]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
Merge tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
117 * According to test, this time is usually smaller than 128 cycles.
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
124 #define KVM_VMX_DEFAULT_PLE_GAP 128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141 };
142
143 /*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148 struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156 unsigned index;
157 u64 data;
158 u64 mask;
159 };
160
161 /*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
181
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
322 };
323
324 /*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343 };
344
345 /*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349 struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
358 struct vmcs *current_shadow_vmcs;
359 /*
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
362 */
363 bool sync_shadow_vmcs;
364
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
368 u64 vmcs01_tsc_offset;
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending;
371 /*
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
374 */
375 struct page *apic_access_page;
376 };
377
378 #define POSTED_INTR_ON 0
379 /* Posted-Interrupt Descriptor */
380 struct pi_desc {
381 u32 pir[8]; /* Posted interrupt requested */
382 u32 control; /* bit 0 of control is outstanding notification bit */
383 u32 rsvd[7];
384 } __aligned(64);
385
386 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
387 {
388 return test_and_set_bit(POSTED_INTR_ON,
389 (unsigned long *)&pi_desc->control);
390 }
391
392 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
393 {
394 return test_and_clear_bit(POSTED_INTR_ON,
395 (unsigned long *)&pi_desc->control);
396 }
397
398 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
399 {
400 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
401 }
402
403 struct vcpu_vmx {
404 struct kvm_vcpu vcpu;
405 unsigned long host_rsp;
406 u8 fail;
407 u8 cpl;
408 bool nmi_known_unmasked;
409 u32 exit_intr_info;
410 u32 idt_vectoring_info;
411 ulong rflags;
412 struct shared_msr_entry *guest_msrs;
413 int nmsrs;
414 int save_nmsrs;
415 unsigned long host_idt_base;
416 #ifdef CONFIG_X86_64
417 u64 msr_host_kernel_gs_base;
418 u64 msr_guest_kernel_gs_base;
419 #endif
420 /*
421 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
422 * non-nested (L1) guest, it always points to vmcs01. For a nested
423 * guest (L2), it points to a different VMCS.
424 */
425 struct loaded_vmcs vmcs01;
426 struct loaded_vmcs *loaded_vmcs;
427 bool __launched; /* temporary, used in vmx_vcpu_run */
428 struct msr_autoload {
429 unsigned nr;
430 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
431 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
432 } msr_autoload;
433 struct {
434 int loaded;
435 u16 fs_sel, gs_sel, ldt_sel;
436 #ifdef CONFIG_X86_64
437 u16 ds_sel, es_sel;
438 #endif
439 int gs_ldt_reload_needed;
440 int fs_reload_needed;
441 } host_state;
442 struct {
443 int vm86_active;
444 ulong save_rflags;
445 struct kvm_segment segs[8];
446 } rmode;
447 struct {
448 u32 bitmask; /* 4 bits per segment (1 bit per field) */
449 struct kvm_save_segment {
450 u16 selector;
451 unsigned long base;
452 u32 limit;
453 u32 ar;
454 } seg[8];
455 } segment_cache;
456 int vpid;
457 bool emulation_required;
458
459 /* Support for vnmi-less CPUs */
460 int soft_vnmi_blocked;
461 ktime_t entry_time;
462 s64 vnmi_blocked_time;
463 u32 exit_reason;
464
465 bool rdtscp_enabled;
466
467 /* Posted interrupt descriptor */
468 struct pi_desc pi_desc;
469
470 /* Support for a guest hypervisor (nested VMX) */
471 struct nested_vmx nested;
472 };
473
474 enum segment_cache_field {
475 SEG_FIELD_SEL = 0,
476 SEG_FIELD_BASE = 1,
477 SEG_FIELD_LIMIT = 2,
478 SEG_FIELD_AR = 3,
479
480 SEG_FIELD_NR = 4
481 };
482
483 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
484 {
485 return container_of(vcpu, struct vcpu_vmx, vcpu);
486 }
487
488 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
489 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
490 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
491 [number##_HIGH] = VMCS12_OFFSET(name)+4
492
493
494 static const unsigned long shadow_read_only_fields[] = {
495 /*
496 * We do NOT shadow fields that are modified when L0
497 * traps and emulates any vmx instruction (e.g. VMPTRLD,
498 * VMXON...) executed by L1.
499 * For example, VM_INSTRUCTION_ERROR is read
500 * by L1 if a vmx instruction fails (part of the error path).
501 * Note the code assumes this logic. If for some reason
502 * we start shadowing these fields then we need to
503 * force a shadow sync when L0 emulates vmx instructions
504 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
505 * by nested_vmx_failValid)
506 */
507 VM_EXIT_REASON,
508 VM_EXIT_INTR_INFO,
509 VM_EXIT_INSTRUCTION_LEN,
510 IDT_VECTORING_INFO_FIELD,
511 IDT_VECTORING_ERROR_CODE,
512 VM_EXIT_INTR_ERROR_CODE,
513 EXIT_QUALIFICATION,
514 GUEST_LINEAR_ADDRESS,
515 GUEST_PHYSICAL_ADDRESS
516 };
517 static const int max_shadow_read_only_fields =
518 ARRAY_SIZE(shadow_read_only_fields);
519
520 static const unsigned long shadow_read_write_fields[] = {
521 GUEST_RIP,
522 GUEST_RSP,
523 GUEST_CR0,
524 GUEST_CR3,
525 GUEST_CR4,
526 GUEST_INTERRUPTIBILITY_INFO,
527 GUEST_RFLAGS,
528 GUEST_CS_SELECTOR,
529 GUEST_CS_AR_BYTES,
530 GUEST_CS_LIMIT,
531 GUEST_CS_BASE,
532 GUEST_ES_BASE,
533 CR0_GUEST_HOST_MASK,
534 CR0_READ_SHADOW,
535 CR4_READ_SHADOW,
536 TSC_OFFSET,
537 EXCEPTION_BITMAP,
538 CPU_BASED_VM_EXEC_CONTROL,
539 VM_ENTRY_EXCEPTION_ERROR_CODE,
540 VM_ENTRY_INTR_INFO_FIELD,
541 VM_ENTRY_INSTRUCTION_LEN,
542 VM_ENTRY_EXCEPTION_ERROR_CODE,
543 HOST_FS_BASE,
544 HOST_GS_BASE,
545 HOST_FS_SELECTOR,
546 HOST_GS_SELECTOR
547 };
548 static const int max_shadow_read_write_fields =
549 ARRAY_SIZE(shadow_read_write_fields);
550
551 static const unsigned short vmcs_field_to_offset_table[] = {
552 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
553 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
554 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
555 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
556 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
557 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
558 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
559 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
560 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
561 FIELD(HOST_ES_SELECTOR, host_es_selector),
562 FIELD(HOST_CS_SELECTOR, host_cs_selector),
563 FIELD(HOST_SS_SELECTOR, host_ss_selector),
564 FIELD(HOST_DS_SELECTOR, host_ds_selector),
565 FIELD(HOST_FS_SELECTOR, host_fs_selector),
566 FIELD(HOST_GS_SELECTOR, host_gs_selector),
567 FIELD(HOST_TR_SELECTOR, host_tr_selector),
568 FIELD64(IO_BITMAP_A, io_bitmap_a),
569 FIELD64(IO_BITMAP_B, io_bitmap_b),
570 FIELD64(MSR_BITMAP, msr_bitmap),
571 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
572 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
573 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
574 FIELD64(TSC_OFFSET, tsc_offset),
575 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
576 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
577 FIELD64(EPT_POINTER, ept_pointer),
578 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
579 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
580 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
581 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
582 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
583 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
584 FIELD64(GUEST_PDPTR0, guest_pdptr0),
585 FIELD64(GUEST_PDPTR1, guest_pdptr1),
586 FIELD64(GUEST_PDPTR2, guest_pdptr2),
587 FIELD64(GUEST_PDPTR3, guest_pdptr3),
588 FIELD64(HOST_IA32_PAT, host_ia32_pat),
589 FIELD64(HOST_IA32_EFER, host_ia32_efer),
590 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
591 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
592 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
593 FIELD(EXCEPTION_BITMAP, exception_bitmap),
594 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
595 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
596 FIELD(CR3_TARGET_COUNT, cr3_target_count),
597 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
598 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
599 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
600 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
601 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
602 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
603 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
604 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
605 FIELD(TPR_THRESHOLD, tpr_threshold),
606 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
607 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
608 FIELD(VM_EXIT_REASON, vm_exit_reason),
609 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
610 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
611 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
612 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
613 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
614 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
615 FIELD(GUEST_ES_LIMIT, guest_es_limit),
616 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
617 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
618 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
619 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
620 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
621 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
622 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
623 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
624 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
625 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
626 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
627 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
628 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
629 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
630 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
631 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
632 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
633 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
634 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
635 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
636 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
637 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
638 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
639 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
640 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
641 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
642 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
643 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
644 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
645 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
646 FIELD(EXIT_QUALIFICATION, exit_qualification),
647 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
648 FIELD(GUEST_CR0, guest_cr0),
649 FIELD(GUEST_CR3, guest_cr3),
650 FIELD(GUEST_CR4, guest_cr4),
651 FIELD(GUEST_ES_BASE, guest_es_base),
652 FIELD(GUEST_CS_BASE, guest_cs_base),
653 FIELD(GUEST_SS_BASE, guest_ss_base),
654 FIELD(GUEST_DS_BASE, guest_ds_base),
655 FIELD(GUEST_FS_BASE, guest_fs_base),
656 FIELD(GUEST_GS_BASE, guest_gs_base),
657 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
658 FIELD(GUEST_TR_BASE, guest_tr_base),
659 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
660 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
661 FIELD(GUEST_DR7, guest_dr7),
662 FIELD(GUEST_RSP, guest_rsp),
663 FIELD(GUEST_RIP, guest_rip),
664 FIELD(GUEST_RFLAGS, guest_rflags),
665 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
666 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
667 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
668 FIELD(HOST_CR0, host_cr0),
669 FIELD(HOST_CR3, host_cr3),
670 FIELD(HOST_CR4, host_cr4),
671 FIELD(HOST_FS_BASE, host_fs_base),
672 FIELD(HOST_GS_BASE, host_gs_base),
673 FIELD(HOST_TR_BASE, host_tr_base),
674 FIELD(HOST_GDTR_BASE, host_gdtr_base),
675 FIELD(HOST_IDTR_BASE, host_idtr_base),
676 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
677 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
678 FIELD(HOST_RSP, host_rsp),
679 FIELD(HOST_RIP, host_rip),
680 };
681 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
682
683 static inline short vmcs_field_to_offset(unsigned long field)
684 {
685 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
686 return -1;
687 return vmcs_field_to_offset_table[field];
688 }
689
690 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
691 {
692 return to_vmx(vcpu)->nested.current_vmcs12;
693 }
694
695 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
696 {
697 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
698 if (is_error_page(page))
699 return NULL;
700
701 return page;
702 }
703
704 static void nested_release_page(struct page *page)
705 {
706 kvm_release_page_dirty(page);
707 }
708
709 static void nested_release_page_clean(struct page *page)
710 {
711 kvm_release_page_clean(page);
712 }
713
714 static u64 construct_eptp(unsigned long root_hpa);
715 static void kvm_cpu_vmxon(u64 addr);
716 static void kvm_cpu_vmxoff(void);
717 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
718 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
719 static void vmx_set_segment(struct kvm_vcpu *vcpu,
720 struct kvm_segment *var, int seg);
721 static void vmx_get_segment(struct kvm_vcpu *vcpu,
722 struct kvm_segment *var, int seg);
723 static bool guest_state_valid(struct kvm_vcpu *vcpu);
724 static u32 vmx_segment_access_rights(struct kvm_segment *var);
725 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
726 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
727 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
728
729 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
730 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
731 /*
732 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
733 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
734 */
735 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
736 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
737
738 static unsigned long *vmx_io_bitmap_a;
739 static unsigned long *vmx_io_bitmap_b;
740 static unsigned long *vmx_msr_bitmap_legacy;
741 static unsigned long *vmx_msr_bitmap_longmode;
742 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
743 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
744 static unsigned long *vmx_vmread_bitmap;
745 static unsigned long *vmx_vmwrite_bitmap;
746
747 static bool cpu_has_load_ia32_efer;
748 static bool cpu_has_load_perf_global_ctrl;
749
750 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
751 static DEFINE_SPINLOCK(vmx_vpid_lock);
752
753 static struct vmcs_config {
754 int size;
755 int order;
756 u32 revision_id;
757 u32 pin_based_exec_ctrl;
758 u32 cpu_based_exec_ctrl;
759 u32 cpu_based_2nd_exec_ctrl;
760 u32 vmexit_ctrl;
761 u32 vmentry_ctrl;
762 } vmcs_config;
763
764 static struct vmx_capability {
765 u32 ept;
766 u32 vpid;
767 } vmx_capability;
768
769 #define VMX_SEGMENT_FIELD(seg) \
770 [VCPU_SREG_##seg] = { \
771 .selector = GUEST_##seg##_SELECTOR, \
772 .base = GUEST_##seg##_BASE, \
773 .limit = GUEST_##seg##_LIMIT, \
774 .ar_bytes = GUEST_##seg##_AR_BYTES, \
775 }
776
777 static const struct kvm_vmx_segment_field {
778 unsigned selector;
779 unsigned base;
780 unsigned limit;
781 unsigned ar_bytes;
782 } kvm_vmx_segment_fields[] = {
783 VMX_SEGMENT_FIELD(CS),
784 VMX_SEGMENT_FIELD(DS),
785 VMX_SEGMENT_FIELD(ES),
786 VMX_SEGMENT_FIELD(FS),
787 VMX_SEGMENT_FIELD(GS),
788 VMX_SEGMENT_FIELD(SS),
789 VMX_SEGMENT_FIELD(TR),
790 VMX_SEGMENT_FIELD(LDTR),
791 };
792
793 static u64 host_efer;
794
795 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
796
797 /*
798 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
799 * away by decrementing the array size.
800 */
801 static const u32 vmx_msr_index[] = {
802 #ifdef CONFIG_X86_64
803 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
804 #endif
805 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
806 };
807 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
808
809 static inline bool is_page_fault(u32 intr_info)
810 {
811 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
812 INTR_INFO_VALID_MASK)) ==
813 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
814 }
815
816 static inline bool is_no_device(u32 intr_info)
817 {
818 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
819 INTR_INFO_VALID_MASK)) ==
820 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
821 }
822
823 static inline bool is_invalid_opcode(u32 intr_info)
824 {
825 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
826 INTR_INFO_VALID_MASK)) ==
827 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
828 }
829
830 static inline bool is_external_interrupt(u32 intr_info)
831 {
832 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
833 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
834 }
835
836 static inline bool is_machine_check(u32 intr_info)
837 {
838 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
839 INTR_INFO_VALID_MASK)) ==
840 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
841 }
842
843 static inline bool cpu_has_vmx_msr_bitmap(void)
844 {
845 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
846 }
847
848 static inline bool cpu_has_vmx_tpr_shadow(void)
849 {
850 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
851 }
852
853 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
854 {
855 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
856 }
857
858 static inline bool cpu_has_secondary_exec_ctrls(void)
859 {
860 return vmcs_config.cpu_based_exec_ctrl &
861 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
862 }
863
864 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
865 {
866 return vmcs_config.cpu_based_2nd_exec_ctrl &
867 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
868 }
869
870 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
871 {
872 return vmcs_config.cpu_based_2nd_exec_ctrl &
873 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
874 }
875
876 static inline bool cpu_has_vmx_apic_register_virt(void)
877 {
878 return vmcs_config.cpu_based_2nd_exec_ctrl &
879 SECONDARY_EXEC_APIC_REGISTER_VIRT;
880 }
881
882 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
883 {
884 return vmcs_config.cpu_based_2nd_exec_ctrl &
885 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
886 }
887
888 static inline bool cpu_has_vmx_posted_intr(void)
889 {
890 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
891 }
892
893 static inline bool cpu_has_vmx_apicv(void)
894 {
895 return cpu_has_vmx_apic_register_virt() &&
896 cpu_has_vmx_virtual_intr_delivery() &&
897 cpu_has_vmx_posted_intr();
898 }
899
900 static inline bool cpu_has_vmx_flexpriority(void)
901 {
902 return cpu_has_vmx_tpr_shadow() &&
903 cpu_has_vmx_virtualize_apic_accesses();
904 }
905
906 static inline bool cpu_has_vmx_ept_execute_only(void)
907 {
908 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
909 }
910
911 static inline bool cpu_has_vmx_eptp_uncacheable(void)
912 {
913 return vmx_capability.ept & VMX_EPTP_UC_BIT;
914 }
915
916 static inline bool cpu_has_vmx_eptp_writeback(void)
917 {
918 return vmx_capability.ept & VMX_EPTP_WB_BIT;
919 }
920
921 static inline bool cpu_has_vmx_ept_2m_page(void)
922 {
923 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
924 }
925
926 static inline bool cpu_has_vmx_ept_1g_page(void)
927 {
928 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
929 }
930
931 static inline bool cpu_has_vmx_ept_4levels(void)
932 {
933 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
934 }
935
936 static inline bool cpu_has_vmx_ept_ad_bits(void)
937 {
938 return vmx_capability.ept & VMX_EPT_AD_BIT;
939 }
940
941 static inline bool cpu_has_vmx_invept_context(void)
942 {
943 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
944 }
945
946 static inline bool cpu_has_vmx_invept_global(void)
947 {
948 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
949 }
950
951 static inline bool cpu_has_vmx_invvpid_single(void)
952 {
953 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
954 }
955
956 static inline bool cpu_has_vmx_invvpid_global(void)
957 {
958 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
959 }
960
961 static inline bool cpu_has_vmx_ept(void)
962 {
963 return vmcs_config.cpu_based_2nd_exec_ctrl &
964 SECONDARY_EXEC_ENABLE_EPT;
965 }
966
967 static inline bool cpu_has_vmx_unrestricted_guest(void)
968 {
969 return vmcs_config.cpu_based_2nd_exec_ctrl &
970 SECONDARY_EXEC_UNRESTRICTED_GUEST;
971 }
972
973 static inline bool cpu_has_vmx_ple(void)
974 {
975 return vmcs_config.cpu_based_2nd_exec_ctrl &
976 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
977 }
978
979 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
980 {
981 return flexpriority_enabled && irqchip_in_kernel(kvm);
982 }
983
984 static inline bool cpu_has_vmx_vpid(void)
985 {
986 return vmcs_config.cpu_based_2nd_exec_ctrl &
987 SECONDARY_EXEC_ENABLE_VPID;
988 }
989
990 static inline bool cpu_has_vmx_rdtscp(void)
991 {
992 return vmcs_config.cpu_based_2nd_exec_ctrl &
993 SECONDARY_EXEC_RDTSCP;
994 }
995
996 static inline bool cpu_has_vmx_invpcid(void)
997 {
998 return vmcs_config.cpu_based_2nd_exec_ctrl &
999 SECONDARY_EXEC_ENABLE_INVPCID;
1000 }
1001
1002 static inline bool cpu_has_virtual_nmis(void)
1003 {
1004 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1005 }
1006
1007 static inline bool cpu_has_vmx_wbinvd_exit(void)
1008 {
1009 return vmcs_config.cpu_based_2nd_exec_ctrl &
1010 SECONDARY_EXEC_WBINVD_EXITING;
1011 }
1012
1013 static inline bool cpu_has_vmx_shadow_vmcs(void)
1014 {
1015 u64 vmx_msr;
1016 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1017 /* check if the cpu supports writing r/o exit information fields */
1018 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1019 return false;
1020
1021 return vmcs_config.cpu_based_2nd_exec_ctrl &
1022 SECONDARY_EXEC_SHADOW_VMCS;
1023 }
1024
1025 static inline bool report_flexpriority(void)
1026 {
1027 return flexpriority_enabled;
1028 }
1029
1030 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1031 {
1032 return vmcs12->cpu_based_vm_exec_control & bit;
1033 }
1034
1035 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1036 {
1037 return (vmcs12->cpu_based_vm_exec_control &
1038 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1039 (vmcs12->secondary_vm_exec_control & bit);
1040 }
1041
1042 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1043 struct kvm_vcpu *vcpu)
1044 {
1045 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046 }
1047
1048 static inline bool is_exception(u32 intr_info)
1049 {
1050 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1051 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1052 }
1053
1054 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1055 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1056 struct vmcs12 *vmcs12,
1057 u32 reason, unsigned long qualification);
1058
1059 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1060 {
1061 int i;
1062
1063 for (i = 0; i < vmx->nmsrs; ++i)
1064 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1065 return i;
1066 return -1;
1067 }
1068
1069 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1070 {
1071 struct {
1072 u64 vpid : 16;
1073 u64 rsvd : 48;
1074 u64 gva;
1075 } operand = { vpid, 0, gva };
1076
1077 asm volatile (__ex(ASM_VMX_INVVPID)
1078 /* CF==1 or ZF==1 --> rc = -1 */
1079 "; ja 1f ; ud2 ; 1:"
1080 : : "a"(&operand), "c"(ext) : "cc", "memory");
1081 }
1082
1083 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1084 {
1085 struct {
1086 u64 eptp, gpa;
1087 } operand = {eptp, gpa};
1088
1089 asm volatile (__ex(ASM_VMX_INVEPT)
1090 /* CF==1 or ZF==1 --> rc = -1 */
1091 "; ja 1f ; ud2 ; 1:\n"
1092 : : "a" (&operand), "c" (ext) : "cc", "memory");
1093 }
1094
1095 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1096 {
1097 int i;
1098
1099 i = __find_msr_index(vmx, msr);
1100 if (i >= 0)
1101 return &vmx->guest_msrs[i];
1102 return NULL;
1103 }
1104
1105 static void vmcs_clear(struct vmcs *vmcs)
1106 {
1107 u64 phys_addr = __pa(vmcs);
1108 u8 error;
1109
1110 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1111 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1112 : "cc", "memory");
1113 if (error)
1114 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1115 vmcs, phys_addr);
1116 }
1117
1118 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1119 {
1120 vmcs_clear(loaded_vmcs->vmcs);
1121 loaded_vmcs->cpu = -1;
1122 loaded_vmcs->launched = 0;
1123 }
1124
1125 static void vmcs_load(struct vmcs *vmcs)
1126 {
1127 u64 phys_addr = __pa(vmcs);
1128 u8 error;
1129
1130 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1131 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1132 : "cc", "memory");
1133 if (error)
1134 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1135 vmcs, phys_addr);
1136 }
1137
1138 #ifdef CONFIG_KEXEC
1139 /*
1140 * This bitmap is used to indicate whether the vmclear
1141 * operation is enabled on all cpus. All disabled by
1142 * default.
1143 */
1144 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1145
1146 static inline void crash_enable_local_vmclear(int cpu)
1147 {
1148 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1149 }
1150
1151 static inline void crash_disable_local_vmclear(int cpu)
1152 {
1153 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154 }
1155
1156 static inline int crash_local_vmclear_enabled(int cpu)
1157 {
1158 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159 }
1160
1161 static void crash_vmclear_local_loaded_vmcss(void)
1162 {
1163 int cpu = raw_smp_processor_id();
1164 struct loaded_vmcs *v;
1165
1166 if (!crash_local_vmclear_enabled(cpu))
1167 return;
1168
1169 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1170 loaded_vmcss_on_cpu_link)
1171 vmcs_clear(v->vmcs);
1172 }
1173 #else
1174 static inline void crash_enable_local_vmclear(int cpu) { }
1175 static inline void crash_disable_local_vmclear(int cpu) { }
1176 #endif /* CONFIG_KEXEC */
1177
1178 static void __loaded_vmcs_clear(void *arg)
1179 {
1180 struct loaded_vmcs *loaded_vmcs = arg;
1181 int cpu = raw_smp_processor_id();
1182
1183 if (loaded_vmcs->cpu != cpu)
1184 return; /* vcpu migration can race with cpu offline */
1185 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1186 per_cpu(current_vmcs, cpu) = NULL;
1187 crash_disable_local_vmclear(cpu);
1188 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1189
1190 /*
1191 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1192 * is before setting loaded_vmcs->vcpu to -1 which is done in
1193 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1194 * then adds the vmcs into percpu list before it is deleted.
1195 */
1196 smp_wmb();
1197
1198 loaded_vmcs_init(loaded_vmcs);
1199 crash_enable_local_vmclear(cpu);
1200 }
1201
1202 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1203 {
1204 int cpu = loaded_vmcs->cpu;
1205
1206 if (cpu != -1)
1207 smp_call_function_single(cpu,
1208 __loaded_vmcs_clear, loaded_vmcs, 1);
1209 }
1210
1211 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1212 {
1213 if (vmx->vpid == 0)
1214 return;
1215
1216 if (cpu_has_vmx_invvpid_single())
1217 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1218 }
1219
1220 static inline void vpid_sync_vcpu_global(void)
1221 {
1222 if (cpu_has_vmx_invvpid_global())
1223 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1224 }
1225
1226 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1227 {
1228 if (cpu_has_vmx_invvpid_single())
1229 vpid_sync_vcpu_single(vmx);
1230 else
1231 vpid_sync_vcpu_global();
1232 }
1233
1234 static inline void ept_sync_global(void)
1235 {
1236 if (cpu_has_vmx_invept_global())
1237 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1238 }
1239
1240 static inline void ept_sync_context(u64 eptp)
1241 {
1242 if (enable_ept) {
1243 if (cpu_has_vmx_invept_context())
1244 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1245 else
1246 ept_sync_global();
1247 }
1248 }
1249
1250 static __always_inline unsigned long vmcs_readl(unsigned long field)
1251 {
1252 unsigned long value;
1253
1254 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1255 : "=a"(value) : "d"(field) : "cc");
1256 return value;
1257 }
1258
1259 static __always_inline u16 vmcs_read16(unsigned long field)
1260 {
1261 return vmcs_readl(field);
1262 }
1263
1264 static __always_inline u32 vmcs_read32(unsigned long field)
1265 {
1266 return vmcs_readl(field);
1267 }
1268
1269 static __always_inline u64 vmcs_read64(unsigned long field)
1270 {
1271 #ifdef CONFIG_X86_64
1272 return vmcs_readl(field);
1273 #else
1274 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1275 #endif
1276 }
1277
1278 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1279 {
1280 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1281 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1282 dump_stack();
1283 }
1284
1285 static void vmcs_writel(unsigned long field, unsigned long value)
1286 {
1287 u8 error;
1288
1289 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1290 : "=q"(error) : "a"(value), "d"(field) : "cc");
1291 if (unlikely(error))
1292 vmwrite_error(field, value);
1293 }
1294
1295 static void vmcs_write16(unsigned long field, u16 value)
1296 {
1297 vmcs_writel(field, value);
1298 }
1299
1300 static void vmcs_write32(unsigned long field, u32 value)
1301 {
1302 vmcs_writel(field, value);
1303 }
1304
1305 static void vmcs_write64(unsigned long field, u64 value)
1306 {
1307 vmcs_writel(field, value);
1308 #ifndef CONFIG_X86_64
1309 asm volatile ("");
1310 vmcs_writel(field+1, value >> 32);
1311 #endif
1312 }
1313
1314 static void vmcs_clear_bits(unsigned long field, u32 mask)
1315 {
1316 vmcs_writel(field, vmcs_readl(field) & ~mask);
1317 }
1318
1319 static void vmcs_set_bits(unsigned long field, u32 mask)
1320 {
1321 vmcs_writel(field, vmcs_readl(field) | mask);
1322 }
1323
1324 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1325 {
1326 vmx->segment_cache.bitmask = 0;
1327 }
1328
1329 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1330 unsigned field)
1331 {
1332 bool ret;
1333 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1334
1335 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1336 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1337 vmx->segment_cache.bitmask = 0;
1338 }
1339 ret = vmx->segment_cache.bitmask & mask;
1340 vmx->segment_cache.bitmask |= mask;
1341 return ret;
1342 }
1343
1344 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1345 {
1346 u16 *p = &vmx->segment_cache.seg[seg].selector;
1347
1348 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1349 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1350 return *p;
1351 }
1352
1353 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1354 {
1355 ulong *p = &vmx->segment_cache.seg[seg].base;
1356
1357 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1358 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1359 return *p;
1360 }
1361
1362 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1363 {
1364 u32 *p = &vmx->segment_cache.seg[seg].limit;
1365
1366 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1367 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1368 return *p;
1369 }
1370
1371 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1372 {
1373 u32 *p = &vmx->segment_cache.seg[seg].ar;
1374
1375 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1376 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1377 return *p;
1378 }
1379
1380 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1381 {
1382 u32 eb;
1383
1384 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1385 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1386 if ((vcpu->guest_debug &
1387 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1388 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1389 eb |= 1u << BP_VECTOR;
1390 if (to_vmx(vcpu)->rmode.vm86_active)
1391 eb = ~0;
1392 if (enable_ept)
1393 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1394 if (vcpu->fpu_active)
1395 eb &= ~(1u << NM_VECTOR);
1396
1397 /* When we are running a nested L2 guest and L1 specified for it a
1398 * certain exception bitmap, we must trap the same exceptions and pass
1399 * them to L1. When running L2, we will only handle the exceptions
1400 * specified above if L1 did not want them.
1401 */
1402 if (is_guest_mode(vcpu))
1403 eb |= get_vmcs12(vcpu)->exception_bitmap;
1404
1405 vmcs_write32(EXCEPTION_BITMAP, eb);
1406 }
1407
1408 static void clear_atomic_switch_msr_special(unsigned long entry,
1409 unsigned long exit)
1410 {
1411 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1412 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1413 }
1414
1415 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1416 {
1417 unsigned i;
1418 struct msr_autoload *m = &vmx->msr_autoload;
1419
1420 switch (msr) {
1421 case MSR_EFER:
1422 if (cpu_has_load_ia32_efer) {
1423 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1424 VM_EXIT_LOAD_IA32_EFER);
1425 return;
1426 }
1427 break;
1428 case MSR_CORE_PERF_GLOBAL_CTRL:
1429 if (cpu_has_load_perf_global_ctrl) {
1430 clear_atomic_switch_msr_special(
1431 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1432 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1433 return;
1434 }
1435 break;
1436 }
1437
1438 for (i = 0; i < m->nr; ++i)
1439 if (m->guest[i].index == msr)
1440 break;
1441
1442 if (i == m->nr)
1443 return;
1444 --m->nr;
1445 m->guest[i] = m->guest[m->nr];
1446 m->host[i] = m->host[m->nr];
1447 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1448 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1449 }
1450
1451 static void add_atomic_switch_msr_special(unsigned long entry,
1452 unsigned long exit, unsigned long guest_val_vmcs,
1453 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1454 {
1455 vmcs_write64(guest_val_vmcs, guest_val);
1456 vmcs_write64(host_val_vmcs, host_val);
1457 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1458 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1459 }
1460
1461 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1462 u64 guest_val, u64 host_val)
1463 {
1464 unsigned i;
1465 struct msr_autoload *m = &vmx->msr_autoload;
1466
1467 switch (msr) {
1468 case MSR_EFER:
1469 if (cpu_has_load_ia32_efer) {
1470 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1471 VM_EXIT_LOAD_IA32_EFER,
1472 GUEST_IA32_EFER,
1473 HOST_IA32_EFER,
1474 guest_val, host_val);
1475 return;
1476 }
1477 break;
1478 case MSR_CORE_PERF_GLOBAL_CTRL:
1479 if (cpu_has_load_perf_global_ctrl) {
1480 add_atomic_switch_msr_special(
1481 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1482 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1483 GUEST_IA32_PERF_GLOBAL_CTRL,
1484 HOST_IA32_PERF_GLOBAL_CTRL,
1485 guest_val, host_val);
1486 return;
1487 }
1488 break;
1489 }
1490
1491 for (i = 0; i < m->nr; ++i)
1492 if (m->guest[i].index == msr)
1493 break;
1494
1495 if (i == NR_AUTOLOAD_MSRS) {
1496 printk_once(KERN_WARNING"Not enough mst switch entries. "
1497 "Can't add msr %x\n", msr);
1498 return;
1499 } else if (i == m->nr) {
1500 ++m->nr;
1501 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1502 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1503 }
1504
1505 m->guest[i].index = msr;
1506 m->guest[i].value = guest_val;
1507 m->host[i].index = msr;
1508 m->host[i].value = host_val;
1509 }
1510
1511 static void reload_tss(void)
1512 {
1513 /*
1514 * VT restores TR but not its size. Useless.
1515 */
1516 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1517 struct desc_struct *descs;
1518
1519 descs = (void *)gdt->address;
1520 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1521 load_TR_desc();
1522 }
1523
1524 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1525 {
1526 u64 guest_efer;
1527 u64 ignore_bits;
1528
1529 guest_efer = vmx->vcpu.arch.efer;
1530
1531 /*
1532 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1533 * outside long mode
1534 */
1535 ignore_bits = EFER_NX | EFER_SCE;
1536 #ifdef CONFIG_X86_64
1537 ignore_bits |= EFER_LMA | EFER_LME;
1538 /* SCE is meaningful only in long mode on Intel */
1539 if (guest_efer & EFER_LMA)
1540 ignore_bits &= ~(u64)EFER_SCE;
1541 #endif
1542 guest_efer &= ~ignore_bits;
1543 guest_efer |= host_efer & ignore_bits;
1544 vmx->guest_msrs[efer_offset].data = guest_efer;
1545 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1546
1547 clear_atomic_switch_msr(vmx, MSR_EFER);
1548 /* On ept, can't emulate nx, and must switch nx atomically */
1549 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1550 guest_efer = vmx->vcpu.arch.efer;
1551 if (!(guest_efer & EFER_LMA))
1552 guest_efer &= ~EFER_LME;
1553 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1554 return false;
1555 }
1556
1557 return true;
1558 }
1559
1560 static unsigned long segment_base(u16 selector)
1561 {
1562 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1563 struct desc_struct *d;
1564 unsigned long table_base;
1565 unsigned long v;
1566
1567 if (!(selector & ~3))
1568 return 0;
1569
1570 table_base = gdt->address;
1571
1572 if (selector & 4) { /* from ldt */
1573 u16 ldt_selector = kvm_read_ldt();
1574
1575 if (!(ldt_selector & ~3))
1576 return 0;
1577
1578 table_base = segment_base(ldt_selector);
1579 }
1580 d = (struct desc_struct *)(table_base + (selector & ~7));
1581 v = get_desc_base(d);
1582 #ifdef CONFIG_X86_64
1583 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1584 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1585 #endif
1586 return v;
1587 }
1588
1589 static inline unsigned long kvm_read_tr_base(void)
1590 {
1591 u16 tr;
1592 asm("str %0" : "=g"(tr));
1593 return segment_base(tr);
1594 }
1595
1596 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1597 {
1598 struct vcpu_vmx *vmx = to_vmx(vcpu);
1599 int i;
1600
1601 if (vmx->host_state.loaded)
1602 return;
1603
1604 vmx->host_state.loaded = 1;
1605 /*
1606 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1607 * allow segment selectors with cpl > 0 or ti == 1.
1608 */
1609 vmx->host_state.ldt_sel = kvm_read_ldt();
1610 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1611 savesegment(fs, vmx->host_state.fs_sel);
1612 if (!(vmx->host_state.fs_sel & 7)) {
1613 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1614 vmx->host_state.fs_reload_needed = 0;
1615 } else {
1616 vmcs_write16(HOST_FS_SELECTOR, 0);
1617 vmx->host_state.fs_reload_needed = 1;
1618 }
1619 savesegment(gs, vmx->host_state.gs_sel);
1620 if (!(vmx->host_state.gs_sel & 7))
1621 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1622 else {
1623 vmcs_write16(HOST_GS_SELECTOR, 0);
1624 vmx->host_state.gs_ldt_reload_needed = 1;
1625 }
1626
1627 #ifdef CONFIG_X86_64
1628 savesegment(ds, vmx->host_state.ds_sel);
1629 savesegment(es, vmx->host_state.es_sel);
1630 #endif
1631
1632 #ifdef CONFIG_X86_64
1633 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1634 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1635 #else
1636 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1637 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1638 #endif
1639
1640 #ifdef CONFIG_X86_64
1641 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1642 if (is_long_mode(&vmx->vcpu))
1643 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1644 #endif
1645 for (i = 0; i < vmx->save_nmsrs; ++i)
1646 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1647 vmx->guest_msrs[i].data,
1648 vmx->guest_msrs[i].mask);
1649 }
1650
1651 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1652 {
1653 if (!vmx->host_state.loaded)
1654 return;
1655
1656 ++vmx->vcpu.stat.host_state_reload;
1657 vmx->host_state.loaded = 0;
1658 #ifdef CONFIG_X86_64
1659 if (is_long_mode(&vmx->vcpu))
1660 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1661 #endif
1662 if (vmx->host_state.gs_ldt_reload_needed) {
1663 kvm_load_ldt(vmx->host_state.ldt_sel);
1664 #ifdef CONFIG_X86_64
1665 load_gs_index(vmx->host_state.gs_sel);
1666 #else
1667 loadsegment(gs, vmx->host_state.gs_sel);
1668 #endif
1669 }
1670 if (vmx->host_state.fs_reload_needed)
1671 loadsegment(fs, vmx->host_state.fs_sel);
1672 #ifdef CONFIG_X86_64
1673 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1674 loadsegment(ds, vmx->host_state.ds_sel);
1675 loadsegment(es, vmx->host_state.es_sel);
1676 }
1677 #endif
1678 reload_tss();
1679 #ifdef CONFIG_X86_64
1680 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1681 #endif
1682 /*
1683 * If the FPU is not active (through the host task or
1684 * the guest vcpu), then restore the cr0.TS bit.
1685 */
1686 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1687 stts();
1688 load_gdt(&__get_cpu_var(host_gdt));
1689 }
1690
1691 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1692 {
1693 preempt_disable();
1694 __vmx_load_host_state(vmx);
1695 preempt_enable();
1696 }
1697
1698 /*
1699 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1700 * vcpu mutex is already taken.
1701 */
1702 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1703 {
1704 struct vcpu_vmx *vmx = to_vmx(vcpu);
1705 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1706
1707 if (!vmm_exclusive)
1708 kvm_cpu_vmxon(phys_addr);
1709 else if (vmx->loaded_vmcs->cpu != cpu)
1710 loaded_vmcs_clear(vmx->loaded_vmcs);
1711
1712 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1713 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1714 vmcs_load(vmx->loaded_vmcs->vmcs);
1715 }
1716
1717 if (vmx->loaded_vmcs->cpu != cpu) {
1718 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1719 unsigned long sysenter_esp;
1720
1721 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1722 local_irq_disable();
1723 crash_disable_local_vmclear(cpu);
1724
1725 /*
1726 * Read loaded_vmcs->cpu should be before fetching
1727 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1728 * See the comments in __loaded_vmcs_clear().
1729 */
1730 smp_rmb();
1731
1732 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1733 &per_cpu(loaded_vmcss_on_cpu, cpu));
1734 crash_enable_local_vmclear(cpu);
1735 local_irq_enable();
1736
1737 /*
1738 * Linux uses per-cpu TSS and GDT, so set these when switching
1739 * processors.
1740 */
1741 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1742 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1743
1744 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1745 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1746 vmx->loaded_vmcs->cpu = cpu;
1747 }
1748 }
1749
1750 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1751 {
1752 __vmx_load_host_state(to_vmx(vcpu));
1753 if (!vmm_exclusive) {
1754 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1755 vcpu->cpu = -1;
1756 kvm_cpu_vmxoff();
1757 }
1758 }
1759
1760 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1761 {
1762 ulong cr0;
1763
1764 if (vcpu->fpu_active)
1765 return;
1766 vcpu->fpu_active = 1;
1767 cr0 = vmcs_readl(GUEST_CR0);
1768 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1769 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1770 vmcs_writel(GUEST_CR0, cr0);
1771 update_exception_bitmap(vcpu);
1772 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1773 if (is_guest_mode(vcpu))
1774 vcpu->arch.cr0_guest_owned_bits &=
1775 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1776 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1777 }
1778
1779 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1780
1781 /*
1782 * Return the cr0 value that a nested guest would read. This is a combination
1783 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1784 * its hypervisor (cr0_read_shadow).
1785 */
1786 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1787 {
1788 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1789 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1790 }
1791 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1792 {
1793 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1794 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1795 }
1796
1797 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1798 {
1799 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1800 * set this *before* calling this function.
1801 */
1802 vmx_decache_cr0_guest_bits(vcpu);
1803 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1804 update_exception_bitmap(vcpu);
1805 vcpu->arch.cr0_guest_owned_bits = 0;
1806 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1807 if (is_guest_mode(vcpu)) {
1808 /*
1809 * L1's specified read shadow might not contain the TS bit,
1810 * so now that we turned on shadowing of this bit, we need to
1811 * set this bit of the shadow. Like in nested_vmx_run we need
1812 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1813 * up-to-date here because we just decached cr0.TS (and we'll
1814 * only update vmcs12->guest_cr0 on nested exit).
1815 */
1816 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1817 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1818 (vcpu->arch.cr0 & X86_CR0_TS);
1819 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1820 } else
1821 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1822 }
1823
1824 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1825 {
1826 unsigned long rflags, save_rflags;
1827
1828 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1829 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1830 rflags = vmcs_readl(GUEST_RFLAGS);
1831 if (to_vmx(vcpu)->rmode.vm86_active) {
1832 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1833 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1834 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1835 }
1836 to_vmx(vcpu)->rflags = rflags;
1837 }
1838 return to_vmx(vcpu)->rflags;
1839 }
1840
1841 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1842 {
1843 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1844 to_vmx(vcpu)->rflags = rflags;
1845 if (to_vmx(vcpu)->rmode.vm86_active) {
1846 to_vmx(vcpu)->rmode.save_rflags = rflags;
1847 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1848 }
1849 vmcs_writel(GUEST_RFLAGS, rflags);
1850 }
1851
1852 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1853 {
1854 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1855 int ret = 0;
1856
1857 if (interruptibility & GUEST_INTR_STATE_STI)
1858 ret |= KVM_X86_SHADOW_INT_STI;
1859 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1860 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1861
1862 return ret & mask;
1863 }
1864
1865 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1866 {
1867 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1868 u32 interruptibility = interruptibility_old;
1869
1870 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1871
1872 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1873 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1874 else if (mask & KVM_X86_SHADOW_INT_STI)
1875 interruptibility |= GUEST_INTR_STATE_STI;
1876
1877 if ((interruptibility != interruptibility_old))
1878 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1879 }
1880
1881 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1882 {
1883 unsigned long rip;
1884
1885 rip = kvm_rip_read(vcpu);
1886 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1887 kvm_rip_write(vcpu, rip);
1888
1889 /* skipping an emulated instruction also counts */
1890 vmx_set_interrupt_shadow(vcpu, 0);
1891 }
1892
1893 /*
1894 * KVM wants to inject page-faults which it got to the guest. This function
1895 * checks whether in a nested guest, we need to inject them to L1 or L2.
1896 * This function assumes it is called with the exit reason in vmcs02 being
1897 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1898 * is running).
1899 */
1900 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1901 {
1902 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1903
1904 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1905 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1906 return 0;
1907
1908 nested_vmx_vmexit(vcpu);
1909 return 1;
1910 }
1911
1912 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1913 bool has_error_code, u32 error_code,
1914 bool reinject)
1915 {
1916 struct vcpu_vmx *vmx = to_vmx(vcpu);
1917 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1918
1919 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1920 !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1921 return;
1922
1923 if (has_error_code) {
1924 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1925 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1926 }
1927
1928 if (vmx->rmode.vm86_active) {
1929 int inc_eip = 0;
1930 if (kvm_exception_is_soft(nr))
1931 inc_eip = vcpu->arch.event_exit_inst_len;
1932 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1933 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1934 return;
1935 }
1936
1937 if (kvm_exception_is_soft(nr)) {
1938 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1939 vmx->vcpu.arch.event_exit_inst_len);
1940 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1941 } else
1942 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1943
1944 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1945 }
1946
1947 static bool vmx_rdtscp_supported(void)
1948 {
1949 return cpu_has_vmx_rdtscp();
1950 }
1951
1952 static bool vmx_invpcid_supported(void)
1953 {
1954 return cpu_has_vmx_invpcid() && enable_ept;
1955 }
1956
1957 /*
1958 * Swap MSR entry in host/guest MSR entry array.
1959 */
1960 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1961 {
1962 struct shared_msr_entry tmp;
1963
1964 tmp = vmx->guest_msrs[to];
1965 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1966 vmx->guest_msrs[from] = tmp;
1967 }
1968
1969 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1970 {
1971 unsigned long *msr_bitmap;
1972
1973 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1974 if (is_long_mode(vcpu))
1975 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1976 else
1977 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1978 } else {
1979 if (is_long_mode(vcpu))
1980 msr_bitmap = vmx_msr_bitmap_longmode;
1981 else
1982 msr_bitmap = vmx_msr_bitmap_legacy;
1983 }
1984
1985 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1986 }
1987
1988 /*
1989 * Set up the vmcs to automatically save and restore system
1990 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1991 * mode, as fiddling with msrs is very expensive.
1992 */
1993 static void setup_msrs(struct vcpu_vmx *vmx)
1994 {
1995 int save_nmsrs, index;
1996
1997 save_nmsrs = 0;
1998 #ifdef CONFIG_X86_64
1999 if (is_long_mode(&vmx->vcpu)) {
2000 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2001 if (index >= 0)
2002 move_msr_up(vmx, index, save_nmsrs++);
2003 index = __find_msr_index(vmx, MSR_LSTAR);
2004 if (index >= 0)
2005 move_msr_up(vmx, index, save_nmsrs++);
2006 index = __find_msr_index(vmx, MSR_CSTAR);
2007 if (index >= 0)
2008 move_msr_up(vmx, index, save_nmsrs++);
2009 index = __find_msr_index(vmx, MSR_TSC_AUX);
2010 if (index >= 0 && vmx->rdtscp_enabled)
2011 move_msr_up(vmx, index, save_nmsrs++);
2012 /*
2013 * MSR_STAR is only needed on long mode guests, and only
2014 * if efer.sce is enabled.
2015 */
2016 index = __find_msr_index(vmx, MSR_STAR);
2017 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2018 move_msr_up(vmx, index, save_nmsrs++);
2019 }
2020 #endif
2021 index = __find_msr_index(vmx, MSR_EFER);
2022 if (index >= 0 && update_transition_efer(vmx, index))
2023 move_msr_up(vmx, index, save_nmsrs++);
2024
2025 vmx->save_nmsrs = save_nmsrs;
2026
2027 if (cpu_has_vmx_msr_bitmap())
2028 vmx_set_msr_bitmap(&vmx->vcpu);
2029 }
2030
2031 /*
2032 * reads and returns guest's timestamp counter "register"
2033 * guest_tsc = host_tsc + tsc_offset -- 21.3
2034 */
2035 static u64 guest_read_tsc(void)
2036 {
2037 u64 host_tsc, tsc_offset;
2038
2039 rdtscll(host_tsc);
2040 tsc_offset = vmcs_read64(TSC_OFFSET);
2041 return host_tsc + tsc_offset;
2042 }
2043
2044 /*
2045 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2046 * counter, even if a nested guest (L2) is currently running.
2047 */
2048 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2049 {
2050 u64 tsc_offset;
2051
2052 tsc_offset = is_guest_mode(vcpu) ?
2053 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2054 vmcs_read64(TSC_OFFSET);
2055 return host_tsc + tsc_offset;
2056 }
2057
2058 /*
2059 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2060 * software catchup for faster rates on slower CPUs.
2061 */
2062 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2063 {
2064 if (!scale)
2065 return;
2066
2067 if (user_tsc_khz > tsc_khz) {
2068 vcpu->arch.tsc_catchup = 1;
2069 vcpu->arch.tsc_always_catchup = 1;
2070 } else
2071 WARN(1, "user requested TSC rate below hardware speed\n");
2072 }
2073
2074 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2075 {
2076 return vmcs_read64(TSC_OFFSET);
2077 }
2078
2079 /*
2080 * writes 'offset' into guest's timestamp counter offset register
2081 */
2082 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2083 {
2084 if (is_guest_mode(vcpu)) {
2085 /*
2086 * We're here if L1 chose not to trap WRMSR to TSC. According
2087 * to the spec, this should set L1's TSC; The offset that L1
2088 * set for L2 remains unchanged, and still needs to be added
2089 * to the newly set TSC to get L2's TSC.
2090 */
2091 struct vmcs12 *vmcs12;
2092 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2093 /* recalculate vmcs02.TSC_OFFSET: */
2094 vmcs12 = get_vmcs12(vcpu);
2095 vmcs_write64(TSC_OFFSET, offset +
2096 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2097 vmcs12->tsc_offset : 0));
2098 } else {
2099 vmcs_write64(TSC_OFFSET, offset);
2100 }
2101 }
2102
2103 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2104 {
2105 u64 offset = vmcs_read64(TSC_OFFSET);
2106 vmcs_write64(TSC_OFFSET, offset + adjustment);
2107 if (is_guest_mode(vcpu)) {
2108 /* Even when running L2, the adjustment needs to apply to L1 */
2109 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2110 }
2111 }
2112
2113 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2114 {
2115 return target_tsc - native_read_tsc();
2116 }
2117
2118 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2119 {
2120 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2121 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2122 }
2123
2124 /*
2125 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2126 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2127 * all guests if the "nested" module option is off, and can also be disabled
2128 * for a single guest by disabling its VMX cpuid bit.
2129 */
2130 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2131 {
2132 return nested && guest_cpuid_has_vmx(vcpu);
2133 }
2134
2135 /*
2136 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2137 * returned for the various VMX controls MSRs when nested VMX is enabled.
2138 * The same values should also be used to verify that vmcs12 control fields are
2139 * valid during nested entry from L1 to L2.
2140 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2141 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2142 * bit in the high half is on if the corresponding bit in the control field
2143 * may be on. See also vmx_control_verify().
2144 * TODO: allow these variables to be modified (downgraded) by module options
2145 * or other means.
2146 */
2147 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2148 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2149 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2150 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2151 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2152 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2153 static __init void nested_vmx_setup_ctls_msrs(void)
2154 {
2155 /*
2156 * Note that as a general rule, the high half of the MSRs (bits in
2157 * the control fields which may be 1) should be initialized by the
2158 * intersection of the underlying hardware's MSR (i.e., features which
2159 * can be supported) and the list of features we want to expose -
2160 * because they are known to be properly supported in our code.
2161 * Also, usually, the low half of the MSRs (bits which must be 1) can
2162 * be set to 0, meaning that L1 may turn off any of these bits. The
2163 * reason is that if one of these bits is necessary, it will appear
2164 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2165 * fields of vmcs01 and vmcs02, will turn these bits off - and
2166 * nested_vmx_exit_handled() will not pass related exits to L1.
2167 * These rules have exceptions below.
2168 */
2169
2170 /* pin-based controls */
2171 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2172 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2173 /*
2174 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2175 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2176 */
2177 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2178 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2179 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2180 PIN_BASED_VMX_PREEMPTION_TIMER;
2181 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2182
2183 /*
2184 * Exit controls
2185 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2186 * 17 must be 1.
2187 */
2188 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2189 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2190 #ifdef CONFIG_X86_64
2191 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2192 #else
2193 nested_vmx_exit_ctls_high = 0;
2194 #endif
2195 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2196
2197 /* entry controls */
2198 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2199 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2200 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2201 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2202 nested_vmx_entry_ctls_high &=
2203 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2204 nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2205
2206 /* cpu-based controls */
2207 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2208 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2209 nested_vmx_procbased_ctls_low = 0;
2210 nested_vmx_procbased_ctls_high &=
2211 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2212 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2213 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2214 CPU_BASED_CR3_STORE_EXITING |
2215 #ifdef CONFIG_X86_64
2216 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2217 #endif
2218 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2219 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2220 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2221 CPU_BASED_PAUSE_EXITING |
2222 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2223 /*
2224 * We can allow some features even when not supported by the
2225 * hardware. For example, L1 can specify an MSR bitmap - and we
2226 * can use it to avoid exits to L1 - even when L0 runs L2
2227 * without MSR bitmaps.
2228 */
2229 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2230
2231 /* secondary cpu-based controls */
2232 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2233 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2234 nested_vmx_secondary_ctls_low = 0;
2235 nested_vmx_secondary_ctls_high &=
2236 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2237 SECONDARY_EXEC_WBINVD_EXITING;
2238
2239 /* miscellaneous data */
2240 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2241 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2242 VMX_MISC_SAVE_EFER_LMA;
2243 nested_vmx_misc_high = 0;
2244 }
2245
2246 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2247 {
2248 /*
2249 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2250 */
2251 return ((control & high) | low) == control;
2252 }
2253
2254 static inline u64 vmx_control_msr(u32 low, u32 high)
2255 {
2256 return low | ((u64)high << 32);
2257 }
2258
2259 /*
2260 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2261 * also let it use VMX-specific MSRs.
2262 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2263 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2264 * like all other MSRs).
2265 */
2266 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2267 {
2268 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2269 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2270 /*
2271 * According to the spec, processors which do not support VMX
2272 * should throw a #GP(0) when VMX capability MSRs are read.
2273 */
2274 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2275 return 1;
2276 }
2277
2278 switch (msr_index) {
2279 case MSR_IA32_FEATURE_CONTROL:
2280 *pdata = 0;
2281 break;
2282 case MSR_IA32_VMX_BASIC:
2283 /*
2284 * This MSR reports some information about VMX support. We
2285 * should return information about the VMX we emulate for the
2286 * guest, and the VMCS structure we give it - not about the
2287 * VMX support of the underlying hardware.
2288 */
2289 *pdata = VMCS12_REVISION |
2290 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2291 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2292 break;
2293 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2294 case MSR_IA32_VMX_PINBASED_CTLS:
2295 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2296 nested_vmx_pinbased_ctls_high);
2297 break;
2298 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2299 case MSR_IA32_VMX_PROCBASED_CTLS:
2300 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2301 nested_vmx_procbased_ctls_high);
2302 break;
2303 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2304 case MSR_IA32_VMX_EXIT_CTLS:
2305 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2306 nested_vmx_exit_ctls_high);
2307 break;
2308 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2309 case MSR_IA32_VMX_ENTRY_CTLS:
2310 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2311 nested_vmx_entry_ctls_high);
2312 break;
2313 case MSR_IA32_VMX_MISC:
2314 *pdata = vmx_control_msr(nested_vmx_misc_low,
2315 nested_vmx_misc_high);
2316 break;
2317 /*
2318 * These MSRs specify bits which the guest must keep fixed (on or off)
2319 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2320 * We picked the standard core2 setting.
2321 */
2322 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2323 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2324 case MSR_IA32_VMX_CR0_FIXED0:
2325 *pdata = VMXON_CR0_ALWAYSON;
2326 break;
2327 case MSR_IA32_VMX_CR0_FIXED1:
2328 *pdata = -1ULL;
2329 break;
2330 case MSR_IA32_VMX_CR4_FIXED0:
2331 *pdata = VMXON_CR4_ALWAYSON;
2332 break;
2333 case MSR_IA32_VMX_CR4_FIXED1:
2334 *pdata = -1ULL;
2335 break;
2336 case MSR_IA32_VMX_VMCS_ENUM:
2337 *pdata = 0x1f;
2338 break;
2339 case MSR_IA32_VMX_PROCBASED_CTLS2:
2340 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2341 nested_vmx_secondary_ctls_high);
2342 break;
2343 case MSR_IA32_VMX_EPT_VPID_CAP:
2344 /* Currently, no nested ept or nested vpid */
2345 *pdata = 0;
2346 break;
2347 default:
2348 return 0;
2349 }
2350
2351 return 1;
2352 }
2353
2354 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2355 {
2356 if (!nested_vmx_allowed(vcpu))
2357 return 0;
2358
2359 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2360 /* TODO: the right thing. */
2361 return 1;
2362 /*
2363 * No need to treat VMX capability MSRs specially: If we don't handle
2364 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2365 */
2366 return 0;
2367 }
2368
2369 /*
2370 * Reads an msr value (of 'msr_index') into 'pdata'.
2371 * Returns 0 on success, non-0 otherwise.
2372 * Assumes vcpu_load() was already called.
2373 */
2374 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2375 {
2376 u64 data;
2377 struct shared_msr_entry *msr;
2378
2379 if (!pdata) {
2380 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2381 return -EINVAL;
2382 }
2383
2384 switch (msr_index) {
2385 #ifdef CONFIG_X86_64
2386 case MSR_FS_BASE:
2387 data = vmcs_readl(GUEST_FS_BASE);
2388 break;
2389 case MSR_GS_BASE:
2390 data = vmcs_readl(GUEST_GS_BASE);
2391 break;
2392 case MSR_KERNEL_GS_BASE:
2393 vmx_load_host_state(to_vmx(vcpu));
2394 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2395 break;
2396 #endif
2397 case MSR_EFER:
2398 return kvm_get_msr_common(vcpu, msr_index, pdata);
2399 case MSR_IA32_TSC:
2400 data = guest_read_tsc();
2401 break;
2402 case MSR_IA32_SYSENTER_CS:
2403 data = vmcs_read32(GUEST_SYSENTER_CS);
2404 break;
2405 case MSR_IA32_SYSENTER_EIP:
2406 data = vmcs_readl(GUEST_SYSENTER_EIP);
2407 break;
2408 case MSR_IA32_SYSENTER_ESP:
2409 data = vmcs_readl(GUEST_SYSENTER_ESP);
2410 break;
2411 case MSR_TSC_AUX:
2412 if (!to_vmx(vcpu)->rdtscp_enabled)
2413 return 1;
2414 /* Otherwise falls through */
2415 default:
2416 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2417 return 0;
2418 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2419 if (msr) {
2420 data = msr->data;
2421 break;
2422 }
2423 return kvm_get_msr_common(vcpu, msr_index, pdata);
2424 }
2425
2426 *pdata = data;
2427 return 0;
2428 }
2429
2430 /*
2431 * Writes msr value into into the appropriate "register".
2432 * Returns 0 on success, non-0 otherwise.
2433 * Assumes vcpu_load() was already called.
2434 */
2435 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2436 {
2437 struct vcpu_vmx *vmx = to_vmx(vcpu);
2438 struct shared_msr_entry *msr;
2439 int ret = 0;
2440 u32 msr_index = msr_info->index;
2441 u64 data = msr_info->data;
2442
2443 switch (msr_index) {
2444 case MSR_EFER:
2445 ret = kvm_set_msr_common(vcpu, msr_info);
2446 break;
2447 #ifdef CONFIG_X86_64
2448 case MSR_FS_BASE:
2449 vmx_segment_cache_clear(vmx);
2450 vmcs_writel(GUEST_FS_BASE, data);
2451 break;
2452 case MSR_GS_BASE:
2453 vmx_segment_cache_clear(vmx);
2454 vmcs_writel(GUEST_GS_BASE, data);
2455 break;
2456 case MSR_KERNEL_GS_BASE:
2457 vmx_load_host_state(vmx);
2458 vmx->msr_guest_kernel_gs_base = data;
2459 break;
2460 #endif
2461 case MSR_IA32_SYSENTER_CS:
2462 vmcs_write32(GUEST_SYSENTER_CS, data);
2463 break;
2464 case MSR_IA32_SYSENTER_EIP:
2465 vmcs_writel(GUEST_SYSENTER_EIP, data);
2466 break;
2467 case MSR_IA32_SYSENTER_ESP:
2468 vmcs_writel(GUEST_SYSENTER_ESP, data);
2469 break;
2470 case MSR_IA32_TSC:
2471 kvm_write_tsc(vcpu, msr_info);
2472 break;
2473 case MSR_IA32_CR_PAT:
2474 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2475 vmcs_write64(GUEST_IA32_PAT, data);
2476 vcpu->arch.pat = data;
2477 break;
2478 }
2479 ret = kvm_set_msr_common(vcpu, msr_info);
2480 break;
2481 case MSR_IA32_TSC_ADJUST:
2482 ret = kvm_set_msr_common(vcpu, msr_info);
2483 break;
2484 case MSR_TSC_AUX:
2485 if (!vmx->rdtscp_enabled)
2486 return 1;
2487 /* Check reserved bit, higher 32 bits should be zero */
2488 if ((data >> 32) != 0)
2489 return 1;
2490 /* Otherwise falls through */
2491 default:
2492 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2493 break;
2494 msr = find_msr_entry(vmx, msr_index);
2495 if (msr) {
2496 msr->data = data;
2497 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2498 preempt_disable();
2499 kvm_set_shared_msr(msr->index, msr->data,
2500 msr->mask);
2501 preempt_enable();
2502 }
2503 break;
2504 }
2505 ret = kvm_set_msr_common(vcpu, msr_info);
2506 }
2507
2508 return ret;
2509 }
2510
2511 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2512 {
2513 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2514 switch (reg) {
2515 case VCPU_REGS_RSP:
2516 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2517 break;
2518 case VCPU_REGS_RIP:
2519 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2520 break;
2521 case VCPU_EXREG_PDPTR:
2522 if (enable_ept)
2523 ept_save_pdptrs(vcpu);
2524 break;
2525 default:
2526 break;
2527 }
2528 }
2529
2530 static __init int cpu_has_kvm_support(void)
2531 {
2532 return cpu_has_vmx();
2533 }
2534
2535 static __init int vmx_disabled_by_bios(void)
2536 {
2537 u64 msr;
2538
2539 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2540 if (msr & FEATURE_CONTROL_LOCKED) {
2541 /* launched w/ TXT and VMX disabled */
2542 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2543 && tboot_enabled())
2544 return 1;
2545 /* launched w/o TXT and VMX only enabled w/ TXT */
2546 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2547 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2548 && !tboot_enabled()) {
2549 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2550 "activate TXT before enabling KVM\n");
2551 return 1;
2552 }
2553 /* launched w/o TXT and VMX disabled */
2554 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2555 && !tboot_enabled())
2556 return 1;
2557 }
2558
2559 return 0;
2560 }
2561
2562 static void kvm_cpu_vmxon(u64 addr)
2563 {
2564 asm volatile (ASM_VMX_VMXON_RAX
2565 : : "a"(&addr), "m"(addr)
2566 : "memory", "cc");
2567 }
2568
2569 static int hardware_enable(void *garbage)
2570 {
2571 int cpu = raw_smp_processor_id();
2572 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2573 u64 old, test_bits;
2574
2575 if (read_cr4() & X86_CR4_VMXE)
2576 return -EBUSY;
2577
2578 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2579
2580 /*
2581 * Now we can enable the vmclear operation in kdump
2582 * since the loaded_vmcss_on_cpu list on this cpu
2583 * has been initialized.
2584 *
2585 * Though the cpu is not in VMX operation now, there
2586 * is no problem to enable the vmclear operation
2587 * for the loaded_vmcss_on_cpu list is empty!
2588 */
2589 crash_enable_local_vmclear(cpu);
2590
2591 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2592
2593 test_bits = FEATURE_CONTROL_LOCKED;
2594 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2595 if (tboot_enabled())
2596 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2597
2598 if ((old & test_bits) != test_bits) {
2599 /* enable and lock */
2600 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2601 }
2602 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2603
2604 if (vmm_exclusive) {
2605 kvm_cpu_vmxon(phys_addr);
2606 ept_sync_global();
2607 }
2608
2609 native_store_gdt(&__get_cpu_var(host_gdt));
2610
2611 return 0;
2612 }
2613
2614 static void vmclear_local_loaded_vmcss(void)
2615 {
2616 int cpu = raw_smp_processor_id();
2617 struct loaded_vmcs *v, *n;
2618
2619 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2620 loaded_vmcss_on_cpu_link)
2621 __loaded_vmcs_clear(v);
2622 }
2623
2624
2625 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2626 * tricks.
2627 */
2628 static void kvm_cpu_vmxoff(void)
2629 {
2630 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2631 }
2632
2633 static void hardware_disable(void *garbage)
2634 {
2635 if (vmm_exclusive) {
2636 vmclear_local_loaded_vmcss();
2637 kvm_cpu_vmxoff();
2638 }
2639 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2640 }
2641
2642 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2643 u32 msr, u32 *result)
2644 {
2645 u32 vmx_msr_low, vmx_msr_high;
2646 u32 ctl = ctl_min | ctl_opt;
2647
2648 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2649
2650 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2651 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2652
2653 /* Ensure minimum (required) set of control bits are supported. */
2654 if (ctl_min & ~ctl)
2655 return -EIO;
2656
2657 *result = ctl;
2658 return 0;
2659 }
2660
2661 static __init bool allow_1_setting(u32 msr, u32 ctl)
2662 {
2663 u32 vmx_msr_low, vmx_msr_high;
2664
2665 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2666 return vmx_msr_high & ctl;
2667 }
2668
2669 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2670 {
2671 u32 vmx_msr_low, vmx_msr_high;
2672 u32 min, opt, min2, opt2;
2673 u32 _pin_based_exec_control = 0;
2674 u32 _cpu_based_exec_control = 0;
2675 u32 _cpu_based_2nd_exec_control = 0;
2676 u32 _vmexit_control = 0;
2677 u32 _vmentry_control = 0;
2678
2679 min = CPU_BASED_HLT_EXITING |
2680 #ifdef CONFIG_X86_64
2681 CPU_BASED_CR8_LOAD_EXITING |
2682 CPU_BASED_CR8_STORE_EXITING |
2683 #endif
2684 CPU_BASED_CR3_LOAD_EXITING |
2685 CPU_BASED_CR3_STORE_EXITING |
2686 CPU_BASED_USE_IO_BITMAPS |
2687 CPU_BASED_MOV_DR_EXITING |
2688 CPU_BASED_USE_TSC_OFFSETING |
2689 CPU_BASED_MWAIT_EXITING |
2690 CPU_BASED_MONITOR_EXITING |
2691 CPU_BASED_INVLPG_EXITING |
2692 CPU_BASED_RDPMC_EXITING;
2693
2694 opt = CPU_BASED_TPR_SHADOW |
2695 CPU_BASED_USE_MSR_BITMAPS |
2696 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2697 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2698 &_cpu_based_exec_control) < 0)
2699 return -EIO;
2700 #ifdef CONFIG_X86_64
2701 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2702 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2703 ~CPU_BASED_CR8_STORE_EXITING;
2704 #endif
2705 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2706 min2 = 0;
2707 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2708 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2709 SECONDARY_EXEC_WBINVD_EXITING |
2710 SECONDARY_EXEC_ENABLE_VPID |
2711 SECONDARY_EXEC_ENABLE_EPT |
2712 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2713 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2714 SECONDARY_EXEC_RDTSCP |
2715 SECONDARY_EXEC_ENABLE_INVPCID |
2716 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2717 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2718 SECONDARY_EXEC_SHADOW_VMCS;
2719 if (adjust_vmx_controls(min2, opt2,
2720 MSR_IA32_VMX_PROCBASED_CTLS2,
2721 &_cpu_based_2nd_exec_control) < 0)
2722 return -EIO;
2723 }
2724 #ifndef CONFIG_X86_64
2725 if (!(_cpu_based_2nd_exec_control &
2726 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2727 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2728 #endif
2729
2730 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2731 _cpu_based_2nd_exec_control &= ~(
2732 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2733 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2734 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2735
2736 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2737 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2738 enabled */
2739 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2740 CPU_BASED_CR3_STORE_EXITING |
2741 CPU_BASED_INVLPG_EXITING);
2742 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2743 vmx_capability.ept, vmx_capability.vpid);
2744 }
2745
2746 min = 0;
2747 #ifdef CONFIG_X86_64
2748 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2749 #endif
2750 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2751 VM_EXIT_ACK_INTR_ON_EXIT;
2752 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2753 &_vmexit_control) < 0)
2754 return -EIO;
2755
2756 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2757 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2758 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2759 &_pin_based_exec_control) < 0)
2760 return -EIO;
2761
2762 if (!(_cpu_based_2nd_exec_control &
2763 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2764 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2765 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2766
2767 min = 0;
2768 opt = VM_ENTRY_LOAD_IA32_PAT;
2769 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2770 &_vmentry_control) < 0)
2771 return -EIO;
2772
2773 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2774
2775 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2776 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2777 return -EIO;
2778
2779 #ifdef CONFIG_X86_64
2780 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2781 if (vmx_msr_high & (1u<<16))
2782 return -EIO;
2783 #endif
2784
2785 /* Require Write-Back (WB) memory type for VMCS accesses. */
2786 if (((vmx_msr_high >> 18) & 15) != 6)
2787 return -EIO;
2788
2789 vmcs_conf->size = vmx_msr_high & 0x1fff;
2790 vmcs_conf->order = get_order(vmcs_config.size);
2791 vmcs_conf->revision_id = vmx_msr_low;
2792
2793 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2794 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2795 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2796 vmcs_conf->vmexit_ctrl = _vmexit_control;
2797 vmcs_conf->vmentry_ctrl = _vmentry_control;
2798
2799 cpu_has_load_ia32_efer =
2800 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2801 VM_ENTRY_LOAD_IA32_EFER)
2802 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2803 VM_EXIT_LOAD_IA32_EFER);
2804
2805 cpu_has_load_perf_global_ctrl =
2806 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2807 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2808 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2809 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2810
2811 /*
2812 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2813 * but due to arrata below it can't be used. Workaround is to use
2814 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2815 *
2816 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2817 *
2818 * AAK155 (model 26)
2819 * AAP115 (model 30)
2820 * AAT100 (model 37)
2821 * BC86,AAY89,BD102 (model 44)
2822 * BA97 (model 46)
2823 *
2824 */
2825 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2826 switch (boot_cpu_data.x86_model) {
2827 case 26:
2828 case 30:
2829 case 37:
2830 case 44:
2831 case 46:
2832 cpu_has_load_perf_global_ctrl = false;
2833 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2834 "does not work properly. Using workaround\n");
2835 break;
2836 default:
2837 break;
2838 }
2839 }
2840
2841 return 0;
2842 }
2843
2844 static struct vmcs *alloc_vmcs_cpu(int cpu)
2845 {
2846 int node = cpu_to_node(cpu);
2847 struct page *pages;
2848 struct vmcs *vmcs;
2849
2850 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2851 if (!pages)
2852 return NULL;
2853 vmcs = page_address(pages);
2854 memset(vmcs, 0, vmcs_config.size);
2855 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2856 return vmcs;
2857 }
2858
2859 static struct vmcs *alloc_vmcs(void)
2860 {
2861 return alloc_vmcs_cpu(raw_smp_processor_id());
2862 }
2863
2864 static void free_vmcs(struct vmcs *vmcs)
2865 {
2866 free_pages((unsigned long)vmcs, vmcs_config.order);
2867 }
2868
2869 /*
2870 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2871 */
2872 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2873 {
2874 if (!loaded_vmcs->vmcs)
2875 return;
2876 loaded_vmcs_clear(loaded_vmcs);
2877 free_vmcs(loaded_vmcs->vmcs);
2878 loaded_vmcs->vmcs = NULL;
2879 }
2880
2881 static void free_kvm_area(void)
2882 {
2883 int cpu;
2884
2885 for_each_possible_cpu(cpu) {
2886 free_vmcs(per_cpu(vmxarea, cpu));
2887 per_cpu(vmxarea, cpu) = NULL;
2888 }
2889 }
2890
2891 static __init int alloc_kvm_area(void)
2892 {
2893 int cpu;
2894
2895 for_each_possible_cpu(cpu) {
2896 struct vmcs *vmcs;
2897
2898 vmcs = alloc_vmcs_cpu(cpu);
2899 if (!vmcs) {
2900 free_kvm_area();
2901 return -ENOMEM;
2902 }
2903
2904 per_cpu(vmxarea, cpu) = vmcs;
2905 }
2906 return 0;
2907 }
2908
2909 static __init int hardware_setup(void)
2910 {
2911 if (setup_vmcs_config(&vmcs_config) < 0)
2912 return -EIO;
2913
2914 if (boot_cpu_has(X86_FEATURE_NX))
2915 kvm_enable_efer_bits(EFER_NX);
2916
2917 if (!cpu_has_vmx_vpid())
2918 enable_vpid = 0;
2919 if (!cpu_has_vmx_shadow_vmcs())
2920 enable_shadow_vmcs = 0;
2921
2922 if (!cpu_has_vmx_ept() ||
2923 !cpu_has_vmx_ept_4levels()) {
2924 enable_ept = 0;
2925 enable_unrestricted_guest = 0;
2926 enable_ept_ad_bits = 0;
2927 }
2928
2929 if (!cpu_has_vmx_ept_ad_bits())
2930 enable_ept_ad_bits = 0;
2931
2932 if (!cpu_has_vmx_unrestricted_guest())
2933 enable_unrestricted_guest = 0;
2934
2935 if (!cpu_has_vmx_flexpriority())
2936 flexpriority_enabled = 0;
2937
2938 if (!cpu_has_vmx_tpr_shadow())
2939 kvm_x86_ops->update_cr8_intercept = NULL;
2940
2941 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2942 kvm_disable_largepages();
2943
2944 if (!cpu_has_vmx_ple())
2945 ple_gap = 0;
2946
2947 if (!cpu_has_vmx_apicv())
2948 enable_apicv = 0;
2949
2950 if (enable_apicv)
2951 kvm_x86_ops->update_cr8_intercept = NULL;
2952 else {
2953 kvm_x86_ops->hwapic_irr_update = NULL;
2954 kvm_x86_ops->deliver_posted_interrupt = NULL;
2955 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2956 }
2957
2958 if (nested)
2959 nested_vmx_setup_ctls_msrs();
2960
2961 return alloc_kvm_area();
2962 }
2963
2964 static __exit void hardware_unsetup(void)
2965 {
2966 free_kvm_area();
2967 }
2968
2969 static bool emulation_required(struct kvm_vcpu *vcpu)
2970 {
2971 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2972 }
2973
2974 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2975 struct kvm_segment *save)
2976 {
2977 if (!emulate_invalid_guest_state) {
2978 /*
2979 * CS and SS RPL should be equal during guest entry according
2980 * to VMX spec, but in reality it is not always so. Since vcpu
2981 * is in the middle of the transition from real mode to
2982 * protected mode it is safe to assume that RPL 0 is a good
2983 * default value.
2984 */
2985 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2986 save->selector &= ~SELECTOR_RPL_MASK;
2987 save->dpl = save->selector & SELECTOR_RPL_MASK;
2988 save->s = 1;
2989 }
2990 vmx_set_segment(vcpu, save, seg);
2991 }
2992
2993 static void enter_pmode(struct kvm_vcpu *vcpu)
2994 {
2995 unsigned long flags;
2996 struct vcpu_vmx *vmx = to_vmx(vcpu);
2997
2998 /*
2999 * Update real mode segment cache. It may be not up-to-date if sement
3000 * register was written while vcpu was in a guest mode.
3001 */
3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3008
3009 vmx->rmode.vm86_active = 0;
3010
3011 vmx_segment_cache_clear(vmx);
3012
3013 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3014
3015 flags = vmcs_readl(GUEST_RFLAGS);
3016 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3017 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3018 vmcs_writel(GUEST_RFLAGS, flags);
3019
3020 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3021 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3022
3023 update_exception_bitmap(vcpu);
3024
3025 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3026 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3027 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3028 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3029 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3030 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3031
3032 /* CPL is always 0 when CPU enters protected mode */
3033 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3034 vmx->cpl = 0;
3035 }
3036
3037 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3038 {
3039 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3040 struct kvm_segment var = *save;
3041
3042 var.dpl = 0x3;
3043 if (seg == VCPU_SREG_CS)
3044 var.type = 0x3;
3045
3046 if (!emulate_invalid_guest_state) {
3047 var.selector = var.base >> 4;
3048 var.base = var.base & 0xffff0;
3049 var.limit = 0xffff;
3050 var.g = 0;
3051 var.db = 0;
3052 var.present = 1;
3053 var.s = 1;
3054 var.l = 0;
3055 var.unusable = 0;
3056 var.type = 0x3;
3057 var.avl = 0;
3058 if (save->base & 0xf)
3059 printk_once(KERN_WARNING "kvm: segment base is not "
3060 "paragraph aligned when entering "
3061 "protected mode (seg=%d)", seg);
3062 }
3063
3064 vmcs_write16(sf->selector, var.selector);
3065 vmcs_write32(sf->base, var.base);
3066 vmcs_write32(sf->limit, var.limit);
3067 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3068 }
3069
3070 static void enter_rmode(struct kvm_vcpu *vcpu)
3071 {
3072 unsigned long flags;
3073 struct vcpu_vmx *vmx = to_vmx(vcpu);
3074
3075 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3076 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3077 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3082
3083 vmx->rmode.vm86_active = 1;
3084
3085 /*
3086 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3087 * vcpu. Warn the user that an update is overdue.
3088 */
3089 if (!vcpu->kvm->arch.tss_addr)
3090 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3091 "called before entering vcpu\n");
3092
3093 vmx_segment_cache_clear(vmx);
3094
3095 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3096 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3097 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3098
3099 flags = vmcs_readl(GUEST_RFLAGS);
3100 vmx->rmode.save_rflags = flags;
3101
3102 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3103
3104 vmcs_writel(GUEST_RFLAGS, flags);
3105 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3106 update_exception_bitmap(vcpu);
3107
3108 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3109 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3110 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3111 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3112 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3113 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3114
3115 kvm_mmu_reset_context(vcpu);
3116 }
3117
3118 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3119 {
3120 struct vcpu_vmx *vmx = to_vmx(vcpu);
3121 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3122
3123 if (!msr)
3124 return;
3125
3126 /*
3127 * Force kernel_gs_base reloading before EFER changes, as control
3128 * of this msr depends on is_long_mode().
3129 */
3130 vmx_load_host_state(to_vmx(vcpu));
3131 vcpu->arch.efer = efer;
3132 if (efer & EFER_LMA) {
3133 vmcs_write32(VM_ENTRY_CONTROLS,
3134 vmcs_read32(VM_ENTRY_CONTROLS) |
3135 VM_ENTRY_IA32E_MODE);
3136 msr->data = efer;
3137 } else {
3138 vmcs_write32(VM_ENTRY_CONTROLS,
3139 vmcs_read32(VM_ENTRY_CONTROLS) &
3140 ~VM_ENTRY_IA32E_MODE);
3141
3142 msr->data = efer & ~EFER_LME;
3143 }
3144 setup_msrs(vmx);
3145 }
3146
3147 #ifdef CONFIG_X86_64
3148
3149 static void enter_lmode(struct kvm_vcpu *vcpu)
3150 {
3151 u32 guest_tr_ar;
3152
3153 vmx_segment_cache_clear(to_vmx(vcpu));
3154
3155 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3156 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3157 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3158 __func__);
3159 vmcs_write32(GUEST_TR_AR_BYTES,
3160 (guest_tr_ar & ~AR_TYPE_MASK)
3161 | AR_TYPE_BUSY_64_TSS);
3162 }
3163 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3164 }
3165
3166 static void exit_lmode(struct kvm_vcpu *vcpu)
3167 {
3168 vmcs_write32(VM_ENTRY_CONTROLS,
3169 vmcs_read32(VM_ENTRY_CONTROLS)
3170 & ~VM_ENTRY_IA32E_MODE);
3171 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3172 }
3173
3174 #endif
3175
3176 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3177 {
3178 vpid_sync_context(to_vmx(vcpu));
3179 if (enable_ept) {
3180 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3181 return;
3182 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3183 }
3184 }
3185
3186 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3187 {
3188 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3189
3190 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3191 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3192 }
3193
3194 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3195 {
3196 if (enable_ept && is_paging(vcpu))
3197 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3198 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3199 }
3200
3201 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3202 {
3203 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3204
3205 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3206 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3207 }
3208
3209 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3210 {
3211 if (!test_bit(VCPU_EXREG_PDPTR,
3212 (unsigned long *)&vcpu->arch.regs_dirty))
3213 return;
3214
3215 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3216 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3217 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3218 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3219 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3220 }
3221 }
3222
3223 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3224 {
3225 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3226 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3227 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3228 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3229 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3230 }
3231
3232 __set_bit(VCPU_EXREG_PDPTR,
3233 (unsigned long *)&vcpu->arch.regs_avail);
3234 __set_bit(VCPU_EXREG_PDPTR,
3235 (unsigned long *)&vcpu->arch.regs_dirty);
3236 }
3237
3238 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3239
3240 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3241 unsigned long cr0,
3242 struct kvm_vcpu *vcpu)
3243 {
3244 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3245 vmx_decache_cr3(vcpu);
3246 if (!(cr0 & X86_CR0_PG)) {
3247 /* From paging/starting to nonpaging */
3248 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3249 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3250 (CPU_BASED_CR3_LOAD_EXITING |
3251 CPU_BASED_CR3_STORE_EXITING));
3252 vcpu->arch.cr0 = cr0;
3253 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3254 } else if (!is_paging(vcpu)) {
3255 /* From nonpaging to paging */
3256 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3257 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3258 ~(CPU_BASED_CR3_LOAD_EXITING |
3259 CPU_BASED_CR3_STORE_EXITING));
3260 vcpu->arch.cr0 = cr0;
3261 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3262 }
3263
3264 if (!(cr0 & X86_CR0_WP))
3265 *hw_cr0 &= ~X86_CR0_WP;
3266 }
3267
3268 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3269 {
3270 struct vcpu_vmx *vmx = to_vmx(vcpu);
3271 unsigned long hw_cr0;
3272
3273 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3274 if (enable_unrestricted_guest)
3275 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3276 else {
3277 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3278
3279 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3280 enter_pmode(vcpu);
3281
3282 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3283 enter_rmode(vcpu);
3284 }
3285
3286 #ifdef CONFIG_X86_64
3287 if (vcpu->arch.efer & EFER_LME) {
3288 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3289 enter_lmode(vcpu);
3290 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3291 exit_lmode(vcpu);
3292 }
3293 #endif
3294
3295 if (enable_ept)
3296 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3297
3298 if (!vcpu->fpu_active)
3299 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3300
3301 vmcs_writel(CR0_READ_SHADOW, cr0);
3302 vmcs_writel(GUEST_CR0, hw_cr0);
3303 vcpu->arch.cr0 = cr0;
3304
3305 /* depends on vcpu->arch.cr0 to be set to a new value */
3306 vmx->emulation_required = emulation_required(vcpu);
3307 }
3308
3309 static u64 construct_eptp(unsigned long root_hpa)
3310 {
3311 u64 eptp;
3312
3313 /* TODO write the value reading from MSR */
3314 eptp = VMX_EPT_DEFAULT_MT |
3315 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3316 if (enable_ept_ad_bits)
3317 eptp |= VMX_EPT_AD_ENABLE_BIT;
3318 eptp |= (root_hpa & PAGE_MASK);
3319
3320 return eptp;
3321 }
3322
3323 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3324 {
3325 unsigned long guest_cr3;
3326 u64 eptp;
3327
3328 guest_cr3 = cr3;
3329 if (enable_ept) {
3330 eptp = construct_eptp(cr3);
3331 vmcs_write64(EPT_POINTER, eptp);
3332 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3333 vcpu->kvm->arch.ept_identity_map_addr;
3334 ept_load_pdptrs(vcpu);
3335 }
3336
3337 vmx_flush_tlb(vcpu);
3338 vmcs_writel(GUEST_CR3, guest_cr3);
3339 }
3340
3341 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3342 {
3343 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3344 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3345
3346 if (cr4 & X86_CR4_VMXE) {
3347 /*
3348 * To use VMXON (and later other VMX instructions), a guest
3349 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3350 * So basically the check on whether to allow nested VMX
3351 * is here.
3352 */
3353 if (!nested_vmx_allowed(vcpu))
3354 return 1;
3355 }
3356 if (to_vmx(vcpu)->nested.vmxon &&
3357 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3358 return 1;
3359
3360 vcpu->arch.cr4 = cr4;
3361 if (enable_ept) {
3362 if (!is_paging(vcpu)) {
3363 hw_cr4 &= ~X86_CR4_PAE;
3364 hw_cr4 |= X86_CR4_PSE;
3365 /*
3366 * SMEP is disabled if CPU is in non-paging mode in
3367 * hardware. However KVM always uses paging mode to
3368 * emulate guest non-paging mode with TDP.
3369 * To emulate this behavior, SMEP needs to be manually
3370 * disabled when guest switches to non-paging mode.
3371 */
3372 hw_cr4 &= ~X86_CR4_SMEP;
3373 } else if (!(cr4 & X86_CR4_PAE)) {
3374 hw_cr4 &= ~X86_CR4_PAE;
3375 }
3376 }
3377
3378 vmcs_writel(CR4_READ_SHADOW, cr4);
3379 vmcs_writel(GUEST_CR4, hw_cr4);
3380 return 0;
3381 }
3382
3383 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3384 struct kvm_segment *var, int seg)
3385 {
3386 struct vcpu_vmx *vmx = to_vmx(vcpu);
3387 u32 ar;
3388
3389 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3390 *var = vmx->rmode.segs[seg];
3391 if (seg == VCPU_SREG_TR
3392 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3393 return;
3394 var->base = vmx_read_guest_seg_base(vmx, seg);
3395 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3396 return;
3397 }
3398 var->base = vmx_read_guest_seg_base(vmx, seg);
3399 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3400 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3401 ar = vmx_read_guest_seg_ar(vmx, seg);
3402 var->type = ar & 15;
3403 var->s = (ar >> 4) & 1;
3404 var->dpl = (ar >> 5) & 3;
3405 var->present = (ar >> 7) & 1;
3406 var->avl = (ar >> 12) & 1;
3407 var->l = (ar >> 13) & 1;
3408 var->db = (ar >> 14) & 1;
3409 var->g = (ar >> 15) & 1;
3410 var->unusable = (ar >> 16) & 1;
3411 }
3412
3413 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3414 {
3415 struct kvm_segment s;
3416
3417 if (to_vmx(vcpu)->rmode.vm86_active) {
3418 vmx_get_segment(vcpu, &s, seg);
3419 return s.base;
3420 }
3421 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3422 }
3423
3424 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3425 {
3426 struct vcpu_vmx *vmx = to_vmx(vcpu);
3427
3428 if (!is_protmode(vcpu))
3429 return 0;
3430
3431 if (!is_long_mode(vcpu)
3432 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3433 return 3;
3434
3435 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3436 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3437 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3438 }
3439
3440 return vmx->cpl;
3441 }
3442
3443
3444 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3445 {
3446 u32 ar;
3447
3448 if (var->unusable || !var->present)
3449 ar = 1 << 16;
3450 else {
3451 ar = var->type & 15;
3452 ar |= (var->s & 1) << 4;
3453 ar |= (var->dpl & 3) << 5;
3454 ar |= (var->present & 1) << 7;
3455 ar |= (var->avl & 1) << 12;
3456 ar |= (var->l & 1) << 13;
3457 ar |= (var->db & 1) << 14;
3458 ar |= (var->g & 1) << 15;
3459 }
3460
3461 return ar;
3462 }
3463
3464 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3465 struct kvm_segment *var, int seg)
3466 {
3467 struct vcpu_vmx *vmx = to_vmx(vcpu);
3468 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3469
3470 vmx_segment_cache_clear(vmx);
3471 if (seg == VCPU_SREG_CS)
3472 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3473
3474 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3475 vmx->rmode.segs[seg] = *var;
3476 if (seg == VCPU_SREG_TR)
3477 vmcs_write16(sf->selector, var->selector);
3478 else if (var->s)
3479 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3480 goto out;
3481 }
3482
3483 vmcs_writel(sf->base, var->base);
3484 vmcs_write32(sf->limit, var->limit);
3485 vmcs_write16(sf->selector, var->selector);
3486
3487 /*
3488 * Fix the "Accessed" bit in AR field of segment registers for older
3489 * qemu binaries.
3490 * IA32 arch specifies that at the time of processor reset the
3491 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3492 * is setting it to 0 in the userland code. This causes invalid guest
3493 * state vmexit when "unrestricted guest" mode is turned on.
3494 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3495 * tree. Newer qemu binaries with that qemu fix would not need this
3496 * kvm hack.
3497 */
3498 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3499 var->type |= 0x1; /* Accessed */
3500
3501 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3502
3503 out:
3504 vmx->emulation_required |= emulation_required(vcpu);
3505 }
3506
3507 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3508 {
3509 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3510
3511 *db = (ar >> 14) & 1;
3512 *l = (ar >> 13) & 1;
3513 }
3514
3515 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3516 {
3517 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3518 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3519 }
3520
3521 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3522 {
3523 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3524 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3525 }
3526
3527 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3528 {
3529 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3530 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3531 }
3532
3533 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3534 {
3535 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3536 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3537 }
3538
3539 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3540 {
3541 struct kvm_segment var;
3542 u32 ar;
3543
3544 vmx_get_segment(vcpu, &var, seg);
3545 var.dpl = 0x3;
3546 if (seg == VCPU_SREG_CS)
3547 var.type = 0x3;
3548 ar = vmx_segment_access_rights(&var);
3549
3550 if (var.base != (var.selector << 4))
3551 return false;
3552 if (var.limit != 0xffff)
3553 return false;
3554 if (ar != 0xf3)
3555 return false;
3556
3557 return true;
3558 }
3559
3560 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3561 {
3562 struct kvm_segment cs;
3563 unsigned int cs_rpl;
3564
3565 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3566 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3567
3568 if (cs.unusable)
3569 return false;
3570 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3571 return false;
3572 if (!cs.s)
3573 return false;
3574 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3575 if (cs.dpl > cs_rpl)
3576 return false;
3577 } else {
3578 if (cs.dpl != cs_rpl)
3579 return false;
3580 }
3581 if (!cs.present)
3582 return false;
3583
3584 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3585 return true;
3586 }
3587
3588 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3589 {
3590 struct kvm_segment ss;
3591 unsigned int ss_rpl;
3592
3593 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3594 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3595
3596 if (ss.unusable)
3597 return true;
3598 if (ss.type != 3 && ss.type != 7)
3599 return false;
3600 if (!ss.s)
3601 return false;
3602 if (ss.dpl != ss_rpl) /* DPL != RPL */
3603 return false;
3604 if (!ss.present)
3605 return false;
3606
3607 return true;
3608 }
3609
3610 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3611 {
3612 struct kvm_segment var;
3613 unsigned int rpl;
3614
3615 vmx_get_segment(vcpu, &var, seg);
3616 rpl = var.selector & SELECTOR_RPL_MASK;
3617
3618 if (var.unusable)
3619 return true;
3620 if (!var.s)
3621 return false;
3622 if (!var.present)
3623 return false;
3624 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3625 if (var.dpl < rpl) /* DPL < RPL */
3626 return false;
3627 }
3628
3629 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3630 * rights flags
3631 */
3632 return true;
3633 }
3634
3635 static bool tr_valid(struct kvm_vcpu *vcpu)
3636 {
3637 struct kvm_segment tr;
3638
3639 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3640
3641 if (tr.unusable)
3642 return false;
3643 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3644 return false;
3645 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3646 return false;
3647 if (!tr.present)
3648 return false;
3649
3650 return true;
3651 }
3652
3653 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3654 {
3655 struct kvm_segment ldtr;
3656
3657 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3658
3659 if (ldtr.unusable)
3660 return true;
3661 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3662 return false;
3663 if (ldtr.type != 2)
3664 return false;
3665 if (!ldtr.present)
3666 return false;
3667
3668 return true;
3669 }
3670
3671 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3672 {
3673 struct kvm_segment cs, ss;
3674
3675 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3676 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3677
3678 return ((cs.selector & SELECTOR_RPL_MASK) ==
3679 (ss.selector & SELECTOR_RPL_MASK));
3680 }
3681
3682 /*
3683 * Check if guest state is valid. Returns true if valid, false if
3684 * not.
3685 * We assume that registers are always usable
3686 */
3687 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3688 {
3689 if (enable_unrestricted_guest)
3690 return true;
3691
3692 /* real mode guest state checks */
3693 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3694 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3695 return false;
3696 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3697 return false;
3698 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3699 return false;
3700 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3701 return false;
3702 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3703 return false;
3704 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3705 return false;
3706 } else {
3707 /* protected mode guest state checks */
3708 if (!cs_ss_rpl_check(vcpu))
3709 return false;
3710 if (!code_segment_valid(vcpu))
3711 return false;
3712 if (!stack_segment_valid(vcpu))
3713 return false;
3714 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3715 return false;
3716 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3717 return false;
3718 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3719 return false;
3720 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3721 return false;
3722 if (!tr_valid(vcpu))
3723 return false;
3724 if (!ldtr_valid(vcpu))
3725 return false;
3726 }
3727 /* TODO:
3728 * - Add checks on RIP
3729 * - Add checks on RFLAGS
3730 */
3731
3732 return true;
3733 }
3734
3735 static int init_rmode_tss(struct kvm *kvm)
3736 {
3737 gfn_t fn;
3738 u16 data = 0;
3739 int r, idx, ret = 0;
3740
3741 idx = srcu_read_lock(&kvm->srcu);
3742 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3743 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3744 if (r < 0)
3745 goto out;
3746 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3747 r = kvm_write_guest_page(kvm, fn++, &data,
3748 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3749 if (r < 0)
3750 goto out;
3751 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3752 if (r < 0)
3753 goto out;
3754 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3755 if (r < 0)
3756 goto out;
3757 data = ~0;
3758 r = kvm_write_guest_page(kvm, fn, &data,
3759 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3760 sizeof(u8));
3761 if (r < 0)
3762 goto out;
3763
3764 ret = 1;
3765 out:
3766 srcu_read_unlock(&kvm->srcu, idx);
3767 return ret;
3768 }
3769
3770 static int init_rmode_identity_map(struct kvm *kvm)
3771 {
3772 int i, idx, r, ret;
3773 pfn_t identity_map_pfn;
3774 u32 tmp;
3775
3776 if (!enable_ept)
3777 return 1;
3778 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3779 printk(KERN_ERR "EPT: identity-mapping pagetable "
3780 "haven't been allocated!\n");
3781 return 0;
3782 }
3783 if (likely(kvm->arch.ept_identity_pagetable_done))
3784 return 1;
3785 ret = 0;
3786 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3787 idx = srcu_read_lock(&kvm->srcu);
3788 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3789 if (r < 0)
3790 goto out;
3791 /* Set up identity-mapping pagetable for EPT in real mode */
3792 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3793 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3794 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3795 r = kvm_write_guest_page(kvm, identity_map_pfn,
3796 &tmp, i * sizeof(tmp), sizeof(tmp));
3797 if (r < 0)
3798 goto out;
3799 }
3800 kvm->arch.ept_identity_pagetable_done = true;
3801 ret = 1;
3802 out:
3803 srcu_read_unlock(&kvm->srcu, idx);
3804 return ret;
3805 }
3806
3807 static void seg_setup(int seg)
3808 {
3809 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3810 unsigned int ar;
3811
3812 vmcs_write16(sf->selector, 0);
3813 vmcs_writel(sf->base, 0);
3814 vmcs_write32(sf->limit, 0xffff);
3815 ar = 0x93;
3816 if (seg == VCPU_SREG_CS)
3817 ar |= 0x08; /* code segment */
3818
3819 vmcs_write32(sf->ar_bytes, ar);
3820 }
3821
3822 static int alloc_apic_access_page(struct kvm *kvm)
3823 {
3824 struct page *page;
3825 struct kvm_userspace_memory_region kvm_userspace_mem;
3826 int r = 0;
3827
3828 mutex_lock(&kvm->slots_lock);
3829 if (kvm->arch.apic_access_page)
3830 goto out;
3831 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3832 kvm_userspace_mem.flags = 0;
3833 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3834 kvm_userspace_mem.memory_size = PAGE_SIZE;
3835 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3836 if (r)
3837 goto out;
3838
3839 page = gfn_to_page(kvm, 0xfee00);
3840 if (is_error_page(page)) {
3841 r = -EFAULT;
3842 goto out;
3843 }
3844
3845 kvm->arch.apic_access_page = page;
3846 out:
3847 mutex_unlock(&kvm->slots_lock);
3848 return r;
3849 }
3850
3851 static int alloc_identity_pagetable(struct kvm *kvm)
3852 {
3853 struct page *page;
3854 struct kvm_userspace_memory_region kvm_userspace_mem;
3855 int r = 0;
3856
3857 mutex_lock(&kvm->slots_lock);
3858 if (kvm->arch.ept_identity_pagetable)
3859 goto out;
3860 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3861 kvm_userspace_mem.flags = 0;
3862 kvm_userspace_mem.guest_phys_addr =
3863 kvm->arch.ept_identity_map_addr;
3864 kvm_userspace_mem.memory_size = PAGE_SIZE;
3865 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3866 if (r)
3867 goto out;
3868
3869 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3870 if (is_error_page(page)) {
3871 r = -EFAULT;
3872 goto out;
3873 }
3874
3875 kvm->arch.ept_identity_pagetable = page;
3876 out:
3877 mutex_unlock(&kvm->slots_lock);
3878 return r;
3879 }
3880
3881 static void allocate_vpid(struct vcpu_vmx *vmx)
3882 {
3883 int vpid;
3884
3885 vmx->vpid = 0;
3886 if (!enable_vpid)
3887 return;
3888 spin_lock(&vmx_vpid_lock);
3889 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3890 if (vpid < VMX_NR_VPIDS) {
3891 vmx->vpid = vpid;
3892 __set_bit(vpid, vmx_vpid_bitmap);
3893 }
3894 spin_unlock(&vmx_vpid_lock);
3895 }
3896
3897 static void free_vpid(struct vcpu_vmx *vmx)
3898 {
3899 if (!enable_vpid)
3900 return;
3901 spin_lock(&vmx_vpid_lock);
3902 if (vmx->vpid != 0)
3903 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3904 spin_unlock(&vmx_vpid_lock);
3905 }
3906
3907 #define MSR_TYPE_R 1
3908 #define MSR_TYPE_W 2
3909 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3910 u32 msr, int type)
3911 {
3912 int f = sizeof(unsigned long);
3913
3914 if (!cpu_has_vmx_msr_bitmap())
3915 return;
3916
3917 /*
3918 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3919 * have the write-low and read-high bitmap offsets the wrong way round.
3920 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3921 */
3922 if (msr <= 0x1fff) {
3923 if (type & MSR_TYPE_R)
3924 /* read-low */
3925 __clear_bit(msr, msr_bitmap + 0x000 / f);
3926
3927 if (type & MSR_TYPE_W)
3928 /* write-low */
3929 __clear_bit(msr, msr_bitmap + 0x800 / f);
3930
3931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3932 msr &= 0x1fff;
3933 if (type & MSR_TYPE_R)
3934 /* read-high */
3935 __clear_bit(msr, msr_bitmap + 0x400 / f);
3936
3937 if (type & MSR_TYPE_W)
3938 /* write-high */
3939 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3940
3941 }
3942 }
3943
3944 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3945 u32 msr, int type)
3946 {
3947 int f = sizeof(unsigned long);
3948
3949 if (!cpu_has_vmx_msr_bitmap())
3950 return;
3951
3952 /*
3953 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3954 * have the write-low and read-high bitmap offsets the wrong way round.
3955 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3956 */
3957 if (msr <= 0x1fff) {
3958 if (type & MSR_TYPE_R)
3959 /* read-low */
3960 __set_bit(msr, msr_bitmap + 0x000 / f);
3961
3962 if (type & MSR_TYPE_W)
3963 /* write-low */
3964 __set_bit(msr, msr_bitmap + 0x800 / f);
3965
3966 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3967 msr &= 0x1fff;
3968 if (type & MSR_TYPE_R)
3969 /* read-high */
3970 __set_bit(msr, msr_bitmap + 0x400 / f);
3971
3972 if (type & MSR_TYPE_W)
3973 /* write-high */
3974 __set_bit(msr, msr_bitmap + 0xc00 / f);
3975
3976 }
3977 }
3978
3979 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3980 {
3981 if (!longmode_only)
3982 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3983 msr, MSR_TYPE_R | MSR_TYPE_W);
3984 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3985 msr, MSR_TYPE_R | MSR_TYPE_W);
3986 }
3987
3988 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3989 {
3990 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3991 msr, MSR_TYPE_R);
3992 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3993 msr, MSR_TYPE_R);
3994 }
3995
3996 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3997 {
3998 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3999 msr, MSR_TYPE_R);
4000 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4001 msr, MSR_TYPE_R);
4002 }
4003
4004 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4005 {
4006 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4007 msr, MSR_TYPE_W);
4008 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4009 msr, MSR_TYPE_W);
4010 }
4011
4012 static int vmx_vm_has_apicv(struct kvm *kvm)
4013 {
4014 return enable_apicv && irqchip_in_kernel(kvm);
4015 }
4016
4017 /*
4018 * Send interrupt to vcpu via posted interrupt way.
4019 * 1. If target vcpu is running(non-root mode), send posted interrupt
4020 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4021 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4022 * interrupt from PIR in next vmentry.
4023 */
4024 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4025 {
4026 struct vcpu_vmx *vmx = to_vmx(vcpu);
4027 int r;
4028
4029 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4030 return;
4031
4032 r = pi_test_and_set_on(&vmx->pi_desc);
4033 kvm_make_request(KVM_REQ_EVENT, vcpu);
4034 #ifdef CONFIG_SMP
4035 if (!r && (vcpu->mode == IN_GUEST_MODE))
4036 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4037 POSTED_INTR_VECTOR);
4038 else
4039 #endif
4040 kvm_vcpu_kick(vcpu);
4041 }
4042
4043 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4044 {
4045 struct vcpu_vmx *vmx = to_vmx(vcpu);
4046
4047 if (!pi_test_and_clear_on(&vmx->pi_desc))
4048 return;
4049
4050 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4051 }
4052
4053 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4054 {
4055 return;
4056 }
4057
4058 /*
4059 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4060 * will not change in the lifetime of the guest.
4061 * Note that host-state that does change is set elsewhere. E.g., host-state
4062 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4063 */
4064 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4065 {
4066 u32 low32, high32;
4067 unsigned long tmpl;
4068 struct desc_ptr dt;
4069
4070 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4071 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4072 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4073
4074 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4075 #ifdef CONFIG_X86_64
4076 /*
4077 * Load null selectors, so we can avoid reloading them in
4078 * __vmx_load_host_state(), in case userspace uses the null selectors
4079 * too (the expected case).
4080 */
4081 vmcs_write16(HOST_DS_SELECTOR, 0);
4082 vmcs_write16(HOST_ES_SELECTOR, 0);
4083 #else
4084 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4085 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4086 #endif
4087 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4088 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4089
4090 native_store_idt(&dt);
4091 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4092 vmx->host_idt_base = dt.address;
4093
4094 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4095
4096 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4097 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4098 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4099 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4100
4101 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4102 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4103 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4104 }
4105 }
4106
4107 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4108 {
4109 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4110 if (enable_ept)
4111 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4112 if (is_guest_mode(&vmx->vcpu))
4113 vmx->vcpu.arch.cr4_guest_owned_bits &=
4114 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4115 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4116 }
4117
4118 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4119 {
4120 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4121
4122 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4123 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4124 return pin_based_exec_ctrl;
4125 }
4126
4127 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4128 {
4129 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4130 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4131 exec_control &= ~CPU_BASED_TPR_SHADOW;
4132 #ifdef CONFIG_X86_64
4133 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4134 CPU_BASED_CR8_LOAD_EXITING;
4135 #endif
4136 }
4137 if (!enable_ept)
4138 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4139 CPU_BASED_CR3_LOAD_EXITING |
4140 CPU_BASED_INVLPG_EXITING;
4141 return exec_control;
4142 }
4143
4144 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4145 {
4146 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4147 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4148 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4149 if (vmx->vpid == 0)
4150 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4151 if (!enable_ept) {
4152 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4153 enable_unrestricted_guest = 0;
4154 /* Enable INVPCID for non-ept guests may cause performance regression. */
4155 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4156 }
4157 if (!enable_unrestricted_guest)
4158 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4159 if (!ple_gap)
4160 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4161 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4162 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4163 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4164 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4165 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4166 (handle_vmptrld).
4167 We can NOT enable shadow_vmcs here because we don't have yet
4168 a current VMCS12
4169 */
4170 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4171 return exec_control;
4172 }
4173
4174 static void ept_set_mmio_spte_mask(void)
4175 {
4176 /*
4177 * EPT Misconfigurations can be generated if the value of bits 2:0
4178 * of an EPT paging-structure entry is 110b (write/execute).
4179 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
4180 * spte.
4181 */
4182 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
4183 }
4184
4185 /*
4186 * Sets up the vmcs for emulated real mode.
4187 */
4188 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4189 {
4190 #ifdef CONFIG_X86_64
4191 unsigned long a;
4192 #endif
4193 int i;
4194
4195 /* I/O */
4196 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4197 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4198
4199 if (enable_shadow_vmcs) {
4200 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4201 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4202 }
4203 if (cpu_has_vmx_msr_bitmap())
4204 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4205
4206 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4207
4208 /* Control */
4209 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4210
4211 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4212
4213 if (cpu_has_secondary_exec_ctrls()) {
4214 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4215 vmx_secondary_exec_control(vmx));
4216 }
4217
4218 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4219 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4220 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4221 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4222 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4223
4224 vmcs_write16(GUEST_INTR_STATUS, 0);
4225
4226 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4227 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4228 }
4229
4230 if (ple_gap) {
4231 vmcs_write32(PLE_GAP, ple_gap);
4232 vmcs_write32(PLE_WINDOW, ple_window);
4233 }
4234
4235 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4236 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4237 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4238
4239 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4240 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4241 vmx_set_constant_host_state(vmx);
4242 #ifdef CONFIG_X86_64
4243 rdmsrl(MSR_FS_BASE, a);
4244 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4245 rdmsrl(MSR_GS_BASE, a);
4246 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4247 #else
4248 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4249 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4250 #endif
4251
4252 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4253 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4254 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4255 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4256 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4257
4258 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4259 u32 msr_low, msr_high;
4260 u64 host_pat;
4261 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4262 host_pat = msr_low | ((u64) msr_high << 32);
4263 /* Write the default value follow host pat */
4264 vmcs_write64(GUEST_IA32_PAT, host_pat);
4265 /* Keep arch.pat sync with GUEST_IA32_PAT */
4266 vmx->vcpu.arch.pat = host_pat;
4267 }
4268
4269 for (i = 0; i < NR_VMX_MSR; ++i) {
4270 u32 index = vmx_msr_index[i];
4271 u32 data_low, data_high;
4272 int j = vmx->nmsrs;
4273
4274 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4275 continue;
4276 if (wrmsr_safe(index, data_low, data_high) < 0)
4277 continue;
4278 vmx->guest_msrs[j].index = i;
4279 vmx->guest_msrs[j].data = 0;
4280 vmx->guest_msrs[j].mask = -1ull;
4281 ++vmx->nmsrs;
4282 }
4283
4284 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4285
4286 /* 22.2.1, 20.8.1 */
4287 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4288
4289 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4290 set_cr4_guest_host_mask(vmx);
4291
4292 return 0;
4293 }
4294
4295 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4296 {
4297 struct vcpu_vmx *vmx = to_vmx(vcpu);
4298 u64 msr;
4299
4300 vmx->rmode.vm86_active = 0;
4301
4302 vmx->soft_vnmi_blocked = 0;
4303
4304 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4305 kvm_set_cr8(&vmx->vcpu, 0);
4306 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4307 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4308 msr |= MSR_IA32_APICBASE_BSP;
4309 kvm_set_apic_base(&vmx->vcpu, msr);
4310
4311 vmx_segment_cache_clear(vmx);
4312
4313 seg_setup(VCPU_SREG_CS);
4314 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4315 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4316
4317 seg_setup(VCPU_SREG_DS);
4318 seg_setup(VCPU_SREG_ES);
4319 seg_setup(VCPU_SREG_FS);
4320 seg_setup(VCPU_SREG_GS);
4321 seg_setup(VCPU_SREG_SS);
4322
4323 vmcs_write16(GUEST_TR_SELECTOR, 0);
4324 vmcs_writel(GUEST_TR_BASE, 0);
4325 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4326 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4327
4328 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4329 vmcs_writel(GUEST_LDTR_BASE, 0);
4330 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4331 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4332
4333 vmcs_write32(GUEST_SYSENTER_CS, 0);
4334 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4335 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4336
4337 vmcs_writel(GUEST_RFLAGS, 0x02);
4338 kvm_rip_write(vcpu, 0xfff0);
4339
4340 vmcs_writel(GUEST_GDTR_BASE, 0);
4341 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4342
4343 vmcs_writel(GUEST_IDTR_BASE, 0);
4344 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4345
4346 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4347 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4348 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4349
4350 /* Special registers */
4351 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4352
4353 setup_msrs(vmx);
4354
4355 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4356
4357 if (cpu_has_vmx_tpr_shadow()) {
4358 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4359 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4360 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4361 __pa(vmx->vcpu.arch.apic->regs));
4362 vmcs_write32(TPR_THRESHOLD, 0);
4363 }
4364
4365 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4366 vmcs_write64(APIC_ACCESS_ADDR,
4367 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4368
4369 if (vmx_vm_has_apicv(vcpu->kvm))
4370 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4371
4372 if (vmx->vpid != 0)
4373 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4374
4375 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4376 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4377 vmx_set_cr4(&vmx->vcpu, 0);
4378 vmx_set_efer(&vmx->vcpu, 0);
4379 vmx_fpu_activate(&vmx->vcpu);
4380 update_exception_bitmap(&vmx->vcpu);
4381
4382 vpid_sync_context(vmx);
4383 }
4384
4385 /*
4386 * In nested virtualization, check if L1 asked to exit on external interrupts.
4387 * For most existing hypervisors, this will always return true.
4388 */
4389 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4390 {
4391 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4392 PIN_BASED_EXT_INTR_MASK;
4393 }
4394
4395 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4396 {
4397 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4398 PIN_BASED_NMI_EXITING;
4399 }
4400
4401 static int enable_irq_window(struct kvm_vcpu *vcpu)
4402 {
4403 u32 cpu_based_vm_exec_control;
4404
4405 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4406 /*
4407 * We get here if vmx_interrupt_allowed() said we can't
4408 * inject to L1 now because L2 must run. The caller will have
4409 * to make L2 exit right after entry, so we can inject to L1
4410 * more promptly.
4411 */
4412 return -EBUSY;
4413
4414 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4415 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4416 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4417 return 0;
4418 }
4419
4420 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4421 {
4422 u32 cpu_based_vm_exec_control;
4423
4424 if (!cpu_has_virtual_nmis())
4425 return enable_irq_window(vcpu);
4426
4427 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4428 return enable_irq_window(vcpu);
4429
4430 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4431 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4432 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4433 return 0;
4434 }
4435
4436 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4437 {
4438 struct vcpu_vmx *vmx = to_vmx(vcpu);
4439 uint32_t intr;
4440 int irq = vcpu->arch.interrupt.nr;
4441
4442 trace_kvm_inj_virq(irq);
4443
4444 ++vcpu->stat.irq_injections;
4445 if (vmx->rmode.vm86_active) {
4446 int inc_eip = 0;
4447 if (vcpu->arch.interrupt.soft)
4448 inc_eip = vcpu->arch.event_exit_inst_len;
4449 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4450 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4451 return;
4452 }
4453 intr = irq | INTR_INFO_VALID_MASK;
4454 if (vcpu->arch.interrupt.soft) {
4455 intr |= INTR_TYPE_SOFT_INTR;
4456 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4457 vmx->vcpu.arch.event_exit_inst_len);
4458 } else
4459 intr |= INTR_TYPE_EXT_INTR;
4460 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4461 }
4462
4463 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4464 {
4465 struct vcpu_vmx *vmx = to_vmx(vcpu);
4466
4467 if (is_guest_mode(vcpu))
4468 return;
4469
4470 if (!cpu_has_virtual_nmis()) {
4471 /*
4472 * Tracking the NMI-blocked state in software is built upon
4473 * finding the next open IRQ window. This, in turn, depends on
4474 * well-behaving guests: They have to keep IRQs disabled at
4475 * least as long as the NMI handler runs. Otherwise we may
4476 * cause NMI nesting, maybe breaking the guest. But as this is
4477 * highly unlikely, we can live with the residual risk.
4478 */
4479 vmx->soft_vnmi_blocked = 1;
4480 vmx->vnmi_blocked_time = 0;
4481 }
4482
4483 ++vcpu->stat.nmi_injections;
4484 vmx->nmi_known_unmasked = false;
4485 if (vmx->rmode.vm86_active) {
4486 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4487 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4488 return;
4489 }
4490 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4491 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4492 }
4493
4494 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4495 {
4496 if (!cpu_has_virtual_nmis())
4497 return to_vmx(vcpu)->soft_vnmi_blocked;
4498 if (to_vmx(vcpu)->nmi_known_unmasked)
4499 return false;
4500 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4501 }
4502
4503 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4504 {
4505 struct vcpu_vmx *vmx = to_vmx(vcpu);
4506
4507 if (!cpu_has_virtual_nmis()) {
4508 if (vmx->soft_vnmi_blocked != masked) {
4509 vmx->soft_vnmi_blocked = masked;
4510 vmx->vnmi_blocked_time = 0;
4511 }
4512 } else {
4513 vmx->nmi_known_unmasked = !masked;
4514 if (masked)
4515 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4516 GUEST_INTR_STATE_NMI);
4517 else
4518 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4519 GUEST_INTR_STATE_NMI);
4520 }
4521 }
4522
4523 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4524 {
4525 if (is_guest_mode(vcpu)) {
4526 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4527
4528 if (to_vmx(vcpu)->nested.nested_run_pending)
4529 return 0;
4530 if (nested_exit_on_nmi(vcpu)) {
4531 nested_vmx_vmexit(vcpu);
4532 vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4533 vmcs12->vm_exit_intr_info = NMI_VECTOR |
4534 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4535 /*
4536 * The NMI-triggered VM exit counts as injection:
4537 * clear this one and block further NMIs.
4538 */
4539 vcpu->arch.nmi_pending = 0;
4540 vmx_set_nmi_mask(vcpu, true);
4541 return 0;
4542 }
4543 }
4544
4545 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4546 return 0;
4547
4548 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4549 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4550 | GUEST_INTR_STATE_NMI));
4551 }
4552
4553 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4554 {
4555 if (is_guest_mode(vcpu)) {
4556 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4557
4558 if (to_vmx(vcpu)->nested.nested_run_pending)
4559 return 0;
4560 if (nested_exit_on_intr(vcpu)) {
4561 nested_vmx_vmexit(vcpu);
4562 vmcs12->vm_exit_reason =
4563 EXIT_REASON_EXTERNAL_INTERRUPT;
4564 vmcs12->vm_exit_intr_info = 0;
4565 /*
4566 * fall through to normal code, but now in L1, not L2
4567 */
4568 }
4569 }
4570
4571 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4572 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4573 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4574 }
4575
4576 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4577 {
4578 int ret;
4579 struct kvm_userspace_memory_region tss_mem = {
4580 .slot = TSS_PRIVATE_MEMSLOT,
4581 .guest_phys_addr = addr,
4582 .memory_size = PAGE_SIZE * 3,
4583 .flags = 0,
4584 };
4585
4586 ret = kvm_set_memory_region(kvm, &tss_mem);
4587 if (ret)
4588 return ret;
4589 kvm->arch.tss_addr = addr;
4590 if (!init_rmode_tss(kvm))
4591 return -ENOMEM;
4592
4593 return 0;
4594 }
4595
4596 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4597 {
4598 switch (vec) {
4599 case BP_VECTOR:
4600 /*
4601 * Update instruction length as we may reinject the exception
4602 * from user space while in guest debugging mode.
4603 */
4604 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4605 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4606 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4607 return false;
4608 /* fall through */
4609 case DB_VECTOR:
4610 if (vcpu->guest_debug &
4611 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4612 return false;
4613 /* fall through */
4614 case DE_VECTOR:
4615 case OF_VECTOR:
4616 case BR_VECTOR:
4617 case UD_VECTOR:
4618 case DF_VECTOR:
4619 case SS_VECTOR:
4620 case GP_VECTOR:
4621 case MF_VECTOR:
4622 return true;
4623 break;
4624 }
4625 return false;
4626 }
4627
4628 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4629 int vec, u32 err_code)
4630 {
4631 /*
4632 * Instruction with address size override prefix opcode 0x67
4633 * Cause the #SS fault with 0 error code in VM86 mode.
4634 */
4635 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4636 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4637 if (vcpu->arch.halt_request) {
4638 vcpu->arch.halt_request = 0;
4639 return kvm_emulate_halt(vcpu);
4640 }
4641 return 1;
4642 }
4643 return 0;
4644 }
4645
4646 /*
4647 * Forward all other exceptions that are valid in real mode.
4648 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4649 * the required debugging infrastructure rework.
4650 */
4651 kvm_queue_exception(vcpu, vec);
4652 return 1;
4653 }
4654
4655 /*
4656 * Trigger machine check on the host. We assume all the MSRs are already set up
4657 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4658 * We pass a fake environment to the machine check handler because we want
4659 * the guest to be always treated like user space, no matter what context
4660 * it used internally.
4661 */
4662 static void kvm_machine_check(void)
4663 {
4664 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4665 struct pt_regs regs = {
4666 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4667 .flags = X86_EFLAGS_IF,
4668 };
4669
4670 do_machine_check(&regs, 0);
4671 #endif
4672 }
4673
4674 static int handle_machine_check(struct kvm_vcpu *vcpu)
4675 {
4676 /* already handled by vcpu_run */
4677 return 1;
4678 }
4679
4680 static int handle_exception(struct kvm_vcpu *vcpu)
4681 {
4682 struct vcpu_vmx *vmx = to_vmx(vcpu);
4683 struct kvm_run *kvm_run = vcpu->run;
4684 u32 intr_info, ex_no, error_code;
4685 unsigned long cr2, rip, dr6;
4686 u32 vect_info;
4687 enum emulation_result er;
4688
4689 vect_info = vmx->idt_vectoring_info;
4690 intr_info = vmx->exit_intr_info;
4691
4692 if (is_machine_check(intr_info))
4693 return handle_machine_check(vcpu);
4694
4695 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4696 return 1; /* already handled by vmx_vcpu_run() */
4697
4698 if (is_no_device(intr_info)) {
4699 vmx_fpu_activate(vcpu);
4700 return 1;
4701 }
4702
4703 if (is_invalid_opcode(intr_info)) {
4704 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4705 if (er != EMULATE_DONE)
4706 kvm_queue_exception(vcpu, UD_VECTOR);
4707 return 1;
4708 }
4709
4710 error_code = 0;
4711 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4712 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4713
4714 /*
4715 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4716 * MMIO, it is better to report an internal error.
4717 * See the comments in vmx_handle_exit.
4718 */
4719 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4720 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4721 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4722 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4723 vcpu->run->internal.ndata = 2;
4724 vcpu->run->internal.data[0] = vect_info;
4725 vcpu->run->internal.data[1] = intr_info;
4726 return 0;
4727 }
4728
4729 if (is_page_fault(intr_info)) {
4730 /* EPT won't cause page fault directly */
4731 BUG_ON(enable_ept);
4732 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4733 trace_kvm_page_fault(cr2, error_code);
4734
4735 if (kvm_event_needs_reinjection(vcpu))
4736 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4737 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4738 }
4739
4740 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4741
4742 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4743 return handle_rmode_exception(vcpu, ex_no, error_code);
4744
4745 switch (ex_no) {
4746 case DB_VECTOR:
4747 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4748 if (!(vcpu->guest_debug &
4749 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4750 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4751 kvm_queue_exception(vcpu, DB_VECTOR);
4752 return 1;
4753 }
4754 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4755 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4756 /* fall through */
4757 case BP_VECTOR:
4758 /*
4759 * Update instruction length as we may reinject #BP from
4760 * user space while in guest debugging mode. Reading it for
4761 * #DB as well causes no harm, it is not used in that case.
4762 */
4763 vmx->vcpu.arch.event_exit_inst_len =
4764 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4765 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4766 rip = kvm_rip_read(vcpu);
4767 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4768 kvm_run->debug.arch.exception = ex_no;
4769 break;
4770 default:
4771 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4772 kvm_run->ex.exception = ex_no;
4773 kvm_run->ex.error_code = error_code;
4774 break;
4775 }
4776 return 0;
4777 }
4778
4779 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4780 {
4781 ++vcpu->stat.irq_exits;
4782 return 1;
4783 }
4784
4785 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4786 {
4787 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4788 return 0;
4789 }
4790
4791 static int handle_io(struct kvm_vcpu *vcpu)
4792 {
4793 unsigned long exit_qualification;
4794 int size, in, string;
4795 unsigned port;
4796
4797 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4798 string = (exit_qualification & 16) != 0;
4799 in = (exit_qualification & 8) != 0;
4800
4801 ++vcpu->stat.io_exits;
4802
4803 if (string || in)
4804 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4805
4806 port = exit_qualification >> 16;
4807 size = (exit_qualification & 7) + 1;
4808 skip_emulated_instruction(vcpu);
4809
4810 return kvm_fast_pio_out(vcpu, size, port);
4811 }
4812
4813 static void
4814 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4815 {
4816 /*
4817 * Patch in the VMCALL instruction:
4818 */
4819 hypercall[0] = 0x0f;
4820 hypercall[1] = 0x01;
4821 hypercall[2] = 0xc1;
4822 }
4823
4824 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4825 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4826 {
4827 if (is_guest_mode(vcpu)) {
4828 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4829 unsigned long orig_val = val;
4830
4831 /*
4832 * We get here when L2 changed cr0 in a way that did not change
4833 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4834 * but did change L0 shadowed bits. So we first calculate the
4835 * effective cr0 value that L1 would like to write into the
4836 * hardware. It consists of the L2-owned bits from the new
4837 * value combined with the L1-owned bits from L1's guest_cr0.
4838 */
4839 val = (val & ~vmcs12->cr0_guest_host_mask) |
4840 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4841
4842 /* TODO: will have to take unrestricted guest mode into
4843 * account */
4844 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4845 return 1;
4846
4847 if (kvm_set_cr0(vcpu, val))
4848 return 1;
4849 vmcs_writel(CR0_READ_SHADOW, orig_val);
4850 return 0;
4851 } else {
4852 if (to_vmx(vcpu)->nested.vmxon &&
4853 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4854 return 1;
4855 return kvm_set_cr0(vcpu, val);
4856 }
4857 }
4858
4859 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4860 {
4861 if (is_guest_mode(vcpu)) {
4862 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4863 unsigned long orig_val = val;
4864
4865 /* analogously to handle_set_cr0 */
4866 val = (val & ~vmcs12->cr4_guest_host_mask) |
4867 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4868 if (kvm_set_cr4(vcpu, val))
4869 return 1;
4870 vmcs_writel(CR4_READ_SHADOW, orig_val);
4871 return 0;
4872 } else
4873 return kvm_set_cr4(vcpu, val);
4874 }
4875
4876 /* called to set cr0 as approriate for clts instruction exit. */
4877 static void handle_clts(struct kvm_vcpu *vcpu)
4878 {
4879 if (is_guest_mode(vcpu)) {
4880 /*
4881 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4882 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4883 * just pretend it's off (also in arch.cr0 for fpu_activate).
4884 */
4885 vmcs_writel(CR0_READ_SHADOW,
4886 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4887 vcpu->arch.cr0 &= ~X86_CR0_TS;
4888 } else
4889 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4890 }
4891
4892 static int handle_cr(struct kvm_vcpu *vcpu)
4893 {
4894 unsigned long exit_qualification, val;
4895 int cr;
4896 int reg;
4897 int err;
4898
4899 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4900 cr = exit_qualification & 15;
4901 reg = (exit_qualification >> 8) & 15;
4902 switch ((exit_qualification >> 4) & 3) {
4903 case 0: /* mov to cr */
4904 val = kvm_register_read(vcpu, reg);
4905 trace_kvm_cr_write(cr, val);
4906 switch (cr) {
4907 case 0:
4908 err = handle_set_cr0(vcpu, val);
4909 kvm_complete_insn_gp(vcpu, err);
4910 return 1;
4911 case 3:
4912 err = kvm_set_cr3(vcpu, val);
4913 kvm_complete_insn_gp(vcpu, err);
4914 return 1;
4915 case 4:
4916 err = handle_set_cr4(vcpu, val);
4917 kvm_complete_insn_gp(vcpu, err);
4918 return 1;
4919 case 8: {
4920 u8 cr8_prev = kvm_get_cr8(vcpu);
4921 u8 cr8 = kvm_register_read(vcpu, reg);
4922 err = kvm_set_cr8(vcpu, cr8);
4923 kvm_complete_insn_gp(vcpu, err);
4924 if (irqchip_in_kernel(vcpu->kvm))
4925 return 1;
4926 if (cr8_prev <= cr8)
4927 return 1;
4928 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4929 return 0;
4930 }
4931 }
4932 break;
4933 case 2: /* clts */
4934 handle_clts(vcpu);
4935 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4936 skip_emulated_instruction(vcpu);
4937 vmx_fpu_activate(vcpu);
4938 return 1;
4939 case 1: /*mov from cr*/
4940 switch (cr) {
4941 case 3:
4942 val = kvm_read_cr3(vcpu);
4943 kvm_register_write(vcpu, reg, val);
4944 trace_kvm_cr_read(cr, val);
4945 skip_emulated_instruction(vcpu);
4946 return 1;
4947 case 8:
4948 val = kvm_get_cr8(vcpu);
4949 kvm_register_write(vcpu, reg, val);
4950 trace_kvm_cr_read(cr, val);
4951 skip_emulated_instruction(vcpu);
4952 return 1;
4953 }
4954 break;
4955 case 3: /* lmsw */
4956 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4957 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4958 kvm_lmsw(vcpu, val);
4959
4960 skip_emulated_instruction(vcpu);
4961 return 1;
4962 default:
4963 break;
4964 }
4965 vcpu->run->exit_reason = 0;
4966 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4967 (int)(exit_qualification >> 4) & 3, cr);
4968 return 0;
4969 }
4970
4971 static int handle_dr(struct kvm_vcpu *vcpu)
4972 {
4973 unsigned long exit_qualification;
4974 int dr, reg;
4975
4976 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4977 if (!kvm_require_cpl(vcpu, 0))
4978 return 1;
4979 dr = vmcs_readl(GUEST_DR7);
4980 if (dr & DR7_GD) {
4981 /*
4982 * As the vm-exit takes precedence over the debug trap, we
4983 * need to emulate the latter, either for the host or the
4984 * guest debugging itself.
4985 */
4986 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4987 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4988 vcpu->run->debug.arch.dr7 = dr;
4989 vcpu->run->debug.arch.pc =
4990 vmcs_readl(GUEST_CS_BASE) +
4991 vmcs_readl(GUEST_RIP);
4992 vcpu->run->debug.arch.exception = DB_VECTOR;
4993 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4994 return 0;
4995 } else {
4996 vcpu->arch.dr7 &= ~DR7_GD;
4997 vcpu->arch.dr6 |= DR6_BD;
4998 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4999 kvm_queue_exception(vcpu, DB_VECTOR);
5000 return 1;
5001 }
5002 }
5003
5004 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5005 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5006 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5007 if (exit_qualification & TYPE_MOV_FROM_DR) {
5008 unsigned long val;
5009 if (!kvm_get_dr(vcpu, dr, &val))
5010 kvm_register_write(vcpu, reg, val);
5011 } else
5012 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5013 skip_emulated_instruction(vcpu);
5014 return 1;
5015 }
5016
5017 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5018 {
5019 vmcs_writel(GUEST_DR7, val);
5020 }
5021
5022 static int handle_cpuid(struct kvm_vcpu *vcpu)
5023 {
5024 kvm_emulate_cpuid(vcpu);
5025 return 1;
5026 }
5027
5028 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5029 {
5030 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5031 u64 data;
5032
5033 if (vmx_get_msr(vcpu, ecx, &data)) {
5034 trace_kvm_msr_read_ex(ecx);
5035 kvm_inject_gp(vcpu, 0);
5036 return 1;
5037 }
5038
5039 trace_kvm_msr_read(ecx, data);
5040
5041 /* FIXME: handling of bits 32:63 of rax, rdx */
5042 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5043 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5044 skip_emulated_instruction(vcpu);
5045 return 1;
5046 }
5047
5048 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5049 {
5050 struct msr_data msr;
5051 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5052 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5053 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5054
5055 msr.data = data;
5056 msr.index = ecx;
5057 msr.host_initiated = false;
5058 if (vmx_set_msr(vcpu, &msr) != 0) {
5059 trace_kvm_msr_write_ex(ecx, data);
5060 kvm_inject_gp(vcpu, 0);
5061 return 1;
5062 }
5063
5064 trace_kvm_msr_write(ecx, data);
5065 skip_emulated_instruction(vcpu);
5066 return 1;
5067 }
5068
5069 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5070 {
5071 kvm_make_request(KVM_REQ_EVENT, vcpu);
5072 return 1;
5073 }
5074
5075 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5076 {
5077 u32 cpu_based_vm_exec_control;
5078
5079 /* clear pending irq */
5080 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5081 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5082 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5083
5084 kvm_make_request(KVM_REQ_EVENT, vcpu);
5085
5086 ++vcpu->stat.irq_window_exits;
5087
5088 /*
5089 * If the user space waits to inject interrupts, exit as soon as
5090 * possible
5091 */
5092 if (!irqchip_in_kernel(vcpu->kvm) &&
5093 vcpu->run->request_interrupt_window &&
5094 !kvm_cpu_has_interrupt(vcpu)) {
5095 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5096 return 0;
5097 }
5098 return 1;
5099 }
5100
5101 static int handle_halt(struct kvm_vcpu *vcpu)
5102 {
5103 skip_emulated_instruction(vcpu);
5104 return kvm_emulate_halt(vcpu);
5105 }
5106
5107 static int handle_vmcall(struct kvm_vcpu *vcpu)
5108 {
5109 skip_emulated_instruction(vcpu);
5110 kvm_emulate_hypercall(vcpu);
5111 return 1;
5112 }
5113
5114 static int handle_invd(struct kvm_vcpu *vcpu)
5115 {
5116 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5117 }
5118
5119 static int handle_invlpg(struct kvm_vcpu *vcpu)
5120 {
5121 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5122
5123 kvm_mmu_invlpg(vcpu, exit_qualification);
5124 skip_emulated_instruction(vcpu);
5125 return 1;
5126 }
5127
5128 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5129 {
5130 int err;
5131
5132 err = kvm_rdpmc(vcpu);
5133 kvm_complete_insn_gp(vcpu, err);
5134
5135 return 1;
5136 }
5137
5138 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5139 {
5140 skip_emulated_instruction(vcpu);
5141 kvm_emulate_wbinvd(vcpu);
5142 return 1;
5143 }
5144
5145 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5146 {
5147 u64 new_bv = kvm_read_edx_eax(vcpu);
5148 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5149
5150 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5151 skip_emulated_instruction(vcpu);
5152 return 1;
5153 }
5154
5155 static int handle_apic_access(struct kvm_vcpu *vcpu)
5156 {
5157 if (likely(fasteoi)) {
5158 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5159 int access_type, offset;
5160
5161 access_type = exit_qualification & APIC_ACCESS_TYPE;
5162 offset = exit_qualification & APIC_ACCESS_OFFSET;
5163 /*
5164 * Sane guest uses MOV to write EOI, with written value
5165 * not cared. So make a short-circuit here by avoiding
5166 * heavy instruction emulation.
5167 */
5168 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5169 (offset == APIC_EOI)) {
5170 kvm_lapic_set_eoi(vcpu);
5171 skip_emulated_instruction(vcpu);
5172 return 1;
5173 }
5174 }
5175 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5176 }
5177
5178 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5179 {
5180 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5181 int vector = exit_qualification & 0xff;
5182
5183 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5184 kvm_apic_set_eoi_accelerated(vcpu, vector);
5185 return 1;
5186 }
5187
5188 static int handle_apic_write(struct kvm_vcpu *vcpu)
5189 {
5190 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5191 u32 offset = exit_qualification & 0xfff;
5192
5193 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5194 kvm_apic_write_nodecode(vcpu, offset);
5195 return 1;
5196 }
5197
5198 static int handle_task_switch(struct kvm_vcpu *vcpu)
5199 {
5200 struct vcpu_vmx *vmx = to_vmx(vcpu);
5201 unsigned long exit_qualification;
5202 bool has_error_code = false;
5203 u32 error_code = 0;
5204 u16 tss_selector;
5205 int reason, type, idt_v, idt_index;
5206
5207 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5208 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5209 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5210
5211 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5212
5213 reason = (u32)exit_qualification >> 30;
5214 if (reason == TASK_SWITCH_GATE && idt_v) {
5215 switch (type) {
5216 case INTR_TYPE_NMI_INTR:
5217 vcpu->arch.nmi_injected = false;
5218 vmx_set_nmi_mask(vcpu, true);
5219 break;
5220 case INTR_TYPE_EXT_INTR:
5221 case INTR_TYPE_SOFT_INTR:
5222 kvm_clear_interrupt_queue(vcpu);
5223 break;
5224 case INTR_TYPE_HARD_EXCEPTION:
5225 if (vmx->idt_vectoring_info &
5226 VECTORING_INFO_DELIVER_CODE_MASK) {
5227 has_error_code = true;
5228 error_code =
5229 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5230 }
5231 /* fall through */
5232 case INTR_TYPE_SOFT_EXCEPTION:
5233 kvm_clear_exception_queue(vcpu);
5234 break;
5235 default:
5236 break;
5237 }
5238 }
5239 tss_selector = exit_qualification;
5240
5241 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5242 type != INTR_TYPE_EXT_INTR &&
5243 type != INTR_TYPE_NMI_INTR))
5244 skip_emulated_instruction(vcpu);
5245
5246 if (kvm_task_switch(vcpu, tss_selector,
5247 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5248 has_error_code, error_code) == EMULATE_FAIL) {
5249 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5250 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5251 vcpu->run->internal.ndata = 0;
5252 return 0;
5253 }
5254
5255 /* clear all local breakpoint enable flags */
5256 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5257
5258 /*
5259 * TODO: What about debug traps on tss switch?
5260 * Are we supposed to inject them and update dr6?
5261 */
5262
5263 return 1;
5264 }
5265
5266 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5267 {
5268 unsigned long exit_qualification;
5269 gpa_t gpa;
5270 u32 error_code;
5271 int gla_validity;
5272
5273 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5274
5275 gla_validity = (exit_qualification >> 7) & 0x3;
5276 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5277 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5278 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5279 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5280 vmcs_readl(GUEST_LINEAR_ADDRESS));
5281 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5282 (long unsigned int)exit_qualification);
5283 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5284 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5285 return 0;
5286 }
5287
5288 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5289 trace_kvm_page_fault(gpa, exit_qualification);
5290
5291 /* It is a write fault? */
5292 error_code = exit_qualification & (1U << 1);
5293 /* ept page table is present? */
5294 error_code |= (exit_qualification >> 3) & 0x1;
5295
5296 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5297 }
5298
5299 static u64 ept_rsvd_mask(u64 spte, int level)
5300 {
5301 int i;
5302 u64 mask = 0;
5303
5304 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5305 mask |= (1ULL << i);
5306
5307 if (level > 2)
5308 /* bits 7:3 reserved */
5309 mask |= 0xf8;
5310 else if (level == 2) {
5311 if (spte & (1ULL << 7))
5312 /* 2MB ref, bits 20:12 reserved */
5313 mask |= 0x1ff000;
5314 else
5315 /* bits 6:3 reserved */
5316 mask |= 0x78;
5317 }
5318
5319 return mask;
5320 }
5321
5322 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5323 int level)
5324 {
5325 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5326
5327 /* 010b (write-only) */
5328 WARN_ON((spte & 0x7) == 0x2);
5329
5330 /* 110b (write/execute) */
5331 WARN_ON((spte & 0x7) == 0x6);
5332
5333 /* 100b (execute-only) and value not supported by logical processor */
5334 if (!cpu_has_vmx_ept_execute_only())
5335 WARN_ON((spte & 0x7) == 0x4);
5336
5337 /* not 000b */
5338 if ((spte & 0x7)) {
5339 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5340
5341 if (rsvd_bits != 0) {
5342 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5343 __func__, rsvd_bits);
5344 WARN_ON(1);
5345 }
5346
5347 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5348 u64 ept_mem_type = (spte & 0x38) >> 3;
5349
5350 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5351 ept_mem_type == 7) {
5352 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5353 __func__, ept_mem_type);
5354 WARN_ON(1);
5355 }
5356 }
5357 }
5358 }
5359
5360 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5361 {
5362 u64 sptes[4];
5363 int nr_sptes, i, ret;
5364 gpa_t gpa;
5365
5366 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5367
5368 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5369 if (likely(ret == 1))
5370 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5371 EMULATE_DONE;
5372 if (unlikely(!ret))
5373 return 1;
5374
5375 /* It is the real ept misconfig */
5376 printk(KERN_ERR "EPT: Misconfiguration.\n");
5377 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5378
5379 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5380
5381 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5382 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5383
5384 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5385 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5386
5387 return 0;
5388 }
5389
5390 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5391 {
5392 u32 cpu_based_vm_exec_control;
5393
5394 /* clear pending NMI */
5395 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5396 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5397 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5398 ++vcpu->stat.nmi_window_exits;
5399 kvm_make_request(KVM_REQ_EVENT, vcpu);
5400
5401 return 1;
5402 }
5403
5404 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5405 {
5406 struct vcpu_vmx *vmx = to_vmx(vcpu);
5407 enum emulation_result err = EMULATE_DONE;
5408 int ret = 1;
5409 u32 cpu_exec_ctrl;
5410 bool intr_window_requested;
5411 unsigned count = 130;
5412
5413 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5414 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5415
5416 while (!guest_state_valid(vcpu) && count-- != 0) {
5417 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5418 return handle_interrupt_window(&vmx->vcpu);
5419
5420 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5421 return 1;
5422
5423 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5424
5425 if (err == EMULATE_DO_MMIO) {
5426 ret = 0;
5427 goto out;
5428 }
5429
5430 if (err != EMULATE_DONE) {
5431 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5432 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5433 vcpu->run->internal.ndata = 0;
5434 return 0;
5435 }
5436
5437 if (signal_pending(current))
5438 goto out;
5439 if (need_resched())
5440 schedule();
5441 }
5442
5443 vmx->emulation_required = emulation_required(vcpu);
5444 out:
5445 return ret;
5446 }
5447
5448 /*
5449 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5450 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5451 */
5452 static int handle_pause(struct kvm_vcpu *vcpu)
5453 {
5454 skip_emulated_instruction(vcpu);
5455 kvm_vcpu_on_spin(vcpu);
5456
5457 return 1;
5458 }
5459
5460 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5461 {
5462 kvm_queue_exception(vcpu, UD_VECTOR);
5463 return 1;
5464 }
5465
5466 /*
5467 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5468 * We could reuse a single VMCS for all the L2 guests, but we also want the
5469 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5470 * allows keeping them loaded on the processor, and in the future will allow
5471 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5472 * every entry if they never change.
5473 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5474 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5475 *
5476 * The following functions allocate and free a vmcs02 in this pool.
5477 */
5478
5479 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5480 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5481 {
5482 struct vmcs02_list *item;
5483 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5484 if (item->vmptr == vmx->nested.current_vmptr) {
5485 list_move(&item->list, &vmx->nested.vmcs02_pool);
5486 return &item->vmcs02;
5487 }
5488
5489 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5490 /* Recycle the least recently used VMCS. */
5491 item = list_entry(vmx->nested.vmcs02_pool.prev,
5492 struct vmcs02_list, list);
5493 item->vmptr = vmx->nested.current_vmptr;
5494 list_move(&item->list, &vmx->nested.vmcs02_pool);
5495 return &item->vmcs02;
5496 }
5497
5498 /* Create a new VMCS */
5499 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5500 if (!item)
5501 return NULL;
5502 item->vmcs02.vmcs = alloc_vmcs();
5503 if (!item->vmcs02.vmcs) {
5504 kfree(item);
5505 return NULL;
5506 }
5507 loaded_vmcs_init(&item->vmcs02);
5508 item->vmptr = vmx->nested.current_vmptr;
5509 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5510 vmx->nested.vmcs02_num++;
5511 return &item->vmcs02;
5512 }
5513
5514 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5515 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5516 {
5517 struct vmcs02_list *item;
5518 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5519 if (item->vmptr == vmptr) {
5520 free_loaded_vmcs(&item->vmcs02);
5521 list_del(&item->list);
5522 kfree(item);
5523 vmx->nested.vmcs02_num--;
5524 return;
5525 }
5526 }
5527
5528 /*
5529 * Free all VMCSs saved for this vcpu, except the one pointed by
5530 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5531 * currently used, if running L2), and vmcs01 when running L2.
5532 */
5533 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5534 {
5535 struct vmcs02_list *item, *n;
5536 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5537 if (vmx->loaded_vmcs != &item->vmcs02)
5538 free_loaded_vmcs(&item->vmcs02);
5539 list_del(&item->list);
5540 kfree(item);
5541 }
5542 vmx->nested.vmcs02_num = 0;
5543
5544 if (vmx->loaded_vmcs != &vmx->vmcs01)
5545 free_loaded_vmcs(&vmx->vmcs01);
5546 }
5547
5548 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5549 u32 vm_instruction_error);
5550
5551 /*
5552 * Emulate the VMXON instruction.
5553 * Currently, we just remember that VMX is active, and do not save or even
5554 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5555 * do not currently need to store anything in that guest-allocated memory
5556 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5557 * argument is different from the VMXON pointer (which the spec says they do).
5558 */
5559 static int handle_vmon(struct kvm_vcpu *vcpu)
5560 {
5561 struct kvm_segment cs;
5562 struct vcpu_vmx *vmx = to_vmx(vcpu);
5563 struct vmcs *shadow_vmcs;
5564
5565 /* The Intel VMX Instruction Reference lists a bunch of bits that
5566 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5567 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5568 * Otherwise, we should fail with #UD. We test these now:
5569 */
5570 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5571 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5572 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5573 kvm_queue_exception(vcpu, UD_VECTOR);
5574 return 1;
5575 }
5576
5577 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5578 if (is_long_mode(vcpu) && !cs.l) {
5579 kvm_queue_exception(vcpu, UD_VECTOR);
5580 return 1;
5581 }
5582
5583 if (vmx_get_cpl(vcpu)) {
5584 kvm_inject_gp(vcpu, 0);
5585 return 1;
5586 }
5587 if (vmx->nested.vmxon) {
5588 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5589 skip_emulated_instruction(vcpu);
5590 return 1;
5591 }
5592 if (enable_shadow_vmcs) {
5593 shadow_vmcs = alloc_vmcs();
5594 if (!shadow_vmcs)
5595 return -ENOMEM;
5596 /* mark vmcs as shadow */
5597 shadow_vmcs->revision_id |= (1u << 31);
5598 /* init shadow vmcs */
5599 vmcs_clear(shadow_vmcs);
5600 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5601 }
5602
5603 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5604 vmx->nested.vmcs02_num = 0;
5605
5606 vmx->nested.vmxon = true;
5607
5608 skip_emulated_instruction(vcpu);
5609 return 1;
5610 }
5611
5612 /*
5613 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5614 * for running VMX instructions (except VMXON, whose prerequisites are
5615 * slightly different). It also specifies what exception to inject otherwise.
5616 */
5617 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5618 {
5619 struct kvm_segment cs;
5620 struct vcpu_vmx *vmx = to_vmx(vcpu);
5621
5622 if (!vmx->nested.vmxon) {
5623 kvm_queue_exception(vcpu, UD_VECTOR);
5624 return 0;
5625 }
5626
5627 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5628 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5629 (is_long_mode(vcpu) && !cs.l)) {
5630 kvm_queue_exception(vcpu, UD_VECTOR);
5631 return 0;
5632 }
5633
5634 if (vmx_get_cpl(vcpu)) {
5635 kvm_inject_gp(vcpu, 0);
5636 return 0;
5637 }
5638
5639 return 1;
5640 }
5641
5642 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5643 {
5644 u32 exec_control;
5645 if (enable_shadow_vmcs) {
5646 if (vmx->nested.current_vmcs12 != NULL) {
5647 /* copy to memory all shadowed fields in case
5648 they were modified */
5649 copy_shadow_to_vmcs12(vmx);
5650 vmx->nested.sync_shadow_vmcs = false;
5651 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5652 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5653 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5654 vmcs_write64(VMCS_LINK_POINTER, -1ull);
5655 }
5656 }
5657 kunmap(vmx->nested.current_vmcs12_page);
5658 nested_release_page(vmx->nested.current_vmcs12_page);
5659 }
5660
5661 /*
5662 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5663 * just stops using VMX.
5664 */
5665 static void free_nested(struct vcpu_vmx *vmx)
5666 {
5667 if (!vmx->nested.vmxon)
5668 return;
5669 vmx->nested.vmxon = false;
5670 if (vmx->nested.current_vmptr != -1ull) {
5671 nested_release_vmcs12(vmx);
5672 vmx->nested.current_vmptr = -1ull;
5673 vmx->nested.current_vmcs12 = NULL;
5674 }
5675 if (enable_shadow_vmcs)
5676 free_vmcs(vmx->nested.current_shadow_vmcs);
5677 /* Unpin physical memory we referred to in current vmcs02 */
5678 if (vmx->nested.apic_access_page) {
5679 nested_release_page(vmx->nested.apic_access_page);
5680 vmx->nested.apic_access_page = 0;
5681 }
5682
5683 nested_free_all_saved_vmcss(vmx);
5684 }
5685
5686 /* Emulate the VMXOFF instruction */
5687 static int handle_vmoff(struct kvm_vcpu *vcpu)
5688 {
5689 if (!nested_vmx_check_permission(vcpu))
5690 return 1;
5691 free_nested(to_vmx(vcpu));
5692 skip_emulated_instruction(vcpu);
5693 return 1;
5694 }
5695
5696 /*
5697 * Decode the memory-address operand of a vmx instruction, as recorded on an
5698 * exit caused by such an instruction (run by a guest hypervisor).
5699 * On success, returns 0. When the operand is invalid, returns 1 and throws
5700 * #UD or #GP.
5701 */
5702 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5703 unsigned long exit_qualification,
5704 u32 vmx_instruction_info, gva_t *ret)
5705 {
5706 /*
5707 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5708 * Execution", on an exit, vmx_instruction_info holds most of the
5709 * addressing components of the operand. Only the displacement part
5710 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5711 * For how an actual address is calculated from all these components,
5712 * refer to Vol. 1, "Operand Addressing".
5713 */
5714 int scaling = vmx_instruction_info & 3;
5715 int addr_size = (vmx_instruction_info >> 7) & 7;
5716 bool is_reg = vmx_instruction_info & (1u << 10);
5717 int seg_reg = (vmx_instruction_info >> 15) & 7;
5718 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5719 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5720 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5721 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5722
5723 if (is_reg) {
5724 kvm_queue_exception(vcpu, UD_VECTOR);
5725 return 1;
5726 }
5727
5728 /* Addr = segment_base + offset */
5729 /* offset = base + [index * scale] + displacement */
5730 *ret = vmx_get_segment_base(vcpu, seg_reg);
5731 if (base_is_valid)
5732 *ret += kvm_register_read(vcpu, base_reg);
5733 if (index_is_valid)
5734 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5735 *ret += exit_qualification; /* holds the displacement */
5736
5737 if (addr_size == 1) /* 32 bit */
5738 *ret &= 0xffffffff;
5739
5740 /*
5741 * TODO: throw #GP (and return 1) in various cases that the VM*
5742 * instructions require it - e.g., offset beyond segment limit,
5743 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5744 * address, and so on. Currently these are not checked.
5745 */
5746 return 0;
5747 }
5748
5749 /*
5750 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5751 * set the success or error code of an emulated VMX instruction, as specified
5752 * by Vol 2B, VMX Instruction Reference, "Conventions".
5753 */
5754 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5755 {
5756 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5757 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5758 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5759 }
5760
5761 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5762 {
5763 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5764 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5765 X86_EFLAGS_SF | X86_EFLAGS_OF))
5766 | X86_EFLAGS_CF);
5767 }
5768
5769 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5770 u32 vm_instruction_error)
5771 {
5772 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5773 /*
5774 * failValid writes the error number to the current VMCS, which
5775 * can't be done there isn't a current VMCS.
5776 */
5777 nested_vmx_failInvalid(vcpu);
5778 return;
5779 }
5780 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5781 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5782 X86_EFLAGS_SF | X86_EFLAGS_OF))
5783 | X86_EFLAGS_ZF);
5784 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5785 /*
5786 * We don't need to force a shadow sync because
5787 * VM_INSTRUCTION_ERROR is not shadowed
5788 */
5789 }
5790
5791 /* Emulate the VMCLEAR instruction */
5792 static int handle_vmclear(struct kvm_vcpu *vcpu)
5793 {
5794 struct vcpu_vmx *vmx = to_vmx(vcpu);
5795 gva_t gva;
5796 gpa_t vmptr;
5797 struct vmcs12 *vmcs12;
5798 struct page *page;
5799 struct x86_exception e;
5800
5801 if (!nested_vmx_check_permission(vcpu))
5802 return 1;
5803
5804 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5805 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5806 return 1;
5807
5808 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5809 sizeof(vmptr), &e)) {
5810 kvm_inject_page_fault(vcpu, &e);
5811 return 1;
5812 }
5813
5814 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5815 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5816 skip_emulated_instruction(vcpu);
5817 return 1;
5818 }
5819
5820 if (vmptr == vmx->nested.current_vmptr) {
5821 nested_release_vmcs12(vmx);
5822 vmx->nested.current_vmptr = -1ull;
5823 vmx->nested.current_vmcs12 = NULL;
5824 }
5825
5826 page = nested_get_page(vcpu, vmptr);
5827 if (page == NULL) {
5828 /*
5829 * For accurate processor emulation, VMCLEAR beyond available
5830 * physical memory should do nothing at all. However, it is
5831 * possible that a nested vmx bug, not a guest hypervisor bug,
5832 * resulted in this case, so let's shut down before doing any
5833 * more damage:
5834 */
5835 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5836 return 1;
5837 }
5838 vmcs12 = kmap(page);
5839 vmcs12->launch_state = 0;
5840 kunmap(page);
5841 nested_release_page(page);
5842
5843 nested_free_vmcs02(vmx, vmptr);
5844
5845 skip_emulated_instruction(vcpu);
5846 nested_vmx_succeed(vcpu);
5847 return 1;
5848 }
5849
5850 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5851
5852 /* Emulate the VMLAUNCH instruction */
5853 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5854 {
5855 return nested_vmx_run(vcpu, true);
5856 }
5857
5858 /* Emulate the VMRESUME instruction */
5859 static int handle_vmresume(struct kvm_vcpu *vcpu)
5860 {
5861
5862 return nested_vmx_run(vcpu, false);
5863 }
5864
5865 enum vmcs_field_type {
5866 VMCS_FIELD_TYPE_U16 = 0,
5867 VMCS_FIELD_TYPE_U64 = 1,
5868 VMCS_FIELD_TYPE_U32 = 2,
5869 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5870 };
5871
5872 static inline int vmcs_field_type(unsigned long field)
5873 {
5874 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5875 return VMCS_FIELD_TYPE_U32;
5876 return (field >> 13) & 0x3 ;
5877 }
5878
5879 static inline int vmcs_field_readonly(unsigned long field)
5880 {
5881 return (((field >> 10) & 0x3) == 1);
5882 }
5883
5884 /*
5885 * Read a vmcs12 field. Since these can have varying lengths and we return
5886 * one type, we chose the biggest type (u64) and zero-extend the return value
5887 * to that size. Note that the caller, handle_vmread, might need to use only
5888 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5889 * 64-bit fields are to be returned).
5890 */
5891 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5892 unsigned long field, u64 *ret)
5893 {
5894 short offset = vmcs_field_to_offset(field);
5895 char *p;
5896
5897 if (offset < 0)
5898 return 0;
5899
5900 p = ((char *)(get_vmcs12(vcpu))) + offset;
5901
5902 switch (vmcs_field_type(field)) {
5903 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5904 *ret = *((natural_width *)p);
5905 return 1;
5906 case VMCS_FIELD_TYPE_U16:
5907 *ret = *((u16 *)p);
5908 return 1;
5909 case VMCS_FIELD_TYPE_U32:
5910 *ret = *((u32 *)p);
5911 return 1;
5912 case VMCS_FIELD_TYPE_U64:
5913 *ret = *((u64 *)p);
5914 return 1;
5915 default:
5916 return 0; /* can never happen. */
5917 }
5918 }
5919
5920
5921 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5922 unsigned long field, u64 field_value){
5923 short offset = vmcs_field_to_offset(field);
5924 char *p = ((char *) get_vmcs12(vcpu)) + offset;
5925 if (offset < 0)
5926 return false;
5927
5928 switch (vmcs_field_type(field)) {
5929 case VMCS_FIELD_TYPE_U16:
5930 *(u16 *)p = field_value;
5931 return true;
5932 case VMCS_FIELD_TYPE_U32:
5933 *(u32 *)p = field_value;
5934 return true;
5935 case VMCS_FIELD_TYPE_U64:
5936 *(u64 *)p = field_value;
5937 return true;
5938 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5939 *(natural_width *)p = field_value;
5940 return true;
5941 default:
5942 return false; /* can never happen. */
5943 }
5944
5945 }
5946
5947 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
5948 {
5949 int i;
5950 unsigned long field;
5951 u64 field_value;
5952 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5953 unsigned long *fields = (unsigned long *)shadow_read_write_fields;
5954 int num_fields = max_shadow_read_write_fields;
5955
5956 vmcs_load(shadow_vmcs);
5957
5958 for (i = 0; i < num_fields; i++) {
5959 field = fields[i];
5960 switch (vmcs_field_type(field)) {
5961 case VMCS_FIELD_TYPE_U16:
5962 field_value = vmcs_read16(field);
5963 break;
5964 case VMCS_FIELD_TYPE_U32:
5965 field_value = vmcs_read32(field);
5966 break;
5967 case VMCS_FIELD_TYPE_U64:
5968 field_value = vmcs_read64(field);
5969 break;
5970 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5971 field_value = vmcs_readl(field);
5972 break;
5973 }
5974 vmcs12_write_any(&vmx->vcpu, field, field_value);
5975 }
5976
5977 vmcs_clear(shadow_vmcs);
5978 vmcs_load(vmx->loaded_vmcs->vmcs);
5979 }
5980
5981 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
5982 {
5983 unsigned long *fields[] = {
5984 (unsigned long *)shadow_read_write_fields,
5985 (unsigned long *)shadow_read_only_fields
5986 };
5987 int num_lists = ARRAY_SIZE(fields);
5988 int max_fields[] = {
5989 max_shadow_read_write_fields,
5990 max_shadow_read_only_fields
5991 };
5992 int i, q;
5993 unsigned long field;
5994 u64 field_value = 0;
5995 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5996
5997 vmcs_load(shadow_vmcs);
5998
5999 for (q = 0; q < num_lists; q++) {
6000 for (i = 0; i < max_fields[q]; i++) {
6001 field = fields[q][i];
6002 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6003
6004 switch (vmcs_field_type(field)) {
6005 case VMCS_FIELD_TYPE_U16:
6006 vmcs_write16(field, (u16)field_value);
6007 break;
6008 case VMCS_FIELD_TYPE_U32:
6009 vmcs_write32(field, (u32)field_value);
6010 break;
6011 case VMCS_FIELD_TYPE_U64:
6012 vmcs_write64(field, (u64)field_value);
6013 break;
6014 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6015 vmcs_writel(field, (long)field_value);
6016 break;
6017 }
6018 }
6019 }
6020
6021 vmcs_clear(shadow_vmcs);
6022 vmcs_load(vmx->loaded_vmcs->vmcs);
6023 }
6024
6025 /*
6026 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6027 * used before) all generate the same failure when it is missing.
6028 */
6029 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6030 {
6031 struct vcpu_vmx *vmx = to_vmx(vcpu);
6032 if (vmx->nested.current_vmptr == -1ull) {
6033 nested_vmx_failInvalid(vcpu);
6034 skip_emulated_instruction(vcpu);
6035 return 0;
6036 }
6037 return 1;
6038 }
6039
6040 static int handle_vmread(struct kvm_vcpu *vcpu)
6041 {
6042 unsigned long field;
6043 u64 field_value;
6044 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6045 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6046 gva_t gva = 0;
6047
6048 if (!nested_vmx_check_permission(vcpu) ||
6049 !nested_vmx_check_vmcs12(vcpu))
6050 return 1;
6051
6052 /* Decode instruction info and find the field to read */
6053 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6054 /* Read the field, zero-extended to a u64 field_value */
6055 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6056 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6057 skip_emulated_instruction(vcpu);
6058 return 1;
6059 }
6060 /*
6061 * Now copy part of this value to register or memory, as requested.
6062 * Note that the number of bits actually copied is 32 or 64 depending
6063 * on the guest's mode (32 or 64 bit), not on the given field's length.
6064 */
6065 if (vmx_instruction_info & (1u << 10)) {
6066 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6067 field_value);
6068 } else {
6069 if (get_vmx_mem_address(vcpu, exit_qualification,
6070 vmx_instruction_info, &gva))
6071 return 1;
6072 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6073 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6074 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6075 }
6076
6077 nested_vmx_succeed(vcpu);
6078 skip_emulated_instruction(vcpu);
6079 return 1;
6080 }
6081
6082
6083 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6084 {
6085 unsigned long field;
6086 gva_t gva;
6087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6088 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6089 /* The value to write might be 32 or 64 bits, depending on L1's long
6090 * mode, and eventually we need to write that into a field of several
6091 * possible lengths. The code below first zero-extends the value to 64
6092 * bit (field_value), and then copies only the approriate number of
6093 * bits into the vmcs12 field.
6094 */
6095 u64 field_value = 0;
6096 struct x86_exception e;
6097
6098 if (!nested_vmx_check_permission(vcpu) ||
6099 !nested_vmx_check_vmcs12(vcpu))
6100 return 1;
6101
6102 if (vmx_instruction_info & (1u << 10))
6103 field_value = kvm_register_read(vcpu,
6104 (((vmx_instruction_info) >> 3) & 0xf));
6105 else {
6106 if (get_vmx_mem_address(vcpu, exit_qualification,
6107 vmx_instruction_info, &gva))
6108 return 1;
6109 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6110 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6111 kvm_inject_page_fault(vcpu, &e);
6112 return 1;
6113 }
6114 }
6115
6116
6117 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6118 if (vmcs_field_readonly(field)) {
6119 nested_vmx_failValid(vcpu,
6120 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6121 skip_emulated_instruction(vcpu);
6122 return 1;
6123 }
6124
6125 if (!vmcs12_write_any(vcpu, field, field_value)) {
6126 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6127 skip_emulated_instruction(vcpu);
6128 return 1;
6129 }
6130
6131 nested_vmx_succeed(vcpu);
6132 skip_emulated_instruction(vcpu);
6133 return 1;
6134 }
6135
6136 /* Emulate the VMPTRLD instruction */
6137 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6138 {
6139 struct vcpu_vmx *vmx = to_vmx(vcpu);
6140 gva_t gva;
6141 gpa_t vmptr;
6142 struct x86_exception e;
6143 u32 exec_control;
6144
6145 if (!nested_vmx_check_permission(vcpu))
6146 return 1;
6147
6148 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6149 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6150 return 1;
6151
6152 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6153 sizeof(vmptr), &e)) {
6154 kvm_inject_page_fault(vcpu, &e);
6155 return 1;
6156 }
6157
6158 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6159 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6160 skip_emulated_instruction(vcpu);
6161 return 1;
6162 }
6163
6164 if (vmx->nested.current_vmptr != vmptr) {
6165 struct vmcs12 *new_vmcs12;
6166 struct page *page;
6167 page = nested_get_page(vcpu, vmptr);
6168 if (page == NULL) {
6169 nested_vmx_failInvalid(vcpu);
6170 skip_emulated_instruction(vcpu);
6171 return 1;
6172 }
6173 new_vmcs12 = kmap(page);
6174 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6175 kunmap(page);
6176 nested_release_page_clean(page);
6177 nested_vmx_failValid(vcpu,
6178 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6179 skip_emulated_instruction(vcpu);
6180 return 1;
6181 }
6182 if (vmx->nested.current_vmptr != -1ull)
6183 nested_release_vmcs12(vmx);
6184
6185 vmx->nested.current_vmptr = vmptr;
6186 vmx->nested.current_vmcs12 = new_vmcs12;
6187 vmx->nested.current_vmcs12_page = page;
6188 if (enable_shadow_vmcs) {
6189 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6190 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6191 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6192 vmcs_write64(VMCS_LINK_POINTER,
6193 __pa(vmx->nested.current_shadow_vmcs));
6194 vmx->nested.sync_shadow_vmcs = true;
6195 }
6196 }
6197
6198 nested_vmx_succeed(vcpu);
6199 skip_emulated_instruction(vcpu);
6200 return 1;
6201 }
6202
6203 /* Emulate the VMPTRST instruction */
6204 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6205 {
6206 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6207 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6208 gva_t vmcs_gva;
6209 struct x86_exception e;
6210
6211 if (!nested_vmx_check_permission(vcpu))
6212 return 1;
6213
6214 if (get_vmx_mem_address(vcpu, exit_qualification,
6215 vmx_instruction_info, &vmcs_gva))
6216 return 1;
6217 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6218 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6219 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6220 sizeof(u64), &e)) {
6221 kvm_inject_page_fault(vcpu, &e);
6222 return 1;
6223 }
6224 nested_vmx_succeed(vcpu);
6225 skip_emulated_instruction(vcpu);
6226 return 1;
6227 }
6228
6229 /*
6230 * The exit handlers return 1 if the exit was handled fully and guest execution
6231 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6232 * to be done to userspace and return 0.
6233 */
6234 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6235 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6236 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6237 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6238 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6239 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6240 [EXIT_REASON_CR_ACCESS] = handle_cr,
6241 [EXIT_REASON_DR_ACCESS] = handle_dr,
6242 [EXIT_REASON_CPUID] = handle_cpuid,
6243 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6244 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6245 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6246 [EXIT_REASON_HLT] = handle_halt,
6247 [EXIT_REASON_INVD] = handle_invd,
6248 [EXIT_REASON_INVLPG] = handle_invlpg,
6249 [EXIT_REASON_RDPMC] = handle_rdpmc,
6250 [EXIT_REASON_VMCALL] = handle_vmcall,
6251 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6252 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6253 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6254 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6255 [EXIT_REASON_VMREAD] = handle_vmread,
6256 [EXIT_REASON_VMRESUME] = handle_vmresume,
6257 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6258 [EXIT_REASON_VMOFF] = handle_vmoff,
6259 [EXIT_REASON_VMON] = handle_vmon,
6260 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6261 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6262 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6263 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6264 [EXIT_REASON_WBINVD] = handle_wbinvd,
6265 [EXIT_REASON_XSETBV] = handle_xsetbv,
6266 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6267 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6268 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6269 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6270 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6271 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6272 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6273 };
6274
6275 static const int kvm_vmx_max_exit_handlers =
6276 ARRAY_SIZE(kvm_vmx_exit_handlers);
6277
6278 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6279 struct vmcs12 *vmcs12)
6280 {
6281 unsigned long exit_qualification;
6282 gpa_t bitmap, last_bitmap;
6283 unsigned int port;
6284 int size;
6285 u8 b;
6286
6287 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6288 return 1;
6289
6290 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6291 return 0;
6292
6293 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6294
6295 port = exit_qualification >> 16;
6296 size = (exit_qualification & 7) + 1;
6297
6298 last_bitmap = (gpa_t)-1;
6299 b = -1;
6300
6301 while (size > 0) {
6302 if (port < 0x8000)
6303 bitmap = vmcs12->io_bitmap_a;
6304 else if (port < 0x10000)
6305 bitmap = vmcs12->io_bitmap_b;
6306 else
6307 return 1;
6308 bitmap += (port & 0x7fff) / 8;
6309
6310 if (last_bitmap != bitmap)
6311 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6312 return 1;
6313 if (b & (1 << (port & 7)))
6314 return 1;
6315
6316 port++;
6317 size--;
6318 last_bitmap = bitmap;
6319 }
6320
6321 return 0;
6322 }
6323
6324 /*
6325 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6326 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6327 * disinterest in the current event (read or write a specific MSR) by using an
6328 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6329 */
6330 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6331 struct vmcs12 *vmcs12, u32 exit_reason)
6332 {
6333 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6334 gpa_t bitmap;
6335
6336 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6337 return 1;
6338
6339 /*
6340 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6341 * for the four combinations of read/write and low/high MSR numbers.
6342 * First we need to figure out which of the four to use:
6343 */
6344 bitmap = vmcs12->msr_bitmap;
6345 if (exit_reason == EXIT_REASON_MSR_WRITE)
6346 bitmap += 2048;
6347 if (msr_index >= 0xc0000000) {
6348 msr_index -= 0xc0000000;
6349 bitmap += 1024;
6350 }
6351
6352 /* Then read the msr_index'th bit from this bitmap: */
6353 if (msr_index < 1024*8) {
6354 unsigned char b;
6355 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6356 return 1;
6357 return 1 & (b >> (msr_index & 7));
6358 } else
6359 return 1; /* let L1 handle the wrong parameter */
6360 }
6361
6362 /*
6363 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6364 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6365 * intercept (via guest_host_mask etc.) the current event.
6366 */
6367 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6368 struct vmcs12 *vmcs12)
6369 {
6370 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6371 int cr = exit_qualification & 15;
6372 int reg = (exit_qualification >> 8) & 15;
6373 unsigned long val = kvm_register_read(vcpu, reg);
6374
6375 switch ((exit_qualification >> 4) & 3) {
6376 case 0: /* mov to cr */
6377 switch (cr) {
6378 case 0:
6379 if (vmcs12->cr0_guest_host_mask &
6380 (val ^ vmcs12->cr0_read_shadow))
6381 return 1;
6382 break;
6383 case 3:
6384 if ((vmcs12->cr3_target_count >= 1 &&
6385 vmcs12->cr3_target_value0 == val) ||
6386 (vmcs12->cr3_target_count >= 2 &&
6387 vmcs12->cr3_target_value1 == val) ||
6388 (vmcs12->cr3_target_count >= 3 &&
6389 vmcs12->cr3_target_value2 == val) ||
6390 (vmcs12->cr3_target_count >= 4 &&
6391 vmcs12->cr3_target_value3 == val))
6392 return 0;
6393 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6394 return 1;
6395 break;
6396 case 4:
6397 if (vmcs12->cr4_guest_host_mask &
6398 (vmcs12->cr4_read_shadow ^ val))
6399 return 1;
6400 break;
6401 case 8:
6402 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6403 return 1;
6404 break;
6405 }
6406 break;
6407 case 2: /* clts */
6408 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6409 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6410 return 1;
6411 break;
6412 case 1: /* mov from cr */
6413 switch (cr) {
6414 case 3:
6415 if (vmcs12->cpu_based_vm_exec_control &
6416 CPU_BASED_CR3_STORE_EXITING)
6417 return 1;
6418 break;
6419 case 8:
6420 if (vmcs12->cpu_based_vm_exec_control &
6421 CPU_BASED_CR8_STORE_EXITING)
6422 return 1;
6423 break;
6424 }
6425 break;
6426 case 3: /* lmsw */
6427 /*
6428 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6429 * cr0. Other attempted changes are ignored, with no exit.
6430 */
6431 if (vmcs12->cr0_guest_host_mask & 0xe &
6432 (val ^ vmcs12->cr0_read_shadow))
6433 return 1;
6434 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6435 !(vmcs12->cr0_read_shadow & 0x1) &&
6436 (val & 0x1))
6437 return 1;
6438 break;
6439 }
6440 return 0;
6441 }
6442
6443 /*
6444 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6445 * should handle it ourselves in L0 (and then continue L2). Only call this
6446 * when in is_guest_mode (L2).
6447 */
6448 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6449 {
6450 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6451 struct vcpu_vmx *vmx = to_vmx(vcpu);
6452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6453 u32 exit_reason = vmx->exit_reason;
6454
6455 if (vmx->nested.nested_run_pending)
6456 return 0;
6457
6458 if (unlikely(vmx->fail)) {
6459 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6460 vmcs_read32(VM_INSTRUCTION_ERROR));
6461 return 1;
6462 }
6463
6464 switch (exit_reason) {
6465 case EXIT_REASON_EXCEPTION_NMI:
6466 if (!is_exception(intr_info))
6467 return 0;
6468 else if (is_page_fault(intr_info))
6469 return enable_ept;
6470 return vmcs12->exception_bitmap &
6471 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6472 case EXIT_REASON_EXTERNAL_INTERRUPT:
6473 return 0;
6474 case EXIT_REASON_TRIPLE_FAULT:
6475 return 1;
6476 case EXIT_REASON_PENDING_INTERRUPT:
6477 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6478 case EXIT_REASON_NMI_WINDOW:
6479 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6480 case EXIT_REASON_TASK_SWITCH:
6481 return 1;
6482 case EXIT_REASON_CPUID:
6483 return 1;
6484 case EXIT_REASON_HLT:
6485 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6486 case EXIT_REASON_INVD:
6487 return 1;
6488 case EXIT_REASON_INVLPG:
6489 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6490 case EXIT_REASON_RDPMC:
6491 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6492 case EXIT_REASON_RDTSC:
6493 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6494 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6495 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6496 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6497 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6498 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6499 /*
6500 * VMX instructions trap unconditionally. This allows L1 to
6501 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6502 */
6503 return 1;
6504 case EXIT_REASON_CR_ACCESS:
6505 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6506 case EXIT_REASON_DR_ACCESS:
6507 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6508 case EXIT_REASON_IO_INSTRUCTION:
6509 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6510 case EXIT_REASON_MSR_READ:
6511 case EXIT_REASON_MSR_WRITE:
6512 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6513 case EXIT_REASON_INVALID_STATE:
6514 return 1;
6515 case EXIT_REASON_MWAIT_INSTRUCTION:
6516 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6517 case EXIT_REASON_MONITOR_INSTRUCTION:
6518 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6519 case EXIT_REASON_PAUSE_INSTRUCTION:
6520 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6521 nested_cpu_has2(vmcs12,
6522 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6523 case EXIT_REASON_MCE_DURING_VMENTRY:
6524 return 0;
6525 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6526 return 1;
6527 case EXIT_REASON_APIC_ACCESS:
6528 return nested_cpu_has2(vmcs12,
6529 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6530 case EXIT_REASON_EPT_VIOLATION:
6531 case EXIT_REASON_EPT_MISCONFIG:
6532 return 0;
6533 case EXIT_REASON_PREEMPTION_TIMER:
6534 return vmcs12->pin_based_vm_exec_control &
6535 PIN_BASED_VMX_PREEMPTION_TIMER;
6536 case EXIT_REASON_WBINVD:
6537 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6538 case EXIT_REASON_XSETBV:
6539 return 1;
6540 default:
6541 return 1;
6542 }
6543 }
6544
6545 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6546 {
6547 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6548 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6549 }
6550
6551 /*
6552 * The guest has exited. See if we can fix it or if we need userspace
6553 * assistance.
6554 */
6555 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6556 {
6557 struct vcpu_vmx *vmx = to_vmx(vcpu);
6558 u32 exit_reason = vmx->exit_reason;
6559 u32 vectoring_info = vmx->idt_vectoring_info;
6560
6561 /* If guest state is invalid, start emulating */
6562 if (vmx->emulation_required)
6563 return handle_invalid_guest_state(vcpu);
6564
6565 /*
6566 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6567 * we did not inject a still-pending event to L1 now because of
6568 * nested_run_pending, we need to re-enable this bit.
6569 */
6570 if (vmx->nested.nested_run_pending)
6571 kvm_make_request(KVM_REQ_EVENT, vcpu);
6572
6573 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6574 exit_reason == EXIT_REASON_VMRESUME))
6575 vmx->nested.nested_run_pending = 1;
6576 else
6577 vmx->nested.nested_run_pending = 0;
6578
6579 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6580 nested_vmx_vmexit(vcpu);
6581 return 1;
6582 }
6583
6584 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6585 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6586 vcpu->run->fail_entry.hardware_entry_failure_reason
6587 = exit_reason;
6588 return 0;
6589 }
6590
6591 if (unlikely(vmx->fail)) {
6592 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6593 vcpu->run->fail_entry.hardware_entry_failure_reason
6594 = vmcs_read32(VM_INSTRUCTION_ERROR);
6595 return 0;
6596 }
6597
6598 /*
6599 * Note:
6600 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6601 * delivery event since it indicates guest is accessing MMIO.
6602 * The vm-exit can be triggered again after return to guest that
6603 * will cause infinite loop.
6604 */
6605 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6606 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6607 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6608 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6609 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6610 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6611 vcpu->run->internal.ndata = 2;
6612 vcpu->run->internal.data[0] = vectoring_info;
6613 vcpu->run->internal.data[1] = exit_reason;
6614 return 0;
6615 }
6616
6617 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6618 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6619 get_vmcs12(vcpu), vcpu)))) {
6620 if (vmx_interrupt_allowed(vcpu)) {
6621 vmx->soft_vnmi_blocked = 0;
6622 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6623 vcpu->arch.nmi_pending) {
6624 /*
6625 * This CPU don't support us in finding the end of an
6626 * NMI-blocked window if the guest runs with IRQs
6627 * disabled. So we pull the trigger after 1 s of
6628 * futile waiting, but inform the user about this.
6629 */
6630 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6631 "state on VCPU %d after 1 s timeout\n",
6632 __func__, vcpu->vcpu_id);
6633 vmx->soft_vnmi_blocked = 0;
6634 }
6635 }
6636
6637 if (exit_reason < kvm_vmx_max_exit_handlers
6638 && kvm_vmx_exit_handlers[exit_reason])
6639 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6640 else {
6641 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6642 vcpu->run->hw.hardware_exit_reason = exit_reason;
6643 }
6644 return 0;
6645 }
6646
6647 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6648 {
6649 if (irr == -1 || tpr < irr) {
6650 vmcs_write32(TPR_THRESHOLD, 0);
6651 return;
6652 }
6653
6654 vmcs_write32(TPR_THRESHOLD, irr);
6655 }
6656
6657 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6658 {
6659 u32 sec_exec_control;
6660
6661 /*
6662 * There is not point to enable virtualize x2apic without enable
6663 * apicv
6664 */
6665 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6666 !vmx_vm_has_apicv(vcpu->kvm))
6667 return;
6668
6669 if (!vm_need_tpr_shadow(vcpu->kvm))
6670 return;
6671
6672 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6673
6674 if (set) {
6675 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6676 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6677 } else {
6678 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6679 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6680 }
6681 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6682
6683 vmx_set_msr_bitmap(vcpu);
6684 }
6685
6686 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6687 {
6688 u16 status;
6689 u8 old;
6690
6691 if (!vmx_vm_has_apicv(kvm))
6692 return;
6693
6694 if (isr == -1)
6695 isr = 0;
6696
6697 status = vmcs_read16(GUEST_INTR_STATUS);
6698 old = status >> 8;
6699 if (isr != old) {
6700 status &= 0xff;
6701 status |= isr << 8;
6702 vmcs_write16(GUEST_INTR_STATUS, status);
6703 }
6704 }
6705
6706 static void vmx_set_rvi(int vector)
6707 {
6708 u16 status;
6709 u8 old;
6710
6711 status = vmcs_read16(GUEST_INTR_STATUS);
6712 old = (u8)status & 0xff;
6713 if ((u8)vector != old) {
6714 status &= ~0xff;
6715 status |= (u8)vector;
6716 vmcs_write16(GUEST_INTR_STATUS, status);
6717 }
6718 }
6719
6720 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6721 {
6722 if (max_irr == -1)
6723 return;
6724
6725 vmx_set_rvi(max_irr);
6726 }
6727
6728 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6729 {
6730 if (!vmx_vm_has_apicv(vcpu->kvm))
6731 return;
6732
6733 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6734 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6735 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6736 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6737 }
6738
6739 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6740 {
6741 u32 exit_intr_info;
6742
6743 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6744 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6745 return;
6746
6747 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6748 exit_intr_info = vmx->exit_intr_info;
6749
6750 /* Handle machine checks before interrupts are enabled */
6751 if (is_machine_check(exit_intr_info))
6752 kvm_machine_check();
6753
6754 /* We need to handle NMIs before interrupts are enabled */
6755 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6756 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6757 kvm_before_handle_nmi(&vmx->vcpu);
6758 asm("int $2");
6759 kvm_after_handle_nmi(&vmx->vcpu);
6760 }
6761 }
6762
6763 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6764 {
6765 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6766
6767 /*
6768 * If external interrupt exists, IF bit is set in rflags/eflags on the
6769 * interrupt stack frame, and interrupt will be enabled on a return
6770 * from interrupt handler.
6771 */
6772 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6773 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6774 unsigned int vector;
6775 unsigned long entry;
6776 gate_desc *desc;
6777 struct vcpu_vmx *vmx = to_vmx(vcpu);
6778 #ifdef CONFIG_X86_64
6779 unsigned long tmp;
6780 #endif
6781
6782 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6783 desc = (gate_desc *)vmx->host_idt_base + vector;
6784 entry = gate_offset(*desc);
6785 asm volatile(
6786 #ifdef CONFIG_X86_64
6787 "mov %%" _ASM_SP ", %[sp]\n\t"
6788 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6789 "push $%c[ss]\n\t"
6790 "push %[sp]\n\t"
6791 #endif
6792 "pushf\n\t"
6793 "orl $0x200, (%%" _ASM_SP ")\n\t"
6794 __ASM_SIZE(push) " $%c[cs]\n\t"
6795 "call *%[entry]\n\t"
6796 :
6797 #ifdef CONFIG_X86_64
6798 [sp]"=&r"(tmp)
6799 #endif
6800 :
6801 [entry]"r"(entry),
6802 [ss]"i"(__KERNEL_DS),
6803 [cs]"i"(__KERNEL_CS)
6804 );
6805 } else
6806 local_irq_enable();
6807 }
6808
6809 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6810 {
6811 u32 exit_intr_info;
6812 bool unblock_nmi;
6813 u8 vector;
6814 bool idtv_info_valid;
6815
6816 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6817
6818 if (cpu_has_virtual_nmis()) {
6819 if (vmx->nmi_known_unmasked)
6820 return;
6821 /*
6822 * Can't use vmx->exit_intr_info since we're not sure what
6823 * the exit reason is.
6824 */
6825 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6826 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6827 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6828 /*
6829 * SDM 3: 27.7.1.2 (September 2008)
6830 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6831 * a guest IRET fault.
6832 * SDM 3: 23.2.2 (September 2008)
6833 * Bit 12 is undefined in any of the following cases:
6834 * If the VM exit sets the valid bit in the IDT-vectoring
6835 * information field.
6836 * If the VM exit is due to a double fault.
6837 */
6838 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6839 vector != DF_VECTOR && !idtv_info_valid)
6840 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6841 GUEST_INTR_STATE_NMI);
6842 else
6843 vmx->nmi_known_unmasked =
6844 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6845 & GUEST_INTR_STATE_NMI);
6846 } else if (unlikely(vmx->soft_vnmi_blocked))
6847 vmx->vnmi_blocked_time +=
6848 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6849 }
6850
6851 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6852 u32 idt_vectoring_info,
6853 int instr_len_field,
6854 int error_code_field)
6855 {
6856 u8 vector;
6857 int type;
6858 bool idtv_info_valid;
6859
6860 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6861
6862 vcpu->arch.nmi_injected = false;
6863 kvm_clear_exception_queue(vcpu);
6864 kvm_clear_interrupt_queue(vcpu);
6865
6866 if (!idtv_info_valid)
6867 return;
6868
6869 kvm_make_request(KVM_REQ_EVENT, vcpu);
6870
6871 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6872 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6873
6874 switch (type) {
6875 case INTR_TYPE_NMI_INTR:
6876 vcpu->arch.nmi_injected = true;
6877 /*
6878 * SDM 3: 27.7.1.2 (September 2008)
6879 * Clear bit "block by NMI" before VM entry if a NMI
6880 * delivery faulted.
6881 */
6882 vmx_set_nmi_mask(vcpu, false);
6883 break;
6884 case INTR_TYPE_SOFT_EXCEPTION:
6885 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6886 /* fall through */
6887 case INTR_TYPE_HARD_EXCEPTION:
6888 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6889 u32 err = vmcs_read32(error_code_field);
6890 kvm_queue_exception_e(vcpu, vector, err);
6891 } else
6892 kvm_queue_exception(vcpu, vector);
6893 break;
6894 case INTR_TYPE_SOFT_INTR:
6895 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6896 /* fall through */
6897 case INTR_TYPE_EXT_INTR:
6898 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6899 break;
6900 default:
6901 break;
6902 }
6903 }
6904
6905 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6906 {
6907 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6908 VM_EXIT_INSTRUCTION_LEN,
6909 IDT_VECTORING_ERROR_CODE);
6910 }
6911
6912 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6913 {
6914 __vmx_complete_interrupts(vcpu,
6915 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6916 VM_ENTRY_INSTRUCTION_LEN,
6917 VM_ENTRY_EXCEPTION_ERROR_CODE);
6918
6919 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6920 }
6921
6922 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6923 {
6924 int i, nr_msrs;
6925 struct perf_guest_switch_msr *msrs;
6926
6927 msrs = perf_guest_get_msrs(&nr_msrs);
6928
6929 if (!msrs)
6930 return;
6931
6932 for (i = 0; i < nr_msrs; i++)
6933 if (msrs[i].host == msrs[i].guest)
6934 clear_atomic_switch_msr(vmx, msrs[i].msr);
6935 else
6936 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6937 msrs[i].host);
6938 }
6939
6940 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6941 {
6942 struct vcpu_vmx *vmx = to_vmx(vcpu);
6943 unsigned long debugctlmsr;
6944
6945 /* Record the guest's net vcpu time for enforced NMI injections. */
6946 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6947 vmx->entry_time = ktime_get();
6948
6949 /* Don't enter VMX if guest state is invalid, let the exit handler
6950 start emulation until we arrive back to a valid state */
6951 if (vmx->emulation_required)
6952 return;
6953
6954 if (vmx->nested.sync_shadow_vmcs) {
6955 copy_vmcs12_to_shadow(vmx);
6956 vmx->nested.sync_shadow_vmcs = false;
6957 }
6958
6959 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6960 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6961 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6962 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6963
6964 /* When single-stepping over STI and MOV SS, we must clear the
6965 * corresponding interruptibility bits in the guest state. Otherwise
6966 * vmentry fails as it then expects bit 14 (BS) in pending debug
6967 * exceptions being set, but that's not correct for the guest debugging
6968 * case. */
6969 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6970 vmx_set_interrupt_shadow(vcpu, 0);
6971
6972 atomic_switch_perf_msrs(vmx);
6973 debugctlmsr = get_debugctlmsr();
6974
6975 vmx->__launched = vmx->loaded_vmcs->launched;
6976 asm(
6977 /* Store host registers */
6978 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6979 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6980 "push %%" _ASM_CX " \n\t"
6981 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6982 "je 1f \n\t"
6983 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6984 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6985 "1: \n\t"
6986 /* Reload cr2 if changed */
6987 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6988 "mov %%cr2, %%" _ASM_DX " \n\t"
6989 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6990 "je 2f \n\t"
6991 "mov %%" _ASM_AX", %%cr2 \n\t"
6992 "2: \n\t"
6993 /* Check if vmlaunch of vmresume is needed */
6994 "cmpl $0, %c[launched](%0) \n\t"
6995 /* Load guest registers. Don't clobber flags. */
6996 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6997 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6998 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6999 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7000 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7001 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7002 #ifdef CONFIG_X86_64
7003 "mov %c[r8](%0), %%r8 \n\t"
7004 "mov %c[r9](%0), %%r9 \n\t"
7005 "mov %c[r10](%0), %%r10 \n\t"
7006 "mov %c[r11](%0), %%r11 \n\t"
7007 "mov %c[r12](%0), %%r12 \n\t"
7008 "mov %c[r13](%0), %%r13 \n\t"
7009 "mov %c[r14](%0), %%r14 \n\t"
7010 "mov %c[r15](%0), %%r15 \n\t"
7011 #endif
7012 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7013
7014 /* Enter guest mode */
7015 "jne 1f \n\t"
7016 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7017 "jmp 2f \n\t"
7018 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7019 "2: "
7020 /* Save guest registers, load host registers, keep flags */
7021 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7022 "pop %0 \n\t"
7023 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7024 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7025 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7026 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7027 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7028 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7029 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7030 #ifdef CONFIG_X86_64
7031 "mov %%r8, %c[r8](%0) \n\t"
7032 "mov %%r9, %c[r9](%0) \n\t"
7033 "mov %%r10, %c[r10](%0) \n\t"
7034 "mov %%r11, %c[r11](%0) \n\t"
7035 "mov %%r12, %c[r12](%0) \n\t"
7036 "mov %%r13, %c[r13](%0) \n\t"
7037 "mov %%r14, %c[r14](%0) \n\t"
7038 "mov %%r15, %c[r15](%0) \n\t"
7039 #endif
7040 "mov %%cr2, %%" _ASM_AX " \n\t"
7041 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7042
7043 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7044 "setbe %c[fail](%0) \n\t"
7045 ".pushsection .rodata \n\t"
7046 ".global vmx_return \n\t"
7047 "vmx_return: " _ASM_PTR " 2b \n\t"
7048 ".popsection"
7049 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7050 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7051 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7052 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7053 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7054 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7055 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7056 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7057 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7058 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7059 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7060 #ifdef CONFIG_X86_64
7061 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7062 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7063 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7064 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7065 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7066 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7067 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7068 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7069 #endif
7070 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7071 [wordsize]"i"(sizeof(ulong))
7072 : "cc", "memory"
7073 #ifdef CONFIG_X86_64
7074 , "rax", "rbx", "rdi", "rsi"
7075 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7076 #else
7077 , "eax", "ebx", "edi", "esi"
7078 #endif
7079 );
7080
7081 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7082 if (debugctlmsr)
7083 update_debugctlmsr(debugctlmsr);
7084
7085 #ifndef CONFIG_X86_64
7086 /*
7087 * The sysexit path does not restore ds/es, so we must set them to
7088 * a reasonable value ourselves.
7089 *
7090 * We can't defer this to vmx_load_host_state() since that function
7091 * may be executed in interrupt context, which saves and restore segments
7092 * around it, nullifying its effect.
7093 */
7094 loadsegment(ds, __USER_DS);
7095 loadsegment(es, __USER_DS);
7096 #endif
7097
7098 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7099 | (1 << VCPU_EXREG_RFLAGS)
7100 | (1 << VCPU_EXREG_CPL)
7101 | (1 << VCPU_EXREG_PDPTR)
7102 | (1 << VCPU_EXREG_SEGMENTS)
7103 | (1 << VCPU_EXREG_CR3));
7104 vcpu->arch.regs_dirty = 0;
7105
7106 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7107
7108 vmx->loaded_vmcs->launched = 1;
7109
7110 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7111 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7112
7113 vmx_complete_atomic_exit(vmx);
7114 vmx_recover_nmi_blocking(vmx);
7115 vmx_complete_interrupts(vmx);
7116 }
7117
7118 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7119 {
7120 struct vcpu_vmx *vmx = to_vmx(vcpu);
7121
7122 free_vpid(vmx);
7123 free_nested(vmx);
7124 free_loaded_vmcs(vmx->loaded_vmcs);
7125 kfree(vmx->guest_msrs);
7126 kvm_vcpu_uninit(vcpu);
7127 kmem_cache_free(kvm_vcpu_cache, vmx);
7128 }
7129
7130 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7131 {
7132 int err;
7133 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7134 int cpu;
7135
7136 if (!vmx)
7137 return ERR_PTR(-ENOMEM);
7138
7139 allocate_vpid(vmx);
7140
7141 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7142 if (err)
7143 goto free_vcpu;
7144
7145 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7146 err = -ENOMEM;
7147 if (!vmx->guest_msrs) {
7148 goto uninit_vcpu;
7149 }
7150
7151 vmx->loaded_vmcs = &vmx->vmcs01;
7152 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7153 if (!vmx->loaded_vmcs->vmcs)
7154 goto free_msrs;
7155 if (!vmm_exclusive)
7156 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7157 loaded_vmcs_init(vmx->loaded_vmcs);
7158 if (!vmm_exclusive)
7159 kvm_cpu_vmxoff();
7160
7161 cpu = get_cpu();
7162 vmx_vcpu_load(&vmx->vcpu, cpu);
7163 vmx->vcpu.cpu = cpu;
7164 err = vmx_vcpu_setup(vmx);
7165 vmx_vcpu_put(&vmx->vcpu);
7166 put_cpu();
7167 if (err)
7168 goto free_vmcs;
7169 if (vm_need_virtualize_apic_accesses(kvm)) {
7170 err = alloc_apic_access_page(kvm);
7171 if (err)
7172 goto free_vmcs;
7173 }
7174
7175 if (enable_ept) {
7176 if (!kvm->arch.ept_identity_map_addr)
7177 kvm->arch.ept_identity_map_addr =
7178 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7179 err = -ENOMEM;
7180 if (alloc_identity_pagetable(kvm) != 0)
7181 goto free_vmcs;
7182 if (!init_rmode_identity_map(kvm))
7183 goto free_vmcs;
7184 }
7185
7186 vmx->nested.current_vmptr = -1ull;
7187 vmx->nested.current_vmcs12 = NULL;
7188
7189 return &vmx->vcpu;
7190
7191 free_vmcs:
7192 free_loaded_vmcs(vmx->loaded_vmcs);
7193 free_msrs:
7194 kfree(vmx->guest_msrs);
7195 uninit_vcpu:
7196 kvm_vcpu_uninit(&vmx->vcpu);
7197 free_vcpu:
7198 free_vpid(vmx);
7199 kmem_cache_free(kvm_vcpu_cache, vmx);
7200 return ERR_PTR(err);
7201 }
7202
7203 static void __init vmx_check_processor_compat(void *rtn)
7204 {
7205 struct vmcs_config vmcs_conf;
7206
7207 *(int *)rtn = 0;
7208 if (setup_vmcs_config(&vmcs_conf) < 0)
7209 *(int *)rtn = -EIO;
7210 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7211 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7212 smp_processor_id());
7213 *(int *)rtn = -EIO;
7214 }
7215 }
7216
7217 static int get_ept_level(void)
7218 {
7219 return VMX_EPT_DEFAULT_GAW + 1;
7220 }
7221
7222 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7223 {
7224 u64 ret;
7225
7226 /* For VT-d and EPT combination
7227 * 1. MMIO: always map as UC
7228 * 2. EPT with VT-d:
7229 * a. VT-d without snooping control feature: can't guarantee the
7230 * result, try to trust guest.
7231 * b. VT-d with snooping control feature: snooping control feature of
7232 * VT-d engine can guarantee the cache correctness. Just set it
7233 * to WB to keep consistent with host. So the same as item 3.
7234 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7235 * consistent with host MTRR
7236 */
7237 if (is_mmio)
7238 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7239 else if (vcpu->kvm->arch.iommu_domain &&
7240 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7241 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7242 VMX_EPT_MT_EPTE_SHIFT;
7243 else
7244 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7245 | VMX_EPT_IPAT_BIT;
7246
7247 return ret;
7248 }
7249
7250 static int vmx_get_lpage_level(void)
7251 {
7252 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7253 return PT_DIRECTORY_LEVEL;
7254 else
7255 /* For shadow and EPT supported 1GB page */
7256 return PT_PDPE_LEVEL;
7257 }
7258
7259 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7260 {
7261 struct kvm_cpuid_entry2 *best;
7262 struct vcpu_vmx *vmx = to_vmx(vcpu);
7263 u32 exec_control;
7264
7265 vmx->rdtscp_enabled = false;
7266 if (vmx_rdtscp_supported()) {
7267 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7268 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7269 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7270 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7271 vmx->rdtscp_enabled = true;
7272 else {
7273 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7274 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7275 exec_control);
7276 }
7277 }
7278 }
7279
7280 /* Exposing INVPCID only when PCID is exposed */
7281 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7282 if (vmx_invpcid_supported() &&
7283 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7284 guest_cpuid_has_pcid(vcpu)) {
7285 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7286 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7287 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7288 exec_control);
7289 } else {
7290 if (cpu_has_secondary_exec_ctrls()) {
7291 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7292 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7293 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7294 exec_control);
7295 }
7296 if (best)
7297 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7298 }
7299 }
7300
7301 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7302 {
7303 if (func == 1 && nested)
7304 entry->ecx |= bit(X86_FEATURE_VMX);
7305 }
7306
7307 /*
7308 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7309 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7310 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7311 * guest in a way that will both be appropriate to L1's requests, and our
7312 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7313 * function also has additional necessary side-effects, like setting various
7314 * vcpu->arch fields.
7315 */
7316 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7317 {
7318 struct vcpu_vmx *vmx = to_vmx(vcpu);
7319 u32 exec_control;
7320
7321 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7322 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7323 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7324 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7325 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7326 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7327 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7328 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7329 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7330 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7331 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7332 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7333 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7334 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7335 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7336 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7337 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7338 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7339 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7340 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7341 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7342 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7343 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7344 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7345 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7346 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7347 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7348 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7349 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7350 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7351 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7352 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7353 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7354 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7355 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7356 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7357
7358 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7359 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7360 vmcs12->vm_entry_intr_info_field);
7361 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7362 vmcs12->vm_entry_exception_error_code);
7363 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7364 vmcs12->vm_entry_instruction_len);
7365 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7366 vmcs12->guest_interruptibility_info);
7367 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7368 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7369 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
7370 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7371 vmcs12->guest_pending_dbg_exceptions);
7372 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7373 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7374
7375 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7376
7377 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7378 (vmcs_config.pin_based_exec_ctrl |
7379 vmcs12->pin_based_vm_exec_control));
7380
7381 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7382 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7383 vmcs12->vmx_preemption_timer_value);
7384
7385 /*
7386 * Whether page-faults are trapped is determined by a combination of
7387 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7388 * If enable_ept, L0 doesn't care about page faults and we should
7389 * set all of these to L1's desires. However, if !enable_ept, L0 does
7390 * care about (at least some) page faults, and because it is not easy
7391 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7392 * to exit on each and every L2 page fault. This is done by setting
7393 * MASK=MATCH=0 and (see below) EB.PF=1.
7394 * Note that below we don't need special code to set EB.PF beyond the
7395 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7396 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7397 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7398 *
7399 * A problem with this approach (when !enable_ept) is that L1 may be
7400 * injected with more page faults than it asked for. This could have
7401 * caused problems, but in practice existing hypervisors don't care.
7402 * To fix this, we will need to emulate the PFEC checking (on the L1
7403 * page tables), using walk_addr(), when injecting PFs to L1.
7404 */
7405 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7406 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7407 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7408 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7409
7410 if (cpu_has_secondary_exec_ctrls()) {
7411 u32 exec_control = vmx_secondary_exec_control(vmx);
7412 if (!vmx->rdtscp_enabled)
7413 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7414 /* Take the following fields only from vmcs12 */
7415 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7416 if (nested_cpu_has(vmcs12,
7417 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7418 exec_control |= vmcs12->secondary_vm_exec_control;
7419
7420 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7421 /*
7422 * Translate L1 physical address to host physical
7423 * address for vmcs02. Keep the page pinned, so this
7424 * physical address remains valid. We keep a reference
7425 * to it so we can release it later.
7426 */
7427 if (vmx->nested.apic_access_page) /* shouldn't happen */
7428 nested_release_page(vmx->nested.apic_access_page);
7429 vmx->nested.apic_access_page =
7430 nested_get_page(vcpu, vmcs12->apic_access_addr);
7431 /*
7432 * If translation failed, no matter: This feature asks
7433 * to exit when accessing the given address, and if it
7434 * can never be accessed, this feature won't do
7435 * anything anyway.
7436 */
7437 if (!vmx->nested.apic_access_page)
7438 exec_control &=
7439 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7440 else
7441 vmcs_write64(APIC_ACCESS_ADDR,
7442 page_to_phys(vmx->nested.apic_access_page));
7443 }
7444
7445 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7446 }
7447
7448
7449 /*
7450 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7451 * Some constant fields are set here by vmx_set_constant_host_state().
7452 * Other fields are different per CPU, and will be set later when
7453 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7454 */
7455 vmx_set_constant_host_state(vmx);
7456
7457 /*
7458 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7459 * entry, but only if the current (host) sp changed from the value
7460 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7461 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7462 * here we just force the write to happen on entry.
7463 */
7464 vmx->host_rsp = 0;
7465
7466 exec_control = vmx_exec_control(vmx); /* L0's desires */
7467 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7468 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7469 exec_control &= ~CPU_BASED_TPR_SHADOW;
7470 exec_control |= vmcs12->cpu_based_vm_exec_control;
7471 /*
7472 * Merging of IO and MSR bitmaps not currently supported.
7473 * Rather, exit every time.
7474 */
7475 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7476 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7477 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7478
7479 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7480
7481 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7482 * bitwise-or of what L1 wants to trap for L2, and what we want to
7483 * trap. Note that CR0.TS also needs updating - we do this later.
7484 */
7485 update_exception_bitmap(vcpu);
7486 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7487 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7488
7489 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7490 vmcs_write32(VM_EXIT_CONTROLS,
7491 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7492 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7493 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7494
7495 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7496 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7497 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7498 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7499
7500
7501 set_cr4_guest_host_mask(vmx);
7502
7503 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7504 vmcs_write64(TSC_OFFSET,
7505 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7506 else
7507 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7508
7509 if (enable_vpid) {
7510 /*
7511 * Trivially support vpid by letting L2s share their parent
7512 * L1's vpid. TODO: move to a more elaborate solution, giving
7513 * each L2 its own vpid and exposing the vpid feature to L1.
7514 */
7515 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7516 vmx_flush_tlb(vcpu);
7517 }
7518
7519 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7520 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7521 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7522 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7523 else
7524 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7525 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7526 vmx_set_efer(vcpu, vcpu->arch.efer);
7527
7528 /*
7529 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7530 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7531 * The CR0_READ_SHADOW is what L2 should have expected to read given
7532 * the specifications by L1; It's not enough to take
7533 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7534 * have more bits than L1 expected.
7535 */
7536 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7537 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7538
7539 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7540 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7541
7542 /* shadow page tables on either EPT or shadow page tables */
7543 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7544 kvm_mmu_reset_context(vcpu);
7545
7546 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7547 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7548 }
7549
7550 /*
7551 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7552 * for running an L2 nested guest.
7553 */
7554 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7555 {
7556 struct vmcs12 *vmcs12;
7557 struct vcpu_vmx *vmx = to_vmx(vcpu);
7558 int cpu;
7559 struct loaded_vmcs *vmcs02;
7560 bool ia32e;
7561
7562 if (!nested_vmx_check_permission(vcpu) ||
7563 !nested_vmx_check_vmcs12(vcpu))
7564 return 1;
7565
7566 skip_emulated_instruction(vcpu);
7567 vmcs12 = get_vmcs12(vcpu);
7568
7569 if (enable_shadow_vmcs)
7570 copy_shadow_to_vmcs12(vmx);
7571
7572 /*
7573 * The nested entry process starts with enforcing various prerequisites
7574 * on vmcs12 as required by the Intel SDM, and act appropriately when
7575 * they fail: As the SDM explains, some conditions should cause the
7576 * instruction to fail, while others will cause the instruction to seem
7577 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7578 * To speed up the normal (success) code path, we should avoid checking
7579 * for misconfigurations which will anyway be caught by the processor
7580 * when using the merged vmcs02.
7581 */
7582 if (vmcs12->launch_state == launch) {
7583 nested_vmx_failValid(vcpu,
7584 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7585 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7586 return 1;
7587 }
7588
7589 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7590 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7591 return 1;
7592 }
7593
7594 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7595 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7596 /*TODO: Also verify bits beyond physical address width are 0*/
7597 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7598 return 1;
7599 }
7600
7601 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7602 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7603 /*TODO: Also verify bits beyond physical address width are 0*/
7604 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7605 return 1;
7606 }
7607
7608 if (vmcs12->vm_entry_msr_load_count > 0 ||
7609 vmcs12->vm_exit_msr_load_count > 0 ||
7610 vmcs12->vm_exit_msr_store_count > 0) {
7611 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7612 __func__);
7613 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7614 return 1;
7615 }
7616
7617 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7618 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7619 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7620 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7621 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7622 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7623 !vmx_control_verify(vmcs12->vm_exit_controls,
7624 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7625 !vmx_control_verify(vmcs12->vm_entry_controls,
7626 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7627 {
7628 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7629 return 1;
7630 }
7631
7632 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7633 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7634 nested_vmx_failValid(vcpu,
7635 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7636 return 1;
7637 }
7638
7639 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7640 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7641 nested_vmx_entry_failure(vcpu, vmcs12,
7642 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7643 return 1;
7644 }
7645 if (vmcs12->vmcs_link_pointer != -1ull) {
7646 nested_vmx_entry_failure(vcpu, vmcs12,
7647 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7648 return 1;
7649 }
7650
7651 /*
7652 * If the load IA32_EFER VM-entry control is 1, the following checks
7653 * are performed on the field for the IA32_EFER MSR:
7654 * - Bits reserved in the IA32_EFER MSR must be 0.
7655 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7656 * the IA-32e mode guest VM-exit control. It must also be identical
7657 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7658 * CR0.PG) is 1.
7659 */
7660 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7661 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7662 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7663 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7664 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7665 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7666 nested_vmx_entry_failure(vcpu, vmcs12,
7667 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7668 return 1;
7669 }
7670 }
7671
7672 /*
7673 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7674 * IA32_EFER MSR must be 0 in the field for that register. In addition,
7675 * the values of the LMA and LME bits in the field must each be that of
7676 * the host address-space size VM-exit control.
7677 */
7678 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7679 ia32e = (vmcs12->vm_exit_controls &
7680 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7681 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7682 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7683 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7684 nested_vmx_entry_failure(vcpu, vmcs12,
7685 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7686 return 1;
7687 }
7688 }
7689
7690 /*
7691 * We're finally done with prerequisite checking, and can start with
7692 * the nested entry.
7693 */
7694
7695 vmcs02 = nested_get_current_vmcs02(vmx);
7696 if (!vmcs02)
7697 return -ENOMEM;
7698
7699 enter_guest_mode(vcpu);
7700
7701 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7702
7703 cpu = get_cpu();
7704 vmx->loaded_vmcs = vmcs02;
7705 vmx_vcpu_put(vcpu);
7706 vmx_vcpu_load(vcpu, cpu);
7707 vcpu->cpu = cpu;
7708 put_cpu();
7709
7710 vmx_segment_cache_clear(vmx);
7711
7712 vmcs12->launch_state = 1;
7713
7714 prepare_vmcs02(vcpu, vmcs12);
7715
7716 /*
7717 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7718 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7719 * returned as far as L1 is concerned. It will only return (and set
7720 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7721 */
7722 return 1;
7723 }
7724
7725 /*
7726 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7727 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7728 * This function returns the new value we should put in vmcs12.guest_cr0.
7729 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7730 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7731 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7732 * didn't trap the bit, because if L1 did, so would L0).
7733 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7734 * been modified by L2, and L1 knows it. So just leave the old value of
7735 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7736 * isn't relevant, because if L0 traps this bit it can set it to anything.
7737 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7738 * changed these bits, and therefore they need to be updated, but L0
7739 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7740 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7741 */
7742 static inline unsigned long
7743 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7744 {
7745 return
7746 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7747 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7748 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7749 vcpu->arch.cr0_guest_owned_bits));
7750 }
7751
7752 static inline unsigned long
7753 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7754 {
7755 return
7756 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7757 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7758 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7759 vcpu->arch.cr4_guest_owned_bits));
7760 }
7761
7762 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7763 struct vmcs12 *vmcs12)
7764 {
7765 u32 idt_vectoring;
7766 unsigned int nr;
7767
7768 if (vcpu->arch.exception.pending) {
7769 nr = vcpu->arch.exception.nr;
7770 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7771
7772 if (kvm_exception_is_soft(nr)) {
7773 vmcs12->vm_exit_instruction_len =
7774 vcpu->arch.event_exit_inst_len;
7775 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7776 } else
7777 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7778
7779 if (vcpu->arch.exception.has_error_code) {
7780 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7781 vmcs12->idt_vectoring_error_code =
7782 vcpu->arch.exception.error_code;
7783 }
7784
7785 vmcs12->idt_vectoring_info_field = idt_vectoring;
7786 } else if (vcpu->arch.nmi_pending) {
7787 vmcs12->idt_vectoring_info_field =
7788 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7789 } else if (vcpu->arch.interrupt.pending) {
7790 nr = vcpu->arch.interrupt.nr;
7791 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7792
7793 if (vcpu->arch.interrupt.soft) {
7794 idt_vectoring |= INTR_TYPE_SOFT_INTR;
7795 vmcs12->vm_entry_instruction_len =
7796 vcpu->arch.event_exit_inst_len;
7797 } else
7798 idt_vectoring |= INTR_TYPE_EXT_INTR;
7799
7800 vmcs12->idt_vectoring_info_field = idt_vectoring;
7801 }
7802 }
7803
7804 /*
7805 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7806 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7807 * and this function updates it to reflect the changes to the guest state while
7808 * L2 was running (and perhaps made some exits which were handled directly by L0
7809 * without going back to L1), and to reflect the exit reason.
7810 * Note that we do not have to copy here all VMCS fields, just those that
7811 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7812 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7813 * which already writes to vmcs12 directly.
7814 */
7815 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7816 {
7817 /* update guest state fields: */
7818 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7819 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7820
7821 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7822 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7823 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7824 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7825
7826 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7827 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7828 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7829 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7830 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7831 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7832 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7833 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7834 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7835 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7836 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7837 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7838 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7839 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7840 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7841 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7842 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7843 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7844 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7845 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7846 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7847 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7848 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7849 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7850 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7851 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7852 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7853 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7854 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7855 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7856 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7857 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7858 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7859 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7860 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7861 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7862
7863 vmcs12->guest_interruptibility_info =
7864 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7865 vmcs12->guest_pending_dbg_exceptions =
7866 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7867
7868 vmcs12->vm_entry_controls =
7869 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7870 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7871
7872 /* TODO: These cannot have changed unless we have MSR bitmaps and
7873 * the relevant bit asks not to trap the change */
7874 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7875 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
7876 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7877 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7878 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7879 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7880
7881 /* update exit information fields: */
7882
7883 vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
7884 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7885
7886 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7887 if ((vmcs12->vm_exit_intr_info &
7888 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7889 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7890 vmcs12->vm_exit_intr_error_code =
7891 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7892 vmcs12->idt_vectoring_info_field = 0;
7893 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7894 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7895
7896 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7897 /* vm_entry_intr_info_field is cleared on exit. Emulate this
7898 * instead of reading the real value. */
7899 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7900
7901 /*
7902 * Transfer the event that L0 or L1 may wanted to inject into
7903 * L2 to IDT_VECTORING_INFO_FIELD.
7904 */
7905 vmcs12_save_pending_event(vcpu, vmcs12);
7906 }
7907
7908 /*
7909 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7910 * preserved above and would only end up incorrectly in L1.
7911 */
7912 vcpu->arch.nmi_injected = false;
7913 kvm_clear_exception_queue(vcpu);
7914 kvm_clear_interrupt_queue(vcpu);
7915 }
7916
7917 /*
7918 * A part of what we need to when the nested L2 guest exits and we want to
7919 * run its L1 parent, is to reset L1's guest state to the host state specified
7920 * in vmcs12.
7921 * This function is to be called not only on normal nested exit, but also on
7922 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7923 * Failures During or After Loading Guest State").
7924 * This function should be called when the active VMCS is L1's (vmcs01).
7925 */
7926 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7927 struct vmcs12 *vmcs12)
7928 {
7929 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7930 vcpu->arch.efer = vmcs12->host_ia32_efer;
7931 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7932 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7933 else
7934 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7935 vmx_set_efer(vcpu, vcpu->arch.efer);
7936
7937 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7938 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7939 vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
7940 /*
7941 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7942 * actually changed, because it depends on the current state of
7943 * fpu_active (which may have changed).
7944 * Note that vmx_set_cr0 refers to efer set above.
7945 */
7946 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7947 /*
7948 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7949 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7950 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7951 */
7952 update_exception_bitmap(vcpu);
7953 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7954 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7955
7956 /*
7957 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7958 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7959 */
7960 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7961 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7962
7963 /* shadow page tables on either EPT or shadow page tables */
7964 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7965 kvm_mmu_reset_context(vcpu);
7966
7967 if (enable_vpid) {
7968 /*
7969 * Trivially support vpid by letting L2s share their parent
7970 * L1's vpid. TODO: move to a more elaborate solution, giving
7971 * each L2 its own vpid and exposing the vpid feature to L1.
7972 */
7973 vmx_flush_tlb(vcpu);
7974 }
7975
7976
7977 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7978 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7979 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7980 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7981 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7982 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7983 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7984 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7985 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7986 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7987 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7988 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7989 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7990 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7991 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7992
7993 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7994 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7995 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7996 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7997 vmcs12->host_ia32_perf_global_ctrl);
7998
7999 kvm_set_dr(vcpu, 7, 0x400);
8000 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8001 }
8002
8003 /*
8004 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8005 * and modify vmcs12 to make it see what it would expect to see there if
8006 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8007 */
8008 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8009 {
8010 struct vcpu_vmx *vmx = to_vmx(vcpu);
8011 int cpu;
8012 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8013
8014 /* trying to cancel vmlaunch/vmresume is a bug */
8015 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8016
8017 leave_guest_mode(vcpu);
8018 prepare_vmcs12(vcpu, vmcs12);
8019
8020 cpu = get_cpu();
8021 vmx->loaded_vmcs = &vmx->vmcs01;
8022 vmx_vcpu_put(vcpu);
8023 vmx_vcpu_load(vcpu, cpu);
8024 vcpu->cpu = cpu;
8025 put_cpu();
8026
8027 vmx_segment_cache_clear(vmx);
8028
8029 /* if no vmcs02 cache requested, remove the one we used */
8030 if (VMCS02_POOL_SIZE == 0)
8031 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8032
8033 load_vmcs12_host_state(vcpu, vmcs12);
8034
8035 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8036 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8037
8038 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8039 vmx->host_rsp = 0;
8040
8041 /* Unpin physical memory we referred to in vmcs02 */
8042 if (vmx->nested.apic_access_page) {
8043 nested_release_page(vmx->nested.apic_access_page);
8044 vmx->nested.apic_access_page = 0;
8045 }
8046
8047 /*
8048 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8049 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8050 * success or failure flag accordingly.
8051 */
8052 if (unlikely(vmx->fail)) {
8053 vmx->fail = 0;
8054 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8055 } else
8056 nested_vmx_succeed(vcpu);
8057 if (enable_shadow_vmcs)
8058 vmx->nested.sync_shadow_vmcs = true;
8059 }
8060
8061 /*
8062 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8063 * 23.7 "VM-entry failures during or after loading guest state" (this also
8064 * lists the acceptable exit-reason and exit-qualification parameters).
8065 * It should only be called before L2 actually succeeded to run, and when
8066 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8067 */
8068 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8069 struct vmcs12 *vmcs12,
8070 u32 reason, unsigned long qualification)
8071 {
8072 load_vmcs12_host_state(vcpu, vmcs12);
8073 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8074 vmcs12->exit_qualification = qualification;
8075 nested_vmx_succeed(vcpu);
8076 if (enable_shadow_vmcs)
8077 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8078 }
8079
8080 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8081 struct x86_instruction_info *info,
8082 enum x86_intercept_stage stage)
8083 {
8084 return X86EMUL_CONTINUE;
8085 }
8086
8087 static struct kvm_x86_ops vmx_x86_ops = {
8088 .cpu_has_kvm_support = cpu_has_kvm_support,
8089 .disabled_by_bios = vmx_disabled_by_bios,
8090 .hardware_setup = hardware_setup,
8091 .hardware_unsetup = hardware_unsetup,
8092 .check_processor_compatibility = vmx_check_processor_compat,
8093 .hardware_enable = hardware_enable,
8094 .hardware_disable = hardware_disable,
8095 .cpu_has_accelerated_tpr = report_flexpriority,
8096
8097 .vcpu_create = vmx_create_vcpu,
8098 .vcpu_free = vmx_free_vcpu,
8099 .vcpu_reset = vmx_vcpu_reset,
8100
8101 .prepare_guest_switch = vmx_save_host_state,
8102 .vcpu_load = vmx_vcpu_load,
8103 .vcpu_put = vmx_vcpu_put,
8104
8105 .update_db_bp_intercept = update_exception_bitmap,
8106 .get_msr = vmx_get_msr,
8107 .set_msr = vmx_set_msr,
8108 .get_segment_base = vmx_get_segment_base,
8109 .get_segment = vmx_get_segment,
8110 .set_segment = vmx_set_segment,
8111 .get_cpl = vmx_get_cpl,
8112 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8113 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8114 .decache_cr3 = vmx_decache_cr3,
8115 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8116 .set_cr0 = vmx_set_cr0,
8117 .set_cr3 = vmx_set_cr3,
8118 .set_cr4 = vmx_set_cr4,
8119 .set_efer = vmx_set_efer,
8120 .get_idt = vmx_get_idt,
8121 .set_idt = vmx_set_idt,
8122 .get_gdt = vmx_get_gdt,
8123 .set_gdt = vmx_set_gdt,
8124 .set_dr7 = vmx_set_dr7,
8125 .cache_reg = vmx_cache_reg,
8126 .get_rflags = vmx_get_rflags,
8127 .set_rflags = vmx_set_rflags,
8128 .fpu_activate = vmx_fpu_activate,
8129 .fpu_deactivate = vmx_fpu_deactivate,
8130
8131 .tlb_flush = vmx_flush_tlb,
8132
8133 .run = vmx_vcpu_run,
8134 .handle_exit = vmx_handle_exit,
8135 .skip_emulated_instruction = skip_emulated_instruction,
8136 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8137 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8138 .patch_hypercall = vmx_patch_hypercall,
8139 .set_irq = vmx_inject_irq,
8140 .set_nmi = vmx_inject_nmi,
8141 .queue_exception = vmx_queue_exception,
8142 .cancel_injection = vmx_cancel_injection,
8143 .interrupt_allowed = vmx_interrupt_allowed,
8144 .nmi_allowed = vmx_nmi_allowed,
8145 .get_nmi_mask = vmx_get_nmi_mask,
8146 .set_nmi_mask = vmx_set_nmi_mask,
8147 .enable_nmi_window = enable_nmi_window,
8148 .enable_irq_window = enable_irq_window,
8149 .update_cr8_intercept = update_cr8_intercept,
8150 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8151 .vm_has_apicv = vmx_vm_has_apicv,
8152 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8153 .hwapic_irr_update = vmx_hwapic_irr_update,
8154 .hwapic_isr_update = vmx_hwapic_isr_update,
8155 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8156 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8157
8158 .set_tss_addr = vmx_set_tss_addr,
8159 .get_tdp_level = get_ept_level,
8160 .get_mt_mask = vmx_get_mt_mask,
8161
8162 .get_exit_info = vmx_get_exit_info,
8163
8164 .get_lpage_level = vmx_get_lpage_level,
8165
8166 .cpuid_update = vmx_cpuid_update,
8167
8168 .rdtscp_supported = vmx_rdtscp_supported,
8169 .invpcid_supported = vmx_invpcid_supported,
8170
8171 .set_supported_cpuid = vmx_set_supported_cpuid,
8172
8173 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8174
8175 .set_tsc_khz = vmx_set_tsc_khz,
8176 .read_tsc_offset = vmx_read_tsc_offset,
8177 .write_tsc_offset = vmx_write_tsc_offset,
8178 .adjust_tsc_offset = vmx_adjust_tsc_offset,
8179 .compute_tsc_offset = vmx_compute_tsc_offset,
8180 .read_l1_tsc = vmx_read_l1_tsc,
8181
8182 .set_tdp_cr3 = vmx_set_cr3,
8183
8184 .check_intercept = vmx_check_intercept,
8185 .handle_external_intr = vmx_handle_external_intr,
8186 };
8187
8188 static int __init vmx_init(void)
8189 {
8190 int r, i, msr;
8191
8192 rdmsrl_safe(MSR_EFER, &host_efer);
8193
8194 for (i = 0; i < NR_VMX_MSR; ++i)
8195 kvm_define_shared_msr(i, vmx_msr_index[i]);
8196
8197 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8198 if (!vmx_io_bitmap_a)
8199 return -ENOMEM;
8200
8201 r = -ENOMEM;
8202
8203 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8204 if (!vmx_io_bitmap_b)
8205 goto out;
8206
8207 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8208 if (!vmx_msr_bitmap_legacy)
8209 goto out1;
8210
8211 vmx_msr_bitmap_legacy_x2apic =
8212 (unsigned long *)__get_free_page(GFP_KERNEL);
8213 if (!vmx_msr_bitmap_legacy_x2apic)
8214 goto out2;
8215
8216 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8217 if (!vmx_msr_bitmap_longmode)
8218 goto out3;
8219
8220 vmx_msr_bitmap_longmode_x2apic =
8221 (unsigned long *)__get_free_page(GFP_KERNEL);
8222 if (!vmx_msr_bitmap_longmode_x2apic)
8223 goto out4;
8224 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8225 if (!vmx_vmread_bitmap)
8226 goto out5;
8227
8228 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8229 if (!vmx_vmwrite_bitmap)
8230 goto out6;
8231
8232 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8233 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8234 /* shadowed read/write fields */
8235 for (i = 0; i < max_shadow_read_write_fields; i++) {
8236 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8237 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8238 }
8239 /* shadowed read only fields */
8240 for (i = 0; i < max_shadow_read_only_fields; i++)
8241 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8242
8243 /*
8244 * Allow direct access to the PC debug port (it is often used for I/O
8245 * delays, but the vmexits simply slow things down).
8246 */
8247 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8248 clear_bit(0x80, vmx_io_bitmap_a);
8249
8250 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8251
8252 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8253 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8254
8255 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8256
8257 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8258 __alignof__(struct vcpu_vmx), THIS_MODULE);
8259 if (r)
8260 goto out7;
8261
8262 #ifdef CONFIG_KEXEC
8263 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8264 crash_vmclear_local_loaded_vmcss);
8265 #endif
8266
8267 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8268 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8269 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8270 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8271 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8272 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8273 memcpy(vmx_msr_bitmap_legacy_x2apic,
8274 vmx_msr_bitmap_legacy, PAGE_SIZE);
8275 memcpy(vmx_msr_bitmap_longmode_x2apic,
8276 vmx_msr_bitmap_longmode, PAGE_SIZE);
8277
8278 if (enable_apicv) {
8279 for (msr = 0x800; msr <= 0x8ff; msr++)
8280 vmx_disable_intercept_msr_read_x2apic(msr);
8281
8282 /* According SDM, in x2apic mode, the whole id reg is used.
8283 * But in KVM, it only use the highest eight bits. Need to
8284 * intercept it */
8285 vmx_enable_intercept_msr_read_x2apic(0x802);
8286 /* TMCCT */
8287 vmx_enable_intercept_msr_read_x2apic(0x839);
8288 /* TPR */
8289 vmx_disable_intercept_msr_write_x2apic(0x808);
8290 /* EOI */
8291 vmx_disable_intercept_msr_write_x2apic(0x80b);
8292 /* SELF-IPI */
8293 vmx_disable_intercept_msr_write_x2apic(0x83f);
8294 }
8295
8296 if (enable_ept) {
8297 kvm_mmu_set_mask_ptes(0ull,
8298 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8299 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8300 0ull, VMX_EPT_EXECUTABLE_MASK);
8301 ept_set_mmio_spte_mask();
8302 kvm_enable_tdp();
8303 } else
8304 kvm_disable_tdp();
8305
8306 return 0;
8307
8308 out7:
8309 free_page((unsigned long)vmx_vmwrite_bitmap);
8310 out6:
8311 free_page((unsigned long)vmx_vmread_bitmap);
8312 out5:
8313 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8314 out4:
8315 free_page((unsigned long)vmx_msr_bitmap_longmode);
8316 out3:
8317 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8318 out2:
8319 free_page((unsigned long)vmx_msr_bitmap_legacy);
8320 out1:
8321 free_page((unsigned long)vmx_io_bitmap_b);
8322 out:
8323 free_page((unsigned long)vmx_io_bitmap_a);
8324 return r;
8325 }
8326
8327 static void __exit vmx_exit(void)
8328 {
8329 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8330 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8331 free_page((unsigned long)vmx_msr_bitmap_legacy);
8332 free_page((unsigned long)vmx_msr_bitmap_longmode);
8333 free_page((unsigned long)vmx_io_bitmap_b);
8334 free_page((unsigned long)vmx_io_bitmap_a);
8335 free_page((unsigned long)vmx_vmwrite_bitmap);
8336 free_page((unsigned long)vmx_vmread_bitmap);
8337
8338 #ifdef CONFIG_KEXEC
8339 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8340 synchronize_rcu();
8341 #endif
8342
8343 kvm_exit();
8344 }
8345
8346 module_init(vmx_init)
8347 module_exit(vmx_exit)