]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114 static int __read_mostly cpu_preemption_timer_multi;
115 static bool __read_mostly enable_preemption_timer = 1;
116 #ifdef CONFIG_X86_64
117 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118 #endif
119
120 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
122 #define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
124 #define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
127
128 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
131 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
133 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
135 /*
136 * Hyper-V requires all of these, so mark them as supported even though
137 * they are just treated the same as all-context.
138 */
139 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
140 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
141 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
143 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
144
145 /*
146 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147 * ple_gap: upper bound on the amount of time between two successive
148 * executions of PAUSE in a loop. Also indicate if ple enabled.
149 * According to test, this time is usually smaller than 128 cycles.
150 * ple_window: upper bound on the amount of time a guest is allowed to execute
151 * in a PAUSE loop. Tests indicate that most spinlocks are held for
152 * less than 2^12 cycles
153 * Time is measured based on a counter that runs at the same rate as the TSC,
154 * refer SDM volume 3b section 21.6.13 & 22.1.3.
155 */
156 #define KVM_VMX_DEFAULT_PLE_GAP 128
157 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
160 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
161 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
162
163 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
164 module_param(ple_gap, int, S_IRUGO);
165
166 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, int, S_IRUGO);
168
169 /* Default doubles per-vcpu window every exit. */
170 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, int, S_IRUGO);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, int, S_IRUGO);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
180 module_param(ple_window_max, int, S_IRUGO);
181
182 extern const ulong vmx_return;
183
184 #define NR_AUTOLOAD_MSRS 8
185 #define VMCS02_POOL_SIZE 1
186
187 struct vmcs {
188 u32 revision_id;
189 u32 abort;
190 char data[0];
191 };
192
193 /*
194 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
195 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
196 * loaded on this CPU (so we can clear them if the CPU goes down).
197 */
198 struct loaded_vmcs {
199 struct vmcs *vmcs;
200 struct vmcs *shadow_vmcs;
201 int cpu;
202 int launched;
203 struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207 unsigned index;
208 u64 data;
209 u64 mask;
210 };
211
212 /*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
232
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
245 u64 posted_intr_desc_addr;
246 u64 ept_pointer;
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
251 u64 xss_exit_bitmap;
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 guest_ia32_debugctl;
255 u64 guest_ia32_pat;
256 u64 guest_ia32_efer;
257 u64 guest_ia32_perf_global_ctrl;
258 u64 guest_pdptr0;
259 u64 guest_pdptr1;
260 u64 guest_pdptr2;
261 u64 guest_pdptr3;
262 u64 guest_bndcfgs;
263 u64 host_ia32_pat;
264 u64 host_ia32_efer;
265 u64 host_ia32_perf_global_ctrl;
266 u64 padding64[8]; /* room for future expansion */
267 /*
268 * To allow migration of L1 (complete with its L2 guests) between
269 * machines of different natural widths (32 or 64 bit), we cannot have
270 * unsigned long fields with no explict size. We use u64 (aliased
271 * natural_width) instead. Luckily, x86 is little-endian.
272 */
273 natural_width cr0_guest_host_mask;
274 natural_width cr4_guest_host_mask;
275 natural_width cr0_read_shadow;
276 natural_width cr4_read_shadow;
277 natural_width cr3_target_value0;
278 natural_width cr3_target_value1;
279 natural_width cr3_target_value2;
280 natural_width cr3_target_value3;
281 natural_width exit_qualification;
282 natural_width guest_linear_address;
283 natural_width guest_cr0;
284 natural_width guest_cr3;
285 natural_width guest_cr4;
286 natural_width guest_es_base;
287 natural_width guest_cs_base;
288 natural_width guest_ss_base;
289 natural_width guest_ds_base;
290 natural_width guest_fs_base;
291 natural_width guest_gs_base;
292 natural_width guest_ldtr_base;
293 natural_width guest_tr_base;
294 natural_width guest_gdtr_base;
295 natural_width guest_idtr_base;
296 natural_width guest_dr7;
297 natural_width guest_rsp;
298 natural_width guest_rip;
299 natural_width guest_rflags;
300 natural_width guest_pending_dbg_exceptions;
301 natural_width guest_sysenter_esp;
302 natural_width guest_sysenter_eip;
303 natural_width host_cr0;
304 natural_width host_cr3;
305 natural_width host_cr4;
306 natural_width host_fs_base;
307 natural_width host_gs_base;
308 natural_width host_tr_base;
309 natural_width host_gdtr_base;
310 natural_width host_idtr_base;
311 natural_width host_ia32_sysenter_esp;
312 natural_width host_ia32_sysenter_eip;
313 natural_width host_rsp;
314 natural_width host_rip;
315 natural_width paddingl[8]; /* room for future expansion */
316 u32 pin_based_vm_exec_control;
317 u32 cpu_based_vm_exec_control;
318 u32 exception_bitmap;
319 u32 page_fault_error_code_mask;
320 u32 page_fault_error_code_match;
321 u32 cr3_target_count;
322 u32 vm_exit_controls;
323 u32 vm_exit_msr_store_count;
324 u32 vm_exit_msr_load_count;
325 u32 vm_entry_controls;
326 u32 vm_entry_msr_load_count;
327 u32 vm_entry_intr_info_field;
328 u32 vm_entry_exception_error_code;
329 u32 vm_entry_instruction_len;
330 u32 tpr_threshold;
331 u32 secondary_vm_exec_control;
332 u32 vm_instruction_error;
333 u32 vm_exit_reason;
334 u32 vm_exit_intr_info;
335 u32 vm_exit_intr_error_code;
336 u32 idt_vectoring_info_field;
337 u32 idt_vectoring_error_code;
338 u32 vm_exit_instruction_len;
339 u32 vmx_instruction_info;
340 u32 guest_es_limit;
341 u32 guest_cs_limit;
342 u32 guest_ss_limit;
343 u32 guest_ds_limit;
344 u32 guest_fs_limit;
345 u32 guest_gs_limit;
346 u32 guest_ldtr_limit;
347 u32 guest_tr_limit;
348 u32 guest_gdtr_limit;
349 u32 guest_idtr_limit;
350 u32 guest_es_ar_bytes;
351 u32 guest_cs_ar_bytes;
352 u32 guest_ss_ar_bytes;
353 u32 guest_ds_ar_bytes;
354 u32 guest_fs_ar_bytes;
355 u32 guest_gs_ar_bytes;
356 u32 guest_ldtr_ar_bytes;
357 u32 guest_tr_ar_bytes;
358 u32 guest_interruptibility_info;
359 u32 guest_activity_state;
360 u32 guest_sysenter_cs;
361 u32 host_ia32_sysenter_cs;
362 u32 vmx_preemption_timer_value;
363 u32 padding32[7]; /* room for future expansion */
364 u16 virtual_processor_id;
365 u16 posted_intr_nv;
366 u16 guest_es_selector;
367 u16 guest_cs_selector;
368 u16 guest_ss_selector;
369 u16 guest_ds_selector;
370 u16 guest_fs_selector;
371 u16 guest_gs_selector;
372 u16 guest_ldtr_selector;
373 u16 guest_tr_selector;
374 u16 guest_intr_status;
375 u16 host_es_selector;
376 u16 host_cs_selector;
377 u16 host_ss_selector;
378 u16 host_ds_selector;
379 u16 host_fs_selector;
380 u16 host_gs_selector;
381 u16 host_tr_selector;
382 };
383
384 /*
385 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
386 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
387 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
388 */
389 #define VMCS12_REVISION 0x11e57ed0
390
391 /*
392 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
393 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
394 * current implementation, 4K are reserved to avoid future complications.
395 */
396 #define VMCS12_SIZE 0x1000
397
398 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
399 struct vmcs02_list {
400 struct list_head list;
401 gpa_t vmptr;
402 struct loaded_vmcs vmcs02;
403 };
404
405 /*
406 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
407 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
408 */
409 struct nested_vmx {
410 /* Has the level1 guest done vmxon? */
411 bool vmxon;
412 gpa_t vmxon_ptr;
413
414 /* The guest-physical address of the current VMCS L1 keeps for L2 */
415 gpa_t current_vmptr;
416 /* The host-usable pointer to the above */
417 struct page *current_vmcs12_page;
418 struct vmcs12 *current_vmcs12;
419 /*
420 * Cache of the guest's VMCS, existing outside of guest memory.
421 * Loaded from guest memory during VMPTRLD. Flushed to guest
422 * memory during VMXOFF, VMCLEAR, VMPTRLD.
423 */
424 struct vmcs12 *cached_vmcs12;
425 /*
426 * Indicates if the shadow vmcs must be updated with the
427 * data hold by vmcs12
428 */
429 bool sync_shadow_vmcs;
430
431 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
432 struct list_head vmcs02_pool;
433 int vmcs02_num;
434 bool change_vmcs01_virtual_x2apic_mode;
435 /* L2 must run next, and mustn't decide to exit to L1. */
436 bool nested_run_pending;
437 /*
438 * Guest pages referred to in vmcs02 with host-physical pointers, so
439 * we must keep them pinned while L2 runs.
440 */
441 struct page *apic_access_page;
442 struct page *virtual_apic_page;
443 struct page *pi_desc_page;
444 struct pi_desc *pi_desc;
445 bool pi_pending;
446 u16 posted_intr_nv;
447
448 unsigned long *msr_bitmap;
449
450 struct hrtimer preemption_timer;
451 bool preemption_timer_expired;
452
453 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
454 u64 vmcs01_debugctl;
455
456 u16 vpid02;
457 u16 last_vpid;
458
459 /*
460 * We only store the "true" versions of the VMX capability MSRs. We
461 * generate the "non-true" versions by setting the must-be-1 bits
462 * according to the SDM.
463 */
464 u32 nested_vmx_procbased_ctls_low;
465 u32 nested_vmx_procbased_ctls_high;
466 u32 nested_vmx_secondary_ctls_low;
467 u32 nested_vmx_secondary_ctls_high;
468 u32 nested_vmx_pinbased_ctls_low;
469 u32 nested_vmx_pinbased_ctls_high;
470 u32 nested_vmx_exit_ctls_low;
471 u32 nested_vmx_exit_ctls_high;
472 u32 nested_vmx_entry_ctls_low;
473 u32 nested_vmx_entry_ctls_high;
474 u32 nested_vmx_misc_low;
475 u32 nested_vmx_misc_high;
476 u32 nested_vmx_ept_caps;
477 u32 nested_vmx_vpid_caps;
478 u64 nested_vmx_basic;
479 u64 nested_vmx_cr0_fixed0;
480 u64 nested_vmx_cr0_fixed1;
481 u64 nested_vmx_cr4_fixed0;
482 u64 nested_vmx_cr4_fixed1;
483 u64 nested_vmx_vmcs_enum;
484 };
485
486 #define POSTED_INTR_ON 0
487 #define POSTED_INTR_SN 1
488
489 /* Posted-Interrupt Descriptor */
490 struct pi_desc {
491 u32 pir[8]; /* Posted interrupt requested */
492 union {
493 struct {
494 /* bit 256 - Outstanding Notification */
495 u16 on : 1,
496 /* bit 257 - Suppress Notification */
497 sn : 1,
498 /* bit 271:258 - Reserved */
499 rsvd_1 : 14;
500 /* bit 279:272 - Notification Vector */
501 u8 nv;
502 /* bit 287:280 - Reserved */
503 u8 rsvd_2;
504 /* bit 319:288 - Notification Destination */
505 u32 ndst;
506 };
507 u64 control;
508 };
509 u32 rsvd[6];
510 } __aligned(64);
511
512 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
513 {
514 return test_and_set_bit(POSTED_INTR_ON,
515 (unsigned long *)&pi_desc->control);
516 }
517
518 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
519 {
520 return test_and_clear_bit(POSTED_INTR_ON,
521 (unsigned long *)&pi_desc->control);
522 }
523
524 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
525 {
526 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
527 }
528
529 static inline void pi_clear_sn(struct pi_desc *pi_desc)
530 {
531 return clear_bit(POSTED_INTR_SN,
532 (unsigned long *)&pi_desc->control);
533 }
534
535 static inline void pi_set_sn(struct pi_desc *pi_desc)
536 {
537 return set_bit(POSTED_INTR_SN,
538 (unsigned long *)&pi_desc->control);
539 }
540
541 static inline void pi_clear_on(struct pi_desc *pi_desc)
542 {
543 clear_bit(POSTED_INTR_ON,
544 (unsigned long *)&pi_desc->control);
545 }
546
547 static inline int pi_test_on(struct pi_desc *pi_desc)
548 {
549 return test_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551 }
552
553 static inline int pi_test_sn(struct pi_desc *pi_desc)
554 {
555 return test_bit(POSTED_INTR_SN,
556 (unsigned long *)&pi_desc->control);
557 }
558
559 struct vcpu_vmx {
560 struct kvm_vcpu vcpu;
561 unsigned long host_rsp;
562 u8 fail;
563 bool nmi_known_unmasked;
564 u32 exit_intr_info;
565 u32 idt_vectoring_info;
566 ulong rflags;
567 struct shared_msr_entry *guest_msrs;
568 int nmsrs;
569 int save_nmsrs;
570 unsigned long host_idt_base;
571 #ifdef CONFIG_X86_64
572 u64 msr_host_kernel_gs_base;
573 u64 msr_guest_kernel_gs_base;
574 #endif
575 u32 vm_entry_controls_shadow;
576 u32 vm_exit_controls_shadow;
577 /*
578 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
579 * non-nested (L1) guest, it always points to vmcs01. For a nested
580 * guest (L2), it points to a different VMCS.
581 */
582 struct loaded_vmcs vmcs01;
583 struct loaded_vmcs *loaded_vmcs;
584 bool __launched; /* temporary, used in vmx_vcpu_run */
585 struct msr_autoload {
586 unsigned nr;
587 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
588 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
589 } msr_autoload;
590 struct {
591 int loaded;
592 u16 fs_sel, gs_sel, ldt_sel;
593 #ifdef CONFIG_X86_64
594 u16 ds_sel, es_sel;
595 #endif
596 int gs_ldt_reload_needed;
597 int fs_reload_needed;
598 u64 msr_host_bndcfgs;
599 unsigned long vmcs_host_cr4; /* May not match real cr4 */
600 } host_state;
601 struct {
602 int vm86_active;
603 ulong save_rflags;
604 struct kvm_segment segs[8];
605 } rmode;
606 struct {
607 u32 bitmask; /* 4 bits per segment (1 bit per field) */
608 struct kvm_save_segment {
609 u16 selector;
610 unsigned long base;
611 u32 limit;
612 u32 ar;
613 } seg[8];
614 } segment_cache;
615 int vpid;
616 bool emulation_required;
617
618 /* Support for vnmi-less CPUs */
619 int soft_vnmi_blocked;
620 ktime_t entry_time;
621 s64 vnmi_blocked_time;
622 u32 exit_reason;
623
624 /* Posted interrupt descriptor */
625 struct pi_desc pi_desc;
626
627 /* Support for a guest hypervisor (nested VMX) */
628 struct nested_vmx nested;
629
630 /* Dynamic PLE window. */
631 int ple_window;
632 bool ple_window_dirty;
633
634 /* Support for PML */
635 #define PML_ENTITY_NUM 512
636 struct page *pml_pg;
637
638 /* apic deadline value in host tsc */
639 u64 hv_deadline_tsc;
640
641 u64 current_tsc_ratio;
642
643 bool guest_pkru_valid;
644 u32 guest_pkru;
645 u32 host_pkru;
646
647 /*
648 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
649 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
650 * in msr_ia32_feature_control_valid_bits.
651 */
652 u64 msr_ia32_feature_control;
653 u64 msr_ia32_feature_control_valid_bits;
654 };
655
656 enum segment_cache_field {
657 SEG_FIELD_SEL = 0,
658 SEG_FIELD_BASE = 1,
659 SEG_FIELD_LIMIT = 2,
660 SEG_FIELD_AR = 3,
661
662 SEG_FIELD_NR = 4
663 };
664
665 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
666 {
667 return container_of(vcpu, struct vcpu_vmx, vcpu);
668 }
669
670 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
671 {
672 return &(to_vmx(vcpu)->pi_desc);
673 }
674
675 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
676 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
677 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
678 [number##_HIGH] = VMCS12_OFFSET(name)+4
679
680
681 static unsigned long shadow_read_only_fields[] = {
682 /*
683 * We do NOT shadow fields that are modified when L0
684 * traps and emulates any vmx instruction (e.g. VMPTRLD,
685 * VMXON...) executed by L1.
686 * For example, VM_INSTRUCTION_ERROR is read
687 * by L1 if a vmx instruction fails (part of the error path).
688 * Note the code assumes this logic. If for some reason
689 * we start shadowing these fields then we need to
690 * force a shadow sync when L0 emulates vmx instructions
691 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
692 * by nested_vmx_failValid)
693 */
694 VM_EXIT_REASON,
695 VM_EXIT_INTR_INFO,
696 VM_EXIT_INSTRUCTION_LEN,
697 IDT_VECTORING_INFO_FIELD,
698 IDT_VECTORING_ERROR_CODE,
699 VM_EXIT_INTR_ERROR_CODE,
700 EXIT_QUALIFICATION,
701 GUEST_LINEAR_ADDRESS,
702 GUEST_PHYSICAL_ADDRESS
703 };
704 static int max_shadow_read_only_fields =
705 ARRAY_SIZE(shadow_read_only_fields);
706
707 static unsigned long shadow_read_write_fields[] = {
708 TPR_THRESHOLD,
709 GUEST_RIP,
710 GUEST_RSP,
711 GUEST_CR0,
712 GUEST_CR3,
713 GUEST_CR4,
714 GUEST_INTERRUPTIBILITY_INFO,
715 GUEST_RFLAGS,
716 GUEST_CS_SELECTOR,
717 GUEST_CS_AR_BYTES,
718 GUEST_CS_LIMIT,
719 GUEST_CS_BASE,
720 GUEST_ES_BASE,
721 GUEST_BNDCFGS,
722 CR0_GUEST_HOST_MASK,
723 CR0_READ_SHADOW,
724 CR4_READ_SHADOW,
725 TSC_OFFSET,
726 EXCEPTION_BITMAP,
727 CPU_BASED_VM_EXEC_CONTROL,
728 VM_ENTRY_EXCEPTION_ERROR_CODE,
729 VM_ENTRY_INTR_INFO_FIELD,
730 VM_ENTRY_INSTRUCTION_LEN,
731 VM_ENTRY_EXCEPTION_ERROR_CODE,
732 HOST_FS_BASE,
733 HOST_GS_BASE,
734 HOST_FS_SELECTOR,
735 HOST_GS_SELECTOR
736 };
737 static int max_shadow_read_write_fields =
738 ARRAY_SIZE(shadow_read_write_fields);
739
740 static const unsigned short vmcs_field_to_offset_table[] = {
741 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
742 FIELD(POSTED_INTR_NV, posted_intr_nv),
743 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
744 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
745 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
746 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
747 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
748 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
749 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
750 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
751 FIELD(GUEST_INTR_STATUS, guest_intr_status),
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769 FIELD64(EPT_POINTER, ept_pointer),
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
778 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
779 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
780 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
781 FIELD64(GUEST_PDPTR0, guest_pdptr0),
782 FIELD64(GUEST_PDPTR1, guest_pdptr1),
783 FIELD64(GUEST_PDPTR2, guest_pdptr2),
784 FIELD64(GUEST_PDPTR3, guest_pdptr3),
785 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
786 FIELD64(HOST_IA32_PAT, host_ia32_pat),
787 FIELD64(HOST_IA32_EFER, host_ia32_efer),
788 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
789 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
790 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
791 FIELD(EXCEPTION_BITMAP, exception_bitmap),
792 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
793 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
794 FIELD(CR3_TARGET_COUNT, cr3_target_count),
795 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
796 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
797 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
798 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
799 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
800 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
801 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
802 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
803 FIELD(TPR_THRESHOLD, tpr_threshold),
804 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
805 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
806 FIELD(VM_EXIT_REASON, vm_exit_reason),
807 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
808 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
809 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
810 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
811 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
812 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
813 FIELD(GUEST_ES_LIMIT, guest_es_limit),
814 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
815 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
816 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
817 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
818 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
819 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
820 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
821 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
822 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
823 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
824 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
825 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
826 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
827 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
828 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
829 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
830 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
831 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
832 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
833 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
834 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
835 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
836 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
837 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
838 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
839 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
840 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
841 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
842 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
843 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
844 FIELD(EXIT_QUALIFICATION, exit_qualification),
845 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
846 FIELD(GUEST_CR0, guest_cr0),
847 FIELD(GUEST_CR3, guest_cr3),
848 FIELD(GUEST_CR4, guest_cr4),
849 FIELD(GUEST_ES_BASE, guest_es_base),
850 FIELD(GUEST_CS_BASE, guest_cs_base),
851 FIELD(GUEST_SS_BASE, guest_ss_base),
852 FIELD(GUEST_DS_BASE, guest_ds_base),
853 FIELD(GUEST_FS_BASE, guest_fs_base),
854 FIELD(GUEST_GS_BASE, guest_gs_base),
855 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
856 FIELD(GUEST_TR_BASE, guest_tr_base),
857 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
858 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
859 FIELD(GUEST_DR7, guest_dr7),
860 FIELD(GUEST_RSP, guest_rsp),
861 FIELD(GUEST_RIP, guest_rip),
862 FIELD(GUEST_RFLAGS, guest_rflags),
863 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
864 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
865 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
866 FIELD(HOST_CR0, host_cr0),
867 FIELD(HOST_CR3, host_cr3),
868 FIELD(HOST_CR4, host_cr4),
869 FIELD(HOST_FS_BASE, host_fs_base),
870 FIELD(HOST_GS_BASE, host_gs_base),
871 FIELD(HOST_TR_BASE, host_tr_base),
872 FIELD(HOST_GDTR_BASE, host_gdtr_base),
873 FIELD(HOST_IDTR_BASE, host_idtr_base),
874 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
875 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
876 FIELD(HOST_RSP, host_rsp),
877 FIELD(HOST_RIP, host_rip),
878 };
879
880 static inline short vmcs_field_to_offset(unsigned long field)
881 {
882 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
883
884 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
885 vmcs_field_to_offset_table[field] == 0)
886 return -ENOENT;
887
888 return vmcs_field_to_offset_table[field];
889 }
890
891 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
892 {
893 return to_vmx(vcpu)->nested.cached_vmcs12;
894 }
895
896 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
897 {
898 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
899 if (is_error_page(page))
900 return NULL;
901
902 return page;
903 }
904
905 static void nested_release_page(struct page *page)
906 {
907 kvm_release_page_dirty(page);
908 }
909
910 static void nested_release_page_clean(struct page *page)
911 {
912 kvm_release_page_clean(page);
913 }
914
915 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
916 static u64 construct_eptp(unsigned long root_hpa);
917 static void kvm_cpu_vmxon(u64 addr);
918 static void kvm_cpu_vmxoff(void);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
939
940 /*
941 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
942 * can find which vCPU should be waken up.
943 */
944 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
945 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
946
947 enum {
948 VMX_IO_BITMAP_A,
949 VMX_IO_BITMAP_B,
950 VMX_MSR_BITMAP_LEGACY,
951 VMX_MSR_BITMAP_LONGMODE,
952 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
954 VMX_MSR_BITMAP_LEGACY_X2APIC,
955 VMX_MSR_BITMAP_LONGMODE_X2APIC,
956 VMX_VMREAD_BITMAP,
957 VMX_VMWRITE_BITMAP,
958 VMX_BITMAP_NR
959 };
960
961 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
962
963 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
964 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
965 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
966 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
967 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
968 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
969 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
970 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
971 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
972 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
973
974 static bool cpu_has_load_ia32_efer;
975 static bool cpu_has_load_perf_global_ctrl;
976
977 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
978 static DEFINE_SPINLOCK(vmx_vpid_lock);
979
980 static struct vmcs_config {
981 int size;
982 int order;
983 u32 basic_cap;
984 u32 revision_id;
985 u32 pin_based_exec_ctrl;
986 u32 cpu_based_exec_ctrl;
987 u32 cpu_based_2nd_exec_ctrl;
988 u32 vmexit_ctrl;
989 u32 vmentry_ctrl;
990 } vmcs_config;
991
992 static struct vmx_capability {
993 u32 ept;
994 u32 vpid;
995 } vmx_capability;
996
997 #define VMX_SEGMENT_FIELD(seg) \
998 [VCPU_SREG_##seg] = { \
999 .selector = GUEST_##seg##_SELECTOR, \
1000 .base = GUEST_##seg##_BASE, \
1001 .limit = GUEST_##seg##_LIMIT, \
1002 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1003 }
1004
1005 static const struct kvm_vmx_segment_field {
1006 unsigned selector;
1007 unsigned base;
1008 unsigned limit;
1009 unsigned ar_bytes;
1010 } kvm_vmx_segment_fields[] = {
1011 VMX_SEGMENT_FIELD(CS),
1012 VMX_SEGMENT_FIELD(DS),
1013 VMX_SEGMENT_FIELD(ES),
1014 VMX_SEGMENT_FIELD(FS),
1015 VMX_SEGMENT_FIELD(GS),
1016 VMX_SEGMENT_FIELD(SS),
1017 VMX_SEGMENT_FIELD(TR),
1018 VMX_SEGMENT_FIELD(LDTR),
1019 };
1020
1021 static u64 host_efer;
1022
1023 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1024
1025 /*
1026 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1027 * away by decrementing the array size.
1028 */
1029 static const u32 vmx_msr_index[] = {
1030 #ifdef CONFIG_X86_64
1031 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1032 #endif
1033 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1034 };
1035
1036 static inline bool is_exception_n(u32 intr_info, u8 vector)
1037 {
1038 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1039 INTR_INFO_VALID_MASK)) ==
1040 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1041 }
1042
1043 static inline bool is_debug(u32 intr_info)
1044 {
1045 return is_exception_n(intr_info, DB_VECTOR);
1046 }
1047
1048 static inline bool is_breakpoint(u32 intr_info)
1049 {
1050 return is_exception_n(intr_info, BP_VECTOR);
1051 }
1052
1053 static inline bool is_page_fault(u32 intr_info)
1054 {
1055 return is_exception_n(intr_info, PF_VECTOR);
1056 }
1057
1058 static inline bool is_no_device(u32 intr_info)
1059 {
1060 return is_exception_n(intr_info, NM_VECTOR);
1061 }
1062
1063 static inline bool is_invalid_opcode(u32 intr_info)
1064 {
1065 return is_exception_n(intr_info, UD_VECTOR);
1066 }
1067
1068 static inline bool is_external_interrupt(u32 intr_info)
1069 {
1070 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1071 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1072 }
1073
1074 static inline bool is_machine_check(u32 intr_info)
1075 {
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1077 INTR_INFO_VALID_MASK)) ==
1078 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1079 }
1080
1081 static inline bool cpu_has_vmx_msr_bitmap(void)
1082 {
1083 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1084 }
1085
1086 static inline bool cpu_has_vmx_tpr_shadow(void)
1087 {
1088 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1089 }
1090
1091 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1092 {
1093 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1094 }
1095
1096 static inline bool cpu_has_secondary_exec_ctrls(void)
1097 {
1098 return vmcs_config.cpu_based_exec_ctrl &
1099 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1100 }
1101
1102 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1103 {
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1106 }
1107
1108 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1109 {
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1112 }
1113
1114 static inline bool cpu_has_vmx_apic_register_virt(void)
1115 {
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1118 }
1119
1120 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1121 {
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1124 }
1125
1126 /*
1127 * Comment's format: document - errata name - stepping - processor name.
1128 * Refer from
1129 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1130 */
1131 static u32 vmx_preemption_cpu_tfms[] = {
1132 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1133 0x000206E6,
1134 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1135 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1136 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1137 0x00020652,
1138 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1139 0x00020655,
1140 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1141 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1142 /*
1143 * 320767.pdf - AAP86 - B1 -
1144 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1145 */
1146 0x000106E5,
1147 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1148 0x000106A0,
1149 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1150 0x000106A1,
1151 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1152 0x000106A4,
1153 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1154 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1155 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1156 0x000106A5,
1157 };
1158
1159 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1160 {
1161 u32 eax = cpuid_eax(0x00000001), i;
1162
1163 /* Clear the reserved bits */
1164 eax &= ~(0x3U << 14 | 0xfU << 28);
1165 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1166 if (eax == vmx_preemption_cpu_tfms[i])
1167 return true;
1168
1169 return false;
1170 }
1171
1172 static inline bool cpu_has_vmx_preemption_timer(void)
1173 {
1174 return vmcs_config.pin_based_exec_ctrl &
1175 PIN_BASED_VMX_PREEMPTION_TIMER;
1176 }
1177
1178 static inline bool cpu_has_vmx_posted_intr(void)
1179 {
1180 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1181 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1182 }
1183
1184 static inline bool cpu_has_vmx_apicv(void)
1185 {
1186 return cpu_has_vmx_apic_register_virt() &&
1187 cpu_has_vmx_virtual_intr_delivery() &&
1188 cpu_has_vmx_posted_intr();
1189 }
1190
1191 static inline bool cpu_has_vmx_flexpriority(void)
1192 {
1193 return cpu_has_vmx_tpr_shadow() &&
1194 cpu_has_vmx_virtualize_apic_accesses();
1195 }
1196
1197 static inline bool cpu_has_vmx_ept_execute_only(void)
1198 {
1199 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1200 }
1201
1202 static inline bool cpu_has_vmx_ept_2m_page(void)
1203 {
1204 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1205 }
1206
1207 static inline bool cpu_has_vmx_ept_1g_page(void)
1208 {
1209 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1210 }
1211
1212 static inline bool cpu_has_vmx_ept_4levels(void)
1213 {
1214 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1215 }
1216
1217 static inline bool cpu_has_vmx_ept_ad_bits(void)
1218 {
1219 return vmx_capability.ept & VMX_EPT_AD_BIT;
1220 }
1221
1222 static inline bool cpu_has_vmx_invept_context(void)
1223 {
1224 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1225 }
1226
1227 static inline bool cpu_has_vmx_invept_global(void)
1228 {
1229 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1230 }
1231
1232 static inline bool cpu_has_vmx_invvpid_single(void)
1233 {
1234 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1235 }
1236
1237 static inline bool cpu_has_vmx_invvpid_global(void)
1238 {
1239 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1240 }
1241
1242 static inline bool cpu_has_vmx_invvpid(void)
1243 {
1244 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1245 }
1246
1247 static inline bool cpu_has_vmx_ept(void)
1248 {
1249 return vmcs_config.cpu_based_2nd_exec_ctrl &
1250 SECONDARY_EXEC_ENABLE_EPT;
1251 }
1252
1253 static inline bool cpu_has_vmx_unrestricted_guest(void)
1254 {
1255 return vmcs_config.cpu_based_2nd_exec_ctrl &
1256 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1257 }
1258
1259 static inline bool cpu_has_vmx_ple(void)
1260 {
1261 return vmcs_config.cpu_based_2nd_exec_ctrl &
1262 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1263 }
1264
1265 static inline bool cpu_has_vmx_basic_inout(void)
1266 {
1267 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1268 }
1269
1270 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1271 {
1272 return flexpriority_enabled && lapic_in_kernel(vcpu);
1273 }
1274
1275 static inline bool cpu_has_vmx_vpid(void)
1276 {
1277 return vmcs_config.cpu_based_2nd_exec_ctrl &
1278 SECONDARY_EXEC_ENABLE_VPID;
1279 }
1280
1281 static inline bool cpu_has_vmx_rdtscp(void)
1282 {
1283 return vmcs_config.cpu_based_2nd_exec_ctrl &
1284 SECONDARY_EXEC_RDTSCP;
1285 }
1286
1287 static inline bool cpu_has_vmx_invpcid(void)
1288 {
1289 return vmcs_config.cpu_based_2nd_exec_ctrl &
1290 SECONDARY_EXEC_ENABLE_INVPCID;
1291 }
1292
1293 static inline bool cpu_has_virtual_nmis(void)
1294 {
1295 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1296 }
1297
1298 static inline bool cpu_has_vmx_wbinvd_exit(void)
1299 {
1300 return vmcs_config.cpu_based_2nd_exec_ctrl &
1301 SECONDARY_EXEC_WBINVD_EXITING;
1302 }
1303
1304 static inline bool cpu_has_vmx_shadow_vmcs(void)
1305 {
1306 u64 vmx_msr;
1307 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1308 /* check if the cpu supports writing r/o exit information fields */
1309 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1310 return false;
1311
1312 return vmcs_config.cpu_based_2nd_exec_ctrl &
1313 SECONDARY_EXEC_SHADOW_VMCS;
1314 }
1315
1316 static inline bool cpu_has_vmx_pml(void)
1317 {
1318 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1319 }
1320
1321 static inline bool cpu_has_vmx_tsc_scaling(void)
1322 {
1323 return vmcs_config.cpu_based_2nd_exec_ctrl &
1324 SECONDARY_EXEC_TSC_SCALING;
1325 }
1326
1327 static inline bool report_flexpriority(void)
1328 {
1329 return flexpriority_enabled;
1330 }
1331
1332 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1333 {
1334 return vmcs12->cpu_based_vm_exec_control & bit;
1335 }
1336
1337 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1338 {
1339 return (vmcs12->cpu_based_vm_exec_control &
1340 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1341 (vmcs12->secondary_vm_exec_control & bit);
1342 }
1343
1344 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1345 {
1346 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1347 }
1348
1349 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1350 {
1351 return vmcs12->pin_based_vm_exec_control &
1352 PIN_BASED_VMX_PREEMPTION_TIMER;
1353 }
1354
1355 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1356 {
1357 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1358 }
1359
1360 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1361 {
1362 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1363 vmx_xsaves_supported();
1364 }
1365
1366 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1367 {
1368 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1369 }
1370
1371 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1372 {
1373 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1374 }
1375
1376 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1377 {
1378 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1379 }
1380
1381 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1382 {
1383 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1384 }
1385
1386 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1387 {
1388 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1389 }
1390
1391 static inline bool is_nmi(u32 intr_info)
1392 {
1393 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1394 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1395 }
1396
1397 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1398 u32 exit_intr_info,
1399 unsigned long exit_qualification);
1400 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1401 struct vmcs12 *vmcs12,
1402 u32 reason, unsigned long qualification);
1403
1404 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1405 {
1406 int i;
1407
1408 for (i = 0; i < vmx->nmsrs; ++i)
1409 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1410 return i;
1411 return -1;
1412 }
1413
1414 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1415 {
1416 struct {
1417 u64 vpid : 16;
1418 u64 rsvd : 48;
1419 u64 gva;
1420 } operand = { vpid, 0, gva };
1421
1422 asm volatile (__ex(ASM_VMX_INVVPID)
1423 /* CF==1 or ZF==1 --> rc = -1 */
1424 "; ja 1f ; ud2 ; 1:"
1425 : : "a"(&operand), "c"(ext) : "cc", "memory");
1426 }
1427
1428 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1429 {
1430 struct {
1431 u64 eptp, gpa;
1432 } operand = {eptp, gpa};
1433
1434 asm volatile (__ex(ASM_VMX_INVEPT)
1435 /* CF==1 or ZF==1 --> rc = -1 */
1436 "; ja 1f ; ud2 ; 1:\n"
1437 : : "a" (&operand), "c" (ext) : "cc", "memory");
1438 }
1439
1440 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1441 {
1442 int i;
1443
1444 i = __find_msr_index(vmx, msr);
1445 if (i >= 0)
1446 return &vmx->guest_msrs[i];
1447 return NULL;
1448 }
1449
1450 static void vmcs_clear(struct vmcs *vmcs)
1451 {
1452 u64 phys_addr = __pa(vmcs);
1453 u8 error;
1454
1455 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1456 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1457 : "cc", "memory");
1458 if (error)
1459 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1460 vmcs, phys_addr);
1461 }
1462
1463 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1464 {
1465 vmcs_clear(loaded_vmcs->vmcs);
1466 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1467 vmcs_clear(loaded_vmcs->shadow_vmcs);
1468 loaded_vmcs->cpu = -1;
1469 loaded_vmcs->launched = 0;
1470 }
1471
1472 static void vmcs_load(struct vmcs *vmcs)
1473 {
1474 u64 phys_addr = __pa(vmcs);
1475 u8 error;
1476
1477 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1478 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1479 : "cc", "memory");
1480 if (error)
1481 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1482 vmcs, phys_addr);
1483 }
1484
1485 #ifdef CONFIG_KEXEC_CORE
1486 /*
1487 * This bitmap is used to indicate whether the vmclear
1488 * operation is enabled on all cpus. All disabled by
1489 * default.
1490 */
1491 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1492
1493 static inline void crash_enable_local_vmclear(int cpu)
1494 {
1495 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1496 }
1497
1498 static inline void crash_disable_local_vmclear(int cpu)
1499 {
1500 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1501 }
1502
1503 static inline int crash_local_vmclear_enabled(int cpu)
1504 {
1505 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1506 }
1507
1508 static void crash_vmclear_local_loaded_vmcss(void)
1509 {
1510 int cpu = raw_smp_processor_id();
1511 struct loaded_vmcs *v;
1512
1513 if (!crash_local_vmclear_enabled(cpu))
1514 return;
1515
1516 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1517 loaded_vmcss_on_cpu_link)
1518 vmcs_clear(v->vmcs);
1519 }
1520 #else
1521 static inline void crash_enable_local_vmclear(int cpu) { }
1522 static inline void crash_disable_local_vmclear(int cpu) { }
1523 #endif /* CONFIG_KEXEC_CORE */
1524
1525 static void __loaded_vmcs_clear(void *arg)
1526 {
1527 struct loaded_vmcs *loaded_vmcs = arg;
1528 int cpu = raw_smp_processor_id();
1529
1530 if (loaded_vmcs->cpu != cpu)
1531 return; /* vcpu migration can race with cpu offline */
1532 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1533 per_cpu(current_vmcs, cpu) = NULL;
1534 crash_disable_local_vmclear(cpu);
1535 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1536
1537 /*
1538 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1539 * is before setting loaded_vmcs->vcpu to -1 which is done in
1540 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1541 * then adds the vmcs into percpu list before it is deleted.
1542 */
1543 smp_wmb();
1544
1545 loaded_vmcs_init(loaded_vmcs);
1546 crash_enable_local_vmclear(cpu);
1547 }
1548
1549 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1550 {
1551 int cpu = loaded_vmcs->cpu;
1552
1553 if (cpu != -1)
1554 smp_call_function_single(cpu,
1555 __loaded_vmcs_clear, loaded_vmcs, 1);
1556 }
1557
1558 static inline void vpid_sync_vcpu_single(int vpid)
1559 {
1560 if (vpid == 0)
1561 return;
1562
1563 if (cpu_has_vmx_invvpid_single())
1564 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1565 }
1566
1567 static inline void vpid_sync_vcpu_global(void)
1568 {
1569 if (cpu_has_vmx_invvpid_global())
1570 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1571 }
1572
1573 static inline void vpid_sync_context(int vpid)
1574 {
1575 if (cpu_has_vmx_invvpid_single())
1576 vpid_sync_vcpu_single(vpid);
1577 else
1578 vpid_sync_vcpu_global();
1579 }
1580
1581 static inline void ept_sync_global(void)
1582 {
1583 if (cpu_has_vmx_invept_global())
1584 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1585 }
1586
1587 static inline void ept_sync_context(u64 eptp)
1588 {
1589 if (enable_ept) {
1590 if (cpu_has_vmx_invept_context())
1591 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1592 else
1593 ept_sync_global();
1594 }
1595 }
1596
1597 static __always_inline void vmcs_check16(unsigned long field)
1598 {
1599 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1600 "16-bit accessor invalid for 64-bit field");
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1602 "16-bit accessor invalid for 64-bit high field");
1603 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1604 "16-bit accessor invalid for 32-bit high field");
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1606 "16-bit accessor invalid for natural width field");
1607 }
1608
1609 static __always_inline void vmcs_check32(unsigned long field)
1610 {
1611 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1612 "32-bit accessor invalid for 16-bit field");
1613 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1614 "32-bit accessor invalid for natural width field");
1615 }
1616
1617 static __always_inline void vmcs_check64(unsigned long field)
1618 {
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1620 "64-bit accessor invalid for 16-bit field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1622 "64-bit accessor invalid for 64-bit high field");
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1624 "64-bit accessor invalid for 32-bit field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1626 "64-bit accessor invalid for natural width field");
1627 }
1628
1629 static __always_inline void vmcs_checkl(unsigned long field)
1630 {
1631 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1632 "Natural width accessor invalid for 16-bit field");
1633 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1634 "Natural width accessor invalid for 64-bit field");
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1636 "Natural width accessor invalid for 64-bit high field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1638 "Natural width accessor invalid for 32-bit field");
1639 }
1640
1641 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1642 {
1643 unsigned long value;
1644
1645 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1646 : "=a"(value) : "d"(field) : "cc");
1647 return value;
1648 }
1649
1650 static __always_inline u16 vmcs_read16(unsigned long field)
1651 {
1652 vmcs_check16(field);
1653 return __vmcs_readl(field);
1654 }
1655
1656 static __always_inline u32 vmcs_read32(unsigned long field)
1657 {
1658 vmcs_check32(field);
1659 return __vmcs_readl(field);
1660 }
1661
1662 static __always_inline u64 vmcs_read64(unsigned long field)
1663 {
1664 vmcs_check64(field);
1665 #ifdef CONFIG_X86_64
1666 return __vmcs_readl(field);
1667 #else
1668 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1669 #endif
1670 }
1671
1672 static __always_inline unsigned long vmcs_readl(unsigned long field)
1673 {
1674 vmcs_checkl(field);
1675 return __vmcs_readl(field);
1676 }
1677
1678 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1679 {
1680 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1681 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1682 dump_stack();
1683 }
1684
1685 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1686 {
1687 u8 error;
1688
1689 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1690 : "=q"(error) : "a"(value), "d"(field) : "cc");
1691 if (unlikely(error))
1692 vmwrite_error(field, value);
1693 }
1694
1695 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1696 {
1697 vmcs_check16(field);
1698 __vmcs_writel(field, value);
1699 }
1700
1701 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1702 {
1703 vmcs_check32(field);
1704 __vmcs_writel(field, value);
1705 }
1706
1707 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1708 {
1709 vmcs_check64(field);
1710 __vmcs_writel(field, value);
1711 #ifndef CONFIG_X86_64
1712 asm volatile ("");
1713 __vmcs_writel(field+1, value >> 32);
1714 #endif
1715 }
1716
1717 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1718 {
1719 vmcs_checkl(field);
1720 __vmcs_writel(field, value);
1721 }
1722
1723 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1724 {
1725 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1726 "vmcs_clear_bits does not support 64-bit fields");
1727 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1728 }
1729
1730 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1731 {
1732 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1733 "vmcs_set_bits does not support 64-bit fields");
1734 __vmcs_writel(field, __vmcs_readl(field) | mask);
1735 }
1736
1737 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1738 {
1739 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1740 }
1741
1742 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1743 {
1744 vmcs_write32(VM_ENTRY_CONTROLS, val);
1745 vmx->vm_entry_controls_shadow = val;
1746 }
1747
1748 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1749 {
1750 if (vmx->vm_entry_controls_shadow != val)
1751 vm_entry_controls_init(vmx, val);
1752 }
1753
1754 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1755 {
1756 return vmx->vm_entry_controls_shadow;
1757 }
1758
1759
1760 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1761 {
1762 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1763 }
1764
1765 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1766 {
1767 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1768 }
1769
1770 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1771 {
1772 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1773 }
1774
1775 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1776 {
1777 vmcs_write32(VM_EXIT_CONTROLS, val);
1778 vmx->vm_exit_controls_shadow = val;
1779 }
1780
1781 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1782 {
1783 if (vmx->vm_exit_controls_shadow != val)
1784 vm_exit_controls_init(vmx, val);
1785 }
1786
1787 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1788 {
1789 return vmx->vm_exit_controls_shadow;
1790 }
1791
1792
1793 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1794 {
1795 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1796 }
1797
1798 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1799 {
1800 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1801 }
1802
1803 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1804 {
1805 vmx->segment_cache.bitmask = 0;
1806 }
1807
1808 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1809 unsigned field)
1810 {
1811 bool ret;
1812 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1813
1814 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1815 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1816 vmx->segment_cache.bitmask = 0;
1817 }
1818 ret = vmx->segment_cache.bitmask & mask;
1819 vmx->segment_cache.bitmask |= mask;
1820 return ret;
1821 }
1822
1823 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1824 {
1825 u16 *p = &vmx->segment_cache.seg[seg].selector;
1826
1827 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1828 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1829 return *p;
1830 }
1831
1832 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1833 {
1834 ulong *p = &vmx->segment_cache.seg[seg].base;
1835
1836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1837 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1838 return *p;
1839 }
1840
1841 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1842 {
1843 u32 *p = &vmx->segment_cache.seg[seg].limit;
1844
1845 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1846 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1847 return *p;
1848 }
1849
1850 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1851 {
1852 u32 *p = &vmx->segment_cache.seg[seg].ar;
1853
1854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1855 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1856 return *p;
1857 }
1858
1859 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1860 {
1861 u32 eb;
1862
1863 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1864 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1865 if ((vcpu->guest_debug &
1866 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1867 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1868 eb |= 1u << BP_VECTOR;
1869 if (to_vmx(vcpu)->rmode.vm86_active)
1870 eb = ~0;
1871 if (enable_ept)
1872 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1873
1874 /* When we are running a nested L2 guest and L1 specified for it a
1875 * certain exception bitmap, we must trap the same exceptions and pass
1876 * them to L1. When running L2, we will only handle the exceptions
1877 * specified above if L1 did not want them.
1878 */
1879 if (is_guest_mode(vcpu))
1880 eb |= get_vmcs12(vcpu)->exception_bitmap;
1881
1882 vmcs_write32(EXCEPTION_BITMAP, eb);
1883 }
1884
1885 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1886 unsigned long entry, unsigned long exit)
1887 {
1888 vm_entry_controls_clearbit(vmx, entry);
1889 vm_exit_controls_clearbit(vmx, exit);
1890 }
1891
1892 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1893 {
1894 unsigned i;
1895 struct msr_autoload *m = &vmx->msr_autoload;
1896
1897 switch (msr) {
1898 case MSR_EFER:
1899 if (cpu_has_load_ia32_efer) {
1900 clear_atomic_switch_msr_special(vmx,
1901 VM_ENTRY_LOAD_IA32_EFER,
1902 VM_EXIT_LOAD_IA32_EFER);
1903 return;
1904 }
1905 break;
1906 case MSR_CORE_PERF_GLOBAL_CTRL:
1907 if (cpu_has_load_perf_global_ctrl) {
1908 clear_atomic_switch_msr_special(vmx,
1909 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1910 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1911 return;
1912 }
1913 break;
1914 }
1915
1916 for (i = 0; i < m->nr; ++i)
1917 if (m->guest[i].index == msr)
1918 break;
1919
1920 if (i == m->nr)
1921 return;
1922 --m->nr;
1923 m->guest[i] = m->guest[m->nr];
1924 m->host[i] = m->host[m->nr];
1925 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1926 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1927 }
1928
1929 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1930 unsigned long entry, unsigned long exit,
1931 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1932 u64 guest_val, u64 host_val)
1933 {
1934 vmcs_write64(guest_val_vmcs, guest_val);
1935 vmcs_write64(host_val_vmcs, host_val);
1936 vm_entry_controls_setbit(vmx, entry);
1937 vm_exit_controls_setbit(vmx, exit);
1938 }
1939
1940 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1941 u64 guest_val, u64 host_val)
1942 {
1943 unsigned i;
1944 struct msr_autoload *m = &vmx->msr_autoload;
1945
1946 switch (msr) {
1947 case MSR_EFER:
1948 if (cpu_has_load_ia32_efer) {
1949 add_atomic_switch_msr_special(vmx,
1950 VM_ENTRY_LOAD_IA32_EFER,
1951 VM_EXIT_LOAD_IA32_EFER,
1952 GUEST_IA32_EFER,
1953 HOST_IA32_EFER,
1954 guest_val, host_val);
1955 return;
1956 }
1957 break;
1958 case MSR_CORE_PERF_GLOBAL_CTRL:
1959 if (cpu_has_load_perf_global_ctrl) {
1960 add_atomic_switch_msr_special(vmx,
1961 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1962 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1963 GUEST_IA32_PERF_GLOBAL_CTRL,
1964 HOST_IA32_PERF_GLOBAL_CTRL,
1965 guest_val, host_val);
1966 return;
1967 }
1968 break;
1969 case MSR_IA32_PEBS_ENABLE:
1970 /* PEBS needs a quiescent period after being disabled (to write
1971 * a record). Disabling PEBS through VMX MSR swapping doesn't
1972 * provide that period, so a CPU could write host's record into
1973 * guest's memory.
1974 */
1975 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1976 }
1977
1978 for (i = 0; i < m->nr; ++i)
1979 if (m->guest[i].index == msr)
1980 break;
1981
1982 if (i == NR_AUTOLOAD_MSRS) {
1983 printk_once(KERN_WARNING "Not enough msr switch entries. "
1984 "Can't add msr %x\n", msr);
1985 return;
1986 } else if (i == m->nr) {
1987 ++m->nr;
1988 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1989 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1990 }
1991
1992 m->guest[i].index = msr;
1993 m->guest[i].value = guest_val;
1994 m->host[i].index = msr;
1995 m->host[i].value = host_val;
1996 }
1997
1998 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1999 {
2000 u64 guest_efer = vmx->vcpu.arch.efer;
2001 u64 ignore_bits = 0;
2002
2003 if (!enable_ept) {
2004 /*
2005 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2006 * host CPUID is more efficient than testing guest CPUID
2007 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2008 */
2009 if (boot_cpu_has(X86_FEATURE_SMEP))
2010 guest_efer |= EFER_NX;
2011 else if (!(guest_efer & EFER_NX))
2012 ignore_bits |= EFER_NX;
2013 }
2014
2015 /*
2016 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2017 */
2018 ignore_bits |= EFER_SCE;
2019 #ifdef CONFIG_X86_64
2020 ignore_bits |= EFER_LMA | EFER_LME;
2021 /* SCE is meaningful only in long mode on Intel */
2022 if (guest_efer & EFER_LMA)
2023 ignore_bits &= ~(u64)EFER_SCE;
2024 #endif
2025
2026 clear_atomic_switch_msr(vmx, MSR_EFER);
2027
2028 /*
2029 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2030 * On CPUs that support "load IA32_EFER", always switch EFER
2031 * atomically, since it's faster than switching it manually.
2032 */
2033 if (cpu_has_load_ia32_efer ||
2034 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2035 if (!(guest_efer & EFER_LMA))
2036 guest_efer &= ~EFER_LME;
2037 if (guest_efer != host_efer)
2038 add_atomic_switch_msr(vmx, MSR_EFER,
2039 guest_efer, host_efer);
2040 return false;
2041 } else {
2042 guest_efer &= ~ignore_bits;
2043 guest_efer |= host_efer & ignore_bits;
2044
2045 vmx->guest_msrs[efer_offset].data = guest_efer;
2046 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2047
2048 return true;
2049 }
2050 }
2051
2052 #ifdef CONFIG_X86_32
2053 /*
2054 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2055 * VMCS rather than the segment table. KVM uses this helper to figure
2056 * out the current bases to poke them into the VMCS before entry.
2057 */
2058 static unsigned long segment_base(u16 selector)
2059 {
2060 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2061 struct desc_struct *table;
2062 unsigned long v;
2063
2064 if (!(selector & ~SEGMENT_RPL_MASK))
2065 return 0;
2066
2067 table = (struct desc_struct *)gdt->address;
2068
2069 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2070 u16 ldt_selector = kvm_read_ldt();
2071
2072 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2073 return 0;
2074
2075 table = (struct desc_struct *)segment_base(ldt_selector);
2076 }
2077 v = get_desc_base(&table[selector >> 3]);
2078 return v;
2079 }
2080 #endif
2081
2082 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2083 {
2084 struct vcpu_vmx *vmx = to_vmx(vcpu);
2085 int i;
2086
2087 if (vmx->host_state.loaded)
2088 return;
2089
2090 vmx->host_state.loaded = 1;
2091 /*
2092 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2093 * allow segment selectors with cpl > 0 or ti == 1.
2094 */
2095 vmx->host_state.ldt_sel = kvm_read_ldt();
2096 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2097 savesegment(fs, vmx->host_state.fs_sel);
2098 if (!(vmx->host_state.fs_sel & 7)) {
2099 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2100 vmx->host_state.fs_reload_needed = 0;
2101 } else {
2102 vmcs_write16(HOST_FS_SELECTOR, 0);
2103 vmx->host_state.fs_reload_needed = 1;
2104 }
2105 savesegment(gs, vmx->host_state.gs_sel);
2106 if (!(vmx->host_state.gs_sel & 7))
2107 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2108 else {
2109 vmcs_write16(HOST_GS_SELECTOR, 0);
2110 vmx->host_state.gs_ldt_reload_needed = 1;
2111 }
2112
2113 #ifdef CONFIG_X86_64
2114 savesegment(ds, vmx->host_state.ds_sel);
2115 savesegment(es, vmx->host_state.es_sel);
2116 #endif
2117
2118 #ifdef CONFIG_X86_64
2119 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2120 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2121 #else
2122 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2123 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2124 #endif
2125
2126 #ifdef CONFIG_X86_64
2127 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2128 if (is_long_mode(&vmx->vcpu))
2129 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2130 #endif
2131 if (boot_cpu_has(X86_FEATURE_MPX))
2132 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2133 for (i = 0; i < vmx->save_nmsrs; ++i)
2134 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2135 vmx->guest_msrs[i].data,
2136 vmx->guest_msrs[i].mask);
2137 }
2138
2139 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2140 {
2141 if (!vmx->host_state.loaded)
2142 return;
2143
2144 ++vmx->vcpu.stat.host_state_reload;
2145 vmx->host_state.loaded = 0;
2146 #ifdef CONFIG_X86_64
2147 if (is_long_mode(&vmx->vcpu))
2148 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2149 #endif
2150 if (vmx->host_state.gs_ldt_reload_needed) {
2151 kvm_load_ldt(vmx->host_state.ldt_sel);
2152 #ifdef CONFIG_X86_64
2153 load_gs_index(vmx->host_state.gs_sel);
2154 #else
2155 loadsegment(gs, vmx->host_state.gs_sel);
2156 #endif
2157 }
2158 if (vmx->host_state.fs_reload_needed)
2159 loadsegment(fs, vmx->host_state.fs_sel);
2160 #ifdef CONFIG_X86_64
2161 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2162 loadsegment(ds, vmx->host_state.ds_sel);
2163 loadsegment(es, vmx->host_state.es_sel);
2164 }
2165 #endif
2166 invalidate_tss_limit();
2167 #ifdef CONFIG_X86_64
2168 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2169 #endif
2170 if (vmx->host_state.msr_host_bndcfgs)
2171 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2172 load_gdt(this_cpu_ptr(&host_gdt));
2173 }
2174
2175 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2176 {
2177 preempt_disable();
2178 __vmx_load_host_state(vmx);
2179 preempt_enable();
2180 }
2181
2182 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2183 {
2184 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2185 struct pi_desc old, new;
2186 unsigned int dest;
2187
2188 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2189 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2190 !kvm_vcpu_apicv_active(vcpu))
2191 return;
2192
2193 do {
2194 old.control = new.control = pi_desc->control;
2195
2196 /*
2197 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2198 * are two possible cases:
2199 * 1. After running 'pre_block', context switch
2200 * happened. For this case, 'sn' was set in
2201 * vmx_vcpu_put(), so we need to clear it here.
2202 * 2. After running 'pre_block', we were blocked,
2203 * and woken up by some other guy. For this case,
2204 * we don't need to do anything, 'pi_post_block'
2205 * will do everything for us. However, we cannot
2206 * check whether it is case #1 or case #2 here
2207 * (maybe, not needed), so we also clear sn here,
2208 * I think it is not a big deal.
2209 */
2210 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2211 if (vcpu->cpu != cpu) {
2212 dest = cpu_physical_id(cpu);
2213
2214 if (x2apic_enabled())
2215 new.ndst = dest;
2216 else
2217 new.ndst = (dest << 8) & 0xFF00;
2218 }
2219
2220 /* set 'NV' to 'notification vector' */
2221 new.nv = POSTED_INTR_VECTOR;
2222 }
2223
2224 /* Allow posting non-urgent interrupts */
2225 new.sn = 0;
2226 } while (cmpxchg(&pi_desc->control, old.control,
2227 new.control) != old.control);
2228 }
2229
2230 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2231 {
2232 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2233 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2234 }
2235
2236 /*
2237 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2238 * vcpu mutex is already taken.
2239 */
2240 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2241 {
2242 struct vcpu_vmx *vmx = to_vmx(vcpu);
2243 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2244 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2245
2246 if (!vmm_exclusive)
2247 kvm_cpu_vmxon(phys_addr);
2248 else if (!already_loaded)
2249 loaded_vmcs_clear(vmx->loaded_vmcs);
2250
2251 if (!already_loaded) {
2252 local_irq_disable();
2253 crash_disable_local_vmclear(cpu);
2254
2255 /*
2256 * Read loaded_vmcs->cpu should be before fetching
2257 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2258 * See the comments in __loaded_vmcs_clear().
2259 */
2260 smp_rmb();
2261
2262 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2263 &per_cpu(loaded_vmcss_on_cpu, cpu));
2264 crash_enable_local_vmclear(cpu);
2265 local_irq_enable();
2266 }
2267
2268 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2269 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2270 vmcs_load(vmx->loaded_vmcs->vmcs);
2271 }
2272
2273 if (!already_loaded) {
2274 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2275 unsigned long sysenter_esp;
2276
2277 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2278
2279 /*
2280 * Linux uses per-cpu TSS and GDT, so set these when switching
2281 * processors. See 22.2.4.
2282 */
2283 vmcs_writel(HOST_TR_BASE,
2284 (unsigned long)this_cpu_ptr(&cpu_tss));
2285 vmcs_writel(HOST_GDTR_BASE, gdt->address);
2286
2287 /*
2288 * VM exits change the host TR limit to 0x67 after a VM
2289 * exit. This is okay, since 0x67 covers everything except
2290 * the IO bitmap and have have code to handle the IO bitmap
2291 * being lost after a VM exit.
2292 */
2293 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2294
2295 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2296 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2297
2298 vmx->loaded_vmcs->cpu = cpu;
2299 }
2300
2301 /* Setup TSC multiplier */
2302 if (kvm_has_tsc_control &&
2303 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2304 decache_tsc_multiplier(vmx);
2305
2306 vmx_vcpu_pi_load(vcpu, cpu);
2307 vmx->host_pkru = read_pkru();
2308 }
2309
2310 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2311 {
2312 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2313
2314 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2315 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2316 !kvm_vcpu_apicv_active(vcpu))
2317 return;
2318
2319 /* Set SN when the vCPU is preempted */
2320 if (vcpu->preempted)
2321 pi_set_sn(pi_desc);
2322 }
2323
2324 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2325 {
2326 vmx_vcpu_pi_put(vcpu);
2327
2328 __vmx_load_host_state(to_vmx(vcpu));
2329 if (!vmm_exclusive) {
2330 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2331 vcpu->cpu = -1;
2332 kvm_cpu_vmxoff();
2333 }
2334 }
2335
2336 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2337
2338 /*
2339 * Return the cr0 value that a nested guest would read. This is a combination
2340 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2341 * its hypervisor (cr0_read_shadow).
2342 */
2343 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2344 {
2345 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2346 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2347 }
2348 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2349 {
2350 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2351 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2352 }
2353
2354 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2355 {
2356 unsigned long rflags, save_rflags;
2357
2358 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2359 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2360 rflags = vmcs_readl(GUEST_RFLAGS);
2361 if (to_vmx(vcpu)->rmode.vm86_active) {
2362 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2363 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2364 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2365 }
2366 to_vmx(vcpu)->rflags = rflags;
2367 }
2368 return to_vmx(vcpu)->rflags;
2369 }
2370
2371 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2372 {
2373 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2374 to_vmx(vcpu)->rflags = rflags;
2375 if (to_vmx(vcpu)->rmode.vm86_active) {
2376 to_vmx(vcpu)->rmode.save_rflags = rflags;
2377 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2378 }
2379 vmcs_writel(GUEST_RFLAGS, rflags);
2380 }
2381
2382 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2383 {
2384 return to_vmx(vcpu)->guest_pkru;
2385 }
2386
2387 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2388 {
2389 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2390 int ret = 0;
2391
2392 if (interruptibility & GUEST_INTR_STATE_STI)
2393 ret |= KVM_X86_SHADOW_INT_STI;
2394 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2395 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2396
2397 return ret;
2398 }
2399
2400 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2401 {
2402 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2403 u32 interruptibility = interruptibility_old;
2404
2405 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2406
2407 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2408 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2409 else if (mask & KVM_X86_SHADOW_INT_STI)
2410 interruptibility |= GUEST_INTR_STATE_STI;
2411
2412 if ((interruptibility != interruptibility_old))
2413 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2414 }
2415
2416 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2417 {
2418 unsigned long rip;
2419
2420 rip = kvm_rip_read(vcpu);
2421 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2422 kvm_rip_write(vcpu, rip);
2423
2424 /* skipping an emulated instruction also counts */
2425 vmx_set_interrupt_shadow(vcpu, 0);
2426 }
2427
2428 /*
2429 * KVM wants to inject page-faults which it got to the guest. This function
2430 * checks whether in a nested guest, we need to inject them to L1 or L2.
2431 */
2432 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2433 {
2434 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2435
2436 if (!(vmcs12->exception_bitmap & (1u << nr)))
2437 return 0;
2438
2439 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2440 vmcs_read32(VM_EXIT_INTR_INFO),
2441 vmcs_readl(EXIT_QUALIFICATION));
2442 return 1;
2443 }
2444
2445 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2446 bool has_error_code, u32 error_code,
2447 bool reinject)
2448 {
2449 struct vcpu_vmx *vmx = to_vmx(vcpu);
2450 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2451
2452 if (!reinject && is_guest_mode(vcpu) &&
2453 nested_vmx_check_exception(vcpu, nr))
2454 return;
2455
2456 if (has_error_code) {
2457 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2458 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2459 }
2460
2461 if (vmx->rmode.vm86_active) {
2462 int inc_eip = 0;
2463 if (kvm_exception_is_soft(nr))
2464 inc_eip = vcpu->arch.event_exit_inst_len;
2465 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2466 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2467 return;
2468 }
2469
2470 if (kvm_exception_is_soft(nr)) {
2471 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2472 vmx->vcpu.arch.event_exit_inst_len);
2473 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2474 } else
2475 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2476
2477 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2478 }
2479
2480 static bool vmx_rdtscp_supported(void)
2481 {
2482 return cpu_has_vmx_rdtscp();
2483 }
2484
2485 static bool vmx_invpcid_supported(void)
2486 {
2487 return cpu_has_vmx_invpcid() && enable_ept;
2488 }
2489
2490 /*
2491 * Swap MSR entry in host/guest MSR entry array.
2492 */
2493 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2494 {
2495 struct shared_msr_entry tmp;
2496
2497 tmp = vmx->guest_msrs[to];
2498 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2499 vmx->guest_msrs[from] = tmp;
2500 }
2501
2502 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2503 {
2504 unsigned long *msr_bitmap;
2505
2506 if (is_guest_mode(vcpu))
2507 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2508 else if (cpu_has_secondary_exec_ctrls() &&
2509 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2510 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2511 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2512 if (is_long_mode(vcpu))
2513 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2514 else
2515 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2516 } else {
2517 if (is_long_mode(vcpu))
2518 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2519 else
2520 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2521 }
2522 } else {
2523 if (is_long_mode(vcpu))
2524 msr_bitmap = vmx_msr_bitmap_longmode;
2525 else
2526 msr_bitmap = vmx_msr_bitmap_legacy;
2527 }
2528
2529 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2530 }
2531
2532 /*
2533 * Set up the vmcs to automatically save and restore system
2534 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2535 * mode, as fiddling with msrs is very expensive.
2536 */
2537 static void setup_msrs(struct vcpu_vmx *vmx)
2538 {
2539 int save_nmsrs, index;
2540
2541 save_nmsrs = 0;
2542 #ifdef CONFIG_X86_64
2543 if (is_long_mode(&vmx->vcpu)) {
2544 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2545 if (index >= 0)
2546 move_msr_up(vmx, index, save_nmsrs++);
2547 index = __find_msr_index(vmx, MSR_LSTAR);
2548 if (index >= 0)
2549 move_msr_up(vmx, index, save_nmsrs++);
2550 index = __find_msr_index(vmx, MSR_CSTAR);
2551 if (index >= 0)
2552 move_msr_up(vmx, index, save_nmsrs++);
2553 index = __find_msr_index(vmx, MSR_TSC_AUX);
2554 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2555 move_msr_up(vmx, index, save_nmsrs++);
2556 /*
2557 * MSR_STAR is only needed on long mode guests, and only
2558 * if efer.sce is enabled.
2559 */
2560 index = __find_msr_index(vmx, MSR_STAR);
2561 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2562 move_msr_up(vmx, index, save_nmsrs++);
2563 }
2564 #endif
2565 index = __find_msr_index(vmx, MSR_EFER);
2566 if (index >= 0 && update_transition_efer(vmx, index))
2567 move_msr_up(vmx, index, save_nmsrs++);
2568
2569 vmx->save_nmsrs = save_nmsrs;
2570
2571 if (cpu_has_vmx_msr_bitmap())
2572 vmx_set_msr_bitmap(&vmx->vcpu);
2573 }
2574
2575 /*
2576 * reads and returns guest's timestamp counter "register"
2577 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2578 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2579 */
2580 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2581 {
2582 u64 host_tsc, tsc_offset;
2583
2584 host_tsc = rdtsc();
2585 tsc_offset = vmcs_read64(TSC_OFFSET);
2586 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2587 }
2588
2589 /*
2590 * writes 'offset' into guest's timestamp counter offset register
2591 */
2592 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2593 {
2594 if (is_guest_mode(vcpu)) {
2595 /*
2596 * We're here if L1 chose not to trap WRMSR to TSC. According
2597 * to the spec, this should set L1's TSC; The offset that L1
2598 * set for L2 remains unchanged, and still needs to be added
2599 * to the newly set TSC to get L2's TSC.
2600 */
2601 struct vmcs12 *vmcs12;
2602 /* recalculate vmcs02.TSC_OFFSET: */
2603 vmcs12 = get_vmcs12(vcpu);
2604 vmcs_write64(TSC_OFFSET, offset +
2605 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2606 vmcs12->tsc_offset : 0));
2607 } else {
2608 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2609 vmcs_read64(TSC_OFFSET), offset);
2610 vmcs_write64(TSC_OFFSET, offset);
2611 }
2612 }
2613
2614 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2615 {
2616 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2617 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2618 }
2619
2620 /*
2621 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2622 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2623 * all guests if the "nested" module option is off, and can also be disabled
2624 * for a single guest by disabling its VMX cpuid bit.
2625 */
2626 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2627 {
2628 return nested && guest_cpuid_has_vmx(vcpu);
2629 }
2630
2631 /*
2632 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2633 * returned for the various VMX controls MSRs when nested VMX is enabled.
2634 * The same values should also be used to verify that vmcs12 control fields are
2635 * valid during nested entry from L1 to L2.
2636 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2637 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2638 * bit in the high half is on if the corresponding bit in the control field
2639 * may be on. See also vmx_control_verify().
2640 */
2641 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2642 {
2643 /*
2644 * Note that as a general rule, the high half of the MSRs (bits in
2645 * the control fields which may be 1) should be initialized by the
2646 * intersection of the underlying hardware's MSR (i.e., features which
2647 * can be supported) and the list of features we want to expose -
2648 * because they are known to be properly supported in our code.
2649 * Also, usually, the low half of the MSRs (bits which must be 1) can
2650 * be set to 0, meaning that L1 may turn off any of these bits. The
2651 * reason is that if one of these bits is necessary, it will appear
2652 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2653 * fields of vmcs01 and vmcs02, will turn these bits off - and
2654 * nested_vmx_exit_handled() will not pass related exits to L1.
2655 * These rules have exceptions below.
2656 */
2657
2658 /* pin-based controls */
2659 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2660 vmx->nested.nested_vmx_pinbased_ctls_low,
2661 vmx->nested.nested_vmx_pinbased_ctls_high);
2662 vmx->nested.nested_vmx_pinbased_ctls_low |=
2663 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2664 vmx->nested.nested_vmx_pinbased_ctls_high &=
2665 PIN_BASED_EXT_INTR_MASK |
2666 PIN_BASED_NMI_EXITING |
2667 PIN_BASED_VIRTUAL_NMIS;
2668 vmx->nested.nested_vmx_pinbased_ctls_high |=
2669 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2670 PIN_BASED_VMX_PREEMPTION_TIMER;
2671 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2672 vmx->nested.nested_vmx_pinbased_ctls_high |=
2673 PIN_BASED_POSTED_INTR;
2674
2675 /* exit controls */
2676 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2677 vmx->nested.nested_vmx_exit_ctls_low,
2678 vmx->nested.nested_vmx_exit_ctls_high);
2679 vmx->nested.nested_vmx_exit_ctls_low =
2680 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2681
2682 vmx->nested.nested_vmx_exit_ctls_high &=
2683 #ifdef CONFIG_X86_64
2684 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2685 #endif
2686 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2687 vmx->nested.nested_vmx_exit_ctls_high |=
2688 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2689 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2690 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2691
2692 if (kvm_mpx_supported())
2693 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2694
2695 /* We support free control of debug control saving. */
2696 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2697
2698 /* entry controls */
2699 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2700 vmx->nested.nested_vmx_entry_ctls_low,
2701 vmx->nested.nested_vmx_entry_ctls_high);
2702 vmx->nested.nested_vmx_entry_ctls_low =
2703 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2704 vmx->nested.nested_vmx_entry_ctls_high &=
2705 #ifdef CONFIG_X86_64
2706 VM_ENTRY_IA32E_MODE |
2707 #endif
2708 VM_ENTRY_LOAD_IA32_PAT;
2709 vmx->nested.nested_vmx_entry_ctls_high |=
2710 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2711 if (kvm_mpx_supported())
2712 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2713
2714 /* We support free control of debug control loading. */
2715 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2716
2717 /* cpu-based controls */
2718 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2719 vmx->nested.nested_vmx_procbased_ctls_low,
2720 vmx->nested.nested_vmx_procbased_ctls_high);
2721 vmx->nested.nested_vmx_procbased_ctls_low =
2722 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2723 vmx->nested.nested_vmx_procbased_ctls_high &=
2724 CPU_BASED_VIRTUAL_INTR_PENDING |
2725 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2726 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2727 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2728 CPU_BASED_CR3_STORE_EXITING |
2729 #ifdef CONFIG_X86_64
2730 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2731 #endif
2732 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2733 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2734 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2735 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2736 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2737 /*
2738 * We can allow some features even when not supported by the
2739 * hardware. For example, L1 can specify an MSR bitmap - and we
2740 * can use it to avoid exits to L1 - even when L0 runs L2
2741 * without MSR bitmaps.
2742 */
2743 vmx->nested.nested_vmx_procbased_ctls_high |=
2744 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2745 CPU_BASED_USE_MSR_BITMAPS;
2746
2747 /* We support free control of CR3 access interception. */
2748 vmx->nested.nested_vmx_procbased_ctls_low &=
2749 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2750
2751 /* secondary cpu-based controls */
2752 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2753 vmx->nested.nested_vmx_secondary_ctls_low,
2754 vmx->nested.nested_vmx_secondary_ctls_high);
2755 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2756 vmx->nested.nested_vmx_secondary_ctls_high &=
2757 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2758 SECONDARY_EXEC_RDTSCP |
2759 SECONDARY_EXEC_DESC |
2760 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2761 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2762 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2763 SECONDARY_EXEC_WBINVD_EXITING |
2764 SECONDARY_EXEC_XSAVES;
2765
2766 if (enable_ept) {
2767 /* nested EPT: emulate EPT also to L1 */
2768 vmx->nested.nested_vmx_secondary_ctls_high |=
2769 SECONDARY_EXEC_ENABLE_EPT;
2770 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2771 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2772 VMX_EPT_INVEPT_BIT;
2773 if (cpu_has_vmx_ept_execute_only())
2774 vmx->nested.nested_vmx_ept_caps |=
2775 VMX_EPT_EXECUTE_ONLY_BIT;
2776 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2777 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2778 VMX_EPT_EXTENT_CONTEXT_BIT;
2779 } else
2780 vmx->nested.nested_vmx_ept_caps = 0;
2781
2782 /*
2783 * Old versions of KVM use the single-context version without
2784 * checking for support, so declare that it is supported even
2785 * though it is treated as global context. The alternative is
2786 * not failing the single-context invvpid, and it is worse.
2787 */
2788 if (enable_vpid) {
2789 vmx->nested.nested_vmx_secondary_ctls_high |=
2790 SECONDARY_EXEC_ENABLE_VPID;
2791 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2792 VMX_VPID_EXTENT_SUPPORTED_MASK;
2793 } else
2794 vmx->nested.nested_vmx_vpid_caps = 0;
2795
2796 if (enable_unrestricted_guest)
2797 vmx->nested.nested_vmx_secondary_ctls_high |=
2798 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2799
2800 /* miscellaneous data */
2801 rdmsr(MSR_IA32_VMX_MISC,
2802 vmx->nested.nested_vmx_misc_low,
2803 vmx->nested.nested_vmx_misc_high);
2804 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2805 vmx->nested.nested_vmx_misc_low |=
2806 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2807 VMX_MISC_ACTIVITY_HLT;
2808 vmx->nested.nested_vmx_misc_high = 0;
2809
2810 /*
2811 * This MSR reports some information about VMX support. We
2812 * should return information about the VMX we emulate for the
2813 * guest, and the VMCS structure we give it - not about the
2814 * VMX support of the underlying hardware.
2815 */
2816 vmx->nested.nested_vmx_basic =
2817 VMCS12_REVISION |
2818 VMX_BASIC_TRUE_CTLS |
2819 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2820 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2821
2822 if (cpu_has_vmx_basic_inout())
2823 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2824
2825 /*
2826 * These MSRs specify bits which the guest must keep fixed on
2827 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828 * We picked the standard core2 setting.
2829 */
2830 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2832 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2833 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2834
2835 /* These MSRs specify bits which the guest must keep fixed off. */
2836 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2837 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2838
2839 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2840 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2841 }
2842
2843 /*
2844 * if fixed0[i] == 1: val[i] must be 1
2845 * if fixed1[i] == 0: val[i] must be 0
2846 */
2847 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2848 {
2849 return ((val & fixed1) | fixed0) == val;
2850 }
2851
2852 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2853 {
2854 return fixed_bits_valid(control, low, high);
2855 }
2856
2857 static inline u64 vmx_control_msr(u32 low, u32 high)
2858 {
2859 return low | ((u64)high << 32);
2860 }
2861
2862 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2863 {
2864 superset &= mask;
2865 subset &= mask;
2866
2867 return (superset | subset) == superset;
2868 }
2869
2870 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2871 {
2872 const u64 feature_and_reserved =
2873 /* feature (except bit 48; see below) */
2874 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2875 /* reserved */
2876 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2877 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2878
2879 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2880 return -EINVAL;
2881
2882 /*
2883 * KVM does not emulate a version of VMX that constrains physical
2884 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2885 */
2886 if (data & BIT_ULL(48))
2887 return -EINVAL;
2888
2889 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2890 vmx_basic_vmcs_revision_id(data))
2891 return -EINVAL;
2892
2893 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2894 return -EINVAL;
2895
2896 vmx->nested.nested_vmx_basic = data;
2897 return 0;
2898 }
2899
2900 static int
2901 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2902 {
2903 u64 supported;
2904 u32 *lowp, *highp;
2905
2906 switch (msr_index) {
2907 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2908 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2909 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2910 break;
2911 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2912 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2913 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2914 break;
2915 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2916 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2917 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2918 break;
2919 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2920 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2921 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2922 break;
2923 case MSR_IA32_VMX_PROCBASED_CTLS2:
2924 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2925 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2926 break;
2927 default:
2928 BUG();
2929 }
2930
2931 supported = vmx_control_msr(*lowp, *highp);
2932
2933 /* Check must-be-1 bits are still 1. */
2934 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2935 return -EINVAL;
2936
2937 /* Check must-be-0 bits are still 0. */
2938 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2939 return -EINVAL;
2940
2941 *lowp = data;
2942 *highp = data >> 32;
2943 return 0;
2944 }
2945
2946 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2947 {
2948 const u64 feature_and_reserved_bits =
2949 /* feature */
2950 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2951 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2952 /* reserved */
2953 GENMASK_ULL(13, 9) | BIT_ULL(31);
2954 u64 vmx_misc;
2955
2956 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2957 vmx->nested.nested_vmx_misc_high);
2958
2959 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2960 return -EINVAL;
2961
2962 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2963 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2964 vmx_misc_preemption_timer_rate(data) !=
2965 vmx_misc_preemption_timer_rate(vmx_misc))
2966 return -EINVAL;
2967
2968 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2969 return -EINVAL;
2970
2971 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2972 return -EINVAL;
2973
2974 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2975 return -EINVAL;
2976
2977 vmx->nested.nested_vmx_misc_low = data;
2978 vmx->nested.nested_vmx_misc_high = data >> 32;
2979 return 0;
2980 }
2981
2982 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2983 {
2984 u64 vmx_ept_vpid_cap;
2985
2986 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2987 vmx->nested.nested_vmx_vpid_caps);
2988
2989 /* Every bit is either reserved or a feature bit. */
2990 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2991 return -EINVAL;
2992
2993 vmx->nested.nested_vmx_ept_caps = data;
2994 vmx->nested.nested_vmx_vpid_caps = data >> 32;
2995 return 0;
2996 }
2997
2998 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2999 {
3000 u64 *msr;
3001
3002 switch (msr_index) {
3003 case MSR_IA32_VMX_CR0_FIXED0:
3004 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3005 break;
3006 case MSR_IA32_VMX_CR4_FIXED0:
3007 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3008 break;
3009 default:
3010 BUG();
3011 }
3012
3013 /*
3014 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3015 * must be 1 in the restored value.
3016 */
3017 if (!is_bitwise_subset(data, *msr, -1ULL))
3018 return -EINVAL;
3019
3020 *msr = data;
3021 return 0;
3022 }
3023
3024 /*
3025 * Called when userspace is restoring VMX MSRs.
3026 *
3027 * Returns 0 on success, non-0 otherwise.
3028 */
3029 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3030 {
3031 struct vcpu_vmx *vmx = to_vmx(vcpu);
3032
3033 switch (msr_index) {
3034 case MSR_IA32_VMX_BASIC:
3035 return vmx_restore_vmx_basic(vmx, data);
3036 case MSR_IA32_VMX_PINBASED_CTLS:
3037 case MSR_IA32_VMX_PROCBASED_CTLS:
3038 case MSR_IA32_VMX_EXIT_CTLS:
3039 case MSR_IA32_VMX_ENTRY_CTLS:
3040 /*
3041 * The "non-true" VMX capability MSRs are generated from the
3042 * "true" MSRs, so we do not support restoring them directly.
3043 *
3044 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3045 * should restore the "true" MSRs with the must-be-1 bits
3046 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3047 * DEFAULT SETTINGS".
3048 */
3049 return -EINVAL;
3050 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3051 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3052 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3053 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3054 case MSR_IA32_VMX_PROCBASED_CTLS2:
3055 return vmx_restore_control_msr(vmx, msr_index, data);
3056 case MSR_IA32_VMX_MISC:
3057 return vmx_restore_vmx_misc(vmx, data);
3058 case MSR_IA32_VMX_CR0_FIXED0:
3059 case MSR_IA32_VMX_CR4_FIXED0:
3060 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3061 case MSR_IA32_VMX_CR0_FIXED1:
3062 case MSR_IA32_VMX_CR4_FIXED1:
3063 /*
3064 * These MSRs are generated based on the vCPU's CPUID, so we
3065 * do not support restoring them directly.
3066 */
3067 return -EINVAL;
3068 case MSR_IA32_VMX_EPT_VPID_CAP:
3069 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3070 case MSR_IA32_VMX_VMCS_ENUM:
3071 vmx->nested.nested_vmx_vmcs_enum = data;
3072 return 0;
3073 default:
3074 /*
3075 * The rest of the VMX capability MSRs do not support restore.
3076 */
3077 return -EINVAL;
3078 }
3079 }
3080
3081 /* Returns 0 on success, non-0 otherwise. */
3082 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3083 {
3084 struct vcpu_vmx *vmx = to_vmx(vcpu);
3085
3086 switch (msr_index) {
3087 case MSR_IA32_VMX_BASIC:
3088 *pdata = vmx->nested.nested_vmx_basic;
3089 break;
3090 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3091 case MSR_IA32_VMX_PINBASED_CTLS:
3092 *pdata = vmx_control_msr(
3093 vmx->nested.nested_vmx_pinbased_ctls_low,
3094 vmx->nested.nested_vmx_pinbased_ctls_high);
3095 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3096 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3097 break;
3098 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3099 case MSR_IA32_VMX_PROCBASED_CTLS:
3100 *pdata = vmx_control_msr(
3101 vmx->nested.nested_vmx_procbased_ctls_low,
3102 vmx->nested.nested_vmx_procbased_ctls_high);
3103 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3104 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3105 break;
3106 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3107 case MSR_IA32_VMX_EXIT_CTLS:
3108 *pdata = vmx_control_msr(
3109 vmx->nested.nested_vmx_exit_ctls_low,
3110 vmx->nested.nested_vmx_exit_ctls_high);
3111 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3112 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3113 break;
3114 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3115 case MSR_IA32_VMX_ENTRY_CTLS:
3116 *pdata = vmx_control_msr(
3117 vmx->nested.nested_vmx_entry_ctls_low,
3118 vmx->nested.nested_vmx_entry_ctls_high);
3119 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3120 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3121 break;
3122 case MSR_IA32_VMX_MISC:
3123 *pdata = vmx_control_msr(
3124 vmx->nested.nested_vmx_misc_low,
3125 vmx->nested.nested_vmx_misc_high);
3126 break;
3127 case MSR_IA32_VMX_CR0_FIXED0:
3128 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3129 break;
3130 case MSR_IA32_VMX_CR0_FIXED1:
3131 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3132 break;
3133 case MSR_IA32_VMX_CR4_FIXED0:
3134 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3135 break;
3136 case MSR_IA32_VMX_CR4_FIXED1:
3137 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3138 break;
3139 case MSR_IA32_VMX_VMCS_ENUM:
3140 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3141 break;
3142 case MSR_IA32_VMX_PROCBASED_CTLS2:
3143 *pdata = vmx_control_msr(
3144 vmx->nested.nested_vmx_secondary_ctls_low,
3145 vmx->nested.nested_vmx_secondary_ctls_high);
3146 break;
3147 case MSR_IA32_VMX_EPT_VPID_CAP:
3148 *pdata = vmx->nested.nested_vmx_ept_caps |
3149 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3150 break;
3151 default:
3152 return 1;
3153 }
3154
3155 return 0;
3156 }
3157
3158 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3159 uint64_t val)
3160 {
3161 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3162
3163 return !(val & ~valid_bits);
3164 }
3165
3166 /*
3167 * Reads an msr value (of 'msr_index') into 'pdata'.
3168 * Returns 0 on success, non-0 otherwise.
3169 * Assumes vcpu_load() was already called.
3170 */
3171 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3172 {
3173 struct shared_msr_entry *msr;
3174
3175 switch (msr_info->index) {
3176 #ifdef CONFIG_X86_64
3177 case MSR_FS_BASE:
3178 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3179 break;
3180 case MSR_GS_BASE:
3181 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3182 break;
3183 case MSR_KERNEL_GS_BASE:
3184 vmx_load_host_state(to_vmx(vcpu));
3185 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3186 break;
3187 #endif
3188 case MSR_EFER:
3189 return kvm_get_msr_common(vcpu, msr_info);
3190 case MSR_IA32_TSC:
3191 msr_info->data = guest_read_tsc(vcpu);
3192 break;
3193 case MSR_IA32_SYSENTER_CS:
3194 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3195 break;
3196 case MSR_IA32_SYSENTER_EIP:
3197 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3198 break;
3199 case MSR_IA32_SYSENTER_ESP:
3200 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3201 break;
3202 case MSR_IA32_BNDCFGS:
3203 if (!kvm_mpx_supported())
3204 return 1;
3205 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3206 break;
3207 case MSR_IA32_MCG_EXT_CTL:
3208 if (!msr_info->host_initiated &&
3209 !(to_vmx(vcpu)->msr_ia32_feature_control &
3210 FEATURE_CONTROL_LMCE))
3211 return 1;
3212 msr_info->data = vcpu->arch.mcg_ext_ctl;
3213 break;
3214 case MSR_IA32_FEATURE_CONTROL:
3215 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3216 break;
3217 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3218 if (!nested_vmx_allowed(vcpu))
3219 return 1;
3220 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3221 case MSR_IA32_XSS:
3222 if (!vmx_xsaves_supported())
3223 return 1;
3224 msr_info->data = vcpu->arch.ia32_xss;
3225 break;
3226 case MSR_TSC_AUX:
3227 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3228 return 1;
3229 /* Otherwise falls through */
3230 default:
3231 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3232 if (msr) {
3233 msr_info->data = msr->data;
3234 break;
3235 }
3236 return kvm_get_msr_common(vcpu, msr_info);
3237 }
3238
3239 return 0;
3240 }
3241
3242 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3243
3244 /*
3245 * Writes msr value into into the appropriate "register".
3246 * Returns 0 on success, non-0 otherwise.
3247 * Assumes vcpu_load() was already called.
3248 */
3249 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3250 {
3251 struct vcpu_vmx *vmx = to_vmx(vcpu);
3252 struct shared_msr_entry *msr;
3253 int ret = 0;
3254 u32 msr_index = msr_info->index;
3255 u64 data = msr_info->data;
3256
3257 switch (msr_index) {
3258 case MSR_EFER:
3259 ret = kvm_set_msr_common(vcpu, msr_info);
3260 break;
3261 #ifdef CONFIG_X86_64
3262 case MSR_FS_BASE:
3263 vmx_segment_cache_clear(vmx);
3264 vmcs_writel(GUEST_FS_BASE, data);
3265 break;
3266 case MSR_GS_BASE:
3267 vmx_segment_cache_clear(vmx);
3268 vmcs_writel(GUEST_GS_BASE, data);
3269 break;
3270 case MSR_KERNEL_GS_BASE:
3271 vmx_load_host_state(vmx);
3272 vmx->msr_guest_kernel_gs_base = data;
3273 break;
3274 #endif
3275 case MSR_IA32_SYSENTER_CS:
3276 vmcs_write32(GUEST_SYSENTER_CS, data);
3277 break;
3278 case MSR_IA32_SYSENTER_EIP:
3279 vmcs_writel(GUEST_SYSENTER_EIP, data);
3280 break;
3281 case MSR_IA32_SYSENTER_ESP:
3282 vmcs_writel(GUEST_SYSENTER_ESP, data);
3283 break;
3284 case MSR_IA32_BNDCFGS:
3285 if (!kvm_mpx_supported())
3286 return 1;
3287 vmcs_write64(GUEST_BNDCFGS, data);
3288 break;
3289 case MSR_IA32_TSC:
3290 kvm_write_tsc(vcpu, msr_info);
3291 break;
3292 case MSR_IA32_CR_PAT:
3293 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3294 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3295 return 1;
3296 vmcs_write64(GUEST_IA32_PAT, data);
3297 vcpu->arch.pat = data;
3298 break;
3299 }
3300 ret = kvm_set_msr_common(vcpu, msr_info);
3301 break;
3302 case MSR_IA32_TSC_ADJUST:
3303 ret = kvm_set_msr_common(vcpu, msr_info);
3304 break;
3305 case MSR_IA32_MCG_EXT_CTL:
3306 if ((!msr_info->host_initiated &&
3307 !(to_vmx(vcpu)->msr_ia32_feature_control &
3308 FEATURE_CONTROL_LMCE)) ||
3309 (data & ~MCG_EXT_CTL_LMCE_EN))
3310 return 1;
3311 vcpu->arch.mcg_ext_ctl = data;
3312 break;
3313 case MSR_IA32_FEATURE_CONTROL:
3314 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3315 (to_vmx(vcpu)->msr_ia32_feature_control &
3316 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3317 return 1;
3318 vmx->msr_ia32_feature_control = data;
3319 if (msr_info->host_initiated && data == 0)
3320 vmx_leave_nested(vcpu);
3321 break;
3322 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3323 if (!msr_info->host_initiated)
3324 return 1; /* they are read-only */
3325 if (!nested_vmx_allowed(vcpu))
3326 return 1;
3327 return vmx_set_vmx_msr(vcpu, msr_index, data);
3328 case MSR_IA32_XSS:
3329 if (!vmx_xsaves_supported())
3330 return 1;
3331 /*
3332 * The only supported bit as of Skylake is bit 8, but
3333 * it is not supported on KVM.
3334 */
3335 if (data != 0)
3336 return 1;
3337 vcpu->arch.ia32_xss = data;
3338 if (vcpu->arch.ia32_xss != host_xss)
3339 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3340 vcpu->arch.ia32_xss, host_xss);
3341 else
3342 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3343 break;
3344 case MSR_TSC_AUX:
3345 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3346 return 1;
3347 /* Check reserved bit, higher 32 bits should be zero */
3348 if ((data >> 32) != 0)
3349 return 1;
3350 /* Otherwise falls through */
3351 default:
3352 msr = find_msr_entry(vmx, msr_index);
3353 if (msr) {
3354 u64 old_msr_data = msr->data;
3355 msr->data = data;
3356 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3357 preempt_disable();
3358 ret = kvm_set_shared_msr(msr->index, msr->data,
3359 msr->mask);
3360 preempt_enable();
3361 if (ret)
3362 msr->data = old_msr_data;
3363 }
3364 break;
3365 }
3366 ret = kvm_set_msr_common(vcpu, msr_info);
3367 }
3368
3369 return ret;
3370 }
3371
3372 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3373 {
3374 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3375 switch (reg) {
3376 case VCPU_REGS_RSP:
3377 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3378 break;
3379 case VCPU_REGS_RIP:
3380 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3381 break;
3382 case VCPU_EXREG_PDPTR:
3383 if (enable_ept)
3384 ept_save_pdptrs(vcpu);
3385 break;
3386 default:
3387 break;
3388 }
3389 }
3390
3391 static __init int cpu_has_kvm_support(void)
3392 {
3393 return cpu_has_vmx();
3394 }
3395
3396 static __init int vmx_disabled_by_bios(void)
3397 {
3398 u64 msr;
3399
3400 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3401 if (msr & FEATURE_CONTROL_LOCKED) {
3402 /* launched w/ TXT and VMX disabled */
3403 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3404 && tboot_enabled())
3405 return 1;
3406 /* launched w/o TXT and VMX only enabled w/ TXT */
3407 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3408 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3409 && !tboot_enabled()) {
3410 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3411 "activate TXT before enabling KVM\n");
3412 return 1;
3413 }
3414 /* launched w/o TXT and VMX disabled */
3415 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3416 && !tboot_enabled())
3417 return 1;
3418 }
3419
3420 return 0;
3421 }
3422
3423 static void kvm_cpu_vmxon(u64 addr)
3424 {
3425 intel_pt_handle_vmx(1);
3426
3427 asm volatile (ASM_VMX_VMXON_RAX
3428 : : "a"(&addr), "m"(addr)
3429 : "memory", "cc");
3430 }
3431
3432 static int hardware_enable(void)
3433 {
3434 int cpu = raw_smp_processor_id();
3435 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3436 u64 old, test_bits;
3437
3438 if (cr4_read_shadow() & X86_CR4_VMXE)
3439 return -EBUSY;
3440
3441 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3442 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3443 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3444
3445 /*
3446 * Now we can enable the vmclear operation in kdump
3447 * since the loaded_vmcss_on_cpu list on this cpu
3448 * has been initialized.
3449 *
3450 * Though the cpu is not in VMX operation now, there
3451 * is no problem to enable the vmclear operation
3452 * for the loaded_vmcss_on_cpu list is empty!
3453 */
3454 crash_enable_local_vmclear(cpu);
3455
3456 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3457
3458 test_bits = FEATURE_CONTROL_LOCKED;
3459 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3460 if (tboot_enabled())
3461 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3462
3463 if ((old & test_bits) != test_bits) {
3464 /* enable and lock */
3465 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3466 }
3467 cr4_set_bits(X86_CR4_VMXE);
3468
3469 if (vmm_exclusive) {
3470 kvm_cpu_vmxon(phys_addr);
3471 ept_sync_global();
3472 }
3473
3474 native_store_gdt(this_cpu_ptr(&host_gdt));
3475
3476 return 0;
3477 }
3478
3479 static void vmclear_local_loaded_vmcss(void)
3480 {
3481 int cpu = raw_smp_processor_id();
3482 struct loaded_vmcs *v, *n;
3483
3484 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3485 loaded_vmcss_on_cpu_link)
3486 __loaded_vmcs_clear(v);
3487 }
3488
3489
3490 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3491 * tricks.
3492 */
3493 static void kvm_cpu_vmxoff(void)
3494 {
3495 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3496
3497 intel_pt_handle_vmx(0);
3498 }
3499
3500 static void hardware_disable(void)
3501 {
3502 if (vmm_exclusive) {
3503 vmclear_local_loaded_vmcss();
3504 kvm_cpu_vmxoff();
3505 }
3506 cr4_clear_bits(X86_CR4_VMXE);
3507 }
3508
3509 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3510 u32 msr, u32 *result)
3511 {
3512 u32 vmx_msr_low, vmx_msr_high;
3513 u32 ctl = ctl_min | ctl_opt;
3514
3515 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3516
3517 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3518 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3519
3520 /* Ensure minimum (required) set of control bits are supported. */
3521 if (ctl_min & ~ctl)
3522 return -EIO;
3523
3524 *result = ctl;
3525 return 0;
3526 }
3527
3528 static __init bool allow_1_setting(u32 msr, u32 ctl)
3529 {
3530 u32 vmx_msr_low, vmx_msr_high;
3531
3532 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3533 return vmx_msr_high & ctl;
3534 }
3535
3536 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3537 {
3538 u32 vmx_msr_low, vmx_msr_high;
3539 u32 min, opt, min2, opt2;
3540 u32 _pin_based_exec_control = 0;
3541 u32 _cpu_based_exec_control = 0;
3542 u32 _cpu_based_2nd_exec_control = 0;
3543 u32 _vmexit_control = 0;
3544 u32 _vmentry_control = 0;
3545
3546 min = CPU_BASED_HLT_EXITING |
3547 #ifdef CONFIG_X86_64
3548 CPU_BASED_CR8_LOAD_EXITING |
3549 CPU_BASED_CR8_STORE_EXITING |
3550 #endif
3551 CPU_BASED_CR3_LOAD_EXITING |
3552 CPU_BASED_CR3_STORE_EXITING |
3553 CPU_BASED_USE_IO_BITMAPS |
3554 CPU_BASED_MOV_DR_EXITING |
3555 CPU_BASED_USE_TSC_OFFSETING |
3556 CPU_BASED_MWAIT_EXITING |
3557 CPU_BASED_MONITOR_EXITING |
3558 CPU_BASED_INVLPG_EXITING |
3559 CPU_BASED_RDPMC_EXITING;
3560
3561 opt = CPU_BASED_TPR_SHADOW |
3562 CPU_BASED_USE_MSR_BITMAPS |
3563 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3564 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3565 &_cpu_based_exec_control) < 0)
3566 return -EIO;
3567 #ifdef CONFIG_X86_64
3568 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3569 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3570 ~CPU_BASED_CR8_STORE_EXITING;
3571 #endif
3572 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3573 min2 = 0;
3574 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3575 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3576 SECONDARY_EXEC_WBINVD_EXITING |
3577 SECONDARY_EXEC_ENABLE_VPID |
3578 SECONDARY_EXEC_ENABLE_EPT |
3579 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3580 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3581 SECONDARY_EXEC_RDTSCP |
3582 SECONDARY_EXEC_ENABLE_INVPCID |
3583 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3584 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3585 SECONDARY_EXEC_SHADOW_VMCS |
3586 SECONDARY_EXEC_XSAVES |
3587 SECONDARY_EXEC_ENABLE_PML |
3588 SECONDARY_EXEC_TSC_SCALING;
3589 if (adjust_vmx_controls(min2, opt2,
3590 MSR_IA32_VMX_PROCBASED_CTLS2,
3591 &_cpu_based_2nd_exec_control) < 0)
3592 return -EIO;
3593 }
3594 #ifndef CONFIG_X86_64
3595 if (!(_cpu_based_2nd_exec_control &
3596 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3597 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3598 #endif
3599
3600 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3601 _cpu_based_2nd_exec_control &= ~(
3602 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3603 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3604 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3605
3606 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3607 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3608 enabled */
3609 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3610 CPU_BASED_CR3_STORE_EXITING |
3611 CPU_BASED_INVLPG_EXITING);
3612 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3613 vmx_capability.ept, vmx_capability.vpid);
3614 }
3615
3616 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3617 #ifdef CONFIG_X86_64
3618 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3619 #endif
3620 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3621 VM_EXIT_CLEAR_BNDCFGS;
3622 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3623 &_vmexit_control) < 0)
3624 return -EIO;
3625
3626 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3627 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3628 PIN_BASED_VMX_PREEMPTION_TIMER;
3629 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3630 &_pin_based_exec_control) < 0)
3631 return -EIO;
3632
3633 if (cpu_has_broken_vmx_preemption_timer())
3634 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3635 if (!(_cpu_based_2nd_exec_control &
3636 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3637 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3638
3639 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3640 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3641 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3642 &_vmentry_control) < 0)
3643 return -EIO;
3644
3645 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3646
3647 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3648 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3649 return -EIO;
3650
3651 #ifdef CONFIG_X86_64
3652 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3653 if (vmx_msr_high & (1u<<16))
3654 return -EIO;
3655 #endif
3656
3657 /* Require Write-Back (WB) memory type for VMCS accesses. */
3658 if (((vmx_msr_high >> 18) & 15) != 6)
3659 return -EIO;
3660
3661 vmcs_conf->size = vmx_msr_high & 0x1fff;
3662 vmcs_conf->order = get_order(vmcs_conf->size);
3663 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3664 vmcs_conf->revision_id = vmx_msr_low;
3665
3666 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3667 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3668 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3669 vmcs_conf->vmexit_ctrl = _vmexit_control;
3670 vmcs_conf->vmentry_ctrl = _vmentry_control;
3671
3672 cpu_has_load_ia32_efer =
3673 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3674 VM_ENTRY_LOAD_IA32_EFER)
3675 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3676 VM_EXIT_LOAD_IA32_EFER);
3677
3678 cpu_has_load_perf_global_ctrl =
3679 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3680 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3681 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3682 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3683
3684 /*
3685 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3686 * but due to errata below it can't be used. Workaround is to use
3687 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3688 *
3689 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3690 *
3691 * AAK155 (model 26)
3692 * AAP115 (model 30)
3693 * AAT100 (model 37)
3694 * BC86,AAY89,BD102 (model 44)
3695 * BA97 (model 46)
3696 *
3697 */
3698 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3699 switch (boot_cpu_data.x86_model) {
3700 case 26:
3701 case 30:
3702 case 37:
3703 case 44:
3704 case 46:
3705 cpu_has_load_perf_global_ctrl = false;
3706 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3707 "does not work properly. Using workaround\n");
3708 break;
3709 default:
3710 break;
3711 }
3712 }
3713
3714 if (boot_cpu_has(X86_FEATURE_XSAVES))
3715 rdmsrl(MSR_IA32_XSS, host_xss);
3716
3717 return 0;
3718 }
3719
3720 static struct vmcs *alloc_vmcs_cpu(int cpu)
3721 {
3722 int node = cpu_to_node(cpu);
3723 struct page *pages;
3724 struct vmcs *vmcs;
3725
3726 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3727 if (!pages)
3728 return NULL;
3729 vmcs = page_address(pages);
3730 memset(vmcs, 0, vmcs_config.size);
3731 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3732 return vmcs;
3733 }
3734
3735 static struct vmcs *alloc_vmcs(void)
3736 {
3737 return alloc_vmcs_cpu(raw_smp_processor_id());
3738 }
3739
3740 static void free_vmcs(struct vmcs *vmcs)
3741 {
3742 free_pages((unsigned long)vmcs, vmcs_config.order);
3743 }
3744
3745 /*
3746 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3747 */
3748 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3749 {
3750 if (!loaded_vmcs->vmcs)
3751 return;
3752 loaded_vmcs_clear(loaded_vmcs);
3753 free_vmcs(loaded_vmcs->vmcs);
3754 loaded_vmcs->vmcs = NULL;
3755 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3756 }
3757
3758 static void free_kvm_area(void)
3759 {
3760 int cpu;
3761
3762 for_each_possible_cpu(cpu) {
3763 free_vmcs(per_cpu(vmxarea, cpu));
3764 per_cpu(vmxarea, cpu) = NULL;
3765 }
3766 }
3767
3768 static void init_vmcs_shadow_fields(void)
3769 {
3770 int i, j;
3771
3772 /* No checks for read only fields yet */
3773
3774 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3775 switch (shadow_read_write_fields[i]) {
3776 case GUEST_BNDCFGS:
3777 if (!kvm_mpx_supported())
3778 continue;
3779 break;
3780 default:
3781 break;
3782 }
3783
3784 if (j < i)
3785 shadow_read_write_fields[j] =
3786 shadow_read_write_fields[i];
3787 j++;
3788 }
3789 max_shadow_read_write_fields = j;
3790
3791 /* shadowed fields guest access without vmexit */
3792 for (i = 0; i < max_shadow_read_write_fields; i++) {
3793 clear_bit(shadow_read_write_fields[i],
3794 vmx_vmwrite_bitmap);
3795 clear_bit(shadow_read_write_fields[i],
3796 vmx_vmread_bitmap);
3797 }
3798 for (i = 0; i < max_shadow_read_only_fields; i++)
3799 clear_bit(shadow_read_only_fields[i],
3800 vmx_vmread_bitmap);
3801 }
3802
3803 static __init int alloc_kvm_area(void)
3804 {
3805 int cpu;
3806
3807 for_each_possible_cpu(cpu) {
3808 struct vmcs *vmcs;
3809
3810 vmcs = alloc_vmcs_cpu(cpu);
3811 if (!vmcs) {
3812 free_kvm_area();
3813 return -ENOMEM;
3814 }
3815
3816 per_cpu(vmxarea, cpu) = vmcs;
3817 }
3818 return 0;
3819 }
3820
3821 static bool emulation_required(struct kvm_vcpu *vcpu)
3822 {
3823 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3824 }
3825
3826 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3827 struct kvm_segment *save)
3828 {
3829 if (!emulate_invalid_guest_state) {
3830 /*
3831 * CS and SS RPL should be equal during guest entry according
3832 * to VMX spec, but in reality it is not always so. Since vcpu
3833 * is in the middle of the transition from real mode to
3834 * protected mode it is safe to assume that RPL 0 is a good
3835 * default value.
3836 */
3837 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3838 save->selector &= ~SEGMENT_RPL_MASK;
3839 save->dpl = save->selector & SEGMENT_RPL_MASK;
3840 save->s = 1;
3841 }
3842 vmx_set_segment(vcpu, save, seg);
3843 }
3844
3845 static void enter_pmode(struct kvm_vcpu *vcpu)
3846 {
3847 unsigned long flags;
3848 struct vcpu_vmx *vmx = to_vmx(vcpu);
3849
3850 /*
3851 * Update real mode segment cache. It may be not up-to-date if sement
3852 * register was written while vcpu was in a guest mode.
3853 */
3854 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3859 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3860
3861 vmx->rmode.vm86_active = 0;
3862
3863 vmx_segment_cache_clear(vmx);
3864
3865 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3866
3867 flags = vmcs_readl(GUEST_RFLAGS);
3868 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3869 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3870 vmcs_writel(GUEST_RFLAGS, flags);
3871
3872 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3873 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3874
3875 update_exception_bitmap(vcpu);
3876
3877 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3878 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3879 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3880 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3881 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3882 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3883 }
3884
3885 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3886 {
3887 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3888 struct kvm_segment var = *save;
3889
3890 var.dpl = 0x3;
3891 if (seg == VCPU_SREG_CS)
3892 var.type = 0x3;
3893
3894 if (!emulate_invalid_guest_state) {
3895 var.selector = var.base >> 4;
3896 var.base = var.base & 0xffff0;
3897 var.limit = 0xffff;
3898 var.g = 0;
3899 var.db = 0;
3900 var.present = 1;
3901 var.s = 1;
3902 var.l = 0;
3903 var.unusable = 0;
3904 var.type = 0x3;
3905 var.avl = 0;
3906 if (save->base & 0xf)
3907 printk_once(KERN_WARNING "kvm: segment base is not "
3908 "paragraph aligned when entering "
3909 "protected mode (seg=%d)", seg);
3910 }
3911
3912 vmcs_write16(sf->selector, var.selector);
3913 vmcs_writel(sf->base, var.base);
3914 vmcs_write32(sf->limit, var.limit);
3915 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3916 }
3917
3918 static void enter_rmode(struct kvm_vcpu *vcpu)
3919 {
3920 unsigned long flags;
3921 struct vcpu_vmx *vmx = to_vmx(vcpu);
3922
3923 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3924 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3925 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3926 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3927 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3928 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3929 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3930
3931 vmx->rmode.vm86_active = 1;
3932
3933 /*
3934 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3935 * vcpu. Warn the user that an update is overdue.
3936 */
3937 if (!vcpu->kvm->arch.tss_addr)
3938 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3939 "called before entering vcpu\n");
3940
3941 vmx_segment_cache_clear(vmx);
3942
3943 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3944 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3945 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3946
3947 flags = vmcs_readl(GUEST_RFLAGS);
3948 vmx->rmode.save_rflags = flags;
3949
3950 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3951
3952 vmcs_writel(GUEST_RFLAGS, flags);
3953 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3954 update_exception_bitmap(vcpu);
3955
3956 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3957 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3958 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3959 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3960 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3961 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3962
3963 kvm_mmu_reset_context(vcpu);
3964 }
3965
3966 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3967 {
3968 struct vcpu_vmx *vmx = to_vmx(vcpu);
3969 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3970
3971 if (!msr)
3972 return;
3973
3974 /*
3975 * Force kernel_gs_base reloading before EFER changes, as control
3976 * of this msr depends on is_long_mode().
3977 */
3978 vmx_load_host_state(to_vmx(vcpu));
3979 vcpu->arch.efer = efer;
3980 if (efer & EFER_LMA) {
3981 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3982 msr->data = efer;
3983 } else {
3984 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3985
3986 msr->data = efer & ~EFER_LME;
3987 }
3988 setup_msrs(vmx);
3989 }
3990
3991 #ifdef CONFIG_X86_64
3992
3993 static void enter_lmode(struct kvm_vcpu *vcpu)
3994 {
3995 u32 guest_tr_ar;
3996
3997 vmx_segment_cache_clear(to_vmx(vcpu));
3998
3999 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4000 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4001 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4002 __func__);
4003 vmcs_write32(GUEST_TR_AR_BYTES,
4004 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4005 | VMX_AR_TYPE_BUSY_64_TSS);
4006 }
4007 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4008 }
4009
4010 static void exit_lmode(struct kvm_vcpu *vcpu)
4011 {
4012 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4013 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4014 }
4015
4016 #endif
4017
4018 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4019 {
4020 vpid_sync_context(vpid);
4021 if (enable_ept) {
4022 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4023 return;
4024 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
4025 }
4026 }
4027
4028 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4029 {
4030 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4031 }
4032
4033 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4034 {
4035 if (enable_ept)
4036 vmx_flush_tlb(vcpu);
4037 }
4038
4039 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4040 {
4041 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4042
4043 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4044 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4045 }
4046
4047 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4048 {
4049 if (enable_ept && is_paging(vcpu))
4050 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4051 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4052 }
4053
4054 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4055 {
4056 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4057
4058 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4059 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4060 }
4061
4062 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4063 {
4064 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4065
4066 if (!test_bit(VCPU_EXREG_PDPTR,
4067 (unsigned long *)&vcpu->arch.regs_dirty))
4068 return;
4069
4070 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4071 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4072 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4073 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4074 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4075 }
4076 }
4077
4078 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4079 {
4080 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4081
4082 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4083 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4084 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4085 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4086 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4087 }
4088
4089 __set_bit(VCPU_EXREG_PDPTR,
4090 (unsigned long *)&vcpu->arch.regs_avail);
4091 __set_bit(VCPU_EXREG_PDPTR,
4092 (unsigned long *)&vcpu->arch.regs_dirty);
4093 }
4094
4095 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4096 {
4097 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4098 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4099 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4100
4101 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4102 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4103 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4104 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4105
4106 return fixed_bits_valid(val, fixed0, fixed1);
4107 }
4108
4109 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4110 {
4111 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4112 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4113
4114 return fixed_bits_valid(val, fixed0, fixed1);
4115 }
4116
4117 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4118 {
4119 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4120 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4121
4122 return fixed_bits_valid(val, fixed0, fixed1);
4123 }
4124
4125 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4126 #define nested_guest_cr4_valid nested_cr4_valid
4127 #define nested_host_cr4_valid nested_cr4_valid
4128
4129 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4130
4131 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4132 unsigned long cr0,
4133 struct kvm_vcpu *vcpu)
4134 {
4135 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4136 vmx_decache_cr3(vcpu);
4137 if (!(cr0 & X86_CR0_PG)) {
4138 /* From paging/starting to nonpaging */
4139 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4140 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4141 (CPU_BASED_CR3_LOAD_EXITING |
4142 CPU_BASED_CR3_STORE_EXITING));
4143 vcpu->arch.cr0 = cr0;
4144 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4145 } else if (!is_paging(vcpu)) {
4146 /* From nonpaging to paging */
4147 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4148 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4149 ~(CPU_BASED_CR3_LOAD_EXITING |
4150 CPU_BASED_CR3_STORE_EXITING));
4151 vcpu->arch.cr0 = cr0;
4152 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4153 }
4154
4155 if (!(cr0 & X86_CR0_WP))
4156 *hw_cr0 &= ~X86_CR0_WP;
4157 }
4158
4159 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4160 {
4161 struct vcpu_vmx *vmx = to_vmx(vcpu);
4162 unsigned long hw_cr0;
4163
4164 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4165 if (enable_unrestricted_guest)
4166 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4167 else {
4168 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4169
4170 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4171 enter_pmode(vcpu);
4172
4173 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4174 enter_rmode(vcpu);
4175 }
4176
4177 #ifdef CONFIG_X86_64
4178 if (vcpu->arch.efer & EFER_LME) {
4179 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4180 enter_lmode(vcpu);
4181 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4182 exit_lmode(vcpu);
4183 }
4184 #endif
4185
4186 if (enable_ept)
4187 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4188
4189 vmcs_writel(CR0_READ_SHADOW, cr0);
4190 vmcs_writel(GUEST_CR0, hw_cr0);
4191 vcpu->arch.cr0 = cr0;
4192
4193 /* depends on vcpu->arch.cr0 to be set to a new value */
4194 vmx->emulation_required = emulation_required(vcpu);
4195 }
4196
4197 static u64 construct_eptp(unsigned long root_hpa)
4198 {
4199 u64 eptp;
4200
4201 /* TODO write the value reading from MSR */
4202 eptp = VMX_EPT_DEFAULT_MT |
4203 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4204 if (enable_ept_ad_bits)
4205 eptp |= VMX_EPT_AD_ENABLE_BIT;
4206 eptp |= (root_hpa & PAGE_MASK);
4207
4208 return eptp;
4209 }
4210
4211 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4212 {
4213 unsigned long guest_cr3;
4214 u64 eptp;
4215
4216 guest_cr3 = cr3;
4217 if (enable_ept) {
4218 eptp = construct_eptp(cr3);
4219 vmcs_write64(EPT_POINTER, eptp);
4220 if (is_paging(vcpu) || is_guest_mode(vcpu))
4221 guest_cr3 = kvm_read_cr3(vcpu);
4222 else
4223 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4224 ept_load_pdptrs(vcpu);
4225 }
4226
4227 vmx_flush_tlb(vcpu);
4228 vmcs_writel(GUEST_CR3, guest_cr3);
4229 }
4230
4231 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4232 {
4233 /*
4234 * Pass through host's Machine Check Enable value to hw_cr4, which
4235 * is in force while we are in guest mode. Do not let guests control
4236 * this bit, even if host CR4.MCE == 0.
4237 */
4238 unsigned long hw_cr4 =
4239 (cr4_read_shadow() & X86_CR4_MCE) |
4240 (cr4 & ~X86_CR4_MCE) |
4241 (to_vmx(vcpu)->rmode.vm86_active ?
4242 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4243
4244 if (cr4 & X86_CR4_VMXE) {
4245 /*
4246 * To use VMXON (and later other VMX instructions), a guest
4247 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4248 * So basically the check on whether to allow nested VMX
4249 * is here.
4250 */
4251 if (!nested_vmx_allowed(vcpu))
4252 return 1;
4253 }
4254
4255 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4256 return 1;
4257
4258 vcpu->arch.cr4 = cr4;
4259 if (enable_ept) {
4260 if (!is_paging(vcpu)) {
4261 hw_cr4 &= ~X86_CR4_PAE;
4262 hw_cr4 |= X86_CR4_PSE;
4263 } else if (!(cr4 & X86_CR4_PAE)) {
4264 hw_cr4 &= ~X86_CR4_PAE;
4265 }
4266 }
4267
4268 if (!enable_unrestricted_guest && !is_paging(vcpu))
4269 /*
4270 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4271 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4272 * to be manually disabled when guest switches to non-paging
4273 * mode.
4274 *
4275 * If !enable_unrestricted_guest, the CPU is always running
4276 * with CR0.PG=1 and CR4 needs to be modified.
4277 * If enable_unrestricted_guest, the CPU automatically
4278 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4279 */
4280 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4281
4282 vmcs_writel(CR4_READ_SHADOW, cr4);
4283 vmcs_writel(GUEST_CR4, hw_cr4);
4284 return 0;
4285 }
4286
4287 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4288 struct kvm_segment *var, int seg)
4289 {
4290 struct vcpu_vmx *vmx = to_vmx(vcpu);
4291 u32 ar;
4292
4293 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4294 *var = vmx->rmode.segs[seg];
4295 if (seg == VCPU_SREG_TR
4296 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4297 return;
4298 var->base = vmx_read_guest_seg_base(vmx, seg);
4299 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4300 return;
4301 }
4302 var->base = vmx_read_guest_seg_base(vmx, seg);
4303 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4304 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4305 ar = vmx_read_guest_seg_ar(vmx, seg);
4306 var->unusable = (ar >> 16) & 1;
4307 var->type = ar & 15;
4308 var->s = (ar >> 4) & 1;
4309 var->dpl = (ar >> 5) & 3;
4310 /*
4311 * Some userspaces do not preserve unusable property. Since usable
4312 * segment has to be present according to VMX spec we can use present
4313 * property to amend userspace bug by making unusable segment always
4314 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4315 * segment as unusable.
4316 */
4317 var->present = !var->unusable;
4318 var->avl = (ar >> 12) & 1;
4319 var->l = (ar >> 13) & 1;
4320 var->db = (ar >> 14) & 1;
4321 var->g = (ar >> 15) & 1;
4322 }
4323
4324 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4325 {
4326 struct kvm_segment s;
4327
4328 if (to_vmx(vcpu)->rmode.vm86_active) {
4329 vmx_get_segment(vcpu, &s, seg);
4330 return s.base;
4331 }
4332 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4333 }
4334
4335 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4336 {
4337 struct vcpu_vmx *vmx = to_vmx(vcpu);
4338
4339 if (unlikely(vmx->rmode.vm86_active))
4340 return 0;
4341 else {
4342 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4343 return VMX_AR_DPL(ar);
4344 }
4345 }
4346
4347 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4348 {
4349 u32 ar;
4350
4351 if (var->unusable || !var->present)
4352 ar = 1 << 16;
4353 else {
4354 ar = var->type & 15;
4355 ar |= (var->s & 1) << 4;
4356 ar |= (var->dpl & 3) << 5;
4357 ar |= (var->present & 1) << 7;
4358 ar |= (var->avl & 1) << 12;
4359 ar |= (var->l & 1) << 13;
4360 ar |= (var->db & 1) << 14;
4361 ar |= (var->g & 1) << 15;
4362 }
4363
4364 return ar;
4365 }
4366
4367 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4368 struct kvm_segment *var, int seg)
4369 {
4370 struct vcpu_vmx *vmx = to_vmx(vcpu);
4371 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4372
4373 vmx_segment_cache_clear(vmx);
4374
4375 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4376 vmx->rmode.segs[seg] = *var;
4377 if (seg == VCPU_SREG_TR)
4378 vmcs_write16(sf->selector, var->selector);
4379 else if (var->s)
4380 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4381 goto out;
4382 }
4383
4384 vmcs_writel(sf->base, var->base);
4385 vmcs_write32(sf->limit, var->limit);
4386 vmcs_write16(sf->selector, var->selector);
4387
4388 /*
4389 * Fix the "Accessed" bit in AR field of segment registers for older
4390 * qemu binaries.
4391 * IA32 arch specifies that at the time of processor reset the
4392 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4393 * is setting it to 0 in the userland code. This causes invalid guest
4394 * state vmexit when "unrestricted guest" mode is turned on.
4395 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4396 * tree. Newer qemu binaries with that qemu fix would not need this
4397 * kvm hack.
4398 */
4399 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4400 var->type |= 0x1; /* Accessed */
4401
4402 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4403
4404 out:
4405 vmx->emulation_required = emulation_required(vcpu);
4406 }
4407
4408 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4409 {
4410 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4411
4412 *db = (ar >> 14) & 1;
4413 *l = (ar >> 13) & 1;
4414 }
4415
4416 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4417 {
4418 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4419 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4420 }
4421
4422 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4423 {
4424 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4425 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4426 }
4427
4428 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4429 {
4430 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4431 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4432 }
4433
4434 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4435 {
4436 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4437 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4438 }
4439
4440 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4441 {
4442 struct kvm_segment var;
4443 u32 ar;
4444
4445 vmx_get_segment(vcpu, &var, seg);
4446 var.dpl = 0x3;
4447 if (seg == VCPU_SREG_CS)
4448 var.type = 0x3;
4449 ar = vmx_segment_access_rights(&var);
4450
4451 if (var.base != (var.selector << 4))
4452 return false;
4453 if (var.limit != 0xffff)
4454 return false;
4455 if (ar != 0xf3)
4456 return false;
4457
4458 return true;
4459 }
4460
4461 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4462 {
4463 struct kvm_segment cs;
4464 unsigned int cs_rpl;
4465
4466 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4467 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4468
4469 if (cs.unusable)
4470 return false;
4471 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4472 return false;
4473 if (!cs.s)
4474 return false;
4475 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4476 if (cs.dpl > cs_rpl)
4477 return false;
4478 } else {
4479 if (cs.dpl != cs_rpl)
4480 return false;
4481 }
4482 if (!cs.present)
4483 return false;
4484
4485 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4486 return true;
4487 }
4488
4489 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4490 {
4491 struct kvm_segment ss;
4492 unsigned int ss_rpl;
4493
4494 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4495 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4496
4497 if (ss.unusable)
4498 return true;
4499 if (ss.type != 3 && ss.type != 7)
4500 return false;
4501 if (!ss.s)
4502 return false;
4503 if (ss.dpl != ss_rpl) /* DPL != RPL */
4504 return false;
4505 if (!ss.present)
4506 return false;
4507
4508 return true;
4509 }
4510
4511 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4512 {
4513 struct kvm_segment var;
4514 unsigned int rpl;
4515
4516 vmx_get_segment(vcpu, &var, seg);
4517 rpl = var.selector & SEGMENT_RPL_MASK;
4518
4519 if (var.unusable)
4520 return true;
4521 if (!var.s)
4522 return false;
4523 if (!var.present)
4524 return false;
4525 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4526 if (var.dpl < rpl) /* DPL < RPL */
4527 return false;
4528 }
4529
4530 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4531 * rights flags
4532 */
4533 return true;
4534 }
4535
4536 static bool tr_valid(struct kvm_vcpu *vcpu)
4537 {
4538 struct kvm_segment tr;
4539
4540 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4541
4542 if (tr.unusable)
4543 return false;
4544 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4545 return false;
4546 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4547 return false;
4548 if (!tr.present)
4549 return false;
4550
4551 return true;
4552 }
4553
4554 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4555 {
4556 struct kvm_segment ldtr;
4557
4558 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4559
4560 if (ldtr.unusable)
4561 return true;
4562 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4563 return false;
4564 if (ldtr.type != 2)
4565 return false;
4566 if (!ldtr.present)
4567 return false;
4568
4569 return true;
4570 }
4571
4572 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4573 {
4574 struct kvm_segment cs, ss;
4575
4576 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4577 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4578
4579 return ((cs.selector & SEGMENT_RPL_MASK) ==
4580 (ss.selector & SEGMENT_RPL_MASK));
4581 }
4582
4583 /*
4584 * Check if guest state is valid. Returns true if valid, false if
4585 * not.
4586 * We assume that registers are always usable
4587 */
4588 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4589 {
4590 if (enable_unrestricted_guest)
4591 return true;
4592
4593 /* real mode guest state checks */
4594 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4595 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4596 return false;
4597 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4598 return false;
4599 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4600 return false;
4601 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4602 return false;
4603 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4604 return false;
4605 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4606 return false;
4607 } else {
4608 /* protected mode guest state checks */
4609 if (!cs_ss_rpl_check(vcpu))
4610 return false;
4611 if (!code_segment_valid(vcpu))
4612 return false;
4613 if (!stack_segment_valid(vcpu))
4614 return false;
4615 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4616 return false;
4617 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4618 return false;
4619 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4620 return false;
4621 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4622 return false;
4623 if (!tr_valid(vcpu))
4624 return false;
4625 if (!ldtr_valid(vcpu))
4626 return false;
4627 }
4628 /* TODO:
4629 * - Add checks on RIP
4630 * - Add checks on RFLAGS
4631 */
4632
4633 return true;
4634 }
4635
4636 static int init_rmode_tss(struct kvm *kvm)
4637 {
4638 gfn_t fn;
4639 u16 data = 0;
4640 int idx, r;
4641
4642 idx = srcu_read_lock(&kvm->srcu);
4643 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4644 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4645 if (r < 0)
4646 goto out;
4647 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4648 r = kvm_write_guest_page(kvm, fn++, &data,
4649 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4650 if (r < 0)
4651 goto out;
4652 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4653 if (r < 0)
4654 goto out;
4655 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4656 if (r < 0)
4657 goto out;
4658 data = ~0;
4659 r = kvm_write_guest_page(kvm, fn, &data,
4660 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4661 sizeof(u8));
4662 out:
4663 srcu_read_unlock(&kvm->srcu, idx);
4664 return r;
4665 }
4666
4667 static int init_rmode_identity_map(struct kvm *kvm)
4668 {
4669 int i, idx, r = 0;
4670 kvm_pfn_t identity_map_pfn;
4671 u32 tmp;
4672
4673 if (!enable_ept)
4674 return 0;
4675
4676 /* Protect kvm->arch.ept_identity_pagetable_done. */
4677 mutex_lock(&kvm->slots_lock);
4678
4679 if (likely(kvm->arch.ept_identity_pagetable_done))
4680 goto out2;
4681
4682 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4683
4684 r = alloc_identity_pagetable(kvm);
4685 if (r < 0)
4686 goto out2;
4687
4688 idx = srcu_read_lock(&kvm->srcu);
4689 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4690 if (r < 0)
4691 goto out;
4692 /* Set up identity-mapping pagetable for EPT in real mode */
4693 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4694 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4695 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4696 r = kvm_write_guest_page(kvm, identity_map_pfn,
4697 &tmp, i * sizeof(tmp), sizeof(tmp));
4698 if (r < 0)
4699 goto out;
4700 }
4701 kvm->arch.ept_identity_pagetable_done = true;
4702
4703 out:
4704 srcu_read_unlock(&kvm->srcu, idx);
4705
4706 out2:
4707 mutex_unlock(&kvm->slots_lock);
4708 return r;
4709 }
4710
4711 static void seg_setup(int seg)
4712 {
4713 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4714 unsigned int ar;
4715
4716 vmcs_write16(sf->selector, 0);
4717 vmcs_writel(sf->base, 0);
4718 vmcs_write32(sf->limit, 0xffff);
4719 ar = 0x93;
4720 if (seg == VCPU_SREG_CS)
4721 ar |= 0x08; /* code segment */
4722
4723 vmcs_write32(sf->ar_bytes, ar);
4724 }
4725
4726 static int alloc_apic_access_page(struct kvm *kvm)
4727 {
4728 struct page *page;
4729 int r = 0;
4730
4731 mutex_lock(&kvm->slots_lock);
4732 if (kvm->arch.apic_access_page_done)
4733 goto out;
4734 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4735 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4736 if (r)
4737 goto out;
4738
4739 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4740 if (is_error_page(page)) {
4741 r = -EFAULT;
4742 goto out;
4743 }
4744
4745 /*
4746 * Do not pin the page in memory, so that memory hot-unplug
4747 * is able to migrate it.
4748 */
4749 put_page(page);
4750 kvm->arch.apic_access_page_done = true;
4751 out:
4752 mutex_unlock(&kvm->slots_lock);
4753 return r;
4754 }
4755
4756 static int alloc_identity_pagetable(struct kvm *kvm)
4757 {
4758 /* Called with kvm->slots_lock held. */
4759
4760 int r = 0;
4761
4762 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4763
4764 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4765 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4766
4767 return r;
4768 }
4769
4770 static int allocate_vpid(void)
4771 {
4772 int vpid;
4773
4774 if (!enable_vpid)
4775 return 0;
4776 spin_lock(&vmx_vpid_lock);
4777 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4778 if (vpid < VMX_NR_VPIDS)
4779 __set_bit(vpid, vmx_vpid_bitmap);
4780 else
4781 vpid = 0;
4782 spin_unlock(&vmx_vpid_lock);
4783 return vpid;
4784 }
4785
4786 static void free_vpid(int vpid)
4787 {
4788 if (!enable_vpid || vpid == 0)
4789 return;
4790 spin_lock(&vmx_vpid_lock);
4791 __clear_bit(vpid, vmx_vpid_bitmap);
4792 spin_unlock(&vmx_vpid_lock);
4793 }
4794
4795 #define MSR_TYPE_R 1
4796 #define MSR_TYPE_W 2
4797 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4798 u32 msr, int type)
4799 {
4800 int f = sizeof(unsigned long);
4801
4802 if (!cpu_has_vmx_msr_bitmap())
4803 return;
4804
4805 /*
4806 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4807 * have the write-low and read-high bitmap offsets the wrong way round.
4808 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4809 */
4810 if (msr <= 0x1fff) {
4811 if (type & MSR_TYPE_R)
4812 /* read-low */
4813 __clear_bit(msr, msr_bitmap + 0x000 / f);
4814
4815 if (type & MSR_TYPE_W)
4816 /* write-low */
4817 __clear_bit(msr, msr_bitmap + 0x800 / f);
4818
4819 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4820 msr &= 0x1fff;
4821 if (type & MSR_TYPE_R)
4822 /* read-high */
4823 __clear_bit(msr, msr_bitmap + 0x400 / f);
4824
4825 if (type & MSR_TYPE_W)
4826 /* write-high */
4827 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4828
4829 }
4830 }
4831
4832 /*
4833 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4834 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4835 */
4836 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4837 unsigned long *msr_bitmap_nested,
4838 u32 msr, int type)
4839 {
4840 int f = sizeof(unsigned long);
4841
4842 if (!cpu_has_vmx_msr_bitmap()) {
4843 WARN_ON(1);
4844 return;
4845 }
4846
4847 /*
4848 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4849 * have the write-low and read-high bitmap offsets the wrong way round.
4850 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4851 */
4852 if (msr <= 0x1fff) {
4853 if (type & MSR_TYPE_R &&
4854 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4855 /* read-low */
4856 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4857
4858 if (type & MSR_TYPE_W &&
4859 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4860 /* write-low */
4861 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4862
4863 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4864 msr &= 0x1fff;
4865 if (type & MSR_TYPE_R &&
4866 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4867 /* read-high */
4868 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4869
4870 if (type & MSR_TYPE_W &&
4871 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4872 /* write-high */
4873 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4874
4875 }
4876 }
4877
4878 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4879 {
4880 if (!longmode_only)
4881 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4882 msr, MSR_TYPE_R | MSR_TYPE_W);
4883 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4884 msr, MSR_TYPE_R | MSR_TYPE_W);
4885 }
4886
4887 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4888 {
4889 if (apicv_active) {
4890 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4891 msr, type);
4892 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4893 msr, type);
4894 } else {
4895 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4896 msr, type);
4897 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4898 msr, type);
4899 }
4900 }
4901
4902 static bool vmx_get_enable_apicv(void)
4903 {
4904 return enable_apicv;
4905 }
4906
4907 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4908 {
4909 struct vcpu_vmx *vmx = to_vmx(vcpu);
4910 int max_irr;
4911 void *vapic_page;
4912 u16 status;
4913
4914 if (vmx->nested.pi_desc &&
4915 vmx->nested.pi_pending) {
4916 vmx->nested.pi_pending = false;
4917 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4918 return;
4919
4920 max_irr = find_last_bit(
4921 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4922
4923 if (max_irr == 256)
4924 return;
4925
4926 vapic_page = kmap(vmx->nested.virtual_apic_page);
4927 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4928 kunmap(vmx->nested.virtual_apic_page);
4929
4930 status = vmcs_read16(GUEST_INTR_STATUS);
4931 if ((u8)max_irr > ((u8)status & 0xff)) {
4932 status &= ~0xff;
4933 status |= (u8)max_irr;
4934 vmcs_write16(GUEST_INTR_STATUS, status);
4935 }
4936 }
4937 }
4938
4939 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4940 {
4941 #ifdef CONFIG_SMP
4942 if (vcpu->mode == IN_GUEST_MODE) {
4943 struct vcpu_vmx *vmx = to_vmx(vcpu);
4944
4945 /*
4946 * Currently, we don't support urgent interrupt,
4947 * all interrupts are recognized as non-urgent
4948 * interrupt, so we cannot post interrupts when
4949 * 'SN' is set.
4950 *
4951 * If the vcpu is in guest mode, it means it is
4952 * running instead of being scheduled out and
4953 * waiting in the run queue, and that's the only
4954 * case when 'SN' is set currently, warning if
4955 * 'SN' is set.
4956 */
4957 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4958
4959 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4960 POSTED_INTR_VECTOR);
4961 return true;
4962 }
4963 #endif
4964 return false;
4965 }
4966
4967 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4968 int vector)
4969 {
4970 struct vcpu_vmx *vmx = to_vmx(vcpu);
4971
4972 if (is_guest_mode(vcpu) &&
4973 vector == vmx->nested.posted_intr_nv) {
4974 /* the PIR and ON have been set by L1. */
4975 kvm_vcpu_trigger_posted_interrupt(vcpu);
4976 /*
4977 * If a posted intr is not recognized by hardware,
4978 * we will accomplish it in the next vmentry.
4979 */
4980 vmx->nested.pi_pending = true;
4981 kvm_make_request(KVM_REQ_EVENT, vcpu);
4982 return 0;
4983 }
4984 return -1;
4985 }
4986 /*
4987 * Send interrupt to vcpu via posted interrupt way.
4988 * 1. If target vcpu is running(non-root mode), send posted interrupt
4989 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4990 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4991 * interrupt from PIR in next vmentry.
4992 */
4993 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4994 {
4995 struct vcpu_vmx *vmx = to_vmx(vcpu);
4996 int r;
4997
4998 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4999 if (!r)
5000 return;
5001
5002 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5003 return;
5004
5005 /* If a previous notification has sent the IPI, nothing to do. */
5006 if (pi_test_and_set_on(&vmx->pi_desc))
5007 return;
5008
5009 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5010 kvm_vcpu_kick(vcpu);
5011 }
5012
5013 /*
5014 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5015 * will not change in the lifetime of the guest.
5016 * Note that host-state that does change is set elsewhere. E.g., host-state
5017 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5018 */
5019 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5020 {
5021 u32 low32, high32;
5022 unsigned long tmpl;
5023 struct desc_ptr dt;
5024 unsigned long cr0, cr4;
5025
5026 cr0 = read_cr0();
5027 WARN_ON(cr0 & X86_CR0_TS);
5028 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5029 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5030
5031 /* Save the most likely value for this task's CR4 in the VMCS. */
5032 cr4 = cr4_read_shadow();
5033 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5034 vmx->host_state.vmcs_host_cr4 = cr4;
5035
5036 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5037 #ifdef CONFIG_X86_64
5038 /*
5039 * Load null selectors, so we can avoid reloading them in
5040 * __vmx_load_host_state(), in case userspace uses the null selectors
5041 * too (the expected case).
5042 */
5043 vmcs_write16(HOST_DS_SELECTOR, 0);
5044 vmcs_write16(HOST_ES_SELECTOR, 0);
5045 #else
5046 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5047 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5048 #endif
5049 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5050 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5051
5052 native_store_idt(&dt);
5053 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5054 vmx->host_idt_base = dt.address;
5055
5056 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5057
5058 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5059 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5060 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5061 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5062
5063 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5064 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5065 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5066 }
5067 }
5068
5069 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5070 {
5071 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5072 if (enable_ept)
5073 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5074 if (is_guest_mode(&vmx->vcpu))
5075 vmx->vcpu.arch.cr4_guest_owned_bits &=
5076 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5077 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5078 }
5079
5080 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5081 {
5082 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5083
5084 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5085 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5086 /* Enable the preemption timer dynamically */
5087 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5088 return pin_based_exec_ctrl;
5089 }
5090
5091 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5092 {
5093 struct vcpu_vmx *vmx = to_vmx(vcpu);
5094
5095 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5096 if (cpu_has_secondary_exec_ctrls()) {
5097 if (kvm_vcpu_apicv_active(vcpu))
5098 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5099 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5100 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5101 else
5102 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5103 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5104 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5105 }
5106
5107 if (cpu_has_vmx_msr_bitmap())
5108 vmx_set_msr_bitmap(vcpu);
5109 }
5110
5111 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5112 {
5113 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5114
5115 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5116 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5117
5118 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5119 exec_control &= ~CPU_BASED_TPR_SHADOW;
5120 #ifdef CONFIG_X86_64
5121 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5122 CPU_BASED_CR8_LOAD_EXITING;
5123 #endif
5124 }
5125 if (!enable_ept)
5126 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5127 CPU_BASED_CR3_LOAD_EXITING |
5128 CPU_BASED_INVLPG_EXITING;
5129 return exec_control;
5130 }
5131
5132 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5133 {
5134 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5135 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5136 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5137 if (vmx->vpid == 0)
5138 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5139 if (!enable_ept) {
5140 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5141 enable_unrestricted_guest = 0;
5142 /* Enable INVPCID for non-ept guests may cause performance regression. */
5143 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5144 }
5145 if (!enable_unrestricted_guest)
5146 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5147 if (!ple_gap)
5148 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5149 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5150 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5151 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5152 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5153 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5154 (handle_vmptrld).
5155 We can NOT enable shadow_vmcs here because we don't have yet
5156 a current VMCS12
5157 */
5158 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5159
5160 if (!enable_pml)
5161 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5162
5163 return exec_control;
5164 }
5165
5166 static void ept_set_mmio_spte_mask(void)
5167 {
5168 /*
5169 * EPT Misconfigurations can be generated if the value of bits 2:0
5170 * of an EPT paging-structure entry is 110b (write/execute).
5171 */
5172 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
5173 }
5174
5175 #define VMX_XSS_EXIT_BITMAP 0
5176 /*
5177 * Sets up the vmcs for emulated real mode.
5178 */
5179 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5180 {
5181 #ifdef CONFIG_X86_64
5182 unsigned long a;
5183 #endif
5184 int i;
5185
5186 /* I/O */
5187 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5188 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5189
5190 if (enable_shadow_vmcs) {
5191 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5192 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5193 }
5194 if (cpu_has_vmx_msr_bitmap())
5195 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5196
5197 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5198
5199 /* Control */
5200 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5201 vmx->hv_deadline_tsc = -1;
5202
5203 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5204
5205 if (cpu_has_secondary_exec_ctrls()) {
5206 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5207 vmx_secondary_exec_control(vmx));
5208 }
5209
5210 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5211 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5212 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5213 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5214 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5215
5216 vmcs_write16(GUEST_INTR_STATUS, 0);
5217
5218 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5219 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5220 }
5221
5222 if (ple_gap) {
5223 vmcs_write32(PLE_GAP, ple_gap);
5224 vmx->ple_window = ple_window;
5225 vmx->ple_window_dirty = true;
5226 }
5227
5228 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5229 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5230 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5231
5232 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5233 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5234 vmx_set_constant_host_state(vmx);
5235 #ifdef CONFIG_X86_64
5236 rdmsrl(MSR_FS_BASE, a);
5237 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5238 rdmsrl(MSR_GS_BASE, a);
5239 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5240 #else
5241 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5242 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5243 #endif
5244
5245 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5246 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5247 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5248 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5249 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5250
5251 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5252 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5253
5254 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5255 u32 index = vmx_msr_index[i];
5256 u32 data_low, data_high;
5257 int j = vmx->nmsrs;
5258
5259 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5260 continue;
5261 if (wrmsr_safe(index, data_low, data_high) < 0)
5262 continue;
5263 vmx->guest_msrs[j].index = i;
5264 vmx->guest_msrs[j].data = 0;
5265 vmx->guest_msrs[j].mask = -1ull;
5266 ++vmx->nmsrs;
5267 }
5268
5269
5270 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5271
5272 /* 22.2.1, 20.8.1 */
5273 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5274
5275 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5276 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5277
5278 set_cr4_guest_host_mask(vmx);
5279
5280 if (vmx_xsaves_supported())
5281 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5282
5283 if (enable_pml) {
5284 ASSERT(vmx->pml_pg);
5285 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5286 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5287 }
5288
5289 return 0;
5290 }
5291
5292 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5293 {
5294 struct vcpu_vmx *vmx = to_vmx(vcpu);
5295 struct msr_data apic_base_msr;
5296 u64 cr0;
5297
5298 vmx->rmode.vm86_active = 0;
5299
5300 vmx->soft_vnmi_blocked = 0;
5301
5302 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5303 kvm_set_cr8(vcpu, 0);
5304
5305 if (!init_event) {
5306 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5307 MSR_IA32_APICBASE_ENABLE;
5308 if (kvm_vcpu_is_reset_bsp(vcpu))
5309 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5310 apic_base_msr.host_initiated = true;
5311 kvm_set_apic_base(vcpu, &apic_base_msr);
5312 }
5313
5314 vmx_segment_cache_clear(vmx);
5315
5316 seg_setup(VCPU_SREG_CS);
5317 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5318 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5319
5320 seg_setup(VCPU_SREG_DS);
5321 seg_setup(VCPU_SREG_ES);
5322 seg_setup(VCPU_SREG_FS);
5323 seg_setup(VCPU_SREG_GS);
5324 seg_setup(VCPU_SREG_SS);
5325
5326 vmcs_write16(GUEST_TR_SELECTOR, 0);
5327 vmcs_writel(GUEST_TR_BASE, 0);
5328 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5329 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5330
5331 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5332 vmcs_writel(GUEST_LDTR_BASE, 0);
5333 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5334 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5335
5336 if (!init_event) {
5337 vmcs_write32(GUEST_SYSENTER_CS, 0);
5338 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5339 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5340 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5341 }
5342
5343 vmcs_writel(GUEST_RFLAGS, 0x02);
5344 kvm_rip_write(vcpu, 0xfff0);
5345
5346 vmcs_writel(GUEST_GDTR_BASE, 0);
5347 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5348
5349 vmcs_writel(GUEST_IDTR_BASE, 0);
5350 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5351
5352 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5353 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5354 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5355
5356 setup_msrs(vmx);
5357
5358 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5359
5360 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5361 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5362 if (cpu_need_tpr_shadow(vcpu))
5363 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5364 __pa(vcpu->arch.apic->regs));
5365 vmcs_write32(TPR_THRESHOLD, 0);
5366 }
5367
5368 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5369
5370 if (kvm_vcpu_apicv_active(vcpu))
5371 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5372
5373 if (vmx->vpid != 0)
5374 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5375
5376 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5377 vmx->vcpu.arch.cr0 = cr0;
5378 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5379 vmx_set_cr4(vcpu, 0);
5380 vmx_set_efer(vcpu, 0);
5381
5382 update_exception_bitmap(vcpu);
5383
5384 vpid_sync_context(vmx->vpid);
5385 }
5386
5387 /*
5388 * In nested virtualization, check if L1 asked to exit on external interrupts.
5389 * For most existing hypervisors, this will always return true.
5390 */
5391 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5392 {
5393 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5394 PIN_BASED_EXT_INTR_MASK;
5395 }
5396
5397 /*
5398 * In nested virtualization, check if L1 has set
5399 * VM_EXIT_ACK_INTR_ON_EXIT
5400 */
5401 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5402 {
5403 return get_vmcs12(vcpu)->vm_exit_controls &
5404 VM_EXIT_ACK_INTR_ON_EXIT;
5405 }
5406
5407 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5408 {
5409 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5410 PIN_BASED_NMI_EXITING;
5411 }
5412
5413 static void enable_irq_window(struct kvm_vcpu *vcpu)
5414 {
5415 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5416 CPU_BASED_VIRTUAL_INTR_PENDING);
5417 }
5418
5419 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5420 {
5421 if (!cpu_has_virtual_nmis() ||
5422 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5423 enable_irq_window(vcpu);
5424 return;
5425 }
5426
5427 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5428 CPU_BASED_VIRTUAL_NMI_PENDING);
5429 }
5430
5431 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5432 {
5433 struct vcpu_vmx *vmx = to_vmx(vcpu);
5434 uint32_t intr;
5435 int irq = vcpu->arch.interrupt.nr;
5436
5437 trace_kvm_inj_virq(irq);
5438
5439 ++vcpu->stat.irq_injections;
5440 if (vmx->rmode.vm86_active) {
5441 int inc_eip = 0;
5442 if (vcpu->arch.interrupt.soft)
5443 inc_eip = vcpu->arch.event_exit_inst_len;
5444 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5445 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5446 return;
5447 }
5448 intr = irq | INTR_INFO_VALID_MASK;
5449 if (vcpu->arch.interrupt.soft) {
5450 intr |= INTR_TYPE_SOFT_INTR;
5451 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5452 vmx->vcpu.arch.event_exit_inst_len);
5453 } else
5454 intr |= INTR_TYPE_EXT_INTR;
5455 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5456 }
5457
5458 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5459 {
5460 struct vcpu_vmx *vmx = to_vmx(vcpu);
5461
5462 if (!is_guest_mode(vcpu)) {
5463 if (!cpu_has_virtual_nmis()) {
5464 /*
5465 * Tracking the NMI-blocked state in software is built upon
5466 * finding the next open IRQ window. This, in turn, depends on
5467 * well-behaving guests: They have to keep IRQs disabled at
5468 * least as long as the NMI handler runs. Otherwise we may
5469 * cause NMI nesting, maybe breaking the guest. But as this is
5470 * highly unlikely, we can live with the residual risk.
5471 */
5472 vmx->soft_vnmi_blocked = 1;
5473 vmx->vnmi_blocked_time = 0;
5474 }
5475
5476 ++vcpu->stat.nmi_injections;
5477 vmx->nmi_known_unmasked = false;
5478 }
5479
5480 if (vmx->rmode.vm86_active) {
5481 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5482 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5483 return;
5484 }
5485
5486 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5487 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5488 }
5489
5490 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5491 {
5492 if (!cpu_has_virtual_nmis())
5493 return to_vmx(vcpu)->soft_vnmi_blocked;
5494 if (to_vmx(vcpu)->nmi_known_unmasked)
5495 return false;
5496 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5497 }
5498
5499 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5500 {
5501 struct vcpu_vmx *vmx = to_vmx(vcpu);
5502
5503 if (!cpu_has_virtual_nmis()) {
5504 if (vmx->soft_vnmi_blocked != masked) {
5505 vmx->soft_vnmi_blocked = masked;
5506 vmx->vnmi_blocked_time = 0;
5507 }
5508 } else {
5509 vmx->nmi_known_unmasked = !masked;
5510 if (masked)
5511 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5512 GUEST_INTR_STATE_NMI);
5513 else
5514 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5515 GUEST_INTR_STATE_NMI);
5516 }
5517 }
5518
5519 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5520 {
5521 if (to_vmx(vcpu)->nested.nested_run_pending)
5522 return 0;
5523
5524 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5525 return 0;
5526
5527 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5528 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5529 | GUEST_INTR_STATE_NMI));
5530 }
5531
5532 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5533 {
5534 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5535 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5536 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5537 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5538 }
5539
5540 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5541 {
5542 int ret;
5543
5544 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5545 PAGE_SIZE * 3);
5546 if (ret)
5547 return ret;
5548 kvm->arch.tss_addr = addr;
5549 return init_rmode_tss(kvm);
5550 }
5551
5552 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5553 {
5554 switch (vec) {
5555 case BP_VECTOR:
5556 /*
5557 * Update instruction length as we may reinject the exception
5558 * from user space while in guest debugging mode.
5559 */
5560 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5561 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5562 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5563 return false;
5564 /* fall through */
5565 case DB_VECTOR:
5566 if (vcpu->guest_debug &
5567 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5568 return false;
5569 /* fall through */
5570 case DE_VECTOR:
5571 case OF_VECTOR:
5572 case BR_VECTOR:
5573 case UD_VECTOR:
5574 case DF_VECTOR:
5575 case SS_VECTOR:
5576 case GP_VECTOR:
5577 case MF_VECTOR:
5578 return true;
5579 break;
5580 }
5581 return false;
5582 }
5583
5584 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5585 int vec, u32 err_code)
5586 {
5587 /*
5588 * Instruction with address size override prefix opcode 0x67
5589 * Cause the #SS fault with 0 error code in VM86 mode.
5590 */
5591 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5592 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5593 if (vcpu->arch.halt_request) {
5594 vcpu->arch.halt_request = 0;
5595 return kvm_vcpu_halt(vcpu);
5596 }
5597 return 1;
5598 }
5599 return 0;
5600 }
5601
5602 /*
5603 * Forward all other exceptions that are valid in real mode.
5604 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5605 * the required debugging infrastructure rework.
5606 */
5607 kvm_queue_exception(vcpu, vec);
5608 return 1;
5609 }
5610
5611 /*
5612 * Trigger machine check on the host. We assume all the MSRs are already set up
5613 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5614 * We pass a fake environment to the machine check handler because we want
5615 * the guest to be always treated like user space, no matter what context
5616 * it used internally.
5617 */
5618 static void kvm_machine_check(void)
5619 {
5620 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5621 struct pt_regs regs = {
5622 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5623 .flags = X86_EFLAGS_IF,
5624 };
5625
5626 do_machine_check(&regs, 0);
5627 #endif
5628 }
5629
5630 static int handle_machine_check(struct kvm_vcpu *vcpu)
5631 {
5632 /* already handled by vcpu_run */
5633 return 1;
5634 }
5635
5636 static int handle_exception(struct kvm_vcpu *vcpu)
5637 {
5638 struct vcpu_vmx *vmx = to_vmx(vcpu);
5639 struct kvm_run *kvm_run = vcpu->run;
5640 u32 intr_info, ex_no, error_code;
5641 unsigned long cr2, rip, dr6;
5642 u32 vect_info;
5643 enum emulation_result er;
5644
5645 vect_info = vmx->idt_vectoring_info;
5646 intr_info = vmx->exit_intr_info;
5647
5648 if (is_machine_check(intr_info))
5649 return handle_machine_check(vcpu);
5650
5651 if (is_nmi(intr_info))
5652 return 1; /* already handled by vmx_vcpu_run() */
5653
5654 if (is_invalid_opcode(intr_info)) {
5655 if (is_guest_mode(vcpu)) {
5656 kvm_queue_exception(vcpu, UD_VECTOR);
5657 return 1;
5658 }
5659 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5660 if (er != EMULATE_DONE)
5661 kvm_queue_exception(vcpu, UD_VECTOR);
5662 return 1;
5663 }
5664
5665 error_code = 0;
5666 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5667 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5668
5669 /*
5670 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5671 * MMIO, it is better to report an internal error.
5672 * See the comments in vmx_handle_exit.
5673 */
5674 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5675 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5676 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5677 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5678 vcpu->run->internal.ndata = 3;
5679 vcpu->run->internal.data[0] = vect_info;
5680 vcpu->run->internal.data[1] = intr_info;
5681 vcpu->run->internal.data[2] = error_code;
5682 return 0;
5683 }
5684
5685 if (is_page_fault(intr_info)) {
5686 /* EPT won't cause page fault directly */
5687 BUG_ON(enable_ept);
5688 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5689 trace_kvm_page_fault(cr2, error_code);
5690
5691 if (kvm_event_needs_reinjection(vcpu))
5692 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5693 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5694 }
5695
5696 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5697
5698 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5699 return handle_rmode_exception(vcpu, ex_no, error_code);
5700
5701 switch (ex_no) {
5702 case AC_VECTOR:
5703 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5704 return 1;
5705 case DB_VECTOR:
5706 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5707 if (!(vcpu->guest_debug &
5708 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5709 vcpu->arch.dr6 &= ~15;
5710 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5711 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5712 skip_emulated_instruction(vcpu);
5713
5714 kvm_queue_exception(vcpu, DB_VECTOR);
5715 return 1;
5716 }
5717 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5718 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5719 /* fall through */
5720 case BP_VECTOR:
5721 /*
5722 * Update instruction length as we may reinject #BP from
5723 * user space while in guest debugging mode. Reading it for
5724 * #DB as well causes no harm, it is not used in that case.
5725 */
5726 vmx->vcpu.arch.event_exit_inst_len =
5727 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5728 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5729 rip = kvm_rip_read(vcpu);
5730 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5731 kvm_run->debug.arch.exception = ex_no;
5732 break;
5733 default:
5734 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5735 kvm_run->ex.exception = ex_no;
5736 kvm_run->ex.error_code = error_code;
5737 break;
5738 }
5739 return 0;
5740 }
5741
5742 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5743 {
5744 ++vcpu->stat.irq_exits;
5745 return 1;
5746 }
5747
5748 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5749 {
5750 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5751 return 0;
5752 }
5753
5754 static int handle_io(struct kvm_vcpu *vcpu)
5755 {
5756 unsigned long exit_qualification;
5757 int size, in, string, ret;
5758 unsigned port;
5759
5760 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5761 string = (exit_qualification & 16) != 0;
5762 in = (exit_qualification & 8) != 0;
5763
5764 ++vcpu->stat.io_exits;
5765
5766 if (string || in)
5767 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5768
5769 port = exit_qualification >> 16;
5770 size = (exit_qualification & 7) + 1;
5771
5772 ret = kvm_skip_emulated_instruction(vcpu);
5773
5774 /*
5775 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5776 * KVM_EXIT_DEBUG here.
5777 */
5778 return kvm_fast_pio_out(vcpu, size, port) && ret;
5779 }
5780
5781 static void
5782 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5783 {
5784 /*
5785 * Patch in the VMCALL instruction:
5786 */
5787 hypercall[0] = 0x0f;
5788 hypercall[1] = 0x01;
5789 hypercall[2] = 0xc1;
5790 }
5791
5792 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5793 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5794 {
5795 if (is_guest_mode(vcpu)) {
5796 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5797 unsigned long orig_val = val;
5798
5799 /*
5800 * We get here when L2 changed cr0 in a way that did not change
5801 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5802 * but did change L0 shadowed bits. So we first calculate the
5803 * effective cr0 value that L1 would like to write into the
5804 * hardware. It consists of the L2-owned bits from the new
5805 * value combined with the L1-owned bits from L1's guest_cr0.
5806 */
5807 val = (val & ~vmcs12->cr0_guest_host_mask) |
5808 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5809
5810 if (!nested_guest_cr0_valid(vcpu, val))
5811 return 1;
5812
5813 if (kvm_set_cr0(vcpu, val))
5814 return 1;
5815 vmcs_writel(CR0_READ_SHADOW, orig_val);
5816 return 0;
5817 } else {
5818 if (to_vmx(vcpu)->nested.vmxon &&
5819 !nested_host_cr0_valid(vcpu, val))
5820 return 1;
5821
5822 return kvm_set_cr0(vcpu, val);
5823 }
5824 }
5825
5826 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5827 {
5828 if (is_guest_mode(vcpu)) {
5829 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5830 unsigned long orig_val = val;
5831
5832 /* analogously to handle_set_cr0 */
5833 val = (val & ~vmcs12->cr4_guest_host_mask) |
5834 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5835 if (kvm_set_cr4(vcpu, val))
5836 return 1;
5837 vmcs_writel(CR4_READ_SHADOW, orig_val);
5838 return 0;
5839 } else
5840 return kvm_set_cr4(vcpu, val);
5841 }
5842
5843 static int handle_cr(struct kvm_vcpu *vcpu)
5844 {
5845 unsigned long exit_qualification, val;
5846 int cr;
5847 int reg;
5848 int err;
5849 int ret;
5850
5851 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5852 cr = exit_qualification & 15;
5853 reg = (exit_qualification >> 8) & 15;
5854 switch ((exit_qualification >> 4) & 3) {
5855 case 0: /* mov to cr */
5856 val = kvm_register_readl(vcpu, reg);
5857 trace_kvm_cr_write(cr, val);
5858 switch (cr) {
5859 case 0:
5860 err = handle_set_cr0(vcpu, val);
5861 return kvm_complete_insn_gp(vcpu, err);
5862 case 3:
5863 err = kvm_set_cr3(vcpu, val);
5864 return kvm_complete_insn_gp(vcpu, err);
5865 case 4:
5866 err = handle_set_cr4(vcpu, val);
5867 return kvm_complete_insn_gp(vcpu, err);
5868 case 8: {
5869 u8 cr8_prev = kvm_get_cr8(vcpu);
5870 u8 cr8 = (u8)val;
5871 err = kvm_set_cr8(vcpu, cr8);
5872 ret = kvm_complete_insn_gp(vcpu, err);
5873 if (lapic_in_kernel(vcpu))
5874 return ret;
5875 if (cr8_prev <= cr8)
5876 return ret;
5877 /*
5878 * TODO: we might be squashing a
5879 * KVM_GUESTDBG_SINGLESTEP-triggered
5880 * KVM_EXIT_DEBUG here.
5881 */
5882 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5883 return 0;
5884 }
5885 }
5886 break;
5887 case 2: /* clts */
5888 WARN_ONCE(1, "Guest should always own CR0.TS");
5889 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5890 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5891 return kvm_skip_emulated_instruction(vcpu);
5892 case 1: /*mov from cr*/
5893 switch (cr) {
5894 case 3:
5895 val = kvm_read_cr3(vcpu);
5896 kvm_register_write(vcpu, reg, val);
5897 trace_kvm_cr_read(cr, val);
5898 return kvm_skip_emulated_instruction(vcpu);
5899 case 8:
5900 val = kvm_get_cr8(vcpu);
5901 kvm_register_write(vcpu, reg, val);
5902 trace_kvm_cr_read(cr, val);
5903 return kvm_skip_emulated_instruction(vcpu);
5904 }
5905 break;
5906 case 3: /* lmsw */
5907 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5908 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5909 kvm_lmsw(vcpu, val);
5910
5911 return kvm_skip_emulated_instruction(vcpu);
5912 default:
5913 break;
5914 }
5915 vcpu->run->exit_reason = 0;
5916 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5917 (int)(exit_qualification >> 4) & 3, cr);
5918 return 0;
5919 }
5920
5921 static int handle_dr(struct kvm_vcpu *vcpu)
5922 {
5923 unsigned long exit_qualification;
5924 int dr, dr7, reg;
5925
5926 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5927 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5928
5929 /* First, if DR does not exist, trigger UD */
5930 if (!kvm_require_dr(vcpu, dr))
5931 return 1;
5932
5933 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5934 if (!kvm_require_cpl(vcpu, 0))
5935 return 1;
5936 dr7 = vmcs_readl(GUEST_DR7);
5937 if (dr7 & DR7_GD) {
5938 /*
5939 * As the vm-exit takes precedence over the debug trap, we
5940 * need to emulate the latter, either for the host or the
5941 * guest debugging itself.
5942 */
5943 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5944 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5945 vcpu->run->debug.arch.dr7 = dr7;
5946 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5947 vcpu->run->debug.arch.exception = DB_VECTOR;
5948 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5949 return 0;
5950 } else {
5951 vcpu->arch.dr6 &= ~15;
5952 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5953 kvm_queue_exception(vcpu, DB_VECTOR);
5954 return 1;
5955 }
5956 }
5957
5958 if (vcpu->guest_debug == 0) {
5959 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5960 CPU_BASED_MOV_DR_EXITING);
5961
5962 /*
5963 * No more DR vmexits; force a reload of the debug registers
5964 * and reenter on this instruction. The next vmexit will
5965 * retrieve the full state of the debug registers.
5966 */
5967 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5968 return 1;
5969 }
5970
5971 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5972 if (exit_qualification & TYPE_MOV_FROM_DR) {
5973 unsigned long val;
5974
5975 if (kvm_get_dr(vcpu, dr, &val))
5976 return 1;
5977 kvm_register_write(vcpu, reg, val);
5978 } else
5979 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5980 return 1;
5981
5982 return kvm_skip_emulated_instruction(vcpu);
5983 }
5984
5985 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5986 {
5987 return vcpu->arch.dr6;
5988 }
5989
5990 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5991 {
5992 }
5993
5994 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5995 {
5996 get_debugreg(vcpu->arch.db[0], 0);
5997 get_debugreg(vcpu->arch.db[1], 1);
5998 get_debugreg(vcpu->arch.db[2], 2);
5999 get_debugreg(vcpu->arch.db[3], 3);
6000 get_debugreg(vcpu->arch.dr6, 6);
6001 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6002
6003 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6004 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6005 }
6006
6007 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6008 {
6009 vmcs_writel(GUEST_DR7, val);
6010 }
6011
6012 static int handle_cpuid(struct kvm_vcpu *vcpu)
6013 {
6014 return kvm_emulate_cpuid(vcpu);
6015 }
6016
6017 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6018 {
6019 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6020 struct msr_data msr_info;
6021
6022 msr_info.index = ecx;
6023 msr_info.host_initiated = false;
6024 if (vmx_get_msr(vcpu, &msr_info)) {
6025 trace_kvm_msr_read_ex(ecx);
6026 kvm_inject_gp(vcpu, 0);
6027 return 1;
6028 }
6029
6030 trace_kvm_msr_read(ecx, msr_info.data);
6031
6032 /* FIXME: handling of bits 32:63 of rax, rdx */
6033 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6034 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6035 return kvm_skip_emulated_instruction(vcpu);
6036 }
6037
6038 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6039 {
6040 struct msr_data msr;
6041 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6042 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6043 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6044
6045 msr.data = data;
6046 msr.index = ecx;
6047 msr.host_initiated = false;
6048 if (kvm_set_msr(vcpu, &msr) != 0) {
6049 trace_kvm_msr_write_ex(ecx, data);
6050 kvm_inject_gp(vcpu, 0);
6051 return 1;
6052 }
6053
6054 trace_kvm_msr_write(ecx, data);
6055 return kvm_skip_emulated_instruction(vcpu);
6056 }
6057
6058 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6059 {
6060 kvm_apic_update_ppr(vcpu);
6061 return 1;
6062 }
6063
6064 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6065 {
6066 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6067 CPU_BASED_VIRTUAL_INTR_PENDING);
6068
6069 kvm_make_request(KVM_REQ_EVENT, vcpu);
6070
6071 ++vcpu->stat.irq_window_exits;
6072 return 1;
6073 }
6074
6075 static int handle_halt(struct kvm_vcpu *vcpu)
6076 {
6077 return kvm_emulate_halt(vcpu);
6078 }
6079
6080 static int handle_vmcall(struct kvm_vcpu *vcpu)
6081 {
6082 return kvm_emulate_hypercall(vcpu);
6083 }
6084
6085 static int handle_invd(struct kvm_vcpu *vcpu)
6086 {
6087 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6088 }
6089
6090 static int handle_invlpg(struct kvm_vcpu *vcpu)
6091 {
6092 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6093
6094 kvm_mmu_invlpg(vcpu, exit_qualification);
6095 return kvm_skip_emulated_instruction(vcpu);
6096 }
6097
6098 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6099 {
6100 int err;
6101
6102 err = kvm_rdpmc(vcpu);
6103 return kvm_complete_insn_gp(vcpu, err);
6104 }
6105
6106 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6107 {
6108 return kvm_emulate_wbinvd(vcpu);
6109 }
6110
6111 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6112 {
6113 u64 new_bv = kvm_read_edx_eax(vcpu);
6114 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6115
6116 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6117 return kvm_skip_emulated_instruction(vcpu);
6118 return 1;
6119 }
6120
6121 static int handle_xsaves(struct kvm_vcpu *vcpu)
6122 {
6123 kvm_skip_emulated_instruction(vcpu);
6124 WARN(1, "this should never happen\n");
6125 return 1;
6126 }
6127
6128 static int handle_xrstors(struct kvm_vcpu *vcpu)
6129 {
6130 kvm_skip_emulated_instruction(vcpu);
6131 WARN(1, "this should never happen\n");
6132 return 1;
6133 }
6134
6135 static int handle_apic_access(struct kvm_vcpu *vcpu)
6136 {
6137 if (likely(fasteoi)) {
6138 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6139 int access_type, offset;
6140
6141 access_type = exit_qualification & APIC_ACCESS_TYPE;
6142 offset = exit_qualification & APIC_ACCESS_OFFSET;
6143 /*
6144 * Sane guest uses MOV to write EOI, with written value
6145 * not cared. So make a short-circuit here by avoiding
6146 * heavy instruction emulation.
6147 */
6148 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6149 (offset == APIC_EOI)) {
6150 kvm_lapic_set_eoi(vcpu);
6151 return kvm_skip_emulated_instruction(vcpu);
6152 }
6153 }
6154 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6155 }
6156
6157 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6158 {
6159 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6160 int vector = exit_qualification & 0xff;
6161
6162 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6163 kvm_apic_set_eoi_accelerated(vcpu, vector);
6164 return 1;
6165 }
6166
6167 static int handle_apic_write(struct kvm_vcpu *vcpu)
6168 {
6169 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6170 u32 offset = exit_qualification & 0xfff;
6171
6172 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6173 kvm_apic_write_nodecode(vcpu, offset);
6174 return 1;
6175 }
6176
6177 static int handle_task_switch(struct kvm_vcpu *vcpu)
6178 {
6179 struct vcpu_vmx *vmx = to_vmx(vcpu);
6180 unsigned long exit_qualification;
6181 bool has_error_code = false;
6182 u32 error_code = 0;
6183 u16 tss_selector;
6184 int reason, type, idt_v, idt_index;
6185
6186 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6187 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6188 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6189
6190 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6191
6192 reason = (u32)exit_qualification >> 30;
6193 if (reason == TASK_SWITCH_GATE && idt_v) {
6194 switch (type) {
6195 case INTR_TYPE_NMI_INTR:
6196 vcpu->arch.nmi_injected = false;
6197 vmx_set_nmi_mask(vcpu, true);
6198 break;
6199 case INTR_TYPE_EXT_INTR:
6200 case INTR_TYPE_SOFT_INTR:
6201 kvm_clear_interrupt_queue(vcpu);
6202 break;
6203 case INTR_TYPE_HARD_EXCEPTION:
6204 if (vmx->idt_vectoring_info &
6205 VECTORING_INFO_DELIVER_CODE_MASK) {
6206 has_error_code = true;
6207 error_code =
6208 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6209 }
6210 /* fall through */
6211 case INTR_TYPE_SOFT_EXCEPTION:
6212 kvm_clear_exception_queue(vcpu);
6213 break;
6214 default:
6215 break;
6216 }
6217 }
6218 tss_selector = exit_qualification;
6219
6220 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6221 type != INTR_TYPE_EXT_INTR &&
6222 type != INTR_TYPE_NMI_INTR))
6223 skip_emulated_instruction(vcpu);
6224
6225 if (kvm_task_switch(vcpu, tss_selector,
6226 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6227 has_error_code, error_code) == EMULATE_FAIL) {
6228 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6229 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6230 vcpu->run->internal.ndata = 0;
6231 return 0;
6232 }
6233
6234 /*
6235 * TODO: What about debug traps on tss switch?
6236 * Are we supposed to inject them and update dr6?
6237 */
6238
6239 return 1;
6240 }
6241
6242 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6243 {
6244 unsigned long exit_qualification;
6245 gpa_t gpa;
6246 u32 error_code;
6247 int gla_validity;
6248
6249 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6250
6251 gla_validity = (exit_qualification >> 7) & 0x3;
6252 if (gla_validity == 0x2) {
6253 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6254 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6255 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6256 vmcs_readl(GUEST_LINEAR_ADDRESS));
6257 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6258 (long unsigned int)exit_qualification);
6259 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6260 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6261 return 0;
6262 }
6263
6264 /*
6265 * EPT violation happened while executing iret from NMI,
6266 * "blocked by NMI" bit has to be set before next VM entry.
6267 * There are errata that may cause this bit to not be set:
6268 * AAK134, BY25.
6269 */
6270 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6271 cpu_has_virtual_nmis() &&
6272 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6273 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6274
6275 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6276 trace_kvm_page_fault(gpa, exit_qualification);
6277
6278 /* Is it a read fault? */
6279 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6280 ? PFERR_USER_MASK : 0;
6281 /* Is it a write fault? */
6282 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6283 ? PFERR_WRITE_MASK : 0;
6284 /* Is it a fetch fault? */
6285 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6286 ? PFERR_FETCH_MASK : 0;
6287 /* ept page table entry is present? */
6288 error_code |= (exit_qualification &
6289 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6290 EPT_VIOLATION_EXECUTABLE))
6291 ? PFERR_PRESENT_MASK : 0;
6292
6293 vcpu->arch.gpa_available = true;
6294 vcpu->arch.exit_qualification = exit_qualification;
6295
6296 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6297 }
6298
6299 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6300 {
6301 int ret;
6302 gpa_t gpa;
6303
6304 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6305 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6306 trace_kvm_fast_mmio(gpa);
6307 return kvm_skip_emulated_instruction(vcpu);
6308 }
6309
6310 ret = handle_mmio_page_fault(vcpu, gpa, true);
6311 vcpu->arch.gpa_available = true;
6312 if (likely(ret == RET_MMIO_PF_EMULATE))
6313 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6314 EMULATE_DONE;
6315
6316 if (unlikely(ret == RET_MMIO_PF_INVALID))
6317 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6318
6319 if (unlikely(ret == RET_MMIO_PF_RETRY))
6320 return 1;
6321
6322 /* It is the real ept misconfig */
6323 WARN_ON(1);
6324
6325 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6326 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6327
6328 return 0;
6329 }
6330
6331 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6332 {
6333 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6334 CPU_BASED_VIRTUAL_NMI_PENDING);
6335 ++vcpu->stat.nmi_window_exits;
6336 kvm_make_request(KVM_REQ_EVENT, vcpu);
6337
6338 return 1;
6339 }
6340
6341 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6342 {
6343 struct vcpu_vmx *vmx = to_vmx(vcpu);
6344 enum emulation_result err = EMULATE_DONE;
6345 int ret = 1;
6346 u32 cpu_exec_ctrl;
6347 bool intr_window_requested;
6348 unsigned count = 130;
6349
6350 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6351 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6352
6353 while (vmx->emulation_required && count-- != 0) {
6354 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6355 return handle_interrupt_window(&vmx->vcpu);
6356
6357 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6358 return 1;
6359
6360 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6361
6362 if (err == EMULATE_USER_EXIT) {
6363 ++vcpu->stat.mmio_exits;
6364 ret = 0;
6365 goto out;
6366 }
6367
6368 if (err != EMULATE_DONE) {
6369 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6370 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6371 vcpu->run->internal.ndata = 0;
6372 return 0;
6373 }
6374
6375 if (vcpu->arch.halt_request) {
6376 vcpu->arch.halt_request = 0;
6377 ret = kvm_vcpu_halt(vcpu);
6378 goto out;
6379 }
6380
6381 if (signal_pending(current))
6382 goto out;
6383 if (need_resched())
6384 schedule();
6385 }
6386
6387 out:
6388 return ret;
6389 }
6390
6391 static int __grow_ple_window(int val)
6392 {
6393 if (ple_window_grow < 1)
6394 return ple_window;
6395
6396 val = min(val, ple_window_actual_max);
6397
6398 if (ple_window_grow < ple_window)
6399 val *= ple_window_grow;
6400 else
6401 val += ple_window_grow;
6402
6403 return val;
6404 }
6405
6406 static int __shrink_ple_window(int val, int modifier, int minimum)
6407 {
6408 if (modifier < 1)
6409 return ple_window;
6410
6411 if (modifier < ple_window)
6412 val /= modifier;
6413 else
6414 val -= modifier;
6415
6416 return max(val, minimum);
6417 }
6418
6419 static void grow_ple_window(struct kvm_vcpu *vcpu)
6420 {
6421 struct vcpu_vmx *vmx = to_vmx(vcpu);
6422 int old = vmx->ple_window;
6423
6424 vmx->ple_window = __grow_ple_window(old);
6425
6426 if (vmx->ple_window != old)
6427 vmx->ple_window_dirty = true;
6428
6429 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6430 }
6431
6432 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6433 {
6434 struct vcpu_vmx *vmx = to_vmx(vcpu);
6435 int old = vmx->ple_window;
6436
6437 vmx->ple_window = __shrink_ple_window(old,
6438 ple_window_shrink, ple_window);
6439
6440 if (vmx->ple_window != old)
6441 vmx->ple_window_dirty = true;
6442
6443 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6444 }
6445
6446 /*
6447 * ple_window_actual_max is computed to be one grow_ple_window() below
6448 * ple_window_max. (See __grow_ple_window for the reason.)
6449 * This prevents overflows, because ple_window_max is int.
6450 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6451 * this process.
6452 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6453 */
6454 static void update_ple_window_actual_max(void)
6455 {
6456 ple_window_actual_max =
6457 __shrink_ple_window(max(ple_window_max, ple_window),
6458 ple_window_grow, INT_MIN);
6459 }
6460
6461 /*
6462 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6463 */
6464 static void wakeup_handler(void)
6465 {
6466 struct kvm_vcpu *vcpu;
6467 int cpu = smp_processor_id();
6468
6469 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6470 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6471 blocked_vcpu_list) {
6472 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6473
6474 if (pi_test_on(pi_desc) == 1)
6475 kvm_vcpu_kick(vcpu);
6476 }
6477 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6478 }
6479
6480 void vmx_enable_tdp(void)
6481 {
6482 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6483 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6484 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6485 0ull, VMX_EPT_EXECUTABLE_MASK,
6486 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6487 enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
6488
6489 ept_set_mmio_spte_mask();
6490 kvm_enable_tdp();
6491 }
6492
6493 static __init int hardware_setup(void)
6494 {
6495 int r = -ENOMEM, i, msr;
6496
6497 rdmsrl_safe(MSR_EFER, &host_efer);
6498
6499 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6500 kvm_define_shared_msr(i, vmx_msr_index[i]);
6501
6502 for (i = 0; i < VMX_BITMAP_NR; i++) {
6503 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6504 if (!vmx_bitmap[i])
6505 goto out;
6506 }
6507
6508 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6509 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6510 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6511
6512 /*
6513 * Allow direct access to the PC debug port (it is often used for I/O
6514 * delays, but the vmexits simply slow things down).
6515 */
6516 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6517 clear_bit(0x80, vmx_io_bitmap_a);
6518
6519 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6520
6521 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6522 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6523
6524 if (setup_vmcs_config(&vmcs_config) < 0) {
6525 r = -EIO;
6526 goto out;
6527 }
6528
6529 if (boot_cpu_has(X86_FEATURE_NX))
6530 kvm_enable_efer_bits(EFER_NX);
6531
6532 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6533 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6534 enable_vpid = 0;
6535
6536 if (!cpu_has_vmx_shadow_vmcs())
6537 enable_shadow_vmcs = 0;
6538 if (enable_shadow_vmcs)
6539 init_vmcs_shadow_fields();
6540
6541 if (!cpu_has_vmx_ept() ||
6542 !cpu_has_vmx_ept_4levels()) {
6543 enable_ept = 0;
6544 enable_unrestricted_guest = 0;
6545 enable_ept_ad_bits = 0;
6546 }
6547
6548 if (!cpu_has_vmx_ept_ad_bits())
6549 enable_ept_ad_bits = 0;
6550
6551 if (!cpu_has_vmx_unrestricted_guest())
6552 enable_unrestricted_guest = 0;
6553
6554 if (!cpu_has_vmx_flexpriority())
6555 flexpriority_enabled = 0;
6556
6557 /*
6558 * set_apic_access_page_addr() is used to reload apic access
6559 * page upon invalidation. No need to do anything if not
6560 * using the APIC_ACCESS_ADDR VMCS field.
6561 */
6562 if (!flexpriority_enabled)
6563 kvm_x86_ops->set_apic_access_page_addr = NULL;
6564
6565 if (!cpu_has_vmx_tpr_shadow())
6566 kvm_x86_ops->update_cr8_intercept = NULL;
6567
6568 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6569 kvm_disable_largepages();
6570
6571 if (!cpu_has_vmx_ple())
6572 ple_gap = 0;
6573
6574 if (!cpu_has_vmx_apicv()) {
6575 enable_apicv = 0;
6576 kvm_x86_ops->sync_pir_to_irr = NULL;
6577 }
6578
6579 if (cpu_has_vmx_tsc_scaling()) {
6580 kvm_has_tsc_control = true;
6581 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6582 kvm_tsc_scaling_ratio_frac_bits = 48;
6583 }
6584
6585 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6586 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6587 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6588 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6589 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6590 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6591 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6592
6593 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6594 vmx_msr_bitmap_legacy, PAGE_SIZE);
6595 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6596 vmx_msr_bitmap_longmode, PAGE_SIZE);
6597 memcpy(vmx_msr_bitmap_legacy_x2apic,
6598 vmx_msr_bitmap_legacy, PAGE_SIZE);
6599 memcpy(vmx_msr_bitmap_longmode_x2apic,
6600 vmx_msr_bitmap_longmode, PAGE_SIZE);
6601
6602 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6603
6604 for (msr = 0x800; msr <= 0x8ff; msr++) {
6605 if (msr == 0x839 /* TMCCT */)
6606 continue;
6607 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6608 }
6609
6610 /*
6611 * TPR reads and writes can be virtualized even if virtual interrupt
6612 * delivery is not in use.
6613 */
6614 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6615 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6616
6617 /* EOI */
6618 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6619 /* SELF-IPI */
6620 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6621
6622 if (enable_ept)
6623 vmx_enable_tdp();
6624 else
6625 kvm_disable_tdp();
6626
6627 update_ple_window_actual_max();
6628
6629 /*
6630 * Only enable PML when hardware supports PML feature, and both EPT
6631 * and EPT A/D bit features are enabled -- PML depends on them to work.
6632 */
6633 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6634 enable_pml = 0;
6635
6636 if (!enable_pml) {
6637 kvm_x86_ops->slot_enable_log_dirty = NULL;
6638 kvm_x86_ops->slot_disable_log_dirty = NULL;
6639 kvm_x86_ops->flush_log_dirty = NULL;
6640 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6641 }
6642
6643 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6644 u64 vmx_msr;
6645
6646 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6647 cpu_preemption_timer_multi =
6648 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6649 } else {
6650 kvm_x86_ops->set_hv_timer = NULL;
6651 kvm_x86_ops->cancel_hv_timer = NULL;
6652 }
6653
6654 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6655
6656 kvm_mce_cap_supported |= MCG_LMCE_P;
6657
6658 return alloc_kvm_area();
6659
6660 out:
6661 for (i = 0; i < VMX_BITMAP_NR; i++)
6662 free_page((unsigned long)vmx_bitmap[i]);
6663
6664 return r;
6665 }
6666
6667 static __exit void hardware_unsetup(void)
6668 {
6669 int i;
6670
6671 for (i = 0; i < VMX_BITMAP_NR; i++)
6672 free_page((unsigned long)vmx_bitmap[i]);
6673
6674 free_kvm_area();
6675 }
6676
6677 /*
6678 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6679 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6680 */
6681 static int handle_pause(struct kvm_vcpu *vcpu)
6682 {
6683 if (ple_gap)
6684 grow_ple_window(vcpu);
6685
6686 kvm_vcpu_on_spin(vcpu);
6687 return kvm_skip_emulated_instruction(vcpu);
6688 }
6689
6690 static int handle_nop(struct kvm_vcpu *vcpu)
6691 {
6692 return kvm_skip_emulated_instruction(vcpu);
6693 }
6694
6695 static int handle_mwait(struct kvm_vcpu *vcpu)
6696 {
6697 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6698 return handle_nop(vcpu);
6699 }
6700
6701 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6702 {
6703 return 1;
6704 }
6705
6706 static int handle_monitor(struct kvm_vcpu *vcpu)
6707 {
6708 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6709 return handle_nop(vcpu);
6710 }
6711
6712 /*
6713 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6714 * We could reuse a single VMCS for all the L2 guests, but we also want the
6715 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6716 * allows keeping them loaded on the processor, and in the future will allow
6717 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6718 * every entry if they never change.
6719 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6720 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6721 *
6722 * The following functions allocate and free a vmcs02 in this pool.
6723 */
6724
6725 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6726 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6727 {
6728 struct vmcs02_list *item;
6729 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6730 if (item->vmptr == vmx->nested.current_vmptr) {
6731 list_move(&item->list, &vmx->nested.vmcs02_pool);
6732 return &item->vmcs02;
6733 }
6734
6735 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6736 /* Recycle the least recently used VMCS. */
6737 item = list_last_entry(&vmx->nested.vmcs02_pool,
6738 struct vmcs02_list, list);
6739 item->vmptr = vmx->nested.current_vmptr;
6740 list_move(&item->list, &vmx->nested.vmcs02_pool);
6741 return &item->vmcs02;
6742 }
6743
6744 /* Create a new VMCS */
6745 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6746 if (!item)
6747 return NULL;
6748 item->vmcs02.vmcs = alloc_vmcs();
6749 item->vmcs02.shadow_vmcs = NULL;
6750 if (!item->vmcs02.vmcs) {
6751 kfree(item);
6752 return NULL;
6753 }
6754 loaded_vmcs_init(&item->vmcs02);
6755 item->vmptr = vmx->nested.current_vmptr;
6756 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6757 vmx->nested.vmcs02_num++;
6758 return &item->vmcs02;
6759 }
6760
6761 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6762 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6763 {
6764 struct vmcs02_list *item;
6765 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6766 if (item->vmptr == vmptr) {
6767 free_loaded_vmcs(&item->vmcs02);
6768 list_del(&item->list);
6769 kfree(item);
6770 vmx->nested.vmcs02_num--;
6771 return;
6772 }
6773 }
6774
6775 /*
6776 * Free all VMCSs saved for this vcpu, except the one pointed by
6777 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6778 * must be &vmx->vmcs01.
6779 */
6780 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6781 {
6782 struct vmcs02_list *item, *n;
6783
6784 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6785 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6786 /*
6787 * Something will leak if the above WARN triggers. Better than
6788 * a use-after-free.
6789 */
6790 if (vmx->loaded_vmcs == &item->vmcs02)
6791 continue;
6792
6793 free_loaded_vmcs(&item->vmcs02);
6794 list_del(&item->list);
6795 kfree(item);
6796 vmx->nested.vmcs02_num--;
6797 }
6798 }
6799
6800 /*
6801 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6802 * set the success or error code of an emulated VMX instruction, as specified
6803 * by Vol 2B, VMX Instruction Reference, "Conventions".
6804 */
6805 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6806 {
6807 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6808 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6809 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6810 }
6811
6812 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6813 {
6814 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6815 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6816 X86_EFLAGS_SF | X86_EFLAGS_OF))
6817 | X86_EFLAGS_CF);
6818 }
6819
6820 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6821 u32 vm_instruction_error)
6822 {
6823 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6824 /*
6825 * failValid writes the error number to the current VMCS, which
6826 * can't be done there isn't a current VMCS.
6827 */
6828 nested_vmx_failInvalid(vcpu);
6829 return;
6830 }
6831 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6832 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6833 X86_EFLAGS_SF | X86_EFLAGS_OF))
6834 | X86_EFLAGS_ZF);
6835 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6836 /*
6837 * We don't need to force a shadow sync because
6838 * VM_INSTRUCTION_ERROR is not shadowed
6839 */
6840 }
6841
6842 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6843 {
6844 /* TODO: not to reset guest simply here. */
6845 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6846 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6847 }
6848
6849 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6850 {
6851 struct vcpu_vmx *vmx =
6852 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6853
6854 vmx->nested.preemption_timer_expired = true;
6855 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6856 kvm_vcpu_kick(&vmx->vcpu);
6857
6858 return HRTIMER_NORESTART;
6859 }
6860
6861 /*
6862 * Decode the memory-address operand of a vmx instruction, as recorded on an
6863 * exit caused by such an instruction (run by a guest hypervisor).
6864 * On success, returns 0. When the operand is invalid, returns 1 and throws
6865 * #UD or #GP.
6866 */
6867 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6868 unsigned long exit_qualification,
6869 u32 vmx_instruction_info, bool wr, gva_t *ret)
6870 {
6871 gva_t off;
6872 bool exn;
6873 struct kvm_segment s;
6874
6875 /*
6876 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6877 * Execution", on an exit, vmx_instruction_info holds most of the
6878 * addressing components of the operand. Only the displacement part
6879 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6880 * For how an actual address is calculated from all these components,
6881 * refer to Vol. 1, "Operand Addressing".
6882 */
6883 int scaling = vmx_instruction_info & 3;
6884 int addr_size = (vmx_instruction_info >> 7) & 7;
6885 bool is_reg = vmx_instruction_info & (1u << 10);
6886 int seg_reg = (vmx_instruction_info >> 15) & 7;
6887 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6888 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6889 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6890 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6891
6892 if (is_reg) {
6893 kvm_queue_exception(vcpu, UD_VECTOR);
6894 return 1;
6895 }
6896
6897 /* Addr = segment_base + offset */
6898 /* offset = base + [index * scale] + displacement */
6899 off = exit_qualification; /* holds the displacement */
6900 if (base_is_valid)
6901 off += kvm_register_read(vcpu, base_reg);
6902 if (index_is_valid)
6903 off += kvm_register_read(vcpu, index_reg)<<scaling;
6904 vmx_get_segment(vcpu, &s, seg_reg);
6905 *ret = s.base + off;
6906
6907 if (addr_size == 1) /* 32 bit */
6908 *ret &= 0xffffffff;
6909
6910 /* Checks for #GP/#SS exceptions. */
6911 exn = false;
6912 if (is_long_mode(vcpu)) {
6913 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6914 * non-canonical form. This is the only check on the memory
6915 * destination for long mode!
6916 */
6917 exn = is_noncanonical_address(*ret);
6918 } else if (is_protmode(vcpu)) {
6919 /* Protected mode: apply checks for segment validity in the
6920 * following order:
6921 * - segment type check (#GP(0) may be thrown)
6922 * - usability check (#GP(0)/#SS(0))
6923 * - limit check (#GP(0)/#SS(0))
6924 */
6925 if (wr)
6926 /* #GP(0) if the destination operand is located in a
6927 * read-only data segment or any code segment.
6928 */
6929 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6930 else
6931 /* #GP(0) if the source operand is located in an
6932 * execute-only code segment
6933 */
6934 exn = ((s.type & 0xa) == 8);
6935 if (exn) {
6936 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6937 return 1;
6938 }
6939 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6940 */
6941 exn = (s.unusable != 0);
6942 /* Protected mode: #GP(0)/#SS(0) if the memory
6943 * operand is outside the segment limit.
6944 */
6945 exn = exn || (off + sizeof(u64) > s.limit);
6946 }
6947 if (exn) {
6948 kvm_queue_exception_e(vcpu,
6949 seg_reg == VCPU_SREG_SS ?
6950 SS_VECTOR : GP_VECTOR,
6951 0);
6952 return 1;
6953 }
6954
6955 return 0;
6956 }
6957
6958 /*
6959 * This function performs the various checks including
6960 * - if it's 4KB aligned
6961 * - No bits beyond the physical address width are set
6962 * - Returns 0 on success or else 1
6963 * (Intel SDM Section 30.3)
6964 */
6965 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6966 gpa_t *vmpointer)
6967 {
6968 gva_t gva;
6969 gpa_t vmptr;
6970 struct x86_exception e;
6971 struct page *page;
6972 struct vcpu_vmx *vmx = to_vmx(vcpu);
6973 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6974
6975 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6976 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6977 return 1;
6978
6979 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6980 sizeof(vmptr), &e)) {
6981 kvm_inject_page_fault(vcpu, &e);
6982 return 1;
6983 }
6984
6985 switch (exit_reason) {
6986 case EXIT_REASON_VMON:
6987 /*
6988 * SDM 3: 24.11.5
6989 * The first 4 bytes of VMXON region contain the supported
6990 * VMCS revision identifier
6991 *
6992 * Note - IA32_VMX_BASIC[48] will never be 1
6993 * for the nested case;
6994 * which replaces physical address width with 32
6995 *
6996 */
6997 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6998 nested_vmx_failInvalid(vcpu);
6999 return kvm_skip_emulated_instruction(vcpu);
7000 }
7001
7002 page = nested_get_page(vcpu, vmptr);
7003 if (page == NULL) {
7004 nested_vmx_failInvalid(vcpu);
7005 return kvm_skip_emulated_instruction(vcpu);
7006 }
7007 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7008 kunmap(page);
7009 nested_release_page_clean(page);
7010 nested_vmx_failInvalid(vcpu);
7011 return kvm_skip_emulated_instruction(vcpu);
7012 }
7013 kunmap(page);
7014 nested_release_page_clean(page);
7015 vmx->nested.vmxon_ptr = vmptr;
7016 break;
7017 case EXIT_REASON_VMCLEAR:
7018 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
7019 nested_vmx_failValid(vcpu,
7020 VMXERR_VMCLEAR_INVALID_ADDRESS);
7021 return kvm_skip_emulated_instruction(vcpu);
7022 }
7023
7024 if (vmptr == vmx->nested.vmxon_ptr) {
7025 nested_vmx_failValid(vcpu,
7026 VMXERR_VMCLEAR_VMXON_POINTER);
7027 return kvm_skip_emulated_instruction(vcpu);
7028 }
7029 break;
7030 case EXIT_REASON_VMPTRLD:
7031 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
7032 nested_vmx_failValid(vcpu,
7033 VMXERR_VMPTRLD_INVALID_ADDRESS);
7034 return kvm_skip_emulated_instruction(vcpu);
7035 }
7036
7037 if (vmptr == vmx->nested.vmxon_ptr) {
7038 nested_vmx_failValid(vcpu,
7039 VMXERR_VMPTRLD_VMXON_POINTER);
7040 return kvm_skip_emulated_instruction(vcpu);
7041 }
7042 break;
7043 default:
7044 return 1; /* shouldn't happen */
7045 }
7046
7047 if (vmpointer)
7048 *vmpointer = vmptr;
7049 return 0;
7050 }
7051
7052 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7053 {
7054 struct vcpu_vmx *vmx = to_vmx(vcpu);
7055 struct vmcs *shadow_vmcs;
7056
7057 if (cpu_has_vmx_msr_bitmap()) {
7058 vmx->nested.msr_bitmap =
7059 (unsigned long *)__get_free_page(GFP_KERNEL);
7060 if (!vmx->nested.msr_bitmap)
7061 goto out_msr_bitmap;
7062 }
7063
7064 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7065 if (!vmx->nested.cached_vmcs12)
7066 goto out_cached_vmcs12;
7067
7068 if (enable_shadow_vmcs) {
7069 shadow_vmcs = alloc_vmcs();
7070 if (!shadow_vmcs)
7071 goto out_shadow_vmcs;
7072 /* mark vmcs as shadow */
7073 shadow_vmcs->revision_id |= (1u << 31);
7074 /* init shadow vmcs */
7075 vmcs_clear(shadow_vmcs);
7076 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7077 }
7078
7079 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7080 vmx->nested.vmcs02_num = 0;
7081
7082 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7083 HRTIMER_MODE_REL_PINNED);
7084 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7085
7086 vmx->nested.vmxon = true;
7087 return 0;
7088
7089 out_shadow_vmcs:
7090 kfree(vmx->nested.cached_vmcs12);
7091
7092 out_cached_vmcs12:
7093 free_page((unsigned long)vmx->nested.msr_bitmap);
7094
7095 out_msr_bitmap:
7096 return -ENOMEM;
7097 }
7098
7099 /*
7100 * Emulate the VMXON instruction.
7101 * Currently, we just remember that VMX is active, and do not save or even
7102 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7103 * do not currently need to store anything in that guest-allocated memory
7104 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7105 * argument is different from the VMXON pointer (which the spec says they do).
7106 */
7107 static int handle_vmon(struct kvm_vcpu *vcpu)
7108 {
7109 int ret;
7110 struct kvm_segment cs;
7111 struct vcpu_vmx *vmx = to_vmx(vcpu);
7112 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7113 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7114
7115 /* The Intel VMX Instruction Reference lists a bunch of bits that
7116 * are prerequisite to running VMXON, most notably cr4.VMXE must be
7117 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7118 * Otherwise, we should fail with #UD. We test these now:
7119 */
7120 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7121 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7122 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7123 kvm_queue_exception(vcpu, UD_VECTOR);
7124 return 1;
7125 }
7126
7127 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7128 if (is_long_mode(vcpu) && !cs.l) {
7129 kvm_queue_exception(vcpu, UD_VECTOR);
7130 return 1;
7131 }
7132
7133 if (vmx_get_cpl(vcpu)) {
7134 kvm_inject_gp(vcpu, 0);
7135 return 1;
7136 }
7137
7138 if (vmx->nested.vmxon) {
7139 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7140 return kvm_skip_emulated_instruction(vcpu);
7141 }
7142
7143 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7144 != VMXON_NEEDED_FEATURES) {
7145 kvm_inject_gp(vcpu, 0);
7146 return 1;
7147 }
7148
7149 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7150 return 1;
7151
7152 ret = enter_vmx_operation(vcpu);
7153 if (ret)
7154 return ret;
7155
7156 nested_vmx_succeed(vcpu);
7157 return kvm_skip_emulated_instruction(vcpu);
7158 }
7159
7160 /*
7161 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7162 * for running VMX instructions (except VMXON, whose prerequisites are
7163 * slightly different). It also specifies what exception to inject otherwise.
7164 */
7165 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7166 {
7167 struct kvm_segment cs;
7168 struct vcpu_vmx *vmx = to_vmx(vcpu);
7169
7170 if (!vmx->nested.vmxon) {
7171 kvm_queue_exception(vcpu, UD_VECTOR);
7172 return 0;
7173 }
7174
7175 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7176 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7177 (is_long_mode(vcpu) && !cs.l)) {
7178 kvm_queue_exception(vcpu, UD_VECTOR);
7179 return 0;
7180 }
7181
7182 if (vmx_get_cpl(vcpu)) {
7183 kvm_inject_gp(vcpu, 0);
7184 return 0;
7185 }
7186
7187 return 1;
7188 }
7189
7190 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7191 {
7192 if (vmx->nested.current_vmptr == -1ull)
7193 return;
7194
7195 /* current_vmptr and current_vmcs12 are always set/reset together */
7196 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7197 return;
7198
7199 if (enable_shadow_vmcs) {
7200 /* copy to memory all shadowed fields in case
7201 they were modified */
7202 copy_shadow_to_vmcs12(vmx);
7203 vmx->nested.sync_shadow_vmcs = false;
7204 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7205 SECONDARY_EXEC_SHADOW_VMCS);
7206 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7207 }
7208 vmx->nested.posted_intr_nv = -1;
7209
7210 /* Flush VMCS12 to guest memory */
7211 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7212 VMCS12_SIZE);
7213
7214 kunmap(vmx->nested.current_vmcs12_page);
7215 nested_release_page(vmx->nested.current_vmcs12_page);
7216 vmx->nested.current_vmptr = -1ull;
7217 vmx->nested.current_vmcs12 = NULL;
7218 }
7219
7220 /*
7221 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7222 * just stops using VMX.
7223 */
7224 static void free_nested(struct vcpu_vmx *vmx)
7225 {
7226 if (!vmx->nested.vmxon)
7227 return;
7228
7229 vmx->nested.vmxon = false;
7230 free_vpid(vmx->nested.vpid02);
7231 nested_release_vmcs12(vmx);
7232 if (vmx->nested.msr_bitmap) {
7233 free_page((unsigned long)vmx->nested.msr_bitmap);
7234 vmx->nested.msr_bitmap = NULL;
7235 }
7236 if (enable_shadow_vmcs) {
7237 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7238 free_vmcs(vmx->vmcs01.shadow_vmcs);
7239 vmx->vmcs01.shadow_vmcs = NULL;
7240 }
7241 kfree(vmx->nested.cached_vmcs12);
7242 /* Unpin physical memory we referred to in current vmcs02 */
7243 if (vmx->nested.apic_access_page) {
7244 nested_release_page(vmx->nested.apic_access_page);
7245 vmx->nested.apic_access_page = NULL;
7246 }
7247 if (vmx->nested.virtual_apic_page) {
7248 nested_release_page(vmx->nested.virtual_apic_page);
7249 vmx->nested.virtual_apic_page = NULL;
7250 }
7251 if (vmx->nested.pi_desc_page) {
7252 kunmap(vmx->nested.pi_desc_page);
7253 nested_release_page(vmx->nested.pi_desc_page);
7254 vmx->nested.pi_desc_page = NULL;
7255 vmx->nested.pi_desc = NULL;
7256 }
7257
7258 nested_free_all_saved_vmcss(vmx);
7259 }
7260
7261 /* Emulate the VMXOFF instruction */
7262 static int handle_vmoff(struct kvm_vcpu *vcpu)
7263 {
7264 if (!nested_vmx_check_permission(vcpu))
7265 return 1;
7266 free_nested(to_vmx(vcpu));
7267 nested_vmx_succeed(vcpu);
7268 return kvm_skip_emulated_instruction(vcpu);
7269 }
7270
7271 /* Emulate the VMCLEAR instruction */
7272 static int handle_vmclear(struct kvm_vcpu *vcpu)
7273 {
7274 struct vcpu_vmx *vmx = to_vmx(vcpu);
7275 u32 zero = 0;
7276 gpa_t vmptr;
7277
7278 if (!nested_vmx_check_permission(vcpu))
7279 return 1;
7280
7281 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7282 return 1;
7283
7284 if (vmptr == vmx->nested.current_vmptr)
7285 nested_release_vmcs12(vmx);
7286
7287 kvm_vcpu_write_guest(vcpu,
7288 vmptr + offsetof(struct vmcs12, launch_state),
7289 &zero, sizeof(zero));
7290
7291 nested_free_vmcs02(vmx, vmptr);
7292
7293 nested_vmx_succeed(vcpu);
7294 return kvm_skip_emulated_instruction(vcpu);
7295 }
7296
7297 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7298
7299 /* Emulate the VMLAUNCH instruction */
7300 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7301 {
7302 return nested_vmx_run(vcpu, true);
7303 }
7304
7305 /* Emulate the VMRESUME instruction */
7306 static int handle_vmresume(struct kvm_vcpu *vcpu)
7307 {
7308
7309 return nested_vmx_run(vcpu, false);
7310 }
7311
7312 enum vmcs_field_type {
7313 VMCS_FIELD_TYPE_U16 = 0,
7314 VMCS_FIELD_TYPE_U64 = 1,
7315 VMCS_FIELD_TYPE_U32 = 2,
7316 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7317 };
7318
7319 static inline int vmcs_field_type(unsigned long field)
7320 {
7321 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7322 return VMCS_FIELD_TYPE_U32;
7323 return (field >> 13) & 0x3 ;
7324 }
7325
7326 static inline int vmcs_field_readonly(unsigned long field)
7327 {
7328 return (((field >> 10) & 0x3) == 1);
7329 }
7330
7331 /*
7332 * Read a vmcs12 field. Since these can have varying lengths and we return
7333 * one type, we chose the biggest type (u64) and zero-extend the return value
7334 * to that size. Note that the caller, handle_vmread, might need to use only
7335 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7336 * 64-bit fields are to be returned).
7337 */
7338 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7339 unsigned long field, u64 *ret)
7340 {
7341 short offset = vmcs_field_to_offset(field);
7342 char *p;
7343
7344 if (offset < 0)
7345 return offset;
7346
7347 p = ((char *)(get_vmcs12(vcpu))) + offset;
7348
7349 switch (vmcs_field_type(field)) {
7350 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7351 *ret = *((natural_width *)p);
7352 return 0;
7353 case VMCS_FIELD_TYPE_U16:
7354 *ret = *((u16 *)p);
7355 return 0;
7356 case VMCS_FIELD_TYPE_U32:
7357 *ret = *((u32 *)p);
7358 return 0;
7359 case VMCS_FIELD_TYPE_U64:
7360 *ret = *((u64 *)p);
7361 return 0;
7362 default:
7363 WARN_ON(1);
7364 return -ENOENT;
7365 }
7366 }
7367
7368
7369 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7370 unsigned long field, u64 field_value){
7371 short offset = vmcs_field_to_offset(field);
7372 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7373 if (offset < 0)
7374 return offset;
7375
7376 switch (vmcs_field_type(field)) {
7377 case VMCS_FIELD_TYPE_U16:
7378 *(u16 *)p = field_value;
7379 return 0;
7380 case VMCS_FIELD_TYPE_U32:
7381 *(u32 *)p = field_value;
7382 return 0;
7383 case VMCS_FIELD_TYPE_U64:
7384 *(u64 *)p = field_value;
7385 return 0;
7386 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7387 *(natural_width *)p = field_value;
7388 return 0;
7389 default:
7390 WARN_ON(1);
7391 return -ENOENT;
7392 }
7393
7394 }
7395
7396 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7397 {
7398 int i;
7399 unsigned long field;
7400 u64 field_value;
7401 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7402 const unsigned long *fields = shadow_read_write_fields;
7403 const int num_fields = max_shadow_read_write_fields;
7404
7405 preempt_disable();
7406
7407 vmcs_load(shadow_vmcs);
7408
7409 for (i = 0; i < num_fields; i++) {
7410 field = fields[i];
7411 switch (vmcs_field_type(field)) {
7412 case VMCS_FIELD_TYPE_U16:
7413 field_value = vmcs_read16(field);
7414 break;
7415 case VMCS_FIELD_TYPE_U32:
7416 field_value = vmcs_read32(field);
7417 break;
7418 case VMCS_FIELD_TYPE_U64:
7419 field_value = vmcs_read64(field);
7420 break;
7421 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7422 field_value = vmcs_readl(field);
7423 break;
7424 default:
7425 WARN_ON(1);
7426 continue;
7427 }
7428 vmcs12_write_any(&vmx->vcpu, field, field_value);
7429 }
7430
7431 vmcs_clear(shadow_vmcs);
7432 vmcs_load(vmx->loaded_vmcs->vmcs);
7433
7434 preempt_enable();
7435 }
7436
7437 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7438 {
7439 const unsigned long *fields[] = {
7440 shadow_read_write_fields,
7441 shadow_read_only_fields
7442 };
7443 const int max_fields[] = {
7444 max_shadow_read_write_fields,
7445 max_shadow_read_only_fields
7446 };
7447 int i, q;
7448 unsigned long field;
7449 u64 field_value = 0;
7450 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7451
7452 vmcs_load(shadow_vmcs);
7453
7454 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7455 for (i = 0; i < max_fields[q]; i++) {
7456 field = fields[q][i];
7457 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7458
7459 switch (vmcs_field_type(field)) {
7460 case VMCS_FIELD_TYPE_U16:
7461 vmcs_write16(field, (u16)field_value);
7462 break;
7463 case VMCS_FIELD_TYPE_U32:
7464 vmcs_write32(field, (u32)field_value);
7465 break;
7466 case VMCS_FIELD_TYPE_U64:
7467 vmcs_write64(field, (u64)field_value);
7468 break;
7469 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7470 vmcs_writel(field, (long)field_value);
7471 break;
7472 default:
7473 WARN_ON(1);
7474 break;
7475 }
7476 }
7477 }
7478
7479 vmcs_clear(shadow_vmcs);
7480 vmcs_load(vmx->loaded_vmcs->vmcs);
7481 }
7482
7483 /*
7484 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7485 * used before) all generate the same failure when it is missing.
7486 */
7487 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7488 {
7489 struct vcpu_vmx *vmx = to_vmx(vcpu);
7490 if (vmx->nested.current_vmptr == -1ull) {
7491 nested_vmx_failInvalid(vcpu);
7492 return 0;
7493 }
7494 return 1;
7495 }
7496
7497 static int handle_vmread(struct kvm_vcpu *vcpu)
7498 {
7499 unsigned long field;
7500 u64 field_value;
7501 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7502 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7503 gva_t gva = 0;
7504
7505 if (!nested_vmx_check_permission(vcpu))
7506 return 1;
7507
7508 if (!nested_vmx_check_vmcs12(vcpu))
7509 return kvm_skip_emulated_instruction(vcpu);
7510
7511 /* Decode instruction info and find the field to read */
7512 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7513 /* Read the field, zero-extended to a u64 field_value */
7514 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7515 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7516 return kvm_skip_emulated_instruction(vcpu);
7517 }
7518 /*
7519 * Now copy part of this value to register or memory, as requested.
7520 * Note that the number of bits actually copied is 32 or 64 depending
7521 * on the guest's mode (32 or 64 bit), not on the given field's length.
7522 */
7523 if (vmx_instruction_info & (1u << 10)) {
7524 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7525 field_value);
7526 } else {
7527 if (get_vmx_mem_address(vcpu, exit_qualification,
7528 vmx_instruction_info, true, &gva))
7529 return 1;
7530 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7531 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7532 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7533 }
7534
7535 nested_vmx_succeed(vcpu);
7536 return kvm_skip_emulated_instruction(vcpu);
7537 }
7538
7539
7540 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7541 {
7542 unsigned long field;
7543 gva_t gva;
7544 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7545 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7546 /* The value to write might be 32 or 64 bits, depending on L1's long
7547 * mode, and eventually we need to write that into a field of several
7548 * possible lengths. The code below first zero-extends the value to 64
7549 * bit (field_value), and then copies only the appropriate number of
7550 * bits into the vmcs12 field.
7551 */
7552 u64 field_value = 0;
7553 struct x86_exception e;
7554
7555 if (!nested_vmx_check_permission(vcpu))
7556 return 1;
7557
7558 if (!nested_vmx_check_vmcs12(vcpu))
7559 return kvm_skip_emulated_instruction(vcpu);
7560
7561 if (vmx_instruction_info & (1u << 10))
7562 field_value = kvm_register_readl(vcpu,
7563 (((vmx_instruction_info) >> 3) & 0xf));
7564 else {
7565 if (get_vmx_mem_address(vcpu, exit_qualification,
7566 vmx_instruction_info, false, &gva))
7567 return 1;
7568 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7569 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7570 kvm_inject_page_fault(vcpu, &e);
7571 return 1;
7572 }
7573 }
7574
7575
7576 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7577 if (vmcs_field_readonly(field)) {
7578 nested_vmx_failValid(vcpu,
7579 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7580 return kvm_skip_emulated_instruction(vcpu);
7581 }
7582
7583 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7584 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7585 return kvm_skip_emulated_instruction(vcpu);
7586 }
7587
7588 nested_vmx_succeed(vcpu);
7589 return kvm_skip_emulated_instruction(vcpu);
7590 }
7591
7592 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7593 {
7594 vmx->nested.current_vmptr = vmptr;
7595 if (enable_shadow_vmcs) {
7596 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7597 SECONDARY_EXEC_SHADOW_VMCS);
7598 vmcs_write64(VMCS_LINK_POINTER,
7599 __pa(vmx->vmcs01.shadow_vmcs));
7600 vmx->nested.sync_shadow_vmcs = true;
7601 }
7602 }
7603
7604 /* Emulate the VMPTRLD instruction */
7605 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7606 {
7607 struct vcpu_vmx *vmx = to_vmx(vcpu);
7608 gpa_t vmptr;
7609
7610 if (!nested_vmx_check_permission(vcpu))
7611 return 1;
7612
7613 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7614 return 1;
7615
7616 if (vmx->nested.current_vmptr != vmptr) {
7617 struct vmcs12 *new_vmcs12;
7618 struct page *page;
7619 page = nested_get_page(vcpu, vmptr);
7620 if (page == NULL) {
7621 nested_vmx_failInvalid(vcpu);
7622 return kvm_skip_emulated_instruction(vcpu);
7623 }
7624 new_vmcs12 = kmap(page);
7625 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7626 kunmap(page);
7627 nested_release_page_clean(page);
7628 nested_vmx_failValid(vcpu,
7629 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7630 return kvm_skip_emulated_instruction(vcpu);
7631 }
7632
7633 nested_release_vmcs12(vmx);
7634 vmx->nested.current_vmcs12 = new_vmcs12;
7635 vmx->nested.current_vmcs12_page = page;
7636 /*
7637 * Load VMCS12 from guest memory since it is not already
7638 * cached.
7639 */
7640 memcpy(vmx->nested.cached_vmcs12,
7641 vmx->nested.current_vmcs12, VMCS12_SIZE);
7642 set_current_vmptr(vmx, vmptr);
7643 }
7644
7645 nested_vmx_succeed(vcpu);
7646 return kvm_skip_emulated_instruction(vcpu);
7647 }
7648
7649 /* Emulate the VMPTRST instruction */
7650 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7651 {
7652 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7653 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7654 gva_t vmcs_gva;
7655 struct x86_exception e;
7656
7657 if (!nested_vmx_check_permission(vcpu))
7658 return 1;
7659
7660 if (get_vmx_mem_address(vcpu, exit_qualification,
7661 vmx_instruction_info, true, &vmcs_gva))
7662 return 1;
7663 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7664 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7665 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7666 sizeof(u64), &e)) {
7667 kvm_inject_page_fault(vcpu, &e);
7668 return 1;
7669 }
7670 nested_vmx_succeed(vcpu);
7671 return kvm_skip_emulated_instruction(vcpu);
7672 }
7673
7674 /* Emulate the INVEPT instruction */
7675 static int handle_invept(struct kvm_vcpu *vcpu)
7676 {
7677 struct vcpu_vmx *vmx = to_vmx(vcpu);
7678 u32 vmx_instruction_info, types;
7679 unsigned long type;
7680 gva_t gva;
7681 struct x86_exception e;
7682 struct {
7683 u64 eptp, gpa;
7684 } operand;
7685
7686 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7687 SECONDARY_EXEC_ENABLE_EPT) ||
7688 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7689 kvm_queue_exception(vcpu, UD_VECTOR);
7690 return 1;
7691 }
7692
7693 if (!nested_vmx_check_permission(vcpu))
7694 return 1;
7695
7696 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7697 kvm_queue_exception(vcpu, UD_VECTOR);
7698 return 1;
7699 }
7700
7701 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7702 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7703
7704 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7705
7706 if (type >= 32 || !(types & (1 << type))) {
7707 nested_vmx_failValid(vcpu,
7708 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7709 return kvm_skip_emulated_instruction(vcpu);
7710 }
7711
7712 /* According to the Intel VMX instruction reference, the memory
7713 * operand is read even if it isn't needed (e.g., for type==global)
7714 */
7715 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7716 vmx_instruction_info, false, &gva))
7717 return 1;
7718 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7719 sizeof(operand), &e)) {
7720 kvm_inject_page_fault(vcpu, &e);
7721 return 1;
7722 }
7723
7724 switch (type) {
7725 case VMX_EPT_EXTENT_GLOBAL:
7726 /*
7727 * TODO: track mappings and invalidate
7728 * single context requests appropriately
7729 */
7730 case VMX_EPT_EXTENT_CONTEXT:
7731 kvm_mmu_sync_roots(vcpu);
7732 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7733 nested_vmx_succeed(vcpu);
7734 break;
7735 default:
7736 BUG_ON(1);
7737 break;
7738 }
7739
7740 return kvm_skip_emulated_instruction(vcpu);
7741 }
7742
7743 static int handle_invvpid(struct kvm_vcpu *vcpu)
7744 {
7745 struct vcpu_vmx *vmx = to_vmx(vcpu);
7746 u32 vmx_instruction_info;
7747 unsigned long type, types;
7748 gva_t gva;
7749 struct x86_exception e;
7750 int vpid;
7751
7752 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7753 SECONDARY_EXEC_ENABLE_VPID) ||
7754 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7755 kvm_queue_exception(vcpu, UD_VECTOR);
7756 return 1;
7757 }
7758
7759 if (!nested_vmx_check_permission(vcpu))
7760 return 1;
7761
7762 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7763 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7764
7765 types = (vmx->nested.nested_vmx_vpid_caps &
7766 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7767
7768 if (type >= 32 || !(types & (1 << type))) {
7769 nested_vmx_failValid(vcpu,
7770 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7771 return kvm_skip_emulated_instruction(vcpu);
7772 }
7773
7774 /* according to the intel vmx instruction reference, the memory
7775 * operand is read even if it isn't needed (e.g., for type==global)
7776 */
7777 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7778 vmx_instruction_info, false, &gva))
7779 return 1;
7780 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7781 sizeof(u32), &e)) {
7782 kvm_inject_page_fault(vcpu, &e);
7783 return 1;
7784 }
7785
7786 switch (type) {
7787 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7788 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7789 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7790 if (!vpid) {
7791 nested_vmx_failValid(vcpu,
7792 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7793 return kvm_skip_emulated_instruction(vcpu);
7794 }
7795 break;
7796 case VMX_VPID_EXTENT_ALL_CONTEXT:
7797 break;
7798 default:
7799 WARN_ON_ONCE(1);
7800 return kvm_skip_emulated_instruction(vcpu);
7801 }
7802
7803 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7804 nested_vmx_succeed(vcpu);
7805
7806 return kvm_skip_emulated_instruction(vcpu);
7807 }
7808
7809 static int handle_pml_full(struct kvm_vcpu *vcpu)
7810 {
7811 unsigned long exit_qualification;
7812
7813 trace_kvm_pml_full(vcpu->vcpu_id);
7814
7815 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7816
7817 /*
7818 * PML buffer FULL happened while executing iret from NMI,
7819 * "blocked by NMI" bit has to be set before next VM entry.
7820 */
7821 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7822 cpu_has_virtual_nmis() &&
7823 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7824 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7825 GUEST_INTR_STATE_NMI);
7826
7827 /*
7828 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7829 * here.., and there's no userspace involvement needed for PML.
7830 */
7831 return 1;
7832 }
7833
7834 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7835 {
7836 kvm_lapic_expired_hv_timer(vcpu);
7837 return 1;
7838 }
7839
7840 /*
7841 * The exit handlers return 1 if the exit was handled fully and guest execution
7842 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7843 * to be done to userspace and return 0.
7844 */
7845 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7846 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7847 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7848 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7849 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7850 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7851 [EXIT_REASON_CR_ACCESS] = handle_cr,
7852 [EXIT_REASON_DR_ACCESS] = handle_dr,
7853 [EXIT_REASON_CPUID] = handle_cpuid,
7854 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7855 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7856 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7857 [EXIT_REASON_HLT] = handle_halt,
7858 [EXIT_REASON_INVD] = handle_invd,
7859 [EXIT_REASON_INVLPG] = handle_invlpg,
7860 [EXIT_REASON_RDPMC] = handle_rdpmc,
7861 [EXIT_REASON_VMCALL] = handle_vmcall,
7862 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7863 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7864 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7865 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7866 [EXIT_REASON_VMREAD] = handle_vmread,
7867 [EXIT_REASON_VMRESUME] = handle_vmresume,
7868 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7869 [EXIT_REASON_VMOFF] = handle_vmoff,
7870 [EXIT_REASON_VMON] = handle_vmon,
7871 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7872 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7873 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7874 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7875 [EXIT_REASON_WBINVD] = handle_wbinvd,
7876 [EXIT_REASON_XSETBV] = handle_xsetbv,
7877 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7878 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7879 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7880 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7881 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7882 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7883 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7884 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7885 [EXIT_REASON_INVEPT] = handle_invept,
7886 [EXIT_REASON_INVVPID] = handle_invvpid,
7887 [EXIT_REASON_XSAVES] = handle_xsaves,
7888 [EXIT_REASON_XRSTORS] = handle_xrstors,
7889 [EXIT_REASON_PML_FULL] = handle_pml_full,
7890 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7891 };
7892
7893 static const int kvm_vmx_max_exit_handlers =
7894 ARRAY_SIZE(kvm_vmx_exit_handlers);
7895
7896 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7897 struct vmcs12 *vmcs12)
7898 {
7899 unsigned long exit_qualification;
7900 gpa_t bitmap, last_bitmap;
7901 unsigned int port;
7902 int size;
7903 u8 b;
7904
7905 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7906 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7907
7908 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7909
7910 port = exit_qualification >> 16;
7911 size = (exit_qualification & 7) + 1;
7912
7913 last_bitmap = (gpa_t)-1;
7914 b = -1;
7915
7916 while (size > 0) {
7917 if (port < 0x8000)
7918 bitmap = vmcs12->io_bitmap_a;
7919 else if (port < 0x10000)
7920 bitmap = vmcs12->io_bitmap_b;
7921 else
7922 return true;
7923 bitmap += (port & 0x7fff) / 8;
7924
7925 if (last_bitmap != bitmap)
7926 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7927 return true;
7928 if (b & (1 << (port & 7)))
7929 return true;
7930
7931 port++;
7932 size--;
7933 last_bitmap = bitmap;
7934 }
7935
7936 return false;
7937 }
7938
7939 /*
7940 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7941 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7942 * disinterest in the current event (read or write a specific MSR) by using an
7943 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7944 */
7945 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7946 struct vmcs12 *vmcs12, u32 exit_reason)
7947 {
7948 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7949 gpa_t bitmap;
7950
7951 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7952 return true;
7953
7954 /*
7955 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7956 * for the four combinations of read/write and low/high MSR numbers.
7957 * First we need to figure out which of the four to use:
7958 */
7959 bitmap = vmcs12->msr_bitmap;
7960 if (exit_reason == EXIT_REASON_MSR_WRITE)
7961 bitmap += 2048;
7962 if (msr_index >= 0xc0000000) {
7963 msr_index -= 0xc0000000;
7964 bitmap += 1024;
7965 }
7966
7967 /* Then read the msr_index'th bit from this bitmap: */
7968 if (msr_index < 1024*8) {
7969 unsigned char b;
7970 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7971 return true;
7972 return 1 & (b >> (msr_index & 7));
7973 } else
7974 return true; /* let L1 handle the wrong parameter */
7975 }
7976
7977 /*
7978 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7979 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7980 * intercept (via guest_host_mask etc.) the current event.
7981 */
7982 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7983 struct vmcs12 *vmcs12)
7984 {
7985 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7986 int cr = exit_qualification & 15;
7987 int reg = (exit_qualification >> 8) & 15;
7988 unsigned long val = kvm_register_readl(vcpu, reg);
7989
7990 switch ((exit_qualification >> 4) & 3) {
7991 case 0: /* mov to cr */
7992 switch (cr) {
7993 case 0:
7994 if (vmcs12->cr0_guest_host_mask &
7995 (val ^ vmcs12->cr0_read_shadow))
7996 return true;
7997 break;
7998 case 3:
7999 if ((vmcs12->cr3_target_count >= 1 &&
8000 vmcs12->cr3_target_value0 == val) ||
8001 (vmcs12->cr3_target_count >= 2 &&
8002 vmcs12->cr3_target_value1 == val) ||
8003 (vmcs12->cr3_target_count >= 3 &&
8004 vmcs12->cr3_target_value2 == val) ||
8005 (vmcs12->cr3_target_count >= 4 &&
8006 vmcs12->cr3_target_value3 == val))
8007 return false;
8008 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8009 return true;
8010 break;
8011 case 4:
8012 if (vmcs12->cr4_guest_host_mask &
8013 (vmcs12->cr4_read_shadow ^ val))
8014 return true;
8015 break;
8016 case 8:
8017 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8018 return true;
8019 break;
8020 }
8021 break;
8022 case 2: /* clts */
8023 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8024 (vmcs12->cr0_read_shadow & X86_CR0_TS))
8025 return true;
8026 break;
8027 case 1: /* mov from cr */
8028 switch (cr) {
8029 case 3:
8030 if (vmcs12->cpu_based_vm_exec_control &
8031 CPU_BASED_CR3_STORE_EXITING)
8032 return true;
8033 break;
8034 case 8:
8035 if (vmcs12->cpu_based_vm_exec_control &
8036 CPU_BASED_CR8_STORE_EXITING)
8037 return true;
8038 break;
8039 }
8040 break;
8041 case 3: /* lmsw */
8042 /*
8043 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8044 * cr0. Other attempted changes are ignored, with no exit.
8045 */
8046 if (vmcs12->cr0_guest_host_mask & 0xe &
8047 (val ^ vmcs12->cr0_read_shadow))
8048 return true;
8049 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8050 !(vmcs12->cr0_read_shadow & 0x1) &&
8051 (val & 0x1))
8052 return true;
8053 break;
8054 }
8055 return false;
8056 }
8057
8058 /*
8059 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8060 * should handle it ourselves in L0 (and then continue L2). Only call this
8061 * when in is_guest_mode (L2).
8062 */
8063 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8064 {
8065 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8066 struct vcpu_vmx *vmx = to_vmx(vcpu);
8067 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8068 u32 exit_reason = vmx->exit_reason;
8069
8070 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8071 vmcs_readl(EXIT_QUALIFICATION),
8072 vmx->idt_vectoring_info,
8073 intr_info,
8074 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8075 KVM_ISA_VMX);
8076
8077 if (vmx->nested.nested_run_pending)
8078 return false;
8079
8080 if (unlikely(vmx->fail)) {
8081 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8082 vmcs_read32(VM_INSTRUCTION_ERROR));
8083 return true;
8084 }
8085
8086 switch (exit_reason) {
8087 case EXIT_REASON_EXCEPTION_NMI:
8088 if (is_nmi(intr_info))
8089 return false;
8090 else if (is_page_fault(intr_info))
8091 return enable_ept;
8092 else if (is_no_device(intr_info) &&
8093 !(vmcs12->guest_cr0 & X86_CR0_TS))
8094 return false;
8095 else if (is_debug(intr_info) &&
8096 vcpu->guest_debug &
8097 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8098 return false;
8099 else if (is_breakpoint(intr_info) &&
8100 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8101 return false;
8102 return vmcs12->exception_bitmap &
8103 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8104 case EXIT_REASON_EXTERNAL_INTERRUPT:
8105 return false;
8106 case EXIT_REASON_TRIPLE_FAULT:
8107 return true;
8108 case EXIT_REASON_PENDING_INTERRUPT:
8109 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8110 case EXIT_REASON_NMI_WINDOW:
8111 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8112 case EXIT_REASON_TASK_SWITCH:
8113 return true;
8114 case EXIT_REASON_CPUID:
8115 return true;
8116 case EXIT_REASON_HLT:
8117 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8118 case EXIT_REASON_INVD:
8119 return true;
8120 case EXIT_REASON_INVLPG:
8121 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8122 case EXIT_REASON_RDPMC:
8123 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8124 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8125 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8126 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8127 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8128 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8129 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8130 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8131 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8132 /*
8133 * VMX instructions trap unconditionally. This allows L1 to
8134 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8135 */
8136 return true;
8137 case EXIT_REASON_CR_ACCESS:
8138 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8139 case EXIT_REASON_DR_ACCESS:
8140 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8141 case EXIT_REASON_IO_INSTRUCTION:
8142 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8143 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8144 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8145 case EXIT_REASON_MSR_READ:
8146 case EXIT_REASON_MSR_WRITE:
8147 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8148 case EXIT_REASON_INVALID_STATE:
8149 return true;
8150 case EXIT_REASON_MWAIT_INSTRUCTION:
8151 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8152 case EXIT_REASON_MONITOR_TRAP_FLAG:
8153 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8154 case EXIT_REASON_MONITOR_INSTRUCTION:
8155 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8156 case EXIT_REASON_PAUSE_INSTRUCTION:
8157 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8158 nested_cpu_has2(vmcs12,
8159 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8160 case EXIT_REASON_MCE_DURING_VMENTRY:
8161 return false;
8162 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8163 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8164 case EXIT_REASON_APIC_ACCESS:
8165 return nested_cpu_has2(vmcs12,
8166 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8167 case EXIT_REASON_APIC_WRITE:
8168 case EXIT_REASON_EOI_INDUCED:
8169 /* apic_write and eoi_induced should exit unconditionally. */
8170 return true;
8171 case EXIT_REASON_EPT_VIOLATION:
8172 /*
8173 * L0 always deals with the EPT violation. If nested EPT is
8174 * used, and the nested mmu code discovers that the address is
8175 * missing in the guest EPT table (EPT12), the EPT violation
8176 * will be injected with nested_ept_inject_page_fault()
8177 */
8178 return false;
8179 case EXIT_REASON_EPT_MISCONFIG:
8180 /*
8181 * L2 never uses directly L1's EPT, but rather L0's own EPT
8182 * table (shadow on EPT) or a merged EPT table that L0 built
8183 * (EPT on EPT). So any problems with the structure of the
8184 * table is L0's fault.
8185 */
8186 return false;
8187 case EXIT_REASON_WBINVD:
8188 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8189 case EXIT_REASON_XSETBV:
8190 return true;
8191 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8192 /*
8193 * This should never happen, since it is not possible to
8194 * set XSS to a non-zero value---neither in L1 nor in L2.
8195 * If if it were, XSS would have to be checked against
8196 * the XSS exit bitmap in vmcs12.
8197 */
8198 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8199 case EXIT_REASON_PREEMPTION_TIMER:
8200 return false;
8201 case EXIT_REASON_PML_FULL:
8202 /* We don't expose PML support to L1. */
8203 return false;
8204 default:
8205 return true;
8206 }
8207 }
8208
8209 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8210 {
8211 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8212 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8213 }
8214
8215 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8216 {
8217 if (vmx->pml_pg) {
8218 __free_page(vmx->pml_pg);
8219 vmx->pml_pg = NULL;
8220 }
8221 }
8222
8223 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8224 {
8225 struct vcpu_vmx *vmx = to_vmx(vcpu);
8226 u64 *pml_buf;
8227 u16 pml_idx;
8228
8229 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8230
8231 /* Do nothing if PML buffer is empty */
8232 if (pml_idx == (PML_ENTITY_NUM - 1))
8233 return;
8234
8235 /* PML index always points to next available PML buffer entity */
8236 if (pml_idx >= PML_ENTITY_NUM)
8237 pml_idx = 0;
8238 else
8239 pml_idx++;
8240
8241 pml_buf = page_address(vmx->pml_pg);
8242 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8243 u64 gpa;
8244
8245 gpa = pml_buf[pml_idx];
8246 WARN_ON(gpa & (PAGE_SIZE - 1));
8247 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8248 }
8249
8250 /* reset PML index */
8251 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8252 }
8253
8254 /*
8255 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8256 * Called before reporting dirty_bitmap to userspace.
8257 */
8258 static void kvm_flush_pml_buffers(struct kvm *kvm)
8259 {
8260 int i;
8261 struct kvm_vcpu *vcpu;
8262 /*
8263 * We only need to kick vcpu out of guest mode here, as PML buffer
8264 * is flushed at beginning of all VMEXITs, and it's obvious that only
8265 * vcpus running in guest are possible to have unflushed GPAs in PML
8266 * buffer.
8267 */
8268 kvm_for_each_vcpu(i, vcpu, kvm)
8269 kvm_vcpu_kick(vcpu);
8270 }
8271
8272 static void vmx_dump_sel(char *name, uint32_t sel)
8273 {
8274 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8275 name, vmcs_read16(sel),
8276 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8277 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8278 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8279 }
8280
8281 static void vmx_dump_dtsel(char *name, uint32_t limit)
8282 {
8283 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8284 name, vmcs_read32(limit),
8285 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8286 }
8287
8288 static void dump_vmcs(void)
8289 {
8290 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8291 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8292 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8293 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8294 u32 secondary_exec_control = 0;
8295 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8296 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8297 int i, n;
8298
8299 if (cpu_has_secondary_exec_ctrls())
8300 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8301
8302 pr_err("*** Guest State ***\n");
8303 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8304 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8305 vmcs_readl(CR0_GUEST_HOST_MASK));
8306 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8307 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8308 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8309 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8310 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8311 {
8312 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8313 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8314 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8315 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8316 }
8317 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8318 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8319 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8320 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8321 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8322 vmcs_readl(GUEST_SYSENTER_ESP),
8323 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8324 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8325 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8326 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8327 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8328 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8329 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8330 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8331 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8332 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8333 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8334 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8335 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8336 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8337 efer, vmcs_read64(GUEST_IA32_PAT));
8338 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8339 vmcs_read64(GUEST_IA32_DEBUGCTL),
8340 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8341 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8342 pr_err("PerfGlobCtl = 0x%016llx\n",
8343 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8344 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8345 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8346 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8347 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8348 vmcs_read32(GUEST_ACTIVITY_STATE));
8349 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8350 pr_err("InterruptStatus = %04x\n",
8351 vmcs_read16(GUEST_INTR_STATUS));
8352
8353 pr_err("*** Host State ***\n");
8354 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8355 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8356 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8357 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8358 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8359 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8360 vmcs_read16(HOST_TR_SELECTOR));
8361 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8362 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8363 vmcs_readl(HOST_TR_BASE));
8364 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8365 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8366 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8367 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8368 vmcs_readl(HOST_CR4));
8369 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8370 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8371 vmcs_read32(HOST_IA32_SYSENTER_CS),
8372 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8373 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8374 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8375 vmcs_read64(HOST_IA32_EFER),
8376 vmcs_read64(HOST_IA32_PAT));
8377 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8378 pr_err("PerfGlobCtl = 0x%016llx\n",
8379 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8380
8381 pr_err("*** Control State ***\n");
8382 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8383 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8384 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8385 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8386 vmcs_read32(EXCEPTION_BITMAP),
8387 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8388 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8389 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8390 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8391 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8392 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8393 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8394 vmcs_read32(VM_EXIT_INTR_INFO),
8395 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8396 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8397 pr_err(" reason=%08x qualification=%016lx\n",
8398 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8399 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8400 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8401 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8402 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8403 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8404 pr_err("TSC Multiplier = 0x%016llx\n",
8405 vmcs_read64(TSC_MULTIPLIER));
8406 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8407 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8408 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8409 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8410 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8411 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8412 n = vmcs_read32(CR3_TARGET_COUNT);
8413 for (i = 0; i + 1 < n; i += 4)
8414 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8415 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8416 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8417 if (i < n)
8418 pr_err("CR3 target%u=%016lx\n",
8419 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8420 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8421 pr_err("PLE Gap=%08x Window=%08x\n",
8422 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8423 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8424 pr_err("Virtual processor ID = 0x%04x\n",
8425 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8426 }
8427
8428 /*
8429 * The guest has exited. See if we can fix it or if we need userspace
8430 * assistance.
8431 */
8432 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8433 {
8434 struct vcpu_vmx *vmx = to_vmx(vcpu);
8435 u32 exit_reason = vmx->exit_reason;
8436 u32 vectoring_info = vmx->idt_vectoring_info;
8437
8438 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8439 vcpu->arch.gpa_available = false;
8440
8441 /*
8442 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8443 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8444 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8445 * mode as if vcpus is in root mode, the PML buffer must has been
8446 * flushed already.
8447 */
8448 if (enable_pml)
8449 vmx_flush_pml_buffer(vcpu);
8450
8451 /* If guest state is invalid, start emulating */
8452 if (vmx->emulation_required)
8453 return handle_invalid_guest_state(vcpu);
8454
8455 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8456 nested_vmx_vmexit(vcpu, exit_reason,
8457 vmcs_read32(VM_EXIT_INTR_INFO),
8458 vmcs_readl(EXIT_QUALIFICATION));
8459 return 1;
8460 }
8461
8462 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8463 dump_vmcs();
8464 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8465 vcpu->run->fail_entry.hardware_entry_failure_reason
8466 = exit_reason;
8467 return 0;
8468 }
8469
8470 if (unlikely(vmx->fail)) {
8471 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8472 vcpu->run->fail_entry.hardware_entry_failure_reason
8473 = vmcs_read32(VM_INSTRUCTION_ERROR);
8474 return 0;
8475 }
8476
8477 /*
8478 * Note:
8479 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8480 * delivery event since it indicates guest is accessing MMIO.
8481 * The vm-exit can be triggered again after return to guest that
8482 * will cause infinite loop.
8483 */
8484 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8485 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8486 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8487 exit_reason != EXIT_REASON_PML_FULL &&
8488 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8489 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8490 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8491 vcpu->run->internal.ndata = 2;
8492 vcpu->run->internal.data[0] = vectoring_info;
8493 vcpu->run->internal.data[1] = exit_reason;
8494 return 0;
8495 }
8496
8497 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8498 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8499 get_vmcs12(vcpu))))) {
8500 if (vmx_interrupt_allowed(vcpu)) {
8501 vmx->soft_vnmi_blocked = 0;
8502 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8503 vcpu->arch.nmi_pending) {
8504 /*
8505 * This CPU don't support us in finding the end of an
8506 * NMI-blocked window if the guest runs with IRQs
8507 * disabled. So we pull the trigger after 1 s of
8508 * futile waiting, but inform the user about this.
8509 */
8510 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8511 "state on VCPU %d after 1 s timeout\n",
8512 __func__, vcpu->vcpu_id);
8513 vmx->soft_vnmi_blocked = 0;
8514 }
8515 }
8516
8517 if (exit_reason < kvm_vmx_max_exit_handlers
8518 && kvm_vmx_exit_handlers[exit_reason])
8519 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8520 else {
8521 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8522 exit_reason);
8523 kvm_queue_exception(vcpu, UD_VECTOR);
8524 return 1;
8525 }
8526 }
8527
8528 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8529 {
8530 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8531
8532 if (is_guest_mode(vcpu) &&
8533 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8534 return;
8535
8536 if (irr == -1 || tpr < irr) {
8537 vmcs_write32(TPR_THRESHOLD, 0);
8538 return;
8539 }
8540
8541 vmcs_write32(TPR_THRESHOLD, irr);
8542 }
8543
8544 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8545 {
8546 u32 sec_exec_control;
8547
8548 /* Postpone execution until vmcs01 is the current VMCS. */
8549 if (is_guest_mode(vcpu)) {
8550 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8551 return;
8552 }
8553
8554 if (!cpu_has_vmx_virtualize_x2apic_mode())
8555 return;
8556
8557 if (!cpu_need_tpr_shadow(vcpu))
8558 return;
8559
8560 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8561
8562 if (set) {
8563 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8564 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8565 } else {
8566 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8567 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8568 vmx_flush_tlb_ept_only(vcpu);
8569 }
8570 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8571
8572 vmx_set_msr_bitmap(vcpu);
8573 }
8574
8575 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8576 {
8577 struct vcpu_vmx *vmx = to_vmx(vcpu);
8578
8579 /*
8580 * Currently we do not handle the nested case where L2 has an
8581 * APIC access page of its own; that page is still pinned.
8582 * Hence, we skip the case where the VCPU is in guest mode _and_
8583 * L1 prepared an APIC access page for L2.
8584 *
8585 * For the case where L1 and L2 share the same APIC access page
8586 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8587 * in the vmcs12), this function will only update either the vmcs01
8588 * or the vmcs02. If the former, the vmcs02 will be updated by
8589 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8590 * the next L2->L1 exit.
8591 */
8592 if (!is_guest_mode(vcpu) ||
8593 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8594 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8595 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8596 vmx_flush_tlb_ept_only(vcpu);
8597 }
8598 }
8599
8600 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8601 {
8602 u16 status;
8603 u8 old;
8604
8605 if (max_isr == -1)
8606 max_isr = 0;
8607
8608 status = vmcs_read16(GUEST_INTR_STATUS);
8609 old = status >> 8;
8610 if (max_isr != old) {
8611 status &= 0xff;
8612 status |= max_isr << 8;
8613 vmcs_write16(GUEST_INTR_STATUS, status);
8614 }
8615 }
8616
8617 static void vmx_set_rvi(int vector)
8618 {
8619 u16 status;
8620 u8 old;
8621
8622 if (vector == -1)
8623 vector = 0;
8624
8625 status = vmcs_read16(GUEST_INTR_STATUS);
8626 old = (u8)status & 0xff;
8627 if ((u8)vector != old) {
8628 status &= ~0xff;
8629 status |= (u8)vector;
8630 vmcs_write16(GUEST_INTR_STATUS, status);
8631 }
8632 }
8633
8634 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8635 {
8636 if (!is_guest_mode(vcpu)) {
8637 vmx_set_rvi(max_irr);
8638 return;
8639 }
8640
8641 if (max_irr == -1)
8642 return;
8643
8644 /*
8645 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8646 * handles it.
8647 */
8648 if (nested_exit_on_intr(vcpu))
8649 return;
8650
8651 /*
8652 * Else, fall back to pre-APICv interrupt injection since L2
8653 * is run without virtual interrupt delivery.
8654 */
8655 if (!kvm_event_needs_reinjection(vcpu) &&
8656 vmx_interrupt_allowed(vcpu)) {
8657 kvm_queue_interrupt(vcpu, max_irr, false);
8658 vmx_inject_irq(vcpu);
8659 }
8660 }
8661
8662 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8663 {
8664 struct vcpu_vmx *vmx = to_vmx(vcpu);
8665 int max_irr;
8666
8667 WARN_ON(!vcpu->arch.apicv_active);
8668 if (pi_test_on(&vmx->pi_desc)) {
8669 pi_clear_on(&vmx->pi_desc);
8670 /*
8671 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8672 * But on x86 this is just a compiler barrier anyway.
8673 */
8674 smp_mb__after_atomic();
8675 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8676 } else {
8677 max_irr = kvm_lapic_find_highest_irr(vcpu);
8678 }
8679 vmx_hwapic_irr_update(vcpu, max_irr);
8680 return max_irr;
8681 }
8682
8683 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8684 {
8685 if (!kvm_vcpu_apicv_active(vcpu))
8686 return;
8687
8688 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8689 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8690 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8691 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8692 }
8693
8694 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8695 {
8696 struct vcpu_vmx *vmx = to_vmx(vcpu);
8697
8698 pi_clear_on(&vmx->pi_desc);
8699 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8700 }
8701
8702 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8703 {
8704 u32 exit_intr_info;
8705
8706 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8707 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8708 return;
8709
8710 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8711 exit_intr_info = vmx->exit_intr_info;
8712
8713 /* Handle machine checks before interrupts are enabled */
8714 if (is_machine_check(exit_intr_info))
8715 kvm_machine_check();
8716
8717 /* We need to handle NMIs before interrupts are enabled */
8718 if (is_nmi(exit_intr_info)) {
8719 kvm_before_handle_nmi(&vmx->vcpu);
8720 asm("int $2");
8721 kvm_after_handle_nmi(&vmx->vcpu);
8722 }
8723 }
8724
8725 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8726 {
8727 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8728 register void *__sp asm(_ASM_SP);
8729
8730 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8731 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8732 unsigned int vector;
8733 unsigned long entry;
8734 gate_desc *desc;
8735 struct vcpu_vmx *vmx = to_vmx(vcpu);
8736 #ifdef CONFIG_X86_64
8737 unsigned long tmp;
8738 #endif
8739
8740 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8741 desc = (gate_desc *)vmx->host_idt_base + vector;
8742 entry = gate_offset(*desc);
8743 asm volatile(
8744 #ifdef CONFIG_X86_64
8745 "mov %%" _ASM_SP ", %[sp]\n\t"
8746 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8747 "push $%c[ss]\n\t"
8748 "push %[sp]\n\t"
8749 #endif
8750 "pushf\n\t"
8751 __ASM_SIZE(push) " $%c[cs]\n\t"
8752 "call *%[entry]\n\t"
8753 :
8754 #ifdef CONFIG_X86_64
8755 [sp]"=&r"(tmp),
8756 #endif
8757 "+r"(__sp)
8758 :
8759 [entry]"r"(entry),
8760 [ss]"i"(__KERNEL_DS),
8761 [cs]"i"(__KERNEL_CS)
8762 );
8763 }
8764 }
8765
8766 static bool vmx_has_high_real_mode_segbase(void)
8767 {
8768 return enable_unrestricted_guest || emulate_invalid_guest_state;
8769 }
8770
8771 static bool vmx_mpx_supported(void)
8772 {
8773 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8774 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8775 }
8776
8777 static bool vmx_xsaves_supported(void)
8778 {
8779 return vmcs_config.cpu_based_2nd_exec_ctrl &
8780 SECONDARY_EXEC_XSAVES;
8781 }
8782
8783 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8784 {
8785 u32 exit_intr_info;
8786 bool unblock_nmi;
8787 u8 vector;
8788 bool idtv_info_valid;
8789
8790 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8791
8792 if (cpu_has_virtual_nmis()) {
8793 if (vmx->nmi_known_unmasked)
8794 return;
8795 /*
8796 * Can't use vmx->exit_intr_info since we're not sure what
8797 * the exit reason is.
8798 */
8799 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8800 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8801 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8802 /*
8803 * SDM 3: 27.7.1.2 (September 2008)
8804 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8805 * a guest IRET fault.
8806 * SDM 3: 23.2.2 (September 2008)
8807 * Bit 12 is undefined in any of the following cases:
8808 * If the VM exit sets the valid bit in the IDT-vectoring
8809 * information field.
8810 * If the VM exit is due to a double fault.
8811 */
8812 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8813 vector != DF_VECTOR && !idtv_info_valid)
8814 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8815 GUEST_INTR_STATE_NMI);
8816 else
8817 vmx->nmi_known_unmasked =
8818 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8819 & GUEST_INTR_STATE_NMI);
8820 } else if (unlikely(vmx->soft_vnmi_blocked))
8821 vmx->vnmi_blocked_time +=
8822 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8823 }
8824
8825 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8826 u32 idt_vectoring_info,
8827 int instr_len_field,
8828 int error_code_field)
8829 {
8830 u8 vector;
8831 int type;
8832 bool idtv_info_valid;
8833
8834 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8835
8836 vcpu->arch.nmi_injected = false;
8837 kvm_clear_exception_queue(vcpu);
8838 kvm_clear_interrupt_queue(vcpu);
8839
8840 if (!idtv_info_valid)
8841 return;
8842
8843 kvm_make_request(KVM_REQ_EVENT, vcpu);
8844
8845 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8846 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8847
8848 switch (type) {
8849 case INTR_TYPE_NMI_INTR:
8850 vcpu->arch.nmi_injected = true;
8851 /*
8852 * SDM 3: 27.7.1.2 (September 2008)
8853 * Clear bit "block by NMI" before VM entry if a NMI
8854 * delivery faulted.
8855 */
8856 vmx_set_nmi_mask(vcpu, false);
8857 break;
8858 case INTR_TYPE_SOFT_EXCEPTION:
8859 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8860 /* fall through */
8861 case INTR_TYPE_HARD_EXCEPTION:
8862 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8863 u32 err = vmcs_read32(error_code_field);
8864 kvm_requeue_exception_e(vcpu, vector, err);
8865 } else
8866 kvm_requeue_exception(vcpu, vector);
8867 break;
8868 case INTR_TYPE_SOFT_INTR:
8869 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8870 /* fall through */
8871 case INTR_TYPE_EXT_INTR:
8872 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8873 break;
8874 default:
8875 break;
8876 }
8877 }
8878
8879 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8880 {
8881 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8882 VM_EXIT_INSTRUCTION_LEN,
8883 IDT_VECTORING_ERROR_CODE);
8884 }
8885
8886 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8887 {
8888 __vmx_complete_interrupts(vcpu,
8889 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8890 VM_ENTRY_INSTRUCTION_LEN,
8891 VM_ENTRY_EXCEPTION_ERROR_CODE);
8892
8893 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8894 }
8895
8896 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8897 {
8898 int i, nr_msrs;
8899 struct perf_guest_switch_msr *msrs;
8900
8901 msrs = perf_guest_get_msrs(&nr_msrs);
8902
8903 if (!msrs)
8904 return;
8905
8906 for (i = 0; i < nr_msrs; i++)
8907 if (msrs[i].host == msrs[i].guest)
8908 clear_atomic_switch_msr(vmx, msrs[i].msr);
8909 else
8910 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8911 msrs[i].host);
8912 }
8913
8914 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8915 {
8916 struct vcpu_vmx *vmx = to_vmx(vcpu);
8917 u64 tscl;
8918 u32 delta_tsc;
8919
8920 if (vmx->hv_deadline_tsc == -1)
8921 return;
8922
8923 tscl = rdtsc();
8924 if (vmx->hv_deadline_tsc > tscl)
8925 /* sure to be 32 bit only because checked on set_hv_timer */
8926 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8927 cpu_preemption_timer_multi);
8928 else
8929 delta_tsc = 0;
8930
8931 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8932 }
8933
8934 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8935 {
8936 struct vcpu_vmx *vmx = to_vmx(vcpu);
8937 unsigned long debugctlmsr, cr4;
8938
8939 /* Record the guest's net vcpu time for enforced NMI injections. */
8940 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8941 vmx->entry_time = ktime_get();
8942
8943 /* Don't enter VMX if guest state is invalid, let the exit handler
8944 start emulation until we arrive back to a valid state */
8945 if (vmx->emulation_required)
8946 return;
8947
8948 if (vmx->ple_window_dirty) {
8949 vmx->ple_window_dirty = false;
8950 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8951 }
8952
8953 if (vmx->nested.sync_shadow_vmcs) {
8954 copy_vmcs12_to_shadow(vmx);
8955 vmx->nested.sync_shadow_vmcs = false;
8956 }
8957
8958 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8959 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8960 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8961 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8962
8963 cr4 = cr4_read_shadow();
8964 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8965 vmcs_writel(HOST_CR4, cr4);
8966 vmx->host_state.vmcs_host_cr4 = cr4;
8967 }
8968
8969 /* When single-stepping over STI and MOV SS, we must clear the
8970 * corresponding interruptibility bits in the guest state. Otherwise
8971 * vmentry fails as it then expects bit 14 (BS) in pending debug
8972 * exceptions being set, but that's not correct for the guest debugging
8973 * case. */
8974 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8975 vmx_set_interrupt_shadow(vcpu, 0);
8976
8977 if (vmx->guest_pkru_valid)
8978 __write_pkru(vmx->guest_pkru);
8979
8980 atomic_switch_perf_msrs(vmx);
8981 debugctlmsr = get_debugctlmsr();
8982
8983 vmx_arm_hv_timer(vcpu);
8984
8985 vmx->__launched = vmx->loaded_vmcs->launched;
8986 asm(
8987 /* Store host registers */
8988 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8989 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8990 "push %%" _ASM_CX " \n\t"
8991 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8992 "je 1f \n\t"
8993 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8994 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8995 "1: \n\t"
8996 /* Reload cr2 if changed */
8997 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8998 "mov %%cr2, %%" _ASM_DX " \n\t"
8999 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9000 "je 2f \n\t"
9001 "mov %%" _ASM_AX", %%cr2 \n\t"
9002 "2: \n\t"
9003 /* Check if vmlaunch of vmresume is needed */
9004 "cmpl $0, %c[launched](%0) \n\t"
9005 /* Load guest registers. Don't clobber flags. */
9006 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9007 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9008 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9009 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9010 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9011 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9012 #ifdef CONFIG_X86_64
9013 "mov %c[r8](%0), %%r8 \n\t"
9014 "mov %c[r9](%0), %%r9 \n\t"
9015 "mov %c[r10](%0), %%r10 \n\t"
9016 "mov %c[r11](%0), %%r11 \n\t"
9017 "mov %c[r12](%0), %%r12 \n\t"
9018 "mov %c[r13](%0), %%r13 \n\t"
9019 "mov %c[r14](%0), %%r14 \n\t"
9020 "mov %c[r15](%0), %%r15 \n\t"
9021 #endif
9022 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9023
9024 /* Enter guest mode */
9025 "jne 1f \n\t"
9026 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9027 "jmp 2f \n\t"
9028 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9029 "2: "
9030 /* Save guest registers, load host registers, keep flags */
9031 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9032 "pop %0 \n\t"
9033 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9034 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9035 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9036 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9037 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9038 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9039 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9040 #ifdef CONFIG_X86_64
9041 "mov %%r8, %c[r8](%0) \n\t"
9042 "mov %%r9, %c[r9](%0) \n\t"
9043 "mov %%r10, %c[r10](%0) \n\t"
9044 "mov %%r11, %c[r11](%0) \n\t"
9045 "mov %%r12, %c[r12](%0) \n\t"
9046 "mov %%r13, %c[r13](%0) \n\t"
9047 "mov %%r14, %c[r14](%0) \n\t"
9048 "mov %%r15, %c[r15](%0) \n\t"
9049 #endif
9050 "mov %%cr2, %%" _ASM_AX " \n\t"
9051 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9052
9053 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9054 "setbe %c[fail](%0) \n\t"
9055 ".pushsection .rodata \n\t"
9056 ".global vmx_return \n\t"
9057 "vmx_return: " _ASM_PTR " 2b \n\t"
9058 ".popsection"
9059 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9060 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9061 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9062 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9063 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9064 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9065 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9066 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9067 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9068 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9069 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9070 #ifdef CONFIG_X86_64
9071 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9072 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9073 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9074 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9075 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9076 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9077 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9078 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9079 #endif
9080 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9081 [wordsize]"i"(sizeof(ulong))
9082 : "cc", "memory"
9083 #ifdef CONFIG_X86_64
9084 , "rax", "rbx", "rdi", "rsi"
9085 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9086 #else
9087 , "eax", "ebx", "edi", "esi"
9088 #endif
9089 );
9090
9091 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9092 if (debugctlmsr)
9093 update_debugctlmsr(debugctlmsr);
9094
9095 #ifndef CONFIG_X86_64
9096 /*
9097 * The sysexit path does not restore ds/es, so we must set them to
9098 * a reasonable value ourselves.
9099 *
9100 * We can't defer this to vmx_load_host_state() since that function
9101 * may be executed in interrupt context, which saves and restore segments
9102 * around it, nullifying its effect.
9103 */
9104 loadsegment(ds, __USER_DS);
9105 loadsegment(es, __USER_DS);
9106 #endif
9107
9108 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9109 | (1 << VCPU_EXREG_RFLAGS)
9110 | (1 << VCPU_EXREG_PDPTR)
9111 | (1 << VCPU_EXREG_SEGMENTS)
9112 | (1 << VCPU_EXREG_CR3));
9113 vcpu->arch.regs_dirty = 0;
9114
9115 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9116
9117 vmx->loaded_vmcs->launched = 1;
9118
9119 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9120
9121 /*
9122 * eager fpu is enabled if PKEY is supported and CR4 is switched
9123 * back on host, so it is safe to read guest PKRU from current
9124 * XSAVE.
9125 */
9126 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9127 vmx->guest_pkru = __read_pkru();
9128 if (vmx->guest_pkru != vmx->host_pkru) {
9129 vmx->guest_pkru_valid = true;
9130 __write_pkru(vmx->host_pkru);
9131 } else
9132 vmx->guest_pkru_valid = false;
9133 }
9134
9135 /*
9136 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9137 * we did not inject a still-pending event to L1 now because of
9138 * nested_run_pending, we need to re-enable this bit.
9139 */
9140 if (vmx->nested.nested_run_pending)
9141 kvm_make_request(KVM_REQ_EVENT, vcpu);
9142
9143 vmx->nested.nested_run_pending = 0;
9144
9145 vmx_complete_atomic_exit(vmx);
9146 vmx_recover_nmi_blocking(vmx);
9147 vmx_complete_interrupts(vmx);
9148 }
9149
9150 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9151 {
9152 struct vcpu_vmx *vmx = to_vmx(vcpu);
9153 int cpu;
9154
9155 if (vmx->loaded_vmcs == &vmx->vmcs01)
9156 return;
9157
9158 cpu = get_cpu();
9159 vmx->loaded_vmcs = &vmx->vmcs01;
9160 vmx_vcpu_put(vcpu);
9161 vmx_vcpu_load(vcpu, cpu);
9162 vcpu->cpu = cpu;
9163 put_cpu();
9164 }
9165
9166 /*
9167 * Ensure that the current vmcs of the logical processor is the
9168 * vmcs01 of the vcpu before calling free_nested().
9169 */
9170 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9171 {
9172 struct vcpu_vmx *vmx = to_vmx(vcpu);
9173 int r;
9174
9175 r = vcpu_load(vcpu);
9176 BUG_ON(r);
9177 vmx_load_vmcs01(vcpu);
9178 free_nested(vmx);
9179 vcpu_put(vcpu);
9180 }
9181
9182 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9183 {
9184 struct vcpu_vmx *vmx = to_vmx(vcpu);
9185
9186 if (enable_pml)
9187 vmx_destroy_pml_buffer(vmx);
9188 free_vpid(vmx->vpid);
9189 leave_guest_mode(vcpu);
9190 vmx_free_vcpu_nested(vcpu);
9191 free_loaded_vmcs(vmx->loaded_vmcs);
9192 kfree(vmx->guest_msrs);
9193 kvm_vcpu_uninit(vcpu);
9194 kmem_cache_free(kvm_vcpu_cache, vmx);
9195 }
9196
9197 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9198 {
9199 int err;
9200 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9201 int cpu;
9202
9203 if (!vmx)
9204 return ERR_PTR(-ENOMEM);
9205
9206 vmx->vpid = allocate_vpid();
9207
9208 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9209 if (err)
9210 goto free_vcpu;
9211
9212 err = -ENOMEM;
9213
9214 /*
9215 * If PML is turned on, failure on enabling PML just results in failure
9216 * of creating the vcpu, therefore we can simplify PML logic (by
9217 * avoiding dealing with cases, such as enabling PML partially on vcpus
9218 * for the guest, etc.
9219 */
9220 if (enable_pml) {
9221 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9222 if (!vmx->pml_pg)
9223 goto uninit_vcpu;
9224 }
9225
9226 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9227 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9228 > PAGE_SIZE);
9229
9230 if (!vmx->guest_msrs)
9231 goto free_pml;
9232
9233 vmx->loaded_vmcs = &vmx->vmcs01;
9234 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9235 vmx->loaded_vmcs->shadow_vmcs = NULL;
9236 if (!vmx->loaded_vmcs->vmcs)
9237 goto free_msrs;
9238 if (!vmm_exclusive)
9239 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9240 loaded_vmcs_init(vmx->loaded_vmcs);
9241 if (!vmm_exclusive)
9242 kvm_cpu_vmxoff();
9243
9244 cpu = get_cpu();
9245 vmx_vcpu_load(&vmx->vcpu, cpu);
9246 vmx->vcpu.cpu = cpu;
9247 err = vmx_vcpu_setup(vmx);
9248 vmx_vcpu_put(&vmx->vcpu);
9249 put_cpu();
9250 if (err)
9251 goto free_vmcs;
9252 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9253 err = alloc_apic_access_page(kvm);
9254 if (err)
9255 goto free_vmcs;
9256 }
9257
9258 if (enable_ept) {
9259 if (!kvm->arch.ept_identity_map_addr)
9260 kvm->arch.ept_identity_map_addr =
9261 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9262 err = init_rmode_identity_map(kvm);
9263 if (err)
9264 goto free_vmcs;
9265 }
9266
9267 if (nested) {
9268 nested_vmx_setup_ctls_msrs(vmx);
9269 vmx->nested.vpid02 = allocate_vpid();
9270 }
9271
9272 vmx->nested.posted_intr_nv = -1;
9273 vmx->nested.current_vmptr = -1ull;
9274 vmx->nested.current_vmcs12 = NULL;
9275
9276 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9277
9278 return &vmx->vcpu;
9279
9280 free_vmcs:
9281 free_vpid(vmx->nested.vpid02);
9282 free_loaded_vmcs(vmx->loaded_vmcs);
9283 free_msrs:
9284 kfree(vmx->guest_msrs);
9285 free_pml:
9286 vmx_destroy_pml_buffer(vmx);
9287 uninit_vcpu:
9288 kvm_vcpu_uninit(&vmx->vcpu);
9289 free_vcpu:
9290 free_vpid(vmx->vpid);
9291 kmem_cache_free(kvm_vcpu_cache, vmx);
9292 return ERR_PTR(err);
9293 }
9294
9295 static void __init vmx_check_processor_compat(void *rtn)
9296 {
9297 struct vmcs_config vmcs_conf;
9298
9299 *(int *)rtn = 0;
9300 if (setup_vmcs_config(&vmcs_conf) < 0)
9301 *(int *)rtn = -EIO;
9302 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9303 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9304 smp_processor_id());
9305 *(int *)rtn = -EIO;
9306 }
9307 }
9308
9309 static int get_ept_level(void)
9310 {
9311 return VMX_EPT_DEFAULT_GAW + 1;
9312 }
9313
9314 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9315 {
9316 u8 cache;
9317 u64 ipat = 0;
9318
9319 /* For VT-d and EPT combination
9320 * 1. MMIO: always map as UC
9321 * 2. EPT with VT-d:
9322 * a. VT-d without snooping control feature: can't guarantee the
9323 * result, try to trust guest.
9324 * b. VT-d with snooping control feature: snooping control feature of
9325 * VT-d engine can guarantee the cache correctness. Just set it
9326 * to WB to keep consistent with host. So the same as item 3.
9327 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9328 * consistent with host MTRR
9329 */
9330 if (is_mmio) {
9331 cache = MTRR_TYPE_UNCACHABLE;
9332 goto exit;
9333 }
9334
9335 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9336 ipat = VMX_EPT_IPAT_BIT;
9337 cache = MTRR_TYPE_WRBACK;
9338 goto exit;
9339 }
9340
9341 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9342 ipat = VMX_EPT_IPAT_BIT;
9343 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9344 cache = MTRR_TYPE_WRBACK;
9345 else
9346 cache = MTRR_TYPE_UNCACHABLE;
9347 goto exit;
9348 }
9349
9350 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9351
9352 exit:
9353 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9354 }
9355
9356 static int vmx_get_lpage_level(void)
9357 {
9358 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9359 return PT_DIRECTORY_LEVEL;
9360 else
9361 /* For shadow and EPT supported 1GB page */
9362 return PT_PDPE_LEVEL;
9363 }
9364
9365 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9366 {
9367 /*
9368 * These bits in the secondary execution controls field
9369 * are dynamic, the others are mostly based on the hypervisor
9370 * architecture and the guest's CPUID. Do not touch the
9371 * dynamic bits.
9372 */
9373 u32 mask =
9374 SECONDARY_EXEC_SHADOW_VMCS |
9375 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9376 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9377
9378 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9379
9380 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9381 (new_ctl & ~mask) | (cur_ctl & mask));
9382 }
9383
9384 /*
9385 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9386 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9387 */
9388 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9389 {
9390 struct vcpu_vmx *vmx = to_vmx(vcpu);
9391 struct kvm_cpuid_entry2 *entry;
9392
9393 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9394 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9395
9396 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9397 if (entry && (entry->_reg & (_cpuid_mask))) \
9398 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9399 } while (0)
9400
9401 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9402 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9403 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9404 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9405 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9406 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9407 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9408 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9409 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9410 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9411 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9412 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9413 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9414 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9415 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9416
9417 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9418 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9419 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9420 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9421 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9422 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9423 cr4_fixed1_update(bit(11), ecx, bit(2));
9424
9425 #undef cr4_fixed1_update
9426 }
9427
9428 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9429 {
9430 struct kvm_cpuid_entry2 *best;
9431 struct vcpu_vmx *vmx = to_vmx(vcpu);
9432 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9433
9434 if (vmx_rdtscp_supported()) {
9435 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9436 if (!rdtscp_enabled)
9437 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9438
9439 if (nested) {
9440 if (rdtscp_enabled)
9441 vmx->nested.nested_vmx_secondary_ctls_high |=
9442 SECONDARY_EXEC_RDTSCP;
9443 else
9444 vmx->nested.nested_vmx_secondary_ctls_high &=
9445 ~SECONDARY_EXEC_RDTSCP;
9446 }
9447 }
9448
9449 /* Exposing INVPCID only when PCID is exposed */
9450 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9451 if (vmx_invpcid_supported() &&
9452 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9453 !guest_cpuid_has_pcid(vcpu))) {
9454 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9455
9456 if (best)
9457 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9458 }
9459
9460 if (cpu_has_secondary_exec_ctrls())
9461 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9462
9463 if (nested_vmx_allowed(vcpu))
9464 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9465 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9466 else
9467 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9468 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9469
9470 if (nested_vmx_allowed(vcpu))
9471 nested_vmx_cr_fixed1_bits_update(vcpu);
9472 }
9473
9474 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9475 {
9476 if (func == 1 && nested)
9477 entry->ecx |= bit(X86_FEATURE_VMX);
9478 }
9479
9480 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9481 struct x86_exception *fault)
9482 {
9483 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9484 u32 exit_reason;
9485
9486 if (fault->error_code & PFERR_RSVD_MASK)
9487 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9488 else
9489 exit_reason = EXIT_REASON_EPT_VIOLATION;
9490 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9491 vmcs12->guest_physical_address = fault->address;
9492 }
9493
9494 /* Callbacks for nested_ept_init_mmu_context: */
9495
9496 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9497 {
9498 /* return the page table to be shadowed - in our case, EPT12 */
9499 return get_vmcs12(vcpu)->ept_pointer;
9500 }
9501
9502 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9503 {
9504 WARN_ON(mmu_is_nested(vcpu));
9505 kvm_init_shadow_ept_mmu(vcpu,
9506 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9507 VMX_EPT_EXECUTE_ONLY_BIT);
9508 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9509 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9510 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9511
9512 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9513 }
9514
9515 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9516 {
9517 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9518 }
9519
9520 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9521 u16 error_code)
9522 {
9523 bool inequality, bit;
9524
9525 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9526 inequality =
9527 (error_code & vmcs12->page_fault_error_code_mask) !=
9528 vmcs12->page_fault_error_code_match;
9529 return inequality ^ bit;
9530 }
9531
9532 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9533 struct x86_exception *fault)
9534 {
9535 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9536
9537 WARN_ON(!is_guest_mode(vcpu));
9538
9539 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9540 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9541 vmcs_read32(VM_EXIT_INTR_INFO),
9542 vmcs_readl(EXIT_QUALIFICATION));
9543 else
9544 kvm_inject_page_fault(vcpu, fault);
9545 }
9546
9547 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9548 struct vmcs12 *vmcs12);
9549
9550 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9551 struct vmcs12 *vmcs12)
9552 {
9553 struct vcpu_vmx *vmx = to_vmx(vcpu);
9554 u64 hpa;
9555
9556 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9557 /*
9558 * Translate L1 physical address to host physical
9559 * address for vmcs02. Keep the page pinned, so this
9560 * physical address remains valid. We keep a reference
9561 * to it so we can release it later.
9562 */
9563 if (vmx->nested.apic_access_page) /* shouldn't happen */
9564 nested_release_page(vmx->nested.apic_access_page);
9565 vmx->nested.apic_access_page =
9566 nested_get_page(vcpu, vmcs12->apic_access_addr);
9567 /*
9568 * If translation failed, no matter: This feature asks
9569 * to exit when accessing the given address, and if it
9570 * can never be accessed, this feature won't do
9571 * anything anyway.
9572 */
9573 if (vmx->nested.apic_access_page) {
9574 hpa = page_to_phys(vmx->nested.apic_access_page);
9575 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9576 } else {
9577 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9578 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9579 }
9580 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9581 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9582 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9583 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9584 kvm_vcpu_reload_apic_access_page(vcpu);
9585 }
9586
9587 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9588 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9589 nested_release_page(vmx->nested.virtual_apic_page);
9590 vmx->nested.virtual_apic_page =
9591 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9592
9593 /*
9594 * If translation failed, VM entry will fail because
9595 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9596 * Failing the vm entry is _not_ what the processor
9597 * does but it's basically the only possibility we
9598 * have. We could still enter the guest if CR8 load
9599 * exits are enabled, CR8 store exits are enabled, and
9600 * virtualize APIC access is disabled; in this case
9601 * the processor would never use the TPR shadow and we
9602 * could simply clear the bit from the execution
9603 * control. But such a configuration is useless, so
9604 * let's keep the code simple.
9605 */
9606 if (vmx->nested.virtual_apic_page) {
9607 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9608 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9609 }
9610 }
9611
9612 if (nested_cpu_has_posted_intr(vmcs12)) {
9613 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9614 kunmap(vmx->nested.pi_desc_page);
9615 nested_release_page(vmx->nested.pi_desc_page);
9616 }
9617 vmx->nested.pi_desc_page =
9618 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9619 vmx->nested.pi_desc =
9620 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9621 if (!vmx->nested.pi_desc) {
9622 nested_release_page_clean(vmx->nested.pi_desc_page);
9623 return;
9624 }
9625 vmx->nested.pi_desc =
9626 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9627 (unsigned long)(vmcs12->posted_intr_desc_addr &
9628 (PAGE_SIZE - 1)));
9629 vmcs_write64(POSTED_INTR_DESC_ADDR,
9630 page_to_phys(vmx->nested.pi_desc_page) +
9631 (unsigned long)(vmcs12->posted_intr_desc_addr &
9632 (PAGE_SIZE - 1)));
9633 }
9634 if (cpu_has_vmx_msr_bitmap() &&
9635 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9636 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9637 ;
9638 else
9639 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9640 CPU_BASED_USE_MSR_BITMAPS);
9641 }
9642
9643 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9644 {
9645 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9646 struct vcpu_vmx *vmx = to_vmx(vcpu);
9647
9648 if (vcpu->arch.virtual_tsc_khz == 0)
9649 return;
9650
9651 /* Make sure short timeouts reliably trigger an immediate vmexit.
9652 * hrtimer_start does not guarantee this. */
9653 if (preemption_timeout <= 1) {
9654 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9655 return;
9656 }
9657
9658 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9659 preemption_timeout *= 1000000;
9660 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9661 hrtimer_start(&vmx->nested.preemption_timer,
9662 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9663 }
9664
9665 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9666 struct vmcs12 *vmcs12)
9667 {
9668 int maxphyaddr;
9669 u64 addr;
9670
9671 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9672 return 0;
9673
9674 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9675 WARN_ON(1);
9676 return -EINVAL;
9677 }
9678 maxphyaddr = cpuid_maxphyaddr(vcpu);
9679
9680 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9681 ((addr + PAGE_SIZE) >> maxphyaddr))
9682 return -EINVAL;
9683
9684 return 0;
9685 }
9686
9687 /*
9688 * Merge L0's and L1's MSR bitmap, return false to indicate that
9689 * we do not use the hardware.
9690 */
9691 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9692 struct vmcs12 *vmcs12)
9693 {
9694 int msr;
9695 struct page *page;
9696 unsigned long *msr_bitmap_l1;
9697 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9698
9699 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9700 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9701 return false;
9702
9703 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9704 if (!page)
9705 return false;
9706 msr_bitmap_l1 = (unsigned long *)kmap(page);
9707
9708 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9709
9710 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9711 if (nested_cpu_has_apic_reg_virt(vmcs12))
9712 for (msr = 0x800; msr <= 0x8ff; msr++)
9713 nested_vmx_disable_intercept_for_msr(
9714 msr_bitmap_l1, msr_bitmap_l0,
9715 msr, MSR_TYPE_R);
9716
9717 nested_vmx_disable_intercept_for_msr(
9718 msr_bitmap_l1, msr_bitmap_l0,
9719 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9720 MSR_TYPE_R | MSR_TYPE_W);
9721
9722 if (nested_cpu_has_vid(vmcs12)) {
9723 nested_vmx_disable_intercept_for_msr(
9724 msr_bitmap_l1, msr_bitmap_l0,
9725 APIC_BASE_MSR + (APIC_EOI >> 4),
9726 MSR_TYPE_W);
9727 nested_vmx_disable_intercept_for_msr(
9728 msr_bitmap_l1, msr_bitmap_l0,
9729 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9730 MSR_TYPE_W);
9731 }
9732 }
9733 kunmap(page);
9734 nested_release_page_clean(page);
9735
9736 return true;
9737 }
9738
9739 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9740 struct vmcs12 *vmcs12)
9741 {
9742 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9743 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9744 !nested_cpu_has_vid(vmcs12) &&
9745 !nested_cpu_has_posted_intr(vmcs12))
9746 return 0;
9747
9748 /*
9749 * If virtualize x2apic mode is enabled,
9750 * virtualize apic access must be disabled.
9751 */
9752 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9753 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9754 return -EINVAL;
9755
9756 /*
9757 * If virtual interrupt delivery is enabled,
9758 * we must exit on external interrupts.
9759 */
9760 if (nested_cpu_has_vid(vmcs12) &&
9761 !nested_exit_on_intr(vcpu))
9762 return -EINVAL;
9763
9764 /*
9765 * bits 15:8 should be zero in posted_intr_nv,
9766 * the descriptor address has been already checked
9767 * in nested_get_vmcs12_pages.
9768 */
9769 if (nested_cpu_has_posted_intr(vmcs12) &&
9770 (!nested_cpu_has_vid(vmcs12) ||
9771 !nested_exit_intr_ack_set(vcpu) ||
9772 vmcs12->posted_intr_nv & 0xff00))
9773 return -EINVAL;
9774
9775 /* tpr shadow is needed by all apicv features. */
9776 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9777 return -EINVAL;
9778
9779 return 0;
9780 }
9781
9782 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9783 unsigned long count_field,
9784 unsigned long addr_field)
9785 {
9786 int maxphyaddr;
9787 u64 count, addr;
9788
9789 if (vmcs12_read_any(vcpu, count_field, &count) ||
9790 vmcs12_read_any(vcpu, addr_field, &addr)) {
9791 WARN_ON(1);
9792 return -EINVAL;
9793 }
9794 if (count == 0)
9795 return 0;
9796 maxphyaddr = cpuid_maxphyaddr(vcpu);
9797 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9798 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9799 pr_debug_ratelimited(
9800 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9801 addr_field, maxphyaddr, count, addr);
9802 return -EINVAL;
9803 }
9804 return 0;
9805 }
9806
9807 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9808 struct vmcs12 *vmcs12)
9809 {
9810 if (vmcs12->vm_exit_msr_load_count == 0 &&
9811 vmcs12->vm_exit_msr_store_count == 0 &&
9812 vmcs12->vm_entry_msr_load_count == 0)
9813 return 0; /* Fast path */
9814 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9815 VM_EXIT_MSR_LOAD_ADDR) ||
9816 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9817 VM_EXIT_MSR_STORE_ADDR) ||
9818 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9819 VM_ENTRY_MSR_LOAD_ADDR))
9820 return -EINVAL;
9821 return 0;
9822 }
9823
9824 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9825 struct vmx_msr_entry *e)
9826 {
9827 /* x2APIC MSR accesses are not allowed */
9828 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9829 return -EINVAL;
9830 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9831 e->index == MSR_IA32_UCODE_REV)
9832 return -EINVAL;
9833 if (e->reserved != 0)
9834 return -EINVAL;
9835 return 0;
9836 }
9837
9838 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9839 struct vmx_msr_entry *e)
9840 {
9841 if (e->index == MSR_FS_BASE ||
9842 e->index == MSR_GS_BASE ||
9843 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9844 nested_vmx_msr_check_common(vcpu, e))
9845 return -EINVAL;
9846 return 0;
9847 }
9848
9849 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9850 struct vmx_msr_entry *e)
9851 {
9852 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9853 nested_vmx_msr_check_common(vcpu, e))
9854 return -EINVAL;
9855 return 0;
9856 }
9857
9858 /*
9859 * Load guest's/host's msr at nested entry/exit.
9860 * return 0 for success, entry index for failure.
9861 */
9862 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9863 {
9864 u32 i;
9865 struct vmx_msr_entry e;
9866 struct msr_data msr;
9867
9868 msr.host_initiated = false;
9869 for (i = 0; i < count; i++) {
9870 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9871 &e, sizeof(e))) {
9872 pr_debug_ratelimited(
9873 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9874 __func__, i, gpa + i * sizeof(e));
9875 goto fail;
9876 }
9877 if (nested_vmx_load_msr_check(vcpu, &e)) {
9878 pr_debug_ratelimited(
9879 "%s check failed (%u, 0x%x, 0x%x)\n",
9880 __func__, i, e.index, e.reserved);
9881 goto fail;
9882 }
9883 msr.index = e.index;
9884 msr.data = e.value;
9885 if (kvm_set_msr(vcpu, &msr)) {
9886 pr_debug_ratelimited(
9887 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9888 __func__, i, e.index, e.value);
9889 goto fail;
9890 }
9891 }
9892 return 0;
9893 fail:
9894 return i + 1;
9895 }
9896
9897 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9898 {
9899 u32 i;
9900 struct vmx_msr_entry e;
9901
9902 for (i = 0; i < count; i++) {
9903 struct msr_data msr_info;
9904 if (kvm_vcpu_read_guest(vcpu,
9905 gpa + i * sizeof(e),
9906 &e, 2 * sizeof(u32))) {
9907 pr_debug_ratelimited(
9908 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9909 __func__, i, gpa + i * sizeof(e));
9910 return -EINVAL;
9911 }
9912 if (nested_vmx_store_msr_check(vcpu, &e)) {
9913 pr_debug_ratelimited(
9914 "%s check failed (%u, 0x%x, 0x%x)\n",
9915 __func__, i, e.index, e.reserved);
9916 return -EINVAL;
9917 }
9918 msr_info.host_initiated = false;
9919 msr_info.index = e.index;
9920 if (kvm_get_msr(vcpu, &msr_info)) {
9921 pr_debug_ratelimited(
9922 "%s cannot read MSR (%u, 0x%x)\n",
9923 __func__, i, e.index);
9924 return -EINVAL;
9925 }
9926 if (kvm_vcpu_write_guest(vcpu,
9927 gpa + i * sizeof(e) +
9928 offsetof(struct vmx_msr_entry, value),
9929 &msr_info.data, sizeof(msr_info.data))) {
9930 pr_debug_ratelimited(
9931 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9932 __func__, i, e.index, msr_info.data);
9933 return -EINVAL;
9934 }
9935 }
9936 return 0;
9937 }
9938
9939 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9940 {
9941 unsigned long invalid_mask;
9942
9943 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9944 return (val & invalid_mask) == 0;
9945 }
9946
9947 /*
9948 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9949 * emulating VM entry into a guest with EPT enabled.
9950 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9951 * is assigned to entry_failure_code on failure.
9952 */
9953 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9954 u32 *entry_failure_code)
9955 {
9956 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9957 if (!nested_cr3_valid(vcpu, cr3)) {
9958 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9959 return 1;
9960 }
9961
9962 /*
9963 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9964 * must not be dereferenced.
9965 */
9966 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9967 !nested_ept) {
9968 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9969 *entry_failure_code = ENTRY_FAIL_PDPTE;
9970 return 1;
9971 }
9972 }
9973
9974 vcpu->arch.cr3 = cr3;
9975 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9976 }
9977
9978 kvm_mmu_reset_context(vcpu);
9979 return 0;
9980 }
9981
9982 /*
9983 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9984 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9985 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9986 * guest in a way that will both be appropriate to L1's requests, and our
9987 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9988 * function also has additional necessary side-effects, like setting various
9989 * vcpu->arch fields.
9990 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9991 * is assigned to entry_failure_code on failure.
9992 */
9993 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9994 bool from_vmentry, u32 *entry_failure_code)
9995 {
9996 struct vcpu_vmx *vmx = to_vmx(vcpu);
9997 u32 exec_control;
9998
9999 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10000 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10001 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10002 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10003 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10004 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10005 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10006 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10007 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10008 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10009 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10010 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10011 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10012 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10013 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10014 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10015 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10016 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10017 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10018 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10019 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10020 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10021 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10022 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10023 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10024 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10025 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10026 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10027 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10028 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10029 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10030 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10031 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10032 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10033 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10034 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10035
10036 if (from_vmentry &&
10037 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10038 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10039 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10040 } else {
10041 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10042 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10043 }
10044 if (from_vmentry) {
10045 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10046 vmcs12->vm_entry_intr_info_field);
10047 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10048 vmcs12->vm_entry_exception_error_code);
10049 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10050 vmcs12->vm_entry_instruction_len);
10051 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10052 vmcs12->guest_interruptibility_info);
10053 } else {
10054 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10055 }
10056 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10057 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10058 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10059 vmcs12->guest_pending_dbg_exceptions);
10060 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10061 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10062
10063 if (nested_cpu_has_xsaves(vmcs12))
10064 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10065 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10066
10067 exec_control = vmcs12->pin_based_vm_exec_control;
10068
10069 /* Preemption timer setting is only taken from vmcs01. */
10070 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10071 exec_control |= vmcs_config.pin_based_exec_ctrl;
10072 if (vmx->hv_deadline_tsc == -1)
10073 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10074
10075 /* Posted interrupts setting is only taken from vmcs12. */
10076 if (nested_cpu_has_posted_intr(vmcs12)) {
10077 /*
10078 * Note that we use L0's vector here and in
10079 * vmx_deliver_nested_posted_interrupt.
10080 */
10081 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10082 vmx->nested.pi_pending = false;
10083 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10084 } else {
10085 exec_control &= ~PIN_BASED_POSTED_INTR;
10086 }
10087
10088 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10089
10090 vmx->nested.preemption_timer_expired = false;
10091 if (nested_cpu_has_preemption_timer(vmcs12))
10092 vmx_start_preemption_timer(vcpu);
10093
10094 /*
10095 * Whether page-faults are trapped is determined by a combination of
10096 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10097 * If enable_ept, L0 doesn't care about page faults and we should
10098 * set all of these to L1's desires. However, if !enable_ept, L0 does
10099 * care about (at least some) page faults, and because it is not easy
10100 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10101 * to exit on each and every L2 page fault. This is done by setting
10102 * MASK=MATCH=0 and (see below) EB.PF=1.
10103 * Note that below we don't need special code to set EB.PF beyond the
10104 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10105 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10106 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10107 *
10108 * A problem with this approach (when !enable_ept) is that L1 may be
10109 * injected with more page faults than it asked for. This could have
10110 * caused problems, but in practice existing hypervisors don't care.
10111 * To fix this, we will need to emulate the PFEC checking (on the L1
10112 * page tables), using walk_addr(), when injecting PFs to L1.
10113 */
10114 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10115 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10116 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10117 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10118
10119 if (cpu_has_secondary_exec_ctrls()) {
10120 exec_control = vmx_secondary_exec_control(vmx);
10121
10122 /* Take the following fields only from vmcs12 */
10123 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10124 SECONDARY_EXEC_RDTSCP |
10125 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10126 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10127 if (nested_cpu_has(vmcs12,
10128 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10129 exec_control |= vmcs12->secondary_vm_exec_control;
10130
10131 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10132 vmcs_write64(EOI_EXIT_BITMAP0,
10133 vmcs12->eoi_exit_bitmap0);
10134 vmcs_write64(EOI_EXIT_BITMAP1,
10135 vmcs12->eoi_exit_bitmap1);
10136 vmcs_write64(EOI_EXIT_BITMAP2,
10137 vmcs12->eoi_exit_bitmap2);
10138 vmcs_write64(EOI_EXIT_BITMAP3,
10139 vmcs12->eoi_exit_bitmap3);
10140 vmcs_write16(GUEST_INTR_STATUS,
10141 vmcs12->guest_intr_status);
10142 }
10143
10144 /*
10145 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10146 * nested_get_vmcs12_pages will either fix it up or
10147 * remove the VM execution control.
10148 */
10149 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10150 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10151
10152 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10153 }
10154
10155
10156 /*
10157 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10158 * Some constant fields are set here by vmx_set_constant_host_state().
10159 * Other fields are different per CPU, and will be set later when
10160 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10161 */
10162 vmx_set_constant_host_state(vmx);
10163
10164 /*
10165 * Set the MSR load/store lists to match L0's settings.
10166 */
10167 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10168 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10169 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10170 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10171 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10172
10173 /*
10174 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10175 * entry, but only if the current (host) sp changed from the value
10176 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10177 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10178 * here we just force the write to happen on entry.
10179 */
10180 vmx->host_rsp = 0;
10181
10182 exec_control = vmx_exec_control(vmx); /* L0's desires */
10183 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10184 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10185 exec_control &= ~CPU_BASED_TPR_SHADOW;
10186 exec_control |= vmcs12->cpu_based_vm_exec_control;
10187
10188 /*
10189 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10190 * nested_get_vmcs12_pages can't fix it up, the illegal value
10191 * will result in a VM entry failure.
10192 */
10193 if (exec_control & CPU_BASED_TPR_SHADOW) {
10194 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10195 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10196 }
10197
10198 /*
10199 * Merging of IO bitmap not currently supported.
10200 * Rather, exit every time.
10201 */
10202 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10203 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10204
10205 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10206
10207 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10208 * bitwise-or of what L1 wants to trap for L2, and what we want to
10209 * trap. Note that CR0.TS also needs updating - we do this later.
10210 */
10211 update_exception_bitmap(vcpu);
10212 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10213 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10214
10215 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10216 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10217 * bits are further modified by vmx_set_efer() below.
10218 */
10219 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10220
10221 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10222 * emulated by vmx_set_efer(), below.
10223 */
10224 vm_entry_controls_init(vmx,
10225 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10226 ~VM_ENTRY_IA32E_MODE) |
10227 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10228
10229 if (from_vmentry &&
10230 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10231 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10232 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10233 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10234 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10235 }
10236
10237 set_cr4_guest_host_mask(vmx);
10238
10239 if (from_vmentry &&
10240 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10241 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10242
10243 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10244 vmcs_write64(TSC_OFFSET,
10245 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10246 else
10247 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10248 if (kvm_has_tsc_control)
10249 decache_tsc_multiplier(vmx);
10250
10251 if (enable_vpid) {
10252 /*
10253 * There is no direct mapping between vpid02 and vpid12, the
10254 * vpid02 is per-vCPU for L0 and reused while the value of
10255 * vpid12 is changed w/ one invvpid during nested vmentry.
10256 * The vpid12 is allocated by L1 for L2, so it will not
10257 * influence global bitmap(for vpid01 and vpid02 allocation)
10258 * even if spawn a lot of nested vCPUs.
10259 */
10260 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10261 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10262 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10263 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10264 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10265 }
10266 } else {
10267 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10268 vmx_flush_tlb(vcpu);
10269 }
10270
10271 }
10272
10273 if (enable_pml) {
10274 /*
10275 * Conceptually we want to copy the PML address and index from
10276 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10277 * since we always flush the log on each vmexit, this happens
10278 * to be equivalent to simply resetting the fields in vmcs02.
10279 */
10280 ASSERT(vmx->pml_pg);
10281 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10282 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10283 }
10284
10285 if (nested_cpu_has_ept(vmcs12)) {
10286 kvm_mmu_unload(vcpu);
10287 nested_ept_init_mmu_context(vcpu);
10288 } else if (nested_cpu_has2(vmcs12,
10289 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10290 vmx_flush_tlb_ept_only(vcpu);
10291 }
10292
10293 /*
10294 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10295 * bits which we consider mandatory enabled.
10296 * The CR0_READ_SHADOW is what L2 should have expected to read given
10297 * the specifications by L1; It's not enough to take
10298 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10299 * have more bits than L1 expected.
10300 */
10301 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10302 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10303
10304 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10305 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10306
10307 if (from_vmentry &&
10308 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10309 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10310 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10311 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10312 else
10313 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10314 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10315 vmx_set_efer(vcpu, vcpu->arch.efer);
10316
10317 /* Shadow page tables on either EPT or shadow page tables. */
10318 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10319 entry_failure_code))
10320 return 1;
10321
10322 if (!enable_ept)
10323 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10324
10325 /*
10326 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10327 */
10328 if (enable_ept) {
10329 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10330 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10331 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10332 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10333 }
10334
10335 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10336 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10337 return 0;
10338 }
10339
10340 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10341 {
10342 struct vcpu_vmx *vmx = to_vmx(vcpu);
10343
10344 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10345 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10346 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10347
10348 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10349 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10350
10351 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10352 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10353
10354 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10355 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10356
10357 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10358 vmx->nested.nested_vmx_procbased_ctls_low,
10359 vmx->nested.nested_vmx_procbased_ctls_high) ||
10360 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10361 vmx->nested.nested_vmx_secondary_ctls_low,
10362 vmx->nested.nested_vmx_secondary_ctls_high) ||
10363 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10364 vmx->nested.nested_vmx_pinbased_ctls_low,
10365 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10366 !vmx_control_verify(vmcs12->vm_exit_controls,
10367 vmx->nested.nested_vmx_exit_ctls_low,
10368 vmx->nested.nested_vmx_exit_ctls_high) ||
10369 !vmx_control_verify(vmcs12->vm_entry_controls,
10370 vmx->nested.nested_vmx_entry_ctls_low,
10371 vmx->nested.nested_vmx_entry_ctls_high))
10372 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10373
10374 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10375 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10376 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10377 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10378
10379 return 0;
10380 }
10381
10382 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10383 u32 *exit_qual)
10384 {
10385 bool ia32e;
10386
10387 *exit_qual = ENTRY_FAIL_DEFAULT;
10388
10389 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10390 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10391 return 1;
10392
10393 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10394 vmcs12->vmcs_link_pointer != -1ull) {
10395 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10396 return 1;
10397 }
10398
10399 /*
10400 * If the load IA32_EFER VM-entry control is 1, the following checks
10401 * are performed on the field for the IA32_EFER MSR:
10402 * - Bits reserved in the IA32_EFER MSR must be 0.
10403 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10404 * the IA-32e mode guest VM-exit control. It must also be identical
10405 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10406 * CR0.PG) is 1.
10407 */
10408 if (to_vmx(vcpu)->nested.nested_run_pending &&
10409 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10410 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10411 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10412 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10413 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10414 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10415 return 1;
10416 }
10417
10418 /*
10419 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10420 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10421 * the values of the LMA and LME bits in the field must each be that of
10422 * the host address-space size VM-exit control.
10423 */
10424 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10425 ia32e = (vmcs12->vm_exit_controls &
10426 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10427 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10428 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10429 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10430 return 1;
10431 }
10432
10433 return 0;
10434 }
10435
10436 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10437 {
10438 struct vcpu_vmx *vmx = to_vmx(vcpu);
10439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10440 struct loaded_vmcs *vmcs02;
10441 int cpu;
10442 u32 msr_entry_idx;
10443 u32 exit_qual;
10444
10445 vmcs02 = nested_get_current_vmcs02(vmx);
10446 if (!vmcs02)
10447 return -ENOMEM;
10448
10449 enter_guest_mode(vcpu);
10450
10451 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10452 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10453
10454 cpu = get_cpu();
10455 vmx->loaded_vmcs = vmcs02;
10456 vmx_vcpu_put(vcpu);
10457 vmx_vcpu_load(vcpu, cpu);
10458 vcpu->cpu = cpu;
10459 put_cpu();
10460
10461 vmx_segment_cache_clear(vmx);
10462
10463 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10464 leave_guest_mode(vcpu);
10465 vmx_load_vmcs01(vcpu);
10466 nested_vmx_entry_failure(vcpu, vmcs12,
10467 EXIT_REASON_INVALID_STATE, exit_qual);
10468 return 1;
10469 }
10470
10471 nested_get_vmcs12_pages(vcpu, vmcs12);
10472
10473 msr_entry_idx = nested_vmx_load_msr(vcpu,
10474 vmcs12->vm_entry_msr_load_addr,
10475 vmcs12->vm_entry_msr_load_count);
10476 if (msr_entry_idx) {
10477 leave_guest_mode(vcpu);
10478 vmx_load_vmcs01(vcpu);
10479 nested_vmx_entry_failure(vcpu, vmcs12,
10480 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10481 return 1;
10482 }
10483
10484 vmcs12->launch_state = 1;
10485
10486 /*
10487 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10488 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10489 * returned as far as L1 is concerned. It will only return (and set
10490 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10491 */
10492 return 0;
10493 }
10494
10495 /*
10496 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10497 * for running an L2 nested guest.
10498 */
10499 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10500 {
10501 struct vmcs12 *vmcs12;
10502 struct vcpu_vmx *vmx = to_vmx(vcpu);
10503 u32 exit_qual;
10504 int ret;
10505
10506 if (!nested_vmx_check_permission(vcpu))
10507 return 1;
10508
10509 if (!nested_vmx_check_vmcs12(vcpu))
10510 goto out;
10511
10512 vmcs12 = get_vmcs12(vcpu);
10513
10514 if (enable_shadow_vmcs)
10515 copy_shadow_to_vmcs12(vmx);
10516
10517 /*
10518 * The nested entry process starts with enforcing various prerequisites
10519 * on vmcs12 as required by the Intel SDM, and act appropriately when
10520 * they fail: As the SDM explains, some conditions should cause the
10521 * instruction to fail, while others will cause the instruction to seem
10522 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10523 * To speed up the normal (success) code path, we should avoid checking
10524 * for misconfigurations which will anyway be caught by the processor
10525 * when using the merged vmcs02.
10526 */
10527 if (vmcs12->launch_state == launch) {
10528 nested_vmx_failValid(vcpu,
10529 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10530 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10531 goto out;
10532 }
10533
10534 ret = check_vmentry_prereqs(vcpu, vmcs12);
10535 if (ret) {
10536 nested_vmx_failValid(vcpu, ret);
10537 goto out;
10538 }
10539
10540 /*
10541 * After this point, the trap flag no longer triggers a singlestep trap
10542 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10543 * This is not 100% correct; for performance reasons, we delegate most
10544 * of the checks on host state to the processor. If those fail,
10545 * the singlestep trap is missed.
10546 */
10547 skip_emulated_instruction(vcpu);
10548
10549 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10550 if (ret) {
10551 nested_vmx_entry_failure(vcpu, vmcs12,
10552 EXIT_REASON_INVALID_STATE, exit_qual);
10553 return 1;
10554 }
10555
10556 /*
10557 * We're finally done with prerequisite checking, and can start with
10558 * the nested entry.
10559 */
10560
10561 ret = enter_vmx_non_root_mode(vcpu, true);
10562 if (ret)
10563 return ret;
10564
10565 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10566 return kvm_vcpu_halt(vcpu);
10567
10568 vmx->nested.nested_run_pending = 1;
10569
10570 return 1;
10571
10572 out:
10573 return kvm_skip_emulated_instruction(vcpu);
10574 }
10575
10576 /*
10577 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10578 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10579 * This function returns the new value we should put in vmcs12.guest_cr0.
10580 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10581 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10582 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10583 * didn't trap the bit, because if L1 did, so would L0).
10584 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10585 * been modified by L2, and L1 knows it. So just leave the old value of
10586 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10587 * isn't relevant, because if L0 traps this bit it can set it to anything.
10588 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10589 * changed these bits, and therefore they need to be updated, but L0
10590 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10591 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10592 */
10593 static inline unsigned long
10594 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10595 {
10596 return
10597 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10598 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10599 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10600 vcpu->arch.cr0_guest_owned_bits));
10601 }
10602
10603 static inline unsigned long
10604 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10605 {
10606 return
10607 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10608 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10609 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10610 vcpu->arch.cr4_guest_owned_bits));
10611 }
10612
10613 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10614 struct vmcs12 *vmcs12)
10615 {
10616 u32 idt_vectoring;
10617 unsigned int nr;
10618
10619 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10620 nr = vcpu->arch.exception.nr;
10621 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10622
10623 if (kvm_exception_is_soft(nr)) {
10624 vmcs12->vm_exit_instruction_len =
10625 vcpu->arch.event_exit_inst_len;
10626 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10627 } else
10628 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10629
10630 if (vcpu->arch.exception.has_error_code) {
10631 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10632 vmcs12->idt_vectoring_error_code =
10633 vcpu->arch.exception.error_code;
10634 }
10635
10636 vmcs12->idt_vectoring_info_field = idt_vectoring;
10637 } else if (vcpu->arch.nmi_injected) {
10638 vmcs12->idt_vectoring_info_field =
10639 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10640 } else if (vcpu->arch.interrupt.pending) {
10641 nr = vcpu->arch.interrupt.nr;
10642 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10643
10644 if (vcpu->arch.interrupt.soft) {
10645 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10646 vmcs12->vm_entry_instruction_len =
10647 vcpu->arch.event_exit_inst_len;
10648 } else
10649 idt_vectoring |= INTR_TYPE_EXT_INTR;
10650
10651 vmcs12->idt_vectoring_info_field = idt_vectoring;
10652 }
10653 }
10654
10655 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10656 {
10657 struct vcpu_vmx *vmx = to_vmx(vcpu);
10658
10659 if (vcpu->arch.exception.pending ||
10660 vcpu->arch.nmi_injected ||
10661 vcpu->arch.interrupt.pending)
10662 return -EBUSY;
10663
10664 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10665 vmx->nested.preemption_timer_expired) {
10666 if (vmx->nested.nested_run_pending)
10667 return -EBUSY;
10668 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10669 return 0;
10670 }
10671
10672 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10673 if (vmx->nested.nested_run_pending)
10674 return -EBUSY;
10675 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10676 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10677 INTR_INFO_VALID_MASK, 0);
10678 /*
10679 * The NMI-triggered VM exit counts as injection:
10680 * clear this one and block further NMIs.
10681 */
10682 vcpu->arch.nmi_pending = 0;
10683 vmx_set_nmi_mask(vcpu, true);
10684 return 0;
10685 }
10686
10687 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10688 nested_exit_on_intr(vcpu)) {
10689 if (vmx->nested.nested_run_pending)
10690 return -EBUSY;
10691 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10692 return 0;
10693 }
10694
10695 vmx_complete_nested_posted_interrupt(vcpu);
10696 return 0;
10697 }
10698
10699 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10700 {
10701 ktime_t remaining =
10702 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10703 u64 value;
10704
10705 if (ktime_to_ns(remaining) <= 0)
10706 return 0;
10707
10708 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10709 do_div(value, 1000000);
10710 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10711 }
10712
10713 /*
10714 * Update the guest state fields of vmcs12 to reflect changes that
10715 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10716 * VM-entry controls is also updated, since this is really a guest
10717 * state bit.)
10718 */
10719 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10720 {
10721 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10722 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10723
10724 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10725 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10726 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10727
10728 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10729 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10730 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10731 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10732 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10733 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10734 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10735 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10736 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10737 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10738 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10739 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10740 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10741 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10742 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10743 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10744 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10745 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10746 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10747 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10748 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10749 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10750 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10751 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10752 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10753 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10754 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10755 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10756 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10757 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10758 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10759 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10760 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10761 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10762 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10763 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10764
10765 vmcs12->guest_interruptibility_info =
10766 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10767 vmcs12->guest_pending_dbg_exceptions =
10768 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10769 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10770 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10771 else
10772 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10773
10774 if (nested_cpu_has_preemption_timer(vmcs12)) {
10775 if (vmcs12->vm_exit_controls &
10776 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10777 vmcs12->vmx_preemption_timer_value =
10778 vmx_get_preemption_timer_value(vcpu);
10779 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10780 }
10781
10782 /*
10783 * In some cases (usually, nested EPT), L2 is allowed to change its
10784 * own CR3 without exiting. If it has changed it, we must keep it.
10785 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10786 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10787 *
10788 * Additionally, restore L2's PDPTR to vmcs12.
10789 */
10790 if (enable_ept) {
10791 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10792 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10793 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10794 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10795 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10796 }
10797
10798 if (nested_cpu_has_ept(vmcs12))
10799 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10800
10801 if (nested_cpu_has_vid(vmcs12))
10802 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10803
10804 vmcs12->vm_entry_controls =
10805 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10806 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10807
10808 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10809 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10810 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10811 }
10812
10813 /* TODO: These cannot have changed unless we have MSR bitmaps and
10814 * the relevant bit asks not to trap the change */
10815 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10816 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10817 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10818 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10819 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10820 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10821 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10822 if (kvm_mpx_supported())
10823 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10824 if (nested_cpu_has_xsaves(vmcs12))
10825 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10826 }
10827
10828 /*
10829 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10830 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10831 * and this function updates it to reflect the changes to the guest state while
10832 * L2 was running (and perhaps made some exits which were handled directly by L0
10833 * without going back to L1), and to reflect the exit reason.
10834 * Note that we do not have to copy here all VMCS fields, just those that
10835 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10836 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10837 * which already writes to vmcs12 directly.
10838 */
10839 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10840 u32 exit_reason, u32 exit_intr_info,
10841 unsigned long exit_qualification)
10842 {
10843 /* update guest state fields: */
10844 sync_vmcs12(vcpu, vmcs12);
10845
10846 /* update exit information fields: */
10847
10848 vmcs12->vm_exit_reason = exit_reason;
10849 vmcs12->exit_qualification = exit_qualification;
10850
10851 vmcs12->vm_exit_intr_info = exit_intr_info;
10852 if ((vmcs12->vm_exit_intr_info &
10853 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10854 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10855 vmcs12->vm_exit_intr_error_code =
10856 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10857 vmcs12->idt_vectoring_info_field = 0;
10858 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10859 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10860
10861 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10862 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10863 * instead of reading the real value. */
10864 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10865
10866 /*
10867 * Transfer the event that L0 or L1 may wanted to inject into
10868 * L2 to IDT_VECTORING_INFO_FIELD.
10869 */
10870 vmcs12_save_pending_event(vcpu, vmcs12);
10871 }
10872
10873 /*
10874 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10875 * preserved above and would only end up incorrectly in L1.
10876 */
10877 vcpu->arch.nmi_injected = false;
10878 kvm_clear_exception_queue(vcpu);
10879 kvm_clear_interrupt_queue(vcpu);
10880 }
10881
10882 /*
10883 * A part of what we need to when the nested L2 guest exits and we want to
10884 * run its L1 parent, is to reset L1's guest state to the host state specified
10885 * in vmcs12.
10886 * This function is to be called not only on normal nested exit, but also on
10887 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10888 * Failures During or After Loading Guest State").
10889 * This function should be called when the active VMCS is L1's (vmcs01).
10890 */
10891 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10892 struct vmcs12 *vmcs12)
10893 {
10894 struct kvm_segment seg;
10895 u32 entry_failure_code;
10896
10897 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10898 vcpu->arch.efer = vmcs12->host_ia32_efer;
10899 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10900 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10901 else
10902 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10903 vmx_set_efer(vcpu, vcpu->arch.efer);
10904
10905 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10906 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10907 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10908 /*
10909 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10910 * actually changed, because vmx_set_cr0 refers to efer set above.
10911 *
10912 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10913 * (KVM doesn't change it);
10914 */
10915 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10916 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10917
10918 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
10919 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10920 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10921
10922 nested_ept_uninit_mmu_context(vcpu);
10923
10924 /*
10925 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10926 * couldn't have changed.
10927 */
10928 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10929 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10930
10931 if (!enable_ept)
10932 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10933
10934 if (enable_vpid) {
10935 /*
10936 * Trivially support vpid by letting L2s share their parent
10937 * L1's vpid. TODO: move to a more elaborate solution, giving
10938 * each L2 its own vpid and exposing the vpid feature to L1.
10939 */
10940 vmx_flush_tlb(vcpu);
10941 }
10942
10943
10944 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10945 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10946 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10947 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10948 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10949
10950 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10951 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10952 vmcs_write64(GUEST_BNDCFGS, 0);
10953
10954 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10955 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10956 vcpu->arch.pat = vmcs12->host_ia32_pat;
10957 }
10958 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10959 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10960 vmcs12->host_ia32_perf_global_ctrl);
10961
10962 /* Set L1 segment info according to Intel SDM
10963 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10964 seg = (struct kvm_segment) {
10965 .base = 0,
10966 .limit = 0xFFFFFFFF,
10967 .selector = vmcs12->host_cs_selector,
10968 .type = 11,
10969 .present = 1,
10970 .s = 1,
10971 .g = 1
10972 };
10973 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10974 seg.l = 1;
10975 else
10976 seg.db = 1;
10977 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10978 seg = (struct kvm_segment) {
10979 .base = 0,
10980 .limit = 0xFFFFFFFF,
10981 .type = 3,
10982 .present = 1,
10983 .s = 1,
10984 .db = 1,
10985 .g = 1
10986 };
10987 seg.selector = vmcs12->host_ds_selector;
10988 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10989 seg.selector = vmcs12->host_es_selector;
10990 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10991 seg.selector = vmcs12->host_ss_selector;
10992 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10993 seg.selector = vmcs12->host_fs_selector;
10994 seg.base = vmcs12->host_fs_base;
10995 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10996 seg.selector = vmcs12->host_gs_selector;
10997 seg.base = vmcs12->host_gs_base;
10998 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10999 seg = (struct kvm_segment) {
11000 .base = vmcs12->host_tr_base,
11001 .limit = 0x67,
11002 .selector = vmcs12->host_tr_selector,
11003 .type = 11,
11004 .present = 1
11005 };
11006 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11007
11008 kvm_set_dr(vcpu, 7, 0x400);
11009 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11010
11011 if (cpu_has_vmx_msr_bitmap())
11012 vmx_set_msr_bitmap(vcpu);
11013
11014 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11015 vmcs12->vm_exit_msr_load_count))
11016 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11017 }
11018
11019 /*
11020 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11021 * and modify vmcs12 to make it see what it would expect to see there if
11022 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11023 */
11024 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11025 u32 exit_intr_info,
11026 unsigned long exit_qualification)
11027 {
11028 struct vcpu_vmx *vmx = to_vmx(vcpu);
11029 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11030 u32 vm_inst_error = 0;
11031
11032 /* trying to cancel vmlaunch/vmresume is a bug */
11033 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11034
11035 leave_guest_mode(vcpu);
11036 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11037 exit_qualification);
11038
11039 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11040 vmcs12->vm_exit_msr_store_count))
11041 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11042
11043 if (unlikely(vmx->fail))
11044 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11045
11046 vmx_load_vmcs01(vcpu);
11047
11048 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11049 && nested_exit_intr_ack_set(vcpu)) {
11050 int irq = kvm_cpu_get_interrupt(vcpu);
11051 WARN_ON(irq < 0);
11052 vmcs12->vm_exit_intr_info = irq |
11053 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11054 }
11055
11056 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11057 vmcs12->exit_qualification,
11058 vmcs12->idt_vectoring_info_field,
11059 vmcs12->vm_exit_intr_info,
11060 vmcs12->vm_exit_intr_error_code,
11061 KVM_ISA_VMX);
11062
11063 vm_entry_controls_reset_shadow(vmx);
11064 vm_exit_controls_reset_shadow(vmx);
11065 vmx_segment_cache_clear(vmx);
11066
11067 /* if no vmcs02 cache requested, remove the one we used */
11068 if (VMCS02_POOL_SIZE == 0)
11069 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11070
11071 load_vmcs12_host_state(vcpu, vmcs12);
11072
11073 /* Update any VMCS fields that might have changed while L2 ran */
11074 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11075 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11076 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11077 if (vmx->hv_deadline_tsc == -1)
11078 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11079 PIN_BASED_VMX_PREEMPTION_TIMER);
11080 else
11081 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11082 PIN_BASED_VMX_PREEMPTION_TIMER);
11083 if (kvm_has_tsc_control)
11084 decache_tsc_multiplier(vmx);
11085
11086 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11087 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11088 vmx_set_virtual_x2apic_mode(vcpu,
11089 vcpu->arch.apic_base & X2APIC_ENABLE);
11090 } else if (!nested_cpu_has_ept(vmcs12) &&
11091 nested_cpu_has2(vmcs12,
11092 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11093 vmx_flush_tlb_ept_only(vcpu);
11094 }
11095
11096 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11097 vmx->host_rsp = 0;
11098
11099 /* Unpin physical memory we referred to in vmcs02 */
11100 if (vmx->nested.apic_access_page) {
11101 nested_release_page(vmx->nested.apic_access_page);
11102 vmx->nested.apic_access_page = NULL;
11103 }
11104 if (vmx->nested.virtual_apic_page) {
11105 nested_release_page(vmx->nested.virtual_apic_page);
11106 vmx->nested.virtual_apic_page = NULL;
11107 }
11108 if (vmx->nested.pi_desc_page) {
11109 kunmap(vmx->nested.pi_desc_page);
11110 nested_release_page(vmx->nested.pi_desc_page);
11111 vmx->nested.pi_desc_page = NULL;
11112 vmx->nested.pi_desc = NULL;
11113 }
11114
11115 /*
11116 * We are now running in L2, mmu_notifier will force to reload the
11117 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11118 */
11119 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11120
11121 /*
11122 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11123 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11124 * success or failure flag accordingly.
11125 */
11126 if (unlikely(vmx->fail)) {
11127 vmx->fail = 0;
11128 nested_vmx_failValid(vcpu, vm_inst_error);
11129 } else
11130 nested_vmx_succeed(vcpu);
11131 if (enable_shadow_vmcs)
11132 vmx->nested.sync_shadow_vmcs = true;
11133
11134 /* in case we halted in L2 */
11135 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11136 }
11137
11138 /*
11139 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11140 */
11141 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11142 {
11143 if (is_guest_mode(vcpu)) {
11144 to_vmx(vcpu)->nested.nested_run_pending = 0;
11145 nested_vmx_vmexit(vcpu, -1, 0, 0);
11146 }
11147 free_nested(to_vmx(vcpu));
11148 }
11149
11150 /*
11151 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11152 * 23.7 "VM-entry failures during or after loading guest state" (this also
11153 * lists the acceptable exit-reason and exit-qualification parameters).
11154 * It should only be called before L2 actually succeeded to run, and when
11155 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11156 */
11157 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11158 struct vmcs12 *vmcs12,
11159 u32 reason, unsigned long qualification)
11160 {
11161 load_vmcs12_host_state(vcpu, vmcs12);
11162 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11163 vmcs12->exit_qualification = qualification;
11164 nested_vmx_succeed(vcpu);
11165 if (enable_shadow_vmcs)
11166 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11167 }
11168
11169 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11170 struct x86_instruction_info *info,
11171 enum x86_intercept_stage stage)
11172 {
11173 return X86EMUL_CONTINUE;
11174 }
11175
11176 #ifdef CONFIG_X86_64
11177 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11178 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11179 u64 divisor, u64 *result)
11180 {
11181 u64 low = a << shift, high = a >> (64 - shift);
11182
11183 /* To avoid the overflow on divq */
11184 if (high >= divisor)
11185 return 1;
11186
11187 /* Low hold the result, high hold rem which is discarded */
11188 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11189 "rm" (divisor), "0" (low), "1" (high));
11190 *result = low;
11191
11192 return 0;
11193 }
11194
11195 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11196 {
11197 struct vcpu_vmx *vmx = to_vmx(vcpu);
11198 u64 tscl = rdtsc();
11199 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11200 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11201
11202 /* Convert to host delta tsc if tsc scaling is enabled */
11203 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11204 u64_shl_div_u64(delta_tsc,
11205 kvm_tsc_scaling_ratio_frac_bits,
11206 vcpu->arch.tsc_scaling_ratio,
11207 &delta_tsc))
11208 return -ERANGE;
11209
11210 /*
11211 * If the delta tsc can't fit in the 32 bit after the multi shift,
11212 * we can't use the preemption timer.
11213 * It's possible that it fits on later vmentries, but checking
11214 * on every vmentry is costly so we just use an hrtimer.
11215 */
11216 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11217 return -ERANGE;
11218
11219 vmx->hv_deadline_tsc = tscl + delta_tsc;
11220 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11221 PIN_BASED_VMX_PREEMPTION_TIMER);
11222 return 0;
11223 }
11224
11225 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11226 {
11227 struct vcpu_vmx *vmx = to_vmx(vcpu);
11228 vmx->hv_deadline_tsc = -1;
11229 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11230 PIN_BASED_VMX_PREEMPTION_TIMER);
11231 }
11232 #endif
11233
11234 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11235 {
11236 if (ple_gap)
11237 shrink_ple_window(vcpu);
11238 }
11239
11240 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11241 struct kvm_memory_slot *slot)
11242 {
11243 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11244 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11245 }
11246
11247 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11248 struct kvm_memory_slot *slot)
11249 {
11250 kvm_mmu_slot_set_dirty(kvm, slot);
11251 }
11252
11253 static void vmx_flush_log_dirty(struct kvm *kvm)
11254 {
11255 kvm_flush_pml_buffers(kvm);
11256 }
11257
11258 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11259 struct kvm_memory_slot *memslot,
11260 gfn_t offset, unsigned long mask)
11261 {
11262 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11263 }
11264
11265 /*
11266 * This routine does the following things for vCPU which is going
11267 * to be blocked if VT-d PI is enabled.
11268 * - Store the vCPU to the wakeup list, so when interrupts happen
11269 * we can find the right vCPU to wake up.
11270 * - Change the Posted-interrupt descriptor as below:
11271 * 'NDST' <-- vcpu->pre_pcpu
11272 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11273 * - If 'ON' is set during this process, which means at least one
11274 * interrupt is posted for this vCPU, we cannot block it, in
11275 * this case, return 1, otherwise, return 0.
11276 *
11277 */
11278 static int pi_pre_block(struct kvm_vcpu *vcpu)
11279 {
11280 unsigned long flags;
11281 unsigned int dest;
11282 struct pi_desc old, new;
11283 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11284
11285 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11286 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11287 !kvm_vcpu_apicv_active(vcpu))
11288 return 0;
11289
11290 vcpu->pre_pcpu = vcpu->cpu;
11291 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11292 vcpu->pre_pcpu), flags);
11293 list_add_tail(&vcpu->blocked_vcpu_list,
11294 &per_cpu(blocked_vcpu_on_cpu,
11295 vcpu->pre_pcpu));
11296 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11297 vcpu->pre_pcpu), flags);
11298
11299 do {
11300 old.control = new.control = pi_desc->control;
11301
11302 /*
11303 * We should not block the vCPU if
11304 * an interrupt is posted for it.
11305 */
11306 if (pi_test_on(pi_desc) == 1) {
11307 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11308 vcpu->pre_pcpu), flags);
11309 list_del(&vcpu->blocked_vcpu_list);
11310 spin_unlock_irqrestore(
11311 &per_cpu(blocked_vcpu_on_cpu_lock,
11312 vcpu->pre_pcpu), flags);
11313 vcpu->pre_pcpu = -1;
11314
11315 return 1;
11316 }
11317
11318 WARN((pi_desc->sn == 1),
11319 "Warning: SN field of posted-interrupts "
11320 "is set before blocking\n");
11321
11322 /*
11323 * Since vCPU can be preempted during this process,
11324 * vcpu->cpu could be different with pre_pcpu, we
11325 * need to set pre_pcpu as the destination of wakeup
11326 * notification event, then we can find the right vCPU
11327 * to wakeup in wakeup handler if interrupts happen
11328 * when the vCPU is in blocked state.
11329 */
11330 dest = cpu_physical_id(vcpu->pre_pcpu);
11331
11332 if (x2apic_enabled())
11333 new.ndst = dest;
11334 else
11335 new.ndst = (dest << 8) & 0xFF00;
11336
11337 /* set 'NV' to 'wakeup vector' */
11338 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11339 } while (cmpxchg(&pi_desc->control, old.control,
11340 new.control) != old.control);
11341
11342 return 0;
11343 }
11344
11345 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11346 {
11347 if (pi_pre_block(vcpu))
11348 return 1;
11349
11350 if (kvm_lapic_hv_timer_in_use(vcpu))
11351 kvm_lapic_switch_to_sw_timer(vcpu);
11352
11353 return 0;
11354 }
11355
11356 static void pi_post_block(struct kvm_vcpu *vcpu)
11357 {
11358 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11359 struct pi_desc old, new;
11360 unsigned int dest;
11361 unsigned long flags;
11362
11363 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11364 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11365 !kvm_vcpu_apicv_active(vcpu))
11366 return;
11367
11368 do {
11369 old.control = new.control = pi_desc->control;
11370
11371 dest = cpu_physical_id(vcpu->cpu);
11372
11373 if (x2apic_enabled())
11374 new.ndst = dest;
11375 else
11376 new.ndst = (dest << 8) & 0xFF00;
11377
11378 /* Allow posting non-urgent interrupts */
11379 new.sn = 0;
11380
11381 /* set 'NV' to 'notification vector' */
11382 new.nv = POSTED_INTR_VECTOR;
11383 } while (cmpxchg(&pi_desc->control, old.control,
11384 new.control) != old.control);
11385
11386 if(vcpu->pre_pcpu != -1) {
11387 spin_lock_irqsave(
11388 &per_cpu(blocked_vcpu_on_cpu_lock,
11389 vcpu->pre_pcpu), flags);
11390 list_del(&vcpu->blocked_vcpu_list);
11391 spin_unlock_irqrestore(
11392 &per_cpu(blocked_vcpu_on_cpu_lock,
11393 vcpu->pre_pcpu), flags);
11394 vcpu->pre_pcpu = -1;
11395 }
11396 }
11397
11398 static void vmx_post_block(struct kvm_vcpu *vcpu)
11399 {
11400 if (kvm_x86_ops->set_hv_timer)
11401 kvm_lapic_switch_to_hv_timer(vcpu);
11402
11403 pi_post_block(vcpu);
11404 }
11405
11406 /*
11407 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11408 *
11409 * @kvm: kvm
11410 * @host_irq: host irq of the interrupt
11411 * @guest_irq: gsi of the interrupt
11412 * @set: set or unset PI
11413 * returns 0 on success, < 0 on failure
11414 */
11415 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11416 uint32_t guest_irq, bool set)
11417 {
11418 struct kvm_kernel_irq_routing_entry *e;
11419 struct kvm_irq_routing_table *irq_rt;
11420 struct kvm_lapic_irq irq;
11421 struct kvm_vcpu *vcpu;
11422 struct vcpu_data vcpu_info;
11423 int idx, ret = -EINVAL;
11424
11425 if (!kvm_arch_has_assigned_device(kvm) ||
11426 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11427 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11428 return 0;
11429
11430 idx = srcu_read_lock(&kvm->irq_srcu);
11431 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11432 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11433
11434 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11435 if (e->type != KVM_IRQ_ROUTING_MSI)
11436 continue;
11437 /*
11438 * VT-d PI cannot support posting multicast/broadcast
11439 * interrupts to a vCPU, we still use interrupt remapping
11440 * for these kind of interrupts.
11441 *
11442 * For lowest-priority interrupts, we only support
11443 * those with single CPU as the destination, e.g. user
11444 * configures the interrupts via /proc/irq or uses
11445 * irqbalance to make the interrupts single-CPU.
11446 *
11447 * We will support full lowest-priority interrupt later.
11448 */
11449
11450 kvm_set_msi_irq(kvm, e, &irq);
11451 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11452 /*
11453 * Make sure the IRTE is in remapped mode if
11454 * we don't handle it in posted mode.
11455 */
11456 ret = irq_set_vcpu_affinity(host_irq, NULL);
11457 if (ret < 0) {
11458 printk(KERN_INFO
11459 "failed to back to remapped mode, irq: %u\n",
11460 host_irq);
11461 goto out;
11462 }
11463
11464 continue;
11465 }
11466
11467 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11468 vcpu_info.vector = irq.vector;
11469
11470 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11471 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11472
11473 if (set)
11474 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11475 else {
11476 /* suppress notification event before unposting */
11477 pi_set_sn(vcpu_to_pi_desc(vcpu));
11478 ret = irq_set_vcpu_affinity(host_irq, NULL);
11479 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11480 }
11481
11482 if (ret < 0) {
11483 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11484 __func__);
11485 goto out;
11486 }
11487 }
11488
11489 ret = 0;
11490 out:
11491 srcu_read_unlock(&kvm->irq_srcu, idx);
11492 return ret;
11493 }
11494
11495 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11496 {
11497 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11498 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11499 FEATURE_CONTROL_LMCE;
11500 else
11501 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11502 ~FEATURE_CONTROL_LMCE;
11503 }
11504
11505 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11506 .cpu_has_kvm_support = cpu_has_kvm_support,
11507 .disabled_by_bios = vmx_disabled_by_bios,
11508 .hardware_setup = hardware_setup,
11509 .hardware_unsetup = hardware_unsetup,
11510 .check_processor_compatibility = vmx_check_processor_compat,
11511 .hardware_enable = hardware_enable,
11512 .hardware_disable = hardware_disable,
11513 .cpu_has_accelerated_tpr = report_flexpriority,
11514 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11515
11516 .vcpu_create = vmx_create_vcpu,
11517 .vcpu_free = vmx_free_vcpu,
11518 .vcpu_reset = vmx_vcpu_reset,
11519
11520 .prepare_guest_switch = vmx_save_host_state,
11521 .vcpu_load = vmx_vcpu_load,
11522 .vcpu_put = vmx_vcpu_put,
11523
11524 .update_bp_intercept = update_exception_bitmap,
11525 .get_msr = vmx_get_msr,
11526 .set_msr = vmx_set_msr,
11527 .get_segment_base = vmx_get_segment_base,
11528 .get_segment = vmx_get_segment,
11529 .set_segment = vmx_set_segment,
11530 .get_cpl = vmx_get_cpl,
11531 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11532 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11533 .decache_cr3 = vmx_decache_cr3,
11534 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11535 .set_cr0 = vmx_set_cr0,
11536 .set_cr3 = vmx_set_cr3,
11537 .set_cr4 = vmx_set_cr4,
11538 .set_efer = vmx_set_efer,
11539 .get_idt = vmx_get_idt,
11540 .set_idt = vmx_set_idt,
11541 .get_gdt = vmx_get_gdt,
11542 .set_gdt = vmx_set_gdt,
11543 .get_dr6 = vmx_get_dr6,
11544 .set_dr6 = vmx_set_dr6,
11545 .set_dr7 = vmx_set_dr7,
11546 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11547 .cache_reg = vmx_cache_reg,
11548 .get_rflags = vmx_get_rflags,
11549 .set_rflags = vmx_set_rflags,
11550
11551 .get_pkru = vmx_get_pkru,
11552
11553 .tlb_flush = vmx_flush_tlb,
11554
11555 .run = vmx_vcpu_run,
11556 .handle_exit = vmx_handle_exit,
11557 .skip_emulated_instruction = skip_emulated_instruction,
11558 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11559 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11560 .patch_hypercall = vmx_patch_hypercall,
11561 .set_irq = vmx_inject_irq,
11562 .set_nmi = vmx_inject_nmi,
11563 .queue_exception = vmx_queue_exception,
11564 .cancel_injection = vmx_cancel_injection,
11565 .interrupt_allowed = vmx_interrupt_allowed,
11566 .nmi_allowed = vmx_nmi_allowed,
11567 .get_nmi_mask = vmx_get_nmi_mask,
11568 .set_nmi_mask = vmx_set_nmi_mask,
11569 .enable_nmi_window = enable_nmi_window,
11570 .enable_irq_window = enable_irq_window,
11571 .update_cr8_intercept = update_cr8_intercept,
11572 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11573 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11574 .get_enable_apicv = vmx_get_enable_apicv,
11575 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11576 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11577 .apicv_post_state_restore = vmx_apicv_post_state_restore,
11578 .hwapic_irr_update = vmx_hwapic_irr_update,
11579 .hwapic_isr_update = vmx_hwapic_isr_update,
11580 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11581 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11582
11583 .set_tss_addr = vmx_set_tss_addr,
11584 .get_tdp_level = get_ept_level,
11585 .get_mt_mask = vmx_get_mt_mask,
11586
11587 .get_exit_info = vmx_get_exit_info,
11588
11589 .get_lpage_level = vmx_get_lpage_level,
11590
11591 .cpuid_update = vmx_cpuid_update,
11592
11593 .rdtscp_supported = vmx_rdtscp_supported,
11594 .invpcid_supported = vmx_invpcid_supported,
11595
11596 .set_supported_cpuid = vmx_set_supported_cpuid,
11597
11598 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11599
11600 .write_tsc_offset = vmx_write_tsc_offset,
11601
11602 .set_tdp_cr3 = vmx_set_cr3,
11603
11604 .check_intercept = vmx_check_intercept,
11605 .handle_external_intr = vmx_handle_external_intr,
11606 .mpx_supported = vmx_mpx_supported,
11607 .xsaves_supported = vmx_xsaves_supported,
11608
11609 .check_nested_events = vmx_check_nested_events,
11610
11611 .sched_in = vmx_sched_in,
11612
11613 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11614 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11615 .flush_log_dirty = vmx_flush_log_dirty,
11616 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11617
11618 .pre_block = vmx_pre_block,
11619 .post_block = vmx_post_block,
11620
11621 .pmu_ops = &intel_pmu_ops,
11622
11623 .update_pi_irte = vmx_update_pi_irte,
11624
11625 #ifdef CONFIG_X86_64
11626 .set_hv_timer = vmx_set_hv_timer,
11627 .cancel_hv_timer = vmx_cancel_hv_timer,
11628 #endif
11629
11630 .setup_mce = vmx_setup_mce,
11631 };
11632
11633 static int __init vmx_init(void)
11634 {
11635 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11636 __alignof__(struct vcpu_vmx), THIS_MODULE);
11637 if (r)
11638 return r;
11639
11640 #ifdef CONFIG_KEXEC_CORE
11641 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11642 crash_vmclear_local_loaded_vmcss);
11643 #endif
11644
11645 return 0;
11646 }
11647
11648 static void __exit vmx_exit(void)
11649 {
11650 #ifdef CONFIG_KEXEC_CORE
11651 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11652 synchronize_rcu();
11653 #endif
11654
11655 kvm_exit();
11656 }
11657
11658 module_init(vmx_init)
11659 module_exit(vmx_exit)