]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/vmx/vmx.c
KVM: x86: hyper-v: Prepare to meet unallocated Hyper-V context
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "hyperv.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106 * If nested=1, nested virtualization is supported, i.e., guests may use
107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108 * use VMX instructions.
109 */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC 1
120 #define MSR_BITMAP_MODE_X2APIC_APICV 2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON \
137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 RTIT_STATUS_BYTECNT))
150
151 /*
152 * List of MSRs that can be directly passed to the guest.
153 * In addition to these x2apic and PT MSRs are handled specially.
154 */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156 MSR_IA32_SPEC_CTRL,
157 MSR_IA32_PRED_CMD,
158 MSR_IA32_TSC,
159 MSR_FS_BASE,
160 MSR_GS_BASE,
161 MSR_KERNEL_GS_BASE,
162 MSR_IA32_SYSENTER_CS,
163 MSR_IA32_SYSENTER_ESP,
164 MSR_IA32_SYSENTER_EIP,
165 MSR_CORE_C1_RES,
166 MSR_CORE_C3_RESIDENCY,
167 MSR_CORE_C6_RESIDENCY,
168 MSR_CORE_C7_RESIDENCY,
169 };
170
171 /*
172 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173 * ple_gap: upper bound on the amount of time between two successive
174 * executions of PAUSE in a loop. Also indicate if ple enabled.
175 * According to test, this time is usually smaller than 128 cycles.
176 * ple_window: upper bound on the amount of time a guest is allowed to execute
177 * in a PAUSE loop. Tests indicate that most spinlocks are held for
178 * less than 2^12 cycles
179 * Time is measured based on a counter that runs at the same rate as the TSC,
180 * refer SDM volume 3b section 21.6.13 & 22.1.3.
181 */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210
211 static const struct {
212 const char *option;
213 bool for_parse;
214 } vmentry_l1d_param[] = {
215 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
216 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
217 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
218 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
219 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225
226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228 struct page *page;
229 unsigned int i;
230
231 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233 return 0;
234 }
235
236 if (!enable_ept) {
237 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238 return 0;
239 }
240
241 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242 u64 msr;
243
244 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 return 0;
248 }
249 }
250
251 /* If set to auto use the default l1tf mitigation method */
252 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253 switch (l1tf_mitigation) {
254 case L1TF_MITIGATION_OFF:
255 l1tf = VMENTER_L1D_FLUSH_NEVER;
256 break;
257 case L1TF_MITIGATION_FLUSH_NOWARN:
258 case L1TF_MITIGATION_FLUSH:
259 case L1TF_MITIGATION_FLUSH_NOSMT:
260 l1tf = VMENTER_L1D_FLUSH_COND;
261 break;
262 case L1TF_MITIGATION_FULL:
263 case L1TF_MITIGATION_FULL_FORCE:
264 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265 break;
266 }
267 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 }
270
271 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273 /*
274 * This allocation for vmx_l1d_flush_pages is not tied to a VM
275 * lifetime and so should not be charged to a memcg.
276 */
277 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278 if (!page)
279 return -ENOMEM;
280 vmx_l1d_flush_pages = page_address(page);
281
282 /*
283 * Initialize each page with a different pattern in
284 * order to protect against KSM in the nested
285 * virtualization case.
286 */
287 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289 PAGE_SIZE);
290 }
291 }
292
293 l1tf_vmx_mitigation = l1tf;
294
295 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296 static_branch_enable(&vmx_l1d_should_flush);
297 else
298 static_branch_disable(&vmx_l1d_should_flush);
299
300 if (l1tf == VMENTER_L1D_FLUSH_COND)
301 static_branch_enable(&vmx_l1d_flush_cond);
302 else
303 static_branch_disable(&vmx_l1d_flush_cond);
304 return 0;
305 }
306
307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309 unsigned int i;
310
311 if (s) {
312 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313 if (vmentry_l1d_param[i].for_parse &&
314 sysfs_streq(s, vmentry_l1d_param[i].option))
315 return i;
316 }
317 }
318 return -EINVAL;
319 }
320
321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323 int l1tf, ret;
324
325 l1tf = vmentry_l1d_flush_parse(s);
326 if (l1tf < 0)
327 return l1tf;
328
329 if (!boot_cpu_has(X86_BUG_L1TF))
330 return 0;
331
332 /*
333 * Has vmx_init() run already? If not then this is the pre init
334 * parameter parsing. In that case just store the value and let
335 * vmx_init() do the proper setup after enable_ept has been
336 * established.
337 */
338 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339 vmentry_l1d_flush_param = l1tf;
340 return 0;
341 }
342
343 mutex_lock(&vmx_l1d_flush_mutex);
344 ret = vmx_setup_l1d_flush(l1tf);
345 mutex_unlock(&vmx_l1d_flush_mutex);
346 return ret;
347 }
348
349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352 return sprintf(s, "???\n");
353
354 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358 .set = vmentry_l1d_flush_set,
359 .get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365 u32 msr, int type);
366
367 void vmx_vmexit(void);
368
369 #define vmx_insn_failed(fmt...) \
370 do { \
371 WARN_ONCE(1, fmt); \
372 pr_warn_ratelimited(fmt); \
373 } while (0)
374
375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377 if (fault)
378 kvm_spurious_fault();
379 else
380 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382
383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388
389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393
394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398
399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402 ext, vpid, gva);
403 }
404
405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408 ext, eptp, gpa);
409 }
410
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416 */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424
425 #define VMX_SEGMENT_FIELD(seg) \
426 [VCPU_SREG_##seg] = { \
427 .selector = GUEST_##seg##_SELECTOR, \
428 .base = GUEST_##seg##_BASE, \
429 .limit = GUEST_##seg##_LIMIT, \
430 .ar_bytes = GUEST_##seg##_AR_BYTES, \
431 }
432
433 static const struct kvm_vmx_segment_field {
434 unsigned selector;
435 unsigned base;
436 unsigned limit;
437 unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439 VMX_SEGMENT_FIELD(CS),
440 VMX_SEGMENT_FIELD(DS),
441 VMX_SEGMENT_FIELD(ES),
442 VMX_SEGMENT_FIELD(FS),
443 VMX_SEGMENT_FIELD(GS),
444 VMX_SEGMENT_FIELD(SS),
445 VMX_SEGMENT_FIELD(TR),
446 VMX_SEGMENT_FIELD(LDTR),
447 };
448
449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451 vmx->segment_cache.bitmask = 0;
452 }
453
454 static unsigned long host_idt_base;
455
456 /*
457 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458 * will emulate SYSCALL in legacy mode if the vendor string in guest
459 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460 * support this emulation, IA32_STAR must always be included in
461 * vmx_uret_msrs_list[], even in i386 builds.
462 */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468 MSR_IA32_TSX_CTRL,
469 };
470
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478 struct kvm_vcpu *vcpu;
479 u64 tmp_eptp = INVALID_PAGE;
480 int i;
481
482 kvm_for_each_vcpu(i, vcpu, kvm) {
483 if (!VALID_PAGE(tmp_eptp)) {
484 tmp_eptp = to_vmx(vcpu)->ept_pointer;
485 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486 to_kvm_vmx(kvm)->ept_pointers_match
487 = EPT_POINTERS_MISMATCH;
488 return;
489 }
490 }
491
492 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494
495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496 void *data)
497 {
498 struct kvm_tlb_range *range = data;
499
500 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501 range->pages);
502 }
503
504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508
509 /*
510 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511 * of the base of EPT PML4 table, strip off EPT configuration
512 * information.
513 */
514 if (range)
515 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516 kvm_fill_hv_flush_list_func, (void *)range);
517 else
518 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520
521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522 struct kvm_tlb_range *range)
523 {
524 struct kvm_vcpu *vcpu;
525 int ret = 0, i;
526
527 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528
529 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530 check_ept_pointer_match(kvm);
531
532 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533 kvm_for_each_vcpu(i, vcpu, kvm) {
534 /* If ept_pointer is invalid pointer, bypass flush request. */
535 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536 ret |= __hv_remote_flush_tlb_with_range(
537 kvm, vcpu, range);
538 }
539 } else {
540 ret = __hv_remote_flush_tlb_with_range(kvm,
541 kvm_get_vcpu(kvm, 0), range);
542 }
543
544 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545 return ret;
546 }
547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549 return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551
552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554 struct hv_enlightened_vmcs *evmcs;
555 struct hv_partition_assist_pg **p_hv_pa_pg =
556 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
557 /*
558 * Synthetic VM-Exit is not enabled in current code and so All
559 * evmcs in singe VM shares same assist page.
560 */
561 if (!*p_hv_pa_pg)
562 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563
564 if (!*p_hv_pa_pg)
565 return -ENOMEM;
566
567 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568
569 evmcs->partition_assist_page =
570 __pa(*p_hv_pa_pg);
571 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573
574 return 0;
575 }
576
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578
579 /*
580 * Comment's format: document - errata name - stepping - processor name.
581 * Refer from
582 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583 */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
595 /*
596 * 320767.pdf - AAP86 - B1 -
597 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598 */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610 /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613
614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616 u32 eax = cpuid_eax(0x00000001), i;
617
618 /* Clear the reserved bits */
619 eax &= ~(0x3U << 14 | 0xfU << 28);
620 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621 if (eax == vmx_preemption_cpu_tfms[i])
622 return true;
623
624 return false;
625 }
626
627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629 return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631
632 static inline bool report_flexpriority(void)
633 {
634 return flexpriority_enabled;
635 }
636
637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639 u32 i;
640
641 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642 if (vmx_possible_passthrough_msrs[i] == msr)
643 return i;
644
645 return -ENOENT;
646 }
647
648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650 bool r;
651
652 switch (msr) {
653 case 0x800 ... 0x8ff:
654 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655 return true;
656 case MSR_IA32_RTIT_STATUS:
657 case MSR_IA32_RTIT_OUTPUT_BASE:
658 case MSR_IA32_RTIT_OUTPUT_MASK:
659 case MSR_IA32_RTIT_CR3_MATCH:
660 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662 case MSR_LBR_SELECT:
663 case MSR_LBR_TOS:
664 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
665 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
666 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
667 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
668 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
669 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
670 return true;
671 }
672
673 r = possible_passthrough_msr_slot(msr) != -ENOENT;
674
675 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
676
677 return r;
678 }
679
680 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
681 {
682 int i;
683
684 for (i = 0; i < vmx->nr_uret_msrs; ++i)
685 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
686 return i;
687 return -1;
688 }
689
690 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
691 {
692 int i;
693
694 i = __vmx_find_uret_msr(vmx, msr);
695 if (i >= 0)
696 return &vmx->guest_uret_msrs[i];
697 return NULL;
698 }
699
700 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
701 struct vmx_uret_msr *msr, u64 data)
702 {
703 int ret = 0;
704
705 u64 old_msr_data = msr->data;
706 msr->data = data;
707 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
708 preempt_disable();
709 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
710 preempt_enable();
711 if (ret)
712 msr->data = old_msr_data;
713 }
714 return ret;
715 }
716
717 #ifdef CONFIG_KEXEC_CORE
718 static void crash_vmclear_local_loaded_vmcss(void)
719 {
720 int cpu = raw_smp_processor_id();
721 struct loaded_vmcs *v;
722
723 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
724 loaded_vmcss_on_cpu_link)
725 vmcs_clear(v->vmcs);
726 }
727 #endif /* CONFIG_KEXEC_CORE */
728
729 static void __loaded_vmcs_clear(void *arg)
730 {
731 struct loaded_vmcs *loaded_vmcs = arg;
732 int cpu = raw_smp_processor_id();
733
734 if (loaded_vmcs->cpu != cpu)
735 return; /* vcpu migration can race with cpu offline */
736 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
737 per_cpu(current_vmcs, cpu) = NULL;
738
739 vmcs_clear(loaded_vmcs->vmcs);
740 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
741 vmcs_clear(loaded_vmcs->shadow_vmcs);
742
743 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
744
745 /*
746 * Ensure all writes to loaded_vmcs, including deleting it from its
747 * current percpu list, complete before setting loaded_vmcs->vcpu to
748 * -1, otherwise a different cpu can see vcpu == -1 first and add
749 * loaded_vmcs to its percpu list before it's deleted from this cpu's
750 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
751 */
752 smp_wmb();
753
754 loaded_vmcs->cpu = -1;
755 loaded_vmcs->launched = 0;
756 }
757
758 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
759 {
760 int cpu = loaded_vmcs->cpu;
761
762 if (cpu != -1)
763 smp_call_function_single(cpu,
764 __loaded_vmcs_clear, loaded_vmcs, 1);
765 }
766
767 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
768 unsigned field)
769 {
770 bool ret;
771 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
772
773 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
774 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
775 vmx->segment_cache.bitmask = 0;
776 }
777 ret = vmx->segment_cache.bitmask & mask;
778 vmx->segment_cache.bitmask |= mask;
779 return ret;
780 }
781
782 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
783 {
784 u16 *p = &vmx->segment_cache.seg[seg].selector;
785
786 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
787 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
788 return *p;
789 }
790
791 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
792 {
793 ulong *p = &vmx->segment_cache.seg[seg].base;
794
795 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
796 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
797 return *p;
798 }
799
800 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
801 {
802 u32 *p = &vmx->segment_cache.seg[seg].limit;
803
804 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
805 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
806 return *p;
807 }
808
809 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
810 {
811 u32 *p = &vmx->segment_cache.seg[seg].ar;
812
813 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
814 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
815 return *p;
816 }
817
818 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
819 {
820 u32 eb;
821
822 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
823 (1u << DB_VECTOR) | (1u << AC_VECTOR);
824 /*
825 * Guest access to VMware backdoor ports could legitimately
826 * trigger #GP because of TSS I/O permission bitmap.
827 * We intercept those #GP and allow access to them anyway
828 * as VMware does.
829 */
830 if (enable_vmware_backdoor)
831 eb |= (1u << GP_VECTOR);
832 if ((vcpu->guest_debug &
833 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
834 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
835 eb |= 1u << BP_VECTOR;
836 if (to_vmx(vcpu)->rmode.vm86_active)
837 eb = ~0;
838 if (!vmx_need_pf_intercept(vcpu))
839 eb &= ~(1u << PF_VECTOR);
840
841 /* When we are running a nested L2 guest and L1 specified for it a
842 * certain exception bitmap, we must trap the same exceptions and pass
843 * them to L1. When running L2, we will only handle the exceptions
844 * specified above if L1 did not want them.
845 */
846 if (is_guest_mode(vcpu))
847 eb |= get_vmcs12(vcpu)->exception_bitmap;
848 else {
849 /*
850 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
851 * between guest and host. In that case we only care about present
852 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
853 * prepare_vmcs02_rare.
854 */
855 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
856 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
857 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
858 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
859 }
860
861 vmcs_write32(EXCEPTION_BITMAP, eb);
862 }
863
864 /*
865 * Check if MSR is intercepted for currently loaded MSR bitmap.
866 */
867 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
868 {
869 unsigned long *msr_bitmap;
870 int f = sizeof(unsigned long);
871
872 if (!cpu_has_vmx_msr_bitmap())
873 return true;
874
875 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
876
877 if (msr <= 0x1fff) {
878 return !!test_bit(msr, msr_bitmap + 0x800 / f);
879 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
880 msr &= 0x1fff;
881 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
882 }
883
884 return true;
885 }
886
887 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
888 unsigned long entry, unsigned long exit)
889 {
890 vm_entry_controls_clearbit(vmx, entry);
891 vm_exit_controls_clearbit(vmx, exit);
892 }
893
894 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
895 {
896 unsigned int i;
897
898 for (i = 0; i < m->nr; ++i) {
899 if (m->val[i].index == msr)
900 return i;
901 }
902 return -ENOENT;
903 }
904
905 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
906 {
907 int i;
908 struct msr_autoload *m = &vmx->msr_autoload;
909
910 switch (msr) {
911 case MSR_EFER:
912 if (cpu_has_load_ia32_efer()) {
913 clear_atomic_switch_msr_special(vmx,
914 VM_ENTRY_LOAD_IA32_EFER,
915 VM_EXIT_LOAD_IA32_EFER);
916 return;
917 }
918 break;
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 clear_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
924 return;
925 }
926 break;
927 }
928 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
929 if (i < 0)
930 goto skip_guest;
931 --m->guest.nr;
932 m->guest.val[i] = m->guest.val[m->guest.nr];
933 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
934
935 skip_guest:
936 i = vmx_find_loadstore_msr_slot(&m->host, msr);
937 if (i < 0)
938 return;
939
940 --m->host.nr;
941 m->host.val[i] = m->host.val[m->host.nr];
942 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
943 }
944
945 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
946 unsigned long entry, unsigned long exit,
947 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
948 u64 guest_val, u64 host_val)
949 {
950 vmcs_write64(guest_val_vmcs, guest_val);
951 if (host_val_vmcs != HOST_IA32_EFER)
952 vmcs_write64(host_val_vmcs, host_val);
953 vm_entry_controls_setbit(vmx, entry);
954 vm_exit_controls_setbit(vmx, exit);
955 }
956
957 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
958 u64 guest_val, u64 host_val, bool entry_only)
959 {
960 int i, j = 0;
961 struct msr_autoload *m = &vmx->msr_autoload;
962
963 switch (msr) {
964 case MSR_EFER:
965 if (cpu_has_load_ia32_efer()) {
966 add_atomic_switch_msr_special(vmx,
967 VM_ENTRY_LOAD_IA32_EFER,
968 VM_EXIT_LOAD_IA32_EFER,
969 GUEST_IA32_EFER,
970 HOST_IA32_EFER,
971 guest_val, host_val);
972 return;
973 }
974 break;
975 case MSR_CORE_PERF_GLOBAL_CTRL:
976 if (cpu_has_load_perf_global_ctrl()) {
977 add_atomic_switch_msr_special(vmx,
978 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
979 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
980 GUEST_IA32_PERF_GLOBAL_CTRL,
981 HOST_IA32_PERF_GLOBAL_CTRL,
982 guest_val, host_val);
983 return;
984 }
985 break;
986 case MSR_IA32_PEBS_ENABLE:
987 /* PEBS needs a quiescent period after being disabled (to write
988 * a record). Disabling PEBS through VMX MSR swapping doesn't
989 * provide that period, so a CPU could write host's record into
990 * guest's memory.
991 */
992 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
993 }
994
995 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
996 if (!entry_only)
997 j = vmx_find_loadstore_msr_slot(&m->host, msr);
998
999 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1000 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1001 printk_once(KERN_WARNING "Not enough msr switch entries. "
1002 "Can't add msr %x\n", msr);
1003 return;
1004 }
1005 if (i < 0) {
1006 i = m->guest.nr++;
1007 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1008 }
1009 m->guest.val[i].index = msr;
1010 m->guest.val[i].value = guest_val;
1011
1012 if (entry_only)
1013 return;
1014
1015 if (j < 0) {
1016 j = m->host.nr++;
1017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019 m->host.val[j].index = msr;
1020 m->host.val[j].value = host_val;
1021 }
1022
1023 static bool update_transition_efer(struct vcpu_vmx *vmx)
1024 {
1025 u64 guest_efer = vmx->vcpu.arch.efer;
1026 u64 ignore_bits = 0;
1027 int i;
1028
1029 /* Shadow paging assumes NX to be available. */
1030 if (!enable_ept)
1031 guest_efer |= EFER_NX;
1032
1033 /*
1034 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1035 */
1036 ignore_bits |= EFER_SCE;
1037 #ifdef CONFIG_X86_64
1038 ignore_bits |= EFER_LMA | EFER_LME;
1039 /* SCE is meaningful only in long mode on Intel */
1040 if (guest_efer & EFER_LMA)
1041 ignore_bits &= ~(u64)EFER_SCE;
1042 #endif
1043
1044 /*
1045 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1046 * On CPUs that support "load IA32_EFER", always switch EFER
1047 * atomically, since it's faster than switching it manually.
1048 */
1049 if (cpu_has_load_ia32_efer() ||
1050 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1051 if (!(guest_efer & EFER_LMA))
1052 guest_efer &= ~EFER_LME;
1053 if (guest_efer != host_efer)
1054 add_atomic_switch_msr(vmx, MSR_EFER,
1055 guest_efer, host_efer, false);
1056 else
1057 clear_atomic_switch_msr(vmx, MSR_EFER);
1058 return false;
1059 }
1060
1061 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1062 if (i < 0)
1063 return false;
1064
1065 clear_atomic_switch_msr(vmx, MSR_EFER);
1066
1067 guest_efer &= ~ignore_bits;
1068 guest_efer |= host_efer & ignore_bits;
1069
1070 vmx->guest_uret_msrs[i].data = guest_efer;
1071 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1072
1073 return true;
1074 }
1075
1076 #ifdef CONFIG_X86_32
1077 /*
1078 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1079 * VMCS rather than the segment table. KVM uses this helper to figure
1080 * out the current bases to poke them into the VMCS before entry.
1081 */
1082 static unsigned long segment_base(u16 selector)
1083 {
1084 struct desc_struct *table;
1085 unsigned long v;
1086
1087 if (!(selector & ~SEGMENT_RPL_MASK))
1088 return 0;
1089
1090 table = get_current_gdt_ro();
1091
1092 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1093 u16 ldt_selector = kvm_read_ldt();
1094
1095 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1096 return 0;
1097
1098 table = (struct desc_struct *)segment_base(ldt_selector);
1099 }
1100 v = get_desc_base(&table[selector >> 3]);
1101 return v;
1102 }
1103 #endif
1104
1105 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1106 {
1107 return vmx_pt_mode_is_host_guest() &&
1108 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1109 }
1110
1111 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1112 {
1113 /* The base must be 128-byte aligned and a legal physical address. */
1114 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1115 }
1116
1117 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1118 {
1119 u32 i;
1120
1121 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1122 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1123 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1124 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1125 for (i = 0; i < addr_range; i++) {
1126 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1127 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1128 }
1129 }
1130
1131 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1132 {
1133 u32 i;
1134
1135 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1136 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1137 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1138 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1139 for (i = 0; i < addr_range; i++) {
1140 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1141 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1142 }
1143 }
1144
1145 static void pt_guest_enter(struct vcpu_vmx *vmx)
1146 {
1147 if (vmx_pt_mode_is_system())
1148 return;
1149
1150 /*
1151 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1152 * Save host state before VM entry.
1153 */
1154 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1155 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1156 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1157 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1158 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1159 }
1160 }
1161
1162 static void pt_guest_exit(struct vcpu_vmx *vmx)
1163 {
1164 if (vmx_pt_mode_is_system())
1165 return;
1166
1167 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1168 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1169 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1170 }
1171
1172 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1173 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1174 }
1175
1176 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1177 unsigned long fs_base, unsigned long gs_base)
1178 {
1179 if (unlikely(fs_sel != host->fs_sel)) {
1180 if (!(fs_sel & 7))
1181 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1182 else
1183 vmcs_write16(HOST_FS_SELECTOR, 0);
1184 host->fs_sel = fs_sel;
1185 }
1186 if (unlikely(gs_sel != host->gs_sel)) {
1187 if (!(gs_sel & 7))
1188 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1189 else
1190 vmcs_write16(HOST_GS_SELECTOR, 0);
1191 host->gs_sel = gs_sel;
1192 }
1193 if (unlikely(fs_base != host->fs_base)) {
1194 vmcs_writel(HOST_FS_BASE, fs_base);
1195 host->fs_base = fs_base;
1196 }
1197 if (unlikely(gs_base != host->gs_base)) {
1198 vmcs_writel(HOST_GS_BASE, gs_base);
1199 host->gs_base = gs_base;
1200 }
1201 }
1202
1203 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1204 {
1205 struct vcpu_vmx *vmx = to_vmx(vcpu);
1206 struct vmcs_host_state *host_state;
1207 #ifdef CONFIG_X86_64
1208 int cpu = raw_smp_processor_id();
1209 #endif
1210 unsigned long fs_base, gs_base;
1211 u16 fs_sel, gs_sel;
1212 int i;
1213
1214 vmx->req_immediate_exit = false;
1215
1216 /*
1217 * Note that guest MSRs to be saved/restored can also be changed
1218 * when guest state is loaded. This happens when guest transitions
1219 * to/from long-mode by setting MSR_EFER.LMA.
1220 */
1221 if (!vmx->guest_uret_msrs_loaded) {
1222 vmx->guest_uret_msrs_loaded = true;
1223 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1224 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1225 vmx->guest_uret_msrs[i].data,
1226 vmx->guest_uret_msrs[i].mask);
1227
1228 }
1229
1230 if (vmx->nested.need_vmcs12_to_shadow_sync)
1231 nested_sync_vmcs12_to_shadow(vcpu);
1232
1233 if (vmx->guest_state_loaded)
1234 return;
1235
1236 host_state = &vmx->loaded_vmcs->host_state;
1237
1238 /*
1239 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1240 * allow segment selectors with cpl > 0 or ti == 1.
1241 */
1242 host_state->ldt_sel = kvm_read_ldt();
1243
1244 #ifdef CONFIG_X86_64
1245 savesegment(ds, host_state->ds_sel);
1246 savesegment(es, host_state->es_sel);
1247
1248 gs_base = cpu_kernelmode_gs_base(cpu);
1249 if (likely(is_64bit_mm(current->mm))) {
1250 current_save_fsgs();
1251 fs_sel = current->thread.fsindex;
1252 gs_sel = current->thread.gsindex;
1253 fs_base = current->thread.fsbase;
1254 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1255 } else {
1256 savesegment(fs, fs_sel);
1257 savesegment(gs, gs_sel);
1258 fs_base = read_msr(MSR_FS_BASE);
1259 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1260 }
1261
1262 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1263 #else
1264 savesegment(fs, fs_sel);
1265 savesegment(gs, gs_sel);
1266 fs_base = segment_base(fs_sel);
1267 gs_base = segment_base(gs_sel);
1268 #endif
1269
1270 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1271 vmx->guest_state_loaded = true;
1272 }
1273
1274 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1275 {
1276 struct vmcs_host_state *host_state;
1277
1278 if (!vmx->guest_state_loaded)
1279 return;
1280
1281 host_state = &vmx->loaded_vmcs->host_state;
1282
1283 ++vmx->vcpu.stat.host_state_reload;
1284
1285 #ifdef CONFIG_X86_64
1286 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1287 #endif
1288 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1289 kvm_load_ldt(host_state->ldt_sel);
1290 #ifdef CONFIG_X86_64
1291 load_gs_index(host_state->gs_sel);
1292 #else
1293 loadsegment(gs, host_state->gs_sel);
1294 #endif
1295 }
1296 if (host_state->fs_sel & 7)
1297 loadsegment(fs, host_state->fs_sel);
1298 #ifdef CONFIG_X86_64
1299 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1300 loadsegment(ds, host_state->ds_sel);
1301 loadsegment(es, host_state->es_sel);
1302 }
1303 #endif
1304 invalidate_tss_limit();
1305 #ifdef CONFIG_X86_64
1306 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1307 #endif
1308 load_fixmap_gdt(raw_smp_processor_id());
1309 vmx->guest_state_loaded = false;
1310 vmx->guest_uret_msrs_loaded = false;
1311 }
1312
1313 #ifdef CONFIG_X86_64
1314 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1315 {
1316 preempt_disable();
1317 if (vmx->guest_state_loaded)
1318 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 preempt_enable();
1320 return vmx->msr_guest_kernel_gs_base;
1321 }
1322
1323 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1324 {
1325 preempt_disable();
1326 if (vmx->guest_state_loaded)
1327 wrmsrl(MSR_KERNEL_GS_BASE, data);
1328 preempt_enable();
1329 vmx->msr_guest_kernel_gs_base = data;
1330 }
1331 #endif
1332
1333 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1334 struct loaded_vmcs *buddy)
1335 {
1336 struct vcpu_vmx *vmx = to_vmx(vcpu);
1337 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1338 struct vmcs *prev;
1339
1340 if (!already_loaded) {
1341 loaded_vmcs_clear(vmx->loaded_vmcs);
1342 local_irq_disable();
1343
1344 /*
1345 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1346 * this cpu's percpu list, otherwise it may not yet be deleted
1347 * from its previous cpu's percpu list. Pairs with the
1348 * smb_wmb() in __loaded_vmcs_clear().
1349 */
1350 smp_rmb();
1351
1352 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1353 &per_cpu(loaded_vmcss_on_cpu, cpu));
1354 local_irq_enable();
1355 }
1356
1357 prev = per_cpu(current_vmcs, cpu);
1358 if (prev != vmx->loaded_vmcs->vmcs) {
1359 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1360 vmcs_load(vmx->loaded_vmcs->vmcs);
1361
1362 /*
1363 * No indirect branch prediction barrier needed when switching
1364 * the active VMCS within a guest, e.g. on nested VM-Enter.
1365 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1366 */
1367 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1368 indirect_branch_prediction_barrier();
1369 }
1370
1371 if (!already_loaded) {
1372 void *gdt = get_current_gdt_ro();
1373 unsigned long sysenter_esp;
1374
1375 /*
1376 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1377 * TLB entries from its previous association with the vCPU.
1378 */
1379 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1380
1381 /*
1382 * Linux uses per-cpu TSS and GDT, so set these when switching
1383 * processors. See 22.2.4.
1384 */
1385 vmcs_writel(HOST_TR_BASE,
1386 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1387 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1388
1389 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1390 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1391
1392 vmx->loaded_vmcs->cpu = cpu;
1393 }
1394
1395 /* Setup TSC multiplier */
1396 if (kvm_has_tsc_control &&
1397 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1398 decache_tsc_multiplier(vmx);
1399 }
1400
1401 /*
1402 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1403 * vcpu mutex is already taken.
1404 */
1405 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1406 {
1407 struct vcpu_vmx *vmx = to_vmx(vcpu);
1408
1409 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1410
1411 vmx_vcpu_pi_load(vcpu, cpu);
1412
1413 vmx->host_debugctlmsr = get_debugctlmsr();
1414 }
1415
1416 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1417 {
1418 vmx_vcpu_pi_put(vcpu);
1419
1420 vmx_prepare_switch_to_host(to_vmx(vcpu));
1421 }
1422
1423 static bool emulation_required(struct kvm_vcpu *vcpu)
1424 {
1425 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1426 }
1427
1428 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1429 {
1430 struct vcpu_vmx *vmx = to_vmx(vcpu);
1431 unsigned long rflags, save_rflags;
1432
1433 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1434 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1435 rflags = vmcs_readl(GUEST_RFLAGS);
1436 if (vmx->rmode.vm86_active) {
1437 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1438 save_rflags = vmx->rmode.save_rflags;
1439 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1440 }
1441 vmx->rflags = rflags;
1442 }
1443 return vmx->rflags;
1444 }
1445
1446 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1447 {
1448 struct vcpu_vmx *vmx = to_vmx(vcpu);
1449 unsigned long old_rflags;
1450
1451 if (is_unrestricted_guest(vcpu)) {
1452 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1453 vmx->rflags = rflags;
1454 vmcs_writel(GUEST_RFLAGS, rflags);
1455 return;
1456 }
1457
1458 old_rflags = vmx_get_rflags(vcpu);
1459 vmx->rflags = rflags;
1460 if (vmx->rmode.vm86_active) {
1461 vmx->rmode.save_rflags = rflags;
1462 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1463 }
1464 vmcs_writel(GUEST_RFLAGS, rflags);
1465
1466 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1467 vmx->emulation_required = emulation_required(vcpu);
1468 }
1469
1470 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1471 {
1472 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1473 int ret = 0;
1474
1475 if (interruptibility & GUEST_INTR_STATE_STI)
1476 ret |= KVM_X86_SHADOW_INT_STI;
1477 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1478 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1479
1480 return ret;
1481 }
1482
1483 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1484 {
1485 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1486 u32 interruptibility = interruptibility_old;
1487
1488 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1489
1490 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1491 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1492 else if (mask & KVM_X86_SHADOW_INT_STI)
1493 interruptibility |= GUEST_INTR_STATE_STI;
1494
1495 if ((interruptibility != interruptibility_old))
1496 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1497 }
1498
1499 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1500 {
1501 struct vcpu_vmx *vmx = to_vmx(vcpu);
1502 unsigned long value;
1503
1504 /*
1505 * Any MSR write that attempts to change bits marked reserved will
1506 * case a #GP fault.
1507 */
1508 if (data & vmx->pt_desc.ctl_bitmask)
1509 return 1;
1510
1511 /*
1512 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1513 * result in a #GP unless the same write also clears TraceEn.
1514 */
1515 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1516 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1517 return 1;
1518
1519 /*
1520 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1521 * and FabricEn would cause #GP, if
1522 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1523 */
1524 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1525 !(data & RTIT_CTL_FABRIC_EN) &&
1526 !intel_pt_validate_cap(vmx->pt_desc.caps,
1527 PT_CAP_single_range_output))
1528 return 1;
1529
1530 /*
1531 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1532 * utilize encodings marked reserved will casue a #GP fault.
1533 */
1534 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1535 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1536 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1537 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1538 return 1;
1539 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1540 PT_CAP_cycle_thresholds);
1541 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1543 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1544 return 1;
1545 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1546 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1547 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1548 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1549 return 1;
1550
1551 /*
1552 * If ADDRx_CFG is reserved or the encodings is >2 will
1553 * cause a #GP fault.
1554 */
1555 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1556 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1557 return 1;
1558 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1559 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1560 return 1;
1561 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1562 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1563 return 1;
1564 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1565 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1566 return 1;
1567
1568 return 0;
1569 }
1570
1571 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1572 {
1573 return true;
1574 }
1575
1576 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1577 {
1578 unsigned long rip, orig_rip;
1579
1580 /*
1581 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1582 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1583 * set when EPT misconfig occurs. In practice, real hardware updates
1584 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1585 * (namely Hyper-V) don't set it due to it being undefined behavior,
1586 * i.e. we end up advancing IP with some random value.
1587 */
1588 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1589 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1590 orig_rip = kvm_rip_read(vcpu);
1591 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1592 #ifdef CONFIG_X86_64
1593 /*
1594 * We need to mask out the high 32 bits of RIP if not in 64-bit
1595 * mode, but just finding out that we are in 64-bit mode is
1596 * quite expensive. Only do it if there was a carry.
1597 */
1598 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1599 rip = (u32)rip;
1600 #endif
1601 kvm_rip_write(vcpu, rip);
1602 } else {
1603 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1604 return 0;
1605 }
1606
1607 /* skipping an emulated instruction also counts */
1608 vmx_set_interrupt_shadow(vcpu, 0);
1609
1610 return 1;
1611 }
1612
1613 /*
1614 * Recognizes a pending MTF VM-exit and records the nested state for later
1615 * delivery.
1616 */
1617 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1618 {
1619 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1620 struct vcpu_vmx *vmx = to_vmx(vcpu);
1621
1622 if (!is_guest_mode(vcpu))
1623 return;
1624
1625 /*
1626 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1627 * T-bit traps. As instruction emulation is completed (i.e. at the
1628 * instruction boundary), any #DB exception pending delivery must be a
1629 * debug-trap. Record the pending MTF state to be delivered in
1630 * vmx_check_nested_events().
1631 */
1632 if (nested_cpu_has_mtf(vmcs12) &&
1633 (!vcpu->arch.exception.pending ||
1634 vcpu->arch.exception.nr == DB_VECTOR))
1635 vmx->nested.mtf_pending = true;
1636 else
1637 vmx->nested.mtf_pending = false;
1638 }
1639
1640 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1641 {
1642 vmx_update_emulated_instruction(vcpu);
1643 return skip_emulated_instruction(vcpu);
1644 }
1645
1646 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1647 {
1648 /*
1649 * Ensure that we clear the HLT state in the VMCS. We don't need to
1650 * explicitly skip the instruction because if the HLT state is set,
1651 * then the instruction is already executing and RIP has already been
1652 * advanced.
1653 */
1654 if (kvm_hlt_in_guest(vcpu->kvm) &&
1655 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1656 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1657 }
1658
1659 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1660 {
1661 struct vcpu_vmx *vmx = to_vmx(vcpu);
1662 unsigned nr = vcpu->arch.exception.nr;
1663 bool has_error_code = vcpu->arch.exception.has_error_code;
1664 u32 error_code = vcpu->arch.exception.error_code;
1665 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1666
1667 kvm_deliver_exception_payload(vcpu);
1668
1669 if (has_error_code) {
1670 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1671 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1672 }
1673
1674 if (vmx->rmode.vm86_active) {
1675 int inc_eip = 0;
1676 if (kvm_exception_is_soft(nr))
1677 inc_eip = vcpu->arch.event_exit_inst_len;
1678 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1679 return;
1680 }
1681
1682 WARN_ON_ONCE(vmx->emulation_required);
1683
1684 if (kvm_exception_is_soft(nr)) {
1685 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1686 vmx->vcpu.arch.event_exit_inst_len);
1687 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1688 } else
1689 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1690
1691 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1692
1693 vmx_clear_hlt(vcpu);
1694 }
1695
1696 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1697 {
1698 struct vmx_uret_msr tmp;
1699 int from, to;
1700
1701 from = __vmx_find_uret_msr(vmx, msr);
1702 if (from < 0)
1703 return;
1704 to = vmx->nr_active_uret_msrs++;
1705
1706 tmp = vmx->guest_uret_msrs[to];
1707 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1708 vmx->guest_uret_msrs[from] = tmp;
1709 }
1710
1711 /*
1712 * Set up the vmcs to automatically save and restore system
1713 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1714 * mode, as fiddling with msrs is very expensive.
1715 */
1716 static void setup_msrs(struct vcpu_vmx *vmx)
1717 {
1718 vmx->guest_uret_msrs_loaded = false;
1719 vmx->nr_active_uret_msrs = 0;
1720 #ifdef CONFIG_X86_64
1721 /*
1722 * The SYSCALL MSRs are only needed on long mode guests, and only
1723 * when EFER.SCE is set.
1724 */
1725 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1726 vmx_setup_uret_msr(vmx, MSR_STAR);
1727 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1728 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1729 }
1730 #endif
1731 if (update_transition_efer(vmx))
1732 vmx_setup_uret_msr(vmx, MSR_EFER);
1733
1734 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1735 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1736
1737 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1738
1739 if (cpu_has_vmx_msr_bitmap())
1740 vmx_update_msr_bitmap(&vmx->vcpu);
1741 }
1742
1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1744 {
1745 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1746 u64 g_tsc_offset = 0;
1747
1748 /*
1749 * We're here if L1 chose not to trap WRMSR to TSC. According
1750 * to the spec, this should set L1's TSC; The offset that L1
1751 * set for L2 remains unchanged, and still needs to be added
1752 * to the newly set TSC to get L2's TSC.
1753 */
1754 if (is_guest_mode(vcpu) &&
1755 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1756 g_tsc_offset = vmcs12->tsc_offset;
1757
1758 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1759 vcpu->arch.tsc_offset - g_tsc_offset,
1760 offset);
1761 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1762 return offset + g_tsc_offset;
1763 }
1764
1765 /*
1766 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1767 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1768 * all guests if the "nested" module option is off, and can also be disabled
1769 * for a single guest by disabling its VMX cpuid bit.
1770 */
1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1772 {
1773 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1774 }
1775
1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1777 uint64_t val)
1778 {
1779 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1780
1781 return !(val & ~valid_bits);
1782 }
1783
1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1785 {
1786 switch (msr->index) {
1787 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1788 if (!nested)
1789 return 1;
1790 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1791 case MSR_IA32_PERF_CAPABILITIES:
1792 msr->data = vmx_get_perf_capabilities();
1793 return 0;
1794 default:
1795 return KVM_MSR_RET_INVALID;
1796 }
1797 }
1798
1799 /*
1800 * Reads an msr value (of 'msr_index') into 'pdata'.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1803 */
1804 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1805 {
1806 struct vcpu_vmx *vmx = to_vmx(vcpu);
1807 struct vmx_uret_msr *msr;
1808 u32 index;
1809
1810 switch (msr_info->index) {
1811 #ifdef CONFIG_X86_64
1812 case MSR_FS_BASE:
1813 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1814 break;
1815 case MSR_GS_BASE:
1816 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1817 break;
1818 case MSR_KERNEL_GS_BASE:
1819 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1820 break;
1821 #endif
1822 case MSR_EFER:
1823 return kvm_get_msr_common(vcpu, msr_info);
1824 case MSR_IA32_TSX_CTRL:
1825 if (!msr_info->host_initiated &&
1826 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1827 return 1;
1828 goto find_uret_msr;
1829 case MSR_IA32_UMWAIT_CONTROL:
1830 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1831 return 1;
1832
1833 msr_info->data = vmx->msr_ia32_umwait_control;
1834 break;
1835 case MSR_IA32_SPEC_CTRL:
1836 if (!msr_info->host_initiated &&
1837 !guest_has_spec_ctrl_msr(vcpu))
1838 return 1;
1839
1840 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1841 break;
1842 case MSR_IA32_SYSENTER_CS:
1843 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1844 break;
1845 case MSR_IA32_SYSENTER_EIP:
1846 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1847 break;
1848 case MSR_IA32_SYSENTER_ESP:
1849 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1850 break;
1851 case MSR_IA32_BNDCFGS:
1852 if (!kvm_mpx_supported() ||
1853 (!msr_info->host_initiated &&
1854 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1855 return 1;
1856 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1857 break;
1858 case MSR_IA32_MCG_EXT_CTL:
1859 if (!msr_info->host_initiated &&
1860 !(vmx->msr_ia32_feature_control &
1861 FEAT_CTL_LMCE_ENABLED))
1862 return 1;
1863 msr_info->data = vcpu->arch.mcg_ext_ctl;
1864 break;
1865 case MSR_IA32_FEAT_CTL:
1866 msr_info->data = vmx->msr_ia32_feature_control;
1867 break;
1868 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1869 if (!nested_vmx_allowed(vcpu))
1870 return 1;
1871 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1872 &msr_info->data))
1873 return 1;
1874 /*
1875 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1876 * Hyper-V versions are still trying to use corresponding
1877 * features when they are exposed. Filter out the essential
1878 * minimum.
1879 */
1880 if (!msr_info->host_initiated &&
1881 vmx->nested.enlightened_vmcs_enabled)
1882 nested_evmcs_filter_control_msr(msr_info->index,
1883 &msr_info->data);
1884 break;
1885 case MSR_IA32_RTIT_CTL:
1886 if (!vmx_pt_mode_is_host_guest())
1887 return 1;
1888 msr_info->data = vmx->pt_desc.guest.ctl;
1889 break;
1890 case MSR_IA32_RTIT_STATUS:
1891 if (!vmx_pt_mode_is_host_guest())
1892 return 1;
1893 msr_info->data = vmx->pt_desc.guest.status;
1894 break;
1895 case MSR_IA32_RTIT_CR3_MATCH:
1896 if (!vmx_pt_mode_is_host_guest() ||
1897 !intel_pt_validate_cap(vmx->pt_desc.caps,
1898 PT_CAP_cr3_filtering))
1899 return 1;
1900 msr_info->data = vmx->pt_desc.guest.cr3_match;
1901 break;
1902 case MSR_IA32_RTIT_OUTPUT_BASE:
1903 if (!vmx_pt_mode_is_host_guest() ||
1904 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1905 PT_CAP_topa_output) &&
1906 !intel_pt_validate_cap(vmx->pt_desc.caps,
1907 PT_CAP_single_range_output)))
1908 return 1;
1909 msr_info->data = vmx->pt_desc.guest.output_base;
1910 break;
1911 case MSR_IA32_RTIT_OUTPUT_MASK:
1912 if (!vmx_pt_mode_is_host_guest() ||
1913 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1914 PT_CAP_topa_output) &&
1915 !intel_pt_validate_cap(vmx->pt_desc.caps,
1916 PT_CAP_single_range_output)))
1917 return 1;
1918 msr_info->data = vmx->pt_desc.guest.output_mask;
1919 break;
1920 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1921 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1922 if (!vmx_pt_mode_is_host_guest() ||
1923 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1924 PT_CAP_num_address_ranges)))
1925 return 1;
1926 if (index % 2)
1927 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1928 else
1929 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1930 break;
1931 case MSR_TSC_AUX:
1932 if (!msr_info->host_initiated &&
1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1934 return 1;
1935 goto find_uret_msr;
1936 case MSR_IA32_DEBUGCTLMSR:
1937 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1938 break;
1939 default:
1940 find_uret_msr:
1941 msr = vmx_find_uret_msr(vmx, msr_info->index);
1942 if (msr) {
1943 msr_info->data = msr->data;
1944 break;
1945 }
1946 return kvm_get_msr_common(vcpu, msr_info);
1947 }
1948
1949 return 0;
1950 }
1951
1952 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1953 u64 data)
1954 {
1955 #ifdef CONFIG_X86_64
1956 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1957 return (u32)data;
1958 #endif
1959 return (unsigned long)data;
1960 }
1961
1962 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1963 {
1964 u64 debugctl = vmx_supported_debugctl();
1965
1966 if (!intel_pmu_lbr_is_enabled(vcpu))
1967 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1968
1969 return debugctl;
1970 }
1971
1972 /*
1973 * Writes msr value into the appropriate "register".
1974 * Returns 0 on success, non-0 otherwise.
1975 * Assumes vcpu_load() was already called.
1976 */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979 struct vcpu_vmx *vmx = to_vmx(vcpu);
1980 struct vmx_uret_msr *msr;
1981 int ret = 0;
1982 u32 msr_index = msr_info->index;
1983 u64 data = msr_info->data;
1984 u32 index;
1985
1986 switch (msr_index) {
1987 case MSR_EFER:
1988 ret = kvm_set_msr_common(vcpu, msr_info);
1989 break;
1990 #ifdef CONFIG_X86_64
1991 case MSR_FS_BASE:
1992 vmx_segment_cache_clear(vmx);
1993 vmcs_writel(GUEST_FS_BASE, data);
1994 break;
1995 case MSR_GS_BASE:
1996 vmx_segment_cache_clear(vmx);
1997 vmcs_writel(GUEST_GS_BASE, data);
1998 break;
1999 case MSR_KERNEL_GS_BASE:
2000 vmx_write_guest_kernel_gs_base(vmx, data);
2001 break;
2002 #endif
2003 case MSR_IA32_SYSENTER_CS:
2004 if (is_guest_mode(vcpu))
2005 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006 vmcs_write32(GUEST_SYSENTER_CS, data);
2007 break;
2008 case MSR_IA32_SYSENTER_EIP:
2009 if (is_guest_mode(vcpu)) {
2010 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2011 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2012 }
2013 vmcs_writel(GUEST_SYSENTER_EIP, data);
2014 break;
2015 case MSR_IA32_SYSENTER_ESP:
2016 if (is_guest_mode(vcpu)) {
2017 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2018 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2019 }
2020 vmcs_writel(GUEST_SYSENTER_ESP, data);
2021 break;
2022 case MSR_IA32_DEBUGCTLMSR: {
2023 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2024 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2025 if (report_ignored_msrs)
2026 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2027 __func__, data);
2028 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2029 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2030 }
2031
2032 if (invalid)
2033 return 1;
2034
2035 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2036 VM_EXIT_SAVE_DEBUG_CONTROLS)
2037 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2038
2039 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2040 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2041 (data & DEBUGCTLMSR_LBR))
2042 intel_pmu_create_guest_lbr_event(vcpu);
2043 return 0;
2044 }
2045 case MSR_IA32_BNDCFGS:
2046 if (!kvm_mpx_supported() ||
2047 (!msr_info->host_initiated &&
2048 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2049 return 1;
2050 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2051 (data & MSR_IA32_BNDCFGS_RSVD))
2052 return 1;
2053 vmcs_write64(GUEST_BNDCFGS, data);
2054 break;
2055 case MSR_IA32_UMWAIT_CONTROL:
2056 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2057 return 1;
2058
2059 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2060 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2061 return 1;
2062
2063 vmx->msr_ia32_umwait_control = data;
2064 break;
2065 case MSR_IA32_SPEC_CTRL:
2066 if (!msr_info->host_initiated &&
2067 !guest_has_spec_ctrl_msr(vcpu))
2068 return 1;
2069
2070 if (kvm_spec_ctrl_test_value(data))
2071 return 1;
2072
2073 vmx->spec_ctrl = data;
2074 if (!data)
2075 break;
2076
2077 /*
2078 * For non-nested:
2079 * When it's written (to non-zero) for the first time, pass
2080 * it through.
2081 *
2082 * For nested:
2083 * The handling of the MSR bitmap for L2 guests is done in
2084 * nested_vmx_prepare_msr_bitmap. We should not touch the
2085 * vmcs02.msr_bitmap here since it gets completely overwritten
2086 * in the merging. We update the vmcs01 here for L1 as well
2087 * since it will end up touching the MSR anyway now.
2088 */
2089 vmx_disable_intercept_for_msr(vcpu,
2090 MSR_IA32_SPEC_CTRL,
2091 MSR_TYPE_RW);
2092 break;
2093 case MSR_IA32_TSX_CTRL:
2094 if (!msr_info->host_initiated &&
2095 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2096 return 1;
2097 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2098 return 1;
2099 goto find_uret_msr;
2100 case MSR_IA32_PRED_CMD:
2101 if (!msr_info->host_initiated &&
2102 !guest_has_pred_cmd_msr(vcpu))
2103 return 1;
2104
2105 if (data & ~PRED_CMD_IBPB)
2106 return 1;
2107 if (!boot_cpu_has(X86_FEATURE_IBPB))
2108 return 1;
2109 if (!data)
2110 break;
2111
2112 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2113
2114 /*
2115 * For non-nested:
2116 * When it's written (to non-zero) for the first time, pass
2117 * it through.
2118 *
2119 * For nested:
2120 * The handling of the MSR bitmap for L2 guests is done in
2121 * nested_vmx_prepare_msr_bitmap. We should not touch the
2122 * vmcs02.msr_bitmap here since it gets completely overwritten
2123 * in the merging.
2124 */
2125 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2126 break;
2127 case MSR_IA32_CR_PAT:
2128 if (!kvm_pat_valid(data))
2129 return 1;
2130
2131 if (is_guest_mode(vcpu) &&
2132 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2133 get_vmcs12(vcpu)->guest_ia32_pat = data;
2134
2135 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2136 vmcs_write64(GUEST_IA32_PAT, data);
2137 vcpu->arch.pat = data;
2138 break;
2139 }
2140 ret = kvm_set_msr_common(vcpu, msr_info);
2141 break;
2142 case MSR_IA32_TSC_ADJUST:
2143 ret = kvm_set_msr_common(vcpu, msr_info);
2144 break;
2145 case MSR_IA32_MCG_EXT_CTL:
2146 if ((!msr_info->host_initiated &&
2147 !(to_vmx(vcpu)->msr_ia32_feature_control &
2148 FEAT_CTL_LMCE_ENABLED)) ||
2149 (data & ~MCG_EXT_CTL_LMCE_EN))
2150 return 1;
2151 vcpu->arch.mcg_ext_ctl = data;
2152 break;
2153 case MSR_IA32_FEAT_CTL:
2154 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2155 (to_vmx(vcpu)->msr_ia32_feature_control &
2156 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2157 return 1;
2158 vmx->msr_ia32_feature_control = data;
2159 if (msr_info->host_initiated && data == 0)
2160 vmx_leave_nested(vcpu);
2161 break;
2162 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2163 if (!msr_info->host_initiated)
2164 return 1; /* they are read-only */
2165 if (!nested_vmx_allowed(vcpu))
2166 return 1;
2167 return vmx_set_vmx_msr(vcpu, msr_index, data);
2168 case MSR_IA32_RTIT_CTL:
2169 if (!vmx_pt_mode_is_host_guest() ||
2170 vmx_rtit_ctl_check(vcpu, data) ||
2171 vmx->nested.vmxon)
2172 return 1;
2173 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2174 vmx->pt_desc.guest.ctl = data;
2175 pt_update_intercept_for_msr(vcpu);
2176 break;
2177 case MSR_IA32_RTIT_STATUS:
2178 if (!pt_can_write_msr(vmx))
2179 return 1;
2180 if (data & MSR_IA32_RTIT_STATUS_MASK)
2181 return 1;
2182 vmx->pt_desc.guest.status = data;
2183 break;
2184 case MSR_IA32_RTIT_CR3_MATCH:
2185 if (!pt_can_write_msr(vmx))
2186 return 1;
2187 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2188 PT_CAP_cr3_filtering))
2189 return 1;
2190 vmx->pt_desc.guest.cr3_match = data;
2191 break;
2192 case MSR_IA32_RTIT_OUTPUT_BASE:
2193 if (!pt_can_write_msr(vmx))
2194 return 1;
2195 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2196 PT_CAP_topa_output) &&
2197 !intel_pt_validate_cap(vmx->pt_desc.caps,
2198 PT_CAP_single_range_output))
2199 return 1;
2200 if (!pt_output_base_valid(vcpu, data))
2201 return 1;
2202 vmx->pt_desc.guest.output_base = data;
2203 break;
2204 case MSR_IA32_RTIT_OUTPUT_MASK:
2205 if (!pt_can_write_msr(vmx))
2206 return 1;
2207 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2208 PT_CAP_topa_output) &&
2209 !intel_pt_validate_cap(vmx->pt_desc.caps,
2210 PT_CAP_single_range_output))
2211 return 1;
2212 vmx->pt_desc.guest.output_mask = data;
2213 break;
2214 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2215 if (!pt_can_write_msr(vmx))
2216 return 1;
2217 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2218 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2219 PT_CAP_num_address_ranges))
2220 return 1;
2221 if (is_noncanonical_address(data, vcpu))
2222 return 1;
2223 if (index % 2)
2224 vmx->pt_desc.guest.addr_b[index / 2] = data;
2225 else
2226 vmx->pt_desc.guest.addr_a[index / 2] = data;
2227 break;
2228 case MSR_TSC_AUX:
2229 if (!msr_info->host_initiated &&
2230 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2231 return 1;
2232 /* Check reserved bit, higher 32 bits should be zero */
2233 if ((data >> 32) != 0)
2234 return 1;
2235 goto find_uret_msr;
2236 case MSR_IA32_PERF_CAPABILITIES:
2237 if (data && !vcpu_to_pmu(vcpu)->version)
2238 return 1;
2239 if (data & PMU_CAP_LBR_FMT) {
2240 if ((data & PMU_CAP_LBR_FMT) !=
2241 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2242 return 1;
2243 if (!intel_pmu_lbr_is_compatible(vcpu))
2244 return 1;
2245 }
2246 ret = kvm_set_msr_common(vcpu, msr_info);
2247 break;
2248
2249 default:
2250 find_uret_msr:
2251 msr = vmx_find_uret_msr(vmx, msr_index);
2252 if (msr)
2253 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2254 else
2255 ret = kvm_set_msr_common(vcpu, msr_info);
2256 }
2257
2258 return ret;
2259 }
2260
2261 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2262 {
2263 unsigned long guest_owned_bits;
2264
2265 kvm_register_mark_available(vcpu, reg);
2266
2267 switch (reg) {
2268 case VCPU_REGS_RSP:
2269 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2270 break;
2271 case VCPU_REGS_RIP:
2272 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2273 break;
2274 case VCPU_EXREG_PDPTR:
2275 if (enable_ept)
2276 ept_save_pdptrs(vcpu);
2277 break;
2278 case VCPU_EXREG_CR0:
2279 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2280
2281 vcpu->arch.cr0 &= ~guest_owned_bits;
2282 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2283 break;
2284 case VCPU_EXREG_CR3:
2285 if (is_unrestricted_guest(vcpu) ||
2286 (enable_ept && is_paging(vcpu)))
2287 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2288 break;
2289 case VCPU_EXREG_CR4:
2290 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2291
2292 vcpu->arch.cr4 &= ~guest_owned_bits;
2293 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2294 break;
2295 default:
2296 WARN_ON_ONCE(1);
2297 break;
2298 }
2299 }
2300
2301 static __init int cpu_has_kvm_support(void)
2302 {
2303 return cpu_has_vmx();
2304 }
2305
2306 static __init int vmx_disabled_by_bios(void)
2307 {
2308 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2309 !boot_cpu_has(X86_FEATURE_VMX);
2310 }
2311
2312 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2313 {
2314 u64 msr;
2315
2316 cr4_set_bits(X86_CR4_VMXE);
2317
2318 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2319 _ASM_EXTABLE(1b, %l[fault])
2320 : : [vmxon_pointer] "m"(vmxon_pointer)
2321 : : fault);
2322 return 0;
2323
2324 fault:
2325 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2326 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2327 cr4_clear_bits(X86_CR4_VMXE);
2328
2329 return -EFAULT;
2330 }
2331
2332 static int hardware_enable(void)
2333 {
2334 int cpu = raw_smp_processor_id();
2335 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2336 int r;
2337
2338 if (cr4_read_shadow() & X86_CR4_VMXE)
2339 return -EBUSY;
2340
2341 /*
2342 * This can happen if we hot-added a CPU but failed to allocate
2343 * VP assist page for it.
2344 */
2345 if (static_branch_unlikely(&enable_evmcs) &&
2346 !hv_get_vp_assist_page(cpu))
2347 return -EFAULT;
2348
2349 intel_pt_handle_vmx(1);
2350
2351 r = kvm_cpu_vmxon(phys_addr);
2352 if (r) {
2353 intel_pt_handle_vmx(0);
2354 return r;
2355 }
2356
2357 if (enable_ept)
2358 ept_sync_global();
2359
2360 return 0;
2361 }
2362
2363 static void vmclear_local_loaded_vmcss(void)
2364 {
2365 int cpu = raw_smp_processor_id();
2366 struct loaded_vmcs *v, *n;
2367
2368 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2369 loaded_vmcss_on_cpu_link)
2370 __loaded_vmcs_clear(v);
2371 }
2372
2373 static void hardware_disable(void)
2374 {
2375 vmclear_local_loaded_vmcss();
2376
2377 if (cpu_vmxoff())
2378 kvm_spurious_fault();
2379
2380 intel_pt_handle_vmx(0);
2381 }
2382
2383 /*
2384 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2385 * directly instead of going through cpu_has(), to ensure KVM is trapping
2386 * ENCLS whenever it's supported in hardware. It does not matter whether
2387 * the host OS supports or has enabled SGX.
2388 */
2389 static bool cpu_has_sgx(void)
2390 {
2391 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2392 }
2393
2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2395 u32 msr, u32 *result)
2396 {
2397 u32 vmx_msr_low, vmx_msr_high;
2398 u32 ctl = ctl_min | ctl_opt;
2399
2400 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2401
2402 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2403 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2404
2405 /* Ensure minimum (required) set of control bits are supported. */
2406 if (ctl_min & ~ctl)
2407 return -EIO;
2408
2409 *result = ctl;
2410 return 0;
2411 }
2412
2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2414 struct vmx_capability *vmx_cap)
2415 {
2416 u32 vmx_msr_low, vmx_msr_high;
2417 u32 min, opt, min2, opt2;
2418 u32 _pin_based_exec_control = 0;
2419 u32 _cpu_based_exec_control = 0;
2420 u32 _cpu_based_2nd_exec_control = 0;
2421 u32 _vmexit_control = 0;
2422 u32 _vmentry_control = 0;
2423
2424 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2425 min = CPU_BASED_HLT_EXITING |
2426 #ifdef CONFIG_X86_64
2427 CPU_BASED_CR8_LOAD_EXITING |
2428 CPU_BASED_CR8_STORE_EXITING |
2429 #endif
2430 CPU_BASED_CR3_LOAD_EXITING |
2431 CPU_BASED_CR3_STORE_EXITING |
2432 CPU_BASED_UNCOND_IO_EXITING |
2433 CPU_BASED_MOV_DR_EXITING |
2434 CPU_BASED_USE_TSC_OFFSETTING |
2435 CPU_BASED_MWAIT_EXITING |
2436 CPU_BASED_MONITOR_EXITING |
2437 CPU_BASED_INVLPG_EXITING |
2438 CPU_BASED_RDPMC_EXITING;
2439
2440 opt = CPU_BASED_TPR_SHADOW |
2441 CPU_BASED_USE_MSR_BITMAPS |
2442 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2443 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2444 &_cpu_based_exec_control) < 0)
2445 return -EIO;
2446 #ifdef CONFIG_X86_64
2447 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2448 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2449 ~CPU_BASED_CR8_STORE_EXITING;
2450 #endif
2451 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2452 min2 = 0;
2453 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2454 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2455 SECONDARY_EXEC_WBINVD_EXITING |
2456 SECONDARY_EXEC_ENABLE_VPID |
2457 SECONDARY_EXEC_ENABLE_EPT |
2458 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2459 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2460 SECONDARY_EXEC_DESC |
2461 SECONDARY_EXEC_ENABLE_RDTSCP |
2462 SECONDARY_EXEC_ENABLE_INVPCID |
2463 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2465 SECONDARY_EXEC_SHADOW_VMCS |
2466 SECONDARY_EXEC_XSAVES |
2467 SECONDARY_EXEC_RDSEED_EXITING |
2468 SECONDARY_EXEC_RDRAND_EXITING |
2469 SECONDARY_EXEC_ENABLE_PML |
2470 SECONDARY_EXEC_TSC_SCALING |
2471 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2472 SECONDARY_EXEC_PT_USE_GPA |
2473 SECONDARY_EXEC_PT_CONCEAL_VMX |
2474 SECONDARY_EXEC_ENABLE_VMFUNC |
2475 SECONDARY_EXEC_BUS_LOCK_DETECTION;
2476 if (cpu_has_sgx())
2477 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2478 if (adjust_vmx_controls(min2, opt2,
2479 MSR_IA32_VMX_PROCBASED_CTLS2,
2480 &_cpu_based_2nd_exec_control) < 0)
2481 return -EIO;
2482 }
2483 #ifndef CONFIG_X86_64
2484 if (!(_cpu_based_2nd_exec_control &
2485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2486 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2487 #endif
2488
2489 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2490 _cpu_based_2nd_exec_control &= ~(
2491 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2492 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2493 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2494
2495 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2496 &vmx_cap->ept, &vmx_cap->vpid);
2497
2498 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2499 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2500 enabled */
2501 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2502 CPU_BASED_CR3_STORE_EXITING |
2503 CPU_BASED_INVLPG_EXITING);
2504 } else if (vmx_cap->ept) {
2505 vmx_cap->ept = 0;
2506 pr_warn_once("EPT CAP should not exist if not support "
2507 "1-setting enable EPT VM-execution control\n");
2508 }
2509 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2510 vmx_cap->vpid) {
2511 vmx_cap->vpid = 0;
2512 pr_warn_once("VPID CAP should not exist if not support "
2513 "1-setting enable VPID VM-execution control\n");
2514 }
2515
2516 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2517 #ifdef CONFIG_X86_64
2518 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2519 #endif
2520 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2521 VM_EXIT_LOAD_IA32_PAT |
2522 VM_EXIT_LOAD_IA32_EFER |
2523 VM_EXIT_CLEAR_BNDCFGS |
2524 VM_EXIT_PT_CONCEAL_PIP |
2525 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2526 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2527 &_vmexit_control) < 0)
2528 return -EIO;
2529
2530 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2531 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2532 PIN_BASED_VMX_PREEMPTION_TIMER;
2533 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2534 &_pin_based_exec_control) < 0)
2535 return -EIO;
2536
2537 if (cpu_has_broken_vmx_preemption_timer())
2538 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2539 if (!(_cpu_based_2nd_exec_control &
2540 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2541 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2542
2543 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2544 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2545 VM_ENTRY_LOAD_IA32_PAT |
2546 VM_ENTRY_LOAD_IA32_EFER |
2547 VM_ENTRY_LOAD_BNDCFGS |
2548 VM_ENTRY_PT_CONCEAL_PIP |
2549 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2550 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2551 &_vmentry_control) < 0)
2552 return -EIO;
2553
2554 /*
2555 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556 * can't be used due to an errata where VM Exit may incorrectly clear
2557 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2558 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559 */
2560 if (boot_cpu_data.x86 == 0x6) {
2561 switch (boot_cpu_data.x86_model) {
2562 case 26: /* AAK155 */
2563 case 30: /* AAP115 */
2564 case 37: /* AAT100 */
2565 case 44: /* BC86,AAY89,BD102 */
2566 case 46: /* BA97 */
2567 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2568 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2569 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2570 "does not work properly. Using workaround\n");
2571 break;
2572 default:
2573 break;
2574 }
2575 }
2576
2577
2578 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2579
2580 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2582 return -EIO;
2583
2584 #ifdef CONFIG_X86_64
2585 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586 if (vmx_msr_high & (1u<<16))
2587 return -EIO;
2588 #endif
2589
2590 /* Require Write-Back (WB) memory type for VMCS accesses. */
2591 if (((vmx_msr_high >> 18) & 15) != 6)
2592 return -EIO;
2593
2594 vmcs_conf->size = vmx_msr_high & 0x1fff;
2595 vmcs_conf->order = get_order(vmcs_conf->size);
2596 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2597
2598 vmcs_conf->revision_id = vmx_msr_low;
2599
2600 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2601 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2602 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2603 vmcs_conf->vmexit_ctrl = _vmexit_control;
2604 vmcs_conf->vmentry_ctrl = _vmentry_control;
2605
2606 #if IS_ENABLED(CONFIG_HYPERV)
2607 if (enlightened_vmcs)
2608 evmcs_sanitize_exec_ctrls(vmcs_conf);
2609 #endif
2610
2611 return 0;
2612 }
2613
2614 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2615 {
2616 int node = cpu_to_node(cpu);
2617 struct page *pages;
2618 struct vmcs *vmcs;
2619
2620 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2621 if (!pages)
2622 return NULL;
2623 vmcs = page_address(pages);
2624 memset(vmcs, 0, vmcs_config.size);
2625
2626 /* KVM supports Enlightened VMCS v1 only */
2627 if (static_branch_unlikely(&enable_evmcs))
2628 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2629 else
2630 vmcs->hdr.revision_id = vmcs_config.revision_id;
2631
2632 if (shadow)
2633 vmcs->hdr.shadow_vmcs = 1;
2634 return vmcs;
2635 }
2636
2637 void free_vmcs(struct vmcs *vmcs)
2638 {
2639 free_pages((unsigned long)vmcs, vmcs_config.order);
2640 }
2641
2642 /*
2643 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2644 */
2645 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2646 {
2647 if (!loaded_vmcs->vmcs)
2648 return;
2649 loaded_vmcs_clear(loaded_vmcs);
2650 free_vmcs(loaded_vmcs->vmcs);
2651 loaded_vmcs->vmcs = NULL;
2652 if (loaded_vmcs->msr_bitmap)
2653 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2654 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2655 }
2656
2657 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2658 {
2659 loaded_vmcs->vmcs = alloc_vmcs(false);
2660 if (!loaded_vmcs->vmcs)
2661 return -ENOMEM;
2662
2663 vmcs_clear(loaded_vmcs->vmcs);
2664
2665 loaded_vmcs->shadow_vmcs = NULL;
2666 loaded_vmcs->hv_timer_soft_disabled = false;
2667 loaded_vmcs->cpu = -1;
2668 loaded_vmcs->launched = 0;
2669
2670 if (cpu_has_vmx_msr_bitmap()) {
2671 loaded_vmcs->msr_bitmap = (unsigned long *)
2672 __get_free_page(GFP_KERNEL_ACCOUNT);
2673 if (!loaded_vmcs->msr_bitmap)
2674 goto out_vmcs;
2675 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2676
2677 if (IS_ENABLED(CONFIG_HYPERV) &&
2678 static_branch_unlikely(&enable_evmcs) &&
2679 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2680 struct hv_enlightened_vmcs *evmcs =
2681 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2682
2683 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2684 }
2685 }
2686
2687 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2688 memset(&loaded_vmcs->controls_shadow, 0,
2689 sizeof(struct vmcs_controls_shadow));
2690
2691 return 0;
2692
2693 out_vmcs:
2694 free_loaded_vmcs(loaded_vmcs);
2695 return -ENOMEM;
2696 }
2697
2698 static void free_kvm_area(void)
2699 {
2700 int cpu;
2701
2702 for_each_possible_cpu(cpu) {
2703 free_vmcs(per_cpu(vmxarea, cpu));
2704 per_cpu(vmxarea, cpu) = NULL;
2705 }
2706 }
2707
2708 static __init int alloc_kvm_area(void)
2709 {
2710 int cpu;
2711
2712 for_each_possible_cpu(cpu) {
2713 struct vmcs *vmcs;
2714
2715 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2716 if (!vmcs) {
2717 free_kvm_area();
2718 return -ENOMEM;
2719 }
2720
2721 /*
2722 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2723 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2724 * revision_id reported by MSR_IA32_VMX_BASIC.
2725 *
2726 * However, even though not explicitly documented by
2727 * TLFS, VMXArea passed as VMXON argument should
2728 * still be marked with revision_id reported by
2729 * physical CPU.
2730 */
2731 if (static_branch_unlikely(&enable_evmcs))
2732 vmcs->hdr.revision_id = vmcs_config.revision_id;
2733
2734 per_cpu(vmxarea, cpu) = vmcs;
2735 }
2736 return 0;
2737 }
2738
2739 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2740 struct kvm_segment *save)
2741 {
2742 if (!emulate_invalid_guest_state) {
2743 /*
2744 * CS and SS RPL should be equal during guest entry according
2745 * to VMX spec, but in reality it is not always so. Since vcpu
2746 * is in the middle of the transition from real mode to
2747 * protected mode it is safe to assume that RPL 0 is a good
2748 * default value.
2749 */
2750 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2751 save->selector &= ~SEGMENT_RPL_MASK;
2752 save->dpl = save->selector & SEGMENT_RPL_MASK;
2753 save->s = 1;
2754 }
2755 vmx_set_segment(vcpu, save, seg);
2756 }
2757
2758 static void enter_pmode(struct kvm_vcpu *vcpu)
2759 {
2760 unsigned long flags;
2761 struct vcpu_vmx *vmx = to_vmx(vcpu);
2762
2763 /*
2764 * Update real mode segment cache. It may be not up-to-date if sement
2765 * register was written while vcpu was in a guest mode.
2766 */
2767 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2768 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2769 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2770 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2771 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2772 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2773
2774 vmx->rmode.vm86_active = 0;
2775
2776 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2777
2778 flags = vmcs_readl(GUEST_RFLAGS);
2779 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2780 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2781 vmcs_writel(GUEST_RFLAGS, flags);
2782
2783 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2784 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2785
2786 vmx_update_exception_bitmap(vcpu);
2787
2788 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2789 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2790 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2791 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2792 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2793 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2794 }
2795
2796 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2797 {
2798 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2799 struct kvm_segment var = *save;
2800
2801 var.dpl = 0x3;
2802 if (seg == VCPU_SREG_CS)
2803 var.type = 0x3;
2804
2805 if (!emulate_invalid_guest_state) {
2806 var.selector = var.base >> 4;
2807 var.base = var.base & 0xffff0;
2808 var.limit = 0xffff;
2809 var.g = 0;
2810 var.db = 0;
2811 var.present = 1;
2812 var.s = 1;
2813 var.l = 0;
2814 var.unusable = 0;
2815 var.type = 0x3;
2816 var.avl = 0;
2817 if (save->base & 0xf)
2818 printk_once(KERN_WARNING "kvm: segment base is not "
2819 "paragraph aligned when entering "
2820 "protected mode (seg=%d)", seg);
2821 }
2822
2823 vmcs_write16(sf->selector, var.selector);
2824 vmcs_writel(sf->base, var.base);
2825 vmcs_write32(sf->limit, var.limit);
2826 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2827 }
2828
2829 static void enter_rmode(struct kvm_vcpu *vcpu)
2830 {
2831 unsigned long flags;
2832 struct vcpu_vmx *vmx = to_vmx(vcpu);
2833 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2834
2835 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2836 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2837 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2838 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2839 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2840 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2841 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2842
2843 vmx->rmode.vm86_active = 1;
2844
2845 /*
2846 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2847 * vcpu. Warn the user that an update is overdue.
2848 */
2849 if (!kvm_vmx->tss_addr)
2850 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2851 "called before entering vcpu\n");
2852
2853 vmx_segment_cache_clear(vmx);
2854
2855 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2856 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2857 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2858
2859 flags = vmcs_readl(GUEST_RFLAGS);
2860 vmx->rmode.save_rflags = flags;
2861
2862 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2863
2864 vmcs_writel(GUEST_RFLAGS, flags);
2865 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2866 vmx_update_exception_bitmap(vcpu);
2867
2868 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2869 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2870 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2871 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2872 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2873 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2874
2875 kvm_mmu_reset_context(vcpu);
2876 }
2877
2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2879 {
2880 struct vcpu_vmx *vmx = to_vmx(vcpu);
2881 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2882
2883 /* Nothing to do if hardware doesn't support EFER. */
2884 if (!msr)
2885 return 0;
2886
2887 vcpu->arch.efer = efer;
2888 if (efer & EFER_LMA) {
2889 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2890 msr->data = efer;
2891 } else {
2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893
2894 msr->data = efer & ~EFER_LME;
2895 }
2896 setup_msrs(vmx);
2897 return 0;
2898 }
2899
2900 #ifdef CONFIG_X86_64
2901
2902 static void enter_lmode(struct kvm_vcpu *vcpu)
2903 {
2904 u32 guest_tr_ar;
2905
2906 vmx_segment_cache_clear(to_vmx(vcpu));
2907
2908 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2909 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2910 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2911 __func__);
2912 vmcs_write32(GUEST_TR_AR_BYTES,
2913 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2914 | VMX_AR_TYPE_BUSY_64_TSS);
2915 }
2916 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2917 }
2918
2919 static void exit_lmode(struct kvm_vcpu *vcpu)
2920 {
2921 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2922 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2923 }
2924
2925 #endif
2926
2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2928 {
2929 struct vcpu_vmx *vmx = to_vmx(vcpu);
2930
2931 /*
2932 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2933 * the CPU is not required to invalidate guest-physical mappings on
2934 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2935 * associated with the root EPT structure and not any particular VPID
2936 * (INVVPID also isn't required to invalidate guest-physical mappings).
2937 */
2938 if (enable_ept) {
2939 ept_sync_global();
2940 } else if (enable_vpid) {
2941 if (cpu_has_vmx_invvpid_global()) {
2942 vpid_sync_vcpu_global();
2943 } else {
2944 vpid_sync_vcpu_single(vmx->vpid);
2945 vpid_sync_vcpu_single(vmx->nested.vpid02);
2946 }
2947 }
2948 }
2949
2950 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2951 {
2952 struct kvm_mmu *mmu = vcpu->arch.mmu;
2953 u64 root_hpa = mmu->root_hpa;
2954
2955 /* No flush required if the current context is invalid. */
2956 if (!VALID_PAGE(root_hpa))
2957 return;
2958
2959 if (enable_ept)
2960 ept_sync_context(construct_eptp(vcpu, root_hpa,
2961 mmu->shadow_root_level));
2962 else if (!is_guest_mode(vcpu))
2963 vpid_sync_context(to_vmx(vcpu)->vpid);
2964 else
2965 vpid_sync_context(nested_get_vpid02(vcpu));
2966 }
2967
2968 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2969 {
2970 /*
2971 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2972 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2973 */
2974 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2975 }
2976
2977 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2978 {
2979 /*
2980 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2981 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
2982 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2983 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2984 * i.e. no explicit INVVPID is necessary.
2985 */
2986 vpid_sync_context(to_vmx(vcpu)->vpid);
2987 }
2988
2989 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2990 {
2991 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2992
2993 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2994 return;
2995
2996 if (is_pae_paging(vcpu)) {
2997 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2998 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2999 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3000 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3001 }
3002 }
3003
3004 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3005 {
3006 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3007
3008 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3009 return;
3010
3011 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3012 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3013 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3014 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3015
3016 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3017 }
3018
3019 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3020 unsigned long cr0,
3021 struct kvm_vcpu *vcpu)
3022 {
3023 struct vcpu_vmx *vmx = to_vmx(vcpu);
3024
3025 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3026 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3027 if (!(cr0 & X86_CR0_PG)) {
3028 /* From paging/starting to nonpaging */
3029 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3030 CPU_BASED_CR3_STORE_EXITING);
3031 vcpu->arch.cr0 = cr0;
3032 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3033 } else if (!is_paging(vcpu)) {
3034 /* From nonpaging to paging */
3035 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3036 CPU_BASED_CR3_STORE_EXITING);
3037 vcpu->arch.cr0 = cr0;
3038 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3039 }
3040
3041 if (!(cr0 & X86_CR0_WP))
3042 *hw_cr0 &= ~X86_CR0_WP;
3043 }
3044
3045 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3046 {
3047 struct vcpu_vmx *vmx = to_vmx(vcpu);
3048 unsigned long hw_cr0;
3049
3050 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3051 if (is_unrestricted_guest(vcpu))
3052 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3053 else {
3054 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3055
3056 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3057 enter_pmode(vcpu);
3058
3059 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3060 enter_rmode(vcpu);
3061 }
3062
3063 #ifdef CONFIG_X86_64
3064 if (vcpu->arch.efer & EFER_LME) {
3065 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3066 enter_lmode(vcpu);
3067 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3068 exit_lmode(vcpu);
3069 }
3070 #endif
3071
3072 if (enable_ept && !is_unrestricted_guest(vcpu))
3073 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3074
3075 vmcs_writel(CR0_READ_SHADOW, cr0);
3076 vmcs_writel(GUEST_CR0, hw_cr0);
3077 vcpu->arch.cr0 = cr0;
3078 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3079
3080 /* depends on vcpu->arch.cr0 to be set to a new value */
3081 vmx->emulation_required = emulation_required(vcpu);
3082 }
3083
3084 static int vmx_get_max_tdp_level(void)
3085 {
3086 if (cpu_has_vmx_ept_5levels())
3087 return 5;
3088 return 4;
3089 }
3090
3091 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3092 int root_level)
3093 {
3094 u64 eptp = VMX_EPTP_MT_WB;
3095
3096 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3097
3098 if (enable_ept_ad_bits &&
3099 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3100 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3101 eptp |= (root_hpa & PAGE_MASK);
3102
3103 return eptp;
3104 }
3105
3106 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3107 int pgd_level)
3108 {
3109 struct kvm *kvm = vcpu->kvm;
3110 bool update_guest_cr3 = true;
3111 unsigned long guest_cr3;
3112 u64 eptp;
3113
3114 if (enable_ept) {
3115 eptp = construct_eptp(vcpu, pgd, pgd_level);
3116 vmcs_write64(EPT_POINTER, eptp);
3117
3118 if (kvm_x86_ops.tlb_remote_flush) {
3119 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3120 to_vmx(vcpu)->ept_pointer = eptp;
3121 to_kvm_vmx(kvm)->ept_pointers_match
3122 = EPT_POINTERS_CHECK;
3123 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3124 }
3125
3126 if (!enable_unrestricted_guest && !is_paging(vcpu))
3127 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3128 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3129 guest_cr3 = vcpu->arch.cr3;
3130 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3131 update_guest_cr3 = false;
3132 vmx_ept_load_pdptrs(vcpu);
3133 } else {
3134 guest_cr3 = pgd;
3135 }
3136
3137 if (update_guest_cr3)
3138 vmcs_writel(GUEST_CR3, guest_cr3);
3139 }
3140
3141 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3142 {
3143 /*
3144 * We operate under the default treatment of SMM, so VMX cannot be
3145 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3146 * handled by kvm_is_valid_cr4().
3147 */
3148 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3149 return false;
3150
3151 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3152 return false;
3153
3154 return true;
3155 }
3156
3157 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3158 {
3159 unsigned long old_cr4 = vcpu->arch.cr4;
3160 struct vcpu_vmx *vmx = to_vmx(vcpu);
3161 /*
3162 * Pass through host's Machine Check Enable value to hw_cr4, which
3163 * is in force while we are in guest mode. Do not let guests control
3164 * this bit, even if host CR4.MCE == 0.
3165 */
3166 unsigned long hw_cr4;
3167
3168 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3169 if (is_unrestricted_guest(vcpu))
3170 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3171 else if (vmx->rmode.vm86_active)
3172 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3173 else
3174 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3175
3176 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3177 if (cr4 & X86_CR4_UMIP) {
3178 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3179 hw_cr4 &= ~X86_CR4_UMIP;
3180 } else if (!is_guest_mode(vcpu) ||
3181 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3182 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3183 }
3184 }
3185
3186 vcpu->arch.cr4 = cr4;
3187 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3188
3189 if (!is_unrestricted_guest(vcpu)) {
3190 if (enable_ept) {
3191 if (!is_paging(vcpu)) {
3192 hw_cr4 &= ~X86_CR4_PAE;
3193 hw_cr4 |= X86_CR4_PSE;
3194 } else if (!(cr4 & X86_CR4_PAE)) {
3195 hw_cr4 &= ~X86_CR4_PAE;
3196 }
3197 }
3198
3199 /*
3200 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3201 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3202 * to be manually disabled when guest switches to non-paging
3203 * mode.
3204 *
3205 * If !enable_unrestricted_guest, the CPU is always running
3206 * with CR0.PG=1 and CR4 needs to be modified.
3207 * If enable_unrestricted_guest, the CPU automatically
3208 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3209 */
3210 if (!is_paging(vcpu))
3211 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3212 }
3213
3214 vmcs_writel(CR4_READ_SHADOW, cr4);
3215 vmcs_writel(GUEST_CR4, hw_cr4);
3216
3217 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3218 kvm_update_cpuid_runtime(vcpu);
3219 }
3220
3221 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3222 {
3223 struct vcpu_vmx *vmx = to_vmx(vcpu);
3224 u32 ar;
3225
3226 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3227 *var = vmx->rmode.segs[seg];
3228 if (seg == VCPU_SREG_TR
3229 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3230 return;
3231 var->base = vmx_read_guest_seg_base(vmx, seg);
3232 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3233 return;
3234 }
3235 var->base = vmx_read_guest_seg_base(vmx, seg);
3236 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3237 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3238 ar = vmx_read_guest_seg_ar(vmx, seg);
3239 var->unusable = (ar >> 16) & 1;
3240 var->type = ar & 15;
3241 var->s = (ar >> 4) & 1;
3242 var->dpl = (ar >> 5) & 3;
3243 /*
3244 * Some userspaces do not preserve unusable property. Since usable
3245 * segment has to be present according to VMX spec we can use present
3246 * property to amend userspace bug by making unusable segment always
3247 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3248 * segment as unusable.
3249 */
3250 var->present = !var->unusable;
3251 var->avl = (ar >> 12) & 1;
3252 var->l = (ar >> 13) & 1;
3253 var->db = (ar >> 14) & 1;
3254 var->g = (ar >> 15) & 1;
3255 }
3256
3257 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3258 {
3259 struct kvm_segment s;
3260
3261 if (to_vmx(vcpu)->rmode.vm86_active) {
3262 vmx_get_segment(vcpu, &s, seg);
3263 return s.base;
3264 }
3265 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3266 }
3267
3268 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3269 {
3270 struct vcpu_vmx *vmx = to_vmx(vcpu);
3271
3272 if (unlikely(vmx->rmode.vm86_active))
3273 return 0;
3274 else {
3275 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3276 return VMX_AR_DPL(ar);
3277 }
3278 }
3279
3280 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3281 {
3282 u32 ar;
3283
3284 if (var->unusable || !var->present)
3285 ar = 1 << 16;
3286 else {
3287 ar = var->type & 15;
3288 ar |= (var->s & 1) << 4;
3289 ar |= (var->dpl & 3) << 5;
3290 ar |= (var->present & 1) << 7;
3291 ar |= (var->avl & 1) << 12;
3292 ar |= (var->l & 1) << 13;
3293 ar |= (var->db & 1) << 14;
3294 ar |= (var->g & 1) << 15;
3295 }
3296
3297 return ar;
3298 }
3299
3300 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3301 {
3302 struct vcpu_vmx *vmx = to_vmx(vcpu);
3303 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3304
3305 vmx_segment_cache_clear(vmx);
3306
3307 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3308 vmx->rmode.segs[seg] = *var;
3309 if (seg == VCPU_SREG_TR)
3310 vmcs_write16(sf->selector, var->selector);
3311 else if (var->s)
3312 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3313 goto out;
3314 }
3315
3316 vmcs_writel(sf->base, var->base);
3317 vmcs_write32(sf->limit, var->limit);
3318 vmcs_write16(sf->selector, var->selector);
3319
3320 /*
3321 * Fix the "Accessed" bit in AR field of segment registers for older
3322 * qemu binaries.
3323 * IA32 arch specifies that at the time of processor reset the
3324 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3325 * is setting it to 0 in the userland code. This causes invalid guest
3326 * state vmexit when "unrestricted guest" mode is turned on.
3327 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3328 * tree. Newer qemu binaries with that qemu fix would not need this
3329 * kvm hack.
3330 */
3331 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3332 var->type |= 0x1; /* Accessed */
3333
3334 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3335
3336 out:
3337 vmx->emulation_required = emulation_required(vcpu);
3338 }
3339
3340 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3341 {
3342 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3343
3344 *db = (ar >> 14) & 1;
3345 *l = (ar >> 13) & 1;
3346 }
3347
3348 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3349 {
3350 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3351 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3352 }
3353
3354 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3355 {
3356 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3357 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3358 }
3359
3360 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3361 {
3362 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3363 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3364 }
3365
3366 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3367 {
3368 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3369 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3370 }
3371
3372 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3373 {
3374 struct kvm_segment var;
3375 u32 ar;
3376
3377 vmx_get_segment(vcpu, &var, seg);
3378 var.dpl = 0x3;
3379 if (seg == VCPU_SREG_CS)
3380 var.type = 0x3;
3381 ar = vmx_segment_access_rights(&var);
3382
3383 if (var.base != (var.selector << 4))
3384 return false;
3385 if (var.limit != 0xffff)
3386 return false;
3387 if (ar != 0xf3)
3388 return false;
3389
3390 return true;
3391 }
3392
3393 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395 struct kvm_segment cs;
3396 unsigned int cs_rpl;
3397
3398 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3399 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3400
3401 if (cs.unusable)
3402 return false;
3403 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3404 return false;
3405 if (!cs.s)
3406 return false;
3407 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3408 if (cs.dpl > cs_rpl)
3409 return false;
3410 } else {
3411 if (cs.dpl != cs_rpl)
3412 return false;
3413 }
3414 if (!cs.present)
3415 return false;
3416
3417 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3418 return true;
3419 }
3420
3421 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3422 {
3423 struct kvm_segment ss;
3424 unsigned int ss_rpl;
3425
3426 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3427 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3428
3429 if (ss.unusable)
3430 return true;
3431 if (ss.type != 3 && ss.type != 7)
3432 return false;
3433 if (!ss.s)
3434 return false;
3435 if (ss.dpl != ss_rpl) /* DPL != RPL */
3436 return false;
3437 if (!ss.present)
3438 return false;
3439
3440 return true;
3441 }
3442
3443 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3444 {
3445 struct kvm_segment var;
3446 unsigned int rpl;
3447
3448 vmx_get_segment(vcpu, &var, seg);
3449 rpl = var.selector & SEGMENT_RPL_MASK;
3450
3451 if (var.unusable)
3452 return true;
3453 if (!var.s)
3454 return false;
3455 if (!var.present)
3456 return false;
3457 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3458 if (var.dpl < rpl) /* DPL < RPL */
3459 return false;
3460 }
3461
3462 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3463 * rights flags
3464 */
3465 return true;
3466 }
3467
3468 static bool tr_valid(struct kvm_vcpu *vcpu)
3469 {
3470 struct kvm_segment tr;
3471
3472 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3473
3474 if (tr.unusable)
3475 return false;
3476 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3477 return false;
3478 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3479 return false;
3480 if (!tr.present)
3481 return false;
3482
3483 return true;
3484 }
3485
3486 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3487 {
3488 struct kvm_segment ldtr;
3489
3490 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3491
3492 if (ldtr.unusable)
3493 return true;
3494 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3495 return false;
3496 if (ldtr.type != 2)
3497 return false;
3498 if (!ldtr.present)
3499 return false;
3500
3501 return true;
3502 }
3503
3504 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3505 {
3506 struct kvm_segment cs, ss;
3507
3508 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3509 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3510
3511 return ((cs.selector & SEGMENT_RPL_MASK) ==
3512 (ss.selector & SEGMENT_RPL_MASK));
3513 }
3514
3515 /*
3516 * Check if guest state is valid. Returns true if valid, false if
3517 * not.
3518 * We assume that registers are always usable
3519 */
3520 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3521 {
3522 /* real mode guest state checks */
3523 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3524 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3525 return false;
3526 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3527 return false;
3528 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3529 return false;
3530 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3531 return false;
3532 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3533 return false;
3534 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3535 return false;
3536 } else {
3537 /* protected mode guest state checks */
3538 if (!cs_ss_rpl_check(vcpu))
3539 return false;
3540 if (!code_segment_valid(vcpu))
3541 return false;
3542 if (!stack_segment_valid(vcpu))
3543 return false;
3544 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3545 return false;
3546 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3547 return false;
3548 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3549 return false;
3550 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3551 return false;
3552 if (!tr_valid(vcpu))
3553 return false;
3554 if (!ldtr_valid(vcpu))
3555 return false;
3556 }
3557 /* TODO:
3558 * - Add checks on RIP
3559 * - Add checks on RFLAGS
3560 */
3561
3562 return true;
3563 }
3564
3565 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3566 {
3567 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3568 u16 data;
3569 int i;
3570
3571 for (i = 0; i < 3; i++) {
3572 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3573 return -EFAULT;
3574 }
3575
3576 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3577 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3578 return -EFAULT;
3579
3580 data = ~0;
3581 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3582 return -EFAULT;
3583
3584 return 0;
3585 }
3586
3587 static int init_rmode_identity_map(struct kvm *kvm)
3588 {
3589 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3590 int i, r = 0;
3591 void __user *uaddr;
3592 u32 tmp;
3593
3594 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3595 mutex_lock(&kvm->slots_lock);
3596
3597 if (likely(kvm_vmx->ept_identity_pagetable_done))
3598 goto out;
3599
3600 if (!kvm_vmx->ept_identity_map_addr)
3601 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3602
3603 uaddr = __x86_set_memory_region(kvm,
3604 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3605 kvm_vmx->ept_identity_map_addr,
3606 PAGE_SIZE);
3607 if (IS_ERR(uaddr)) {
3608 r = PTR_ERR(uaddr);
3609 goto out;
3610 }
3611
3612 /* Set up identity-mapping pagetable for EPT in real mode */
3613 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3614 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3615 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3616 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3617 r = -EFAULT;
3618 goto out;
3619 }
3620 }
3621 kvm_vmx->ept_identity_pagetable_done = true;
3622
3623 out:
3624 mutex_unlock(&kvm->slots_lock);
3625 return r;
3626 }
3627
3628 static void seg_setup(int seg)
3629 {
3630 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3631 unsigned int ar;
3632
3633 vmcs_write16(sf->selector, 0);
3634 vmcs_writel(sf->base, 0);
3635 vmcs_write32(sf->limit, 0xffff);
3636 ar = 0x93;
3637 if (seg == VCPU_SREG_CS)
3638 ar |= 0x08; /* code segment */
3639
3640 vmcs_write32(sf->ar_bytes, ar);
3641 }
3642
3643 static int alloc_apic_access_page(struct kvm *kvm)
3644 {
3645 struct page *page;
3646 void __user *hva;
3647 int ret = 0;
3648
3649 mutex_lock(&kvm->slots_lock);
3650 if (kvm->arch.apic_access_page_done)
3651 goto out;
3652 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3653 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3654 if (IS_ERR(hva)) {
3655 ret = PTR_ERR(hva);
3656 goto out;
3657 }
3658
3659 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3660 if (is_error_page(page)) {
3661 ret = -EFAULT;
3662 goto out;
3663 }
3664
3665 /*
3666 * Do not pin the page in memory, so that memory hot-unplug
3667 * is able to migrate it.
3668 */
3669 put_page(page);
3670 kvm->arch.apic_access_page_done = true;
3671 out:
3672 mutex_unlock(&kvm->slots_lock);
3673 return ret;
3674 }
3675
3676 int allocate_vpid(void)
3677 {
3678 int vpid;
3679
3680 if (!enable_vpid)
3681 return 0;
3682 spin_lock(&vmx_vpid_lock);
3683 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3684 if (vpid < VMX_NR_VPIDS)
3685 __set_bit(vpid, vmx_vpid_bitmap);
3686 else
3687 vpid = 0;
3688 spin_unlock(&vmx_vpid_lock);
3689 return vpid;
3690 }
3691
3692 void free_vpid(int vpid)
3693 {
3694 if (!enable_vpid || vpid == 0)
3695 return;
3696 spin_lock(&vmx_vpid_lock);
3697 __clear_bit(vpid, vmx_vpid_bitmap);
3698 spin_unlock(&vmx_vpid_lock);
3699 }
3700
3701 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3702 {
3703 int f = sizeof(unsigned long);
3704
3705 if (msr <= 0x1fff)
3706 __clear_bit(msr, msr_bitmap + 0x000 / f);
3707 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3708 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3709 }
3710
3711 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3712 {
3713 int f = sizeof(unsigned long);
3714
3715 if (msr <= 0x1fff)
3716 __clear_bit(msr, msr_bitmap + 0x800 / f);
3717 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3718 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3719 }
3720
3721 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3722 {
3723 int f = sizeof(unsigned long);
3724
3725 if (msr <= 0x1fff)
3726 __set_bit(msr, msr_bitmap + 0x000 / f);
3727 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3728 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3729 }
3730
3731 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3732 {
3733 int f = sizeof(unsigned long);
3734
3735 if (msr <= 0x1fff)
3736 __set_bit(msr, msr_bitmap + 0x800 / f);
3737 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3738 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3739 }
3740
3741 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3742 u32 msr, int type)
3743 {
3744 struct vcpu_vmx *vmx = to_vmx(vcpu);
3745 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3746
3747 if (!cpu_has_vmx_msr_bitmap())
3748 return;
3749
3750 if (static_branch_unlikely(&enable_evmcs))
3751 evmcs_touch_msr_bitmap();
3752
3753 /*
3754 * Mark the desired intercept state in shadow bitmap, this is needed
3755 * for resync when the MSR filters change.
3756 */
3757 if (is_valid_passthrough_msr(msr)) {
3758 int idx = possible_passthrough_msr_slot(msr);
3759
3760 if (idx != -ENOENT) {
3761 if (type & MSR_TYPE_R)
3762 clear_bit(idx, vmx->shadow_msr_intercept.read);
3763 if (type & MSR_TYPE_W)
3764 clear_bit(idx, vmx->shadow_msr_intercept.write);
3765 }
3766 }
3767
3768 if ((type & MSR_TYPE_R) &&
3769 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3770 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3771 type &= ~MSR_TYPE_R;
3772 }
3773
3774 if ((type & MSR_TYPE_W) &&
3775 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3776 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3777 type &= ~MSR_TYPE_W;
3778 }
3779
3780 if (type & MSR_TYPE_R)
3781 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3782
3783 if (type & MSR_TYPE_W)
3784 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3785 }
3786
3787 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3788 u32 msr, int type)
3789 {
3790 struct vcpu_vmx *vmx = to_vmx(vcpu);
3791 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792
3793 if (!cpu_has_vmx_msr_bitmap())
3794 return;
3795
3796 if (static_branch_unlikely(&enable_evmcs))
3797 evmcs_touch_msr_bitmap();
3798
3799 /*
3800 * Mark the desired intercept state in shadow bitmap, this is needed
3801 * for resync when the MSR filter changes.
3802 */
3803 if (is_valid_passthrough_msr(msr)) {
3804 int idx = possible_passthrough_msr_slot(msr);
3805
3806 if (idx != -ENOENT) {
3807 if (type & MSR_TYPE_R)
3808 set_bit(idx, vmx->shadow_msr_intercept.read);
3809 if (type & MSR_TYPE_W)
3810 set_bit(idx, vmx->shadow_msr_intercept.write);
3811 }
3812 }
3813
3814 if (type & MSR_TYPE_R)
3815 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3816
3817 if (type & MSR_TYPE_W)
3818 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3819 }
3820
3821 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3822 u32 msr, int type, bool value)
3823 {
3824 if (value)
3825 vmx_enable_intercept_for_msr(vcpu, msr, type);
3826 else
3827 vmx_disable_intercept_for_msr(vcpu, msr, type);
3828 }
3829
3830 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3831 {
3832 u8 mode = 0;
3833
3834 if (cpu_has_secondary_exec_ctrls() &&
3835 (secondary_exec_controls_get(to_vmx(vcpu)) &
3836 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3837 mode |= MSR_BITMAP_MODE_X2APIC;
3838 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3839 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3840 }
3841
3842 return mode;
3843 }
3844
3845 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3846 {
3847 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3848 unsigned long read_intercept;
3849 int msr;
3850
3851 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3852
3853 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3854 unsigned int read_idx = msr / BITS_PER_LONG;
3855 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3856
3857 msr_bitmap[read_idx] = read_intercept;
3858 msr_bitmap[write_idx] = ~0ul;
3859 }
3860 }
3861
3862 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3863 {
3864 if (!cpu_has_vmx_msr_bitmap())
3865 return;
3866
3867 vmx_reset_x2apic_msrs(vcpu, mode);
3868
3869 /*
3870 * TPR reads and writes can be virtualized even if virtual interrupt
3871 * delivery is not in use.
3872 */
3873 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3874 !(mode & MSR_BITMAP_MODE_X2APIC));
3875
3876 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3877 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3878 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3879 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3880 }
3881 }
3882
3883 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3884 {
3885 struct vcpu_vmx *vmx = to_vmx(vcpu);
3886 u8 mode = vmx_msr_bitmap_mode(vcpu);
3887 u8 changed = mode ^ vmx->msr_bitmap_mode;
3888
3889 if (!changed)
3890 return;
3891
3892 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3893 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3894
3895 vmx->msr_bitmap_mode = mode;
3896 }
3897
3898 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3899 {
3900 struct vcpu_vmx *vmx = to_vmx(vcpu);
3901 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3902 u32 i;
3903
3904 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3905 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3906 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3907 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3908 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3909 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3910 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3911 }
3912 }
3913
3914 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3915 {
3916 struct vcpu_vmx *vmx = to_vmx(vcpu);
3917 void *vapic_page;
3918 u32 vppr;
3919 int rvi;
3920
3921 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3922 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3923 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3924 return false;
3925
3926 rvi = vmx_get_rvi();
3927
3928 vapic_page = vmx->nested.virtual_apic_map.hva;
3929 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3930
3931 return ((rvi & 0xf0) > (vppr & 0xf0));
3932 }
3933
3934 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3935 {
3936 struct vcpu_vmx *vmx = to_vmx(vcpu);
3937 u32 i;
3938
3939 /*
3940 * Set intercept permissions for all potentially passed through MSRs
3941 * again. They will automatically get filtered through the MSR filter,
3942 * so we are back in sync after this.
3943 */
3944 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3945 u32 msr = vmx_possible_passthrough_msrs[i];
3946 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3947 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3948
3949 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3950 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3951 }
3952
3953 pt_update_intercept_for_msr(vcpu);
3954 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3955 }
3956
3957 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3958 bool nested)
3959 {
3960 #ifdef CONFIG_SMP
3961 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3962
3963 if (vcpu->mode == IN_GUEST_MODE) {
3964 /*
3965 * The vector of interrupt to be delivered to vcpu had
3966 * been set in PIR before this function.
3967 *
3968 * Following cases will be reached in this block, and
3969 * we always send a notification event in all cases as
3970 * explained below.
3971 *
3972 * Case 1: vcpu keeps in non-root mode. Sending a
3973 * notification event posts the interrupt to vcpu.
3974 *
3975 * Case 2: vcpu exits to root mode and is still
3976 * runnable. PIR will be synced to vIRR before the
3977 * next vcpu entry. Sending a notification event in
3978 * this case has no effect, as vcpu is not in root
3979 * mode.
3980 *
3981 * Case 3: vcpu exits to root mode and is blocked.
3982 * vcpu_block() has already synced PIR to vIRR and
3983 * never blocks vcpu if vIRR is not cleared. Therefore,
3984 * a blocked vcpu here does not wait for any requested
3985 * interrupts in PIR, and sending a notification event
3986 * which has no effect is safe here.
3987 */
3988
3989 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3990 return true;
3991 }
3992 #endif
3993 return false;
3994 }
3995
3996 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3997 int vector)
3998 {
3999 struct vcpu_vmx *vmx = to_vmx(vcpu);
4000
4001 if (is_guest_mode(vcpu) &&
4002 vector == vmx->nested.posted_intr_nv) {
4003 /*
4004 * If a posted intr is not recognized by hardware,
4005 * we will accomplish it in the next vmentry.
4006 */
4007 vmx->nested.pi_pending = true;
4008 kvm_make_request(KVM_REQ_EVENT, vcpu);
4009 /* the PIR and ON have been set by L1. */
4010 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4011 kvm_vcpu_kick(vcpu);
4012 return 0;
4013 }
4014 return -1;
4015 }
4016 /*
4017 * Send interrupt to vcpu via posted interrupt way.
4018 * 1. If target vcpu is running(non-root mode), send posted interrupt
4019 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4020 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4021 * interrupt from PIR in next vmentry.
4022 */
4023 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4024 {
4025 struct vcpu_vmx *vmx = to_vmx(vcpu);
4026 int r;
4027
4028 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4029 if (!r)
4030 return 0;
4031
4032 if (!vcpu->arch.apicv_active)
4033 return -1;
4034
4035 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4036 return 0;
4037
4038 /* If a previous notification has sent the IPI, nothing to do. */
4039 if (pi_test_and_set_on(&vmx->pi_desc))
4040 return 0;
4041
4042 if (vcpu != kvm_get_running_vcpu() &&
4043 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4044 kvm_vcpu_kick(vcpu);
4045
4046 return 0;
4047 }
4048
4049 /*
4050 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4051 * will not change in the lifetime of the guest.
4052 * Note that host-state that does change is set elsewhere. E.g., host-state
4053 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4054 */
4055 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4056 {
4057 u32 low32, high32;
4058 unsigned long tmpl;
4059 unsigned long cr0, cr3, cr4;
4060
4061 cr0 = read_cr0();
4062 WARN_ON(cr0 & X86_CR0_TS);
4063 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4064
4065 /*
4066 * Save the most likely value for this task's CR3 in the VMCS.
4067 * We can't use __get_current_cr3_fast() because we're not atomic.
4068 */
4069 cr3 = __read_cr3();
4070 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4071 vmx->loaded_vmcs->host_state.cr3 = cr3;
4072
4073 /* Save the most likely value for this task's CR4 in the VMCS. */
4074 cr4 = cr4_read_shadow();
4075 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4076 vmx->loaded_vmcs->host_state.cr4 = cr4;
4077
4078 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4079 #ifdef CONFIG_X86_64
4080 /*
4081 * Load null selectors, so we can avoid reloading them in
4082 * vmx_prepare_switch_to_host(), in case userspace uses
4083 * the null selectors too (the expected case).
4084 */
4085 vmcs_write16(HOST_DS_SELECTOR, 0);
4086 vmcs_write16(HOST_ES_SELECTOR, 0);
4087 #else
4088 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4089 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4090 #endif
4091 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4092 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4093
4094 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4095
4096 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4097
4098 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4099 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4100 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4101 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4102
4103 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4104 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4105 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4106 }
4107
4108 if (cpu_has_load_ia32_efer())
4109 vmcs_write64(HOST_IA32_EFER, host_efer);
4110 }
4111
4112 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4113 {
4114 struct kvm_vcpu *vcpu = &vmx->vcpu;
4115
4116 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4117 ~vcpu->arch.cr4_guest_rsvd_bits;
4118 if (!enable_ept)
4119 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4120 if (is_guest_mode(&vmx->vcpu))
4121 vcpu->arch.cr4_guest_owned_bits &=
4122 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4123 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4124 }
4125
4126 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4127 {
4128 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4129
4130 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4131 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4132
4133 if (!enable_vnmi)
4134 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4135
4136 if (!enable_preemption_timer)
4137 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4138
4139 return pin_based_exec_ctrl;
4140 }
4141
4142 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4143 {
4144 struct vcpu_vmx *vmx = to_vmx(vcpu);
4145
4146 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4147 if (cpu_has_secondary_exec_ctrls()) {
4148 if (kvm_vcpu_apicv_active(vcpu))
4149 secondary_exec_controls_setbit(vmx,
4150 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4151 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4152 else
4153 secondary_exec_controls_clearbit(vmx,
4154 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4155 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4156 }
4157
4158 if (cpu_has_vmx_msr_bitmap())
4159 vmx_update_msr_bitmap(vcpu);
4160 }
4161
4162 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4163 {
4164 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4165
4166 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4167 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4168
4169 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4170 exec_control &= ~CPU_BASED_TPR_SHADOW;
4171 #ifdef CONFIG_X86_64
4172 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4173 CPU_BASED_CR8_LOAD_EXITING;
4174 #endif
4175 }
4176 if (!enable_ept)
4177 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4178 CPU_BASED_CR3_LOAD_EXITING |
4179 CPU_BASED_INVLPG_EXITING;
4180 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4181 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4182 CPU_BASED_MONITOR_EXITING);
4183 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4184 exec_control &= ~CPU_BASED_HLT_EXITING;
4185 return exec_control;
4186 }
4187
4188 /*
4189 * Adjust a single secondary execution control bit to intercept/allow an
4190 * instruction in the guest. This is usually done based on whether or not a
4191 * feature has been exposed to the guest in order to correctly emulate faults.
4192 */
4193 static inline void
4194 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4195 u32 control, bool enabled, bool exiting)
4196 {
4197 /*
4198 * If the control is for an opt-in feature, clear the control if the
4199 * feature is not exposed to the guest, i.e. not enabled. If the
4200 * control is opt-out, i.e. an exiting control, clear the control if
4201 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4202 * disabled for the associated instruction. Note, the caller is
4203 * responsible presetting exec_control to set all supported bits.
4204 */
4205 if (enabled == exiting)
4206 *exec_control &= ~control;
4207
4208 /*
4209 * Update the nested MSR settings so that a nested VMM can/can't set
4210 * controls for features that are/aren't exposed to the guest.
4211 */
4212 if (nested) {
4213 if (enabled)
4214 vmx->nested.msrs.secondary_ctls_high |= control;
4215 else
4216 vmx->nested.msrs.secondary_ctls_high &= ~control;
4217 }
4218 }
4219
4220 /*
4221 * Wrapper macro for the common case of adjusting a secondary execution control
4222 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4223 * verifies that the control is actually supported by KVM and hardware.
4224 */
4225 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4226 ({ \
4227 bool __enabled; \
4228 \
4229 if (cpu_has_vmx_##name()) { \
4230 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4231 X86_FEATURE_##feat_name); \
4232 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4233 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4234 } \
4235 })
4236
4237 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4238 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4239 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4240
4241 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4242 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4243
4244 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4245 {
4246 struct kvm_vcpu *vcpu = &vmx->vcpu;
4247
4248 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4249
4250 if (vmx_pt_mode_is_system())
4251 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4252 if (!cpu_need_virtualize_apic_accesses(vcpu))
4253 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4254 if (vmx->vpid == 0)
4255 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4256 if (!enable_ept) {
4257 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4258 enable_unrestricted_guest = 0;
4259 }
4260 if (!enable_unrestricted_guest)
4261 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4262 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4263 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4264 if (!kvm_vcpu_apicv_active(vcpu))
4265 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4266 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4267 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4268
4269 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4270 * in vmx_set_cr4. */
4271 exec_control &= ~SECONDARY_EXEC_DESC;
4272
4273 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4274 (handle_vmptrld).
4275 We can NOT enable shadow_vmcs here because we don't have yet
4276 a current VMCS12
4277 */
4278 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4279
4280 if (!enable_pml)
4281 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4282
4283 if (cpu_has_vmx_xsaves()) {
4284 /* Exposing XSAVES only when XSAVE is exposed */
4285 bool xsaves_enabled =
4286 boot_cpu_has(X86_FEATURE_XSAVE) &&
4287 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4288 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4289
4290 vcpu->arch.xsaves_enabled = xsaves_enabled;
4291
4292 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4293 SECONDARY_EXEC_XSAVES,
4294 xsaves_enabled, false);
4295 }
4296
4297 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4298
4299 /*
4300 * Expose INVPCID if and only if PCID is also exposed to the guest.
4301 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4302 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4303 * behavior from the guest perspective (it would expect #GP or #PF).
4304 */
4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4306 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4307 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4308
4309
4310 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4311 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4312
4313 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4314 ENABLE_USR_WAIT_PAUSE, false);
4315
4316 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4317 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4318
4319 vmx->secondary_exec_control = exec_control;
4320 }
4321
4322 static void ept_set_mmio_spte_mask(void)
4323 {
4324 /*
4325 * EPT Misconfigurations can be generated if the value of bits 2:0
4326 * of an EPT paging-structure entry is 110b (write/execute).
4327 */
4328 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4329 }
4330
4331 #define VMX_XSS_EXIT_BITMAP 0
4332
4333 /*
4334 * Noting that the initialization of Guest-state Area of VMCS is in
4335 * vmx_vcpu_reset().
4336 */
4337 static void init_vmcs(struct vcpu_vmx *vmx)
4338 {
4339 if (nested)
4340 nested_vmx_set_vmcs_shadowing_bitmap();
4341
4342 if (cpu_has_vmx_msr_bitmap())
4343 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4344
4345 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4346
4347 /* Control */
4348 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4349
4350 exec_controls_set(vmx, vmx_exec_control(vmx));
4351
4352 if (cpu_has_secondary_exec_ctrls()) {
4353 vmx_compute_secondary_exec_control(vmx);
4354 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4355 }
4356
4357 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4358 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4359 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4360 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4361 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4362
4363 vmcs_write16(GUEST_INTR_STATUS, 0);
4364
4365 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4366 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4367 }
4368
4369 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4370 vmcs_write32(PLE_GAP, ple_gap);
4371 vmx->ple_window = ple_window;
4372 vmx->ple_window_dirty = true;
4373 }
4374
4375 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4376 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4377 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4378
4379 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4380 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4381 vmx_set_constant_host_state(vmx);
4382 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4383 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4384
4385 if (cpu_has_vmx_vmfunc())
4386 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4387
4388 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4389 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4390 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4391 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4392 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4393
4394 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4395 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4396
4397 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4398
4399 /* 22.2.1, 20.8.1 */
4400 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4401
4402 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4403 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4404
4405 set_cr4_guest_host_mask(vmx);
4406
4407 if (vmx->vpid != 0)
4408 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4409
4410 if (cpu_has_vmx_xsaves())
4411 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4412
4413 if (enable_pml) {
4414 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4415 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4416 }
4417
4418 if (cpu_has_vmx_encls_vmexit())
4419 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4420
4421 if (vmx_pt_mode_is_host_guest()) {
4422 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4423 /* Bit[6~0] are forced to 1, writes are ignored. */
4424 vmx->pt_desc.guest.output_mask = 0x7F;
4425 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4426 }
4427 }
4428
4429 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4430 {
4431 struct vcpu_vmx *vmx = to_vmx(vcpu);
4432 struct msr_data apic_base_msr;
4433 u64 cr0;
4434
4435 vmx->rmode.vm86_active = 0;
4436 vmx->spec_ctrl = 0;
4437
4438 vmx->msr_ia32_umwait_control = 0;
4439
4440 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4441 vmx->hv_deadline_tsc = -1;
4442 kvm_set_cr8(vcpu, 0);
4443
4444 if (!init_event) {
4445 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4446 MSR_IA32_APICBASE_ENABLE;
4447 if (kvm_vcpu_is_reset_bsp(vcpu))
4448 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4449 apic_base_msr.host_initiated = true;
4450 kvm_set_apic_base(vcpu, &apic_base_msr);
4451 }
4452
4453 vmx_segment_cache_clear(vmx);
4454
4455 seg_setup(VCPU_SREG_CS);
4456 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4457 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4458
4459 seg_setup(VCPU_SREG_DS);
4460 seg_setup(VCPU_SREG_ES);
4461 seg_setup(VCPU_SREG_FS);
4462 seg_setup(VCPU_SREG_GS);
4463 seg_setup(VCPU_SREG_SS);
4464
4465 vmcs_write16(GUEST_TR_SELECTOR, 0);
4466 vmcs_writel(GUEST_TR_BASE, 0);
4467 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4468 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4469
4470 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4471 vmcs_writel(GUEST_LDTR_BASE, 0);
4472 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4473 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4474
4475 if (!init_event) {
4476 vmcs_write32(GUEST_SYSENTER_CS, 0);
4477 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4478 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4479 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4480 }
4481
4482 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4483 kvm_rip_write(vcpu, 0xfff0);
4484
4485 vmcs_writel(GUEST_GDTR_BASE, 0);
4486 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4487
4488 vmcs_writel(GUEST_IDTR_BASE, 0);
4489 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4490
4491 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4492 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4493 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4494 if (kvm_mpx_supported())
4495 vmcs_write64(GUEST_BNDCFGS, 0);
4496
4497 setup_msrs(vmx);
4498
4499 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4500
4501 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4502 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4503 if (cpu_need_tpr_shadow(vcpu))
4504 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4505 __pa(vcpu->arch.apic->regs));
4506 vmcs_write32(TPR_THRESHOLD, 0);
4507 }
4508
4509 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4510
4511 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4512 vmx->vcpu.arch.cr0 = cr0;
4513 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4514 vmx_set_cr4(vcpu, 0);
4515 vmx_set_efer(vcpu, 0);
4516
4517 vmx_update_exception_bitmap(vcpu);
4518
4519 vpid_sync_context(vmx->vpid);
4520 if (init_event)
4521 vmx_clear_hlt(vcpu);
4522 }
4523
4524 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4525 {
4526 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4527 }
4528
4529 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4530 {
4531 if (!enable_vnmi ||
4532 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4533 vmx_enable_irq_window(vcpu);
4534 return;
4535 }
4536
4537 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4538 }
4539
4540 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4541 {
4542 struct vcpu_vmx *vmx = to_vmx(vcpu);
4543 uint32_t intr;
4544 int irq = vcpu->arch.interrupt.nr;
4545
4546 trace_kvm_inj_virq(irq);
4547
4548 ++vcpu->stat.irq_injections;
4549 if (vmx->rmode.vm86_active) {
4550 int inc_eip = 0;
4551 if (vcpu->arch.interrupt.soft)
4552 inc_eip = vcpu->arch.event_exit_inst_len;
4553 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4554 return;
4555 }
4556 intr = irq | INTR_INFO_VALID_MASK;
4557 if (vcpu->arch.interrupt.soft) {
4558 intr |= INTR_TYPE_SOFT_INTR;
4559 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4560 vmx->vcpu.arch.event_exit_inst_len);
4561 } else
4562 intr |= INTR_TYPE_EXT_INTR;
4563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4564
4565 vmx_clear_hlt(vcpu);
4566 }
4567
4568 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4569 {
4570 struct vcpu_vmx *vmx = to_vmx(vcpu);
4571
4572 if (!enable_vnmi) {
4573 /*
4574 * Tracking the NMI-blocked state in software is built upon
4575 * finding the next open IRQ window. This, in turn, depends on
4576 * well-behaving guests: They have to keep IRQs disabled at
4577 * least as long as the NMI handler runs. Otherwise we may
4578 * cause NMI nesting, maybe breaking the guest. But as this is
4579 * highly unlikely, we can live with the residual risk.
4580 */
4581 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4582 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4583 }
4584
4585 ++vcpu->stat.nmi_injections;
4586 vmx->loaded_vmcs->nmi_known_unmasked = false;
4587
4588 if (vmx->rmode.vm86_active) {
4589 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4590 return;
4591 }
4592
4593 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4594 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4595
4596 vmx_clear_hlt(vcpu);
4597 }
4598
4599 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4600 {
4601 struct vcpu_vmx *vmx = to_vmx(vcpu);
4602 bool masked;
4603
4604 if (!enable_vnmi)
4605 return vmx->loaded_vmcs->soft_vnmi_blocked;
4606 if (vmx->loaded_vmcs->nmi_known_unmasked)
4607 return false;
4608 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4609 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4610 return masked;
4611 }
4612
4613 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4614 {
4615 struct vcpu_vmx *vmx = to_vmx(vcpu);
4616
4617 if (!enable_vnmi) {
4618 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4619 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4620 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4621 }
4622 } else {
4623 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4624 if (masked)
4625 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4626 GUEST_INTR_STATE_NMI);
4627 else
4628 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4629 GUEST_INTR_STATE_NMI);
4630 }
4631 }
4632
4633 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4634 {
4635 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4636 return false;
4637
4638 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4639 return true;
4640
4641 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4642 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4643 GUEST_INTR_STATE_NMI));
4644 }
4645
4646 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4647 {
4648 if (to_vmx(vcpu)->nested.nested_run_pending)
4649 return -EBUSY;
4650
4651 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4652 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4653 return -EBUSY;
4654
4655 return !vmx_nmi_blocked(vcpu);
4656 }
4657
4658 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4659 {
4660 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4661 return false;
4662
4663 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4664 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4665 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4666 }
4667
4668 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4669 {
4670 if (to_vmx(vcpu)->nested.nested_run_pending)
4671 return -EBUSY;
4672
4673 /*
4674 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4675 * e.g. if the IRQ arrived asynchronously after checking nested events.
4676 */
4677 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4678 return -EBUSY;
4679
4680 return !vmx_interrupt_blocked(vcpu);
4681 }
4682
4683 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4684 {
4685 void __user *ret;
4686
4687 if (enable_unrestricted_guest)
4688 return 0;
4689
4690 mutex_lock(&kvm->slots_lock);
4691 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4692 PAGE_SIZE * 3);
4693 mutex_unlock(&kvm->slots_lock);
4694
4695 if (IS_ERR(ret))
4696 return PTR_ERR(ret);
4697
4698 to_kvm_vmx(kvm)->tss_addr = addr;
4699
4700 return init_rmode_tss(kvm, ret);
4701 }
4702
4703 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4704 {
4705 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4706 return 0;
4707 }
4708
4709 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4710 {
4711 switch (vec) {
4712 case BP_VECTOR:
4713 /*
4714 * Update instruction length as we may reinject the exception
4715 * from user space while in guest debugging mode.
4716 */
4717 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4718 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4719 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4720 return false;
4721 fallthrough;
4722 case DB_VECTOR:
4723 return !(vcpu->guest_debug &
4724 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4725 case DE_VECTOR:
4726 case OF_VECTOR:
4727 case BR_VECTOR:
4728 case UD_VECTOR:
4729 case DF_VECTOR:
4730 case SS_VECTOR:
4731 case GP_VECTOR:
4732 case MF_VECTOR:
4733 return true;
4734 }
4735 return false;
4736 }
4737
4738 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4739 int vec, u32 err_code)
4740 {
4741 /*
4742 * Instruction with address size override prefix opcode 0x67
4743 * Cause the #SS fault with 0 error code in VM86 mode.
4744 */
4745 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4746 if (kvm_emulate_instruction(vcpu, 0)) {
4747 if (vcpu->arch.halt_request) {
4748 vcpu->arch.halt_request = 0;
4749 return kvm_vcpu_halt(vcpu);
4750 }
4751 return 1;
4752 }
4753 return 0;
4754 }
4755
4756 /*
4757 * Forward all other exceptions that are valid in real mode.
4758 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4759 * the required debugging infrastructure rework.
4760 */
4761 kvm_queue_exception(vcpu, vec);
4762 return 1;
4763 }
4764
4765 static int handle_machine_check(struct kvm_vcpu *vcpu)
4766 {
4767 /* handled by vmx_vcpu_run() */
4768 return 1;
4769 }
4770
4771 /*
4772 * If the host has split lock detection disabled, then #AC is
4773 * unconditionally injected into the guest, which is the pre split lock
4774 * detection behaviour.
4775 *
4776 * If the host has split lock detection enabled then #AC is
4777 * only injected into the guest when:
4778 * - Guest CPL == 3 (user mode)
4779 * - Guest has #AC detection enabled in CR0
4780 * - Guest EFLAGS has AC bit set
4781 */
4782 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4783 {
4784 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4785 return true;
4786
4787 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4788 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4789 }
4790
4791 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4792 {
4793 struct vcpu_vmx *vmx = to_vmx(vcpu);
4794 struct kvm_run *kvm_run = vcpu->run;
4795 u32 intr_info, ex_no, error_code;
4796 unsigned long cr2, rip, dr6;
4797 u32 vect_info;
4798
4799 vect_info = vmx->idt_vectoring_info;
4800 intr_info = vmx_get_intr_info(vcpu);
4801
4802 if (is_machine_check(intr_info) || is_nmi(intr_info))
4803 return 1; /* handled by handle_exception_nmi_irqoff() */
4804
4805 if (is_invalid_opcode(intr_info))
4806 return handle_ud(vcpu);
4807
4808 error_code = 0;
4809 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4810 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4811
4812 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4813 WARN_ON_ONCE(!enable_vmware_backdoor);
4814
4815 /*
4816 * VMware backdoor emulation on #GP interception only handles
4817 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4818 * error code on #GP.
4819 */
4820 if (error_code) {
4821 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4822 return 1;
4823 }
4824 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4825 }
4826
4827 /*
4828 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4829 * MMIO, it is better to report an internal error.
4830 * See the comments in vmx_handle_exit.
4831 */
4832 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4833 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4834 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4835 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4836 vcpu->run->internal.ndata = 4;
4837 vcpu->run->internal.data[0] = vect_info;
4838 vcpu->run->internal.data[1] = intr_info;
4839 vcpu->run->internal.data[2] = error_code;
4840 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4841 return 0;
4842 }
4843
4844 if (is_page_fault(intr_info)) {
4845 cr2 = vmx_get_exit_qual(vcpu);
4846 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4847 /*
4848 * EPT will cause page fault only if we need to
4849 * detect illegal GPAs.
4850 */
4851 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4852 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4853 return 1;
4854 } else
4855 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4856 }
4857
4858 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4859
4860 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4861 return handle_rmode_exception(vcpu, ex_no, error_code);
4862
4863 switch (ex_no) {
4864 case DB_VECTOR:
4865 dr6 = vmx_get_exit_qual(vcpu);
4866 if (!(vcpu->guest_debug &
4867 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4868 if (is_icebp(intr_info))
4869 WARN_ON(!skip_emulated_instruction(vcpu));
4870
4871 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4872 return 1;
4873 }
4874 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4875 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4876 fallthrough;
4877 case BP_VECTOR:
4878 /*
4879 * Update instruction length as we may reinject #BP from
4880 * user space while in guest debugging mode. Reading it for
4881 * #DB as well causes no harm, it is not used in that case.
4882 */
4883 vmx->vcpu.arch.event_exit_inst_len =
4884 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4885 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4886 rip = kvm_rip_read(vcpu);
4887 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4888 kvm_run->debug.arch.exception = ex_no;
4889 break;
4890 case AC_VECTOR:
4891 if (guest_inject_ac(vcpu)) {
4892 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4893 return 1;
4894 }
4895
4896 /*
4897 * Handle split lock. Depending on detection mode this will
4898 * either warn and disable split lock detection for this
4899 * task or force SIGBUS on it.
4900 */
4901 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4902 return 1;
4903 fallthrough;
4904 default:
4905 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4906 kvm_run->ex.exception = ex_no;
4907 kvm_run->ex.error_code = error_code;
4908 break;
4909 }
4910 return 0;
4911 }
4912
4913 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4914 {
4915 ++vcpu->stat.irq_exits;
4916 return 1;
4917 }
4918
4919 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4920 {
4921 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4922 vcpu->mmio_needed = 0;
4923 return 0;
4924 }
4925
4926 static int handle_io(struct kvm_vcpu *vcpu)
4927 {
4928 unsigned long exit_qualification;
4929 int size, in, string;
4930 unsigned port;
4931
4932 exit_qualification = vmx_get_exit_qual(vcpu);
4933 string = (exit_qualification & 16) != 0;
4934
4935 ++vcpu->stat.io_exits;
4936
4937 if (string)
4938 return kvm_emulate_instruction(vcpu, 0);
4939
4940 port = exit_qualification >> 16;
4941 size = (exit_qualification & 7) + 1;
4942 in = (exit_qualification & 8) != 0;
4943
4944 return kvm_fast_pio(vcpu, size, port, in);
4945 }
4946
4947 static void
4948 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4949 {
4950 /*
4951 * Patch in the VMCALL instruction:
4952 */
4953 hypercall[0] = 0x0f;
4954 hypercall[1] = 0x01;
4955 hypercall[2] = 0xc1;
4956 }
4957
4958 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4959 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4960 {
4961 if (is_guest_mode(vcpu)) {
4962 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4963 unsigned long orig_val = val;
4964
4965 /*
4966 * We get here when L2 changed cr0 in a way that did not change
4967 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4968 * but did change L0 shadowed bits. So we first calculate the
4969 * effective cr0 value that L1 would like to write into the
4970 * hardware. It consists of the L2-owned bits from the new
4971 * value combined with the L1-owned bits from L1's guest_cr0.
4972 */
4973 val = (val & ~vmcs12->cr0_guest_host_mask) |
4974 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4975
4976 if (!nested_guest_cr0_valid(vcpu, val))
4977 return 1;
4978
4979 if (kvm_set_cr0(vcpu, val))
4980 return 1;
4981 vmcs_writel(CR0_READ_SHADOW, orig_val);
4982 return 0;
4983 } else {
4984 if (to_vmx(vcpu)->nested.vmxon &&
4985 !nested_host_cr0_valid(vcpu, val))
4986 return 1;
4987
4988 return kvm_set_cr0(vcpu, val);
4989 }
4990 }
4991
4992 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4993 {
4994 if (is_guest_mode(vcpu)) {
4995 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4996 unsigned long orig_val = val;
4997
4998 /* analogously to handle_set_cr0 */
4999 val = (val & ~vmcs12->cr4_guest_host_mask) |
5000 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5001 if (kvm_set_cr4(vcpu, val))
5002 return 1;
5003 vmcs_writel(CR4_READ_SHADOW, orig_val);
5004 return 0;
5005 } else
5006 return kvm_set_cr4(vcpu, val);
5007 }
5008
5009 static int handle_desc(struct kvm_vcpu *vcpu)
5010 {
5011 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5012 return kvm_emulate_instruction(vcpu, 0);
5013 }
5014
5015 static int handle_cr(struct kvm_vcpu *vcpu)
5016 {
5017 unsigned long exit_qualification, val;
5018 int cr;
5019 int reg;
5020 int err;
5021 int ret;
5022
5023 exit_qualification = vmx_get_exit_qual(vcpu);
5024 cr = exit_qualification & 15;
5025 reg = (exit_qualification >> 8) & 15;
5026 switch ((exit_qualification >> 4) & 3) {
5027 case 0: /* mov to cr */
5028 val = kvm_register_readl(vcpu, reg);
5029 trace_kvm_cr_write(cr, val);
5030 switch (cr) {
5031 case 0:
5032 err = handle_set_cr0(vcpu, val);
5033 return kvm_complete_insn_gp(vcpu, err);
5034 case 3:
5035 WARN_ON_ONCE(enable_unrestricted_guest);
5036 err = kvm_set_cr3(vcpu, val);
5037 return kvm_complete_insn_gp(vcpu, err);
5038 case 4:
5039 err = handle_set_cr4(vcpu, val);
5040 return kvm_complete_insn_gp(vcpu, err);
5041 case 8: {
5042 u8 cr8_prev = kvm_get_cr8(vcpu);
5043 u8 cr8 = (u8)val;
5044 err = kvm_set_cr8(vcpu, cr8);
5045 ret = kvm_complete_insn_gp(vcpu, err);
5046 if (lapic_in_kernel(vcpu))
5047 return ret;
5048 if (cr8_prev <= cr8)
5049 return ret;
5050 /*
5051 * TODO: we might be squashing a
5052 * KVM_GUESTDBG_SINGLESTEP-triggered
5053 * KVM_EXIT_DEBUG here.
5054 */
5055 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5056 return 0;
5057 }
5058 }
5059 break;
5060 case 2: /* clts */
5061 WARN_ONCE(1, "Guest should always own CR0.TS");
5062 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5063 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5064 return kvm_skip_emulated_instruction(vcpu);
5065 case 1: /*mov from cr*/
5066 switch (cr) {
5067 case 3:
5068 WARN_ON_ONCE(enable_unrestricted_guest);
5069 val = kvm_read_cr3(vcpu);
5070 kvm_register_write(vcpu, reg, val);
5071 trace_kvm_cr_read(cr, val);
5072 return kvm_skip_emulated_instruction(vcpu);
5073 case 8:
5074 val = kvm_get_cr8(vcpu);
5075 kvm_register_write(vcpu, reg, val);
5076 trace_kvm_cr_read(cr, val);
5077 return kvm_skip_emulated_instruction(vcpu);
5078 }
5079 break;
5080 case 3: /* lmsw */
5081 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5082 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5083 kvm_lmsw(vcpu, val);
5084
5085 return kvm_skip_emulated_instruction(vcpu);
5086 default:
5087 break;
5088 }
5089 vcpu->run->exit_reason = 0;
5090 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5091 (int)(exit_qualification >> 4) & 3, cr);
5092 return 0;
5093 }
5094
5095 static int handle_dr(struct kvm_vcpu *vcpu)
5096 {
5097 unsigned long exit_qualification;
5098 int dr, dr7, reg;
5099 int err = 1;
5100
5101 exit_qualification = vmx_get_exit_qual(vcpu);
5102 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5103
5104 /* First, if DR does not exist, trigger UD */
5105 if (!kvm_require_dr(vcpu, dr))
5106 return 1;
5107
5108 if (kvm_x86_ops.get_cpl(vcpu) > 0)
5109 goto out;
5110
5111 dr7 = vmcs_readl(GUEST_DR7);
5112 if (dr7 & DR7_GD) {
5113 /*
5114 * As the vm-exit takes precedence over the debug trap, we
5115 * need to emulate the latter, either for the host or the
5116 * guest debugging itself.
5117 */
5118 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5119 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5120 vcpu->run->debug.arch.dr7 = dr7;
5121 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5122 vcpu->run->debug.arch.exception = DB_VECTOR;
5123 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5124 return 0;
5125 } else {
5126 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5127 return 1;
5128 }
5129 }
5130
5131 if (vcpu->guest_debug == 0) {
5132 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5133
5134 /*
5135 * No more DR vmexits; force a reload of the debug registers
5136 * and reenter on this instruction. The next vmexit will
5137 * retrieve the full state of the debug registers.
5138 */
5139 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5140 return 1;
5141 }
5142
5143 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5144 if (exit_qualification & TYPE_MOV_FROM_DR) {
5145 unsigned long val;
5146
5147 kvm_get_dr(vcpu, dr, &val);
5148 kvm_register_write(vcpu, reg, val);
5149 err = 0;
5150 } else {
5151 err = kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg));
5152 }
5153
5154 out:
5155 return kvm_complete_insn_gp(vcpu, err);
5156 }
5157
5158 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5159 {
5160 get_debugreg(vcpu->arch.db[0], 0);
5161 get_debugreg(vcpu->arch.db[1], 1);
5162 get_debugreg(vcpu->arch.db[2], 2);
5163 get_debugreg(vcpu->arch.db[3], 3);
5164 get_debugreg(vcpu->arch.dr6, 6);
5165 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5166
5167 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5168 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5169 }
5170
5171 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5172 {
5173 vmcs_writel(GUEST_DR7, val);
5174 }
5175
5176 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5177 {
5178 kvm_apic_update_ppr(vcpu);
5179 return 1;
5180 }
5181
5182 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5183 {
5184 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5185
5186 kvm_make_request(KVM_REQ_EVENT, vcpu);
5187
5188 ++vcpu->stat.irq_window_exits;
5189 return 1;
5190 }
5191
5192 static int handle_vmcall(struct kvm_vcpu *vcpu)
5193 {
5194 return kvm_emulate_hypercall(vcpu);
5195 }
5196
5197 static int handle_invd(struct kvm_vcpu *vcpu)
5198 {
5199 /* Treat an INVD instruction as a NOP and just skip it. */
5200 return kvm_skip_emulated_instruction(vcpu);
5201 }
5202
5203 static int handle_invlpg(struct kvm_vcpu *vcpu)
5204 {
5205 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5206
5207 kvm_mmu_invlpg(vcpu, exit_qualification);
5208 return kvm_skip_emulated_instruction(vcpu);
5209 }
5210
5211 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5212 {
5213 int err;
5214
5215 err = kvm_rdpmc(vcpu);
5216 return kvm_complete_insn_gp(vcpu, err);
5217 }
5218
5219 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5220 {
5221 return kvm_emulate_wbinvd(vcpu);
5222 }
5223
5224 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5225 {
5226 u64 new_bv = kvm_read_edx_eax(vcpu);
5227 u32 index = kvm_rcx_read(vcpu);
5228
5229 int err = kvm_set_xcr(vcpu, index, new_bv);
5230 return kvm_complete_insn_gp(vcpu, err);
5231 }
5232
5233 static int handle_apic_access(struct kvm_vcpu *vcpu)
5234 {
5235 if (likely(fasteoi)) {
5236 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5237 int access_type, offset;
5238
5239 access_type = exit_qualification & APIC_ACCESS_TYPE;
5240 offset = exit_qualification & APIC_ACCESS_OFFSET;
5241 /*
5242 * Sane guest uses MOV to write EOI, with written value
5243 * not cared. So make a short-circuit here by avoiding
5244 * heavy instruction emulation.
5245 */
5246 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5247 (offset == APIC_EOI)) {
5248 kvm_lapic_set_eoi(vcpu);
5249 return kvm_skip_emulated_instruction(vcpu);
5250 }
5251 }
5252 return kvm_emulate_instruction(vcpu, 0);
5253 }
5254
5255 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5256 {
5257 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5258 int vector = exit_qualification & 0xff;
5259
5260 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5261 kvm_apic_set_eoi_accelerated(vcpu, vector);
5262 return 1;
5263 }
5264
5265 static int handle_apic_write(struct kvm_vcpu *vcpu)
5266 {
5267 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5268 u32 offset = exit_qualification & 0xfff;
5269
5270 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5271 kvm_apic_write_nodecode(vcpu, offset);
5272 return 1;
5273 }
5274
5275 static int handle_task_switch(struct kvm_vcpu *vcpu)
5276 {
5277 struct vcpu_vmx *vmx = to_vmx(vcpu);
5278 unsigned long exit_qualification;
5279 bool has_error_code = false;
5280 u32 error_code = 0;
5281 u16 tss_selector;
5282 int reason, type, idt_v, idt_index;
5283
5284 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5285 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5286 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5287
5288 exit_qualification = vmx_get_exit_qual(vcpu);
5289
5290 reason = (u32)exit_qualification >> 30;
5291 if (reason == TASK_SWITCH_GATE && idt_v) {
5292 switch (type) {
5293 case INTR_TYPE_NMI_INTR:
5294 vcpu->arch.nmi_injected = false;
5295 vmx_set_nmi_mask(vcpu, true);
5296 break;
5297 case INTR_TYPE_EXT_INTR:
5298 case INTR_TYPE_SOFT_INTR:
5299 kvm_clear_interrupt_queue(vcpu);
5300 break;
5301 case INTR_TYPE_HARD_EXCEPTION:
5302 if (vmx->idt_vectoring_info &
5303 VECTORING_INFO_DELIVER_CODE_MASK) {
5304 has_error_code = true;
5305 error_code =
5306 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5307 }
5308 fallthrough;
5309 case INTR_TYPE_SOFT_EXCEPTION:
5310 kvm_clear_exception_queue(vcpu);
5311 break;
5312 default:
5313 break;
5314 }
5315 }
5316 tss_selector = exit_qualification;
5317
5318 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5319 type != INTR_TYPE_EXT_INTR &&
5320 type != INTR_TYPE_NMI_INTR))
5321 WARN_ON(!skip_emulated_instruction(vcpu));
5322
5323 /*
5324 * TODO: What about debug traps on tss switch?
5325 * Are we supposed to inject them and update dr6?
5326 */
5327 return kvm_task_switch(vcpu, tss_selector,
5328 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5329 reason, has_error_code, error_code);
5330 }
5331
5332 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5333 {
5334 unsigned long exit_qualification;
5335 gpa_t gpa;
5336 u64 error_code;
5337
5338 exit_qualification = vmx_get_exit_qual(vcpu);
5339
5340 /*
5341 * EPT violation happened while executing iret from NMI,
5342 * "blocked by NMI" bit has to be set before next VM entry.
5343 * There are errata that may cause this bit to not be set:
5344 * AAK134, BY25.
5345 */
5346 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5347 enable_vnmi &&
5348 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5349 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5350
5351 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5352 trace_kvm_page_fault(gpa, exit_qualification);
5353
5354 /* Is it a read fault? */
5355 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5356 ? PFERR_USER_MASK : 0;
5357 /* Is it a write fault? */
5358 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5359 ? PFERR_WRITE_MASK : 0;
5360 /* Is it a fetch fault? */
5361 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5362 ? PFERR_FETCH_MASK : 0;
5363 /* ept page table entry is present? */
5364 error_code |= (exit_qualification &
5365 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5366 EPT_VIOLATION_EXECUTABLE))
5367 ? PFERR_PRESENT_MASK : 0;
5368
5369 error_code |= (exit_qualification & 0x100) != 0 ?
5370 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5371
5372 vcpu->arch.exit_qualification = exit_qualification;
5373
5374 /*
5375 * Check that the GPA doesn't exceed physical memory limits, as that is
5376 * a guest page fault. We have to emulate the instruction here, because
5377 * if the illegal address is that of a paging structure, then
5378 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5379 * would also use advanced VM-exit information for EPT violations to
5380 * reconstruct the page fault error code.
5381 */
5382 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5383 return kvm_emulate_instruction(vcpu, 0);
5384
5385 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5386 }
5387
5388 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5389 {
5390 gpa_t gpa;
5391
5392 /*
5393 * A nested guest cannot optimize MMIO vmexits, because we have an
5394 * nGPA here instead of the required GPA.
5395 */
5396 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5397 if (!is_guest_mode(vcpu) &&
5398 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5399 trace_kvm_fast_mmio(gpa);
5400 return kvm_skip_emulated_instruction(vcpu);
5401 }
5402
5403 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5404 }
5405
5406 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5407 {
5408 WARN_ON_ONCE(!enable_vnmi);
5409 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5410 ++vcpu->stat.nmi_window_exits;
5411 kvm_make_request(KVM_REQ_EVENT, vcpu);
5412
5413 return 1;
5414 }
5415
5416 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5417 {
5418 struct vcpu_vmx *vmx = to_vmx(vcpu);
5419 bool intr_window_requested;
5420 unsigned count = 130;
5421
5422 intr_window_requested = exec_controls_get(vmx) &
5423 CPU_BASED_INTR_WINDOW_EXITING;
5424
5425 while (vmx->emulation_required && count-- != 0) {
5426 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5427 return handle_interrupt_window(&vmx->vcpu);
5428
5429 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5430 return 1;
5431
5432 if (!kvm_emulate_instruction(vcpu, 0))
5433 return 0;
5434
5435 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5436 vcpu->arch.exception.pending) {
5437 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5438 vcpu->run->internal.suberror =
5439 KVM_INTERNAL_ERROR_EMULATION;
5440 vcpu->run->internal.ndata = 0;
5441 return 0;
5442 }
5443
5444 if (vcpu->arch.halt_request) {
5445 vcpu->arch.halt_request = 0;
5446 return kvm_vcpu_halt(vcpu);
5447 }
5448
5449 /*
5450 * Note, return 1 and not 0, vcpu_run() will invoke
5451 * xfer_to_guest_mode() which will create a proper return
5452 * code.
5453 */
5454 if (__xfer_to_guest_mode_work_pending())
5455 return 1;
5456 }
5457
5458 return 1;
5459 }
5460
5461 static void grow_ple_window(struct kvm_vcpu *vcpu)
5462 {
5463 struct vcpu_vmx *vmx = to_vmx(vcpu);
5464 unsigned int old = vmx->ple_window;
5465
5466 vmx->ple_window = __grow_ple_window(old, ple_window,
5467 ple_window_grow,
5468 ple_window_max);
5469
5470 if (vmx->ple_window != old) {
5471 vmx->ple_window_dirty = true;
5472 trace_kvm_ple_window_update(vcpu->vcpu_id,
5473 vmx->ple_window, old);
5474 }
5475 }
5476
5477 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5478 {
5479 struct vcpu_vmx *vmx = to_vmx(vcpu);
5480 unsigned int old = vmx->ple_window;
5481
5482 vmx->ple_window = __shrink_ple_window(old, ple_window,
5483 ple_window_shrink,
5484 ple_window);
5485
5486 if (vmx->ple_window != old) {
5487 vmx->ple_window_dirty = true;
5488 trace_kvm_ple_window_update(vcpu->vcpu_id,
5489 vmx->ple_window, old);
5490 }
5491 }
5492
5493 static void vmx_enable_tdp(void)
5494 {
5495 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5496 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5497 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5498 0ull, VMX_EPT_EXECUTABLE_MASK,
5499 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5500 VMX_EPT_RWX_MASK, 0ull);
5501
5502 ept_set_mmio_spte_mask();
5503 }
5504
5505 /*
5506 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5507 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5508 */
5509 static int handle_pause(struct kvm_vcpu *vcpu)
5510 {
5511 if (!kvm_pause_in_guest(vcpu->kvm))
5512 grow_ple_window(vcpu);
5513
5514 /*
5515 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5516 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5517 * never set PAUSE_EXITING and just set PLE if supported,
5518 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5519 */
5520 kvm_vcpu_on_spin(vcpu, true);
5521 return kvm_skip_emulated_instruction(vcpu);
5522 }
5523
5524 static int handle_nop(struct kvm_vcpu *vcpu)
5525 {
5526 return kvm_skip_emulated_instruction(vcpu);
5527 }
5528
5529 static int handle_mwait(struct kvm_vcpu *vcpu)
5530 {
5531 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5532 return handle_nop(vcpu);
5533 }
5534
5535 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5536 {
5537 kvm_queue_exception(vcpu, UD_VECTOR);
5538 return 1;
5539 }
5540
5541 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5542 {
5543 return 1;
5544 }
5545
5546 static int handle_monitor(struct kvm_vcpu *vcpu)
5547 {
5548 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5549 return handle_nop(vcpu);
5550 }
5551
5552 static int handle_invpcid(struct kvm_vcpu *vcpu)
5553 {
5554 u32 vmx_instruction_info;
5555 unsigned long type;
5556 gva_t gva;
5557 struct {
5558 u64 pcid;
5559 u64 gla;
5560 } operand;
5561
5562 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5563 kvm_queue_exception(vcpu, UD_VECTOR);
5564 return 1;
5565 }
5566
5567 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5568 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5569
5570 if (type > 3) {
5571 kvm_inject_gp(vcpu, 0);
5572 return 1;
5573 }
5574
5575 /* According to the Intel instruction reference, the memory operand
5576 * is read even if it isn't needed (e.g., for type==all)
5577 */
5578 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5579 vmx_instruction_info, false,
5580 sizeof(operand), &gva))
5581 return 1;
5582
5583 return kvm_handle_invpcid(vcpu, type, gva);
5584 }
5585
5586 static int handle_pml_full(struct kvm_vcpu *vcpu)
5587 {
5588 unsigned long exit_qualification;
5589
5590 trace_kvm_pml_full(vcpu->vcpu_id);
5591
5592 exit_qualification = vmx_get_exit_qual(vcpu);
5593
5594 /*
5595 * PML buffer FULL happened while executing iret from NMI,
5596 * "blocked by NMI" bit has to be set before next VM entry.
5597 */
5598 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5599 enable_vnmi &&
5600 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5601 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5602 GUEST_INTR_STATE_NMI);
5603
5604 /*
5605 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5606 * here.., and there's no userspace involvement needed for PML.
5607 */
5608 return 1;
5609 }
5610
5611 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5612 {
5613 struct vcpu_vmx *vmx = to_vmx(vcpu);
5614
5615 if (!vmx->req_immediate_exit &&
5616 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5617 kvm_lapic_expired_hv_timer(vcpu);
5618 return EXIT_FASTPATH_REENTER_GUEST;
5619 }
5620
5621 return EXIT_FASTPATH_NONE;
5622 }
5623
5624 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5625 {
5626 handle_fastpath_preemption_timer(vcpu);
5627 return 1;
5628 }
5629
5630 /*
5631 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5632 * are overwritten by nested_vmx_setup() when nested=1.
5633 */
5634 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5635 {
5636 kvm_queue_exception(vcpu, UD_VECTOR);
5637 return 1;
5638 }
5639
5640 static int handle_encls(struct kvm_vcpu *vcpu)
5641 {
5642 /*
5643 * SGX virtualization is not yet supported. There is no software
5644 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5645 * to prevent the guest from executing ENCLS.
5646 */
5647 kvm_queue_exception(vcpu, UD_VECTOR);
5648 return 1;
5649 }
5650
5651 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5652 {
5653 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5654 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5655 return 0;
5656 }
5657
5658 /*
5659 * The exit handlers return 1 if the exit was handled fully and guest execution
5660 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5661 * to be done to userspace and return 0.
5662 */
5663 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5664 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5665 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5666 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5667 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5668 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5669 [EXIT_REASON_CR_ACCESS] = handle_cr,
5670 [EXIT_REASON_DR_ACCESS] = handle_dr,
5671 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5672 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5673 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5674 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5675 [EXIT_REASON_HLT] = kvm_emulate_halt,
5676 [EXIT_REASON_INVD] = handle_invd,
5677 [EXIT_REASON_INVLPG] = handle_invlpg,
5678 [EXIT_REASON_RDPMC] = handle_rdpmc,
5679 [EXIT_REASON_VMCALL] = handle_vmcall,
5680 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5681 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5682 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5683 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5684 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5685 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5686 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5687 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5688 [EXIT_REASON_VMON] = handle_vmx_instruction,
5689 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5690 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5691 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5692 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5693 [EXIT_REASON_WBINVD] = handle_wbinvd,
5694 [EXIT_REASON_XSETBV] = handle_xsetbv,
5695 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5696 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5697 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5698 [EXIT_REASON_LDTR_TR] = handle_desc,
5699 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5700 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5701 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5702 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5703 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5704 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5705 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5706 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5707 [EXIT_REASON_RDRAND] = handle_invalid_op,
5708 [EXIT_REASON_RDSEED] = handle_invalid_op,
5709 [EXIT_REASON_PML_FULL] = handle_pml_full,
5710 [EXIT_REASON_INVPCID] = handle_invpcid,
5711 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5712 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5713 [EXIT_REASON_ENCLS] = handle_encls,
5714 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
5715 };
5716
5717 static const int kvm_vmx_max_exit_handlers =
5718 ARRAY_SIZE(kvm_vmx_exit_handlers);
5719
5720 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5721 u32 *intr_info, u32 *error_code)
5722 {
5723 struct vcpu_vmx *vmx = to_vmx(vcpu);
5724
5725 *info1 = vmx_get_exit_qual(vcpu);
5726 if (!(vmx->exit_reason.failed_vmentry)) {
5727 *info2 = vmx->idt_vectoring_info;
5728 *intr_info = vmx_get_intr_info(vcpu);
5729 if (is_exception_with_error_code(*intr_info))
5730 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5731 else
5732 *error_code = 0;
5733 } else {
5734 *info2 = 0;
5735 *intr_info = 0;
5736 *error_code = 0;
5737 }
5738 }
5739
5740 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5741 {
5742 if (vmx->pml_pg) {
5743 __free_page(vmx->pml_pg);
5744 vmx->pml_pg = NULL;
5745 }
5746 }
5747
5748 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5749 {
5750 struct vcpu_vmx *vmx = to_vmx(vcpu);
5751 u64 *pml_buf;
5752 u16 pml_idx;
5753
5754 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5755
5756 /* Do nothing if PML buffer is empty */
5757 if (pml_idx == (PML_ENTITY_NUM - 1))
5758 return;
5759
5760 /* PML index always points to next available PML buffer entity */
5761 if (pml_idx >= PML_ENTITY_NUM)
5762 pml_idx = 0;
5763 else
5764 pml_idx++;
5765
5766 pml_buf = page_address(vmx->pml_pg);
5767 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5768 u64 gpa;
5769
5770 gpa = pml_buf[pml_idx];
5771 WARN_ON(gpa & (PAGE_SIZE - 1));
5772 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5773 }
5774
5775 /* reset PML index */
5776 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5777 }
5778
5779 /*
5780 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5781 * Called before reporting dirty_bitmap to userspace.
5782 */
5783 static void kvm_flush_pml_buffers(struct kvm *kvm)
5784 {
5785 int i;
5786 struct kvm_vcpu *vcpu;
5787 /*
5788 * We only need to kick vcpu out of guest mode here, as PML buffer
5789 * is flushed at beginning of all VMEXITs, and it's obvious that only
5790 * vcpus running in guest are possible to have unflushed GPAs in PML
5791 * buffer.
5792 */
5793 kvm_for_each_vcpu(i, vcpu, kvm)
5794 kvm_vcpu_kick(vcpu);
5795 }
5796
5797 static void vmx_dump_sel(char *name, uint32_t sel)
5798 {
5799 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5800 name, vmcs_read16(sel),
5801 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5802 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5803 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5804 }
5805
5806 static void vmx_dump_dtsel(char *name, uint32_t limit)
5807 {
5808 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5809 name, vmcs_read32(limit),
5810 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5811 }
5812
5813 void dump_vmcs(void)
5814 {
5815 u32 vmentry_ctl, vmexit_ctl;
5816 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5817 unsigned long cr4;
5818 u64 efer;
5819
5820 if (!dump_invalid_vmcs) {
5821 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5822 return;
5823 }
5824
5825 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5826 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5827 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5828 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5829 cr4 = vmcs_readl(GUEST_CR4);
5830 efer = vmcs_read64(GUEST_IA32_EFER);
5831 secondary_exec_control = 0;
5832 if (cpu_has_secondary_exec_ctrls())
5833 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5834
5835 pr_err("*** Guest State ***\n");
5836 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5837 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5838 vmcs_readl(CR0_GUEST_HOST_MASK));
5839 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5840 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5841 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5842 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5843 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5844 {
5845 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5846 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5847 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5848 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5849 }
5850 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5851 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5852 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5853 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5854 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5855 vmcs_readl(GUEST_SYSENTER_ESP),
5856 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5857 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5858 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5859 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5860 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5861 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5862 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5863 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5864 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5865 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5866 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5867 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5868 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5869 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5870 efer, vmcs_read64(GUEST_IA32_PAT));
5871 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5872 vmcs_read64(GUEST_IA32_DEBUGCTL),
5873 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5874 if (cpu_has_load_perf_global_ctrl() &&
5875 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5876 pr_err("PerfGlobCtl = 0x%016llx\n",
5877 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5878 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5879 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5880 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5881 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5882 vmcs_read32(GUEST_ACTIVITY_STATE));
5883 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5884 pr_err("InterruptStatus = %04x\n",
5885 vmcs_read16(GUEST_INTR_STATUS));
5886
5887 pr_err("*** Host State ***\n");
5888 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5889 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5890 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5891 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5892 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5893 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5894 vmcs_read16(HOST_TR_SELECTOR));
5895 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5896 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5897 vmcs_readl(HOST_TR_BASE));
5898 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5899 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5900 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5901 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5902 vmcs_readl(HOST_CR4));
5903 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5904 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5905 vmcs_read32(HOST_IA32_SYSENTER_CS),
5906 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5907 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5908 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5909 vmcs_read64(HOST_IA32_EFER),
5910 vmcs_read64(HOST_IA32_PAT));
5911 if (cpu_has_load_perf_global_ctrl() &&
5912 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5913 pr_err("PerfGlobCtl = 0x%016llx\n",
5914 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5915
5916 pr_err("*** Control State ***\n");
5917 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5918 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5919 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5920 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5921 vmcs_read32(EXCEPTION_BITMAP),
5922 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5923 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5924 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5925 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5926 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5927 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5928 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5929 vmcs_read32(VM_EXIT_INTR_INFO),
5930 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5931 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5932 pr_err(" reason=%08x qualification=%016lx\n",
5933 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5934 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5935 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5936 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5937 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5938 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5939 pr_err("TSC Multiplier = 0x%016llx\n",
5940 vmcs_read64(TSC_MULTIPLIER));
5941 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5942 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5943 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5944 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5945 }
5946 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5947 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5948 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5949 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5950 }
5951 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5952 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5953 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5954 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5955 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5956 pr_err("PLE Gap=%08x Window=%08x\n",
5957 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5958 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5959 pr_err("Virtual processor ID = 0x%04x\n",
5960 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5961 }
5962
5963 /*
5964 * The guest has exited. See if we can fix it or if we need userspace
5965 * assistance.
5966 */
5967 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5968 {
5969 struct vcpu_vmx *vmx = to_vmx(vcpu);
5970 union vmx_exit_reason exit_reason = vmx->exit_reason;
5971 u32 vectoring_info = vmx->idt_vectoring_info;
5972 u16 exit_handler_index;
5973
5974 /*
5975 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5976 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5977 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5978 * mode as if vcpus is in root mode, the PML buffer must has been
5979 * flushed already.
5980 */
5981 if (enable_pml)
5982 vmx_flush_pml_buffer(vcpu);
5983
5984 /*
5985 * We should never reach this point with a pending nested VM-Enter, and
5986 * more specifically emulation of L2 due to invalid guest state (see
5987 * below) should never happen as that means we incorrectly allowed a
5988 * nested VM-Enter with an invalid vmcs12.
5989 */
5990 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5991
5992 /* If guest state is invalid, start emulating */
5993 if (vmx->emulation_required)
5994 return handle_invalid_guest_state(vcpu);
5995
5996 if (is_guest_mode(vcpu)) {
5997 /*
5998 * The host physical addresses of some pages of guest memory
5999 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6000 * Page). The CPU may write to these pages via their host
6001 * physical address while L2 is running, bypassing any
6002 * address-translation-based dirty tracking (e.g. EPT write
6003 * protection).
6004 *
6005 * Mark them dirty on every exit from L2 to prevent them from
6006 * getting out of sync with dirty tracking.
6007 */
6008 nested_mark_vmcs12_pages_dirty(vcpu);
6009
6010 if (nested_vmx_reflect_vmexit(vcpu))
6011 return 1;
6012 }
6013
6014 if (exit_reason.failed_vmentry) {
6015 dump_vmcs();
6016 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6017 vcpu->run->fail_entry.hardware_entry_failure_reason
6018 = exit_reason.full;
6019 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6020 return 0;
6021 }
6022
6023 if (unlikely(vmx->fail)) {
6024 dump_vmcs();
6025 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6026 vcpu->run->fail_entry.hardware_entry_failure_reason
6027 = vmcs_read32(VM_INSTRUCTION_ERROR);
6028 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6029 return 0;
6030 }
6031
6032 /*
6033 * Note:
6034 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6035 * delivery event since it indicates guest is accessing MMIO.
6036 * The vm-exit can be triggered again after return to guest that
6037 * will cause infinite loop.
6038 */
6039 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6040 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6041 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6042 exit_reason.basic != EXIT_REASON_PML_FULL &&
6043 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6044 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6045 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6046 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6047 vcpu->run->internal.ndata = 3;
6048 vcpu->run->internal.data[0] = vectoring_info;
6049 vcpu->run->internal.data[1] = exit_reason.full;
6050 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6051 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6052 vcpu->run->internal.ndata++;
6053 vcpu->run->internal.data[3] =
6054 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6055 }
6056 vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6057 vcpu->arch.last_vmentry_cpu;
6058 return 0;
6059 }
6060
6061 if (unlikely(!enable_vnmi &&
6062 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6063 if (!vmx_interrupt_blocked(vcpu)) {
6064 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6065 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6066 vcpu->arch.nmi_pending) {
6067 /*
6068 * This CPU don't support us in finding the end of an
6069 * NMI-blocked window if the guest runs with IRQs
6070 * disabled. So we pull the trigger after 1 s of
6071 * futile waiting, but inform the user about this.
6072 */
6073 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6074 "state on VCPU %d after 1 s timeout\n",
6075 __func__, vcpu->vcpu_id);
6076 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6077 }
6078 }
6079
6080 if (exit_fastpath != EXIT_FASTPATH_NONE)
6081 return 1;
6082
6083 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6084 goto unexpected_vmexit;
6085 #ifdef CONFIG_RETPOLINE
6086 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6087 return kvm_emulate_wrmsr(vcpu);
6088 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6089 return handle_preemption_timer(vcpu);
6090 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6091 return handle_interrupt_window(vcpu);
6092 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6093 return handle_external_interrupt(vcpu);
6094 else if (exit_reason.basic == EXIT_REASON_HLT)
6095 return kvm_emulate_halt(vcpu);
6096 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6097 return handle_ept_misconfig(vcpu);
6098 #endif
6099
6100 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6101 kvm_vmx_max_exit_handlers);
6102 if (!kvm_vmx_exit_handlers[exit_handler_index])
6103 goto unexpected_vmexit;
6104
6105 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6106
6107 unexpected_vmexit:
6108 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6109 exit_reason.full);
6110 dump_vmcs();
6111 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6112 vcpu->run->internal.suberror =
6113 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6114 vcpu->run->internal.ndata = 2;
6115 vcpu->run->internal.data[0] = exit_reason.full;
6116 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6117 return 0;
6118 }
6119
6120 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6121 {
6122 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6123
6124 /*
6125 * Even when current exit reason is handled by KVM internally, we
6126 * still need to exit to user space when bus lock detected to inform
6127 * that there is a bus lock in guest.
6128 */
6129 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6130 if (ret > 0)
6131 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6132
6133 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6134 return 0;
6135 }
6136 return ret;
6137 }
6138
6139 /*
6140 * Software based L1D cache flush which is used when microcode providing
6141 * the cache control MSR is not loaded.
6142 *
6143 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6144 * flush it is required to read in 64 KiB because the replacement algorithm
6145 * is not exactly LRU. This could be sized at runtime via topology
6146 * information but as all relevant affected CPUs have 32KiB L1D cache size
6147 * there is no point in doing so.
6148 */
6149 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6150 {
6151 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6152
6153 /*
6154 * This code is only executed when the the flush mode is 'cond' or
6155 * 'always'
6156 */
6157 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6158 bool flush_l1d;
6159
6160 /*
6161 * Clear the per-vcpu flush bit, it gets set again
6162 * either from vcpu_run() or from one of the unsafe
6163 * VMEXIT handlers.
6164 */
6165 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6166 vcpu->arch.l1tf_flush_l1d = false;
6167
6168 /*
6169 * Clear the per-cpu flush bit, it gets set again from
6170 * the interrupt handlers.
6171 */
6172 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6173 kvm_clear_cpu_l1tf_flush_l1d();
6174
6175 if (!flush_l1d)
6176 return;
6177 }
6178
6179 vcpu->stat.l1d_flush++;
6180
6181 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6182 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6183 return;
6184 }
6185
6186 asm volatile(
6187 /* First ensure the pages are in the TLB */
6188 "xorl %%eax, %%eax\n"
6189 ".Lpopulate_tlb:\n\t"
6190 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6191 "addl $4096, %%eax\n\t"
6192 "cmpl %%eax, %[size]\n\t"
6193 "jne .Lpopulate_tlb\n\t"
6194 "xorl %%eax, %%eax\n\t"
6195 "cpuid\n\t"
6196 /* Now fill the cache */
6197 "xorl %%eax, %%eax\n"
6198 ".Lfill_cache:\n"
6199 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6200 "addl $64, %%eax\n\t"
6201 "cmpl %%eax, %[size]\n\t"
6202 "jne .Lfill_cache\n\t"
6203 "lfence\n"
6204 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6205 [size] "r" (size)
6206 : "eax", "ebx", "ecx", "edx");
6207 }
6208
6209 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6210 {
6211 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6212 int tpr_threshold;
6213
6214 if (is_guest_mode(vcpu) &&
6215 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6216 return;
6217
6218 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6219 if (is_guest_mode(vcpu))
6220 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6221 else
6222 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6223 }
6224
6225 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6226 {
6227 struct vcpu_vmx *vmx = to_vmx(vcpu);
6228 u32 sec_exec_control;
6229
6230 if (!lapic_in_kernel(vcpu))
6231 return;
6232
6233 if (!flexpriority_enabled &&
6234 !cpu_has_vmx_virtualize_x2apic_mode())
6235 return;
6236
6237 /* Postpone execution until vmcs01 is the current VMCS. */
6238 if (is_guest_mode(vcpu)) {
6239 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6240 return;
6241 }
6242
6243 sec_exec_control = secondary_exec_controls_get(vmx);
6244 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6245 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6246
6247 switch (kvm_get_apic_mode(vcpu)) {
6248 case LAPIC_MODE_INVALID:
6249 WARN_ONCE(true, "Invalid local APIC state");
6250 case LAPIC_MODE_DISABLED:
6251 break;
6252 case LAPIC_MODE_XAPIC:
6253 if (flexpriority_enabled) {
6254 sec_exec_control |=
6255 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6256 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6257
6258 /*
6259 * Flush the TLB, reloading the APIC access page will
6260 * only do so if its physical address has changed, but
6261 * the guest may have inserted a non-APIC mapping into
6262 * the TLB while the APIC access page was disabled.
6263 */
6264 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6265 }
6266 break;
6267 case LAPIC_MODE_X2APIC:
6268 if (cpu_has_vmx_virtualize_x2apic_mode())
6269 sec_exec_control |=
6270 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6271 break;
6272 }
6273 secondary_exec_controls_set(vmx, sec_exec_control);
6274
6275 vmx_update_msr_bitmap(vcpu);
6276 }
6277
6278 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6279 {
6280 struct page *page;
6281
6282 /* Defer reload until vmcs01 is the current VMCS. */
6283 if (is_guest_mode(vcpu)) {
6284 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6285 return;
6286 }
6287
6288 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6289 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6290 return;
6291
6292 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6293 if (is_error_page(page))
6294 return;
6295
6296 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6297 vmx_flush_tlb_current(vcpu);
6298
6299 /*
6300 * Do not pin apic access page in memory, the MMU notifier
6301 * will call us again if it is migrated or swapped out.
6302 */
6303 put_page(page);
6304 }
6305
6306 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6307 {
6308 u16 status;
6309 u8 old;
6310
6311 if (max_isr == -1)
6312 max_isr = 0;
6313
6314 status = vmcs_read16(GUEST_INTR_STATUS);
6315 old = status >> 8;
6316 if (max_isr != old) {
6317 status &= 0xff;
6318 status |= max_isr << 8;
6319 vmcs_write16(GUEST_INTR_STATUS, status);
6320 }
6321 }
6322
6323 static void vmx_set_rvi(int vector)
6324 {
6325 u16 status;
6326 u8 old;
6327
6328 if (vector == -1)
6329 vector = 0;
6330
6331 status = vmcs_read16(GUEST_INTR_STATUS);
6332 old = (u8)status & 0xff;
6333 if ((u8)vector != old) {
6334 status &= ~0xff;
6335 status |= (u8)vector;
6336 vmcs_write16(GUEST_INTR_STATUS, status);
6337 }
6338 }
6339
6340 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6341 {
6342 /*
6343 * When running L2, updating RVI is only relevant when
6344 * vmcs12 virtual-interrupt-delivery enabled.
6345 * However, it can be enabled only when L1 also
6346 * intercepts external-interrupts and in that case
6347 * we should not update vmcs02 RVI but instead intercept
6348 * interrupt. Therefore, do nothing when running L2.
6349 */
6350 if (!is_guest_mode(vcpu))
6351 vmx_set_rvi(max_irr);
6352 }
6353
6354 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6355 {
6356 struct vcpu_vmx *vmx = to_vmx(vcpu);
6357 int max_irr;
6358 bool max_irr_updated;
6359
6360 WARN_ON(!vcpu->arch.apicv_active);
6361 if (pi_test_on(&vmx->pi_desc)) {
6362 pi_clear_on(&vmx->pi_desc);
6363 /*
6364 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6365 * But on x86 this is just a compiler barrier anyway.
6366 */
6367 smp_mb__after_atomic();
6368 max_irr_updated =
6369 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6370
6371 /*
6372 * If we are running L2 and L1 has a new pending interrupt
6373 * which can be injected, we should re-evaluate
6374 * what should be done with this new L1 interrupt.
6375 * If L1 intercepts external-interrupts, we should
6376 * exit from L2 to L1. Otherwise, interrupt should be
6377 * delivered directly to L2.
6378 */
6379 if (is_guest_mode(vcpu) && max_irr_updated) {
6380 if (nested_exit_on_intr(vcpu))
6381 kvm_vcpu_exiting_guest_mode(vcpu);
6382 else
6383 kvm_make_request(KVM_REQ_EVENT, vcpu);
6384 }
6385 } else {
6386 max_irr = kvm_lapic_find_highest_irr(vcpu);
6387 }
6388 vmx_hwapic_irr_update(vcpu, max_irr);
6389 return max_irr;
6390 }
6391
6392 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6393 {
6394 if (!kvm_vcpu_apicv_active(vcpu))
6395 return;
6396
6397 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6398 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6399 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6400 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6401 }
6402
6403 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6404 {
6405 struct vcpu_vmx *vmx = to_vmx(vcpu);
6406
6407 pi_clear_on(&vmx->pi_desc);
6408 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6409 }
6410
6411 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6412
6413 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6414 {
6415 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6416 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6417
6418 kvm_before_interrupt(vcpu);
6419 vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6420 kvm_after_interrupt(vcpu);
6421 }
6422
6423 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6424 {
6425 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6426
6427 /* if exit due to PF check for async PF */
6428 if (is_page_fault(intr_info))
6429 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6430 /* Handle machine checks before interrupts are enabled */
6431 else if (is_machine_check(intr_info))
6432 kvm_machine_check();
6433 /* We need to handle NMIs before interrupts are enabled */
6434 else if (is_nmi(intr_info))
6435 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6436 }
6437
6438 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6439 {
6440 u32 intr_info = vmx_get_intr_info(vcpu);
6441
6442 if (WARN_ONCE(!is_external_intr(intr_info),
6443 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6444 return;
6445
6446 handle_interrupt_nmi_irqoff(vcpu, intr_info);
6447 }
6448
6449 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6450 {
6451 struct vcpu_vmx *vmx = to_vmx(vcpu);
6452
6453 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6454 handle_external_interrupt_irqoff(vcpu);
6455 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6456 handle_exception_nmi_irqoff(vmx);
6457 }
6458
6459 /*
6460 * The kvm parameter can be NULL (module initialization, or invocation before
6461 * VM creation). Be sure to check the kvm parameter before using it.
6462 */
6463 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6464 {
6465 switch (index) {
6466 case MSR_IA32_SMBASE:
6467 /*
6468 * We cannot do SMM unless we can run the guest in big
6469 * real mode.
6470 */
6471 return enable_unrestricted_guest || emulate_invalid_guest_state;
6472 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6473 return nested;
6474 case MSR_AMD64_VIRT_SPEC_CTRL:
6475 /* This is AMD only. */
6476 return false;
6477 default:
6478 return true;
6479 }
6480 }
6481
6482 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6483 {
6484 u32 exit_intr_info;
6485 bool unblock_nmi;
6486 u8 vector;
6487 bool idtv_info_valid;
6488
6489 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6490
6491 if (enable_vnmi) {
6492 if (vmx->loaded_vmcs->nmi_known_unmasked)
6493 return;
6494
6495 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6496 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6497 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6498 /*
6499 * SDM 3: 27.7.1.2 (September 2008)
6500 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6501 * a guest IRET fault.
6502 * SDM 3: 23.2.2 (September 2008)
6503 * Bit 12 is undefined in any of the following cases:
6504 * If the VM exit sets the valid bit in the IDT-vectoring
6505 * information field.
6506 * If the VM exit is due to a double fault.
6507 */
6508 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6509 vector != DF_VECTOR && !idtv_info_valid)
6510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6511 GUEST_INTR_STATE_NMI);
6512 else
6513 vmx->loaded_vmcs->nmi_known_unmasked =
6514 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6515 & GUEST_INTR_STATE_NMI);
6516 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6517 vmx->loaded_vmcs->vnmi_blocked_time +=
6518 ktime_to_ns(ktime_sub(ktime_get(),
6519 vmx->loaded_vmcs->entry_time));
6520 }
6521
6522 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6523 u32 idt_vectoring_info,
6524 int instr_len_field,
6525 int error_code_field)
6526 {
6527 u8 vector;
6528 int type;
6529 bool idtv_info_valid;
6530
6531 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6532
6533 vcpu->arch.nmi_injected = false;
6534 kvm_clear_exception_queue(vcpu);
6535 kvm_clear_interrupt_queue(vcpu);
6536
6537 if (!idtv_info_valid)
6538 return;
6539
6540 kvm_make_request(KVM_REQ_EVENT, vcpu);
6541
6542 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6543 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6544
6545 switch (type) {
6546 case INTR_TYPE_NMI_INTR:
6547 vcpu->arch.nmi_injected = true;
6548 /*
6549 * SDM 3: 27.7.1.2 (September 2008)
6550 * Clear bit "block by NMI" before VM entry if a NMI
6551 * delivery faulted.
6552 */
6553 vmx_set_nmi_mask(vcpu, false);
6554 break;
6555 case INTR_TYPE_SOFT_EXCEPTION:
6556 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6557 fallthrough;
6558 case INTR_TYPE_HARD_EXCEPTION:
6559 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6560 u32 err = vmcs_read32(error_code_field);
6561 kvm_requeue_exception_e(vcpu, vector, err);
6562 } else
6563 kvm_requeue_exception(vcpu, vector);
6564 break;
6565 case INTR_TYPE_SOFT_INTR:
6566 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6567 fallthrough;
6568 case INTR_TYPE_EXT_INTR:
6569 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6570 break;
6571 default:
6572 break;
6573 }
6574 }
6575
6576 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6577 {
6578 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6579 VM_EXIT_INSTRUCTION_LEN,
6580 IDT_VECTORING_ERROR_CODE);
6581 }
6582
6583 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6584 {
6585 __vmx_complete_interrupts(vcpu,
6586 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6587 VM_ENTRY_INSTRUCTION_LEN,
6588 VM_ENTRY_EXCEPTION_ERROR_CODE);
6589
6590 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6591 }
6592
6593 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6594 {
6595 int i, nr_msrs;
6596 struct perf_guest_switch_msr *msrs;
6597
6598 msrs = perf_guest_get_msrs(&nr_msrs);
6599
6600 if (!msrs)
6601 return;
6602
6603 for (i = 0; i < nr_msrs; i++)
6604 if (msrs[i].host == msrs[i].guest)
6605 clear_atomic_switch_msr(vmx, msrs[i].msr);
6606 else
6607 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6608 msrs[i].host, false);
6609 }
6610
6611 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6612 {
6613 struct vcpu_vmx *vmx = to_vmx(vcpu);
6614 u64 tscl;
6615 u32 delta_tsc;
6616
6617 if (vmx->req_immediate_exit) {
6618 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6619 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6620 } else if (vmx->hv_deadline_tsc != -1) {
6621 tscl = rdtsc();
6622 if (vmx->hv_deadline_tsc > tscl)
6623 /* set_hv_timer ensures the delta fits in 32-bits */
6624 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6625 cpu_preemption_timer_multi);
6626 else
6627 delta_tsc = 0;
6628
6629 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6630 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6631 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6632 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6633 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6634 }
6635 }
6636
6637 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6638 {
6639 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6640 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6641 vmcs_writel(HOST_RSP, host_rsp);
6642 }
6643 }
6644
6645 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6646 {
6647 switch (to_vmx(vcpu)->exit_reason.basic) {
6648 case EXIT_REASON_MSR_WRITE:
6649 return handle_fastpath_set_msr_irqoff(vcpu);
6650 case EXIT_REASON_PREEMPTION_TIMER:
6651 return handle_fastpath_preemption_timer(vcpu);
6652 default:
6653 return EXIT_FASTPATH_NONE;
6654 }
6655 }
6656
6657 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6658 struct vcpu_vmx *vmx)
6659 {
6660 /*
6661 * VMENTER enables interrupts (host state), but the kernel state is
6662 * interrupts disabled when this is invoked. Also tell RCU about
6663 * it. This is the same logic as for exit_to_user_mode().
6664 *
6665 * This ensures that e.g. latency analysis on the host observes
6666 * guest mode as interrupt enabled.
6667 *
6668 * guest_enter_irqoff() informs context tracking about the
6669 * transition to guest mode and if enabled adjusts RCU state
6670 * accordingly.
6671 */
6672 instrumentation_begin();
6673 trace_hardirqs_on_prepare();
6674 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6675 instrumentation_end();
6676
6677 guest_enter_irqoff();
6678 lockdep_hardirqs_on(CALLER_ADDR0);
6679
6680 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6681 if (static_branch_unlikely(&vmx_l1d_should_flush))
6682 vmx_l1d_flush(vcpu);
6683 else if (static_branch_unlikely(&mds_user_clear))
6684 mds_clear_cpu_buffers();
6685
6686 if (vcpu->arch.cr2 != native_read_cr2())
6687 native_write_cr2(vcpu->arch.cr2);
6688
6689 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6690 vmx->loaded_vmcs->launched);
6691
6692 vcpu->arch.cr2 = native_read_cr2();
6693
6694 /*
6695 * VMEXIT disables interrupts (host state), but tracing and lockdep
6696 * have them in state 'on' as recorded before entering guest mode.
6697 * Same as enter_from_user_mode().
6698 *
6699 * guest_exit_irqoff() restores host context and reinstates RCU if
6700 * enabled and required.
6701 *
6702 * This needs to be done before the below as native_read_msr()
6703 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6704 * into world and some more.
6705 */
6706 lockdep_hardirqs_off(CALLER_ADDR0);
6707 guest_exit_irqoff();
6708
6709 instrumentation_begin();
6710 trace_hardirqs_off_finish();
6711 instrumentation_end();
6712 }
6713
6714 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6715 {
6716 struct vcpu_vmx *vmx = to_vmx(vcpu);
6717 unsigned long cr3, cr4;
6718
6719 /* Record the guest's net vcpu time for enforced NMI injections. */
6720 if (unlikely(!enable_vnmi &&
6721 vmx->loaded_vmcs->soft_vnmi_blocked))
6722 vmx->loaded_vmcs->entry_time = ktime_get();
6723
6724 /* Don't enter VMX if guest state is invalid, let the exit handler
6725 start emulation until we arrive back to a valid state */
6726 if (vmx->emulation_required)
6727 return EXIT_FASTPATH_NONE;
6728
6729 trace_kvm_entry(vcpu);
6730
6731 if (vmx->ple_window_dirty) {
6732 vmx->ple_window_dirty = false;
6733 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6734 }
6735
6736 /*
6737 * We did this in prepare_switch_to_guest, because it needs to
6738 * be within srcu_read_lock.
6739 */
6740 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6741
6742 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6743 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6744 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6745 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6746
6747 cr3 = __get_current_cr3_fast();
6748 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6749 vmcs_writel(HOST_CR3, cr3);
6750 vmx->loaded_vmcs->host_state.cr3 = cr3;
6751 }
6752
6753 cr4 = cr4_read_shadow();
6754 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6755 vmcs_writel(HOST_CR4, cr4);
6756 vmx->loaded_vmcs->host_state.cr4 = cr4;
6757 }
6758
6759 /* When single-stepping over STI and MOV SS, we must clear the
6760 * corresponding interruptibility bits in the guest state. Otherwise
6761 * vmentry fails as it then expects bit 14 (BS) in pending debug
6762 * exceptions being set, but that's not correct for the guest debugging
6763 * case. */
6764 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6765 vmx_set_interrupt_shadow(vcpu, 0);
6766
6767 kvm_load_guest_xsave_state(vcpu);
6768
6769 pt_guest_enter(vmx);
6770
6771 atomic_switch_perf_msrs(vmx);
6772 if (intel_pmu_lbr_is_enabled(vcpu))
6773 vmx_passthrough_lbr_msrs(vcpu);
6774
6775 if (enable_preemption_timer)
6776 vmx_update_hv_timer(vcpu);
6777
6778 kvm_wait_lapic_expire(vcpu);
6779
6780 /*
6781 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6782 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6783 * is no need to worry about the conditional branch over the wrmsr
6784 * being speculatively taken.
6785 */
6786 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6787
6788 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6789 vmx_vcpu_enter_exit(vcpu, vmx);
6790
6791 /*
6792 * We do not use IBRS in the kernel. If this vCPU has used the
6793 * SPEC_CTRL MSR it may have left it on; save the value and
6794 * turn it off. This is much more efficient than blindly adding
6795 * it to the atomic save/restore list. Especially as the former
6796 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6797 *
6798 * For non-nested case:
6799 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6800 * save it.
6801 *
6802 * For nested case:
6803 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6804 * save it.
6805 */
6806 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6807 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6808
6809 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6810
6811 /* All fields are clean at this point */
6812 if (static_branch_unlikely(&enable_evmcs)) {
6813 current_evmcs->hv_clean_fields |=
6814 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6815
6816 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6817 }
6818
6819 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6820 if (vmx->host_debugctlmsr)
6821 update_debugctlmsr(vmx->host_debugctlmsr);
6822
6823 #ifndef CONFIG_X86_64
6824 /*
6825 * The sysexit path does not restore ds/es, so we must set them to
6826 * a reasonable value ourselves.
6827 *
6828 * We can't defer this to vmx_prepare_switch_to_host() since that
6829 * function may be executed in interrupt context, which saves and
6830 * restore segments around it, nullifying its effect.
6831 */
6832 loadsegment(ds, __USER_DS);
6833 loadsegment(es, __USER_DS);
6834 #endif
6835
6836 vmx_register_cache_reset(vcpu);
6837
6838 pt_guest_exit(vmx);
6839
6840 kvm_load_host_xsave_state(vcpu);
6841
6842 vmx->nested.nested_run_pending = 0;
6843 vmx->idt_vectoring_info = 0;
6844
6845 if (unlikely(vmx->fail)) {
6846 vmx->exit_reason.full = 0xdead;
6847 return EXIT_FASTPATH_NONE;
6848 }
6849
6850 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6851 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6852 kvm_machine_check();
6853
6854 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6855
6856 if (unlikely(vmx->exit_reason.failed_vmentry))
6857 return EXIT_FASTPATH_NONE;
6858
6859 vmx->loaded_vmcs->launched = 1;
6860 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6861
6862 vmx_recover_nmi_blocking(vmx);
6863 vmx_complete_interrupts(vmx);
6864
6865 if (is_guest_mode(vcpu))
6866 return EXIT_FASTPATH_NONE;
6867
6868 return vmx_exit_handlers_fastpath(vcpu);
6869 }
6870
6871 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6872 {
6873 struct vcpu_vmx *vmx = to_vmx(vcpu);
6874
6875 if (enable_pml)
6876 vmx_destroy_pml_buffer(vmx);
6877 free_vpid(vmx->vpid);
6878 nested_vmx_free_vcpu(vcpu);
6879 free_loaded_vmcs(vmx->loaded_vmcs);
6880 }
6881
6882 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6883 {
6884 struct vcpu_vmx *vmx;
6885 int i, cpu, err;
6886
6887 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6888 vmx = to_vmx(vcpu);
6889
6890 err = -ENOMEM;
6891
6892 vmx->vpid = allocate_vpid();
6893
6894 /*
6895 * If PML is turned on, failure on enabling PML just results in failure
6896 * of creating the vcpu, therefore we can simplify PML logic (by
6897 * avoiding dealing with cases, such as enabling PML partially on vcpus
6898 * for the guest), etc.
6899 */
6900 if (enable_pml) {
6901 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6902 if (!vmx->pml_pg)
6903 goto free_vpid;
6904 }
6905
6906 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6907
6908 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6909 u32 index = vmx_uret_msrs_list[i];
6910 u32 data_low, data_high;
6911 int j = vmx->nr_uret_msrs;
6912
6913 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6914 continue;
6915 if (wrmsr_safe(index, data_low, data_high) < 0)
6916 continue;
6917
6918 vmx->guest_uret_msrs[j].slot = i;
6919 vmx->guest_uret_msrs[j].data = 0;
6920 switch (index) {
6921 case MSR_IA32_TSX_CTRL:
6922 /*
6923 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6924 * interception. Keep the host value unchanged to avoid
6925 * changing CPUID bits under the host kernel's feet.
6926 *
6927 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6928 * combinations of new kernel and old userspace. If
6929 * those guests run on a tsx=off host, do allow guests
6930 * to use TSX_CTRL, but do not change the value on the
6931 * host so that TSX remains always disabled.
6932 */
6933 if (boot_cpu_has(X86_FEATURE_RTM))
6934 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6935 else
6936 vmx->guest_uret_msrs[j].mask = 0;
6937 break;
6938 default:
6939 vmx->guest_uret_msrs[j].mask = -1ull;
6940 break;
6941 }
6942 ++vmx->nr_uret_msrs;
6943 }
6944
6945 err = alloc_loaded_vmcs(&vmx->vmcs01);
6946 if (err < 0)
6947 goto free_pml;
6948
6949 /* The MSR bitmap starts with all ones */
6950 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6951 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6952
6953 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6954 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6955 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6956 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6957 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6958 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6959 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6960 if (kvm_cstate_in_guest(vcpu->kvm)) {
6961 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6962 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6963 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6964 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6965 }
6966 vmx->msr_bitmap_mode = 0;
6967
6968 vmx->loaded_vmcs = &vmx->vmcs01;
6969 cpu = get_cpu();
6970 vmx_vcpu_load(vcpu, cpu);
6971 vcpu->cpu = cpu;
6972 init_vmcs(vmx);
6973 vmx_vcpu_put(vcpu);
6974 put_cpu();
6975 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6976 err = alloc_apic_access_page(vcpu->kvm);
6977 if (err)
6978 goto free_vmcs;
6979 }
6980
6981 if (enable_ept && !enable_unrestricted_guest) {
6982 err = init_rmode_identity_map(vcpu->kvm);
6983 if (err)
6984 goto free_vmcs;
6985 }
6986
6987 if (nested)
6988 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6989 else
6990 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6991
6992 vmx->nested.posted_intr_nv = -1;
6993 vmx->nested.current_vmptr = -1ull;
6994
6995 vcpu->arch.microcode_version = 0x100000000ULL;
6996 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6997
6998 /*
6999 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7000 * or POSTED_INTR_WAKEUP_VECTOR.
7001 */
7002 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7003 vmx->pi_desc.sn = 1;
7004
7005 vmx->ept_pointer = INVALID_PAGE;
7006
7007 return 0;
7008
7009 free_vmcs:
7010 free_loaded_vmcs(vmx->loaded_vmcs);
7011 free_pml:
7012 vmx_destroy_pml_buffer(vmx);
7013 free_vpid:
7014 free_vpid(vmx->vpid);
7015 return err;
7016 }
7017
7018 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7019 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7020
7021 static int vmx_vm_init(struct kvm *kvm)
7022 {
7023 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7024
7025 if (!ple_gap)
7026 kvm->arch.pause_in_guest = true;
7027
7028 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7029 switch (l1tf_mitigation) {
7030 case L1TF_MITIGATION_OFF:
7031 case L1TF_MITIGATION_FLUSH_NOWARN:
7032 /* 'I explicitly don't care' is set */
7033 break;
7034 case L1TF_MITIGATION_FLUSH:
7035 case L1TF_MITIGATION_FLUSH_NOSMT:
7036 case L1TF_MITIGATION_FULL:
7037 /*
7038 * Warn upon starting the first VM in a potentially
7039 * insecure environment.
7040 */
7041 if (sched_smt_active())
7042 pr_warn_once(L1TF_MSG_SMT);
7043 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7044 pr_warn_once(L1TF_MSG_L1D);
7045 break;
7046 case L1TF_MITIGATION_FULL_FORCE:
7047 /* Flush is enforced */
7048 break;
7049 }
7050 }
7051 kvm_apicv_init(kvm, enable_apicv);
7052 return 0;
7053 }
7054
7055 static int __init vmx_check_processor_compat(void)
7056 {
7057 struct vmcs_config vmcs_conf;
7058 struct vmx_capability vmx_cap;
7059
7060 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7061 !this_cpu_has(X86_FEATURE_VMX)) {
7062 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7063 return -EIO;
7064 }
7065
7066 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7067 return -EIO;
7068 if (nested)
7069 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7070 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7071 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7072 smp_processor_id());
7073 return -EIO;
7074 }
7075 return 0;
7076 }
7077
7078 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7079 {
7080 u8 cache;
7081 u64 ipat = 0;
7082
7083 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7084 * memory aliases with conflicting memory types and sometimes MCEs.
7085 * We have to be careful as to what are honored and when.
7086 *
7087 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7088 * UC. The effective memory type is UC or WC depending on guest PAT.
7089 * This was historically the source of MCEs and we want to be
7090 * conservative.
7091 *
7092 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7093 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7094 * EPT memory type is set to WB. The effective memory type is forced
7095 * WB.
7096 *
7097 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7098 * EPT memory type is used to emulate guest CD/MTRR.
7099 */
7100
7101 if (is_mmio) {
7102 cache = MTRR_TYPE_UNCACHABLE;
7103 goto exit;
7104 }
7105
7106 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7107 ipat = VMX_EPT_IPAT_BIT;
7108 cache = MTRR_TYPE_WRBACK;
7109 goto exit;
7110 }
7111
7112 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7113 ipat = VMX_EPT_IPAT_BIT;
7114 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7115 cache = MTRR_TYPE_WRBACK;
7116 else
7117 cache = MTRR_TYPE_UNCACHABLE;
7118 goto exit;
7119 }
7120
7121 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7122
7123 exit:
7124 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7125 }
7126
7127 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7128 {
7129 /*
7130 * These bits in the secondary execution controls field
7131 * are dynamic, the others are mostly based on the hypervisor
7132 * architecture and the guest's CPUID. Do not touch the
7133 * dynamic bits.
7134 */
7135 u32 mask =
7136 SECONDARY_EXEC_SHADOW_VMCS |
7137 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7138 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7139 SECONDARY_EXEC_DESC;
7140
7141 u32 new_ctl = vmx->secondary_exec_control;
7142 u32 cur_ctl = secondary_exec_controls_get(vmx);
7143
7144 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7145 }
7146
7147 /*
7148 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7149 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7150 */
7151 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7152 {
7153 struct vcpu_vmx *vmx = to_vmx(vcpu);
7154 struct kvm_cpuid_entry2 *entry;
7155
7156 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7157 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7158
7159 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7160 if (entry && (entry->_reg & (_cpuid_mask))) \
7161 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7162 } while (0)
7163
7164 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7165 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7166 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7167 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7168 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7169 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7170 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7171 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7172 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7173 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7174 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7175 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7176 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7177 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7178 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7179
7180 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7181 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7182 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7183 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7184 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7185 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7186 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7187
7188 #undef cr4_fixed1_update
7189 }
7190
7191 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7192 {
7193 struct vcpu_vmx *vmx = to_vmx(vcpu);
7194
7195 if (kvm_mpx_supported()) {
7196 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7197
7198 if (mpx_enabled) {
7199 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7200 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7201 } else {
7202 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7203 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7204 }
7205 }
7206 }
7207
7208 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7209 {
7210 struct vcpu_vmx *vmx = to_vmx(vcpu);
7211 struct kvm_cpuid_entry2 *best = NULL;
7212 int i;
7213
7214 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7215 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7216 if (!best)
7217 return;
7218 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7219 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7220 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7221 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7222 }
7223
7224 /* Get the number of configurable Address Ranges for filtering */
7225 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7226 PT_CAP_num_address_ranges);
7227
7228 /* Initialize and clear the no dependency bits */
7229 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7230 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7231
7232 /*
7233 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7234 * will inject an #GP
7235 */
7236 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7237 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7238
7239 /*
7240 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7241 * PSBFreq can be set
7242 */
7243 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7244 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7245 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7246
7247 /*
7248 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7249 * MTCFreq can be set
7250 */
7251 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7252 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7253 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7254
7255 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7256 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7257 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7258 RTIT_CTL_PTW_EN);
7259
7260 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7261 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7262 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7263
7264 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7265 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7266 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7267
7268 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7269 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7270 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7271
7272 /* unmask address range configure area */
7273 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7274 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7275 }
7276
7277 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7278 {
7279 struct vcpu_vmx *vmx = to_vmx(vcpu);
7280
7281 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7282 vcpu->arch.xsaves_enabled = false;
7283
7284 if (cpu_has_secondary_exec_ctrls()) {
7285 vmx_compute_secondary_exec_control(vmx);
7286 vmcs_set_secondary_exec_control(vmx);
7287 }
7288
7289 if (nested_vmx_allowed(vcpu))
7290 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7291 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7292 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7293 else
7294 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7295 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7296 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7297
7298 if (nested_vmx_allowed(vcpu)) {
7299 nested_vmx_cr_fixed1_bits_update(vcpu);
7300 nested_vmx_entry_exit_ctls_update(vcpu);
7301 }
7302
7303 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7304 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7305 update_intel_pt_cfg(vcpu);
7306
7307 if (boot_cpu_has(X86_FEATURE_RTM)) {
7308 struct vmx_uret_msr *msr;
7309 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7310 if (msr) {
7311 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7312 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7313 }
7314 }
7315
7316 set_cr4_guest_host_mask(vmx);
7317
7318 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7319 vmx_update_exception_bitmap(vcpu);
7320 }
7321
7322 static __init void vmx_set_cpu_caps(void)
7323 {
7324 kvm_set_cpu_caps();
7325
7326 /* CPUID 0x1 */
7327 if (nested)
7328 kvm_cpu_cap_set(X86_FEATURE_VMX);
7329
7330 /* CPUID 0x7 */
7331 if (kvm_mpx_supported())
7332 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7333 if (cpu_has_vmx_invpcid())
7334 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7335 if (vmx_pt_mode_is_host_guest())
7336 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7337
7338 if (vmx_umip_emulated())
7339 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7340
7341 /* CPUID 0xD.1 */
7342 supported_xss = 0;
7343 if (!cpu_has_vmx_xsaves())
7344 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7345
7346 /* CPUID 0x80000001 */
7347 if (!cpu_has_vmx_rdtscp())
7348 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7349
7350 if (cpu_has_vmx_waitpkg())
7351 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7352 }
7353
7354 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7355 {
7356 to_vmx(vcpu)->req_immediate_exit = true;
7357 }
7358
7359 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7360 struct x86_instruction_info *info)
7361 {
7362 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7363 unsigned short port;
7364 bool intercept;
7365 int size;
7366
7367 if (info->intercept == x86_intercept_in ||
7368 info->intercept == x86_intercept_ins) {
7369 port = info->src_val;
7370 size = info->dst_bytes;
7371 } else {
7372 port = info->dst_val;
7373 size = info->src_bytes;
7374 }
7375
7376 /*
7377 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7378 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7379 * control.
7380 *
7381 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7382 */
7383 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7384 intercept = nested_cpu_has(vmcs12,
7385 CPU_BASED_UNCOND_IO_EXITING);
7386 else
7387 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7388
7389 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7390 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7391 }
7392
7393 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7394 struct x86_instruction_info *info,
7395 enum x86_intercept_stage stage,
7396 struct x86_exception *exception)
7397 {
7398 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7399
7400 switch (info->intercept) {
7401 /*
7402 * RDPID causes #UD if disabled through secondary execution controls.
7403 * Because it is marked as EmulateOnUD, we need to intercept it here.
7404 */
7405 case x86_intercept_rdtscp:
7406 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7407 exception->vector = UD_VECTOR;
7408 exception->error_code_valid = false;
7409 return X86EMUL_PROPAGATE_FAULT;
7410 }
7411 break;
7412
7413 case x86_intercept_in:
7414 case x86_intercept_ins:
7415 case x86_intercept_out:
7416 case x86_intercept_outs:
7417 return vmx_check_intercept_io(vcpu, info);
7418
7419 case x86_intercept_lgdt:
7420 case x86_intercept_lidt:
7421 case x86_intercept_lldt:
7422 case x86_intercept_ltr:
7423 case x86_intercept_sgdt:
7424 case x86_intercept_sidt:
7425 case x86_intercept_sldt:
7426 case x86_intercept_str:
7427 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7428 return X86EMUL_CONTINUE;
7429
7430 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7431 break;
7432
7433 /* TODO: check more intercepts... */
7434 default:
7435 break;
7436 }
7437
7438 return X86EMUL_UNHANDLEABLE;
7439 }
7440
7441 #ifdef CONFIG_X86_64
7442 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7443 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7444 u64 divisor, u64 *result)
7445 {
7446 u64 low = a << shift, high = a >> (64 - shift);
7447
7448 /* To avoid the overflow on divq */
7449 if (high >= divisor)
7450 return 1;
7451
7452 /* Low hold the result, high hold rem which is discarded */
7453 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7454 "rm" (divisor), "0" (low), "1" (high));
7455 *result = low;
7456
7457 return 0;
7458 }
7459
7460 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7461 bool *expired)
7462 {
7463 struct vcpu_vmx *vmx;
7464 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7465 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7466
7467 vmx = to_vmx(vcpu);
7468 tscl = rdtsc();
7469 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7470 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7471 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7472 ktimer->timer_advance_ns);
7473
7474 if (delta_tsc > lapic_timer_advance_cycles)
7475 delta_tsc -= lapic_timer_advance_cycles;
7476 else
7477 delta_tsc = 0;
7478
7479 /* Convert to host delta tsc if tsc scaling is enabled */
7480 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7481 delta_tsc && u64_shl_div_u64(delta_tsc,
7482 kvm_tsc_scaling_ratio_frac_bits,
7483 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7484 return -ERANGE;
7485
7486 /*
7487 * If the delta tsc can't fit in the 32 bit after the multi shift,
7488 * we can't use the preemption timer.
7489 * It's possible that it fits on later vmentries, but checking
7490 * on every vmentry is costly so we just use an hrtimer.
7491 */
7492 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7493 return -ERANGE;
7494
7495 vmx->hv_deadline_tsc = tscl + delta_tsc;
7496 *expired = !delta_tsc;
7497 return 0;
7498 }
7499
7500 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7501 {
7502 to_vmx(vcpu)->hv_deadline_tsc = -1;
7503 }
7504 #endif
7505
7506 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7507 {
7508 if (!kvm_pause_in_guest(vcpu->kvm))
7509 shrink_ple_window(vcpu);
7510 }
7511
7512 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7513 struct kvm_memory_slot *slot)
7514 {
7515 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7516 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7517 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7518 }
7519
7520 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7521 struct kvm_memory_slot *slot)
7522 {
7523 kvm_mmu_slot_set_dirty(kvm, slot);
7524 }
7525
7526 static void vmx_flush_log_dirty(struct kvm *kvm)
7527 {
7528 kvm_flush_pml_buffers(kvm);
7529 }
7530
7531 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7532 struct kvm_memory_slot *memslot,
7533 gfn_t offset, unsigned long mask)
7534 {
7535 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7536 }
7537
7538 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7539 {
7540 if (pi_pre_block(vcpu))
7541 return 1;
7542
7543 if (kvm_lapic_hv_timer_in_use(vcpu))
7544 kvm_lapic_switch_to_sw_timer(vcpu);
7545
7546 return 0;
7547 }
7548
7549 static void vmx_post_block(struct kvm_vcpu *vcpu)
7550 {
7551 if (kvm_x86_ops.set_hv_timer)
7552 kvm_lapic_switch_to_hv_timer(vcpu);
7553
7554 pi_post_block(vcpu);
7555 }
7556
7557 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7558 {
7559 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7560 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7561 FEAT_CTL_LMCE_ENABLED;
7562 else
7563 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7564 ~FEAT_CTL_LMCE_ENABLED;
7565 }
7566
7567 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7568 {
7569 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7570 if (to_vmx(vcpu)->nested.nested_run_pending)
7571 return -EBUSY;
7572 return !is_smm(vcpu);
7573 }
7574
7575 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7576 {
7577 struct vcpu_vmx *vmx = to_vmx(vcpu);
7578
7579 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7580 if (vmx->nested.smm.guest_mode)
7581 nested_vmx_vmexit(vcpu, -1, 0, 0);
7582
7583 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7584 vmx->nested.vmxon = false;
7585 vmx_clear_hlt(vcpu);
7586 return 0;
7587 }
7588
7589 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7590 {
7591 struct vcpu_vmx *vmx = to_vmx(vcpu);
7592 int ret;
7593
7594 if (vmx->nested.smm.vmxon) {
7595 vmx->nested.vmxon = true;
7596 vmx->nested.smm.vmxon = false;
7597 }
7598
7599 if (vmx->nested.smm.guest_mode) {
7600 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7601 if (ret)
7602 return ret;
7603
7604 vmx->nested.smm.guest_mode = false;
7605 }
7606 return 0;
7607 }
7608
7609 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7610 {
7611 /* RSM will cause a vmexit anyway. */
7612 }
7613
7614 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7615 {
7616 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7617 }
7618
7619 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7620 {
7621 if (is_guest_mode(vcpu)) {
7622 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7623
7624 if (hrtimer_try_to_cancel(timer) == 1)
7625 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7626 }
7627 }
7628
7629 static void hardware_unsetup(void)
7630 {
7631 if (nested)
7632 nested_vmx_hardware_unsetup();
7633
7634 free_kvm_area();
7635 }
7636
7637 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7638 {
7639 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7640 BIT(APICV_INHIBIT_REASON_HYPERV);
7641
7642 return supported & BIT(bit);
7643 }
7644
7645 static int vmx_cpu_dirty_log_size(void)
7646 {
7647 return enable_pml ? PML_ENTITY_NUM : 0;
7648 }
7649
7650 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7651 .hardware_unsetup = hardware_unsetup,
7652
7653 .hardware_enable = hardware_enable,
7654 .hardware_disable = hardware_disable,
7655 .cpu_has_accelerated_tpr = report_flexpriority,
7656 .has_emulated_msr = vmx_has_emulated_msr,
7657
7658 .vm_size = sizeof(struct kvm_vmx),
7659 .vm_init = vmx_vm_init,
7660
7661 .vcpu_create = vmx_create_vcpu,
7662 .vcpu_free = vmx_free_vcpu,
7663 .vcpu_reset = vmx_vcpu_reset,
7664
7665 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7666 .vcpu_load = vmx_vcpu_load,
7667 .vcpu_put = vmx_vcpu_put,
7668
7669 .update_exception_bitmap = vmx_update_exception_bitmap,
7670 .get_msr_feature = vmx_get_msr_feature,
7671 .get_msr = vmx_get_msr,
7672 .set_msr = vmx_set_msr,
7673 .get_segment_base = vmx_get_segment_base,
7674 .get_segment = vmx_get_segment,
7675 .set_segment = vmx_set_segment,
7676 .get_cpl = vmx_get_cpl,
7677 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7678 .set_cr0 = vmx_set_cr0,
7679 .is_valid_cr4 = vmx_is_valid_cr4,
7680 .set_cr4 = vmx_set_cr4,
7681 .set_efer = vmx_set_efer,
7682 .get_idt = vmx_get_idt,
7683 .set_idt = vmx_set_idt,
7684 .get_gdt = vmx_get_gdt,
7685 .set_gdt = vmx_set_gdt,
7686 .set_dr7 = vmx_set_dr7,
7687 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7688 .cache_reg = vmx_cache_reg,
7689 .get_rflags = vmx_get_rflags,
7690 .set_rflags = vmx_set_rflags,
7691
7692 .tlb_flush_all = vmx_flush_tlb_all,
7693 .tlb_flush_current = vmx_flush_tlb_current,
7694 .tlb_flush_gva = vmx_flush_tlb_gva,
7695 .tlb_flush_guest = vmx_flush_tlb_guest,
7696
7697 .run = vmx_vcpu_run,
7698 .handle_exit = vmx_handle_exit,
7699 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7700 .update_emulated_instruction = vmx_update_emulated_instruction,
7701 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7702 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7703 .patch_hypercall = vmx_patch_hypercall,
7704 .set_irq = vmx_inject_irq,
7705 .set_nmi = vmx_inject_nmi,
7706 .queue_exception = vmx_queue_exception,
7707 .cancel_injection = vmx_cancel_injection,
7708 .interrupt_allowed = vmx_interrupt_allowed,
7709 .nmi_allowed = vmx_nmi_allowed,
7710 .get_nmi_mask = vmx_get_nmi_mask,
7711 .set_nmi_mask = vmx_set_nmi_mask,
7712 .enable_nmi_window = vmx_enable_nmi_window,
7713 .enable_irq_window = vmx_enable_irq_window,
7714 .update_cr8_intercept = vmx_update_cr8_intercept,
7715 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7716 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7717 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7718 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7719 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7720 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7721 .hwapic_irr_update = vmx_hwapic_irr_update,
7722 .hwapic_isr_update = vmx_hwapic_isr_update,
7723 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7724 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7725 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7726 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7727
7728 .set_tss_addr = vmx_set_tss_addr,
7729 .set_identity_map_addr = vmx_set_identity_map_addr,
7730 .get_mt_mask = vmx_get_mt_mask,
7731
7732 .get_exit_info = vmx_get_exit_info,
7733
7734 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7735
7736 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7737
7738 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7739
7740 .load_mmu_pgd = vmx_load_mmu_pgd,
7741
7742 .check_intercept = vmx_check_intercept,
7743 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7744
7745 .request_immediate_exit = vmx_request_immediate_exit,
7746
7747 .sched_in = vmx_sched_in,
7748
7749 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7750 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7751 .flush_log_dirty = vmx_flush_log_dirty,
7752 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7753
7754 .pre_block = vmx_pre_block,
7755 .post_block = vmx_post_block,
7756
7757 .pmu_ops = &intel_pmu_ops,
7758 .nested_ops = &vmx_nested_ops,
7759
7760 .update_pi_irte = pi_update_irte,
7761
7762 #ifdef CONFIG_X86_64
7763 .set_hv_timer = vmx_set_hv_timer,
7764 .cancel_hv_timer = vmx_cancel_hv_timer,
7765 #endif
7766
7767 .setup_mce = vmx_setup_mce,
7768
7769 .smi_allowed = vmx_smi_allowed,
7770 .pre_enter_smm = vmx_pre_enter_smm,
7771 .pre_leave_smm = vmx_pre_leave_smm,
7772 .enable_smi_window = vmx_enable_smi_window,
7773
7774 .can_emulate_instruction = vmx_can_emulate_instruction,
7775 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7776 .migrate_timers = vmx_migrate_timers,
7777
7778 .msr_filter_changed = vmx_msr_filter_changed,
7779 .complete_emulated_msr = kvm_complete_insn_gp,
7780 .cpu_dirty_log_size = vmx_cpu_dirty_log_size,
7781
7782 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7783 };
7784
7785 static __init int hardware_setup(void)
7786 {
7787 unsigned long host_bndcfgs;
7788 struct desc_ptr dt;
7789 int r, i, ept_lpage_level;
7790
7791 store_idt(&dt);
7792 host_idt_base = dt.address;
7793
7794 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7795 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7796
7797 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7798 return -EIO;
7799
7800 if (boot_cpu_has(X86_FEATURE_NX))
7801 kvm_enable_efer_bits(EFER_NX);
7802
7803 if (boot_cpu_has(X86_FEATURE_MPX)) {
7804 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7805 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7806 }
7807
7808 if (!cpu_has_vmx_mpx())
7809 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7810 XFEATURE_MASK_BNDCSR);
7811
7812 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7813 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7814 enable_vpid = 0;
7815
7816 if (!cpu_has_vmx_ept() ||
7817 !cpu_has_vmx_ept_4levels() ||
7818 !cpu_has_vmx_ept_mt_wb() ||
7819 !cpu_has_vmx_invept_global())
7820 enable_ept = 0;
7821
7822 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7823 enable_ept_ad_bits = 0;
7824
7825 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7826 enable_unrestricted_guest = 0;
7827
7828 if (!cpu_has_vmx_flexpriority())
7829 flexpriority_enabled = 0;
7830
7831 if (!cpu_has_virtual_nmis())
7832 enable_vnmi = 0;
7833
7834 /*
7835 * set_apic_access_page_addr() is used to reload apic access
7836 * page upon invalidation. No need to do anything if not
7837 * using the APIC_ACCESS_ADDR VMCS field.
7838 */
7839 if (!flexpriority_enabled)
7840 vmx_x86_ops.set_apic_access_page_addr = NULL;
7841
7842 if (!cpu_has_vmx_tpr_shadow())
7843 vmx_x86_ops.update_cr8_intercept = NULL;
7844
7845 #if IS_ENABLED(CONFIG_HYPERV)
7846 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7847 && enable_ept) {
7848 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7849 vmx_x86_ops.tlb_remote_flush_with_range =
7850 hv_remote_flush_tlb_with_range;
7851 }
7852 #endif
7853
7854 if (!cpu_has_vmx_ple()) {
7855 ple_gap = 0;
7856 ple_window = 0;
7857 ple_window_grow = 0;
7858 ple_window_max = 0;
7859 ple_window_shrink = 0;
7860 }
7861
7862 if (!cpu_has_vmx_apicv()) {
7863 enable_apicv = 0;
7864 vmx_x86_ops.sync_pir_to_irr = NULL;
7865 }
7866
7867 if (cpu_has_vmx_tsc_scaling()) {
7868 kvm_has_tsc_control = true;
7869 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7870 kvm_tsc_scaling_ratio_frac_bits = 48;
7871 }
7872
7873 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7874
7875 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7876
7877 if (enable_ept)
7878 vmx_enable_tdp();
7879
7880 if (!enable_ept)
7881 ept_lpage_level = 0;
7882 else if (cpu_has_vmx_ept_1g_page())
7883 ept_lpage_level = PG_LEVEL_1G;
7884 else if (cpu_has_vmx_ept_2m_page())
7885 ept_lpage_level = PG_LEVEL_2M;
7886 else
7887 ept_lpage_level = PG_LEVEL_4K;
7888 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7889
7890 /*
7891 * Only enable PML when hardware supports PML feature, and both EPT
7892 * and EPT A/D bit features are enabled -- PML depends on them to work.
7893 */
7894 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7895 enable_pml = 0;
7896
7897 if (!enable_pml) {
7898 vmx_x86_ops.slot_enable_log_dirty = NULL;
7899 vmx_x86_ops.slot_disable_log_dirty = NULL;
7900 vmx_x86_ops.flush_log_dirty = NULL;
7901 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7902 vmx_x86_ops.cpu_dirty_log_size = NULL;
7903 }
7904
7905 if (!cpu_has_vmx_preemption_timer())
7906 enable_preemption_timer = false;
7907
7908 if (enable_preemption_timer) {
7909 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7910 u64 vmx_msr;
7911
7912 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7913 cpu_preemption_timer_multi =
7914 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7915
7916 if (tsc_khz)
7917 use_timer_freq = (u64)tsc_khz * 1000;
7918 use_timer_freq >>= cpu_preemption_timer_multi;
7919
7920 /*
7921 * KVM "disables" the preemption timer by setting it to its max
7922 * value. Don't use the timer if it might cause spurious exits
7923 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7924 */
7925 if (use_timer_freq > 0xffffffffu / 10)
7926 enable_preemption_timer = false;
7927 }
7928
7929 if (!enable_preemption_timer) {
7930 vmx_x86_ops.set_hv_timer = NULL;
7931 vmx_x86_ops.cancel_hv_timer = NULL;
7932 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7933 }
7934
7935 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7936
7937 kvm_mce_cap_supported |= MCG_LMCE_P;
7938
7939 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7940 return -EINVAL;
7941 if (!enable_ept || !cpu_has_vmx_intel_pt())
7942 pt_mode = PT_MODE_SYSTEM;
7943
7944 if (nested) {
7945 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7946 vmx_capability.ept);
7947
7948 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7949 if (r)
7950 return r;
7951 }
7952
7953 vmx_set_cpu_caps();
7954
7955 r = alloc_kvm_area();
7956 if (r)
7957 nested_vmx_hardware_unsetup();
7958 return r;
7959 }
7960
7961 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7962 .cpu_has_kvm_support = cpu_has_kvm_support,
7963 .disabled_by_bios = vmx_disabled_by_bios,
7964 .check_processor_compatibility = vmx_check_processor_compat,
7965 .hardware_setup = hardware_setup,
7966
7967 .runtime_ops = &vmx_x86_ops,
7968 };
7969
7970 static void vmx_cleanup_l1d_flush(void)
7971 {
7972 if (vmx_l1d_flush_pages) {
7973 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7974 vmx_l1d_flush_pages = NULL;
7975 }
7976 /* Restore state so sysfs ignores VMX */
7977 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7978 }
7979
7980 static void vmx_exit(void)
7981 {
7982 #ifdef CONFIG_KEXEC_CORE
7983 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7984 synchronize_rcu();
7985 #endif
7986
7987 kvm_exit();
7988
7989 #if IS_ENABLED(CONFIG_HYPERV)
7990 if (static_branch_unlikely(&enable_evmcs)) {
7991 int cpu;
7992 struct hv_vp_assist_page *vp_ap;
7993 /*
7994 * Reset everything to support using non-enlightened VMCS
7995 * access later (e.g. when we reload the module with
7996 * enlightened_vmcs=0)
7997 */
7998 for_each_online_cpu(cpu) {
7999 vp_ap = hv_get_vp_assist_page(cpu);
8000
8001 if (!vp_ap)
8002 continue;
8003
8004 vp_ap->nested_control.features.directhypercall = 0;
8005 vp_ap->current_nested_vmcs = 0;
8006 vp_ap->enlighten_vmentry = 0;
8007 }
8008
8009 static_branch_disable(&enable_evmcs);
8010 }
8011 #endif
8012 vmx_cleanup_l1d_flush();
8013 }
8014 module_exit(vmx_exit);
8015
8016 static int __init vmx_init(void)
8017 {
8018 int r, cpu;
8019
8020 #if IS_ENABLED(CONFIG_HYPERV)
8021 /*
8022 * Enlightened VMCS usage should be recommended and the host needs
8023 * to support eVMCS v1 or above. We can also disable eVMCS support
8024 * with module parameter.
8025 */
8026 if (enlightened_vmcs &&
8027 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8028 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8029 KVM_EVMCS_VERSION) {
8030 int cpu;
8031
8032 /* Check that we have assist pages on all online CPUs */
8033 for_each_online_cpu(cpu) {
8034 if (!hv_get_vp_assist_page(cpu)) {
8035 enlightened_vmcs = false;
8036 break;
8037 }
8038 }
8039
8040 if (enlightened_vmcs) {
8041 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8042 static_branch_enable(&enable_evmcs);
8043 }
8044
8045 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8046 vmx_x86_ops.enable_direct_tlbflush
8047 = hv_enable_direct_tlbflush;
8048
8049 } else {
8050 enlightened_vmcs = false;
8051 }
8052 #endif
8053
8054 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8055 __alignof__(struct vcpu_vmx), THIS_MODULE);
8056 if (r)
8057 return r;
8058
8059 /*
8060 * Must be called after kvm_init() so enable_ept is properly set
8061 * up. Hand the parameter mitigation value in which was stored in
8062 * the pre module init parser. If no parameter was given, it will
8063 * contain 'auto' which will be turned into the default 'cond'
8064 * mitigation mode.
8065 */
8066 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8067 if (r) {
8068 vmx_exit();
8069 return r;
8070 }
8071
8072 for_each_possible_cpu(cpu) {
8073 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8074
8075 pi_init_cpu(cpu);
8076 }
8077
8078 #ifdef CONFIG_KEXEC_CORE
8079 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8080 crash_vmclear_local_loaded_vmcss);
8081 #endif
8082 vmx_check_vmcs12_offsets();
8083
8084 /*
8085 * Shadow paging doesn't have a (further) performance penalty
8086 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8087 * by default
8088 */
8089 if (!enable_ept)
8090 allow_smaller_maxphyaddr = true;
8091
8092 return 0;
8093 }
8094 module_init(vmx_init);