]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
15bff51d492ab92ca3f3b0c6e6fb16e9efba81bd
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/cpu.h>
39 #include <asm/io.h>
40 #include <asm/desc.h>
41 #include <asm/vmx.h>
42 #include <asm/virtext.h>
43 #include <asm/mce.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49 #include <asm/irq_remapping.h>
50
51 #include "trace.h"
52 #include "pmu.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 #define __ex_clear(x, reg) \
56 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_LICENSE("GPL");
60
61 static const struct x86_cpu_id vmx_cpu_id[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_VMX),
63 {}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
66
67 static bool __read_mostly enable_vpid = 1;
68 module_param_named(vpid, enable_vpid, bool, 0444);
69
70 static bool __read_mostly flexpriority_enabled = 1;
71 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
72
73 static bool __read_mostly enable_ept = 1;
74 module_param_named(ept, enable_ept, bool, S_IRUGO);
75
76 static bool __read_mostly enable_unrestricted_guest = 1;
77 module_param_named(unrestricted_guest,
78 enable_unrestricted_guest, bool, S_IRUGO);
79
80 static bool __read_mostly enable_ept_ad_bits = 1;
81 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
82
83 static bool __read_mostly emulate_invalid_guest_state = true;
84 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
85
86 static bool __read_mostly vmm_exclusive = 1;
87 module_param(vmm_exclusive, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
111 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
112 #define KVM_VM_CR0_ALWAYS_ON \
113 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
114 #define KVM_CR4_GUEST_OWNED_BITS \
115 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
116 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
117
118 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
119 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
120
121 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
122
123 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
124
125 /*
126 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
127 * ple_gap: upper bound on the amount of time between two successive
128 * executions of PAUSE in a loop. Also indicate if ple enabled.
129 * According to test, this time is usually smaller than 128 cycles.
130 * ple_window: upper bound on the amount of time a guest is allowed to execute
131 * in a PAUSE loop. Tests indicate that most spinlocks are held for
132 * less than 2^12 cycles
133 * Time is measured based on a counter that runs at the same rate as the TSC,
134 * refer SDM volume 3b section 21.6.13 & 22.1.3.
135 */
136 #define KVM_VMX_DEFAULT_PLE_GAP 128
137 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
139 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
140 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
141 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
142
143 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
144 module_param(ple_gap, int, S_IRUGO);
145
146 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
147 module_param(ple_window, int, S_IRUGO);
148
149 /* Default doubles per-vcpu window every exit. */
150 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
151 module_param(ple_window_grow, int, S_IRUGO);
152
153 /* Default resets per-vcpu window every exit to ple_window. */
154 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
155 module_param(ple_window_shrink, int, S_IRUGO);
156
157 /* Default is to compute the maximum so we can never overflow. */
158 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
159 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
160 module_param(ple_window_max, int, S_IRUGO);
161
162 extern const ulong vmx_return;
163
164 #define NR_AUTOLOAD_MSRS 8
165 #define VMCS02_POOL_SIZE 1
166
167 struct vmcs {
168 u32 revision_id;
169 u32 abort;
170 char data[0];
171 };
172
173 /*
174 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
175 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
176 * loaded on this CPU (so we can clear them if the CPU goes down).
177 */
178 struct loaded_vmcs {
179 struct vmcs *vmcs;
180 int cpu;
181 int launched;
182 struct list_head loaded_vmcss_on_cpu_link;
183 };
184
185 struct shared_msr_entry {
186 unsigned index;
187 u64 data;
188 u64 mask;
189 };
190
191 /*
192 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
193 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
194 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
195 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
196 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
197 * More than one of these structures may exist, if L1 runs multiple L2 guests.
198 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
199 * underlying hardware which will be used to run L2.
200 * This structure is packed to ensure that its layout is identical across
201 * machines (necessary for live migration).
202 * If there are changes in this struct, VMCS12_REVISION must be changed.
203 */
204 typedef u64 natural_width;
205 struct __packed vmcs12 {
206 /* According to the Intel spec, a VMCS region must start with the
207 * following two fields. Then follow implementation-specific data.
208 */
209 u32 revision_id;
210 u32 abort;
211
212 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
213 u32 padding[7]; /* room for future expansion */
214
215 u64 io_bitmap_a;
216 u64 io_bitmap_b;
217 u64 msr_bitmap;
218 u64 vm_exit_msr_store_addr;
219 u64 vm_exit_msr_load_addr;
220 u64 vm_entry_msr_load_addr;
221 u64 tsc_offset;
222 u64 virtual_apic_page_addr;
223 u64 apic_access_addr;
224 u64 posted_intr_desc_addr;
225 u64 ept_pointer;
226 u64 eoi_exit_bitmap0;
227 u64 eoi_exit_bitmap1;
228 u64 eoi_exit_bitmap2;
229 u64 eoi_exit_bitmap3;
230 u64 xss_exit_bitmap;
231 u64 guest_physical_address;
232 u64 vmcs_link_pointer;
233 u64 guest_ia32_debugctl;
234 u64 guest_ia32_pat;
235 u64 guest_ia32_efer;
236 u64 guest_ia32_perf_global_ctrl;
237 u64 guest_pdptr0;
238 u64 guest_pdptr1;
239 u64 guest_pdptr2;
240 u64 guest_pdptr3;
241 u64 guest_bndcfgs;
242 u64 host_ia32_pat;
243 u64 host_ia32_efer;
244 u64 host_ia32_perf_global_ctrl;
245 u64 padding64[8]; /* room for future expansion */
246 /*
247 * To allow migration of L1 (complete with its L2 guests) between
248 * machines of different natural widths (32 or 64 bit), we cannot have
249 * unsigned long fields with no explict size. We use u64 (aliased
250 * natural_width) instead. Luckily, x86 is little-endian.
251 */
252 natural_width cr0_guest_host_mask;
253 natural_width cr4_guest_host_mask;
254 natural_width cr0_read_shadow;
255 natural_width cr4_read_shadow;
256 natural_width cr3_target_value0;
257 natural_width cr3_target_value1;
258 natural_width cr3_target_value2;
259 natural_width cr3_target_value3;
260 natural_width exit_qualification;
261 natural_width guest_linear_address;
262 natural_width guest_cr0;
263 natural_width guest_cr3;
264 natural_width guest_cr4;
265 natural_width guest_es_base;
266 natural_width guest_cs_base;
267 natural_width guest_ss_base;
268 natural_width guest_ds_base;
269 natural_width guest_fs_base;
270 natural_width guest_gs_base;
271 natural_width guest_ldtr_base;
272 natural_width guest_tr_base;
273 natural_width guest_gdtr_base;
274 natural_width guest_idtr_base;
275 natural_width guest_dr7;
276 natural_width guest_rsp;
277 natural_width guest_rip;
278 natural_width guest_rflags;
279 natural_width guest_pending_dbg_exceptions;
280 natural_width guest_sysenter_esp;
281 natural_width guest_sysenter_eip;
282 natural_width host_cr0;
283 natural_width host_cr3;
284 natural_width host_cr4;
285 natural_width host_fs_base;
286 natural_width host_gs_base;
287 natural_width host_tr_base;
288 natural_width host_gdtr_base;
289 natural_width host_idtr_base;
290 natural_width host_ia32_sysenter_esp;
291 natural_width host_ia32_sysenter_eip;
292 natural_width host_rsp;
293 natural_width host_rip;
294 natural_width paddingl[8]; /* room for future expansion */
295 u32 pin_based_vm_exec_control;
296 u32 cpu_based_vm_exec_control;
297 u32 exception_bitmap;
298 u32 page_fault_error_code_mask;
299 u32 page_fault_error_code_match;
300 u32 cr3_target_count;
301 u32 vm_exit_controls;
302 u32 vm_exit_msr_store_count;
303 u32 vm_exit_msr_load_count;
304 u32 vm_entry_controls;
305 u32 vm_entry_msr_load_count;
306 u32 vm_entry_intr_info_field;
307 u32 vm_entry_exception_error_code;
308 u32 vm_entry_instruction_len;
309 u32 tpr_threshold;
310 u32 secondary_vm_exec_control;
311 u32 vm_instruction_error;
312 u32 vm_exit_reason;
313 u32 vm_exit_intr_info;
314 u32 vm_exit_intr_error_code;
315 u32 idt_vectoring_info_field;
316 u32 idt_vectoring_error_code;
317 u32 vm_exit_instruction_len;
318 u32 vmx_instruction_info;
319 u32 guest_es_limit;
320 u32 guest_cs_limit;
321 u32 guest_ss_limit;
322 u32 guest_ds_limit;
323 u32 guest_fs_limit;
324 u32 guest_gs_limit;
325 u32 guest_ldtr_limit;
326 u32 guest_tr_limit;
327 u32 guest_gdtr_limit;
328 u32 guest_idtr_limit;
329 u32 guest_es_ar_bytes;
330 u32 guest_cs_ar_bytes;
331 u32 guest_ss_ar_bytes;
332 u32 guest_ds_ar_bytes;
333 u32 guest_fs_ar_bytes;
334 u32 guest_gs_ar_bytes;
335 u32 guest_ldtr_ar_bytes;
336 u32 guest_tr_ar_bytes;
337 u32 guest_interruptibility_info;
338 u32 guest_activity_state;
339 u32 guest_sysenter_cs;
340 u32 host_ia32_sysenter_cs;
341 u32 vmx_preemption_timer_value;
342 u32 padding32[7]; /* room for future expansion */
343 u16 virtual_processor_id;
344 u16 posted_intr_nv;
345 u16 guest_es_selector;
346 u16 guest_cs_selector;
347 u16 guest_ss_selector;
348 u16 guest_ds_selector;
349 u16 guest_fs_selector;
350 u16 guest_gs_selector;
351 u16 guest_ldtr_selector;
352 u16 guest_tr_selector;
353 u16 guest_intr_status;
354 u16 host_es_selector;
355 u16 host_cs_selector;
356 u16 host_ss_selector;
357 u16 host_ds_selector;
358 u16 host_fs_selector;
359 u16 host_gs_selector;
360 u16 host_tr_selector;
361 };
362
363 /*
364 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
365 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
366 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
367 */
368 #define VMCS12_REVISION 0x11e57ed0
369
370 /*
371 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
372 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
373 * current implementation, 4K are reserved to avoid future complications.
374 */
375 #define VMCS12_SIZE 0x1000
376
377 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
378 struct vmcs02_list {
379 struct list_head list;
380 gpa_t vmptr;
381 struct loaded_vmcs vmcs02;
382 };
383
384 /*
385 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
386 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
387 */
388 struct nested_vmx {
389 /* Has the level1 guest done vmxon? */
390 bool vmxon;
391 gpa_t vmxon_ptr;
392
393 /* The guest-physical address of the current VMCS L1 keeps for L2 */
394 gpa_t current_vmptr;
395 /* The host-usable pointer to the above */
396 struct page *current_vmcs12_page;
397 struct vmcs12 *current_vmcs12;
398 struct vmcs *current_shadow_vmcs;
399 /*
400 * Indicates if the shadow vmcs must be updated with the
401 * data hold by vmcs12
402 */
403 bool sync_shadow_vmcs;
404
405 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
406 struct list_head vmcs02_pool;
407 int vmcs02_num;
408 u64 vmcs01_tsc_offset;
409 /* L2 must run next, and mustn't decide to exit to L1. */
410 bool nested_run_pending;
411 /*
412 * Guest pages referred to in vmcs02 with host-physical pointers, so
413 * we must keep them pinned while L2 runs.
414 */
415 struct page *apic_access_page;
416 struct page *virtual_apic_page;
417 struct page *pi_desc_page;
418 struct pi_desc *pi_desc;
419 bool pi_pending;
420 u16 posted_intr_nv;
421 u64 msr_ia32_feature_control;
422
423 struct hrtimer preemption_timer;
424 bool preemption_timer_expired;
425
426 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
427 u64 vmcs01_debugctl;
428
429 u16 vpid02;
430 u16 last_vpid;
431
432 u32 nested_vmx_procbased_ctls_low;
433 u32 nested_vmx_procbased_ctls_high;
434 u32 nested_vmx_true_procbased_ctls_low;
435 u32 nested_vmx_secondary_ctls_low;
436 u32 nested_vmx_secondary_ctls_high;
437 u32 nested_vmx_pinbased_ctls_low;
438 u32 nested_vmx_pinbased_ctls_high;
439 u32 nested_vmx_exit_ctls_low;
440 u32 nested_vmx_exit_ctls_high;
441 u32 nested_vmx_true_exit_ctls_low;
442 u32 nested_vmx_entry_ctls_low;
443 u32 nested_vmx_entry_ctls_high;
444 u32 nested_vmx_true_entry_ctls_low;
445 u32 nested_vmx_misc_low;
446 u32 nested_vmx_misc_high;
447 u32 nested_vmx_ept_caps;
448 u32 nested_vmx_vpid_caps;
449 };
450
451 #define POSTED_INTR_ON 0
452 #define POSTED_INTR_SN 1
453
454 /* Posted-Interrupt Descriptor */
455 struct pi_desc {
456 u32 pir[8]; /* Posted interrupt requested */
457 union {
458 struct {
459 /* bit 256 - Outstanding Notification */
460 u16 on : 1,
461 /* bit 257 - Suppress Notification */
462 sn : 1,
463 /* bit 271:258 - Reserved */
464 rsvd_1 : 14;
465 /* bit 279:272 - Notification Vector */
466 u8 nv;
467 /* bit 287:280 - Reserved */
468 u8 rsvd_2;
469 /* bit 319:288 - Notification Destination */
470 u32 ndst;
471 };
472 u64 control;
473 };
474 u32 rsvd[6];
475 } __aligned(64);
476
477 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
478 {
479 return test_and_set_bit(POSTED_INTR_ON,
480 (unsigned long *)&pi_desc->control);
481 }
482
483 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
484 {
485 return test_and_clear_bit(POSTED_INTR_ON,
486 (unsigned long *)&pi_desc->control);
487 }
488
489 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
490 {
491 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
492 }
493
494 static inline void pi_clear_sn(struct pi_desc *pi_desc)
495 {
496 return clear_bit(POSTED_INTR_SN,
497 (unsigned long *)&pi_desc->control);
498 }
499
500 static inline void pi_set_sn(struct pi_desc *pi_desc)
501 {
502 return set_bit(POSTED_INTR_SN,
503 (unsigned long *)&pi_desc->control);
504 }
505
506 static inline int pi_test_on(struct pi_desc *pi_desc)
507 {
508 return test_bit(POSTED_INTR_ON,
509 (unsigned long *)&pi_desc->control);
510 }
511
512 static inline int pi_test_sn(struct pi_desc *pi_desc)
513 {
514 return test_bit(POSTED_INTR_SN,
515 (unsigned long *)&pi_desc->control);
516 }
517
518 struct vcpu_vmx {
519 struct kvm_vcpu vcpu;
520 unsigned long host_rsp;
521 u8 fail;
522 bool nmi_known_unmasked;
523 u32 exit_intr_info;
524 u32 idt_vectoring_info;
525 ulong rflags;
526 struct shared_msr_entry *guest_msrs;
527 int nmsrs;
528 int save_nmsrs;
529 unsigned long host_idt_base;
530 #ifdef CONFIG_X86_64
531 u64 msr_host_kernel_gs_base;
532 u64 msr_guest_kernel_gs_base;
533 #endif
534 u32 vm_entry_controls_shadow;
535 u32 vm_exit_controls_shadow;
536 /*
537 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
538 * non-nested (L1) guest, it always points to vmcs01. For a nested
539 * guest (L2), it points to a different VMCS.
540 */
541 struct loaded_vmcs vmcs01;
542 struct loaded_vmcs *loaded_vmcs;
543 bool __launched; /* temporary, used in vmx_vcpu_run */
544 struct msr_autoload {
545 unsigned nr;
546 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
547 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
548 } msr_autoload;
549 struct {
550 int loaded;
551 u16 fs_sel, gs_sel, ldt_sel;
552 #ifdef CONFIG_X86_64
553 u16 ds_sel, es_sel;
554 #endif
555 int gs_ldt_reload_needed;
556 int fs_reload_needed;
557 u64 msr_host_bndcfgs;
558 unsigned long vmcs_host_cr4; /* May not match real cr4 */
559 } host_state;
560 struct {
561 int vm86_active;
562 ulong save_rflags;
563 struct kvm_segment segs[8];
564 } rmode;
565 struct {
566 u32 bitmask; /* 4 bits per segment (1 bit per field) */
567 struct kvm_save_segment {
568 u16 selector;
569 unsigned long base;
570 u32 limit;
571 u32 ar;
572 } seg[8];
573 } segment_cache;
574 int vpid;
575 bool emulation_required;
576
577 /* Support for vnmi-less CPUs */
578 int soft_vnmi_blocked;
579 ktime_t entry_time;
580 s64 vnmi_blocked_time;
581 u32 exit_reason;
582
583 /* Posted interrupt descriptor */
584 struct pi_desc pi_desc;
585
586 /* Support for a guest hypervisor (nested VMX) */
587 struct nested_vmx nested;
588
589 /* Dynamic PLE window. */
590 int ple_window;
591 bool ple_window_dirty;
592
593 /* Support for PML */
594 #define PML_ENTITY_NUM 512
595 struct page *pml_pg;
596 };
597
598 enum segment_cache_field {
599 SEG_FIELD_SEL = 0,
600 SEG_FIELD_BASE = 1,
601 SEG_FIELD_LIMIT = 2,
602 SEG_FIELD_AR = 3,
603
604 SEG_FIELD_NR = 4
605 };
606
607 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
608 {
609 return container_of(vcpu, struct vcpu_vmx, vcpu);
610 }
611
612 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
613 {
614 return &(to_vmx(vcpu)->pi_desc);
615 }
616
617 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
618 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
619 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
620 [number##_HIGH] = VMCS12_OFFSET(name)+4
621
622
623 static unsigned long shadow_read_only_fields[] = {
624 /*
625 * We do NOT shadow fields that are modified when L0
626 * traps and emulates any vmx instruction (e.g. VMPTRLD,
627 * VMXON...) executed by L1.
628 * For example, VM_INSTRUCTION_ERROR is read
629 * by L1 if a vmx instruction fails (part of the error path).
630 * Note the code assumes this logic. If for some reason
631 * we start shadowing these fields then we need to
632 * force a shadow sync when L0 emulates vmx instructions
633 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
634 * by nested_vmx_failValid)
635 */
636 VM_EXIT_REASON,
637 VM_EXIT_INTR_INFO,
638 VM_EXIT_INSTRUCTION_LEN,
639 IDT_VECTORING_INFO_FIELD,
640 IDT_VECTORING_ERROR_CODE,
641 VM_EXIT_INTR_ERROR_CODE,
642 EXIT_QUALIFICATION,
643 GUEST_LINEAR_ADDRESS,
644 GUEST_PHYSICAL_ADDRESS
645 };
646 static int max_shadow_read_only_fields =
647 ARRAY_SIZE(shadow_read_only_fields);
648
649 static unsigned long shadow_read_write_fields[] = {
650 TPR_THRESHOLD,
651 GUEST_RIP,
652 GUEST_RSP,
653 GUEST_CR0,
654 GUEST_CR3,
655 GUEST_CR4,
656 GUEST_INTERRUPTIBILITY_INFO,
657 GUEST_RFLAGS,
658 GUEST_CS_SELECTOR,
659 GUEST_CS_AR_BYTES,
660 GUEST_CS_LIMIT,
661 GUEST_CS_BASE,
662 GUEST_ES_BASE,
663 GUEST_BNDCFGS,
664 CR0_GUEST_HOST_MASK,
665 CR0_READ_SHADOW,
666 CR4_READ_SHADOW,
667 TSC_OFFSET,
668 EXCEPTION_BITMAP,
669 CPU_BASED_VM_EXEC_CONTROL,
670 VM_ENTRY_EXCEPTION_ERROR_CODE,
671 VM_ENTRY_INTR_INFO_FIELD,
672 VM_ENTRY_INSTRUCTION_LEN,
673 VM_ENTRY_EXCEPTION_ERROR_CODE,
674 HOST_FS_BASE,
675 HOST_GS_BASE,
676 HOST_FS_SELECTOR,
677 HOST_GS_SELECTOR
678 };
679 static int max_shadow_read_write_fields =
680 ARRAY_SIZE(shadow_read_write_fields);
681
682 static const unsigned short vmcs_field_to_offset_table[] = {
683 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
684 FIELD(POSTED_INTR_NV, posted_intr_nv),
685 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
686 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
687 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
688 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
689 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
690 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
691 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
692 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
693 FIELD(GUEST_INTR_STATUS, guest_intr_status),
694 FIELD(HOST_ES_SELECTOR, host_es_selector),
695 FIELD(HOST_CS_SELECTOR, host_cs_selector),
696 FIELD(HOST_SS_SELECTOR, host_ss_selector),
697 FIELD(HOST_DS_SELECTOR, host_ds_selector),
698 FIELD(HOST_FS_SELECTOR, host_fs_selector),
699 FIELD(HOST_GS_SELECTOR, host_gs_selector),
700 FIELD(HOST_TR_SELECTOR, host_tr_selector),
701 FIELD64(IO_BITMAP_A, io_bitmap_a),
702 FIELD64(IO_BITMAP_B, io_bitmap_b),
703 FIELD64(MSR_BITMAP, msr_bitmap),
704 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
705 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
706 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
707 FIELD64(TSC_OFFSET, tsc_offset),
708 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
709 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
710 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
711 FIELD64(EPT_POINTER, ept_pointer),
712 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
713 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
714 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
715 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
716 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
717 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
718 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
719 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
720 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
721 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
722 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
723 FIELD64(GUEST_PDPTR0, guest_pdptr0),
724 FIELD64(GUEST_PDPTR1, guest_pdptr1),
725 FIELD64(GUEST_PDPTR2, guest_pdptr2),
726 FIELD64(GUEST_PDPTR3, guest_pdptr3),
727 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
728 FIELD64(HOST_IA32_PAT, host_ia32_pat),
729 FIELD64(HOST_IA32_EFER, host_ia32_efer),
730 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
731 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
732 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
733 FIELD(EXCEPTION_BITMAP, exception_bitmap),
734 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
735 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
736 FIELD(CR3_TARGET_COUNT, cr3_target_count),
737 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
738 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
739 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
740 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
741 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
742 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
743 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
744 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
745 FIELD(TPR_THRESHOLD, tpr_threshold),
746 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
747 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
748 FIELD(VM_EXIT_REASON, vm_exit_reason),
749 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
750 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
751 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
752 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
753 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
754 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
755 FIELD(GUEST_ES_LIMIT, guest_es_limit),
756 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
757 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
758 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
759 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
760 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
761 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
762 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
763 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
764 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
765 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
766 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
767 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
768 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
769 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
770 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
771 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
772 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
773 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
774 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
775 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
776 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
777 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
778 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
779 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
780 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
781 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
782 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
783 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
784 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
785 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
786 FIELD(EXIT_QUALIFICATION, exit_qualification),
787 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
788 FIELD(GUEST_CR0, guest_cr0),
789 FIELD(GUEST_CR3, guest_cr3),
790 FIELD(GUEST_CR4, guest_cr4),
791 FIELD(GUEST_ES_BASE, guest_es_base),
792 FIELD(GUEST_CS_BASE, guest_cs_base),
793 FIELD(GUEST_SS_BASE, guest_ss_base),
794 FIELD(GUEST_DS_BASE, guest_ds_base),
795 FIELD(GUEST_FS_BASE, guest_fs_base),
796 FIELD(GUEST_GS_BASE, guest_gs_base),
797 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
798 FIELD(GUEST_TR_BASE, guest_tr_base),
799 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
800 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
801 FIELD(GUEST_DR7, guest_dr7),
802 FIELD(GUEST_RSP, guest_rsp),
803 FIELD(GUEST_RIP, guest_rip),
804 FIELD(GUEST_RFLAGS, guest_rflags),
805 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
806 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
807 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
808 FIELD(HOST_CR0, host_cr0),
809 FIELD(HOST_CR3, host_cr3),
810 FIELD(HOST_CR4, host_cr4),
811 FIELD(HOST_FS_BASE, host_fs_base),
812 FIELD(HOST_GS_BASE, host_gs_base),
813 FIELD(HOST_TR_BASE, host_tr_base),
814 FIELD(HOST_GDTR_BASE, host_gdtr_base),
815 FIELD(HOST_IDTR_BASE, host_idtr_base),
816 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
817 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
818 FIELD(HOST_RSP, host_rsp),
819 FIELD(HOST_RIP, host_rip),
820 };
821
822 static inline short vmcs_field_to_offset(unsigned long field)
823 {
824 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
825
826 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
827 vmcs_field_to_offset_table[field] == 0)
828 return -ENOENT;
829
830 return vmcs_field_to_offset_table[field];
831 }
832
833 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
834 {
835 return to_vmx(vcpu)->nested.current_vmcs12;
836 }
837
838 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
839 {
840 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
841 if (is_error_page(page))
842 return NULL;
843
844 return page;
845 }
846
847 static void nested_release_page(struct page *page)
848 {
849 kvm_release_page_dirty(page);
850 }
851
852 static void nested_release_page_clean(struct page *page)
853 {
854 kvm_release_page_clean(page);
855 }
856
857 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
858 static u64 construct_eptp(unsigned long root_hpa);
859 static void kvm_cpu_vmxon(u64 addr);
860 static void kvm_cpu_vmxoff(void);
861 static bool vmx_mpx_supported(void);
862 static bool vmx_xsaves_supported(void);
863 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
864 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
865 static void vmx_set_segment(struct kvm_vcpu *vcpu,
866 struct kvm_segment *var, int seg);
867 static void vmx_get_segment(struct kvm_vcpu *vcpu,
868 struct kvm_segment *var, int seg);
869 static bool guest_state_valid(struct kvm_vcpu *vcpu);
870 static u32 vmx_segment_access_rights(struct kvm_segment *var);
871 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
872 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
873 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
874 static int alloc_identity_pagetable(struct kvm *kvm);
875
876 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
877 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
878 /*
879 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
880 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
881 */
882 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
883 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
884
885 /*
886 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
887 * can find which vCPU should be waken up.
888 */
889 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
890 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
891
892 static unsigned long *vmx_io_bitmap_a;
893 static unsigned long *vmx_io_bitmap_b;
894 static unsigned long *vmx_msr_bitmap_legacy;
895 static unsigned long *vmx_msr_bitmap_longmode;
896 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
897 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
898 static unsigned long *vmx_msr_bitmap_nested;
899 static unsigned long *vmx_vmread_bitmap;
900 static unsigned long *vmx_vmwrite_bitmap;
901
902 static bool cpu_has_load_ia32_efer;
903 static bool cpu_has_load_perf_global_ctrl;
904
905 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
906 static DEFINE_SPINLOCK(vmx_vpid_lock);
907
908 static struct vmcs_config {
909 int size;
910 int order;
911 u32 revision_id;
912 u32 pin_based_exec_ctrl;
913 u32 cpu_based_exec_ctrl;
914 u32 cpu_based_2nd_exec_ctrl;
915 u32 vmexit_ctrl;
916 u32 vmentry_ctrl;
917 } vmcs_config;
918
919 static struct vmx_capability {
920 u32 ept;
921 u32 vpid;
922 } vmx_capability;
923
924 #define VMX_SEGMENT_FIELD(seg) \
925 [VCPU_SREG_##seg] = { \
926 .selector = GUEST_##seg##_SELECTOR, \
927 .base = GUEST_##seg##_BASE, \
928 .limit = GUEST_##seg##_LIMIT, \
929 .ar_bytes = GUEST_##seg##_AR_BYTES, \
930 }
931
932 static const struct kvm_vmx_segment_field {
933 unsigned selector;
934 unsigned base;
935 unsigned limit;
936 unsigned ar_bytes;
937 } kvm_vmx_segment_fields[] = {
938 VMX_SEGMENT_FIELD(CS),
939 VMX_SEGMENT_FIELD(DS),
940 VMX_SEGMENT_FIELD(ES),
941 VMX_SEGMENT_FIELD(FS),
942 VMX_SEGMENT_FIELD(GS),
943 VMX_SEGMENT_FIELD(SS),
944 VMX_SEGMENT_FIELD(TR),
945 VMX_SEGMENT_FIELD(LDTR),
946 };
947
948 static u64 host_efer;
949
950 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
951
952 /*
953 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
954 * away by decrementing the array size.
955 */
956 static const u32 vmx_msr_index[] = {
957 #ifdef CONFIG_X86_64
958 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
959 #endif
960 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
961 };
962
963 static inline bool is_page_fault(u32 intr_info)
964 {
965 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
966 INTR_INFO_VALID_MASK)) ==
967 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
968 }
969
970 static inline bool is_no_device(u32 intr_info)
971 {
972 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
973 INTR_INFO_VALID_MASK)) ==
974 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
975 }
976
977 static inline bool is_invalid_opcode(u32 intr_info)
978 {
979 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
980 INTR_INFO_VALID_MASK)) ==
981 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
982 }
983
984 static inline bool is_external_interrupt(u32 intr_info)
985 {
986 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
987 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
988 }
989
990 static inline bool is_machine_check(u32 intr_info)
991 {
992 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
993 INTR_INFO_VALID_MASK)) ==
994 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
995 }
996
997 static inline bool cpu_has_vmx_msr_bitmap(void)
998 {
999 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1000 }
1001
1002 static inline bool cpu_has_vmx_tpr_shadow(void)
1003 {
1004 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1005 }
1006
1007 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1008 {
1009 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1010 }
1011
1012 static inline bool cpu_has_secondary_exec_ctrls(void)
1013 {
1014 return vmcs_config.cpu_based_exec_ctrl &
1015 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1016 }
1017
1018 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1019 {
1020 return vmcs_config.cpu_based_2nd_exec_ctrl &
1021 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1022 }
1023
1024 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1025 {
1026 return vmcs_config.cpu_based_2nd_exec_ctrl &
1027 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1028 }
1029
1030 static inline bool cpu_has_vmx_apic_register_virt(void)
1031 {
1032 return vmcs_config.cpu_based_2nd_exec_ctrl &
1033 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1034 }
1035
1036 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1037 {
1038 return vmcs_config.cpu_based_2nd_exec_ctrl &
1039 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1040 }
1041
1042 static inline bool cpu_has_vmx_posted_intr(void)
1043 {
1044 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1045 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1046 }
1047
1048 static inline bool cpu_has_vmx_apicv(void)
1049 {
1050 return cpu_has_vmx_apic_register_virt() &&
1051 cpu_has_vmx_virtual_intr_delivery() &&
1052 cpu_has_vmx_posted_intr();
1053 }
1054
1055 static inline bool cpu_has_vmx_flexpriority(void)
1056 {
1057 return cpu_has_vmx_tpr_shadow() &&
1058 cpu_has_vmx_virtualize_apic_accesses();
1059 }
1060
1061 static inline bool cpu_has_vmx_ept_execute_only(void)
1062 {
1063 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1064 }
1065
1066 static inline bool cpu_has_vmx_ept_2m_page(void)
1067 {
1068 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1069 }
1070
1071 static inline bool cpu_has_vmx_ept_1g_page(void)
1072 {
1073 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1074 }
1075
1076 static inline bool cpu_has_vmx_ept_4levels(void)
1077 {
1078 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1079 }
1080
1081 static inline bool cpu_has_vmx_ept_ad_bits(void)
1082 {
1083 return vmx_capability.ept & VMX_EPT_AD_BIT;
1084 }
1085
1086 static inline bool cpu_has_vmx_invept_context(void)
1087 {
1088 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1089 }
1090
1091 static inline bool cpu_has_vmx_invept_global(void)
1092 {
1093 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1094 }
1095
1096 static inline bool cpu_has_vmx_invvpid_single(void)
1097 {
1098 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1099 }
1100
1101 static inline bool cpu_has_vmx_invvpid_global(void)
1102 {
1103 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1104 }
1105
1106 static inline bool cpu_has_vmx_ept(void)
1107 {
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_ENABLE_EPT;
1110 }
1111
1112 static inline bool cpu_has_vmx_unrestricted_guest(void)
1113 {
1114 return vmcs_config.cpu_based_2nd_exec_ctrl &
1115 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1116 }
1117
1118 static inline bool cpu_has_vmx_ple(void)
1119 {
1120 return vmcs_config.cpu_based_2nd_exec_ctrl &
1121 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1122 }
1123
1124 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1125 {
1126 return flexpriority_enabled && lapic_in_kernel(vcpu);
1127 }
1128
1129 static inline bool cpu_has_vmx_vpid(void)
1130 {
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_ENABLE_VPID;
1133 }
1134
1135 static inline bool cpu_has_vmx_rdtscp(void)
1136 {
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_RDTSCP;
1139 }
1140
1141 static inline bool cpu_has_vmx_invpcid(void)
1142 {
1143 return vmcs_config.cpu_based_2nd_exec_ctrl &
1144 SECONDARY_EXEC_ENABLE_INVPCID;
1145 }
1146
1147 static inline bool cpu_has_virtual_nmis(void)
1148 {
1149 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1150 }
1151
1152 static inline bool cpu_has_vmx_wbinvd_exit(void)
1153 {
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_WBINVD_EXITING;
1156 }
1157
1158 static inline bool cpu_has_vmx_shadow_vmcs(void)
1159 {
1160 u64 vmx_msr;
1161 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1162 /* check if the cpu supports writing r/o exit information fields */
1163 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1164 return false;
1165
1166 return vmcs_config.cpu_based_2nd_exec_ctrl &
1167 SECONDARY_EXEC_SHADOW_VMCS;
1168 }
1169
1170 static inline bool cpu_has_vmx_pml(void)
1171 {
1172 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1173 }
1174
1175 static inline bool report_flexpriority(void)
1176 {
1177 return flexpriority_enabled;
1178 }
1179
1180 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1181 {
1182 return vmcs12->cpu_based_vm_exec_control & bit;
1183 }
1184
1185 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1186 {
1187 return (vmcs12->cpu_based_vm_exec_control &
1188 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1189 (vmcs12->secondary_vm_exec_control & bit);
1190 }
1191
1192 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1193 {
1194 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1195 }
1196
1197 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1198 {
1199 return vmcs12->pin_based_vm_exec_control &
1200 PIN_BASED_VMX_PREEMPTION_TIMER;
1201 }
1202
1203 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1204 {
1205 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1206 }
1207
1208 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1209 {
1210 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1211 vmx_xsaves_supported();
1212 }
1213
1214 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1215 {
1216 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1217 }
1218
1219 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1220 {
1221 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1222 }
1223
1224 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1225 {
1226 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1227 }
1228
1229 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1230 {
1231 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1232 }
1233
1234 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1235 {
1236 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1237 }
1238
1239 static inline bool is_exception(u32 intr_info)
1240 {
1241 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1242 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1243 }
1244
1245 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1246 u32 exit_intr_info,
1247 unsigned long exit_qualification);
1248 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1249 struct vmcs12 *vmcs12,
1250 u32 reason, unsigned long qualification);
1251
1252 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1253 {
1254 int i;
1255
1256 for (i = 0; i < vmx->nmsrs; ++i)
1257 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1258 return i;
1259 return -1;
1260 }
1261
1262 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1263 {
1264 struct {
1265 u64 vpid : 16;
1266 u64 rsvd : 48;
1267 u64 gva;
1268 } operand = { vpid, 0, gva };
1269
1270 asm volatile (__ex(ASM_VMX_INVVPID)
1271 /* CF==1 or ZF==1 --> rc = -1 */
1272 "; ja 1f ; ud2 ; 1:"
1273 : : "a"(&operand), "c"(ext) : "cc", "memory");
1274 }
1275
1276 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1277 {
1278 struct {
1279 u64 eptp, gpa;
1280 } operand = {eptp, gpa};
1281
1282 asm volatile (__ex(ASM_VMX_INVEPT)
1283 /* CF==1 or ZF==1 --> rc = -1 */
1284 "; ja 1f ; ud2 ; 1:\n"
1285 : : "a" (&operand), "c" (ext) : "cc", "memory");
1286 }
1287
1288 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1289 {
1290 int i;
1291
1292 i = __find_msr_index(vmx, msr);
1293 if (i >= 0)
1294 return &vmx->guest_msrs[i];
1295 return NULL;
1296 }
1297
1298 static void vmcs_clear(struct vmcs *vmcs)
1299 {
1300 u64 phys_addr = __pa(vmcs);
1301 u8 error;
1302
1303 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1304 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1305 : "cc", "memory");
1306 if (error)
1307 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1308 vmcs, phys_addr);
1309 }
1310
1311 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1312 {
1313 vmcs_clear(loaded_vmcs->vmcs);
1314 loaded_vmcs->cpu = -1;
1315 loaded_vmcs->launched = 0;
1316 }
1317
1318 static void vmcs_load(struct vmcs *vmcs)
1319 {
1320 u64 phys_addr = __pa(vmcs);
1321 u8 error;
1322
1323 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1324 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1325 : "cc", "memory");
1326 if (error)
1327 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1328 vmcs, phys_addr);
1329 }
1330
1331 #ifdef CONFIG_KEXEC_CORE
1332 /*
1333 * This bitmap is used to indicate whether the vmclear
1334 * operation is enabled on all cpus. All disabled by
1335 * default.
1336 */
1337 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1338
1339 static inline void crash_enable_local_vmclear(int cpu)
1340 {
1341 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1342 }
1343
1344 static inline void crash_disable_local_vmclear(int cpu)
1345 {
1346 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1347 }
1348
1349 static inline int crash_local_vmclear_enabled(int cpu)
1350 {
1351 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1352 }
1353
1354 static void crash_vmclear_local_loaded_vmcss(void)
1355 {
1356 int cpu = raw_smp_processor_id();
1357 struct loaded_vmcs *v;
1358
1359 if (!crash_local_vmclear_enabled(cpu))
1360 return;
1361
1362 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1363 loaded_vmcss_on_cpu_link)
1364 vmcs_clear(v->vmcs);
1365 }
1366 #else
1367 static inline void crash_enable_local_vmclear(int cpu) { }
1368 static inline void crash_disable_local_vmclear(int cpu) { }
1369 #endif /* CONFIG_KEXEC_CORE */
1370
1371 static void __loaded_vmcs_clear(void *arg)
1372 {
1373 struct loaded_vmcs *loaded_vmcs = arg;
1374 int cpu = raw_smp_processor_id();
1375
1376 if (loaded_vmcs->cpu != cpu)
1377 return; /* vcpu migration can race with cpu offline */
1378 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1379 per_cpu(current_vmcs, cpu) = NULL;
1380 crash_disable_local_vmclear(cpu);
1381 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1382
1383 /*
1384 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1385 * is before setting loaded_vmcs->vcpu to -1 which is done in
1386 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1387 * then adds the vmcs into percpu list before it is deleted.
1388 */
1389 smp_wmb();
1390
1391 loaded_vmcs_init(loaded_vmcs);
1392 crash_enable_local_vmclear(cpu);
1393 }
1394
1395 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1396 {
1397 int cpu = loaded_vmcs->cpu;
1398
1399 if (cpu != -1)
1400 smp_call_function_single(cpu,
1401 __loaded_vmcs_clear, loaded_vmcs, 1);
1402 }
1403
1404 static inline void vpid_sync_vcpu_single(int vpid)
1405 {
1406 if (vpid == 0)
1407 return;
1408
1409 if (cpu_has_vmx_invvpid_single())
1410 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1411 }
1412
1413 static inline void vpid_sync_vcpu_global(void)
1414 {
1415 if (cpu_has_vmx_invvpid_global())
1416 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1417 }
1418
1419 static inline void vpid_sync_context(int vpid)
1420 {
1421 if (cpu_has_vmx_invvpid_single())
1422 vpid_sync_vcpu_single(vpid);
1423 else
1424 vpid_sync_vcpu_global();
1425 }
1426
1427 static inline void ept_sync_global(void)
1428 {
1429 if (cpu_has_vmx_invept_global())
1430 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1431 }
1432
1433 static inline void ept_sync_context(u64 eptp)
1434 {
1435 if (enable_ept) {
1436 if (cpu_has_vmx_invept_context())
1437 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1438 else
1439 ept_sync_global();
1440 }
1441 }
1442
1443 static __always_inline unsigned long vmcs_readl(unsigned long field)
1444 {
1445 unsigned long value;
1446
1447 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1448 : "=a"(value) : "d"(field) : "cc");
1449 return value;
1450 }
1451
1452 static __always_inline u16 vmcs_read16(unsigned long field)
1453 {
1454 return vmcs_readl(field);
1455 }
1456
1457 static __always_inline u32 vmcs_read32(unsigned long field)
1458 {
1459 return vmcs_readl(field);
1460 }
1461
1462 static __always_inline u64 vmcs_read64(unsigned long field)
1463 {
1464 #ifdef CONFIG_X86_64
1465 return vmcs_readl(field);
1466 #else
1467 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1468 #endif
1469 }
1470
1471 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1472 {
1473 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1474 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1475 dump_stack();
1476 }
1477
1478 static void vmcs_writel(unsigned long field, unsigned long value)
1479 {
1480 u8 error;
1481
1482 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1483 : "=q"(error) : "a"(value), "d"(field) : "cc");
1484 if (unlikely(error))
1485 vmwrite_error(field, value);
1486 }
1487
1488 static void vmcs_write16(unsigned long field, u16 value)
1489 {
1490 vmcs_writel(field, value);
1491 }
1492
1493 static void vmcs_write32(unsigned long field, u32 value)
1494 {
1495 vmcs_writel(field, value);
1496 }
1497
1498 static void vmcs_write64(unsigned long field, u64 value)
1499 {
1500 vmcs_writel(field, value);
1501 #ifndef CONFIG_X86_64
1502 asm volatile ("");
1503 vmcs_writel(field+1, value >> 32);
1504 #endif
1505 }
1506
1507 static void vmcs_clear_bits(unsigned long field, u32 mask)
1508 {
1509 vmcs_writel(field, vmcs_readl(field) & ~mask);
1510 }
1511
1512 static void vmcs_set_bits(unsigned long field, u32 mask)
1513 {
1514 vmcs_writel(field, vmcs_readl(field) | mask);
1515 }
1516
1517 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1518 {
1519 vmcs_write32(VM_ENTRY_CONTROLS, val);
1520 vmx->vm_entry_controls_shadow = val;
1521 }
1522
1523 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1524 {
1525 if (vmx->vm_entry_controls_shadow != val)
1526 vm_entry_controls_init(vmx, val);
1527 }
1528
1529 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1530 {
1531 return vmx->vm_entry_controls_shadow;
1532 }
1533
1534
1535 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1536 {
1537 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1538 }
1539
1540 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1541 {
1542 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1543 }
1544
1545 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1546 {
1547 vmcs_write32(VM_EXIT_CONTROLS, val);
1548 vmx->vm_exit_controls_shadow = val;
1549 }
1550
1551 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1552 {
1553 if (vmx->vm_exit_controls_shadow != val)
1554 vm_exit_controls_init(vmx, val);
1555 }
1556
1557 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1558 {
1559 return vmx->vm_exit_controls_shadow;
1560 }
1561
1562
1563 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1564 {
1565 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1566 }
1567
1568 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1569 {
1570 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1571 }
1572
1573 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1574 {
1575 vmx->segment_cache.bitmask = 0;
1576 }
1577
1578 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1579 unsigned field)
1580 {
1581 bool ret;
1582 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1583
1584 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1585 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1586 vmx->segment_cache.bitmask = 0;
1587 }
1588 ret = vmx->segment_cache.bitmask & mask;
1589 vmx->segment_cache.bitmask |= mask;
1590 return ret;
1591 }
1592
1593 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1594 {
1595 u16 *p = &vmx->segment_cache.seg[seg].selector;
1596
1597 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1598 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1599 return *p;
1600 }
1601
1602 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1603 {
1604 ulong *p = &vmx->segment_cache.seg[seg].base;
1605
1606 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1607 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1608 return *p;
1609 }
1610
1611 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1612 {
1613 u32 *p = &vmx->segment_cache.seg[seg].limit;
1614
1615 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1616 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1617 return *p;
1618 }
1619
1620 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1621 {
1622 u32 *p = &vmx->segment_cache.seg[seg].ar;
1623
1624 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1625 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1626 return *p;
1627 }
1628
1629 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1630 {
1631 u32 eb;
1632
1633 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1634 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1635 if ((vcpu->guest_debug &
1636 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1637 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1638 eb |= 1u << BP_VECTOR;
1639 if (to_vmx(vcpu)->rmode.vm86_active)
1640 eb = ~0;
1641 if (enable_ept)
1642 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1643 if (vcpu->fpu_active)
1644 eb &= ~(1u << NM_VECTOR);
1645
1646 /* When we are running a nested L2 guest and L1 specified for it a
1647 * certain exception bitmap, we must trap the same exceptions and pass
1648 * them to L1. When running L2, we will only handle the exceptions
1649 * specified above if L1 did not want them.
1650 */
1651 if (is_guest_mode(vcpu))
1652 eb |= get_vmcs12(vcpu)->exception_bitmap;
1653
1654 vmcs_write32(EXCEPTION_BITMAP, eb);
1655 }
1656
1657 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1658 unsigned long entry, unsigned long exit)
1659 {
1660 vm_entry_controls_clearbit(vmx, entry);
1661 vm_exit_controls_clearbit(vmx, exit);
1662 }
1663
1664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1665 {
1666 unsigned i;
1667 struct msr_autoload *m = &vmx->msr_autoload;
1668
1669 switch (msr) {
1670 case MSR_EFER:
1671 if (cpu_has_load_ia32_efer) {
1672 clear_atomic_switch_msr_special(vmx,
1673 VM_ENTRY_LOAD_IA32_EFER,
1674 VM_EXIT_LOAD_IA32_EFER);
1675 return;
1676 }
1677 break;
1678 case MSR_CORE_PERF_GLOBAL_CTRL:
1679 if (cpu_has_load_perf_global_ctrl) {
1680 clear_atomic_switch_msr_special(vmx,
1681 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1682 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1683 return;
1684 }
1685 break;
1686 }
1687
1688 for (i = 0; i < m->nr; ++i)
1689 if (m->guest[i].index == msr)
1690 break;
1691
1692 if (i == m->nr)
1693 return;
1694 --m->nr;
1695 m->guest[i] = m->guest[m->nr];
1696 m->host[i] = m->host[m->nr];
1697 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1698 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1699 }
1700
1701 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1702 unsigned long entry, unsigned long exit,
1703 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1704 u64 guest_val, u64 host_val)
1705 {
1706 vmcs_write64(guest_val_vmcs, guest_val);
1707 vmcs_write64(host_val_vmcs, host_val);
1708 vm_entry_controls_setbit(vmx, entry);
1709 vm_exit_controls_setbit(vmx, exit);
1710 }
1711
1712 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1713 u64 guest_val, u64 host_val)
1714 {
1715 unsigned i;
1716 struct msr_autoload *m = &vmx->msr_autoload;
1717
1718 switch (msr) {
1719 case MSR_EFER:
1720 if (cpu_has_load_ia32_efer) {
1721 add_atomic_switch_msr_special(vmx,
1722 VM_ENTRY_LOAD_IA32_EFER,
1723 VM_EXIT_LOAD_IA32_EFER,
1724 GUEST_IA32_EFER,
1725 HOST_IA32_EFER,
1726 guest_val, host_val);
1727 return;
1728 }
1729 break;
1730 case MSR_CORE_PERF_GLOBAL_CTRL:
1731 if (cpu_has_load_perf_global_ctrl) {
1732 add_atomic_switch_msr_special(vmx,
1733 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1734 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1735 GUEST_IA32_PERF_GLOBAL_CTRL,
1736 HOST_IA32_PERF_GLOBAL_CTRL,
1737 guest_val, host_val);
1738 return;
1739 }
1740 break;
1741 }
1742
1743 for (i = 0; i < m->nr; ++i)
1744 if (m->guest[i].index == msr)
1745 break;
1746
1747 if (i == NR_AUTOLOAD_MSRS) {
1748 printk_once(KERN_WARNING "Not enough msr switch entries. "
1749 "Can't add msr %x\n", msr);
1750 return;
1751 } else if (i == m->nr) {
1752 ++m->nr;
1753 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1754 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1755 }
1756
1757 m->guest[i].index = msr;
1758 m->guest[i].value = guest_val;
1759 m->host[i].index = msr;
1760 m->host[i].value = host_val;
1761 }
1762
1763 static void reload_tss(void)
1764 {
1765 /*
1766 * VT restores TR but not its size. Useless.
1767 */
1768 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1769 struct desc_struct *descs;
1770
1771 descs = (void *)gdt->address;
1772 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1773 load_TR_desc();
1774 }
1775
1776 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1777 {
1778 u64 guest_efer;
1779 u64 ignore_bits;
1780
1781 guest_efer = vmx->vcpu.arch.efer;
1782
1783 /*
1784 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1785 * outside long mode
1786 */
1787 ignore_bits = EFER_NX | EFER_SCE;
1788 #ifdef CONFIG_X86_64
1789 ignore_bits |= EFER_LMA | EFER_LME;
1790 /* SCE is meaningful only in long mode on Intel */
1791 if (guest_efer & EFER_LMA)
1792 ignore_bits &= ~(u64)EFER_SCE;
1793 #endif
1794 guest_efer &= ~ignore_bits;
1795 guest_efer |= host_efer & ignore_bits;
1796 vmx->guest_msrs[efer_offset].data = guest_efer;
1797 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1798
1799 clear_atomic_switch_msr(vmx, MSR_EFER);
1800
1801 /*
1802 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1803 * On CPUs that support "load IA32_EFER", always switch EFER
1804 * atomically, since it's faster than switching it manually.
1805 */
1806 if (cpu_has_load_ia32_efer ||
1807 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1808 guest_efer = vmx->vcpu.arch.efer;
1809 if (!(guest_efer & EFER_LMA))
1810 guest_efer &= ~EFER_LME;
1811 if (guest_efer != host_efer)
1812 add_atomic_switch_msr(vmx, MSR_EFER,
1813 guest_efer, host_efer);
1814 return false;
1815 }
1816
1817 return true;
1818 }
1819
1820 static unsigned long segment_base(u16 selector)
1821 {
1822 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1823 struct desc_struct *d;
1824 unsigned long table_base;
1825 unsigned long v;
1826
1827 if (!(selector & ~3))
1828 return 0;
1829
1830 table_base = gdt->address;
1831
1832 if (selector & 4) { /* from ldt */
1833 u16 ldt_selector = kvm_read_ldt();
1834
1835 if (!(ldt_selector & ~3))
1836 return 0;
1837
1838 table_base = segment_base(ldt_selector);
1839 }
1840 d = (struct desc_struct *)(table_base + (selector & ~7));
1841 v = get_desc_base(d);
1842 #ifdef CONFIG_X86_64
1843 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1844 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1845 #endif
1846 return v;
1847 }
1848
1849 static inline unsigned long kvm_read_tr_base(void)
1850 {
1851 u16 tr;
1852 asm("str %0" : "=g"(tr));
1853 return segment_base(tr);
1854 }
1855
1856 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1857 {
1858 struct vcpu_vmx *vmx = to_vmx(vcpu);
1859 int i;
1860
1861 if (vmx->host_state.loaded)
1862 return;
1863
1864 vmx->host_state.loaded = 1;
1865 /*
1866 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1867 * allow segment selectors with cpl > 0 or ti == 1.
1868 */
1869 vmx->host_state.ldt_sel = kvm_read_ldt();
1870 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1871 savesegment(fs, vmx->host_state.fs_sel);
1872 if (!(vmx->host_state.fs_sel & 7)) {
1873 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1874 vmx->host_state.fs_reload_needed = 0;
1875 } else {
1876 vmcs_write16(HOST_FS_SELECTOR, 0);
1877 vmx->host_state.fs_reload_needed = 1;
1878 }
1879 savesegment(gs, vmx->host_state.gs_sel);
1880 if (!(vmx->host_state.gs_sel & 7))
1881 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1882 else {
1883 vmcs_write16(HOST_GS_SELECTOR, 0);
1884 vmx->host_state.gs_ldt_reload_needed = 1;
1885 }
1886
1887 #ifdef CONFIG_X86_64
1888 savesegment(ds, vmx->host_state.ds_sel);
1889 savesegment(es, vmx->host_state.es_sel);
1890 #endif
1891
1892 #ifdef CONFIG_X86_64
1893 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1894 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1895 #else
1896 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1897 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1898 #endif
1899
1900 #ifdef CONFIG_X86_64
1901 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1902 if (is_long_mode(&vmx->vcpu))
1903 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1904 #endif
1905 if (boot_cpu_has(X86_FEATURE_MPX))
1906 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1907 for (i = 0; i < vmx->save_nmsrs; ++i)
1908 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1909 vmx->guest_msrs[i].data,
1910 vmx->guest_msrs[i].mask);
1911 }
1912
1913 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1914 {
1915 if (!vmx->host_state.loaded)
1916 return;
1917
1918 ++vmx->vcpu.stat.host_state_reload;
1919 vmx->host_state.loaded = 0;
1920 #ifdef CONFIG_X86_64
1921 if (is_long_mode(&vmx->vcpu))
1922 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1923 #endif
1924 if (vmx->host_state.gs_ldt_reload_needed) {
1925 kvm_load_ldt(vmx->host_state.ldt_sel);
1926 #ifdef CONFIG_X86_64
1927 load_gs_index(vmx->host_state.gs_sel);
1928 #else
1929 loadsegment(gs, vmx->host_state.gs_sel);
1930 #endif
1931 }
1932 if (vmx->host_state.fs_reload_needed)
1933 loadsegment(fs, vmx->host_state.fs_sel);
1934 #ifdef CONFIG_X86_64
1935 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1936 loadsegment(ds, vmx->host_state.ds_sel);
1937 loadsegment(es, vmx->host_state.es_sel);
1938 }
1939 #endif
1940 reload_tss();
1941 #ifdef CONFIG_X86_64
1942 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1943 #endif
1944 if (vmx->host_state.msr_host_bndcfgs)
1945 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1946 /*
1947 * If the FPU is not active (through the host task or
1948 * the guest vcpu), then restore the cr0.TS bit.
1949 */
1950 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1951 stts();
1952 load_gdt(this_cpu_ptr(&host_gdt));
1953 }
1954
1955 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1956 {
1957 preempt_disable();
1958 __vmx_load_host_state(vmx);
1959 preempt_enable();
1960 }
1961
1962 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1963 {
1964 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1965 struct pi_desc old, new;
1966 unsigned int dest;
1967
1968 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1969 !irq_remapping_cap(IRQ_POSTING_CAP))
1970 return;
1971
1972 do {
1973 old.control = new.control = pi_desc->control;
1974
1975 /*
1976 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
1977 * are two possible cases:
1978 * 1. After running 'pre_block', context switch
1979 * happened. For this case, 'sn' was set in
1980 * vmx_vcpu_put(), so we need to clear it here.
1981 * 2. After running 'pre_block', we were blocked,
1982 * and woken up by some other guy. For this case,
1983 * we don't need to do anything, 'pi_post_block'
1984 * will do everything for us. However, we cannot
1985 * check whether it is case #1 or case #2 here
1986 * (maybe, not needed), so we also clear sn here,
1987 * I think it is not a big deal.
1988 */
1989 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
1990 if (vcpu->cpu != cpu) {
1991 dest = cpu_physical_id(cpu);
1992
1993 if (x2apic_enabled())
1994 new.ndst = dest;
1995 else
1996 new.ndst = (dest << 8) & 0xFF00;
1997 }
1998
1999 /* set 'NV' to 'notification vector' */
2000 new.nv = POSTED_INTR_VECTOR;
2001 }
2002
2003 /* Allow posting non-urgent interrupts */
2004 new.sn = 0;
2005 } while (cmpxchg(&pi_desc->control, old.control,
2006 new.control) != old.control);
2007 }
2008 /*
2009 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2010 * vcpu mutex is already taken.
2011 */
2012 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2013 {
2014 struct vcpu_vmx *vmx = to_vmx(vcpu);
2015 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2016
2017 if (!vmm_exclusive)
2018 kvm_cpu_vmxon(phys_addr);
2019 else if (vmx->loaded_vmcs->cpu != cpu)
2020 loaded_vmcs_clear(vmx->loaded_vmcs);
2021
2022 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2023 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2024 vmcs_load(vmx->loaded_vmcs->vmcs);
2025 }
2026
2027 if (vmx->loaded_vmcs->cpu != cpu) {
2028 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2029 unsigned long sysenter_esp;
2030
2031 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2032 local_irq_disable();
2033 crash_disable_local_vmclear(cpu);
2034
2035 /*
2036 * Read loaded_vmcs->cpu should be before fetching
2037 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2038 * See the comments in __loaded_vmcs_clear().
2039 */
2040 smp_rmb();
2041
2042 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2043 &per_cpu(loaded_vmcss_on_cpu, cpu));
2044 crash_enable_local_vmclear(cpu);
2045 local_irq_enable();
2046
2047 /*
2048 * Linux uses per-cpu TSS and GDT, so set these when switching
2049 * processors.
2050 */
2051 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2052 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2053
2054 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2055 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2056 vmx->loaded_vmcs->cpu = cpu;
2057 }
2058
2059 vmx_vcpu_pi_load(vcpu, cpu);
2060 }
2061
2062 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2063 {
2064 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2065
2066 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2067 !irq_remapping_cap(IRQ_POSTING_CAP))
2068 return;
2069
2070 /* Set SN when the vCPU is preempted */
2071 if (vcpu->preempted)
2072 pi_set_sn(pi_desc);
2073 }
2074
2075 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2076 {
2077 vmx_vcpu_pi_put(vcpu);
2078
2079 __vmx_load_host_state(to_vmx(vcpu));
2080 if (!vmm_exclusive) {
2081 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2082 vcpu->cpu = -1;
2083 kvm_cpu_vmxoff();
2084 }
2085 }
2086
2087 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2088 {
2089 ulong cr0;
2090
2091 if (vcpu->fpu_active)
2092 return;
2093 vcpu->fpu_active = 1;
2094 cr0 = vmcs_readl(GUEST_CR0);
2095 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2096 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2097 vmcs_writel(GUEST_CR0, cr0);
2098 update_exception_bitmap(vcpu);
2099 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2100 if (is_guest_mode(vcpu))
2101 vcpu->arch.cr0_guest_owned_bits &=
2102 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2103 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2104 }
2105
2106 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2107
2108 /*
2109 * Return the cr0 value that a nested guest would read. This is a combination
2110 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2111 * its hypervisor (cr0_read_shadow).
2112 */
2113 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2114 {
2115 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2116 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2117 }
2118 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2119 {
2120 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2121 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2122 }
2123
2124 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2125 {
2126 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2127 * set this *before* calling this function.
2128 */
2129 vmx_decache_cr0_guest_bits(vcpu);
2130 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2131 update_exception_bitmap(vcpu);
2132 vcpu->arch.cr0_guest_owned_bits = 0;
2133 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2134 if (is_guest_mode(vcpu)) {
2135 /*
2136 * L1's specified read shadow might not contain the TS bit,
2137 * so now that we turned on shadowing of this bit, we need to
2138 * set this bit of the shadow. Like in nested_vmx_run we need
2139 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2140 * up-to-date here because we just decached cr0.TS (and we'll
2141 * only update vmcs12->guest_cr0 on nested exit).
2142 */
2143 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2144 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2145 (vcpu->arch.cr0 & X86_CR0_TS);
2146 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2147 } else
2148 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2149 }
2150
2151 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2152 {
2153 unsigned long rflags, save_rflags;
2154
2155 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2156 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2157 rflags = vmcs_readl(GUEST_RFLAGS);
2158 if (to_vmx(vcpu)->rmode.vm86_active) {
2159 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2160 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2161 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2162 }
2163 to_vmx(vcpu)->rflags = rflags;
2164 }
2165 return to_vmx(vcpu)->rflags;
2166 }
2167
2168 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2169 {
2170 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2171 to_vmx(vcpu)->rflags = rflags;
2172 if (to_vmx(vcpu)->rmode.vm86_active) {
2173 to_vmx(vcpu)->rmode.save_rflags = rflags;
2174 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2175 }
2176 vmcs_writel(GUEST_RFLAGS, rflags);
2177 }
2178
2179 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2180 {
2181 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2182 int ret = 0;
2183
2184 if (interruptibility & GUEST_INTR_STATE_STI)
2185 ret |= KVM_X86_SHADOW_INT_STI;
2186 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2187 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2188
2189 return ret;
2190 }
2191
2192 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2193 {
2194 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2195 u32 interruptibility = interruptibility_old;
2196
2197 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2198
2199 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2200 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2201 else if (mask & KVM_X86_SHADOW_INT_STI)
2202 interruptibility |= GUEST_INTR_STATE_STI;
2203
2204 if ((interruptibility != interruptibility_old))
2205 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2206 }
2207
2208 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2209 {
2210 unsigned long rip;
2211
2212 rip = kvm_rip_read(vcpu);
2213 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2214 kvm_rip_write(vcpu, rip);
2215
2216 /* skipping an emulated instruction also counts */
2217 vmx_set_interrupt_shadow(vcpu, 0);
2218 }
2219
2220 /*
2221 * KVM wants to inject page-faults which it got to the guest. This function
2222 * checks whether in a nested guest, we need to inject them to L1 or L2.
2223 */
2224 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2225 {
2226 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2227
2228 if (!(vmcs12->exception_bitmap & (1u << nr)))
2229 return 0;
2230
2231 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2232 vmcs_read32(VM_EXIT_INTR_INFO),
2233 vmcs_readl(EXIT_QUALIFICATION));
2234 return 1;
2235 }
2236
2237 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2238 bool has_error_code, u32 error_code,
2239 bool reinject)
2240 {
2241 struct vcpu_vmx *vmx = to_vmx(vcpu);
2242 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2243
2244 if (!reinject && is_guest_mode(vcpu) &&
2245 nested_vmx_check_exception(vcpu, nr))
2246 return;
2247
2248 if (has_error_code) {
2249 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2250 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2251 }
2252
2253 if (vmx->rmode.vm86_active) {
2254 int inc_eip = 0;
2255 if (kvm_exception_is_soft(nr))
2256 inc_eip = vcpu->arch.event_exit_inst_len;
2257 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2258 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2259 return;
2260 }
2261
2262 if (kvm_exception_is_soft(nr)) {
2263 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2264 vmx->vcpu.arch.event_exit_inst_len);
2265 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2266 } else
2267 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2268
2269 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2270 }
2271
2272 static bool vmx_rdtscp_supported(void)
2273 {
2274 return cpu_has_vmx_rdtscp();
2275 }
2276
2277 static bool vmx_invpcid_supported(void)
2278 {
2279 return cpu_has_vmx_invpcid() && enable_ept;
2280 }
2281
2282 /*
2283 * Swap MSR entry in host/guest MSR entry array.
2284 */
2285 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2286 {
2287 struct shared_msr_entry tmp;
2288
2289 tmp = vmx->guest_msrs[to];
2290 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2291 vmx->guest_msrs[from] = tmp;
2292 }
2293
2294 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2295 {
2296 unsigned long *msr_bitmap;
2297
2298 if (is_guest_mode(vcpu))
2299 msr_bitmap = vmx_msr_bitmap_nested;
2300 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2301 if (is_long_mode(vcpu))
2302 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2303 else
2304 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2305 } else {
2306 if (is_long_mode(vcpu))
2307 msr_bitmap = vmx_msr_bitmap_longmode;
2308 else
2309 msr_bitmap = vmx_msr_bitmap_legacy;
2310 }
2311
2312 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2313 }
2314
2315 /*
2316 * Set up the vmcs to automatically save and restore system
2317 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2318 * mode, as fiddling with msrs is very expensive.
2319 */
2320 static void setup_msrs(struct vcpu_vmx *vmx)
2321 {
2322 int save_nmsrs, index;
2323
2324 save_nmsrs = 0;
2325 #ifdef CONFIG_X86_64
2326 if (is_long_mode(&vmx->vcpu)) {
2327 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2328 if (index >= 0)
2329 move_msr_up(vmx, index, save_nmsrs++);
2330 index = __find_msr_index(vmx, MSR_LSTAR);
2331 if (index >= 0)
2332 move_msr_up(vmx, index, save_nmsrs++);
2333 index = __find_msr_index(vmx, MSR_CSTAR);
2334 if (index >= 0)
2335 move_msr_up(vmx, index, save_nmsrs++);
2336 index = __find_msr_index(vmx, MSR_TSC_AUX);
2337 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2338 move_msr_up(vmx, index, save_nmsrs++);
2339 /*
2340 * MSR_STAR is only needed on long mode guests, and only
2341 * if efer.sce is enabled.
2342 */
2343 index = __find_msr_index(vmx, MSR_STAR);
2344 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2345 move_msr_up(vmx, index, save_nmsrs++);
2346 }
2347 #endif
2348 index = __find_msr_index(vmx, MSR_EFER);
2349 if (index >= 0 && update_transition_efer(vmx, index))
2350 move_msr_up(vmx, index, save_nmsrs++);
2351
2352 vmx->save_nmsrs = save_nmsrs;
2353
2354 if (cpu_has_vmx_msr_bitmap())
2355 vmx_set_msr_bitmap(&vmx->vcpu);
2356 }
2357
2358 /*
2359 * reads and returns guest's timestamp counter "register"
2360 * guest_tsc = host_tsc + tsc_offset -- 21.3
2361 */
2362 static u64 guest_read_tsc(void)
2363 {
2364 u64 host_tsc, tsc_offset;
2365
2366 host_tsc = rdtsc();
2367 tsc_offset = vmcs_read64(TSC_OFFSET);
2368 return host_tsc + tsc_offset;
2369 }
2370
2371 /*
2372 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2373 * counter, even if a nested guest (L2) is currently running.
2374 */
2375 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2376 {
2377 u64 tsc_offset;
2378
2379 tsc_offset = is_guest_mode(vcpu) ?
2380 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2381 vmcs_read64(TSC_OFFSET);
2382 return host_tsc + tsc_offset;
2383 }
2384
2385 /*
2386 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2387 * software catchup for faster rates on slower CPUs.
2388 */
2389 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2390 {
2391 if (!scale)
2392 return;
2393
2394 if (user_tsc_khz > tsc_khz) {
2395 vcpu->arch.tsc_catchup = 1;
2396 vcpu->arch.tsc_always_catchup = 1;
2397 } else
2398 WARN(1, "user requested TSC rate below hardware speed\n");
2399 }
2400
2401 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2402 {
2403 return vmcs_read64(TSC_OFFSET);
2404 }
2405
2406 /*
2407 * writes 'offset' into guest's timestamp counter offset register
2408 */
2409 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2410 {
2411 if (is_guest_mode(vcpu)) {
2412 /*
2413 * We're here if L1 chose not to trap WRMSR to TSC. According
2414 * to the spec, this should set L1's TSC; The offset that L1
2415 * set for L2 remains unchanged, and still needs to be added
2416 * to the newly set TSC to get L2's TSC.
2417 */
2418 struct vmcs12 *vmcs12;
2419 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2420 /* recalculate vmcs02.TSC_OFFSET: */
2421 vmcs12 = get_vmcs12(vcpu);
2422 vmcs_write64(TSC_OFFSET, offset +
2423 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2424 vmcs12->tsc_offset : 0));
2425 } else {
2426 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2427 vmcs_read64(TSC_OFFSET), offset);
2428 vmcs_write64(TSC_OFFSET, offset);
2429 }
2430 }
2431
2432 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2433 {
2434 u64 offset = vmcs_read64(TSC_OFFSET);
2435
2436 vmcs_write64(TSC_OFFSET, offset + adjustment);
2437 if (is_guest_mode(vcpu)) {
2438 /* Even when running L2, the adjustment needs to apply to L1 */
2439 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2440 } else
2441 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2442 offset + adjustment);
2443 }
2444
2445 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2446 {
2447 return target_tsc - rdtsc();
2448 }
2449
2450 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2451 {
2452 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2453 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2454 }
2455
2456 /*
2457 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2458 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2459 * all guests if the "nested" module option is off, and can also be disabled
2460 * for a single guest by disabling its VMX cpuid bit.
2461 */
2462 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2463 {
2464 return nested && guest_cpuid_has_vmx(vcpu);
2465 }
2466
2467 /*
2468 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2469 * returned for the various VMX controls MSRs when nested VMX is enabled.
2470 * The same values should also be used to verify that vmcs12 control fields are
2471 * valid during nested entry from L1 to L2.
2472 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2473 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2474 * bit in the high half is on if the corresponding bit in the control field
2475 * may be on. See also vmx_control_verify().
2476 */
2477 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2478 {
2479 /*
2480 * Note that as a general rule, the high half of the MSRs (bits in
2481 * the control fields which may be 1) should be initialized by the
2482 * intersection of the underlying hardware's MSR (i.e., features which
2483 * can be supported) and the list of features we want to expose -
2484 * because they are known to be properly supported in our code.
2485 * Also, usually, the low half of the MSRs (bits which must be 1) can
2486 * be set to 0, meaning that L1 may turn off any of these bits. The
2487 * reason is that if one of these bits is necessary, it will appear
2488 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2489 * fields of vmcs01 and vmcs02, will turn these bits off - and
2490 * nested_vmx_exit_handled() will not pass related exits to L1.
2491 * These rules have exceptions below.
2492 */
2493
2494 /* pin-based controls */
2495 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2496 vmx->nested.nested_vmx_pinbased_ctls_low,
2497 vmx->nested.nested_vmx_pinbased_ctls_high);
2498 vmx->nested.nested_vmx_pinbased_ctls_low |=
2499 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2500 vmx->nested.nested_vmx_pinbased_ctls_high &=
2501 PIN_BASED_EXT_INTR_MASK |
2502 PIN_BASED_NMI_EXITING |
2503 PIN_BASED_VIRTUAL_NMIS;
2504 vmx->nested.nested_vmx_pinbased_ctls_high |=
2505 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2506 PIN_BASED_VMX_PREEMPTION_TIMER;
2507 if (vmx_cpu_uses_apicv(&vmx->vcpu))
2508 vmx->nested.nested_vmx_pinbased_ctls_high |=
2509 PIN_BASED_POSTED_INTR;
2510
2511 /* exit controls */
2512 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2513 vmx->nested.nested_vmx_exit_ctls_low,
2514 vmx->nested.nested_vmx_exit_ctls_high);
2515 vmx->nested.nested_vmx_exit_ctls_low =
2516 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2517
2518 vmx->nested.nested_vmx_exit_ctls_high &=
2519 #ifdef CONFIG_X86_64
2520 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2521 #endif
2522 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2523 vmx->nested.nested_vmx_exit_ctls_high |=
2524 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2525 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2526 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2527
2528 if (vmx_mpx_supported())
2529 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2530
2531 /* We support free control of debug control saving. */
2532 vmx->nested.nested_vmx_true_exit_ctls_low =
2533 vmx->nested.nested_vmx_exit_ctls_low &
2534 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2535
2536 /* entry controls */
2537 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2538 vmx->nested.nested_vmx_entry_ctls_low,
2539 vmx->nested.nested_vmx_entry_ctls_high);
2540 vmx->nested.nested_vmx_entry_ctls_low =
2541 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2542 vmx->nested.nested_vmx_entry_ctls_high &=
2543 #ifdef CONFIG_X86_64
2544 VM_ENTRY_IA32E_MODE |
2545 #endif
2546 VM_ENTRY_LOAD_IA32_PAT;
2547 vmx->nested.nested_vmx_entry_ctls_high |=
2548 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2549 if (vmx_mpx_supported())
2550 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2551
2552 /* We support free control of debug control loading. */
2553 vmx->nested.nested_vmx_true_entry_ctls_low =
2554 vmx->nested.nested_vmx_entry_ctls_low &
2555 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2556
2557 /* cpu-based controls */
2558 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2559 vmx->nested.nested_vmx_procbased_ctls_low,
2560 vmx->nested.nested_vmx_procbased_ctls_high);
2561 vmx->nested.nested_vmx_procbased_ctls_low =
2562 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2563 vmx->nested.nested_vmx_procbased_ctls_high &=
2564 CPU_BASED_VIRTUAL_INTR_PENDING |
2565 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2566 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2567 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2568 CPU_BASED_CR3_STORE_EXITING |
2569 #ifdef CONFIG_X86_64
2570 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2571 #endif
2572 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2573 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2574 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2575 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2576 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2577 /*
2578 * We can allow some features even when not supported by the
2579 * hardware. For example, L1 can specify an MSR bitmap - and we
2580 * can use it to avoid exits to L1 - even when L0 runs L2
2581 * without MSR bitmaps.
2582 */
2583 vmx->nested.nested_vmx_procbased_ctls_high |=
2584 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2585 CPU_BASED_USE_MSR_BITMAPS;
2586
2587 /* We support free control of CR3 access interception. */
2588 vmx->nested.nested_vmx_true_procbased_ctls_low =
2589 vmx->nested.nested_vmx_procbased_ctls_low &
2590 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2591
2592 /* secondary cpu-based controls */
2593 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2594 vmx->nested.nested_vmx_secondary_ctls_low,
2595 vmx->nested.nested_vmx_secondary_ctls_high);
2596 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2597 vmx->nested.nested_vmx_secondary_ctls_high &=
2598 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2599 SECONDARY_EXEC_RDTSCP |
2600 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2601 SECONDARY_EXEC_ENABLE_VPID |
2602 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2603 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2604 SECONDARY_EXEC_WBINVD_EXITING |
2605 SECONDARY_EXEC_XSAVES |
2606 SECONDARY_EXEC_PCOMMIT;
2607
2608 if (enable_ept) {
2609 /* nested EPT: emulate EPT also to L1 */
2610 vmx->nested.nested_vmx_secondary_ctls_high |=
2611 SECONDARY_EXEC_ENABLE_EPT;
2612 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2613 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2614 VMX_EPT_INVEPT_BIT;
2615 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2616 /*
2617 * For nested guests, we don't do anything specific
2618 * for single context invalidation. Hence, only advertise
2619 * support for global context invalidation.
2620 */
2621 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2622 } else
2623 vmx->nested.nested_vmx_ept_caps = 0;
2624
2625 if (enable_vpid)
2626 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2627 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2628 else
2629 vmx->nested.nested_vmx_vpid_caps = 0;
2630
2631 if (enable_unrestricted_guest)
2632 vmx->nested.nested_vmx_secondary_ctls_high |=
2633 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2634
2635 /* miscellaneous data */
2636 rdmsr(MSR_IA32_VMX_MISC,
2637 vmx->nested.nested_vmx_misc_low,
2638 vmx->nested.nested_vmx_misc_high);
2639 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2640 vmx->nested.nested_vmx_misc_low |=
2641 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2642 VMX_MISC_ACTIVITY_HLT;
2643 vmx->nested.nested_vmx_misc_high = 0;
2644 }
2645
2646 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2647 {
2648 /*
2649 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2650 */
2651 return ((control & high) | low) == control;
2652 }
2653
2654 static inline u64 vmx_control_msr(u32 low, u32 high)
2655 {
2656 return low | ((u64)high << 32);
2657 }
2658
2659 /* Returns 0 on success, non-0 otherwise. */
2660 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2661 {
2662 struct vcpu_vmx *vmx = to_vmx(vcpu);
2663
2664 switch (msr_index) {
2665 case MSR_IA32_VMX_BASIC:
2666 /*
2667 * This MSR reports some information about VMX support. We
2668 * should return information about the VMX we emulate for the
2669 * guest, and the VMCS structure we give it - not about the
2670 * VMX support of the underlying hardware.
2671 */
2672 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2673 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2674 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2675 break;
2676 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2677 case MSR_IA32_VMX_PINBASED_CTLS:
2678 *pdata = vmx_control_msr(
2679 vmx->nested.nested_vmx_pinbased_ctls_low,
2680 vmx->nested.nested_vmx_pinbased_ctls_high);
2681 break;
2682 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2683 *pdata = vmx_control_msr(
2684 vmx->nested.nested_vmx_true_procbased_ctls_low,
2685 vmx->nested.nested_vmx_procbased_ctls_high);
2686 break;
2687 case MSR_IA32_VMX_PROCBASED_CTLS:
2688 *pdata = vmx_control_msr(
2689 vmx->nested.nested_vmx_procbased_ctls_low,
2690 vmx->nested.nested_vmx_procbased_ctls_high);
2691 break;
2692 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2693 *pdata = vmx_control_msr(
2694 vmx->nested.nested_vmx_true_exit_ctls_low,
2695 vmx->nested.nested_vmx_exit_ctls_high);
2696 break;
2697 case MSR_IA32_VMX_EXIT_CTLS:
2698 *pdata = vmx_control_msr(
2699 vmx->nested.nested_vmx_exit_ctls_low,
2700 vmx->nested.nested_vmx_exit_ctls_high);
2701 break;
2702 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2703 *pdata = vmx_control_msr(
2704 vmx->nested.nested_vmx_true_entry_ctls_low,
2705 vmx->nested.nested_vmx_entry_ctls_high);
2706 break;
2707 case MSR_IA32_VMX_ENTRY_CTLS:
2708 *pdata = vmx_control_msr(
2709 vmx->nested.nested_vmx_entry_ctls_low,
2710 vmx->nested.nested_vmx_entry_ctls_high);
2711 break;
2712 case MSR_IA32_VMX_MISC:
2713 *pdata = vmx_control_msr(
2714 vmx->nested.nested_vmx_misc_low,
2715 vmx->nested.nested_vmx_misc_high);
2716 break;
2717 /*
2718 * These MSRs specify bits which the guest must keep fixed (on or off)
2719 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2720 * We picked the standard core2 setting.
2721 */
2722 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2723 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2724 case MSR_IA32_VMX_CR0_FIXED0:
2725 *pdata = VMXON_CR0_ALWAYSON;
2726 break;
2727 case MSR_IA32_VMX_CR0_FIXED1:
2728 *pdata = -1ULL;
2729 break;
2730 case MSR_IA32_VMX_CR4_FIXED0:
2731 *pdata = VMXON_CR4_ALWAYSON;
2732 break;
2733 case MSR_IA32_VMX_CR4_FIXED1:
2734 *pdata = -1ULL;
2735 break;
2736 case MSR_IA32_VMX_VMCS_ENUM:
2737 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2738 break;
2739 case MSR_IA32_VMX_PROCBASED_CTLS2:
2740 *pdata = vmx_control_msr(
2741 vmx->nested.nested_vmx_secondary_ctls_low,
2742 vmx->nested.nested_vmx_secondary_ctls_high);
2743 break;
2744 case MSR_IA32_VMX_EPT_VPID_CAP:
2745 /* Currently, no nested vpid support */
2746 *pdata = vmx->nested.nested_vmx_ept_caps |
2747 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2748 break;
2749 default:
2750 return 1;
2751 }
2752
2753 return 0;
2754 }
2755
2756 /*
2757 * Reads an msr value (of 'msr_index') into 'pdata'.
2758 * Returns 0 on success, non-0 otherwise.
2759 * Assumes vcpu_load() was already called.
2760 */
2761 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2762 {
2763 struct shared_msr_entry *msr;
2764
2765 switch (msr_info->index) {
2766 #ifdef CONFIG_X86_64
2767 case MSR_FS_BASE:
2768 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2769 break;
2770 case MSR_GS_BASE:
2771 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2772 break;
2773 case MSR_KERNEL_GS_BASE:
2774 vmx_load_host_state(to_vmx(vcpu));
2775 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2776 break;
2777 #endif
2778 case MSR_EFER:
2779 return kvm_get_msr_common(vcpu, msr_info);
2780 case MSR_IA32_TSC:
2781 msr_info->data = guest_read_tsc();
2782 break;
2783 case MSR_IA32_SYSENTER_CS:
2784 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2785 break;
2786 case MSR_IA32_SYSENTER_EIP:
2787 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2788 break;
2789 case MSR_IA32_SYSENTER_ESP:
2790 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2791 break;
2792 case MSR_IA32_BNDCFGS:
2793 if (!vmx_mpx_supported())
2794 return 1;
2795 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2796 break;
2797 case MSR_IA32_FEATURE_CONTROL:
2798 if (!nested_vmx_allowed(vcpu))
2799 return 1;
2800 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2801 break;
2802 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2803 if (!nested_vmx_allowed(vcpu))
2804 return 1;
2805 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2806 case MSR_IA32_XSS:
2807 if (!vmx_xsaves_supported())
2808 return 1;
2809 msr_info->data = vcpu->arch.ia32_xss;
2810 break;
2811 case MSR_TSC_AUX:
2812 if (!guest_cpuid_has_rdtscp(vcpu))
2813 return 1;
2814 /* Otherwise falls through */
2815 default:
2816 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2817 if (msr) {
2818 msr_info->data = msr->data;
2819 break;
2820 }
2821 return kvm_get_msr_common(vcpu, msr_info);
2822 }
2823
2824 return 0;
2825 }
2826
2827 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2828
2829 /*
2830 * Writes msr value into into the appropriate "register".
2831 * Returns 0 on success, non-0 otherwise.
2832 * Assumes vcpu_load() was already called.
2833 */
2834 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2835 {
2836 struct vcpu_vmx *vmx = to_vmx(vcpu);
2837 struct shared_msr_entry *msr;
2838 int ret = 0;
2839 u32 msr_index = msr_info->index;
2840 u64 data = msr_info->data;
2841
2842 switch (msr_index) {
2843 case MSR_EFER:
2844 ret = kvm_set_msr_common(vcpu, msr_info);
2845 break;
2846 #ifdef CONFIG_X86_64
2847 case MSR_FS_BASE:
2848 vmx_segment_cache_clear(vmx);
2849 vmcs_writel(GUEST_FS_BASE, data);
2850 break;
2851 case MSR_GS_BASE:
2852 vmx_segment_cache_clear(vmx);
2853 vmcs_writel(GUEST_GS_BASE, data);
2854 break;
2855 case MSR_KERNEL_GS_BASE:
2856 vmx_load_host_state(vmx);
2857 vmx->msr_guest_kernel_gs_base = data;
2858 break;
2859 #endif
2860 case MSR_IA32_SYSENTER_CS:
2861 vmcs_write32(GUEST_SYSENTER_CS, data);
2862 break;
2863 case MSR_IA32_SYSENTER_EIP:
2864 vmcs_writel(GUEST_SYSENTER_EIP, data);
2865 break;
2866 case MSR_IA32_SYSENTER_ESP:
2867 vmcs_writel(GUEST_SYSENTER_ESP, data);
2868 break;
2869 case MSR_IA32_BNDCFGS:
2870 if (!vmx_mpx_supported())
2871 return 1;
2872 vmcs_write64(GUEST_BNDCFGS, data);
2873 break;
2874 case MSR_IA32_TSC:
2875 kvm_write_tsc(vcpu, msr_info);
2876 break;
2877 case MSR_IA32_CR_PAT:
2878 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2879 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2880 return 1;
2881 vmcs_write64(GUEST_IA32_PAT, data);
2882 vcpu->arch.pat = data;
2883 break;
2884 }
2885 ret = kvm_set_msr_common(vcpu, msr_info);
2886 break;
2887 case MSR_IA32_TSC_ADJUST:
2888 ret = kvm_set_msr_common(vcpu, msr_info);
2889 break;
2890 case MSR_IA32_FEATURE_CONTROL:
2891 if (!nested_vmx_allowed(vcpu) ||
2892 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2893 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2894 return 1;
2895 vmx->nested.msr_ia32_feature_control = data;
2896 if (msr_info->host_initiated && data == 0)
2897 vmx_leave_nested(vcpu);
2898 break;
2899 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2900 return 1; /* they are read-only */
2901 case MSR_IA32_XSS:
2902 if (!vmx_xsaves_supported())
2903 return 1;
2904 /*
2905 * The only supported bit as of Skylake is bit 8, but
2906 * it is not supported on KVM.
2907 */
2908 if (data != 0)
2909 return 1;
2910 vcpu->arch.ia32_xss = data;
2911 if (vcpu->arch.ia32_xss != host_xss)
2912 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2913 vcpu->arch.ia32_xss, host_xss);
2914 else
2915 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2916 break;
2917 case MSR_TSC_AUX:
2918 if (!guest_cpuid_has_rdtscp(vcpu))
2919 return 1;
2920 /* Check reserved bit, higher 32 bits should be zero */
2921 if ((data >> 32) != 0)
2922 return 1;
2923 /* Otherwise falls through */
2924 default:
2925 msr = find_msr_entry(vmx, msr_index);
2926 if (msr) {
2927 u64 old_msr_data = msr->data;
2928 msr->data = data;
2929 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2930 preempt_disable();
2931 ret = kvm_set_shared_msr(msr->index, msr->data,
2932 msr->mask);
2933 preempt_enable();
2934 if (ret)
2935 msr->data = old_msr_data;
2936 }
2937 break;
2938 }
2939 ret = kvm_set_msr_common(vcpu, msr_info);
2940 }
2941
2942 return ret;
2943 }
2944
2945 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2946 {
2947 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2948 switch (reg) {
2949 case VCPU_REGS_RSP:
2950 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2951 break;
2952 case VCPU_REGS_RIP:
2953 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2954 break;
2955 case VCPU_EXREG_PDPTR:
2956 if (enable_ept)
2957 ept_save_pdptrs(vcpu);
2958 break;
2959 default:
2960 break;
2961 }
2962 }
2963
2964 static __init int cpu_has_kvm_support(void)
2965 {
2966 return cpu_has_vmx();
2967 }
2968
2969 static __init int vmx_disabled_by_bios(void)
2970 {
2971 u64 msr;
2972
2973 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2974 if (msr & FEATURE_CONTROL_LOCKED) {
2975 /* launched w/ TXT and VMX disabled */
2976 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2977 && tboot_enabled())
2978 return 1;
2979 /* launched w/o TXT and VMX only enabled w/ TXT */
2980 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2981 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2982 && !tboot_enabled()) {
2983 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2984 "activate TXT before enabling KVM\n");
2985 return 1;
2986 }
2987 /* launched w/o TXT and VMX disabled */
2988 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2989 && !tboot_enabled())
2990 return 1;
2991 }
2992
2993 return 0;
2994 }
2995
2996 static void kvm_cpu_vmxon(u64 addr)
2997 {
2998 asm volatile (ASM_VMX_VMXON_RAX
2999 : : "a"(&addr), "m"(addr)
3000 : "memory", "cc");
3001 }
3002
3003 static int hardware_enable(void)
3004 {
3005 int cpu = raw_smp_processor_id();
3006 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3007 u64 old, test_bits;
3008
3009 if (cr4_read_shadow() & X86_CR4_VMXE)
3010 return -EBUSY;
3011
3012 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3013 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3014 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3015
3016 /*
3017 * Now we can enable the vmclear operation in kdump
3018 * since the loaded_vmcss_on_cpu list on this cpu
3019 * has been initialized.
3020 *
3021 * Though the cpu is not in VMX operation now, there
3022 * is no problem to enable the vmclear operation
3023 * for the loaded_vmcss_on_cpu list is empty!
3024 */
3025 crash_enable_local_vmclear(cpu);
3026
3027 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3028
3029 test_bits = FEATURE_CONTROL_LOCKED;
3030 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3031 if (tboot_enabled())
3032 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3033
3034 if ((old & test_bits) != test_bits) {
3035 /* enable and lock */
3036 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3037 }
3038 cr4_set_bits(X86_CR4_VMXE);
3039
3040 if (vmm_exclusive) {
3041 kvm_cpu_vmxon(phys_addr);
3042 ept_sync_global();
3043 }
3044
3045 native_store_gdt(this_cpu_ptr(&host_gdt));
3046
3047 return 0;
3048 }
3049
3050 static void vmclear_local_loaded_vmcss(void)
3051 {
3052 int cpu = raw_smp_processor_id();
3053 struct loaded_vmcs *v, *n;
3054
3055 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3056 loaded_vmcss_on_cpu_link)
3057 __loaded_vmcs_clear(v);
3058 }
3059
3060
3061 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3062 * tricks.
3063 */
3064 static void kvm_cpu_vmxoff(void)
3065 {
3066 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3067 }
3068
3069 static void hardware_disable(void)
3070 {
3071 if (vmm_exclusive) {
3072 vmclear_local_loaded_vmcss();
3073 kvm_cpu_vmxoff();
3074 }
3075 cr4_clear_bits(X86_CR4_VMXE);
3076 }
3077
3078 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3079 u32 msr, u32 *result)
3080 {
3081 u32 vmx_msr_low, vmx_msr_high;
3082 u32 ctl = ctl_min | ctl_opt;
3083
3084 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3085
3086 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3087 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3088
3089 /* Ensure minimum (required) set of control bits are supported. */
3090 if (ctl_min & ~ctl)
3091 return -EIO;
3092
3093 *result = ctl;
3094 return 0;
3095 }
3096
3097 static __init bool allow_1_setting(u32 msr, u32 ctl)
3098 {
3099 u32 vmx_msr_low, vmx_msr_high;
3100
3101 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3102 return vmx_msr_high & ctl;
3103 }
3104
3105 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3106 {
3107 u32 vmx_msr_low, vmx_msr_high;
3108 u32 min, opt, min2, opt2;
3109 u32 _pin_based_exec_control = 0;
3110 u32 _cpu_based_exec_control = 0;
3111 u32 _cpu_based_2nd_exec_control = 0;
3112 u32 _vmexit_control = 0;
3113 u32 _vmentry_control = 0;
3114
3115 min = CPU_BASED_HLT_EXITING |
3116 #ifdef CONFIG_X86_64
3117 CPU_BASED_CR8_LOAD_EXITING |
3118 CPU_BASED_CR8_STORE_EXITING |
3119 #endif
3120 CPU_BASED_CR3_LOAD_EXITING |
3121 CPU_BASED_CR3_STORE_EXITING |
3122 CPU_BASED_USE_IO_BITMAPS |
3123 CPU_BASED_MOV_DR_EXITING |
3124 CPU_BASED_USE_TSC_OFFSETING |
3125 CPU_BASED_MWAIT_EXITING |
3126 CPU_BASED_MONITOR_EXITING |
3127 CPU_BASED_INVLPG_EXITING |
3128 CPU_BASED_RDPMC_EXITING;
3129
3130 opt = CPU_BASED_TPR_SHADOW |
3131 CPU_BASED_USE_MSR_BITMAPS |
3132 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3133 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3134 &_cpu_based_exec_control) < 0)
3135 return -EIO;
3136 #ifdef CONFIG_X86_64
3137 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3138 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3139 ~CPU_BASED_CR8_STORE_EXITING;
3140 #endif
3141 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3142 min2 = 0;
3143 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3144 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3145 SECONDARY_EXEC_WBINVD_EXITING |
3146 SECONDARY_EXEC_ENABLE_VPID |
3147 SECONDARY_EXEC_ENABLE_EPT |
3148 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3149 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3150 SECONDARY_EXEC_RDTSCP |
3151 SECONDARY_EXEC_ENABLE_INVPCID |
3152 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3153 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3154 SECONDARY_EXEC_SHADOW_VMCS |
3155 SECONDARY_EXEC_XSAVES |
3156 SECONDARY_EXEC_ENABLE_PML |
3157 SECONDARY_EXEC_PCOMMIT;
3158 if (adjust_vmx_controls(min2, opt2,
3159 MSR_IA32_VMX_PROCBASED_CTLS2,
3160 &_cpu_based_2nd_exec_control) < 0)
3161 return -EIO;
3162 }
3163 #ifndef CONFIG_X86_64
3164 if (!(_cpu_based_2nd_exec_control &
3165 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3166 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3167 #endif
3168
3169 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3170 _cpu_based_2nd_exec_control &= ~(
3171 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3172 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3173 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3174
3175 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3176 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3177 enabled */
3178 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3179 CPU_BASED_CR3_STORE_EXITING |
3180 CPU_BASED_INVLPG_EXITING);
3181 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3182 vmx_capability.ept, vmx_capability.vpid);
3183 }
3184
3185 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3186 #ifdef CONFIG_X86_64
3187 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3188 #endif
3189 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3190 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3191 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3192 &_vmexit_control) < 0)
3193 return -EIO;
3194
3195 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3196 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3197 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3198 &_pin_based_exec_control) < 0)
3199 return -EIO;
3200
3201 if (!(_cpu_based_2nd_exec_control &
3202 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3203 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3204 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3205
3206 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3207 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3208 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3209 &_vmentry_control) < 0)
3210 return -EIO;
3211
3212 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3213
3214 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3215 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3216 return -EIO;
3217
3218 #ifdef CONFIG_X86_64
3219 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3220 if (vmx_msr_high & (1u<<16))
3221 return -EIO;
3222 #endif
3223
3224 /* Require Write-Back (WB) memory type for VMCS accesses. */
3225 if (((vmx_msr_high >> 18) & 15) != 6)
3226 return -EIO;
3227
3228 vmcs_conf->size = vmx_msr_high & 0x1fff;
3229 vmcs_conf->order = get_order(vmcs_config.size);
3230 vmcs_conf->revision_id = vmx_msr_low;
3231
3232 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3233 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3234 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3235 vmcs_conf->vmexit_ctrl = _vmexit_control;
3236 vmcs_conf->vmentry_ctrl = _vmentry_control;
3237
3238 cpu_has_load_ia32_efer =
3239 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3240 VM_ENTRY_LOAD_IA32_EFER)
3241 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3242 VM_EXIT_LOAD_IA32_EFER);
3243
3244 cpu_has_load_perf_global_ctrl =
3245 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3246 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3247 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3248 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3249
3250 /*
3251 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3252 * but due to arrata below it can't be used. Workaround is to use
3253 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3254 *
3255 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3256 *
3257 * AAK155 (model 26)
3258 * AAP115 (model 30)
3259 * AAT100 (model 37)
3260 * BC86,AAY89,BD102 (model 44)
3261 * BA97 (model 46)
3262 *
3263 */
3264 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3265 switch (boot_cpu_data.x86_model) {
3266 case 26:
3267 case 30:
3268 case 37:
3269 case 44:
3270 case 46:
3271 cpu_has_load_perf_global_ctrl = false;
3272 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3273 "does not work properly. Using workaround\n");
3274 break;
3275 default:
3276 break;
3277 }
3278 }
3279
3280 if (cpu_has_xsaves)
3281 rdmsrl(MSR_IA32_XSS, host_xss);
3282
3283 return 0;
3284 }
3285
3286 static struct vmcs *alloc_vmcs_cpu(int cpu)
3287 {
3288 int node = cpu_to_node(cpu);
3289 struct page *pages;
3290 struct vmcs *vmcs;
3291
3292 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3293 if (!pages)
3294 return NULL;
3295 vmcs = page_address(pages);
3296 memset(vmcs, 0, vmcs_config.size);
3297 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3298 return vmcs;
3299 }
3300
3301 static struct vmcs *alloc_vmcs(void)
3302 {
3303 return alloc_vmcs_cpu(raw_smp_processor_id());
3304 }
3305
3306 static void free_vmcs(struct vmcs *vmcs)
3307 {
3308 free_pages((unsigned long)vmcs, vmcs_config.order);
3309 }
3310
3311 /*
3312 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3313 */
3314 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3315 {
3316 if (!loaded_vmcs->vmcs)
3317 return;
3318 loaded_vmcs_clear(loaded_vmcs);
3319 free_vmcs(loaded_vmcs->vmcs);
3320 loaded_vmcs->vmcs = NULL;
3321 }
3322
3323 static void free_kvm_area(void)
3324 {
3325 int cpu;
3326
3327 for_each_possible_cpu(cpu) {
3328 free_vmcs(per_cpu(vmxarea, cpu));
3329 per_cpu(vmxarea, cpu) = NULL;
3330 }
3331 }
3332
3333 static void init_vmcs_shadow_fields(void)
3334 {
3335 int i, j;
3336
3337 /* No checks for read only fields yet */
3338
3339 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3340 switch (shadow_read_write_fields[i]) {
3341 case GUEST_BNDCFGS:
3342 if (!vmx_mpx_supported())
3343 continue;
3344 break;
3345 default:
3346 break;
3347 }
3348
3349 if (j < i)
3350 shadow_read_write_fields[j] =
3351 shadow_read_write_fields[i];
3352 j++;
3353 }
3354 max_shadow_read_write_fields = j;
3355
3356 /* shadowed fields guest access without vmexit */
3357 for (i = 0; i < max_shadow_read_write_fields; i++) {
3358 clear_bit(shadow_read_write_fields[i],
3359 vmx_vmwrite_bitmap);
3360 clear_bit(shadow_read_write_fields[i],
3361 vmx_vmread_bitmap);
3362 }
3363 for (i = 0; i < max_shadow_read_only_fields; i++)
3364 clear_bit(shadow_read_only_fields[i],
3365 vmx_vmread_bitmap);
3366 }
3367
3368 static __init int alloc_kvm_area(void)
3369 {
3370 int cpu;
3371
3372 for_each_possible_cpu(cpu) {
3373 struct vmcs *vmcs;
3374
3375 vmcs = alloc_vmcs_cpu(cpu);
3376 if (!vmcs) {
3377 free_kvm_area();
3378 return -ENOMEM;
3379 }
3380
3381 per_cpu(vmxarea, cpu) = vmcs;
3382 }
3383 return 0;
3384 }
3385
3386 static bool emulation_required(struct kvm_vcpu *vcpu)
3387 {
3388 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3389 }
3390
3391 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3392 struct kvm_segment *save)
3393 {
3394 if (!emulate_invalid_guest_state) {
3395 /*
3396 * CS and SS RPL should be equal during guest entry according
3397 * to VMX spec, but in reality it is not always so. Since vcpu
3398 * is in the middle of the transition from real mode to
3399 * protected mode it is safe to assume that RPL 0 is a good
3400 * default value.
3401 */
3402 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3403 save->selector &= ~SEGMENT_RPL_MASK;
3404 save->dpl = save->selector & SEGMENT_RPL_MASK;
3405 save->s = 1;
3406 }
3407 vmx_set_segment(vcpu, save, seg);
3408 }
3409
3410 static void enter_pmode(struct kvm_vcpu *vcpu)
3411 {
3412 unsigned long flags;
3413 struct vcpu_vmx *vmx = to_vmx(vcpu);
3414
3415 /*
3416 * Update real mode segment cache. It may be not up-to-date if sement
3417 * register was written while vcpu was in a guest mode.
3418 */
3419 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3420 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3421 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3422 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3423 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3424 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3425
3426 vmx->rmode.vm86_active = 0;
3427
3428 vmx_segment_cache_clear(vmx);
3429
3430 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3431
3432 flags = vmcs_readl(GUEST_RFLAGS);
3433 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3434 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3435 vmcs_writel(GUEST_RFLAGS, flags);
3436
3437 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3438 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3439
3440 update_exception_bitmap(vcpu);
3441
3442 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3443 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3444 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3445 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3446 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3447 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3448 }
3449
3450 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3451 {
3452 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3453 struct kvm_segment var = *save;
3454
3455 var.dpl = 0x3;
3456 if (seg == VCPU_SREG_CS)
3457 var.type = 0x3;
3458
3459 if (!emulate_invalid_guest_state) {
3460 var.selector = var.base >> 4;
3461 var.base = var.base & 0xffff0;
3462 var.limit = 0xffff;
3463 var.g = 0;
3464 var.db = 0;
3465 var.present = 1;
3466 var.s = 1;
3467 var.l = 0;
3468 var.unusable = 0;
3469 var.type = 0x3;
3470 var.avl = 0;
3471 if (save->base & 0xf)
3472 printk_once(KERN_WARNING "kvm: segment base is not "
3473 "paragraph aligned when entering "
3474 "protected mode (seg=%d)", seg);
3475 }
3476
3477 vmcs_write16(sf->selector, var.selector);
3478 vmcs_write32(sf->base, var.base);
3479 vmcs_write32(sf->limit, var.limit);
3480 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3481 }
3482
3483 static void enter_rmode(struct kvm_vcpu *vcpu)
3484 {
3485 unsigned long flags;
3486 struct vcpu_vmx *vmx = to_vmx(vcpu);
3487
3488 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3489 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3490 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3491 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3492 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3493 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3494 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3495
3496 vmx->rmode.vm86_active = 1;
3497
3498 /*
3499 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3500 * vcpu. Warn the user that an update is overdue.
3501 */
3502 if (!vcpu->kvm->arch.tss_addr)
3503 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3504 "called before entering vcpu\n");
3505
3506 vmx_segment_cache_clear(vmx);
3507
3508 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3509 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3510 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3511
3512 flags = vmcs_readl(GUEST_RFLAGS);
3513 vmx->rmode.save_rflags = flags;
3514
3515 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3516
3517 vmcs_writel(GUEST_RFLAGS, flags);
3518 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3519 update_exception_bitmap(vcpu);
3520
3521 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3522 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3523 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3524 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3525 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3526 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3527
3528 kvm_mmu_reset_context(vcpu);
3529 }
3530
3531 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3532 {
3533 struct vcpu_vmx *vmx = to_vmx(vcpu);
3534 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3535
3536 if (!msr)
3537 return;
3538
3539 /*
3540 * Force kernel_gs_base reloading before EFER changes, as control
3541 * of this msr depends on is_long_mode().
3542 */
3543 vmx_load_host_state(to_vmx(vcpu));
3544 vcpu->arch.efer = efer;
3545 if (efer & EFER_LMA) {
3546 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3547 msr->data = efer;
3548 } else {
3549 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3550
3551 msr->data = efer & ~EFER_LME;
3552 }
3553 setup_msrs(vmx);
3554 }
3555
3556 #ifdef CONFIG_X86_64
3557
3558 static void enter_lmode(struct kvm_vcpu *vcpu)
3559 {
3560 u32 guest_tr_ar;
3561
3562 vmx_segment_cache_clear(to_vmx(vcpu));
3563
3564 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3565 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3566 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3567 __func__);
3568 vmcs_write32(GUEST_TR_AR_BYTES,
3569 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3570 | VMX_AR_TYPE_BUSY_64_TSS);
3571 }
3572 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3573 }
3574
3575 static void exit_lmode(struct kvm_vcpu *vcpu)
3576 {
3577 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3578 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3579 }
3580
3581 #endif
3582
3583 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3584 {
3585 vpid_sync_context(vpid);
3586 if (enable_ept) {
3587 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3588 return;
3589 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3590 }
3591 }
3592
3593 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3594 {
3595 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3596 }
3597
3598 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3599 {
3600 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3601
3602 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3603 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3604 }
3605
3606 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3607 {
3608 if (enable_ept && is_paging(vcpu))
3609 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3610 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3611 }
3612
3613 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3614 {
3615 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3616
3617 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3618 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3619 }
3620
3621 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3622 {
3623 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3624
3625 if (!test_bit(VCPU_EXREG_PDPTR,
3626 (unsigned long *)&vcpu->arch.regs_dirty))
3627 return;
3628
3629 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3630 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3631 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3632 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3633 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3634 }
3635 }
3636
3637 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3638 {
3639 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3640
3641 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3642 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3643 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3644 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3645 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3646 }
3647
3648 __set_bit(VCPU_EXREG_PDPTR,
3649 (unsigned long *)&vcpu->arch.regs_avail);
3650 __set_bit(VCPU_EXREG_PDPTR,
3651 (unsigned long *)&vcpu->arch.regs_dirty);
3652 }
3653
3654 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3655
3656 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3657 unsigned long cr0,
3658 struct kvm_vcpu *vcpu)
3659 {
3660 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3661 vmx_decache_cr3(vcpu);
3662 if (!(cr0 & X86_CR0_PG)) {
3663 /* From paging/starting to nonpaging */
3664 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3665 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3666 (CPU_BASED_CR3_LOAD_EXITING |
3667 CPU_BASED_CR3_STORE_EXITING));
3668 vcpu->arch.cr0 = cr0;
3669 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3670 } else if (!is_paging(vcpu)) {
3671 /* From nonpaging to paging */
3672 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3673 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3674 ~(CPU_BASED_CR3_LOAD_EXITING |
3675 CPU_BASED_CR3_STORE_EXITING));
3676 vcpu->arch.cr0 = cr0;
3677 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3678 }
3679
3680 if (!(cr0 & X86_CR0_WP))
3681 *hw_cr0 &= ~X86_CR0_WP;
3682 }
3683
3684 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3685 {
3686 struct vcpu_vmx *vmx = to_vmx(vcpu);
3687 unsigned long hw_cr0;
3688
3689 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3690 if (enable_unrestricted_guest)
3691 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3692 else {
3693 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3694
3695 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3696 enter_pmode(vcpu);
3697
3698 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3699 enter_rmode(vcpu);
3700 }
3701
3702 #ifdef CONFIG_X86_64
3703 if (vcpu->arch.efer & EFER_LME) {
3704 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3705 enter_lmode(vcpu);
3706 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3707 exit_lmode(vcpu);
3708 }
3709 #endif
3710
3711 if (enable_ept)
3712 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3713
3714 if (!vcpu->fpu_active)
3715 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3716
3717 vmcs_writel(CR0_READ_SHADOW, cr0);
3718 vmcs_writel(GUEST_CR0, hw_cr0);
3719 vcpu->arch.cr0 = cr0;
3720
3721 /* depends on vcpu->arch.cr0 to be set to a new value */
3722 vmx->emulation_required = emulation_required(vcpu);
3723 }
3724
3725 static u64 construct_eptp(unsigned long root_hpa)
3726 {
3727 u64 eptp;
3728
3729 /* TODO write the value reading from MSR */
3730 eptp = VMX_EPT_DEFAULT_MT |
3731 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3732 if (enable_ept_ad_bits)
3733 eptp |= VMX_EPT_AD_ENABLE_BIT;
3734 eptp |= (root_hpa & PAGE_MASK);
3735
3736 return eptp;
3737 }
3738
3739 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3740 {
3741 unsigned long guest_cr3;
3742 u64 eptp;
3743
3744 guest_cr3 = cr3;
3745 if (enable_ept) {
3746 eptp = construct_eptp(cr3);
3747 vmcs_write64(EPT_POINTER, eptp);
3748 if (is_paging(vcpu) || is_guest_mode(vcpu))
3749 guest_cr3 = kvm_read_cr3(vcpu);
3750 else
3751 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3752 ept_load_pdptrs(vcpu);
3753 }
3754
3755 vmx_flush_tlb(vcpu);
3756 vmcs_writel(GUEST_CR3, guest_cr3);
3757 }
3758
3759 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3760 {
3761 /*
3762 * Pass through host's Machine Check Enable value to hw_cr4, which
3763 * is in force while we are in guest mode. Do not let guests control
3764 * this bit, even if host CR4.MCE == 0.
3765 */
3766 unsigned long hw_cr4 =
3767 (cr4_read_shadow() & X86_CR4_MCE) |
3768 (cr4 & ~X86_CR4_MCE) |
3769 (to_vmx(vcpu)->rmode.vm86_active ?
3770 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3771
3772 if (cr4 & X86_CR4_VMXE) {
3773 /*
3774 * To use VMXON (and later other VMX instructions), a guest
3775 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3776 * So basically the check on whether to allow nested VMX
3777 * is here.
3778 */
3779 if (!nested_vmx_allowed(vcpu))
3780 return 1;
3781 }
3782 if (to_vmx(vcpu)->nested.vmxon &&
3783 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3784 return 1;
3785
3786 vcpu->arch.cr4 = cr4;
3787 if (enable_ept) {
3788 if (!is_paging(vcpu)) {
3789 hw_cr4 &= ~X86_CR4_PAE;
3790 hw_cr4 |= X86_CR4_PSE;
3791 /*
3792 * SMEP/SMAP is disabled if CPU is in non-paging mode
3793 * in hardware. However KVM always uses paging mode to
3794 * emulate guest non-paging mode with TDP.
3795 * To emulate this behavior, SMEP/SMAP needs to be
3796 * manually disabled when guest switches to non-paging
3797 * mode.
3798 */
3799 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3800 } else if (!(cr4 & X86_CR4_PAE)) {
3801 hw_cr4 &= ~X86_CR4_PAE;
3802 }
3803 }
3804
3805 vmcs_writel(CR4_READ_SHADOW, cr4);
3806 vmcs_writel(GUEST_CR4, hw_cr4);
3807 return 0;
3808 }
3809
3810 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3811 struct kvm_segment *var, int seg)
3812 {
3813 struct vcpu_vmx *vmx = to_vmx(vcpu);
3814 u32 ar;
3815
3816 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3817 *var = vmx->rmode.segs[seg];
3818 if (seg == VCPU_SREG_TR
3819 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3820 return;
3821 var->base = vmx_read_guest_seg_base(vmx, seg);
3822 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3823 return;
3824 }
3825 var->base = vmx_read_guest_seg_base(vmx, seg);
3826 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3827 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3828 ar = vmx_read_guest_seg_ar(vmx, seg);
3829 var->unusable = (ar >> 16) & 1;
3830 var->type = ar & 15;
3831 var->s = (ar >> 4) & 1;
3832 var->dpl = (ar >> 5) & 3;
3833 /*
3834 * Some userspaces do not preserve unusable property. Since usable
3835 * segment has to be present according to VMX spec we can use present
3836 * property to amend userspace bug by making unusable segment always
3837 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3838 * segment as unusable.
3839 */
3840 var->present = !var->unusable;
3841 var->avl = (ar >> 12) & 1;
3842 var->l = (ar >> 13) & 1;
3843 var->db = (ar >> 14) & 1;
3844 var->g = (ar >> 15) & 1;
3845 }
3846
3847 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3848 {
3849 struct kvm_segment s;
3850
3851 if (to_vmx(vcpu)->rmode.vm86_active) {
3852 vmx_get_segment(vcpu, &s, seg);
3853 return s.base;
3854 }
3855 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3856 }
3857
3858 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3859 {
3860 struct vcpu_vmx *vmx = to_vmx(vcpu);
3861
3862 if (unlikely(vmx->rmode.vm86_active))
3863 return 0;
3864 else {
3865 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3866 return VMX_AR_DPL(ar);
3867 }
3868 }
3869
3870 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3871 {
3872 u32 ar;
3873
3874 if (var->unusable || !var->present)
3875 ar = 1 << 16;
3876 else {
3877 ar = var->type & 15;
3878 ar |= (var->s & 1) << 4;
3879 ar |= (var->dpl & 3) << 5;
3880 ar |= (var->present & 1) << 7;
3881 ar |= (var->avl & 1) << 12;
3882 ar |= (var->l & 1) << 13;
3883 ar |= (var->db & 1) << 14;
3884 ar |= (var->g & 1) << 15;
3885 }
3886
3887 return ar;
3888 }
3889
3890 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3891 struct kvm_segment *var, int seg)
3892 {
3893 struct vcpu_vmx *vmx = to_vmx(vcpu);
3894 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3895
3896 vmx_segment_cache_clear(vmx);
3897
3898 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3899 vmx->rmode.segs[seg] = *var;
3900 if (seg == VCPU_SREG_TR)
3901 vmcs_write16(sf->selector, var->selector);
3902 else if (var->s)
3903 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3904 goto out;
3905 }
3906
3907 vmcs_writel(sf->base, var->base);
3908 vmcs_write32(sf->limit, var->limit);
3909 vmcs_write16(sf->selector, var->selector);
3910
3911 /*
3912 * Fix the "Accessed" bit in AR field of segment registers for older
3913 * qemu binaries.
3914 * IA32 arch specifies that at the time of processor reset the
3915 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3916 * is setting it to 0 in the userland code. This causes invalid guest
3917 * state vmexit when "unrestricted guest" mode is turned on.
3918 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3919 * tree. Newer qemu binaries with that qemu fix would not need this
3920 * kvm hack.
3921 */
3922 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3923 var->type |= 0x1; /* Accessed */
3924
3925 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3926
3927 out:
3928 vmx->emulation_required = emulation_required(vcpu);
3929 }
3930
3931 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3932 {
3933 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3934
3935 *db = (ar >> 14) & 1;
3936 *l = (ar >> 13) & 1;
3937 }
3938
3939 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3940 {
3941 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3942 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3943 }
3944
3945 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3946 {
3947 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3948 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3949 }
3950
3951 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3952 {
3953 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3954 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3955 }
3956
3957 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3958 {
3959 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3960 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3961 }
3962
3963 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3964 {
3965 struct kvm_segment var;
3966 u32 ar;
3967
3968 vmx_get_segment(vcpu, &var, seg);
3969 var.dpl = 0x3;
3970 if (seg == VCPU_SREG_CS)
3971 var.type = 0x3;
3972 ar = vmx_segment_access_rights(&var);
3973
3974 if (var.base != (var.selector << 4))
3975 return false;
3976 if (var.limit != 0xffff)
3977 return false;
3978 if (ar != 0xf3)
3979 return false;
3980
3981 return true;
3982 }
3983
3984 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3985 {
3986 struct kvm_segment cs;
3987 unsigned int cs_rpl;
3988
3989 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3990 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3991
3992 if (cs.unusable)
3993 return false;
3994 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3995 return false;
3996 if (!cs.s)
3997 return false;
3998 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3999 if (cs.dpl > cs_rpl)
4000 return false;
4001 } else {
4002 if (cs.dpl != cs_rpl)
4003 return false;
4004 }
4005 if (!cs.present)
4006 return false;
4007
4008 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4009 return true;
4010 }
4011
4012 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4013 {
4014 struct kvm_segment ss;
4015 unsigned int ss_rpl;
4016
4017 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4018 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4019
4020 if (ss.unusable)
4021 return true;
4022 if (ss.type != 3 && ss.type != 7)
4023 return false;
4024 if (!ss.s)
4025 return false;
4026 if (ss.dpl != ss_rpl) /* DPL != RPL */
4027 return false;
4028 if (!ss.present)
4029 return false;
4030
4031 return true;
4032 }
4033
4034 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4035 {
4036 struct kvm_segment var;
4037 unsigned int rpl;
4038
4039 vmx_get_segment(vcpu, &var, seg);
4040 rpl = var.selector & SEGMENT_RPL_MASK;
4041
4042 if (var.unusable)
4043 return true;
4044 if (!var.s)
4045 return false;
4046 if (!var.present)
4047 return false;
4048 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4049 if (var.dpl < rpl) /* DPL < RPL */
4050 return false;
4051 }
4052
4053 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4054 * rights flags
4055 */
4056 return true;
4057 }
4058
4059 static bool tr_valid(struct kvm_vcpu *vcpu)
4060 {
4061 struct kvm_segment tr;
4062
4063 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4064
4065 if (tr.unusable)
4066 return false;
4067 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4068 return false;
4069 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4070 return false;
4071 if (!tr.present)
4072 return false;
4073
4074 return true;
4075 }
4076
4077 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4078 {
4079 struct kvm_segment ldtr;
4080
4081 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4082
4083 if (ldtr.unusable)
4084 return true;
4085 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4086 return false;
4087 if (ldtr.type != 2)
4088 return false;
4089 if (!ldtr.present)
4090 return false;
4091
4092 return true;
4093 }
4094
4095 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4096 {
4097 struct kvm_segment cs, ss;
4098
4099 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4100 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4101
4102 return ((cs.selector & SEGMENT_RPL_MASK) ==
4103 (ss.selector & SEGMENT_RPL_MASK));
4104 }
4105
4106 /*
4107 * Check if guest state is valid. Returns true if valid, false if
4108 * not.
4109 * We assume that registers are always usable
4110 */
4111 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4112 {
4113 if (enable_unrestricted_guest)
4114 return true;
4115
4116 /* real mode guest state checks */
4117 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4118 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4119 return false;
4120 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4121 return false;
4122 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4123 return false;
4124 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4125 return false;
4126 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4127 return false;
4128 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4129 return false;
4130 } else {
4131 /* protected mode guest state checks */
4132 if (!cs_ss_rpl_check(vcpu))
4133 return false;
4134 if (!code_segment_valid(vcpu))
4135 return false;
4136 if (!stack_segment_valid(vcpu))
4137 return false;
4138 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4139 return false;
4140 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4141 return false;
4142 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4143 return false;
4144 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4145 return false;
4146 if (!tr_valid(vcpu))
4147 return false;
4148 if (!ldtr_valid(vcpu))
4149 return false;
4150 }
4151 /* TODO:
4152 * - Add checks on RIP
4153 * - Add checks on RFLAGS
4154 */
4155
4156 return true;
4157 }
4158
4159 static int init_rmode_tss(struct kvm *kvm)
4160 {
4161 gfn_t fn;
4162 u16 data = 0;
4163 int idx, r;
4164
4165 idx = srcu_read_lock(&kvm->srcu);
4166 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4167 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4168 if (r < 0)
4169 goto out;
4170 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4171 r = kvm_write_guest_page(kvm, fn++, &data,
4172 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4173 if (r < 0)
4174 goto out;
4175 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4176 if (r < 0)
4177 goto out;
4178 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4179 if (r < 0)
4180 goto out;
4181 data = ~0;
4182 r = kvm_write_guest_page(kvm, fn, &data,
4183 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4184 sizeof(u8));
4185 out:
4186 srcu_read_unlock(&kvm->srcu, idx);
4187 return r;
4188 }
4189
4190 static int init_rmode_identity_map(struct kvm *kvm)
4191 {
4192 int i, idx, r = 0;
4193 pfn_t identity_map_pfn;
4194 u32 tmp;
4195
4196 if (!enable_ept)
4197 return 0;
4198
4199 /* Protect kvm->arch.ept_identity_pagetable_done. */
4200 mutex_lock(&kvm->slots_lock);
4201
4202 if (likely(kvm->arch.ept_identity_pagetable_done))
4203 goto out2;
4204
4205 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4206
4207 r = alloc_identity_pagetable(kvm);
4208 if (r < 0)
4209 goto out2;
4210
4211 idx = srcu_read_lock(&kvm->srcu);
4212 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4213 if (r < 0)
4214 goto out;
4215 /* Set up identity-mapping pagetable for EPT in real mode */
4216 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4217 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4218 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4219 r = kvm_write_guest_page(kvm, identity_map_pfn,
4220 &tmp, i * sizeof(tmp), sizeof(tmp));
4221 if (r < 0)
4222 goto out;
4223 }
4224 kvm->arch.ept_identity_pagetable_done = true;
4225
4226 out:
4227 srcu_read_unlock(&kvm->srcu, idx);
4228
4229 out2:
4230 mutex_unlock(&kvm->slots_lock);
4231 return r;
4232 }
4233
4234 static void seg_setup(int seg)
4235 {
4236 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4237 unsigned int ar;
4238
4239 vmcs_write16(sf->selector, 0);
4240 vmcs_writel(sf->base, 0);
4241 vmcs_write32(sf->limit, 0xffff);
4242 ar = 0x93;
4243 if (seg == VCPU_SREG_CS)
4244 ar |= 0x08; /* code segment */
4245
4246 vmcs_write32(sf->ar_bytes, ar);
4247 }
4248
4249 static int alloc_apic_access_page(struct kvm *kvm)
4250 {
4251 struct page *page;
4252 int r = 0;
4253
4254 mutex_lock(&kvm->slots_lock);
4255 if (kvm->arch.apic_access_page_done)
4256 goto out;
4257 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4258 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4259 if (r)
4260 goto out;
4261
4262 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4263 if (is_error_page(page)) {
4264 r = -EFAULT;
4265 goto out;
4266 }
4267
4268 /*
4269 * Do not pin the page in memory, so that memory hot-unplug
4270 * is able to migrate it.
4271 */
4272 put_page(page);
4273 kvm->arch.apic_access_page_done = true;
4274 out:
4275 mutex_unlock(&kvm->slots_lock);
4276 return r;
4277 }
4278
4279 static int alloc_identity_pagetable(struct kvm *kvm)
4280 {
4281 /* Called with kvm->slots_lock held. */
4282
4283 int r = 0;
4284
4285 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4286
4287 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4288 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4289
4290 return r;
4291 }
4292
4293 static int allocate_vpid(void)
4294 {
4295 int vpid;
4296
4297 if (!enable_vpid)
4298 return 0;
4299 spin_lock(&vmx_vpid_lock);
4300 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4301 if (vpid < VMX_NR_VPIDS)
4302 __set_bit(vpid, vmx_vpid_bitmap);
4303 else
4304 vpid = 0;
4305 spin_unlock(&vmx_vpid_lock);
4306 return vpid;
4307 }
4308
4309 static void free_vpid(int vpid)
4310 {
4311 if (!enable_vpid || vpid == 0)
4312 return;
4313 spin_lock(&vmx_vpid_lock);
4314 __clear_bit(vpid, vmx_vpid_bitmap);
4315 spin_unlock(&vmx_vpid_lock);
4316 }
4317
4318 #define MSR_TYPE_R 1
4319 #define MSR_TYPE_W 2
4320 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4321 u32 msr, int type)
4322 {
4323 int f = sizeof(unsigned long);
4324
4325 if (!cpu_has_vmx_msr_bitmap())
4326 return;
4327
4328 /*
4329 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4330 * have the write-low and read-high bitmap offsets the wrong way round.
4331 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4332 */
4333 if (msr <= 0x1fff) {
4334 if (type & MSR_TYPE_R)
4335 /* read-low */
4336 __clear_bit(msr, msr_bitmap + 0x000 / f);
4337
4338 if (type & MSR_TYPE_W)
4339 /* write-low */
4340 __clear_bit(msr, msr_bitmap + 0x800 / f);
4341
4342 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4343 msr &= 0x1fff;
4344 if (type & MSR_TYPE_R)
4345 /* read-high */
4346 __clear_bit(msr, msr_bitmap + 0x400 / f);
4347
4348 if (type & MSR_TYPE_W)
4349 /* write-high */
4350 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4351
4352 }
4353 }
4354
4355 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4356 u32 msr, int type)
4357 {
4358 int f = sizeof(unsigned long);
4359
4360 if (!cpu_has_vmx_msr_bitmap())
4361 return;
4362
4363 /*
4364 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4365 * have the write-low and read-high bitmap offsets the wrong way round.
4366 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4367 */
4368 if (msr <= 0x1fff) {
4369 if (type & MSR_TYPE_R)
4370 /* read-low */
4371 __set_bit(msr, msr_bitmap + 0x000 / f);
4372
4373 if (type & MSR_TYPE_W)
4374 /* write-low */
4375 __set_bit(msr, msr_bitmap + 0x800 / f);
4376
4377 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4378 msr &= 0x1fff;
4379 if (type & MSR_TYPE_R)
4380 /* read-high */
4381 __set_bit(msr, msr_bitmap + 0x400 / f);
4382
4383 if (type & MSR_TYPE_W)
4384 /* write-high */
4385 __set_bit(msr, msr_bitmap + 0xc00 / f);
4386
4387 }
4388 }
4389
4390 /*
4391 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4392 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4393 */
4394 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4395 unsigned long *msr_bitmap_nested,
4396 u32 msr, int type)
4397 {
4398 int f = sizeof(unsigned long);
4399
4400 if (!cpu_has_vmx_msr_bitmap()) {
4401 WARN_ON(1);
4402 return;
4403 }
4404
4405 /*
4406 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4407 * have the write-low and read-high bitmap offsets the wrong way round.
4408 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4409 */
4410 if (msr <= 0x1fff) {
4411 if (type & MSR_TYPE_R &&
4412 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4413 /* read-low */
4414 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4415
4416 if (type & MSR_TYPE_W &&
4417 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4418 /* write-low */
4419 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4420
4421 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4422 msr &= 0x1fff;
4423 if (type & MSR_TYPE_R &&
4424 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4425 /* read-high */
4426 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4427
4428 if (type & MSR_TYPE_W &&
4429 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4430 /* write-high */
4431 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4432
4433 }
4434 }
4435
4436 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4437 {
4438 if (!longmode_only)
4439 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4440 msr, MSR_TYPE_R | MSR_TYPE_W);
4441 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4442 msr, MSR_TYPE_R | MSR_TYPE_W);
4443 }
4444
4445 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4446 {
4447 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4448 msr, MSR_TYPE_R);
4449 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4450 msr, MSR_TYPE_R);
4451 }
4452
4453 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4454 {
4455 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4456 msr, MSR_TYPE_R);
4457 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4458 msr, MSR_TYPE_R);
4459 }
4460
4461 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4462 {
4463 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4464 msr, MSR_TYPE_W);
4465 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4466 msr, MSR_TYPE_W);
4467 }
4468
4469 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4470 {
4471 return enable_apicv && lapic_in_kernel(vcpu);
4472 }
4473
4474 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4475 {
4476 struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 int max_irr;
4478 void *vapic_page;
4479 u16 status;
4480
4481 if (vmx->nested.pi_desc &&
4482 vmx->nested.pi_pending) {
4483 vmx->nested.pi_pending = false;
4484 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4485 return 0;
4486
4487 max_irr = find_last_bit(
4488 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4489
4490 if (max_irr == 256)
4491 return 0;
4492
4493 vapic_page = kmap(vmx->nested.virtual_apic_page);
4494 if (!vapic_page) {
4495 WARN_ON(1);
4496 return -ENOMEM;
4497 }
4498 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4499 kunmap(vmx->nested.virtual_apic_page);
4500
4501 status = vmcs_read16(GUEST_INTR_STATUS);
4502 if ((u8)max_irr > ((u8)status & 0xff)) {
4503 status &= ~0xff;
4504 status |= (u8)max_irr;
4505 vmcs_write16(GUEST_INTR_STATUS, status);
4506 }
4507 }
4508 return 0;
4509 }
4510
4511 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4512 {
4513 #ifdef CONFIG_SMP
4514 if (vcpu->mode == IN_GUEST_MODE) {
4515 struct vcpu_vmx *vmx = to_vmx(vcpu);
4516
4517 /*
4518 * Currently, we don't support urgent interrupt,
4519 * all interrupts are recognized as non-urgent
4520 * interrupt, so we cannot post interrupts when
4521 * 'SN' is set.
4522 *
4523 * If the vcpu is in guest mode, it means it is
4524 * running instead of being scheduled out and
4525 * waiting in the run queue, and that's the only
4526 * case when 'SN' is set currently, warning if
4527 * 'SN' is set.
4528 */
4529 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4530
4531 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4532 POSTED_INTR_VECTOR);
4533 return true;
4534 }
4535 #endif
4536 return false;
4537 }
4538
4539 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4540 int vector)
4541 {
4542 struct vcpu_vmx *vmx = to_vmx(vcpu);
4543
4544 if (is_guest_mode(vcpu) &&
4545 vector == vmx->nested.posted_intr_nv) {
4546 /* the PIR and ON have been set by L1. */
4547 kvm_vcpu_trigger_posted_interrupt(vcpu);
4548 /*
4549 * If a posted intr is not recognized by hardware,
4550 * we will accomplish it in the next vmentry.
4551 */
4552 vmx->nested.pi_pending = true;
4553 kvm_make_request(KVM_REQ_EVENT, vcpu);
4554 return 0;
4555 }
4556 return -1;
4557 }
4558 /*
4559 * Send interrupt to vcpu via posted interrupt way.
4560 * 1. If target vcpu is running(non-root mode), send posted interrupt
4561 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4562 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4563 * interrupt from PIR in next vmentry.
4564 */
4565 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4566 {
4567 struct vcpu_vmx *vmx = to_vmx(vcpu);
4568 int r;
4569
4570 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4571 if (!r)
4572 return;
4573
4574 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4575 return;
4576
4577 r = pi_test_and_set_on(&vmx->pi_desc);
4578 kvm_make_request(KVM_REQ_EVENT, vcpu);
4579 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4580 kvm_vcpu_kick(vcpu);
4581 }
4582
4583 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4584 {
4585 struct vcpu_vmx *vmx = to_vmx(vcpu);
4586
4587 if (!pi_test_and_clear_on(&vmx->pi_desc))
4588 return;
4589
4590 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4591 }
4592
4593 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4594 {
4595 return;
4596 }
4597
4598 /*
4599 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4600 * will not change in the lifetime of the guest.
4601 * Note that host-state that does change is set elsewhere. E.g., host-state
4602 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4603 */
4604 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4605 {
4606 u32 low32, high32;
4607 unsigned long tmpl;
4608 struct desc_ptr dt;
4609 unsigned long cr4;
4610
4611 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4612 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4613
4614 /* Save the most likely value for this task's CR4 in the VMCS. */
4615 cr4 = cr4_read_shadow();
4616 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4617 vmx->host_state.vmcs_host_cr4 = cr4;
4618
4619 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4620 #ifdef CONFIG_X86_64
4621 /*
4622 * Load null selectors, so we can avoid reloading them in
4623 * __vmx_load_host_state(), in case userspace uses the null selectors
4624 * too (the expected case).
4625 */
4626 vmcs_write16(HOST_DS_SELECTOR, 0);
4627 vmcs_write16(HOST_ES_SELECTOR, 0);
4628 #else
4629 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4630 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4631 #endif
4632 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4633 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4634
4635 native_store_idt(&dt);
4636 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4637 vmx->host_idt_base = dt.address;
4638
4639 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4640
4641 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4642 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4643 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4644 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4645
4646 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4647 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4648 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4649 }
4650 }
4651
4652 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4653 {
4654 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4655 if (enable_ept)
4656 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4657 if (is_guest_mode(&vmx->vcpu))
4658 vmx->vcpu.arch.cr4_guest_owned_bits &=
4659 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4660 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4661 }
4662
4663 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4664 {
4665 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4666
4667 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4668 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4669 return pin_based_exec_ctrl;
4670 }
4671
4672 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4673 {
4674 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4675
4676 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4677 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4678
4679 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4680 exec_control &= ~CPU_BASED_TPR_SHADOW;
4681 #ifdef CONFIG_X86_64
4682 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4683 CPU_BASED_CR8_LOAD_EXITING;
4684 #endif
4685 }
4686 if (!enable_ept)
4687 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4688 CPU_BASED_CR3_LOAD_EXITING |
4689 CPU_BASED_INVLPG_EXITING;
4690 return exec_control;
4691 }
4692
4693 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4694 {
4695 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4696 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4697 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4698 if (vmx->vpid == 0)
4699 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4700 if (!enable_ept) {
4701 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4702 enable_unrestricted_guest = 0;
4703 /* Enable INVPCID for non-ept guests may cause performance regression. */
4704 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4705 }
4706 if (!enable_unrestricted_guest)
4707 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4708 if (!ple_gap)
4709 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4710 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4711 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4712 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4713 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4714 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4715 (handle_vmptrld).
4716 We can NOT enable shadow_vmcs here because we don't have yet
4717 a current VMCS12
4718 */
4719 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4720 /* PML is enabled/disabled in creating/destorying vcpu */
4721 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4722
4723 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4724 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4725
4726 return exec_control;
4727 }
4728
4729 static void ept_set_mmio_spte_mask(void)
4730 {
4731 /*
4732 * EPT Misconfigurations can be generated if the value of bits 2:0
4733 * of an EPT paging-structure entry is 110b (write/execute).
4734 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4735 * spte.
4736 */
4737 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4738 }
4739
4740 #define VMX_XSS_EXIT_BITMAP 0
4741 /*
4742 * Sets up the vmcs for emulated real mode.
4743 */
4744 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4745 {
4746 #ifdef CONFIG_X86_64
4747 unsigned long a;
4748 #endif
4749 int i;
4750
4751 /* I/O */
4752 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4753 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4754
4755 if (enable_shadow_vmcs) {
4756 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4757 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4758 }
4759 if (cpu_has_vmx_msr_bitmap())
4760 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4761
4762 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4763
4764 /* Control */
4765 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4766
4767 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4768
4769 if (cpu_has_secondary_exec_ctrls())
4770 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4771 vmx_secondary_exec_control(vmx));
4772
4773 if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
4774 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4775 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4776 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4777 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4778
4779 vmcs_write16(GUEST_INTR_STATUS, 0);
4780
4781 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4782 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4783 }
4784
4785 if (ple_gap) {
4786 vmcs_write32(PLE_GAP, ple_gap);
4787 vmx->ple_window = ple_window;
4788 vmx->ple_window_dirty = true;
4789 }
4790
4791 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4792 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4793 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4794
4795 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4796 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4797 vmx_set_constant_host_state(vmx);
4798 #ifdef CONFIG_X86_64
4799 rdmsrl(MSR_FS_BASE, a);
4800 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4801 rdmsrl(MSR_GS_BASE, a);
4802 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4803 #else
4804 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4805 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4806 #endif
4807
4808 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4809 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4810 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4811 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4812 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4813
4814 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4815 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4816
4817 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4818 u32 index = vmx_msr_index[i];
4819 u32 data_low, data_high;
4820 int j = vmx->nmsrs;
4821
4822 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4823 continue;
4824 if (wrmsr_safe(index, data_low, data_high) < 0)
4825 continue;
4826 vmx->guest_msrs[j].index = i;
4827 vmx->guest_msrs[j].data = 0;
4828 vmx->guest_msrs[j].mask = -1ull;
4829 ++vmx->nmsrs;
4830 }
4831
4832
4833 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4834
4835 /* 22.2.1, 20.8.1 */
4836 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4837
4838 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4839 set_cr4_guest_host_mask(vmx);
4840
4841 if (vmx_xsaves_supported())
4842 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4843
4844 return 0;
4845 }
4846
4847 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4848 {
4849 struct vcpu_vmx *vmx = to_vmx(vcpu);
4850 struct msr_data apic_base_msr;
4851 u64 cr0;
4852
4853 vmx->rmode.vm86_active = 0;
4854
4855 vmx->soft_vnmi_blocked = 0;
4856
4857 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4858 kvm_set_cr8(vcpu, 0);
4859
4860 if (!init_event) {
4861 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4862 MSR_IA32_APICBASE_ENABLE;
4863 if (kvm_vcpu_is_reset_bsp(vcpu))
4864 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4865 apic_base_msr.host_initiated = true;
4866 kvm_set_apic_base(vcpu, &apic_base_msr);
4867 }
4868
4869 vmx_segment_cache_clear(vmx);
4870
4871 seg_setup(VCPU_SREG_CS);
4872 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4873 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4874
4875 seg_setup(VCPU_SREG_DS);
4876 seg_setup(VCPU_SREG_ES);
4877 seg_setup(VCPU_SREG_FS);
4878 seg_setup(VCPU_SREG_GS);
4879 seg_setup(VCPU_SREG_SS);
4880
4881 vmcs_write16(GUEST_TR_SELECTOR, 0);
4882 vmcs_writel(GUEST_TR_BASE, 0);
4883 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4884 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4885
4886 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4887 vmcs_writel(GUEST_LDTR_BASE, 0);
4888 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4889 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4890
4891 if (!init_event) {
4892 vmcs_write32(GUEST_SYSENTER_CS, 0);
4893 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4894 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4895 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4896 }
4897
4898 vmcs_writel(GUEST_RFLAGS, 0x02);
4899 kvm_rip_write(vcpu, 0xfff0);
4900
4901 vmcs_writel(GUEST_GDTR_BASE, 0);
4902 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4903
4904 vmcs_writel(GUEST_IDTR_BASE, 0);
4905 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4906
4907 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4908 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4909 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4910
4911 setup_msrs(vmx);
4912
4913 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4914
4915 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4916 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4917 if (cpu_need_tpr_shadow(vcpu))
4918 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4919 __pa(vcpu->arch.apic->regs));
4920 vmcs_write32(TPR_THRESHOLD, 0);
4921 }
4922
4923 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4924
4925 if (vmx_cpu_uses_apicv(vcpu))
4926 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4927
4928 if (vmx->vpid != 0)
4929 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4930
4931 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4932 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4933 vmx->vcpu.arch.cr0 = cr0;
4934 vmx_set_cr4(vcpu, 0);
4935 if (!init_event)
4936 vmx_set_efer(vcpu, 0);
4937 vmx_fpu_activate(vcpu);
4938 update_exception_bitmap(vcpu);
4939
4940 vpid_sync_context(vmx->vpid);
4941 }
4942
4943 /*
4944 * In nested virtualization, check if L1 asked to exit on external interrupts.
4945 * For most existing hypervisors, this will always return true.
4946 */
4947 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4948 {
4949 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4950 PIN_BASED_EXT_INTR_MASK;
4951 }
4952
4953 /*
4954 * In nested virtualization, check if L1 has set
4955 * VM_EXIT_ACK_INTR_ON_EXIT
4956 */
4957 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4958 {
4959 return get_vmcs12(vcpu)->vm_exit_controls &
4960 VM_EXIT_ACK_INTR_ON_EXIT;
4961 }
4962
4963 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4964 {
4965 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4966 PIN_BASED_NMI_EXITING;
4967 }
4968
4969 static void enable_irq_window(struct kvm_vcpu *vcpu)
4970 {
4971 u32 cpu_based_vm_exec_control;
4972
4973 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4974 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4975 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4976 }
4977
4978 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4979 {
4980 u32 cpu_based_vm_exec_control;
4981
4982 if (!cpu_has_virtual_nmis() ||
4983 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4984 enable_irq_window(vcpu);
4985 return;
4986 }
4987
4988 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4989 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4990 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4991 }
4992
4993 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4994 {
4995 struct vcpu_vmx *vmx = to_vmx(vcpu);
4996 uint32_t intr;
4997 int irq = vcpu->arch.interrupt.nr;
4998
4999 trace_kvm_inj_virq(irq);
5000
5001 ++vcpu->stat.irq_injections;
5002 if (vmx->rmode.vm86_active) {
5003 int inc_eip = 0;
5004 if (vcpu->arch.interrupt.soft)
5005 inc_eip = vcpu->arch.event_exit_inst_len;
5006 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5007 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5008 return;
5009 }
5010 intr = irq | INTR_INFO_VALID_MASK;
5011 if (vcpu->arch.interrupt.soft) {
5012 intr |= INTR_TYPE_SOFT_INTR;
5013 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5014 vmx->vcpu.arch.event_exit_inst_len);
5015 } else
5016 intr |= INTR_TYPE_EXT_INTR;
5017 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5018 }
5019
5020 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5021 {
5022 struct vcpu_vmx *vmx = to_vmx(vcpu);
5023
5024 if (is_guest_mode(vcpu))
5025 return;
5026
5027 if (!cpu_has_virtual_nmis()) {
5028 /*
5029 * Tracking the NMI-blocked state in software is built upon
5030 * finding the next open IRQ window. This, in turn, depends on
5031 * well-behaving guests: They have to keep IRQs disabled at
5032 * least as long as the NMI handler runs. Otherwise we may
5033 * cause NMI nesting, maybe breaking the guest. But as this is
5034 * highly unlikely, we can live with the residual risk.
5035 */
5036 vmx->soft_vnmi_blocked = 1;
5037 vmx->vnmi_blocked_time = 0;
5038 }
5039
5040 ++vcpu->stat.nmi_injections;
5041 vmx->nmi_known_unmasked = false;
5042 if (vmx->rmode.vm86_active) {
5043 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5044 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5045 return;
5046 }
5047 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5048 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5049 }
5050
5051 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5052 {
5053 if (!cpu_has_virtual_nmis())
5054 return to_vmx(vcpu)->soft_vnmi_blocked;
5055 if (to_vmx(vcpu)->nmi_known_unmasked)
5056 return false;
5057 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5058 }
5059
5060 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5061 {
5062 struct vcpu_vmx *vmx = to_vmx(vcpu);
5063
5064 if (!cpu_has_virtual_nmis()) {
5065 if (vmx->soft_vnmi_blocked != masked) {
5066 vmx->soft_vnmi_blocked = masked;
5067 vmx->vnmi_blocked_time = 0;
5068 }
5069 } else {
5070 vmx->nmi_known_unmasked = !masked;
5071 if (masked)
5072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5073 GUEST_INTR_STATE_NMI);
5074 else
5075 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5076 GUEST_INTR_STATE_NMI);
5077 }
5078 }
5079
5080 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5081 {
5082 if (to_vmx(vcpu)->nested.nested_run_pending)
5083 return 0;
5084
5085 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5086 return 0;
5087
5088 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5089 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5090 | GUEST_INTR_STATE_NMI));
5091 }
5092
5093 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5094 {
5095 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5096 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5097 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5098 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5099 }
5100
5101 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5102 {
5103 int ret;
5104
5105 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5106 PAGE_SIZE * 3);
5107 if (ret)
5108 return ret;
5109 kvm->arch.tss_addr = addr;
5110 return init_rmode_tss(kvm);
5111 }
5112
5113 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5114 {
5115 switch (vec) {
5116 case BP_VECTOR:
5117 /*
5118 * Update instruction length as we may reinject the exception
5119 * from user space while in guest debugging mode.
5120 */
5121 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5122 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5123 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5124 return false;
5125 /* fall through */
5126 case DB_VECTOR:
5127 if (vcpu->guest_debug &
5128 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5129 return false;
5130 /* fall through */
5131 case DE_VECTOR:
5132 case OF_VECTOR:
5133 case BR_VECTOR:
5134 case UD_VECTOR:
5135 case DF_VECTOR:
5136 case SS_VECTOR:
5137 case GP_VECTOR:
5138 case MF_VECTOR:
5139 return true;
5140 break;
5141 }
5142 return false;
5143 }
5144
5145 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5146 int vec, u32 err_code)
5147 {
5148 /*
5149 * Instruction with address size override prefix opcode 0x67
5150 * Cause the #SS fault with 0 error code in VM86 mode.
5151 */
5152 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5153 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5154 if (vcpu->arch.halt_request) {
5155 vcpu->arch.halt_request = 0;
5156 return kvm_vcpu_halt(vcpu);
5157 }
5158 return 1;
5159 }
5160 return 0;
5161 }
5162
5163 /*
5164 * Forward all other exceptions that are valid in real mode.
5165 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5166 * the required debugging infrastructure rework.
5167 */
5168 kvm_queue_exception(vcpu, vec);
5169 return 1;
5170 }
5171
5172 /*
5173 * Trigger machine check on the host. We assume all the MSRs are already set up
5174 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5175 * We pass a fake environment to the machine check handler because we want
5176 * the guest to be always treated like user space, no matter what context
5177 * it used internally.
5178 */
5179 static void kvm_machine_check(void)
5180 {
5181 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5182 struct pt_regs regs = {
5183 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5184 .flags = X86_EFLAGS_IF,
5185 };
5186
5187 do_machine_check(&regs, 0);
5188 #endif
5189 }
5190
5191 static int handle_machine_check(struct kvm_vcpu *vcpu)
5192 {
5193 /* already handled by vcpu_run */
5194 return 1;
5195 }
5196
5197 static int handle_exception(struct kvm_vcpu *vcpu)
5198 {
5199 struct vcpu_vmx *vmx = to_vmx(vcpu);
5200 struct kvm_run *kvm_run = vcpu->run;
5201 u32 intr_info, ex_no, error_code;
5202 unsigned long cr2, rip, dr6;
5203 u32 vect_info;
5204 enum emulation_result er;
5205
5206 vect_info = vmx->idt_vectoring_info;
5207 intr_info = vmx->exit_intr_info;
5208
5209 if (is_machine_check(intr_info))
5210 return handle_machine_check(vcpu);
5211
5212 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5213 return 1; /* already handled by vmx_vcpu_run() */
5214
5215 if (is_no_device(intr_info)) {
5216 vmx_fpu_activate(vcpu);
5217 return 1;
5218 }
5219
5220 if (is_invalid_opcode(intr_info)) {
5221 if (is_guest_mode(vcpu)) {
5222 kvm_queue_exception(vcpu, UD_VECTOR);
5223 return 1;
5224 }
5225 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5226 if (er != EMULATE_DONE)
5227 kvm_queue_exception(vcpu, UD_VECTOR);
5228 return 1;
5229 }
5230
5231 error_code = 0;
5232 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5233 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5234
5235 /*
5236 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5237 * MMIO, it is better to report an internal error.
5238 * See the comments in vmx_handle_exit.
5239 */
5240 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5241 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5242 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5243 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5244 vcpu->run->internal.ndata = 3;
5245 vcpu->run->internal.data[0] = vect_info;
5246 vcpu->run->internal.data[1] = intr_info;
5247 vcpu->run->internal.data[2] = error_code;
5248 return 0;
5249 }
5250
5251 if (is_page_fault(intr_info)) {
5252 /* EPT won't cause page fault directly */
5253 BUG_ON(enable_ept);
5254 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5255 trace_kvm_page_fault(cr2, error_code);
5256
5257 if (kvm_event_needs_reinjection(vcpu))
5258 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5259 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5260 }
5261
5262 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5263
5264 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5265 return handle_rmode_exception(vcpu, ex_no, error_code);
5266
5267 switch (ex_no) {
5268 case DB_VECTOR:
5269 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5270 if (!(vcpu->guest_debug &
5271 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5272 vcpu->arch.dr6 &= ~15;
5273 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5274 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5275 skip_emulated_instruction(vcpu);
5276
5277 kvm_queue_exception(vcpu, DB_VECTOR);
5278 return 1;
5279 }
5280 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5281 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5282 /* fall through */
5283 case BP_VECTOR:
5284 /*
5285 * Update instruction length as we may reinject #BP from
5286 * user space while in guest debugging mode. Reading it for
5287 * #DB as well causes no harm, it is not used in that case.
5288 */
5289 vmx->vcpu.arch.event_exit_inst_len =
5290 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5291 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5292 rip = kvm_rip_read(vcpu);
5293 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5294 kvm_run->debug.arch.exception = ex_no;
5295 break;
5296 default:
5297 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5298 kvm_run->ex.exception = ex_no;
5299 kvm_run->ex.error_code = error_code;
5300 break;
5301 }
5302 return 0;
5303 }
5304
5305 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5306 {
5307 ++vcpu->stat.irq_exits;
5308 return 1;
5309 }
5310
5311 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5312 {
5313 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5314 return 0;
5315 }
5316
5317 static int handle_io(struct kvm_vcpu *vcpu)
5318 {
5319 unsigned long exit_qualification;
5320 int size, in, string;
5321 unsigned port;
5322
5323 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5324 string = (exit_qualification & 16) != 0;
5325 in = (exit_qualification & 8) != 0;
5326
5327 ++vcpu->stat.io_exits;
5328
5329 if (string || in)
5330 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5331
5332 port = exit_qualification >> 16;
5333 size = (exit_qualification & 7) + 1;
5334 skip_emulated_instruction(vcpu);
5335
5336 return kvm_fast_pio_out(vcpu, size, port);
5337 }
5338
5339 static void
5340 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5341 {
5342 /*
5343 * Patch in the VMCALL instruction:
5344 */
5345 hypercall[0] = 0x0f;
5346 hypercall[1] = 0x01;
5347 hypercall[2] = 0xc1;
5348 }
5349
5350 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5351 {
5352 unsigned long always_on = VMXON_CR0_ALWAYSON;
5353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5354
5355 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5356 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5357 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5358 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5359 return (val & always_on) == always_on;
5360 }
5361
5362 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5363 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5364 {
5365 if (is_guest_mode(vcpu)) {
5366 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5367 unsigned long orig_val = val;
5368
5369 /*
5370 * We get here when L2 changed cr0 in a way that did not change
5371 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5372 * but did change L0 shadowed bits. So we first calculate the
5373 * effective cr0 value that L1 would like to write into the
5374 * hardware. It consists of the L2-owned bits from the new
5375 * value combined with the L1-owned bits from L1's guest_cr0.
5376 */
5377 val = (val & ~vmcs12->cr0_guest_host_mask) |
5378 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5379
5380 if (!nested_cr0_valid(vcpu, val))
5381 return 1;
5382
5383 if (kvm_set_cr0(vcpu, val))
5384 return 1;
5385 vmcs_writel(CR0_READ_SHADOW, orig_val);
5386 return 0;
5387 } else {
5388 if (to_vmx(vcpu)->nested.vmxon &&
5389 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5390 return 1;
5391 return kvm_set_cr0(vcpu, val);
5392 }
5393 }
5394
5395 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5396 {
5397 if (is_guest_mode(vcpu)) {
5398 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5399 unsigned long orig_val = val;
5400
5401 /* analogously to handle_set_cr0 */
5402 val = (val & ~vmcs12->cr4_guest_host_mask) |
5403 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5404 if (kvm_set_cr4(vcpu, val))
5405 return 1;
5406 vmcs_writel(CR4_READ_SHADOW, orig_val);
5407 return 0;
5408 } else
5409 return kvm_set_cr4(vcpu, val);
5410 }
5411
5412 /* called to set cr0 as approriate for clts instruction exit. */
5413 static void handle_clts(struct kvm_vcpu *vcpu)
5414 {
5415 if (is_guest_mode(vcpu)) {
5416 /*
5417 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5418 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5419 * just pretend it's off (also in arch.cr0 for fpu_activate).
5420 */
5421 vmcs_writel(CR0_READ_SHADOW,
5422 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5423 vcpu->arch.cr0 &= ~X86_CR0_TS;
5424 } else
5425 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5426 }
5427
5428 static int handle_cr(struct kvm_vcpu *vcpu)
5429 {
5430 unsigned long exit_qualification, val;
5431 int cr;
5432 int reg;
5433 int err;
5434
5435 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5436 cr = exit_qualification & 15;
5437 reg = (exit_qualification >> 8) & 15;
5438 switch ((exit_qualification >> 4) & 3) {
5439 case 0: /* mov to cr */
5440 val = kvm_register_readl(vcpu, reg);
5441 trace_kvm_cr_write(cr, val);
5442 switch (cr) {
5443 case 0:
5444 err = handle_set_cr0(vcpu, val);
5445 kvm_complete_insn_gp(vcpu, err);
5446 return 1;
5447 case 3:
5448 err = kvm_set_cr3(vcpu, val);
5449 kvm_complete_insn_gp(vcpu, err);
5450 return 1;
5451 case 4:
5452 err = handle_set_cr4(vcpu, val);
5453 kvm_complete_insn_gp(vcpu, err);
5454 return 1;
5455 case 8: {
5456 u8 cr8_prev = kvm_get_cr8(vcpu);
5457 u8 cr8 = (u8)val;
5458 err = kvm_set_cr8(vcpu, cr8);
5459 kvm_complete_insn_gp(vcpu, err);
5460 if (lapic_in_kernel(vcpu))
5461 return 1;
5462 if (cr8_prev <= cr8)
5463 return 1;
5464 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5465 return 0;
5466 }
5467 }
5468 break;
5469 case 2: /* clts */
5470 handle_clts(vcpu);
5471 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5472 skip_emulated_instruction(vcpu);
5473 vmx_fpu_activate(vcpu);
5474 return 1;
5475 case 1: /*mov from cr*/
5476 switch (cr) {
5477 case 3:
5478 val = kvm_read_cr3(vcpu);
5479 kvm_register_write(vcpu, reg, val);
5480 trace_kvm_cr_read(cr, val);
5481 skip_emulated_instruction(vcpu);
5482 return 1;
5483 case 8:
5484 val = kvm_get_cr8(vcpu);
5485 kvm_register_write(vcpu, reg, val);
5486 trace_kvm_cr_read(cr, val);
5487 skip_emulated_instruction(vcpu);
5488 return 1;
5489 }
5490 break;
5491 case 3: /* lmsw */
5492 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5493 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5494 kvm_lmsw(vcpu, val);
5495
5496 skip_emulated_instruction(vcpu);
5497 return 1;
5498 default:
5499 break;
5500 }
5501 vcpu->run->exit_reason = 0;
5502 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5503 (int)(exit_qualification >> 4) & 3, cr);
5504 return 0;
5505 }
5506
5507 static int handle_dr(struct kvm_vcpu *vcpu)
5508 {
5509 unsigned long exit_qualification;
5510 int dr, dr7, reg;
5511
5512 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5513 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5514
5515 /* First, if DR does not exist, trigger UD */
5516 if (!kvm_require_dr(vcpu, dr))
5517 return 1;
5518
5519 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5520 if (!kvm_require_cpl(vcpu, 0))
5521 return 1;
5522 dr7 = vmcs_readl(GUEST_DR7);
5523 if (dr7 & DR7_GD) {
5524 /*
5525 * As the vm-exit takes precedence over the debug trap, we
5526 * need to emulate the latter, either for the host or the
5527 * guest debugging itself.
5528 */
5529 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5530 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5531 vcpu->run->debug.arch.dr7 = dr7;
5532 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5533 vcpu->run->debug.arch.exception = DB_VECTOR;
5534 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5535 return 0;
5536 } else {
5537 vcpu->arch.dr6 &= ~15;
5538 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5539 kvm_queue_exception(vcpu, DB_VECTOR);
5540 return 1;
5541 }
5542 }
5543
5544 if (vcpu->guest_debug == 0) {
5545 u32 cpu_based_vm_exec_control;
5546
5547 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5548 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5549 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5550
5551 /*
5552 * No more DR vmexits; force a reload of the debug registers
5553 * and reenter on this instruction. The next vmexit will
5554 * retrieve the full state of the debug registers.
5555 */
5556 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5557 return 1;
5558 }
5559
5560 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5561 if (exit_qualification & TYPE_MOV_FROM_DR) {
5562 unsigned long val;
5563
5564 if (kvm_get_dr(vcpu, dr, &val))
5565 return 1;
5566 kvm_register_write(vcpu, reg, val);
5567 } else
5568 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5569 return 1;
5570
5571 skip_emulated_instruction(vcpu);
5572 return 1;
5573 }
5574
5575 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5576 {
5577 return vcpu->arch.dr6;
5578 }
5579
5580 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5581 {
5582 }
5583
5584 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5585 {
5586 u32 cpu_based_vm_exec_control;
5587
5588 get_debugreg(vcpu->arch.db[0], 0);
5589 get_debugreg(vcpu->arch.db[1], 1);
5590 get_debugreg(vcpu->arch.db[2], 2);
5591 get_debugreg(vcpu->arch.db[3], 3);
5592 get_debugreg(vcpu->arch.dr6, 6);
5593 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5594
5595 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5596
5597 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5598 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5599 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5600 }
5601
5602 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5603 {
5604 vmcs_writel(GUEST_DR7, val);
5605 }
5606
5607 static int handle_cpuid(struct kvm_vcpu *vcpu)
5608 {
5609 kvm_emulate_cpuid(vcpu);
5610 return 1;
5611 }
5612
5613 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5614 {
5615 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5616 struct msr_data msr_info;
5617
5618 msr_info.index = ecx;
5619 msr_info.host_initiated = false;
5620 if (vmx_get_msr(vcpu, &msr_info)) {
5621 trace_kvm_msr_read_ex(ecx);
5622 kvm_inject_gp(vcpu, 0);
5623 return 1;
5624 }
5625
5626 trace_kvm_msr_read(ecx, msr_info.data);
5627
5628 /* FIXME: handling of bits 32:63 of rax, rdx */
5629 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5630 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5631 skip_emulated_instruction(vcpu);
5632 return 1;
5633 }
5634
5635 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5636 {
5637 struct msr_data msr;
5638 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5639 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5640 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5641
5642 msr.data = data;
5643 msr.index = ecx;
5644 msr.host_initiated = false;
5645 if (kvm_set_msr(vcpu, &msr) != 0) {
5646 trace_kvm_msr_write_ex(ecx, data);
5647 kvm_inject_gp(vcpu, 0);
5648 return 1;
5649 }
5650
5651 trace_kvm_msr_write(ecx, data);
5652 skip_emulated_instruction(vcpu);
5653 return 1;
5654 }
5655
5656 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5657 {
5658 kvm_make_request(KVM_REQ_EVENT, vcpu);
5659 return 1;
5660 }
5661
5662 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5663 {
5664 u32 cpu_based_vm_exec_control;
5665
5666 /* clear pending irq */
5667 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5668 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5669 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5670
5671 kvm_make_request(KVM_REQ_EVENT, vcpu);
5672
5673 ++vcpu->stat.irq_window_exits;
5674 return 1;
5675 }
5676
5677 static int handle_halt(struct kvm_vcpu *vcpu)
5678 {
5679 return kvm_emulate_halt(vcpu);
5680 }
5681
5682 static int handle_vmcall(struct kvm_vcpu *vcpu)
5683 {
5684 kvm_emulate_hypercall(vcpu);
5685 return 1;
5686 }
5687
5688 static int handle_invd(struct kvm_vcpu *vcpu)
5689 {
5690 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5691 }
5692
5693 static int handle_invlpg(struct kvm_vcpu *vcpu)
5694 {
5695 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5696
5697 kvm_mmu_invlpg(vcpu, exit_qualification);
5698 skip_emulated_instruction(vcpu);
5699 return 1;
5700 }
5701
5702 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5703 {
5704 int err;
5705
5706 err = kvm_rdpmc(vcpu);
5707 kvm_complete_insn_gp(vcpu, err);
5708
5709 return 1;
5710 }
5711
5712 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5713 {
5714 kvm_emulate_wbinvd(vcpu);
5715 return 1;
5716 }
5717
5718 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5719 {
5720 u64 new_bv = kvm_read_edx_eax(vcpu);
5721 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5722
5723 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5724 skip_emulated_instruction(vcpu);
5725 return 1;
5726 }
5727
5728 static int handle_xsaves(struct kvm_vcpu *vcpu)
5729 {
5730 skip_emulated_instruction(vcpu);
5731 WARN(1, "this should never happen\n");
5732 return 1;
5733 }
5734
5735 static int handle_xrstors(struct kvm_vcpu *vcpu)
5736 {
5737 skip_emulated_instruction(vcpu);
5738 WARN(1, "this should never happen\n");
5739 return 1;
5740 }
5741
5742 static int handle_apic_access(struct kvm_vcpu *vcpu)
5743 {
5744 if (likely(fasteoi)) {
5745 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5746 int access_type, offset;
5747
5748 access_type = exit_qualification & APIC_ACCESS_TYPE;
5749 offset = exit_qualification & APIC_ACCESS_OFFSET;
5750 /*
5751 * Sane guest uses MOV to write EOI, with written value
5752 * not cared. So make a short-circuit here by avoiding
5753 * heavy instruction emulation.
5754 */
5755 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5756 (offset == APIC_EOI)) {
5757 kvm_lapic_set_eoi(vcpu);
5758 skip_emulated_instruction(vcpu);
5759 return 1;
5760 }
5761 }
5762 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5763 }
5764
5765 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5766 {
5767 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5768 int vector = exit_qualification & 0xff;
5769
5770 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5771 kvm_apic_set_eoi_accelerated(vcpu, vector);
5772 return 1;
5773 }
5774
5775 static int handle_apic_write(struct kvm_vcpu *vcpu)
5776 {
5777 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5778 u32 offset = exit_qualification & 0xfff;
5779
5780 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5781 kvm_apic_write_nodecode(vcpu, offset);
5782 return 1;
5783 }
5784
5785 static int handle_task_switch(struct kvm_vcpu *vcpu)
5786 {
5787 struct vcpu_vmx *vmx = to_vmx(vcpu);
5788 unsigned long exit_qualification;
5789 bool has_error_code = false;
5790 u32 error_code = 0;
5791 u16 tss_selector;
5792 int reason, type, idt_v, idt_index;
5793
5794 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5795 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5796 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5797
5798 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5799
5800 reason = (u32)exit_qualification >> 30;
5801 if (reason == TASK_SWITCH_GATE && idt_v) {
5802 switch (type) {
5803 case INTR_TYPE_NMI_INTR:
5804 vcpu->arch.nmi_injected = false;
5805 vmx_set_nmi_mask(vcpu, true);
5806 break;
5807 case INTR_TYPE_EXT_INTR:
5808 case INTR_TYPE_SOFT_INTR:
5809 kvm_clear_interrupt_queue(vcpu);
5810 break;
5811 case INTR_TYPE_HARD_EXCEPTION:
5812 if (vmx->idt_vectoring_info &
5813 VECTORING_INFO_DELIVER_CODE_MASK) {
5814 has_error_code = true;
5815 error_code =
5816 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5817 }
5818 /* fall through */
5819 case INTR_TYPE_SOFT_EXCEPTION:
5820 kvm_clear_exception_queue(vcpu);
5821 break;
5822 default:
5823 break;
5824 }
5825 }
5826 tss_selector = exit_qualification;
5827
5828 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5829 type != INTR_TYPE_EXT_INTR &&
5830 type != INTR_TYPE_NMI_INTR))
5831 skip_emulated_instruction(vcpu);
5832
5833 if (kvm_task_switch(vcpu, tss_selector,
5834 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5835 has_error_code, error_code) == EMULATE_FAIL) {
5836 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5837 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5838 vcpu->run->internal.ndata = 0;
5839 return 0;
5840 }
5841
5842 /*
5843 * TODO: What about debug traps on tss switch?
5844 * Are we supposed to inject them and update dr6?
5845 */
5846
5847 return 1;
5848 }
5849
5850 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5851 {
5852 unsigned long exit_qualification;
5853 gpa_t gpa;
5854 u32 error_code;
5855 int gla_validity;
5856
5857 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5858
5859 gla_validity = (exit_qualification >> 7) & 0x3;
5860 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5861 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5862 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5863 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5864 vmcs_readl(GUEST_LINEAR_ADDRESS));
5865 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5866 (long unsigned int)exit_qualification);
5867 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5868 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5869 return 0;
5870 }
5871
5872 /*
5873 * EPT violation happened while executing iret from NMI,
5874 * "blocked by NMI" bit has to be set before next VM entry.
5875 * There are errata that may cause this bit to not be set:
5876 * AAK134, BY25.
5877 */
5878 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5879 cpu_has_virtual_nmis() &&
5880 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5881 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5882
5883 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5884 trace_kvm_page_fault(gpa, exit_qualification);
5885
5886 /* It is a write fault? */
5887 error_code = exit_qualification & PFERR_WRITE_MASK;
5888 /* It is a fetch fault? */
5889 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5890 /* ept page table is present? */
5891 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5892
5893 vcpu->arch.exit_qualification = exit_qualification;
5894
5895 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5896 }
5897
5898 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5899 {
5900 int ret;
5901 gpa_t gpa;
5902
5903 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5904 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5905 skip_emulated_instruction(vcpu);
5906 trace_kvm_fast_mmio(gpa);
5907 return 1;
5908 }
5909
5910 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5911 if (likely(ret == RET_MMIO_PF_EMULATE))
5912 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5913 EMULATE_DONE;
5914
5915 if (unlikely(ret == RET_MMIO_PF_INVALID))
5916 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5917
5918 if (unlikely(ret == RET_MMIO_PF_RETRY))
5919 return 1;
5920
5921 /* It is the real ept misconfig */
5922 WARN_ON(1);
5923
5924 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5925 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5926
5927 return 0;
5928 }
5929
5930 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5931 {
5932 u32 cpu_based_vm_exec_control;
5933
5934 /* clear pending NMI */
5935 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5936 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5937 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5938 ++vcpu->stat.nmi_window_exits;
5939 kvm_make_request(KVM_REQ_EVENT, vcpu);
5940
5941 return 1;
5942 }
5943
5944 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5945 {
5946 struct vcpu_vmx *vmx = to_vmx(vcpu);
5947 enum emulation_result err = EMULATE_DONE;
5948 int ret = 1;
5949 u32 cpu_exec_ctrl;
5950 bool intr_window_requested;
5951 unsigned count = 130;
5952
5953 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5954 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5955
5956 while (vmx->emulation_required && count-- != 0) {
5957 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5958 return handle_interrupt_window(&vmx->vcpu);
5959
5960 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5961 return 1;
5962
5963 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5964
5965 if (err == EMULATE_USER_EXIT) {
5966 ++vcpu->stat.mmio_exits;
5967 ret = 0;
5968 goto out;
5969 }
5970
5971 if (err != EMULATE_DONE) {
5972 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5973 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5974 vcpu->run->internal.ndata = 0;
5975 return 0;
5976 }
5977
5978 if (vcpu->arch.halt_request) {
5979 vcpu->arch.halt_request = 0;
5980 ret = kvm_vcpu_halt(vcpu);
5981 goto out;
5982 }
5983
5984 if (signal_pending(current))
5985 goto out;
5986 if (need_resched())
5987 schedule();
5988 }
5989
5990 out:
5991 return ret;
5992 }
5993
5994 static int __grow_ple_window(int val)
5995 {
5996 if (ple_window_grow < 1)
5997 return ple_window;
5998
5999 val = min(val, ple_window_actual_max);
6000
6001 if (ple_window_grow < ple_window)
6002 val *= ple_window_grow;
6003 else
6004 val += ple_window_grow;
6005
6006 return val;
6007 }
6008
6009 static int __shrink_ple_window(int val, int modifier, int minimum)
6010 {
6011 if (modifier < 1)
6012 return ple_window;
6013
6014 if (modifier < ple_window)
6015 val /= modifier;
6016 else
6017 val -= modifier;
6018
6019 return max(val, minimum);
6020 }
6021
6022 static void grow_ple_window(struct kvm_vcpu *vcpu)
6023 {
6024 struct vcpu_vmx *vmx = to_vmx(vcpu);
6025 int old = vmx->ple_window;
6026
6027 vmx->ple_window = __grow_ple_window(old);
6028
6029 if (vmx->ple_window != old)
6030 vmx->ple_window_dirty = true;
6031
6032 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6033 }
6034
6035 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6036 {
6037 struct vcpu_vmx *vmx = to_vmx(vcpu);
6038 int old = vmx->ple_window;
6039
6040 vmx->ple_window = __shrink_ple_window(old,
6041 ple_window_shrink, ple_window);
6042
6043 if (vmx->ple_window != old)
6044 vmx->ple_window_dirty = true;
6045
6046 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6047 }
6048
6049 /*
6050 * ple_window_actual_max is computed to be one grow_ple_window() below
6051 * ple_window_max. (See __grow_ple_window for the reason.)
6052 * This prevents overflows, because ple_window_max is int.
6053 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6054 * this process.
6055 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6056 */
6057 static void update_ple_window_actual_max(void)
6058 {
6059 ple_window_actual_max =
6060 __shrink_ple_window(max(ple_window_max, ple_window),
6061 ple_window_grow, INT_MIN);
6062 }
6063
6064 /*
6065 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6066 */
6067 static void wakeup_handler(void)
6068 {
6069 struct kvm_vcpu *vcpu;
6070 int cpu = smp_processor_id();
6071
6072 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6073 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6074 blocked_vcpu_list) {
6075 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6076
6077 if (pi_test_on(pi_desc) == 1)
6078 kvm_vcpu_kick(vcpu);
6079 }
6080 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6081 }
6082
6083 static __init int hardware_setup(void)
6084 {
6085 int r = -ENOMEM, i, msr;
6086
6087 rdmsrl_safe(MSR_EFER, &host_efer);
6088
6089 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6090 kvm_define_shared_msr(i, vmx_msr_index[i]);
6091
6092 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6093 if (!vmx_io_bitmap_a)
6094 return r;
6095
6096 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6097 if (!vmx_io_bitmap_b)
6098 goto out;
6099
6100 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6101 if (!vmx_msr_bitmap_legacy)
6102 goto out1;
6103
6104 vmx_msr_bitmap_legacy_x2apic =
6105 (unsigned long *)__get_free_page(GFP_KERNEL);
6106 if (!vmx_msr_bitmap_legacy_x2apic)
6107 goto out2;
6108
6109 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6110 if (!vmx_msr_bitmap_longmode)
6111 goto out3;
6112
6113 vmx_msr_bitmap_longmode_x2apic =
6114 (unsigned long *)__get_free_page(GFP_KERNEL);
6115 if (!vmx_msr_bitmap_longmode_x2apic)
6116 goto out4;
6117
6118 if (nested) {
6119 vmx_msr_bitmap_nested =
6120 (unsigned long *)__get_free_page(GFP_KERNEL);
6121 if (!vmx_msr_bitmap_nested)
6122 goto out5;
6123 }
6124
6125 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6126 if (!vmx_vmread_bitmap)
6127 goto out6;
6128
6129 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6130 if (!vmx_vmwrite_bitmap)
6131 goto out7;
6132
6133 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6134 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6135
6136 /*
6137 * Allow direct access to the PC debug port (it is often used for I/O
6138 * delays, but the vmexits simply slow things down).
6139 */
6140 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6141 clear_bit(0x80, vmx_io_bitmap_a);
6142
6143 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6144
6145 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6146 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6147 if (nested)
6148 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6149
6150 if (setup_vmcs_config(&vmcs_config) < 0) {
6151 r = -EIO;
6152 goto out8;
6153 }
6154
6155 if (boot_cpu_has(X86_FEATURE_NX))
6156 kvm_enable_efer_bits(EFER_NX);
6157
6158 if (!cpu_has_vmx_vpid())
6159 enable_vpid = 0;
6160 if (!cpu_has_vmx_shadow_vmcs())
6161 enable_shadow_vmcs = 0;
6162 if (enable_shadow_vmcs)
6163 init_vmcs_shadow_fields();
6164
6165 if (!cpu_has_vmx_ept() ||
6166 !cpu_has_vmx_ept_4levels()) {
6167 enable_ept = 0;
6168 enable_unrestricted_guest = 0;
6169 enable_ept_ad_bits = 0;
6170 }
6171
6172 if (!cpu_has_vmx_ept_ad_bits())
6173 enable_ept_ad_bits = 0;
6174
6175 if (!cpu_has_vmx_unrestricted_guest())
6176 enable_unrestricted_guest = 0;
6177
6178 if (!cpu_has_vmx_flexpriority())
6179 flexpriority_enabled = 0;
6180
6181 /*
6182 * set_apic_access_page_addr() is used to reload apic access
6183 * page upon invalidation. No need to do anything if not
6184 * using the APIC_ACCESS_ADDR VMCS field.
6185 */
6186 if (!flexpriority_enabled)
6187 kvm_x86_ops->set_apic_access_page_addr = NULL;
6188
6189 if (!cpu_has_vmx_tpr_shadow())
6190 kvm_x86_ops->update_cr8_intercept = NULL;
6191
6192 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6193 kvm_disable_largepages();
6194
6195 if (!cpu_has_vmx_ple())
6196 ple_gap = 0;
6197
6198 if (!cpu_has_vmx_apicv())
6199 enable_apicv = 0;
6200
6201 if (enable_apicv)
6202 kvm_x86_ops->update_cr8_intercept = NULL;
6203 else {
6204 kvm_x86_ops->hwapic_irr_update = NULL;
6205 kvm_x86_ops->hwapic_isr_update = NULL;
6206 kvm_x86_ops->deliver_posted_interrupt = NULL;
6207 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6208 }
6209
6210 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6211 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6212 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6213 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6214 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6215 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6216 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6217
6218 memcpy(vmx_msr_bitmap_legacy_x2apic,
6219 vmx_msr_bitmap_legacy, PAGE_SIZE);
6220 memcpy(vmx_msr_bitmap_longmode_x2apic,
6221 vmx_msr_bitmap_longmode, PAGE_SIZE);
6222
6223 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6224
6225 if (enable_apicv) {
6226 for (msr = 0x800; msr <= 0x8ff; msr++)
6227 vmx_disable_intercept_msr_read_x2apic(msr);
6228
6229 /* According SDM, in x2apic mode, the whole id reg is used.
6230 * But in KVM, it only use the highest eight bits. Need to
6231 * intercept it */
6232 vmx_enable_intercept_msr_read_x2apic(0x802);
6233 /* TMCCT */
6234 vmx_enable_intercept_msr_read_x2apic(0x839);
6235 /* TPR */
6236 vmx_disable_intercept_msr_write_x2apic(0x808);
6237 /* EOI */
6238 vmx_disable_intercept_msr_write_x2apic(0x80b);
6239 /* SELF-IPI */
6240 vmx_disable_intercept_msr_write_x2apic(0x83f);
6241 }
6242
6243 if (enable_ept) {
6244 kvm_mmu_set_mask_ptes(0ull,
6245 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6246 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6247 0ull, VMX_EPT_EXECUTABLE_MASK);
6248 ept_set_mmio_spte_mask();
6249 kvm_enable_tdp();
6250 } else
6251 kvm_disable_tdp();
6252
6253 update_ple_window_actual_max();
6254
6255 /*
6256 * Only enable PML when hardware supports PML feature, and both EPT
6257 * and EPT A/D bit features are enabled -- PML depends on them to work.
6258 */
6259 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6260 enable_pml = 0;
6261
6262 if (!enable_pml) {
6263 kvm_x86_ops->slot_enable_log_dirty = NULL;
6264 kvm_x86_ops->slot_disable_log_dirty = NULL;
6265 kvm_x86_ops->flush_log_dirty = NULL;
6266 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6267 }
6268
6269 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6270
6271 return alloc_kvm_area();
6272
6273 out8:
6274 free_page((unsigned long)vmx_vmwrite_bitmap);
6275 out7:
6276 free_page((unsigned long)vmx_vmread_bitmap);
6277 out6:
6278 if (nested)
6279 free_page((unsigned long)vmx_msr_bitmap_nested);
6280 out5:
6281 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6282 out4:
6283 free_page((unsigned long)vmx_msr_bitmap_longmode);
6284 out3:
6285 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6286 out2:
6287 free_page((unsigned long)vmx_msr_bitmap_legacy);
6288 out1:
6289 free_page((unsigned long)vmx_io_bitmap_b);
6290 out:
6291 free_page((unsigned long)vmx_io_bitmap_a);
6292
6293 return r;
6294 }
6295
6296 static __exit void hardware_unsetup(void)
6297 {
6298 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6299 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6300 free_page((unsigned long)vmx_msr_bitmap_legacy);
6301 free_page((unsigned long)vmx_msr_bitmap_longmode);
6302 free_page((unsigned long)vmx_io_bitmap_b);
6303 free_page((unsigned long)vmx_io_bitmap_a);
6304 free_page((unsigned long)vmx_vmwrite_bitmap);
6305 free_page((unsigned long)vmx_vmread_bitmap);
6306 if (nested)
6307 free_page((unsigned long)vmx_msr_bitmap_nested);
6308
6309 free_kvm_area();
6310 }
6311
6312 /*
6313 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6314 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6315 */
6316 static int handle_pause(struct kvm_vcpu *vcpu)
6317 {
6318 if (ple_gap)
6319 grow_ple_window(vcpu);
6320
6321 skip_emulated_instruction(vcpu);
6322 kvm_vcpu_on_spin(vcpu);
6323
6324 return 1;
6325 }
6326
6327 static int handle_nop(struct kvm_vcpu *vcpu)
6328 {
6329 skip_emulated_instruction(vcpu);
6330 return 1;
6331 }
6332
6333 static int handle_mwait(struct kvm_vcpu *vcpu)
6334 {
6335 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6336 return handle_nop(vcpu);
6337 }
6338
6339 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6340 {
6341 return 1;
6342 }
6343
6344 static int handle_monitor(struct kvm_vcpu *vcpu)
6345 {
6346 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6347 return handle_nop(vcpu);
6348 }
6349
6350 /*
6351 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6352 * We could reuse a single VMCS for all the L2 guests, but we also want the
6353 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6354 * allows keeping them loaded on the processor, and in the future will allow
6355 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6356 * every entry if they never change.
6357 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6358 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6359 *
6360 * The following functions allocate and free a vmcs02 in this pool.
6361 */
6362
6363 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6364 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6365 {
6366 struct vmcs02_list *item;
6367 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6368 if (item->vmptr == vmx->nested.current_vmptr) {
6369 list_move(&item->list, &vmx->nested.vmcs02_pool);
6370 return &item->vmcs02;
6371 }
6372
6373 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6374 /* Recycle the least recently used VMCS. */
6375 item = list_entry(vmx->nested.vmcs02_pool.prev,
6376 struct vmcs02_list, list);
6377 item->vmptr = vmx->nested.current_vmptr;
6378 list_move(&item->list, &vmx->nested.vmcs02_pool);
6379 return &item->vmcs02;
6380 }
6381
6382 /* Create a new VMCS */
6383 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6384 if (!item)
6385 return NULL;
6386 item->vmcs02.vmcs = alloc_vmcs();
6387 if (!item->vmcs02.vmcs) {
6388 kfree(item);
6389 return NULL;
6390 }
6391 loaded_vmcs_init(&item->vmcs02);
6392 item->vmptr = vmx->nested.current_vmptr;
6393 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6394 vmx->nested.vmcs02_num++;
6395 return &item->vmcs02;
6396 }
6397
6398 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6399 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6400 {
6401 struct vmcs02_list *item;
6402 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6403 if (item->vmptr == vmptr) {
6404 free_loaded_vmcs(&item->vmcs02);
6405 list_del(&item->list);
6406 kfree(item);
6407 vmx->nested.vmcs02_num--;
6408 return;
6409 }
6410 }
6411
6412 /*
6413 * Free all VMCSs saved for this vcpu, except the one pointed by
6414 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6415 * must be &vmx->vmcs01.
6416 */
6417 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6418 {
6419 struct vmcs02_list *item, *n;
6420
6421 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6422 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6423 /*
6424 * Something will leak if the above WARN triggers. Better than
6425 * a use-after-free.
6426 */
6427 if (vmx->loaded_vmcs == &item->vmcs02)
6428 continue;
6429
6430 free_loaded_vmcs(&item->vmcs02);
6431 list_del(&item->list);
6432 kfree(item);
6433 vmx->nested.vmcs02_num--;
6434 }
6435 }
6436
6437 /*
6438 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6439 * set the success or error code of an emulated VMX instruction, as specified
6440 * by Vol 2B, VMX Instruction Reference, "Conventions".
6441 */
6442 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6443 {
6444 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6445 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6446 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6447 }
6448
6449 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6450 {
6451 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6452 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6453 X86_EFLAGS_SF | X86_EFLAGS_OF))
6454 | X86_EFLAGS_CF);
6455 }
6456
6457 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6458 u32 vm_instruction_error)
6459 {
6460 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6461 /*
6462 * failValid writes the error number to the current VMCS, which
6463 * can't be done there isn't a current VMCS.
6464 */
6465 nested_vmx_failInvalid(vcpu);
6466 return;
6467 }
6468 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6469 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6470 X86_EFLAGS_SF | X86_EFLAGS_OF))
6471 | X86_EFLAGS_ZF);
6472 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6473 /*
6474 * We don't need to force a shadow sync because
6475 * VM_INSTRUCTION_ERROR is not shadowed
6476 */
6477 }
6478
6479 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6480 {
6481 /* TODO: not to reset guest simply here. */
6482 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6483 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6484 }
6485
6486 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6487 {
6488 struct vcpu_vmx *vmx =
6489 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6490
6491 vmx->nested.preemption_timer_expired = true;
6492 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6493 kvm_vcpu_kick(&vmx->vcpu);
6494
6495 return HRTIMER_NORESTART;
6496 }
6497
6498 /*
6499 * Decode the memory-address operand of a vmx instruction, as recorded on an
6500 * exit caused by such an instruction (run by a guest hypervisor).
6501 * On success, returns 0. When the operand is invalid, returns 1 and throws
6502 * #UD or #GP.
6503 */
6504 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6505 unsigned long exit_qualification,
6506 u32 vmx_instruction_info, bool wr, gva_t *ret)
6507 {
6508 gva_t off;
6509 bool exn;
6510 struct kvm_segment s;
6511
6512 /*
6513 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6514 * Execution", on an exit, vmx_instruction_info holds most of the
6515 * addressing components of the operand. Only the displacement part
6516 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6517 * For how an actual address is calculated from all these components,
6518 * refer to Vol. 1, "Operand Addressing".
6519 */
6520 int scaling = vmx_instruction_info & 3;
6521 int addr_size = (vmx_instruction_info >> 7) & 7;
6522 bool is_reg = vmx_instruction_info & (1u << 10);
6523 int seg_reg = (vmx_instruction_info >> 15) & 7;
6524 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6525 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6526 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6527 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6528
6529 if (is_reg) {
6530 kvm_queue_exception(vcpu, UD_VECTOR);
6531 return 1;
6532 }
6533
6534 /* Addr = segment_base + offset */
6535 /* offset = base + [index * scale] + displacement */
6536 off = exit_qualification; /* holds the displacement */
6537 if (base_is_valid)
6538 off += kvm_register_read(vcpu, base_reg);
6539 if (index_is_valid)
6540 off += kvm_register_read(vcpu, index_reg)<<scaling;
6541 vmx_get_segment(vcpu, &s, seg_reg);
6542 *ret = s.base + off;
6543
6544 if (addr_size == 1) /* 32 bit */
6545 *ret &= 0xffffffff;
6546
6547 /* Checks for #GP/#SS exceptions. */
6548 exn = false;
6549 if (is_protmode(vcpu)) {
6550 /* Protected mode: apply checks for segment validity in the
6551 * following order:
6552 * - segment type check (#GP(0) may be thrown)
6553 * - usability check (#GP(0)/#SS(0))
6554 * - limit check (#GP(0)/#SS(0))
6555 */
6556 if (wr)
6557 /* #GP(0) if the destination operand is located in a
6558 * read-only data segment or any code segment.
6559 */
6560 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6561 else
6562 /* #GP(0) if the source operand is located in an
6563 * execute-only code segment
6564 */
6565 exn = ((s.type & 0xa) == 8);
6566 }
6567 if (exn) {
6568 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6569 return 1;
6570 }
6571 if (is_long_mode(vcpu)) {
6572 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6573 * non-canonical form. This is an only check for long mode.
6574 */
6575 exn = is_noncanonical_address(*ret);
6576 } else if (is_protmode(vcpu)) {
6577 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6578 */
6579 exn = (s.unusable != 0);
6580 /* Protected mode: #GP(0)/#SS(0) if the memory
6581 * operand is outside the segment limit.
6582 */
6583 exn = exn || (off + sizeof(u64) > s.limit);
6584 }
6585 if (exn) {
6586 kvm_queue_exception_e(vcpu,
6587 seg_reg == VCPU_SREG_SS ?
6588 SS_VECTOR : GP_VECTOR,
6589 0);
6590 return 1;
6591 }
6592
6593 return 0;
6594 }
6595
6596 /*
6597 * This function performs the various checks including
6598 * - if it's 4KB aligned
6599 * - No bits beyond the physical address width are set
6600 * - Returns 0 on success or else 1
6601 * (Intel SDM Section 30.3)
6602 */
6603 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6604 gpa_t *vmpointer)
6605 {
6606 gva_t gva;
6607 gpa_t vmptr;
6608 struct x86_exception e;
6609 struct page *page;
6610 struct vcpu_vmx *vmx = to_vmx(vcpu);
6611 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6612
6613 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6614 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6615 return 1;
6616
6617 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6618 sizeof(vmptr), &e)) {
6619 kvm_inject_page_fault(vcpu, &e);
6620 return 1;
6621 }
6622
6623 switch (exit_reason) {
6624 case EXIT_REASON_VMON:
6625 /*
6626 * SDM 3: 24.11.5
6627 * The first 4 bytes of VMXON region contain the supported
6628 * VMCS revision identifier
6629 *
6630 * Note - IA32_VMX_BASIC[48] will never be 1
6631 * for the nested case;
6632 * which replaces physical address width with 32
6633 *
6634 */
6635 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6636 nested_vmx_failInvalid(vcpu);
6637 skip_emulated_instruction(vcpu);
6638 return 1;
6639 }
6640
6641 page = nested_get_page(vcpu, vmptr);
6642 if (page == NULL ||
6643 *(u32 *)kmap(page) != VMCS12_REVISION) {
6644 nested_vmx_failInvalid(vcpu);
6645 kunmap(page);
6646 skip_emulated_instruction(vcpu);
6647 return 1;
6648 }
6649 kunmap(page);
6650 vmx->nested.vmxon_ptr = vmptr;
6651 break;
6652 case EXIT_REASON_VMCLEAR:
6653 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6654 nested_vmx_failValid(vcpu,
6655 VMXERR_VMCLEAR_INVALID_ADDRESS);
6656 skip_emulated_instruction(vcpu);
6657 return 1;
6658 }
6659
6660 if (vmptr == vmx->nested.vmxon_ptr) {
6661 nested_vmx_failValid(vcpu,
6662 VMXERR_VMCLEAR_VMXON_POINTER);
6663 skip_emulated_instruction(vcpu);
6664 return 1;
6665 }
6666 break;
6667 case EXIT_REASON_VMPTRLD:
6668 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6669 nested_vmx_failValid(vcpu,
6670 VMXERR_VMPTRLD_INVALID_ADDRESS);
6671 skip_emulated_instruction(vcpu);
6672 return 1;
6673 }
6674
6675 if (vmptr == vmx->nested.vmxon_ptr) {
6676 nested_vmx_failValid(vcpu,
6677 VMXERR_VMCLEAR_VMXON_POINTER);
6678 skip_emulated_instruction(vcpu);
6679 return 1;
6680 }
6681 break;
6682 default:
6683 return 1; /* shouldn't happen */
6684 }
6685
6686 if (vmpointer)
6687 *vmpointer = vmptr;
6688 return 0;
6689 }
6690
6691 /*
6692 * Emulate the VMXON instruction.
6693 * Currently, we just remember that VMX is active, and do not save or even
6694 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6695 * do not currently need to store anything in that guest-allocated memory
6696 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6697 * argument is different from the VMXON pointer (which the spec says they do).
6698 */
6699 static int handle_vmon(struct kvm_vcpu *vcpu)
6700 {
6701 struct kvm_segment cs;
6702 struct vcpu_vmx *vmx = to_vmx(vcpu);
6703 struct vmcs *shadow_vmcs;
6704 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6705 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6706
6707 /* The Intel VMX Instruction Reference lists a bunch of bits that
6708 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6709 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6710 * Otherwise, we should fail with #UD. We test these now:
6711 */
6712 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6713 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6714 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6715 kvm_queue_exception(vcpu, UD_VECTOR);
6716 return 1;
6717 }
6718
6719 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6720 if (is_long_mode(vcpu) && !cs.l) {
6721 kvm_queue_exception(vcpu, UD_VECTOR);
6722 return 1;
6723 }
6724
6725 if (vmx_get_cpl(vcpu)) {
6726 kvm_inject_gp(vcpu, 0);
6727 return 1;
6728 }
6729
6730 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6731 return 1;
6732
6733 if (vmx->nested.vmxon) {
6734 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6735 skip_emulated_instruction(vcpu);
6736 return 1;
6737 }
6738
6739 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6740 != VMXON_NEEDED_FEATURES) {
6741 kvm_inject_gp(vcpu, 0);
6742 return 1;
6743 }
6744
6745 if (enable_shadow_vmcs) {
6746 shadow_vmcs = alloc_vmcs();
6747 if (!shadow_vmcs)
6748 return -ENOMEM;
6749 /* mark vmcs as shadow */
6750 shadow_vmcs->revision_id |= (1u << 31);
6751 /* init shadow vmcs */
6752 vmcs_clear(shadow_vmcs);
6753 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6754 }
6755
6756 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6757 vmx->nested.vmcs02_num = 0;
6758
6759 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6760 HRTIMER_MODE_REL);
6761 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6762
6763 vmx->nested.vmxon = true;
6764
6765 skip_emulated_instruction(vcpu);
6766 nested_vmx_succeed(vcpu);
6767 return 1;
6768 }
6769
6770 /*
6771 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6772 * for running VMX instructions (except VMXON, whose prerequisites are
6773 * slightly different). It also specifies what exception to inject otherwise.
6774 */
6775 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6776 {
6777 struct kvm_segment cs;
6778 struct vcpu_vmx *vmx = to_vmx(vcpu);
6779
6780 if (!vmx->nested.vmxon) {
6781 kvm_queue_exception(vcpu, UD_VECTOR);
6782 return 0;
6783 }
6784
6785 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6786 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6787 (is_long_mode(vcpu) && !cs.l)) {
6788 kvm_queue_exception(vcpu, UD_VECTOR);
6789 return 0;
6790 }
6791
6792 if (vmx_get_cpl(vcpu)) {
6793 kvm_inject_gp(vcpu, 0);
6794 return 0;
6795 }
6796
6797 return 1;
6798 }
6799
6800 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6801 {
6802 if (vmx->nested.current_vmptr == -1ull)
6803 return;
6804
6805 /* current_vmptr and current_vmcs12 are always set/reset together */
6806 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6807 return;
6808
6809 if (enable_shadow_vmcs) {
6810 /* copy to memory all shadowed fields in case
6811 they were modified */
6812 copy_shadow_to_vmcs12(vmx);
6813 vmx->nested.sync_shadow_vmcs = false;
6814 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6815 SECONDARY_EXEC_SHADOW_VMCS);
6816 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6817 }
6818 vmx->nested.posted_intr_nv = -1;
6819 kunmap(vmx->nested.current_vmcs12_page);
6820 nested_release_page(vmx->nested.current_vmcs12_page);
6821 vmx->nested.current_vmptr = -1ull;
6822 vmx->nested.current_vmcs12 = NULL;
6823 }
6824
6825 /*
6826 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6827 * just stops using VMX.
6828 */
6829 static void free_nested(struct vcpu_vmx *vmx)
6830 {
6831 if (!vmx->nested.vmxon)
6832 return;
6833
6834 vmx->nested.vmxon = false;
6835 free_vpid(vmx->nested.vpid02);
6836 nested_release_vmcs12(vmx);
6837 if (enable_shadow_vmcs)
6838 free_vmcs(vmx->nested.current_shadow_vmcs);
6839 /* Unpin physical memory we referred to in current vmcs02 */
6840 if (vmx->nested.apic_access_page) {
6841 nested_release_page(vmx->nested.apic_access_page);
6842 vmx->nested.apic_access_page = NULL;
6843 }
6844 if (vmx->nested.virtual_apic_page) {
6845 nested_release_page(vmx->nested.virtual_apic_page);
6846 vmx->nested.virtual_apic_page = NULL;
6847 }
6848 if (vmx->nested.pi_desc_page) {
6849 kunmap(vmx->nested.pi_desc_page);
6850 nested_release_page(vmx->nested.pi_desc_page);
6851 vmx->nested.pi_desc_page = NULL;
6852 vmx->nested.pi_desc = NULL;
6853 }
6854
6855 nested_free_all_saved_vmcss(vmx);
6856 }
6857
6858 /* Emulate the VMXOFF instruction */
6859 static int handle_vmoff(struct kvm_vcpu *vcpu)
6860 {
6861 if (!nested_vmx_check_permission(vcpu))
6862 return 1;
6863 free_nested(to_vmx(vcpu));
6864 skip_emulated_instruction(vcpu);
6865 nested_vmx_succeed(vcpu);
6866 return 1;
6867 }
6868
6869 /* Emulate the VMCLEAR instruction */
6870 static int handle_vmclear(struct kvm_vcpu *vcpu)
6871 {
6872 struct vcpu_vmx *vmx = to_vmx(vcpu);
6873 gpa_t vmptr;
6874 struct vmcs12 *vmcs12;
6875 struct page *page;
6876
6877 if (!nested_vmx_check_permission(vcpu))
6878 return 1;
6879
6880 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6881 return 1;
6882
6883 if (vmptr == vmx->nested.current_vmptr)
6884 nested_release_vmcs12(vmx);
6885
6886 page = nested_get_page(vcpu, vmptr);
6887 if (page == NULL) {
6888 /*
6889 * For accurate processor emulation, VMCLEAR beyond available
6890 * physical memory should do nothing at all. However, it is
6891 * possible that a nested vmx bug, not a guest hypervisor bug,
6892 * resulted in this case, so let's shut down before doing any
6893 * more damage:
6894 */
6895 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6896 return 1;
6897 }
6898 vmcs12 = kmap(page);
6899 vmcs12->launch_state = 0;
6900 kunmap(page);
6901 nested_release_page(page);
6902
6903 nested_free_vmcs02(vmx, vmptr);
6904
6905 skip_emulated_instruction(vcpu);
6906 nested_vmx_succeed(vcpu);
6907 return 1;
6908 }
6909
6910 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6911
6912 /* Emulate the VMLAUNCH instruction */
6913 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6914 {
6915 return nested_vmx_run(vcpu, true);
6916 }
6917
6918 /* Emulate the VMRESUME instruction */
6919 static int handle_vmresume(struct kvm_vcpu *vcpu)
6920 {
6921
6922 return nested_vmx_run(vcpu, false);
6923 }
6924
6925 enum vmcs_field_type {
6926 VMCS_FIELD_TYPE_U16 = 0,
6927 VMCS_FIELD_TYPE_U64 = 1,
6928 VMCS_FIELD_TYPE_U32 = 2,
6929 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6930 };
6931
6932 static inline int vmcs_field_type(unsigned long field)
6933 {
6934 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6935 return VMCS_FIELD_TYPE_U32;
6936 return (field >> 13) & 0x3 ;
6937 }
6938
6939 static inline int vmcs_field_readonly(unsigned long field)
6940 {
6941 return (((field >> 10) & 0x3) == 1);
6942 }
6943
6944 /*
6945 * Read a vmcs12 field. Since these can have varying lengths and we return
6946 * one type, we chose the biggest type (u64) and zero-extend the return value
6947 * to that size. Note that the caller, handle_vmread, might need to use only
6948 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6949 * 64-bit fields are to be returned).
6950 */
6951 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6952 unsigned long field, u64 *ret)
6953 {
6954 short offset = vmcs_field_to_offset(field);
6955 char *p;
6956
6957 if (offset < 0)
6958 return offset;
6959
6960 p = ((char *)(get_vmcs12(vcpu))) + offset;
6961
6962 switch (vmcs_field_type(field)) {
6963 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6964 *ret = *((natural_width *)p);
6965 return 0;
6966 case VMCS_FIELD_TYPE_U16:
6967 *ret = *((u16 *)p);
6968 return 0;
6969 case VMCS_FIELD_TYPE_U32:
6970 *ret = *((u32 *)p);
6971 return 0;
6972 case VMCS_FIELD_TYPE_U64:
6973 *ret = *((u64 *)p);
6974 return 0;
6975 default:
6976 WARN_ON(1);
6977 return -ENOENT;
6978 }
6979 }
6980
6981
6982 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6983 unsigned long field, u64 field_value){
6984 short offset = vmcs_field_to_offset(field);
6985 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6986 if (offset < 0)
6987 return offset;
6988
6989 switch (vmcs_field_type(field)) {
6990 case VMCS_FIELD_TYPE_U16:
6991 *(u16 *)p = field_value;
6992 return 0;
6993 case VMCS_FIELD_TYPE_U32:
6994 *(u32 *)p = field_value;
6995 return 0;
6996 case VMCS_FIELD_TYPE_U64:
6997 *(u64 *)p = field_value;
6998 return 0;
6999 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7000 *(natural_width *)p = field_value;
7001 return 0;
7002 default:
7003 WARN_ON(1);
7004 return -ENOENT;
7005 }
7006
7007 }
7008
7009 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7010 {
7011 int i;
7012 unsigned long field;
7013 u64 field_value;
7014 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7015 const unsigned long *fields = shadow_read_write_fields;
7016 const int num_fields = max_shadow_read_write_fields;
7017
7018 preempt_disable();
7019
7020 vmcs_load(shadow_vmcs);
7021
7022 for (i = 0; i < num_fields; i++) {
7023 field = fields[i];
7024 switch (vmcs_field_type(field)) {
7025 case VMCS_FIELD_TYPE_U16:
7026 field_value = vmcs_read16(field);
7027 break;
7028 case VMCS_FIELD_TYPE_U32:
7029 field_value = vmcs_read32(field);
7030 break;
7031 case VMCS_FIELD_TYPE_U64:
7032 field_value = vmcs_read64(field);
7033 break;
7034 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7035 field_value = vmcs_readl(field);
7036 break;
7037 default:
7038 WARN_ON(1);
7039 continue;
7040 }
7041 vmcs12_write_any(&vmx->vcpu, field, field_value);
7042 }
7043
7044 vmcs_clear(shadow_vmcs);
7045 vmcs_load(vmx->loaded_vmcs->vmcs);
7046
7047 preempt_enable();
7048 }
7049
7050 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7051 {
7052 const unsigned long *fields[] = {
7053 shadow_read_write_fields,
7054 shadow_read_only_fields
7055 };
7056 const int max_fields[] = {
7057 max_shadow_read_write_fields,
7058 max_shadow_read_only_fields
7059 };
7060 int i, q;
7061 unsigned long field;
7062 u64 field_value = 0;
7063 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7064
7065 vmcs_load(shadow_vmcs);
7066
7067 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7068 for (i = 0; i < max_fields[q]; i++) {
7069 field = fields[q][i];
7070 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7071
7072 switch (vmcs_field_type(field)) {
7073 case VMCS_FIELD_TYPE_U16:
7074 vmcs_write16(field, (u16)field_value);
7075 break;
7076 case VMCS_FIELD_TYPE_U32:
7077 vmcs_write32(field, (u32)field_value);
7078 break;
7079 case VMCS_FIELD_TYPE_U64:
7080 vmcs_write64(field, (u64)field_value);
7081 break;
7082 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7083 vmcs_writel(field, (long)field_value);
7084 break;
7085 default:
7086 WARN_ON(1);
7087 break;
7088 }
7089 }
7090 }
7091
7092 vmcs_clear(shadow_vmcs);
7093 vmcs_load(vmx->loaded_vmcs->vmcs);
7094 }
7095
7096 /*
7097 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7098 * used before) all generate the same failure when it is missing.
7099 */
7100 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7101 {
7102 struct vcpu_vmx *vmx = to_vmx(vcpu);
7103 if (vmx->nested.current_vmptr == -1ull) {
7104 nested_vmx_failInvalid(vcpu);
7105 skip_emulated_instruction(vcpu);
7106 return 0;
7107 }
7108 return 1;
7109 }
7110
7111 static int handle_vmread(struct kvm_vcpu *vcpu)
7112 {
7113 unsigned long field;
7114 u64 field_value;
7115 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7116 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7117 gva_t gva = 0;
7118
7119 if (!nested_vmx_check_permission(vcpu) ||
7120 !nested_vmx_check_vmcs12(vcpu))
7121 return 1;
7122
7123 /* Decode instruction info and find the field to read */
7124 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7125 /* Read the field, zero-extended to a u64 field_value */
7126 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7127 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7128 skip_emulated_instruction(vcpu);
7129 return 1;
7130 }
7131 /*
7132 * Now copy part of this value to register or memory, as requested.
7133 * Note that the number of bits actually copied is 32 or 64 depending
7134 * on the guest's mode (32 or 64 bit), not on the given field's length.
7135 */
7136 if (vmx_instruction_info & (1u << 10)) {
7137 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7138 field_value);
7139 } else {
7140 if (get_vmx_mem_address(vcpu, exit_qualification,
7141 vmx_instruction_info, true, &gva))
7142 return 1;
7143 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7144 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7145 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7146 }
7147
7148 nested_vmx_succeed(vcpu);
7149 skip_emulated_instruction(vcpu);
7150 return 1;
7151 }
7152
7153
7154 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7155 {
7156 unsigned long field;
7157 gva_t gva;
7158 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7159 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7160 /* The value to write might be 32 or 64 bits, depending on L1's long
7161 * mode, and eventually we need to write that into a field of several
7162 * possible lengths. The code below first zero-extends the value to 64
7163 * bit (field_value), and then copies only the approriate number of
7164 * bits into the vmcs12 field.
7165 */
7166 u64 field_value = 0;
7167 struct x86_exception e;
7168
7169 if (!nested_vmx_check_permission(vcpu) ||
7170 !nested_vmx_check_vmcs12(vcpu))
7171 return 1;
7172
7173 if (vmx_instruction_info & (1u << 10))
7174 field_value = kvm_register_readl(vcpu,
7175 (((vmx_instruction_info) >> 3) & 0xf));
7176 else {
7177 if (get_vmx_mem_address(vcpu, exit_qualification,
7178 vmx_instruction_info, false, &gva))
7179 return 1;
7180 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7181 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7182 kvm_inject_page_fault(vcpu, &e);
7183 return 1;
7184 }
7185 }
7186
7187
7188 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7189 if (vmcs_field_readonly(field)) {
7190 nested_vmx_failValid(vcpu,
7191 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7192 skip_emulated_instruction(vcpu);
7193 return 1;
7194 }
7195
7196 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7197 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7198 skip_emulated_instruction(vcpu);
7199 return 1;
7200 }
7201
7202 nested_vmx_succeed(vcpu);
7203 skip_emulated_instruction(vcpu);
7204 return 1;
7205 }
7206
7207 /* Emulate the VMPTRLD instruction */
7208 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7209 {
7210 struct vcpu_vmx *vmx = to_vmx(vcpu);
7211 gpa_t vmptr;
7212
7213 if (!nested_vmx_check_permission(vcpu))
7214 return 1;
7215
7216 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7217 return 1;
7218
7219 if (vmx->nested.current_vmptr != vmptr) {
7220 struct vmcs12 *new_vmcs12;
7221 struct page *page;
7222 page = nested_get_page(vcpu, vmptr);
7223 if (page == NULL) {
7224 nested_vmx_failInvalid(vcpu);
7225 skip_emulated_instruction(vcpu);
7226 return 1;
7227 }
7228 new_vmcs12 = kmap(page);
7229 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7230 kunmap(page);
7231 nested_release_page_clean(page);
7232 nested_vmx_failValid(vcpu,
7233 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7234 skip_emulated_instruction(vcpu);
7235 return 1;
7236 }
7237
7238 nested_release_vmcs12(vmx);
7239 vmx->nested.current_vmptr = vmptr;
7240 vmx->nested.current_vmcs12 = new_vmcs12;
7241 vmx->nested.current_vmcs12_page = page;
7242 if (enable_shadow_vmcs) {
7243 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7244 SECONDARY_EXEC_SHADOW_VMCS);
7245 vmcs_write64(VMCS_LINK_POINTER,
7246 __pa(vmx->nested.current_shadow_vmcs));
7247 vmx->nested.sync_shadow_vmcs = true;
7248 }
7249 }
7250
7251 nested_vmx_succeed(vcpu);
7252 skip_emulated_instruction(vcpu);
7253 return 1;
7254 }
7255
7256 /* Emulate the VMPTRST instruction */
7257 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7258 {
7259 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7260 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7261 gva_t vmcs_gva;
7262 struct x86_exception e;
7263
7264 if (!nested_vmx_check_permission(vcpu))
7265 return 1;
7266
7267 if (get_vmx_mem_address(vcpu, exit_qualification,
7268 vmx_instruction_info, true, &vmcs_gva))
7269 return 1;
7270 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7271 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7272 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7273 sizeof(u64), &e)) {
7274 kvm_inject_page_fault(vcpu, &e);
7275 return 1;
7276 }
7277 nested_vmx_succeed(vcpu);
7278 skip_emulated_instruction(vcpu);
7279 return 1;
7280 }
7281
7282 /* Emulate the INVEPT instruction */
7283 static int handle_invept(struct kvm_vcpu *vcpu)
7284 {
7285 struct vcpu_vmx *vmx = to_vmx(vcpu);
7286 u32 vmx_instruction_info, types;
7287 unsigned long type;
7288 gva_t gva;
7289 struct x86_exception e;
7290 struct {
7291 u64 eptp, gpa;
7292 } operand;
7293
7294 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7295 SECONDARY_EXEC_ENABLE_EPT) ||
7296 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7297 kvm_queue_exception(vcpu, UD_VECTOR);
7298 return 1;
7299 }
7300
7301 if (!nested_vmx_check_permission(vcpu))
7302 return 1;
7303
7304 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7305 kvm_queue_exception(vcpu, UD_VECTOR);
7306 return 1;
7307 }
7308
7309 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7310 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7311
7312 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7313
7314 if (!(types & (1UL << type))) {
7315 nested_vmx_failValid(vcpu,
7316 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7317 return 1;
7318 }
7319
7320 /* According to the Intel VMX instruction reference, the memory
7321 * operand is read even if it isn't needed (e.g., for type==global)
7322 */
7323 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7324 vmx_instruction_info, false, &gva))
7325 return 1;
7326 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7327 sizeof(operand), &e)) {
7328 kvm_inject_page_fault(vcpu, &e);
7329 return 1;
7330 }
7331
7332 switch (type) {
7333 case VMX_EPT_EXTENT_GLOBAL:
7334 kvm_mmu_sync_roots(vcpu);
7335 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7336 nested_vmx_succeed(vcpu);
7337 break;
7338 default:
7339 /* Trap single context invalidation invept calls */
7340 BUG_ON(1);
7341 break;
7342 }
7343
7344 skip_emulated_instruction(vcpu);
7345 return 1;
7346 }
7347
7348 static int handle_invvpid(struct kvm_vcpu *vcpu)
7349 {
7350 struct vcpu_vmx *vmx = to_vmx(vcpu);
7351 u32 vmx_instruction_info;
7352 unsigned long type, types;
7353 gva_t gva;
7354 struct x86_exception e;
7355 int vpid;
7356
7357 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7358 SECONDARY_EXEC_ENABLE_VPID) ||
7359 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7360 kvm_queue_exception(vcpu, UD_VECTOR);
7361 return 1;
7362 }
7363
7364 if (!nested_vmx_check_permission(vcpu))
7365 return 1;
7366
7367 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7368 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7369
7370 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7371
7372 if (!(types & (1UL << type))) {
7373 nested_vmx_failValid(vcpu,
7374 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7375 return 1;
7376 }
7377
7378 /* according to the intel vmx instruction reference, the memory
7379 * operand is read even if it isn't needed (e.g., for type==global)
7380 */
7381 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7382 vmx_instruction_info, false, &gva))
7383 return 1;
7384 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7385 sizeof(u32), &e)) {
7386 kvm_inject_page_fault(vcpu, &e);
7387 return 1;
7388 }
7389
7390 switch (type) {
7391 case VMX_VPID_EXTENT_ALL_CONTEXT:
7392 if (get_vmcs12(vcpu)->virtual_processor_id == 0) {
7393 nested_vmx_failValid(vcpu,
7394 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7395 return 1;
7396 }
7397 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7398 nested_vmx_succeed(vcpu);
7399 break;
7400 default:
7401 /* Trap single context invalidation invvpid calls */
7402 BUG_ON(1);
7403 break;
7404 }
7405
7406 skip_emulated_instruction(vcpu);
7407 return 1;
7408 }
7409
7410 static int handle_pml_full(struct kvm_vcpu *vcpu)
7411 {
7412 unsigned long exit_qualification;
7413
7414 trace_kvm_pml_full(vcpu->vcpu_id);
7415
7416 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7417
7418 /*
7419 * PML buffer FULL happened while executing iret from NMI,
7420 * "blocked by NMI" bit has to be set before next VM entry.
7421 */
7422 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7423 cpu_has_virtual_nmis() &&
7424 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7425 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7426 GUEST_INTR_STATE_NMI);
7427
7428 /*
7429 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7430 * here.., and there's no userspace involvement needed for PML.
7431 */
7432 return 1;
7433 }
7434
7435 static int handle_pcommit(struct kvm_vcpu *vcpu)
7436 {
7437 /* we never catch pcommit instruct for L1 guest. */
7438 WARN_ON(1);
7439 return 1;
7440 }
7441
7442 /*
7443 * The exit handlers return 1 if the exit was handled fully and guest execution
7444 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7445 * to be done to userspace and return 0.
7446 */
7447 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7448 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7449 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7450 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7451 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7452 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7453 [EXIT_REASON_CR_ACCESS] = handle_cr,
7454 [EXIT_REASON_DR_ACCESS] = handle_dr,
7455 [EXIT_REASON_CPUID] = handle_cpuid,
7456 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7457 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7458 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7459 [EXIT_REASON_HLT] = handle_halt,
7460 [EXIT_REASON_INVD] = handle_invd,
7461 [EXIT_REASON_INVLPG] = handle_invlpg,
7462 [EXIT_REASON_RDPMC] = handle_rdpmc,
7463 [EXIT_REASON_VMCALL] = handle_vmcall,
7464 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7465 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7466 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7467 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7468 [EXIT_REASON_VMREAD] = handle_vmread,
7469 [EXIT_REASON_VMRESUME] = handle_vmresume,
7470 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7471 [EXIT_REASON_VMOFF] = handle_vmoff,
7472 [EXIT_REASON_VMON] = handle_vmon,
7473 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7474 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7475 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7476 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7477 [EXIT_REASON_WBINVD] = handle_wbinvd,
7478 [EXIT_REASON_XSETBV] = handle_xsetbv,
7479 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7480 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7481 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7482 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7483 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7484 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7485 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7486 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7487 [EXIT_REASON_INVEPT] = handle_invept,
7488 [EXIT_REASON_INVVPID] = handle_invvpid,
7489 [EXIT_REASON_XSAVES] = handle_xsaves,
7490 [EXIT_REASON_XRSTORS] = handle_xrstors,
7491 [EXIT_REASON_PML_FULL] = handle_pml_full,
7492 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7493 };
7494
7495 static const int kvm_vmx_max_exit_handlers =
7496 ARRAY_SIZE(kvm_vmx_exit_handlers);
7497
7498 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7499 struct vmcs12 *vmcs12)
7500 {
7501 unsigned long exit_qualification;
7502 gpa_t bitmap, last_bitmap;
7503 unsigned int port;
7504 int size;
7505 u8 b;
7506
7507 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7508 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7509
7510 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7511
7512 port = exit_qualification >> 16;
7513 size = (exit_qualification & 7) + 1;
7514
7515 last_bitmap = (gpa_t)-1;
7516 b = -1;
7517
7518 while (size > 0) {
7519 if (port < 0x8000)
7520 bitmap = vmcs12->io_bitmap_a;
7521 else if (port < 0x10000)
7522 bitmap = vmcs12->io_bitmap_b;
7523 else
7524 return true;
7525 bitmap += (port & 0x7fff) / 8;
7526
7527 if (last_bitmap != bitmap)
7528 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7529 return true;
7530 if (b & (1 << (port & 7)))
7531 return true;
7532
7533 port++;
7534 size--;
7535 last_bitmap = bitmap;
7536 }
7537
7538 return false;
7539 }
7540
7541 /*
7542 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7543 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7544 * disinterest in the current event (read or write a specific MSR) by using an
7545 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7546 */
7547 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7548 struct vmcs12 *vmcs12, u32 exit_reason)
7549 {
7550 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7551 gpa_t bitmap;
7552
7553 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7554 return true;
7555
7556 /*
7557 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7558 * for the four combinations of read/write and low/high MSR numbers.
7559 * First we need to figure out which of the four to use:
7560 */
7561 bitmap = vmcs12->msr_bitmap;
7562 if (exit_reason == EXIT_REASON_MSR_WRITE)
7563 bitmap += 2048;
7564 if (msr_index >= 0xc0000000) {
7565 msr_index -= 0xc0000000;
7566 bitmap += 1024;
7567 }
7568
7569 /* Then read the msr_index'th bit from this bitmap: */
7570 if (msr_index < 1024*8) {
7571 unsigned char b;
7572 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7573 return true;
7574 return 1 & (b >> (msr_index & 7));
7575 } else
7576 return true; /* let L1 handle the wrong parameter */
7577 }
7578
7579 /*
7580 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7581 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7582 * intercept (via guest_host_mask etc.) the current event.
7583 */
7584 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7585 struct vmcs12 *vmcs12)
7586 {
7587 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7588 int cr = exit_qualification & 15;
7589 int reg = (exit_qualification >> 8) & 15;
7590 unsigned long val = kvm_register_readl(vcpu, reg);
7591
7592 switch ((exit_qualification >> 4) & 3) {
7593 case 0: /* mov to cr */
7594 switch (cr) {
7595 case 0:
7596 if (vmcs12->cr0_guest_host_mask &
7597 (val ^ vmcs12->cr0_read_shadow))
7598 return true;
7599 break;
7600 case 3:
7601 if ((vmcs12->cr3_target_count >= 1 &&
7602 vmcs12->cr3_target_value0 == val) ||
7603 (vmcs12->cr3_target_count >= 2 &&
7604 vmcs12->cr3_target_value1 == val) ||
7605 (vmcs12->cr3_target_count >= 3 &&
7606 vmcs12->cr3_target_value2 == val) ||
7607 (vmcs12->cr3_target_count >= 4 &&
7608 vmcs12->cr3_target_value3 == val))
7609 return false;
7610 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7611 return true;
7612 break;
7613 case 4:
7614 if (vmcs12->cr4_guest_host_mask &
7615 (vmcs12->cr4_read_shadow ^ val))
7616 return true;
7617 break;
7618 case 8:
7619 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7620 return true;
7621 break;
7622 }
7623 break;
7624 case 2: /* clts */
7625 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7626 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7627 return true;
7628 break;
7629 case 1: /* mov from cr */
7630 switch (cr) {
7631 case 3:
7632 if (vmcs12->cpu_based_vm_exec_control &
7633 CPU_BASED_CR3_STORE_EXITING)
7634 return true;
7635 break;
7636 case 8:
7637 if (vmcs12->cpu_based_vm_exec_control &
7638 CPU_BASED_CR8_STORE_EXITING)
7639 return true;
7640 break;
7641 }
7642 break;
7643 case 3: /* lmsw */
7644 /*
7645 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7646 * cr0. Other attempted changes are ignored, with no exit.
7647 */
7648 if (vmcs12->cr0_guest_host_mask & 0xe &
7649 (val ^ vmcs12->cr0_read_shadow))
7650 return true;
7651 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7652 !(vmcs12->cr0_read_shadow & 0x1) &&
7653 (val & 0x1))
7654 return true;
7655 break;
7656 }
7657 return false;
7658 }
7659
7660 /*
7661 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7662 * should handle it ourselves in L0 (and then continue L2). Only call this
7663 * when in is_guest_mode (L2).
7664 */
7665 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7666 {
7667 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7668 struct vcpu_vmx *vmx = to_vmx(vcpu);
7669 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7670 u32 exit_reason = vmx->exit_reason;
7671
7672 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7673 vmcs_readl(EXIT_QUALIFICATION),
7674 vmx->idt_vectoring_info,
7675 intr_info,
7676 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7677 KVM_ISA_VMX);
7678
7679 if (vmx->nested.nested_run_pending)
7680 return false;
7681
7682 if (unlikely(vmx->fail)) {
7683 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7684 vmcs_read32(VM_INSTRUCTION_ERROR));
7685 return true;
7686 }
7687
7688 switch (exit_reason) {
7689 case EXIT_REASON_EXCEPTION_NMI:
7690 if (!is_exception(intr_info))
7691 return false;
7692 else if (is_page_fault(intr_info))
7693 return enable_ept;
7694 else if (is_no_device(intr_info) &&
7695 !(vmcs12->guest_cr0 & X86_CR0_TS))
7696 return false;
7697 return vmcs12->exception_bitmap &
7698 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7699 case EXIT_REASON_EXTERNAL_INTERRUPT:
7700 return false;
7701 case EXIT_REASON_TRIPLE_FAULT:
7702 return true;
7703 case EXIT_REASON_PENDING_INTERRUPT:
7704 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7705 case EXIT_REASON_NMI_WINDOW:
7706 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7707 case EXIT_REASON_TASK_SWITCH:
7708 return true;
7709 case EXIT_REASON_CPUID:
7710 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7711 return false;
7712 return true;
7713 case EXIT_REASON_HLT:
7714 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7715 case EXIT_REASON_INVD:
7716 return true;
7717 case EXIT_REASON_INVLPG:
7718 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7719 case EXIT_REASON_RDPMC:
7720 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7721 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7722 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7723 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7724 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7725 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7726 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7727 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7728 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7729 /*
7730 * VMX instructions trap unconditionally. This allows L1 to
7731 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7732 */
7733 return true;
7734 case EXIT_REASON_CR_ACCESS:
7735 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7736 case EXIT_REASON_DR_ACCESS:
7737 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7738 case EXIT_REASON_IO_INSTRUCTION:
7739 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7740 case EXIT_REASON_MSR_READ:
7741 case EXIT_REASON_MSR_WRITE:
7742 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7743 case EXIT_REASON_INVALID_STATE:
7744 return true;
7745 case EXIT_REASON_MWAIT_INSTRUCTION:
7746 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7747 case EXIT_REASON_MONITOR_TRAP_FLAG:
7748 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7749 case EXIT_REASON_MONITOR_INSTRUCTION:
7750 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7751 case EXIT_REASON_PAUSE_INSTRUCTION:
7752 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7753 nested_cpu_has2(vmcs12,
7754 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7755 case EXIT_REASON_MCE_DURING_VMENTRY:
7756 return false;
7757 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7758 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7759 case EXIT_REASON_APIC_ACCESS:
7760 return nested_cpu_has2(vmcs12,
7761 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7762 case EXIT_REASON_APIC_WRITE:
7763 case EXIT_REASON_EOI_INDUCED:
7764 /* apic_write and eoi_induced should exit unconditionally. */
7765 return true;
7766 case EXIT_REASON_EPT_VIOLATION:
7767 /*
7768 * L0 always deals with the EPT violation. If nested EPT is
7769 * used, and the nested mmu code discovers that the address is
7770 * missing in the guest EPT table (EPT12), the EPT violation
7771 * will be injected with nested_ept_inject_page_fault()
7772 */
7773 return false;
7774 case EXIT_REASON_EPT_MISCONFIG:
7775 /*
7776 * L2 never uses directly L1's EPT, but rather L0's own EPT
7777 * table (shadow on EPT) or a merged EPT table that L0 built
7778 * (EPT on EPT). So any problems with the structure of the
7779 * table is L0's fault.
7780 */
7781 return false;
7782 case EXIT_REASON_WBINVD:
7783 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7784 case EXIT_REASON_XSETBV:
7785 return true;
7786 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7787 /*
7788 * This should never happen, since it is not possible to
7789 * set XSS to a non-zero value---neither in L1 nor in L2.
7790 * If if it were, XSS would have to be checked against
7791 * the XSS exit bitmap in vmcs12.
7792 */
7793 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7794 case EXIT_REASON_PCOMMIT:
7795 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7796 default:
7797 return true;
7798 }
7799 }
7800
7801 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7802 {
7803 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7804 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7805 }
7806
7807 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7808 {
7809 struct page *pml_pg;
7810
7811 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7812 if (!pml_pg)
7813 return -ENOMEM;
7814
7815 vmx->pml_pg = pml_pg;
7816
7817 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7818 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7819
7820 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_ENABLE_PML);
7821
7822 return 0;
7823 }
7824
7825 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7826 {
7827 ASSERT(vmx->pml_pg);
7828 __free_page(vmx->pml_pg);
7829 vmx->pml_pg = NULL;
7830
7831 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_ENABLE_PML);
7832 }
7833
7834 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7835 {
7836 struct vcpu_vmx *vmx = to_vmx(vcpu);
7837 u64 *pml_buf;
7838 u16 pml_idx;
7839
7840 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7841
7842 /* Do nothing if PML buffer is empty */
7843 if (pml_idx == (PML_ENTITY_NUM - 1))
7844 return;
7845
7846 /* PML index always points to next available PML buffer entity */
7847 if (pml_idx >= PML_ENTITY_NUM)
7848 pml_idx = 0;
7849 else
7850 pml_idx++;
7851
7852 pml_buf = page_address(vmx->pml_pg);
7853 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7854 u64 gpa;
7855
7856 gpa = pml_buf[pml_idx];
7857 WARN_ON(gpa & (PAGE_SIZE - 1));
7858 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7859 }
7860
7861 /* reset PML index */
7862 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7863 }
7864
7865 /*
7866 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7867 * Called before reporting dirty_bitmap to userspace.
7868 */
7869 static void kvm_flush_pml_buffers(struct kvm *kvm)
7870 {
7871 int i;
7872 struct kvm_vcpu *vcpu;
7873 /*
7874 * We only need to kick vcpu out of guest mode here, as PML buffer
7875 * is flushed at beginning of all VMEXITs, and it's obvious that only
7876 * vcpus running in guest are possible to have unflushed GPAs in PML
7877 * buffer.
7878 */
7879 kvm_for_each_vcpu(i, vcpu, kvm)
7880 kvm_vcpu_kick(vcpu);
7881 }
7882
7883 static void vmx_dump_sel(char *name, uint32_t sel)
7884 {
7885 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7886 name, vmcs_read32(sel),
7887 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7888 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7889 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7890 }
7891
7892 static void vmx_dump_dtsel(char *name, uint32_t limit)
7893 {
7894 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7895 name, vmcs_read32(limit),
7896 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7897 }
7898
7899 static void dump_vmcs(void)
7900 {
7901 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7902 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7903 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7904 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7905 u32 secondary_exec_control = 0;
7906 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7907 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7908 int i, n;
7909
7910 if (cpu_has_secondary_exec_ctrls())
7911 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7912
7913 pr_err("*** Guest State ***\n");
7914 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7915 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7916 vmcs_readl(CR0_GUEST_HOST_MASK));
7917 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7918 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7919 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7920 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7921 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7922 {
7923 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7924 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7925 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7926 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7927 }
7928 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7929 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7930 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7931 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7932 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7933 vmcs_readl(GUEST_SYSENTER_ESP),
7934 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7935 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7936 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7937 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7938 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7939 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7940 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7941 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7942 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7943 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7944 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7945 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7946 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7947 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7948 efer, vmcs_readl(GUEST_IA32_PAT));
7949 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7950 vmcs_readl(GUEST_IA32_DEBUGCTL),
7951 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7952 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7953 pr_err("PerfGlobCtl = 0x%016lx\n",
7954 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7955 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7956 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7957 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7958 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7959 vmcs_read32(GUEST_ACTIVITY_STATE));
7960 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7961 pr_err("InterruptStatus = %04x\n",
7962 vmcs_read16(GUEST_INTR_STATUS));
7963
7964 pr_err("*** Host State ***\n");
7965 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7966 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7967 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7968 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7969 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7970 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7971 vmcs_read16(HOST_TR_SELECTOR));
7972 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7973 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7974 vmcs_readl(HOST_TR_BASE));
7975 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7976 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7977 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7978 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7979 vmcs_readl(HOST_CR4));
7980 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7981 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7982 vmcs_read32(HOST_IA32_SYSENTER_CS),
7983 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7984 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7985 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7986 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7987 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7988 pr_err("PerfGlobCtl = 0x%016lx\n",
7989 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7990
7991 pr_err("*** Control State ***\n");
7992 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7993 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7994 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7995 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7996 vmcs_read32(EXCEPTION_BITMAP),
7997 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7998 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7999 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8000 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8001 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8002 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8003 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8004 vmcs_read32(VM_EXIT_INTR_INFO),
8005 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8006 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8007 pr_err(" reason=%08x qualification=%016lx\n",
8008 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8009 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8010 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8011 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8012 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8013 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8014 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8015 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8016 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8017 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8018 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8019 n = vmcs_read32(CR3_TARGET_COUNT);
8020 for (i = 0; i + 1 < n; i += 4)
8021 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8022 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8023 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8024 if (i < n)
8025 pr_err("CR3 target%u=%016lx\n",
8026 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8027 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8028 pr_err("PLE Gap=%08x Window=%08x\n",
8029 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8030 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8031 pr_err("Virtual processor ID = 0x%04x\n",
8032 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8033 }
8034
8035 /*
8036 * The guest has exited. See if we can fix it or if we need userspace
8037 * assistance.
8038 */
8039 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8040 {
8041 struct vcpu_vmx *vmx = to_vmx(vcpu);
8042 u32 exit_reason = vmx->exit_reason;
8043 u32 vectoring_info = vmx->idt_vectoring_info;
8044
8045 /*
8046 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8047 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8048 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8049 * mode as if vcpus is in root mode, the PML buffer must has been
8050 * flushed already.
8051 */
8052 if (enable_pml)
8053 vmx_flush_pml_buffer(vcpu);
8054
8055 /* If guest state is invalid, start emulating */
8056 if (vmx->emulation_required)
8057 return handle_invalid_guest_state(vcpu);
8058
8059 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8060 nested_vmx_vmexit(vcpu, exit_reason,
8061 vmcs_read32(VM_EXIT_INTR_INFO),
8062 vmcs_readl(EXIT_QUALIFICATION));
8063 return 1;
8064 }
8065
8066 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8067 dump_vmcs();
8068 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8069 vcpu->run->fail_entry.hardware_entry_failure_reason
8070 = exit_reason;
8071 return 0;
8072 }
8073
8074 if (unlikely(vmx->fail)) {
8075 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8076 vcpu->run->fail_entry.hardware_entry_failure_reason
8077 = vmcs_read32(VM_INSTRUCTION_ERROR);
8078 return 0;
8079 }
8080
8081 /*
8082 * Note:
8083 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8084 * delivery event since it indicates guest is accessing MMIO.
8085 * The vm-exit can be triggered again after return to guest that
8086 * will cause infinite loop.
8087 */
8088 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8089 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8090 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8091 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8092 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8093 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8094 vcpu->run->internal.ndata = 2;
8095 vcpu->run->internal.data[0] = vectoring_info;
8096 vcpu->run->internal.data[1] = exit_reason;
8097 return 0;
8098 }
8099
8100 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8101 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8102 get_vmcs12(vcpu))))) {
8103 if (vmx_interrupt_allowed(vcpu)) {
8104 vmx->soft_vnmi_blocked = 0;
8105 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8106 vcpu->arch.nmi_pending) {
8107 /*
8108 * This CPU don't support us in finding the end of an
8109 * NMI-blocked window if the guest runs with IRQs
8110 * disabled. So we pull the trigger after 1 s of
8111 * futile waiting, but inform the user about this.
8112 */
8113 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8114 "state on VCPU %d after 1 s timeout\n",
8115 __func__, vcpu->vcpu_id);
8116 vmx->soft_vnmi_blocked = 0;
8117 }
8118 }
8119
8120 if (exit_reason < kvm_vmx_max_exit_handlers
8121 && kvm_vmx_exit_handlers[exit_reason])
8122 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8123 else {
8124 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8125 kvm_queue_exception(vcpu, UD_VECTOR);
8126 return 1;
8127 }
8128 }
8129
8130 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8131 {
8132 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8133
8134 if (is_guest_mode(vcpu) &&
8135 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8136 return;
8137
8138 if (irr == -1 || tpr < irr) {
8139 vmcs_write32(TPR_THRESHOLD, 0);
8140 return;
8141 }
8142
8143 vmcs_write32(TPR_THRESHOLD, irr);
8144 }
8145
8146 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8147 {
8148 u32 sec_exec_control;
8149
8150 /*
8151 * There is not point to enable virtualize x2apic without enable
8152 * apicv
8153 */
8154 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8155 !vmx_cpu_uses_apicv(vcpu))
8156 return;
8157
8158 if (!cpu_need_tpr_shadow(vcpu))
8159 return;
8160
8161 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8162
8163 if (set) {
8164 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8165 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8166 } else {
8167 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8168 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8169 }
8170 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8171
8172 vmx_set_msr_bitmap(vcpu);
8173 }
8174
8175 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8176 {
8177 struct vcpu_vmx *vmx = to_vmx(vcpu);
8178
8179 /*
8180 * Currently we do not handle the nested case where L2 has an
8181 * APIC access page of its own; that page is still pinned.
8182 * Hence, we skip the case where the VCPU is in guest mode _and_
8183 * L1 prepared an APIC access page for L2.
8184 *
8185 * For the case where L1 and L2 share the same APIC access page
8186 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8187 * in the vmcs12), this function will only update either the vmcs01
8188 * or the vmcs02. If the former, the vmcs02 will be updated by
8189 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8190 * the next L2->L1 exit.
8191 */
8192 if (!is_guest_mode(vcpu) ||
8193 !nested_cpu_has2(vmx->nested.current_vmcs12,
8194 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8195 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8196 }
8197
8198 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8199 {
8200 u16 status;
8201 u8 old;
8202
8203 if (isr == -1)
8204 isr = 0;
8205
8206 status = vmcs_read16(GUEST_INTR_STATUS);
8207 old = status >> 8;
8208 if (isr != old) {
8209 status &= 0xff;
8210 status |= isr << 8;
8211 vmcs_write16(GUEST_INTR_STATUS, status);
8212 }
8213 }
8214
8215 static void vmx_set_rvi(int vector)
8216 {
8217 u16 status;
8218 u8 old;
8219
8220 if (vector == -1)
8221 vector = 0;
8222
8223 status = vmcs_read16(GUEST_INTR_STATUS);
8224 old = (u8)status & 0xff;
8225 if ((u8)vector != old) {
8226 status &= ~0xff;
8227 status |= (u8)vector;
8228 vmcs_write16(GUEST_INTR_STATUS, status);
8229 }
8230 }
8231
8232 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8233 {
8234 if (!is_guest_mode(vcpu)) {
8235 vmx_set_rvi(max_irr);
8236 return;
8237 }
8238
8239 if (max_irr == -1)
8240 return;
8241
8242 /*
8243 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8244 * handles it.
8245 */
8246 if (nested_exit_on_intr(vcpu))
8247 return;
8248
8249 /*
8250 * Else, fall back to pre-APICv interrupt injection since L2
8251 * is run without virtual interrupt delivery.
8252 */
8253 if (!kvm_event_needs_reinjection(vcpu) &&
8254 vmx_interrupt_allowed(vcpu)) {
8255 kvm_queue_interrupt(vcpu, max_irr, false);
8256 vmx_inject_irq(vcpu);
8257 }
8258 }
8259
8260 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8261 {
8262 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8263 if (!vmx_cpu_uses_apicv(vcpu))
8264 return;
8265
8266 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8267 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8268 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8269 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8270 }
8271
8272 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8273 {
8274 u32 exit_intr_info;
8275
8276 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8277 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8278 return;
8279
8280 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8281 exit_intr_info = vmx->exit_intr_info;
8282
8283 /* Handle machine checks before interrupts are enabled */
8284 if (is_machine_check(exit_intr_info))
8285 kvm_machine_check();
8286
8287 /* We need to handle NMIs before interrupts are enabled */
8288 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8289 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8290 kvm_before_handle_nmi(&vmx->vcpu);
8291 asm("int $2");
8292 kvm_after_handle_nmi(&vmx->vcpu);
8293 }
8294 }
8295
8296 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8297 {
8298 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8299
8300 /*
8301 * If external interrupt exists, IF bit is set in rflags/eflags on the
8302 * interrupt stack frame, and interrupt will be enabled on a return
8303 * from interrupt handler.
8304 */
8305 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8306 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8307 unsigned int vector;
8308 unsigned long entry;
8309 gate_desc *desc;
8310 struct vcpu_vmx *vmx = to_vmx(vcpu);
8311 #ifdef CONFIG_X86_64
8312 unsigned long tmp;
8313 #endif
8314
8315 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8316 desc = (gate_desc *)vmx->host_idt_base + vector;
8317 entry = gate_offset(*desc);
8318 asm volatile(
8319 #ifdef CONFIG_X86_64
8320 "mov %%" _ASM_SP ", %[sp]\n\t"
8321 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8322 "push $%c[ss]\n\t"
8323 "push %[sp]\n\t"
8324 #endif
8325 "pushf\n\t"
8326 "orl $0x200, (%%" _ASM_SP ")\n\t"
8327 __ASM_SIZE(push) " $%c[cs]\n\t"
8328 "call *%[entry]\n\t"
8329 :
8330 #ifdef CONFIG_X86_64
8331 [sp]"=&r"(tmp)
8332 #endif
8333 :
8334 [entry]"r"(entry),
8335 [ss]"i"(__KERNEL_DS),
8336 [cs]"i"(__KERNEL_CS)
8337 );
8338 } else
8339 local_irq_enable();
8340 }
8341
8342 static bool vmx_has_high_real_mode_segbase(void)
8343 {
8344 return enable_unrestricted_guest || emulate_invalid_guest_state;
8345 }
8346
8347 static bool vmx_mpx_supported(void)
8348 {
8349 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8350 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8351 }
8352
8353 static bool vmx_xsaves_supported(void)
8354 {
8355 return vmcs_config.cpu_based_2nd_exec_ctrl &
8356 SECONDARY_EXEC_XSAVES;
8357 }
8358
8359 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8360 {
8361 u32 exit_intr_info;
8362 bool unblock_nmi;
8363 u8 vector;
8364 bool idtv_info_valid;
8365
8366 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8367
8368 if (cpu_has_virtual_nmis()) {
8369 if (vmx->nmi_known_unmasked)
8370 return;
8371 /*
8372 * Can't use vmx->exit_intr_info since we're not sure what
8373 * the exit reason is.
8374 */
8375 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8376 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8377 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8378 /*
8379 * SDM 3: 27.7.1.2 (September 2008)
8380 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8381 * a guest IRET fault.
8382 * SDM 3: 23.2.2 (September 2008)
8383 * Bit 12 is undefined in any of the following cases:
8384 * If the VM exit sets the valid bit in the IDT-vectoring
8385 * information field.
8386 * If the VM exit is due to a double fault.
8387 */
8388 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8389 vector != DF_VECTOR && !idtv_info_valid)
8390 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8391 GUEST_INTR_STATE_NMI);
8392 else
8393 vmx->nmi_known_unmasked =
8394 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8395 & GUEST_INTR_STATE_NMI);
8396 } else if (unlikely(vmx->soft_vnmi_blocked))
8397 vmx->vnmi_blocked_time +=
8398 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8399 }
8400
8401 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8402 u32 idt_vectoring_info,
8403 int instr_len_field,
8404 int error_code_field)
8405 {
8406 u8 vector;
8407 int type;
8408 bool idtv_info_valid;
8409
8410 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8411
8412 vcpu->arch.nmi_injected = false;
8413 kvm_clear_exception_queue(vcpu);
8414 kvm_clear_interrupt_queue(vcpu);
8415
8416 if (!idtv_info_valid)
8417 return;
8418
8419 kvm_make_request(KVM_REQ_EVENT, vcpu);
8420
8421 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8422 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8423
8424 switch (type) {
8425 case INTR_TYPE_NMI_INTR:
8426 vcpu->arch.nmi_injected = true;
8427 /*
8428 * SDM 3: 27.7.1.2 (September 2008)
8429 * Clear bit "block by NMI" before VM entry if a NMI
8430 * delivery faulted.
8431 */
8432 vmx_set_nmi_mask(vcpu, false);
8433 break;
8434 case INTR_TYPE_SOFT_EXCEPTION:
8435 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8436 /* fall through */
8437 case INTR_TYPE_HARD_EXCEPTION:
8438 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8439 u32 err = vmcs_read32(error_code_field);
8440 kvm_requeue_exception_e(vcpu, vector, err);
8441 } else
8442 kvm_requeue_exception(vcpu, vector);
8443 break;
8444 case INTR_TYPE_SOFT_INTR:
8445 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8446 /* fall through */
8447 case INTR_TYPE_EXT_INTR:
8448 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8449 break;
8450 default:
8451 break;
8452 }
8453 }
8454
8455 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8456 {
8457 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8458 VM_EXIT_INSTRUCTION_LEN,
8459 IDT_VECTORING_ERROR_CODE);
8460 }
8461
8462 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8463 {
8464 __vmx_complete_interrupts(vcpu,
8465 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8466 VM_ENTRY_INSTRUCTION_LEN,
8467 VM_ENTRY_EXCEPTION_ERROR_CODE);
8468
8469 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8470 }
8471
8472 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8473 {
8474 int i, nr_msrs;
8475 struct perf_guest_switch_msr *msrs;
8476
8477 msrs = perf_guest_get_msrs(&nr_msrs);
8478
8479 if (!msrs)
8480 return;
8481
8482 for (i = 0; i < nr_msrs; i++)
8483 if (msrs[i].host == msrs[i].guest)
8484 clear_atomic_switch_msr(vmx, msrs[i].msr);
8485 else
8486 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8487 msrs[i].host);
8488 }
8489
8490 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8491 {
8492 struct vcpu_vmx *vmx = to_vmx(vcpu);
8493 unsigned long debugctlmsr, cr4;
8494
8495 /* Record the guest's net vcpu time for enforced NMI injections. */
8496 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8497 vmx->entry_time = ktime_get();
8498
8499 /* Don't enter VMX if guest state is invalid, let the exit handler
8500 start emulation until we arrive back to a valid state */
8501 if (vmx->emulation_required)
8502 return;
8503
8504 if (vmx->ple_window_dirty) {
8505 vmx->ple_window_dirty = false;
8506 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8507 }
8508
8509 if (vmx->nested.sync_shadow_vmcs) {
8510 copy_vmcs12_to_shadow(vmx);
8511 vmx->nested.sync_shadow_vmcs = false;
8512 }
8513
8514 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8515 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8516 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8517 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8518
8519 cr4 = cr4_read_shadow();
8520 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8521 vmcs_writel(HOST_CR4, cr4);
8522 vmx->host_state.vmcs_host_cr4 = cr4;
8523 }
8524
8525 /* When single-stepping over STI and MOV SS, we must clear the
8526 * corresponding interruptibility bits in the guest state. Otherwise
8527 * vmentry fails as it then expects bit 14 (BS) in pending debug
8528 * exceptions being set, but that's not correct for the guest debugging
8529 * case. */
8530 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8531 vmx_set_interrupt_shadow(vcpu, 0);
8532
8533 atomic_switch_perf_msrs(vmx);
8534 debugctlmsr = get_debugctlmsr();
8535
8536 vmx->__launched = vmx->loaded_vmcs->launched;
8537 asm(
8538 /* Store host registers */
8539 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8540 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8541 "push %%" _ASM_CX " \n\t"
8542 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8543 "je 1f \n\t"
8544 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8545 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8546 "1: \n\t"
8547 /* Reload cr2 if changed */
8548 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8549 "mov %%cr2, %%" _ASM_DX " \n\t"
8550 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8551 "je 2f \n\t"
8552 "mov %%" _ASM_AX", %%cr2 \n\t"
8553 "2: \n\t"
8554 /* Check if vmlaunch of vmresume is needed */
8555 "cmpl $0, %c[launched](%0) \n\t"
8556 /* Load guest registers. Don't clobber flags. */
8557 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8558 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8559 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8560 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8561 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8562 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8563 #ifdef CONFIG_X86_64
8564 "mov %c[r8](%0), %%r8 \n\t"
8565 "mov %c[r9](%0), %%r9 \n\t"
8566 "mov %c[r10](%0), %%r10 \n\t"
8567 "mov %c[r11](%0), %%r11 \n\t"
8568 "mov %c[r12](%0), %%r12 \n\t"
8569 "mov %c[r13](%0), %%r13 \n\t"
8570 "mov %c[r14](%0), %%r14 \n\t"
8571 "mov %c[r15](%0), %%r15 \n\t"
8572 #endif
8573 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8574
8575 /* Enter guest mode */
8576 "jne 1f \n\t"
8577 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8578 "jmp 2f \n\t"
8579 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8580 "2: "
8581 /* Save guest registers, load host registers, keep flags */
8582 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8583 "pop %0 \n\t"
8584 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8585 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8586 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8587 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8588 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8589 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8590 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8591 #ifdef CONFIG_X86_64
8592 "mov %%r8, %c[r8](%0) \n\t"
8593 "mov %%r9, %c[r9](%0) \n\t"
8594 "mov %%r10, %c[r10](%0) \n\t"
8595 "mov %%r11, %c[r11](%0) \n\t"
8596 "mov %%r12, %c[r12](%0) \n\t"
8597 "mov %%r13, %c[r13](%0) \n\t"
8598 "mov %%r14, %c[r14](%0) \n\t"
8599 "mov %%r15, %c[r15](%0) \n\t"
8600 #endif
8601 "mov %%cr2, %%" _ASM_AX " \n\t"
8602 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8603
8604 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8605 "setbe %c[fail](%0) \n\t"
8606 ".pushsection .rodata \n\t"
8607 ".global vmx_return \n\t"
8608 "vmx_return: " _ASM_PTR " 2b \n\t"
8609 ".popsection"
8610 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8611 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8612 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8613 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8614 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8615 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8616 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8617 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8618 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8619 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8620 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8621 #ifdef CONFIG_X86_64
8622 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8623 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8624 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8625 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8626 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8627 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8628 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8629 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8630 #endif
8631 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8632 [wordsize]"i"(sizeof(ulong))
8633 : "cc", "memory"
8634 #ifdef CONFIG_X86_64
8635 , "rax", "rbx", "rdi", "rsi"
8636 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8637 #else
8638 , "eax", "ebx", "edi", "esi"
8639 #endif
8640 );
8641
8642 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8643 if (debugctlmsr)
8644 update_debugctlmsr(debugctlmsr);
8645
8646 #ifndef CONFIG_X86_64
8647 /*
8648 * The sysexit path does not restore ds/es, so we must set them to
8649 * a reasonable value ourselves.
8650 *
8651 * We can't defer this to vmx_load_host_state() since that function
8652 * may be executed in interrupt context, which saves and restore segments
8653 * around it, nullifying its effect.
8654 */
8655 loadsegment(ds, __USER_DS);
8656 loadsegment(es, __USER_DS);
8657 #endif
8658
8659 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8660 | (1 << VCPU_EXREG_RFLAGS)
8661 | (1 << VCPU_EXREG_PDPTR)
8662 | (1 << VCPU_EXREG_SEGMENTS)
8663 | (1 << VCPU_EXREG_CR3));
8664 vcpu->arch.regs_dirty = 0;
8665
8666 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8667
8668 vmx->loaded_vmcs->launched = 1;
8669
8670 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8671 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8672
8673 /*
8674 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8675 * we did not inject a still-pending event to L1 now because of
8676 * nested_run_pending, we need to re-enable this bit.
8677 */
8678 if (vmx->nested.nested_run_pending)
8679 kvm_make_request(KVM_REQ_EVENT, vcpu);
8680
8681 vmx->nested.nested_run_pending = 0;
8682
8683 vmx_complete_atomic_exit(vmx);
8684 vmx_recover_nmi_blocking(vmx);
8685 vmx_complete_interrupts(vmx);
8686 }
8687
8688 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8689 {
8690 struct vcpu_vmx *vmx = to_vmx(vcpu);
8691 int cpu;
8692
8693 if (vmx->loaded_vmcs == &vmx->vmcs01)
8694 return;
8695
8696 cpu = get_cpu();
8697 vmx->loaded_vmcs = &vmx->vmcs01;
8698 vmx_vcpu_put(vcpu);
8699 vmx_vcpu_load(vcpu, cpu);
8700 vcpu->cpu = cpu;
8701 put_cpu();
8702 }
8703
8704 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8705 {
8706 struct vcpu_vmx *vmx = to_vmx(vcpu);
8707
8708 if (enable_pml)
8709 vmx_disable_pml(vmx);
8710 free_vpid(vmx->vpid);
8711 leave_guest_mode(vcpu);
8712 vmx_load_vmcs01(vcpu);
8713 free_nested(vmx);
8714 free_loaded_vmcs(vmx->loaded_vmcs);
8715 kfree(vmx->guest_msrs);
8716 kvm_vcpu_uninit(vcpu);
8717 kmem_cache_free(kvm_vcpu_cache, vmx);
8718 }
8719
8720 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8721 {
8722 int err;
8723 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8724 int cpu;
8725
8726 if (!vmx)
8727 return ERR_PTR(-ENOMEM);
8728
8729 vmx->vpid = allocate_vpid();
8730
8731 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8732 if (err)
8733 goto free_vcpu;
8734
8735 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8736 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8737 > PAGE_SIZE);
8738
8739 err = -ENOMEM;
8740 if (!vmx->guest_msrs) {
8741 goto uninit_vcpu;
8742 }
8743
8744 vmx->loaded_vmcs = &vmx->vmcs01;
8745 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8746 if (!vmx->loaded_vmcs->vmcs)
8747 goto free_msrs;
8748 if (!vmm_exclusive)
8749 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8750 loaded_vmcs_init(vmx->loaded_vmcs);
8751 if (!vmm_exclusive)
8752 kvm_cpu_vmxoff();
8753
8754 cpu = get_cpu();
8755 vmx_vcpu_load(&vmx->vcpu, cpu);
8756 vmx->vcpu.cpu = cpu;
8757 err = vmx_vcpu_setup(vmx);
8758 vmx_vcpu_put(&vmx->vcpu);
8759 put_cpu();
8760 if (err)
8761 goto free_vmcs;
8762 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8763 err = alloc_apic_access_page(kvm);
8764 if (err)
8765 goto free_vmcs;
8766 }
8767
8768 if (enable_ept) {
8769 if (!kvm->arch.ept_identity_map_addr)
8770 kvm->arch.ept_identity_map_addr =
8771 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8772 err = init_rmode_identity_map(kvm);
8773 if (err)
8774 goto free_vmcs;
8775 }
8776
8777 if (nested) {
8778 nested_vmx_setup_ctls_msrs(vmx);
8779 vmx->nested.vpid02 = allocate_vpid();
8780 }
8781
8782 vmx->nested.posted_intr_nv = -1;
8783 vmx->nested.current_vmptr = -1ull;
8784 vmx->nested.current_vmcs12 = NULL;
8785
8786 /*
8787 * If PML is turned on, failure on enabling PML just results in failure
8788 * of creating the vcpu, therefore we can simplify PML logic (by
8789 * avoiding dealing with cases, such as enabling PML partially on vcpus
8790 * for the guest, etc.
8791 */
8792 if (enable_pml) {
8793 err = vmx_enable_pml(vmx);
8794 if (err)
8795 goto free_vmcs;
8796 }
8797
8798 return &vmx->vcpu;
8799
8800 free_vmcs:
8801 free_vpid(vmx->nested.vpid02);
8802 free_loaded_vmcs(vmx->loaded_vmcs);
8803 free_msrs:
8804 kfree(vmx->guest_msrs);
8805 uninit_vcpu:
8806 kvm_vcpu_uninit(&vmx->vcpu);
8807 free_vcpu:
8808 free_vpid(vmx->vpid);
8809 kmem_cache_free(kvm_vcpu_cache, vmx);
8810 return ERR_PTR(err);
8811 }
8812
8813 static void __init vmx_check_processor_compat(void *rtn)
8814 {
8815 struct vmcs_config vmcs_conf;
8816
8817 *(int *)rtn = 0;
8818 if (setup_vmcs_config(&vmcs_conf) < 0)
8819 *(int *)rtn = -EIO;
8820 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8821 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8822 smp_processor_id());
8823 *(int *)rtn = -EIO;
8824 }
8825 }
8826
8827 static int get_ept_level(void)
8828 {
8829 return VMX_EPT_DEFAULT_GAW + 1;
8830 }
8831
8832 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8833 {
8834 u8 cache;
8835 u64 ipat = 0;
8836
8837 /* For VT-d and EPT combination
8838 * 1. MMIO: always map as UC
8839 * 2. EPT with VT-d:
8840 * a. VT-d without snooping control feature: can't guarantee the
8841 * result, try to trust guest.
8842 * b. VT-d with snooping control feature: snooping control feature of
8843 * VT-d engine can guarantee the cache correctness. Just set it
8844 * to WB to keep consistent with host. So the same as item 3.
8845 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8846 * consistent with host MTRR
8847 */
8848 if (is_mmio) {
8849 cache = MTRR_TYPE_UNCACHABLE;
8850 goto exit;
8851 }
8852
8853 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8854 ipat = VMX_EPT_IPAT_BIT;
8855 cache = MTRR_TYPE_WRBACK;
8856 goto exit;
8857 }
8858
8859 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8860 ipat = VMX_EPT_IPAT_BIT;
8861 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8862 cache = MTRR_TYPE_WRBACK;
8863 else
8864 cache = MTRR_TYPE_UNCACHABLE;
8865 goto exit;
8866 }
8867
8868 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8869
8870 exit:
8871 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8872 }
8873
8874 static int vmx_get_lpage_level(void)
8875 {
8876 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8877 return PT_DIRECTORY_LEVEL;
8878 else
8879 /* For shadow and EPT supported 1GB page */
8880 return PT_PDPE_LEVEL;
8881 }
8882
8883 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8884 {
8885 /*
8886 * These bits in the secondary execution controls field
8887 * are dynamic, the others are mostly based on the hypervisor
8888 * architecture and the guest's CPUID. Do not touch the
8889 * dynamic bits.
8890 */
8891 u32 mask =
8892 SECONDARY_EXEC_SHADOW_VMCS |
8893 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8894 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8895
8896 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8897
8898 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8899 (new_ctl & ~mask) | (cur_ctl & mask));
8900 }
8901
8902 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8903 {
8904 struct kvm_cpuid_entry2 *best;
8905 struct vcpu_vmx *vmx = to_vmx(vcpu);
8906 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8907
8908 if (vmx_rdtscp_supported()) {
8909 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8910 if (!rdtscp_enabled)
8911 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8912
8913 if (nested) {
8914 if (rdtscp_enabled)
8915 vmx->nested.nested_vmx_secondary_ctls_high |=
8916 SECONDARY_EXEC_RDTSCP;
8917 else
8918 vmx->nested.nested_vmx_secondary_ctls_high &=
8919 ~SECONDARY_EXEC_RDTSCP;
8920 }
8921 }
8922
8923 /* Exposing INVPCID only when PCID is exposed */
8924 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8925 if (vmx_invpcid_supported() &&
8926 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8927 !guest_cpuid_has_pcid(vcpu))) {
8928 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8929
8930 if (best)
8931 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8932 }
8933
8934 vmcs_set_secondary_exec_control(secondary_exec_ctl);
8935
8936 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8937 if (guest_cpuid_has_pcommit(vcpu))
8938 vmx->nested.nested_vmx_secondary_ctls_high |=
8939 SECONDARY_EXEC_PCOMMIT;
8940 else
8941 vmx->nested.nested_vmx_secondary_ctls_high &=
8942 ~SECONDARY_EXEC_PCOMMIT;
8943 }
8944 }
8945
8946 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8947 {
8948 if (func == 1 && nested)
8949 entry->ecx |= bit(X86_FEATURE_VMX);
8950 }
8951
8952 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8953 struct x86_exception *fault)
8954 {
8955 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8956 u32 exit_reason;
8957
8958 if (fault->error_code & PFERR_RSVD_MASK)
8959 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8960 else
8961 exit_reason = EXIT_REASON_EPT_VIOLATION;
8962 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8963 vmcs12->guest_physical_address = fault->address;
8964 }
8965
8966 /* Callbacks for nested_ept_init_mmu_context: */
8967
8968 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8969 {
8970 /* return the page table to be shadowed - in our case, EPT12 */
8971 return get_vmcs12(vcpu)->ept_pointer;
8972 }
8973
8974 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8975 {
8976 WARN_ON(mmu_is_nested(vcpu));
8977 kvm_init_shadow_ept_mmu(vcpu,
8978 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8979 VMX_EPT_EXECUTE_ONLY_BIT);
8980 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8981 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8982 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8983
8984 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8985 }
8986
8987 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8988 {
8989 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8990 }
8991
8992 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8993 u16 error_code)
8994 {
8995 bool inequality, bit;
8996
8997 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8998 inequality =
8999 (error_code & vmcs12->page_fault_error_code_mask) !=
9000 vmcs12->page_fault_error_code_match;
9001 return inequality ^ bit;
9002 }
9003
9004 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9005 struct x86_exception *fault)
9006 {
9007 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9008
9009 WARN_ON(!is_guest_mode(vcpu));
9010
9011 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9012 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9013 vmcs_read32(VM_EXIT_INTR_INFO),
9014 vmcs_readl(EXIT_QUALIFICATION));
9015 else
9016 kvm_inject_page_fault(vcpu, fault);
9017 }
9018
9019 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9020 struct vmcs12 *vmcs12)
9021 {
9022 struct vcpu_vmx *vmx = to_vmx(vcpu);
9023 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9024
9025 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9026 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9027 vmcs12->apic_access_addr >> maxphyaddr)
9028 return false;
9029
9030 /*
9031 * Translate L1 physical address to host physical
9032 * address for vmcs02. Keep the page pinned, so this
9033 * physical address remains valid. We keep a reference
9034 * to it so we can release it later.
9035 */
9036 if (vmx->nested.apic_access_page) /* shouldn't happen */
9037 nested_release_page(vmx->nested.apic_access_page);
9038 vmx->nested.apic_access_page =
9039 nested_get_page(vcpu, vmcs12->apic_access_addr);
9040 }
9041
9042 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9043 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9044 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9045 return false;
9046
9047 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9048 nested_release_page(vmx->nested.virtual_apic_page);
9049 vmx->nested.virtual_apic_page =
9050 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9051
9052 /*
9053 * Failing the vm entry is _not_ what the processor does
9054 * but it's basically the only possibility we have.
9055 * We could still enter the guest if CR8 load exits are
9056 * enabled, CR8 store exits are enabled, and virtualize APIC
9057 * access is disabled; in this case the processor would never
9058 * use the TPR shadow and we could simply clear the bit from
9059 * the execution control. But such a configuration is useless,
9060 * so let's keep the code simple.
9061 */
9062 if (!vmx->nested.virtual_apic_page)
9063 return false;
9064 }
9065
9066 if (nested_cpu_has_posted_intr(vmcs12)) {
9067 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9068 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9069 return false;
9070
9071 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9072 kunmap(vmx->nested.pi_desc_page);
9073 nested_release_page(vmx->nested.pi_desc_page);
9074 }
9075 vmx->nested.pi_desc_page =
9076 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9077 if (!vmx->nested.pi_desc_page)
9078 return false;
9079
9080 vmx->nested.pi_desc =
9081 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9082 if (!vmx->nested.pi_desc) {
9083 nested_release_page_clean(vmx->nested.pi_desc_page);
9084 return false;
9085 }
9086 vmx->nested.pi_desc =
9087 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9088 (unsigned long)(vmcs12->posted_intr_desc_addr &
9089 (PAGE_SIZE - 1)));
9090 }
9091
9092 return true;
9093 }
9094
9095 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9096 {
9097 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9098 struct vcpu_vmx *vmx = to_vmx(vcpu);
9099
9100 if (vcpu->arch.virtual_tsc_khz == 0)
9101 return;
9102
9103 /* Make sure short timeouts reliably trigger an immediate vmexit.
9104 * hrtimer_start does not guarantee this. */
9105 if (preemption_timeout <= 1) {
9106 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9107 return;
9108 }
9109
9110 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9111 preemption_timeout *= 1000000;
9112 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9113 hrtimer_start(&vmx->nested.preemption_timer,
9114 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9115 }
9116
9117 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9118 struct vmcs12 *vmcs12)
9119 {
9120 int maxphyaddr;
9121 u64 addr;
9122
9123 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9124 return 0;
9125
9126 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9127 WARN_ON(1);
9128 return -EINVAL;
9129 }
9130 maxphyaddr = cpuid_maxphyaddr(vcpu);
9131
9132 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9133 ((addr + PAGE_SIZE) >> maxphyaddr))
9134 return -EINVAL;
9135
9136 return 0;
9137 }
9138
9139 /*
9140 * Merge L0's and L1's MSR bitmap, return false to indicate that
9141 * we do not use the hardware.
9142 */
9143 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9144 struct vmcs12 *vmcs12)
9145 {
9146 int msr;
9147 struct page *page;
9148 unsigned long *msr_bitmap;
9149
9150 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9151 return false;
9152
9153 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9154 if (!page) {
9155 WARN_ON(1);
9156 return false;
9157 }
9158 msr_bitmap = (unsigned long *)kmap(page);
9159 if (!msr_bitmap) {
9160 nested_release_page_clean(page);
9161 WARN_ON(1);
9162 return false;
9163 }
9164
9165 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9166 if (nested_cpu_has_apic_reg_virt(vmcs12))
9167 for (msr = 0x800; msr <= 0x8ff; msr++)
9168 nested_vmx_disable_intercept_for_msr(
9169 msr_bitmap,
9170 vmx_msr_bitmap_nested,
9171 msr, MSR_TYPE_R);
9172 /* TPR is allowed */
9173 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9174 vmx_msr_bitmap_nested,
9175 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9176 MSR_TYPE_R | MSR_TYPE_W);
9177 if (nested_cpu_has_vid(vmcs12)) {
9178 /* EOI and self-IPI are allowed */
9179 nested_vmx_disable_intercept_for_msr(
9180 msr_bitmap,
9181 vmx_msr_bitmap_nested,
9182 APIC_BASE_MSR + (APIC_EOI >> 4),
9183 MSR_TYPE_W);
9184 nested_vmx_disable_intercept_for_msr(
9185 msr_bitmap,
9186 vmx_msr_bitmap_nested,
9187 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9188 MSR_TYPE_W);
9189 }
9190 } else {
9191 /*
9192 * Enable reading intercept of all the x2apic
9193 * MSRs. We should not rely on vmcs12 to do any
9194 * optimizations here, it may have been modified
9195 * by L1.
9196 */
9197 for (msr = 0x800; msr <= 0x8ff; msr++)
9198 __vmx_enable_intercept_for_msr(
9199 vmx_msr_bitmap_nested,
9200 msr,
9201 MSR_TYPE_R);
9202
9203 __vmx_enable_intercept_for_msr(
9204 vmx_msr_bitmap_nested,
9205 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9206 MSR_TYPE_W);
9207 __vmx_enable_intercept_for_msr(
9208 vmx_msr_bitmap_nested,
9209 APIC_BASE_MSR + (APIC_EOI >> 4),
9210 MSR_TYPE_W);
9211 __vmx_enable_intercept_for_msr(
9212 vmx_msr_bitmap_nested,
9213 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9214 MSR_TYPE_W);
9215 }
9216 kunmap(page);
9217 nested_release_page_clean(page);
9218
9219 return true;
9220 }
9221
9222 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9223 struct vmcs12 *vmcs12)
9224 {
9225 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9226 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9227 !nested_cpu_has_vid(vmcs12) &&
9228 !nested_cpu_has_posted_intr(vmcs12))
9229 return 0;
9230
9231 /*
9232 * If virtualize x2apic mode is enabled,
9233 * virtualize apic access must be disabled.
9234 */
9235 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9236 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9237 return -EINVAL;
9238
9239 /*
9240 * If virtual interrupt delivery is enabled,
9241 * we must exit on external interrupts.
9242 */
9243 if (nested_cpu_has_vid(vmcs12) &&
9244 !nested_exit_on_intr(vcpu))
9245 return -EINVAL;
9246
9247 /*
9248 * bits 15:8 should be zero in posted_intr_nv,
9249 * the descriptor address has been already checked
9250 * in nested_get_vmcs12_pages.
9251 */
9252 if (nested_cpu_has_posted_intr(vmcs12) &&
9253 (!nested_cpu_has_vid(vmcs12) ||
9254 !nested_exit_intr_ack_set(vcpu) ||
9255 vmcs12->posted_intr_nv & 0xff00))
9256 return -EINVAL;
9257
9258 /* tpr shadow is needed by all apicv features. */
9259 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9260 return -EINVAL;
9261
9262 return 0;
9263 }
9264
9265 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9266 unsigned long count_field,
9267 unsigned long addr_field)
9268 {
9269 int maxphyaddr;
9270 u64 count, addr;
9271
9272 if (vmcs12_read_any(vcpu, count_field, &count) ||
9273 vmcs12_read_any(vcpu, addr_field, &addr)) {
9274 WARN_ON(1);
9275 return -EINVAL;
9276 }
9277 if (count == 0)
9278 return 0;
9279 maxphyaddr = cpuid_maxphyaddr(vcpu);
9280 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9281 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9282 pr_warn_ratelimited(
9283 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9284 addr_field, maxphyaddr, count, addr);
9285 return -EINVAL;
9286 }
9287 return 0;
9288 }
9289
9290 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9291 struct vmcs12 *vmcs12)
9292 {
9293 if (vmcs12->vm_exit_msr_load_count == 0 &&
9294 vmcs12->vm_exit_msr_store_count == 0 &&
9295 vmcs12->vm_entry_msr_load_count == 0)
9296 return 0; /* Fast path */
9297 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9298 VM_EXIT_MSR_LOAD_ADDR) ||
9299 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9300 VM_EXIT_MSR_STORE_ADDR) ||
9301 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9302 VM_ENTRY_MSR_LOAD_ADDR))
9303 return -EINVAL;
9304 return 0;
9305 }
9306
9307 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9308 struct vmx_msr_entry *e)
9309 {
9310 /* x2APIC MSR accesses are not allowed */
9311 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9312 return -EINVAL;
9313 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9314 e->index == MSR_IA32_UCODE_REV)
9315 return -EINVAL;
9316 if (e->reserved != 0)
9317 return -EINVAL;
9318 return 0;
9319 }
9320
9321 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9322 struct vmx_msr_entry *e)
9323 {
9324 if (e->index == MSR_FS_BASE ||
9325 e->index == MSR_GS_BASE ||
9326 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9327 nested_vmx_msr_check_common(vcpu, e))
9328 return -EINVAL;
9329 return 0;
9330 }
9331
9332 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9333 struct vmx_msr_entry *e)
9334 {
9335 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9336 nested_vmx_msr_check_common(vcpu, e))
9337 return -EINVAL;
9338 return 0;
9339 }
9340
9341 /*
9342 * Load guest's/host's msr at nested entry/exit.
9343 * return 0 for success, entry index for failure.
9344 */
9345 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9346 {
9347 u32 i;
9348 struct vmx_msr_entry e;
9349 struct msr_data msr;
9350
9351 msr.host_initiated = false;
9352 for (i = 0; i < count; i++) {
9353 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9354 &e, sizeof(e))) {
9355 pr_warn_ratelimited(
9356 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9357 __func__, i, gpa + i * sizeof(e));
9358 goto fail;
9359 }
9360 if (nested_vmx_load_msr_check(vcpu, &e)) {
9361 pr_warn_ratelimited(
9362 "%s check failed (%u, 0x%x, 0x%x)\n",
9363 __func__, i, e.index, e.reserved);
9364 goto fail;
9365 }
9366 msr.index = e.index;
9367 msr.data = e.value;
9368 if (kvm_set_msr(vcpu, &msr)) {
9369 pr_warn_ratelimited(
9370 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9371 __func__, i, e.index, e.value);
9372 goto fail;
9373 }
9374 }
9375 return 0;
9376 fail:
9377 return i + 1;
9378 }
9379
9380 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9381 {
9382 u32 i;
9383 struct vmx_msr_entry e;
9384
9385 for (i = 0; i < count; i++) {
9386 struct msr_data msr_info;
9387 if (kvm_vcpu_read_guest(vcpu,
9388 gpa + i * sizeof(e),
9389 &e, 2 * sizeof(u32))) {
9390 pr_warn_ratelimited(
9391 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9392 __func__, i, gpa + i * sizeof(e));
9393 return -EINVAL;
9394 }
9395 if (nested_vmx_store_msr_check(vcpu, &e)) {
9396 pr_warn_ratelimited(
9397 "%s check failed (%u, 0x%x, 0x%x)\n",
9398 __func__, i, e.index, e.reserved);
9399 return -EINVAL;
9400 }
9401 msr_info.host_initiated = false;
9402 msr_info.index = e.index;
9403 if (kvm_get_msr(vcpu, &msr_info)) {
9404 pr_warn_ratelimited(
9405 "%s cannot read MSR (%u, 0x%x)\n",
9406 __func__, i, e.index);
9407 return -EINVAL;
9408 }
9409 if (kvm_vcpu_write_guest(vcpu,
9410 gpa + i * sizeof(e) +
9411 offsetof(struct vmx_msr_entry, value),
9412 &msr_info.data, sizeof(msr_info.data))) {
9413 pr_warn_ratelimited(
9414 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9415 __func__, i, e.index, msr_info.data);
9416 return -EINVAL;
9417 }
9418 }
9419 return 0;
9420 }
9421
9422 /*
9423 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9424 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9425 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9426 * guest in a way that will both be appropriate to L1's requests, and our
9427 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9428 * function also has additional necessary side-effects, like setting various
9429 * vcpu->arch fields.
9430 */
9431 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9432 {
9433 struct vcpu_vmx *vmx = to_vmx(vcpu);
9434 u32 exec_control;
9435
9436 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9437 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9438 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9439 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9440 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9441 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9442 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9443 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9444 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9445 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9446 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9447 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9448 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9449 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9450 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9451 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9452 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9453 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9454 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9455 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9456 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9457 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9458 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9459 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9460 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9461 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9462 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9463 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9464 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9465 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9466 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9467 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9468 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9469 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9470 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9471 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9472
9473 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9474 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9475 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9476 } else {
9477 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9478 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9479 }
9480 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9481 vmcs12->vm_entry_intr_info_field);
9482 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9483 vmcs12->vm_entry_exception_error_code);
9484 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9485 vmcs12->vm_entry_instruction_len);
9486 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9487 vmcs12->guest_interruptibility_info);
9488 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9489 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9490 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9491 vmcs12->guest_pending_dbg_exceptions);
9492 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9493 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9494
9495 if (nested_cpu_has_xsaves(vmcs12))
9496 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9497 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9498
9499 exec_control = vmcs12->pin_based_vm_exec_control;
9500 exec_control |= vmcs_config.pin_based_exec_ctrl;
9501 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9502
9503 if (nested_cpu_has_posted_intr(vmcs12)) {
9504 /*
9505 * Note that we use L0's vector here and in
9506 * vmx_deliver_nested_posted_interrupt.
9507 */
9508 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9509 vmx->nested.pi_pending = false;
9510 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9511 vmcs_write64(POSTED_INTR_DESC_ADDR,
9512 page_to_phys(vmx->nested.pi_desc_page) +
9513 (unsigned long)(vmcs12->posted_intr_desc_addr &
9514 (PAGE_SIZE - 1)));
9515 } else
9516 exec_control &= ~PIN_BASED_POSTED_INTR;
9517
9518 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9519
9520 vmx->nested.preemption_timer_expired = false;
9521 if (nested_cpu_has_preemption_timer(vmcs12))
9522 vmx_start_preemption_timer(vcpu);
9523
9524 /*
9525 * Whether page-faults are trapped is determined by a combination of
9526 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9527 * If enable_ept, L0 doesn't care about page faults and we should
9528 * set all of these to L1's desires. However, if !enable_ept, L0 does
9529 * care about (at least some) page faults, and because it is not easy
9530 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9531 * to exit on each and every L2 page fault. This is done by setting
9532 * MASK=MATCH=0 and (see below) EB.PF=1.
9533 * Note that below we don't need special code to set EB.PF beyond the
9534 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9535 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9536 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9537 *
9538 * A problem with this approach (when !enable_ept) is that L1 may be
9539 * injected with more page faults than it asked for. This could have
9540 * caused problems, but in practice existing hypervisors don't care.
9541 * To fix this, we will need to emulate the PFEC checking (on the L1
9542 * page tables), using walk_addr(), when injecting PFs to L1.
9543 */
9544 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9545 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9546 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9547 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9548
9549 if (cpu_has_secondary_exec_ctrls()) {
9550 exec_control = vmx_secondary_exec_control(vmx);
9551
9552 /* Take the following fields only from vmcs12 */
9553 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9554 SECONDARY_EXEC_RDTSCP |
9555 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9556 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9557 SECONDARY_EXEC_PCOMMIT);
9558 if (nested_cpu_has(vmcs12,
9559 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9560 exec_control |= vmcs12->secondary_vm_exec_control;
9561
9562 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9563 /*
9564 * If translation failed, no matter: This feature asks
9565 * to exit when accessing the given address, and if it
9566 * can never be accessed, this feature won't do
9567 * anything anyway.
9568 */
9569 if (!vmx->nested.apic_access_page)
9570 exec_control &=
9571 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9572 else
9573 vmcs_write64(APIC_ACCESS_ADDR,
9574 page_to_phys(vmx->nested.apic_access_page));
9575 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9576 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9577 exec_control |=
9578 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9579 kvm_vcpu_reload_apic_access_page(vcpu);
9580 }
9581
9582 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9583 vmcs_write64(EOI_EXIT_BITMAP0,
9584 vmcs12->eoi_exit_bitmap0);
9585 vmcs_write64(EOI_EXIT_BITMAP1,
9586 vmcs12->eoi_exit_bitmap1);
9587 vmcs_write64(EOI_EXIT_BITMAP2,
9588 vmcs12->eoi_exit_bitmap2);
9589 vmcs_write64(EOI_EXIT_BITMAP3,
9590 vmcs12->eoi_exit_bitmap3);
9591 vmcs_write16(GUEST_INTR_STATUS,
9592 vmcs12->guest_intr_status);
9593 }
9594
9595 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9596 }
9597
9598
9599 /*
9600 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9601 * Some constant fields are set here by vmx_set_constant_host_state().
9602 * Other fields are different per CPU, and will be set later when
9603 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9604 */
9605 vmx_set_constant_host_state(vmx);
9606
9607 /*
9608 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9609 * entry, but only if the current (host) sp changed from the value
9610 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9611 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9612 * here we just force the write to happen on entry.
9613 */
9614 vmx->host_rsp = 0;
9615
9616 exec_control = vmx_exec_control(vmx); /* L0's desires */
9617 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9618 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9619 exec_control &= ~CPU_BASED_TPR_SHADOW;
9620 exec_control |= vmcs12->cpu_based_vm_exec_control;
9621
9622 if (exec_control & CPU_BASED_TPR_SHADOW) {
9623 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9624 page_to_phys(vmx->nested.virtual_apic_page));
9625 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9626 }
9627
9628 if (cpu_has_vmx_msr_bitmap() &&
9629 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9630 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9631 /* MSR_BITMAP will be set by following vmx_set_efer. */
9632 } else
9633 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9634
9635 /*
9636 * Merging of IO bitmap not currently supported.
9637 * Rather, exit every time.
9638 */
9639 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9640 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9641
9642 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9643
9644 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9645 * bitwise-or of what L1 wants to trap for L2, and what we want to
9646 * trap. Note that CR0.TS also needs updating - we do this later.
9647 */
9648 update_exception_bitmap(vcpu);
9649 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9650 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9651
9652 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9653 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9654 * bits are further modified by vmx_set_efer() below.
9655 */
9656 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9657
9658 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9659 * emulated by vmx_set_efer(), below.
9660 */
9661 vm_entry_controls_init(vmx,
9662 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9663 ~VM_ENTRY_IA32E_MODE) |
9664 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9665
9666 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9667 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9668 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9669 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9670 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9671
9672
9673 set_cr4_guest_host_mask(vmx);
9674
9675 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9676 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9677
9678 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9679 vmcs_write64(TSC_OFFSET,
9680 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9681 else
9682 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9683
9684 if (enable_vpid) {
9685 /*
9686 * There is no direct mapping between vpid02 and vpid12, the
9687 * vpid02 is per-vCPU for L0 and reused while the value of
9688 * vpid12 is changed w/ one invvpid during nested vmentry.
9689 * The vpid12 is allocated by L1 for L2, so it will not
9690 * influence global bitmap(for vpid01 and vpid02 allocation)
9691 * even if spawn a lot of nested vCPUs.
9692 */
9693 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9694 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9695 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9696 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9697 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9698 }
9699 } else {
9700 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9701 vmx_flush_tlb(vcpu);
9702 }
9703
9704 }
9705
9706 if (nested_cpu_has_ept(vmcs12)) {
9707 kvm_mmu_unload(vcpu);
9708 nested_ept_init_mmu_context(vcpu);
9709 }
9710
9711 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9712 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9713 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9714 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9715 else
9716 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9717 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9718 vmx_set_efer(vcpu, vcpu->arch.efer);
9719
9720 /*
9721 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9722 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9723 * The CR0_READ_SHADOW is what L2 should have expected to read given
9724 * the specifications by L1; It's not enough to take
9725 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9726 * have more bits than L1 expected.
9727 */
9728 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9729 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9730
9731 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9732 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9733
9734 /* shadow page tables on either EPT or shadow page tables */
9735 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9736 kvm_mmu_reset_context(vcpu);
9737
9738 if (!enable_ept)
9739 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9740
9741 /*
9742 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9743 */
9744 if (enable_ept) {
9745 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9746 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9747 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9748 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9749 }
9750
9751 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9752 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9753 }
9754
9755 /*
9756 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9757 * for running an L2 nested guest.
9758 */
9759 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9760 {
9761 struct vmcs12 *vmcs12;
9762 struct vcpu_vmx *vmx = to_vmx(vcpu);
9763 int cpu;
9764 struct loaded_vmcs *vmcs02;
9765 bool ia32e;
9766 u32 msr_entry_idx;
9767
9768 if (!nested_vmx_check_permission(vcpu) ||
9769 !nested_vmx_check_vmcs12(vcpu))
9770 return 1;
9771
9772 skip_emulated_instruction(vcpu);
9773 vmcs12 = get_vmcs12(vcpu);
9774
9775 if (enable_shadow_vmcs)
9776 copy_shadow_to_vmcs12(vmx);
9777
9778 /*
9779 * The nested entry process starts with enforcing various prerequisites
9780 * on vmcs12 as required by the Intel SDM, and act appropriately when
9781 * they fail: As the SDM explains, some conditions should cause the
9782 * instruction to fail, while others will cause the instruction to seem
9783 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9784 * To speed up the normal (success) code path, we should avoid checking
9785 * for misconfigurations which will anyway be caught by the processor
9786 * when using the merged vmcs02.
9787 */
9788 if (vmcs12->launch_state == launch) {
9789 nested_vmx_failValid(vcpu,
9790 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9791 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9792 return 1;
9793 }
9794
9795 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9796 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9797 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9798 return 1;
9799 }
9800
9801 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9802 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9803 return 1;
9804 }
9805
9806 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9807 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9808 return 1;
9809 }
9810
9811 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9812 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9813 return 1;
9814 }
9815
9816 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9817 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9818 return 1;
9819 }
9820
9821 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9822 vmx->nested.nested_vmx_true_procbased_ctls_low,
9823 vmx->nested.nested_vmx_procbased_ctls_high) ||
9824 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9825 vmx->nested.nested_vmx_secondary_ctls_low,
9826 vmx->nested.nested_vmx_secondary_ctls_high) ||
9827 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9828 vmx->nested.nested_vmx_pinbased_ctls_low,
9829 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9830 !vmx_control_verify(vmcs12->vm_exit_controls,
9831 vmx->nested.nested_vmx_true_exit_ctls_low,
9832 vmx->nested.nested_vmx_exit_ctls_high) ||
9833 !vmx_control_verify(vmcs12->vm_entry_controls,
9834 vmx->nested.nested_vmx_true_entry_ctls_low,
9835 vmx->nested.nested_vmx_entry_ctls_high))
9836 {
9837 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9838 return 1;
9839 }
9840
9841 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9842 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9843 nested_vmx_failValid(vcpu,
9844 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9845 return 1;
9846 }
9847
9848 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9849 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9850 nested_vmx_entry_failure(vcpu, vmcs12,
9851 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9852 return 1;
9853 }
9854 if (vmcs12->vmcs_link_pointer != -1ull) {
9855 nested_vmx_entry_failure(vcpu, vmcs12,
9856 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9857 return 1;
9858 }
9859
9860 /*
9861 * If the load IA32_EFER VM-entry control is 1, the following checks
9862 * are performed on the field for the IA32_EFER MSR:
9863 * - Bits reserved in the IA32_EFER MSR must be 0.
9864 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9865 * the IA-32e mode guest VM-exit control. It must also be identical
9866 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9867 * CR0.PG) is 1.
9868 */
9869 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9870 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9871 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9872 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9873 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9874 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9875 nested_vmx_entry_failure(vcpu, vmcs12,
9876 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9877 return 1;
9878 }
9879 }
9880
9881 /*
9882 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9883 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9884 * the values of the LMA and LME bits in the field must each be that of
9885 * the host address-space size VM-exit control.
9886 */
9887 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9888 ia32e = (vmcs12->vm_exit_controls &
9889 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9890 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9891 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9892 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9893 nested_vmx_entry_failure(vcpu, vmcs12,
9894 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9895 return 1;
9896 }
9897 }
9898
9899 /*
9900 * We're finally done with prerequisite checking, and can start with
9901 * the nested entry.
9902 */
9903
9904 vmcs02 = nested_get_current_vmcs02(vmx);
9905 if (!vmcs02)
9906 return -ENOMEM;
9907
9908 enter_guest_mode(vcpu);
9909
9910 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9911
9912 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9913 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9914
9915 cpu = get_cpu();
9916 vmx->loaded_vmcs = vmcs02;
9917 vmx_vcpu_put(vcpu);
9918 vmx_vcpu_load(vcpu, cpu);
9919 vcpu->cpu = cpu;
9920 put_cpu();
9921
9922 vmx_segment_cache_clear(vmx);
9923
9924 prepare_vmcs02(vcpu, vmcs12);
9925
9926 msr_entry_idx = nested_vmx_load_msr(vcpu,
9927 vmcs12->vm_entry_msr_load_addr,
9928 vmcs12->vm_entry_msr_load_count);
9929 if (msr_entry_idx) {
9930 leave_guest_mode(vcpu);
9931 vmx_load_vmcs01(vcpu);
9932 nested_vmx_entry_failure(vcpu, vmcs12,
9933 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9934 return 1;
9935 }
9936
9937 vmcs12->launch_state = 1;
9938
9939 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9940 return kvm_vcpu_halt(vcpu);
9941
9942 vmx->nested.nested_run_pending = 1;
9943
9944 /*
9945 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9946 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9947 * returned as far as L1 is concerned. It will only return (and set
9948 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9949 */
9950 return 1;
9951 }
9952
9953 /*
9954 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9955 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9956 * This function returns the new value we should put in vmcs12.guest_cr0.
9957 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9958 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9959 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9960 * didn't trap the bit, because if L1 did, so would L0).
9961 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9962 * been modified by L2, and L1 knows it. So just leave the old value of
9963 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9964 * isn't relevant, because if L0 traps this bit it can set it to anything.
9965 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9966 * changed these bits, and therefore they need to be updated, but L0
9967 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9968 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9969 */
9970 static inline unsigned long
9971 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9972 {
9973 return
9974 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9975 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9976 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9977 vcpu->arch.cr0_guest_owned_bits));
9978 }
9979
9980 static inline unsigned long
9981 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9982 {
9983 return
9984 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9985 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9986 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9987 vcpu->arch.cr4_guest_owned_bits));
9988 }
9989
9990 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9991 struct vmcs12 *vmcs12)
9992 {
9993 u32 idt_vectoring;
9994 unsigned int nr;
9995
9996 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9997 nr = vcpu->arch.exception.nr;
9998 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9999
10000 if (kvm_exception_is_soft(nr)) {
10001 vmcs12->vm_exit_instruction_len =
10002 vcpu->arch.event_exit_inst_len;
10003 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10004 } else
10005 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10006
10007 if (vcpu->arch.exception.has_error_code) {
10008 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10009 vmcs12->idt_vectoring_error_code =
10010 vcpu->arch.exception.error_code;
10011 }
10012
10013 vmcs12->idt_vectoring_info_field = idt_vectoring;
10014 } else if (vcpu->arch.nmi_injected) {
10015 vmcs12->idt_vectoring_info_field =
10016 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10017 } else if (vcpu->arch.interrupt.pending) {
10018 nr = vcpu->arch.interrupt.nr;
10019 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10020
10021 if (vcpu->arch.interrupt.soft) {
10022 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10023 vmcs12->vm_entry_instruction_len =
10024 vcpu->arch.event_exit_inst_len;
10025 } else
10026 idt_vectoring |= INTR_TYPE_EXT_INTR;
10027
10028 vmcs12->idt_vectoring_info_field = idt_vectoring;
10029 }
10030 }
10031
10032 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10033 {
10034 struct vcpu_vmx *vmx = to_vmx(vcpu);
10035
10036 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10037 vmx->nested.preemption_timer_expired) {
10038 if (vmx->nested.nested_run_pending)
10039 return -EBUSY;
10040 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10041 return 0;
10042 }
10043
10044 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10045 if (vmx->nested.nested_run_pending ||
10046 vcpu->arch.interrupt.pending)
10047 return -EBUSY;
10048 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10049 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10050 INTR_INFO_VALID_MASK, 0);
10051 /*
10052 * The NMI-triggered VM exit counts as injection:
10053 * clear this one and block further NMIs.
10054 */
10055 vcpu->arch.nmi_pending = 0;
10056 vmx_set_nmi_mask(vcpu, true);
10057 return 0;
10058 }
10059
10060 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10061 nested_exit_on_intr(vcpu)) {
10062 if (vmx->nested.nested_run_pending)
10063 return -EBUSY;
10064 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10065 return 0;
10066 }
10067
10068 return vmx_complete_nested_posted_interrupt(vcpu);
10069 }
10070
10071 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10072 {
10073 ktime_t remaining =
10074 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10075 u64 value;
10076
10077 if (ktime_to_ns(remaining) <= 0)
10078 return 0;
10079
10080 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10081 do_div(value, 1000000);
10082 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10083 }
10084
10085 /*
10086 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10087 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10088 * and this function updates it to reflect the changes to the guest state while
10089 * L2 was running (and perhaps made some exits which were handled directly by L0
10090 * without going back to L1), and to reflect the exit reason.
10091 * Note that we do not have to copy here all VMCS fields, just those that
10092 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10093 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10094 * which already writes to vmcs12 directly.
10095 */
10096 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10097 u32 exit_reason, u32 exit_intr_info,
10098 unsigned long exit_qualification)
10099 {
10100 /* update guest state fields: */
10101 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10102 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10103
10104 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10105 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10106 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10107
10108 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10109 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10110 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10111 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10112 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10113 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10114 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10115 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10116 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10117 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10118 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10119 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10120 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10121 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10122 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10123 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10124 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10125 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10126 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10127 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10128 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10129 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10130 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10131 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10132 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10133 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10134 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10135 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10136 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10137 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10138 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10139 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10140 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10141 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10142 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10143 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10144
10145 vmcs12->guest_interruptibility_info =
10146 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10147 vmcs12->guest_pending_dbg_exceptions =
10148 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10149 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10150 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10151 else
10152 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10153
10154 if (nested_cpu_has_preemption_timer(vmcs12)) {
10155 if (vmcs12->vm_exit_controls &
10156 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10157 vmcs12->vmx_preemption_timer_value =
10158 vmx_get_preemption_timer_value(vcpu);
10159 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10160 }
10161
10162 /*
10163 * In some cases (usually, nested EPT), L2 is allowed to change its
10164 * own CR3 without exiting. If it has changed it, we must keep it.
10165 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10166 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10167 *
10168 * Additionally, restore L2's PDPTR to vmcs12.
10169 */
10170 if (enable_ept) {
10171 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10172 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10173 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10174 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10175 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10176 }
10177
10178 if (nested_cpu_has_vid(vmcs12))
10179 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10180
10181 vmcs12->vm_entry_controls =
10182 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10183 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10184
10185 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10186 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10187 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10188 }
10189
10190 /* TODO: These cannot have changed unless we have MSR bitmaps and
10191 * the relevant bit asks not to trap the change */
10192 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10193 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10194 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10195 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10196 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10197 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10198 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10199 if (vmx_mpx_supported())
10200 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10201 if (nested_cpu_has_xsaves(vmcs12))
10202 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10203
10204 /* update exit information fields: */
10205
10206 vmcs12->vm_exit_reason = exit_reason;
10207 vmcs12->exit_qualification = exit_qualification;
10208
10209 vmcs12->vm_exit_intr_info = exit_intr_info;
10210 if ((vmcs12->vm_exit_intr_info &
10211 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10212 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10213 vmcs12->vm_exit_intr_error_code =
10214 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10215 vmcs12->idt_vectoring_info_field = 0;
10216 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10217 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10218
10219 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10220 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10221 * instead of reading the real value. */
10222 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10223
10224 /*
10225 * Transfer the event that L0 or L1 may wanted to inject into
10226 * L2 to IDT_VECTORING_INFO_FIELD.
10227 */
10228 vmcs12_save_pending_event(vcpu, vmcs12);
10229 }
10230
10231 /*
10232 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10233 * preserved above and would only end up incorrectly in L1.
10234 */
10235 vcpu->arch.nmi_injected = false;
10236 kvm_clear_exception_queue(vcpu);
10237 kvm_clear_interrupt_queue(vcpu);
10238 }
10239
10240 /*
10241 * A part of what we need to when the nested L2 guest exits and we want to
10242 * run its L1 parent, is to reset L1's guest state to the host state specified
10243 * in vmcs12.
10244 * This function is to be called not only on normal nested exit, but also on
10245 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10246 * Failures During or After Loading Guest State").
10247 * This function should be called when the active VMCS is L1's (vmcs01).
10248 */
10249 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10250 struct vmcs12 *vmcs12)
10251 {
10252 struct kvm_segment seg;
10253
10254 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10255 vcpu->arch.efer = vmcs12->host_ia32_efer;
10256 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10257 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10258 else
10259 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10260 vmx_set_efer(vcpu, vcpu->arch.efer);
10261
10262 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10263 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10264 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10265 /*
10266 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10267 * actually changed, because it depends on the current state of
10268 * fpu_active (which may have changed).
10269 * Note that vmx_set_cr0 refers to efer set above.
10270 */
10271 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10272 /*
10273 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10274 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10275 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10276 */
10277 update_exception_bitmap(vcpu);
10278 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10279 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10280
10281 /*
10282 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10283 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10284 */
10285 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10286 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10287
10288 nested_ept_uninit_mmu_context(vcpu);
10289
10290 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10291 kvm_mmu_reset_context(vcpu);
10292
10293 if (!enable_ept)
10294 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10295
10296 if (enable_vpid) {
10297 /*
10298 * Trivially support vpid by letting L2s share their parent
10299 * L1's vpid. TODO: move to a more elaborate solution, giving
10300 * each L2 its own vpid and exposing the vpid feature to L1.
10301 */
10302 vmx_flush_tlb(vcpu);
10303 }
10304
10305
10306 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10307 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10308 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10309 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10310 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10311
10312 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10313 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10314 vmcs_write64(GUEST_BNDCFGS, 0);
10315
10316 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10317 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10318 vcpu->arch.pat = vmcs12->host_ia32_pat;
10319 }
10320 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10321 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10322 vmcs12->host_ia32_perf_global_ctrl);
10323
10324 /* Set L1 segment info according to Intel SDM
10325 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10326 seg = (struct kvm_segment) {
10327 .base = 0,
10328 .limit = 0xFFFFFFFF,
10329 .selector = vmcs12->host_cs_selector,
10330 .type = 11,
10331 .present = 1,
10332 .s = 1,
10333 .g = 1
10334 };
10335 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10336 seg.l = 1;
10337 else
10338 seg.db = 1;
10339 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10340 seg = (struct kvm_segment) {
10341 .base = 0,
10342 .limit = 0xFFFFFFFF,
10343 .type = 3,
10344 .present = 1,
10345 .s = 1,
10346 .db = 1,
10347 .g = 1
10348 };
10349 seg.selector = vmcs12->host_ds_selector;
10350 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10351 seg.selector = vmcs12->host_es_selector;
10352 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10353 seg.selector = vmcs12->host_ss_selector;
10354 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10355 seg.selector = vmcs12->host_fs_selector;
10356 seg.base = vmcs12->host_fs_base;
10357 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10358 seg.selector = vmcs12->host_gs_selector;
10359 seg.base = vmcs12->host_gs_base;
10360 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10361 seg = (struct kvm_segment) {
10362 .base = vmcs12->host_tr_base,
10363 .limit = 0x67,
10364 .selector = vmcs12->host_tr_selector,
10365 .type = 11,
10366 .present = 1
10367 };
10368 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10369
10370 kvm_set_dr(vcpu, 7, 0x400);
10371 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10372
10373 if (cpu_has_vmx_msr_bitmap())
10374 vmx_set_msr_bitmap(vcpu);
10375
10376 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10377 vmcs12->vm_exit_msr_load_count))
10378 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10379 }
10380
10381 /*
10382 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10383 * and modify vmcs12 to make it see what it would expect to see there if
10384 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10385 */
10386 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10387 u32 exit_intr_info,
10388 unsigned long exit_qualification)
10389 {
10390 struct vcpu_vmx *vmx = to_vmx(vcpu);
10391 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10392
10393 /* trying to cancel vmlaunch/vmresume is a bug */
10394 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10395
10396 leave_guest_mode(vcpu);
10397 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10398 exit_qualification);
10399
10400 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10401 vmcs12->vm_exit_msr_store_count))
10402 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10403
10404 vmx_load_vmcs01(vcpu);
10405
10406 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10407 && nested_exit_intr_ack_set(vcpu)) {
10408 int irq = kvm_cpu_get_interrupt(vcpu);
10409 WARN_ON(irq < 0);
10410 vmcs12->vm_exit_intr_info = irq |
10411 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10412 }
10413
10414 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10415 vmcs12->exit_qualification,
10416 vmcs12->idt_vectoring_info_field,
10417 vmcs12->vm_exit_intr_info,
10418 vmcs12->vm_exit_intr_error_code,
10419 KVM_ISA_VMX);
10420
10421 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10422 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10423 vmx_segment_cache_clear(vmx);
10424
10425 /* if no vmcs02 cache requested, remove the one we used */
10426 if (VMCS02_POOL_SIZE == 0)
10427 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10428
10429 load_vmcs12_host_state(vcpu, vmcs12);
10430
10431 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10432 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10433
10434 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10435 vmx->host_rsp = 0;
10436
10437 /* Unpin physical memory we referred to in vmcs02 */
10438 if (vmx->nested.apic_access_page) {
10439 nested_release_page(vmx->nested.apic_access_page);
10440 vmx->nested.apic_access_page = NULL;
10441 }
10442 if (vmx->nested.virtual_apic_page) {
10443 nested_release_page(vmx->nested.virtual_apic_page);
10444 vmx->nested.virtual_apic_page = NULL;
10445 }
10446 if (vmx->nested.pi_desc_page) {
10447 kunmap(vmx->nested.pi_desc_page);
10448 nested_release_page(vmx->nested.pi_desc_page);
10449 vmx->nested.pi_desc_page = NULL;
10450 vmx->nested.pi_desc = NULL;
10451 }
10452
10453 /*
10454 * We are now running in L2, mmu_notifier will force to reload the
10455 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10456 */
10457 kvm_vcpu_reload_apic_access_page(vcpu);
10458
10459 /*
10460 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10461 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10462 * success or failure flag accordingly.
10463 */
10464 if (unlikely(vmx->fail)) {
10465 vmx->fail = 0;
10466 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10467 } else
10468 nested_vmx_succeed(vcpu);
10469 if (enable_shadow_vmcs)
10470 vmx->nested.sync_shadow_vmcs = true;
10471
10472 /* in case we halted in L2 */
10473 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10474 }
10475
10476 /*
10477 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10478 */
10479 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10480 {
10481 if (is_guest_mode(vcpu))
10482 nested_vmx_vmexit(vcpu, -1, 0, 0);
10483 free_nested(to_vmx(vcpu));
10484 }
10485
10486 /*
10487 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10488 * 23.7 "VM-entry failures during or after loading guest state" (this also
10489 * lists the acceptable exit-reason and exit-qualification parameters).
10490 * It should only be called before L2 actually succeeded to run, and when
10491 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10492 */
10493 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10494 struct vmcs12 *vmcs12,
10495 u32 reason, unsigned long qualification)
10496 {
10497 load_vmcs12_host_state(vcpu, vmcs12);
10498 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10499 vmcs12->exit_qualification = qualification;
10500 nested_vmx_succeed(vcpu);
10501 if (enable_shadow_vmcs)
10502 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10503 }
10504
10505 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10506 struct x86_instruction_info *info,
10507 enum x86_intercept_stage stage)
10508 {
10509 return X86EMUL_CONTINUE;
10510 }
10511
10512 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10513 {
10514 if (ple_gap)
10515 shrink_ple_window(vcpu);
10516 }
10517
10518 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10519 struct kvm_memory_slot *slot)
10520 {
10521 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10522 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10523 }
10524
10525 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10526 struct kvm_memory_slot *slot)
10527 {
10528 kvm_mmu_slot_set_dirty(kvm, slot);
10529 }
10530
10531 static void vmx_flush_log_dirty(struct kvm *kvm)
10532 {
10533 kvm_flush_pml_buffers(kvm);
10534 }
10535
10536 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10537 struct kvm_memory_slot *memslot,
10538 gfn_t offset, unsigned long mask)
10539 {
10540 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10541 }
10542
10543 /*
10544 * This routine does the following things for vCPU which is going
10545 * to be blocked if VT-d PI is enabled.
10546 * - Store the vCPU to the wakeup list, so when interrupts happen
10547 * we can find the right vCPU to wake up.
10548 * - Change the Posted-interrupt descriptor as below:
10549 * 'NDST' <-- vcpu->pre_pcpu
10550 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10551 * - If 'ON' is set during this process, which means at least one
10552 * interrupt is posted for this vCPU, we cannot block it, in
10553 * this case, return 1, otherwise, return 0.
10554 *
10555 */
10556 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10557 {
10558 unsigned long flags;
10559 unsigned int dest;
10560 struct pi_desc old, new;
10561 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10562
10563 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10564 !irq_remapping_cap(IRQ_POSTING_CAP))
10565 return 0;
10566
10567 vcpu->pre_pcpu = vcpu->cpu;
10568 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10569 vcpu->pre_pcpu), flags);
10570 list_add_tail(&vcpu->blocked_vcpu_list,
10571 &per_cpu(blocked_vcpu_on_cpu,
10572 vcpu->pre_pcpu));
10573 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10574 vcpu->pre_pcpu), flags);
10575
10576 do {
10577 old.control = new.control = pi_desc->control;
10578
10579 /*
10580 * We should not block the vCPU if
10581 * an interrupt is posted for it.
10582 */
10583 if (pi_test_on(pi_desc) == 1) {
10584 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10585 vcpu->pre_pcpu), flags);
10586 list_del(&vcpu->blocked_vcpu_list);
10587 spin_unlock_irqrestore(
10588 &per_cpu(blocked_vcpu_on_cpu_lock,
10589 vcpu->pre_pcpu), flags);
10590 vcpu->pre_pcpu = -1;
10591
10592 return 1;
10593 }
10594
10595 WARN((pi_desc->sn == 1),
10596 "Warning: SN field of posted-interrupts "
10597 "is set before blocking\n");
10598
10599 /*
10600 * Since vCPU can be preempted during this process,
10601 * vcpu->cpu could be different with pre_pcpu, we
10602 * need to set pre_pcpu as the destination of wakeup
10603 * notification event, then we can find the right vCPU
10604 * to wakeup in wakeup handler if interrupts happen
10605 * when the vCPU is in blocked state.
10606 */
10607 dest = cpu_physical_id(vcpu->pre_pcpu);
10608
10609 if (x2apic_enabled())
10610 new.ndst = dest;
10611 else
10612 new.ndst = (dest << 8) & 0xFF00;
10613
10614 /* set 'NV' to 'wakeup vector' */
10615 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10616 } while (cmpxchg(&pi_desc->control, old.control,
10617 new.control) != old.control);
10618
10619 return 0;
10620 }
10621
10622 static void vmx_post_block(struct kvm_vcpu *vcpu)
10623 {
10624 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10625 struct pi_desc old, new;
10626 unsigned int dest;
10627 unsigned long flags;
10628
10629 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10630 !irq_remapping_cap(IRQ_POSTING_CAP))
10631 return;
10632
10633 do {
10634 old.control = new.control = pi_desc->control;
10635
10636 dest = cpu_physical_id(vcpu->cpu);
10637
10638 if (x2apic_enabled())
10639 new.ndst = dest;
10640 else
10641 new.ndst = (dest << 8) & 0xFF00;
10642
10643 /* Allow posting non-urgent interrupts */
10644 new.sn = 0;
10645
10646 /* set 'NV' to 'notification vector' */
10647 new.nv = POSTED_INTR_VECTOR;
10648 } while (cmpxchg(&pi_desc->control, old.control,
10649 new.control) != old.control);
10650
10651 if(vcpu->pre_pcpu != -1) {
10652 spin_lock_irqsave(
10653 &per_cpu(blocked_vcpu_on_cpu_lock,
10654 vcpu->pre_pcpu), flags);
10655 list_del(&vcpu->blocked_vcpu_list);
10656 spin_unlock_irqrestore(
10657 &per_cpu(blocked_vcpu_on_cpu_lock,
10658 vcpu->pre_pcpu), flags);
10659 vcpu->pre_pcpu = -1;
10660 }
10661 }
10662
10663 /*
10664 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10665 *
10666 * @kvm: kvm
10667 * @host_irq: host irq of the interrupt
10668 * @guest_irq: gsi of the interrupt
10669 * @set: set or unset PI
10670 * returns 0 on success, < 0 on failure
10671 */
10672 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10673 uint32_t guest_irq, bool set)
10674 {
10675 struct kvm_kernel_irq_routing_entry *e;
10676 struct kvm_irq_routing_table *irq_rt;
10677 struct kvm_lapic_irq irq;
10678 struct kvm_vcpu *vcpu;
10679 struct vcpu_data vcpu_info;
10680 int idx, ret = -EINVAL;
10681
10682 if (!kvm_arch_has_assigned_device(kvm) ||
10683 !irq_remapping_cap(IRQ_POSTING_CAP))
10684 return 0;
10685
10686 idx = srcu_read_lock(&kvm->irq_srcu);
10687 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10688 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10689
10690 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10691 if (e->type != KVM_IRQ_ROUTING_MSI)
10692 continue;
10693 /*
10694 * VT-d PI cannot support posting multicast/broadcast
10695 * interrupts to a vCPU, we still use interrupt remapping
10696 * for these kind of interrupts.
10697 *
10698 * For lowest-priority interrupts, we only support
10699 * those with single CPU as the destination, e.g. user
10700 * configures the interrupts via /proc/irq or uses
10701 * irqbalance to make the interrupts single-CPU.
10702 *
10703 * We will support full lowest-priority interrupt later.
10704 */
10705
10706 kvm_set_msi_irq(e, &irq);
10707 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10708 continue;
10709
10710 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10711 vcpu_info.vector = irq.vector;
10712
10713 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10714 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10715
10716 if (set)
10717 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10718 else {
10719 /* suppress notification event before unposting */
10720 pi_set_sn(vcpu_to_pi_desc(vcpu));
10721 ret = irq_set_vcpu_affinity(host_irq, NULL);
10722 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10723 }
10724
10725 if (ret < 0) {
10726 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10727 __func__);
10728 goto out;
10729 }
10730 }
10731
10732 ret = 0;
10733 out:
10734 srcu_read_unlock(&kvm->irq_srcu, idx);
10735 return ret;
10736 }
10737
10738 static struct kvm_x86_ops vmx_x86_ops = {
10739 .cpu_has_kvm_support = cpu_has_kvm_support,
10740 .disabled_by_bios = vmx_disabled_by_bios,
10741 .hardware_setup = hardware_setup,
10742 .hardware_unsetup = hardware_unsetup,
10743 .check_processor_compatibility = vmx_check_processor_compat,
10744 .hardware_enable = hardware_enable,
10745 .hardware_disable = hardware_disable,
10746 .cpu_has_accelerated_tpr = report_flexpriority,
10747 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10748
10749 .vcpu_create = vmx_create_vcpu,
10750 .vcpu_free = vmx_free_vcpu,
10751 .vcpu_reset = vmx_vcpu_reset,
10752
10753 .prepare_guest_switch = vmx_save_host_state,
10754 .vcpu_load = vmx_vcpu_load,
10755 .vcpu_put = vmx_vcpu_put,
10756
10757 .update_db_bp_intercept = update_exception_bitmap,
10758 .get_msr = vmx_get_msr,
10759 .set_msr = vmx_set_msr,
10760 .get_segment_base = vmx_get_segment_base,
10761 .get_segment = vmx_get_segment,
10762 .set_segment = vmx_set_segment,
10763 .get_cpl = vmx_get_cpl,
10764 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10765 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10766 .decache_cr3 = vmx_decache_cr3,
10767 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10768 .set_cr0 = vmx_set_cr0,
10769 .set_cr3 = vmx_set_cr3,
10770 .set_cr4 = vmx_set_cr4,
10771 .set_efer = vmx_set_efer,
10772 .get_idt = vmx_get_idt,
10773 .set_idt = vmx_set_idt,
10774 .get_gdt = vmx_get_gdt,
10775 .set_gdt = vmx_set_gdt,
10776 .get_dr6 = vmx_get_dr6,
10777 .set_dr6 = vmx_set_dr6,
10778 .set_dr7 = vmx_set_dr7,
10779 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10780 .cache_reg = vmx_cache_reg,
10781 .get_rflags = vmx_get_rflags,
10782 .set_rflags = vmx_set_rflags,
10783 .fpu_activate = vmx_fpu_activate,
10784 .fpu_deactivate = vmx_fpu_deactivate,
10785
10786 .tlb_flush = vmx_flush_tlb,
10787
10788 .run = vmx_vcpu_run,
10789 .handle_exit = vmx_handle_exit,
10790 .skip_emulated_instruction = skip_emulated_instruction,
10791 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10792 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10793 .patch_hypercall = vmx_patch_hypercall,
10794 .set_irq = vmx_inject_irq,
10795 .set_nmi = vmx_inject_nmi,
10796 .queue_exception = vmx_queue_exception,
10797 .cancel_injection = vmx_cancel_injection,
10798 .interrupt_allowed = vmx_interrupt_allowed,
10799 .nmi_allowed = vmx_nmi_allowed,
10800 .get_nmi_mask = vmx_get_nmi_mask,
10801 .set_nmi_mask = vmx_set_nmi_mask,
10802 .enable_nmi_window = enable_nmi_window,
10803 .enable_irq_window = enable_irq_window,
10804 .update_cr8_intercept = update_cr8_intercept,
10805 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10806 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10807 .cpu_uses_apicv = vmx_cpu_uses_apicv,
10808 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10809 .hwapic_irr_update = vmx_hwapic_irr_update,
10810 .hwapic_isr_update = vmx_hwapic_isr_update,
10811 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10812 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10813
10814 .set_tss_addr = vmx_set_tss_addr,
10815 .get_tdp_level = get_ept_level,
10816 .get_mt_mask = vmx_get_mt_mask,
10817
10818 .get_exit_info = vmx_get_exit_info,
10819
10820 .get_lpage_level = vmx_get_lpage_level,
10821
10822 .cpuid_update = vmx_cpuid_update,
10823
10824 .rdtscp_supported = vmx_rdtscp_supported,
10825 .invpcid_supported = vmx_invpcid_supported,
10826
10827 .set_supported_cpuid = vmx_set_supported_cpuid,
10828
10829 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10830
10831 .set_tsc_khz = vmx_set_tsc_khz,
10832 .read_tsc_offset = vmx_read_tsc_offset,
10833 .write_tsc_offset = vmx_write_tsc_offset,
10834 .adjust_tsc_offset = vmx_adjust_tsc_offset,
10835 .compute_tsc_offset = vmx_compute_tsc_offset,
10836 .read_l1_tsc = vmx_read_l1_tsc,
10837
10838 .set_tdp_cr3 = vmx_set_cr3,
10839
10840 .check_intercept = vmx_check_intercept,
10841 .handle_external_intr = vmx_handle_external_intr,
10842 .mpx_supported = vmx_mpx_supported,
10843 .xsaves_supported = vmx_xsaves_supported,
10844
10845 .check_nested_events = vmx_check_nested_events,
10846
10847 .sched_in = vmx_sched_in,
10848
10849 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10850 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10851 .flush_log_dirty = vmx_flush_log_dirty,
10852 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10853
10854 .pre_block = vmx_pre_block,
10855 .post_block = vmx_post_block,
10856
10857 .pmu_ops = &intel_pmu_ops,
10858
10859 .update_pi_irte = vmx_update_pi_irte,
10860 };
10861
10862 static int __init vmx_init(void)
10863 {
10864 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10865 __alignof__(struct vcpu_vmx), THIS_MODULE);
10866 if (r)
10867 return r;
10868
10869 #ifdef CONFIG_KEXEC_CORE
10870 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10871 crash_vmclear_local_loaded_vmcss);
10872 #endif
10873
10874 return 0;
10875 }
10876
10877 static void __exit vmx_exit(void)
10878 {
10879 #ifdef CONFIG_KEXEC_CORE
10880 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10881 synchronize_rcu();
10882 #endif
10883
10884 kvm_exit();
10885 }
10886
10887 module_init(vmx_init)
10888 module_exit(vmx_exit)