]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/vmx/vmx.c
Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / vmx / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 X86_FEATURE_MATCH(X86_FEATURE_VMX),
72 {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90 enable_unrestricted_guest, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103
104 /*
105 * If nested=1, nested virtualization is supported, i.e., guests may use
106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107 * use VMX instructions.
108 */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
162 */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193 const char *option;
194 bool for_parse;
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 struct page *page;
210 unsigned int i;
211
212 if (!enable_ept) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214 return 0;
215 }
216
217 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218 u64 msr;
219
220 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223 return 0;
224 }
225 }
226
227 /* If set to auto use the default l1tf mitigation method */
228 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229 switch (l1tf_mitigation) {
230 case L1TF_MITIGATION_OFF:
231 l1tf = VMENTER_L1D_FLUSH_NEVER;
232 break;
233 case L1TF_MITIGATION_FLUSH_NOWARN:
234 case L1TF_MITIGATION_FLUSH:
235 case L1TF_MITIGATION_FLUSH_NOSMT:
236 l1tf = VMENTER_L1D_FLUSH_COND;
237 break;
238 case L1TF_MITIGATION_FULL:
239 case L1TF_MITIGATION_FULL_FORCE:
240 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241 break;
242 }
243 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245 }
246
247 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249 /*
250 * This allocation for vmx_l1d_flush_pages is not tied to a VM
251 * lifetime and so should not be charged to a memcg.
252 */
253 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254 if (!page)
255 return -ENOMEM;
256 vmx_l1d_flush_pages = page_address(page);
257
258 /*
259 * Initialize each page with a different pattern in
260 * order to protect against KSM in the nested
261 * virtualization case.
262 */
263 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265 PAGE_SIZE);
266 }
267 }
268
269 l1tf_vmx_mitigation = l1tf;
270
271 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272 static_branch_enable(&vmx_l1d_should_flush);
273 else
274 static_branch_disable(&vmx_l1d_should_flush);
275
276 if (l1tf == VMENTER_L1D_FLUSH_COND)
277 static_branch_enable(&vmx_l1d_flush_cond);
278 else
279 static_branch_disable(&vmx_l1d_flush_cond);
280 return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285 unsigned int i;
286
287 if (s) {
288 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289 if (vmentry_l1d_param[i].for_parse &&
290 sysfs_streq(s, vmentry_l1d_param[i].option))
291 return i;
292 }
293 }
294 return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299 int l1tf, ret;
300
301 l1tf = vmentry_l1d_flush_parse(s);
302 if (l1tf < 0)
303 return l1tf;
304
305 if (!boot_cpu_has(X86_BUG_L1TF))
306 return 0;
307
308 /*
309 * Has vmx_init() run already? If not then this is the pre init
310 * parameter parsing. In that case just store the value and let
311 * vmx_init() do the proper setup after enable_ept has been
312 * established.
313 */
314 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315 vmentry_l1d_flush_param = l1tf;
316 return 0;
317 }
318
319 mutex_lock(&vmx_l1d_flush_mutex);
320 ret = vmx_setup_l1d_flush(l1tf);
321 mutex_unlock(&vmx_l1d_flush_mutex);
322 return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328 return sprintf(s, "???\n");
329
330 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334 .set = vmentry_l1d_flush_set,
335 .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342 u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351 */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356 * can find which vCPU should be waken up.
357 */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg) \
368 [VCPU_SREG_##seg] = { \
369 .selector = GUEST_##seg##_SELECTOR, \
370 .base = GUEST_##seg##_BASE, \
371 .limit = GUEST_##seg##_LIMIT, \
372 .ar_bytes = GUEST_##seg##_AR_BYTES, \
373 }
374
375 static const struct kvm_vmx_segment_field {
376 unsigned selector;
377 unsigned base;
378 unsigned limit;
379 unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381 VMX_SEGMENT_FIELD(CS),
382 VMX_SEGMENT_FIELD(DS),
383 VMX_SEGMENT_FIELD(ES),
384 VMX_SEGMENT_FIELD(FS),
385 VMX_SEGMENT_FIELD(GS),
386 VMX_SEGMENT_FIELD(SS),
387 VMX_SEGMENT_FIELD(TR),
388 VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392
393 /*
394 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
395 * will emulate SYSCALL in legacy mode if the vendor string in guest
396 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
397 * support this emulation, IA32_STAR must always be included in
398 * vmx_msr_index[], even in i386 builds.
399 */
400 const u32 vmx_msr_index[] = {
401 #ifdef CONFIG_X86_64
402 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
403 #endif
404 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
405 };
406
407 #if IS_ENABLED(CONFIG_HYPERV)
408 static bool __read_mostly enlightened_vmcs = true;
409 module_param(enlightened_vmcs, bool, 0444);
410
411 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
412 static void check_ept_pointer_match(struct kvm *kvm)
413 {
414 struct kvm_vcpu *vcpu;
415 u64 tmp_eptp = INVALID_PAGE;
416 int i;
417
418 kvm_for_each_vcpu(i, vcpu, kvm) {
419 if (!VALID_PAGE(tmp_eptp)) {
420 tmp_eptp = to_vmx(vcpu)->ept_pointer;
421 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
422 to_kvm_vmx(kvm)->ept_pointers_match
423 = EPT_POINTERS_MISMATCH;
424 return;
425 }
426 }
427
428 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
429 }
430
431 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
432 void *data)
433 {
434 struct kvm_tlb_range *range = data;
435
436 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
437 range->pages);
438 }
439
440 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
441 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
442 {
443 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
444
445 /*
446 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
447 * of the base of EPT PML4 table, strip off EPT configuration
448 * information.
449 */
450 if (range)
451 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
452 kvm_fill_hv_flush_list_func, (void *)range);
453 else
454 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
455 }
456
457 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
458 struct kvm_tlb_range *range)
459 {
460 struct kvm_vcpu *vcpu;
461 int ret = 0, i;
462
463 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
464
465 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
466 check_ept_pointer_match(kvm);
467
468 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
469 kvm_for_each_vcpu(i, vcpu, kvm) {
470 /* If ept_pointer is invalid pointer, bypass flush request. */
471 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
472 ret |= __hv_remote_flush_tlb_with_range(
473 kvm, vcpu, range);
474 }
475 } else {
476 ret = __hv_remote_flush_tlb_with_range(kvm,
477 kvm_get_vcpu(kvm, 0), range);
478 }
479
480 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
481 return ret;
482 }
483 static int hv_remote_flush_tlb(struct kvm *kvm)
484 {
485 return hv_remote_flush_tlb_with_range(kvm, NULL);
486 }
487
488 #endif /* IS_ENABLED(CONFIG_HYPERV) */
489
490 /*
491 * Comment's format: document - errata name - stepping - processor name.
492 * Refer from
493 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
494 */
495 static u32 vmx_preemption_cpu_tfms[] = {
496 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
497 0x000206E6,
498 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
499 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
500 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020652,
502 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
503 0x00020655,
504 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
505 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
506 /*
507 * 320767.pdf - AAP86 - B1 -
508 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
509 */
510 0x000106E5,
511 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
512 0x000106A0,
513 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
514 0x000106A1,
515 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
516 0x000106A4,
517 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
518 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
519 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
520 0x000106A5,
521 /* Xeon E3-1220 V2 */
522 0x000306A8,
523 };
524
525 static inline bool cpu_has_broken_vmx_preemption_timer(void)
526 {
527 u32 eax = cpuid_eax(0x00000001), i;
528
529 /* Clear the reserved bits */
530 eax &= ~(0x3U << 14 | 0xfU << 28);
531 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
532 if (eax == vmx_preemption_cpu_tfms[i])
533 return true;
534
535 return false;
536 }
537
538 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
539 {
540 return flexpriority_enabled && lapic_in_kernel(vcpu);
541 }
542
543 static inline bool report_flexpriority(void)
544 {
545 return flexpriority_enabled;
546 }
547
548 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
549 {
550 int i;
551
552 for (i = 0; i < vmx->nmsrs; ++i)
553 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
554 return i;
555 return -1;
556 }
557
558 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
559 {
560 int i;
561
562 i = __find_msr_index(vmx, msr);
563 if (i >= 0)
564 return &vmx->guest_msrs[i];
565 return NULL;
566 }
567
568 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
569 {
570 vmcs_clear(loaded_vmcs->vmcs);
571 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
572 vmcs_clear(loaded_vmcs->shadow_vmcs);
573 loaded_vmcs->cpu = -1;
574 loaded_vmcs->launched = 0;
575 }
576
577 #ifdef CONFIG_KEXEC_CORE
578 /*
579 * This bitmap is used to indicate whether the vmclear
580 * operation is enabled on all cpus. All disabled by
581 * default.
582 */
583 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
584
585 static inline void crash_enable_local_vmclear(int cpu)
586 {
587 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
588 }
589
590 static inline void crash_disable_local_vmclear(int cpu)
591 {
592 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
593 }
594
595 static inline int crash_local_vmclear_enabled(int cpu)
596 {
597 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
598 }
599
600 static void crash_vmclear_local_loaded_vmcss(void)
601 {
602 int cpu = raw_smp_processor_id();
603 struct loaded_vmcs *v;
604
605 if (!crash_local_vmclear_enabled(cpu))
606 return;
607
608 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
609 loaded_vmcss_on_cpu_link)
610 vmcs_clear(v->vmcs);
611 }
612 #else
613 static inline void crash_enable_local_vmclear(int cpu) { }
614 static inline void crash_disable_local_vmclear(int cpu) { }
615 #endif /* CONFIG_KEXEC_CORE */
616
617 static void __loaded_vmcs_clear(void *arg)
618 {
619 struct loaded_vmcs *loaded_vmcs = arg;
620 int cpu = raw_smp_processor_id();
621
622 if (loaded_vmcs->cpu != cpu)
623 return; /* vcpu migration can race with cpu offline */
624 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
625 per_cpu(current_vmcs, cpu) = NULL;
626 crash_disable_local_vmclear(cpu);
627 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
628
629 /*
630 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
631 * is before setting loaded_vmcs->vcpu to -1 which is done in
632 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
633 * then adds the vmcs into percpu list before it is deleted.
634 */
635 smp_wmb();
636
637 loaded_vmcs_init(loaded_vmcs);
638 crash_enable_local_vmclear(cpu);
639 }
640
641 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
642 {
643 int cpu = loaded_vmcs->cpu;
644
645 if (cpu != -1)
646 smp_call_function_single(cpu,
647 __loaded_vmcs_clear, loaded_vmcs, 1);
648 }
649
650 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
651 unsigned field)
652 {
653 bool ret;
654 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
655
656 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
657 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
658 vmx->segment_cache.bitmask = 0;
659 }
660 ret = vmx->segment_cache.bitmask & mask;
661 vmx->segment_cache.bitmask |= mask;
662 return ret;
663 }
664
665 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
666 {
667 u16 *p = &vmx->segment_cache.seg[seg].selector;
668
669 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
670 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
671 return *p;
672 }
673
674 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
675 {
676 ulong *p = &vmx->segment_cache.seg[seg].base;
677
678 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
679 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
680 return *p;
681 }
682
683 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 u32 *p = &vmx->segment_cache.seg[seg].limit;
686
687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
688 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
689 return *p;
690 }
691
692 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 u32 *p = &vmx->segment_cache.seg[seg].ar;
695
696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
697 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
698 return *p;
699 }
700
701 void update_exception_bitmap(struct kvm_vcpu *vcpu)
702 {
703 u32 eb;
704
705 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
706 (1u << DB_VECTOR) | (1u << AC_VECTOR);
707 /*
708 * Guest access to VMware backdoor ports could legitimately
709 * trigger #GP because of TSS I/O permission bitmap.
710 * We intercept those #GP and allow access to them anyway
711 * as VMware does.
712 */
713 if (enable_vmware_backdoor)
714 eb |= (1u << GP_VECTOR);
715 if ((vcpu->guest_debug &
716 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
717 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
718 eb |= 1u << BP_VECTOR;
719 if (to_vmx(vcpu)->rmode.vm86_active)
720 eb = ~0;
721 if (enable_ept)
722 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
723
724 /* When we are running a nested L2 guest and L1 specified for it a
725 * certain exception bitmap, we must trap the same exceptions and pass
726 * them to L1. When running L2, we will only handle the exceptions
727 * specified above if L1 did not want them.
728 */
729 if (is_guest_mode(vcpu))
730 eb |= get_vmcs12(vcpu)->exception_bitmap;
731
732 vmcs_write32(EXCEPTION_BITMAP, eb);
733 }
734
735 /*
736 * Check if MSR is intercepted for currently loaded MSR bitmap.
737 */
738 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
739 {
740 unsigned long *msr_bitmap;
741 int f = sizeof(unsigned long);
742
743 if (!cpu_has_vmx_msr_bitmap())
744 return true;
745
746 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
747
748 if (msr <= 0x1fff) {
749 return !!test_bit(msr, msr_bitmap + 0x800 / f);
750 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
751 msr &= 0x1fff;
752 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
753 }
754
755 return true;
756 }
757
758 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
759 unsigned long entry, unsigned long exit)
760 {
761 vm_entry_controls_clearbit(vmx, entry);
762 vm_exit_controls_clearbit(vmx, exit);
763 }
764
765 static int find_msr(struct vmx_msrs *m, unsigned int msr)
766 {
767 unsigned int i;
768
769 for (i = 0; i < m->nr; ++i) {
770 if (m->val[i].index == msr)
771 return i;
772 }
773 return -ENOENT;
774 }
775
776 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
777 {
778 int i;
779 struct msr_autoload *m = &vmx->msr_autoload;
780
781 switch (msr) {
782 case MSR_EFER:
783 if (cpu_has_load_ia32_efer()) {
784 clear_atomic_switch_msr_special(vmx,
785 VM_ENTRY_LOAD_IA32_EFER,
786 VM_EXIT_LOAD_IA32_EFER);
787 return;
788 }
789 break;
790 case MSR_CORE_PERF_GLOBAL_CTRL:
791 if (cpu_has_load_perf_global_ctrl()) {
792 clear_atomic_switch_msr_special(vmx,
793 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
794 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
795 return;
796 }
797 break;
798 }
799 i = find_msr(&m->guest, msr);
800 if (i < 0)
801 goto skip_guest;
802 --m->guest.nr;
803 m->guest.val[i] = m->guest.val[m->guest.nr];
804 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
805
806 skip_guest:
807 i = find_msr(&m->host, msr);
808 if (i < 0)
809 return;
810
811 --m->host.nr;
812 m->host.val[i] = m->host.val[m->host.nr];
813 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
814 }
815
816 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
817 unsigned long entry, unsigned long exit,
818 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
819 u64 guest_val, u64 host_val)
820 {
821 vmcs_write64(guest_val_vmcs, guest_val);
822 if (host_val_vmcs != HOST_IA32_EFER)
823 vmcs_write64(host_val_vmcs, host_val);
824 vm_entry_controls_setbit(vmx, entry);
825 vm_exit_controls_setbit(vmx, exit);
826 }
827
828 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
829 u64 guest_val, u64 host_val, bool entry_only)
830 {
831 int i, j = 0;
832 struct msr_autoload *m = &vmx->msr_autoload;
833
834 switch (msr) {
835 case MSR_EFER:
836 if (cpu_has_load_ia32_efer()) {
837 add_atomic_switch_msr_special(vmx,
838 VM_ENTRY_LOAD_IA32_EFER,
839 VM_EXIT_LOAD_IA32_EFER,
840 GUEST_IA32_EFER,
841 HOST_IA32_EFER,
842 guest_val, host_val);
843 return;
844 }
845 break;
846 case MSR_CORE_PERF_GLOBAL_CTRL:
847 if (cpu_has_load_perf_global_ctrl()) {
848 add_atomic_switch_msr_special(vmx,
849 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
850 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
851 GUEST_IA32_PERF_GLOBAL_CTRL,
852 HOST_IA32_PERF_GLOBAL_CTRL,
853 guest_val, host_val);
854 return;
855 }
856 break;
857 case MSR_IA32_PEBS_ENABLE:
858 /* PEBS needs a quiescent period after being disabled (to write
859 * a record). Disabling PEBS through VMX MSR swapping doesn't
860 * provide that period, so a CPU could write host's record into
861 * guest's memory.
862 */
863 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
864 }
865
866 i = find_msr(&m->guest, msr);
867 if (!entry_only)
868 j = find_msr(&m->host, msr);
869
870 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
871 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
872 printk_once(KERN_WARNING "Not enough msr switch entries. "
873 "Can't add msr %x\n", msr);
874 return;
875 }
876 if (i < 0) {
877 i = m->guest.nr++;
878 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
879 }
880 m->guest.val[i].index = msr;
881 m->guest.val[i].value = guest_val;
882
883 if (entry_only)
884 return;
885
886 if (j < 0) {
887 j = m->host.nr++;
888 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889 }
890 m->host.val[j].index = msr;
891 m->host.val[j].value = host_val;
892 }
893
894 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
895 {
896 u64 guest_efer = vmx->vcpu.arch.efer;
897 u64 ignore_bits = 0;
898
899 if (!enable_ept) {
900 /*
901 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
902 * host CPUID is more efficient than testing guest CPUID
903 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
904 */
905 if (boot_cpu_has(X86_FEATURE_SMEP))
906 guest_efer |= EFER_NX;
907 else if (!(guest_efer & EFER_NX))
908 ignore_bits |= EFER_NX;
909 }
910
911 /*
912 * LMA and LME handled by hardware; SCE meaningless outside long mode.
913 */
914 ignore_bits |= EFER_SCE;
915 #ifdef CONFIG_X86_64
916 ignore_bits |= EFER_LMA | EFER_LME;
917 /* SCE is meaningful only in long mode on Intel */
918 if (guest_efer & EFER_LMA)
919 ignore_bits &= ~(u64)EFER_SCE;
920 #endif
921
922 /*
923 * On EPT, we can't emulate NX, so we must switch EFER atomically.
924 * On CPUs that support "load IA32_EFER", always switch EFER
925 * atomically, since it's faster than switching it manually.
926 */
927 if (cpu_has_load_ia32_efer() ||
928 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
929 if (!(guest_efer & EFER_LMA))
930 guest_efer &= ~EFER_LME;
931 if (guest_efer != host_efer)
932 add_atomic_switch_msr(vmx, MSR_EFER,
933 guest_efer, host_efer, false);
934 else
935 clear_atomic_switch_msr(vmx, MSR_EFER);
936 return false;
937 } else {
938 clear_atomic_switch_msr(vmx, MSR_EFER);
939
940 guest_efer &= ~ignore_bits;
941 guest_efer |= host_efer & ignore_bits;
942
943 vmx->guest_msrs[efer_offset].data = guest_efer;
944 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
945
946 return true;
947 }
948 }
949
950 #ifdef CONFIG_X86_32
951 /*
952 * On 32-bit kernels, VM exits still load the FS and GS bases from the
953 * VMCS rather than the segment table. KVM uses this helper to figure
954 * out the current bases to poke them into the VMCS before entry.
955 */
956 static unsigned long segment_base(u16 selector)
957 {
958 struct desc_struct *table;
959 unsigned long v;
960
961 if (!(selector & ~SEGMENT_RPL_MASK))
962 return 0;
963
964 table = get_current_gdt_ro();
965
966 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
967 u16 ldt_selector = kvm_read_ldt();
968
969 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
970 return 0;
971
972 table = (struct desc_struct *)segment_base(ldt_selector);
973 }
974 v = get_desc_base(&table[selector >> 3]);
975 return v;
976 }
977 #endif
978
979 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
980 {
981 u32 i;
982
983 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
984 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
985 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
986 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
987 for (i = 0; i < addr_range; i++) {
988 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
989 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
990 }
991 }
992
993 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
994 {
995 u32 i;
996
997 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
998 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
999 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1000 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1001 for (i = 0; i < addr_range; i++) {
1002 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1003 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1004 }
1005 }
1006
1007 static void pt_guest_enter(struct vcpu_vmx *vmx)
1008 {
1009 if (pt_mode == PT_MODE_SYSTEM)
1010 return;
1011
1012 /*
1013 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1014 * Save host state before VM entry.
1015 */
1016 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1017 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1018 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1019 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1020 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1021 }
1022 }
1023
1024 static void pt_guest_exit(struct vcpu_vmx *vmx)
1025 {
1026 if (pt_mode == PT_MODE_SYSTEM)
1027 return;
1028
1029 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1030 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1031 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1032 }
1033
1034 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1035 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1036 }
1037
1038 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1039 {
1040 struct vcpu_vmx *vmx = to_vmx(vcpu);
1041 struct vmcs_host_state *host_state;
1042 #ifdef CONFIG_X86_64
1043 int cpu = raw_smp_processor_id();
1044 #endif
1045 unsigned long fs_base, gs_base;
1046 u16 fs_sel, gs_sel;
1047 int i;
1048
1049 vmx->req_immediate_exit = false;
1050
1051 /*
1052 * Note that guest MSRs to be saved/restored can also be changed
1053 * when guest state is loaded. This happens when guest transitions
1054 * to/from long-mode by setting MSR_EFER.LMA.
1055 */
1056 if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1057 vmx->guest_msrs_dirty = false;
1058 for (i = 0; i < vmx->save_nmsrs; ++i)
1059 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1060 vmx->guest_msrs[i].data,
1061 vmx->guest_msrs[i].mask);
1062
1063 }
1064
1065 if (vmx->loaded_cpu_state)
1066 return;
1067
1068 vmx->loaded_cpu_state = vmx->loaded_vmcs;
1069 host_state = &vmx->loaded_cpu_state->host_state;
1070
1071 /*
1072 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1073 * allow segment selectors with cpl > 0 or ti == 1.
1074 */
1075 host_state->ldt_sel = kvm_read_ldt();
1076
1077 #ifdef CONFIG_X86_64
1078 savesegment(ds, host_state->ds_sel);
1079 savesegment(es, host_state->es_sel);
1080
1081 gs_base = cpu_kernelmode_gs_base(cpu);
1082 if (likely(is_64bit_mm(current->mm))) {
1083 save_fsgs_for_kvm();
1084 fs_sel = current->thread.fsindex;
1085 gs_sel = current->thread.gsindex;
1086 fs_base = current->thread.fsbase;
1087 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1088 } else {
1089 savesegment(fs, fs_sel);
1090 savesegment(gs, gs_sel);
1091 fs_base = read_msr(MSR_FS_BASE);
1092 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1093 }
1094
1095 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1096 #else
1097 savesegment(fs, fs_sel);
1098 savesegment(gs, gs_sel);
1099 fs_base = segment_base(fs_sel);
1100 gs_base = segment_base(gs_sel);
1101 #endif
1102
1103 if (unlikely(fs_sel != host_state->fs_sel)) {
1104 if (!(fs_sel & 7))
1105 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1106 else
1107 vmcs_write16(HOST_FS_SELECTOR, 0);
1108 host_state->fs_sel = fs_sel;
1109 }
1110 if (unlikely(gs_sel != host_state->gs_sel)) {
1111 if (!(gs_sel & 7))
1112 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1113 else
1114 vmcs_write16(HOST_GS_SELECTOR, 0);
1115 host_state->gs_sel = gs_sel;
1116 }
1117 if (unlikely(fs_base != host_state->fs_base)) {
1118 vmcs_writel(HOST_FS_BASE, fs_base);
1119 host_state->fs_base = fs_base;
1120 }
1121 if (unlikely(gs_base != host_state->gs_base)) {
1122 vmcs_writel(HOST_GS_BASE, gs_base);
1123 host_state->gs_base = gs_base;
1124 }
1125 }
1126
1127 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1128 {
1129 struct vmcs_host_state *host_state;
1130
1131 if (!vmx->loaded_cpu_state)
1132 return;
1133
1134 WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1135 host_state = &vmx->loaded_cpu_state->host_state;
1136
1137 ++vmx->vcpu.stat.host_state_reload;
1138 vmx->loaded_cpu_state = NULL;
1139
1140 #ifdef CONFIG_X86_64
1141 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1142 #endif
1143 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1144 kvm_load_ldt(host_state->ldt_sel);
1145 #ifdef CONFIG_X86_64
1146 load_gs_index(host_state->gs_sel);
1147 #else
1148 loadsegment(gs, host_state->gs_sel);
1149 #endif
1150 }
1151 if (host_state->fs_sel & 7)
1152 loadsegment(fs, host_state->fs_sel);
1153 #ifdef CONFIG_X86_64
1154 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1155 loadsegment(ds, host_state->ds_sel);
1156 loadsegment(es, host_state->es_sel);
1157 }
1158 #endif
1159 invalidate_tss_limit();
1160 #ifdef CONFIG_X86_64
1161 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1162 #endif
1163 load_fixmap_gdt(raw_smp_processor_id());
1164 }
1165
1166 #ifdef CONFIG_X86_64
1167 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1168 {
1169 preempt_disable();
1170 if (vmx->loaded_cpu_state)
1171 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 preempt_enable();
1173 return vmx->msr_guest_kernel_gs_base;
1174 }
1175
1176 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1177 {
1178 preempt_disable();
1179 if (vmx->loaded_cpu_state)
1180 wrmsrl(MSR_KERNEL_GS_BASE, data);
1181 preempt_enable();
1182 vmx->msr_guest_kernel_gs_base = data;
1183 }
1184 #endif
1185
1186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1187 {
1188 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1189 struct pi_desc old, new;
1190 unsigned int dest;
1191
1192 /*
1193 * In case of hot-plug or hot-unplug, we may have to undo
1194 * vmx_vcpu_pi_put even if there is no assigned device. And we
1195 * always keep PI.NDST up to date for simplicity: it makes the
1196 * code easier, and CPU migration is not a fast path.
1197 */
1198 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1199 return;
1200
1201 /* The full case. */
1202 do {
1203 old.control = new.control = pi_desc->control;
1204
1205 dest = cpu_physical_id(cpu);
1206
1207 if (x2apic_enabled())
1208 new.ndst = dest;
1209 else
1210 new.ndst = (dest << 8) & 0xFF00;
1211
1212 new.sn = 0;
1213 } while (cmpxchg64(&pi_desc->control, old.control,
1214 new.control) != old.control);
1215
1216 /*
1217 * Clear SN before reading the bitmap. The VT-d firmware
1218 * writes the bitmap and reads SN atomically (5.2.3 in the
1219 * spec), so it doesn't really have a memory barrier that
1220 * pairs with this, but we cannot do that and we need one.
1221 */
1222 smp_mb__after_atomic();
1223
1224 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1225 pi_set_on(pi_desc);
1226 }
1227
1228 /*
1229 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1230 * vcpu mutex is already taken.
1231 */
1232 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233 {
1234 struct vcpu_vmx *vmx = to_vmx(vcpu);
1235 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1236
1237 if (!already_loaded) {
1238 loaded_vmcs_clear(vmx->loaded_vmcs);
1239 local_irq_disable();
1240 crash_disable_local_vmclear(cpu);
1241
1242 /*
1243 * Read loaded_vmcs->cpu should be before fetching
1244 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1245 * See the comments in __loaded_vmcs_clear().
1246 */
1247 smp_rmb();
1248
1249 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1250 &per_cpu(loaded_vmcss_on_cpu, cpu));
1251 crash_enable_local_vmclear(cpu);
1252 local_irq_enable();
1253 }
1254
1255 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1256 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1257 vmcs_load(vmx->loaded_vmcs->vmcs);
1258 indirect_branch_prediction_barrier();
1259 }
1260
1261 if (!already_loaded) {
1262 void *gdt = get_current_gdt_ro();
1263 unsigned long sysenter_esp;
1264
1265 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1266
1267 /*
1268 * Linux uses per-cpu TSS and GDT, so set these when switching
1269 * processors. See 22.2.4.
1270 */
1271 vmcs_writel(HOST_TR_BASE,
1272 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1273 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1274
1275 /*
1276 * VM exits change the host TR limit to 0x67 after a VM
1277 * exit. This is okay, since 0x67 covers everything except
1278 * the IO bitmap and have have code to handle the IO bitmap
1279 * being lost after a VM exit.
1280 */
1281 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1282
1283 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1284 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1285
1286 vmx->loaded_vmcs->cpu = cpu;
1287 }
1288
1289 /* Setup TSC multiplier */
1290 if (kvm_has_tsc_control &&
1291 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1292 decache_tsc_multiplier(vmx);
1293
1294 vmx_vcpu_pi_load(vcpu, cpu);
1295 vmx->host_pkru = read_pkru();
1296 vmx->host_debugctlmsr = get_debugctlmsr();
1297 }
1298
1299 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1300 {
1301 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1302
1303 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1304 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1305 !kvm_vcpu_apicv_active(vcpu))
1306 return;
1307
1308 /* Set SN when the vCPU is preempted */
1309 if (vcpu->preempted)
1310 pi_set_sn(pi_desc);
1311 }
1312
1313 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1314 {
1315 vmx_vcpu_pi_put(vcpu);
1316
1317 vmx_prepare_switch_to_host(to_vmx(vcpu));
1318 }
1319
1320 static bool emulation_required(struct kvm_vcpu *vcpu)
1321 {
1322 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1323 }
1324
1325 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1326
1327 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329 unsigned long rflags, save_rflags;
1330
1331 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1332 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1333 rflags = vmcs_readl(GUEST_RFLAGS);
1334 if (to_vmx(vcpu)->rmode.vm86_active) {
1335 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1336 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1337 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1338 }
1339 to_vmx(vcpu)->rflags = rflags;
1340 }
1341 return to_vmx(vcpu)->rflags;
1342 }
1343
1344 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1345 {
1346 unsigned long old_rflags = vmx_get_rflags(vcpu);
1347
1348 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1349 to_vmx(vcpu)->rflags = rflags;
1350 if (to_vmx(vcpu)->rmode.vm86_active) {
1351 to_vmx(vcpu)->rmode.save_rflags = rflags;
1352 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1353 }
1354 vmcs_writel(GUEST_RFLAGS, rflags);
1355
1356 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1357 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1358 }
1359
1360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1361 {
1362 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1363 int ret = 0;
1364
1365 if (interruptibility & GUEST_INTR_STATE_STI)
1366 ret |= KVM_X86_SHADOW_INT_STI;
1367 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1368 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1369
1370 return ret;
1371 }
1372
1373 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1374 {
1375 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376 u32 interruptibility = interruptibility_old;
1377
1378 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1379
1380 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1381 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1382 else if (mask & KVM_X86_SHADOW_INT_STI)
1383 interruptibility |= GUEST_INTR_STATE_STI;
1384
1385 if ((interruptibility != interruptibility_old))
1386 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1387 }
1388
1389 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391 struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 unsigned long value;
1393
1394 /*
1395 * Any MSR write that attempts to change bits marked reserved will
1396 * case a #GP fault.
1397 */
1398 if (data & vmx->pt_desc.ctl_bitmask)
1399 return 1;
1400
1401 /*
1402 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1403 * result in a #GP unless the same write also clears TraceEn.
1404 */
1405 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1406 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1407 return 1;
1408
1409 /*
1410 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1411 * and FabricEn would cause #GP, if
1412 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1413 */
1414 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1415 !(data & RTIT_CTL_FABRIC_EN) &&
1416 !intel_pt_validate_cap(vmx->pt_desc.caps,
1417 PT_CAP_single_range_output))
1418 return 1;
1419
1420 /*
1421 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1422 * utilize encodings marked reserved will casue a #GP fault.
1423 */
1424 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1425 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1426 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1427 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1428 return 1;
1429 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1430 PT_CAP_cycle_thresholds);
1431 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1432 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1433 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1434 return 1;
1435 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1436 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1437 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1438 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1439 return 1;
1440
1441 /*
1442 * If ADDRx_CFG is reserved or the encodings is >2 will
1443 * cause a #GP fault.
1444 */
1445 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1446 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1447 return 1;
1448 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1449 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1450 return 1;
1451 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1452 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1453 return 1;
1454 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1455 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1456 return 1;
1457
1458 return 0;
1459 }
1460
1461
1462 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1463 {
1464 unsigned long rip;
1465
1466 rip = kvm_rip_read(vcpu);
1467 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1468 kvm_rip_write(vcpu, rip);
1469
1470 /* skipping an emulated instruction also counts */
1471 vmx_set_interrupt_shadow(vcpu, 0);
1472 }
1473
1474 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1475 {
1476 /*
1477 * Ensure that we clear the HLT state in the VMCS. We don't need to
1478 * explicitly skip the instruction because if the HLT state is set,
1479 * then the instruction is already executing and RIP has already been
1480 * advanced.
1481 */
1482 if (kvm_hlt_in_guest(vcpu->kvm) &&
1483 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1484 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1485 }
1486
1487 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1488 {
1489 struct vcpu_vmx *vmx = to_vmx(vcpu);
1490 unsigned nr = vcpu->arch.exception.nr;
1491 bool has_error_code = vcpu->arch.exception.has_error_code;
1492 u32 error_code = vcpu->arch.exception.error_code;
1493 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1494
1495 kvm_deliver_exception_payload(vcpu);
1496
1497 if (has_error_code) {
1498 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1499 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1500 }
1501
1502 if (vmx->rmode.vm86_active) {
1503 int inc_eip = 0;
1504 if (kvm_exception_is_soft(nr))
1505 inc_eip = vcpu->arch.event_exit_inst_len;
1506 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1507 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1508 return;
1509 }
1510
1511 WARN_ON_ONCE(vmx->emulation_required);
1512
1513 if (kvm_exception_is_soft(nr)) {
1514 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1515 vmx->vcpu.arch.event_exit_inst_len);
1516 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1517 } else
1518 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1519
1520 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1521
1522 vmx_clear_hlt(vcpu);
1523 }
1524
1525 static bool vmx_rdtscp_supported(void)
1526 {
1527 return cpu_has_vmx_rdtscp();
1528 }
1529
1530 static bool vmx_invpcid_supported(void)
1531 {
1532 return cpu_has_vmx_invpcid();
1533 }
1534
1535 /*
1536 * Swap MSR entry in host/guest MSR entry array.
1537 */
1538 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1539 {
1540 struct shared_msr_entry tmp;
1541
1542 tmp = vmx->guest_msrs[to];
1543 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1544 vmx->guest_msrs[from] = tmp;
1545 }
1546
1547 /*
1548 * Set up the vmcs to automatically save and restore system
1549 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1550 * mode, as fiddling with msrs is very expensive.
1551 */
1552 static void setup_msrs(struct vcpu_vmx *vmx)
1553 {
1554 int save_nmsrs, index;
1555
1556 save_nmsrs = 0;
1557 #ifdef CONFIG_X86_64
1558 /*
1559 * The SYSCALL MSRs are only needed on long mode guests, and only
1560 * when EFER.SCE is set.
1561 */
1562 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1563 index = __find_msr_index(vmx, MSR_STAR);
1564 if (index >= 0)
1565 move_msr_up(vmx, index, save_nmsrs++);
1566 index = __find_msr_index(vmx, MSR_LSTAR);
1567 if (index >= 0)
1568 move_msr_up(vmx, index, save_nmsrs++);
1569 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1570 if (index >= 0)
1571 move_msr_up(vmx, index, save_nmsrs++);
1572 }
1573 #endif
1574 index = __find_msr_index(vmx, MSR_EFER);
1575 if (index >= 0 && update_transition_efer(vmx, index))
1576 move_msr_up(vmx, index, save_nmsrs++);
1577 index = __find_msr_index(vmx, MSR_TSC_AUX);
1578 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1579 move_msr_up(vmx, index, save_nmsrs++);
1580
1581 vmx->save_nmsrs = save_nmsrs;
1582 vmx->guest_msrs_dirty = true;
1583
1584 if (cpu_has_vmx_msr_bitmap())
1585 vmx_update_msr_bitmap(&vmx->vcpu);
1586 }
1587
1588 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1589 {
1590 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1591
1592 if (is_guest_mode(vcpu) &&
1593 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1594 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1595
1596 return vcpu->arch.tsc_offset;
1597 }
1598
1599 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1600 {
1601 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1602 u64 g_tsc_offset = 0;
1603
1604 /*
1605 * We're here if L1 chose not to trap WRMSR to TSC. According
1606 * to the spec, this should set L1's TSC; The offset that L1
1607 * set for L2 remains unchanged, and still needs to be added
1608 * to the newly set TSC to get L2's TSC.
1609 */
1610 if (is_guest_mode(vcpu) &&
1611 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1612 g_tsc_offset = vmcs12->tsc_offset;
1613
1614 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1615 vcpu->arch.tsc_offset - g_tsc_offset,
1616 offset);
1617 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1618 return offset + g_tsc_offset;
1619 }
1620
1621 /*
1622 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1623 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1624 * all guests if the "nested" module option is off, and can also be disabled
1625 * for a single guest by disabling its VMX cpuid bit.
1626 */
1627 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1628 {
1629 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1630 }
1631
1632 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1633 uint64_t val)
1634 {
1635 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1636
1637 return !(val & ~valid_bits);
1638 }
1639
1640 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1641 {
1642 switch (msr->index) {
1643 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1644 if (!nested)
1645 return 1;
1646 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1647 default:
1648 return 1;
1649 }
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * Reads an msr value (of 'msr_index') into 'pdata'.
1656 * Returns 0 on success, non-0 otherwise.
1657 * Assumes vcpu_load() was already called.
1658 */
1659 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1660 {
1661 struct vcpu_vmx *vmx = to_vmx(vcpu);
1662 struct shared_msr_entry *msr;
1663 u32 index;
1664
1665 switch (msr_info->index) {
1666 #ifdef CONFIG_X86_64
1667 case MSR_FS_BASE:
1668 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1669 break;
1670 case MSR_GS_BASE:
1671 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1672 break;
1673 case MSR_KERNEL_GS_BASE:
1674 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1675 break;
1676 #endif
1677 case MSR_EFER:
1678 return kvm_get_msr_common(vcpu, msr_info);
1679 case MSR_IA32_SPEC_CTRL:
1680 if (!msr_info->host_initiated &&
1681 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1682 return 1;
1683
1684 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1685 break;
1686 case MSR_IA32_SYSENTER_CS:
1687 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1688 break;
1689 case MSR_IA32_SYSENTER_EIP:
1690 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1691 break;
1692 case MSR_IA32_SYSENTER_ESP:
1693 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1694 break;
1695 case MSR_IA32_BNDCFGS:
1696 if (!kvm_mpx_supported() ||
1697 (!msr_info->host_initiated &&
1698 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1699 return 1;
1700 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1701 break;
1702 case MSR_IA32_MCG_EXT_CTL:
1703 if (!msr_info->host_initiated &&
1704 !(vmx->msr_ia32_feature_control &
1705 FEATURE_CONTROL_LMCE))
1706 return 1;
1707 msr_info->data = vcpu->arch.mcg_ext_ctl;
1708 break;
1709 case MSR_IA32_FEATURE_CONTROL:
1710 msr_info->data = vmx->msr_ia32_feature_control;
1711 break;
1712 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1713 if (!nested_vmx_allowed(vcpu))
1714 return 1;
1715 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1716 &msr_info->data);
1717 case MSR_IA32_XSS:
1718 if (!vmx_xsaves_supported())
1719 return 1;
1720 msr_info->data = vcpu->arch.ia32_xss;
1721 break;
1722 case MSR_IA32_RTIT_CTL:
1723 if (pt_mode != PT_MODE_HOST_GUEST)
1724 return 1;
1725 msr_info->data = vmx->pt_desc.guest.ctl;
1726 break;
1727 case MSR_IA32_RTIT_STATUS:
1728 if (pt_mode != PT_MODE_HOST_GUEST)
1729 return 1;
1730 msr_info->data = vmx->pt_desc.guest.status;
1731 break;
1732 case MSR_IA32_RTIT_CR3_MATCH:
1733 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1734 !intel_pt_validate_cap(vmx->pt_desc.caps,
1735 PT_CAP_cr3_filtering))
1736 return 1;
1737 msr_info->data = vmx->pt_desc.guest.cr3_match;
1738 break;
1739 case MSR_IA32_RTIT_OUTPUT_BASE:
1740 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1741 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1742 PT_CAP_topa_output) &&
1743 !intel_pt_validate_cap(vmx->pt_desc.caps,
1744 PT_CAP_single_range_output)))
1745 return 1;
1746 msr_info->data = vmx->pt_desc.guest.output_base;
1747 break;
1748 case MSR_IA32_RTIT_OUTPUT_MASK:
1749 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1750 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1751 PT_CAP_topa_output) &&
1752 !intel_pt_validate_cap(vmx->pt_desc.caps,
1753 PT_CAP_single_range_output)))
1754 return 1;
1755 msr_info->data = vmx->pt_desc.guest.output_mask;
1756 break;
1757 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1758 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1759 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1760 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1761 PT_CAP_num_address_ranges)))
1762 return 1;
1763 if (index % 2)
1764 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1765 else
1766 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1767 break;
1768 case MSR_TSC_AUX:
1769 if (!msr_info->host_initiated &&
1770 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1771 return 1;
1772 /* Else, falls through */
1773 default:
1774 msr = find_msr_entry(vmx, msr_info->index);
1775 if (msr) {
1776 msr_info->data = msr->data;
1777 break;
1778 }
1779 return kvm_get_msr_common(vcpu, msr_info);
1780 }
1781
1782 return 0;
1783 }
1784
1785 /*
1786 * Writes msr value into into the appropriate "register".
1787 * Returns 0 on success, non-0 otherwise.
1788 * Assumes vcpu_load() was already called.
1789 */
1790 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1791 {
1792 struct vcpu_vmx *vmx = to_vmx(vcpu);
1793 struct shared_msr_entry *msr;
1794 int ret = 0;
1795 u32 msr_index = msr_info->index;
1796 u64 data = msr_info->data;
1797 u32 index;
1798
1799 switch (msr_index) {
1800 case MSR_EFER:
1801 ret = kvm_set_msr_common(vcpu, msr_info);
1802 break;
1803 #ifdef CONFIG_X86_64
1804 case MSR_FS_BASE:
1805 vmx_segment_cache_clear(vmx);
1806 vmcs_writel(GUEST_FS_BASE, data);
1807 break;
1808 case MSR_GS_BASE:
1809 vmx_segment_cache_clear(vmx);
1810 vmcs_writel(GUEST_GS_BASE, data);
1811 break;
1812 case MSR_KERNEL_GS_BASE:
1813 vmx_write_guest_kernel_gs_base(vmx, data);
1814 break;
1815 #endif
1816 case MSR_IA32_SYSENTER_CS:
1817 vmcs_write32(GUEST_SYSENTER_CS, data);
1818 break;
1819 case MSR_IA32_SYSENTER_EIP:
1820 vmcs_writel(GUEST_SYSENTER_EIP, data);
1821 break;
1822 case MSR_IA32_SYSENTER_ESP:
1823 vmcs_writel(GUEST_SYSENTER_ESP, data);
1824 break;
1825 case MSR_IA32_BNDCFGS:
1826 if (!kvm_mpx_supported() ||
1827 (!msr_info->host_initiated &&
1828 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1829 return 1;
1830 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1831 (data & MSR_IA32_BNDCFGS_RSVD))
1832 return 1;
1833 vmcs_write64(GUEST_BNDCFGS, data);
1834 break;
1835 case MSR_IA32_SPEC_CTRL:
1836 if (!msr_info->host_initiated &&
1837 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1838 return 1;
1839
1840 /* The STIBP bit doesn't fault even if it's not advertised */
1841 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1842 return 1;
1843
1844 vmx->spec_ctrl = data;
1845
1846 if (!data)
1847 break;
1848
1849 /*
1850 * For non-nested:
1851 * When it's written (to non-zero) for the first time, pass
1852 * it through.
1853 *
1854 * For nested:
1855 * The handling of the MSR bitmap for L2 guests is done in
1856 * nested_vmx_merge_msr_bitmap. We should not touch the
1857 * vmcs02.msr_bitmap here since it gets completely overwritten
1858 * in the merging. We update the vmcs01 here for L1 as well
1859 * since it will end up touching the MSR anyway now.
1860 */
1861 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1862 MSR_IA32_SPEC_CTRL,
1863 MSR_TYPE_RW);
1864 break;
1865 case MSR_IA32_PRED_CMD:
1866 if (!msr_info->host_initiated &&
1867 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1868 return 1;
1869
1870 if (data & ~PRED_CMD_IBPB)
1871 return 1;
1872
1873 if (!data)
1874 break;
1875
1876 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1877
1878 /*
1879 * For non-nested:
1880 * When it's written (to non-zero) for the first time, pass
1881 * it through.
1882 *
1883 * For nested:
1884 * The handling of the MSR bitmap for L2 guests is done in
1885 * nested_vmx_merge_msr_bitmap. We should not touch the
1886 * vmcs02.msr_bitmap here since it gets completely overwritten
1887 * in the merging.
1888 */
1889 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1890 MSR_TYPE_W);
1891 break;
1892 case MSR_IA32_CR_PAT:
1893 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1894 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1895 return 1;
1896 vmcs_write64(GUEST_IA32_PAT, data);
1897 vcpu->arch.pat = data;
1898 break;
1899 }
1900 ret = kvm_set_msr_common(vcpu, msr_info);
1901 break;
1902 case MSR_IA32_TSC_ADJUST:
1903 ret = kvm_set_msr_common(vcpu, msr_info);
1904 break;
1905 case MSR_IA32_MCG_EXT_CTL:
1906 if ((!msr_info->host_initiated &&
1907 !(to_vmx(vcpu)->msr_ia32_feature_control &
1908 FEATURE_CONTROL_LMCE)) ||
1909 (data & ~MCG_EXT_CTL_LMCE_EN))
1910 return 1;
1911 vcpu->arch.mcg_ext_ctl = data;
1912 break;
1913 case MSR_IA32_FEATURE_CONTROL:
1914 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1915 (to_vmx(vcpu)->msr_ia32_feature_control &
1916 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1917 return 1;
1918 vmx->msr_ia32_feature_control = data;
1919 if (msr_info->host_initiated && data == 0)
1920 vmx_leave_nested(vcpu);
1921 break;
1922 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923 if (!msr_info->host_initiated)
1924 return 1; /* they are read-only */
1925 if (!nested_vmx_allowed(vcpu))
1926 return 1;
1927 return vmx_set_vmx_msr(vcpu, msr_index, data);
1928 case MSR_IA32_XSS:
1929 if (!vmx_xsaves_supported())
1930 return 1;
1931 /*
1932 * The only supported bit as of Skylake is bit 8, but
1933 * it is not supported on KVM.
1934 */
1935 if (data != 0)
1936 return 1;
1937 vcpu->arch.ia32_xss = data;
1938 if (vcpu->arch.ia32_xss != host_xss)
1939 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1940 vcpu->arch.ia32_xss, host_xss, false);
1941 else
1942 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1943 break;
1944 case MSR_IA32_RTIT_CTL:
1945 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946 vmx_rtit_ctl_check(vcpu, data) ||
1947 vmx->nested.vmxon)
1948 return 1;
1949 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1950 vmx->pt_desc.guest.ctl = data;
1951 pt_update_intercept_for_msr(vmx);
1952 break;
1953 case MSR_IA32_RTIT_STATUS:
1954 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1955 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1956 (data & MSR_IA32_RTIT_STATUS_MASK))
1957 return 1;
1958 vmx->pt_desc.guest.status = data;
1959 break;
1960 case MSR_IA32_RTIT_CR3_MATCH:
1961 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1962 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1963 !intel_pt_validate_cap(vmx->pt_desc.caps,
1964 PT_CAP_cr3_filtering))
1965 return 1;
1966 vmx->pt_desc.guest.cr3_match = data;
1967 break;
1968 case MSR_IA32_RTIT_OUTPUT_BASE:
1969 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1970 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1971 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1972 PT_CAP_topa_output) &&
1973 !intel_pt_validate_cap(vmx->pt_desc.caps,
1974 PT_CAP_single_range_output)) ||
1975 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1976 return 1;
1977 vmx->pt_desc.guest.output_base = data;
1978 break;
1979 case MSR_IA32_RTIT_OUTPUT_MASK:
1980 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1981 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1982 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1983 PT_CAP_topa_output) &&
1984 !intel_pt_validate_cap(vmx->pt_desc.caps,
1985 PT_CAP_single_range_output)))
1986 return 1;
1987 vmx->pt_desc.guest.output_mask = data;
1988 break;
1989 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1990 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1991 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1992 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1993 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1994 PT_CAP_num_address_ranges)))
1995 return 1;
1996 if (index % 2)
1997 vmx->pt_desc.guest.addr_b[index / 2] = data;
1998 else
1999 vmx->pt_desc.guest.addr_a[index / 2] = data;
2000 break;
2001 case MSR_TSC_AUX:
2002 if (!msr_info->host_initiated &&
2003 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2004 return 1;
2005 /* Check reserved bit, higher 32 bits should be zero */
2006 if ((data >> 32) != 0)
2007 return 1;
2008 /* Else, falls through */
2009 default:
2010 msr = find_msr_entry(vmx, msr_index);
2011 if (msr) {
2012 u64 old_msr_data = msr->data;
2013 msr->data = data;
2014 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2015 preempt_disable();
2016 ret = kvm_set_shared_msr(msr->index, msr->data,
2017 msr->mask);
2018 preempt_enable();
2019 if (ret)
2020 msr->data = old_msr_data;
2021 }
2022 break;
2023 }
2024 ret = kvm_set_msr_common(vcpu, msr_info);
2025 }
2026
2027 return ret;
2028 }
2029
2030 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2031 {
2032 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2033 switch (reg) {
2034 case VCPU_REGS_RSP:
2035 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2036 break;
2037 case VCPU_REGS_RIP:
2038 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2039 break;
2040 case VCPU_EXREG_PDPTR:
2041 if (enable_ept)
2042 ept_save_pdptrs(vcpu);
2043 break;
2044 default:
2045 break;
2046 }
2047 }
2048
2049 static __init int cpu_has_kvm_support(void)
2050 {
2051 return cpu_has_vmx();
2052 }
2053
2054 static __init int vmx_disabled_by_bios(void)
2055 {
2056 u64 msr;
2057
2058 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2059 if (msr & FEATURE_CONTROL_LOCKED) {
2060 /* launched w/ TXT and VMX disabled */
2061 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2062 && tboot_enabled())
2063 return 1;
2064 /* launched w/o TXT and VMX only enabled w/ TXT */
2065 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2066 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2067 && !tboot_enabled()) {
2068 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2069 "activate TXT before enabling KVM\n");
2070 return 1;
2071 }
2072 /* launched w/o TXT and VMX disabled */
2073 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2074 && !tboot_enabled())
2075 return 1;
2076 }
2077
2078 return 0;
2079 }
2080
2081 static void kvm_cpu_vmxon(u64 addr)
2082 {
2083 cr4_set_bits(X86_CR4_VMXE);
2084 intel_pt_handle_vmx(1);
2085
2086 asm volatile ("vmxon %0" : : "m"(addr));
2087 }
2088
2089 static int hardware_enable(void)
2090 {
2091 int cpu = raw_smp_processor_id();
2092 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2093 u64 old, test_bits;
2094
2095 if (cr4_read_shadow() & X86_CR4_VMXE)
2096 return -EBUSY;
2097
2098 /*
2099 * This can happen if we hot-added a CPU but failed to allocate
2100 * VP assist page for it.
2101 */
2102 if (static_branch_unlikely(&enable_evmcs) &&
2103 !hv_get_vp_assist_page(cpu))
2104 return -EFAULT;
2105
2106 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2107 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2108 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2109
2110 /*
2111 * Now we can enable the vmclear operation in kdump
2112 * since the loaded_vmcss_on_cpu list on this cpu
2113 * has been initialized.
2114 *
2115 * Though the cpu is not in VMX operation now, there
2116 * is no problem to enable the vmclear operation
2117 * for the loaded_vmcss_on_cpu list is empty!
2118 */
2119 crash_enable_local_vmclear(cpu);
2120
2121 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2122
2123 test_bits = FEATURE_CONTROL_LOCKED;
2124 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2125 if (tboot_enabled())
2126 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2127
2128 if ((old & test_bits) != test_bits) {
2129 /* enable and lock */
2130 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2131 }
2132 kvm_cpu_vmxon(phys_addr);
2133 if (enable_ept)
2134 ept_sync_global();
2135
2136 return 0;
2137 }
2138
2139 static void vmclear_local_loaded_vmcss(void)
2140 {
2141 int cpu = raw_smp_processor_id();
2142 struct loaded_vmcs *v, *n;
2143
2144 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2145 loaded_vmcss_on_cpu_link)
2146 __loaded_vmcs_clear(v);
2147 }
2148
2149
2150 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2151 * tricks.
2152 */
2153 static void kvm_cpu_vmxoff(void)
2154 {
2155 asm volatile (__ex("vmxoff"));
2156
2157 intel_pt_handle_vmx(0);
2158 cr4_clear_bits(X86_CR4_VMXE);
2159 }
2160
2161 static void hardware_disable(void)
2162 {
2163 vmclear_local_loaded_vmcss();
2164 kvm_cpu_vmxoff();
2165 }
2166
2167 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2168 u32 msr, u32 *result)
2169 {
2170 u32 vmx_msr_low, vmx_msr_high;
2171 u32 ctl = ctl_min | ctl_opt;
2172
2173 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2174
2175 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2176 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2177
2178 /* Ensure minimum (required) set of control bits are supported. */
2179 if (ctl_min & ~ctl)
2180 return -EIO;
2181
2182 *result = ctl;
2183 return 0;
2184 }
2185
2186 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2187 struct vmx_capability *vmx_cap)
2188 {
2189 u32 vmx_msr_low, vmx_msr_high;
2190 u32 min, opt, min2, opt2;
2191 u32 _pin_based_exec_control = 0;
2192 u32 _cpu_based_exec_control = 0;
2193 u32 _cpu_based_2nd_exec_control = 0;
2194 u32 _vmexit_control = 0;
2195 u32 _vmentry_control = 0;
2196
2197 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2198 min = CPU_BASED_HLT_EXITING |
2199 #ifdef CONFIG_X86_64
2200 CPU_BASED_CR8_LOAD_EXITING |
2201 CPU_BASED_CR8_STORE_EXITING |
2202 #endif
2203 CPU_BASED_CR3_LOAD_EXITING |
2204 CPU_BASED_CR3_STORE_EXITING |
2205 CPU_BASED_UNCOND_IO_EXITING |
2206 CPU_BASED_MOV_DR_EXITING |
2207 CPU_BASED_USE_TSC_OFFSETING |
2208 CPU_BASED_MWAIT_EXITING |
2209 CPU_BASED_MONITOR_EXITING |
2210 CPU_BASED_INVLPG_EXITING |
2211 CPU_BASED_RDPMC_EXITING;
2212
2213 opt = CPU_BASED_TPR_SHADOW |
2214 CPU_BASED_USE_MSR_BITMAPS |
2215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2216 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2217 &_cpu_based_exec_control) < 0)
2218 return -EIO;
2219 #ifdef CONFIG_X86_64
2220 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2221 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2222 ~CPU_BASED_CR8_STORE_EXITING;
2223 #endif
2224 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2225 min2 = 0;
2226 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2227 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2228 SECONDARY_EXEC_WBINVD_EXITING |
2229 SECONDARY_EXEC_ENABLE_VPID |
2230 SECONDARY_EXEC_ENABLE_EPT |
2231 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2232 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2233 SECONDARY_EXEC_DESC |
2234 SECONDARY_EXEC_RDTSCP |
2235 SECONDARY_EXEC_ENABLE_INVPCID |
2236 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2237 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2238 SECONDARY_EXEC_SHADOW_VMCS |
2239 SECONDARY_EXEC_XSAVES |
2240 SECONDARY_EXEC_RDSEED_EXITING |
2241 SECONDARY_EXEC_RDRAND_EXITING |
2242 SECONDARY_EXEC_ENABLE_PML |
2243 SECONDARY_EXEC_TSC_SCALING |
2244 SECONDARY_EXEC_PT_USE_GPA |
2245 SECONDARY_EXEC_PT_CONCEAL_VMX |
2246 SECONDARY_EXEC_ENABLE_VMFUNC |
2247 SECONDARY_EXEC_ENCLS_EXITING;
2248 if (adjust_vmx_controls(min2, opt2,
2249 MSR_IA32_VMX_PROCBASED_CTLS2,
2250 &_cpu_based_2nd_exec_control) < 0)
2251 return -EIO;
2252 }
2253 #ifndef CONFIG_X86_64
2254 if (!(_cpu_based_2nd_exec_control &
2255 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2256 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2257 #endif
2258
2259 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260 _cpu_based_2nd_exec_control &= ~(
2261 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2262 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2263 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2264
2265 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2266 &vmx_cap->ept, &vmx_cap->vpid);
2267
2268 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2269 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2270 enabled */
2271 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2272 CPU_BASED_CR3_STORE_EXITING |
2273 CPU_BASED_INVLPG_EXITING);
2274 } else if (vmx_cap->ept) {
2275 vmx_cap->ept = 0;
2276 pr_warn_once("EPT CAP should not exist if not support "
2277 "1-setting enable EPT VM-execution control\n");
2278 }
2279 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2280 vmx_cap->vpid) {
2281 vmx_cap->vpid = 0;
2282 pr_warn_once("VPID CAP should not exist if not support "
2283 "1-setting enable VPID VM-execution control\n");
2284 }
2285
2286 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2287 #ifdef CONFIG_X86_64
2288 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2289 #endif
2290 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2291 VM_EXIT_SAVE_IA32_PAT |
2292 VM_EXIT_LOAD_IA32_PAT |
2293 VM_EXIT_LOAD_IA32_EFER |
2294 VM_EXIT_CLEAR_BNDCFGS |
2295 VM_EXIT_PT_CONCEAL_PIP |
2296 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2297 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2298 &_vmexit_control) < 0)
2299 return -EIO;
2300
2301 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2302 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2303 PIN_BASED_VMX_PREEMPTION_TIMER;
2304 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2305 &_pin_based_exec_control) < 0)
2306 return -EIO;
2307
2308 if (cpu_has_broken_vmx_preemption_timer())
2309 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2310 if (!(_cpu_based_2nd_exec_control &
2311 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2312 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2313
2314 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2315 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2316 VM_ENTRY_LOAD_IA32_PAT |
2317 VM_ENTRY_LOAD_IA32_EFER |
2318 VM_ENTRY_LOAD_BNDCFGS |
2319 VM_ENTRY_PT_CONCEAL_PIP |
2320 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2321 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2322 &_vmentry_control) < 0)
2323 return -EIO;
2324
2325 /*
2326 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2327 * can't be used due to an errata where VM Exit may incorrectly clear
2328 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2329 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2330 */
2331 if (boot_cpu_data.x86 == 0x6) {
2332 switch (boot_cpu_data.x86_model) {
2333 case 26: /* AAK155 */
2334 case 30: /* AAP115 */
2335 case 37: /* AAT100 */
2336 case 44: /* BC86,AAY89,BD102 */
2337 case 46: /* BA97 */
2338 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2339 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2340 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2341 "does not work properly. Using workaround\n");
2342 break;
2343 default:
2344 break;
2345 }
2346 }
2347
2348
2349 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2350
2351 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2352 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2353 return -EIO;
2354
2355 #ifdef CONFIG_X86_64
2356 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2357 if (vmx_msr_high & (1u<<16))
2358 return -EIO;
2359 #endif
2360
2361 /* Require Write-Back (WB) memory type for VMCS accesses. */
2362 if (((vmx_msr_high >> 18) & 15) != 6)
2363 return -EIO;
2364
2365 vmcs_conf->size = vmx_msr_high & 0x1fff;
2366 vmcs_conf->order = get_order(vmcs_conf->size);
2367 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2368
2369 vmcs_conf->revision_id = vmx_msr_low;
2370
2371 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2372 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2373 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2374 vmcs_conf->vmexit_ctrl = _vmexit_control;
2375 vmcs_conf->vmentry_ctrl = _vmentry_control;
2376
2377 if (static_branch_unlikely(&enable_evmcs))
2378 evmcs_sanitize_exec_ctrls(vmcs_conf);
2379
2380 return 0;
2381 }
2382
2383 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2384 {
2385 int node = cpu_to_node(cpu);
2386 struct page *pages;
2387 struct vmcs *vmcs;
2388
2389 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2390 if (!pages)
2391 return NULL;
2392 vmcs = page_address(pages);
2393 memset(vmcs, 0, vmcs_config.size);
2394
2395 /* KVM supports Enlightened VMCS v1 only */
2396 if (static_branch_unlikely(&enable_evmcs))
2397 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2398 else
2399 vmcs->hdr.revision_id = vmcs_config.revision_id;
2400
2401 if (shadow)
2402 vmcs->hdr.shadow_vmcs = 1;
2403 return vmcs;
2404 }
2405
2406 void free_vmcs(struct vmcs *vmcs)
2407 {
2408 free_pages((unsigned long)vmcs, vmcs_config.order);
2409 }
2410
2411 /*
2412 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2413 */
2414 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2415 {
2416 if (!loaded_vmcs->vmcs)
2417 return;
2418 loaded_vmcs_clear(loaded_vmcs);
2419 free_vmcs(loaded_vmcs->vmcs);
2420 loaded_vmcs->vmcs = NULL;
2421 if (loaded_vmcs->msr_bitmap)
2422 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2423 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2424 }
2425
2426 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2427 {
2428 loaded_vmcs->vmcs = alloc_vmcs(false);
2429 if (!loaded_vmcs->vmcs)
2430 return -ENOMEM;
2431
2432 loaded_vmcs->shadow_vmcs = NULL;
2433 loaded_vmcs_init(loaded_vmcs);
2434
2435 if (cpu_has_vmx_msr_bitmap()) {
2436 loaded_vmcs->msr_bitmap = (unsigned long *)
2437 __get_free_page(GFP_KERNEL_ACCOUNT);
2438 if (!loaded_vmcs->msr_bitmap)
2439 goto out_vmcs;
2440 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2441
2442 if (IS_ENABLED(CONFIG_HYPERV) &&
2443 static_branch_unlikely(&enable_evmcs) &&
2444 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2445 struct hv_enlightened_vmcs *evmcs =
2446 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2447
2448 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2449 }
2450 }
2451
2452 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2453
2454 return 0;
2455
2456 out_vmcs:
2457 free_loaded_vmcs(loaded_vmcs);
2458 return -ENOMEM;
2459 }
2460
2461 static void free_kvm_area(void)
2462 {
2463 int cpu;
2464
2465 for_each_possible_cpu(cpu) {
2466 free_vmcs(per_cpu(vmxarea, cpu));
2467 per_cpu(vmxarea, cpu) = NULL;
2468 }
2469 }
2470
2471 static __init int alloc_kvm_area(void)
2472 {
2473 int cpu;
2474
2475 for_each_possible_cpu(cpu) {
2476 struct vmcs *vmcs;
2477
2478 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2479 if (!vmcs) {
2480 free_kvm_area();
2481 return -ENOMEM;
2482 }
2483
2484 /*
2485 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2486 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2487 * revision_id reported by MSR_IA32_VMX_BASIC.
2488 *
2489 * However, even though not explicitly documented by
2490 * TLFS, VMXArea passed as VMXON argument should
2491 * still be marked with revision_id reported by
2492 * physical CPU.
2493 */
2494 if (static_branch_unlikely(&enable_evmcs))
2495 vmcs->hdr.revision_id = vmcs_config.revision_id;
2496
2497 per_cpu(vmxarea, cpu) = vmcs;
2498 }
2499 return 0;
2500 }
2501
2502 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2503 struct kvm_segment *save)
2504 {
2505 if (!emulate_invalid_guest_state) {
2506 /*
2507 * CS and SS RPL should be equal during guest entry according
2508 * to VMX spec, but in reality it is not always so. Since vcpu
2509 * is in the middle of the transition from real mode to
2510 * protected mode it is safe to assume that RPL 0 is a good
2511 * default value.
2512 */
2513 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2514 save->selector &= ~SEGMENT_RPL_MASK;
2515 save->dpl = save->selector & SEGMENT_RPL_MASK;
2516 save->s = 1;
2517 }
2518 vmx_set_segment(vcpu, save, seg);
2519 }
2520
2521 static void enter_pmode(struct kvm_vcpu *vcpu)
2522 {
2523 unsigned long flags;
2524 struct vcpu_vmx *vmx = to_vmx(vcpu);
2525
2526 /*
2527 * Update real mode segment cache. It may be not up-to-date if sement
2528 * register was written while vcpu was in a guest mode.
2529 */
2530 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2531 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2532 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2533 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2534 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2535 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2536
2537 vmx->rmode.vm86_active = 0;
2538
2539 vmx_segment_cache_clear(vmx);
2540
2541 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2542
2543 flags = vmcs_readl(GUEST_RFLAGS);
2544 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2545 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2546 vmcs_writel(GUEST_RFLAGS, flags);
2547
2548 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2549 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2550
2551 update_exception_bitmap(vcpu);
2552
2553 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2554 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2555 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2556 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2557 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2558 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2559 }
2560
2561 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2562 {
2563 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2564 struct kvm_segment var = *save;
2565
2566 var.dpl = 0x3;
2567 if (seg == VCPU_SREG_CS)
2568 var.type = 0x3;
2569
2570 if (!emulate_invalid_guest_state) {
2571 var.selector = var.base >> 4;
2572 var.base = var.base & 0xffff0;
2573 var.limit = 0xffff;
2574 var.g = 0;
2575 var.db = 0;
2576 var.present = 1;
2577 var.s = 1;
2578 var.l = 0;
2579 var.unusable = 0;
2580 var.type = 0x3;
2581 var.avl = 0;
2582 if (save->base & 0xf)
2583 printk_once(KERN_WARNING "kvm: segment base is not "
2584 "paragraph aligned when entering "
2585 "protected mode (seg=%d)", seg);
2586 }
2587
2588 vmcs_write16(sf->selector, var.selector);
2589 vmcs_writel(sf->base, var.base);
2590 vmcs_write32(sf->limit, var.limit);
2591 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2592 }
2593
2594 static void enter_rmode(struct kvm_vcpu *vcpu)
2595 {
2596 unsigned long flags;
2597 struct vcpu_vmx *vmx = to_vmx(vcpu);
2598 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2599
2600 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2601 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2602 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2603 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2604 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2605 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2606 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2607
2608 vmx->rmode.vm86_active = 1;
2609
2610 /*
2611 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2612 * vcpu. Warn the user that an update is overdue.
2613 */
2614 if (!kvm_vmx->tss_addr)
2615 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2616 "called before entering vcpu\n");
2617
2618 vmx_segment_cache_clear(vmx);
2619
2620 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2621 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2622 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2623
2624 flags = vmcs_readl(GUEST_RFLAGS);
2625 vmx->rmode.save_rflags = flags;
2626
2627 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2628
2629 vmcs_writel(GUEST_RFLAGS, flags);
2630 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2631 update_exception_bitmap(vcpu);
2632
2633 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2634 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2635 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2636 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2637 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2638 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2639
2640 kvm_mmu_reset_context(vcpu);
2641 }
2642
2643 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2644 {
2645 struct vcpu_vmx *vmx = to_vmx(vcpu);
2646 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2647
2648 if (!msr)
2649 return;
2650
2651 vcpu->arch.efer = efer;
2652 if (efer & EFER_LMA) {
2653 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2654 msr->data = efer;
2655 } else {
2656 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2657
2658 msr->data = efer & ~EFER_LME;
2659 }
2660 setup_msrs(vmx);
2661 }
2662
2663 #ifdef CONFIG_X86_64
2664
2665 static void enter_lmode(struct kvm_vcpu *vcpu)
2666 {
2667 u32 guest_tr_ar;
2668
2669 vmx_segment_cache_clear(to_vmx(vcpu));
2670
2671 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2672 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2673 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2674 __func__);
2675 vmcs_write32(GUEST_TR_AR_BYTES,
2676 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2677 | VMX_AR_TYPE_BUSY_64_TSS);
2678 }
2679 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2680 }
2681
2682 static void exit_lmode(struct kvm_vcpu *vcpu)
2683 {
2684 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2685 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2686 }
2687
2688 #endif
2689
2690 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2691 {
2692 int vpid = to_vmx(vcpu)->vpid;
2693
2694 if (!vpid_sync_vcpu_addr(vpid, addr))
2695 vpid_sync_context(vpid);
2696
2697 /*
2698 * If VPIDs are not supported or enabled, then the above is a no-op.
2699 * But we don't really need a TLB flush in that case anyway, because
2700 * each VM entry/exit includes an implicit flush when VPID is 0.
2701 */
2702 }
2703
2704 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2705 {
2706 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2707
2708 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2709 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2710 }
2711
2712 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2713 {
2714 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2715 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2716 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2717 }
2718
2719 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2720 {
2721 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2722
2723 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2724 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2725 }
2726
2727 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2728 {
2729 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2730
2731 if (!test_bit(VCPU_EXREG_PDPTR,
2732 (unsigned long *)&vcpu->arch.regs_dirty))
2733 return;
2734
2735 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2736 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2737 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2738 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2739 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2740 }
2741 }
2742
2743 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2744 {
2745 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2746
2747 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2748 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2749 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2750 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2751 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2752 }
2753
2754 __set_bit(VCPU_EXREG_PDPTR,
2755 (unsigned long *)&vcpu->arch.regs_avail);
2756 __set_bit(VCPU_EXREG_PDPTR,
2757 (unsigned long *)&vcpu->arch.regs_dirty);
2758 }
2759
2760 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2761 unsigned long cr0,
2762 struct kvm_vcpu *vcpu)
2763 {
2764 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2765 vmx_decache_cr3(vcpu);
2766 if (!(cr0 & X86_CR0_PG)) {
2767 /* From paging/starting to nonpaging */
2768 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2769 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2770 (CPU_BASED_CR3_LOAD_EXITING |
2771 CPU_BASED_CR3_STORE_EXITING));
2772 vcpu->arch.cr0 = cr0;
2773 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2774 } else if (!is_paging(vcpu)) {
2775 /* From nonpaging to paging */
2776 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2777 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2778 ~(CPU_BASED_CR3_LOAD_EXITING |
2779 CPU_BASED_CR3_STORE_EXITING));
2780 vcpu->arch.cr0 = cr0;
2781 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2782 }
2783
2784 if (!(cr0 & X86_CR0_WP))
2785 *hw_cr0 &= ~X86_CR0_WP;
2786 }
2787
2788 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2789 {
2790 struct vcpu_vmx *vmx = to_vmx(vcpu);
2791 unsigned long hw_cr0;
2792
2793 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2794 if (enable_unrestricted_guest)
2795 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2796 else {
2797 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2798
2799 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2800 enter_pmode(vcpu);
2801
2802 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2803 enter_rmode(vcpu);
2804 }
2805
2806 #ifdef CONFIG_X86_64
2807 if (vcpu->arch.efer & EFER_LME) {
2808 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2809 enter_lmode(vcpu);
2810 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2811 exit_lmode(vcpu);
2812 }
2813 #endif
2814
2815 if (enable_ept && !enable_unrestricted_guest)
2816 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2817
2818 vmcs_writel(CR0_READ_SHADOW, cr0);
2819 vmcs_writel(GUEST_CR0, hw_cr0);
2820 vcpu->arch.cr0 = cr0;
2821
2822 /* depends on vcpu->arch.cr0 to be set to a new value */
2823 vmx->emulation_required = emulation_required(vcpu);
2824 }
2825
2826 static int get_ept_level(struct kvm_vcpu *vcpu)
2827 {
2828 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2829 return 5;
2830 return 4;
2831 }
2832
2833 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2834 {
2835 u64 eptp = VMX_EPTP_MT_WB;
2836
2837 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2838
2839 if (enable_ept_ad_bits &&
2840 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2841 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2842 eptp |= (root_hpa & PAGE_MASK);
2843
2844 return eptp;
2845 }
2846
2847 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2848 {
2849 struct kvm *kvm = vcpu->kvm;
2850 unsigned long guest_cr3;
2851 u64 eptp;
2852
2853 guest_cr3 = cr3;
2854 if (enable_ept) {
2855 eptp = construct_eptp(vcpu, cr3);
2856 vmcs_write64(EPT_POINTER, eptp);
2857
2858 if (kvm_x86_ops->tlb_remote_flush) {
2859 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2860 to_vmx(vcpu)->ept_pointer = eptp;
2861 to_kvm_vmx(kvm)->ept_pointers_match
2862 = EPT_POINTERS_CHECK;
2863 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2864 }
2865
2866 if (enable_unrestricted_guest || is_paging(vcpu) ||
2867 is_guest_mode(vcpu))
2868 guest_cr3 = kvm_read_cr3(vcpu);
2869 else
2870 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2871 ept_load_pdptrs(vcpu);
2872 }
2873
2874 vmcs_writel(GUEST_CR3, guest_cr3);
2875 }
2876
2877 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2878 {
2879 /*
2880 * Pass through host's Machine Check Enable value to hw_cr4, which
2881 * is in force while we are in guest mode. Do not let guests control
2882 * this bit, even if host CR4.MCE == 0.
2883 */
2884 unsigned long hw_cr4;
2885
2886 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2887 if (enable_unrestricted_guest)
2888 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2889 else if (to_vmx(vcpu)->rmode.vm86_active)
2890 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2891 else
2892 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2893
2894 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2895 if (cr4 & X86_CR4_UMIP) {
2896 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2897 SECONDARY_EXEC_DESC);
2898 hw_cr4 &= ~X86_CR4_UMIP;
2899 } else if (!is_guest_mode(vcpu) ||
2900 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2901 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2902 SECONDARY_EXEC_DESC);
2903 }
2904
2905 if (cr4 & X86_CR4_VMXE) {
2906 /*
2907 * To use VMXON (and later other VMX instructions), a guest
2908 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2909 * So basically the check on whether to allow nested VMX
2910 * is here. We operate under the default treatment of SMM,
2911 * so VMX cannot be enabled under SMM.
2912 */
2913 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2914 return 1;
2915 }
2916
2917 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2918 return 1;
2919
2920 vcpu->arch.cr4 = cr4;
2921
2922 if (!enable_unrestricted_guest) {
2923 if (enable_ept) {
2924 if (!is_paging(vcpu)) {
2925 hw_cr4 &= ~X86_CR4_PAE;
2926 hw_cr4 |= X86_CR4_PSE;
2927 } else if (!(cr4 & X86_CR4_PAE)) {
2928 hw_cr4 &= ~X86_CR4_PAE;
2929 }
2930 }
2931
2932 /*
2933 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2934 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
2935 * to be manually disabled when guest switches to non-paging
2936 * mode.
2937 *
2938 * If !enable_unrestricted_guest, the CPU is always running
2939 * with CR0.PG=1 and CR4 needs to be modified.
2940 * If enable_unrestricted_guest, the CPU automatically
2941 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2942 */
2943 if (!is_paging(vcpu))
2944 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2945 }
2946
2947 vmcs_writel(CR4_READ_SHADOW, cr4);
2948 vmcs_writel(GUEST_CR4, hw_cr4);
2949 return 0;
2950 }
2951
2952 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2953 {
2954 struct vcpu_vmx *vmx = to_vmx(vcpu);
2955 u32 ar;
2956
2957 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2958 *var = vmx->rmode.segs[seg];
2959 if (seg == VCPU_SREG_TR
2960 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2961 return;
2962 var->base = vmx_read_guest_seg_base(vmx, seg);
2963 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2964 return;
2965 }
2966 var->base = vmx_read_guest_seg_base(vmx, seg);
2967 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2968 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2969 ar = vmx_read_guest_seg_ar(vmx, seg);
2970 var->unusable = (ar >> 16) & 1;
2971 var->type = ar & 15;
2972 var->s = (ar >> 4) & 1;
2973 var->dpl = (ar >> 5) & 3;
2974 /*
2975 * Some userspaces do not preserve unusable property. Since usable
2976 * segment has to be present according to VMX spec we can use present
2977 * property to amend userspace bug by making unusable segment always
2978 * nonpresent. vmx_segment_access_rights() already marks nonpresent
2979 * segment as unusable.
2980 */
2981 var->present = !var->unusable;
2982 var->avl = (ar >> 12) & 1;
2983 var->l = (ar >> 13) & 1;
2984 var->db = (ar >> 14) & 1;
2985 var->g = (ar >> 15) & 1;
2986 }
2987
2988 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2989 {
2990 struct kvm_segment s;
2991
2992 if (to_vmx(vcpu)->rmode.vm86_active) {
2993 vmx_get_segment(vcpu, &s, seg);
2994 return s.base;
2995 }
2996 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2997 }
2998
2999 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3000 {
3001 struct vcpu_vmx *vmx = to_vmx(vcpu);
3002
3003 if (unlikely(vmx->rmode.vm86_active))
3004 return 0;
3005 else {
3006 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3007 return VMX_AR_DPL(ar);
3008 }
3009 }
3010
3011 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3012 {
3013 u32 ar;
3014
3015 if (var->unusable || !var->present)
3016 ar = 1 << 16;
3017 else {
3018 ar = var->type & 15;
3019 ar |= (var->s & 1) << 4;
3020 ar |= (var->dpl & 3) << 5;
3021 ar |= (var->present & 1) << 7;
3022 ar |= (var->avl & 1) << 12;
3023 ar |= (var->l & 1) << 13;
3024 ar |= (var->db & 1) << 14;
3025 ar |= (var->g & 1) << 15;
3026 }
3027
3028 return ar;
3029 }
3030
3031 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3032 {
3033 struct vcpu_vmx *vmx = to_vmx(vcpu);
3034 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035
3036 vmx_segment_cache_clear(vmx);
3037
3038 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3039 vmx->rmode.segs[seg] = *var;
3040 if (seg == VCPU_SREG_TR)
3041 vmcs_write16(sf->selector, var->selector);
3042 else if (var->s)
3043 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3044 goto out;
3045 }
3046
3047 vmcs_writel(sf->base, var->base);
3048 vmcs_write32(sf->limit, var->limit);
3049 vmcs_write16(sf->selector, var->selector);
3050
3051 /*
3052 * Fix the "Accessed" bit in AR field of segment registers for older
3053 * qemu binaries.
3054 * IA32 arch specifies that at the time of processor reset the
3055 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3056 * is setting it to 0 in the userland code. This causes invalid guest
3057 * state vmexit when "unrestricted guest" mode is turned on.
3058 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3059 * tree. Newer qemu binaries with that qemu fix would not need this
3060 * kvm hack.
3061 */
3062 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3063 var->type |= 0x1; /* Accessed */
3064
3065 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3066
3067 out:
3068 vmx->emulation_required = emulation_required(vcpu);
3069 }
3070
3071 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3072 {
3073 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3074
3075 *db = (ar >> 14) & 1;
3076 *l = (ar >> 13) & 1;
3077 }
3078
3079 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3080 {
3081 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3082 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3083 }
3084
3085 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3086 {
3087 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3088 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3089 }
3090
3091 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3092 {
3093 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3094 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3095 }
3096
3097 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3098 {
3099 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3100 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3101 }
3102
3103 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3104 {
3105 struct kvm_segment var;
3106 u32 ar;
3107
3108 vmx_get_segment(vcpu, &var, seg);
3109 var.dpl = 0x3;
3110 if (seg == VCPU_SREG_CS)
3111 var.type = 0x3;
3112 ar = vmx_segment_access_rights(&var);
3113
3114 if (var.base != (var.selector << 4))
3115 return false;
3116 if (var.limit != 0xffff)
3117 return false;
3118 if (ar != 0xf3)
3119 return false;
3120
3121 return true;
3122 }
3123
3124 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3125 {
3126 struct kvm_segment cs;
3127 unsigned int cs_rpl;
3128
3129 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3130 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3131
3132 if (cs.unusable)
3133 return false;
3134 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3135 return false;
3136 if (!cs.s)
3137 return false;
3138 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3139 if (cs.dpl > cs_rpl)
3140 return false;
3141 } else {
3142 if (cs.dpl != cs_rpl)
3143 return false;
3144 }
3145 if (!cs.present)
3146 return false;
3147
3148 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3149 return true;
3150 }
3151
3152 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3153 {
3154 struct kvm_segment ss;
3155 unsigned int ss_rpl;
3156
3157 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3158 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3159
3160 if (ss.unusable)
3161 return true;
3162 if (ss.type != 3 && ss.type != 7)
3163 return false;
3164 if (!ss.s)
3165 return false;
3166 if (ss.dpl != ss_rpl) /* DPL != RPL */
3167 return false;
3168 if (!ss.present)
3169 return false;
3170
3171 return true;
3172 }
3173
3174 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3175 {
3176 struct kvm_segment var;
3177 unsigned int rpl;
3178
3179 vmx_get_segment(vcpu, &var, seg);
3180 rpl = var.selector & SEGMENT_RPL_MASK;
3181
3182 if (var.unusable)
3183 return true;
3184 if (!var.s)
3185 return false;
3186 if (!var.present)
3187 return false;
3188 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3189 if (var.dpl < rpl) /* DPL < RPL */
3190 return false;
3191 }
3192
3193 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3194 * rights flags
3195 */
3196 return true;
3197 }
3198
3199 static bool tr_valid(struct kvm_vcpu *vcpu)
3200 {
3201 struct kvm_segment tr;
3202
3203 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3204
3205 if (tr.unusable)
3206 return false;
3207 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3208 return false;
3209 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3210 return false;
3211 if (!tr.present)
3212 return false;
3213
3214 return true;
3215 }
3216
3217 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3218 {
3219 struct kvm_segment ldtr;
3220
3221 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3222
3223 if (ldtr.unusable)
3224 return true;
3225 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3226 return false;
3227 if (ldtr.type != 2)
3228 return false;
3229 if (!ldtr.present)
3230 return false;
3231
3232 return true;
3233 }
3234
3235 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3236 {
3237 struct kvm_segment cs, ss;
3238
3239 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3240 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3241
3242 return ((cs.selector & SEGMENT_RPL_MASK) ==
3243 (ss.selector & SEGMENT_RPL_MASK));
3244 }
3245
3246 /*
3247 * Check if guest state is valid. Returns true if valid, false if
3248 * not.
3249 * We assume that registers are always usable
3250 */
3251 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3252 {
3253 if (enable_unrestricted_guest)
3254 return true;
3255
3256 /* real mode guest state checks */
3257 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3258 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3259 return false;
3260 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3261 return false;
3262 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3263 return false;
3264 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3265 return false;
3266 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3267 return false;
3268 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3269 return false;
3270 } else {
3271 /* protected mode guest state checks */
3272 if (!cs_ss_rpl_check(vcpu))
3273 return false;
3274 if (!code_segment_valid(vcpu))
3275 return false;
3276 if (!stack_segment_valid(vcpu))
3277 return false;
3278 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3279 return false;
3280 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3281 return false;
3282 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3283 return false;
3284 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3285 return false;
3286 if (!tr_valid(vcpu))
3287 return false;
3288 if (!ldtr_valid(vcpu))
3289 return false;
3290 }
3291 /* TODO:
3292 * - Add checks on RIP
3293 * - Add checks on RFLAGS
3294 */
3295
3296 return true;
3297 }
3298
3299 static int init_rmode_tss(struct kvm *kvm)
3300 {
3301 gfn_t fn;
3302 u16 data = 0;
3303 int idx, r;
3304
3305 idx = srcu_read_lock(&kvm->srcu);
3306 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3307 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3308 if (r < 0)
3309 goto out;
3310 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3311 r = kvm_write_guest_page(kvm, fn++, &data,
3312 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3313 if (r < 0)
3314 goto out;
3315 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3316 if (r < 0)
3317 goto out;
3318 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3319 if (r < 0)
3320 goto out;
3321 data = ~0;
3322 r = kvm_write_guest_page(kvm, fn, &data,
3323 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3324 sizeof(u8));
3325 out:
3326 srcu_read_unlock(&kvm->srcu, idx);
3327 return r;
3328 }
3329
3330 static int init_rmode_identity_map(struct kvm *kvm)
3331 {
3332 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3333 int i, idx, r = 0;
3334 kvm_pfn_t identity_map_pfn;
3335 u32 tmp;
3336
3337 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3338 mutex_lock(&kvm->slots_lock);
3339
3340 if (likely(kvm_vmx->ept_identity_pagetable_done))
3341 goto out2;
3342
3343 if (!kvm_vmx->ept_identity_map_addr)
3344 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3345 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3346
3347 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3348 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3349 if (r < 0)
3350 goto out2;
3351
3352 idx = srcu_read_lock(&kvm->srcu);
3353 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3354 if (r < 0)
3355 goto out;
3356 /* Set up identity-mapping pagetable for EPT in real mode */
3357 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3358 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3359 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3360 r = kvm_write_guest_page(kvm, identity_map_pfn,
3361 &tmp, i * sizeof(tmp), sizeof(tmp));
3362 if (r < 0)
3363 goto out;
3364 }
3365 kvm_vmx->ept_identity_pagetable_done = true;
3366
3367 out:
3368 srcu_read_unlock(&kvm->srcu, idx);
3369
3370 out2:
3371 mutex_unlock(&kvm->slots_lock);
3372 return r;
3373 }
3374
3375 static void seg_setup(int seg)
3376 {
3377 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3378 unsigned int ar;
3379
3380 vmcs_write16(sf->selector, 0);
3381 vmcs_writel(sf->base, 0);
3382 vmcs_write32(sf->limit, 0xffff);
3383 ar = 0x93;
3384 if (seg == VCPU_SREG_CS)
3385 ar |= 0x08; /* code segment */
3386
3387 vmcs_write32(sf->ar_bytes, ar);
3388 }
3389
3390 static int alloc_apic_access_page(struct kvm *kvm)
3391 {
3392 struct page *page;
3393 int r = 0;
3394
3395 mutex_lock(&kvm->slots_lock);
3396 if (kvm->arch.apic_access_page_done)
3397 goto out;
3398 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3399 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3400 if (r)
3401 goto out;
3402
3403 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3404 if (is_error_page(page)) {
3405 r = -EFAULT;
3406 goto out;
3407 }
3408
3409 /*
3410 * Do not pin the page in memory, so that memory hot-unplug
3411 * is able to migrate it.
3412 */
3413 put_page(page);
3414 kvm->arch.apic_access_page_done = true;
3415 out:
3416 mutex_unlock(&kvm->slots_lock);
3417 return r;
3418 }
3419
3420 int allocate_vpid(void)
3421 {
3422 int vpid;
3423
3424 if (!enable_vpid)
3425 return 0;
3426 spin_lock(&vmx_vpid_lock);
3427 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3428 if (vpid < VMX_NR_VPIDS)
3429 __set_bit(vpid, vmx_vpid_bitmap);
3430 else
3431 vpid = 0;
3432 spin_unlock(&vmx_vpid_lock);
3433 return vpid;
3434 }
3435
3436 void free_vpid(int vpid)
3437 {
3438 if (!enable_vpid || vpid == 0)
3439 return;
3440 spin_lock(&vmx_vpid_lock);
3441 __clear_bit(vpid, vmx_vpid_bitmap);
3442 spin_unlock(&vmx_vpid_lock);
3443 }
3444
3445 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3446 u32 msr, int type)
3447 {
3448 int f = sizeof(unsigned long);
3449
3450 if (!cpu_has_vmx_msr_bitmap())
3451 return;
3452
3453 if (static_branch_unlikely(&enable_evmcs))
3454 evmcs_touch_msr_bitmap();
3455
3456 /*
3457 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3458 * have the write-low and read-high bitmap offsets the wrong way round.
3459 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3460 */
3461 if (msr <= 0x1fff) {
3462 if (type & MSR_TYPE_R)
3463 /* read-low */
3464 __clear_bit(msr, msr_bitmap + 0x000 / f);
3465
3466 if (type & MSR_TYPE_W)
3467 /* write-low */
3468 __clear_bit(msr, msr_bitmap + 0x800 / f);
3469
3470 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3471 msr &= 0x1fff;
3472 if (type & MSR_TYPE_R)
3473 /* read-high */
3474 __clear_bit(msr, msr_bitmap + 0x400 / f);
3475
3476 if (type & MSR_TYPE_W)
3477 /* write-high */
3478 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3479
3480 }
3481 }
3482
3483 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3484 u32 msr, int type)
3485 {
3486 int f = sizeof(unsigned long);
3487
3488 if (!cpu_has_vmx_msr_bitmap())
3489 return;
3490
3491 if (static_branch_unlikely(&enable_evmcs))
3492 evmcs_touch_msr_bitmap();
3493
3494 /*
3495 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3496 * have the write-low and read-high bitmap offsets the wrong way round.
3497 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3498 */
3499 if (msr <= 0x1fff) {
3500 if (type & MSR_TYPE_R)
3501 /* read-low */
3502 __set_bit(msr, msr_bitmap + 0x000 / f);
3503
3504 if (type & MSR_TYPE_W)
3505 /* write-low */
3506 __set_bit(msr, msr_bitmap + 0x800 / f);
3507
3508 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3509 msr &= 0x1fff;
3510 if (type & MSR_TYPE_R)
3511 /* read-high */
3512 __set_bit(msr, msr_bitmap + 0x400 / f);
3513
3514 if (type & MSR_TYPE_W)
3515 /* write-high */
3516 __set_bit(msr, msr_bitmap + 0xc00 / f);
3517
3518 }
3519 }
3520
3521 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3522 u32 msr, int type, bool value)
3523 {
3524 if (value)
3525 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3526 else
3527 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3528 }
3529
3530 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3531 {
3532 u8 mode = 0;
3533
3534 if (cpu_has_secondary_exec_ctrls() &&
3535 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3536 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3537 mode |= MSR_BITMAP_MODE_X2APIC;
3538 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3539 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3540 }
3541
3542 return mode;
3543 }
3544
3545 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3546 u8 mode)
3547 {
3548 int msr;
3549
3550 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3551 unsigned word = msr / BITS_PER_LONG;
3552 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3553 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3554 }
3555
3556 if (mode & MSR_BITMAP_MODE_X2APIC) {
3557 /*
3558 * TPR reads and writes can be virtualized even if virtual interrupt
3559 * delivery is not in use.
3560 */
3561 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3562 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3563 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3564 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3565 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3566 }
3567 }
3568 }
3569
3570 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3571 {
3572 struct vcpu_vmx *vmx = to_vmx(vcpu);
3573 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3574 u8 mode = vmx_msr_bitmap_mode(vcpu);
3575 u8 changed = mode ^ vmx->msr_bitmap_mode;
3576
3577 if (!changed)
3578 return;
3579
3580 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3581 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3582
3583 vmx->msr_bitmap_mode = mode;
3584 }
3585
3586 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3587 {
3588 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3589 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3590 u32 i;
3591
3592 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3593 MSR_TYPE_RW, flag);
3594 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3595 MSR_TYPE_RW, flag);
3596 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3597 MSR_TYPE_RW, flag);
3598 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3599 MSR_TYPE_RW, flag);
3600 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3601 vmx_set_intercept_for_msr(msr_bitmap,
3602 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3603 vmx_set_intercept_for_msr(msr_bitmap,
3604 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3605 }
3606 }
3607
3608 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3609 {
3610 return enable_apicv;
3611 }
3612
3613 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3614 {
3615 struct vcpu_vmx *vmx = to_vmx(vcpu);
3616 void *vapic_page;
3617 u32 vppr;
3618 int rvi;
3619
3620 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3621 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3622 WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3623 return false;
3624
3625 rvi = vmx_get_rvi();
3626
3627 vapic_page = kmap(vmx->nested.virtual_apic_page);
3628 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3629 kunmap(vmx->nested.virtual_apic_page);
3630
3631 return ((rvi & 0xf0) > (vppr & 0xf0));
3632 }
3633
3634 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3635 bool nested)
3636 {
3637 #ifdef CONFIG_SMP
3638 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3639
3640 if (vcpu->mode == IN_GUEST_MODE) {
3641 /*
3642 * The vector of interrupt to be delivered to vcpu had
3643 * been set in PIR before this function.
3644 *
3645 * Following cases will be reached in this block, and
3646 * we always send a notification event in all cases as
3647 * explained below.
3648 *
3649 * Case 1: vcpu keeps in non-root mode. Sending a
3650 * notification event posts the interrupt to vcpu.
3651 *
3652 * Case 2: vcpu exits to root mode and is still
3653 * runnable. PIR will be synced to vIRR before the
3654 * next vcpu entry. Sending a notification event in
3655 * this case has no effect, as vcpu is not in root
3656 * mode.
3657 *
3658 * Case 3: vcpu exits to root mode and is blocked.
3659 * vcpu_block() has already synced PIR to vIRR and
3660 * never blocks vcpu if vIRR is not cleared. Therefore,
3661 * a blocked vcpu here does not wait for any requested
3662 * interrupts in PIR, and sending a notification event
3663 * which has no effect is safe here.
3664 */
3665
3666 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3667 return true;
3668 }
3669 #endif
3670 return false;
3671 }
3672
3673 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3674 int vector)
3675 {
3676 struct vcpu_vmx *vmx = to_vmx(vcpu);
3677
3678 if (is_guest_mode(vcpu) &&
3679 vector == vmx->nested.posted_intr_nv) {
3680 /*
3681 * If a posted intr is not recognized by hardware,
3682 * we will accomplish it in the next vmentry.
3683 */
3684 vmx->nested.pi_pending = true;
3685 kvm_make_request(KVM_REQ_EVENT, vcpu);
3686 /* the PIR and ON have been set by L1. */
3687 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3688 kvm_vcpu_kick(vcpu);
3689 return 0;
3690 }
3691 return -1;
3692 }
3693 /*
3694 * Send interrupt to vcpu via posted interrupt way.
3695 * 1. If target vcpu is running(non-root mode), send posted interrupt
3696 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3697 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3698 * interrupt from PIR in next vmentry.
3699 */
3700 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3701 {
3702 struct vcpu_vmx *vmx = to_vmx(vcpu);
3703 int r;
3704
3705 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3706 if (!r)
3707 return;
3708
3709 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3710 return;
3711
3712 /* If a previous notification has sent the IPI, nothing to do. */
3713 if (pi_test_and_set_on(&vmx->pi_desc))
3714 return;
3715
3716 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3717 kvm_vcpu_kick(vcpu);
3718 }
3719
3720 /*
3721 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3722 * will not change in the lifetime of the guest.
3723 * Note that host-state that does change is set elsewhere. E.g., host-state
3724 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3725 */
3726 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3727 {
3728 u32 low32, high32;
3729 unsigned long tmpl;
3730 struct desc_ptr dt;
3731 unsigned long cr0, cr3, cr4;
3732
3733 cr0 = read_cr0();
3734 WARN_ON(cr0 & X86_CR0_TS);
3735 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3736
3737 /*
3738 * Save the most likely value for this task's CR3 in the VMCS.
3739 * We can't use __get_current_cr3_fast() because we're not atomic.
3740 */
3741 cr3 = __read_cr3();
3742 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3743 vmx->loaded_vmcs->host_state.cr3 = cr3;
3744
3745 /* Save the most likely value for this task's CR4 in the VMCS. */
3746 cr4 = cr4_read_shadow();
3747 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3748 vmx->loaded_vmcs->host_state.cr4 = cr4;
3749
3750 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3751 #ifdef CONFIG_X86_64
3752 /*
3753 * Load null selectors, so we can avoid reloading them in
3754 * vmx_prepare_switch_to_host(), in case userspace uses
3755 * the null selectors too (the expected case).
3756 */
3757 vmcs_write16(HOST_DS_SELECTOR, 0);
3758 vmcs_write16(HOST_ES_SELECTOR, 0);
3759 #else
3760 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3761 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3762 #endif
3763 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3764 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3765
3766 store_idt(&dt);
3767 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3768 vmx->host_idt_base = dt.address;
3769
3770 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3771
3772 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3773 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3774 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3775 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3776
3777 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3778 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3779 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3780 }
3781
3782 if (cpu_has_load_ia32_efer())
3783 vmcs_write64(HOST_IA32_EFER, host_efer);
3784 }
3785
3786 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3787 {
3788 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3789 if (enable_ept)
3790 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3791 if (is_guest_mode(&vmx->vcpu))
3792 vmx->vcpu.arch.cr4_guest_owned_bits &=
3793 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3794 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3795 }
3796
3797 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3798 {
3799 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3800
3801 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3802 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3803
3804 if (!enable_vnmi)
3805 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3806
3807 /* Enable the preemption timer dynamically */
3808 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3809 return pin_based_exec_ctrl;
3810 }
3811
3812 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3813 {
3814 struct vcpu_vmx *vmx = to_vmx(vcpu);
3815
3816 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3817 if (cpu_has_secondary_exec_ctrls()) {
3818 if (kvm_vcpu_apicv_active(vcpu))
3819 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3820 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3821 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3822 else
3823 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3824 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3825 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3826 }
3827
3828 if (cpu_has_vmx_msr_bitmap())
3829 vmx_update_msr_bitmap(vcpu);
3830 }
3831
3832 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3833 {
3834 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3835
3836 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3837 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3838
3839 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3840 exec_control &= ~CPU_BASED_TPR_SHADOW;
3841 #ifdef CONFIG_X86_64
3842 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3843 CPU_BASED_CR8_LOAD_EXITING;
3844 #endif
3845 }
3846 if (!enable_ept)
3847 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3848 CPU_BASED_CR3_LOAD_EXITING |
3849 CPU_BASED_INVLPG_EXITING;
3850 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3851 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3852 CPU_BASED_MONITOR_EXITING);
3853 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3854 exec_control &= ~CPU_BASED_HLT_EXITING;
3855 return exec_control;
3856 }
3857
3858
3859 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3860 {
3861 struct kvm_vcpu *vcpu = &vmx->vcpu;
3862
3863 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3864
3865 if (pt_mode == PT_MODE_SYSTEM)
3866 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3867 if (!cpu_need_virtualize_apic_accesses(vcpu))
3868 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3869 if (vmx->vpid == 0)
3870 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3871 if (!enable_ept) {
3872 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3873 enable_unrestricted_guest = 0;
3874 }
3875 if (!enable_unrestricted_guest)
3876 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3877 if (kvm_pause_in_guest(vmx->vcpu.kvm))
3878 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3879 if (!kvm_vcpu_apicv_active(vcpu))
3880 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3881 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3882 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3883
3884 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3885 * in vmx_set_cr4. */
3886 exec_control &= ~SECONDARY_EXEC_DESC;
3887
3888 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3889 (handle_vmptrld).
3890 We can NOT enable shadow_vmcs here because we don't have yet
3891 a current VMCS12
3892 */
3893 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3894
3895 if (!enable_pml)
3896 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3897
3898 if (vmx_xsaves_supported()) {
3899 /* Exposing XSAVES only when XSAVE is exposed */
3900 bool xsaves_enabled =
3901 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3902 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3903
3904 if (!xsaves_enabled)
3905 exec_control &= ~SECONDARY_EXEC_XSAVES;
3906
3907 if (nested) {
3908 if (xsaves_enabled)
3909 vmx->nested.msrs.secondary_ctls_high |=
3910 SECONDARY_EXEC_XSAVES;
3911 else
3912 vmx->nested.msrs.secondary_ctls_high &=
3913 ~SECONDARY_EXEC_XSAVES;
3914 }
3915 }
3916
3917 if (vmx_rdtscp_supported()) {
3918 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3919 if (!rdtscp_enabled)
3920 exec_control &= ~SECONDARY_EXEC_RDTSCP;
3921
3922 if (nested) {
3923 if (rdtscp_enabled)
3924 vmx->nested.msrs.secondary_ctls_high |=
3925 SECONDARY_EXEC_RDTSCP;
3926 else
3927 vmx->nested.msrs.secondary_ctls_high &=
3928 ~SECONDARY_EXEC_RDTSCP;
3929 }
3930 }
3931
3932 if (vmx_invpcid_supported()) {
3933 /* Exposing INVPCID only when PCID is exposed */
3934 bool invpcid_enabled =
3935 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3936 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3937
3938 if (!invpcid_enabled) {
3939 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3940 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3941 }
3942
3943 if (nested) {
3944 if (invpcid_enabled)
3945 vmx->nested.msrs.secondary_ctls_high |=
3946 SECONDARY_EXEC_ENABLE_INVPCID;
3947 else
3948 vmx->nested.msrs.secondary_ctls_high &=
3949 ~SECONDARY_EXEC_ENABLE_INVPCID;
3950 }
3951 }
3952
3953 if (vmx_rdrand_supported()) {
3954 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3955 if (rdrand_enabled)
3956 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3957
3958 if (nested) {
3959 if (rdrand_enabled)
3960 vmx->nested.msrs.secondary_ctls_high |=
3961 SECONDARY_EXEC_RDRAND_EXITING;
3962 else
3963 vmx->nested.msrs.secondary_ctls_high &=
3964 ~SECONDARY_EXEC_RDRAND_EXITING;
3965 }
3966 }
3967
3968 if (vmx_rdseed_supported()) {
3969 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3970 if (rdseed_enabled)
3971 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3972
3973 if (nested) {
3974 if (rdseed_enabled)
3975 vmx->nested.msrs.secondary_ctls_high |=
3976 SECONDARY_EXEC_RDSEED_EXITING;
3977 else
3978 vmx->nested.msrs.secondary_ctls_high &=
3979 ~SECONDARY_EXEC_RDSEED_EXITING;
3980 }
3981 }
3982
3983 vmx->secondary_exec_control = exec_control;
3984 }
3985
3986 static void ept_set_mmio_spte_mask(void)
3987 {
3988 /*
3989 * EPT Misconfigurations can be generated if the value of bits 2:0
3990 * of an EPT paging-structure entry is 110b (write/execute).
3991 */
3992 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3993 VMX_EPT_MISCONFIG_WX_VALUE);
3994 }
3995
3996 #define VMX_XSS_EXIT_BITMAP 0
3997
3998 /*
3999 * Sets up the vmcs for emulated real mode.
4000 */
4001 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4002 {
4003 int i;
4004
4005 if (nested)
4006 nested_vmx_vcpu_setup();
4007
4008 if (cpu_has_vmx_msr_bitmap())
4009 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4010
4011 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4012
4013 /* Control */
4014 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4015 vmx->hv_deadline_tsc = -1;
4016
4017 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4018
4019 if (cpu_has_secondary_exec_ctrls()) {
4020 vmx_compute_secondary_exec_control(vmx);
4021 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4022 vmx->secondary_exec_control);
4023 }
4024
4025 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4026 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4027 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4028 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4029 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4030
4031 vmcs_write16(GUEST_INTR_STATUS, 0);
4032
4033 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4034 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4035 }
4036
4037 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4038 vmcs_write32(PLE_GAP, ple_gap);
4039 vmx->ple_window = ple_window;
4040 vmx->ple_window_dirty = true;
4041 }
4042
4043 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4044 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4045 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4046
4047 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4048 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4049 vmx_set_constant_host_state(vmx);
4050 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4051 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4052
4053 if (cpu_has_vmx_vmfunc())
4054 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4055
4056 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4057 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4058 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4059 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4060 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4061
4062 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4063 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4064
4065 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4066 u32 index = vmx_msr_index[i];
4067 u32 data_low, data_high;
4068 int j = vmx->nmsrs;
4069
4070 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4071 continue;
4072 if (wrmsr_safe(index, data_low, data_high) < 0)
4073 continue;
4074 vmx->guest_msrs[j].index = i;
4075 vmx->guest_msrs[j].data = 0;
4076 vmx->guest_msrs[j].mask = -1ull;
4077 ++vmx->nmsrs;
4078 }
4079
4080 vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4081
4082 /* 22.2.1, 20.8.1 */
4083 vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4084
4085 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4086 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4087
4088 set_cr4_guest_host_mask(vmx);
4089
4090 if (vmx_xsaves_supported())
4091 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4092
4093 if (enable_pml) {
4094 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4095 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4096 }
4097
4098 if (cpu_has_vmx_encls_vmexit())
4099 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4100
4101 if (pt_mode == PT_MODE_HOST_GUEST) {
4102 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4103 /* Bit[6~0] are forced to 1, writes are ignored. */
4104 vmx->pt_desc.guest.output_mask = 0x7F;
4105 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4106 }
4107 }
4108
4109 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4110 {
4111 struct vcpu_vmx *vmx = to_vmx(vcpu);
4112 struct msr_data apic_base_msr;
4113 u64 cr0;
4114
4115 vmx->rmode.vm86_active = 0;
4116 vmx->spec_ctrl = 0;
4117
4118 vcpu->arch.microcode_version = 0x100000000ULL;
4119 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4120 kvm_set_cr8(vcpu, 0);
4121
4122 if (!init_event) {
4123 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4124 MSR_IA32_APICBASE_ENABLE;
4125 if (kvm_vcpu_is_reset_bsp(vcpu))
4126 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4127 apic_base_msr.host_initiated = true;
4128 kvm_set_apic_base(vcpu, &apic_base_msr);
4129 }
4130
4131 vmx_segment_cache_clear(vmx);
4132
4133 seg_setup(VCPU_SREG_CS);
4134 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4135 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4136
4137 seg_setup(VCPU_SREG_DS);
4138 seg_setup(VCPU_SREG_ES);
4139 seg_setup(VCPU_SREG_FS);
4140 seg_setup(VCPU_SREG_GS);
4141 seg_setup(VCPU_SREG_SS);
4142
4143 vmcs_write16(GUEST_TR_SELECTOR, 0);
4144 vmcs_writel(GUEST_TR_BASE, 0);
4145 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4146 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4147
4148 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4149 vmcs_writel(GUEST_LDTR_BASE, 0);
4150 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4151 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4152
4153 if (!init_event) {
4154 vmcs_write32(GUEST_SYSENTER_CS, 0);
4155 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4156 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4157 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4158 }
4159
4160 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4161 kvm_rip_write(vcpu, 0xfff0);
4162
4163 vmcs_writel(GUEST_GDTR_BASE, 0);
4164 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4165
4166 vmcs_writel(GUEST_IDTR_BASE, 0);
4167 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4168
4169 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4170 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4171 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4172 if (kvm_mpx_supported())
4173 vmcs_write64(GUEST_BNDCFGS, 0);
4174
4175 setup_msrs(vmx);
4176
4177 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4178
4179 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4180 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4181 if (cpu_need_tpr_shadow(vcpu))
4182 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4183 __pa(vcpu->arch.apic->regs));
4184 vmcs_write32(TPR_THRESHOLD, 0);
4185 }
4186
4187 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4188
4189 if (vmx->vpid != 0)
4190 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4191
4192 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4193 vmx->vcpu.arch.cr0 = cr0;
4194 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4195 vmx_set_cr4(vcpu, 0);
4196 vmx_set_efer(vcpu, 0);
4197
4198 update_exception_bitmap(vcpu);
4199
4200 vpid_sync_context(vmx->vpid);
4201 if (init_event)
4202 vmx_clear_hlt(vcpu);
4203 }
4204
4205 static void enable_irq_window(struct kvm_vcpu *vcpu)
4206 {
4207 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4208 CPU_BASED_VIRTUAL_INTR_PENDING);
4209 }
4210
4211 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4212 {
4213 if (!enable_vnmi ||
4214 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4215 enable_irq_window(vcpu);
4216 return;
4217 }
4218
4219 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4220 CPU_BASED_VIRTUAL_NMI_PENDING);
4221 }
4222
4223 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4224 {
4225 struct vcpu_vmx *vmx = to_vmx(vcpu);
4226 uint32_t intr;
4227 int irq = vcpu->arch.interrupt.nr;
4228
4229 trace_kvm_inj_virq(irq);
4230
4231 ++vcpu->stat.irq_injections;
4232 if (vmx->rmode.vm86_active) {
4233 int inc_eip = 0;
4234 if (vcpu->arch.interrupt.soft)
4235 inc_eip = vcpu->arch.event_exit_inst_len;
4236 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4237 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4238 return;
4239 }
4240 intr = irq | INTR_INFO_VALID_MASK;
4241 if (vcpu->arch.interrupt.soft) {
4242 intr |= INTR_TYPE_SOFT_INTR;
4243 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4244 vmx->vcpu.arch.event_exit_inst_len);
4245 } else
4246 intr |= INTR_TYPE_EXT_INTR;
4247 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4248
4249 vmx_clear_hlt(vcpu);
4250 }
4251
4252 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4253 {
4254 struct vcpu_vmx *vmx = to_vmx(vcpu);
4255
4256 if (!enable_vnmi) {
4257 /*
4258 * Tracking the NMI-blocked state in software is built upon
4259 * finding the next open IRQ window. This, in turn, depends on
4260 * well-behaving guests: They have to keep IRQs disabled at
4261 * least as long as the NMI handler runs. Otherwise we may
4262 * cause NMI nesting, maybe breaking the guest. But as this is
4263 * highly unlikely, we can live with the residual risk.
4264 */
4265 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4266 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4267 }
4268
4269 ++vcpu->stat.nmi_injections;
4270 vmx->loaded_vmcs->nmi_known_unmasked = false;
4271
4272 if (vmx->rmode.vm86_active) {
4273 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4274 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4275 return;
4276 }
4277
4278 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4279 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4280
4281 vmx_clear_hlt(vcpu);
4282 }
4283
4284 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4285 {
4286 struct vcpu_vmx *vmx = to_vmx(vcpu);
4287 bool masked;
4288
4289 if (!enable_vnmi)
4290 return vmx->loaded_vmcs->soft_vnmi_blocked;
4291 if (vmx->loaded_vmcs->nmi_known_unmasked)
4292 return false;
4293 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4294 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4295 return masked;
4296 }
4297
4298 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4299 {
4300 struct vcpu_vmx *vmx = to_vmx(vcpu);
4301
4302 if (!enable_vnmi) {
4303 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4304 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4305 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4306 }
4307 } else {
4308 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4309 if (masked)
4310 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4311 GUEST_INTR_STATE_NMI);
4312 else
4313 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4314 GUEST_INTR_STATE_NMI);
4315 }
4316 }
4317
4318 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4319 {
4320 if (to_vmx(vcpu)->nested.nested_run_pending)
4321 return 0;
4322
4323 if (!enable_vnmi &&
4324 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4325 return 0;
4326
4327 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4328 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4329 | GUEST_INTR_STATE_NMI));
4330 }
4331
4332 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4333 {
4334 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4335 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4336 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4337 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4338 }
4339
4340 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4341 {
4342 int ret;
4343
4344 if (enable_unrestricted_guest)
4345 return 0;
4346
4347 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4348 PAGE_SIZE * 3);
4349 if (ret)
4350 return ret;
4351 to_kvm_vmx(kvm)->tss_addr = addr;
4352 return init_rmode_tss(kvm);
4353 }
4354
4355 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4356 {
4357 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4358 return 0;
4359 }
4360
4361 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4362 {
4363 switch (vec) {
4364 case BP_VECTOR:
4365 /*
4366 * Update instruction length as we may reinject the exception
4367 * from user space while in guest debugging mode.
4368 */
4369 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4370 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4371 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4372 return false;
4373 /* fall through */
4374 case DB_VECTOR:
4375 if (vcpu->guest_debug &
4376 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4377 return false;
4378 /* fall through */
4379 case DE_VECTOR:
4380 case OF_VECTOR:
4381 case BR_VECTOR:
4382 case UD_VECTOR:
4383 case DF_VECTOR:
4384 case SS_VECTOR:
4385 case GP_VECTOR:
4386 case MF_VECTOR:
4387 return true;
4388 break;
4389 }
4390 return false;
4391 }
4392
4393 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4394 int vec, u32 err_code)
4395 {
4396 /*
4397 * Instruction with address size override prefix opcode 0x67
4398 * Cause the #SS fault with 0 error code in VM86 mode.
4399 */
4400 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4401 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4402 if (vcpu->arch.halt_request) {
4403 vcpu->arch.halt_request = 0;
4404 return kvm_vcpu_halt(vcpu);
4405 }
4406 return 1;
4407 }
4408 return 0;
4409 }
4410
4411 /*
4412 * Forward all other exceptions that are valid in real mode.
4413 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4414 * the required debugging infrastructure rework.
4415 */
4416 kvm_queue_exception(vcpu, vec);
4417 return 1;
4418 }
4419
4420 /*
4421 * Trigger machine check on the host. We assume all the MSRs are already set up
4422 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4423 * We pass a fake environment to the machine check handler because we want
4424 * the guest to be always treated like user space, no matter what context
4425 * it used internally.
4426 */
4427 static void kvm_machine_check(void)
4428 {
4429 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4430 struct pt_regs regs = {
4431 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4432 .flags = X86_EFLAGS_IF,
4433 };
4434
4435 do_machine_check(&regs, 0);
4436 #endif
4437 }
4438
4439 static int handle_machine_check(struct kvm_vcpu *vcpu)
4440 {
4441 /* already handled by vcpu_run */
4442 return 1;
4443 }
4444
4445 static int handle_exception(struct kvm_vcpu *vcpu)
4446 {
4447 struct vcpu_vmx *vmx = to_vmx(vcpu);
4448 struct kvm_run *kvm_run = vcpu->run;
4449 u32 intr_info, ex_no, error_code;
4450 unsigned long cr2, rip, dr6;
4451 u32 vect_info;
4452 enum emulation_result er;
4453
4454 vect_info = vmx->idt_vectoring_info;
4455 intr_info = vmx->exit_intr_info;
4456
4457 if (is_machine_check(intr_info))
4458 return handle_machine_check(vcpu);
4459
4460 if (is_nmi(intr_info))
4461 return 1; /* already handled by vmx_vcpu_run() */
4462
4463 if (is_invalid_opcode(intr_info))
4464 return handle_ud(vcpu);
4465
4466 error_code = 0;
4467 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4468 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4469
4470 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4471 WARN_ON_ONCE(!enable_vmware_backdoor);
4472 er = kvm_emulate_instruction(vcpu,
4473 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4474 if (er == EMULATE_USER_EXIT)
4475 return 0;
4476 else if (er != EMULATE_DONE)
4477 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4478 return 1;
4479 }
4480
4481 /*
4482 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4483 * MMIO, it is better to report an internal error.
4484 * See the comments in vmx_handle_exit.
4485 */
4486 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4487 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4488 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4489 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4490 vcpu->run->internal.ndata = 3;
4491 vcpu->run->internal.data[0] = vect_info;
4492 vcpu->run->internal.data[1] = intr_info;
4493 vcpu->run->internal.data[2] = error_code;
4494 return 0;
4495 }
4496
4497 if (is_page_fault(intr_info)) {
4498 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4499 /* EPT won't cause page fault directly */
4500 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4501 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4502 }
4503
4504 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4505
4506 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4507 return handle_rmode_exception(vcpu, ex_no, error_code);
4508
4509 switch (ex_no) {
4510 case AC_VECTOR:
4511 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4512 return 1;
4513 case DB_VECTOR:
4514 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4515 if (!(vcpu->guest_debug &
4516 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4517 vcpu->arch.dr6 &= ~15;
4518 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4519 if (is_icebp(intr_info))
4520 skip_emulated_instruction(vcpu);
4521
4522 kvm_queue_exception(vcpu, DB_VECTOR);
4523 return 1;
4524 }
4525 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4526 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4527 /* fall through */
4528 case BP_VECTOR:
4529 /*
4530 * Update instruction length as we may reinject #BP from
4531 * user space while in guest debugging mode. Reading it for
4532 * #DB as well causes no harm, it is not used in that case.
4533 */
4534 vmx->vcpu.arch.event_exit_inst_len =
4535 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4536 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4537 rip = kvm_rip_read(vcpu);
4538 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4539 kvm_run->debug.arch.exception = ex_no;
4540 break;
4541 default:
4542 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4543 kvm_run->ex.exception = ex_no;
4544 kvm_run->ex.error_code = error_code;
4545 break;
4546 }
4547 return 0;
4548 }
4549
4550 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4551 {
4552 ++vcpu->stat.irq_exits;
4553 return 1;
4554 }
4555
4556 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4557 {
4558 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4559 vcpu->mmio_needed = 0;
4560 return 0;
4561 }
4562
4563 static int handle_io(struct kvm_vcpu *vcpu)
4564 {
4565 unsigned long exit_qualification;
4566 int size, in, string;
4567 unsigned port;
4568
4569 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4570 string = (exit_qualification & 16) != 0;
4571
4572 ++vcpu->stat.io_exits;
4573
4574 if (string)
4575 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4576
4577 port = exit_qualification >> 16;
4578 size = (exit_qualification & 7) + 1;
4579 in = (exit_qualification & 8) != 0;
4580
4581 return kvm_fast_pio(vcpu, size, port, in);
4582 }
4583
4584 static void
4585 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4586 {
4587 /*
4588 * Patch in the VMCALL instruction:
4589 */
4590 hypercall[0] = 0x0f;
4591 hypercall[1] = 0x01;
4592 hypercall[2] = 0xc1;
4593 }
4594
4595 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4596 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4597 {
4598 if (is_guest_mode(vcpu)) {
4599 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4600 unsigned long orig_val = val;
4601
4602 /*
4603 * We get here when L2 changed cr0 in a way that did not change
4604 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4605 * but did change L0 shadowed bits. So we first calculate the
4606 * effective cr0 value that L1 would like to write into the
4607 * hardware. It consists of the L2-owned bits from the new
4608 * value combined with the L1-owned bits from L1's guest_cr0.
4609 */
4610 val = (val & ~vmcs12->cr0_guest_host_mask) |
4611 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4612
4613 if (!nested_guest_cr0_valid(vcpu, val))
4614 return 1;
4615
4616 if (kvm_set_cr0(vcpu, val))
4617 return 1;
4618 vmcs_writel(CR0_READ_SHADOW, orig_val);
4619 return 0;
4620 } else {
4621 if (to_vmx(vcpu)->nested.vmxon &&
4622 !nested_host_cr0_valid(vcpu, val))
4623 return 1;
4624
4625 return kvm_set_cr0(vcpu, val);
4626 }
4627 }
4628
4629 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4630 {
4631 if (is_guest_mode(vcpu)) {
4632 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4633 unsigned long orig_val = val;
4634
4635 /* analogously to handle_set_cr0 */
4636 val = (val & ~vmcs12->cr4_guest_host_mask) |
4637 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4638 if (kvm_set_cr4(vcpu, val))
4639 return 1;
4640 vmcs_writel(CR4_READ_SHADOW, orig_val);
4641 return 0;
4642 } else
4643 return kvm_set_cr4(vcpu, val);
4644 }
4645
4646 static int handle_desc(struct kvm_vcpu *vcpu)
4647 {
4648 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4649 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4650 }
4651
4652 static int handle_cr(struct kvm_vcpu *vcpu)
4653 {
4654 unsigned long exit_qualification, val;
4655 int cr;
4656 int reg;
4657 int err;
4658 int ret;
4659
4660 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4661 cr = exit_qualification & 15;
4662 reg = (exit_qualification >> 8) & 15;
4663 switch ((exit_qualification >> 4) & 3) {
4664 case 0: /* mov to cr */
4665 val = kvm_register_readl(vcpu, reg);
4666 trace_kvm_cr_write(cr, val);
4667 switch (cr) {
4668 case 0:
4669 err = handle_set_cr0(vcpu, val);
4670 return kvm_complete_insn_gp(vcpu, err);
4671 case 3:
4672 WARN_ON_ONCE(enable_unrestricted_guest);
4673 err = kvm_set_cr3(vcpu, val);
4674 return kvm_complete_insn_gp(vcpu, err);
4675 case 4:
4676 err = handle_set_cr4(vcpu, val);
4677 return kvm_complete_insn_gp(vcpu, err);
4678 case 8: {
4679 u8 cr8_prev = kvm_get_cr8(vcpu);
4680 u8 cr8 = (u8)val;
4681 err = kvm_set_cr8(vcpu, cr8);
4682 ret = kvm_complete_insn_gp(vcpu, err);
4683 if (lapic_in_kernel(vcpu))
4684 return ret;
4685 if (cr8_prev <= cr8)
4686 return ret;
4687 /*
4688 * TODO: we might be squashing a
4689 * KVM_GUESTDBG_SINGLESTEP-triggered
4690 * KVM_EXIT_DEBUG here.
4691 */
4692 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4693 return 0;
4694 }
4695 }
4696 break;
4697 case 2: /* clts */
4698 WARN_ONCE(1, "Guest should always own CR0.TS");
4699 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4700 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4701 return kvm_skip_emulated_instruction(vcpu);
4702 case 1: /*mov from cr*/
4703 switch (cr) {
4704 case 3:
4705 WARN_ON_ONCE(enable_unrestricted_guest);
4706 val = kvm_read_cr3(vcpu);
4707 kvm_register_write(vcpu, reg, val);
4708 trace_kvm_cr_read(cr, val);
4709 return kvm_skip_emulated_instruction(vcpu);
4710 case 8:
4711 val = kvm_get_cr8(vcpu);
4712 kvm_register_write(vcpu, reg, val);
4713 trace_kvm_cr_read(cr, val);
4714 return kvm_skip_emulated_instruction(vcpu);
4715 }
4716 break;
4717 case 3: /* lmsw */
4718 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4719 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4720 kvm_lmsw(vcpu, val);
4721
4722 return kvm_skip_emulated_instruction(vcpu);
4723 default:
4724 break;
4725 }
4726 vcpu->run->exit_reason = 0;
4727 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4728 (int)(exit_qualification >> 4) & 3, cr);
4729 return 0;
4730 }
4731
4732 static int handle_dr(struct kvm_vcpu *vcpu)
4733 {
4734 unsigned long exit_qualification;
4735 int dr, dr7, reg;
4736
4737 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4738 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4739
4740 /* First, if DR does not exist, trigger UD */
4741 if (!kvm_require_dr(vcpu, dr))
4742 return 1;
4743
4744 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4745 if (!kvm_require_cpl(vcpu, 0))
4746 return 1;
4747 dr7 = vmcs_readl(GUEST_DR7);
4748 if (dr7 & DR7_GD) {
4749 /*
4750 * As the vm-exit takes precedence over the debug trap, we
4751 * need to emulate the latter, either for the host or the
4752 * guest debugging itself.
4753 */
4754 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4755 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4756 vcpu->run->debug.arch.dr7 = dr7;
4757 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4758 vcpu->run->debug.arch.exception = DB_VECTOR;
4759 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4760 return 0;
4761 } else {
4762 vcpu->arch.dr6 &= ~15;
4763 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4764 kvm_queue_exception(vcpu, DB_VECTOR);
4765 return 1;
4766 }
4767 }
4768
4769 if (vcpu->guest_debug == 0) {
4770 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4771 CPU_BASED_MOV_DR_EXITING);
4772
4773 /*
4774 * No more DR vmexits; force a reload of the debug registers
4775 * and reenter on this instruction. The next vmexit will
4776 * retrieve the full state of the debug registers.
4777 */
4778 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4779 return 1;
4780 }
4781
4782 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4783 if (exit_qualification & TYPE_MOV_FROM_DR) {
4784 unsigned long val;
4785
4786 if (kvm_get_dr(vcpu, dr, &val))
4787 return 1;
4788 kvm_register_write(vcpu, reg, val);
4789 } else
4790 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4791 return 1;
4792
4793 return kvm_skip_emulated_instruction(vcpu);
4794 }
4795
4796 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4797 {
4798 return vcpu->arch.dr6;
4799 }
4800
4801 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4802 {
4803 }
4804
4805 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4806 {
4807 get_debugreg(vcpu->arch.db[0], 0);
4808 get_debugreg(vcpu->arch.db[1], 1);
4809 get_debugreg(vcpu->arch.db[2], 2);
4810 get_debugreg(vcpu->arch.db[3], 3);
4811 get_debugreg(vcpu->arch.dr6, 6);
4812 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4813
4814 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4815 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4816 }
4817
4818 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4819 {
4820 vmcs_writel(GUEST_DR7, val);
4821 }
4822
4823 static int handle_cpuid(struct kvm_vcpu *vcpu)
4824 {
4825 return kvm_emulate_cpuid(vcpu);
4826 }
4827
4828 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4829 {
4830 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4831 struct msr_data msr_info;
4832
4833 msr_info.index = ecx;
4834 msr_info.host_initiated = false;
4835 if (vmx_get_msr(vcpu, &msr_info)) {
4836 trace_kvm_msr_read_ex(ecx);
4837 kvm_inject_gp(vcpu, 0);
4838 return 1;
4839 }
4840
4841 trace_kvm_msr_read(ecx, msr_info.data);
4842
4843 /* FIXME: handling of bits 32:63 of rax, rdx */
4844 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4845 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4846 return kvm_skip_emulated_instruction(vcpu);
4847 }
4848
4849 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4850 {
4851 struct msr_data msr;
4852 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4853 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4854 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4855
4856 msr.data = data;
4857 msr.index = ecx;
4858 msr.host_initiated = false;
4859 if (kvm_set_msr(vcpu, &msr) != 0) {
4860 trace_kvm_msr_write_ex(ecx, data);
4861 kvm_inject_gp(vcpu, 0);
4862 return 1;
4863 }
4864
4865 trace_kvm_msr_write(ecx, data);
4866 return kvm_skip_emulated_instruction(vcpu);
4867 }
4868
4869 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4870 {
4871 kvm_apic_update_ppr(vcpu);
4872 return 1;
4873 }
4874
4875 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4876 {
4877 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4878 CPU_BASED_VIRTUAL_INTR_PENDING);
4879
4880 kvm_make_request(KVM_REQ_EVENT, vcpu);
4881
4882 ++vcpu->stat.irq_window_exits;
4883 return 1;
4884 }
4885
4886 static int handle_halt(struct kvm_vcpu *vcpu)
4887 {
4888 return kvm_emulate_halt(vcpu);
4889 }
4890
4891 static int handle_vmcall(struct kvm_vcpu *vcpu)
4892 {
4893 return kvm_emulate_hypercall(vcpu);
4894 }
4895
4896 static int handle_invd(struct kvm_vcpu *vcpu)
4897 {
4898 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4899 }
4900
4901 static int handle_invlpg(struct kvm_vcpu *vcpu)
4902 {
4903 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4904
4905 kvm_mmu_invlpg(vcpu, exit_qualification);
4906 return kvm_skip_emulated_instruction(vcpu);
4907 }
4908
4909 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4910 {
4911 int err;
4912
4913 err = kvm_rdpmc(vcpu);
4914 return kvm_complete_insn_gp(vcpu, err);
4915 }
4916
4917 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4918 {
4919 return kvm_emulate_wbinvd(vcpu);
4920 }
4921
4922 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4923 {
4924 u64 new_bv = kvm_read_edx_eax(vcpu);
4925 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4926
4927 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4928 return kvm_skip_emulated_instruction(vcpu);
4929 return 1;
4930 }
4931
4932 static int handle_xsaves(struct kvm_vcpu *vcpu)
4933 {
4934 kvm_skip_emulated_instruction(vcpu);
4935 WARN(1, "this should never happen\n");
4936 return 1;
4937 }
4938
4939 static int handle_xrstors(struct kvm_vcpu *vcpu)
4940 {
4941 kvm_skip_emulated_instruction(vcpu);
4942 WARN(1, "this should never happen\n");
4943 return 1;
4944 }
4945
4946 static int handle_apic_access(struct kvm_vcpu *vcpu)
4947 {
4948 if (likely(fasteoi)) {
4949 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4950 int access_type, offset;
4951
4952 access_type = exit_qualification & APIC_ACCESS_TYPE;
4953 offset = exit_qualification & APIC_ACCESS_OFFSET;
4954 /*
4955 * Sane guest uses MOV to write EOI, with written value
4956 * not cared. So make a short-circuit here by avoiding
4957 * heavy instruction emulation.
4958 */
4959 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4960 (offset == APIC_EOI)) {
4961 kvm_lapic_set_eoi(vcpu);
4962 return kvm_skip_emulated_instruction(vcpu);
4963 }
4964 }
4965 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4966 }
4967
4968 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4969 {
4970 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4971 int vector = exit_qualification & 0xff;
4972
4973 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4974 kvm_apic_set_eoi_accelerated(vcpu, vector);
4975 return 1;
4976 }
4977
4978 static int handle_apic_write(struct kvm_vcpu *vcpu)
4979 {
4980 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4981 u32 offset = exit_qualification & 0xfff;
4982
4983 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4984 kvm_apic_write_nodecode(vcpu, offset);
4985 return 1;
4986 }
4987
4988 static int handle_task_switch(struct kvm_vcpu *vcpu)
4989 {
4990 struct vcpu_vmx *vmx = to_vmx(vcpu);
4991 unsigned long exit_qualification;
4992 bool has_error_code = false;
4993 u32 error_code = 0;
4994 u16 tss_selector;
4995 int reason, type, idt_v, idt_index;
4996
4997 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4998 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4999 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5000
5001 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5002
5003 reason = (u32)exit_qualification >> 30;
5004 if (reason == TASK_SWITCH_GATE && idt_v) {
5005 switch (type) {
5006 case INTR_TYPE_NMI_INTR:
5007 vcpu->arch.nmi_injected = false;
5008 vmx_set_nmi_mask(vcpu, true);
5009 break;
5010 case INTR_TYPE_EXT_INTR:
5011 case INTR_TYPE_SOFT_INTR:
5012 kvm_clear_interrupt_queue(vcpu);
5013 break;
5014 case INTR_TYPE_HARD_EXCEPTION:
5015 if (vmx->idt_vectoring_info &
5016 VECTORING_INFO_DELIVER_CODE_MASK) {
5017 has_error_code = true;
5018 error_code =
5019 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5020 }
5021 /* fall through */
5022 case INTR_TYPE_SOFT_EXCEPTION:
5023 kvm_clear_exception_queue(vcpu);
5024 break;
5025 default:
5026 break;
5027 }
5028 }
5029 tss_selector = exit_qualification;
5030
5031 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5032 type != INTR_TYPE_EXT_INTR &&
5033 type != INTR_TYPE_NMI_INTR))
5034 skip_emulated_instruction(vcpu);
5035
5036 if (kvm_task_switch(vcpu, tss_selector,
5037 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5038 has_error_code, error_code) == EMULATE_FAIL) {
5039 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5040 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5041 vcpu->run->internal.ndata = 0;
5042 return 0;
5043 }
5044
5045 /*
5046 * TODO: What about debug traps on tss switch?
5047 * Are we supposed to inject them and update dr6?
5048 */
5049
5050 return 1;
5051 }
5052
5053 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5054 {
5055 unsigned long exit_qualification;
5056 gpa_t gpa;
5057 u64 error_code;
5058
5059 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5060
5061 /*
5062 * EPT violation happened while executing iret from NMI,
5063 * "blocked by NMI" bit has to be set before next VM entry.
5064 * There are errata that may cause this bit to not be set:
5065 * AAK134, BY25.
5066 */
5067 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5068 enable_vnmi &&
5069 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5070 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5071
5072 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5073 trace_kvm_page_fault(gpa, exit_qualification);
5074
5075 /* Is it a read fault? */
5076 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5077 ? PFERR_USER_MASK : 0;
5078 /* Is it a write fault? */
5079 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5080 ? PFERR_WRITE_MASK : 0;
5081 /* Is it a fetch fault? */
5082 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5083 ? PFERR_FETCH_MASK : 0;
5084 /* ept page table entry is present? */
5085 error_code |= (exit_qualification &
5086 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5087 EPT_VIOLATION_EXECUTABLE))
5088 ? PFERR_PRESENT_MASK : 0;
5089
5090 error_code |= (exit_qualification & 0x100) != 0 ?
5091 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5092
5093 vcpu->arch.exit_qualification = exit_qualification;
5094 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5095 }
5096
5097 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5098 {
5099 gpa_t gpa;
5100
5101 /*
5102 * A nested guest cannot optimize MMIO vmexits, because we have an
5103 * nGPA here instead of the required GPA.
5104 */
5105 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5106 if (!is_guest_mode(vcpu) &&
5107 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5108 trace_kvm_fast_mmio(gpa);
5109 /*
5110 * Doing kvm_skip_emulated_instruction() depends on undefined
5111 * behavior: Intel's manual doesn't mandate
5112 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5113 * occurs and while on real hardware it was observed to be set,
5114 * other hypervisors (namely Hyper-V) don't set it, we end up
5115 * advancing IP with some random value. Disable fast mmio when
5116 * running nested and keep it for real hardware in hope that
5117 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5118 */
5119 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5120 return kvm_skip_emulated_instruction(vcpu);
5121 else
5122 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5123 EMULATE_DONE;
5124 }
5125
5126 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5127 }
5128
5129 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5130 {
5131 WARN_ON_ONCE(!enable_vnmi);
5132 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5133 CPU_BASED_VIRTUAL_NMI_PENDING);
5134 ++vcpu->stat.nmi_window_exits;
5135 kvm_make_request(KVM_REQ_EVENT, vcpu);
5136
5137 return 1;
5138 }
5139
5140 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5141 {
5142 struct vcpu_vmx *vmx = to_vmx(vcpu);
5143 enum emulation_result err = EMULATE_DONE;
5144 int ret = 1;
5145 u32 cpu_exec_ctrl;
5146 bool intr_window_requested;
5147 unsigned count = 130;
5148
5149 /*
5150 * We should never reach the point where we are emulating L2
5151 * due to invalid guest state as that means we incorrectly
5152 * allowed a nested VMEntry with an invalid vmcs12.
5153 */
5154 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5155
5156 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5157 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5158
5159 while (vmx->emulation_required && count-- != 0) {
5160 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5161 return handle_interrupt_window(&vmx->vcpu);
5162
5163 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5164 return 1;
5165
5166 err = kvm_emulate_instruction(vcpu, 0);
5167
5168 if (err == EMULATE_USER_EXIT) {
5169 ++vcpu->stat.mmio_exits;
5170 ret = 0;
5171 goto out;
5172 }
5173
5174 if (err != EMULATE_DONE)
5175 goto emulation_error;
5176
5177 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5178 vcpu->arch.exception.pending)
5179 goto emulation_error;
5180
5181 if (vcpu->arch.halt_request) {
5182 vcpu->arch.halt_request = 0;
5183 ret = kvm_vcpu_halt(vcpu);
5184 goto out;
5185 }
5186
5187 if (signal_pending(current))
5188 goto out;
5189 if (need_resched())
5190 schedule();
5191 }
5192
5193 out:
5194 return ret;
5195
5196 emulation_error:
5197 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5198 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5199 vcpu->run->internal.ndata = 0;
5200 return 0;
5201 }
5202
5203 static void grow_ple_window(struct kvm_vcpu *vcpu)
5204 {
5205 struct vcpu_vmx *vmx = to_vmx(vcpu);
5206 int old = vmx->ple_window;
5207
5208 vmx->ple_window = __grow_ple_window(old, ple_window,
5209 ple_window_grow,
5210 ple_window_max);
5211
5212 if (vmx->ple_window != old)
5213 vmx->ple_window_dirty = true;
5214
5215 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5216 }
5217
5218 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5219 {
5220 struct vcpu_vmx *vmx = to_vmx(vcpu);
5221 int old = vmx->ple_window;
5222
5223 vmx->ple_window = __shrink_ple_window(old, ple_window,
5224 ple_window_shrink,
5225 ple_window);
5226
5227 if (vmx->ple_window != old)
5228 vmx->ple_window_dirty = true;
5229
5230 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5231 }
5232
5233 /*
5234 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5235 */
5236 static void wakeup_handler(void)
5237 {
5238 struct kvm_vcpu *vcpu;
5239 int cpu = smp_processor_id();
5240
5241 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5242 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5243 blocked_vcpu_list) {
5244 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5245
5246 if (pi_test_on(pi_desc) == 1)
5247 kvm_vcpu_kick(vcpu);
5248 }
5249 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250 }
5251
5252 static void vmx_enable_tdp(void)
5253 {
5254 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5255 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5256 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5257 0ull, VMX_EPT_EXECUTABLE_MASK,
5258 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5259 VMX_EPT_RWX_MASK, 0ull);
5260
5261 ept_set_mmio_spte_mask();
5262 kvm_enable_tdp();
5263 }
5264
5265 /*
5266 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5267 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5268 */
5269 static int handle_pause(struct kvm_vcpu *vcpu)
5270 {
5271 if (!kvm_pause_in_guest(vcpu->kvm))
5272 grow_ple_window(vcpu);
5273
5274 /*
5275 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5276 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5277 * never set PAUSE_EXITING and just set PLE if supported,
5278 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5279 */
5280 kvm_vcpu_on_spin(vcpu, true);
5281 return kvm_skip_emulated_instruction(vcpu);
5282 }
5283
5284 static int handle_nop(struct kvm_vcpu *vcpu)
5285 {
5286 return kvm_skip_emulated_instruction(vcpu);
5287 }
5288
5289 static int handle_mwait(struct kvm_vcpu *vcpu)
5290 {
5291 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5292 return handle_nop(vcpu);
5293 }
5294
5295 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5296 {
5297 kvm_queue_exception(vcpu, UD_VECTOR);
5298 return 1;
5299 }
5300
5301 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5302 {
5303 return 1;
5304 }
5305
5306 static int handle_monitor(struct kvm_vcpu *vcpu)
5307 {
5308 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5309 return handle_nop(vcpu);
5310 }
5311
5312 static int handle_invpcid(struct kvm_vcpu *vcpu)
5313 {
5314 u32 vmx_instruction_info;
5315 unsigned long type;
5316 bool pcid_enabled;
5317 gva_t gva;
5318 struct x86_exception e;
5319 unsigned i;
5320 unsigned long roots_to_free = 0;
5321 struct {
5322 u64 pcid;
5323 u64 gla;
5324 } operand;
5325
5326 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5327 kvm_queue_exception(vcpu, UD_VECTOR);
5328 return 1;
5329 }
5330
5331 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5332 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5333
5334 if (type > 3) {
5335 kvm_inject_gp(vcpu, 0);
5336 return 1;
5337 }
5338
5339 /* According to the Intel instruction reference, the memory operand
5340 * is read even if it isn't needed (e.g., for type==all)
5341 */
5342 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5343 vmx_instruction_info, false, &gva))
5344 return 1;
5345
5346 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5347 kvm_inject_page_fault(vcpu, &e);
5348 return 1;
5349 }
5350
5351 if (operand.pcid >> 12 != 0) {
5352 kvm_inject_gp(vcpu, 0);
5353 return 1;
5354 }
5355
5356 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5357
5358 switch (type) {
5359 case INVPCID_TYPE_INDIV_ADDR:
5360 if ((!pcid_enabled && (operand.pcid != 0)) ||
5361 is_noncanonical_address(operand.gla, vcpu)) {
5362 kvm_inject_gp(vcpu, 0);
5363 return 1;
5364 }
5365 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5366 return kvm_skip_emulated_instruction(vcpu);
5367
5368 case INVPCID_TYPE_SINGLE_CTXT:
5369 if (!pcid_enabled && (operand.pcid != 0)) {
5370 kvm_inject_gp(vcpu, 0);
5371 return 1;
5372 }
5373
5374 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5375 kvm_mmu_sync_roots(vcpu);
5376 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5377 }
5378
5379 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5380 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5381 == operand.pcid)
5382 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5383
5384 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5385 /*
5386 * If neither the current cr3 nor any of the prev_roots use the
5387 * given PCID, then nothing needs to be done here because a
5388 * resync will happen anyway before switching to any other CR3.
5389 */
5390
5391 return kvm_skip_emulated_instruction(vcpu);
5392
5393 case INVPCID_TYPE_ALL_NON_GLOBAL:
5394 /*
5395 * Currently, KVM doesn't mark global entries in the shadow
5396 * page tables, so a non-global flush just degenerates to a
5397 * global flush. If needed, we could optimize this later by
5398 * keeping track of global entries in shadow page tables.
5399 */
5400
5401 /* fall-through */
5402 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5403 kvm_mmu_unload(vcpu);
5404 return kvm_skip_emulated_instruction(vcpu);
5405
5406 default:
5407 BUG(); /* We have already checked above that type <= 3 */
5408 }
5409 }
5410
5411 static int handle_pml_full(struct kvm_vcpu *vcpu)
5412 {
5413 unsigned long exit_qualification;
5414
5415 trace_kvm_pml_full(vcpu->vcpu_id);
5416
5417 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418
5419 /*
5420 * PML buffer FULL happened while executing iret from NMI,
5421 * "blocked by NMI" bit has to be set before next VM entry.
5422 */
5423 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5424 enable_vnmi &&
5425 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5426 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5427 GUEST_INTR_STATE_NMI);
5428
5429 /*
5430 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5431 * here.., and there's no userspace involvement needed for PML.
5432 */
5433 return 1;
5434 }
5435
5436 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5437 {
5438 if (!to_vmx(vcpu)->req_immediate_exit)
5439 kvm_lapic_expired_hv_timer(vcpu);
5440 return 1;
5441 }
5442
5443 /*
5444 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5445 * are overwritten by nested_vmx_setup() when nested=1.
5446 */
5447 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5448 {
5449 kvm_queue_exception(vcpu, UD_VECTOR);
5450 return 1;
5451 }
5452
5453 static int handle_encls(struct kvm_vcpu *vcpu)
5454 {
5455 /*
5456 * SGX virtualization is not yet supported. There is no software
5457 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5458 * to prevent the guest from executing ENCLS.
5459 */
5460 kvm_queue_exception(vcpu, UD_VECTOR);
5461 return 1;
5462 }
5463
5464 /*
5465 * The exit handlers return 1 if the exit was handled fully and guest execution
5466 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5467 * to be done to userspace and return 0.
5468 */
5469 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5470 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5471 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5472 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5473 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5474 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5475 [EXIT_REASON_CR_ACCESS] = handle_cr,
5476 [EXIT_REASON_DR_ACCESS] = handle_dr,
5477 [EXIT_REASON_CPUID] = handle_cpuid,
5478 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5479 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5480 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5481 [EXIT_REASON_HLT] = handle_halt,
5482 [EXIT_REASON_INVD] = handle_invd,
5483 [EXIT_REASON_INVLPG] = handle_invlpg,
5484 [EXIT_REASON_RDPMC] = handle_rdpmc,
5485 [EXIT_REASON_VMCALL] = handle_vmcall,
5486 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5487 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5488 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5489 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5490 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5491 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5492 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5493 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5494 [EXIT_REASON_VMON] = handle_vmx_instruction,
5495 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5496 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5497 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5498 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5499 [EXIT_REASON_WBINVD] = handle_wbinvd,
5500 [EXIT_REASON_XSETBV] = handle_xsetbv,
5501 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5502 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5503 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5504 [EXIT_REASON_LDTR_TR] = handle_desc,
5505 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5506 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5507 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5508 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5509 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5510 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5511 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5512 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5513 [EXIT_REASON_RDRAND] = handle_invalid_op,
5514 [EXIT_REASON_RDSEED] = handle_invalid_op,
5515 [EXIT_REASON_XSAVES] = handle_xsaves,
5516 [EXIT_REASON_XRSTORS] = handle_xrstors,
5517 [EXIT_REASON_PML_FULL] = handle_pml_full,
5518 [EXIT_REASON_INVPCID] = handle_invpcid,
5519 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5520 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5521 [EXIT_REASON_ENCLS] = handle_encls,
5522 };
5523
5524 static const int kvm_vmx_max_exit_handlers =
5525 ARRAY_SIZE(kvm_vmx_exit_handlers);
5526
5527 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5528 {
5529 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5530 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5531 }
5532
5533 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5534 {
5535 if (vmx->pml_pg) {
5536 __free_page(vmx->pml_pg);
5537 vmx->pml_pg = NULL;
5538 }
5539 }
5540
5541 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5542 {
5543 struct vcpu_vmx *vmx = to_vmx(vcpu);
5544 u64 *pml_buf;
5545 u16 pml_idx;
5546
5547 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5548
5549 /* Do nothing if PML buffer is empty */
5550 if (pml_idx == (PML_ENTITY_NUM - 1))
5551 return;
5552
5553 /* PML index always points to next available PML buffer entity */
5554 if (pml_idx >= PML_ENTITY_NUM)
5555 pml_idx = 0;
5556 else
5557 pml_idx++;
5558
5559 pml_buf = page_address(vmx->pml_pg);
5560 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5561 u64 gpa;
5562
5563 gpa = pml_buf[pml_idx];
5564 WARN_ON(gpa & (PAGE_SIZE - 1));
5565 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5566 }
5567
5568 /* reset PML index */
5569 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5570 }
5571
5572 /*
5573 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5574 * Called before reporting dirty_bitmap to userspace.
5575 */
5576 static void kvm_flush_pml_buffers(struct kvm *kvm)
5577 {
5578 int i;
5579 struct kvm_vcpu *vcpu;
5580 /*
5581 * We only need to kick vcpu out of guest mode here, as PML buffer
5582 * is flushed at beginning of all VMEXITs, and it's obvious that only
5583 * vcpus running in guest are possible to have unflushed GPAs in PML
5584 * buffer.
5585 */
5586 kvm_for_each_vcpu(i, vcpu, kvm)
5587 kvm_vcpu_kick(vcpu);
5588 }
5589
5590 static void vmx_dump_sel(char *name, uint32_t sel)
5591 {
5592 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5593 name, vmcs_read16(sel),
5594 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5595 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5596 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5597 }
5598
5599 static void vmx_dump_dtsel(char *name, uint32_t limit)
5600 {
5601 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5602 name, vmcs_read32(limit),
5603 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5604 }
5605
5606 void dump_vmcs(void)
5607 {
5608 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5609 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5610 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5611 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5612 u32 secondary_exec_control = 0;
5613 unsigned long cr4 = vmcs_readl(GUEST_CR4);
5614 u64 efer = vmcs_read64(GUEST_IA32_EFER);
5615 int i, n;
5616
5617 if (cpu_has_secondary_exec_ctrls())
5618 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5619
5620 pr_err("*** Guest State ***\n");
5621 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5622 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5623 vmcs_readl(CR0_GUEST_HOST_MASK));
5624 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5625 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5626 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5627 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5628 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5629 {
5630 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5631 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5632 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5633 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5634 }
5635 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5636 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5637 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5638 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5639 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5640 vmcs_readl(GUEST_SYSENTER_ESP),
5641 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5642 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5643 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5644 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5645 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5646 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5647 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5648 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5649 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5650 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5651 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5652 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5653 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5654 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5655 efer, vmcs_read64(GUEST_IA32_PAT));
5656 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5657 vmcs_read64(GUEST_IA32_DEBUGCTL),
5658 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5659 if (cpu_has_load_perf_global_ctrl() &&
5660 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5661 pr_err("PerfGlobCtl = 0x%016llx\n",
5662 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5663 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5664 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5665 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5666 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5667 vmcs_read32(GUEST_ACTIVITY_STATE));
5668 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5669 pr_err("InterruptStatus = %04x\n",
5670 vmcs_read16(GUEST_INTR_STATUS));
5671
5672 pr_err("*** Host State ***\n");
5673 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5674 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5675 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5676 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5677 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5678 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5679 vmcs_read16(HOST_TR_SELECTOR));
5680 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5681 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5682 vmcs_readl(HOST_TR_BASE));
5683 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5684 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5685 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5686 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5687 vmcs_readl(HOST_CR4));
5688 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5689 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5690 vmcs_read32(HOST_IA32_SYSENTER_CS),
5691 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5692 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5693 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5694 vmcs_read64(HOST_IA32_EFER),
5695 vmcs_read64(HOST_IA32_PAT));
5696 if (cpu_has_load_perf_global_ctrl() &&
5697 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5698 pr_err("PerfGlobCtl = 0x%016llx\n",
5699 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5700
5701 pr_err("*** Control State ***\n");
5702 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5703 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5704 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5705 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5706 vmcs_read32(EXCEPTION_BITMAP),
5707 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5708 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5709 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5710 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5711 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5712 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5713 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5714 vmcs_read32(VM_EXIT_INTR_INFO),
5715 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5716 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5717 pr_err(" reason=%08x qualification=%016lx\n",
5718 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5719 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5720 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5721 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5722 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5723 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5724 pr_err("TSC Multiplier = 0x%016llx\n",
5725 vmcs_read64(TSC_MULTIPLIER));
5726 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5727 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5728 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5729 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5730 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5731 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5732 n = vmcs_read32(CR3_TARGET_COUNT);
5733 for (i = 0; i + 1 < n; i += 4)
5734 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5735 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5736 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5737 if (i < n)
5738 pr_err("CR3 target%u=%016lx\n",
5739 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5740 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5741 pr_err("PLE Gap=%08x Window=%08x\n",
5742 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5743 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5744 pr_err("Virtual processor ID = 0x%04x\n",
5745 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5746 }
5747
5748 /*
5749 * The guest has exited. See if we can fix it or if we need userspace
5750 * assistance.
5751 */
5752 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5753 {
5754 struct vcpu_vmx *vmx = to_vmx(vcpu);
5755 u32 exit_reason = vmx->exit_reason;
5756 u32 vectoring_info = vmx->idt_vectoring_info;
5757
5758 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5759
5760 /*
5761 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5762 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5763 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5764 * mode as if vcpus is in root mode, the PML buffer must has been
5765 * flushed already.
5766 */
5767 if (enable_pml)
5768 vmx_flush_pml_buffer(vcpu);
5769
5770 /* If guest state is invalid, start emulating */
5771 if (vmx->emulation_required)
5772 return handle_invalid_guest_state(vcpu);
5773
5774 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5775 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5776
5777 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5778 dump_vmcs();
5779 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5780 vcpu->run->fail_entry.hardware_entry_failure_reason
5781 = exit_reason;
5782 return 0;
5783 }
5784
5785 if (unlikely(vmx->fail)) {
5786 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5787 vcpu->run->fail_entry.hardware_entry_failure_reason
5788 = vmcs_read32(VM_INSTRUCTION_ERROR);
5789 return 0;
5790 }
5791
5792 /*
5793 * Note:
5794 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5795 * delivery event since it indicates guest is accessing MMIO.
5796 * The vm-exit can be triggered again after return to guest that
5797 * will cause infinite loop.
5798 */
5799 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5800 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5801 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5802 exit_reason != EXIT_REASON_PML_FULL &&
5803 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5804 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5805 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5806 vcpu->run->internal.ndata = 3;
5807 vcpu->run->internal.data[0] = vectoring_info;
5808 vcpu->run->internal.data[1] = exit_reason;
5809 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5810 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5811 vcpu->run->internal.ndata++;
5812 vcpu->run->internal.data[3] =
5813 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5814 }
5815 return 0;
5816 }
5817
5818 if (unlikely(!enable_vnmi &&
5819 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5820 if (vmx_interrupt_allowed(vcpu)) {
5821 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5822 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5823 vcpu->arch.nmi_pending) {
5824 /*
5825 * This CPU don't support us in finding the end of an
5826 * NMI-blocked window if the guest runs with IRQs
5827 * disabled. So we pull the trigger after 1 s of
5828 * futile waiting, but inform the user about this.
5829 */
5830 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5831 "state on VCPU %d after 1 s timeout\n",
5832 __func__, vcpu->vcpu_id);
5833 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5834 }
5835 }
5836
5837 if (exit_reason < kvm_vmx_max_exit_handlers
5838 && kvm_vmx_exit_handlers[exit_reason])
5839 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5840 else {
5841 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5842 exit_reason);
5843 kvm_queue_exception(vcpu, UD_VECTOR);
5844 return 1;
5845 }
5846 }
5847
5848 /*
5849 * Software based L1D cache flush which is used when microcode providing
5850 * the cache control MSR is not loaded.
5851 *
5852 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5853 * flush it is required to read in 64 KiB because the replacement algorithm
5854 * is not exactly LRU. This could be sized at runtime via topology
5855 * information but as all relevant affected CPUs have 32KiB L1D cache size
5856 * there is no point in doing so.
5857 */
5858 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5859 {
5860 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5861
5862 /*
5863 * This code is only executed when the the flush mode is 'cond' or
5864 * 'always'
5865 */
5866 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5867 bool flush_l1d;
5868
5869 /*
5870 * Clear the per-vcpu flush bit, it gets set again
5871 * either from vcpu_run() or from one of the unsafe
5872 * VMEXIT handlers.
5873 */
5874 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5875 vcpu->arch.l1tf_flush_l1d = false;
5876
5877 /*
5878 * Clear the per-cpu flush bit, it gets set again from
5879 * the interrupt handlers.
5880 */
5881 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5882 kvm_clear_cpu_l1tf_flush_l1d();
5883
5884 if (!flush_l1d)
5885 return;
5886 }
5887
5888 vcpu->stat.l1d_flush++;
5889
5890 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5891 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5892 return;
5893 }
5894
5895 asm volatile(
5896 /* First ensure the pages are in the TLB */
5897 "xorl %%eax, %%eax\n"
5898 ".Lpopulate_tlb:\n\t"
5899 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5900 "addl $4096, %%eax\n\t"
5901 "cmpl %%eax, %[size]\n\t"
5902 "jne .Lpopulate_tlb\n\t"
5903 "xorl %%eax, %%eax\n\t"
5904 "cpuid\n\t"
5905 /* Now fill the cache */
5906 "xorl %%eax, %%eax\n"
5907 ".Lfill_cache:\n"
5908 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5909 "addl $64, %%eax\n\t"
5910 "cmpl %%eax, %[size]\n\t"
5911 "jne .Lfill_cache\n\t"
5912 "lfence\n"
5913 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5914 [size] "r" (size)
5915 : "eax", "ebx", "ecx", "edx");
5916 }
5917
5918 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5919 {
5920 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5921
5922 if (is_guest_mode(vcpu) &&
5923 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5924 return;
5925
5926 if (irr == -1 || tpr < irr) {
5927 vmcs_write32(TPR_THRESHOLD, 0);
5928 return;
5929 }
5930
5931 vmcs_write32(TPR_THRESHOLD, irr);
5932 }
5933
5934 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5935 {
5936 u32 sec_exec_control;
5937
5938 if (!lapic_in_kernel(vcpu))
5939 return;
5940
5941 if (!flexpriority_enabled &&
5942 !cpu_has_vmx_virtualize_x2apic_mode())
5943 return;
5944
5945 /* Postpone execution until vmcs01 is the current VMCS. */
5946 if (is_guest_mode(vcpu)) {
5947 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5948 return;
5949 }
5950
5951 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5952 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5953 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5954
5955 switch (kvm_get_apic_mode(vcpu)) {
5956 case LAPIC_MODE_INVALID:
5957 WARN_ONCE(true, "Invalid local APIC state");
5958 case LAPIC_MODE_DISABLED:
5959 break;
5960 case LAPIC_MODE_XAPIC:
5961 if (flexpriority_enabled) {
5962 sec_exec_control |=
5963 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964 vmx_flush_tlb(vcpu, true);
5965 }
5966 break;
5967 case LAPIC_MODE_X2APIC:
5968 if (cpu_has_vmx_virtualize_x2apic_mode())
5969 sec_exec_control |=
5970 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5971 break;
5972 }
5973 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5974
5975 vmx_update_msr_bitmap(vcpu);
5976 }
5977
5978 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5979 {
5980 if (!is_guest_mode(vcpu)) {
5981 vmcs_write64(APIC_ACCESS_ADDR, hpa);
5982 vmx_flush_tlb(vcpu, true);
5983 }
5984 }
5985
5986 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5987 {
5988 u16 status;
5989 u8 old;
5990
5991 if (max_isr == -1)
5992 max_isr = 0;
5993
5994 status = vmcs_read16(GUEST_INTR_STATUS);
5995 old = status >> 8;
5996 if (max_isr != old) {
5997 status &= 0xff;
5998 status |= max_isr << 8;
5999 vmcs_write16(GUEST_INTR_STATUS, status);
6000 }
6001 }
6002
6003 static void vmx_set_rvi(int vector)
6004 {
6005 u16 status;
6006 u8 old;
6007
6008 if (vector == -1)
6009 vector = 0;
6010
6011 status = vmcs_read16(GUEST_INTR_STATUS);
6012 old = (u8)status & 0xff;
6013 if ((u8)vector != old) {
6014 status &= ~0xff;
6015 status |= (u8)vector;
6016 vmcs_write16(GUEST_INTR_STATUS, status);
6017 }
6018 }
6019
6020 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6021 {
6022 /*
6023 * When running L2, updating RVI is only relevant when
6024 * vmcs12 virtual-interrupt-delivery enabled.
6025 * However, it can be enabled only when L1 also
6026 * intercepts external-interrupts and in that case
6027 * we should not update vmcs02 RVI but instead intercept
6028 * interrupt. Therefore, do nothing when running L2.
6029 */
6030 if (!is_guest_mode(vcpu))
6031 vmx_set_rvi(max_irr);
6032 }
6033
6034 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6035 {
6036 struct vcpu_vmx *vmx = to_vmx(vcpu);
6037 int max_irr;
6038 bool max_irr_updated;
6039
6040 WARN_ON(!vcpu->arch.apicv_active);
6041 if (pi_test_on(&vmx->pi_desc)) {
6042 pi_clear_on(&vmx->pi_desc);
6043 /*
6044 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6045 * But on x86 this is just a compiler barrier anyway.
6046 */
6047 smp_mb__after_atomic();
6048 max_irr_updated =
6049 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6050
6051 /*
6052 * If we are running L2 and L1 has a new pending interrupt
6053 * which can be injected, we should re-evaluate
6054 * what should be done with this new L1 interrupt.
6055 * If L1 intercepts external-interrupts, we should
6056 * exit from L2 to L1. Otherwise, interrupt should be
6057 * delivered directly to L2.
6058 */
6059 if (is_guest_mode(vcpu) && max_irr_updated) {
6060 if (nested_exit_on_intr(vcpu))
6061 kvm_vcpu_exiting_guest_mode(vcpu);
6062 else
6063 kvm_make_request(KVM_REQ_EVENT, vcpu);
6064 }
6065 } else {
6066 max_irr = kvm_lapic_find_highest_irr(vcpu);
6067 }
6068 vmx_hwapic_irr_update(vcpu, max_irr);
6069 return max_irr;
6070 }
6071
6072 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6073 {
6074 if (!kvm_vcpu_apicv_active(vcpu))
6075 return;
6076
6077 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6078 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6079 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6080 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6081 }
6082
6083 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6084 {
6085 struct vcpu_vmx *vmx = to_vmx(vcpu);
6086
6087 pi_clear_on(&vmx->pi_desc);
6088 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6089 }
6090
6091 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6092 {
6093 u32 exit_intr_info = 0;
6094 u16 basic_exit_reason = (u16)vmx->exit_reason;
6095
6096 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6097 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6098 return;
6099
6100 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6101 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6102 vmx->exit_intr_info = exit_intr_info;
6103
6104 /* if exit due to PF check for async PF */
6105 if (is_page_fault(exit_intr_info))
6106 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6107
6108 /* Handle machine checks before interrupts are enabled */
6109 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6110 is_machine_check(exit_intr_info))
6111 kvm_machine_check();
6112
6113 /* We need to handle NMIs before interrupts are enabled */
6114 if (is_nmi(exit_intr_info)) {
6115 kvm_before_interrupt(&vmx->vcpu);
6116 asm("int $2");
6117 kvm_after_interrupt(&vmx->vcpu);
6118 }
6119 }
6120
6121 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6122 {
6123 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6124
6125 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6126 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6127 unsigned int vector;
6128 unsigned long entry;
6129 gate_desc *desc;
6130 struct vcpu_vmx *vmx = to_vmx(vcpu);
6131 #ifdef CONFIG_X86_64
6132 unsigned long tmp;
6133 #endif
6134
6135 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6136 desc = (gate_desc *)vmx->host_idt_base + vector;
6137 entry = gate_offset(desc);
6138 asm volatile(
6139 #ifdef CONFIG_X86_64
6140 "mov %%" _ASM_SP ", %[sp]\n\t"
6141 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6142 "push $%c[ss]\n\t"
6143 "push %[sp]\n\t"
6144 #endif
6145 "pushf\n\t"
6146 __ASM_SIZE(push) " $%c[cs]\n\t"
6147 CALL_NOSPEC
6148 :
6149 #ifdef CONFIG_X86_64
6150 [sp]"=&r"(tmp),
6151 #endif
6152 ASM_CALL_CONSTRAINT
6153 :
6154 THUNK_TARGET(entry),
6155 [ss]"i"(__KERNEL_DS),
6156 [cs]"i"(__KERNEL_CS)
6157 );
6158 }
6159 }
6160 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6161
6162 static bool vmx_has_emulated_msr(int index)
6163 {
6164 switch (index) {
6165 case MSR_IA32_SMBASE:
6166 /*
6167 * We cannot do SMM unless we can run the guest in big
6168 * real mode.
6169 */
6170 return enable_unrestricted_guest || emulate_invalid_guest_state;
6171 case MSR_AMD64_VIRT_SPEC_CTRL:
6172 /* This is AMD only. */
6173 return false;
6174 default:
6175 return true;
6176 }
6177 }
6178
6179 static bool vmx_pt_supported(void)
6180 {
6181 return pt_mode == PT_MODE_HOST_GUEST;
6182 }
6183
6184 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6185 {
6186 u32 exit_intr_info;
6187 bool unblock_nmi;
6188 u8 vector;
6189 bool idtv_info_valid;
6190
6191 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6192
6193 if (enable_vnmi) {
6194 if (vmx->loaded_vmcs->nmi_known_unmasked)
6195 return;
6196 /*
6197 * Can't use vmx->exit_intr_info since we're not sure what
6198 * the exit reason is.
6199 */
6200 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6201 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6202 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6203 /*
6204 * SDM 3: 27.7.1.2 (September 2008)
6205 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6206 * a guest IRET fault.
6207 * SDM 3: 23.2.2 (September 2008)
6208 * Bit 12 is undefined in any of the following cases:
6209 * If the VM exit sets the valid bit in the IDT-vectoring
6210 * information field.
6211 * If the VM exit is due to a double fault.
6212 */
6213 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6214 vector != DF_VECTOR && !idtv_info_valid)
6215 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6216 GUEST_INTR_STATE_NMI);
6217 else
6218 vmx->loaded_vmcs->nmi_known_unmasked =
6219 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6220 & GUEST_INTR_STATE_NMI);
6221 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6222 vmx->loaded_vmcs->vnmi_blocked_time +=
6223 ktime_to_ns(ktime_sub(ktime_get(),
6224 vmx->loaded_vmcs->entry_time));
6225 }
6226
6227 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6228 u32 idt_vectoring_info,
6229 int instr_len_field,
6230 int error_code_field)
6231 {
6232 u8 vector;
6233 int type;
6234 bool idtv_info_valid;
6235
6236 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6237
6238 vcpu->arch.nmi_injected = false;
6239 kvm_clear_exception_queue(vcpu);
6240 kvm_clear_interrupt_queue(vcpu);
6241
6242 if (!idtv_info_valid)
6243 return;
6244
6245 kvm_make_request(KVM_REQ_EVENT, vcpu);
6246
6247 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6248 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6249
6250 switch (type) {
6251 case INTR_TYPE_NMI_INTR:
6252 vcpu->arch.nmi_injected = true;
6253 /*
6254 * SDM 3: 27.7.1.2 (September 2008)
6255 * Clear bit "block by NMI" before VM entry if a NMI
6256 * delivery faulted.
6257 */
6258 vmx_set_nmi_mask(vcpu, false);
6259 break;
6260 case INTR_TYPE_SOFT_EXCEPTION:
6261 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6262 /* fall through */
6263 case INTR_TYPE_HARD_EXCEPTION:
6264 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6265 u32 err = vmcs_read32(error_code_field);
6266 kvm_requeue_exception_e(vcpu, vector, err);
6267 } else
6268 kvm_requeue_exception(vcpu, vector);
6269 break;
6270 case INTR_TYPE_SOFT_INTR:
6271 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6272 /* fall through */
6273 case INTR_TYPE_EXT_INTR:
6274 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6275 break;
6276 default:
6277 break;
6278 }
6279 }
6280
6281 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6282 {
6283 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6284 VM_EXIT_INSTRUCTION_LEN,
6285 IDT_VECTORING_ERROR_CODE);
6286 }
6287
6288 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6289 {
6290 __vmx_complete_interrupts(vcpu,
6291 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6292 VM_ENTRY_INSTRUCTION_LEN,
6293 VM_ENTRY_EXCEPTION_ERROR_CODE);
6294
6295 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6296 }
6297
6298 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6299 {
6300 int i, nr_msrs;
6301 struct perf_guest_switch_msr *msrs;
6302
6303 msrs = perf_guest_get_msrs(&nr_msrs);
6304
6305 if (!msrs)
6306 return;
6307
6308 for (i = 0; i < nr_msrs; i++)
6309 if (msrs[i].host == msrs[i].guest)
6310 clear_atomic_switch_msr(vmx, msrs[i].msr);
6311 else
6312 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6313 msrs[i].host, false);
6314 }
6315
6316 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6317 {
6318 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6319 if (!vmx->loaded_vmcs->hv_timer_armed)
6320 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6321 PIN_BASED_VMX_PREEMPTION_TIMER);
6322 vmx->loaded_vmcs->hv_timer_armed = true;
6323 }
6324
6325 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6326 {
6327 struct vcpu_vmx *vmx = to_vmx(vcpu);
6328 u64 tscl;
6329 u32 delta_tsc;
6330
6331 if (vmx->req_immediate_exit) {
6332 vmx_arm_hv_timer(vmx, 0);
6333 return;
6334 }
6335
6336 if (vmx->hv_deadline_tsc != -1) {
6337 tscl = rdtsc();
6338 if (vmx->hv_deadline_tsc > tscl)
6339 /* set_hv_timer ensures the delta fits in 32-bits */
6340 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6341 cpu_preemption_timer_multi);
6342 else
6343 delta_tsc = 0;
6344
6345 vmx_arm_hv_timer(vmx, delta_tsc);
6346 return;
6347 }
6348
6349 if (vmx->loaded_vmcs->hv_timer_armed)
6350 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6351 PIN_BASED_VMX_PREEMPTION_TIMER);
6352 vmx->loaded_vmcs->hv_timer_armed = false;
6353 }
6354
6355 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6356 {
6357 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6358 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6359 vmcs_writel(HOST_RSP, host_rsp);
6360 }
6361 }
6362
6363 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6364
6365 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6366 {
6367 struct vcpu_vmx *vmx = to_vmx(vcpu);
6368 unsigned long cr3, cr4;
6369
6370 /* Record the guest's net vcpu time for enforced NMI injections. */
6371 if (unlikely(!enable_vnmi &&
6372 vmx->loaded_vmcs->soft_vnmi_blocked))
6373 vmx->loaded_vmcs->entry_time = ktime_get();
6374
6375 /* Don't enter VMX if guest state is invalid, let the exit handler
6376 start emulation until we arrive back to a valid state */
6377 if (vmx->emulation_required)
6378 return;
6379
6380 if (vmx->ple_window_dirty) {
6381 vmx->ple_window_dirty = false;
6382 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6383 }
6384
6385 if (vmx->nested.need_vmcs12_sync)
6386 nested_sync_from_vmcs12(vcpu);
6387
6388 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6389 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6390 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6391 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6392
6393 cr3 = __get_current_cr3_fast();
6394 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6395 vmcs_writel(HOST_CR3, cr3);
6396 vmx->loaded_vmcs->host_state.cr3 = cr3;
6397 }
6398
6399 cr4 = cr4_read_shadow();
6400 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6401 vmcs_writel(HOST_CR4, cr4);
6402 vmx->loaded_vmcs->host_state.cr4 = cr4;
6403 }
6404
6405 /* When single-stepping over STI and MOV SS, we must clear the
6406 * corresponding interruptibility bits in the guest state. Otherwise
6407 * vmentry fails as it then expects bit 14 (BS) in pending debug
6408 * exceptions being set, but that's not correct for the guest debugging
6409 * case. */
6410 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6411 vmx_set_interrupt_shadow(vcpu, 0);
6412
6413 kvm_load_guest_xcr0(vcpu);
6414
6415 if (static_cpu_has(X86_FEATURE_PKU) &&
6416 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6417 vcpu->arch.pkru != vmx->host_pkru)
6418 __write_pkru(vcpu->arch.pkru);
6419
6420 pt_guest_enter(vmx);
6421
6422 atomic_switch_perf_msrs(vmx);
6423
6424 vmx_update_hv_timer(vcpu);
6425
6426 /*
6427 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6428 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6429 * is no need to worry about the conditional branch over the wrmsr
6430 * being speculatively taken.
6431 */
6432 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6433
6434 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6435 if (static_branch_unlikely(&vmx_l1d_should_flush))
6436 vmx_l1d_flush(vcpu);
6437 else if (static_branch_unlikely(&mds_user_clear))
6438 mds_clear_cpu_buffers();
6439
6440 if (vcpu->arch.cr2 != read_cr2())
6441 write_cr2(vcpu->arch.cr2);
6442
6443 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6444 vmx->loaded_vmcs->launched);
6445
6446 vcpu->arch.cr2 = read_cr2();
6447
6448 /*
6449 * We do not use IBRS in the kernel. If this vCPU has used the
6450 * SPEC_CTRL MSR it may have left it on; save the value and
6451 * turn it off. This is much more efficient than blindly adding
6452 * it to the atomic save/restore list. Especially as the former
6453 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6454 *
6455 * For non-nested case:
6456 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6457 * save it.
6458 *
6459 * For nested case:
6460 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6461 * save it.
6462 */
6463 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6464 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6465
6466 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6467
6468 /* All fields are clean at this point */
6469 if (static_branch_unlikely(&enable_evmcs))
6470 current_evmcs->hv_clean_fields |=
6471 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6472
6473 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6474 if (vmx->host_debugctlmsr)
6475 update_debugctlmsr(vmx->host_debugctlmsr);
6476
6477 #ifndef CONFIG_X86_64
6478 /*
6479 * The sysexit path does not restore ds/es, so we must set them to
6480 * a reasonable value ourselves.
6481 *
6482 * We can't defer this to vmx_prepare_switch_to_host() since that
6483 * function may be executed in interrupt context, which saves and
6484 * restore segments around it, nullifying its effect.
6485 */
6486 loadsegment(ds, __USER_DS);
6487 loadsegment(es, __USER_DS);
6488 #endif
6489
6490 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6491 | (1 << VCPU_EXREG_RFLAGS)
6492 | (1 << VCPU_EXREG_PDPTR)
6493 | (1 << VCPU_EXREG_SEGMENTS)
6494 | (1 << VCPU_EXREG_CR3));
6495 vcpu->arch.regs_dirty = 0;
6496
6497 pt_guest_exit(vmx);
6498
6499 /*
6500 * eager fpu is enabled if PKEY is supported and CR4 is switched
6501 * back on host, so it is safe to read guest PKRU from current
6502 * XSAVE.
6503 */
6504 if (static_cpu_has(X86_FEATURE_PKU) &&
6505 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6506 vcpu->arch.pkru = rdpkru();
6507 if (vcpu->arch.pkru != vmx->host_pkru)
6508 __write_pkru(vmx->host_pkru);
6509 }
6510
6511 kvm_put_guest_xcr0(vcpu);
6512
6513 vmx->nested.nested_run_pending = 0;
6514 vmx->idt_vectoring_info = 0;
6515
6516 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6517 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6518 return;
6519
6520 vmx->loaded_vmcs->launched = 1;
6521 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6522
6523 vmx_complete_atomic_exit(vmx);
6524 vmx_recover_nmi_blocking(vmx);
6525 vmx_complete_interrupts(vmx);
6526 }
6527
6528 static struct kvm *vmx_vm_alloc(void)
6529 {
6530 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6531 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6532 PAGE_KERNEL);
6533 return &kvm_vmx->kvm;
6534 }
6535
6536 static void vmx_vm_free(struct kvm *kvm)
6537 {
6538 vfree(to_kvm_vmx(kvm));
6539 }
6540
6541 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6542 {
6543 struct vcpu_vmx *vmx = to_vmx(vcpu);
6544
6545 if (enable_pml)
6546 vmx_destroy_pml_buffer(vmx);
6547 free_vpid(vmx->vpid);
6548 nested_vmx_free_vcpu(vcpu);
6549 free_loaded_vmcs(vmx->loaded_vmcs);
6550 kfree(vmx->guest_msrs);
6551 kvm_vcpu_uninit(vcpu);
6552 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6553 kmem_cache_free(kvm_vcpu_cache, vmx);
6554 }
6555
6556 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6557 {
6558 int err;
6559 struct vcpu_vmx *vmx;
6560 unsigned long *msr_bitmap;
6561 int cpu;
6562
6563 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6564 if (!vmx)
6565 return ERR_PTR(-ENOMEM);
6566
6567 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6568 GFP_KERNEL_ACCOUNT);
6569 if (!vmx->vcpu.arch.guest_fpu) {
6570 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6571 err = -ENOMEM;
6572 goto free_partial_vcpu;
6573 }
6574
6575 vmx->vpid = allocate_vpid();
6576
6577 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6578 if (err)
6579 goto free_vcpu;
6580
6581 err = -ENOMEM;
6582
6583 /*
6584 * If PML is turned on, failure on enabling PML just results in failure
6585 * of creating the vcpu, therefore we can simplify PML logic (by
6586 * avoiding dealing with cases, such as enabling PML partially on vcpus
6587 * for the guest, etc.
6588 */
6589 if (enable_pml) {
6590 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6591 if (!vmx->pml_pg)
6592 goto uninit_vcpu;
6593 }
6594
6595 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6596 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6597 > PAGE_SIZE);
6598
6599 if (!vmx->guest_msrs)
6600 goto free_pml;
6601
6602 err = alloc_loaded_vmcs(&vmx->vmcs01);
6603 if (err < 0)
6604 goto free_msrs;
6605
6606 msr_bitmap = vmx->vmcs01.msr_bitmap;
6607 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6608 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6609 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6610 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6611 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6612 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6613 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6614 vmx->msr_bitmap_mode = 0;
6615
6616 vmx->loaded_vmcs = &vmx->vmcs01;
6617 cpu = get_cpu();
6618 vmx_vcpu_load(&vmx->vcpu, cpu);
6619 vmx->vcpu.cpu = cpu;
6620 vmx_vcpu_setup(vmx);
6621 vmx_vcpu_put(&vmx->vcpu);
6622 put_cpu();
6623 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6624 err = alloc_apic_access_page(kvm);
6625 if (err)
6626 goto free_vmcs;
6627 }
6628
6629 if (enable_ept && !enable_unrestricted_guest) {
6630 err = init_rmode_identity_map(kvm);
6631 if (err)
6632 goto free_vmcs;
6633 }
6634
6635 if (nested)
6636 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6637 vmx_capability.ept,
6638 kvm_vcpu_apicv_active(&vmx->vcpu));
6639 else
6640 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6641
6642 vmx->nested.posted_intr_nv = -1;
6643 vmx->nested.current_vmptr = -1ull;
6644
6645 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6646
6647 /*
6648 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6649 * or POSTED_INTR_WAKEUP_VECTOR.
6650 */
6651 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6652 vmx->pi_desc.sn = 1;
6653
6654 vmx->ept_pointer = INVALID_PAGE;
6655
6656 return &vmx->vcpu;
6657
6658 free_vmcs:
6659 free_loaded_vmcs(vmx->loaded_vmcs);
6660 free_msrs:
6661 kfree(vmx->guest_msrs);
6662 free_pml:
6663 vmx_destroy_pml_buffer(vmx);
6664 uninit_vcpu:
6665 kvm_vcpu_uninit(&vmx->vcpu);
6666 free_vcpu:
6667 free_vpid(vmx->vpid);
6668 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6669 free_partial_vcpu:
6670 kmem_cache_free(kvm_vcpu_cache, vmx);
6671 return ERR_PTR(err);
6672 }
6673
6674 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6675 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6676
6677 static int vmx_vm_init(struct kvm *kvm)
6678 {
6679 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6680
6681 if (!ple_gap)
6682 kvm->arch.pause_in_guest = true;
6683
6684 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6685 switch (l1tf_mitigation) {
6686 case L1TF_MITIGATION_OFF:
6687 case L1TF_MITIGATION_FLUSH_NOWARN:
6688 /* 'I explicitly don't care' is set */
6689 break;
6690 case L1TF_MITIGATION_FLUSH:
6691 case L1TF_MITIGATION_FLUSH_NOSMT:
6692 case L1TF_MITIGATION_FULL:
6693 /*
6694 * Warn upon starting the first VM in a potentially
6695 * insecure environment.
6696 */
6697 if (sched_smt_active())
6698 pr_warn_once(L1TF_MSG_SMT);
6699 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6700 pr_warn_once(L1TF_MSG_L1D);
6701 break;
6702 case L1TF_MITIGATION_FULL_FORCE:
6703 /* Flush is enforced */
6704 break;
6705 }
6706 }
6707 return 0;
6708 }
6709
6710 static void __init vmx_check_processor_compat(void *rtn)
6711 {
6712 struct vmcs_config vmcs_conf;
6713 struct vmx_capability vmx_cap;
6714
6715 *(int *)rtn = 0;
6716 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6717 *(int *)rtn = -EIO;
6718 if (nested)
6719 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6720 enable_apicv);
6721 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6722 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6723 smp_processor_id());
6724 *(int *)rtn = -EIO;
6725 }
6726 }
6727
6728 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6729 {
6730 u8 cache;
6731 u64 ipat = 0;
6732
6733 /* For VT-d and EPT combination
6734 * 1. MMIO: always map as UC
6735 * 2. EPT with VT-d:
6736 * a. VT-d without snooping control feature: can't guarantee the
6737 * result, try to trust guest.
6738 * b. VT-d with snooping control feature: snooping control feature of
6739 * VT-d engine can guarantee the cache correctness. Just set it
6740 * to WB to keep consistent with host. So the same as item 3.
6741 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6742 * consistent with host MTRR
6743 */
6744 if (is_mmio) {
6745 cache = MTRR_TYPE_UNCACHABLE;
6746 goto exit;
6747 }
6748
6749 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6750 ipat = VMX_EPT_IPAT_BIT;
6751 cache = MTRR_TYPE_WRBACK;
6752 goto exit;
6753 }
6754
6755 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6756 ipat = VMX_EPT_IPAT_BIT;
6757 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6758 cache = MTRR_TYPE_WRBACK;
6759 else
6760 cache = MTRR_TYPE_UNCACHABLE;
6761 goto exit;
6762 }
6763
6764 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6765
6766 exit:
6767 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6768 }
6769
6770 static int vmx_get_lpage_level(void)
6771 {
6772 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6773 return PT_DIRECTORY_LEVEL;
6774 else
6775 /* For shadow and EPT supported 1GB page */
6776 return PT_PDPE_LEVEL;
6777 }
6778
6779 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6780 {
6781 /*
6782 * These bits in the secondary execution controls field
6783 * are dynamic, the others are mostly based on the hypervisor
6784 * architecture and the guest's CPUID. Do not touch the
6785 * dynamic bits.
6786 */
6787 u32 mask =
6788 SECONDARY_EXEC_SHADOW_VMCS |
6789 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6790 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6791 SECONDARY_EXEC_DESC;
6792
6793 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6794
6795 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6796 (new_ctl & ~mask) | (cur_ctl & mask));
6797 }
6798
6799 /*
6800 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6801 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6802 */
6803 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6804 {
6805 struct vcpu_vmx *vmx = to_vmx(vcpu);
6806 struct kvm_cpuid_entry2 *entry;
6807
6808 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6809 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6810
6811 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6812 if (entry && (entry->_reg & (_cpuid_mask))) \
6813 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6814 } while (0)
6815
6816 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6817 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6818 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6819 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6820 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6821 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6822 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6823 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6824 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6825 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6826 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6827 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6828 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6829 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6830 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6831
6832 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6833 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6834 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
6835 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
6836 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
6837 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
6838
6839 #undef cr4_fixed1_update
6840 }
6841
6842 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6843 {
6844 struct vcpu_vmx *vmx = to_vmx(vcpu);
6845
6846 if (kvm_mpx_supported()) {
6847 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6848
6849 if (mpx_enabled) {
6850 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6851 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6852 } else {
6853 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6854 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6855 }
6856 }
6857 }
6858
6859 static bool guest_cpuid_has_pmu(struct kvm_vcpu *vcpu)
6860 {
6861 struct kvm_cpuid_entry2 *entry;
6862 union cpuid10_eax eax;
6863
6864 entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
6865 if (!entry)
6866 return false;
6867
6868 eax.full = entry->eax;
6869 return (eax.split.version_id > 0);
6870 }
6871
6872 static void nested_vmx_procbased_ctls_update(struct kvm_vcpu *vcpu)
6873 {
6874 struct vcpu_vmx *vmx = to_vmx(vcpu);
6875 bool pmu_enabled = guest_cpuid_has_pmu(vcpu);
6876
6877 if (pmu_enabled)
6878 vmx->nested.msrs.procbased_ctls_high |= CPU_BASED_RDPMC_EXITING;
6879 else
6880 vmx->nested.msrs.procbased_ctls_high &= ~CPU_BASED_RDPMC_EXITING;
6881 }
6882
6883 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6884 {
6885 struct vcpu_vmx *vmx = to_vmx(vcpu);
6886 struct kvm_cpuid_entry2 *best = NULL;
6887 int i;
6888
6889 for (i = 0; i < PT_CPUID_LEAVES; i++) {
6890 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6891 if (!best)
6892 return;
6893 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6894 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6895 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6896 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6897 }
6898
6899 /* Get the number of configurable Address Ranges for filtering */
6900 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6901 PT_CAP_num_address_ranges);
6902
6903 /* Initialize and clear the no dependency bits */
6904 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6905 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6906
6907 /*
6908 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6909 * will inject an #GP
6910 */
6911 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6912 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6913
6914 /*
6915 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6916 * PSBFreq can be set
6917 */
6918 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6919 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6920 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6921
6922 /*
6923 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6924 * MTCFreq can be set
6925 */
6926 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6927 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6928 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6929
6930 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6931 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6932 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6933 RTIT_CTL_PTW_EN);
6934
6935 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6936 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6937 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6938
6939 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6940 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6941 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6942
6943 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6944 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6945 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6946
6947 /* unmask address range configure area */
6948 for (i = 0; i < vmx->pt_desc.addr_range; i++)
6949 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6950 }
6951
6952 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6953 {
6954 struct vcpu_vmx *vmx = to_vmx(vcpu);
6955
6956 if (cpu_has_secondary_exec_ctrls()) {
6957 vmx_compute_secondary_exec_control(vmx);
6958 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6959 }
6960
6961 if (nested_vmx_allowed(vcpu))
6962 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6963 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6964 else
6965 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6966 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6967
6968 if (nested_vmx_allowed(vcpu)) {
6969 nested_vmx_cr_fixed1_bits_update(vcpu);
6970 nested_vmx_entry_exit_ctls_update(vcpu);
6971 nested_vmx_procbased_ctls_update(vcpu);
6972 }
6973
6974 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6975 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6976 update_intel_pt_cfg(vcpu);
6977 }
6978
6979 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6980 {
6981 if (func == 1 && nested)
6982 entry->ecx |= bit(X86_FEATURE_VMX);
6983 }
6984
6985 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6986 {
6987 to_vmx(vcpu)->req_immediate_exit = true;
6988 }
6989
6990 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6991 struct x86_instruction_info *info,
6992 enum x86_intercept_stage stage)
6993 {
6994 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6995 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6996
6997 /*
6998 * RDPID causes #UD if disabled through secondary execution controls.
6999 * Because it is marked as EmulateOnUD, we need to intercept it here.
7000 */
7001 if (info->intercept == x86_intercept_rdtscp &&
7002 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7003 ctxt->exception.vector = UD_VECTOR;
7004 ctxt->exception.error_code_valid = false;
7005 return X86EMUL_PROPAGATE_FAULT;
7006 }
7007
7008 /* TODO: check more intercepts... */
7009 return X86EMUL_CONTINUE;
7010 }
7011
7012 #ifdef CONFIG_X86_64
7013 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7014 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7015 u64 divisor, u64 *result)
7016 {
7017 u64 low = a << shift, high = a >> (64 - shift);
7018
7019 /* To avoid the overflow on divq */
7020 if (high >= divisor)
7021 return 1;
7022
7023 /* Low hold the result, high hold rem which is discarded */
7024 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7025 "rm" (divisor), "0" (low), "1" (high));
7026 *result = low;
7027
7028 return 0;
7029 }
7030
7031 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7032 {
7033 struct vcpu_vmx *vmx;
7034 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7035 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7036
7037 if (kvm_mwait_in_guest(vcpu->kvm))
7038 return -EOPNOTSUPP;
7039
7040 vmx = to_vmx(vcpu);
7041 tscl = rdtsc();
7042 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7043 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7044 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7045 ktimer->timer_advance_ns);
7046
7047 if (delta_tsc > lapic_timer_advance_cycles)
7048 delta_tsc -= lapic_timer_advance_cycles;
7049 else
7050 delta_tsc = 0;
7051
7052 /* Convert to host delta tsc if tsc scaling is enabled */
7053 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7054 u64_shl_div_u64(delta_tsc,
7055 kvm_tsc_scaling_ratio_frac_bits,
7056 vcpu->arch.tsc_scaling_ratio,
7057 &delta_tsc))
7058 return -ERANGE;
7059
7060 /*
7061 * If the delta tsc can't fit in the 32 bit after the multi shift,
7062 * we can't use the preemption timer.
7063 * It's possible that it fits on later vmentries, but checking
7064 * on every vmentry is costly so we just use an hrtimer.
7065 */
7066 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7067 return -ERANGE;
7068
7069 vmx->hv_deadline_tsc = tscl + delta_tsc;
7070 return delta_tsc == 0;
7071 }
7072
7073 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7074 {
7075 to_vmx(vcpu)->hv_deadline_tsc = -1;
7076 }
7077 #endif
7078
7079 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7080 {
7081 if (!kvm_pause_in_guest(vcpu->kvm))
7082 shrink_ple_window(vcpu);
7083 }
7084
7085 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7086 struct kvm_memory_slot *slot)
7087 {
7088 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7089 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7090 }
7091
7092 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7093 struct kvm_memory_slot *slot)
7094 {
7095 kvm_mmu_slot_set_dirty(kvm, slot);
7096 }
7097
7098 static void vmx_flush_log_dirty(struct kvm *kvm)
7099 {
7100 kvm_flush_pml_buffers(kvm);
7101 }
7102
7103 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7104 {
7105 struct vmcs12 *vmcs12;
7106 struct vcpu_vmx *vmx = to_vmx(vcpu);
7107 gpa_t gpa;
7108 struct page *page = NULL;
7109 u64 *pml_address;
7110
7111 if (is_guest_mode(vcpu)) {
7112 WARN_ON_ONCE(vmx->nested.pml_full);
7113
7114 /*
7115 * Check if PML is enabled for the nested guest.
7116 * Whether eptp bit 6 is set is already checked
7117 * as part of A/D emulation.
7118 */
7119 vmcs12 = get_vmcs12(vcpu);
7120 if (!nested_cpu_has_pml(vmcs12))
7121 return 0;
7122
7123 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7124 vmx->nested.pml_full = true;
7125 return 1;
7126 }
7127
7128 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7129
7130 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7131 if (is_error_page(page))
7132 return 0;
7133
7134 pml_address = kmap(page);
7135 pml_address[vmcs12->guest_pml_index--] = gpa;
7136 kunmap(page);
7137 kvm_release_page_clean(page);
7138 }
7139
7140 return 0;
7141 }
7142
7143 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7144 struct kvm_memory_slot *memslot,
7145 gfn_t offset, unsigned long mask)
7146 {
7147 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7148 }
7149
7150 static void __pi_post_block(struct kvm_vcpu *vcpu)
7151 {
7152 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7153 struct pi_desc old, new;
7154 unsigned int dest;
7155
7156 do {
7157 old.control = new.control = pi_desc->control;
7158 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7159 "Wakeup handler not enabled while the VCPU is blocked\n");
7160
7161 dest = cpu_physical_id(vcpu->cpu);
7162
7163 if (x2apic_enabled())
7164 new.ndst = dest;
7165 else
7166 new.ndst = (dest << 8) & 0xFF00;
7167
7168 /* set 'NV' to 'notification vector' */
7169 new.nv = POSTED_INTR_VECTOR;
7170 } while (cmpxchg64(&pi_desc->control, old.control,
7171 new.control) != old.control);
7172
7173 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7174 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7175 list_del(&vcpu->blocked_vcpu_list);
7176 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7177 vcpu->pre_pcpu = -1;
7178 }
7179 }
7180
7181 /*
7182 * This routine does the following things for vCPU which is going
7183 * to be blocked if VT-d PI is enabled.
7184 * - Store the vCPU to the wakeup list, so when interrupts happen
7185 * we can find the right vCPU to wake up.
7186 * - Change the Posted-interrupt descriptor as below:
7187 * 'NDST' <-- vcpu->pre_pcpu
7188 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7189 * - If 'ON' is set during this process, which means at least one
7190 * interrupt is posted for this vCPU, we cannot block it, in
7191 * this case, return 1, otherwise, return 0.
7192 *
7193 */
7194 static int pi_pre_block(struct kvm_vcpu *vcpu)
7195 {
7196 unsigned int dest;
7197 struct pi_desc old, new;
7198 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7199
7200 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7201 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7202 !kvm_vcpu_apicv_active(vcpu))
7203 return 0;
7204
7205 WARN_ON(irqs_disabled());
7206 local_irq_disable();
7207 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7208 vcpu->pre_pcpu = vcpu->cpu;
7209 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7210 list_add_tail(&vcpu->blocked_vcpu_list,
7211 &per_cpu(blocked_vcpu_on_cpu,
7212 vcpu->pre_pcpu));
7213 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7214 }
7215
7216 do {
7217 old.control = new.control = pi_desc->control;
7218
7219 WARN((pi_desc->sn == 1),
7220 "Warning: SN field of posted-interrupts "
7221 "is set before blocking\n");
7222
7223 /*
7224 * Since vCPU can be preempted during this process,
7225 * vcpu->cpu could be different with pre_pcpu, we
7226 * need to set pre_pcpu as the destination of wakeup
7227 * notification event, then we can find the right vCPU
7228 * to wakeup in wakeup handler if interrupts happen
7229 * when the vCPU is in blocked state.
7230 */
7231 dest = cpu_physical_id(vcpu->pre_pcpu);
7232
7233 if (x2apic_enabled())
7234 new.ndst = dest;
7235 else
7236 new.ndst = (dest << 8) & 0xFF00;
7237
7238 /* set 'NV' to 'wakeup vector' */
7239 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7240 } while (cmpxchg64(&pi_desc->control, old.control,
7241 new.control) != old.control);
7242
7243 /* We should not block the vCPU if an interrupt is posted for it. */
7244 if (pi_test_on(pi_desc) == 1)
7245 __pi_post_block(vcpu);
7246
7247 local_irq_enable();
7248 return (vcpu->pre_pcpu == -1);
7249 }
7250
7251 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7252 {
7253 if (pi_pre_block(vcpu))
7254 return 1;
7255
7256 if (kvm_lapic_hv_timer_in_use(vcpu))
7257 kvm_lapic_switch_to_sw_timer(vcpu);
7258
7259 return 0;
7260 }
7261
7262 static void pi_post_block(struct kvm_vcpu *vcpu)
7263 {
7264 if (vcpu->pre_pcpu == -1)
7265 return;
7266
7267 WARN_ON(irqs_disabled());
7268 local_irq_disable();
7269 __pi_post_block(vcpu);
7270 local_irq_enable();
7271 }
7272
7273 static void vmx_post_block(struct kvm_vcpu *vcpu)
7274 {
7275 if (kvm_x86_ops->set_hv_timer)
7276 kvm_lapic_switch_to_hv_timer(vcpu);
7277
7278 pi_post_block(vcpu);
7279 }
7280
7281 /*
7282 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7283 *
7284 * @kvm: kvm
7285 * @host_irq: host irq of the interrupt
7286 * @guest_irq: gsi of the interrupt
7287 * @set: set or unset PI
7288 * returns 0 on success, < 0 on failure
7289 */
7290 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7291 uint32_t guest_irq, bool set)
7292 {
7293 struct kvm_kernel_irq_routing_entry *e;
7294 struct kvm_irq_routing_table *irq_rt;
7295 struct kvm_lapic_irq irq;
7296 struct kvm_vcpu *vcpu;
7297 struct vcpu_data vcpu_info;
7298 int idx, ret = 0;
7299
7300 if (!kvm_arch_has_assigned_device(kvm) ||
7301 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7302 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7303 return 0;
7304
7305 idx = srcu_read_lock(&kvm->irq_srcu);
7306 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7307 if (guest_irq >= irq_rt->nr_rt_entries ||
7308 hlist_empty(&irq_rt->map[guest_irq])) {
7309 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7310 guest_irq, irq_rt->nr_rt_entries);
7311 goto out;
7312 }
7313
7314 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7315 if (e->type != KVM_IRQ_ROUTING_MSI)
7316 continue;
7317 /*
7318 * VT-d PI cannot support posting multicast/broadcast
7319 * interrupts to a vCPU, we still use interrupt remapping
7320 * for these kind of interrupts.
7321 *
7322 * For lowest-priority interrupts, we only support
7323 * those with single CPU as the destination, e.g. user
7324 * configures the interrupts via /proc/irq or uses
7325 * irqbalance to make the interrupts single-CPU.
7326 *
7327 * We will support full lowest-priority interrupt later.
7328 */
7329
7330 kvm_set_msi_irq(kvm, e, &irq);
7331 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7332 /*
7333 * Make sure the IRTE is in remapped mode if
7334 * we don't handle it in posted mode.
7335 */
7336 ret = irq_set_vcpu_affinity(host_irq, NULL);
7337 if (ret < 0) {
7338 printk(KERN_INFO
7339 "failed to back to remapped mode, irq: %u\n",
7340 host_irq);
7341 goto out;
7342 }
7343
7344 continue;
7345 }
7346
7347 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7348 vcpu_info.vector = irq.vector;
7349
7350 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7351 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7352
7353 if (set)
7354 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7355 else
7356 ret = irq_set_vcpu_affinity(host_irq, NULL);
7357
7358 if (ret < 0) {
7359 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7360 __func__);
7361 goto out;
7362 }
7363 }
7364
7365 ret = 0;
7366 out:
7367 srcu_read_unlock(&kvm->irq_srcu, idx);
7368 return ret;
7369 }
7370
7371 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7372 {
7373 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7374 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7375 FEATURE_CONTROL_LMCE;
7376 else
7377 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7378 ~FEATURE_CONTROL_LMCE;
7379 }
7380
7381 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7382 {
7383 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7384 if (to_vmx(vcpu)->nested.nested_run_pending)
7385 return 0;
7386 return 1;
7387 }
7388
7389 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7390 {
7391 struct vcpu_vmx *vmx = to_vmx(vcpu);
7392
7393 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7394 if (vmx->nested.smm.guest_mode)
7395 nested_vmx_vmexit(vcpu, -1, 0, 0);
7396
7397 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7398 vmx->nested.vmxon = false;
7399 vmx_clear_hlt(vcpu);
7400 return 0;
7401 }
7402
7403 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7404 {
7405 struct vcpu_vmx *vmx = to_vmx(vcpu);
7406 int ret;
7407
7408 if (vmx->nested.smm.vmxon) {
7409 vmx->nested.vmxon = true;
7410 vmx->nested.smm.vmxon = false;
7411 }
7412
7413 if (vmx->nested.smm.guest_mode) {
7414 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7415 if (ret)
7416 return ret;
7417
7418 vmx->nested.smm.guest_mode = false;
7419 }
7420 return 0;
7421 }
7422
7423 static int enable_smi_window(struct kvm_vcpu *vcpu)
7424 {
7425 return 0;
7426 }
7427
7428 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7429 {
7430 return 0;
7431 }
7432
7433 static __init int hardware_setup(void)
7434 {
7435 unsigned long host_bndcfgs;
7436 int r, i;
7437
7438 rdmsrl_safe(MSR_EFER, &host_efer);
7439
7440 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7441 kvm_define_shared_msr(i, vmx_msr_index[i]);
7442
7443 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7444 return -EIO;
7445
7446 if (boot_cpu_has(X86_FEATURE_NX))
7447 kvm_enable_efer_bits(EFER_NX);
7448
7449 if (boot_cpu_has(X86_FEATURE_MPX)) {
7450 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7451 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7452 }
7453
7454 if (boot_cpu_has(X86_FEATURE_XSAVES))
7455 rdmsrl(MSR_IA32_XSS, host_xss);
7456
7457 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7458 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7459 enable_vpid = 0;
7460
7461 if (!cpu_has_vmx_ept() ||
7462 !cpu_has_vmx_ept_4levels() ||
7463 !cpu_has_vmx_ept_mt_wb() ||
7464 !cpu_has_vmx_invept_global())
7465 enable_ept = 0;
7466
7467 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7468 enable_ept_ad_bits = 0;
7469
7470 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7471 enable_unrestricted_guest = 0;
7472
7473 if (!cpu_has_vmx_flexpriority())
7474 flexpriority_enabled = 0;
7475
7476 if (!cpu_has_virtual_nmis())
7477 enable_vnmi = 0;
7478
7479 /*
7480 * set_apic_access_page_addr() is used to reload apic access
7481 * page upon invalidation. No need to do anything if not
7482 * using the APIC_ACCESS_ADDR VMCS field.
7483 */
7484 if (!flexpriority_enabled)
7485 kvm_x86_ops->set_apic_access_page_addr = NULL;
7486
7487 if (!cpu_has_vmx_tpr_shadow())
7488 kvm_x86_ops->update_cr8_intercept = NULL;
7489
7490 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7491 kvm_disable_largepages();
7492
7493 #if IS_ENABLED(CONFIG_HYPERV)
7494 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7495 && enable_ept) {
7496 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7497 kvm_x86_ops->tlb_remote_flush_with_range =
7498 hv_remote_flush_tlb_with_range;
7499 }
7500 #endif
7501
7502 if (!cpu_has_vmx_ple()) {
7503 ple_gap = 0;
7504 ple_window = 0;
7505 ple_window_grow = 0;
7506 ple_window_max = 0;
7507 ple_window_shrink = 0;
7508 }
7509
7510 if (!cpu_has_vmx_apicv()) {
7511 enable_apicv = 0;
7512 kvm_x86_ops->sync_pir_to_irr = NULL;
7513 }
7514
7515 if (cpu_has_vmx_tsc_scaling()) {
7516 kvm_has_tsc_control = true;
7517 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7518 kvm_tsc_scaling_ratio_frac_bits = 48;
7519 }
7520
7521 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7522
7523 if (enable_ept)
7524 vmx_enable_tdp();
7525 else
7526 kvm_disable_tdp();
7527
7528 /*
7529 * Only enable PML when hardware supports PML feature, and both EPT
7530 * and EPT A/D bit features are enabled -- PML depends on them to work.
7531 */
7532 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7533 enable_pml = 0;
7534
7535 if (!enable_pml) {
7536 kvm_x86_ops->slot_enable_log_dirty = NULL;
7537 kvm_x86_ops->slot_disable_log_dirty = NULL;
7538 kvm_x86_ops->flush_log_dirty = NULL;
7539 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7540 }
7541
7542 if (!cpu_has_vmx_preemption_timer())
7543 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7544
7545 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7546 u64 vmx_msr;
7547
7548 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7549 cpu_preemption_timer_multi =
7550 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7551 } else {
7552 kvm_x86_ops->set_hv_timer = NULL;
7553 kvm_x86_ops->cancel_hv_timer = NULL;
7554 }
7555
7556 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7557
7558 kvm_mce_cap_supported |= MCG_LMCE_P;
7559
7560 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7561 return -EINVAL;
7562 if (!enable_ept || !cpu_has_vmx_intel_pt())
7563 pt_mode = PT_MODE_SYSTEM;
7564
7565 if (nested) {
7566 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7567 vmx_capability.ept, enable_apicv);
7568
7569 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7570 if (r)
7571 return r;
7572 }
7573
7574 r = alloc_kvm_area();
7575 if (r)
7576 nested_vmx_hardware_unsetup();
7577 return r;
7578 }
7579
7580 static __exit void hardware_unsetup(void)
7581 {
7582 if (nested)
7583 nested_vmx_hardware_unsetup();
7584
7585 free_kvm_area();
7586 }
7587
7588 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7589 .cpu_has_kvm_support = cpu_has_kvm_support,
7590 .disabled_by_bios = vmx_disabled_by_bios,
7591 .hardware_setup = hardware_setup,
7592 .hardware_unsetup = hardware_unsetup,
7593 .check_processor_compatibility = vmx_check_processor_compat,
7594 .hardware_enable = hardware_enable,
7595 .hardware_disable = hardware_disable,
7596 .cpu_has_accelerated_tpr = report_flexpriority,
7597 .has_emulated_msr = vmx_has_emulated_msr,
7598
7599 .vm_init = vmx_vm_init,
7600 .vm_alloc = vmx_vm_alloc,
7601 .vm_free = vmx_vm_free,
7602
7603 .vcpu_create = vmx_create_vcpu,
7604 .vcpu_free = vmx_free_vcpu,
7605 .vcpu_reset = vmx_vcpu_reset,
7606
7607 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7608 .vcpu_load = vmx_vcpu_load,
7609 .vcpu_put = vmx_vcpu_put,
7610
7611 .update_bp_intercept = update_exception_bitmap,
7612 .get_msr_feature = vmx_get_msr_feature,
7613 .get_msr = vmx_get_msr,
7614 .set_msr = vmx_set_msr,
7615 .get_segment_base = vmx_get_segment_base,
7616 .get_segment = vmx_get_segment,
7617 .set_segment = vmx_set_segment,
7618 .get_cpl = vmx_get_cpl,
7619 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7620 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7621 .decache_cr3 = vmx_decache_cr3,
7622 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7623 .set_cr0 = vmx_set_cr0,
7624 .set_cr3 = vmx_set_cr3,
7625 .set_cr4 = vmx_set_cr4,
7626 .set_efer = vmx_set_efer,
7627 .get_idt = vmx_get_idt,
7628 .set_idt = vmx_set_idt,
7629 .get_gdt = vmx_get_gdt,
7630 .set_gdt = vmx_set_gdt,
7631 .get_dr6 = vmx_get_dr6,
7632 .set_dr6 = vmx_set_dr6,
7633 .set_dr7 = vmx_set_dr7,
7634 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7635 .cache_reg = vmx_cache_reg,
7636 .get_rflags = vmx_get_rflags,
7637 .set_rflags = vmx_set_rflags,
7638
7639 .tlb_flush = vmx_flush_tlb,
7640 .tlb_flush_gva = vmx_flush_tlb_gva,
7641
7642 .run = vmx_vcpu_run,
7643 .handle_exit = vmx_handle_exit,
7644 .skip_emulated_instruction = skip_emulated_instruction,
7645 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7646 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7647 .patch_hypercall = vmx_patch_hypercall,
7648 .set_irq = vmx_inject_irq,
7649 .set_nmi = vmx_inject_nmi,
7650 .queue_exception = vmx_queue_exception,
7651 .cancel_injection = vmx_cancel_injection,
7652 .interrupt_allowed = vmx_interrupt_allowed,
7653 .nmi_allowed = vmx_nmi_allowed,
7654 .get_nmi_mask = vmx_get_nmi_mask,
7655 .set_nmi_mask = vmx_set_nmi_mask,
7656 .enable_nmi_window = enable_nmi_window,
7657 .enable_irq_window = enable_irq_window,
7658 .update_cr8_intercept = update_cr8_intercept,
7659 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7660 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7661 .get_enable_apicv = vmx_get_enable_apicv,
7662 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7663 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7664 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7665 .hwapic_irr_update = vmx_hwapic_irr_update,
7666 .hwapic_isr_update = vmx_hwapic_isr_update,
7667 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7668 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7669 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7670
7671 .set_tss_addr = vmx_set_tss_addr,
7672 .set_identity_map_addr = vmx_set_identity_map_addr,
7673 .get_tdp_level = get_ept_level,
7674 .get_mt_mask = vmx_get_mt_mask,
7675
7676 .get_exit_info = vmx_get_exit_info,
7677
7678 .get_lpage_level = vmx_get_lpage_level,
7679
7680 .cpuid_update = vmx_cpuid_update,
7681
7682 .rdtscp_supported = vmx_rdtscp_supported,
7683 .invpcid_supported = vmx_invpcid_supported,
7684
7685 .set_supported_cpuid = vmx_set_supported_cpuid,
7686
7687 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7688
7689 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7690 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7691
7692 .set_tdp_cr3 = vmx_set_cr3,
7693
7694 .check_intercept = vmx_check_intercept,
7695 .handle_external_intr = vmx_handle_external_intr,
7696 .mpx_supported = vmx_mpx_supported,
7697 .xsaves_supported = vmx_xsaves_supported,
7698 .umip_emulated = vmx_umip_emulated,
7699 .pt_supported = vmx_pt_supported,
7700
7701 .request_immediate_exit = vmx_request_immediate_exit,
7702
7703 .sched_in = vmx_sched_in,
7704
7705 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7706 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7707 .flush_log_dirty = vmx_flush_log_dirty,
7708 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7709 .write_log_dirty = vmx_write_pml_buffer,
7710
7711 .pre_block = vmx_pre_block,
7712 .post_block = vmx_post_block,
7713
7714 .pmu_ops = &intel_pmu_ops,
7715
7716 .update_pi_irte = vmx_update_pi_irte,
7717
7718 #ifdef CONFIG_X86_64
7719 .set_hv_timer = vmx_set_hv_timer,
7720 .cancel_hv_timer = vmx_cancel_hv_timer,
7721 #endif
7722
7723 .setup_mce = vmx_setup_mce,
7724
7725 .smi_allowed = vmx_smi_allowed,
7726 .pre_enter_smm = vmx_pre_enter_smm,
7727 .pre_leave_smm = vmx_pre_leave_smm,
7728 .enable_smi_window = enable_smi_window,
7729
7730 .check_nested_events = NULL,
7731 .get_nested_state = NULL,
7732 .set_nested_state = NULL,
7733 .get_vmcs12_pages = NULL,
7734 .nested_enable_evmcs = NULL,
7735 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7736 };
7737
7738 static void vmx_cleanup_l1d_flush(void)
7739 {
7740 if (vmx_l1d_flush_pages) {
7741 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7742 vmx_l1d_flush_pages = NULL;
7743 }
7744 /* Restore state so sysfs ignores VMX */
7745 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7746 }
7747
7748 static void vmx_exit(void)
7749 {
7750 #ifdef CONFIG_KEXEC_CORE
7751 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7752 synchronize_rcu();
7753 #endif
7754
7755 kvm_exit();
7756
7757 #if IS_ENABLED(CONFIG_HYPERV)
7758 if (static_branch_unlikely(&enable_evmcs)) {
7759 int cpu;
7760 struct hv_vp_assist_page *vp_ap;
7761 /*
7762 * Reset everything to support using non-enlightened VMCS
7763 * access later (e.g. when we reload the module with
7764 * enlightened_vmcs=0)
7765 */
7766 for_each_online_cpu(cpu) {
7767 vp_ap = hv_get_vp_assist_page(cpu);
7768
7769 if (!vp_ap)
7770 continue;
7771
7772 vp_ap->current_nested_vmcs = 0;
7773 vp_ap->enlighten_vmentry = 0;
7774 }
7775
7776 static_branch_disable(&enable_evmcs);
7777 }
7778 #endif
7779 vmx_cleanup_l1d_flush();
7780 }
7781 module_exit(vmx_exit);
7782
7783 static int __init vmx_init(void)
7784 {
7785 int r;
7786
7787 #if IS_ENABLED(CONFIG_HYPERV)
7788 /*
7789 * Enlightened VMCS usage should be recommended and the host needs
7790 * to support eVMCS v1 or above. We can also disable eVMCS support
7791 * with module parameter.
7792 */
7793 if (enlightened_vmcs &&
7794 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7795 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7796 KVM_EVMCS_VERSION) {
7797 int cpu;
7798
7799 /* Check that we have assist pages on all online CPUs */
7800 for_each_online_cpu(cpu) {
7801 if (!hv_get_vp_assist_page(cpu)) {
7802 enlightened_vmcs = false;
7803 break;
7804 }
7805 }
7806
7807 if (enlightened_vmcs) {
7808 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7809 static_branch_enable(&enable_evmcs);
7810 }
7811 } else {
7812 enlightened_vmcs = false;
7813 }
7814 #endif
7815
7816 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7817 __alignof__(struct vcpu_vmx), THIS_MODULE);
7818 if (r)
7819 return r;
7820
7821 /*
7822 * Must be called after kvm_init() so enable_ept is properly set
7823 * up. Hand the parameter mitigation value in which was stored in
7824 * the pre module init parser. If no parameter was given, it will
7825 * contain 'auto' which will be turned into the default 'cond'
7826 * mitigation mode.
7827 */
7828 if (boot_cpu_has(X86_BUG_L1TF)) {
7829 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7830 if (r) {
7831 vmx_exit();
7832 return r;
7833 }
7834 }
7835
7836 #ifdef CONFIG_KEXEC_CORE
7837 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7838 crash_vmclear_local_loaded_vmcss);
7839 #endif
7840 vmx_check_vmcs12_offsets();
7841
7842 return 0;
7843 }
7844 module_init(vmx_init);