]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/vmx/vmx.h
a8b8150252bb76a32b3b1abf50885618d5e35cd9
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9
10 #include "capabilities.h"
11 #include "kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "cpuid.h"
16 #include "run_flags.h"
17
18 #define MSR_TYPE_R 1
19 #define MSR_TYPE_W 2
20 #define MSR_TYPE_RW 3
21
22 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23
24 #ifdef CONFIG_X86_64
25 #define MAX_NR_USER_RETURN_MSRS 7
26 #else
27 #define MAX_NR_USER_RETURN_MSRS 4
28 #endif
29
30 #define MAX_NR_LOADSTORE_MSRS 8
31
32 struct vmx_msrs {
33 unsigned int nr;
34 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS];
35 };
36
37 struct vmx_uret_msr {
38 bool load_into_hardware;
39 u64 data;
40 u64 mask;
41 };
42
43 enum segment_cache_field {
44 SEG_FIELD_SEL = 0,
45 SEG_FIELD_BASE = 1,
46 SEG_FIELD_LIMIT = 2,
47 SEG_FIELD_AR = 3,
48
49 SEG_FIELD_NR = 4
50 };
51
52 #define RTIT_ADDR_RANGE 4
53
54 struct pt_ctx {
55 u64 ctl;
56 u64 status;
57 u64 output_base;
58 u64 output_mask;
59 u64 cr3_match;
60 u64 addr_a[RTIT_ADDR_RANGE];
61 u64 addr_b[RTIT_ADDR_RANGE];
62 };
63
64 struct pt_desc {
65 u64 ctl_bitmask;
66 u32 addr_range;
67 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
68 struct pt_ctx host;
69 struct pt_ctx guest;
70 };
71
72 union vmx_exit_reason {
73 struct {
74 u32 basic : 16;
75 u32 reserved16 : 1;
76 u32 reserved17 : 1;
77 u32 reserved18 : 1;
78 u32 reserved19 : 1;
79 u32 reserved20 : 1;
80 u32 reserved21 : 1;
81 u32 reserved22 : 1;
82 u32 reserved23 : 1;
83 u32 reserved24 : 1;
84 u32 reserved25 : 1;
85 u32 bus_lock_detected : 1;
86 u32 enclave_mode : 1;
87 u32 smi_pending_mtf : 1;
88 u32 smi_from_vmx_root : 1;
89 u32 reserved30 : 1;
90 u32 failed_vmentry : 1;
91 };
92 u32 full;
93 };
94
95 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
96 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
97
98 bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
99 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
100
101 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
102 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
103
104 struct lbr_desc {
105 /* Basic info about guest LBR records. */
106 struct x86_pmu_lbr records;
107
108 /*
109 * Emulate LBR feature via passthrough LBR registers when the
110 * per-vcpu guest LBR event is scheduled on the current pcpu.
111 *
112 * The records may be inaccurate if the host reclaims the LBR.
113 */
114 struct perf_event *event;
115
116 /* True if LBRs are marked as not intercepted in the MSR bitmap */
117 bool msr_passthrough;
118 };
119
120 /*
121 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
122 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
123 */
124 struct nested_vmx {
125 /* Has the level1 guest done vmxon? */
126 bool vmxon;
127 gpa_t vmxon_ptr;
128 bool pml_full;
129
130 /* The guest-physical address of the current VMCS L1 keeps for L2 */
131 gpa_t current_vmptr;
132 /*
133 * Cache of the guest's VMCS, existing outside of guest memory.
134 * Loaded from guest memory during VMPTRLD. Flushed to guest
135 * memory during VMCLEAR and VMPTRLD.
136 */
137 struct vmcs12 *cached_vmcs12;
138 /*
139 * Cache of the guest's shadow VMCS, existing outside of guest
140 * memory. Loaded from guest memory during VM entry. Flushed
141 * to guest memory during VM exit.
142 */
143 struct vmcs12 *cached_shadow_vmcs12;
144
145 /*
146 * Indicates if the shadow vmcs or enlightened vmcs must be updated
147 * with the data held by struct vmcs12.
148 */
149 bool need_vmcs12_to_shadow_sync;
150 bool dirty_vmcs12;
151
152 /*
153 * Indicates lazily loaded guest state has not yet been decached from
154 * vmcs02.
155 */
156 bool need_sync_vmcs02_to_vmcs12_rare;
157
158 /*
159 * vmcs02 has been initialized, i.e. state that is constant for
160 * vmcs02 has been written to the backing VMCS. Initialization
161 * is delayed until L1 actually attempts to run a nested VM.
162 */
163 bool vmcs02_initialized;
164
165 bool change_vmcs01_virtual_apic_mode;
166 bool reload_vmcs01_apic_access_page;
167 bool update_vmcs01_cpu_dirty_logging;
168 bool update_vmcs01_apicv_status;
169
170 /*
171 * Enlightened VMCS has been enabled. It does not mean that L1 has to
172 * use it. However, VMX features available to L1 will be limited based
173 * on what the enlightened VMCS supports.
174 */
175 bool enlightened_vmcs_enabled;
176
177 /* L2 must run next, and mustn't decide to exit to L1. */
178 bool nested_run_pending;
179
180 /* Pending MTF VM-exit into L1. */
181 bool mtf_pending;
182
183 struct loaded_vmcs vmcs02;
184
185 /*
186 * Guest pages referred to in the vmcs02 with host-physical
187 * pointers, so we must keep them pinned while L2 runs.
188 */
189 struct page *apic_access_page;
190 struct kvm_host_map virtual_apic_map;
191 struct kvm_host_map pi_desc_map;
192
193 struct kvm_host_map msr_bitmap_map;
194
195 struct pi_desc *pi_desc;
196 bool pi_pending;
197 u16 posted_intr_nv;
198
199 struct hrtimer preemption_timer;
200 u64 preemption_timer_deadline;
201 bool has_preemption_timer_deadline;
202 bool preemption_timer_expired;
203
204 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
205 u64 vmcs01_debugctl;
206 u64 vmcs01_guest_bndcfgs;
207
208 /* to migrate it to L1 if L2 writes to L1's CR8 directly */
209 int l1_tpr_threshold;
210
211 u16 vpid02;
212 u16 last_vpid;
213
214 struct nested_vmx_msrs msrs;
215
216 /* SMM related state */
217 struct {
218 /* in VMX operation on SMM entry? */
219 bool vmxon;
220 /* in guest mode on SMM entry? */
221 bool guest_mode;
222 } smm;
223
224 gpa_t hv_evmcs_vmptr;
225 struct kvm_host_map hv_evmcs_map;
226 struct hv_enlightened_vmcs *hv_evmcs;
227 };
228
229 struct vcpu_vmx {
230 struct kvm_vcpu vcpu;
231 u8 fail;
232 u8 x2apic_msr_bitmap_mode;
233
234 /*
235 * If true, host state has been stored in vmx->loaded_vmcs for
236 * the CPU registers that only need to be switched when transitioning
237 * to/from the kernel, and the registers have been loaded with guest
238 * values. If false, host state is loaded in the CPU registers
239 * and vmx->loaded_vmcs->host_state is invalid.
240 */
241 bool guest_state_loaded;
242
243 unsigned long exit_qualification;
244 u32 exit_intr_info;
245 u32 idt_vectoring_info;
246 ulong rflags;
247
248 /*
249 * User return MSRs are always emulated when enabled in the guest, but
250 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
251 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
252 * be loaded into hardware if those conditions aren't met.
253 */
254 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
255 bool guest_uret_msrs_loaded;
256 #ifdef CONFIG_X86_64
257 u64 msr_host_kernel_gs_base;
258 u64 msr_guest_kernel_gs_base;
259 #endif
260
261 u64 spec_ctrl;
262 u32 msr_ia32_umwait_control;
263
264 /*
265 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
266 * non-nested (L1) guest, it always points to vmcs01. For a nested
267 * guest (L2), it points to a different VMCS.
268 */
269 struct loaded_vmcs vmcs01;
270 struct loaded_vmcs *loaded_vmcs;
271
272 struct msr_autoload {
273 struct vmx_msrs guest;
274 struct vmx_msrs host;
275 } msr_autoload;
276
277 struct msr_autostore {
278 struct vmx_msrs guest;
279 } msr_autostore;
280
281 struct {
282 int vm86_active;
283 ulong save_rflags;
284 struct kvm_segment segs[8];
285 } rmode;
286 struct {
287 u32 bitmask; /* 4 bits per segment (1 bit per field) */
288 struct kvm_save_segment {
289 u16 selector;
290 unsigned long base;
291 u32 limit;
292 u32 ar;
293 } seg[8];
294 } segment_cache;
295 int vpid;
296 bool emulation_required;
297
298 union vmx_exit_reason exit_reason;
299
300 /* Posted interrupt descriptor */
301 struct pi_desc pi_desc;
302
303 /* Support for a guest hypervisor (nested VMX) */
304 struct nested_vmx nested;
305
306 /* Dynamic PLE window. */
307 unsigned int ple_window;
308 bool ple_window_dirty;
309
310 bool req_immediate_exit;
311
312 /* Support for PML */
313 #define PML_ENTITY_NUM 512
314 struct page *pml_pg;
315
316 /* apic deadline value in host tsc */
317 u64 hv_deadline_tsc;
318
319 unsigned long host_debugctlmsr;
320
321 /*
322 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
323 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
324 * in msr_ia32_feature_control_valid_bits.
325 */
326 u64 msr_ia32_feature_control;
327 u64 msr_ia32_feature_control_valid_bits;
328 /* SGX Launch Control public key hash */
329 u64 msr_ia32_sgxlepubkeyhash[4];
330 u64 msr_ia32_mcu_opt_ctrl;
331 bool disable_fb_clear;
332
333 struct pt_desc pt_desc;
334 struct lbr_desc lbr_desc;
335
336 /* Save desired MSR intercept (read: pass-through) state */
337 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 13
338 struct {
339 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
340 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
341 } shadow_msr_intercept;
342 };
343
344 struct kvm_vmx {
345 struct kvm kvm;
346
347 unsigned int tss_addr;
348 bool ept_identity_pagetable_done;
349 gpa_t ept_identity_map_addr;
350 };
351
352 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
353 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
354 struct loaded_vmcs *buddy);
355 int allocate_vpid(void);
356 void free_vpid(int vpid);
357 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
358 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
359 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
360 unsigned long fs_base, unsigned long gs_base);
361 int vmx_get_cpl(struct kvm_vcpu *vcpu);
362 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
363 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
364 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
365 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
366 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
367 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
368 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
369 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
370 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
371 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
372 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
373 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
374 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
375
376 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
377 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
378 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
379 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
380 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
381 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
382 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
383 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
384 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
385 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
386 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
387 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
388 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
389 unsigned int flags);
390 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
391 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
392
393 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
394 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
395
396 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
397 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
398
399 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
400 int type, bool value)
401 {
402 if (value)
403 vmx_enable_intercept_for_msr(vcpu, msr, type);
404 else
405 vmx_disable_intercept_for_msr(vcpu, msr, type);
406 }
407
408 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
409
410 static inline bool vmx_test_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
411 {
412 int f = sizeof(unsigned long);
413
414 if (msr <= 0x1fff)
415 return test_bit(msr, msr_bitmap + 0x000 / f);
416 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
417 return test_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
418 return true;
419 }
420
421 static inline bool vmx_test_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
422 {
423 int f = sizeof(unsigned long);
424
425 if (msr <= 0x1fff)
426 return test_bit(msr, msr_bitmap + 0x800 / f);
427 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
428 return test_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
429 return true;
430 }
431
432 static inline void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
433 {
434 int f = sizeof(unsigned long);
435
436 if (msr <= 0x1fff)
437 __clear_bit(msr, msr_bitmap + 0x000 / f);
438 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
439 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
440 }
441
442 static inline void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
443 {
444 int f = sizeof(unsigned long);
445
446 if (msr <= 0x1fff)
447 __clear_bit(msr, msr_bitmap + 0x800 / f);
448 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
449 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
450 }
451
452 static inline void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
453 {
454 int f = sizeof(unsigned long);
455
456 if (msr <= 0x1fff)
457 __set_bit(msr, msr_bitmap + 0x000 / f);
458 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
459 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
460 }
461
462 static inline void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
463 {
464 int f = sizeof(unsigned long);
465
466 if (msr <= 0x1fff)
467 __set_bit(msr, msr_bitmap + 0x800 / f);
468 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
469 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
470 }
471
472
473 static inline u8 vmx_get_rvi(void)
474 {
475 return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
476 }
477
478 #define BUILD_CONTROLS_SHADOW(lname, uname) \
479 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \
480 { \
481 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
482 vmcs_write32(uname, val); \
483 vmx->loaded_vmcs->controls_shadow.lname = val; \
484 } \
485 } \
486 static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs) \
487 { \
488 return vmcs->controls_shadow.lname; \
489 } \
490 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \
491 { \
492 return __##lname##_controls_get(vmx->loaded_vmcs); \
493 } \
494 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \
495 { \
496 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
497 } \
498 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
499 { \
500 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
501 }
502 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
503 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
504 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
505 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
506 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
507
508 static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu)
509 {
510 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
511 | (1 << VCPU_EXREG_RFLAGS)
512 | (1 << VCPU_EXREG_PDPTR)
513 | (1 << VCPU_EXREG_SEGMENTS)
514 | (1 << VCPU_EXREG_CR0)
515 | (1 << VCPU_EXREG_CR3)
516 | (1 << VCPU_EXREG_CR4)
517 | (1 << VCPU_EXREG_EXIT_INFO_1)
518 | (1 << VCPU_EXREG_EXIT_INFO_2));
519 vcpu->arch.regs_dirty = 0;
520 }
521
522 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
523 {
524 return container_of(kvm, struct kvm_vmx, kvm);
525 }
526
527 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
528 {
529 return container_of(vcpu, struct vcpu_vmx, vcpu);
530 }
531
532 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
533 {
534 struct vcpu_vmx *vmx = to_vmx(vcpu);
535
536 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
537 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
538 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
539 }
540 return vmx->exit_qualification;
541 }
542
543 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
544 {
545 struct vcpu_vmx *vmx = to_vmx(vcpu);
546
547 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
548 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
549 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
550 }
551 return vmx->exit_intr_info;
552 }
553
554 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
555 void free_vmcs(struct vmcs *vmcs);
556 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
557 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
558 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
559
560 static inline struct vmcs *alloc_vmcs(bool shadow)
561 {
562 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
563 GFP_KERNEL_ACCOUNT);
564 }
565
566 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
567 {
568 return secondary_exec_controls_get(vmx) &
569 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
570 }
571
572 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
573 {
574 if (!enable_ept)
575 return true;
576
577 return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
578 }
579
580 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
581 {
582 return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
583 (secondary_exec_controls_get(to_vmx(vcpu)) &
584 SECONDARY_EXEC_UNRESTRICTED_GUEST));
585 }
586
587 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
588 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
589 {
590 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
591 }
592
593 void dump_vmcs(struct kvm_vcpu *vcpu);
594
595 #endif /* __KVM_X86_VMX_H */