]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: Clean up magic number 0x66 in init_rmode_tss
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
42
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
45
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
48
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
51
52 struct vmcs {
53 u32 revision_id;
54 u32 abort;
55 char data[0];
56 };
57
58 struct vcpu_vmx {
59 struct kvm_vcpu vcpu;
60 struct list_head local_vcpus_link;
61 unsigned long host_rsp;
62 int launched;
63 u8 fail;
64 u32 idt_vectoring_info;
65 struct kvm_msr_entry *guest_msrs;
66 struct kvm_msr_entry *host_msrs;
67 int nmsrs;
68 int save_nmsrs;
69 int msr_offset_efer;
70 #ifdef CONFIG_X86_64
71 int msr_offset_kernel_gs_base;
72 #endif
73 struct vmcs *vmcs;
74 struct {
75 int loaded;
76 u16 fs_sel, gs_sel, ldt_sel;
77 int gs_ldt_reload_needed;
78 int fs_reload_needed;
79 int guest_efer_loaded;
80 } host_state;
81 struct {
82 struct {
83 bool pending;
84 u8 vector;
85 unsigned rip;
86 } irq;
87 } rmode;
88 int vpid;
89 };
90
91 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
92 {
93 return container_of(vcpu, struct vcpu_vmx, vcpu);
94 }
95
96 static int init_rmode(struct kvm *kvm);
97 static u64 construct_eptp(unsigned long root_hpa);
98
99 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
100 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
101 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
102
103 static struct page *vmx_io_bitmap_a;
104 static struct page *vmx_io_bitmap_b;
105 static struct page *vmx_msr_bitmap;
106
107 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
108 static DEFINE_SPINLOCK(vmx_vpid_lock);
109
110 static struct vmcs_config {
111 int size;
112 int order;
113 u32 revision_id;
114 u32 pin_based_exec_ctrl;
115 u32 cpu_based_exec_ctrl;
116 u32 cpu_based_2nd_exec_ctrl;
117 u32 vmexit_ctrl;
118 u32 vmentry_ctrl;
119 } vmcs_config;
120
121 struct vmx_capability {
122 u32 ept;
123 u32 vpid;
124 } vmx_capability;
125
126 #define VMX_SEGMENT_FIELD(seg) \
127 [VCPU_SREG_##seg] = { \
128 .selector = GUEST_##seg##_SELECTOR, \
129 .base = GUEST_##seg##_BASE, \
130 .limit = GUEST_##seg##_LIMIT, \
131 .ar_bytes = GUEST_##seg##_AR_BYTES, \
132 }
133
134 static struct kvm_vmx_segment_field {
135 unsigned selector;
136 unsigned base;
137 unsigned limit;
138 unsigned ar_bytes;
139 } kvm_vmx_segment_fields[] = {
140 VMX_SEGMENT_FIELD(CS),
141 VMX_SEGMENT_FIELD(DS),
142 VMX_SEGMENT_FIELD(ES),
143 VMX_SEGMENT_FIELD(FS),
144 VMX_SEGMENT_FIELD(GS),
145 VMX_SEGMENT_FIELD(SS),
146 VMX_SEGMENT_FIELD(TR),
147 VMX_SEGMENT_FIELD(LDTR),
148 };
149
150 /*
151 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
152 * away by decrementing the array size.
153 */
154 static const u32 vmx_msr_index[] = {
155 #ifdef CONFIG_X86_64
156 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
157 #endif
158 MSR_EFER, MSR_K6_STAR,
159 };
160 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
161
162 static void load_msrs(struct kvm_msr_entry *e, int n)
163 {
164 int i;
165
166 for (i = 0; i < n; ++i)
167 wrmsrl(e[i].index, e[i].data);
168 }
169
170 static void save_msrs(struct kvm_msr_entry *e, int n)
171 {
172 int i;
173
174 for (i = 0; i < n; ++i)
175 rdmsrl(e[i].index, e[i].data);
176 }
177
178 static inline int is_page_fault(u32 intr_info)
179 {
180 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
181 INTR_INFO_VALID_MASK)) ==
182 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
183 }
184
185 static inline int is_no_device(u32 intr_info)
186 {
187 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
188 INTR_INFO_VALID_MASK)) ==
189 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
190 }
191
192 static inline int is_invalid_opcode(u32 intr_info)
193 {
194 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
195 INTR_INFO_VALID_MASK)) ==
196 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
197 }
198
199 static inline int is_external_interrupt(u32 intr_info)
200 {
201 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
202 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
203 }
204
205 static inline int cpu_has_vmx_msr_bitmap(void)
206 {
207 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
208 }
209
210 static inline int cpu_has_vmx_tpr_shadow(void)
211 {
212 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
213 }
214
215 static inline int vm_need_tpr_shadow(struct kvm *kvm)
216 {
217 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
218 }
219
220 static inline int cpu_has_secondary_exec_ctrls(void)
221 {
222 return (vmcs_config.cpu_based_exec_ctrl &
223 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
224 }
225
226 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
227 {
228 return flexpriority_enabled
229 && (vmcs_config.cpu_based_2nd_exec_ctrl &
230 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
231 }
232
233 static inline int cpu_has_vmx_invept_individual_addr(void)
234 {
235 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
236 }
237
238 static inline int cpu_has_vmx_invept_context(void)
239 {
240 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
241 }
242
243 static inline int cpu_has_vmx_invept_global(void)
244 {
245 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
246 }
247
248 static inline int cpu_has_vmx_ept(void)
249 {
250 return (vmcs_config.cpu_based_2nd_exec_ctrl &
251 SECONDARY_EXEC_ENABLE_EPT);
252 }
253
254 static inline int vm_need_ept(void)
255 {
256 return (cpu_has_vmx_ept() && enable_ept);
257 }
258
259 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
260 {
261 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
262 (irqchip_in_kernel(kvm)));
263 }
264
265 static inline int cpu_has_vmx_vpid(void)
266 {
267 return (vmcs_config.cpu_based_2nd_exec_ctrl &
268 SECONDARY_EXEC_ENABLE_VPID);
269 }
270
271 static inline int cpu_has_virtual_nmis(void)
272 {
273 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
274 }
275
276 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
277 {
278 int i;
279
280 for (i = 0; i < vmx->nmsrs; ++i)
281 if (vmx->guest_msrs[i].index == msr)
282 return i;
283 return -1;
284 }
285
286 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
287 {
288 struct {
289 u64 vpid : 16;
290 u64 rsvd : 48;
291 u64 gva;
292 } operand = { vpid, 0, gva };
293
294 asm volatile (__ex(ASM_VMX_INVVPID)
295 /* CF==1 or ZF==1 --> rc = -1 */
296 "; ja 1f ; ud2 ; 1:"
297 : : "a"(&operand), "c"(ext) : "cc", "memory");
298 }
299
300 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
301 {
302 struct {
303 u64 eptp, gpa;
304 } operand = {eptp, gpa};
305
306 asm volatile (__ex(ASM_VMX_INVEPT)
307 /* CF==1 or ZF==1 --> rc = -1 */
308 "; ja 1f ; ud2 ; 1:\n"
309 : : "a" (&operand), "c" (ext) : "cc", "memory");
310 }
311
312 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
313 {
314 int i;
315
316 i = __find_msr_index(vmx, msr);
317 if (i >= 0)
318 return &vmx->guest_msrs[i];
319 return NULL;
320 }
321
322 static void vmcs_clear(struct vmcs *vmcs)
323 {
324 u64 phys_addr = __pa(vmcs);
325 u8 error;
326
327 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
328 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
329 : "cc", "memory");
330 if (error)
331 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
332 vmcs, phys_addr);
333 }
334
335 static void __vcpu_clear(void *arg)
336 {
337 struct vcpu_vmx *vmx = arg;
338 int cpu = raw_smp_processor_id();
339
340 if (vmx->vcpu.cpu == cpu)
341 vmcs_clear(vmx->vmcs);
342 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
343 per_cpu(current_vmcs, cpu) = NULL;
344 rdtscll(vmx->vcpu.arch.host_tsc);
345 list_del(&vmx->local_vcpus_link);
346 vmx->vcpu.cpu = -1;
347 vmx->launched = 0;
348 }
349
350 static void vcpu_clear(struct vcpu_vmx *vmx)
351 {
352 if (vmx->vcpu.cpu == -1)
353 return;
354 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
355 }
356
357 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
358 {
359 if (vmx->vpid == 0)
360 return;
361
362 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
363 }
364
365 static inline void ept_sync_global(void)
366 {
367 if (cpu_has_vmx_invept_global())
368 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
369 }
370
371 static inline void ept_sync_context(u64 eptp)
372 {
373 if (vm_need_ept()) {
374 if (cpu_has_vmx_invept_context())
375 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
376 else
377 ept_sync_global();
378 }
379 }
380
381 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
382 {
383 if (vm_need_ept()) {
384 if (cpu_has_vmx_invept_individual_addr())
385 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
386 eptp, gpa);
387 else
388 ept_sync_context(eptp);
389 }
390 }
391
392 static unsigned long vmcs_readl(unsigned long field)
393 {
394 unsigned long value;
395
396 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
397 : "=a"(value) : "d"(field) : "cc");
398 return value;
399 }
400
401 static u16 vmcs_read16(unsigned long field)
402 {
403 return vmcs_readl(field);
404 }
405
406 static u32 vmcs_read32(unsigned long field)
407 {
408 return vmcs_readl(field);
409 }
410
411 static u64 vmcs_read64(unsigned long field)
412 {
413 #ifdef CONFIG_X86_64
414 return vmcs_readl(field);
415 #else
416 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
417 #endif
418 }
419
420 static noinline void vmwrite_error(unsigned long field, unsigned long value)
421 {
422 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
423 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
424 dump_stack();
425 }
426
427 static void vmcs_writel(unsigned long field, unsigned long value)
428 {
429 u8 error;
430
431 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
432 : "=q"(error) : "a"(value), "d"(field) : "cc");
433 if (unlikely(error))
434 vmwrite_error(field, value);
435 }
436
437 static void vmcs_write16(unsigned long field, u16 value)
438 {
439 vmcs_writel(field, value);
440 }
441
442 static void vmcs_write32(unsigned long field, u32 value)
443 {
444 vmcs_writel(field, value);
445 }
446
447 static void vmcs_write64(unsigned long field, u64 value)
448 {
449 vmcs_writel(field, value);
450 #ifndef CONFIG_X86_64
451 asm volatile ("");
452 vmcs_writel(field+1, value >> 32);
453 #endif
454 }
455
456 static void vmcs_clear_bits(unsigned long field, u32 mask)
457 {
458 vmcs_writel(field, vmcs_readl(field) & ~mask);
459 }
460
461 static void vmcs_set_bits(unsigned long field, u32 mask)
462 {
463 vmcs_writel(field, vmcs_readl(field) | mask);
464 }
465
466 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
467 {
468 u32 eb;
469
470 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
471 if (!vcpu->fpu_active)
472 eb |= 1u << NM_VECTOR;
473 if (vcpu->guest_debug.enabled)
474 eb |= 1u << DB_VECTOR;
475 if (vcpu->arch.rmode.active)
476 eb = ~0;
477 if (vm_need_ept())
478 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
479 vmcs_write32(EXCEPTION_BITMAP, eb);
480 }
481
482 static void reload_tss(void)
483 {
484 /*
485 * VT restores TR but not its size. Useless.
486 */
487 struct descriptor_table gdt;
488 struct desc_struct *descs;
489
490 kvm_get_gdt(&gdt);
491 descs = (void *)gdt.base;
492 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
493 load_TR_desc();
494 }
495
496 static void load_transition_efer(struct vcpu_vmx *vmx)
497 {
498 int efer_offset = vmx->msr_offset_efer;
499 u64 host_efer = vmx->host_msrs[efer_offset].data;
500 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
501 u64 ignore_bits;
502
503 if (efer_offset < 0)
504 return;
505 /*
506 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
507 * outside long mode
508 */
509 ignore_bits = EFER_NX | EFER_SCE;
510 #ifdef CONFIG_X86_64
511 ignore_bits |= EFER_LMA | EFER_LME;
512 /* SCE is meaningful only in long mode on Intel */
513 if (guest_efer & EFER_LMA)
514 ignore_bits &= ~(u64)EFER_SCE;
515 #endif
516 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
517 return;
518
519 vmx->host_state.guest_efer_loaded = 1;
520 guest_efer &= ~ignore_bits;
521 guest_efer |= host_efer & ignore_bits;
522 wrmsrl(MSR_EFER, guest_efer);
523 vmx->vcpu.stat.efer_reload++;
524 }
525
526 static void reload_host_efer(struct vcpu_vmx *vmx)
527 {
528 if (vmx->host_state.guest_efer_loaded) {
529 vmx->host_state.guest_efer_loaded = 0;
530 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
531 }
532 }
533
534 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
535 {
536 struct vcpu_vmx *vmx = to_vmx(vcpu);
537
538 if (vmx->host_state.loaded)
539 return;
540
541 vmx->host_state.loaded = 1;
542 /*
543 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
544 * allow segment selectors with cpl > 0 or ti == 1.
545 */
546 vmx->host_state.ldt_sel = kvm_read_ldt();
547 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
548 vmx->host_state.fs_sel = kvm_read_fs();
549 if (!(vmx->host_state.fs_sel & 7)) {
550 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
551 vmx->host_state.fs_reload_needed = 0;
552 } else {
553 vmcs_write16(HOST_FS_SELECTOR, 0);
554 vmx->host_state.fs_reload_needed = 1;
555 }
556 vmx->host_state.gs_sel = kvm_read_gs();
557 if (!(vmx->host_state.gs_sel & 7))
558 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
559 else {
560 vmcs_write16(HOST_GS_SELECTOR, 0);
561 vmx->host_state.gs_ldt_reload_needed = 1;
562 }
563
564 #ifdef CONFIG_X86_64
565 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
566 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
567 #else
568 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
569 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
570 #endif
571
572 #ifdef CONFIG_X86_64
573 if (is_long_mode(&vmx->vcpu))
574 save_msrs(vmx->host_msrs +
575 vmx->msr_offset_kernel_gs_base, 1);
576
577 #endif
578 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
579 load_transition_efer(vmx);
580 }
581
582 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
583 {
584 unsigned long flags;
585
586 if (!vmx->host_state.loaded)
587 return;
588
589 ++vmx->vcpu.stat.host_state_reload;
590 vmx->host_state.loaded = 0;
591 if (vmx->host_state.fs_reload_needed)
592 kvm_load_fs(vmx->host_state.fs_sel);
593 if (vmx->host_state.gs_ldt_reload_needed) {
594 kvm_load_ldt(vmx->host_state.ldt_sel);
595 /*
596 * If we have to reload gs, we must take care to
597 * preserve our gs base.
598 */
599 local_irq_save(flags);
600 kvm_load_gs(vmx->host_state.gs_sel);
601 #ifdef CONFIG_X86_64
602 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
603 #endif
604 local_irq_restore(flags);
605 }
606 reload_tss();
607 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
608 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
609 reload_host_efer(vmx);
610 }
611
612 static void vmx_load_host_state(struct vcpu_vmx *vmx)
613 {
614 preempt_disable();
615 __vmx_load_host_state(vmx);
616 preempt_enable();
617 }
618
619 /*
620 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
621 * vcpu mutex is already taken.
622 */
623 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
624 {
625 struct vcpu_vmx *vmx = to_vmx(vcpu);
626 u64 phys_addr = __pa(vmx->vmcs);
627 u64 tsc_this, delta, new_offset;
628
629 if (vcpu->cpu != cpu) {
630 vcpu_clear(vmx);
631 kvm_migrate_timers(vcpu);
632 vpid_sync_vcpu_all(vmx);
633 local_irq_disable();
634 list_add(&vmx->local_vcpus_link,
635 &per_cpu(vcpus_on_cpu, cpu));
636 local_irq_enable();
637 }
638
639 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
640 u8 error;
641
642 per_cpu(current_vmcs, cpu) = vmx->vmcs;
643 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
644 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
645 : "cc");
646 if (error)
647 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
648 vmx->vmcs, phys_addr);
649 }
650
651 if (vcpu->cpu != cpu) {
652 struct descriptor_table dt;
653 unsigned long sysenter_esp;
654
655 vcpu->cpu = cpu;
656 /*
657 * Linux uses per-cpu TSS and GDT, so set these when switching
658 * processors.
659 */
660 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
661 kvm_get_gdt(&dt);
662 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
663
664 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
665 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
666
667 /*
668 * Make sure the time stamp counter is monotonous.
669 */
670 rdtscll(tsc_this);
671 if (tsc_this < vcpu->arch.host_tsc) {
672 delta = vcpu->arch.host_tsc - tsc_this;
673 new_offset = vmcs_read64(TSC_OFFSET) + delta;
674 vmcs_write64(TSC_OFFSET, new_offset);
675 }
676 }
677 }
678
679 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
680 {
681 __vmx_load_host_state(to_vmx(vcpu));
682 }
683
684 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
685 {
686 if (vcpu->fpu_active)
687 return;
688 vcpu->fpu_active = 1;
689 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
690 if (vcpu->arch.cr0 & X86_CR0_TS)
691 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
692 update_exception_bitmap(vcpu);
693 }
694
695 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
696 {
697 if (!vcpu->fpu_active)
698 return;
699 vcpu->fpu_active = 0;
700 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
701 update_exception_bitmap(vcpu);
702 }
703
704 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
705 {
706 return vmcs_readl(GUEST_RFLAGS);
707 }
708
709 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
710 {
711 if (vcpu->arch.rmode.active)
712 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
713 vmcs_writel(GUEST_RFLAGS, rflags);
714 }
715
716 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
717 {
718 unsigned long rip;
719 u32 interruptibility;
720
721 rip = kvm_rip_read(vcpu);
722 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
723 kvm_rip_write(vcpu, rip);
724
725 /*
726 * We emulated an instruction, so temporary interrupt blocking
727 * should be removed, if set.
728 */
729 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
730 if (interruptibility & 3)
731 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
732 interruptibility & ~3);
733 vcpu->arch.interrupt_window_open = 1;
734 }
735
736 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
737 bool has_error_code, u32 error_code)
738 {
739 struct vcpu_vmx *vmx = to_vmx(vcpu);
740
741 if (has_error_code)
742 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
743
744 if (vcpu->arch.rmode.active) {
745 vmx->rmode.irq.pending = true;
746 vmx->rmode.irq.vector = nr;
747 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
748 if (nr == BP_VECTOR)
749 vmx->rmode.irq.rip++;
750 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
751 nr | INTR_TYPE_SOFT_INTR
752 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
753 | INTR_INFO_VALID_MASK);
754 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
755 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
756 return;
757 }
758
759 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
760 nr | INTR_TYPE_EXCEPTION
761 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
762 | INTR_INFO_VALID_MASK);
763 }
764
765 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
766 {
767 return false;
768 }
769
770 /*
771 * Swap MSR entry in host/guest MSR entry array.
772 */
773 #ifdef CONFIG_X86_64
774 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
775 {
776 struct kvm_msr_entry tmp;
777
778 tmp = vmx->guest_msrs[to];
779 vmx->guest_msrs[to] = vmx->guest_msrs[from];
780 vmx->guest_msrs[from] = tmp;
781 tmp = vmx->host_msrs[to];
782 vmx->host_msrs[to] = vmx->host_msrs[from];
783 vmx->host_msrs[from] = tmp;
784 }
785 #endif
786
787 /*
788 * Set up the vmcs to automatically save and restore system
789 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
790 * mode, as fiddling with msrs is very expensive.
791 */
792 static void setup_msrs(struct vcpu_vmx *vmx)
793 {
794 int save_nmsrs;
795
796 vmx_load_host_state(vmx);
797 save_nmsrs = 0;
798 #ifdef CONFIG_X86_64
799 if (is_long_mode(&vmx->vcpu)) {
800 int index;
801
802 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
803 if (index >= 0)
804 move_msr_up(vmx, index, save_nmsrs++);
805 index = __find_msr_index(vmx, MSR_LSTAR);
806 if (index >= 0)
807 move_msr_up(vmx, index, save_nmsrs++);
808 index = __find_msr_index(vmx, MSR_CSTAR);
809 if (index >= 0)
810 move_msr_up(vmx, index, save_nmsrs++);
811 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
812 if (index >= 0)
813 move_msr_up(vmx, index, save_nmsrs++);
814 /*
815 * MSR_K6_STAR is only needed on long mode guests, and only
816 * if efer.sce is enabled.
817 */
818 index = __find_msr_index(vmx, MSR_K6_STAR);
819 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
820 move_msr_up(vmx, index, save_nmsrs++);
821 }
822 #endif
823 vmx->save_nmsrs = save_nmsrs;
824
825 #ifdef CONFIG_X86_64
826 vmx->msr_offset_kernel_gs_base =
827 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
828 #endif
829 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
830 }
831
832 /*
833 * reads and returns guest's timestamp counter "register"
834 * guest_tsc = host_tsc + tsc_offset -- 21.3
835 */
836 static u64 guest_read_tsc(void)
837 {
838 u64 host_tsc, tsc_offset;
839
840 rdtscll(host_tsc);
841 tsc_offset = vmcs_read64(TSC_OFFSET);
842 return host_tsc + tsc_offset;
843 }
844
845 /*
846 * writes 'guest_tsc' into guest's timestamp counter "register"
847 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
848 */
849 static void guest_write_tsc(u64 guest_tsc)
850 {
851 u64 host_tsc;
852
853 rdtscll(host_tsc);
854 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
855 }
856
857 /*
858 * Reads an msr value (of 'msr_index') into 'pdata'.
859 * Returns 0 on success, non-0 otherwise.
860 * Assumes vcpu_load() was already called.
861 */
862 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
863 {
864 u64 data;
865 struct kvm_msr_entry *msr;
866
867 if (!pdata) {
868 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
869 return -EINVAL;
870 }
871
872 switch (msr_index) {
873 #ifdef CONFIG_X86_64
874 case MSR_FS_BASE:
875 data = vmcs_readl(GUEST_FS_BASE);
876 break;
877 case MSR_GS_BASE:
878 data = vmcs_readl(GUEST_GS_BASE);
879 break;
880 case MSR_EFER:
881 return kvm_get_msr_common(vcpu, msr_index, pdata);
882 #endif
883 case MSR_IA32_TIME_STAMP_COUNTER:
884 data = guest_read_tsc();
885 break;
886 case MSR_IA32_SYSENTER_CS:
887 data = vmcs_read32(GUEST_SYSENTER_CS);
888 break;
889 case MSR_IA32_SYSENTER_EIP:
890 data = vmcs_readl(GUEST_SYSENTER_EIP);
891 break;
892 case MSR_IA32_SYSENTER_ESP:
893 data = vmcs_readl(GUEST_SYSENTER_ESP);
894 break;
895 default:
896 msr = find_msr_entry(to_vmx(vcpu), msr_index);
897 if (msr) {
898 data = msr->data;
899 break;
900 }
901 return kvm_get_msr_common(vcpu, msr_index, pdata);
902 }
903
904 *pdata = data;
905 return 0;
906 }
907
908 /*
909 * Writes msr value into into the appropriate "register".
910 * Returns 0 on success, non-0 otherwise.
911 * Assumes vcpu_load() was already called.
912 */
913 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
914 {
915 struct vcpu_vmx *vmx = to_vmx(vcpu);
916 struct kvm_msr_entry *msr;
917 int ret = 0;
918
919 switch (msr_index) {
920 #ifdef CONFIG_X86_64
921 case MSR_EFER:
922 vmx_load_host_state(vmx);
923 ret = kvm_set_msr_common(vcpu, msr_index, data);
924 break;
925 case MSR_FS_BASE:
926 vmcs_writel(GUEST_FS_BASE, data);
927 break;
928 case MSR_GS_BASE:
929 vmcs_writel(GUEST_GS_BASE, data);
930 break;
931 #endif
932 case MSR_IA32_SYSENTER_CS:
933 vmcs_write32(GUEST_SYSENTER_CS, data);
934 break;
935 case MSR_IA32_SYSENTER_EIP:
936 vmcs_writel(GUEST_SYSENTER_EIP, data);
937 break;
938 case MSR_IA32_SYSENTER_ESP:
939 vmcs_writel(GUEST_SYSENTER_ESP, data);
940 break;
941 case MSR_IA32_TIME_STAMP_COUNTER:
942 guest_write_tsc(data);
943 break;
944 case MSR_P6_PERFCTR0:
945 case MSR_P6_PERFCTR1:
946 case MSR_P6_EVNTSEL0:
947 case MSR_P6_EVNTSEL1:
948 /*
949 * Just discard all writes to the performance counters; this
950 * should keep both older linux and windows 64-bit guests
951 * happy
952 */
953 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
954
955 break;
956 default:
957 vmx_load_host_state(vmx);
958 msr = find_msr_entry(vmx, msr_index);
959 if (msr) {
960 msr->data = data;
961 break;
962 }
963 ret = kvm_set_msr_common(vcpu, msr_index, data);
964 }
965
966 return ret;
967 }
968
969 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
970 {
971 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
972 switch (reg) {
973 case VCPU_REGS_RSP:
974 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
975 break;
976 case VCPU_REGS_RIP:
977 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
978 break;
979 default:
980 break;
981 }
982 }
983
984 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
985 {
986 unsigned long dr7 = 0x400;
987 int old_singlestep;
988
989 old_singlestep = vcpu->guest_debug.singlestep;
990
991 vcpu->guest_debug.enabled = dbg->enabled;
992 if (vcpu->guest_debug.enabled) {
993 int i;
994
995 dr7 |= 0x200; /* exact */
996 for (i = 0; i < 4; ++i) {
997 if (!dbg->breakpoints[i].enabled)
998 continue;
999 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1000 dr7 |= 2 << (i*2); /* global enable */
1001 dr7 |= 0 << (i*4+16); /* execution breakpoint */
1002 }
1003
1004 vcpu->guest_debug.singlestep = dbg->singlestep;
1005 } else
1006 vcpu->guest_debug.singlestep = 0;
1007
1008 if (old_singlestep && !vcpu->guest_debug.singlestep) {
1009 unsigned long flags;
1010
1011 flags = vmcs_readl(GUEST_RFLAGS);
1012 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1013 vmcs_writel(GUEST_RFLAGS, flags);
1014 }
1015
1016 update_exception_bitmap(vcpu);
1017 vmcs_writel(GUEST_DR7, dr7);
1018
1019 return 0;
1020 }
1021
1022 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1023 {
1024 if (!vcpu->arch.interrupt.pending)
1025 return -1;
1026 return vcpu->arch.interrupt.nr;
1027 }
1028
1029 static __init int cpu_has_kvm_support(void)
1030 {
1031 unsigned long ecx = cpuid_ecx(1);
1032 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1033 }
1034
1035 static __init int vmx_disabled_by_bios(void)
1036 {
1037 u64 msr;
1038
1039 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1040 return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1041 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1042 == IA32_FEATURE_CONTROL_LOCKED_BIT;
1043 /* locked but not enabled */
1044 }
1045
1046 static void hardware_enable(void *garbage)
1047 {
1048 int cpu = raw_smp_processor_id();
1049 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1050 u64 old;
1051
1052 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1053 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1054 if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1055 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1056 != (IA32_FEATURE_CONTROL_LOCKED_BIT |
1057 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1058 /* enable and lock */
1059 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1060 IA32_FEATURE_CONTROL_LOCKED_BIT |
1061 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
1062 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1063 asm volatile (ASM_VMX_VMXON_RAX
1064 : : "a"(&phys_addr), "m"(phys_addr)
1065 : "memory", "cc");
1066 }
1067
1068 static void vmclear_local_vcpus(void)
1069 {
1070 int cpu = raw_smp_processor_id();
1071 struct vcpu_vmx *vmx, *n;
1072
1073 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1074 local_vcpus_link)
1075 __vcpu_clear(vmx);
1076 }
1077
1078 static void hardware_disable(void *garbage)
1079 {
1080 vmclear_local_vcpus();
1081 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1082 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1083 }
1084
1085 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1086 u32 msr, u32 *result)
1087 {
1088 u32 vmx_msr_low, vmx_msr_high;
1089 u32 ctl = ctl_min | ctl_opt;
1090
1091 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1092
1093 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1094 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1095
1096 /* Ensure minimum (required) set of control bits are supported. */
1097 if (ctl_min & ~ctl)
1098 return -EIO;
1099
1100 *result = ctl;
1101 return 0;
1102 }
1103
1104 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1105 {
1106 u32 vmx_msr_low, vmx_msr_high;
1107 u32 min, opt, min2, opt2;
1108 u32 _pin_based_exec_control = 0;
1109 u32 _cpu_based_exec_control = 0;
1110 u32 _cpu_based_2nd_exec_control = 0;
1111 u32 _vmexit_control = 0;
1112 u32 _vmentry_control = 0;
1113
1114 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1115 opt = PIN_BASED_VIRTUAL_NMIS;
1116 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1117 &_pin_based_exec_control) < 0)
1118 return -EIO;
1119
1120 min = CPU_BASED_HLT_EXITING |
1121 #ifdef CONFIG_X86_64
1122 CPU_BASED_CR8_LOAD_EXITING |
1123 CPU_BASED_CR8_STORE_EXITING |
1124 #endif
1125 CPU_BASED_CR3_LOAD_EXITING |
1126 CPU_BASED_CR3_STORE_EXITING |
1127 CPU_BASED_USE_IO_BITMAPS |
1128 CPU_BASED_MOV_DR_EXITING |
1129 CPU_BASED_USE_TSC_OFFSETING;
1130 opt = CPU_BASED_TPR_SHADOW |
1131 CPU_BASED_USE_MSR_BITMAPS |
1132 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1133 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1134 &_cpu_based_exec_control) < 0)
1135 return -EIO;
1136 #ifdef CONFIG_X86_64
1137 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1138 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1139 ~CPU_BASED_CR8_STORE_EXITING;
1140 #endif
1141 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1142 min2 = 0;
1143 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1144 SECONDARY_EXEC_WBINVD_EXITING |
1145 SECONDARY_EXEC_ENABLE_VPID |
1146 SECONDARY_EXEC_ENABLE_EPT;
1147 if (adjust_vmx_controls(min2, opt2,
1148 MSR_IA32_VMX_PROCBASED_CTLS2,
1149 &_cpu_based_2nd_exec_control) < 0)
1150 return -EIO;
1151 }
1152 #ifndef CONFIG_X86_64
1153 if (!(_cpu_based_2nd_exec_control &
1154 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1155 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1156 #endif
1157 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1158 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1159 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1160 CPU_BASED_CR3_STORE_EXITING);
1161 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1162 &_cpu_based_exec_control) < 0)
1163 return -EIO;
1164 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1165 vmx_capability.ept, vmx_capability.vpid);
1166 }
1167
1168 min = 0;
1169 #ifdef CONFIG_X86_64
1170 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1171 #endif
1172 opt = 0;
1173 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1174 &_vmexit_control) < 0)
1175 return -EIO;
1176
1177 min = opt = 0;
1178 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1179 &_vmentry_control) < 0)
1180 return -EIO;
1181
1182 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1183
1184 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1185 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1186 return -EIO;
1187
1188 #ifdef CONFIG_X86_64
1189 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1190 if (vmx_msr_high & (1u<<16))
1191 return -EIO;
1192 #endif
1193
1194 /* Require Write-Back (WB) memory type for VMCS accesses. */
1195 if (((vmx_msr_high >> 18) & 15) != 6)
1196 return -EIO;
1197
1198 vmcs_conf->size = vmx_msr_high & 0x1fff;
1199 vmcs_conf->order = get_order(vmcs_config.size);
1200 vmcs_conf->revision_id = vmx_msr_low;
1201
1202 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1203 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1204 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1205 vmcs_conf->vmexit_ctrl = _vmexit_control;
1206 vmcs_conf->vmentry_ctrl = _vmentry_control;
1207
1208 return 0;
1209 }
1210
1211 static struct vmcs *alloc_vmcs_cpu(int cpu)
1212 {
1213 int node = cpu_to_node(cpu);
1214 struct page *pages;
1215 struct vmcs *vmcs;
1216
1217 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1218 if (!pages)
1219 return NULL;
1220 vmcs = page_address(pages);
1221 memset(vmcs, 0, vmcs_config.size);
1222 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1223 return vmcs;
1224 }
1225
1226 static struct vmcs *alloc_vmcs(void)
1227 {
1228 return alloc_vmcs_cpu(raw_smp_processor_id());
1229 }
1230
1231 static void free_vmcs(struct vmcs *vmcs)
1232 {
1233 free_pages((unsigned long)vmcs, vmcs_config.order);
1234 }
1235
1236 static void free_kvm_area(void)
1237 {
1238 int cpu;
1239
1240 for_each_online_cpu(cpu)
1241 free_vmcs(per_cpu(vmxarea, cpu));
1242 }
1243
1244 static __init int alloc_kvm_area(void)
1245 {
1246 int cpu;
1247
1248 for_each_online_cpu(cpu) {
1249 struct vmcs *vmcs;
1250
1251 vmcs = alloc_vmcs_cpu(cpu);
1252 if (!vmcs) {
1253 free_kvm_area();
1254 return -ENOMEM;
1255 }
1256
1257 per_cpu(vmxarea, cpu) = vmcs;
1258 }
1259 return 0;
1260 }
1261
1262 static __init int hardware_setup(void)
1263 {
1264 if (setup_vmcs_config(&vmcs_config) < 0)
1265 return -EIO;
1266
1267 if (boot_cpu_has(X86_FEATURE_NX))
1268 kvm_enable_efer_bits(EFER_NX);
1269
1270 return alloc_kvm_area();
1271 }
1272
1273 static __exit void hardware_unsetup(void)
1274 {
1275 free_kvm_area();
1276 }
1277
1278 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1279 {
1280 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1281
1282 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1283 vmcs_write16(sf->selector, save->selector);
1284 vmcs_writel(sf->base, save->base);
1285 vmcs_write32(sf->limit, save->limit);
1286 vmcs_write32(sf->ar_bytes, save->ar);
1287 } else {
1288 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1289 << AR_DPL_SHIFT;
1290 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1291 }
1292 }
1293
1294 static void enter_pmode(struct kvm_vcpu *vcpu)
1295 {
1296 unsigned long flags;
1297
1298 vcpu->arch.rmode.active = 0;
1299
1300 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1301 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1302 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1303
1304 flags = vmcs_readl(GUEST_RFLAGS);
1305 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1306 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1307 vmcs_writel(GUEST_RFLAGS, flags);
1308
1309 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1310 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1311
1312 update_exception_bitmap(vcpu);
1313
1314 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1315 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1316 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1317 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1318
1319 vmcs_write16(GUEST_SS_SELECTOR, 0);
1320 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1321
1322 vmcs_write16(GUEST_CS_SELECTOR,
1323 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1324 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1325 }
1326
1327 static gva_t rmode_tss_base(struct kvm *kvm)
1328 {
1329 if (!kvm->arch.tss_addr) {
1330 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1331 kvm->memslots[0].npages - 3;
1332 return base_gfn << PAGE_SHIFT;
1333 }
1334 return kvm->arch.tss_addr;
1335 }
1336
1337 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1338 {
1339 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1340
1341 save->selector = vmcs_read16(sf->selector);
1342 save->base = vmcs_readl(sf->base);
1343 save->limit = vmcs_read32(sf->limit);
1344 save->ar = vmcs_read32(sf->ar_bytes);
1345 vmcs_write16(sf->selector, save->base >> 4);
1346 vmcs_write32(sf->base, save->base & 0xfffff);
1347 vmcs_write32(sf->limit, 0xffff);
1348 vmcs_write32(sf->ar_bytes, 0xf3);
1349 }
1350
1351 static void enter_rmode(struct kvm_vcpu *vcpu)
1352 {
1353 unsigned long flags;
1354
1355 vcpu->arch.rmode.active = 1;
1356
1357 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1358 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1359
1360 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1361 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1362
1363 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1364 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1365
1366 flags = vmcs_readl(GUEST_RFLAGS);
1367 vcpu->arch.rmode.save_iopl
1368 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1369
1370 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1371
1372 vmcs_writel(GUEST_RFLAGS, flags);
1373 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1374 update_exception_bitmap(vcpu);
1375
1376 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1377 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1378 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1379
1380 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1381 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1382 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1383 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1384 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1385
1386 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1387 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1388 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1389 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1390
1391 kvm_mmu_reset_context(vcpu);
1392 init_rmode(vcpu->kvm);
1393 }
1394
1395 #ifdef CONFIG_X86_64
1396
1397 static void enter_lmode(struct kvm_vcpu *vcpu)
1398 {
1399 u32 guest_tr_ar;
1400
1401 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1402 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1403 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1404 __func__);
1405 vmcs_write32(GUEST_TR_AR_BYTES,
1406 (guest_tr_ar & ~AR_TYPE_MASK)
1407 | AR_TYPE_BUSY_64_TSS);
1408 }
1409
1410 vcpu->arch.shadow_efer |= EFER_LMA;
1411
1412 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1413 vmcs_write32(VM_ENTRY_CONTROLS,
1414 vmcs_read32(VM_ENTRY_CONTROLS)
1415 | VM_ENTRY_IA32E_MODE);
1416 }
1417
1418 static void exit_lmode(struct kvm_vcpu *vcpu)
1419 {
1420 vcpu->arch.shadow_efer &= ~EFER_LMA;
1421
1422 vmcs_write32(VM_ENTRY_CONTROLS,
1423 vmcs_read32(VM_ENTRY_CONTROLS)
1424 & ~VM_ENTRY_IA32E_MODE);
1425 }
1426
1427 #endif
1428
1429 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1430 {
1431 vpid_sync_vcpu_all(to_vmx(vcpu));
1432 if (vm_need_ept())
1433 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1434 }
1435
1436 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1437 {
1438 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1439 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1440 }
1441
1442 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1443 {
1444 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1445 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1446 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1447 return;
1448 }
1449 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1450 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1451 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1452 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1453 }
1454 }
1455
1456 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1457
1458 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1459 unsigned long cr0,
1460 struct kvm_vcpu *vcpu)
1461 {
1462 if (!(cr0 & X86_CR0_PG)) {
1463 /* From paging/starting to nonpaging */
1464 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1465 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1466 (CPU_BASED_CR3_LOAD_EXITING |
1467 CPU_BASED_CR3_STORE_EXITING));
1468 vcpu->arch.cr0 = cr0;
1469 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1470 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1471 *hw_cr0 &= ~X86_CR0_WP;
1472 } else if (!is_paging(vcpu)) {
1473 /* From nonpaging to paging */
1474 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1475 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1476 ~(CPU_BASED_CR3_LOAD_EXITING |
1477 CPU_BASED_CR3_STORE_EXITING));
1478 vcpu->arch.cr0 = cr0;
1479 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1480 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1481 *hw_cr0 &= ~X86_CR0_WP;
1482 }
1483 }
1484
1485 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1486 struct kvm_vcpu *vcpu)
1487 {
1488 if (!is_paging(vcpu)) {
1489 *hw_cr4 &= ~X86_CR4_PAE;
1490 *hw_cr4 |= X86_CR4_PSE;
1491 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1492 *hw_cr4 &= ~X86_CR4_PAE;
1493 }
1494
1495 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1496 {
1497 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1498 KVM_VM_CR0_ALWAYS_ON;
1499
1500 vmx_fpu_deactivate(vcpu);
1501
1502 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1503 enter_pmode(vcpu);
1504
1505 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1506 enter_rmode(vcpu);
1507
1508 #ifdef CONFIG_X86_64
1509 if (vcpu->arch.shadow_efer & EFER_LME) {
1510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1511 enter_lmode(vcpu);
1512 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1513 exit_lmode(vcpu);
1514 }
1515 #endif
1516
1517 if (vm_need_ept())
1518 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1519
1520 vmcs_writel(CR0_READ_SHADOW, cr0);
1521 vmcs_writel(GUEST_CR0, hw_cr0);
1522 vcpu->arch.cr0 = cr0;
1523
1524 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1525 vmx_fpu_activate(vcpu);
1526 }
1527
1528 static u64 construct_eptp(unsigned long root_hpa)
1529 {
1530 u64 eptp;
1531
1532 /* TODO write the value reading from MSR */
1533 eptp = VMX_EPT_DEFAULT_MT |
1534 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1535 eptp |= (root_hpa & PAGE_MASK);
1536
1537 return eptp;
1538 }
1539
1540 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1541 {
1542 unsigned long guest_cr3;
1543 u64 eptp;
1544
1545 guest_cr3 = cr3;
1546 if (vm_need_ept()) {
1547 eptp = construct_eptp(cr3);
1548 vmcs_write64(EPT_POINTER, eptp);
1549 ept_sync_context(eptp);
1550 ept_load_pdptrs(vcpu);
1551 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1552 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1553 }
1554
1555 vmx_flush_tlb(vcpu);
1556 vmcs_writel(GUEST_CR3, guest_cr3);
1557 if (vcpu->arch.cr0 & X86_CR0_PE)
1558 vmx_fpu_deactivate(vcpu);
1559 }
1560
1561 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1562 {
1563 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1564 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1565
1566 vcpu->arch.cr4 = cr4;
1567 if (vm_need_ept())
1568 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1569
1570 vmcs_writel(CR4_READ_SHADOW, cr4);
1571 vmcs_writel(GUEST_CR4, hw_cr4);
1572 }
1573
1574 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1575 {
1576 struct vcpu_vmx *vmx = to_vmx(vcpu);
1577 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1578
1579 vcpu->arch.shadow_efer = efer;
1580 if (!msr)
1581 return;
1582 if (efer & EFER_LMA) {
1583 vmcs_write32(VM_ENTRY_CONTROLS,
1584 vmcs_read32(VM_ENTRY_CONTROLS) |
1585 VM_ENTRY_IA32E_MODE);
1586 msr->data = efer;
1587
1588 } else {
1589 vmcs_write32(VM_ENTRY_CONTROLS,
1590 vmcs_read32(VM_ENTRY_CONTROLS) &
1591 ~VM_ENTRY_IA32E_MODE);
1592
1593 msr->data = efer & ~EFER_LME;
1594 }
1595 setup_msrs(vmx);
1596 }
1597
1598 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1599 {
1600 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1601
1602 return vmcs_readl(sf->base);
1603 }
1604
1605 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1606 struct kvm_segment *var, int seg)
1607 {
1608 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1609 u32 ar;
1610
1611 var->base = vmcs_readl(sf->base);
1612 var->limit = vmcs_read32(sf->limit);
1613 var->selector = vmcs_read16(sf->selector);
1614 ar = vmcs_read32(sf->ar_bytes);
1615 if (ar & AR_UNUSABLE_MASK)
1616 ar = 0;
1617 var->type = ar & 15;
1618 var->s = (ar >> 4) & 1;
1619 var->dpl = (ar >> 5) & 3;
1620 var->present = (ar >> 7) & 1;
1621 var->avl = (ar >> 12) & 1;
1622 var->l = (ar >> 13) & 1;
1623 var->db = (ar >> 14) & 1;
1624 var->g = (ar >> 15) & 1;
1625 var->unusable = (ar >> 16) & 1;
1626 }
1627
1628 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1629 {
1630 struct kvm_segment kvm_seg;
1631
1632 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1633 return 0;
1634
1635 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1636 return 3;
1637
1638 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1639 return kvm_seg.selector & 3;
1640 }
1641
1642 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1643 {
1644 u32 ar;
1645
1646 if (var->unusable)
1647 ar = 1 << 16;
1648 else {
1649 ar = var->type & 15;
1650 ar |= (var->s & 1) << 4;
1651 ar |= (var->dpl & 3) << 5;
1652 ar |= (var->present & 1) << 7;
1653 ar |= (var->avl & 1) << 12;
1654 ar |= (var->l & 1) << 13;
1655 ar |= (var->db & 1) << 14;
1656 ar |= (var->g & 1) << 15;
1657 }
1658 if (ar == 0) /* a 0 value means unusable */
1659 ar = AR_UNUSABLE_MASK;
1660
1661 return ar;
1662 }
1663
1664 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1665 struct kvm_segment *var, int seg)
1666 {
1667 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1668 u32 ar;
1669
1670 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1671 vcpu->arch.rmode.tr.selector = var->selector;
1672 vcpu->arch.rmode.tr.base = var->base;
1673 vcpu->arch.rmode.tr.limit = var->limit;
1674 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1675 return;
1676 }
1677 vmcs_writel(sf->base, var->base);
1678 vmcs_write32(sf->limit, var->limit);
1679 vmcs_write16(sf->selector, var->selector);
1680 if (vcpu->arch.rmode.active && var->s) {
1681 /*
1682 * Hack real-mode segments into vm86 compatibility.
1683 */
1684 if (var->base == 0xffff0000 && var->selector == 0xf000)
1685 vmcs_writel(sf->base, 0xf0000);
1686 ar = 0xf3;
1687 } else
1688 ar = vmx_segment_access_rights(var);
1689 vmcs_write32(sf->ar_bytes, ar);
1690 }
1691
1692 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1693 {
1694 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1695
1696 *db = (ar >> 14) & 1;
1697 *l = (ar >> 13) & 1;
1698 }
1699
1700 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1701 {
1702 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1703 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1704 }
1705
1706 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1707 {
1708 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1709 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1710 }
1711
1712 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1713 {
1714 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1715 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1716 }
1717
1718 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1719 {
1720 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1721 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1722 }
1723
1724 static int init_rmode_tss(struct kvm *kvm)
1725 {
1726 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1727 u16 data = 0;
1728 int ret = 0;
1729 int r;
1730
1731 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1732 if (r < 0)
1733 goto out;
1734 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1735 r = kvm_write_guest_page(kvm, fn++, &data,
1736 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1737 if (r < 0)
1738 goto out;
1739 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1740 if (r < 0)
1741 goto out;
1742 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1743 if (r < 0)
1744 goto out;
1745 data = ~0;
1746 r = kvm_write_guest_page(kvm, fn, &data,
1747 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1748 sizeof(u8));
1749 if (r < 0)
1750 goto out;
1751
1752 ret = 1;
1753 out:
1754 return ret;
1755 }
1756
1757 static int init_rmode_identity_map(struct kvm *kvm)
1758 {
1759 int i, r, ret;
1760 pfn_t identity_map_pfn;
1761 u32 tmp;
1762
1763 if (!vm_need_ept())
1764 return 1;
1765 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1766 printk(KERN_ERR "EPT: identity-mapping pagetable "
1767 "haven't been allocated!\n");
1768 return 0;
1769 }
1770 if (likely(kvm->arch.ept_identity_pagetable_done))
1771 return 1;
1772 ret = 0;
1773 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1774 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1775 if (r < 0)
1776 goto out;
1777 /* Set up identity-mapping pagetable for EPT in real mode */
1778 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1779 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1780 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1781 r = kvm_write_guest_page(kvm, identity_map_pfn,
1782 &tmp, i * sizeof(tmp), sizeof(tmp));
1783 if (r < 0)
1784 goto out;
1785 }
1786 kvm->arch.ept_identity_pagetable_done = true;
1787 ret = 1;
1788 out:
1789 return ret;
1790 }
1791
1792 static void seg_setup(int seg)
1793 {
1794 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1795
1796 vmcs_write16(sf->selector, 0);
1797 vmcs_writel(sf->base, 0);
1798 vmcs_write32(sf->limit, 0xffff);
1799 vmcs_write32(sf->ar_bytes, 0x93);
1800 }
1801
1802 static int alloc_apic_access_page(struct kvm *kvm)
1803 {
1804 struct kvm_userspace_memory_region kvm_userspace_mem;
1805 int r = 0;
1806
1807 down_write(&kvm->slots_lock);
1808 if (kvm->arch.apic_access_page)
1809 goto out;
1810 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1811 kvm_userspace_mem.flags = 0;
1812 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1813 kvm_userspace_mem.memory_size = PAGE_SIZE;
1814 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1815 if (r)
1816 goto out;
1817
1818 down_read(&current->mm->mmap_sem);
1819 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1820 up_read(&current->mm->mmap_sem);
1821 out:
1822 up_write(&kvm->slots_lock);
1823 return r;
1824 }
1825
1826 static int alloc_identity_pagetable(struct kvm *kvm)
1827 {
1828 struct kvm_userspace_memory_region kvm_userspace_mem;
1829 int r = 0;
1830
1831 down_write(&kvm->slots_lock);
1832 if (kvm->arch.ept_identity_pagetable)
1833 goto out;
1834 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1835 kvm_userspace_mem.flags = 0;
1836 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1837 kvm_userspace_mem.memory_size = PAGE_SIZE;
1838 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1839 if (r)
1840 goto out;
1841
1842 down_read(&current->mm->mmap_sem);
1843 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1844 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1845 up_read(&current->mm->mmap_sem);
1846 out:
1847 up_write(&kvm->slots_lock);
1848 return r;
1849 }
1850
1851 static void allocate_vpid(struct vcpu_vmx *vmx)
1852 {
1853 int vpid;
1854
1855 vmx->vpid = 0;
1856 if (!enable_vpid || !cpu_has_vmx_vpid())
1857 return;
1858 spin_lock(&vmx_vpid_lock);
1859 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1860 if (vpid < VMX_NR_VPIDS) {
1861 vmx->vpid = vpid;
1862 __set_bit(vpid, vmx_vpid_bitmap);
1863 }
1864 spin_unlock(&vmx_vpid_lock);
1865 }
1866
1867 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1868 {
1869 void *va;
1870
1871 if (!cpu_has_vmx_msr_bitmap())
1872 return;
1873
1874 /*
1875 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1876 * have the write-low and read-high bitmap offsets the wrong way round.
1877 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1878 */
1879 va = kmap(msr_bitmap);
1880 if (msr <= 0x1fff) {
1881 __clear_bit(msr, va + 0x000); /* read-low */
1882 __clear_bit(msr, va + 0x800); /* write-low */
1883 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1884 msr &= 0x1fff;
1885 __clear_bit(msr, va + 0x400); /* read-high */
1886 __clear_bit(msr, va + 0xc00); /* write-high */
1887 }
1888 kunmap(msr_bitmap);
1889 }
1890
1891 /*
1892 * Sets up the vmcs for emulated real mode.
1893 */
1894 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1895 {
1896 u32 host_sysenter_cs;
1897 u32 junk;
1898 unsigned long a;
1899 struct descriptor_table dt;
1900 int i;
1901 unsigned long kvm_vmx_return;
1902 u32 exec_control;
1903
1904 /* I/O */
1905 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1906 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1907
1908 if (cpu_has_vmx_msr_bitmap())
1909 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1910
1911 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1912
1913 /* Control */
1914 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1915 vmcs_config.pin_based_exec_ctrl);
1916
1917 exec_control = vmcs_config.cpu_based_exec_ctrl;
1918 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1919 exec_control &= ~CPU_BASED_TPR_SHADOW;
1920 #ifdef CONFIG_X86_64
1921 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1922 CPU_BASED_CR8_LOAD_EXITING;
1923 #endif
1924 }
1925 if (!vm_need_ept())
1926 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1927 CPU_BASED_CR3_LOAD_EXITING;
1928 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1929
1930 if (cpu_has_secondary_exec_ctrls()) {
1931 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1932 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1933 exec_control &=
1934 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1935 if (vmx->vpid == 0)
1936 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1937 if (!vm_need_ept())
1938 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1939 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1940 }
1941
1942 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1943 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1944 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1945
1946 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1947 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1948 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1949
1950 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1951 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1952 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1953 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
1954 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
1955 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1956 #ifdef CONFIG_X86_64
1957 rdmsrl(MSR_FS_BASE, a);
1958 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1959 rdmsrl(MSR_GS_BASE, a);
1960 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1961 #else
1962 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1963 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1964 #endif
1965
1966 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1967
1968 kvm_get_idt(&dt);
1969 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1970
1971 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1972 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1973 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1974 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1975 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1976
1977 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1978 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1979 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1980 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1981 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1982 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1983
1984 for (i = 0; i < NR_VMX_MSR; ++i) {
1985 u32 index = vmx_msr_index[i];
1986 u32 data_low, data_high;
1987 u64 data;
1988 int j = vmx->nmsrs;
1989
1990 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1991 continue;
1992 if (wrmsr_safe(index, data_low, data_high) < 0)
1993 continue;
1994 data = data_low | ((u64)data_high << 32);
1995 vmx->host_msrs[j].index = index;
1996 vmx->host_msrs[j].reserved = 0;
1997 vmx->host_msrs[j].data = data;
1998 vmx->guest_msrs[j] = vmx->host_msrs[j];
1999 ++vmx->nmsrs;
2000 }
2001
2002 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2003
2004 /* 22.2.1, 20.8.1 */
2005 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2006
2007 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2008 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2009
2010
2011 return 0;
2012 }
2013
2014 static int init_rmode(struct kvm *kvm)
2015 {
2016 if (!init_rmode_tss(kvm))
2017 return 0;
2018 if (!init_rmode_identity_map(kvm))
2019 return 0;
2020 return 1;
2021 }
2022
2023 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2024 {
2025 struct vcpu_vmx *vmx = to_vmx(vcpu);
2026 u64 msr;
2027 int ret;
2028
2029 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2030 down_read(&vcpu->kvm->slots_lock);
2031 if (!init_rmode(vmx->vcpu.kvm)) {
2032 ret = -ENOMEM;
2033 goto out;
2034 }
2035
2036 vmx->vcpu.arch.rmode.active = 0;
2037
2038 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2039 kvm_set_cr8(&vmx->vcpu, 0);
2040 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2041 if (vmx->vcpu.vcpu_id == 0)
2042 msr |= MSR_IA32_APICBASE_BSP;
2043 kvm_set_apic_base(&vmx->vcpu, msr);
2044
2045 fx_init(&vmx->vcpu);
2046
2047 /*
2048 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2049 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2050 */
2051 if (vmx->vcpu.vcpu_id == 0) {
2052 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2053 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2054 } else {
2055 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2056 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2057 }
2058 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2059 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2060
2061 seg_setup(VCPU_SREG_DS);
2062 seg_setup(VCPU_SREG_ES);
2063 seg_setup(VCPU_SREG_FS);
2064 seg_setup(VCPU_SREG_GS);
2065 seg_setup(VCPU_SREG_SS);
2066
2067 vmcs_write16(GUEST_TR_SELECTOR, 0);
2068 vmcs_writel(GUEST_TR_BASE, 0);
2069 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2070 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2071
2072 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2073 vmcs_writel(GUEST_LDTR_BASE, 0);
2074 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2075 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2076
2077 vmcs_write32(GUEST_SYSENTER_CS, 0);
2078 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2079 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2080
2081 vmcs_writel(GUEST_RFLAGS, 0x02);
2082 if (vmx->vcpu.vcpu_id == 0)
2083 kvm_rip_write(vcpu, 0xfff0);
2084 else
2085 kvm_rip_write(vcpu, 0);
2086 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2087
2088 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2089 vmcs_writel(GUEST_DR7, 0x400);
2090
2091 vmcs_writel(GUEST_GDTR_BASE, 0);
2092 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2093
2094 vmcs_writel(GUEST_IDTR_BASE, 0);
2095 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2096
2097 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2098 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2099 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2100
2101 guest_write_tsc(0);
2102
2103 /* Special registers */
2104 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2105
2106 setup_msrs(vmx);
2107
2108 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2109
2110 if (cpu_has_vmx_tpr_shadow()) {
2111 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2112 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2113 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2114 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2115 vmcs_write32(TPR_THRESHOLD, 0);
2116 }
2117
2118 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2119 vmcs_write64(APIC_ACCESS_ADDR,
2120 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2121
2122 if (vmx->vpid != 0)
2123 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2124
2125 vmx->vcpu.arch.cr0 = 0x60000010;
2126 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2127 vmx_set_cr4(&vmx->vcpu, 0);
2128 vmx_set_efer(&vmx->vcpu, 0);
2129 vmx_fpu_activate(&vmx->vcpu);
2130 update_exception_bitmap(&vmx->vcpu);
2131
2132 vpid_sync_vcpu_all(vmx);
2133
2134 ret = 0;
2135
2136 out:
2137 up_read(&vcpu->kvm->slots_lock);
2138 return ret;
2139 }
2140
2141 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2142 {
2143 struct vcpu_vmx *vmx = to_vmx(vcpu);
2144
2145 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2146
2147 if (vcpu->arch.rmode.active) {
2148 vmx->rmode.irq.pending = true;
2149 vmx->rmode.irq.vector = irq;
2150 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2151 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2152 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2153 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2154 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2155 return;
2156 }
2157 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2158 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2159 }
2160
2161 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2162 {
2163 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2164 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2165 }
2166
2167 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2168 {
2169 int word_index = __ffs(vcpu->arch.irq_summary);
2170 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2171 int irq = word_index * BITS_PER_LONG + bit_index;
2172
2173 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2174 if (!vcpu->arch.irq_pending[word_index])
2175 clear_bit(word_index, &vcpu->arch.irq_summary);
2176 vmx_inject_irq(vcpu, irq);
2177 }
2178
2179
2180 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2181 struct kvm_run *kvm_run)
2182 {
2183 u32 cpu_based_vm_exec_control;
2184
2185 vcpu->arch.interrupt_window_open =
2186 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2187 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2188
2189 if (vcpu->arch.interrupt_window_open &&
2190 vcpu->arch.irq_summary &&
2191 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2192 /*
2193 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2194 */
2195 kvm_do_inject_irq(vcpu);
2196
2197 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2198 if (!vcpu->arch.interrupt_window_open &&
2199 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2200 /*
2201 * Interrupts blocked. Wait for unblock.
2202 */
2203 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2204 else
2205 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2206 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2207 }
2208
2209 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2210 {
2211 int ret;
2212 struct kvm_userspace_memory_region tss_mem = {
2213 .slot = 8,
2214 .guest_phys_addr = addr,
2215 .memory_size = PAGE_SIZE * 3,
2216 .flags = 0,
2217 };
2218
2219 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2220 if (ret)
2221 return ret;
2222 kvm->arch.tss_addr = addr;
2223 return 0;
2224 }
2225
2226 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2227 {
2228 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2229
2230 set_debugreg(dbg->bp[0], 0);
2231 set_debugreg(dbg->bp[1], 1);
2232 set_debugreg(dbg->bp[2], 2);
2233 set_debugreg(dbg->bp[3], 3);
2234
2235 if (dbg->singlestep) {
2236 unsigned long flags;
2237
2238 flags = vmcs_readl(GUEST_RFLAGS);
2239 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2240 vmcs_writel(GUEST_RFLAGS, flags);
2241 }
2242 }
2243
2244 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2245 int vec, u32 err_code)
2246 {
2247 /*
2248 * Instruction with address size override prefix opcode 0x67
2249 * Cause the #SS fault with 0 error code in VM86 mode.
2250 */
2251 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2252 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2253 return 1;
2254 /*
2255 * Forward all other exceptions that are valid in real mode.
2256 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2257 * the required debugging infrastructure rework.
2258 */
2259 switch (vec) {
2260 case DE_VECTOR:
2261 case DB_VECTOR:
2262 case BP_VECTOR:
2263 case OF_VECTOR:
2264 case BR_VECTOR:
2265 case UD_VECTOR:
2266 case DF_VECTOR:
2267 case SS_VECTOR:
2268 case GP_VECTOR:
2269 case MF_VECTOR:
2270 kvm_queue_exception(vcpu, vec);
2271 return 1;
2272 }
2273 return 0;
2274 }
2275
2276 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2277 {
2278 struct vcpu_vmx *vmx = to_vmx(vcpu);
2279 u32 intr_info, error_code;
2280 unsigned long cr2, rip;
2281 u32 vect_info;
2282 enum emulation_result er;
2283
2284 vect_info = vmx->idt_vectoring_info;
2285 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2286
2287 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2288 !is_page_fault(intr_info))
2289 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2290 "intr info 0x%x\n", __func__, vect_info, intr_info);
2291
2292 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2293 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2294 set_bit(irq, vcpu->arch.irq_pending);
2295 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2296 }
2297
2298 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2299 return 1; /* already handled by vmx_vcpu_run() */
2300
2301 if (is_no_device(intr_info)) {
2302 vmx_fpu_activate(vcpu);
2303 return 1;
2304 }
2305
2306 if (is_invalid_opcode(intr_info)) {
2307 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2308 if (er != EMULATE_DONE)
2309 kvm_queue_exception(vcpu, UD_VECTOR);
2310 return 1;
2311 }
2312
2313 error_code = 0;
2314 rip = kvm_rip_read(vcpu);
2315 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2316 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2317 if (is_page_fault(intr_info)) {
2318 /* EPT won't cause page fault directly */
2319 if (vm_need_ept())
2320 BUG();
2321 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2322 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2323 (u32)((u64)cr2 >> 32), handler);
2324 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2325 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2326 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2327 }
2328
2329 if (vcpu->arch.rmode.active &&
2330 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2331 error_code)) {
2332 if (vcpu->arch.halt_request) {
2333 vcpu->arch.halt_request = 0;
2334 return kvm_emulate_halt(vcpu);
2335 }
2336 return 1;
2337 }
2338
2339 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2340 (INTR_TYPE_EXCEPTION | 1)) {
2341 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2342 return 0;
2343 }
2344 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2345 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2346 kvm_run->ex.error_code = error_code;
2347 return 0;
2348 }
2349
2350 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2351 struct kvm_run *kvm_run)
2352 {
2353 ++vcpu->stat.irq_exits;
2354 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2355 return 1;
2356 }
2357
2358 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2359 {
2360 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2361 return 0;
2362 }
2363
2364 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2365 {
2366 unsigned long exit_qualification;
2367 int size, down, in, string, rep;
2368 unsigned port;
2369
2370 ++vcpu->stat.io_exits;
2371 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2372 string = (exit_qualification & 16) != 0;
2373
2374 if (string) {
2375 if (emulate_instruction(vcpu,
2376 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2377 return 0;
2378 return 1;
2379 }
2380
2381 size = (exit_qualification & 7) + 1;
2382 in = (exit_qualification & 8) != 0;
2383 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2384 rep = (exit_qualification & 32) != 0;
2385 port = exit_qualification >> 16;
2386
2387 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2388 }
2389
2390 static void
2391 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2392 {
2393 /*
2394 * Patch in the VMCALL instruction:
2395 */
2396 hypercall[0] = 0x0f;
2397 hypercall[1] = 0x01;
2398 hypercall[2] = 0xc1;
2399 }
2400
2401 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2402 {
2403 unsigned long exit_qualification;
2404 int cr;
2405 int reg;
2406
2407 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2408 cr = exit_qualification & 15;
2409 reg = (exit_qualification >> 8) & 15;
2410 switch ((exit_qualification >> 4) & 3) {
2411 case 0: /* mov to cr */
2412 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2413 (u32)kvm_register_read(vcpu, reg),
2414 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2415 handler);
2416 switch (cr) {
2417 case 0:
2418 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2419 skip_emulated_instruction(vcpu);
2420 return 1;
2421 case 3:
2422 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2423 skip_emulated_instruction(vcpu);
2424 return 1;
2425 case 4:
2426 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2427 skip_emulated_instruction(vcpu);
2428 return 1;
2429 case 8:
2430 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2431 skip_emulated_instruction(vcpu);
2432 if (irqchip_in_kernel(vcpu->kvm))
2433 return 1;
2434 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2435 return 0;
2436 };
2437 break;
2438 case 2: /* clts */
2439 vmx_fpu_deactivate(vcpu);
2440 vcpu->arch.cr0 &= ~X86_CR0_TS;
2441 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2442 vmx_fpu_activate(vcpu);
2443 KVMTRACE_0D(CLTS, vcpu, handler);
2444 skip_emulated_instruction(vcpu);
2445 return 1;
2446 case 1: /*mov from cr*/
2447 switch (cr) {
2448 case 3:
2449 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2450 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2451 (u32)kvm_register_read(vcpu, reg),
2452 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2453 handler);
2454 skip_emulated_instruction(vcpu);
2455 return 1;
2456 case 8:
2457 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2458 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2459 (u32)kvm_register_read(vcpu, reg), handler);
2460 skip_emulated_instruction(vcpu);
2461 return 1;
2462 }
2463 break;
2464 case 3: /* lmsw */
2465 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2466
2467 skip_emulated_instruction(vcpu);
2468 return 1;
2469 default:
2470 break;
2471 }
2472 kvm_run->exit_reason = 0;
2473 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2474 (int)(exit_qualification >> 4) & 3, cr);
2475 return 0;
2476 }
2477
2478 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2479 {
2480 unsigned long exit_qualification;
2481 unsigned long val;
2482 int dr, reg;
2483
2484 /*
2485 * FIXME: this code assumes the host is debugging the guest.
2486 * need to deal with guest debugging itself too.
2487 */
2488 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2489 dr = exit_qualification & 7;
2490 reg = (exit_qualification >> 8) & 15;
2491 if (exit_qualification & 16) {
2492 /* mov from dr */
2493 switch (dr) {
2494 case 6:
2495 val = 0xffff0ff0;
2496 break;
2497 case 7:
2498 val = 0x400;
2499 break;
2500 default:
2501 val = 0;
2502 }
2503 kvm_register_write(vcpu, reg, val);
2504 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2505 } else {
2506 /* mov to dr */
2507 }
2508 skip_emulated_instruction(vcpu);
2509 return 1;
2510 }
2511
2512 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2513 {
2514 kvm_emulate_cpuid(vcpu);
2515 return 1;
2516 }
2517
2518 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2519 {
2520 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2521 u64 data;
2522
2523 if (vmx_get_msr(vcpu, ecx, &data)) {
2524 kvm_inject_gp(vcpu, 0);
2525 return 1;
2526 }
2527
2528 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2529 handler);
2530
2531 /* FIXME: handling of bits 32:63 of rax, rdx */
2532 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2533 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2534 skip_emulated_instruction(vcpu);
2535 return 1;
2536 }
2537
2538 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2539 {
2540 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2541 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2542 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2543
2544 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2545 handler);
2546
2547 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2548 kvm_inject_gp(vcpu, 0);
2549 return 1;
2550 }
2551
2552 skip_emulated_instruction(vcpu);
2553 return 1;
2554 }
2555
2556 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2557 struct kvm_run *kvm_run)
2558 {
2559 return 1;
2560 }
2561
2562 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2563 struct kvm_run *kvm_run)
2564 {
2565 u32 cpu_based_vm_exec_control;
2566
2567 /* clear pending irq */
2568 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2569 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2570 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2571
2572 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2573
2574 /*
2575 * If the user space waits to inject interrupts, exit as soon as
2576 * possible
2577 */
2578 if (kvm_run->request_interrupt_window &&
2579 !vcpu->arch.irq_summary) {
2580 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2581 ++vcpu->stat.irq_window_exits;
2582 return 0;
2583 }
2584 return 1;
2585 }
2586
2587 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2588 {
2589 skip_emulated_instruction(vcpu);
2590 return kvm_emulate_halt(vcpu);
2591 }
2592
2593 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2594 {
2595 skip_emulated_instruction(vcpu);
2596 kvm_emulate_hypercall(vcpu);
2597 return 1;
2598 }
2599
2600 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2601 {
2602 skip_emulated_instruction(vcpu);
2603 /* TODO: Add support for VT-d/pass-through device */
2604 return 1;
2605 }
2606
2607 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2608 {
2609 u64 exit_qualification;
2610 enum emulation_result er;
2611 unsigned long offset;
2612
2613 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2614 offset = exit_qualification & 0xffful;
2615
2616 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2617
2618 if (er != EMULATE_DONE) {
2619 printk(KERN_ERR
2620 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2621 offset);
2622 return -ENOTSUPP;
2623 }
2624 return 1;
2625 }
2626
2627 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2628 {
2629 unsigned long exit_qualification;
2630 u16 tss_selector;
2631 int reason;
2632
2633 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2634
2635 reason = (u32)exit_qualification >> 30;
2636 tss_selector = exit_qualification;
2637
2638 return kvm_task_switch(vcpu, tss_selector, reason);
2639 }
2640
2641 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2642 {
2643 u64 exit_qualification;
2644 enum emulation_result er;
2645 gpa_t gpa;
2646 unsigned long hva;
2647 int gla_validity;
2648 int r;
2649
2650 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2651
2652 if (exit_qualification & (1 << 6)) {
2653 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2654 return -ENOTSUPP;
2655 }
2656
2657 gla_validity = (exit_qualification >> 7) & 0x3;
2658 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2659 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2660 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2661 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2662 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2663 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2664 (long unsigned int)exit_qualification);
2665 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2666 kvm_run->hw.hardware_exit_reason = 0;
2667 return -ENOTSUPP;
2668 }
2669
2670 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2671 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2672 if (!kvm_is_error_hva(hva)) {
2673 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2674 if (r < 0) {
2675 printk(KERN_ERR "EPT: Not enough memory!\n");
2676 return -ENOMEM;
2677 }
2678 return 1;
2679 } else {
2680 /* must be MMIO */
2681 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2682
2683 if (er == EMULATE_FAIL) {
2684 printk(KERN_ERR
2685 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2686 er);
2687 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2688 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2689 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2690 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2691 (long unsigned int)exit_qualification);
2692 return -ENOTSUPP;
2693 } else if (er == EMULATE_DO_MMIO)
2694 return 0;
2695 }
2696 return 1;
2697 }
2698
2699 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2700 {
2701 u32 cpu_based_vm_exec_control;
2702
2703 /* clear pending NMI */
2704 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2705 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2706 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2707 ++vcpu->stat.nmi_window_exits;
2708
2709 return 1;
2710 }
2711
2712 /*
2713 * The exit handlers return 1 if the exit was handled fully and guest execution
2714 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2715 * to be done to userspace and return 0.
2716 */
2717 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2718 struct kvm_run *kvm_run) = {
2719 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2720 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2721 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2722 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
2723 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2724 [EXIT_REASON_CR_ACCESS] = handle_cr,
2725 [EXIT_REASON_DR_ACCESS] = handle_dr,
2726 [EXIT_REASON_CPUID] = handle_cpuid,
2727 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2728 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2729 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2730 [EXIT_REASON_HLT] = handle_halt,
2731 [EXIT_REASON_VMCALL] = handle_vmcall,
2732 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2733 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2734 [EXIT_REASON_WBINVD] = handle_wbinvd,
2735 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2736 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2737 };
2738
2739 static const int kvm_vmx_max_exit_handlers =
2740 ARRAY_SIZE(kvm_vmx_exit_handlers);
2741
2742 /*
2743 * The guest has exited. See if we can fix it or if we need userspace
2744 * assistance.
2745 */
2746 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2747 {
2748 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2749 struct vcpu_vmx *vmx = to_vmx(vcpu);
2750 u32 vectoring_info = vmx->idt_vectoring_info;
2751
2752 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
2753 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
2754
2755 /* Access CR3 don't cause VMExit in paging mode, so we need
2756 * to sync with guest real CR3. */
2757 if (vm_need_ept() && is_paging(vcpu)) {
2758 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2759 ept_load_pdptrs(vcpu);
2760 }
2761
2762 if (unlikely(vmx->fail)) {
2763 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2764 kvm_run->fail_entry.hardware_entry_failure_reason
2765 = vmcs_read32(VM_INSTRUCTION_ERROR);
2766 return 0;
2767 }
2768
2769 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2770 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2771 exit_reason != EXIT_REASON_EPT_VIOLATION))
2772 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2773 "exit reason is 0x%x\n", __func__, exit_reason);
2774 if (exit_reason < kvm_vmx_max_exit_handlers
2775 && kvm_vmx_exit_handlers[exit_reason])
2776 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2777 else {
2778 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2779 kvm_run->hw.hardware_exit_reason = exit_reason;
2780 }
2781 return 0;
2782 }
2783
2784 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2785 {
2786 int max_irr, tpr;
2787
2788 if (!vm_need_tpr_shadow(vcpu->kvm))
2789 return;
2790
2791 if (!kvm_lapic_enabled(vcpu) ||
2792 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2793 vmcs_write32(TPR_THRESHOLD, 0);
2794 return;
2795 }
2796
2797 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2798 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2799 }
2800
2801 static void enable_irq_window(struct kvm_vcpu *vcpu)
2802 {
2803 u32 cpu_based_vm_exec_control;
2804
2805 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2806 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2807 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2808 }
2809
2810 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2811 {
2812 u32 cpu_based_vm_exec_control;
2813
2814 if (!cpu_has_virtual_nmis())
2815 return;
2816
2817 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2818 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2819 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2820 }
2821
2822 static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
2823 {
2824 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2825 return !(guest_intr & (GUEST_INTR_STATE_NMI |
2826 GUEST_INTR_STATE_MOV_SS |
2827 GUEST_INTR_STATE_STI));
2828 }
2829
2830 static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
2831 {
2832 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2833 return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
2834 GUEST_INTR_STATE_STI)) &&
2835 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2836 }
2837
2838 static void enable_intr_window(struct kvm_vcpu *vcpu)
2839 {
2840 if (vcpu->arch.nmi_pending)
2841 enable_nmi_window(vcpu);
2842 else if (kvm_cpu_has_interrupt(vcpu))
2843 enable_irq_window(vcpu);
2844 }
2845
2846 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
2847 {
2848 u32 exit_intr_info;
2849 u32 idt_vectoring_info;
2850 bool unblock_nmi;
2851 u8 vector;
2852 int type;
2853 bool idtv_info_valid;
2854 u32 error;
2855
2856 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2857 if (cpu_has_virtual_nmis()) {
2858 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
2859 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
2860 /*
2861 * SDM 3: 25.7.1.2
2862 * Re-set bit "block by NMI" before VM entry if vmexit caused by
2863 * a guest IRET fault.
2864 */
2865 if (unblock_nmi && vector != DF_VECTOR)
2866 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2867 GUEST_INTR_STATE_NMI);
2868 }
2869
2870 idt_vectoring_info = vmx->idt_vectoring_info;
2871 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
2872 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
2873 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
2874 if (vmx->vcpu.arch.nmi_injected) {
2875 /*
2876 * SDM 3: 25.7.1.2
2877 * Clear bit "block by NMI" before VM entry if a NMI delivery
2878 * faulted.
2879 */
2880 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
2881 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2882 GUEST_INTR_STATE_NMI);
2883 else
2884 vmx->vcpu.arch.nmi_injected = false;
2885 }
2886 kvm_clear_exception_queue(&vmx->vcpu);
2887 if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
2888 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
2889 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
2890 kvm_queue_exception_e(&vmx->vcpu, vector, error);
2891 } else
2892 kvm_queue_exception(&vmx->vcpu, vector);
2893 vmx->idt_vectoring_info = 0;
2894 }
2895 kvm_clear_interrupt_queue(&vmx->vcpu);
2896 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
2897 kvm_queue_interrupt(&vmx->vcpu, vector);
2898 vmx->idt_vectoring_info = 0;
2899 }
2900 }
2901
2902 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2903 {
2904 u32 intr_info_field;
2905
2906 update_tpr_threshold(vcpu);
2907
2908 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2909 if (cpu_has_virtual_nmis()) {
2910 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2911 if (vmx_nmi_enabled(vcpu)) {
2912 vcpu->arch.nmi_pending = false;
2913 vcpu->arch.nmi_injected = true;
2914 } else {
2915 enable_intr_window(vcpu);
2916 return;
2917 }
2918 }
2919 if (vcpu->arch.nmi_injected) {
2920 vmx_inject_nmi(vcpu);
2921 enable_intr_window(vcpu);
2922 return;
2923 }
2924 }
2925 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
2926 if (vmx_irq_enabled(vcpu))
2927 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
2928 else
2929 enable_irq_window(vcpu);
2930 }
2931 if (vcpu->arch.interrupt.pending) {
2932 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2933 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
2934 }
2935 }
2936
2937 /*
2938 * Failure to inject an interrupt should give us the information
2939 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2940 * when fetching the interrupt redirection bitmap in the real-mode
2941 * tss, this doesn't happen. So we do it ourselves.
2942 */
2943 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2944 {
2945 vmx->rmode.irq.pending = 0;
2946 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
2947 return;
2948 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
2949 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2950 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2951 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2952 return;
2953 }
2954 vmx->idt_vectoring_info =
2955 VECTORING_INFO_VALID_MASK
2956 | INTR_TYPE_EXT_INTR
2957 | vmx->rmode.irq.vector;
2958 }
2959
2960 #ifdef CONFIG_X86_64
2961 #define R "r"
2962 #define Q "q"
2963 #else
2964 #define R "e"
2965 #define Q "l"
2966 #endif
2967
2968 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2969 {
2970 struct vcpu_vmx *vmx = to_vmx(vcpu);
2971 u32 intr_info;
2972
2973 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
2974 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
2975 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
2976 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
2977
2978 /*
2979 * Loading guest fpu may have cleared host cr0.ts
2980 */
2981 vmcs_writel(HOST_CR0, read_cr0());
2982
2983 asm(
2984 /* Store host registers */
2985 "push %%"R"dx; push %%"R"bp;"
2986 "push %%"R"cx \n\t"
2987 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
2988 "je 1f \n\t"
2989 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
2990 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2991 "1: \n\t"
2992 /* Check if vmlaunch of vmresume is needed */
2993 "cmpl $0, %c[launched](%0) \n\t"
2994 /* Load guest registers. Don't clobber flags. */
2995 "mov %c[cr2](%0), %%"R"ax \n\t"
2996 "mov %%"R"ax, %%cr2 \n\t"
2997 "mov %c[rax](%0), %%"R"ax \n\t"
2998 "mov %c[rbx](%0), %%"R"bx \n\t"
2999 "mov %c[rdx](%0), %%"R"dx \n\t"
3000 "mov %c[rsi](%0), %%"R"si \n\t"
3001 "mov %c[rdi](%0), %%"R"di \n\t"
3002 "mov %c[rbp](%0), %%"R"bp \n\t"
3003 #ifdef CONFIG_X86_64
3004 "mov %c[r8](%0), %%r8 \n\t"
3005 "mov %c[r9](%0), %%r9 \n\t"
3006 "mov %c[r10](%0), %%r10 \n\t"
3007 "mov %c[r11](%0), %%r11 \n\t"
3008 "mov %c[r12](%0), %%r12 \n\t"
3009 "mov %c[r13](%0), %%r13 \n\t"
3010 "mov %c[r14](%0), %%r14 \n\t"
3011 "mov %c[r15](%0), %%r15 \n\t"
3012 #endif
3013 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3014
3015 /* Enter guest mode */
3016 "jne .Llaunched \n\t"
3017 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3018 "jmp .Lkvm_vmx_return \n\t"
3019 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3020 ".Lkvm_vmx_return: "
3021 /* Save guest registers, load host registers, keep flags */
3022 "xchg %0, (%%"R"sp) \n\t"
3023 "mov %%"R"ax, %c[rax](%0) \n\t"
3024 "mov %%"R"bx, %c[rbx](%0) \n\t"
3025 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3026 "mov %%"R"dx, %c[rdx](%0) \n\t"
3027 "mov %%"R"si, %c[rsi](%0) \n\t"
3028 "mov %%"R"di, %c[rdi](%0) \n\t"
3029 "mov %%"R"bp, %c[rbp](%0) \n\t"
3030 #ifdef CONFIG_X86_64
3031 "mov %%r8, %c[r8](%0) \n\t"
3032 "mov %%r9, %c[r9](%0) \n\t"
3033 "mov %%r10, %c[r10](%0) \n\t"
3034 "mov %%r11, %c[r11](%0) \n\t"
3035 "mov %%r12, %c[r12](%0) \n\t"
3036 "mov %%r13, %c[r13](%0) \n\t"
3037 "mov %%r14, %c[r14](%0) \n\t"
3038 "mov %%r15, %c[r15](%0) \n\t"
3039 #endif
3040 "mov %%cr2, %%"R"ax \n\t"
3041 "mov %%"R"ax, %c[cr2](%0) \n\t"
3042
3043 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3044 "setbe %c[fail](%0) \n\t"
3045 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3046 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3047 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3048 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3049 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3050 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3051 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3052 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3053 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3054 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3055 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3056 #ifdef CONFIG_X86_64
3057 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3058 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3059 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3060 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3061 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3062 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3063 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3064 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3065 #endif
3066 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3067 : "cc", "memory"
3068 , R"bx", R"di", R"si"
3069 #ifdef CONFIG_X86_64
3070 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3071 #endif
3072 );
3073
3074 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3075 vcpu->arch.regs_dirty = 0;
3076
3077 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3078 if (vmx->rmode.irq.pending)
3079 fixup_rmode_irq(vmx);
3080
3081 vcpu->arch.interrupt_window_open =
3082 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3083 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
3084
3085 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3086 vmx->launched = 1;
3087
3088 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3089
3090 /* We need to handle NMIs before interrupts are enabled */
3091 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
3092 (intr_info & INTR_INFO_VALID_MASK)) {
3093 KVMTRACE_0D(NMI, vcpu, handler);
3094 asm("int $2");
3095 }
3096
3097 vmx_complete_interrupts(vmx);
3098 }
3099
3100 #undef R
3101 #undef Q
3102
3103 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3104 {
3105 struct vcpu_vmx *vmx = to_vmx(vcpu);
3106
3107 if (vmx->vmcs) {
3108 vcpu_clear(vmx);
3109 free_vmcs(vmx->vmcs);
3110 vmx->vmcs = NULL;
3111 }
3112 }
3113
3114 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3115 {
3116 struct vcpu_vmx *vmx = to_vmx(vcpu);
3117
3118 spin_lock(&vmx_vpid_lock);
3119 if (vmx->vpid != 0)
3120 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3121 spin_unlock(&vmx_vpid_lock);
3122 vmx_free_vmcs(vcpu);
3123 kfree(vmx->host_msrs);
3124 kfree(vmx->guest_msrs);
3125 kvm_vcpu_uninit(vcpu);
3126 kmem_cache_free(kvm_vcpu_cache, vmx);
3127 }
3128
3129 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3130 {
3131 int err;
3132 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3133 int cpu;
3134
3135 if (!vmx)
3136 return ERR_PTR(-ENOMEM);
3137
3138 allocate_vpid(vmx);
3139
3140 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3141 if (err)
3142 goto free_vcpu;
3143
3144 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3145 if (!vmx->guest_msrs) {
3146 err = -ENOMEM;
3147 goto uninit_vcpu;
3148 }
3149
3150 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3151 if (!vmx->host_msrs)
3152 goto free_guest_msrs;
3153
3154 vmx->vmcs = alloc_vmcs();
3155 if (!vmx->vmcs)
3156 goto free_msrs;
3157
3158 vmcs_clear(vmx->vmcs);
3159
3160 cpu = get_cpu();
3161 vmx_vcpu_load(&vmx->vcpu, cpu);
3162 err = vmx_vcpu_setup(vmx);
3163 vmx_vcpu_put(&vmx->vcpu);
3164 put_cpu();
3165 if (err)
3166 goto free_vmcs;
3167 if (vm_need_virtualize_apic_accesses(kvm))
3168 if (alloc_apic_access_page(kvm) != 0)
3169 goto free_vmcs;
3170
3171 if (vm_need_ept())
3172 if (alloc_identity_pagetable(kvm) != 0)
3173 goto free_vmcs;
3174
3175 return &vmx->vcpu;
3176
3177 free_vmcs:
3178 free_vmcs(vmx->vmcs);
3179 free_msrs:
3180 kfree(vmx->host_msrs);
3181 free_guest_msrs:
3182 kfree(vmx->guest_msrs);
3183 uninit_vcpu:
3184 kvm_vcpu_uninit(&vmx->vcpu);
3185 free_vcpu:
3186 kmem_cache_free(kvm_vcpu_cache, vmx);
3187 return ERR_PTR(err);
3188 }
3189
3190 static void __init vmx_check_processor_compat(void *rtn)
3191 {
3192 struct vmcs_config vmcs_conf;
3193
3194 *(int *)rtn = 0;
3195 if (setup_vmcs_config(&vmcs_conf) < 0)
3196 *(int *)rtn = -EIO;
3197 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3198 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3199 smp_processor_id());
3200 *(int *)rtn = -EIO;
3201 }
3202 }
3203
3204 static int get_ept_level(void)
3205 {
3206 return VMX_EPT_DEFAULT_GAW + 1;
3207 }
3208
3209 static struct kvm_x86_ops vmx_x86_ops = {
3210 .cpu_has_kvm_support = cpu_has_kvm_support,
3211 .disabled_by_bios = vmx_disabled_by_bios,
3212 .hardware_setup = hardware_setup,
3213 .hardware_unsetup = hardware_unsetup,
3214 .check_processor_compatibility = vmx_check_processor_compat,
3215 .hardware_enable = hardware_enable,
3216 .hardware_disable = hardware_disable,
3217 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3218
3219 .vcpu_create = vmx_create_vcpu,
3220 .vcpu_free = vmx_free_vcpu,
3221 .vcpu_reset = vmx_vcpu_reset,
3222
3223 .prepare_guest_switch = vmx_save_host_state,
3224 .vcpu_load = vmx_vcpu_load,
3225 .vcpu_put = vmx_vcpu_put,
3226
3227 .set_guest_debug = set_guest_debug,
3228 .guest_debug_pre = kvm_guest_debug_pre,
3229 .get_msr = vmx_get_msr,
3230 .set_msr = vmx_set_msr,
3231 .get_segment_base = vmx_get_segment_base,
3232 .get_segment = vmx_get_segment,
3233 .set_segment = vmx_set_segment,
3234 .get_cpl = vmx_get_cpl,
3235 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3236 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3237 .set_cr0 = vmx_set_cr0,
3238 .set_cr3 = vmx_set_cr3,
3239 .set_cr4 = vmx_set_cr4,
3240 .set_efer = vmx_set_efer,
3241 .get_idt = vmx_get_idt,
3242 .set_idt = vmx_set_idt,
3243 .get_gdt = vmx_get_gdt,
3244 .set_gdt = vmx_set_gdt,
3245 .cache_reg = vmx_cache_reg,
3246 .get_rflags = vmx_get_rflags,
3247 .set_rflags = vmx_set_rflags,
3248
3249 .tlb_flush = vmx_flush_tlb,
3250
3251 .run = vmx_vcpu_run,
3252 .handle_exit = kvm_handle_exit,
3253 .skip_emulated_instruction = skip_emulated_instruction,
3254 .patch_hypercall = vmx_patch_hypercall,
3255 .get_irq = vmx_get_irq,
3256 .set_irq = vmx_inject_irq,
3257 .queue_exception = vmx_queue_exception,
3258 .exception_injected = vmx_exception_injected,
3259 .inject_pending_irq = vmx_intr_assist,
3260 .inject_pending_vectors = do_interrupt_requests,
3261
3262 .set_tss_addr = vmx_set_tss_addr,
3263 .get_tdp_level = get_ept_level,
3264 };
3265
3266 static int __init vmx_init(void)
3267 {
3268 void *va;
3269 int r;
3270
3271 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3272 if (!vmx_io_bitmap_a)
3273 return -ENOMEM;
3274
3275 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3276 if (!vmx_io_bitmap_b) {
3277 r = -ENOMEM;
3278 goto out;
3279 }
3280
3281 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3282 if (!vmx_msr_bitmap) {
3283 r = -ENOMEM;
3284 goto out1;
3285 }
3286
3287 /*
3288 * Allow direct access to the PC debug port (it is often used for I/O
3289 * delays, but the vmexits simply slow things down).
3290 */
3291 va = kmap(vmx_io_bitmap_a);
3292 memset(va, 0xff, PAGE_SIZE);
3293 clear_bit(0x80, va);
3294 kunmap(vmx_io_bitmap_a);
3295
3296 va = kmap(vmx_io_bitmap_b);
3297 memset(va, 0xff, PAGE_SIZE);
3298 kunmap(vmx_io_bitmap_b);
3299
3300 va = kmap(vmx_msr_bitmap);
3301 memset(va, 0xff, PAGE_SIZE);
3302 kunmap(vmx_msr_bitmap);
3303
3304 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3305
3306 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3307 if (r)
3308 goto out2;
3309
3310 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3311 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3312 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3313 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3314 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3315
3316 if (vm_need_ept()) {
3317 bypass_guest_pf = 0;
3318 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3319 VMX_EPT_WRITABLE_MASK |
3320 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3321 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3322 VMX_EPT_EXECUTABLE_MASK);
3323 kvm_enable_tdp();
3324 } else
3325 kvm_disable_tdp();
3326
3327 if (bypass_guest_pf)
3328 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3329
3330 ept_sync_global();
3331
3332 return 0;
3333
3334 out2:
3335 __free_page(vmx_msr_bitmap);
3336 out1:
3337 __free_page(vmx_io_bitmap_b);
3338 out:
3339 __free_page(vmx_io_bitmap_a);
3340 return r;
3341 }
3342
3343 static void __exit vmx_exit(void)
3344 {
3345 __free_page(vmx_msr_bitmap);
3346 __free_page(vmx_io_bitmap_b);
3347 __free_page(vmx_io_bitmap_a);
3348
3349 kvm_exit();
3350 }
3351
3352 module_init(vmx_init)
3353 module_exit(vmx_exit)