switch_msr(vmx, MSR_EFER);
963 return false;
964 }
965
966 i = kvm_find_user_return_msr(MSR_EFER);
967 if (i < 0)
968 return false;
969
970 clear_atomic_switch_msr(vmx, MSR_EFER);
971
972 guest_efer &= ~ignore_bits;
973 guest_efer |= host_efer & ignore_bits;
974
975 vmx->guest_uret_msrs[i].data = guest_efer;
976 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
977
978 return true;
979 }
980
981 #ifdef CONFIG_X86_32
982 /*
983 * On 32-bit kernels, VM exits still load the FS and GS bases from the
984 * VMCS rather than the segment table. KVM uses this helper to figure
985 * out the current bases to poke them into the VMCS before entry.
986 */
987 static unsigned long segment_base(u16 selector)
988 {
989 struct desc_struct *table;
990 unsigned long v;
991
992 if (!(selector & ~SEGMENT_RPL_MASK))
993 return 0;
994
995 table = get_current_gdt_ro();
996
997 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
998 u16 ldt_selector = kvm_read_ldt();
999
1000 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1001 return 0;
1002
1003 table = (struct desc_struct *)segment_base(ldt_selector);
1004 }
1005 v = get_desc_base(&table[selector >> 3]);
1006 return v;
1007 }
1008 #endif
1009
1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1011 {
1012 return vmx_pt_mode_is_host_guest() &&
1013 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1014 }
1015
1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1017 {
1018 /* The base must be 128-byte aligned and a legal physical address. */
1019 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1020 }
1021
1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1023 {
1024 u32 i;
1025
1026 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1027 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1029 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1030 for (i = 0; i < addr_range; i++) {
1031 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1032 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1033 }
1034 }
1035
1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1037 {
1038 u32 i;
1039
1040 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1041 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1043 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1044 for (i = 0; i < addr_range; i++) {
1045 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1046 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1047 }
1048 }
1049
1050 static void pt_guest_enter(struct vcpu_vmx *vmx)
1051 {
1052 if (vmx_pt_mode_is_system())
1053 return;
1054
1055 /*
1056 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1057 * Save host state before VM entry.
1058 */
1059 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1060 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1061 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1062 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1063 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1064 }
1065 }
1066
1067 static void pt_guest_exit(struct vcpu_vmx *vmx)
1068 {
1069 if (vmx_pt_mode_is_system())
1070 return;
1071
1072 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1073 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1074 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1075 }
1076
1077 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1078 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1079 }
1080
1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1082 unsigned long fs_base, unsigned long gs_base)
1083 {
1084 if (unlikely(fs_sel != host->fs_sel)) {
1085 if (!(fs_sel & 7))
1086 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1087 else
1088 vmcs_write16(HOST_FS_SELECTOR, 0);
1089 host->fs_sel = fs_sel;
1090 }
1091 if (unlikely(gs_sel != host->gs_sel)) {
1092 if (!(gs_sel & 7))
1093 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1094 else
1095 vmcs_write16(HOST_GS_SELECTOR, 0);
1096 host->gs_sel = gs_sel;
1097 }
1098 if (unlikely(fs_base != host->fs_base)) {
1099 vmcs_writel(HOST_FS_BASE, fs_base);
1100 host->fs_base = fs_base;
1101 }
1102 if (unlikely(gs_base != host->gs_base)) {
1103 vmcs_writel(HOST_GS_BASE, gs_base);
1104 host->gs_base = gs_base;
1105 }
1106 }
1107
1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1109 {
1110 struct vcpu_vmx *vmx = to_vmx(vcpu);
1111 struct vmcs_host_state *host_state;
1112 #ifdef CONFIG_X86_64
1113 int cpu = raw_smp_processor_id();
1114 #endif
1115 unsigned long fs_base, gs_base;
1116 u16 fs_sel, gs_sel;
1117 int i;
1118
1119 vmx->req_immediate_exit = false;
1120
1121 /*
1122 * Note that guest MSRs to be saved/restored can also be changed
1123 * when guest state is loaded. This happens when guest transitions
1124 * to/from long-mode by setting MSR_EFER.LMA.
1125 */
1126 if (!vmx->guest_uret_msrs_loaded) {
1127 vmx->guest_uret_msrs_loaded = true;
1128 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1129 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1130 continue;
1131
1132 kvm_set_user_return_msr(i,
1133 vmx->guest_uret_msrs[i].data,
1134 vmx->guest_uret_msrs[i].mask);
1135 }
1136 }
1137
1138 if (vmx->nested.need_vmcs12_to_shadow_sync)
1139 nested_sync_vmcs12_to_shadow(vcpu);
1140
1141 if (vmx->guest_state_loaded)
1142 return;
1143
1144 host_state = &vmx->loaded_vmcs->host_state;
1145
1146 /*
1147 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1148 * allow segment selectors with cpl > 0 or ti == 1.
1149 */
1150 host_state->ldt_sel = kvm_read_ldt();
1151
1152 #ifdef CONFIG_X86_64
1153 savesegment(ds, host_state->ds_sel);
1154 savesegment(es, host_state->es_sel);
1155
1156 gs_base = cpu_kernelmode_gs_base(cpu);
1157 if (likely(is_64bit_mm(current->mm))) {
1158 current_save_fsgs();
1159 fs_sel = current->thread.fsindex;
1160 gs_sel = current->thread.gsindex;
1161 fs_base = current->thread.fsbase;
1162 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1163 } else {
1164 savesegment(fs, fs_sel);
1165 savesegment(gs, gs_sel);
1166 fs_base = read_msr(MSR_FS_BASE);
1167 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1168 }
1169
1170 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1171 #else
1172 savesegment(fs, fs_sel);
1173 savesegment(gs, gs_sel);
1174 fs_base = segment_base(fs_sel);
1175 gs_base = segment_base(gs_sel);
1176 #endif
1177
1178 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1179 vmx->guest_state_loaded = true;
1180 }
1181
1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1183 {
1184 struct vmcs_host_state *host_state;
1185
1186 if (!vmx->guest_state_loaded)
1187 return;
1188
1189 host_state = &vmx->loaded_vmcs->host_state;
1190
1191 ++vmx->vcpu.stat.host_state_reload;
1192
1193 #ifdef CONFIG_X86_64
1194 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1195 #endif
1196 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1197 kvm_load_ldt(host_state->ldt_sel);
1198 #ifdef CONFIG_X86_64
1199 load_gs_index(host_state->gs_sel);
1200 #else
1201 loadsegment(gs, host_state->gs_sel);
1202 #endif
1203 }
1204 if (host_state->fs_sel & 7)
1205 loadsegment(fs, host_state->fs_sel);
1206 #ifdef CONFIG_X86_64
1207 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1208 loadsegment(ds, host_state->ds_sel);
1209 loadsegment(es, host_state->es_sel);
1210 }
1211 #endif
1212 invalidate_tss_limit();
1213 #ifdef CONFIG_X86_64
1214 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1215 #endif
1216 load_fixmap_gdt(raw_smp_processor_id());
1217 vmx->guest_state_loaded = false;
1218 vmx->guest_uret_msrs_loaded = false;
1219 }
1220
1221 #ifdef CONFIG_X86_64
1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1223 {
1224 preempt_disable();
1225 if (vmx->guest_state_loaded)
1226 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1227 preempt_enable();
1228 return vmx->msr_guest_kernel_gs_base;
1229 }
1230
1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1232 {
1233 preempt_disable();
1234 if (vmx->guest_state_loaded)
1235 wrmsrl(MSR_KERNEL_GS_BASE, data);
1236 preempt_enable();
1237 vmx->msr_guest_kernel_gs_base = data;
1238 }
1239 #endif
1240
1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1242 struct loaded_vmcs *buddy)
1243 {
1244 struct vcpu_vmx *vmx = to_vmx(vcpu);
1245 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1246 struct vmcs *prev;
1247
1248 if (!already_loaded) {
1249 loaded_vmcs_clear(vmx->loaded_vmcs);
1250 local_irq_disable();
1251
1252 /*
1253 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1254 * this cpu's percpu list, otherwise it may not yet be deleted
1255 * from its previous cpu's percpu list. Pairs with the
1256 * smb_wmb() in __loaded_vmcs_clear().
1257 */
1258 smp_rmb();
1259
1260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1261 &per_cpu(loaded_vmcss_on_cpu, cpu));
1262 local_irq_enable();
1263 }
1264
1265 prev = per_cpu(current_vmcs, cpu);
1266 if (prev != vmx->loaded_vmcs->vmcs) {
1267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1268 vmcs_load(vmx->loaded_vmcs->vmcs);
1269
1270 /*
1271 * No indirect branch prediction barrier needed when switching
1272 * the active VMCS within a guest, e.g. on nested VM-Enter.
1273 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1274 */
1275 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1276 indirect_branch_prediction_barrier();
1277 }
1278
1279 if (!already_loaded) {
1280 void *gdt = get_current_gdt_ro();
1281 unsigned long sysenter_esp;
1282
1283 /*
1284 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1285 * TLB entries from its previous association with the vCPU.
1286 */
1287 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1288
1289 /*
1290 * Linux uses per-cpu TSS and GDT, so set these when switching
1291 * processors. See 22.2.4.
1292 */
1293 vmcs_writel(HOST_TR_BASE,
1294 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1295 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1296
1297 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1298 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1299
1300 vmx->loaded_vmcs->cpu = cpu;
1301 }
1302 }
1303
1304 /*
1305 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1306 * vcpu mutex is already taken.
1307 */
1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1309 {
1310 struct vcpu_vmx *vmx = to_vmx(vcpu);
1311
1312 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1313
1314 vmx_vcpu_pi_load(vcpu, cpu);
1315
1316 vmx->host_debugctlmsr = get_debugctlmsr();
1317 }
1318
1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1320 {
1321 vmx_vcpu_pi_put(vcpu);
1322
1323 vmx_prepare_switch_to_host(to_vmx(vcpu));
1324 }
1325
1326 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1327 {
1328 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1329 }
1330
1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1332 {
1333 struct vcpu_vmx *vmx = to_vmx(vcpu);
1334 unsigned long rflags, save_rflags;
1335
1336 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1337 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1338 rflags = vmcs_readl(GUEST_RFLAGS);
1339 if (vmx->rmode.vm86_active) {
1340 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1341 save_rflags = vmx->rmode.save_rflags;
1342 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1343 }
1344 vmx->rflags = rflags;
1345 }
1346 return vmx->rflags;
1347 }
1348
1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1350 {
1351 struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 unsigned long old_rflags;
1353
1354 if (is_unrestricted_guest(vcpu)) {
1355 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1356 vmx->rflags = rflags;
1357 vmcs_writel(GUEST_RFLAGS, rflags);
1358 return;
1359 }
1360
1361 old_rflags = vmx_get_rflags(vcpu);
1362 vmx->rflags = rflags;
1363 if (vmx->rmode.vm86_active) {
1364 vmx->rmode.save_rflags = rflags;
1365 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1366 }
1367 vmcs_writel(GUEST_RFLAGS, rflags);
1368
1369 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1370 vmx->emulation_required = vmx_emulation_required(vcpu);
1371 }
1372
1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1374 {
1375 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376 int ret = 0;
1377
1378 if (interruptibility & GUEST_INTR_STATE_STI)
1379 ret |= KVM_X86_SHADOW_INT_STI;
1380 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1381 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1382
1383 return ret;
1384 }
1385
1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1387 {
1388 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1389 u32 interruptibility = interruptibility_old;
1390
1391 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1392
1393 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1394 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1395 else if (mask & KVM_X86_SHADOW_INT_STI)
1396 interruptibility |= GUEST_INTR_STATE_STI;
1397
1398 if ((interruptibility != interruptibility_old))
1399 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1400 }
1401
1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1403 {
1404 struct vcpu_vmx *vmx = to_vmx(vcpu);
1405 unsigned long value;
1406
1407 /*
1408 * Any MSR write that attempts to change bits marked reserved will
1409 * case a #GP fault.
1410 */
1411 if (data & vmx->pt_desc.ctl_bitmask)
1412 return 1;
1413
1414 /*
1415 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1416 * result in a #GP unless the same write also clears TraceEn.
1417 */
1418 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1419 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1420 return 1;
1421
1422 /*
1423 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1424 * and FabricEn would cause #GP, if
1425 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1426 */
1427 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1428 !(data & RTIT_CTL_FABRIC_EN) &&
1429 !intel_pt_validate_cap(vmx->pt_desc.caps,
1430 PT_CAP_single_range_output))
1431 return 1;
1432
1433 /*
1434 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1435 * utilize encodings marked reserved will cause a #GP fault.
1436 */
1437 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1438 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1439 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1440 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1441 return 1;
1442 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1443 PT_CAP_cycle_thresholds);
1444 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1445 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1446 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1447 return 1;
1448 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1449 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1450 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1451 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1452 return 1;
1453
1454 /*
1455 * If ADDRx_CFG is reserved or the encodings is >2 will
1456 * cause a #GP fault.
1457 */
1458 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1459 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1460 return 1;
1461 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1462 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1463 return 1;
1464 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1465 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1466 return 1;
1467 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1468 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1469 return 1;
1470
1471 return 0;
1472 }
1473
1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1475 {
1476 /*
1477 * Emulation of instructions in SGX enclaves is impossible as RIP does
1478 * not point tthe failing instruction, and even if it did, the code
1479 * stream is inaccessible. Inject #UD instead of exiting to userspace
1480 * so that guest userspace can't DoS the guest simply by triggering
1481 * emulation (enclaves are CPL3 only).
1482 */
1483 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1484 kvm_queue_exception(vcpu, UD_VECTOR);
1485 return false;
1486 }
1487 return true;
1488 }
1489
1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1491 {
1492 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1493 unsigned long rip, orig_rip;
1494 u32 instr_len;
1495
1496 /*
1497 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1498 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1499 * set when EPT misconfig occurs. In practice, real hardware updates
1500 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1501 * (namely Hyper-V) don't set it due to it being undefined behavior,
1502 * i.e. we end up advancing IP with some random value.
1503 */
1504 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1505 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1506 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1507
1508 /*
1509 * Emulating an enclave's instructions isn't supported as KVM
1510 * cannot access the enclave's memory or its true RIP, e.g. the
1511 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1512 * the RIP that actually triggered the VM-Exit. But, because
1513 * most instructions that cause VM-Exit will #UD in an enclave,
1514 * most instruction-based VM-Exits simply do not occur.
1515 *
1516 * There are a few exceptions, notably the debug instructions
1517 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1518 * and generate #DB/#BP as expected, which KVM might intercept.
1519 * But again, the CPU does the dirty work and saves an instr
1520 * length of zero so VMMs don't shoot themselves in the foot.
1521 * WARN if KVM tries to skip a non-zero length instruction on
1522 * a VM-Exit from an enclave.
1523 */
1524 if (!instr_len)
1525 goto rip_updated;
1526
1527 WARN(exit_reason.enclave_mode,
1528 "KVM: skipping instruction after SGX enclave VM-Exit");
1529
1530 orig_rip = kvm_rip_read(vcpu);
1531 rip = orig_rip + instr_len;
1532 #ifdef CONFIG_X86_64
1533 /*
1534 * We need to mask out the high 32 bits of RIP if not in 64-bit
1535 * mode, but just finding out that we are in 64-bit mode is
1536 * quite expensive. Only do it if there was a carry.
1537 */
1538 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1539 rip = (u32)rip;
1540 #endif
1541 kvm_rip_write(vcpu, rip);
1542 } else {
1543 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1544 return 0;
1545 }
1546
1547 rip_updated:
1548 /* skipping an emulated instruction also counts */
1549 vmx_set_interrupt_shadow(vcpu, 0);
1550
1551 return 1;
1552 }
1553
1554 /*
1555 * Recognizes a pending MTF VM-exit and records the nested state for later
1556 * delivery.
1557 */
1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1559 {
1560 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1561 struct vcpu_vmx *vmx = to_vmx(vcpu);
1562
1563 if (!is_guest_mode(vcpu))
1564 return;
1565
1566 /*
1567 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1568 * T-bit traps. As instruction emulation is completed (i.e. at the
1569 * instruction boundary), any #DB exception pending delivery must be a
1570 * debug-trap. Record the pending MTF state to be delivered in
1571 * vmx_check_nested_events().
1572 */
1573 if (nested_cpu_has_mtf(vmcs12) &&
1574 (!vcpu->arch.exception.pending ||
1575 vcpu->arch.exception.nr == DB_VECTOR))
1576 vmx->nested.mtf_pending = true;
1577 else
1578 vmx->nested.mtf_pending = false;
1579 }
1580
1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1582 {
1583 vmx_update_emulated_instruction(vcpu);
1584 return skip_emulated_instruction(vcpu);
1585 }
1586
1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1588 {
1589 /*
1590 * Ensure that we clear the HLT state in the VMCS. We don't need to
1591 * explicitly skip the instruction because if the HLT state is set,
1592 * then the instruction is already executing and RIP has already been
1593 * advanced.
1594 */
1595 if (kvm_hlt_in_guest(vcpu->kvm) &&
1596 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1597 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1598 }
1599
1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1601 {
1602 struct vcpu_vmx *vmx = to_vmx(vcpu);
1603 unsigned nr = vcpu->arch.exception.nr;
1604 bool has_error_code = vcpu->arch.exception.has_error_code;
1605 u32 error_code = vcpu->arch.exception.error_code;
1606 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1607
1608 kvm_deliver_exception_payload(vcpu);
1609
1610 if (has_error_code) {
1611 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1612 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1613 }
1614
1615 if (vmx->rmode.vm86_active) {
1616 int inc_eip = 0;
1617 if (kvm_exception_is_soft(nr))
1618 inc_eip = vcpu->arch.event_exit_inst_len;
1619 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1620 return;
1621 }
1622
1623 WARN_ON_ONCE(vmx->emulation_required);
1624
1625 if (kvm_exception_is_soft(nr)) {
1626 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1627 vmx->vcpu.arch.event_exit_inst_len);
1628 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1629 } else
1630 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1631
1632 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1633
1634 vmx_clear_hlt(vcpu);
1635 }
1636
1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1638 bool load_into_hardware)
1639 {
1640 struct vmx_uret_msr *uret_msr;
1641
1642 uret_msr = vmx_find_uret_msr(vmx, msr);
1643 if (!uret_msr)
1644 return;
1645
1646 uret_msr->load_into_hardware = load_into_hardware;
1647 }
1648
1649 /*
1650 * Configuring user return MSRs to automatically save, load, and restore MSRs
1651 * that need to be shoved into hardware when running the guest. Note, omitting
1652 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1653 * loaded into hardware when running the guest.
1654 */
1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658 bool load_syscall_msrs;
1659
1660 /*
1661 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 * when EFER.SCE is set.
1663 */
1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 (vmx->vcpu.arch.efer & EFER_SCE);
1666
1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672
1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676
1677 /*
1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 * kernel and old userspace. If those guests run on a tsx=off host, do
1680 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 * so that TSX remains always disabled.
1682 */
1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684
1685 /*
1686 * The set of MSRs to load may have changed, reload MSRs before the
1687 * next VM-Enter.
1688 */
1689 vmx->guest_uret_msrs_loaded = false;
1690 }
1691
1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1693 {
1694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1695
1696 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1697 return vmcs12->tsc_offset;
1698
1699 return 0;
1700 }
1701
1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1703 {
1704 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1705
1706 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1707 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1708 return vmcs12->tsc_multiplier;
1709
1710 return kvm_default_tsc_scaling_ratio;
1711 }
1712
1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1714 {
1715 vmcs_write64(TSC_OFFSET, offset);
1716 }
1717
1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1719 {
1720 vmcs_write64(TSC_MULTIPLIER, multiplier);
1721 }
1722
1723 /*
1724 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1725 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1726 * all guests if the "nested" module option is off, and can also be disabled
1727 * for a single guest by disabling its VMX cpuid bit.
1728 */
1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1730 {
1731 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1732 }
1733
1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1735 uint64_t val)
1736 {
1737 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1738
1739 return !(val & ~valid_bits);
1740 }
1741
1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1743 {
1744 switch (msr->index) {
1745 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1746 if (!nested)
1747 return 1;
1748 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1749 case MSR_IA32_PERF_CAPABILITIES:
1750 msr->data = vmx_get_perf_capabilities();
1751 return 0;
1752 default:
1753 return KVM_MSR_RET_INVALID;
1754 }
1755 }
1756
1757 /*
1758 * Reads an msr value (of 'msr_index') into 'pdata'.
1759 * Returns 0 on success, non-0 otherwise.
1760 * Assumes vcpu_load() was already called.
1761 */
1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1763 {
1764 struct vcpu_vmx *vmx = to_vmx(vcpu);
1765 struct vmx_uret_msr *msr;
1766 u32 index;
1767
1768 switch (msr_info->index) {
1769 #ifdef CONFIG_X86_64
1770 case MSR_FS_BASE:
1771 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1772 break;
1773 case MSR_GS_BASE:
1774 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1775 break;
1776 case MSR_KERNEL_GS_BASE:
1777 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1778 break;
1779 #endif
1780 case MSR_EFER:
1781 return kvm_get_msr_common(vcpu, msr_info);
1782 case MSR_IA32_TSX_CTRL:
1783 if (!msr_info->host_initiated &&
1784 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1785 return 1;
1786 goto find_uret_msr;
1787 case MSR_IA32_UMWAIT_CONTROL:
1788 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1789 return 1;
1790
1791 msr_info->data = vmx->msr_ia32_umwait_control;
1792 break;
1793 case MSR_IA32_SPEC_CTRL:
1794 if (!msr_info->host_initiated &&
1795 !guest_has_spec_ctrl_msr(vcpu))
1796 return 1;
1797
1798 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1799 break;
1800 case MSR_IA32_SYSENTER_CS:
1801 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1802 break;
1803 case MSR_IA32_SYSENTER_EIP:
1804 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1805 break;
1806 case MSR_IA32_SYSENTER_ESP:
1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1808 break;
1809 case MSR_IA32_BNDCFGS:
1810 if (!kvm_mpx_supported() ||
1811 (!msr_info->host_initiated &&
1812 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1813 return 1;
1814 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1815 break;
1816 case MSR_IA32_MCG_EXT_CTL:
1817 if (!msr_info->host_initiated &&
1818 !(vmx->msr_ia32_feature_control &
1819 FEAT_CTL_LMCE_ENABLED))
1820 return 1;
1821 msr_info->data = vcpu->arch.mcg_ext_ctl;
1822 break;
1823 case MSR_IA32_FEAT_CTL:
1824 msr_info->data = vmx->msr_ia32_feature_control;
1825 break;
1826 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1827 if (!msr_info->host_initiated &&
1828 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1829 return 1;
1830 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1831 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1832 break;
1833 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1834 if (!nested_vmx_allowed(vcpu))
1835 return 1;
1836 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1837 &msr_info->data))
1838 return 1;
1839 /*
1840 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1841 * instead of just ignoring the features, different Hyper-V
1842 * versions are either trying to use them and fail or do some
1843 * sanity checking and refuse to boot. Filter all unsupported
1844 * features out.
1845 */
1846 if (!msr_info->host_initiated &&
1847 vmx->nested.enlightened_vmcs_enabled)
1848 nested_evmcs_filter_control_msr(msr_info->index,
1849 &msr_info->data);
1850 break;
1851 case MSR_IA32_RTIT_CTL:
1852 if (!vmx_pt_mode_is_host_guest())
1853 return 1;
1854 msr_info->data = vmx->pt_desc.guest.ctl;
1855 break;
1856 case MSR_IA32_RTIT_STATUS:
1857 if (!vmx_pt_mode_is_host_guest())
1858 return 1;
1859 msr_info->data = vmx->pt_desc.guest.status;
1860 break;
1861 case MSR_IA32_RTIT_CR3_MATCH:
1862 if (!vmx_pt_mode_is_host_guest() ||
1863 !intel_pt_validate_cap(vmx->pt_desc.caps,
1864 PT_CAP_cr3_filtering))
1865 return 1;
1866 msr_info->data = vmx->pt_desc.guest.cr3_match;
1867 break;
1868 case MSR_IA32_RTIT_OUTPUT_BASE:
1869 if (!vmx_pt_mode_is_host_guest() ||
1870 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1871 PT_CAP_topa_output) &&
1872 !intel_pt_validate_cap(vmx->pt_desc.caps,
1873 PT_CAP_single_range_output)))
1874 return 1;
1875 msr_info->data = vmx->pt_desc.guest.output_base;
1876 break;
1877 case MSR_IA32_RTIT_OUTPUT_MASK:
1878 if (!vmx_pt_mode_is_host_guest() ||
1879 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1880 PT_CAP_topa_output) &&
1881 !intel_pt_validate_cap(vmx->pt_desc.caps,
1882 PT_CAP_single_range_output)))
1883 return 1;
1884 msr_info->data = vmx->pt_desc.guest.output_mask;
1885 break;
1886 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1887 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1888 if (!vmx_pt_mode_is_host_guest() ||
1889 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1890 PT_CAP_num_address_ranges)))
1891 return 1;
1892 if (index % 2)
1893 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1894 else
1895 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1896 break;
1897 case MSR_IA32_DEBUGCTLMSR:
1898 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1899 break;
1900 default:
1901 find_uret_msr:
1902 msr = vmx_find_uret_msr(vmx, msr_info->index);
1903 if (msr) {
1904 msr_info->data = msr->data;
1905 break;
1906 }
1907 return kvm_get_msr_common(vcpu, msr_info);
1908 }
1909
1910 return 0;
1911 }
1912
1913 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1914 u64 data)
1915 {
1916 #ifdef CONFIG_X86_64
1917 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1918 return (u32)data;
1919 #endif
1920 return (unsigned long)data;
1921 }
1922
1923 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1924 {
1925 u64 debugctl = vmx_supported_debugctl();
1926
1927 if (!intel_pmu_lbr_is_enabled(vcpu))
1928 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1929
1930 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1931 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1932
1933 return debugctl;
1934 }
1935
1936 /*
1937 * Writes msr value into the appropriate "register".
1938 * Returns 0 on success, non-0 otherwise.
1939 * Assumes vcpu_load() was already called.
1940 */
1941 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1942 {
1943 struct vcpu_vmx *vmx = to_vmx(vcpu);
1944 struct vmx_uret_msr *msr;
1945 int ret = 0;
1946 u32 msr_index = msr_info->index;
1947 u64 data = msr_info->data;
1948 u32 index;
1949
1950 switch (msr_index) {
1951 case MSR_EFER:
1952 ret = kvm_set_msr_common(vcpu, msr_info);
1953 break;
1954 #ifdef CONFIG_X86_64
1955 case MSR_FS_BASE:
1956 vmx_segment_cache_clear(vmx);
1957 vmcs_writel(GUEST_FS_BASE, data);
1958 break;
1959 case MSR_GS_BASE:
1960 vmx_segment_cache_clear(vmx);
1961 vmcs_writel(GUEST_GS_BASE, data);
1962 break;
1963 case MSR_KERNEL_GS_BASE:
1964 vmx_write_guest_kernel_gs_base(vmx, data);
1965 break;
1966 #endif
1967 case MSR_IA32_SYSENTER_CS:
1968 if (is_guest_mode(vcpu))
1969 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1970 vmcs_write32(GUEST_SYSENTER_CS, data);
1971 break;
1972 case MSR_IA32_SYSENTER_EIP:
1973 if (is_guest_mode(vcpu)) {
1974 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1975 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1976 }
1977 vmcs_writel(GUEST_SYSENTER_EIP, data);
1978 break;
1979 case MSR_IA32_SYSENTER_ESP:
1980 if (is_guest_mode(vcpu)) {
1981 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1982 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1983 }
1984 vmcs_writel(GUEST_SYSENTER_ESP, data);
1985 break;
1986 case MSR_IA32_DEBUGCTLMSR: {
1987 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1988 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1989 if (report_ignored_msrs)
1990 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1991 __func__, data);
1992 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1993 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1994 }
1995
1996 if (invalid)
1997 return 1;
1998
1999 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2000 VM_EXIT_SAVE_DEBUG_CONTROLS)
2001 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2002
2003 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2004 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2005 (data & DEBUGCTLMSR_LBR))
2006 intel_pmu_create_guest_lbr_event(vcpu);
2007 return 0;
2008 }
2009 case MSR_IA32_BNDCFGS:
2010 if (!kvm_mpx_supported() ||
2011 (!msr_info->host_initiated &&
2012 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013 return 1;
2014 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2015 (data & MSR_IA32_BNDCFGS_RSVD))
2016 return 1;
2017 vmcs_write64(GUEST_BNDCFGS, data);
2018 break;
2019 case MSR_IA32_UMWAIT_CONTROL:
2020 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2021 return 1;
2022
2023 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2024 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2025 return 1;
2026
2027 vmx->msr_ia32_umwait_control = data;
2028 break;
2029 case MSR_IA32_SPEC_CTRL:
2030 if (!msr_info->host_initiated &&
2031 !guest_has_spec_ctrl_msr(vcpu))
2032 return 1;
2033
2034 if (kvm_spec_ctrl_test_value(data))
2035 return 1;
2036
2037 vmx->spec_ctrl = data;
2038 if (!data)
2039 break;
2040
2041 /*
2042 * For non-nested:
2043 * When it's written (to non-zero) for the first time, pass
2044 * it through.
2045 *
2046 * For nested:
2047 * The handling of the MSR bitmap for L2 guests is done in
2048 * nested_vmx_prepare_msr_bitmap. We should not touch the
2049 * vmcs02.msr_bitmap here since it gets completely overwritten
2050 * in the merging. We update the vmcs01 here for L1 as well
2051 * since it will end up touching the MSR anyway now.
2052 */
2053 vmx_disable_intercept_for_msr(vcpu,
2054 MSR_IA32_SPEC_CTRL,
2055 MSR_TYPE_RW);
2056 break;
2057 case MSR_IA32_TSX_CTRL:
2058 if (!msr_info->host_initiated &&
2059 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060 return 1;
2061 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2062 return 1;
2063 goto find_uret_msr;
2064 case MSR_IA32_PRED_CMD:
2065 if (!msr_info->host_initiated &&
2066 !guest_has_pred_cmd_msr(vcpu))
2067 return 1;
2068
2069 if (data & ~PRED_CMD_IBPB)
2070 return 1;
2071 if (!boot_cpu_has(X86_FEATURE_IBPB))
2072 return 1;
2073 if (!data)
2074 break;
2075
2076 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2077
2078 /*
2079 * For non-nested:
2080 * When it's written (to non-zero) for the first time, pass
2081 * it through.
2082 *
2083 * For nested:
2084 * The handling of the MSR bitmap for L2 guests is done in
2085 * nested_vmx_prepare_msr_bitmap. We should not touch the
2086 * vmcs02.msr_bitmap here since it gets completely overwritten
2087 * in the merging.
2088 */
2089 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090 break;
2091 case MSR_IA32_CR_PAT:
2092 if (!kvm_pat_valid(data))
2093 return 1;
2094
2095 if (is_guest_mode(vcpu) &&
2096 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2097 get_vmcs12(vcpu)->guest_ia32_pat = data;
2098
2099 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2100 vmcs_write64(GUEST_IA32_PAT, data);
2101 vcpu->arch.pat = data;
2102 break;
2103 }
2104 ret = kvm_set_msr_common(vcpu, msr_info);
2105 break;
2106 case MSR_IA32_TSC_ADJUST:
2107 ret = kvm_set_msr_common(vcpu, msr_info);
2108 break;
2109 case MSR_IA32_MCG_EXT_CTL:
2110 if ((!msr_info->host_initiated &&
2111 !(to_vmx(vcpu)->msr_ia32_feature_control &
2112 FEAT_CTL_LMCE_ENABLED)) ||
2113 (data & ~MCG_EXT_CTL_LMCE_EN))
2114 return 1;
2115 vcpu->arch.mcg_ext_ctl = data;
2116 break;
2117 case MSR_IA32_FEAT_CTL:
2118 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2119 (to_vmx(vcpu)->msr_ia32_feature_control &
2120 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121 return 1;
2122 vmx->msr_ia32_feature_control = data;
2123 if (msr_info->host_initiated && data == 0)
2124 vmx_leave_nested(vcpu);
2125
2126 /* SGX may be enabled/disabled by guest's firmware */
2127 vmx_write_encls_bitmap(vcpu, NULL);
2128 break;
2129 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2130 /*
2131 * On real hardware, the LE hash MSRs are writable before
2132 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2133 * at which point SGX related bits in IA32_FEATURE_CONTROL
2134 * become writable.
2135 *
2136 * KVM does not emulate SGX activation for simplicity, so
2137 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2138 * is unlocked. This is technically not architectural
2139 * behavior, but it's close enough.
2140 */
2141 if (!msr_info->host_initiated &&
2142 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2143 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2144 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2145 return 1;
2146 vmx->msr_ia32_sgxlepubkeyhash
2147 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2148 break;
2149 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2150 if (!msr_info->host_initiated)
2151 return 1; /* they are read-only */
2152 if (!nested_vmx_allowed(vcpu))
2153 return 1;
2154 return vmx_set_vmx_msr(vcpu, msr_index, data);
2155 case MSR_IA32_RTIT_CTL:
2156 if (!vmx_pt_mode_is_host_guest() ||
2157 vmx_rtit_ctl_check(vcpu, data) ||
2158 vmx->nested.vmxon)
2159 return 1;
2160 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2161 vmx->pt_desc.guest.ctl = data;
2162 pt_update_intercept_for_msr(vcpu);
2163 break;
2164 case MSR_IA32_RTIT_STATUS:
2165 if (!pt_can_write_msr(vmx))
2166 return 1;
2167 if (data & MSR_IA32_RTIT_STATUS_MASK)
2168 return 1;
2169 vmx->pt_desc.guest.status = data;
2170 break;
2171 case MSR_IA32_RTIT_CR3_MATCH:
2172 if (!pt_can_write_msr(vmx))
2173 return 1;
2174 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2175 PT_CAP_cr3_filtering))
2176 return 1;
2177 vmx->pt_desc.guest.cr3_match = data;
2178 break;
2179 case MSR_IA32_RTIT_OUTPUT_BASE:
2180 if (!pt_can_write_msr(vmx))
2181 return 1;
2182 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2183 PT_CAP_topa_output) &&
2184 !intel_pt_validate_cap(vmx->pt_desc.caps,
2185 PT_CAP_single_range_output))
2186 return 1;
2187 if (!pt_output_base_valid(vcpu, data))
2188 return 1;
2189 vmx->pt_desc.guest.output_base = data;
2190 break;
2191 case MSR_IA32_RTIT_OUTPUT_MASK:
2192 if (!pt_can_write_msr(vmx))
2193 return 1;
2194 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2195 PT_CAP_topa_output) &&
2196 !intel_pt_validate_cap(vmx->pt_desc.caps,
2197 PT_CAP_single_range_output))
2198 return 1;
2199 vmx->pt_desc.guest.output_mask = data;
2200 break;
2201 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2202 if (!pt_can_write_msr(vmx))
2203 return 1;
2204 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2205 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2206 PT_CAP_num_address_ranges))
2207 return 1;
2208 if (is_noncanonical_address(data, vcpu))
2209 return 1;
2210 if (index % 2)
2211 vmx->pt_desc.guest.addr_b[index / 2] = data;
2212 else
2213 vmx->pt_desc.guest.addr_a[index / 2] = data;
2214 break;
2215 case MSR_IA32_PERF_CAPABILITIES:
2216 if (data && !vcpu_to_pmu(vcpu)->version)
2217 return 1;
2218 if (data & PMU_CAP_LBR_FMT) {
2219 if ((data & PMU_CAP_LBR_FMT) !=
2220 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2221 return 1;
2222 if (!intel_pmu_lbr_is_compatible(vcpu))
2223 return 1;
2224 }
2225 ret = kvm_set_msr_common(vcpu, msr_info);
2226 break;
2227
2228 default:
2229 find_uret_msr:
2230 msr = vmx_find_uret_msr(vmx, msr_index);
2231 if (msr)
2232 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2233 else
2234 ret = kvm_set_msr_common(vcpu, msr_info);
2235 }
2236
2237 return ret;
2238 }
2239
2240 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2241 {
2242 unsigned long guest_owned_bits;
2243
2244 kvm_register_mark_available(vcpu, reg);
2245
2246 switch (reg) {
2247 case VCPU_REGS_RSP:
2248 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2249 break;
2250 case VCPU_REGS_RIP:
2251 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2252 break;
2253 case VCPU_EXREG_PDPTR:
2254 if (enable_ept)
2255 ept_save_pdptrs(vcpu);
2256 break;
2257 case VCPU_EXREG_CR0:
2258 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2259
2260 vcpu->arch.cr0 &= ~guest_owned_bits;
2261 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2262 break;
2263 case VCPU_EXREG_CR3:
2264 /*
2265 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2266 * CR3 is loaded into hardware, not the guest's CR3.
2267 */
2268 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2269 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2270 break;
2271 case VCPU_EXREG_CR4:
2272 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2273
2274 vcpu->arch.cr4 &= ~guest_owned_bits;
2275 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2276 break;
2277 default:
2278 KVM_BUG_ON(1, vcpu->kvm);
2279 break;
2280 }
2281 }
2282
2283 static __init int cpu_has_kvm_support(void)
2284 {
2285 return cpu_has_vmx();
2286 }
2287
2288 static __init int vmx_disabled_by_bios(void)
2289 {
2290 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2291 !boot_cpu_has(X86_FEATURE_VMX);
2292 }
2293
2294 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2295 {
2296 u64 msr;
2297
2298 cr4_set_bits(X86_CR4_VMXE);
2299
2300 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2301 _ASM_EXTABLE(1b, %l[fault])
2302 : : [vmxon_pointer] "m"(vmxon_pointer)
2303 : : fault);
2304 return 0;
2305
2306 fault:
2307 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2308 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2309 cr4_clear_bits(X86_CR4_VMXE);
2310
2311 return -EFAULT;
2312 }
2313
2314 static int hardware_enable(void)
2315 {
2316 int cpu = raw_smp_processor_id();
2317 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2318 int r;
2319
2320 if (cr4_read_shadow() & X86_CR4_VMXE)
2321 return -EBUSY;
2322
2323 /*
2324 * This can happen if we hot-added a CPU but failed to allocate
2325 * VP assist page for it.
2326 */
2327 if (static_branch_unlikely(&enable_evmcs) &&
2328 !hv_get_vp_assist_page(cpu))
2329 return -EFAULT;
2330
2331 intel_pt_handle_vmx(1);
2332
2333 r = kvm_cpu_vmxon(phys_addr);
2334 if (r) {
2335 intel_pt_handle_vmx(0);
2336 return r;
2337 }
2338
2339 if (enable_ept)
2340 ept_sync_global();
2341
2342 return 0;
2343 }
2344
2345 static void vmclear_local_loaded_vmcss(void)
2346 {
2347 int cpu = raw_smp_processor_id();
2348 struct loaded_vmcs *v, *n;
2349
2350 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2351 loaded_vmcss_on_cpu_link)
2352 __loaded_vmcs_clear(v);
2353 }
2354
2355 static void hardware_disable(void)
2356 {
2357 vmclear_local_loaded_vmcss();
2358
2359 if (cpu_vmxoff())
2360 kvm_spurious_fault();
2361
2362 intel_pt_handle_vmx(0);
2363 }
2364
2365 /*
2366 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2367 * directly instead of going through cpu_has(), to ensure KVM is trapping
2368 * ENCLS whenever it's supported in hardware. It does not matter whether
2369 * the host OS supports or has enabled SGX.
2370 */
2371 static bool cpu_has_sgx(void)
2372 {
2373 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2374 }
2375
2376 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2377 u32 msr, u32 *result)
2378 {
2379 u32 vmx_msr_low, vmx_msr_high;
2380 u32 ctl = ctl_min | ctl_opt;
2381
2382 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2383
2384 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2385 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2386
2387 /* Ensure minimum (required) set of control bits are supported. */
2388 if (ctl_min & ~ctl)
2389 return -EIO;
2390
2391 *result = ctl;
2392 return 0;
2393 }
2394
2395 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2396 struct vmx_capability *vmx_cap)
2397 {
2398 u32 vmx_msr_low, vmx_msr_high;
2399 u32 min, opt, min2, opt2;
2400 u32 _pin_based_exec_control = 0;
2401 u32 _cpu_based_exec_control = 0;
2402 u32 _cpu_based_2nd_exec_control = 0;
2403 u32 _vmexit_control = 0;
2404 u32 _vmentry_control = 0;
2405
2406 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2407 min = CPU_BASED_HLT_EXITING |
2408 #ifdef CONFIG_X86_64
2409 CPU_BASED_CR8_LOAD_EXITING |
2410 CPU_BASED_CR8_STORE_EXITING |
2411 #endif
2412 CPU_BASED_CR3_LOAD_EXITING |
2413 CPU_BASED_CR3_STORE_EXITING |
2414 CPU_BASED_UNCOND_IO_EXITING |
2415 CPU_BASED_MOV_DR_EXITING |
2416 CPU_BASED_USE_TSC_OFFSETTING |
2417 CPU_BASED_MWAIT_EXITING |
2418 CPU_BASED_MONITOR_EXITING |
2419 CPU_BASED_INVLPG_EXITING |
2420 CPU_BASED_RDPMC_EXITING;
2421
2422 opt = CPU_BASED_TPR_SHADOW |
2423 CPU_BASED_USE_MSR_BITMAPS |
2424 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2425 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2426 &_cpu_based_exec_control) < 0)
2427 return -EIO;
2428 #ifdef CONFIG_X86_64
2429 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2430 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2431 ~CPU_BASED_CR8_STORE_EXITING;
2432 #endif
2433 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2434 min2 = 0;
2435 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2436 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2437 SECONDARY_EXEC_WBINVD_EXITING |
2438 SECONDARY_EXEC_ENABLE_VPID |
2439 SECONDARY_EXEC_ENABLE_EPT |
2440 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2441 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2442 SECONDARY_EXEC_DESC |
2443 SECONDARY_EXEC_ENABLE_RDTSCP |
2444 SECONDARY_EXEC_ENABLE_INVPCID |
2445 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2446 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2447 SECONDARY_EXEC_SHADOW_VMCS |
2448 SECONDARY_EXEC_XSAVES |
2449 SECONDARY_EXEC_RDSEED_EXITING |
2450 SECONDARY_EXEC_RDRAND_EXITING |
2451 SECONDARY_EXEC_ENABLE_PML |
2452 SECONDARY_EXEC_TSC_SCALING |
2453 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2454 SECONDARY_EXEC_PT_USE_GPA |
2455 SECONDARY_EXEC_PT_CONCEAL_VMX |
2456 SECONDARY_EXEC_ENABLE_VMFUNC |
2457 SECONDARY_EXEC_BUS_LOCK_DETECTION;
2458 if (cpu_has_sgx())
2459 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2460 if (adjust_vmx_controls(min2, opt2,
2461 MSR_IA32_VMX_PROCBASED_CTLS2,
2462 &_cpu_based_2nd_exec_control) < 0)
2463 return -EIO;
2464 }
2465 #ifndef CONFIG_X86_64
2466 if (!(_cpu_based_2nd_exec_control &
2467 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2468 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2469 #endif
2470
2471 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2472 _cpu_based_2nd_exec_control &= ~(
2473 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2474 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2475 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2476
2477 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2478 &vmx_cap->ept, &vmx_cap->vpid);
2479
2480 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2481 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2482 enabled */
2483 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2484 CPU_BASED_CR3_STORE_EXITING |
2485 CPU_BASED_INVLPG_EXITING);
2486 } else if (vmx_cap->ept) {
2487 vmx_cap->ept = 0;
2488 pr_warn_once("EPT CAP should not exist if not support "
2489 "1-setting enable EPT VM-execution control\n");
2490 }
2491 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2492 vmx_cap->vpid) {
2493 vmx_cap->vpid = 0;
2494 pr_warn_once("VPID CAP should not exist if not support "
2495 "1-setting enable VPID VM-execution control\n");
2496 }
2497
2498 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2499 #ifdef CONFIG_X86_64
2500 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2501 #endif
2502 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2503 VM_EXIT_LOAD_IA32_PAT |
2504 VM_EXIT_LOAD_IA32_EFER |
2505 VM_EXIT_CLEAR_BNDCFGS |
2506 VM_EXIT_PT_CONCEAL_PIP |
2507 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2508 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2509 &_vmexit_control) < 0)
2510 return -EIO;
2511
2512 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2513 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2514 PIN_BASED_VMX_PREEMPTION_TIMER;
2515 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2516 &_pin_based_exec_control) < 0)
2517 return -EIO;
2518
2519 if (cpu_has_broken_vmx_preemption_timer())
2520 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2521 if (!(_cpu_based_2nd_exec_control &
2522 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2523 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2524
2525 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2526 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2527 VM_ENTRY_LOAD_IA32_PAT |
2528 VM_ENTRY_LOAD_IA32_EFER |
2529 VM_ENTRY_LOAD_BNDCFGS |
2530 VM_ENTRY_PT_CONCEAL_PIP |
2531 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2532 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2533 &_vmentry_control) < 0)
2534 return -EIO;
2535
2536 /*
2537 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2538 * can't be used due to an errata where VM Exit may incorrectly clear
2539 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2540 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2541 */
2542 if (boot_cpu_data.x86 == 0x6) {
2543 switch (boot_cpu_data.x86_model) {
2544 case 26: /* AAK155 */
2545 case 30: /* AAP115 */
2546 case 37: /* AAT100 */
2547 case 44: /* BC86,AAY89,BD102 */
2548 case 46: /* BA97 */
2549 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2551 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2552 "does not work properly. Using workaround\n");
2553 break;
2554 default:
2555 break;
2556 }
2557 }
2558
2559
2560 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2561
2562 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2563 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2564 return -EIO;
2565
2566 #ifdef CONFIG_X86_64
2567 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2568 if (vmx_msr_high & (1u<<16))
2569 return -EIO;
2570 #endif
2571
2572 /* Require Write-Back (WB) memory type for VMCS accesses. */
2573 if (((vmx_msr_high >> 18) & 15) != 6)
2574 return -EIO;
2575
2576 vmcs_conf->size = vmx_msr_high & 0x1fff;
2577 vmcs_conf->order = get_order(vmcs_conf->size);
2578 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2579
2580 vmcs_conf->revision_id = vmx_msr_low;
2581
2582 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2583 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2584 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2585 vmcs_conf->vmexit_ctrl = _vmexit_control;
2586 vmcs_conf->vmentry_ctrl = _vmentry_control;
2587
2588 #if IS_ENABLED(CONFIG_HYPERV)
2589 if (enlightened_vmcs)
2590 evmcs_sanitize_exec_ctrls(vmcs_conf);
2591 #endif
2592
2593 return 0;
2594 }
2595
2596 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2597 {
2598 int node = cpu_to_node(cpu);
2599 struct page *pages;
2600 struct vmcs *vmcs;
2601
2602 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2603 if (!pages)
2604 return NULL;
2605 vmcs = page_address(pages);
2606 memset(vmcs, 0, vmcs_config.size);
2607
2608 /* KVM supports Enlightened VMCS v1 only */
2609 if (static_branch_unlikely(&enable_evmcs))
2610 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2611 else
2612 vmcs->hdr.revision_id = vmcs_config.revision_id;
2613
2614 if (shadow)
2615 vmcs->hdr.shadow_vmcs = 1;
2616 return vmcs;
2617 }
2618
2619 void free_vmcs(struct vmcs *vmcs)
2620 {
2621 free_pages((unsigned long)vmcs, vmcs_config.order);
2622 }
2623
2624 /*
2625 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2626 */
2627 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2628 {
2629 if (!loaded_vmcs->vmcs)
2630 return;
2631 loaded_vmcs_clear(loaded_vmcs);
2632 free_vmcs(loaded_vmcs->vmcs);
2633 loaded_vmcs->vmcs = NULL;
2634 if (loaded_vmcs->msr_bitmap)
2635 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2636 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2637 }
2638
2639 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2640 {
2641 loaded_vmcs->vmcs = alloc_vmcs(false);
2642 if (!loaded_vmcs->vmcs)
2643 return -ENOMEM;
2644
2645 vmcs_clear(loaded_vmcs->vmcs);
2646
2647 loaded_vmcs->shadow_vmcs = NULL;
2648 loaded_vmcs->hv_timer_soft_disabled = false;
2649 loaded_vmcs->cpu = -1;
2650 loaded_vmcs->launched = 0;
2651
2652 if (cpu_has_vmx_msr_bitmap()) {
2653 loaded_vmcs->msr_bitmap = (unsigned long *)
2654 __get_free_page(GFP_KERNEL_ACCOUNT);
2655 if (!loaded_vmcs->msr_bitmap)
2656 goto out_vmcs;
2657 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2658
2659 if (IS_ENABLED(CONFIG_HYPERV) &&
2660 static_branch_unlikely(&enable_evmcs) &&
2661 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2662 struct hv_enlightened_vmcs *evmcs =
2663 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2664
2665 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2666 }
2667 }
2668
2669 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2670 memset(&loaded_vmcs->controls_shadow, 0,
2671 sizeof(struct vmcs_controls_shadow));
2672
2673 return 0;
2674
2675 out_vmcs:
2676 free_loaded_vmcs(loaded_vmcs);
2677 return -ENOMEM;
2678 }
2679
2680 static void free_kvm_area(void)
2681 {
2682 int cpu;
2683
2684 for_each_possible_cpu(cpu) {
2685 free_vmcs(per_cpu(vmxarea, cpu));
2686 per_cpu(vmxarea, cpu) = NULL;
2687 }
2688 }
2689
2690 static __init int alloc_kvm_area(void)
2691 {
2692 int cpu;
2693
2694 for_each_possible_cpu(cpu) {
2695 struct vmcs *vmcs;
2696
2697 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2698 if (!vmcs) {
2699 free_kvm_area();
2700 return -ENOMEM;
2701 }
2702
2703 /*
2704 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2705 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2706 * revision_id reported by MSR_IA32_VMX_BASIC.
2707 *
2708 * However, even though not explicitly documented by
2709 * TLFS, VMXArea passed as VMXON argument should
2710 * still be marked with revision_id reported by
2711 * physical CPU.
2712 */
2713 if (static_branch_unlikely(&enable_evmcs))
2714 vmcs->hdr.revision_id = vmcs_config.revision_id;
2715
2716 per_cpu(vmxarea, cpu) = vmcs;
2717 }
2718 return 0;
2719 }
2720
2721 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2722 struct kvm_segment *save)
2723 {
2724 if (!emulate_invalid_guest_state) {
2725 /*
2726 * CS and SS RPL should be equal during guest entry according
2727 * to VMX spec, but in reality it is not always so. Since vcpu
2728 * is in the middle of the transition from real mode to
2729 * protected mode it is safe to assume that RPL 0 is a good
2730 * default value.
2731 */
2732 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2733 save->selector &= ~SEGMENT_RPL_MASK;
2734 save->dpl = save->selector & SEGMENT_RPL_MASK;
2735 save->s = 1;
2736 }
2737 __vmx_set_segment(vcpu, save, seg);
2738 }
2739
2740 static void enter_pmode(struct kvm_vcpu *vcpu)
2741 {
2742 unsigned long flags;
2743 struct vcpu_vmx *vmx = to_vmx(vcpu);
2744
2745 /*
2746 * Update real mode segment cache. It may be not up-to-date if segment
2747 * register was written while vcpu was in a guest mode.
2748 */
2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2755
2756 vmx->rmode.vm86_active = 0;
2757
2758 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2759
2760 flags = vmcs_readl(GUEST_RFLAGS);
2761 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2763 vmcs_writel(GUEST_RFLAGS, flags);
2764
2765 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2766 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2767
2768 vmx_update_exception_bitmap(vcpu);
2769
2770 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2771 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2772 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2773 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2774 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2775 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2776 }
2777
2778 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2779 {
2780 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2781 struct kvm_segment var = *save;
2782
2783 var.dpl = 0x3;
2784 if (seg == VCPU_SREG_CS)
2785 var.type = 0x3;
2786
2787 if (!emulate_invalid_guest_state) {
2788 var.selector = var.base >> 4;
2789 var.base = var.base & 0xffff0;
2790 var.limit = 0xffff;
2791 var.g = 0;
2792 var.db = 0;
2793 var.present = 1;
2794 var.s = 1;
2795 var.l = 0;
2796 var.unusable = 0;
2797 var.type = 0x3;
2798 var.avl = 0;
2799 if (save->base & 0xf)
2800 printk_once(KERN_WARNING "kvm: segment base is not "
2801 "paragraph aligned when entering "
2802 "protected mode (seg=%d)", seg);
2803 }
2804
2805 vmcs_write16(sf->selector, var.selector);
2806 vmcs_writel(sf->base, var.base);
2807 vmcs_write32(sf->limit, var.limit);
2808 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2809 }
2810
2811 static void enter_rmode(struct kvm_vcpu *vcpu)
2812 {
2813 unsigned long flags;
2814 struct vcpu_vmx *vmx = to_vmx(vcpu);
2815 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2816
2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2823 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2824
2825 vmx->rmode.vm86_active = 1;
2826
2827 /*
2828 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2829 * vcpu. Warn the user that an update is overdue.
2830 */
2831 if (!kvm_vmx->tss_addr)
2832 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2833 "called before entering vcpu\n");
2834
2835 vmx_segment_cache_clear(vmx);
2836
2837 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2838 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2839 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2840
2841 flags = vmcs_readl(GUEST_RFLAGS);
2842 vmx->rmode.save_rflags = flags;
2843
2844 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2845
2846 vmcs_writel(GUEST_RFLAGS, flags);
2847 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2848 vmx_update_exception_bitmap(vcpu);
2849
2850 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2851 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2852 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2853 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2854 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2855 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2856 }
2857
2858 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2859 {
2860 struct vcpu_vmx *vmx = to_vmx(vcpu);
2861 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2862
2863 /* Nothing to do if hardware doesn't support EFER. */
2864 if (!msr)
2865 return 0;
2866
2867 vcpu->arch.efer = efer;
2868 if (efer & EFER_LMA) {
2869 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2870 msr->data = efer;
2871 } else {
2872 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2873
2874 msr->data = efer & ~EFER_LME;
2875 }
2876 vmx_setup_uret_msrs(vmx);
2877 return 0;
2878 }
2879
2880 #ifdef CONFIG_X86_64
2881
2882 static void enter_lmode(struct kvm_vcpu *vcpu)
2883 {
2884 u32 guest_tr_ar;
2885
2886 vmx_segment_cache_clear(to_vmx(vcpu));
2887
2888 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2889 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2890 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2891 __func__);
2892 vmcs_write32(GUEST_TR_AR_BYTES,
2893 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2894 | VMX_AR_TYPE_BUSY_64_TSS);
2895 }
2896 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2897 }
2898
2899 static void exit_lmode(struct kvm_vcpu *vcpu)
2900 {
2901 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2902 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2903 }
2904
2905 #endif
2906
2907 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2908 {
2909 struct vcpu_vmx *vmx = to_vmx(vcpu);
2910
2911 /*
2912 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2913 * the CPU is not required to invalidate guest-physical mappings on
2914 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2915 * associated with the root EPT structure and not any particular VPID
2916 * (INVVPID also isn't required to invalidate guest-physical mappings).
2917 */
2918 if (enable_ept) {
2919 ept_sync_global();
2920 } else if (enable_vpid) {
2921 if (cpu_has_vmx_invvpid_global()) {
2922 vpid_sync_vcpu_global();
2923 } else {
2924 vpid_sync_vcpu_single(vmx->vpid);
2925 vpid_sync_vcpu_single(vmx->nested.vpid02);
2926 }
2927 }
2928 }
2929
2930 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2931 {
2932 struct kvm_mmu *mmu = vcpu->arch.mmu;
2933 u64 root_hpa = mmu->root_hpa;
2934
2935 /* No flush required if the current context is invalid. */
2936 if (!VALID_PAGE(root_hpa))
2937 return;
2938
2939 if (enable_ept)
2940 ept_sync_context(construct_eptp(vcpu, root_hpa,
2941 mmu->shadow_root_level));
2942 else if (!is_guest_mode(vcpu))
2943 vpid_sync_context(to_vmx(vcpu)->vpid);
2944 else
2945 vpid_sync_context(nested_get_vpid02(vcpu));
2946 }
2947
2948 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2949 {
2950 /*
2951 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2952 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2953 */
2954 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2955 }
2956
2957 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2958 {
2959 /*
2960 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2961 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
2962 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2963 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2964 * i.e. no explicit INVVPID is necessary.
2965 */
2966 vpid_sync_context(to_vmx(vcpu)->vpid);
2967 }
2968
2969 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2970 {
2971 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2972
2973 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2974 return;
2975
2976 if (is_pae_paging(vcpu)) {
2977 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2978 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2979 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2980 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2981 }
2982 }
2983
2984 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2985 {
2986 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2987
2988 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2989 return;
2990
2991 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2992 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2993 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2994 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2995
2996 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2997 }
2998
2999 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3000 CPU_BASED_CR3_STORE_EXITING)
3001
3002 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3003 {
3004 struct vcpu_vmx *vmx = to_vmx(vcpu);
3005 unsigned long hw_cr0, old_cr0_pg;
3006 u32 tmp;
3007
3008 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3009
3010 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3011 if (is_unrestricted_guest(vcpu))
3012 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3013 else {
3014 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3015 if (!enable_ept)
3016 hw_cr0 |= X86_CR0_WP;
3017
3018 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3019 enter_pmode(vcpu);
3020
3021 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3022 enter_rmode(vcpu);
3023 }
3024
3025 vmcs_writel(CR0_READ_SHADOW, cr0);
3026 vmcs_writel(GUEST_CR0, hw_cr0);
3027 vcpu->arch.cr0 = cr0;
3028 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3029
3030 #ifdef CONFIG_X86_64
3031 if (vcpu->arch.efer & EFER_LME) {
3032 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3033 enter_lmode(vcpu);
3034 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3035 exit_lmode(vcpu);
3036 }
3037 #endif
3038
3039 if (enable_ept && !is_unrestricted_guest(vcpu)) {
3040 /*
3041 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3042 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3043 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3044 * KVM's CR3 is installed.
3045 */
3046 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3047 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3048
3049 /*
3050 * When running with EPT but not unrestricted guest, KVM must
3051 * intercept CR3 accesses when paging is _disabled_. This is
3052 * necessary because restricted guests can't actually run with
3053 * paging disabled, and so KVM stuffs its own CR3 in order to
3054 * run the guest when identity mapped page tables.
3055 *
3056 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3057 * update, it may be stale with respect to CR3 interception,
3058 * e.g. after nested VM-Enter.
3059 *
3060 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3061 * stores to forward them to L1, even if KVM does not need to
3062 * intercept them to preserve its identity mapped page tables.
3063 */
3064 if (!(cr0 & X86_CR0_PG)) {
3065 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3066 } else if (!is_guest_mode(vcpu)) {
3067 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3068 } else {
3069 tmp = exec_controls_get(vmx);
3070 tmp &= ~CR3_EXITING_BITS;
3071 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3072 exec_controls_set(vmx, tmp);
3073 }
3074
3075 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3076 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3077 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3078 }
3079
3080 /* depends on vcpu->arch.cr0 to be set to a new value */
3081 vmx->emulation_required = vmx_emulation_required(vcpu);
3082 }
3083
3084 static int vmx_get_max_tdp_level(void)
3085 {
3086 if (cpu_has_vmx_ept_5levels())
3087 return 5;
3088 return 4;
3089 }
3090
3091 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3092 {
3093 u64 eptp = VMX_EPTP_MT_WB;
3094
3095 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3096
3097 if (enable_ept_ad_bits &&
3098 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3099 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3100 eptp |= root_hpa;
3101
3102 return eptp;
3103 }
3104
3105 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3106 int root_level)
3107 {
3108 struct kvm *kvm = vcpu->kvm;
3109 bool update_guest_cr3 = true;
3110 unsigned long guest_cr3;
3111 u64 eptp;
3112
3113 if (enable_ept) {
3114 eptp = construct_eptp(vcpu, root_hpa, root_level);
3115 vmcs_write64(EPT_POINTER, eptp);
3116
3117 hv_track_root_tdp(vcpu, root_hpa);
3118
3119 if (!enable_unrestricted_guest && !is_paging(vcpu))
3120 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3121 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3122 guest_cr3 = vcpu->arch.cr3;
3123 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3124 update_guest_cr3 = false;
3125 vmx_ept_load_pdptrs(vcpu);
3126 } else {
3127 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3128 }
3129
3130 if (update_guest_cr3)
3131 vmcs_writel(GUEST_CR3, guest_cr3);
3132 }
3133
3134 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3135 {
3136 /*
3137 * We operate under the default treatment of SMM, so VMX cannot be
3138 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3139 * handled by kvm_is_valid_cr4().
3140 */
3141 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3142 return false;
3143
3144 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3145 return false;
3146
3147 return true;
3148 }
3149
3150 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3151 {
3152 unsigned long old_cr4 = vcpu->arch.cr4;
3153 struct vcpu_vmx *vmx = to_vmx(vcpu);
3154 /*
3155 * Pass through host's Machine Check Enable value to hw_cr4, which
3156 * is in force while we are in guest mode. Do not let guests control
3157 * this bit, even if host CR4.MCE == 0.
3158 */
3159 unsigned long hw_cr4;
3160
3161 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3162 if (is_unrestricted_guest(vcpu))
3163 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3164 else if (vmx->rmode.vm86_active)
3165 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3166 else
3167 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3168
3169 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3170 if (cr4 & X86_CR4_UMIP) {
3171 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3172 hw_cr4 &= ~X86_CR4_UMIP;
3173 } else if (!is_guest_mode(vcpu) ||
3174 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3175 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3176 }
3177 }
3178
3179 vcpu->arch.cr4 = cr4;
3180 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3181
3182 if (!is_unrestricted_guest(vcpu)) {
3183 if (enable_ept) {
3184 if (!is_paging(vcpu)) {
3185 hw_cr4 &= ~X86_CR4_PAE;
3186 hw_cr4 |= X86_CR4_PSE;
3187 } else if (!(cr4 & X86_CR4_PAE)) {
3188 hw_cr4 &= ~X86_CR4_PAE;
3189 }
3190 }
3191
3192 /*
3193 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3194 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3195 * to be manually disabled when guest switches to non-paging
3196 * mode.
3197 *
3198 * If !enable_unrestricted_guest, the CPU is always running
3199 * with CR0.PG=1 and CR4 needs to be modified.
3200 * If enable_unrestricted_guest, the CPU automatically
3201 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3202 */
3203 if (!is_paging(vcpu))
3204 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3205 }
3206
3207 vmcs_writel(CR4_READ_SHADOW, cr4);
3208 vmcs_writel(GUEST_CR4, hw_cr4);
3209
3210 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3211 kvm_update_cpuid_runtime(vcpu);
3212 }
3213
3214 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3215 {
3216 struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 u32 ar;
3218
3219 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3220 *var = vmx->rmode.segs[seg];
3221 if (seg == VCPU_SREG_TR
3222 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3223 return;
3224 var->base = vmx_read_guest_seg_base(vmx, seg);
3225 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3226 return;
3227 }
3228 var->base = vmx_read_guest_seg_base(vmx, seg);
3229 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3230 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3231 ar = vmx_read_guest_seg_ar(vmx, seg);
3232 var->unusable = (ar >> 16) & 1;
3233 var->type = ar & 15;
3234 var->s = (ar >> 4) & 1;
3235 var->dpl = (ar >> 5) & 3;
3236 /*
3237 * Some userspaces do not preserve unusable property. Since usable
3238 * segment has to be present according to VMX spec we can use present
3239 * property to amend userspace bug by making unusable segment always
3240 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3241 * segment as unusable.
3242 */
3243 var->present = !var->unusable;
3244 var->avl = (ar >> 12) & 1;
3245 var->l = (ar >> 13) & 1;
3246 var->db = (ar >> 14) & 1;
3247 var->g = (ar >> 15) & 1;
3248 }
3249
3250 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3251 {
3252 struct kvm_segment s;
3253
3254 if (to_vmx(vcpu)->rmode.vm86_active) {
3255 vmx_get_segment(vcpu, &s, seg);
3256 return s.base;
3257 }
3258 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3259 }
3260
3261 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3262 {
3263 struct vcpu_vmx *vmx = to_vmx(vcpu);
3264
3265 if (unlikely(vmx->rmode.vm86_active))
3266 return 0;
3267 else {
3268 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3269 return VMX_AR_DPL(ar);
3270 }
3271 }
3272
3273 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3274 {
3275 u32 ar;
3276
3277 if (var->unusable || !var->present)
3278 ar = 1 << 16;
3279 else {
3280 ar = var->type & 15;
3281 ar |= (var->s & 1) << 4;
3282 ar |= (var->dpl & 3) << 5;
3283 ar |= (var->present & 1) << 7;
3284 ar |= (var->avl & 1) << 12;
3285 ar |= (var->l & 1) << 13;
3286 ar |= (var->db & 1) << 14;
3287 ar |= (var->g & 1) << 15;
3288 }
3289
3290 return ar;
3291 }
3292
3293 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3294 {
3295 struct vcpu_vmx *vmx = to_vmx(vcpu);
3296 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3297
3298 vmx_segment_cache_clear(vmx);
3299
3300 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3301 vmx->rmode.segs[seg] = *var;
3302 if (seg == VCPU_SREG_TR)
3303 vmcs_write16(sf->selector, var->selector);
3304 else if (var->s)
3305 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3306 return;
3307 }
3308
3309 vmcs_writel(sf->base, var->base);
3310 vmcs_write32(sf->limit, var->limit);
3311 vmcs_write16(sf->selector, var->selector);
3312
3313 /*
3314 * Fix the "Accessed" bit in AR field of segment registers for older
3315 * qemu binaries.
3316 * IA32 arch specifies that at the time of processor reset the
3317 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3318 * is setting it to 0 in the userland code. This causes invalid guest
3319 * state vmexit when "unrestricted guest" mode is turned on.
3320 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3321 * tree. Newer qemu binaries with that qemu fix would not need this
3322 * kvm hack.
3323 */
3324 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3325 var->type |= 0x1; /* Accessed */
3326
3327 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3328 }
3329
3330 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3331 {
3332 __vmx_set_segment(vcpu, var, seg);
3333
3334 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3335 }
3336
3337 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3338 {
3339 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3340
3341 *db = (ar >> 14) & 1;
3342 *l = (ar >> 13) & 1;
3343 }
3344
3345 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3346 {
3347 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3348 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3349 }
3350
3351 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3352 {
3353 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3354 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3355 }
3356
3357 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3358 {
3359 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3360 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3361 }
3362
3363 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3364 {
3365 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3366 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3367 }
3368
3369 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3370 {
3371 struct kvm_segment var;
3372 u32 ar;
3373
3374 vmx_get_segment(vcpu, &var, seg);
3375 var.dpl = 0x3;
3376 if (seg == VCPU_SREG_CS)
3377 var.type = 0x3;
3378 ar = vmx_segment_access_rights(&var);
3379
3380 if (var.base != (var.selector << 4))
3381 return false;
3382 if (var.limit != 0xffff)
3383 return false;
3384 if (ar != 0xf3)
3385 return false;
3386
3387 return true;
3388 }
3389
3390 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3391 {
3392 struct kvm_segment cs;
3393 unsigned int cs_rpl;
3394
3395 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3396 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3397
3398 if (cs.unusable)
3399 return false;
3400 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3401 return false;
3402 if (!cs.s)
3403 return false;
3404 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3405 if (cs.dpl > cs_rpl)
3406 return false;
3407 } else {
3408 if (cs.dpl != cs_rpl)
3409 return false;
3410 }
3411 if (!cs.present)
3412 return false;
3413
3414 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3415 return true;
3416 }
3417
3418 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3419 {
3420 struct kvm_segment ss;
3421 unsigned int ss_rpl;
3422
3423 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3424 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3425
3426 if (ss.unusable)
3427 return true;
3428 if (ss.type != 3 && ss.type != 7)
3429 return false;
3430 if (!ss.s)
3431 return false;
3432 if (ss.dpl != ss_rpl) /* DPL != RPL */
3433 return false;
3434 if (!ss.present)
3435 return false;
3436
3437 return true;
3438 }
3439
3440 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3441 {
3442 struct kvm_segment var;
3443 unsigned int rpl;
3444
3445 vmx_get_segment(vcpu, &var, seg);
3446 rpl = var.selector & SEGMENT_RPL_MASK;
3447
3448 if (var.unusable)
3449 return true;
3450 if (!var.s)
3451 return false;
3452 if (!var.present)
3453 return false;
3454 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3455 if (var.dpl < rpl) /* DPL < RPL */
3456 return false;
3457 }
3458
3459 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3460 * rights flags
3461 */
3462 return true;
3463 }
3464
3465 static bool tr_valid(struct kvm_vcpu *vcpu)
3466 {
3467 struct kvm_segment tr;
3468
3469 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3470
3471 if (tr.unusable)
3472 return false;
3473 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3474 return false;
3475 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3476 return false;
3477 if (!tr.present)
3478 return false;
3479
3480 return true;
3481 }
3482
3483 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3484 {
3485 struct kvm_segment ldtr;
3486
3487 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3488
3489 if (ldtr.unusable)
3490 return true;
3491 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3492 return false;
3493 if (ldtr.type != 2)
3494 return false;
3495 if (!ldtr.present)
3496 return false;
3497
3498 return true;
3499 }
3500
3501 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3502 {
3503 struct kvm_segment cs, ss;
3504
3505 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3506 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3507
3508 return ((cs.selector & SEGMENT_RPL_MASK) ==
3509 (ss.selector & SEGMENT_RPL_MASK));
3510 }
3511
3512 /*
3513 * Check if guest state is valid. Returns true if valid, false if
3514 * not.
3515 * We assume that registers are always usable
3516 */
3517 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3518 {
3519 /* real mode guest state checks */
3520 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3521 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3522 return false;
3523 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3524 return false;
3525 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3526 return false;
3527 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3528 return false;
3529 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3530 return false;
3531 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3532 return false;
3533 } else {
3534 /* protected mode guest state checks */
3535 if (!cs_ss_rpl_check(vcpu))
3536 return false;
3537 if (!code_segment_valid(vcpu))
3538 return false;
3539 if (!stack_segment_valid(vcpu))
3540 return false;
3541 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3542 return false;
3543 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3544 return false;
3545 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3546 return false;
3547 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3548 return false;
3549 if (!tr_valid(vcpu))
3550 return false;
3551 if (!ldtr_valid(vcpu))
3552 return false;
3553 }
3554 /* TODO:
3555 * - Add checks on RIP
3556 * - Add checks on RFLAGS
3557 */
3558
3559 return true;
3560 }
3561
3562 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3563 {
3564 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3565 u16 data;
3566 int i;
3567
3568 for (i = 0; i < 3; i++) {
3569 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3570 return -EFAULT;
3571 }
3572
3573 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3574 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3575 return -EFAULT;
3576
3577 data = ~0;
3578 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3579 return -EFAULT;
3580
3581 return 0;
3582 }
3583
3584 static int init_rmode_identity_map(struct kvm *kvm)
3585 {
3586 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3587 int i, r = 0;
3588 void __user *uaddr;
3589 u32 tmp;
3590
3591 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3592 mutex_lock(&kvm->slots_lock);
3593
3594 if (likely(kvm_vmx->ept_identity_pagetable_done))
3595 goto out;
3596
3597 if (!kvm_vmx->ept_identity_map_addr)
3598 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3599
3600 uaddr = __x86_set_memory_region(kvm,
3601 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3602 kvm_vmx->ept_identity_map_addr,
3603 PAGE_SIZE);
3604 if (IS_ERR(uaddr)) {
3605 r = PTR_ERR(uaddr);
3606 goto out;
3607 }
3608
3609 /* Set up identity-mapping pagetable for EPT in real mode */
3610 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3611 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3612 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3613 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3614 r = -EFAULT;
3615 goto out;
3616 }
3617 }
3618 kvm_vmx->ept_identity_pagetable_done = true;
3619
3620 out:
3621 mutex_unlock(&kvm->slots_lock);
3622 return r;
3623 }
3624
3625 static void seg_setup(int seg)
3626 {
3627 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3628 unsigned int ar;
3629
3630 vmcs_write16(sf->selector, 0);
3631 vmcs_writel(sf->base, 0);
3632 vmcs_write32(sf->limit, 0xffff);
3633 ar = 0x93;
3634 if (seg == VCPU_SREG_CS)
3635 ar |= 0x08; /* code segment */
3636
3637 vmcs_write32(sf->ar_bytes, ar);
3638 }
3639
3640 static int alloc_apic_access_page(struct kvm *kvm)
3641 {
3642 struct page *page;
3643 void __user *hva;
3644 int ret = 0;
3645
3646 mutex_lock(&kvm->slots_lock);
3647 if (kvm->arch.apic_access_memslot_enabled)
3648 goto out;
3649 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3650 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3651 if (IS_ERR(hva)) {
3652 ret = PTR_ERR(hva);
3653 goto out;
3654 }
3655
3656 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3657 if (is_error_page(page)) {
3658 ret = -EFAULT;
3659 goto out;
3660 }
3661
3662 /*
3663 * Do not pin the page in memory, so that memory hot-unplug
3664 * is able to migrate it.
3665 */
3666 put_page(page);
3667 kvm->arch.apic_access_memslot_enabled = true;
3668 out:
3669 mutex_unlock(&kvm->slots_lock);
3670 return ret;
3671 }
3672
3673 int allocate_vpid(void)
3674 {
3675 int vpid;
3676
3677 if (!enable_vpid)
3678 return 0;
3679 spin_lock(&vmx_vpid_lock);
3680 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3681 if (vpid < VMX_NR_VPIDS)
3682 __set_bit(vpid, vmx_vpid_bitmap);
3683 else
3684 vpid = 0;
3685 spin_unlock(&vmx_vpid_lock);
3686 return vpid;
3687 }
3688
3689 void free_vpid(int vpid)
3690 {
3691 if (!enable_vpid || vpid == 0)
3692 return;
3693 spin_lock(&vmx_vpid_lock);
3694 __clear_bit(vpid, vmx_vpid_bitmap);
3695 spin_unlock(&vmx_vpid_lock);
3696 }
3697
3698 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3699 {
3700 int f = sizeof(unsigned long);
3701
3702 if (msr <= 0x1fff)
3703 __clear_bit(msr, msr_bitmap + 0x000 / f);
3704 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3705 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3706 }
3707
3708 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3709 {
3710 int f = sizeof(unsigned long);
3711
3712 if (msr <= 0x1fff)
3713 __clear_bit(msr, msr_bitmap + 0x800 / f);
3714 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3715 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3716 }
3717
3718 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3719 {
3720 int f = sizeof(unsigned long);
3721
3722 if (msr <= 0x1fff)
3723 __set_bit(msr, msr_bitmap + 0x000 / f);
3724 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3725 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3726 }
3727
3728 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3729 {
3730 int f = sizeof(unsigned long);
3731
3732 if (msr <= 0x1fff)
3733 __set_bit(msr, msr_bitmap + 0x800 / f);
3734 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3735 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3736 }
3737
3738 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3739 {
3740 struct vcpu_vmx *vmx = to_vmx(vcpu);
3741 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3742
3743 if (!cpu_has_vmx_msr_bitmap())
3744 return;
3745
3746 if (static_branch_unlikely(&enable_evmcs))
3747 evmcs_touch_msr_bitmap();
3748
3749 /*
3750 * Mark the desired intercept state in shadow bitmap, this is needed
3751 * for resync when the MSR filters change.
3752 */
3753 if (is_valid_passthrough_msr(msr)) {
3754 int idx = possible_passthrough_msr_slot(msr);
3755
3756 if (idx != -ENOENT) {
3757 if (type & MSR_TYPE_R)
3758 clear_bit(idx, vmx->shadow_msr_intercept.read);
3759 if (type & MSR_TYPE_W)
3760 clear_bit(idx, vmx->shadow_msr_intercept.write);
3761 }
3762 }
3763
3764 if ((type & MSR_TYPE_R) &&
3765 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3766 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3767 type &= ~MSR_TYPE_R;
3768 }
3769
3770 if ((type & MSR_TYPE_W) &&
3771 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3772 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3773 type &= ~MSR_TYPE_W;
3774 }
3775
3776 if (type & MSR_TYPE_R)
3777 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3778
3779 if (type & MSR_TYPE_W)
3780 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3781 }
3782
3783 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3784 {
3785 struct vcpu_vmx *vmx = to_vmx(vcpu);
3786 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3787
3788 if (!cpu_has_vmx_msr_bitmap())
3789 return;
3790
3791 if (static_branch_unlikely(&enable_evmcs))
3792 evmcs_touch_msr_bitmap();
3793
3794 /*
3795 * Mark the desired intercept state in shadow bitmap, this is needed
3796 * for resync when the MSR filter changes.
3797 */
3798 if (is_valid_passthrough_msr(msr)) {
3799 int idx = possible_passthrough_msr_slot(msr);
3800
3801 if (idx != -ENOENT) {
3802 if (type & MSR_TYPE_R)
3803 set_bit(idx, vmx->shadow_msr_intercept.read);
3804 if (type & MSR_TYPE_W)
3805 set_bit(idx, vmx->shadow_msr_intercept.write);
3806 }
3807 }
3808
3809 if (type & MSR_TYPE_R)
3810 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3811
3812 if (type & MSR_TYPE_W)
3813 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3814 }
3815
3816 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3817 {
3818 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3819 unsigned long read_intercept;
3820 int msr;
3821
3822 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3823
3824 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3825 unsigned int read_idx = msr / BITS_PER_LONG;
3826 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3827
3828 msr_bitmap[read_idx] = read_intercept;
3829 msr_bitmap[write_idx] = ~0ul;
3830 }
3831 }
3832
3833 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3834 {
3835 struct vcpu_vmx *vmx = to_vmx(vcpu);
3836 u8 mode;
3837
3838 if (!cpu_has_vmx_msr_bitmap())
3839 return;
3840
3841 if (cpu_has_secondary_exec_ctrls() &&
3842 (secondary_exec_controls_get(vmx) &
3843 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3844 mode = MSR_BITMAP_MODE_X2APIC;
3845 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3846 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3847 } else {
3848 mode = 0;
3849 }
3850
3851 if (mode == vmx->x2apic_msr_bitmap_mode)
3852 return;
3853
3854 vmx->x2apic_msr_bitmap_mode = mode;
3855
3856 vmx_reset_x2apic_msrs(vcpu, mode);
3857
3858 /*
3859 * TPR reads and writes can be virtualized even if virtual interrupt
3860 * delivery is not in use.
3861 */
3862 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3863 !(mode & MSR_BITMAP_MODE_X2APIC));
3864
3865 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3866 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3867 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3868 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3869 }
3870 }
3871
3872 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3873 {
3874 struct vcpu_vmx *vmx = to_vmx(vcpu);
3875 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3876 u32 i;
3877
3878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3879 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3881 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3882 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3884 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3885 }
3886 }
3887
3888 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3889 {
3890 struct vcpu_vmx *vmx = to_vmx(vcpu);
3891 void *vapic_page;
3892 u32 vppr;
3893 int rvi;
3894
3895 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3896 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3897 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3898 return false;
3899
3900 rvi = vmx_get_rvi();
3901
3902 vapic_page = vmx->nested.virtual_apic_map.hva;
3903 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3904
3905 return ((rvi & 0xf0) > (vppr & 0xf0));
3906 }
3907
3908 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3909 {
3910 struct vcpu_vmx *vmx = to_vmx(vcpu);
3911 u32 i;
3912
3913 /*
3914 * Set intercept permissions for all potentially passed through MSRs
3915 * again. They will automatically get filtered through the MSR filter,
3916 * so we are back in sync after this.
3917 */
3918 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3919 u32 msr = vmx_possible_passthrough_msrs[i];
3920 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3921 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3922
3923 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3924 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3925 }
3926
3927 pt_update_intercept_for_msr(vcpu);
3928 }
3929
3930 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3931 bool nested)
3932 {
3933 #ifdef CONFIG_SMP
3934 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3935
3936 if (vcpu->mode == IN_GUEST_MODE) {
3937 /*
3938 * The vector of interrupt to be delivered to vcpu had
3939 * been set in PIR before this function.
3940 *
3941 * Following cases will be reached in this block, and
3942 * we always send a notification event in all cases as
3943 * explained below.
3944 *
3945 * Case 1: vcpu keeps in non-root mode. Sending a
3946 * notification event posts the interrupt to vcpu.
3947 *
3948 * Case 2: vcpu exits to root mode and is still
3949 * runnable. PIR will be synced to vIRR before the
3950 * next vcpu entry. Sending a notification event in
3951 * this case has no effect, as vcpu is not in root
3952 * mode.
3953 *
3954 * Case 3: vcpu exits to root mode and is blocked.
3955 * vcpu_block() has already synced PIR to vIRR and
3956 * never blocks vcpu if vIRR is not cleared. Therefore,
3957 * a blocked vcpu here does not wait for any requested
3958 * interrupts in PIR, and sending a notification event
3959 * which has no effect is safe here.
3960 */
3961
3962 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3963 return true;
3964 }
3965 #endif
3966 return false;
3967 }
3968
3969 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3970 int vector)
3971 {
3972 struct vcpu_vmx *vmx = to_vmx(vcpu);
3973
3974 if (is_guest_mode(vcpu) &&
3975 vector == vmx->nested.posted_intr_nv) {
3976 /*
3977 * If a posted intr is not recognized by hardware,
3978 * we will accomplish it in the next vmentry.
3979 */
3980 vmx->nested.pi_pending = true;
3981 kvm_make_request(KVM_REQ_EVENT, vcpu);
3982 /* the PIR and ON have been set by L1. */
3983 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3984 kvm_vcpu_kick(vcpu);
3985 return 0;
3986 }
3987 return -1;
3988 }
3989 /*
3990 * Send interrupt to vcpu via posted interrupt way.
3991 * 1. If target vcpu is running(non-root mode), send posted interrupt
3992 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3993 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3994 * interrupt from PIR in next vmentry.
3995 */
3996 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3997 {
3998 struct vcpu_vmx *vmx = to_vmx(vcpu);
3999 int r;
4000
4001 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4002 if (!r)
4003 return 0;
4004
4005 if (!vcpu->arch.apicv_active)
4006 return -1;
4007
4008 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4009 return 0;
4010
4011 /* If a previous notification has sent the IPI, nothing to do. */
4012 if (pi_test_and_set_on(&vmx->pi_desc))
4013 return 0;
4014
4015 if (vcpu != kvm_get_running_vcpu() &&
4016 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4017 kvm_vcpu_kick(vcpu);
4018
4019 return 0;
4020 }
4021
4022 /*
4023 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4024 * will not change in the lifetime of the guest.
4025 * Note that host-state that does change is set elsewhere. E.g., host-state
4026 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4027 */
4028 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4029 {
4030 u32 low32, high32;
4031 unsigned long tmpl;
4032 unsigned long cr0, cr3, cr4;
4033
4034 cr0 = read_cr0();
4035 WARN_ON(cr0 & X86_CR0_TS);
4036 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4037
4038 /*
4039 * Save the most likely value for this task's CR3 in the VMCS.
4040 * We can't use __get_current_cr3_fast() because we're not atomic.
4041 */
4042 cr3 = __read_cr3();
4043 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4044 vmx->loaded_vmcs->host_state.cr3 = cr3;
4045
4046 /* Save the most likely value for this task's CR4 in the VMCS. */
4047 cr4 = cr4_read_shadow();
4048 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4049 vmx->loaded_vmcs->host_state.cr4 = cr4;
4050
4051 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4052 #ifdef CONFIG_X86_64
4053 /*
4054 * Load null selectors, so we can avoid reloading them in
4055 * vmx_prepare_switch_to_host(), in case userspace uses
4056 * the null selectors too (the expected case).
4057 */
4058 vmcs_write16(HOST_DS_SELECTOR, 0);
4059 vmcs_write16(HOST_ES_SELECTOR, 0);
4060 #else
4061 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4062 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4063 #endif
4064 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4065 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4066
4067 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4068
4069 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4070
4071 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4072 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4073 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4074 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4075
4076 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4077 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4078 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4079 }
4080
4081 if (cpu_has_load_ia32_efer())
4082 vmcs_write64(HOST_IA32_EFER, host_efer);
4083 }
4084
4085 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4086 {
4087 struct kvm_vcpu *vcpu = &vmx->vcpu;
4088
4089 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4090 ~vcpu->arch.cr4_guest_rsvd_bits;
4091 if (!enable_ept)
4092 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4093 if (is_guest_mode(&vmx->vcpu))
4094 vcpu->arch.cr4_guest_owned_bits &=
4095 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4096 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4097 }
4098
4099 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4100 {
4101 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4102
4103 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4104 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4105
4106 if (!enable_vnmi)
4107 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4108
4109 if (!enable_preemption_timer)
4110 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4111
4112 return pin_based_exec_ctrl;
4113 }
4114
4115 static u32 vmx_vmentry_ctrl(void)
4116 {
4117 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4118
4119 if (vmx_pt_mode_is_system())
4120 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4121 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4122 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4123 return vmentry_ctrl &
4124 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4125 }
4126
4127 static u32 vmx_vmexit_ctrl(void)
4128 {
4129 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4130
4131 if (vmx_pt_mode_is_system())
4132 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4133 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4134 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4135 return vmexit_ctrl &
4136 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4137 }
4138
4139 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4140 {
4141 struct vcpu_vmx *vmx = to_vmx(vcpu);
4142
4143 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4144 if (cpu_has_secondary_exec_ctrls()) {
4145 if (kvm_vcpu_apicv_active(vcpu))
4146 secondary_exec_controls_setbit(vmx,
4147 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4148 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4149 else
4150 secondary_exec_controls_clearbit(vmx,
4151 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4152 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4153 }
4154
4155 vmx_update_msr_bitmap_x2apic(vcpu);
4156 }
4157
4158 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4159 {
4160 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4161
4162 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4163 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4164
4165 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4166 exec_control &= ~CPU_BASED_TPR_SHADOW;
4167 #ifdef CONFIG_X86_64
4168 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4169 CPU_BASED_CR8_LOAD_EXITING;
4170 #endif
4171 }
4172 if (!enable_ept)
4173 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4174 CPU_BASED_CR3_LOAD_EXITING |
4175 CPU_BASED_INVLPG_EXITING;
4176 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4177 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4178 CPU_BASED_MONITOR_EXITING);
4179 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4180 exec_control &= ~CPU_BASED_HLT_EXITING;
4181 return exec_control;
4182 }
4183
4184 /*
4185 * Adjust a single secondary execution control bit to intercept/allow an
4186 * instruction in the guest. This is usually done based on whether or not a
4187 * feature has been exposed to the guest in order to correctly emulate faults.
4188 */
4189 static inline void
4190 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4191 u32 control, bool enabled, bool exiting)
4192 {
4193 /*
4194 * If the control is for an opt-in feature, clear the control if the
4195 * feature is not exposed to the guest, i.e. not enabled. If the
4196 * control is opt-out, i.e. an exiting control, clear the control if
4197 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4198 * disabled for the associated instruction. Note, the caller is
4199 * responsible presetting exec_control to set all supported bits.
4200 */
4201 if (enabled == exiting)
4202 *exec_control &= ~control;
4203
4204 /*
4205 * Update the nested MSR settings so that a nested VMM can/can't set
4206 * controls for features that are/aren't exposed to the guest.
4207 */
4208 if (nested) {
4209 if (enabled)
4210 vmx->nested.msrs.secondary_ctls_high |= control;
4211 else
4212 vmx->nested.msrs.secondary_ctls_high &= ~control;
4213 }
4214 }
4215
4216 /*
4217 * Wrapper macro for the common case of adjusting a secondary execution control
4218 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4219 * verifies that the control is actually supported by KVM and hardware.
4220 */
4221 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4222 ({ \
4223 bool __enabled; \
4224 \
4225 if (cpu_has_vmx_##name()) { \
4226 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4227 X86_FEATURE_##feat_name); \
4228 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4229 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4230 } \
4231 })
4232
4233 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4234 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4235 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4236
4237 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4238 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4239
4240 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4241 {
4242 struct kvm_vcpu *vcpu = &vmx->vcpu;
4243
4244 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4245
4246 if (vmx_pt_mode_is_system())
4247 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4248 if (!cpu_need_virtualize_apic_accesses(vcpu))
4249 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4250 if (vmx->vpid == 0)
4251 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4252 if (!enable_ept) {
4253 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4254 enable_unrestricted_guest = 0;
4255 }
4256 if (!enable_unrestricted_guest)
4257 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4258 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4259 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4260 if (!kvm_vcpu_apicv_active(vcpu))
4261 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4262 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4263 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4264
4265 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4266 * in vmx_set_cr4. */
4267 exec_control &= ~SECONDARY_EXEC_DESC;
4268
4269 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4270 (handle_vmptrld).
4271 We can NOT enable shadow_vmcs here because we don't have yet
4272 a current VMCS12
4273 */
4274 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4275
4276 /*
4277 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4278 * it needs to be set here when dirty logging is already active, e.g.
4279 * if this vCPU was created after dirty logging was enabled.
4280 */
4281 if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4282 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4283
4284 if (cpu_has_vmx_xsaves()) {
4285 /* Exposing XSAVES only when XSAVE is exposed */
4286 bool xsaves_enabled =
4287 boot_cpu_has(X86_FEATURE_XSAVE) &&
4288 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4289 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4290
4291 vcpu->arch.xsaves_enabled = xsaves_enabled;
4292
4293 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4294 SECONDARY_EXEC_XSAVES,
4295 xsaves_enabled, false);
4296 }
4297
4298 /*
4299 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4300 * feature is exposed to the guest. This creates a virtualization hole
4301 * if both are supported in hardware but only one is exposed to the
4302 * guest, but letting the guest execute RDTSCP or RDPID when either one
4303 * is advertised is preferable to emulating the advertised instruction
4304 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4305 */
4306 if (cpu_has_vmx_rdtscp()) {
4307 bool rdpid_or_rdtscp_enabled =
4308 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4309 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4310
4311 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4312 SECONDARY_EXEC_ENABLE_RDTSCP,
4313 rdpid_or_rdtscp_enabled, false);
4314 }
4315 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4316
4317 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4318 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4319
4320 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4321 ENABLE_USR_WAIT_PAUSE, false);
4322
4323 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4324 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4325
4326 return exec_control;
4327 }
4328
4329 #define VMX_XSS_EXIT_BITMAP 0
4330
4331 /*
4332 * Noting that the initialization of Guest-state Area of VMCS is in
4333 * vmx_vcpu_reset().
4334 */
4335 static void init_vmcs(struct vcpu_vmx *vmx)
4336 {
4337 if (nested)
4338 nested_vmx_set_vmcs_shadowing_bitmap();
4339
4340 if (cpu_has_vmx_msr_bitmap())
4341 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4342
4343 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4344
4345 /* Control */
4346 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4347
4348 exec_controls_set(vmx, vmx_exec_control(vmx));
4349
4350 if (cpu_has_secondary_exec_ctrls())
4351 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4352
4353 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4354 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4355 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4356 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4357 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4358
4359 vmcs_write16(GUEST_INTR_STATUS, 0);
4360
4361 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4362 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4363 }
4364
4365 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4366 vmcs_write32(PLE_GAP, ple_gap);
4367 vmx->ple_window = ple_window;
4368 vmx->ple_window_dirty = true;
4369 }
4370
4371 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4372 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4373 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4374
4375 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4376 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4377 vmx_set_constant_host_state(vmx);
4378 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4379 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4380
4381 if (cpu_has_vmx_vmfunc())
4382 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4383
4384 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4385 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4386 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4387 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4388 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4389
4390 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4391 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4392
4393 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4394
4395 /* 22.2.1, 20.8.1 */
4396 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4397
4398 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4399 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4400
4401 set_cr4_guest_host_mask(vmx);
4402
4403 if (vmx->vpid != 0)
4404 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4405
4406 if (cpu_has_vmx_xsaves())
4407 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4408
4409 if (enable_pml) {
4410 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4411 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4412 }
4413
4414 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4415
4416 if (vmx_pt_mode_is_host_guest()) {
4417 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4418 /* Bit[6~0] are forced to 1, writes are ignored. */
4419 vmx->pt_desc.guest.output_mask = 0x7F;
4420 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4421 }
4422
4423 vmcs_write32(GUEST_SYSENTER_CS, 0);
4424 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4425 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4426 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4427
4428 if (cpu_has_vmx_tpr_shadow()) {
4429 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4430 if (cpu_need_tpr_shadow(&vmx->vcpu))
4431 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4432 __pa(vmx->vcpu.arch.apic->regs));
4433 vmcs_write32(TPR_THRESHOLD, 0);
4434 }
4435
4436 vmx_setup_uret_msrs(vmx);
4437 }
4438
4439 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4440 {
4441 struct vcpu_vmx *vmx = to_vmx(vcpu);
4442
4443 vmx->rmode.vm86_active = 0;
4444 vmx->spec_ctrl = 0;
4445
4446 vmx->msr_ia32_umwait_control = 0;
4447
4448 vmx->hv_deadline_tsc = -1;
4449 kvm_set_cr8(vcpu, 0);
4450
4451 vmx_segment_cache_clear(vmx);
4452
4453 seg_setup(VCPU_SREG_CS);
4454 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4455 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4456
4457 seg_setup(VCPU_SREG_DS);
4458 seg_setup(VCPU_SREG_ES);
4459 seg_setup(VCPU_SREG_FS);
4460 seg_setup(VCPU_SREG_GS);
4461 seg_setup(VCPU_SREG_SS);
4462
4463 vmcs_write16(GUEST_TR_SELECTOR, 0);
4464 vmcs_writel(GUEST_TR_BASE, 0);
4465 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4466 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4467
4468 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4469 vmcs_writel(GUEST_LDTR_BASE, 0);
4470 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4471 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4472
4473 vmcs_writel(GUEST_GDTR_BASE, 0);
4474 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4475
4476 vmcs_writel(GUEST_IDTR_BASE, 0);
4477 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4478
4479 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4480 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4481 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4482 if (kvm_mpx_supported())
4483 vmcs_write64(GUEST_BNDCFGS, 0);
4484
4485 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4486
4487 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4488
4489 vpid_sync_context(vmx->vpid);
4490 }
4491
4492 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4493 {
4494 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4495 }
4496
4497 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4498 {
4499 if (!enable_vnmi ||
4500 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4501 vmx_enable_irq_window(vcpu);
4502 return;
4503 }
4504
4505 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4506 }
4507
4508 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4509 {
4510 struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 uint32_t intr;
4512 int irq = vcpu->arch.interrupt.nr;
4513
4514 trace_kvm_inj_virq(irq);
4515
4516 ++vcpu->stat.irq_injections;
4517 if (vmx->rmode.vm86_active) {
4518 int inc_eip = 0;
4519 if (vcpu->arch.interrupt.soft)
4520 inc_eip = vcpu->arch.event_exit_inst_len;
4521 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4522 return;
4523 }
4524 intr = irq | INTR_INFO_VALID_MASK;
4525 if (vcpu->arch.interrupt.soft) {
4526 intr |= INTR_TYPE_SOFT_INTR;
4527 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4528 vmx->vcpu.arch.event_exit_inst_len);
4529 } else
4530 intr |= INTR_TYPE_EXT_INTR;
4531 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4532
4533 vmx_clear_hlt(vcpu);
4534 }
4535
4536 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4537 {
4538 struct vcpu_vmx *vmx = to_vmx(vcpu);
4539
4540 if (!enable_vnmi) {
4541 /*
4542 * Tracking the NMI-blocked state in software is built upon
4543 * finding the next open IRQ window. This, in turn, depends on
4544 * well-behaving guests: They have to keep IRQs disabled at
4545 * least as long as the NMI handler runs. Otherwise we may
4546 * cause NMI nesting, maybe breaking the guest. But as this is
4547 * highly unlikely, we can live with the residual risk.
4548 */
4549 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4550 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4551 }
4552
4553 ++vcpu->stat.nmi_injections;
4554 vmx->loaded_vmcs->nmi_known_unmasked = false;
4555
4556 if (vmx->rmode.vm86_active) {
4557 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4558 return;
4559 }
4560
4561 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4562 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4563
4564 vmx_clear_hlt(vcpu);
4565 }
4566
4567 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4568 {
4569 struct vcpu_vmx *vmx = to_vmx(vcpu);
4570 bool masked;
4571
4572 if (!enable_vnmi)
4573 return vmx->loaded_vmcs->soft_vnmi_blocked;
4574 if (vmx->loaded_vmcs->nmi_known_unmasked)
4575 return false;
4576 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4577 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4578 return masked;
4579 }
4580
4581 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4582 {
4583 struct vcpu_vmx *vmx = to_vmx(vcpu);
4584
4585 if (!enable_vnmi) {
4586 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4587 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4588 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4589 }
4590 } else {
4591 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4592 if (masked)
4593 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4594 GUEST_INTR_STATE_NMI);
4595 else
4596 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4597 GUEST_INTR_STATE_NMI);
4598 }
4599 }
4600
4601 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4602 {
4603 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4604 return false;
4605
4606 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4607 return true;
4608
4609 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4610 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4611 GUEST_INTR_STATE_NMI));
4612 }
4613
4614 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 {
4616 if (to_vmx(vcpu)->nested.nested_run_pending)
4617 return -EBUSY;
4618
4619 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4620 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4621 return -EBUSY;
4622
4623 return !vmx_nmi_blocked(vcpu);
4624 }
4625
4626 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4627 {
4628 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4629 return false;
4630
4631 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4632 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4633 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4634 }
4635
4636 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4637 {
4638 if (to_vmx(vcpu)->nested.nested_run_pending)
4639 return -EBUSY;
4640
4641 /*
4642 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4643 * e.g. if the IRQ arrived asynchronously after checking nested events.
4644 */
4645 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4646 return -EBUSY;
4647
4648 return !vmx_interrupt_blocked(vcpu);
4649 }
4650
4651 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4652 {
4653 void __user *ret;
4654
4655 if (enable_unrestricted_guest)
4656 return 0;
4657
4658 mutex_lock(&kvm->slots_lock);
4659 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4660 PAGE_SIZE * 3);
4661 mutex_unlock(&kvm->slots_lock);
4662
4663 if (IS_ERR(ret))
4664 return PTR_ERR(ret);
4665
4666 to_kvm_vmx(kvm)->tss_addr = addr;
4667
4668 return init_rmode_tss(kvm, ret);
4669 }
4670
4671 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4672 {
4673 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4674 return 0;
4675 }
4676
4677 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4678 {
4679 switch (vec) {
4680 case BP_VECTOR:
4681 /*
4682 * Update instruction length as we may reinject the exception
4683 * from user space while in guest debugging mode.
4684 */
4685 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4686 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4687 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4688 return false;
4689 fallthrough;
4690 case DB_VECTOR:
4691 return !(vcpu->guest_debug &
4692 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4693 case DE_VECTOR:
4694 case OF_VECTOR:
4695 case BR_VECTOR:
4696 case UD_VECTOR:
4697 case DF_VECTOR:
4698 case SS_VECTOR:
4699 case GP_VECTOR:
4700 case MF_VECTOR:
4701 return true;
4702 }
4703 return false;
4704 }
4705
4706 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4707 int vec, u32 err_code)
4708 {
4709 /*
4710 * Instruction with address size override prefix opcode 0x67
4711 * Cause the #SS fault with 0 error code in VM86 mode.
4712 */
4713 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4714 if (kvm_emulate_instruction(vcpu, 0)) {
4715 if (vcpu->arch.halt_request) {
4716 vcpu->arch.halt_request = 0;
4717 return kvm_vcpu_halt(vcpu);
4718 }
4719 return 1;
4720 }
4721 return 0;
4722 }
4723
4724 /*
4725 * Forward all other exceptions that are valid in real mode.
4726 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4727 * the required debugging infrastructure rework.
4728 */
4729 kvm_queue_exception(vcpu, vec);
4730 return 1;
4731 }
4732
4733 static int handle_machine_check(struct kvm_vcpu *vcpu)
4734 {
4735 /* handled by vmx_vcpu_run() */
4736 return 1;
4737 }
4738
4739 /*
4740 * If the host has split lock detection disabled, then #AC is
4741 * unconditionally injected into the guest, which is the pre split lock
4742 * detection behaviour.
4743 *
4744 * If the host has split lock detection enabled then #AC is
4745 * only injected into the guest when:
4746 * - Guest CPL == 3 (user mode)
4747 * - Guest has #AC detection enabled in CR0
4748 * - Guest EFLAGS has AC bit set
4749 */
4750 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4751 {
4752 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4753 return true;
4754
4755 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4756 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4757 }
4758
4759 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4760 {
4761 struct vcpu_vmx *vmx = to_vmx(vcpu);
4762 struct kvm_run *kvm_run = vcpu->run;
4763 u32 intr_info, ex_no, error_code;
4764 unsigned long cr2, dr6;
4765 u32 vect_info;
4766
4767 vect_info = vmx->idt_vectoring_info;
4768 intr_info = vmx_get_intr_info(vcpu);
4769
4770 if (is_machine_check(intr_info) || is_nmi(intr_info))
4771 return 1; /* handled by handle_exception_nmi_irqoff() */
4772
4773 if (is_invalid_opcode(intr_info))
4774 return handle_ud(vcpu);
4775
4776 error_code = 0;
4777 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4778 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4779
4780 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4781 WARN_ON_ONCE(!enable_vmware_backdoor);
4782
4783 /*
4784 * VMware backdoor emulation on #GP interception only handles
4785 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4786 * error code on #GP.
4787 */
4788 if (error_code) {
4789 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4790 return 1;
4791 }
4792 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4793 }
4794
4795 /*
4796 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4797 * MMIO, it is better to report an internal error.
4798 * See the comments in vmx_handle_exit.
4799 */
4800 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4801 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4802 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4803 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4804 vcpu->run->internal.ndata = 4;
4805 vcpu->run->internal.data[0] = vect_info;
4806 vcpu->run->internal.data[1] = intr_info;
4807 vcpu->run->internal.data[2] = error_code;
4808 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4809 return 0;
4810 }
4811
4812 if (is_page_fault(intr_info)) {
4813 cr2 = vmx_get_exit_qual(vcpu);
4814 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4815 /*
4816 * EPT will cause page fault only if we need to
4817 * detect illegal GPAs.
4818 */
4819 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4820 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4821 return 1;
4822 } else
4823 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4824 }
4825
4826 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4827
4828 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4829 return handle_rmode_exception(vcpu, ex_no, error_code);
4830
4831 switch (ex_no) {
4832 case DB_VECTOR:
4833 dr6 = vmx_get_exit_qual(vcpu);
4834 if (!(vcpu->guest_debug &
4835 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4836 if (is_icebp(intr_info))
4837 WARN_ON(!skip_emulated_instruction(vcpu));
4838
4839 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4840 return 1;
4841 }
4842 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4843 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4844 fallthrough;
4845 case BP_VECTOR:
4846 /*
4847 * Update instruction length as we may reinject #BP from
4848 * user space while in guest debugging mode. Reading it for
4849 * #DB as well causes no harm, it is not used in that case.
4850 */
4851 vmx->vcpu.arch.event_exit_inst_len =
4852 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4853 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4854 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4855 kvm_run->debug.arch.exception = ex_no;
4856 break;
4857 case AC_VECTOR:
4858 if (vmx_guest_inject_ac(vcpu)) {
4859 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4860 return 1;
4861 }
4862
4863 /*
4864 * Handle split lock. Depending on detection mode this will
4865 * either warn and disable split lock detection for this
4866 * task or force SIGBUS on it.
4867 */
4868 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4869 return 1;
4870 fallthrough;
4871 default:
4872 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4873 kvm_run->ex.exception = ex_no;
4874 kvm_run->ex.error_code = error_code;
4875 break;
4876 }
4877 return 0;
4878 }
4879
4880 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4881 {
4882 ++vcpu->stat.irq_exits;
4883 return 1;
4884 }
4885
4886 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4887 {
4888 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4889 vcpu->mmio_needed = 0;
4890 return 0;
4891 }
4892
4893 static int handle_io(struct kvm_vcpu *vcpu)
4894 {
4895 unsigned long exit_qualification;
4896 int size, in, string;
4897 unsigned port;
4898
4899 exit_qualification = vmx_get_exit_qual(vcpu);
4900 string = (exit_qualification & 16) != 0;
4901
4902 ++vcpu->stat.io_exits;
4903
4904 if (string)
4905 return kvm_emulate_instruction(vcpu, 0);
4906
4907 port = exit_qualification >> 16;
4908 size = (exit_qualification & 7) + 1;
4909 in = (exit_qualification & 8) != 0;
4910
4911 return kvm_fast_pio(vcpu, size, port, in);
4912 }
4913
4914 static void
4915 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4916 {
4917 /*
4918 * Patch in the VMCALL instruction:
4919 */
4920 hypercall[0] = 0x0f;
4921 hypercall[1] = 0x01;
4922 hypercall[2] = 0xc1;
4923 }
4924
4925 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4926 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4927 {
4928 if (is_guest_mode(vcpu)) {
4929 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4930 unsigned long orig_val = val;
4931
4932 /*
4933 * We get here when L2 changed cr0 in a way that did not change
4934 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4935 * but did change L0 shadowed bits. So we first calculate the
4936 * effective cr0 value that L1 would like to write into the
4937 * hardware. It consists of the L2-owned bits from the new
4938 * value combined with the L1-owned bits from L1's guest_cr0.
4939 */
4940 val = (val & ~vmcs12->cr0_guest_host_mask) |
4941 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4942
4943 if (!nested_guest_cr0_valid(vcpu, val))
4944 return 1;
4945
4946 if (kvm_set_cr0(vcpu, val))
4947 return 1;
4948 vmcs_writel(CR0_READ_SHADOW, orig_val);
4949 return 0;
4950 } else {
4951 if (to_vmx(vcpu)->nested.vmxon &&
4952 !nested_host_cr0_valid(vcpu, val))
4953 return 1;
4954
4955 return kvm_set_cr0(vcpu, val);
4956 }
4957 }
4958
4959 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4960 {
4961 if (is_guest_mode(vcpu)) {
4962 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4963 unsigned long orig_val = val;
4964
4965 /* analogously to handle_set_cr0 */
4966 val = (val & ~vmcs12->cr4_guest_host_mask) |
4967 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4968 if (kvm_set_cr4(vcpu, val))
4969 return 1;
4970 vmcs_writel(CR4_READ_SHADOW, orig_val);
4971 return 0;
4972 } else
4973 return kvm_set_cr4(vcpu, val);
4974 }
4975
4976 static int handle_desc(struct kvm_vcpu *vcpu)
4977 {
4978 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4979 return kvm_emulate_instruction(vcpu, 0);
4980 }
4981
4982 static int handle_cr(struct kvm_vcpu *vcpu)
4983 {
4984 unsigned long exit_qualification, val;
4985 int cr;
4986 int reg;
4987 int err;
4988 int ret;
4989
4990 exit_qualification = vmx_get_exit_qual(vcpu);
4991 cr = exit_qualification & 15;
4992 reg = (exit_qualification >> 8) & 15;
4993 switch ((exit_qualification >> 4) & 3) {
4994 case 0: /* mov to cr */
4995 val = kvm_register_read(vcpu, reg);
4996 trace_kvm_cr_write(cr, val);
4997 switch (cr) {
4998 case 0:
4999 err = handle_set_cr0(vcpu, val);
5000 return kvm_complete_insn_gp(vcpu, err);
5001 case 3:
5002 WARN_ON_ONCE(enable_unrestricted_guest);
5003
5004 err = kvm_set_cr3(vcpu, val);
5005 return kvm_complete_insn_gp(vcpu, err);
5006 case 4:
5007 err = handle_set_cr4(vcpu, val);
5008 return kvm_complete_insn_gp(vcpu, err);
5009 case 8: {
5010 u8 cr8_prev = kvm_get_cr8(vcpu);
5011 u8 cr8 = (u8)val;
5012 err = kvm_set_cr8(vcpu, cr8);
5013 ret = kvm_complete_insn_gp(vcpu, err);
5014 if (lapic_in_kernel(vcpu))
5015 return ret;
5016 if (cr8_prev <= cr8)
5017 return ret;
5018 /*
5019 * TODO: we might be squashing a
5020 * KVM_GUESTDBG_SINGLESTEP-triggered
5021 * KVM_EXIT_DEBUG here.
5022 */
5023 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5024 return 0;
5025 }
5026 }
5027 break;
5028 case 2: /* clts */
5029 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5030 return -EIO;
5031 case 1: /*mov from cr*/
5032 switch (cr) {
5033 case 3:
5034 WARN_ON_ONCE(enable_unrestricted_guest);
5035
5036 val = kvm_read_cr3(vcpu);
5037 kvm_register_write(vcpu, reg, val);
5038 trace_kvm_cr_read(cr, val);
5039 return kvm_skip_emulated_instruction(vcpu);
5040 case 8:
5041 val = kvm_get_cr8(vcpu);
5042 kvm_register_write(vcpu, reg, val);
5043 trace_kvm_cr_read(cr, val);
5044 return kvm_skip_emulated_instruction(vcpu);
5045 }
5046 break;
5047 case 3: /* lmsw */
5048 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5049 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5050 kvm_lmsw(vcpu, val);
5051
5052 return kvm_skip_emulated_instruction(vcpu);
5053 default:
5054 break;
5055 }
5056 vcpu->run->exit_reason = 0;
5057 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5058 (int)(exit_qualification >> 4) & 3, cr);
5059 return 0;
5060 }
5061
5062 static int handle_dr(struct kvm_vcpu *vcpu)
5063 {
5064 unsigned long exit_qualification;
5065 int dr, dr7, reg;
5066 int err = 1;
5067
5068 exit_qualification = vmx_get_exit_qual(vcpu);
5069 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5070
5071 /* First, if DR does not exist, trigger UD */
5072 if (!kvm_require_dr(vcpu, dr))
5073 return 1;
5074
5075 if (kvm_x86_ops.get_cpl(vcpu) > 0)
5076 goto out;
5077
5078 dr7 = vmcs_readl(GUEST_DR7);
5079 if (dr7 & DR7_GD) {
5080 /*
5081 * As the vm-exit takes precedence over the debug trap, we
5082 * need to emulate the latter, either for the host or the
5083 * guest debugging itself.
5084 */
5085 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5086 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5087 vcpu->run->debug.arch.dr7 = dr7;
5088 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5089 vcpu->run->debug.arch.exception = DB_VECTOR;
5090 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5091 return 0;
5092 } else {
5093 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5094 return 1;
5095 }
5096 }
5097
5098 if (vcpu->guest_debug == 0) {
5099 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5100
5101 /*
5102 * No more DR vmexits; force a reload of the debug registers
5103 * and reenter on this instruction. The next vmexit will
5104 * retrieve the full state of the debug registers.
5105 */
5106 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5107 return 1;
5108 }
5109
5110 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5111 if (exit_qualification & TYPE_MOV_FROM_DR) {
5112 unsigned long val;
5113
5114 kvm_get_dr(vcpu, dr, &val);
5115 kvm_register_write(vcpu, reg, val);
5116 err = 0;
5117 } else {
5118 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5119 }
5120
5121 out:
5122 return kvm_complete_insn_gp(vcpu, err);
5123 }
5124
5125 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5126 {
5127 get_debugreg(vcpu->arch.db[0], 0);
5128 get_debugreg(vcpu->arch.db[1], 1);
5129 get_debugreg(vcpu->arch.db[2], 2);
5130 get_debugreg(vcpu->arch.db[3], 3);
5131 get_debugreg(vcpu->arch.dr6, 6);
5132 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5133
5134 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5135 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5136
5137 /*
5138 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5139 * a stale dr6 from the guest.
5140 */
5141 set_debugreg(DR6_RESERVED, 6);
5142 }
5143
5144 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5145 {
5146 vmcs_writel(GUEST_DR7, val);
5147 }
5148
5149 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5150 {
5151 kvm_apic_update_ppr(vcpu);
5152 return 1;
5153 }
5154
5155 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5156 {
5157 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5158
5159 kvm_make_request(KVM_REQ_EVENT, vcpu);
5160
5161 ++vcpu->stat.irq_window_exits;
5162 return 1;
5163 }
5164
5165 static int handle_invlpg(struct kvm_vcpu *vcpu)
5166 {
5167 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5168
5169 kvm_mmu_invlpg(vcpu, exit_qualification);
5170 return kvm_skip_emulated_instruction(vcpu);
5171 }
5172
5173 static int handle_apic_access(struct kvm_vcpu *vcpu)
5174 {
5175 if (likely(fasteoi)) {
5176 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5177 int access_type, offset;
5178
5179 access_type = exit_qualification & APIC_ACCESS_TYPE;
5180 offset = exit_qualification & APIC_ACCESS_OFFSET;
5181 /*
5182 * Sane guest uses MOV to write EOI, with written value
5183 * not cared. So make a short-circuit here by avoiding
5184 * heavy instruction emulation.
5185 */
5186 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5187 (offset == APIC_EOI)) {
5188 kvm_lapic_set_eoi(vcpu);
5189 return kvm_skip_emulated_instruction(vcpu);
5190 }
5191 }
5192 return kvm_emulate_instruction(vcpu, 0);
5193 }
5194
5195 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5196 {
5197 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5198 int vector = exit_qualification & 0xff;
5199
5200 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5201 kvm_apic_set_eoi_accelerated(vcpu, vector);
5202 return 1;
5203 }
5204
5205 static int handle_apic_write(struct kvm_vcpu *vcpu)
5206 {
5207 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5208 u32 offset = exit_qualification & 0xfff;
5209
5210 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5211 kvm_apic_write_nodecode(vcpu, offset);
5212 return 1;
5213 }
5214
5215 static int handle_task_switch(struct kvm_vcpu *vcpu)
5216 {
5217 struct vcpu_vmx *vmx = to_vmx(vcpu);
5218 unsigned long exit_qualification;
5219 bool has_error_code = false;
5220 u32 error_code = 0;
5221 u16 tss_selector;
5222 int reason, type, idt_v, idt_index;
5223
5224 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5225 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5226 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5227
5228 exit_qualification = vmx_get_exit_qual(vcpu);
5229
5230 reason = (u32)exit_qualification >> 30;
5231 if (reason == TASK_SWITCH_GATE && idt_v) {
5232 switch (type) {
5233 case INTR_TYPE_NMI_INTR:
5234 vcpu->arch.nmi_injected = false;
5235 vmx_set_nmi_mask(vcpu, true);
5236 break;
5237 case INTR_TYPE_EXT_INTR:
5238 case INTR_TYPE_SOFT_INTR:
5239 kvm_clear_interrupt_queue(vcpu);
5240 break;
5241 case INTR_TYPE_HARD_EXCEPTION:
5242 if (vmx->idt_vectoring_info &
5243 VECTORING_INFO_DELIVER_CODE_MASK) {
5244 has_error_code = true;
5245 error_code =
5246 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5247 }
5248 fallthrough;
5249 case INTR_TYPE_SOFT_EXCEPTION:
5250 kvm_clear_exception_queue(vcpu);
5251 break;
5252 default:
5253 break;
5254 }
5255 }
5256 tss_selector = exit_qualification;
5257
5258 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5259 type != INTR_TYPE_EXT_INTR &&
5260 type != INTR_TYPE_NMI_INTR))
5261 WARN_ON(!skip_emulated_instruction(vcpu));
5262
5263 /*
5264 * TODO: What about debug traps on tss switch?
5265 * Are we supposed to inject them and update dr6?
5266 */
5267 return kvm_task_switch(vcpu, tss_selector,
5268 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5269 reason, has_error_code, error_code);
5270 }
5271
5272 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5273 {
5274 unsigned long exit_qualification;
5275 gpa_t gpa;
5276 u64 error_code;
5277
5278 exit_qualification = vmx_get_exit_qual(vcpu);
5279
5280 /*
5281 * EPT violation happened while executing iret from NMI,
5282 * "blocked by NMI" bit has to be set before next VM entry.
5283 * There are errata that may cause this bit to not be set:
5284 * AAK134, BY25.
5285 */
5286 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5287 enable_vnmi &&
5288 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5289 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5290
5291 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5292 trace_kvm_page_fault(gpa, exit_qualification);
5293
5294 /* Is it a read fault? */
5295 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5296 ? PFERR_USER_MASK : 0;
5297 /* Is it a write fault? */
5298 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5299 ? PFERR_WRITE_MASK : 0;
5300 /* Is it a fetch fault? */
5301 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5302 ? PFERR_FETCH_MASK : 0;
5303 /* ept page table entry is present? */
5304 error_code |= (exit_qualification &
5305 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5306 EPT_VIOLATION_EXECUTABLE))
5307 ? PFERR_PRESENT_MASK : 0;
5308
5309 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5310 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5311
5312 vcpu->arch.exit_qualification = exit_qualification;
5313
5314 /*
5315 * Check that the GPA doesn't exceed physical memory limits, as that is
5316 * a guest page fault. We have to emulate the instruction here, because
5317 * if the illegal address is that of a paging structure, then
5318 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5319 * would also use advanced VM-exit information for EPT violations to
5320 * reconstruct the page fault error code.
5321 */
5322 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5323 return kvm_emulate_instruction(vcpu, 0);
5324
5325 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5326 }
5327
5328 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5329 {
5330 gpa_t gpa;
5331
5332 if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5333 return 1;
5334
5335 /*
5336 * A nested guest cannot optimize MMIO vmexits, because we have an
5337 * nGPA here instead of the required GPA.
5338 */
5339 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5340 if (!is_guest_mode(vcpu) &&
5341 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5342 trace_kvm_fast_mmio(gpa);
5343 return kvm_skip_emulated_instruction(vcpu);
5344 }
5345
5346 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5347 }
5348
5349 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5350 {
5351 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5352 return -EIO;
5353
5354 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5355 ++vcpu->stat.nmi_window_exits;
5356 kvm_make_request(KVM_REQ_EVENT, vcpu);
5357
5358 return 1;
5359 }
5360
5361 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5362 {
5363 struct vcpu_vmx *vmx = to_vmx(vcpu);
5364 bool intr_window_requested;
5365 unsigned count = 130;
5366
5367 intr_window_requested = exec_controls_get(vmx) &
5368 CPU_BASED_INTR_WINDOW_EXITING;
5369
5370 while (vmx->emulation_required && count-- != 0) {
5371 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5372 return handle_interrupt_window(&vmx->vcpu);
5373
5374 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5375 return 1;
5376
5377 if (!kvm_emulate_instruction(vcpu, 0))
5378 return 0;
5379
5380 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5381 vcpu->arch.exception.pending) {
5382 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5383 vcpu->run->internal.suberror =
5384 KVM_INTERNAL_ERROR_EMULATION;
5385 vcpu->run->internal.ndata = 0;
5386 return 0;
5387 }
5388
5389 if (vcpu->arch.halt_request) {
5390 vcpu->arch.halt_request = 0;
5391 return kvm_vcpu_halt(vcpu);
5392 }
5393
5394 /*
5395 * Note, return 1 and not 0, vcpu_run() will invoke
5396 * xfer_to_guest_mode() which will create a proper return
5397 * code.
5398 */
5399 if (__xfer_to_guest_mode_work_pending())
5400 return 1;
5401 }
5402
5403 return 1;
5404 }
5405
5406 static void grow_ple_window(struct kvm_vcpu *vcpu)
5407 {
5408 struct vcpu_vmx *vmx = to_vmx(vcpu);
5409 unsigned int old = vmx->ple_window;
5410
5411 vmx->ple_window = __grow_ple_window(old, ple_window,
5412 ple_window_grow,
5413 ple_window_max);
5414
5415 if (vmx->ple_window != old) {
5416 vmx->ple_window_dirty = true;
5417 trace_kvm_ple_window_update(vcpu->vcpu_id,
5418 vmx->ple_window, old);
5419 }
5420 }
5421
5422 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5423 {
5424 struct vcpu_vmx *vmx = to_vmx(vcpu);
5425 unsigned int old = vmx->ple_window;
5426
5427 vmx->ple_window = __shrink_ple_window(old, ple_window,
5428 ple_window_shrink,
5429 ple_window);
5430
5431 if (vmx->ple_window != old) {
5432 vmx->ple_window_dirty = true;
5433 trace_kvm_ple_window_update(vcpu->vcpu_id,
5434 vmx->ple_window, old);
5435 }
5436 }
5437
5438 /*
5439 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5440 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5441 */
5442 static int handle_pause(struct kvm_vcpu *vcpu)
5443 {
5444 if (!kvm_pause_in_guest(vcpu->kvm))
5445 grow_ple_window(vcpu);
5446
5447 /*
5448 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5449 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5450 * never set PAUSE_EXITING and just set PLE if supported,
5451 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5452 */
5453 kvm_vcpu_on_spin(vcpu, true);
5454 return kvm_skip_emulated_instruction(vcpu);
5455 }
5456
5457 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5458 {
5459 return 1;
5460 }
5461
5462 static int handle_invpcid(struct kvm_vcpu *vcpu)
5463 {
5464 u32 vmx_instruction_info;
5465 unsigned long type;
5466 gva_t gva;
5467 struct {
5468 u64 pcid;
5469 u64 gla;
5470 } operand;
5471
5472 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5473 kvm_queue_exception(vcpu, UD_VECTOR);
5474 return 1;
5475 }
5476
5477 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5478 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5479
5480 if (type > 3) {
5481 kvm_inject_gp(vcpu, 0);
5482 return 1;
5483 }
5484
5485 /* According to the Intel instruction reference, the memory operand
5486 * is read even if it isn't needed (e.g., for type==all)
5487 */
5488 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5489 vmx_instruction_info, false,
5490 sizeof(operand), &gva))
5491 return 1;
5492
5493 return kvm_handle_invpcid(vcpu, type, gva);
5494 }
5495
5496 static int handle_pml_full(struct kvm_vcpu *vcpu)
5497 {
5498 unsigned long exit_qualification;
5499
5500 trace_kvm_pml_full(vcpu->vcpu_id);
5501
5502 exit_qualification = vmx_get_exit_qual(vcpu);
5503
5504 /*
5505 * PML buffer FULL happened while executing iret from NMI,
5506 * "blocked by NMI" bit has to be set before next VM entry.
5507 */
5508 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5509 enable_vnmi &&
5510 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5511 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5512 GUEST_INTR_STATE_NMI);
5513
5514 /*
5515 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5516 * here.., and there's no userspace involvement needed for PML.
5517 */
5518 return 1;
5519 }
5520
5521 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5522 {
5523 struct vcpu_vmx *vmx = to_vmx(vcpu);
5524
5525 if (!vmx->req_immediate_exit &&
5526 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5527 kvm_lapic_expired_hv_timer(vcpu);
5528 return EXIT_FASTPATH_REENTER_GUEST;
5529 }
5530
5531 return EXIT_FASTPATH_NONE;
5532 }
5533
5534 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5535 {
5536 handle_fastpath_preemption_timer(vcpu);
5537 return 1;
5538 }
5539
5540 /*
5541 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5542 * are overwritten by nested_vmx_setup() when nested=1.
5543 */
5544 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5545 {
5546 kvm_queue_exception(vcpu, UD_VECTOR);
5547 return 1;
5548 }
5549
5550 #ifndef CONFIG_X86_SGX_KVM
5551 static int handle_encls(struct kvm_vcpu *vcpu)
5552 {
5553 /*
5554 * SGX virtualization is disabled. There is no software enable bit for
5555 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5556 * the guest from executing ENCLS (when SGX is supported by hardware).
5557 */
5558 kvm_queue_exception(vcpu, UD_VECTOR);
5559 return 1;
5560 }
5561 #endif /* CONFIG_X86_SGX_KVM */
5562
5563 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5564 {
5565 /*
5566 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5567 * VM-Exits. Unconditionally set the flag here and leave the handling to
5568 * vmx_handle_exit().
5569 */
5570 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5571 return 1;
5572 }
5573
5574 /*
5575 * The exit handlers return 1 if the exit was handled fully and guest execution
5576 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5577 * to be done to userspace and return 0.
5578 */
5579 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5580 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5581 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5582 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5583 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5584 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5585 [EXIT_REASON_CR_ACCESS] = handle_cr,
5586 [EXIT_REASON_DR_ACCESS] = handle_dr,
5587 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5588 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5589 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5590 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5591 [EXIT_REASON_HLT] = kvm_emulate_halt,
5592 [EXIT_REASON_INVD] = kvm_emulate_invd,
5593 [EXIT_REASON_INVLPG] = handle_invlpg,
5594 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
5595 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
5596 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5597 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5598 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5599 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5600 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5601 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5602 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5603 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5604 [EXIT_REASON_VMON] = handle_vmx_instruction,
5605 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5606 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5607 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5608 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5609 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
5610 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
5611 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5612 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5613 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5614 [EXIT_REASON_LDTR_TR] = handle_desc,
5615 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5616 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5617 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5618 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
5619 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5620 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
5621 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5622 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5623 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
5624 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
5625 [EXIT_REASON_PML_FULL] = handle_pml_full,
5626 [EXIT_REASON_INVPCID] = handle_invpcid,
5627 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5628 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5629 [EXIT_REASON_ENCLS] = handle_encls,
5630 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
5631 };
5632
5633 static const int kvm_vmx_max_exit_handlers =
5634 ARRAY_SIZE(kvm_vmx_exit_handlers);
5635
5636 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5637 u32 *intr_info, u32 *error_code)
5638 {
5639 struct vcpu_vmx *vmx = to_vmx(vcpu);
5640
5641 *info1 = vmx_get_exit_qual(vcpu);
5642 if (!(vmx->exit_reason.failed_vmentry)) {
5643 *info2 = vmx->idt_vectoring_info;
5644 *intr_info = vmx_get_intr_info(vcpu);
5645 if (is_exception_with_error_code(*intr_info))
5646 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5647 else
5648 *error_code = 0;
5649 } else {
5650 *info2 = 0;
5651 *intr_info = 0;
5652 *error_code = 0;
5653 }
5654 }
5655
5656 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5657 {
5658 if (vmx->pml_pg) {
5659 __free_page(vmx->pml_pg);
5660 vmx->pml_pg = NULL;
5661 }
5662 }
5663
5664 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5665 {
5666 struct vcpu_vmx *vmx = to_vmx(vcpu);
5667 u64 *pml_buf;
5668 u16 pml_idx;
5669
5670 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5671
5672 /* Do nothing if PML buffer is empty */
5673 if (pml_idx == (PML_ENTITY_NUM - 1))
5674 return;
5675
5676 /* PML index always points to next available PML buffer entity */
5677 if (pml_idx >= PML_ENTITY_NUM)
5678 pml_idx = 0;
5679 else
5680 pml_idx++;
5681
5682 pml_buf = page_address(vmx->pml_pg);
5683 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5684 u64 gpa;
5685
5686 gpa = pml_buf[pml_idx];
5687 WARN_ON(gpa & (PAGE_SIZE - 1));
5688 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5689 }
5690
5691 /* reset PML index */
5692 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5693 }
5694
5695 static void vmx_dump_sel(char *name, uint32_t sel)
5696 {
5697 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5698 name, vmcs_read16(sel),
5699 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5700 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5701 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5702 }
5703
5704 static void vmx_dump_dtsel(char *name, uint32_t limit)
5705 {
5706 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5707 name, vmcs_read32(limit),
5708 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5709 }
5710
5711 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5712 {
5713 unsigned int i;
5714 struct vmx_msr_entry *e;
5715
5716 pr_err("MSR %s:\n", name);
5717 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5718 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5719 }
5720
5721 void dump_vmcs(struct kvm_vcpu *vcpu)
5722 {
5723 struct vcpu_vmx *vmx = to_vmx(vcpu);
5724 u32 vmentry_ctl, vmexit_ctl;
5725 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5726 unsigned long cr4;
5727 int efer_slot;
5728
5729 if (!dump_invalid_vmcs) {
5730 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5731 return;
5732 }
5733
5734 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5735 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5736 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5737 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5738 cr4 = vmcs_readl(GUEST_CR4);
5739 secondary_exec_control = 0;
5740 if (cpu_has_secondary_exec_ctrls())
5741 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5742
5743 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5744 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5745 pr_err("*** Guest State ***\n");
5746 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5747 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5748 vmcs_readl(CR0_GUEST_HOST_MASK));
5749 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5750 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5751 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5752 if (cpu_has_vmx_ept()) {
5753 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5754 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5755 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5756 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5757 }
5758 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5759 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5760 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5761 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5762 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5763 vmcs_readl(GUEST_SYSENTER_ESP),
5764 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5765 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5766 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5767 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5768 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5769 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5770 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5771 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5772 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5773 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5774 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5775 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5776 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5777 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5778 else if (efer_slot >= 0)
5779 pr_err("EFER= 0x%016llx (autoload)\n",
5780 vmx->msr_autoload.guest.val[efer_slot].value);
5781 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5782 pr_err("EFER= 0x%016llx (effective)\n",
5783 vcpu->arch.efer | (EFER_LMA | EFER_LME));
5784 else
5785 pr_err("EFER= 0x%016llx (effective)\n",
5786 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5787 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5788 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5789 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5790 vmcs_read64(GUEST_IA32_DEBUGCTL),
5791 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5792 if (cpu_has_load_perf_global_ctrl() &&
5793 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5794 pr_err("PerfGlobCtl = 0x%016llx\n",
5795 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5796 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5797 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5798 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5799 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5800 vmcs_read32(GUEST_ACTIVITY_STATE));
5801 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5802 pr_err("InterruptStatus = %04x\n",
5803 vmcs_read16(GUEST_INTR_STATUS));
5804 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5805 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5806 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5807 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5808
5809 pr_err("*** Host State ***\n");
5810 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5811 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5812 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5813 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5814 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5815 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5816 vmcs_read16(HOST_TR_SELECTOR));
5817 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5818 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5819 vmcs_readl(HOST_TR_BASE));
5820 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5821 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5822 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5823 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5824 vmcs_readl(HOST_CR4));
5825 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5826 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5827 vmcs_read32(HOST_IA32_SYSENTER_CS),
5828 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5829 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5830 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5831 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5832 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5833 if (cpu_has_load_perf_global_ctrl() &&
5834 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5835 pr_err("PerfGlobCtl = 0x%016llx\n",
5836 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5837 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5838 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5839
5840 pr_err("*** Control State ***\n");
5841 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5842 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5843 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5844 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5845 vmcs_read32(EXCEPTION_BITMAP),
5846 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5847 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5848 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5849 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5850 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5851 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5852 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5853 vmcs_read32(VM_EXIT_INTR_INFO),
5854 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5855 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5856 pr_err(" reason=%08x qualification=%016lx\n",
5857 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5858 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5859 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5860 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5861 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5862 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5863 pr_err("TSC Multiplier = 0x%016llx\n",
5864 vmcs_read64(TSC_MULTIPLIER));
5865 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5866 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5867 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5868 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5869 }
5870 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5871 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5872 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5873 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5874 }
5875 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5876 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5877 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5878 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5879 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5880 pr_err("PLE Gap=%08x Window=%08x\n",
5881 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5882 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5883 pr_err("Virtual processor ID = 0x%04x\n",
5884 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5885 }
5886
5887 /*
5888 * The guest has exited. See if we can fix it or if we need userspace
5889 * assistance.
5890 */
5891 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5892 {
5893 struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 union vmx_exit_reason exit_reason = vmx->exit_reason;
5895 u32 vectoring_info = vmx->idt_vectoring_info;
5896 u16 exit_handler_index;
5897
5898 /*
5899 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5900 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5901 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5902 * mode as if vcpus is in root mode, the PML buffer must has been
5903 * flushed already. Note, PML is never enabled in hardware while
5904 * running L2.
5905 */
5906 if (enable_pml && !is_guest_mode(vcpu))
5907 vmx_flush_pml_buffer(vcpu);
5908
5909 /*
5910 * We should never reach this point with a pending nested VM-Enter, and
5911 * more specifically emulation of L2 due to invalid guest state (see
5912 * below) should never happen as that means we incorrectly allowed a
5913 * nested VM-Enter with an invalid vmcs12.
5914 */
5915 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5916 return -EIO;
5917
5918 /* If guest state is invalid, start emulating */
5919 if (vmx->emulation_required)
5920 return handle_invalid_guest_state(vcpu);
5921
5922 if (is_guest_mode(vcpu)) {
5923 /*
5924 * PML is never enabled when running L2, bail immediately if a
5925 * PML full exit occurs as something is horribly wrong.
5926 */
5927 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5928 goto unexpected_vmexit;
5929
5930 /*
5931 * The host physical addresses of some pages of guest memory
5932 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5933 * Page). The CPU may write to these pages via their host
5934 * physical address while L2 is running, bypassing any
5935 * address-translation-based dirty tracking (e.g. EPT write
5936 * protection).
5937 *
5938 * Mark them dirty on every exit from L2 to prevent them from
5939 * getting out of sync with dirty tracking.
5940 */
5941 nested_mark_vmcs12_pages_dirty(vcpu);
5942
5943 if (nested_vmx_reflect_vmexit(vcpu))
5944 return 1;
5945 }
5946
5947 if (exit_reason.failed_vmentry) {
5948 dump_vmcs(vcpu);
5949 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5950 vcpu->run->fail_entry.hardware_entry_failure_reason
5951 = exit_reason.full;
5952 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5953 return 0;
5954 }
5955
5956 if (unlikely(vmx->fail)) {
5957 dump_vmcs(vcpu);
5958 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5959 vcpu->run->fail_entry.hardware_entry_failure_reason
5960 = vmcs_read32(VM_INSTRUCTION_ERROR);
5961 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5962 return 0;
5963 }
5964
5965 /*
5966 * Note:
5967 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5968 * delivery event since it indicates guest is accessing MMIO.
5969 * The vm-exit can be triggered again after return to guest that
5970 * will cause infinite loop.
5971 */
5972 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5973 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5974 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5975 exit_reason.basic != EXIT_REASON_PML_FULL &&
5976 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5977 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5978 int ndata = 3;
5979
5980 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5981 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5982 vcpu->run->internal.data[0] = vectoring_info;
5983 vcpu->run->internal.data[1] = exit_reason.full;
5984 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5985 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5986 vcpu->run->internal.data[ndata++] =
5987 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5988 }
5989 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5990 vcpu->run->internal.ndata = ndata;
5991 return 0;
5992 }
5993
5994 if (unlikely(!enable_vnmi &&
5995 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5996 if (!vmx_interrupt_blocked(vcpu)) {
5997 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5998 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5999 vcpu->arch.nmi_pending) {
6000 /*
6001 * This CPU don't support us in finding the end of an
6002 * NMI-blocked window if the guest runs with IRQs
6003 * disabled. So we pull the trigger after 1 s of
6004 * futile waiting, but inform the user about this.
6005 */
6006 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6007 "state on VCPU %d after 1 s timeout\n",
6008 __func__, vcpu->vcpu_id);
6009 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6010 }
6011 }
6012
6013 if (exit_fastpath != EXIT_FASTPATH_NONE)
6014 return 1;
6015
6016 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6017 goto unexpected_vmexit;
6018 #ifdef CONFIG_RETPOLINE
6019 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6020 return kvm_emulate_wrmsr(vcpu);
6021 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6022 return handle_preemption_timer(vcpu);
6023 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6024 return handle_interrupt_window(vcpu);
6025 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6026 return handle_external_interrupt(vcpu);
6027 else if (exit_reason.basic == EXIT_REASON_HLT)
6028 return kvm_emulate_halt(vcpu);
6029 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6030 return handle_ept_misconfig(vcpu);
6031 #endif
6032
6033 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6034 kvm_vmx_max_exit_handlers);
6035 if (!kvm_vmx_exit_handlers[exit_handler_index])
6036 goto unexpected_vmexit;
6037
6038 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6039
6040 unexpected_vmexit:
6041 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6042 exit_reason.full);
6043 dump_vmcs(vcpu);
6044 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6045 vcpu->run->internal.suberror =
6046 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6047 vcpu->run->internal.ndata = 2;
6048 vcpu->run->internal.data[0] = exit_reason.full;
6049 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6050 return 0;
6051 }
6052
6053 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6054 {
6055 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6056
6057 /*
6058 * Exit to user space when bus lock detected to inform that there is
6059 * a bus lock in guest.
6060 */
6061 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6062 if (ret > 0)
6063 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6064
6065 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6066 return 0;
6067 }
6068 return ret;
6069 }
6070
6071 /*
6072 * Software based L1D cache flush which is used when microcode providing
6073 * the cache control MSR is not loaded.
6074 *
6075 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6076 * flush it is required to read in 64 KiB because the replacement algorithm
6077 * is not exactly LRU. This could be sized at runtime via topology
6078 * information but as all relevant affected CPUs have 32KiB L1D cache size
6079 * there is no point in doing so.
6080 */
6081 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6082 {
6083 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6084
6085 /*
6086 * This code is only executed when the the flush mode is 'cond' or
6087 * 'always'
6088 */
6089 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6090 bool flush_l1d;
6091
6092 /*
6093 * Clear the per-vcpu flush bit, it gets set again
6094 * either from vcpu_run() or from one of the unsafe
6095 * VMEXIT handlers.
6096 */
6097 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6098 vcpu->arch.l1tf_flush_l1d = false;
6099
6100 /*
6101 * Clear the per-cpu flush bit, it gets set again from
6102 * the interrupt handlers.
6103 */
6104 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6105 kvm_clear_cpu_l1tf_flush_l1d();
6106
6107 if (!flush_l1d)
6108 return;
6109 }
6110
6111 vcpu->stat.l1d_flush++;
6112
6113 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6114 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6115 return;
6116 }
6117
6118 asm volatile(
6119 /* First ensure the pages are in the TLB */
6120 "xorl %%eax, %%eax\n"
6121 ".Lpopulate_tlb:\n\t"
6122 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6123 "addl $4096, %%eax\n\t"
6124 "cmpl %%eax, %[size]\n\t"
6125 "jne .Lpopulate_tlb\n\t"
6126 "xorl %%eax, %%eax\n\t"
6127 "cpuid\n\t"
6128 /* Now fill the cache */
6129 "xorl %%eax, %%eax\n"
6130 ".Lfill_cache:\n"
6131 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6132 "addl $64, %%eax\n\t"
6133 "cmpl %%eax, %[size]\n\t"
6134 "jne .Lfill_cache\n\t"
6135 "lfence\n"
6136 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6137 [size] "r" (size)
6138 : "eax", "ebx", "ecx", "edx");
6139 }
6140
6141 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6142 {
6143 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6144 int tpr_threshold;
6145
6146 if (is_guest_mode(vcpu) &&
6147 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6148 return;
6149
6150 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6151 if (is_guest_mode(vcpu))
6152 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6153 else
6154 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6155 }
6156
6157 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6158 {
6159 struct vcpu_vmx *vmx = to_vmx(vcpu);
6160 u32 sec_exec_control;
6161
6162 if (!lapic_in_kernel(vcpu))
6163 return;
6164
6165 if (!flexpriority_enabled &&
6166 !cpu_has_vmx_virtualize_x2apic_mode())
6167 return;
6168
6169 /* Postpone execution until vmcs01 is the current VMCS. */
6170 if (is_guest_mode(vcpu)) {
6171 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6172 return;
6173 }
6174
6175 sec_exec_control = secondary_exec_controls_get(vmx);
6176 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6177 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6178
6179 switch (kvm_get_apic_mode(vcpu)) {
6180 case LAPIC_MODE_INVALID:
6181 WARN_ONCE(true, "Invalid local APIC state");
6182 break;
6183 case LAPIC_MODE_DISABLED:
6184 break;
6185 case LAPIC_MODE_XAPIC:
6186 if (flexpriority_enabled) {
6187 sec_exec_control |=
6188 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6189 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6190
6191 /*
6192 * Flush the TLB, reloading the APIC access page will
6193 * only do so if its physical address has changed, but
6194 * the guest may have inserted a non-APIC mapping into
6195 * the TLB while the APIC access page was disabled.
6196 */
6197 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6198 }
6199 break;
6200 case LAPIC_MODE_X2APIC:
6201 if (cpu_has_vmx_virtualize_x2apic_mode())
6202 sec_exec_control |=
6203 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6204 break;
6205 }
6206 secondary_exec_controls_set(vmx, sec_exec_control);
6207
6208 vmx_update_msr_bitmap_x2apic(vcpu);
6209 }
6210
6211 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6212 {
6213 struct page *page;
6214
6215 /* Defer reload until vmcs01 is the current VMCS. */
6216 if (is_guest_mode(vcpu)) {
6217 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6218 return;
6219 }
6220
6221 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6223 return;
6224
6225 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6226 if (is_error_page(page))
6227 return;
6228
6229 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6230 vmx_flush_tlb_current(vcpu);
6231
6232 /*
6233 * Do not pin apic access page in memory, the MMU notifier
6234 * will call us again if it is migrated or swapped out.
6235 */
6236 put_page(page);
6237 }
6238
6239 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6240 {
6241 u16 status;
6242 u8 old;
6243
6244 if (max_isr == -1)
6245 max_isr = 0;
6246
6247 status = vmcs_read16(GUEST_INTR_STATUS);
6248 old = status >> 8;
6249 if (max_isr != old) {
6250 status &= 0xff;
6251 status |= max_isr << 8;
6252 vmcs_write16(GUEST_INTR_STATUS, status);
6253 }
6254 }
6255
6256 static void vmx_set_rvi(int vector)
6257 {
6258 u16 status;
6259 u8 old;
6260
6261 if (vector == -1)
6262 vector = 0;
6263
6264 status = vmcs_read16(GUEST_INTR_STATUS);
6265 old = (u8)status & 0xff;
6266 if ((u8)vector != old) {
6267 status &= ~0xff;
6268 status |= (u8)vector;
6269 vmcs_write16(GUEST_INTR_STATUS, status);
6270 }
6271 }
6272
6273 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6274 {
6275 /*
6276 * When running L2, updating RVI is only relevant when
6277 * vmcs12 virtual-interrupt-delivery enabled.
6278 * However, it can be enabled only when L1 also
6279 * intercepts external-interrupts and in that case
6280 * we should not update vmcs02 RVI but instead intercept
6281 * interrupt. Therefore, do nothing when running L2.
6282 */
6283 if (!is_guest_mode(vcpu))
6284 vmx_set_rvi(max_irr);
6285 }
6286
6287 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6288 {
6289 struct vcpu_vmx *vmx = to_vmx(vcpu);
6290 int max_irr;
6291 bool max_irr_updated;
6292
6293 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6294 return -EIO;
6295
6296 if (pi_test_on(&vmx->pi_desc)) {
6297 pi_clear_on(&vmx->pi_desc);
6298 /*
6299 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6300 * But on x86 this is just a compiler barrier anyway.
6301 */
6302 smp_mb__after_atomic();
6303 max_irr_updated =
6304 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6305
6306 /*
6307 * If we are running L2 and L1 has a new pending interrupt
6308 * which can be injected, this may cause a vmexit or it may
6309 * be injected into L2. Either way, this interrupt will be
6310 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6311 * virtual interrupt delivery to inject L1 interrupts into L2.
6312 */
6313 if (is_guest_mode(vcpu) && max_irr_updated)
6314 kvm_make_request(KVM_REQ_EVENT, vcpu);
6315 } else {
6316 max_irr = kvm_lapic_find_highest_irr(vcpu);
6317 }
6318 vmx_hwapic_irr_update(vcpu, max_irr);
6319 return max_irr;
6320 }
6321
6322 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6323 {
6324 if (!kvm_vcpu_apicv_active(vcpu))
6325 return;
6326
6327 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6328 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6329 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6330 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6331 }
6332
6333 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6334 {
6335 struct vcpu_vmx *vmx = to_vmx(vcpu);
6336
6337 pi_clear_on(&vmx->pi_desc);
6338 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6339 }
6340
6341 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6342
6343 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6344 unsigned long entry)
6345 {
6346 kvm_before_interrupt(vcpu);
6347 vmx_do_interrupt_nmi_irqoff(entry);
6348 kvm_after_interrupt(vcpu);
6349 }
6350
6351 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6352 {
6353 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6354 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6355
6356 /* if exit due to PF check for async PF */
6357 if (is_page_fault(intr_info))
6358 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6359 /* Handle machine checks before interrupts are enabled */
6360 else if (is_machine_check(intr_info))
6361 kvm_machine_check();
6362 /* We need to handle NMIs before interrupts are enabled */
6363 else if (is_nmi(intr_info))
6364 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6365 }
6366
6367 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6368 {
6369 u32 intr_info = vmx_get_intr_info(vcpu);
6370 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6371 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6372
6373 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6374 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6375 return;
6376
6377 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6378 }
6379
6380 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6381 {
6382 struct vcpu_vmx *vmx = to_vmx(vcpu);
6383
6384 if (vmx->emulation_required)
6385 return;
6386
6387 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6388 handle_external_interrupt_irqoff(vcpu);
6389 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6390 handle_exception_nmi_irqoff(vmx);
6391 }
6392
6393 /*
6394 * The kvm parameter can be NULL (module initialization, or invocation before
6395 * VM creation). Be sure to check the kvm parameter before using it.
6396 */
6397 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6398 {
6399 switch (index) {
6400 case MSR_IA32_SMBASE:
6401 /*
6402 * We cannot do SMM unless we can run the guest in big
6403 * real mode.
6404 */
6405 return enable_unrestricted_guest || emulate_invalid_guest_state;
6406 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6407 return nested;
6408 case MSR_AMD64_VIRT_SPEC_CTRL:
6409 /* This is AMD only. */
6410 return false;
6411 default:
6412 return true;
6413 }
6414 }
6415
6416 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6417 {
6418 u32 exit_intr_info;
6419 bool unblock_nmi;
6420 u8 vector;
6421 bool idtv_info_valid;
6422
6423 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6424
6425 if (enable_vnmi) {
6426 if (vmx->loaded_vmcs->nmi_known_unmasked)
6427 return;
6428
6429 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6430 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6431 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6432 /*
6433 * SDM 3: 27.7.1.2 (September 2008)
6434 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6435 * a guest IRET fault.
6436 * SDM 3: 23.2.2 (September 2008)
6437 * Bit 12 is undefined in any of the following cases:
6438 * If the VM exit sets the valid bit in the IDT-vectoring
6439 * information field.
6440 * If the VM exit is due to a double fault.
6441 */
6442 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6443 vector != DF_VECTOR && !idtv_info_valid)
6444 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6445 GUEST_INTR_STATE_NMI);
6446 else
6447 vmx->loaded_vmcs->nmi_known_unmasked =
6448 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6449 & GUEST_INTR_STATE_NMI);
6450 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6451 vmx->loaded_vmcs->vnmi_blocked_time +=
6452 ktime_to_ns(ktime_sub(ktime_get(),
6453 vmx->loaded_vmcs->entry_time));
6454 }
6455
6456 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6457 u32 idt_vectoring_info,
6458 int instr_len_field,
6459 int error_code_field)
6460 {
6461 u8 vector;
6462 int type;
6463 bool idtv_info_valid;
6464
6465 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6466
6467 vcpu->arch.nmi_injected = false;
6468 kvm_clear_exception_queue(vcpu);
6469 kvm_clear_interrupt_queue(vcpu);
6470
6471 if (!idtv_info_valid)
6472 return;
6473
6474 kvm_make_request(KVM_REQ_EVENT, vcpu);
6475
6476 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6477 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6478
6479 switch (type) {
6480 case INTR_TYPE_NMI_INTR:
6481 vcpu->arch.nmi_injected = true;
6482 /*
6483 * SDM 3: 27.7.1.2 (September 2008)
6484 * Clear bit "block by NMI" before VM entry if a NMI
6485 * delivery faulted.
6486 */
6487 vmx_set_nmi_mask(vcpu, false);
6488 break;
6489 case INTR_TYPE_SOFT_EXCEPTION:
6490 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6491 fallthrough;
6492 case INTR_TYPE_HARD_EXCEPTION:
6493 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6494 u32 err = vmcs_read32(error_code_field);
6495 kvm_requeue_exception_e(vcpu, vector, err);
6496 } else
6497 kvm_requeue_exception(vcpu, vector);
6498 break;
6499 case INTR_TYPE_SOFT_INTR:
6500 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6501 fallthrough;
6502 case INTR_TYPE_EXT_INTR:
6503 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6504 break;
6505 default:
6506 break;
6507 }
6508 }
6509
6510 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6511 {
6512 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6513 VM_EXIT_INSTRUCTION_LEN,
6514 IDT_VECTORING_ERROR_CODE);
6515 }
6516
6517 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6518 {
6519 __vmx_complete_interrupts(vcpu,
6520 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6521 VM_ENTRY_INSTRUCTION_LEN,
6522 VM_ENTRY_EXCEPTION_ERROR_CODE);
6523
6524 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6525 }
6526
6527 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6528 {
6529 int i, nr_msrs;
6530 struct perf_guest_switch_msr *msrs;
6531
6532 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6533 msrs = perf_guest_get_msrs(&nr_msrs);
6534 if (!msrs)
6535 return;
6536
6537 for (i = 0; i < nr_msrs; i++)
6538 if (msrs[i].host == msrs[i].guest)
6539 clear_atomic_switch_msr(vmx, msrs[i].msr);
6540 else
6541 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6542 msrs[i].host, false);
6543 }
6544
6545 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6546 {
6547 struct vcpu_vmx *vmx = to_vmx(vcpu);
6548 u64 tscl;
6549 u32 delta_tsc;
6550
6551 if (vmx->req_immediate_exit) {
6552 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6553 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6554 } else if (vmx->hv_deadline_tsc != -1) {
6555 tscl = rdtsc();
6556 if (vmx->hv_deadline_tsc > tscl)
6557 /* set_hv_timer ensures the delta fits in 32-bits */
6558 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6559 cpu_preemption_timer_multi);
6560 else
6561 delta_tsc = 0;
6562
6563 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6564 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6565 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6566 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6567 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6568 }
6569 }
6570
6571 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6572 {
6573 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6574 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6575 vmcs_writel(HOST_RSP, host_rsp);
6576 }
6577 }
6578
6579 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6580 {
6581 switch (to_vmx(vcpu)->exit_reason.basic) {
6582 case EXIT_REASON_MSR_WRITE:
6583 return handle_fastpath_set_msr_irqoff(vcpu);
6584 case EXIT_REASON_PREEMPTION_TIMER:
6585 return handle_fastpath_preemption_timer(vcpu);
6586 default:
6587 return EXIT_FASTPATH_NONE;
6588 }
6589 }
6590
6591 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6592 struct vcpu_vmx *vmx)
6593 {
6594 kvm_guest_enter_irqoff();
6595
6596 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6597 if (static_branch_unlikely(&vmx_l1d_should_flush))
6598 vmx_l1d_flush(vcpu);
6599 else if (static_branch_unlikely(&mds_user_clear))
6600 mds_clear_cpu_buffers();
6601
6602 if (vcpu->arch.cr2 != native_read_cr2())
6603 native_write_cr2(vcpu->arch.cr2);
6604
6605 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6606 vmx->loaded_vmcs->launched);
6607
6608 vcpu->arch.cr2 = native_read_cr2();
6609
6610 kvm_guest_exit_irqoff();
6611 }
6612
6613 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6614 {
6615 struct vcpu_vmx *vmx = to_vmx(vcpu);
6616 unsigned long cr3, cr4;
6617
6618 /* Record the guest's net vcpu time for enforced NMI injections. */
6619 if (unlikely(!enable_vnmi &&
6620 vmx->loaded_vmcs->soft_vnmi_blocked))
6621 vmx->loaded_vmcs->entry_time = ktime_get();
6622
6623 /*
6624 * Don't enter VMX if guest state is invalid, let the exit handler
6625 * start emulation until we arrive back to a valid state. Synthesize a
6626 * consistency check VM-Exit due to invalid guest state and bail.
6627 */
6628 if (unlikely(vmx->emulation_required)) {
6629
6630 /* We don't emulate invalid state of a nested guest */
6631 vmx->fail = is_guest_mode(vcpu);
6632
6633 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6634 vmx->exit_reason.failed_vmentry = 1;
6635 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6636 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6637 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6638 vmx->exit_intr_info = 0;
6639 return EXIT_FASTPATH_NONE;
6640 }
6641
6642 trace_kvm_entry(vcpu);
6643
6644 if (vmx->ple_window_dirty) {
6645 vmx->ple_window_dirty = false;
6646 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6647 }
6648
6649 /*
6650 * We did this in prepare_switch_to_guest, because it needs to
6651 * be within srcu_read_lock.
6652 */
6653 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6654
6655 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6656 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6657 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6658 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6659
6660 cr3 = __get_current_cr3_fast();
6661 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6662 vmcs_writel(HOST_CR3, cr3);
6663 vmx->loaded_vmcs->host_state.cr3 = cr3;
6664 }
6665
6666 cr4 = cr4_read_shadow();
6667 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6668 vmcs_writel(HOST_CR4, cr4);
6669 vmx->loaded_vmcs->host_state.cr4 = cr4;
6670 }
6671
6672 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6673 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6674 set_debugreg(vcpu->arch.dr6, 6);
6675
6676 /* When single-stepping over STI and MOV SS, we must clear the
6677 * corresponding interruptibility bits in the guest state. Otherwise
6678 * vmentry fails as it then expects bit 14 (BS) in pending debug
6679 * exceptions being set, but that's not correct for the guest debugging
6680 * case. */
6681 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6682 vmx_set_interrupt_shadow(vcpu, 0);
6683
6684 kvm_load_guest_xsave_state(vcpu);
6685
6686 pt_guest_enter(vmx);
6687
6688 atomic_switch_perf_msrs(vmx);
6689 if (intel_pmu_lbr_is_enabled(vcpu))
6690 vmx_passthrough_lbr_msrs(vcpu);
6691
6692 if (enable_preemption_timer)
6693 vmx_update_hv_timer(vcpu);
6694
6695 kvm_wait_lapic_expire(vcpu);
6696
6697 /*
6698 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6699 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6700 * is no need to worry about the conditional branch over the wrmsr
6701 * being speculatively taken.
6702 */
6703 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6704
6705 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6706 vmx_vcpu_enter_exit(vcpu, vmx);
6707
6708 /*
6709 * We do not use IBRS in the kernel. If this vCPU has used the
6710 * SPEC_CTRL MSR it may have left it on; save the value and
6711 * turn it off. This is much more efficient than blindly adding
6712 * it to the atomic save/restore list. Especially as the former
6713 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6714 *
6715 * For non-nested case:
6716 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6717 * save it.
6718 *
6719 * For nested case:
6720 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6721 * save it.
6722 */
6723 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6724 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6725
6726 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6727
6728 /* All fields are clean at this point */
6729 if (static_branch_unlikely(&enable_evmcs)) {
6730 current_evmcs->hv_clean_fields |=
6731 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6732
6733 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6734 }
6735
6736 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6737 if (vmx->host_debugctlmsr)
6738 update_debugctlmsr(vmx->host_debugctlmsr);
6739
6740 #ifndef CONFIG_X86_64
6741 /*
6742 * The sysexit path does not restore ds/es, so we must set them to
6743 * a reasonable value ourselves.
6744 *
6745 * We can't defer this to vmx_prepare_switch_to_host() since that
6746 * function may be executed in interrupt context, which saves and
6747 * restore segments around it, nullifying its effect.
6748 */
6749 loadsegment(ds, __USER_DS);
6750 loadsegment(es, __USER_DS);
6751 #endif
6752
6753 vmx_register_cache_reset(vcpu);
6754
6755 pt_guest_exit(vmx);
6756
6757 kvm_load_host_xsave_state(vcpu);
6758
6759 if (is_guest_mode(vcpu)) {
6760 /*
6761 * Track VMLAUNCH/VMRESUME that have made past guest state
6762 * checking.
6763 */
6764 if (vmx->nested.nested_run_pending &&
6765 !vmx->exit_reason.failed_vmentry)
6766 ++vcpu->stat.nested_run;
6767
6768 vmx->nested.nested_run_pending = 0;
6769 }
6770
6771 vmx->idt_vectoring_info = 0;
6772
6773 if (unlikely(vmx->fail)) {
6774 vmx->exit_reason.full = 0xdead;
6775 return EXIT_FASTPATH_NONE;
6776 }
6777
6778 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6779 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6780 kvm_machine_check();
6781
6782 if (likely(!vmx->exit_reason.failed_vmentry))
6783 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6784
6785 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6786
6787 if (unlikely(vmx->exit_reason.failed_vmentry))
6788 return EXIT_FASTPATH_NONE;
6789
6790 vmx->loaded_vmcs->launched = 1;
6791
6792 vmx_recover_nmi_blocking(vmx);
6793 vmx_complete_interrupts(vmx);
6794
6795 if (is_guest_mode(vcpu))
6796 return EXIT_FASTPATH_NONE;
6797
6798 return vmx_exit_handlers_fastpath(vcpu);
6799 }
6800
6801 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6802 {
6803 struct vcpu_vmx *vmx = to_vmx(vcpu);
6804
6805 if (enable_pml)
6806 vmx_destroy_pml_buffer(vmx);
6807 free_vpid(vmx->vpid);
6808 nested_vmx_free_vcpu(vcpu);
6809 free_loaded_vmcs(vmx->loaded_vmcs);
6810 }
6811
6812 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6813 {
6814 struct vmx_uret_msr *tsx_ctrl;
6815 struct vcpu_vmx *vmx;
6816 int i, cpu, err;
6817
6818 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6819 vmx = to_vmx(vcpu);
6820
6821 err = -ENOMEM;
6822
6823 vmx->vpid = allocate_vpid();
6824
6825 /*
6826 * If PML is turned on, failure on enabling PML just results in failure
6827 * of creating the vcpu, therefore we can simplify PML logic (by
6828 * avoiding dealing with cases, such as enabling PML partially on vcpus
6829 * for the guest), etc.
6830 */
6831 if (enable_pml) {
6832 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6833 if (!vmx->pml_pg)
6834 goto free_vpid;
6835 }
6836
6837 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6838 vmx->guest_uret_msrs[i].data = 0;
6839 vmx->guest_uret_msrs[i].mask = -1ull;
6840 }
6841 if (boot_cpu_has(X86_FEATURE_RTM)) {
6842 /*
6843 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6844 * Keep the host value unchanged to avoid changing CPUID bits
6845 * under the host kernel's feet.
6846 */
6847 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6848 if (tsx_ctrl)
6849 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6850 }
6851
6852 err = alloc_loaded_vmcs(&vmx->vmcs01);
6853 if (err < 0)
6854 goto free_pml;
6855
6856 /* The MSR bitmap starts with all ones */
6857 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6858 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6859
6860 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6861 #ifdef CONFIG_X86_64
6862 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6863 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6864 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6865 #endif
6866 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6867 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6868 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6869 if (kvm_cstate_in_guest(vcpu->kvm)) {
6870 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6871 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6872 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6873 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6874 }
6875
6876 vmx->loaded_vmcs = &vmx->vmcs01;
6877 cpu = get_cpu();
6878 vmx_vcpu_load(vcpu, cpu);
6879 vcpu->cpu = cpu;
6880 init_vmcs(vmx);
6881 vmx_vcpu_put(vcpu);
6882 put_cpu();
6883 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6884 err = alloc_apic_access_page(vcpu->kvm);
6885 if (err)
6886 goto free_vmcs;
6887 }
6888
6889 if (enable_ept && !enable_unrestricted_guest) {
6890 err = init_rmode_identity_map(vcpu->kvm);
6891 if (err)
6892 goto free_vmcs;
6893 }
6894
6895 if (nested)
6896 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6897 else
6898 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6899
6900 vcpu_setup_sgx_lepubkeyhash(vcpu);
6901
6902 vmx->nested.posted_intr_nv = -1;
6903 vmx->nested.current_vmptr = -1ull;
6904 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6905
6906 vcpu->arch.microcode_version = 0x100000000ULL;
6907 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6908
6909 /*
6910 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6911 * or POSTED_INTR_WAKEUP_VECTOR.
6912 */
6913 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6914 vmx->pi_desc.sn = 1;
6915
6916 return 0;
6917
6918 free_vmcs:
6919 free_loaded_vmcs(vmx->loaded_vmcs);
6920 free_pml:
6921 vmx_destroy_pml_buffer(vmx);
6922 free_vpid:
6923 free_vpid(vmx->vpid);
6924 return err;
6925 }
6926
6927 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6928 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6929
6930 static int vmx_vm_init(struct kvm *kvm)
6931 {
6932 if (!ple_gap)
6933 kvm->arch.pause_in_guest = true;
6934
6935 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6936 switch (l1tf_mitigation) {
6937 case L1TF_MITIGATION_OFF:
6938 case L1TF_MITIGATION_FLUSH_NOWARN:
6939 /* 'I explicitly don't care' is set */
6940 break;
6941 case L1TF_MITIGATION_FLUSH:
6942 case L1TF_MITIGATION_FLUSH_NOSMT:
6943 case L1TF_MITIGATION_FULL:
6944 /*
6945 * Warn upon starting the first VM in a potentially
6946 * insecure environment.
6947 */
6948 if (sched_smt_active())
6949 pr_warn_once(L1TF_MSG_SMT);
6950 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6951 pr_warn_once(L1TF_MSG_L1D);
6952 break;
6953 case L1TF_MITIGATION_FULL_FORCE:
6954 /* Flush is enforced */
6955 break;
6956 }
6957 }
6958 return 0;
6959 }
6960
6961 static int __init vmx_check_processor_compat(void)
6962 {
6963 struct vmcs_config vmcs_conf;
6964 struct vmx_capability vmx_cap;
6965
6966 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6967 !this_cpu_has(X86_FEATURE_VMX)) {
6968 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6969 return -EIO;
6970 }
6971
6972 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6973 return -EIO;
6974 if (nested)
6975 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6976 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6977 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6978 smp_processor_id());
6979 return -EIO;
6980 }
6981 return 0;
6982 }
6983
6984 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6985 {
6986 u8 cache;
6987 u64 ipat = 0;
6988
6989 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6990 * memory aliases with conflicting memory types and sometimes MCEs.
6991 * We have to be careful as to what are honored and when.
6992 *
6993 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
6994 * UC. The effective memory type is UC or WC depending on guest PAT.
6995 * This was historically the source of MCEs and we want to be
6996 * conservative.
6997 *
6998 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6999 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7000 * EPT memory type is set to WB. The effective memory type is forced
7001 * WB.
7002 *
7003 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7004 * EPT memory type is used to emulate guest CD/MTRR.
7005 */
7006
7007 if (is_mmio) {
7008 cache = MTRR_TYPE_UNCACHABLE;
7009 goto exit;
7010 }
7011
7012 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7013 ipat = VMX_EPT_IPAT_BIT;
7014 cache = MTRR_TYPE_WRBACK;
7015 goto exit;
7016 }
7017
7018 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7019 ipat = VMX_EPT_IPAT_BIT;
7020 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7021 cache = MTRR_TYPE_WRBACK;
7022 else
7023 cache = MTRR_TYPE_UNCACHABLE;
7024 goto exit;
7025 }
7026
7027 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7028
7029 exit:
7030 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7031 }
7032
7033 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7034 {
7035 /*
7036 * These bits in the secondary execution controls field
7037 * are dynamic, the others are mostly based on the hypervisor
7038 * architecture and the guest's CPUID. Do not touch the
7039 * dynamic bits.
7040 */
7041 u32 mask =
7042 SECONDARY_EXEC_SHADOW_VMCS |
7043 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7044 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7045 SECONDARY_EXEC_DESC;
7046
7047 u32 cur_ctl = secondary_exec_controls_get(vmx);
7048
7049 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7050 }
7051
7052 /*
7053 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7054 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7055 */
7056 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7057 {
7058 struct vcpu_vmx *vmx = to_vmx(vcpu);
7059 struct kvm_cpuid_entry2 *entry;
7060
7061 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7062 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7063
7064 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7065 if (entry && (entry->_reg & (_cpuid_mask))) \
7066 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7067 } while (0)
7068
7069 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7070 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7071 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7072 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7073 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7074 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7075 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7076 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7077 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7078 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7079 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7080 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7081 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7082 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7083 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7084
7085 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7086 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7087 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7088 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7089 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7090 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7091 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7092
7093 #undef cr4_fixed1_update
7094 }
7095
7096 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7097 {
7098 struct vcpu_vmx *vmx = to_vmx(vcpu);
7099
7100 if (kvm_mpx_supported()) {
7101 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7102
7103 if (mpx_enabled) {
7104 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7105 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7106 } else {
7107 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7108 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7109 }
7110 }
7111 }
7112
7113 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7114 {
7115 struct vcpu_vmx *vmx = to_vmx(vcpu);
7116 struct kvm_cpuid_entry2 *best = NULL;
7117 int i;
7118
7119 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7120 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7121 if (!best)
7122 return;
7123 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7124 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7125 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7126 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7127 }
7128
7129 /* Get the number of configurable Address Ranges for filtering */
7130 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7131 PT_CAP_num_address_ranges);
7132
7133 /* Initialize and clear the no dependency bits */
7134 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7135 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7136
7137 /*
7138 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7139 * will inject an #GP
7140 */
7141 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7142 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7143
7144 /*
7145 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7146 * PSBFreq can be set
7147 */
7148 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7149 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7150 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7151
7152 /*
7153 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7154 * MTCFreq can be set
7155 */
7156 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7157 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7158 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7159
7160 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7161 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7162 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7163 RTIT_CTL_PTW_EN);
7164
7165 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7166 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7167 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7168
7169 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7170 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7171 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7172
7173 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7174 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7175 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7176
7177 /* unmask address range configure area */
7178 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7179 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7180 }
7181
7182 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7183 {
7184 struct vcpu_vmx *vmx = to_vmx(vcpu);
7185
7186 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7187 vcpu->arch.xsaves_enabled = false;
7188
7189 vmx_setup_uret_msrs(vmx);
7190
7191 if (cpu_has_secondary_exec_ctrls())
7192 vmcs_set_secondary_exec_control(vmx,
7193 vmx_secondary_exec_control(vmx));
7194
7195 if (nested_vmx_allowed(vcpu))
7196 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7197 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7198 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7199 else
7200 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7201 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7202 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7203
7204 if (nested_vmx_allowed(vcpu)) {
7205 nested_vmx_cr_fixed1_bits_update(vcpu);
7206 nested_vmx_entry_exit_ctls_update(vcpu);
7207 }
7208
7209 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7210 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7211 update_intel_pt_cfg(vcpu);
7212
7213 if (boot_cpu_has(X86_FEATURE_RTM)) {
7214 struct vmx_uret_msr *msr;
7215 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7216 if (msr) {
7217 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7218 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7219 }
7220 }
7221
7222 set_cr4_guest_host_mask(vmx);
7223
7224 vmx_write_encls_bitmap(vcpu, NULL);
7225 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7226 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7227 else
7228 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7229
7230 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7231 vmx->msr_ia32_feature_control_valid_bits |=
7232 FEAT_CTL_SGX_LC_ENABLED;
7233 else
7234 vmx->msr_ia32_feature_control_valid_bits &=
7235 ~FEAT_CTL_SGX_LC_ENABLED;
7236
7237 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7238 vmx_update_exception_bitmap(vcpu);
7239 }
7240
7241 static __init void vmx_set_cpu_caps(void)
7242 {
7243 kvm_set_cpu_caps();
7244
7245 /* CPUID 0x1 */
7246 if (nested)
7247 kvm_cpu_cap_set(X86_FEATURE_VMX);
7248
7249 /* CPUID 0x7 */
7250 if (kvm_mpx_supported())
7251 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7252 if (!cpu_has_vmx_invpcid())
7253 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7254 if (vmx_pt_mode_is_host_guest())
7255 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7256
7257 if (!enable_sgx) {
7258 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7259 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7260 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7261 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7262 }
7263
7264 if (vmx_umip_emulated())
7265 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7266
7267 /* CPUID 0xD.1 */
7268 supported_xss = 0;
7269 if (!cpu_has_vmx_xsaves())
7270 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7271
7272 /* CPUID 0x80000001 and 0x7 (RDPID) */
7273 if (!cpu_has_vmx_rdtscp()) {
7274 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7275 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7276 }
7277
7278 if (cpu_has_vmx_waitpkg())
7279 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7280 }
7281
7282 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7283 {
7284 to_vmx(vcpu)->req_immediate_exit = true;
7285 }
7286
7287 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7288 struct x86_instruction_info *info)
7289 {
7290 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7291 unsigned short port;
7292 bool intercept;
7293 int size;
7294
7295 if (info->intercept == x86_intercept_in ||
7296 info->intercept == x86_intercept_ins) {
7297 port = info->src_val;
7298 size = info->dst_bytes;
7299 } else {
7300 port = info->dst_val;
7301 size = info->src_bytes;
7302 }
7303
7304 /*
7305 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7306 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7307 * control.
7308 *
7309 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7310 */
7311 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7312 intercept = nested_cpu_has(vmcs12,
7313 CPU_BASED_UNCOND_IO_EXITING);
7314 else
7315 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7316
7317 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7318 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7319 }
7320
7321 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7322 struct x86_instruction_info *info,
7323 enum x86_intercept_stage stage,
7324 struct x86_exception *exception)
7325 {
7326 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7327
7328 switch (info->intercept) {
7329 /*
7330 * RDPID causes #UD if disabled through secondary execution controls.
7331 * Because it is marked as EmulateOnUD, we need to intercept it here.
7332 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7333 */
7334 case x86_intercept_rdpid:
7335 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7336 exception->vector = UD_VECTOR;
7337 exception->error_code_valid = false;
7338 return X86EMUL_PROPAGATE_FAULT;
7339 }
7340 break;
7341
7342 case x86_intercept_in:
7343 case x86_intercept_ins:
7344 case x86_intercept_out:
7345 case x86_intercept_outs:
7346 return vmx_check_intercept_io(vcpu, info);
7347
7348 case x86_intercept_lgdt:
7349 case x86_intercept_lidt:
7350 case x86_intercept_lldt:
7351 case x86_intercept_ltr:
7352 case x86_intercept_sgdt:
7353 case x86_intercept_sidt:
7354 case x86_intercept_sldt:
7355 case x86_intercept_str:
7356 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7357 return X86EMUL_CONTINUE;
7358
7359 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7360 break;
7361
7362 /* TODO: check more intercepts... */
7363 default:
7364 break;
7365 }
7366
7367 return X86EMUL_UNHANDLEABLE;
7368 }
7369
7370 #ifdef CONFIG_X86_64
7371 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7372 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7373 u64 divisor, u64 *result)
7374 {
7375 u64 low = a << shift, high = a >> (64 - shift);
7376
7377 /* To avoid the overflow on divq */
7378 if (high >= divisor)
7379 return 1;
7380
7381 /* Low hold the result, high hold rem which is discarded */
7382 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7383 "rm" (divisor), "0" (low), "1" (high));
7384 *result = low;
7385
7386 return 0;
7387 }
7388
7389 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7390 bool *expired)
7391 {
7392 struct vcpu_vmx *vmx;
7393 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7394 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7395
7396 vmx = to_vmx(vcpu);
7397 tscl = rdtsc();
7398 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7399 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7400 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7401 ktimer->timer_advance_ns);
7402
7403 if (delta_tsc > lapic_timer_advance_cycles)
7404 delta_tsc -= lapic_timer_advance_cycles;
7405 else
7406 delta_tsc = 0;
7407
7408 /* Convert to host delta tsc if tsc scaling is enabled */
7409 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7410 delta_tsc && u64_shl_div_u64(delta_tsc,
7411 kvm_tsc_scaling_ratio_frac_bits,
7412 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7413 return -ERANGE;
7414
7415 /*
7416 * If the delta tsc can't fit in the 32 bit after the multi shift,
7417 * we can't use the preemption timer.
7418 * It's possible that it fits on later vmentries, but checking
7419 * on every vmentry is costly so we just use an hrtimer.
7420 */
7421 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7422 return -ERANGE;
7423
7424 vmx->hv_deadline_tsc = tscl + delta_tsc;
7425 *expired = !delta_tsc;
7426 return 0;
7427 }
7428
7429 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7430 {
7431 to_vmx(vcpu)->hv_deadline_tsc = -1;
7432 }
7433 #endif
7434
7435 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7436 {
7437 if (!kvm_pause_in_guest(vcpu->kvm))
7438 shrink_ple_window(vcpu);
7439 }
7440
7441 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7442 {
7443 struct vcpu_vmx *vmx = to_vmx(vcpu);
7444
7445 if (is_guest_mode(vcpu)) {
7446 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7447 return;
7448 }
7449
7450 /*
7451 * Note, cpu_dirty_logging_count can be changed concurrent with this
7452 * code, but in that case another update request will be made and so
7453 * the guest will never run with a stale PML value.
7454 */
7455 if (vcpu->kvm->arch.cpu_dirty_logging_count)
7456 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7457 else
7458 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7459 }
7460
7461 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7462 {
7463 if (pi_pre_block(vcpu))
7464 return 1;
7465
7466 if (kvm_lapic_hv_timer_in_use(vcpu))
7467 kvm_lapic_switch_to_sw_timer(vcpu);
7468
7469 return 0;
7470 }
7471
7472 static void vmx_post_block(struct kvm_vcpu *vcpu)
7473 {
7474 if (kvm_x86_ops.set_hv_timer)
7475 kvm_lapic_switch_to_hv_timer(vcpu);
7476
7477 pi_post_block(vcpu);
7478 }
7479
7480 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7481 {
7482 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7483 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7484 FEAT_CTL_LMCE_ENABLED;
7485 else
7486 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7487 ~FEAT_CTL_LMCE_ENABLED;
7488 }
7489
7490 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7491 {
7492 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7493 if (to_vmx(vcpu)->nested.nested_run_pending)
7494 return -EBUSY;
7495 return !is_smm(vcpu);
7496 }
7497
7498 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7499 {
7500 struct vcpu_vmx *vmx = to_vmx(vcpu);
7501
7502 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7503 if (vmx->nested.smm.guest_mode)
7504 nested_vmx_vmexit(vcpu, -1, 0, 0);
7505
7506 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7507 vmx->nested.vmxon = false;
7508 vmx_clear_hlt(vcpu);
7509 return 0;
7510 }
7511
7512 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7513 {
7514 struct vcpu_vmx *vmx = to_vmx(vcpu);
7515 int ret;
7516
7517 if (vmx->nested.smm.vmxon) {
7518 vmx->nested.vmxon = true;
7519 vmx->nested.smm.vmxon = false;
7520 }
7521
7522 if (vmx->nested.smm.guest_mode) {
7523 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7524 if (ret)
7525 return ret;
7526
7527 vmx->nested.smm.guest_mode = false;
7528 }
7529 return 0;
7530 }
7531
7532 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7533 {
7534 /* RSM will cause a vmexit anyway. */
7535 }
7536
7537 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7538 {
7539 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7540 }
7541
7542 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7543 {
7544 if (is_guest_mode(vcpu)) {
7545 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7546
7547 if (hrtimer_try_to_cancel(timer) == 1)
7548 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7549 }
7550 }
7551
7552 static void hardware_unsetup(void)
7553 {
7554 if (nested)
7555 nested_vmx_hardware_unsetup();
7556
7557 free_kvm_area();
7558 }
7559
7560 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7561 {
7562 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7563 BIT(APICV_INHIBIT_REASON_HYPERV);
7564
7565 return supported & BIT(bit);
7566 }
7567
7568 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7569 .hardware_unsetup = hardware_unsetup,
7570
7571 .hardware_enable = hardware_enable,
7572 .hardware_disable = hardware_disable,
7573 .cpu_has_accelerated_tpr = report_flexpriority,
7574 .has_emulated_msr = vmx_has_emulated_msr,
7575
7576 .vm_size = sizeof(struct kvm_vmx),
7577 .vm_init = vmx_vm_init,
7578
7579 .vcpu_create = vmx_create_vcpu,
7580 .vcpu_free = vmx_free_vcpu,
7581 .vcpu_reset = vmx_vcpu_reset,
7582
7583 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7584 .vcpu_load = vmx_vcpu_load,
7585 .vcpu_put = vmx_vcpu_put,
7586
7587 .update_exception_bitmap = vmx_update_exception_bitmap,
7588 .get_msr_feature = vmx_get_msr_feature,
7589 .get_msr = vmx_get_msr,
7590 .set_msr = vmx_set_msr,
7591 .get_segment_base = vmx_get_segment_base,
7592 .get_segment = vmx_get_segment,
7593 .set_segment = vmx_set_segment,
7594 .get_cpl = vmx_get_cpl,
7595 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7596 .set_cr0 = vmx_set_cr0,
7597 .is_valid_cr4 = vmx_is_valid_cr4,
7598 .set_cr4 = vmx_set_cr4,
7599 .set_efer = vmx_set_efer,
7600 .get_idt = vmx_get_idt,
7601 .set_idt = vmx_set_idt,
7602 .get_gdt = vmx_get_gdt,
7603 .set_gdt = vmx_set_gdt,
7604 .set_dr7 = vmx_set_dr7,
7605 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7606 .cache_reg = vmx_cache_reg,
7607 .get_rflags = vmx_get_rflags,
7608 .set_rflags = vmx_set_rflags,
7609
7610 .tlb_flush_all = vmx_flush_tlb_all,
7611 .tlb_flush_current = vmx_flush_tlb_current,
7612 .tlb_flush_gva = vmx_flush_tlb_gva,
7613 .tlb_flush_guest = vmx_flush_tlb_guest,
7614
7615 .run = vmx_vcpu_run,
7616 .handle_exit = vmx_handle_exit,
7617 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7618 .update_emulated_instruction = vmx_update_emulated_instruction,
7619 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7620 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7621 .patch_hypercall = vmx_patch_hypercall,
7622 .set_irq = vmx_inject_irq,
7623 .set_nmi = vmx_inject_nmi,
7624 .queue_exception = vmx_queue_exception,
7625 .cancel_injection = vmx_cancel_injection,
7626 .interrupt_allowed = vmx_interrupt_allowed,
7627 .nmi_allowed = vmx_nmi_allowed,
7628 .get_nmi_mask = vmx_get_nmi_mask,
7629 .set_nmi_mask = vmx_set_nmi_mask,
7630 .enable_nmi_window = vmx_enable_nmi_window,
7631 .enable_irq_window = vmx_enable_irq_window,
7632 .update_cr8_intercept = vmx_update_cr8_intercept,
7633 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7634 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7635 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7636 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7637 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7638 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7639 .hwapic_irr_update = vmx_hwapic_irr_update,
7640 .hwapic_isr_update = vmx_hwapic_isr_update,
7641 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7642 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7643 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7644 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7645
7646 .set_tss_addr = vmx_set_tss_addr,
7647 .set_identity_map_addr = vmx_set_identity_map_addr,
7648 .get_mt_mask = vmx_get_mt_mask,
7649
7650 .get_exit_info = vmx_get_exit_info,
7651
7652 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7653
7654 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7655
7656 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7657 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7658 .write_tsc_offset = vmx_write_tsc_offset,
7659 .write_tsc_multiplier = vmx_write_tsc_multiplier,
7660
7661 .load_mmu_pgd = vmx_load_mmu_pgd,
7662
7663 .check_intercept = vmx_check_intercept,
7664 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7665
7666 .request_immediate_exit = vmx_request_immediate_exit,
7667
7668 .sched_in = vmx_sched_in,
7669
7670 .cpu_dirty_log_size = PML_ENTITY_NUM,
7671 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7672
7673 .pre_block = vmx_pre_block,
7674 .post_block = vmx_post_block,
7675
7676 .pmu_ops = &intel_pmu_ops,
7677 .nested_ops = &vmx_nested_ops,
7678
7679 .update_pi_irte = pi_update_irte,
7680 .start_assignment = vmx_pi_start_assignment,
7681
7682 #ifdef CONFIG_X86_64
7683 .set_hv_timer = vmx_set_hv_timer,
7684 .cancel_hv_timer = vmx_cancel_hv_timer,
7685 #endif
7686
7687 .setup_mce = vmx_setup_mce,
7688
7689 .smi_allowed = vmx_smi_allowed,
7690 .enter_smm = vmx_enter_smm,
7691 .leave_smm = vmx_leave_smm,
7692 .enable_smi_window = vmx_enable_smi_window,
7693
7694 .can_emulate_instruction = vmx_can_emulate_instruction,
7695 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7696 .migrate_timers = vmx_migrate_timers,
7697
7698 .msr_filter_changed = vmx_msr_filter_changed,
7699 .complete_emulated_msr = kvm_complete_insn_gp,
7700
7701 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7702 };
7703
7704 static __init void vmx_setup_user_return_msrs(void)
7705 {
7706
7707 /*
7708 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7709 * will emulate SYSCALL in legacy mode if the vendor string in guest
7710 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7711 * support this emulation, MSR_STAR is included in the list for i386,
7712 * but is never loaded into hardware. MSR_CSTAR is also never loaded
7713 * into hardware and is here purely for emulation purposes.
7714 */
7715 const u32 vmx_uret_msrs_list[] = {
7716 #ifdef CONFIG_X86_64
7717 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7718 #endif
7719 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7720 MSR_IA32_TSX_CTRL,
7721 };
7722 int i;
7723
7724 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7725
7726 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7727 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7728 }
7729
7730 static __init int hardware_setup(void)
7731 {
7732 unsigned long host_bndcfgs;
7733 struct desc_ptr dt;
7734 int r, ept_lpage_level;
7735
7736 store_idt(&dt);
7737 host_idt_base = dt.address;
7738
7739 vmx_setup_user_return_msrs();
7740
7741 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7742 return -EIO;
7743
7744 if (boot_cpu_has(X86_FEATURE_NX))
7745 kvm_enable_efer_bits(EFER_NX);
7746
7747 if (boot_cpu_has(X86_FEATURE_MPX)) {
7748 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7749 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7750 }
7751
7752 if (!cpu_has_vmx_mpx())
7753 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7754 XFEATURE_MASK_BNDCSR);
7755
7756 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7757 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7758 enable_vpid = 0;
7759
7760 if (!cpu_has_vmx_ept() ||
7761 !cpu_has_vmx_ept_4levels() ||
7762 !cpu_has_vmx_ept_mt_wb() ||
7763 !cpu_has_vmx_invept_global())
7764 enable_ept = 0;
7765
7766 /* NX support is required for shadow paging. */
7767 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7768 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7769 return -EOPNOTSUPP;
7770 }
7771
7772 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7773 enable_ept_ad_bits = 0;
7774
7775 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7776 enable_unrestricted_guest = 0;
7777
7778 if (!cpu_has_vmx_flexpriority())
7779 flexpriority_enabled = 0;
7780
7781 if (!cpu_has_virtual_nmis())
7782 enable_vnmi = 0;
7783
7784 /*
7785 * set_apic_access_page_addr() is used to reload apic access
7786 * page upon invalidation. No need to do anything if not
7787 * using the APIC_ACCESS_ADDR VMCS field.
7788 */
7789 if (!flexpriority_enabled)
7790 vmx_x86_ops.set_apic_access_page_addr = NULL;
7791
7792 if (!cpu_has_vmx_tpr_shadow())
7793 vmx_x86_ops.update_cr8_intercept = NULL;
7794
7795 #if IS_ENABLED(CONFIG_HYPERV)
7796 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7797 && enable_ept) {
7798 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7799 vmx_x86_ops.tlb_remote_flush_with_range =
7800 hv_remote_flush_tlb_with_range;
7801 }
7802 #endif
7803
7804 if (!cpu_has_vmx_ple()) {
7805 ple_gap = 0;
7806 ple_window = 0;
7807 ple_window_grow = 0;
7808 ple_window_max = 0;
7809 ple_window_shrink = 0;
7810 }
7811
7812 if (!cpu_has_vmx_apicv()) {
7813 enable_apicv = 0;
7814 vmx_x86_ops.sync_pir_to_irr = NULL;
7815 }
7816
7817 if (cpu_has_vmx_tsc_scaling()) {
7818 kvm_has_tsc_control = true;
7819 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7820 kvm_tsc_scaling_ratio_frac_bits = 48;
7821 }
7822
7823 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7824
7825 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7826
7827 if (enable_ept)
7828 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7829 cpu_has_vmx_ept_execute_only());
7830
7831 if (!enable_ept)
7832 ept_lpage_level = 0;
7833 else if (cpu_has_vmx_ept_1g_page())
7834 ept_lpage_level = PG_LEVEL_1G;
7835 else if (cpu_has_vmx_ept_2m_page())
7836 ept_lpage_level = PG_LEVEL_2M;
7837 else
7838 ept_lpage_level = PG_LEVEL_4K;
7839 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7840 ept_lpage_level);
7841
7842 /*
7843 * Only enable PML when hardware supports PML feature, and both EPT
7844 * and EPT A/D bit features are enabled -- PML depends on them to work.
7845 */
7846 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7847 enable_pml = 0;
7848
7849 if (!enable_pml)
7850 vmx_x86_ops.cpu_dirty_log_size = 0;
7851
7852 if (!cpu_has_vmx_preemption_timer())
7853 enable_preemption_timer = false;
7854
7855 if (enable_preemption_timer) {
7856 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7857 u64 vmx_msr;
7858
7859 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7860 cpu_preemption_timer_multi =
7861 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7862
7863 if (tsc_khz)
7864 use_timer_freq = (u64)tsc_khz * 1000;
7865 use_timer_freq >>= cpu_preemption_timer_multi;
7866
7867 /*
7868 * KVM "disables" the preemption timer by setting it to its max
7869 * value. Don't use the timer if it might cause spurious exits
7870 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7871 */
7872 if (use_timer_freq > 0xffffffffu / 10)
7873 enable_preemption_timer = false;
7874 }
7875
7876 if (!enable_preemption_timer) {
7877 vmx_x86_ops.set_hv_timer = NULL;
7878 vmx_x86_ops.cancel_hv_timer = NULL;
7879 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7880 }
7881
7882 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7883
7884 kvm_mce_cap_supported |= MCG_LMCE_P;
7885
7886 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7887 return -EINVAL;
7888 if (!enable_ept || !cpu_has_vmx_intel_pt())
7889 pt_mode = PT_MODE_SYSTEM;
7890
7891 setup_default_sgx_lepubkeyhash();
7892
7893 if (nested) {
7894 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7895 vmx_capability.ept);
7896
7897 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7898 if (r)
7899 return r;
7900 }
7901
7902 vmx_set_cpu_caps();
7903
7904 r = alloc_kvm_area();
7905 if (r)
7906 nested_vmx_hardware_unsetup();
7907 return r;
7908 }
7909
7910 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7911 .cpu_has_kvm_support = cpu_has_kvm_support,
7912 .disabled_by_bios = vmx_disabled_by_bios,
7913 .check_processor_compatibility = vmx_check_processor_compat,
7914 .hardware_setup = hardware_setup,
7915
7916 .runtime_ops = &vmx_x86_ops,
7917 };
7918
7919 static void vmx_cleanup_l1d_flush(void)
7920 {
7921 if (vmx_l1d_flush_pages) {
7922 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7923 vmx_l1d_flush_pages = NULL;
7924 }
7925 /* Restore state so sysfs ignores VMX */
7926 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7927 }
7928
7929 static void vmx_exit(void)
7930 {
7931 #ifdef CONFIG_KEXEC_CORE
7932 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7933 synchronize_rcu();
7934 #endif
7935
7936 kvm_exit();
7937
7938 #if IS_ENABLED(CONFIG_HYPERV)
7939 if (static_branch_unlikely(&enable_evmcs)) {
7940 int cpu;
7941 struct hv_vp_assist_page *vp_ap;
7942 /*
7943 * Reset everything to support using non-enlightened VMCS
7944 * access later (e.g. when we reload the module with
7945 * enlightened_vmcs=0)
7946 */
7947 for_each_online_cpu(cpu) {
7948 vp_ap = hv_get_vp_assist_page(cpu);
7949
7950 if (!vp_ap)
7951 continue;
7952
7953 vp_ap->nested_control.features.directhypercall = 0;
7954 vp_ap->current_nested_vmcs = 0;
7955 vp_ap->enlighten_vmentry = 0;
7956 }
7957
7958 static_branch_disable(&enable_evmcs);
7959 }
7960 #endif
7961 vmx_cleanup_l1d_flush();
7962
7963 allow_smaller_maxphyaddr = false;
7964 }
7965 module_exit(vmx_exit);
7966
7967 static int __init vmx_init(void)
7968 {
7969 int r, cpu;
7970
7971 #if IS_ENABLED(CONFIG_HYPERV)
7972 /*
7973 * Enlightened VMCS usage should be recommended and the host needs
7974 * to support eVMCS v1 or above. We can also disable eVMCS support
7975 * with module parameter.
7976 */
7977 if (enlightened_vmcs &&
7978 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7979 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7980 KVM_EVMCS_VERSION) {
7981 int cpu;
7982
7983 /* Check that we have assist pages on all online CPUs */
7984 for_each_online_cpu(cpu) {
7985 if (!hv_get_vp_assist_page(cpu)) {
7986 enlightened_vmcs = false;
7987 break;
7988 }
7989 }
7990
7991 if (enlightened_vmcs) {
7992 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7993 static_branch_enable(&enable_evmcs);
7994 }
7995
7996 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7997 vmx_x86_ops.enable_direct_tlbflush
7998 = hv_enable_direct_tlbflush;
7999
8000 } else {
8001 enlightened_vmcs = false;
8002 }
8003 #endif
8004
8005 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8006 __alignof__(struct vcpu_vmx), THIS_MODULE);
8007 if (r)
8008 return r;
8009
8010 /*
8011 * Must be called after kvm_init() so enable_ept is properly set
8012 * up. Hand the parameter mitigation value in which was stored in
8013 * the pre module init parser. If no parameter was given, it will
8014 * contain 'auto' which will be turned into the default 'cond'
8015 * mitigation mode.
8016 */
8017 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8018 if (r) {
8019 vmx_exit();
8020 return r;
8021 }
8022
8023 for_each_possible_cpu(cpu) {
8024 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8025
8026 pi_init_cpu(cpu);
8027 }
8028
8029 #ifdef CONFIG_KEXEC_CORE
8030 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8031 crash_vmclear_local_loaded_vmcss);
8032 #endif
8033 vmx_check_vmcs12_offsets();
8034
8035 /*
8036 * Shadow paging doesn't have a (further) performance penalty
8037 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8038 * by default
8039 */
8040 if (!enable_ept)
8041 allow_smaller_maxphyaddr = true;
8042
8043 return 0;
8044 }
8045 module_init(vmx_init);