]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: nVMX: Move control field setup to functions
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static int __read_mostly bypass_guest_pf = 1;
53 module_param(bypass_guest_pf, bool, S_IRUGO);
54
55 static int __read_mostly enable_vpid = 1;
56 module_param_named(vpid, enable_vpid, bool, 0444);
57
58 static int __read_mostly flexpriority_enabled = 1;
59 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60
61 static int __read_mostly enable_ept = 1;
62 module_param_named(ept, enable_ept, bool, S_IRUGO);
63
64 static int __read_mostly enable_unrestricted_guest = 1;
65 module_param_named(unrestricted_guest,
66 enable_unrestricted_guest, bool, S_IRUGO);
67
68 static int __read_mostly emulate_invalid_guest_state = 0;
69 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70
71 static int __read_mostly vmm_exclusive = 1;
72 module_param(vmm_exclusive, bool, S_IRUGO);
73
74 static int __read_mostly yield_on_hlt = 1;
75 module_param(yield_on_hlt, bool, S_IRUGO);
76
77 /*
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
81 */
82 static int __read_mostly nested = 0;
83 module_param(nested, bool, S_IRUGO);
84
85 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87 #define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
90 (X86_CR0_WP | X86_CR0_NE)
91 #define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
93 #define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
96
97 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
100 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
102 /*
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
106 * According to test, this time is usually smaller than 128 cycles.
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 */
113 #define KVM_VMX_DEFAULT_PLE_GAP 128
114 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116 module_param(ple_gap, int, S_IRUGO);
117
118 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119 module_param(ple_window, int, S_IRUGO);
120
121 #define NR_AUTOLOAD_MSRS 1
122 #define VMCS02_POOL_SIZE 1
123
124 struct vmcs {
125 u32 revision_id;
126 u32 abort;
127 char data[0];
128 };
129
130 /*
131 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
132 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
133 * loaded on this CPU (so we can clear them if the CPU goes down).
134 */
135 struct loaded_vmcs {
136 struct vmcs *vmcs;
137 int cpu;
138 int launched;
139 struct list_head loaded_vmcss_on_cpu_link;
140 };
141
142 struct shared_msr_entry {
143 unsigned index;
144 u64 data;
145 u64 mask;
146 };
147
148 /*
149 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
150 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
151 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
152 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
153 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
154 * More than one of these structures may exist, if L1 runs multiple L2 guests.
155 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
156 * underlying hardware which will be used to run L2.
157 * This structure is packed to ensure that its layout is identical across
158 * machines (necessary for live migration).
159 * If there are changes in this struct, VMCS12_REVISION must be changed.
160 */
161 typedef u64 natural_width;
162 struct __packed vmcs12 {
163 /* According to the Intel spec, a VMCS region must start with the
164 * following two fields. Then follow implementation-specific data.
165 */
166 u32 revision_id;
167 u32 abort;
168
169 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
170 u32 padding[7]; /* room for future expansion */
171
172 u64 io_bitmap_a;
173 u64 io_bitmap_b;
174 u64 msr_bitmap;
175 u64 vm_exit_msr_store_addr;
176 u64 vm_exit_msr_load_addr;
177 u64 vm_entry_msr_load_addr;
178 u64 tsc_offset;
179 u64 virtual_apic_page_addr;
180 u64 apic_access_addr;
181 u64 ept_pointer;
182 u64 guest_physical_address;
183 u64 vmcs_link_pointer;
184 u64 guest_ia32_debugctl;
185 u64 guest_ia32_pat;
186 u64 guest_ia32_efer;
187 u64 guest_ia32_perf_global_ctrl;
188 u64 guest_pdptr0;
189 u64 guest_pdptr1;
190 u64 guest_pdptr2;
191 u64 guest_pdptr3;
192 u64 host_ia32_pat;
193 u64 host_ia32_efer;
194 u64 host_ia32_perf_global_ctrl;
195 u64 padding64[8]; /* room for future expansion */
196 /*
197 * To allow migration of L1 (complete with its L2 guests) between
198 * machines of different natural widths (32 or 64 bit), we cannot have
199 * unsigned long fields with no explict size. We use u64 (aliased
200 * natural_width) instead. Luckily, x86 is little-endian.
201 */
202 natural_width cr0_guest_host_mask;
203 natural_width cr4_guest_host_mask;
204 natural_width cr0_read_shadow;
205 natural_width cr4_read_shadow;
206 natural_width cr3_target_value0;
207 natural_width cr3_target_value1;
208 natural_width cr3_target_value2;
209 natural_width cr3_target_value3;
210 natural_width exit_qualification;
211 natural_width guest_linear_address;
212 natural_width guest_cr0;
213 natural_width guest_cr3;
214 natural_width guest_cr4;
215 natural_width guest_es_base;
216 natural_width guest_cs_base;
217 natural_width guest_ss_base;
218 natural_width guest_ds_base;
219 natural_width guest_fs_base;
220 natural_width guest_gs_base;
221 natural_width guest_ldtr_base;
222 natural_width guest_tr_base;
223 natural_width guest_gdtr_base;
224 natural_width guest_idtr_base;
225 natural_width guest_dr7;
226 natural_width guest_rsp;
227 natural_width guest_rip;
228 natural_width guest_rflags;
229 natural_width guest_pending_dbg_exceptions;
230 natural_width guest_sysenter_esp;
231 natural_width guest_sysenter_eip;
232 natural_width host_cr0;
233 natural_width host_cr3;
234 natural_width host_cr4;
235 natural_width host_fs_base;
236 natural_width host_gs_base;
237 natural_width host_tr_base;
238 natural_width host_gdtr_base;
239 natural_width host_idtr_base;
240 natural_width host_ia32_sysenter_esp;
241 natural_width host_ia32_sysenter_eip;
242 natural_width host_rsp;
243 natural_width host_rip;
244 natural_width paddingl[8]; /* room for future expansion */
245 u32 pin_based_vm_exec_control;
246 u32 cpu_based_vm_exec_control;
247 u32 exception_bitmap;
248 u32 page_fault_error_code_mask;
249 u32 page_fault_error_code_match;
250 u32 cr3_target_count;
251 u32 vm_exit_controls;
252 u32 vm_exit_msr_store_count;
253 u32 vm_exit_msr_load_count;
254 u32 vm_entry_controls;
255 u32 vm_entry_msr_load_count;
256 u32 vm_entry_intr_info_field;
257 u32 vm_entry_exception_error_code;
258 u32 vm_entry_instruction_len;
259 u32 tpr_threshold;
260 u32 secondary_vm_exec_control;
261 u32 vm_instruction_error;
262 u32 vm_exit_reason;
263 u32 vm_exit_intr_info;
264 u32 vm_exit_intr_error_code;
265 u32 idt_vectoring_info_field;
266 u32 idt_vectoring_error_code;
267 u32 vm_exit_instruction_len;
268 u32 vmx_instruction_info;
269 u32 guest_es_limit;
270 u32 guest_cs_limit;
271 u32 guest_ss_limit;
272 u32 guest_ds_limit;
273 u32 guest_fs_limit;
274 u32 guest_gs_limit;
275 u32 guest_ldtr_limit;
276 u32 guest_tr_limit;
277 u32 guest_gdtr_limit;
278 u32 guest_idtr_limit;
279 u32 guest_es_ar_bytes;
280 u32 guest_cs_ar_bytes;
281 u32 guest_ss_ar_bytes;
282 u32 guest_ds_ar_bytes;
283 u32 guest_fs_ar_bytes;
284 u32 guest_gs_ar_bytes;
285 u32 guest_ldtr_ar_bytes;
286 u32 guest_tr_ar_bytes;
287 u32 guest_interruptibility_info;
288 u32 guest_activity_state;
289 u32 guest_sysenter_cs;
290 u32 host_ia32_sysenter_cs;
291 u32 padding32[8]; /* room for future expansion */
292 u16 virtual_processor_id;
293 u16 guest_es_selector;
294 u16 guest_cs_selector;
295 u16 guest_ss_selector;
296 u16 guest_ds_selector;
297 u16 guest_fs_selector;
298 u16 guest_gs_selector;
299 u16 guest_ldtr_selector;
300 u16 guest_tr_selector;
301 u16 host_es_selector;
302 u16 host_cs_selector;
303 u16 host_ss_selector;
304 u16 host_ds_selector;
305 u16 host_fs_selector;
306 u16 host_gs_selector;
307 u16 host_tr_selector;
308 };
309
310 /*
311 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
312 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
313 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
314 */
315 #define VMCS12_REVISION 0x11e57ed0
316
317 /*
318 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
319 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
320 * current implementation, 4K are reserved to avoid future complications.
321 */
322 #define VMCS12_SIZE 0x1000
323
324 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
325 struct vmcs02_list {
326 struct list_head list;
327 gpa_t vmptr;
328 struct loaded_vmcs vmcs02;
329 };
330
331 /*
332 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
333 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
334 */
335 struct nested_vmx {
336 /* Has the level1 guest done vmxon? */
337 bool vmxon;
338
339 /* The guest-physical address of the current VMCS L1 keeps for L2 */
340 gpa_t current_vmptr;
341 /* The host-usable pointer to the above */
342 struct page *current_vmcs12_page;
343 struct vmcs12 *current_vmcs12;
344
345 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
346 struct list_head vmcs02_pool;
347 int vmcs02_num;
348 };
349
350 struct vcpu_vmx {
351 struct kvm_vcpu vcpu;
352 unsigned long host_rsp;
353 u8 fail;
354 u8 cpl;
355 bool nmi_known_unmasked;
356 u32 exit_intr_info;
357 u32 idt_vectoring_info;
358 ulong rflags;
359 struct shared_msr_entry *guest_msrs;
360 int nmsrs;
361 int save_nmsrs;
362 #ifdef CONFIG_X86_64
363 u64 msr_host_kernel_gs_base;
364 u64 msr_guest_kernel_gs_base;
365 #endif
366 /*
367 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
368 * non-nested (L1) guest, it always points to vmcs01. For a nested
369 * guest (L2), it points to a different VMCS.
370 */
371 struct loaded_vmcs vmcs01;
372 struct loaded_vmcs *loaded_vmcs;
373 bool __launched; /* temporary, used in vmx_vcpu_run */
374 struct msr_autoload {
375 unsigned nr;
376 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
377 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
378 } msr_autoload;
379 struct {
380 int loaded;
381 u16 fs_sel, gs_sel, ldt_sel;
382 int gs_ldt_reload_needed;
383 int fs_reload_needed;
384 } host_state;
385 struct {
386 int vm86_active;
387 ulong save_rflags;
388 struct kvm_save_segment {
389 u16 selector;
390 unsigned long base;
391 u32 limit;
392 u32 ar;
393 } tr, es, ds, fs, gs;
394 } rmode;
395 struct {
396 u32 bitmask; /* 4 bits per segment (1 bit per field) */
397 struct kvm_save_segment seg[8];
398 } segment_cache;
399 int vpid;
400 bool emulation_required;
401
402 /* Support for vnmi-less CPUs */
403 int soft_vnmi_blocked;
404 ktime_t entry_time;
405 s64 vnmi_blocked_time;
406 u32 exit_reason;
407
408 bool rdtscp_enabled;
409
410 /* Support for a guest hypervisor (nested VMX) */
411 struct nested_vmx nested;
412 };
413
414 enum segment_cache_field {
415 SEG_FIELD_SEL = 0,
416 SEG_FIELD_BASE = 1,
417 SEG_FIELD_LIMIT = 2,
418 SEG_FIELD_AR = 3,
419
420 SEG_FIELD_NR = 4
421 };
422
423 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
424 {
425 return container_of(vcpu, struct vcpu_vmx, vcpu);
426 }
427
428 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
429 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
430 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
431 [number##_HIGH] = VMCS12_OFFSET(name)+4
432
433 static unsigned short vmcs_field_to_offset_table[] = {
434 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
435 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
436 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
437 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
438 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
439 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
440 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
441 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
442 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
443 FIELD(HOST_ES_SELECTOR, host_es_selector),
444 FIELD(HOST_CS_SELECTOR, host_cs_selector),
445 FIELD(HOST_SS_SELECTOR, host_ss_selector),
446 FIELD(HOST_DS_SELECTOR, host_ds_selector),
447 FIELD(HOST_FS_SELECTOR, host_fs_selector),
448 FIELD(HOST_GS_SELECTOR, host_gs_selector),
449 FIELD(HOST_TR_SELECTOR, host_tr_selector),
450 FIELD64(IO_BITMAP_A, io_bitmap_a),
451 FIELD64(IO_BITMAP_B, io_bitmap_b),
452 FIELD64(MSR_BITMAP, msr_bitmap),
453 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
454 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
455 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
456 FIELD64(TSC_OFFSET, tsc_offset),
457 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
458 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
459 FIELD64(EPT_POINTER, ept_pointer),
460 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
461 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
462 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
463 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
464 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
465 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
466 FIELD64(GUEST_PDPTR0, guest_pdptr0),
467 FIELD64(GUEST_PDPTR1, guest_pdptr1),
468 FIELD64(GUEST_PDPTR2, guest_pdptr2),
469 FIELD64(GUEST_PDPTR3, guest_pdptr3),
470 FIELD64(HOST_IA32_PAT, host_ia32_pat),
471 FIELD64(HOST_IA32_EFER, host_ia32_efer),
472 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
473 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
474 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
475 FIELD(EXCEPTION_BITMAP, exception_bitmap),
476 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
477 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
478 FIELD(CR3_TARGET_COUNT, cr3_target_count),
479 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
480 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
481 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
482 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
483 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
484 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
485 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
486 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
487 FIELD(TPR_THRESHOLD, tpr_threshold),
488 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
489 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
490 FIELD(VM_EXIT_REASON, vm_exit_reason),
491 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
492 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
493 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
494 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
495 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
496 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
497 FIELD(GUEST_ES_LIMIT, guest_es_limit),
498 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
499 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
500 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
501 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
502 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
503 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
504 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
505 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
506 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
507 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
508 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
509 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
510 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
511 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
512 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
513 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
514 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
515 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
516 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
517 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
518 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
519 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
520 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
521 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
522 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
523 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
524 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
525 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
526 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
527 FIELD(EXIT_QUALIFICATION, exit_qualification),
528 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
529 FIELD(GUEST_CR0, guest_cr0),
530 FIELD(GUEST_CR3, guest_cr3),
531 FIELD(GUEST_CR4, guest_cr4),
532 FIELD(GUEST_ES_BASE, guest_es_base),
533 FIELD(GUEST_CS_BASE, guest_cs_base),
534 FIELD(GUEST_SS_BASE, guest_ss_base),
535 FIELD(GUEST_DS_BASE, guest_ds_base),
536 FIELD(GUEST_FS_BASE, guest_fs_base),
537 FIELD(GUEST_GS_BASE, guest_gs_base),
538 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
539 FIELD(GUEST_TR_BASE, guest_tr_base),
540 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
541 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
542 FIELD(GUEST_DR7, guest_dr7),
543 FIELD(GUEST_RSP, guest_rsp),
544 FIELD(GUEST_RIP, guest_rip),
545 FIELD(GUEST_RFLAGS, guest_rflags),
546 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
547 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
548 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
549 FIELD(HOST_CR0, host_cr0),
550 FIELD(HOST_CR3, host_cr3),
551 FIELD(HOST_CR4, host_cr4),
552 FIELD(HOST_FS_BASE, host_fs_base),
553 FIELD(HOST_GS_BASE, host_gs_base),
554 FIELD(HOST_TR_BASE, host_tr_base),
555 FIELD(HOST_GDTR_BASE, host_gdtr_base),
556 FIELD(HOST_IDTR_BASE, host_idtr_base),
557 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
558 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
559 FIELD(HOST_RSP, host_rsp),
560 FIELD(HOST_RIP, host_rip),
561 };
562 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
563
564 static inline short vmcs_field_to_offset(unsigned long field)
565 {
566 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
567 return -1;
568 return vmcs_field_to_offset_table[field];
569 }
570
571 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
572 {
573 return to_vmx(vcpu)->nested.current_vmcs12;
574 }
575
576 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
577 {
578 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
579 if (is_error_page(page)) {
580 kvm_release_page_clean(page);
581 return NULL;
582 }
583 return page;
584 }
585
586 static void nested_release_page(struct page *page)
587 {
588 kvm_release_page_dirty(page);
589 }
590
591 static void nested_release_page_clean(struct page *page)
592 {
593 kvm_release_page_clean(page);
594 }
595
596 static u64 construct_eptp(unsigned long root_hpa);
597 static void kvm_cpu_vmxon(u64 addr);
598 static void kvm_cpu_vmxoff(void);
599 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
600 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
601
602 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
603 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
604 /*
605 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
606 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
607 */
608 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
609 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
610
611 static unsigned long *vmx_io_bitmap_a;
612 static unsigned long *vmx_io_bitmap_b;
613 static unsigned long *vmx_msr_bitmap_legacy;
614 static unsigned long *vmx_msr_bitmap_longmode;
615
616 static bool cpu_has_load_ia32_efer;
617
618 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
619 static DEFINE_SPINLOCK(vmx_vpid_lock);
620
621 static struct vmcs_config {
622 int size;
623 int order;
624 u32 revision_id;
625 u32 pin_based_exec_ctrl;
626 u32 cpu_based_exec_ctrl;
627 u32 cpu_based_2nd_exec_ctrl;
628 u32 vmexit_ctrl;
629 u32 vmentry_ctrl;
630 } vmcs_config;
631
632 static struct vmx_capability {
633 u32 ept;
634 u32 vpid;
635 } vmx_capability;
636
637 #define VMX_SEGMENT_FIELD(seg) \
638 [VCPU_SREG_##seg] = { \
639 .selector = GUEST_##seg##_SELECTOR, \
640 .base = GUEST_##seg##_BASE, \
641 .limit = GUEST_##seg##_LIMIT, \
642 .ar_bytes = GUEST_##seg##_AR_BYTES, \
643 }
644
645 static struct kvm_vmx_segment_field {
646 unsigned selector;
647 unsigned base;
648 unsigned limit;
649 unsigned ar_bytes;
650 } kvm_vmx_segment_fields[] = {
651 VMX_SEGMENT_FIELD(CS),
652 VMX_SEGMENT_FIELD(DS),
653 VMX_SEGMENT_FIELD(ES),
654 VMX_SEGMENT_FIELD(FS),
655 VMX_SEGMENT_FIELD(GS),
656 VMX_SEGMENT_FIELD(SS),
657 VMX_SEGMENT_FIELD(TR),
658 VMX_SEGMENT_FIELD(LDTR),
659 };
660
661 static u64 host_efer;
662
663 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
664
665 /*
666 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
667 * away by decrementing the array size.
668 */
669 static const u32 vmx_msr_index[] = {
670 #ifdef CONFIG_X86_64
671 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
672 #endif
673 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
674 };
675 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
676
677 static inline bool is_page_fault(u32 intr_info)
678 {
679 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
680 INTR_INFO_VALID_MASK)) ==
681 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
682 }
683
684 static inline bool is_no_device(u32 intr_info)
685 {
686 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
687 INTR_INFO_VALID_MASK)) ==
688 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
689 }
690
691 static inline bool is_invalid_opcode(u32 intr_info)
692 {
693 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
694 INTR_INFO_VALID_MASK)) ==
695 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
696 }
697
698 static inline bool is_external_interrupt(u32 intr_info)
699 {
700 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
701 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
702 }
703
704 static inline bool is_machine_check(u32 intr_info)
705 {
706 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
707 INTR_INFO_VALID_MASK)) ==
708 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
709 }
710
711 static inline bool cpu_has_vmx_msr_bitmap(void)
712 {
713 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
714 }
715
716 static inline bool cpu_has_vmx_tpr_shadow(void)
717 {
718 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
719 }
720
721 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
722 {
723 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
724 }
725
726 static inline bool cpu_has_secondary_exec_ctrls(void)
727 {
728 return vmcs_config.cpu_based_exec_ctrl &
729 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
730 }
731
732 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
733 {
734 return vmcs_config.cpu_based_2nd_exec_ctrl &
735 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
736 }
737
738 static inline bool cpu_has_vmx_flexpriority(void)
739 {
740 return cpu_has_vmx_tpr_shadow() &&
741 cpu_has_vmx_virtualize_apic_accesses();
742 }
743
744 static inline bool cpu_has_vmx_ept_execute_only(void)
745 {
746 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
747 }
748
749 static inline bool cpu_has_vmx_eptp_uncacheable(void)
750 {
751 return vmx_capability.ept & VMX_EPTP_UC_BIT;
752 }
753
754 static inline bool cpu_has_vmx_eptp_writeback(void)
755 {
756 return vmx_capability.ept & VMX_EPTP_WB_BIT;
757 }
758
759 static inline bool cpu_has_vmx_ept_2m_page(void)
760 {
761 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
762 }
763
764 static inline bool cpu_has_vmx_ept_1g_page(void)
765 {
766 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
767 }
768
769 static inline bool cpu_has_vmx_ept_4levels(void)
770 {
771 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
772 }
773
774 static inline bool cpu_has_vmx_invept_individual_addr(void)
775 {
776 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
777 }
778
779 static inline bool cpu_has_vmx_invept_context(void)
780 {
781 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
782 }
783
784 static inline bool cpu_has_vmx_invept_global(void)
785 {
786 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
787 }
788
789 static inline bool cpu_has_vmx_invvpid_single(void)
790 {
791 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
792 }
793
794 static inline bool cpu_has_vmx_invvpid_global(void)
795 {
796 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
797 }
798
799 static inline bool cpu_has_vmx_ept(void)
800 {
801 return vmcs_config.cpu_based_2nd_exec_ctrl &
802 SECONDARY_EXEC_ENABLE_EPT;
803 }
804
805 static inline bool cpu_has_vmx_unrestricted_guest(void)
806 {
807 return vmcs_config.cpu_based_2nd_exec_ctrl &
808 SECONDARY_EXEC_UNRESTRICTED_GUEST;
809 }
810
811 static inline bool cpu_has_vmx_ple(void)
812 {
813 return vmcs_config.cpu_based_2nd_exec_ctrl &
814 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
815 }
816
817 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
818 {
819 return flexpriority_enabled && irqchip_in_kernel(kvm);
820 }
821
822 static inline bool cpu_has_vmx_vpid(void)
823 {
824 return vmcs_config.cpu_based_2nd_exec_ctrl &
825 SECONDARY_EXEC_ENABLE_VPID;
826 }
827
828 static inline bool cpu_has_vmx_rdtscp(void)
829 {
830 return vmcs_config.cpu_based_2nd_exec_ctrl &
831 SECONDARY_EXEC_RDTSCP;
832 }
833
834 static inline bool cpu_has_virtual_nmis(void)
835 {
836 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
837 }
838
839 static inline bool cpu_has_vmx_wbinvd_exit(void)
840 {
841 return vmcs_config.cpu_based_2nd_exec_ctrl &
842 SECONDARY_EXEC_WBINVD_EXITING;
843 }
844
845 static inline bool report_flexpriority(void)
846 {
847 return flexpriority_enabled;
848 }
849
850 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
851 {
852 int i;
853
854 for (i = 0; i < vmx->nmsrs; ++i)
855 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
856 return i;
857 return -1;
858 }
859
860 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
861 {
862 struct {
863 u64 vpid : 16;
864 u64 rsvd : 48;
865 u64 gva;
866 } operand = { vpid, 0, gva };
867
868 asm volatile (__ex(ASM_VMX_INVVPID)
869 /* CF==1 or ZF==1 --> rc = -1 */
870 "; ja 1f ; ud2 ; 1:"
871 : : "a"(&operand), "c"(ext) : "cc", "memory");
872 }
873
874 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
875 {
876 struct {
877 u64 eptp, gpa;
878 } operand = {eptp, gpa};
879
880 asm volatile (__ex(ASM_VMX_INVEPT)
881 /* CF==1 or ZF==1 --> rc = -1 */
882 "; ja 1f ; ud2 ; 1:\n"
883 : : "a" (&operand), "c" (ext) : "cc", "memory");
884 }
885
886 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
887 {
888 int i;
889
890 i = __find_msr_index(vmx, msr);
891 if (i >= 0)
892 return &vmx->guest_msrs[i];
893 return NULL;
894 }
895
896 static void vmcs_clear(struct vmcs *vmcs)
897 {
898 u64 phys_addr = __pa(vmcs);
899 u8 error;
900
901 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
902 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
903 : "cc", "memory");
904 if (error)
905 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
906 vmcs, phys_addr);
907 }
908
909 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
910 {
911 vmcs_clear(loaded_vmcs->vmcs);
912 loaded_vmcs->cpu = -1;
913 loaded_vmcs->launched = 0;
914 }
915
916 static void vmcs_load(struct vmcs *vmcs)
917 {
918 u64 phys_addr = __pa(vmcs);
919 u8 error;
920
921 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
922 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
923 : "cc", "memory");
924 if (error)
925 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
926 vmcs, phys_addr);
927 }
928
929 static void __loaded_vmcs_clear(void *arg)
930 {
931 struct loaded_vmcs *loaded_vmcs = arg;
932 int cpu = raw_smp_processor_id();
933
934 if (loaded_vmcs->cpu != cpu)
935 return; /* vcpu migration can race with cpu offline */
936 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
937 per_cpu(current_vmcs, cpu) = NULL;
938 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
939 loaded_vmcs_init(loaded_vmcs);
940 }
941
942 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
943 {
944 if (loaded_vmcs->cpu != -1)
945 smp_call_function_single(
946 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
947 }
948
949 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
950 {
951 if (vmx->vpid == 0)
952 return;
953
954 if (cpu_has_vmx_invvpid_single())
955 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
956 }
957
958 static inline void vpid_sync_vcpu_global(void)
959 {
960 if (cpu_has_vmx_invvpid_global())
961 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
962 }
963
964 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
965 {
966 if (cpu_has_vmx_invvpid_single())
967 vpid_sync_vcpu_single(vmx);
968 else
969 vpid_sync_vcpu_global();
970 }
971
972 static inline void ept_sync_global(void)
973 {
974 if (cpu_has_vmx_invept_global())
975 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
976 }
977
978 static inline void ept_sync_context(u64 eptp)
979 {
980 if (enable_ept) {
981 if (cpu_has_vmx_invept_context())
982 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
983 else
984 ept_sync_global();
985 }
986 }
987
988 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
989 {
990 if (enable_ept) {
991 if (cpu_has_vmx_invept_individual_addr())
992 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
993 eptp, gpa);
994 else
995 ept_sync_context(eptp);
996 }
997 }
998
999 static __always_inline unsigned long vmcs_readl(unsigned long field)
1000 {
1001 unsigned long value;
1002
1003 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1004 : "=a"(value) : "d"(field) : "cc");
1005 return value;
1006 }
1007
1008 static __always_inline u16 vmcs_read16(unsigned long field)
1009 {
1010 return vmcs_readl(field);
1011 }
1012
1013 static __always_inline u32 vmcs_read32(unsigned long field)
1014 {
1015 return vmcs_readl(field);
1016 }
1017
1018 static __always_inline u64 vmcs_read64(unsigned long field)
1019 {
1020 #ifdef CONFIG_X86_64
1021 return vmcs_readl(field);
1022 #else
1023 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1024 #endif
1025 }
1026
1027 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1028 {
1029 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1030 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1031 dump_stack();
1032 }
1033
1034 static void vmcs_writel(unsigned long field, unsigned long value)
1035 {
1036 u8 error;
1037
1038 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1039 : "=q"(error) : "a"(value), "d"(field) : "cc");
1040 if (unlikely(error))
1041 vmwrite_error(field, value);
1042 }
1043
1044 static void vmcs_write16(unsigned long field, u16 value)
1045 {
1046 vmcs_writel(field, value);
1047 }
1048
1049 static void vmcs_write32(unsigned long field, u32 value)
1050 {
1051 vmcs_writel(field, value);
1052 }
1053
1054 static void vmcs_write64(unsigned long field, u64 value)
1055 {
1056 vmcs_writel(field, value);
1057 #ifndef CONFIG_X86_64
1058 asm volatile ("");
1059 vmcs_writel(field+1, value >> 32);
1060 #endif
1061 }
1062
1063 static void vmcs_clear_bits(unsigned long field, u32 mask)
1064 {
1065 vmcs_writel(field, vmcs_readl(field) & ~mask);
1066 }
1067
1068 static void vmcs_set_bits(unsigned long field, u32 mask)
1069 {
1070 vmcs_writel(field, vmcs_readl(field) | mask);
1071 }
1072
1073 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1074 {
1075 vmx->segment_cache.bitmask = 0;
1076 }
1077
1078 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1079 unsigned field)
1080 {
1081 bool ret;
1082 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1083
1084 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1085 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1086 vmx->segment_cache.bitmask = 0;
1087 }
1088 ret = vmx->segment_cache.bitmask & mask;
1089 vmx->segment_cache.bitmask |= mask;
1090 return ret;
1091 }
1092
1093 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1094 {
1095 u16 *p = &vmx->segment_cache.seg[seg].selector;
1096
1097 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1098 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1099 return *p;
1100 }
1101
1102 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1103 {
1104 ulong *p = &vmx->segment_cache.seg[seg].base;
1105
1106 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1107 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1108 return *p;
1109 }
1110
1111 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1112 {
1113 u32 *p = &vmx->segment_cache.seg[seg].limit;
1114
1115 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1116 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1117 return *p;
1118 }
1119
1120 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1121 {
1122 u32 *p = &vmx->segment_cache.seg[seg].ar;
1123
1124 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1125 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1126 return *p;
1127 }
1128
1129 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1130 {
1131 u32 eb;
1132
1133 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1134 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1135 if ((vcpu->guest_debug &
1136 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1137 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1138 eb |= 1u << BP_VECTOR;
1139 if (to_vmx(vcpu)->rmode.vm86_active)
1140 eb = ~0;
1141 if (enable_ept)
1142 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1143 if (vcpu->fpu_active)
1144 eb &= ~(1u << NM_VECTOR);
1145 vmcs_write32(EXCEPTION_BITMAP, eb);
1146 }
1147
1148 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1149 {
1150 unsigned i;
1151 struct msr_autoload *m = &vmx->msr_autoload;
1152
1153 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1154 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1155 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1156 return;
1157 }
1158
1159 for (i = 0; i < m->nr; ++i)
1160 if (m->guest[i].index == msr)
1161 break;
1162
1163 if (i == m->nr)
1164 return;
1165 --m->nr;
1166 m->guest[i] = m->guest[m->nr];
1167 m->host[i] = m->host[m->nr];
1168 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1169 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1170 }
1171
1172 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1173 u64 guest_val, u64 host_val)
1174 {
1175 unsigned i;
1176 struct msr_autoload *m = &vmx->msr_autoload;
1177
1178 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1179 vmcs_write64(GUEST_IA32_EFER, guest_val);
1180 vmcs_write64(HOST_IA32_EFER, host_val);
1181 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1182 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1183 return;
1184 }
1185
1186 for (i = 0; i < m->nr; ++i)
1187 if (m->guest[i].index == msr)
1188 break;
1189
1190 if (i == m->nr) {
1191 ++m->nr;
1192 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1193 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1194 }
1195
1196 m->guest[i].index = msr;
1197 m->guest[i].value = guest_val;
1198 m->host[i].index = msr;
1199 m->host[i].value = host_val;
1200 }
1201
1202 static void reload_tss(void)
1203 {
1204 /*
1205 * VT restores TR but not its size. Useless.
1206 */
1207 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1208 struct desc_struct *descs;
1209
1210 descs = (void *)gdt->address;
1211 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1212 load_TR_desc();
1213 }
1214
1215 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1216 {
1217 u64 guest_efer;
1218 u64 ignore_bits;
1219
1220 guest_efer = vmx->vcpu.arch.efer;
1221
1222 /*
1223 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1224 * outside long mode
1225 */
1226 ignore_bits = EFER_NX | EFER_SCE;
1227 #ifdef CONFIG_X86_64
1228 ignore_bits |= EFER_LMA | EFER_LME;
1229 /* SCE is meaningful only in long mode on Intel */
1230 if (guest_efer & EFER_LMA)
1231 ignore_bits &= ~(u64)EFER_SCE;
1232 #endif
1233 guest_efer &= ~ignore_bits;
1234 guest_efer |= host_efer & ignore_bits;
1235 vmx->guest_msrs[efer_offset].data = guest_efer;
1236 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1237
1238 clear_atomic_switch_msr(vmx, MSR_EFER);
1239 /* On ept, can't emulate nx, and must switch nx atomically */
1240 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1241 guest_efer = vmx->vcpu.arch.efer;
1242 if (!(guest_efer & EFER_LMA))
1243 guest_efer &= ~EFER_LME;
1244 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1245 return false;
1246 }
1247
1248 return true;
1249 }
1250
1251 static unsigned long segment_base(u16 selector)
1252 {
1253 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1254 struct desc_struct *d;
1255 unsigned long table_base;
1256 unsigned long v;
1257
1258 if (!(selector & ~3))
1259 return 0;
1260
1261 table_base = gdt->address;
1262
1263 if (selector & 4) { /* from ldt */
1264 u16 ldt_selector = kvm_read_ldt();
1265
1266 if (!(ldt_selector & ~3))
1267 return 0;
1268
1269 table_base = segment_base(ldt_selector);
1270 }
1271 d = (struct desc_struct *)(table_base + (selector & ~7));
1272 v = get_desc_base(d);
1273 #ifdef CONFIG_X86_64
1274 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1275 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1276 #endif
1277 return v;
1278 }
1279
1280 static inline unsigned long kvm_read_tr_base(void)
1281 {
1282 u16 tr;
1283 asm("str %0" : "=g"(tr));
1284 return segment_base(tr);
1285 }
1286
1287 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1288 {
1289 struct vcpu_vmx *vmx = to_vmx(vcpu);
1290 int i;
1291
1292 if (vmx->host_state.loaded)
1293 return;
1294
1295 vmx->host_state.loaded = 1;
1296 /*
1297 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1298 * allow segment selectors with cpl > 0 or ti == 1.
1299 */
1300 vmx->host_state.ldt_sel = kvm_read_ldt();
1301 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1302 savesegment(fs, vmx->host_state.fs_sel);
1303 if (!(vmx->host_state.fs_sel & 7)) {
1304 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1305 vmx->host_state.fs_reload_needed = 0;
1306 } else {
1307 vmcs_write16(HOST_FS_SELECTOR, 0);
1308 vmx->host_state.fs_reload_needed = 1;
1309 }
1310 savesegment(gs, vmx->host_state.gs_sel);
1311 if (!(vmx->host_state.gs_sel & 7))
1312 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1313 else {
1314 vmcs_write16(HOST_GS_SELECTOR, 0);
1315 vmx->host_state.gs_ldt_reload_needed = 1;
1316 }
1317
1318 #ifdef CONFIG_X86_64
1319 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1320 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1321 #else
1322 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1323 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1324 #endif
1325
1326 #ifdef CONFIG_X86_64
1327 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1328 if (is_long_mode(&vmx->vcpu))
1329 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1330 #endif
1331 for (i = 0; i < vmx->save_nmsrs; ++i)
1332 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1333 vmx->guest_msrs[i].data,
1334 vmx->guest_msrs[i].mask);
1335 }
1336
1337 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1338 {
1339 if (!vmx->host_state.loaded)
1340 return;
1341
1342 ++vmx->vcpu.stat.host_state_reload;
1343 vmx->host_state.loaded = 0;
1344 #ifdef CONFIG_X86_64
1345 if (is_long_mode(&vmx->vcpu))
1346 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1347 #endif
1348 if (vmx->host_state.gs_ldt_reload_needed) {
1349 kvm_load_ldt(vmx->host_state.ldt_sel);
1350 #ifdef CONFIG_X86_64
1351 load_gs_index(vmx->host_state.gs_sel);
1352 #else
1353 loadsegment(gs, vmx->host_state.gs_sel);
1354 #endif
1355 }
1356 if (vmx->host_state.fs_reload_needed)
1357 loadsegment(fs, vmx->host_state.fs_sel);
1358 reload_tss();
1359 #ifdef CONFIG_X86_64
1360 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1361 #endif
1362 if (current_thread_info()->status & TS_USEDFPU)
1363 clts();
1364 load_gdt(&__get_cpu_var(host_gdt));
1365 }
1366
1367 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1368 {
1369 preempt_disable();
1370 __vmx_load_host_state(vmx);
1371 preempt_enable();
1372 }
1373
1374 /*
1375 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1376 * vcpu mutex is already taken.
1377 */
1378 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1379 {
1380 struct vcpu_vmx *vmx = to_vmx(vcpu);
1381 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1382
1383 if (!vmm_exclusive)
1384 kvm_cpu_vmxon(phys_addr);
1385 else if (vmx->loaded_vmcs->cpu != cpu)
1386 loaded_vmcs_clear(vmx->loaded_vmcs);
1387
1388 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1389 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1390 vmcs_load(vmx->loaded_vmcs->vmcs);
1391 }
1392
1393 if (vmx->loaded_vmcs->cpu != cpu) {
1394 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1395 unsigned long sysenter_esp;
1396
1397 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1398 local_irq_disable();
1399 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1400 &per_cpu(loaded_vmcss_on_cpu, cpu));
1401 local_irq_enable();
1402
1403 /*
1404 * Linux uses per-cpu TSS and GDT, so set these when switching
1405 * processors.
1406 */
1407 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1408 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1409
1410 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1411 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1412 vmx->loaded_vmcs->cpu = cpu;
1413 }
1414 }
1415
1416 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1417 {
1418 __vmx_load_host_state(to_vmx(vcpu));
1419 if (!vmm_exclusive) {
1420 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1421 vcpu->cpu = -1;
1422 kvm_cpu_vmxoff();
1423 }
1424 }
1425
1426 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1427 {
1428 ulong cr0;
1429
1430 if (vcpu->fpu_active)
1431 return;
1432 vcpu->fpu_active = 1;
1433 cr0 = vmcs_readl(GUEST_CR0);
1434 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1435 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1436 vmcs_writel(GUEST_CR0, cr0);
1437 update_exception_bitmap(vcpu);
1438 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1439 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1440 }
1441
1442 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1443
1444 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1445 {
1446 vmx_decache_cr0_guest_bits(vcpu);
1447 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1448 update_exception_bitmap(vcpu);
1449 vcpu->arch.cr0_guest_owned_bits = 0;
1450 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1451 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1452 }
1453
1454 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1455 {
1456 unsigned long rflags, save_rflags;
1457
1458 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1459 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1460 rflags = vmcs_readl(GUEST_RFLAGS);
1461 if (to_vmx(vcpu)->rmode.vm86_active) {
1462 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1463 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1464 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1465 }
1466 to_vmx(vcpu)->rflags = rflags;
1467 }
1468 return to_vmx(vcpu)->rflags;
1469 }
1470
1471 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1472 {
1473 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1474 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1475 to_vmx(vcpu)->rflags = rflags;
1476 if (to_vmx(vcpu)->rmode.vm86_active) {
1477 to_vmx(vcpu)->rmode.save_rflags = rflags;
1478 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1479 }
1480 vmcs_writel(GUEST_RFLAGS, rflags);
1481 }
1482
1483 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1484 {
1485 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1486 int ret = 0;
1487
1488 if (interruptibility & GUEST_INTR_STATE_STI)
1489 ret |= KVM_X86_SHADOW_INT_STI;
1490 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1491 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1492
1493 return ret & mask;
1494 }
1495
1496 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1497 {
1498 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1499 u32 interruptibility = interruptibility_old;
1500
1501 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1502
1503 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1504 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1505 else if (mask & KVM_X86_SHADOW_INT_STI)
1506 interruptibility |= GUEST_INTR_STATE_STI;
1507
1508 if ((interruptibility != interruptibility_old))
1509 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1510 }
1511
1512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1513 {
1514 unsigned long rip;
1515
1516 rip = kvm_rip_read(vcpu);
1517 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1518 kvm_rip_write(vcpu, rip);
1519
1520 /* skipping an emulated instruction also counts */
1521 vmx_set_interrupt_shadow(vcpu, 0);
1522 }
1523
1524 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1525 {
1526 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1527 * explicitly skip the instruction because if the HLT state is set, then
1528 * the instruction is already executing and RIP has already been
1529 * advanced. */
1530 if (!yield_on_hlt &&
1531 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1532 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1533 }
1534
1535 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1536 bool has_error_code, u32 error_code,
1537 bool reinject)
1538 {
1539 struct vcpu_vmx *vmx = to_vmx(vcpu);
1540 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1541
1542 if (has_error_code) {
1543 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1544 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1545 }
1546
1547 if (vmx->rmode.vm86_active) {
1548 int inc_eip = 0;
1549 if (kvm_exception_is_soft(nr))
1550 inc_eip = vcpu->arch.event_exit_inst_len;
1551 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1552 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1553 return;
1554 }
1555
1556 if (kvm_exception_is_soft(nr)) {
1557 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1558 vmx->vcpu.arch.event_exit_inst_len);
1559 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1560 } else
1561 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1562
1563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1564 vmx_clear_hlt(vcpu);
1565 }
1566
1567 static bool vmx_rdtscp_supported(void)
1568 {
1569 return cpu_has_vmx_rdtscp();
1570 }
1571
1572 /*
1573 * Swap MSR entry in host/guest MSR entry array.
1574 */
1575 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1576 {
1577 struct shared_msr_entry tmp;
1578
1579 tmp = vmx->guest_msrs[to];
1580 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1581 vmx->guest_msrs[from] = tmp;
1582 }
1583
1584 /*
1585 * Set up the vmcs to automatically save and restore system
1586 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1587 * mode, as fiddling with msrs is very expensive.
1588 */
1589 static void setup_msrs(struct vcpu_vmx *vmx)
1590 {
1591 int save_nmsrs, index;
1592 unsigned long *msr_bitmap;
1593
1594 vmx_load_host_state(vmx);
1595 save_nmsrs = 0;
1596 #ifdef CONFIG_X86_64
1597 if (is_long_mode(&vmx->vcpu)) {
1598 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1599 if (index >= 0)
1600 move_msr_up(vmx, index, save_nmsrs++);
1601 index = __find_msr_index(vmx, MSR_LSTAR);
1602 if (index >= 0)
1603 move_msr_up(vmx, index, save_nmsrs++);
1604 index = __find_msr_index(vmx, MSR_CSTAR);
1605 if (index >= 0)
1606 move_msr_up(vmx, index, save_nmsrs++);
1607 index = __find_msr_index(vmx, MSR_TSC_AUX);
1608 if (index >= 0 && vmx->rdtscp_enabled)
1609 move_msr_up(vmx, index, save_nmsrs++);
1610 /*
1611 * MSR_STAR is only needed on long mode guests, and only
1612 * if efer.sce is enabled.
1613 */
1614 index = __find_msr_index(vmx, MSR_STAR);
1615 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1616 move_msr_up(vmx, index, save_nmsrs++);
1617 }
1618 #endif
1619 index = __find_msr_index(vmx, MSR_EFER);
1620 if (index >= 0 && update_transition_efer(vmx, index))
1621 move_msr_up(vmx, index, save_nmsrs++);
1622
1623 vmx->save_nmsrs = save_nmsrs;
1624
1625 if (cpu_has_vmx_msr_bitmap()) {
1626 if (is_long_mode(&vmx->vcpu))
1627 msr_bitmap = vmx_msr_bitmap_longmode;
1628 else
1629 msr_bitmap = vmx_msr_bitmap_legacy;
1630
1631 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1632 }
1633 }
1634
1635 /*
1636 * reads and returns guest's timestamp counter "register"
1637 * guest_tsc = host_tsc + tsc_offset -- 21.3
1638 */
1639 static u64 guest_read_tsc(void)
1640 {
1641 u64 host_tsc, tsc_offset;
1642
1643 rdtscll(host_tsc);
1644 tsc_offset = vmcs_read64(TSC_OFFSET);
1645 return host_tsc + tsc_offset;
1646 }
1647
1648 /*
1649 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1650 * ioctl. In this case the call-back should update internal vmx state to make
1651 * the changes effective.
1652 */
1653 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1654 {
1655 /* Nothing to do here */
1656 }
1657
1658 /*
1659 * writes 'offset' into guest's timestamp counter offset register
1660 */
1661 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1662 {
1663 vmcs_write64(TSC_OFFSET, offset);
1664 }
1665
1666 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1667 {
1668 u64 offset = vmcs_read64(TSC_OFFSET);
1669 vmcs_write64(TSC_OFFSET, offset + adjustment);
1670 }
1671
1672 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1673 {
1674 return target_tsc - native_read_tsc();
1675 }
1676
1677 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1678 {
1679 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1680 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1681 }
1682
1683 /*
1684 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1685 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1686 * all guests if the "nested" module option is off, and can also be disabled
1687 * for a single guest by disabling its VMX cpuid bit.
1688 */
1689 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1690 {
1691 return nested && guest_cpuid_has_vmx(vcpu);
1692 }
1693
1694 /*
1695 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1696 * returned for the various VMX controls MSRs when nested VMX is enabled.
1697 * The same values should also be used to verify that vmcs12 control fields are
1698 * valid during nested entry from L1 to L2.
1699 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1700 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1701 * bit in the high half is on if the corresponding bit in the control field
1702 * may be on. See also vmx_control_verify().
1703 * TODO: allow these variables to be modified (downgraded) by module options
1704 * or other means.
1705 */
1706 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1707 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1708 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1709 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1710 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1711 static __init void nested_vmx_setup_ctls_msrs(void)
1712 {
1713 /*
1714 * Note that as a general rule, the high half of the MSRs (bits in
1715 * the control fields which may be 1) should be initialized by the
1716 * intersection of the underlying hardware's MSR (i.e., features which
1717 * can be supported) and the list of features we want to expose -
1718 * because they are known to be properly supported in our code.
1719 * Also, usually, the low half of the MSRs (bits which must be 1) can
1720 * be set to 0, meaning that L1 may turn off any of these bits. The
1721 * reason is that if one of these bits is necessary, it will appear
1722 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1723 * fields of vmcs01 and vmcs02, will turn these bits off - and
1724 * nested_vmx_exit_handled() will not pass related exits to L1.
1725 * These rules have exceptions below.
1726 */
1727
1728 /* pin-based controls */
1729 /*
1730 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1731 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1732 */
1733 nested_vmx_pinbased_ctls_low = 0x16 ;
1734 nested_vmx_pinbased_ctls_high = 0x16 |
1735 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1736 PIN_BASED_VIRTUAL_NMIS;
1737
1738 /* exit controls */
1739 nested_vmx_exit_ctls_low = 0;
1740 #ifdef CONFIG_X86_64
1741 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1742 #else
1743 nested_vmx_exit_ctls_high = 0;
1744 #endif
1745
1746 /* entry controls */
1747 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1748 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1749 nested_vmx_entry_ctls_low = 0;
1750 nested_vmx_entry_ctls_high &=
1751 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1752
1753 /* cpu-based controls */
1754 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1755 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1756 nested_vmx_procbased_ctls_low = 0;
1757 nested_vmx_procbased_ctls_high &=
1758 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1759 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1760 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1761 CPU_BASED_CR3_STORE_EXITING |
1762 #ifdef CONFIG_X86_64
1763 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1764 #endif
1765 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1766 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1767 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1768 /*
1769 * We can allow some features even when not supported by the
1770 * hardware. For example, L1 can specify an MSR bitmap - and we
1771 * can use it to avoid exits to L1 - even when L0 runs L2
1772 * without MSR bitmaps.
1773 */
1774 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1775
1776 /* secondary cpu-based controls */
1777 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1778 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1779 nested_vmx_secondary_ctls_low = 0;
1780 nested_vmx_secondary_ctls_high &=
1781 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1782 }
1783
1784 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1785 {
1786 /*
1787 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1788 */
1789 return ((control & high) | low) == control;
1790 }
1791
1792 static inline u64 vmx_control_msr(u32 low, u32 high)
1793 {
1794 return low | ((u64)high << 32);
1795 }
1796
1797 /*
1798 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1799 * also let it use VMX-specific MSRs.
1800 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1801 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1802 * like all other MSRs).
1803 */
1804 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1805 {
1806 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1807 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1808 /*
1809 * According to the spec, processors which do not support VMX
1810 * should throw a #GP(0) when VMX capability MSRs are read.
1811 */
1812 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1813 return 1;
1814 }
1815
1816 switch (msr_index) {
1817 case MSR_IA32_FEATURE_CONTROL:
1818 *pdata = 0;
1819 break;
1820 case MSR_IA32_VMX_BASIC:
1821 /*
1822 * This MSR reports some information about VMX support. We
1823 * should return information about the VMX we emulate for the
1824 * guest, and the VMCS structure we give it - not about the
1825 * VMX support of the underlying hardware.
1826 */
1827 *pdata = VMCS12_REVISION |
1828 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1829 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1830 break;
1831 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1832 case MSR_IA32_VMX_PINBASED_CTLS:
1833 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1834 nested_vmx_pinbased_ctls_high);
1835 break;
1836 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1837 case MSR_IA32_VMX_PROCBASED_CTLS:
1838 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1839 nested_vmx_procbased_ctls_high);
1840 break;
1841 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1842 case MSR_IA32_VMX_EXIT_CTLS:
1843 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1844 nested_vmx_exit_ctls_high);
1845 break;
1846 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1847 case MSR_IA32_VMX_ENTRY_CTLS:
1848 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1849 nested_vmx_entry_ctls_high);
1850 break;
1851 case MSR_IA32_VMX_MISC:
1852 *pdata = 0;
1853 break;
1854 /*
1855 * These MSRs specify bits which the guest must keep fixed (on or off)
1856 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1857 * We picked the standard core2 setting.
1858 */
1859 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1860 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
1861 case MSR_IA32_VMX_CR0_FIXED0:
1862 *pdata = VMXON_CR0_ALWAYSON;
1863 break;
1864 case MSR_IA32_VMX_CR0_FIXED1:
1865 *pdata = -1ULL;
1866 break;
1867 case MSR_IA32_VMX_CR4_FIXED0:
1868 *pdata = VMXON_CR4_ALWAYSON;
1869 break;
1870 case MSR_IA32_VMX_CR4_FIXED1:
1871 *pdata = -1ULL;
1872 break;
1873 case MSR_IA32_VMX_VMCS_ENUM:
1874 *pdata = 0x1f;
1875 break;
1876 case MSR_IA32_VMX_PROCBASED_CTLS2:
1877 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1878 nested_vmx_secondary_ctls_high);
1879 break;
1880 case MSR_IA32_VMX_EPT_VPID_CAP:
1881 /* Currently, no nested ept or nested vpid */
1882 *pdata = 0;
1883 break;
1884 default:
1885 return 0;
1886 }
1887
1888 return 1;
1889 }
1890
1891 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1892 {
1893 if (!nested_vmx_allowed(vcpu))
1894 return 0;
1895
1896 if (msr_index == MSR_IA32_FEATURE_CONTROL)
1897 /* TODO: the right thing. */
1898 return 1;
1899 /*
1900 * No need to treat VMX capability MSRs specially: If we don't handle
1901 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
1902 */
1903 return 0;
1904 }
1905
1906 /*
1907 * Reads an msr value (of 'msr_index') into 'pdata'.
1908 * Returns 0 on success, non-0 otherwise.
1909 * Assumes vcpu_load() was already called.
1910 */
1911 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1912 {
1913 u64 data;
1914 struct shared_msr_entry *msr;
1915
1916 if (!pdata) {
1917 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1918 return -EINVAL;
1919 }
1920
1921 switch (msr_index) {
1922 #ifdef CONFIG_X86_64
1923 case MSR_FS_BASE:
1924 data = vmcs_readl(GUEST_FS_BASE);
1925 break;
1926 case MSR_GS_BASE:
1927 data = vmcs_readl(GUEST_GS_BASE);
1928 break;
1929 case MSR_KERNEL_GS_BASE:
1930 vmx_load_host_state(to_vmx(vcpu));
1931 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1932 break;
1933 #endif
1934 case MSR_EFER:
1935 return kvm_get_msr_common(vcpu, msr_index, pdata);
1936 case MSR_IA32_TSC:
1937 data = guest_read_tsc();
1938 break;
1939 case MSR_IA32_SYSENTER_CS:
1940 data = vmcs_read32(GUEST_SYSENTER_CS);
1941 break;
1942 case MSR_IA32_SYSENTER_EIP:
1943 data = vmcs_readl(GUEST_SYSENTER_EIP);
1944 break;
1945 case MSR_IA32_SYSENTER_ESP:
1946 data = vmcs_readl(GUEST_SYSENTER_ESP);
1947 break;
1948 case MSR_TSC_AUX:
1949 if (!to_vmx(vcpu)->rdtscp_enabled)
1950 return 1;
1951 /* Otherwise falls through */
1952 default:
1953 vmx_load_host_state(to_vmx(vcpu));
1954 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
1955 return 0;
1956 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1957 if (msr) {
1958 vmx_load_host_state(to_vmx(vcpu));
1959 data = msr->data;
1960 break;
1961 }
1962 return kvm_get_msr_common(vcpu, msr_index, pdata);
1963 }
1964
1965 *pdata = data;
1966 return 0;
1967 }
1968
1969 /*
1970 * Writes msr value into into the appropriate "register".
1971 * Returns 0 on success, non-0 otherwise.
1972 * Assumes vcpu_load() was already called.
1973 */
1974 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1975 {
1976 struct vcpu_vmx *vmx = to_vmx(vcpu);
1977 struct shared_msr_entry *msr;
1978 int ret = 0;
1979
1980 switch (msr_index) {
1981 case MSR_EFER:
1982 vmx_load_host_state(vmx);
1983 ret = kvm_set_msr_common(vcpu, msr_index, data);
1984 break;
1985 #ifdef CONFIG_X86_64
1986 case MSR_FS_BASE:
1987 vmx_segment_cache_clear(vmx);
1988 vmcs_writel(GUEST_FS_BASE, data);
1989 break;
1990 case MSR_GS_BASE:
1991 vmx_segment_cache_clear(vmx);
1992 vmcs_writel(GUEST_GS_BASE, data);
1993 break;
1994 case MSR_KERNEL_GS_BASE:
1995 vmx_load_host_state(vmx);
1996 vmx->msr_guest_kernel_gs_base = data;
1997 break;
1998 #endif
1999 case MSR_IA32_SYSENTER_CS:
2000 vmcs_write32(GUEST_SYSENTER_CS, data);
2001 break;
2002 case MSR_IA32_SYSENTER_EIP:
2003 vmcs_writel(GUEST_SYSENTER_EIP, data);
2004 break;
2005 case MSR_IA32_SYSENTER_ESP:
2006 vmcs_writel(GUEST_SYSENTER_ESP, data);
2007 break;
2008 case MSR_IA32_TSC:
2009 kvm_write_tsc(vcpu, data);
2010 break;
2011 case MSR_IA32_CR_PAT:
2012 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2013 vmcs_write64(GUEST_IA32_PAT, data);
2014 vcpu->arch.pat = data;
2015 break;
2016 }
2017 ret = kvm_set_msr_common(vcpu, msr_index, data);
2018 break;
2019 case MSR_TSC_AUX:
2020 if (!vmx->rdtscp_enabled)
2021 return 1;
2022 /* Check reserved bit, higher 32 bits should be zero */
2023 if ((data >> 32) != 0)
2024 return 1;
2025 /* Otherwise falls through */
2026 default:
2027 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2028 break;
2029 msr = find_msr_entry(vmx, msr_index);
2030 if (msr) {
2031 vmx_load_host_state(vmx);
2032 msr->data = data;
2033 break;
2034 }
2035 ret = kvm_set_msr_common(vcpu, msr_index, data);
2036 }
2037
2038 return ret;
2039 }
2040
2041 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2042 {
2043 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2044 switch (reg) {
2045 case VCPU_REGS_RSP:
2046 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2047 break;
2048 case VCPU_REGS_RIP:
2049 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2050 break;
2051 case VCPU_EXREG_PDPTR:
2052 if (enable_ept)
2053 ept_save_pdptrs(vcpu);
2054 break;
2055 default:
2056 break;
2057 }
2058 }
2059
2060 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2061 {
2062 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2063 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2064 else
2065 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2066
2067 update_exception_bitmap(vcpu);
2068 }
2069
2070 static __init int cpu_has_kvm_support(void)
2071 {
2072 return cpu_has_vmx();
2073 }
2074
2075 static __init int vmx_disabled_by_bios(void)
2076 {
2077 u64 msr;
2078
2079 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2080 if (msr & FEATURE_CONTROL_LOCKED) {
2081 /* launched w/ TXT and VMX disabled */
2082 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2083 && tboot_enabled())
2084 return 1;
2085 /* launched w/o TXT and VMX only enabled w/ TXT */
2086 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2087 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2088 && !tboot_enabled()) {
2089 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2090 "activate TXT before enabling KVM\n");
2091 return 1;
2092 }
2093 /* launched w/o TXT and VMX disabled */
2094 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2095 && !tboot_enabled())
2096 return 1;
2097 }
2098
2099 return 0;
2100 }
2101
2102 static void kvm_cpu_vmxon(u64 addr)
2103 {
2104 asm volatile (ASM_VMX_VMXON_RAX
2105 : : "a"(&addr), "m"(addr)
2106 : "memory", "cc");
2107 }
2108
2109 static int hardware_enable(void *garbage)
2110 {
2111 int cpu = raw_smp_processor_id();
2112 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2113 u64 old, test_bits;
2114
2115 if (read_cr4() & X86_CR4_VMXE)
2116 return -EBUSY;
2117
2118 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2119 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2120
2121 test_bits = FEATURE_CONTROL_LOCKED;
2122 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2123 if (tboot_enabled())
2124 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2125
2126 if ((old & test_bits) != test_bits) {
2127 /* enable and lock */
2128 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2129 }
2130 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2131
2132 if (vmm_exclusive) {
2133 kvm_cpu_vmxon(phys_addr);
2134 ept_sync_global();
2135 }
2136
2137 store_gdt(&__get_cpu_var(host_gdt));
2138
2139 return 0;
2140 }
2141
2142 static void vmclear_local_loaded_vmcss(void)
2143 {
2144 int cpu = raw_smp_processor_id();
2145 struct loaded_vmcs *v, *n;
2146
2147 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2148 loaded_vmcss_on_cpu_link)
2149 __loaded_vmcs_clear(v);
2150 }
2151
2152
2153 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2154 * tricks.
2155 */
2156 static void kvm_cpu_vmxoff(void)
2157 {
2158 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2159 }
2160
2161 static void hardware_disable(void *garbage)
2162 {
2163 if (vmm_exclusive) {
2164 vmclear_local_loaded_vmcss();
2165 kvm_cpu_vmxoff();
2166 }
2167 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2168 }
2169
2170 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2171 u32 msr, u32 *result)
2172 {
2173 u32 vmx_msr_low, vmx_msr_high;
2174 u32 ctl = ctl_min | ctl_opt;
2175
2176 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2177
2178 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2179 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2180
2181 /* Ensure minimum (required) set of control bits are supported. */
2182 if (ctl_min & ~ctl)
2183 return -EIO;
2184
2185 *result = ctl;
2186 return 0;
2187 }
2188
2189 static __init bool allow_1_setting(u32 msr, u32 ctl)
2190 {
2191 u32 vmx_msr_low, vmx_msr_high;
2192
2193 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2194 return vmx_msr_high & ctl;
2195 }
2196
2197 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2198 {
2199 u32 vmx_msr_low, vmx_msr_high;
2200 u32 min, opt, min2, opt2;
2201 u32 _pin_based_exec_control = 0;
2202 u32 _cpu_based_exec_control = 0;
2203 u32 _cpu_based_2nd_exec_control = 0;
2204 u32 _vmexit_control = 0;
2205 u32 _vmentry_control = 0;
2206
2207 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2208 opt = PIN_BASED_VIRTUAL_NMIS;
2209 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2210 &_pin_based_exec_control) < 0)
2211 return -EIO;
2212
2213 min =
2214 #ifdef CONFIG_X86_64
2215 CPU_BASED_CR8_LOAD_EXITING |
2216 CPU_BASED_CR8_STORE_EXITING |
2217 #endif
2218 CPU_BASED_CR3_LOAD_EXITING |
2219 CPU_BASED_CR3_STORE_EXITING |
2220 CPU_BASED_USE_IO_BITMAPS |
2221 CPU_BASED_MOV_DR_EXITING |
2222 CPU_BASED_USE_TSC_OFFSETING |
2223 CPU_BASED_MWAIT_EXITING |
2224 CPU_BASED_MONITOR_EXITING |
2225 CPU_BASED_INVLPG_EXITING;
2226
2227 if (yield_on_hlt)
2228 min |= CPU_BASED_HLT_EXITING;
2229
2230 opt = CPU_BASED_TPR_SHADOW |
2231 CPU_BASED_USE_MSR_BITMAPS |
2232 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2233 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2234 &_cpu_based_exec_control) < 0)
2235 return -EIO;
2236 #ifdef CONFIG_X86_64
2237 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2238 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2239 ~CPU_BASED_CR8_STORE_EXITING;
2240 #endif
2241 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2242 min2 = 0;
2243 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2244 SECONDARY_EXEC_WBINVD_EXITING |
2245 SECONDARY_EXEC_ENABLE_VPID |
2246 SECONDARY_EXEC_ENABLE_EPT |
2247 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2248 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2249 SECONDARY_EXEC_RDTSCP;
2250 if (adjust_vmx_controls(min2, opt2,
2251 MSR_IA32_VMX_PROCBASED_CTLS2,
2252 &_cpu_based_2nd_exec_control) < 0)
2253 return -EIO;
2254 }
2255 #ifndef CONFIG_X86_64
2256 if (!(_cpu_based_2nd_exec_control &
2257 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2258 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2259 #endif
2260 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2261 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2262 enabled */
2263 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2264 CPU_BASED_CR3_STORE_EXITING |
2265 CPU_BASED_INVLPG_EXITING);
2266 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2267 vmx_capability.ept, vmx_capability.vpid);
2268 }
2269
2270 min = 0;
2271 #ifdef CONFIG_X86_64
2272 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2273 #endif
2274 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2275 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2276 &_vmexit_control) < 0)
2277 return -EIO;
2278
2279 min = 0;
2280 opt = VM_ENTRY_LOAD_IA32_PAT;
2281 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2282 &_vmentry_control) < 0)
2283 return -EIO;
2284
2285 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2286
2287 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2288 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2289 return -EIO;
2290
2291 #ifdef CONFIG_X86_64
2292 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2293 if (vmx_msr_high & (1u<<16))
2294 return -EIO;
2295 #endif
2296
2297 /* Require Write-Back (WB) memory type for VMCS accesses. */
2298 if (((vmx_msr_high >> 18) & 15) != 6)
2299 return -EIO;
2300
2301 vmcs_conf->size = vmx_msr_high & 0x1fff;
2302 vmcs_conf->order = get_order(vmcs_config.size);
2303 vmcs_conf->revision_id = vmx_msr_low;
2304
2305 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2306 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2307 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2308 vmcs_conf->vmexit_ctrl = _vmexit_control;
2309 vmcs_conf->vmentry_ctrl = _vmentry_control;
2310
2311 cpu_has_load_ia32_efer =
2312 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2313 VM_ENTRY_LOAD_IA32_EFER)
2314 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2315 VM_EXIT_LOAD_IA32_EFER);
2316
2317 return 0;
2318 }
2319
2320 static struct vmcs *alloc_vmcs_cpu(int cpu)
2321 {
2322 int node = cpu_to_node(cpu);
2323 struct page *pages;
2324 struct vmcs *vmcs;
2325
2326 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2327 if (!pages)
2328 return NULL;
2329 vmcs = page_address(pages);
2330 memset(vmcs, 0, vmcs_config.size);
2331 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2332 return vmcs;
2333 }
2334
2335 static struct vmcs *alloc_vmcs(void)
2336 {
2337 return alloc_vmcs_cpu(raw_smp_processor_id());
2338 }
2339
2340 static void free_vmcs(struct vmcs *vmcs)
2341 {
2342 free_pages((unsigned long)vmcs, vmcs_config.order);
2343 }
2344
2345 /*
2346 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2347 */
2348 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2349 {
2350 if (!loaded_vmcs->vmcs)
2351 return;
2352 loaded_vmcs_clear(loaded_vmcs);
2353 free_vmcs(loaded_vmcs->vmcs);
2354 loaded_vmcs->vmcs = NULL;
2355 }
2356
2357 static void free_kvm_area(void)
2358 {
2359 int cpu;
2360
2361 for_each_possible_cpu(cpu) {
2362 free_vmcs(per_cpu(vmxarea, cpu));
2363 per_cpu(vmxarea, cpu) = NULL;
2364 }
2365 }
2366
2367 static __init int alloc_kvm_area(void)
2368 {
2369 int cpu;
2370
2371 for_each_possible_cpu(cpu) {
2372 struct vmcs *vmcs;
2373
2374 vmcs = alloc_vmcs_cpu(cpu);
2375 if (!vmcs) {
2376 free_kvm_area();
2377 return -ENOMEM;
2378 }
2379
2380 per_cpu(vmxarea, cpu) = vmcs;
2381 }
2382 return 0;
2383 }
2384
2385 static __init int hardware_setup(void)
2386 {
2387 if (setup_vmcs_config(&vmcs_config) < 0)
2388 return -EIO;
2389
2390 if (boot_cpu_has(X86_FEATURE_NX))
2391 kvm_enable_efer_bits(EFER_NX);
2392
2393 if (!cpu_has_vmx_vpid())
2394 enable_vpid = 0;
2395
2396 if (!cpu_has_vmx_ept() ||
2397 !cpu_has_vmx_ept_4levels()) {
2398 enable_ept = 0;
2399 enable_unrestricted_guest = 0;
2400 }
2401
2402 if (!cpu_has_vmx_unrestricted_guest())
2403 enable_unrestricted_guest = 0;
2404
2405 if (!cpu_has_vmx_flexpriority())
2406 flexpriority_enabled = 0;
2407
2408 if (!cpu_has_vmx_tpr_shadow())
2409 kvm_x86_ops->update_cr8_intercept = NULL;
2410
2411 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2412 kvm_disable_largepages();
2413
2414 if (!cpu_has_vmx_ple())
2415 ple_gap = 0;
2416
2417 if (nested)
2418 nested_vmx_setup_ctls_msrs();
2419
2420 return alloc_kvm_area();
2421 }
2422
2423 static __exit void hardware_unsetup(void)
2424 {
2425 free_kvm_area();
2426 }
2427
2428 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2429 {
2430 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2431
2432 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2433 vmcs_write16(sf->selector, save->selector);
2434 vmcs_writel(sf->base, save->base);
2435 vmcs_write32(sf->limit, save->limit);
2436 vmcs_write32(sf->ar_bytes, save->ar);
2437 } else {
2438 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2439 << AR_DPL_SHIFT;
2440 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2441 }
2442 }
2443
2444 static void enter_pmode(struct kvm_vcpu *vcpu)
2445 {
2446 unsigned long flags;
2447 struct vcpu_vmx *vmx = to_vmx(vcpu);
2448
2449 vmx->emulation_required = 1;
2450 vmx->rmode.vm86_active = 0;
2451
2452 vmx_segment_cache_clear(vmx);
2453
2454 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2455 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2456 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2457 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2458
2459 flags = vmcs_readl(GUEST_RFLAGS);
2460 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2461 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2462 vmcs_writel(GUEST_RFLAGS, flags);
2463
2464 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2465 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2466
2467 update_exception_bitmap(vcpu);
2468
2469 if (emulate_invalid_guest_state)
2470 return;
2471
2472 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2473 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2474 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2475 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2476
2477 vmx_segment_cache_clear(vmx);
2478
2479 vmcs_write16(GUEST_SS_SELECTOR, 0);
2480 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2481
2482 vmcs_write16(GUEST_CS_SELECTOR,
2483 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2484 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2485 }
2486
2487 static gva_t rmode_tss_base(struct kvm *kvm)
2488 {
2489 if (!kvm->arch.tss_addr) {
2490 struct kvm_memslots *slots;
2491 gfn_t base_gfn;
2492
2493 slots = kvm_memslots(kvm);
2494 base_gfn = slots->memslots[0].base_gfn +
2495 kvm->memslots->memslots[0].npages - 3;
2496 return base_gfn << PAGE_SHIFT;
2497 }
2498 return kvm->arch.tss_addr;
2499 }
2500
2501 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2502 {
2503 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2504
2505 save->selector = vmcs_read16(sf->selector);
2506 save->base = vmcs_readl(sf->base);
2507 save->limit = vmcs_read32(sf->limit);
2508 save->ar = vmcs_read32(sf->ar_bytes);
2509 vmcs_write16(sf->selector, save->base >> 4);
2510 vmcs_write32(sf->base, save->base & 0xffff0);
2511 vmcs_write32(sf->limit, 0xffff);
2512 vmcs_write32(sf->ar_bytes, 0xf3);
2513 if (save->base & 0xf)
2514 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2515 " aligned when entering protected mode (seg=%d)",
2516 seg);
2517 }
2518
2519 static void enter_rmode(struct kvm_vcpu *vcpu)
2520 {
2521 unsigned long flags;
2522 struct vcpu_vmx *vmx = to_vmx(vcpu);
2523
2524 if (enable_unrestricted_guest)
2525 return;
2526
2527 vmx->emulation_required = 1;
2528 vmx->rmode.vm86_active = 1;
2529
2530 /*
2531 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2532 * vcpu. Call it here with phys address pointing 16M below 4G.
2533 */
2534 if (!vcpu->kvm->arch.tss_addr) {
2535 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2536 "called before entering vcpu\n");
2537 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2538 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2539 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2540 }
2541
2542 vmx_segment_cache_clear(vmx);
2543
2544 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2545 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2546 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2547
2548 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2549 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2550
2551 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2552 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2553
2554 flags = vmcs_readl(GUEST_RFLAGS);
2555 vmx->rmode.save_rflags = flags;
2556
2557 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2558
2559 vmcs_writel(GUEST_RFLAGS, flags);
2560 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2561 update_exception_bitmap(vcpu);
2562
2563 if (emulate_invalid_guest_state)
2564 goto continue_rmode;
2565
2566 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2567 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2568 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2569
2570 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2571 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2572 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2573 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2574 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2575
2576 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2577 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2578 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2579 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2580
2581 continue_rmode:
2582 kvm_mmu_reset_context(vcpu);
2583 }
2584
2585 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2586 {
2587 struct vcpu_vmx *vmx = to_vmx(vcpu);
2588 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2589
2590 if (!msr)
2591 return;
2592
2593 /*
2594 * Force kernel_gs_base reloading before EFER changes, as control
2595 * of this msr depends on is_long_mode().
2596 */
2597 vmx_load_host_state(to_vmx(vcpu));
2598 vcpu->arch.efer = efer;
2599 if (efer & EFER_LMA) {
2600 vmcs_write32(VM_ENTRY_CONTROLS,
2601 vmcs_read32(VM_ENTRY_CONTROLS) |
2602 VM_ENTRY_IA32E_MODE);
2603 msr->data = efer;
2604 } else {
2605 vmcs_write32(VM_ENTRY_CONTROLS,
2606 vmcs_read32(VM_ENTRY_CONTROLS) &
2607 ~VM_ENTRY_IA32E_MODE);
2608
2609 msr->data = efer & ~EFER_LME;
2610 }
2611 setup_msrs(vmx);
2612 }
2613
2614 #ifdef CONFIG_X86_64
2615
2616 static void enter_lmode(struct kvm_vcpu *vcpu)
2617 {
2618 u32 guest_tr_ar;
2619
2620 vmx_segment_cache_clear(to_vmx(vcpu));
2621
2622 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2623 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2624 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2625 __func__);
2626 vmcs_write32(GUEST_TR_AR_BYTES,
2627 (guest_tr_ar & ~AR_TYPE_MASK)
2628 | AR_TYPE_BUSY_64_TSS);
2629 }
2630 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2631 }
2632
2633 static void exit_lmode(struct kvm_vcpu *vcpu)
2634 {
2635 vmcs_write32(VM_ENTRY_CONTROLS,
2636 vmcs_read32(VM_ENTRY_CONTROLS)
2637 & ~VM_ENTRY_IA32E_MODE);
2638 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2639 }
2640
2641 #endif
2642
2643 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2644 {
2645 vpid_sync_context(to_vmx(vcpu));
2646 if (enable_ept) {
2647 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2648 return;
2649 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2650 }
2651 }
2652
2653 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2654 {
2655 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2656
2657 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2658 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2659 }
2660
2661 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2662 {
2663 if (enable_ept && is_paging(vcpu))
2664 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2665 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2666 }
2667
2668 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2669 {
2670 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2671
2672 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2673 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2674 }
2675
2676 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2677 {
2678 if (!test_bit(VCPU_EXREG_PDPTR,
2679 (unsigned long *)&vcpu->arch.regs_dirty))
2680 return;
2681
2682 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2683 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2684 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2685 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2686 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2687 }
2688 }
2689
2690 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2691 {
2692 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2693 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2694 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2695 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2696 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2697 }
2698
2699 __set_bit(VCPU_EXREG_PDPTR,
2700 (unsigned long *)&vcpu->arch.regs_avail);
2701 __set_bit(VCPU_EXREG_PDPTR,
2702 (unsigned long *)&vcpu->arch.regs_dirty);
2703 }
2704
2705 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2706
2707 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2708 unsigned long cr0,
2709 struct kvm_vcpu *vcpu)
2710 {
2711 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2712 vmx_decache_cr3(vcpu);
2713 if (!(cr0 & X86_CR0_PG)) {
2714 /* From paging/starting to nonpaging */
2715 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2716 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2717 (CPU_BASED_CR3_LOAD_EXITING |
2718 CPU_BASED_CR3_STORE_EXITING));
2719 vcpu->arch.cr0 = cr0;
2720 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2721 } else if (!is_paging(vcpu)) {
2722 /* From nonpaging to paging */
2723 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2724 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2725 ~(CPU_BASED_CR3_LOAD_EXITING |
2726 CPU_BASED_CR3_STORE_EXITING));
2727 vcpu->arch.cr0 = cr0;
2728 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2729 }
2730
2731 if (!(cr0 & X86_CR0_WP))
2732 *hw_cr0 &= ~X86_CR0_WP;
2733 }
2734
2735 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2736 {
2737 struct vcpu_vmx *vmx = to_vmx(vcpu);
2738 unsigned long hw_cr0;
2739
2740 if (enable_unrestricted_guest)
2741 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2742 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2743 else
2744 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2745
2746 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2747 enter_pmode(vcpu);
2748
2749 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2750 enter_rmode(vcpu);
2751
2752 #ifdef CONFIG_X86_64
2753 if (vcpu->arch.efer & EFER_LME) {
2754 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2755 enter_lmode(vcpu);
2756 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2757 exit_lmode(vcpu);
2758 }
2759 #endif
2760
2761 if (enable_ept)
2762 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2763
2764 if (!vcpu->fpu_active)
2765 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2766
2767 vmcs_writel(CR0_READ_SHADOW, cr0);
2768 vmcs_writel(GUEST_CR0, hw_cr0);
2769 vcpu->arch.cr0 = cr0;
2770 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2771 }
2772
2773 static u64 construct_eptp(unsigned long root_hpa)
2774 {
2775 u64 eptp;
2776
2777 /* TODO write the value reading from MSR */
2778 eptp = VMX_EPT_DEFAULT_MT |
2779 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2780 eptp |= (root_hpa & PAGE_MASK);
2781
2782 return eptp;
2783 }
2784
2785 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2786 {
2787 unsigned long guest_cr3;
2788 u64 eptp;
2789
2790 guest_cr3 = cr3;
2791 if (enable_ept) {
2792 eptp = construct_eptp(cr3);
2793 vmcs_write64(EPT_POINTER, eptp);
2794 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2795 vcpu->kvm->arch.ept_identity_map_addr;
2796 ept_load_pdptrs(vcpu);
2797 }
2798
2799 vmx_flush_tlb(vcpu);
2800 vmcs_writel(GUEST_CR3, guest_cr3);
2801 }
2802
2803 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2804 {
2805 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2806 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2807
2808 if (cr4 & X86_CR4_VMXE) {
2809 /*
2810 * To use VMXON (and later other VMX instructions), a guest
2811 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2812 * So basically the check on whether to allow nested VMX
2813 * is here.
2814 */
2815 if (!nested_vmx_allowed(vcpu))
2816 return 1;
2817 } else if (to_vmx(vcpu)->nested.vmxon)
2818 return 1;
2819
2820 vcpu->arch.cr4 = cr4;
2821 if (enable_ept) {
2822 if (!is_paging(vcpu)) {
2823 hw_cr4 &= ~X86_CR4_PAE;
2824 hw_cr4 |= X86_CR4_PSE;
2825 } else if (!(cr4 & X86_CR4_PAE)) {
2826 hw_cr4 &= ~X86_CR4_PAE;
2827 }
2828 }
2829
2830 vmcs_writel(CR4_READ_SHADOW, cr4);
2831 vmcs_writel(GUEST_CR4, hw_cr4);
2832 return 0;
2833 }
2834
2835 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2836 struct kvm_segment *var, int seg)
2837 {
2838 struct vcpu_vmx *vmx = to_vmx(vcpu);
2839 struct kvm_save_segment *save;
2840 u32 ar;
2841
2842 if (vmx->rmode.vm86_active
2843 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2844 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2845 || seg == VCPU_SREG_GS)
2846 && !emulate_invalid_guest_state) {
2847 switch (seg) {
2848 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2849 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2850 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2851 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2852 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2853 default: BUG();
2854 }
2855 var->selector = save->selector;
2856 var->base = save->base;
2857 var->limit = save->limit;
2858 ar = save->ar;
2859 if (seg == VCPU_SREG_TR
2860 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2861 goto use_saved_rmode_seg;
2862 }
2863 var->base = vmx_read_guest_seg_base(vmx, seg);
2864 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2865 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2866 ar = vmx_read_guest_seg_ar(vmx, seg);
2867 use_saved_rmode_seg:
2868 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2869 ar = 0;
2870 var->type = ar & 15;
2871 var->s = (ar >> 4) & 1;
2872 var->dpl = (ar >> 5) & 3;
2873 var->present = (ar >> 7) & 1;
2874 var->avl = (ar >> 12) & 1;
2875 var->l = (ar >> 13) & 1;
2876 var->db = (ar >> 14) & 1;
2877 var->g = (ar >> 15) & 1;
2878 var->unusable = (ar >> 16) & 1;
2879 }
2880
2881 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2882 {
2883 struct kvm_segment s;
2884
2885 if (to_vmx(vcpu)->rmode.vm86_active) {
2886 vmx_get_segment(vcpu, &s, seg);
2887 return s.base;
2888 }
2889 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2890 }
2891
2892 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2893 {
2894 if (!is_protmode(vcpu))
2895 return 0;
2896
2897 if (!is_long_mode(vcpu)
2898 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2899 return 3;
2900
2901 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2902 }
2903
2904 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2905 {
2906 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2907 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2908 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2909 }
2910 return to_vmx(vcpu)->cpl;
2911 }
2912
2913
2914 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2915 {
2916 u32 ar;
2917
2918 if (var->unusable)
2919 ar = 1 << 16;
2920 else {
2921 ar = var->type & 15;
2922 ar |= (var->s & 1) << 4;
2923 ar |= (var->dpl & 3) << 5;
2924 ar |= (var->present & 1) << 7;
2925 ar |= (var->avl & 1) << 12;
2926 ar |= (var->l & 1) << 13;
2927 ar |= (var->db & 1) << 14;
2928 ar |= (var->g & 1) << 15;
2929 }
2930 if (ar == 0) /* a 0 value means unusable */
2931 ar = AR_UNUSABLE_MASK;
2932
2933 return ar;
2934 }
2935
2936 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2937 struct kvm_segment *var, int seg)
2938 {
2939 struct vcpu_vmx *vmx = to_vmx(vcpu);
2940 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2941 u32 ar;
2942
2943 vmx_segment_cache_clear(vmx);
2944
2945 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2946 vmcs_write16(sf->selector, var->selector);
2947 vmx->rmode.tr.selector = var->selector;
2948 vmx->rmode.tr.base = var->base;
2949 vmx->rmode.tr.limit = var->limit;
2950 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2951 return;
2952 }
2953 vmcs_writel(sf->base, var->base);
2954 vmcs_write32(sf->limit, var->limit);
2955 vmcs_write16(sf->selector, var->selector);
2956 if (vmx->rmode.vm86_active && var->s) {
2957 /*
2958 * Hack real-mode segments into vm86 compatibility.
2959 */
2960 if (var->base == 0xffff0000 && var->selector == 0xf000)
2961 vmcs_writel(sf->base, 0xf0000);
2962 ar = 0xf3;
2963 } else
2964 ar = vmx_segment_access_rights(var);
2965
2966 /*
2967 * Fix the "Accessed" bit in AR field of segment registers for older
2968 * qemu binaries.
2969 * IA32 arch specifies that at the time of processor reset the
2970 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2971 * is setting it to 0 in the usedland code. This causes invalid guest
2972 * state vmexit when "unrestricted guest" mode is turned on.
2973 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2974 * tree. Newer qemu binaries with that qemu fix would not need this
2975 * kvm hack.
2976 */
2977 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2978 ar |= 0x1; /* Accessed */
2979
2980 vmcs_write32(sf->ar_bytes, ar);
2981 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2982 }
2983
2984 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2985 {
2986 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2987
2988 *db = (ar >> 14) & 1;
2989 *l = (ar >> 13) & 1;
2990 }
2991
2992 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2993 {
2994 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2995 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2996 }
2997
2998 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2999 {
3000 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3001 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3002 }
3003
3004 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3005 {
3006 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3007 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3008 }
3009
3010 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3011 {
3012 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3013 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3014 }
3015
3016 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3017 {
3018 struct kvm_segment var;
3019 u32 ar;
3020
3021 vmx_get_segment(vcpu, &var, seg);
3022 ar = vmx_segment_access_rights(&var);
3023
3024 if (var.base != (var.selector << 4))
3025 return false;
3026 if (var.limit != 0xffff)
3027 return false;
3028 if (ar != 0xf3)
3029 return false;
3030
3031 return true;
3032 }
3033
3034 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3035 {
3036 struct kvm_segment cs;
3037 unsigned int cs_rpl;
3038
3039 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3040 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3041
3042 if (cs.unusable)
3043 return false;
3044 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3045 return false;
3046 if (!cs.s)
3047 return false;
3048 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3049 if (cs.dpl > cs_rpl)
3050 return false;
3051 } else {
3052 if (cs.dpl != cs_rpl)
3053 return false;
3054 }
3055 if (!cs.present)
3056 return false;
3057
3058 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3059 return true;
3060 }
3061
3062 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3063 {
3064 struct kvm_segment ss;
3065 unsigned int ss_rpl;
3066
3067 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3068 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3069
3070 if (ss.unusable)
3071 return true;
3072 if (ss.type != 3 && ss.type != 7)
3073 return false;
3074 if (!ss.s)
3075 return false;
3076 if (ss.dpl != ss_rpl) /* DPL != RPL */
3077 return false;
3078 if (!ss.present)
3079 return false;
3080
3081 return true;
3082 }
3083
3084 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3085 {
3086 struct kvm_segment var;
3087 unsigned int rpl;
3088
3089 vmx_get_segment(vcpu, &var, seg);
3090 rpl = var.selector & SELECTOR_RPL_MASK;
3091
3092 if (var.unusable)
3093 return true;
3094 if (!var.s)
3095 return false;
3096 if (!var.present)
3097 return false;
3098 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3099 if (var.dpl < rpl) /* DPL < RPL */
3100 return false;
3101 }
3102
3103 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3104 * rights flags
3105 */
3106 return true;
3107 }
3108
3109 static bool tr_valid(struct kvm_vcpu *vcpu)
3110 {
3111 struct kvm_segment tr;
3112
3113 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3114
3115 if (tr.unusable)
3116 return false;
3117 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3118 return false;
3119 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3120 return false;
3121 if (!tr.present)
3122 return false;
3123
3124 return true;
3125 }
3126
3127 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3128 {
3129 struct kvm_segment ldtr;
3130
3131 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3132
3133 if (ldtr.unusable)
3134 return true;
3135 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3136 return false;
3137 if (ldtr.type != 2)
3138 return false;
3139 if (!ldtr.present)
3140 return false;
3141
3142 return true;
3143 }
3144
3145 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3146 {
3147 struct kvm_segment cs, ss;
3148
3149 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3150 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3151
3152 return ((cs.selector & SELECTOR_RPL_MASK) ==
3153 (ss.selector & SELECTOR_RPL_MASK));
3154 }
3155
3156 /*
3157 * Check if guest state is valid. Returns true if valid, false if
3158 * not.
3159 * We assume that registers are always usable
3160 */
3161 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3162 {
3163 /* real mode guest state checks */
3164 if (!is_protmode(vcpu)) {
3165 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3166 return false;
3167 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3168 return false;
3169 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3170 return false;
3171 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3172 return false;
3173 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3174 return false;
3175 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3176 return false;
3177 } else {
3178 /* protected mode guest state checks */
3179 if (!cs_ss_rpl_check(vcpu))
3180 return false;
3181 if (!code_segment_valid(vcpu))
3182 return false;
3183 if (!stack_segment_valid(vcpu))
3184 return false;
3185 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3186 return false;
3187 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3188 return false;
3189 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3190 return false;
3191 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3192 return false;
3193 if (!tr_valid(vcpu))
3194 return false;
3195 if (!ldtr_valid(vcpu))
3196 return false;
3197 }
3198 /* TODO:
3199 * - Add checks on RIP
3200 * - Add checks on RFLAGS
3201 */
3202
3203 return true;
3204 }
3205
3206 static int init_rmode_tss(struct kvm *kvm)
3207 {
3208 gfn_t fn;
3209 u16 data = 0;
3210 int r, idx, ret = 0;
3211
3212 idx = srcu_read_lock(&kvm->srcu);
3213 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3214 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3215 if (r < 0)
3216 goto out;
3217 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3218 r = kvm_write_guest_page(kvm, fn++, &data,
3219 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3220 if (r < 0)
3221 goto out;
3222 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3223 if (r < 0)
3224 goto out;
3225 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3226 if (r < 0)
3227 goto out;
3228 data = ~0;
3229 r = kvm_write_guest_page(kvm, fn, &data,
3230 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3231 sizeof(u8));
3232 if (r < 0)
3233 goto out;
3234
3235 ret = 1;
3236 out:
3237 srcu_read_unlock(&kvm->srcu, idx);
3238 return ret;
3239 }
3240
3241 static int init_rmode_identity_map(struct kvm *kvm)
3242 {
3243 int i, idx, r, ret;
3244 pfn_t identity_map_pfn;
3245 u32 tmp;
3246
3247 if (!enable_ept)
3248 return 1;
3249 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3250 printk(KERN_ERR "EPT: identity-mapping pagetable "
3251 "haven't been allocated!\n");
3252 return 0;
3253 }
3254 if (likely(kvm->arch.ept_identity_pagetable_done))
3255 return 1;
3256 ret = 0;
3257 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3258 idx = srcu_read_lock(&kvm->srcu);
3259 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3260 if (r < 0)
3261 goto out;
3262 /* Set up identity-mapping pagetable for EPT in real mode */
3263 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3264 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3265 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3266 r = kvm_write_guest_page(kvm, identity_map_pfn,
3267 &tmp, i * sizeof(tmp), sizeof(tmp));
3268 if (r < 0)
3269 goto out;
3270 }
3271 kvm->arch.ept_identity_pagetable_done = true;
3272 ret = 1;
3273 out:
3274 srcu_read_unlock(&kvm->srcu, idx);
3275 return ret;
3276 }
3277
3278 static void seg_setup(int seg)
3279 {
3280 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3281 unsigned int ar;
3282
3283 vmcs_write16(sf->selector, 0);
3284 vmcs_writel(sf->base, 0);
3285 vmcs_write32(sf->limit, 0xffff);
3286 if (enable_unrestricted_guest) {
3287 ar = 0x93;
3288 if (seg == VCPU_SREG_CS)
3289 ar |= 0x08; /* code segment */
3290 } else
3291 ar = 0xf3;
3292
3293 vmcs_write32(sf->ar_bytes, ar);
3294 }
3295
3296 static int alloc_apic_access_page(struct kvm *kvm)
3297 {
3298 struct kvm_userspace_memory_region kvm_userspace_mem;
3299 int r = 0;
3300
3301 mutex_lock(&kvm->slots_lock);
3302 if (kvm->arch.apic_access_page)
3303 goto out;
3304 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3305 kvm_userspace_mem.flags = 0;
3306 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3307 kvm_userspace_mem.memory_size = PAGE_SIZE;
3308 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3309 if (r)
3310 goto out;
3311
3312 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3313 out:
3314 mutex_unlock(&kvm->slots_lock);
3315 return r;
3316 }
3317
3318 static int alloc_identity_pagetable(struct kvm *kvm)
3319 {
3320 struct kvm_userspace_memory_region kvm_userspace_mem;
3321 int r = 0;
3322
3323 mutex_lock(&kvm->slots_lock);
3324 if (kvm->arch.ept_identity_pagetable)
3325 goto out;
3326 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3327 kvm_userspace_mem.flags = 0;
3328 kvm_userspace_mem.guest_phys_addr =
3329 kvm->arch.ept_identity_map_addr;
3330 kvm_userspace_mem.memory_size = PAGE_SIZE;
3331 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3332 if (r)
3333 goto out;
3334
3335 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3336 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3337 out:
3338 mutex_unlock(&kvm->slots_lock);
3339 return r;
3340 }
3341
3342 static void allocate_vpid(struct vcpu_vmx *vmx)
3343 {
3344 int vpid;
3345
3346 vmx->vpid = 0;
3347 if (!enable_vpid)
3348 return;
3349 spin_lock(&vmx_vpid_lock);
3350 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3351 if (vpid < VMX_NR_VPIDS) {
3352 vmx->vpid = vpid;
3353 __set_bit(vpid, vmx_vpid_bitmap);
3354 }
3355 spin_unlock(&vmx_vpid_lock);
3356 }
3357
3358 static void free_vpid(struct vcpu_vmx *vmx)
3359 {
3360 if (!enable_vpid)
3361 return;
3362 spin_lock(&vmx_vpid_lock);
3363 if (vmx->vpid != 0)
3364 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3365 spin_unlock(&vmx_vpid_lock);
3366 }
3367
3368 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3369 {
3370 int f = sizeof(unsigned long);
3371
3372 if (!cpu_has_vmx_msr_bitmap())
3373 return;
3374
3375 /*
3376 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3377 * have the write-low and read-high bitmap offsets the wrong way round.
3378 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3379 */
3380 if (msr <= 0x1fff) {
3381 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3382 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3383 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3384 msr &= 0x1fff;
3385 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3386 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3387 }
3388 }
3389
3390 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3391 {
3392 if (!longmode_only)
3393 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3394 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3395 }
3396
3397 /*
3398 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3399 * will not change in the lifetime of the guest.
3400 * Note that host-state that does change is set elsewhere. E.g., host-state
3401 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3402 */
3403 static void vmx_set_constant_host_state(void)
3404 {
3405 u32 low32, high32;
3406 unsigned long tmpl;
3407 struct desc_ptr dt;
3408
3409 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3410 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3411 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3412
3413 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3414 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3415 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3416 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3417 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3418
3419 native_store_idt(&dt);
3420 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3421
3422 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3423 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3424
3425 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3426 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3427 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3428 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3429
3430 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3431 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3432 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3433 }
3434 }
3435
3436 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3437 {
3438 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3439 if (enable_ept)
3440 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3441 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3442 }
3443
3444 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3445 {
3446 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3447 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3448 exec_control &= ~CPU_BASED_TPR_SHADOW;
3449 #ifdef CONFIG_X86_64
3450 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3451 CPU_BASED_CR8_LOAD_EXITING;
3452 #endif
3453 }
3454 if (!enable_ept)
3455 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3456 CPU_BASED_CR3_LOAD_EXITING |
3457 CPU_BASED_INVLPG_EXITING;
3458 return exec_control;
3459 }
3460
3461 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3462 {
3463 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3464 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3465 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3466 if (vmx->vpid == 0)
3467 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3468 if (!enable_ept) {
3469 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3470 enable_unrestricted_guest = 0;
3471 }
3472 if (!enable_unrestricted_guest)
3473 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3474 if (!ple_gap)
3475 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3476 return exec_control;
3477 }
3478
3479 /*
3480 * Sets up the vmcs for emulated real mode.
3481 */
3482 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3483 {
3484 unsigned long a;
3485 int i;
3486
3487 /* I/O */
3488 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3489 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3490
3491 if (cpu_has_vmx_msr_bitmap())
3492 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3493
3494 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3495
3496 /* Control */
3497 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3498 vmcs_config.pin_based_exec_ctrl);
3499
3500 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3501
3502 if (cpu_has_secondary_exec_ctrls()) {
3503 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3504 vmx_secondary_exec_control(vmx));
3505 }
3506
3507 if (ple_gap) {
3508 vmcs_write32(PLE_GAP, ple_gap);
3509 vmcs_write32(PLE_WINDOW, ple_window);
3510 }
3511
3512 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
3513 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
3514 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3515
3516 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3517 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3518 vmx_set_constant_host_state();
3519 #ifdef CONFIG_X86_64
3520 rdmsrl(MSR_FS_BASE, a);
3521 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3522 rdmsrl(MSR_GS_BASE, a);
3523 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3524 #else
3525 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3526 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3527 #endif
3528
3529 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3530 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3531 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3532 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3533 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3534
3535 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3536 u32 msr_low, msr_high;
3537 u64 host_pat;
3538 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3539 host_pat = msr_low | ((u64) msr_high << 32);
3540 /* Write the default value follow host pat */
3541 vmcs_write64(GUEST_IA32_PAT, host_pat);
3542 /* Keep arch.pat sync with GUEST_IA32_PAT */
3543 vmx->vcpu.arch.pat = host_pat;
3544 }
3545
3546 for (i = 0; i < NR_VMX_MSR; ++i) {
3547 u32 index = vmx_msr_index[i];
3548 u32 data_low, data_high;
3549 int j = vmx->nmsrs;
3550
3551 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3552 continue;
3553 if (wrmsr_safe(index, data_low, data_high) < 0)
3554 continue;
3555 vmx->guest_msrs[j].index = i;
3556 vmx->guest_msrs[j].data = 0;
3557 vmx->guest_msrs[j].mask = -1ull;
3558 ++vmx->nmsrs;
3559 }
3560
3561 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3562
3563 /* 22.2.1, 20.8.1 */
3564 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3565
3566 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3567 set_cr4_guest_host_mask(vmx);
3568
3569 kvm_write_tsc(&vmx->vcpu, 0);
3570
3571 return 0;
3572 }
3573
3574 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3575 {
3576 struct vcpu_vmx *vmx = to_vmx(vcpu);
3577 u64 msr;
3578 int ret;
3579
3580 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3581
3582 vmx->rmode.vm86_active = 0;
3583
3584 vmx->soft_vnmi_blocked = 0;
3585
3586 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3587 kvm_set_cr8(&vmx->vcpu, 0);
3588 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3589 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3590 msr |= MSR_IA32_APICBASE_BSP;
3591 kvm_set_apic_base(&vmx->vcpu, msr);
3592
3593 ret = fx_init(&vmx->vcpu);
3594 if (ret != 0)
3595 goto out;
3596
3597 vmx_segment_cache_clear(vmx);
3598
3599 seg_setup(VCPU_SREG_CS);
3600 /*
3601 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3602 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3603 */
3604 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3605 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3606 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3607 } else {
3608 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3609 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3610 }
3611
3612 seg_setup(VCPU_SREG_DS);
3613 seg_setup(VCPU_SREG_ES);
3614 seg_setup(VCPU_SREG_FS);
3615 seg_setup(VCPU_SREG_GS);
3616 seg_setup(VCPU_SREG_SS);
3617
3618 vmcs_write16(GUEST_TR_SELECTOR, 0);
3619 vmcs_writel(GUEST_TR_BASE, 0);
3620 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3621 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3622
3623 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3624 vmcs_writel(GUEST_LDTR_BASE, 0);
3625 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3626 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3627
3628 vmcs_write32(GUEST_SYSENTER_CS, 0);
3629 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3630 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3631
3632 vmcs_writel(GUEST_RFLAGS, 0x02);
3633 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3634 kvm_rip_write(vcpu, 0xfff0);
3635 else
3636 kvm_rip_write(vcpu, 0);
3637 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3638
3639 vmcs_writel(GUEST_DR7, 0x400);
3640
3641 vmcs_writel(GUEST_GDTR_BASE, 0);
3642 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3643
3644 vmcs_writel(GUEST_IDTR_BASE, 0);
3645 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3646
3647 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3648 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3649 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3650
3651 /* Special registers */
3652 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3653
3654 setup_msrs(vmx);
3655
3656 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3657
3658 if (cpu_has_vmx_tpr_shadow()) {
3659 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3660 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3661 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3662 __pa(vmx->vcpu.arch.apic->regs));
3663 vmcs_write32(TPR_THRESHOLD, 0);
3664 }
3665
3666 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3667 vmcs_write64(APIC_ACCESS_ADDR,
3668 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3669
3670 if (vmx->vpid != 0)
3671 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3672
3673 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3674 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3675 vmx_set_cr4(&vmx->vcpu, 0);
3676 vmx_set_efer(&vmx->vcpu, 0);
3677 vmx_fpu_activate(&vmx->vcpu);
3678 update_exception_bitmap(&vmx->vcpu);
3679
3680 vpid_sync_context(vmx);
3681
3682 ret = 0;
3683
3684 /* HACK: Don't enable emulation on guest boot/reset */
3685 vmx->emulation_required = 0;
3686
3687 out:
3688 return ret;
3689 }
3690
3691 static void enable_irq_window(struct kvm_vcpu *vcpu)
3692 {
3693 u32 cpu_based_vm_exec_control;
3694
3695 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3696 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3697 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3698 }
3699
3700 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3701 {
3702 u32 cpu_based_vm_exec_control;
3703
3704 if (!cpu_has_virtual_nmis()) {
3705 enable_irq_window(vcpu);
3706 return;
3707 }
3708
3709 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3710 enable_irq_window(vcpu);
3711 return;
3712 }
3713 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3714 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3715 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3716 }
3717
3718 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3719 {
3720 struct vcpu_vmx *vmx = to_vmx(vcpu);
3721 uint32_t intr;
3722 int irq = vcpu->arch.interrupt.nr;
3723
3724 trace_kvm_inj_virq(irq);
3725
3726 ++vcpu->stat.irq_injections;
3727 if (vmx->rmode.vm86_active) {
3728 int inc_eip = 0;
3729 if (vcpu->arch.interrupt.soft)
3730 inc_eip = vcpu->arch.event_exit_inst_len;
3731 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3732 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3733 return;
3734 }
3735 intr = irq | INTR_INFO_VALID_MASK;
3736 if (vcpu->arch.interrupt.soft) {
3737 intr |= INTR_TYPE_SOFT_INTR;
3738 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3739 vmx->vcpu.arch.event_exit_inst_len);
3740 } else
3741 intr |= INTR_TYPE_EXT_INTR;
3742 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3743 vmx_clear_hlt(vcpu);
3744 }
3745
3746 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3747 {
3748 struct vcpu_vmx *vmx = to_vmx(vcpu);
3749
3750 if (!cpu_has_virtual_nmis()) {
3751 /*
3752 * Tracking the NMI-blocked state in software is built upon
3753 * finding the next open IRQ window. This, in turn, depends on
3754 * well-behaving guests: They have to keep IRQs disabled at
3755 * least as long as the NMI handler runs. Otherwise we may
3756 * cause NMI nesting, maybe breaking the guest. But as this is
3757 * highly unlikely, we can live with the residual risk.
3758 */
3759 vmx->soft_vnmi_blocked = 1;
3760 vmx->vnmi_blocked_time = 0;
3761 }
3762
3763 ++vcpu->stat.nmi_injections;
3764 vmx->nmi_known_unmasked = false;
3765 if (vmx->rmode.vm86_active) {
3766 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3767 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3768 return;
3769 }
3770 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3771 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3772 vmx_clear_hlt(vcpu);
3773 }
3774
3775 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3776 {
3777 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3778 return 0;
3779
3780 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3781 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3782 | GUEST_INTR_STATE_NMI));
3783 }
3784
3785 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3786 {
3787 if (!cpu_has_virtual_nmis())
3788 return to_vmx(vcpu)->soft_vnmi_blocked;
3789 if (to_vmx(vcpu)->nmi_known_unmasked)
3790 return false;
3791 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3792 }
3793
3794 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3795 {
3796 struct vcpu_vmx *vmx = to_vmx(vcpu);
3797
3798 if (!cpu_has_virtual_nmis()) {
3799 if (vmx->soft_vnmi_blocked != masked) {
3800 vmx->soft_vnmi_blocked = masked;
3801 vmx->vnmi_blocked_time = 0;
3802 }
3803 } else {
3804 vmx->nmi_known_unmasked = !masked;
3805 if (masked)
3806 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3807 GUEST_INTR_STATE_NMI);
3808 else
3809 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3810 GUEST_INTR_STATE_NMI);
3811 }
3812 }
3813
3814 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3815 {
3816 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3817 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3818 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3819 }
3820
3821 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3822 {
3823 int ret;
3824 struct kvm_userspace_memory_region tss_mem = {
3825 .slot = TSS_PRIVATE_MEMSLOT,
3826 .guest_phys_addr = addr,
3827 .memory_size = PAGE_SIZE * 3,
3828 .flags = 0,
3829 };
3830
3831 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3832 if (ret)
3833 return ret;
3834 kvm->arch.tss_addr = addr;
3835 if (!init_rmode_tss(kvm))
3836 return -ENOMEM;
3837
3838 return 0;
3839 }
3840
3841 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3842 int vec, u32 err_code)
3843 {
3844 /*
3845 * Instruction with address size override prefix opcode 0x67
3846 * Cause the #SS fault with 0 error code in VM86 mode.
3847 */
3848 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3849 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3850 return 1;
3851 /*
3852 * Forward all other exceptions that are valid in real mode.
3853 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3854 * the required debugging infrastructure rework.
3855 */
3856 switch (vec) {
3857 case DB_VECTOR:
3858 if (vcpu->guest_debug &
3859 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3860 return 0;
3861 kvm_queue_exception(vcpu, vec);
3862 return 1;
3863 case BP_VECTOR:
3864 /*
3865 * Update instruction length as we may reinject the exception
3866 * from user space while in guest debugging mode.
3867 */
3868 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3869 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3870 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3871 return 0;
3872 /* fall through */
3873 case DE_VECTOR:
3874 case OF_VECTOR:
3875 case BR_VECTOR:
3876 case UD_VECTOR:
3877 case DF_VECTOR:
3878 case SS_VECTOR:
3879 case GP_VECTOR:
3880 case MF_VECTOR:
3881 kvm_queue_exception(vcpu, vec);
3882 return 1;
3883 }
3884 return 0;
3885 }
3886
3887 /*
3888 * Trigger machine check on the host. We assume all the MSRs are already set up
3889 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3890 * We pass a fake environment to the machine check handler because we want
3891 * the guest to be always treated like user space, no matter what context
3892 * it used internally.
3893 */
3894 static void kvm_machine_check(void)
3895 {
3896 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3897 struct pt_regs regs = {
3898 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3899 .flags = X86_EFLAGS_IF,
3900 };
3901
3902 do_machine_check(&regs, 0);
3903 #endif
3904 }
3905
3906 static int handle_machine_check(struct kvm_vcpu *vcpu)
3907 {
3908 /* already handled by vcpu_run */
3909 return 1;
3910 }
3911
3912 static int handle_exception(struct kvm_vcpu *vcpu)
3913 {
3914 struct vcpu_vmx *vmx = to_vmx(vcpu);
3915 struct kvm_run *kvm_run = vcpu->run;
3916 u32 intr_info, ex_no, error_code;
3917 unsigned long cr2, rip, dr6;
3918 u32 vect_info;
3919 enum emulation_result er;
3920
3921 vect_info = vmx->idt_vectoring_info;
3922 intr_info = vmx->exit_intr_info;
3923
3924 if (is_machine_check(intr_info))
3925 return handle_machine_check(vcpu);
3926
3927 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3928 !is_page_fault(intr_info)) {
3929 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3930 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3931 vcpu->run->internal.ndata = 2;
3932 vcpu->run->internal.data[0] = vect_info;
3933 vcpu->run->internal.data[1] = intr_info;
3934 return 0;
3935 }
3936
3937 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3938 return 1; /* already handled by vmx_vcpu_run() */
3939
3940 if (is_no_device(intr_info)) {
3941 vmx_fpu_activate(vcpu);
3942 return 1;
3943 }
3944
3945 if (is_invalid_opcode(intr_info)) {
3946 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3947 if (er != EMULATE_DONE)
3948 kvm_queue_exception(vcpu, UD_VECTOR);
3949 return 1;
3950 }
3951
3952 error_code = 0;
3953 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3954 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3955 if (is_page_fault(intr_info)) {
3956 /* EPT won't cause page fault directly */
3957 if (enable_ept)
3958 BUG();
3959 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3960 trace_kvm_page_fault(cr2, error_code);
3961
3962 if (kvm_event_needs_reinjection(vcpu))
3963 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3964 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3965 }
3966
3967 if (vmx->rmode.vm86_active &&
3968 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3969 error_code)) {
3970 if (vcpu->arch.halt_request) {
3971 vcpu->arch.halt_request = 0;
3972 return kvm_emulate_halt(vcpu);
3973 }
3974 return 1;
3975 }
3976
3977 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3978 switch (ex_no) {
3979 case DB_VECTOR:
3980 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3981 if (!(vcpu->guest_debug &
3982 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3983 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3984 kvm_queue_exception(vcpu, DB_VECTOR);
3985 return 1;
3986 }
3987 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3988 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3989 /* fall through */
3990 case BP_VECTOR:
3991 /*
3992 * Update instruction length as we may reinject #BP from
3993 * user space while in guest debugging mode. Reading it for
3994 * #DB as well causes no harm, it is not used in that case.
3995 */
3996 vmx->vcpu.arch.event_exit_inst_len =
3997 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3998 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3999 rip = kvm_rip_read(vcpu);
4000 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4001 kvm_run->debug.arch.exception = ex_no;
4002 break;
4003 default:
4004 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4005 kvm_run->ex.exception = ex_no;
4006 kvm_run->ex.error_code = error_code;
4007 break;
4008 }
4009 return 0;
4010 }
4011
4012 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4013 {
4014 ++vcpu->stat.irq_exits;
4015 return 1;
4016 }
4017
4018 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4019 {
4020 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4021 return 0;
4022 }
4023
4024 static int handle_io(struct kvm_vcpu *vcpu)
4025 {
4026 unsigned long exit_qualification;
4027 int size, in, string;
4028 unsigned port;
4029
4030 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4031 string = (exit_qualification & 16) != 0;
4032 in = (exit_qualification & 8) != 0;
4033
4034 ++vcpu->stat.io_exits;
4035
4036 if (string || in)
4037 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4038
4039 port = exit_qualification >> 16;
4040 size = (exit_qualification & 7) + 1;
4041 skip_emulated_instruction(vcpu);
4042
4043 return kvm_fast_pio_out(vcpu, size, port);
4044 }
4045
4046 static void
4047 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4048 {
4049 /*
4050 * Patch in the VMCALL instruction:
4051 */
4052 hypercall[0] = 0x0f;
4053 hypercall[1] = 0x01;
4054 hypercall[2] = 0xc1;
4055 }
4056
4057 static int handle_cr(struct kvm_vcpu *vcpu)
4058 {
4059 unsigned long exit_qualification, val;
4060 int cr;
4061 int reg;
4062 int err;
4063
4064 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4065 cr = exit_qualification & 15;
4066 reg = (exit_qualification >> 8) & 15;
4067 switch ((exit_qualification >> 4) & 3) {
4068 case 0: /* mov to cr */
4069 val = kvm_register_read(vcpu, reg);
4070 trace_kvm_cr_write(cr, val);
4071 switch (cr) {
4072 case 0:
4073 err = kvm_set_cr0(vcpu, val);
4074 kvm_complete_insn_gp(vcpu, err);
4075 return 1;
4076 case 3:
4077 err = kvm_set_cr3(vcpu, val);
4078 kvm_complete_insn_gp(vcpu, err);
4079 return 1;
4080 case 4:
4081 err = kvm_set_cr4(vcpu, val);
4082 kvm_complete_insn_gp(vcpu, err);
4083 return 1;
4084 case 8: {
4085 u8 cr8_prev = kvm_get_cr8(vcpu);
4086 u8 cr8 = kvm_register_read(vcpu, reg);
4087 err = kvm_set_cr8(vcpu, cr8);
4088 kvm_complete_insn_gp(vcpu, err);
4089 if (irqchip_in_kernel(vcpu->kvm))
4090 return 1;
4091 if (cr8_prev <= cr8)
4092 return 1;
4093 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4094 return 0;
4095 }
4096 };
4097 break;
4098 case 2: /* clts */
4099 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4100 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4101 skip_emulated_instruction(vcpu);
4102 vmx_fpu_activate(vcpu);
4103 return 1;
4104 case 1: /*mov from cr*/
4105 switch (cr) {
4106 case 3:
4107 val = kvm_read_cr3(vcpu);
4108 kvm_register_write(vcpu, reg, val);
4109 trace_kvm_cr_read(cr, val);
4110 skip_emulated_instruction(vcpu);
4111 return 1;
4112 case 8:
4113 val = kvm_get_cr8(vcpu);
4114 kvm_register_write(vcpu, reg, val);
4115 trace_kvm_cr_read(cr, val);
4116 skip_emulated_instruction(vcpu);
4117 return 1;
4118 }
4119 break;
4120 case 3: /* lmsw */
4121 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4122 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4123 kvm_lmsw(vcpu, val);
4124
4125 skip_emulated_instruction(vcpu);
4126 return 1;
4127 default:
4128 break;
4129 }
4130 vcpu->run->exit_reason = 0;
4131 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4132 (int)(exit_qualification >> 4) & 3, cr);
4133 return 0;
4134 }
4135
4136 static int handle_dr(struct kvm_vcpu *vcpu)
4137 {
4138 unsigned long exit_qualification;
4139 int dr, reg;
4140
4141 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4142 if (!kvm_require_cpl(vcpu, 0))
4143 return 1;
4144 dr = vmcs_readl(GUEST_DR7);
4145 if (dr & DR7_GD) {
4146 /*
4147 * As the vm-exit takes precedence over the debug trap, we
4148 * need to emulate the latter, either for the host or the
4149 * guest debugging itself.
4150 */
4151 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4152 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4153 vcpu->run->debug.arch.dr7 = dr;
4154 vcpu->run->debug.arch.pc =
4155 vmcs_readl(GUEST_CS_BASE) +
4156 vmcs_readl(GUEST_RIP);
4157 vcpu->run->debug.arch.exception = DB_VECTOR;
4158 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4159 return 0;
4160 } else {
4161 vcpu->arch.dr7 &= ~DR7_GD;
4162 vcpu->arch.dr6 |= DR6_BD;
4163 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4164 kvm_queue_exception(vcpu, DB_VECTOR);
4165 return 1;
4166 }
4167 }
4168
4169 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4170 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4171 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4172 if (exit_qualification & TYPE_MOV_FROM_DR) {
4173 unsigned long val;
4174 if (!kvm_get_dr(vcpu, dr, &val))
4175 kvm_register_write(vcpu, reg, val);
4176 } else
4177 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4178 skip_emulated_instruction(vcpu);
4179 return 1;
4180 }
4181
4182 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4183 {
4184 vmcs_writel(GUEST_DR7, val);
4185 }
4186
4187 static int handle_cpuid(struct kvm_vcpu *vcpu)
4188 {
4189 kvm_emulate_cpuid(vcpu);
4190 return 1;
4191 }
4192
4193 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4194 {
4195 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4196 u64 data;
4197
4198 if (vmx_get_msr(vcpu, ecx, &data)) {
4199 trace_kvm_msr_read_ex(ecx);
4200 kvm_inject_gp(vcpu, 0);
4201 return 1;
4202 }
4203
4204 trace_kvm_msr_read(ecx, data);
4205
4206 /* FIXME: handling of bits 32:63 of rax, rdx */
4207 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4208 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4209 skip_emulated_instruction(vcpu);
4210 return 1;
4211 }
4212
4213 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4214 {
4215 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4216 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4217 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4218
4219 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4220 trace_kvm_msr_write_ex(ecx, data);
4221 kvm_inject_gp(vcpu, 0);
4222 return 1;
4223 }
4224
4225 trace_kvm_msr_write(ecx, data);
4226 skip_emulated_instruction(vcpu);
4227 return 1;
4228 }
4229
4230 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4231 {
4232 kvm_make_request(KVM_REQ_EVENT, vcpu);
4233 return 1;
4234 }
4235
4236 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4237 {
4238 u32 cpu_based_vm_exec_control;
4239
4240 /* clear pending irq */
4241 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4242 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4243 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4244
4245 kvm_make_request(KVM_REQ_EVENT, vcpu);
4246
4247 ++vcpu->stat.irq_window_exits;
4248
4249 /*
4250 * If the user space waits to inject interrupts, exit as soon as
4251 * possible
4252 */
4253 if (!irqchip_in_kernel(vcpu->kvm) &&
4254 vcpu->run->request_interrupt_window &&
4255 !kvm_cpu_has_interrupt(vcpu)) {
4256 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4257 return 0;
4258 }
4259 return 1;
4260 }
4261
4262 static int handle_halt(struct kvm_vcpu *vcpu)
4263 {
4264 skip_emulated_instruction(vcpu);
4265 return kvm_emulate_halt(vcpu);
4266 }
4267
4268 static int handle_vmcall(struct kvm_vcpu *vcpu)
4269 {
4270 skip_emulated_instruction(vcpu);
4271 kvm_emulate_hypercall(vcpu);
4272 return 1;
4273 }
4274
4275 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
4276 {
4277 kvm_queue_exception(vcpu, UD_VECTOR);
4278 return 1;
4279 }
4280
4281 static int handle_invd(struct kvm_vcpu *vcpu)
4282 {
4283 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4284 }
4285
4286 static int handle_invlpg(struct kvm_vcpu *vcpu)
4287 {
4288 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4289
4290 kvm_mmu_invlpg(vcpu, exit_qualification);
4291 skip_emulated_instruction(vcpu);
4292 return 1;
4293 }
4294
4295 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4296 {
4297 skip_emulated_instruction(vcpu);
4298 kvm_emulate_wbinvd(vcpu);
4299 return 1;
4300 }
4301
4302 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4303 {
4304 u64 new_bv = kvm_read_edx_eax(vcpu);
4305 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4306
4307 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4308 skip_emulated_instruction(vcpu);
4309 return 1;
4310 }
4311
4312 static int handle_apic_access(struct kvm_vcpu *vcpu)
4313 {
4314 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4315 }
4316
4317 static int handle_task_switch(struct kvm_vcpu *vcpu)
4318 {
4319 struct vcpu_vmx *vmx = to_vmx(vcpu);
4320 unsigned long exit_qualification;
4321 bool has_error_code = false;
4322 u32 error_code = 0;
4323 u16 tss_selector;
4324 int reason, type, idt_v;
4325
4326 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4327 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4328
4329 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4330
4331 reason = (u32)exit_qualification >> 30;
4332 if (reason == TASK_SWITCH_GATE && idt_v) {
4333 switch (type) {
4334 case INTR_TYPE_NMI_INTR:
4335 vcpu->arch.nmi_injected = false;
4336 vmx_set_nmi_mask(vcpu, true);
4337 break;
4338 case INTR_TYPE_EXT_INTR:
4339 case INTR_TYPE_SOFT_INTR:
4340 kvm_clear_interrupt_queue(vcpu);
4341 break;
4342 case INTR_TYPE_HARD_EXCEPTION:
4343 if (vmx->idt_vectoring_info &
4344 VECTORING_INFO_DELIVER_CODE_MASK) {
4345 has_error_code = true;
4346 error_code =
4347 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4348 }
4349 /* fall through */
4350 case INTR_TYPE_SOFT_EXCEPTION:
4351 kvm_clear_exception_queue(vcpu);
4352 break;
4353 default:
4354 break;
4355 }
4356 }
4357 tss_selector = exit_qualification;
4358
4359 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4360 type != INTR_TYPE_EXT_INTR &&
4361 type != INTR_TYPE_NMI_INTR))
4362 skip_emulated_instruction(vcpu);
4363
4364 if (kvm_task_switch(vcpu, tss_selector, reason,
4365 has_error_code, error_code) == EMULATE_FAIL) {
4366 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4367 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4368 vcpu->run->internal.ndata = 0;
4369 return 0;
4370 }
4371
4372 /* clear all local breakpoint enable flags */
4373 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4374
4375 /*
4376 * TODO: What about debug traps on tss switch?
4377 * Are we supposed to inject them and update dr6?
4378 */
4379
4380 return 1;
4381 }
4382
4383 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4384 {
4385 unsigned long exit_qualification;
4386 gpa_t gpa;
4387 int gla_validity;
4388
4389 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4390
4391 if (exit_qualification & (1 << 6)) {
4392 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4393 return -EINVAL;
4394 }
4395
4396 gla_validity = (exit_qualification >> 7) & 0x3;
4397 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4398 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4399 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4400 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4401 vmcs_readl(GUEST_LINEAR_ADDRESS));
4402 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4403 (long unsigned int)exit_qualification);
4404 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4405 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4406 return 0;
4407 }
4408
4409 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4410 trace_kvm_page_fault(gpa, exit_qualification);
4411 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4412 }
4413
4414 static u64 ept_rsvd_mask(u64 spte, int level)
4415 {
4416 int i;
4417 u64 mask = 0;
4418
4419 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4420 mask |= (1ULL << i);
4421
4422 if (level > 2)
4423 /* bits 7:3 reserved */
4424 mask |= 0xf8;
4425 else if (level == 2) {
4426 if (spte & (1ULL << 7))
4427 /* 2MB ref, bits 20:12 reserved */
4428 mask |= 0x1ff000;
4429 else
4430 /* bits 6:3 reserved */
4431 mask |= 0x78;
4432 }
4433
4434 return mask;
4435 }
4436
4437 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4438 int level)
4439 {
4440 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4441
4442 /* 010b (write-only) */
4443 WARN_ON((spte & 0x7) == 0x2);
4444
4445 /* 110b (write/execute) */
4446 WARN_ON((spte & 0x7) == 0x6);
4447
4448 /* 100b (execute-only) and value not supported by logical processor */
4449 if (!cpu_has_vmx_ept_execute_only())
4450 WARN_ON((spte & 0x7) == 0x4);
4451
4452 /* not 000b */
4453 if ((spte & 0x7)) {
4454 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4455
4456 if (rsvd_bits != 0) {
4457 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4458 __func__, rsvd_bits);
4459 WARN_ON(1);
4460 }
4461
4462 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4463 u64 ept_mem_type = (spte & 0x38) >> 3;
4464
4465 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4466 ept_mem_type == 7) {
4467 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4468 __func__, ept_mem_type);
4469 WARN_ON(1);
4470 }
4471 }
4472 }
4473 }
4474
4475 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4476 {
4477 u64 sptes[4];
4478 int nr_sptes, i;
4479 gpa_t gpa;
4480
4481 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4482
4483 printk(KERN_ERR "EPT: Misconfiguration.\n");
4484 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4485
4486 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4487
4488 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4489 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4490
4491 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4492 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4493
4494 return 0;
4495 }
4496
4497 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4498 {
4499 u32 cpu_based_vm_exec_control;
4500
4501 /* clear pending NMI */
4502 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4503 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4504 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4505 ++vcpu->stat.nmi_window_exits;
4506 kvm_make_request(KVM_REQ_EVENT, vcpu);
4507
4508 return 1;
4509 }
4510
4511 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4512 {
4513 struct vcpu_vmx *vmx = to_vmx(vcpu);
4514 enum emulation_result err = EMULATE_DONE;
4515 int ret = 1;
4516 u32 cpu_exec_ctrl;
4517 bool intr_window_requested;
4518
4519 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4520 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4521
4522 while (!guest_state_valid(vcpu)) {
4523 if (intr_window_requested
4524 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4525 return handle_interrupt_window(&vmx->vcpu);
4526
4527 err = emulate_instruction(vcpu, 0);
4528
4529 if (err == EMULATE_DO_MMIO) {
4530 ret = 0;
4531 goto out;
4532 }
4533
4534 if (err != EMULATE_DONE)
4535 return 0;
4536
4537 if (signal_pending(current))
4538 goto out;
4539 if (need_resched())
4540 schedule();
4541 }
4542
4543 vmx->emulation_required = 0;
4544 out:
4545 return ret;
4546 }
4547
4548 /*
4549 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4550 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4551 */
4552 static int handle_pause(struct kvm_vcpu *vcpu)
4553 {
4554 skip_emulated_instruction(vcpu);
4555 kvm_vcpu_on_spin(vcpu);
4556
4557 return 1;
4558 }
4559
4560 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4561 {
4562 kvm_queue_exception(vcpu, UD_VECTOR);
4563 return 1;
4564 }
4565
4566 /*
4567 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4568 * We could reuse a single VMCS for all the L2 guests, but we also want the
4569 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4570 * allows keeping them loaded on the processor, and in the future will allow
4571 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4572 * every entry if they never change.
4573 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4574 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4575 *
4576 * The following functions allocate and free a vmcs02 in this pool.
4577 */
4578
4579 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4580 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4581 {
4582 struct vmcs02_list *item;
4583 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4584 if (item->vmptr == vmx->nested.current_vmptr) {
4585 list_move(&item->list, &vmx->nested.vmcs02_pool);
4586 return &item->vmcs02;
4587 }
4588
4589 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4590 /* Recycle the least recently used VMCS. */
4591 item = list_entry(vmx->nested.vmcs02_pool.prev,
4592 struct vmcs02_list, list);
4593 item->vmptr = vmx->nested.current_vmptr;
4594 list_move(&item->list, &vmx->nested.vmcs02_pool);
4595 return &item->vmcs02;
4596 }
4597
4598 /* Create a new VMCS */
4599 item = (struct vmcs02_list *)
4600 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4601 if (!item)
4602 return NULL;
4603 item->vmcs02.vmcs = alloc_vmcs();
4604 if (!item->vmcs02.vmcs) {
4605 kfree(item);
4606 return NULL;
4607 }
4608 loaded_vmcs_init(&item->vmcs02);
4609 item->vmptr = vmx->nested.current_vmptr;
4610 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4611 vmx->nested.vmcs02_num++;
4612 return &item->vmcs02;
4613 }
4614
4615 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4616 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4617 {
4618 struct vmcs02_list *item;
4619 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4620 if (item->vmptr == vmptr) {
4621 free_loaded_vmcs(&item->vmcs02);
4622 list_del(&item->list);
4623 kfree(item);
4624 vmx->nested.vmcs02_num--;
4625 return;
4626 }
4627 }
4628
4629 /*
4630 * Free all VMCSs saved for this vcpu, except the one pointed by
4631 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4632 * currently used, if running L2), and vmcs01 when running L2.
4633 */
4634 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4635 {
4636 struct vmcs02_list *item, *n;
4637 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4638 if (vmx->loaded_vmcs != &item->vmcs02)
4639 free_loaded_vmcs(&item->vmcs02);
4640 list_del(&item->list);
4641 kfree(item);
4642 }
4643 vmx->nested.vmcs02_num = 0;
4644
4645 if (vmx->loaded_vmcs != &vmx->vmcs01)
4646 free_loaded_vmcs(&vmx->vmcs01);
4647 }
4648
4649 /*
4650 * Emulate the VMXON instruction.
4651 * Currently, we just remember that VMX is active, and do not save or even
4652 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4653 * do not currently need to store anything in that guest-allocated memory
4654 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4655 * argument is different from the VMXON pointer (which the spec says they do).
4656 */
4657 static int handle_vmon(struct kvm_vcpu *vcpu)
4658 {
4659 struct kvm_segment cs;
4660 struct vcpu_vmx *vmx = to_vmx(vcpu);
4661
4662 /* The Intel VMX Instruction Reference lists a bunch of bits that
4663 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4664 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4665 * Otherwise, we should fail with #UD. We test these now:
4666 */
4667 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4668 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4669 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4670 kvm_queue_exception(vcpu, UD_VECTOR);
4671 return 1;
4672 }
4673
4674 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4675 if (is_long_mode(vcpu) && !cs.l) {
4676 kvm_queue_exception(vcpu, UD_VECTOR);
4677 return 1;
4678 }
4679
4680 if (vmx_get_cpl(vcpu)) {
4681 kvm_inject_gp(vcpu, 0);
4682 return 1;
4683 }
4684
4685 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4686 vmx->nested.vmcs02_num = 0;
4687
4688 vmx->nested.vmxon = true;
4689
4690 skip_emulated_instruction(vcpu);
4691 return 1;
4692 }
4693
4694 /*
4695 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4696 * for running VMX instructions (except VMXON, whose prerequisites are
4697 * slightly different). It also specifies what exception to inject otherwise.
4698 */
4699 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4700 {
4701 struct kvm_segment cs;
4702 struct vcpu_vmx *vmx = to_vmx(vcpu);
4703
4704 if (!vmx->nested.vmxon) {
4705 kvm_queue_exception(vcpu, UD_VECTOR);
4706 return 0;
4707 }
4708
4709 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4710 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4711 (is_long_mode(vcpu) && !cs.l)) {
4712 kvm_queue_exception(vcpu, UD_VECTOR);
4713 return 0;
4714 }
4715
4716 if (vmx_get_cpl(vcpu)) {
4717 kvm_inject_gp(vcpu, 0);
4718 return 0;
4719 }
4720
4721 return 1;
4722 }
4723
4724 /*
4725 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4726 * just stops using VMX.
4727 */
4728 static void free_nested(struct vcpu_vmx *vmx)
4729 {
4730 if (!vmx->nested.vmxon)
4731 return;
4732 vmx->nested.vmxon = false;
4733 if (vmx->nested.current_vmptr != -1ull) {
4734 kunmap(vmx->nested.current_vmcs12_page);
4735 nested_release_page(vmx->nested.current_vmcs12_page);
4736 vmx->nested.current_vmptr = -1ull;
4737 vmx->nested.current_vmcs12 = NULL;
4738 }
4739
4740 nested_free_all_saved_vmcss(vmx);
4741 }
4742
4743 /* Emulate the VMXOFF instruction */
4744 static int handle_vmoff(struct kvm_vcpu *vcpu)
4745 {
4746 if (!nested_vmx_check_permission(vcpu))
4747 return 1;
4748 free_nested(to_vmx(vcpu));
4749 skip_emulated_instruction(vcpu);
4750 return 1;
4751 }
4752
4753 /*
4754 * Decode the memory-address operand of a vmx instruction, as recorded on an
4755 * exit caused by such an instruction (run by a guest hypervisor).
4756 * On success, returns 0. When the operand is invalid, returns 1 and throws
4757 * #UD or #GP.
4758 */
4759 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4760 unsigned long exit_qualification,
4761 u32 vmx_instruction_info, gva_t *ret)
4762 {
4763 /*
4764 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4765 * Execution", on an exit, vmx_instruction_info holds most of the
4766 * addressing components of the operand. Only the displacement part
4767 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4768 * For how an actual address is calculated from all these components,
4769 * refer to Vol. 1, "Operand Addressing".
4770 */
4771 int scaling = vmx_instruction_info & 3;
4772 int addr_size = (vmx_instruction_info >> 7) & 7;
4773 bool is_reg = vmx_instruction_info & (1u << 10);
4774 int seg_reg = (vmx_instruction_info >> 15) & 7;
4775 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4776 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4777 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4778 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4779
4780 if (is_reg) {
4781 kvm_queue_exception(vcpu, UD_VECTOR);
4782 return 1;
4783 }
4784
4785 /* Addr = segment_base + offset */
4786 /* offset = base + [index * scale] + displacement */
4787 *ret = vmx_get_segment_base(vcpu, seg_reg);
4788 if (base_is_valid)
4789 *ret += kvm_register_read(vcpu, base_reg);
4790 if (index_is_valid)
4791 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
4792 *ret += exit_qualification; /* holds the displacement */
4793
4794 if (addr_size == 1) /* 32 bit */
4795 *ret &= 0xffffffff;
4796
4797 /*
4798 * TODO: throw #GP (and return 1) in various cases that the VM*
4799 * instructions require it - e.g., offset beyond segment limit,
4800 * unusable or unreadable/unwritable segment, non-canonical 64-bit
4801 * address, and so on. Currently these are not checked.
4802 */
4803 return 0;
4804 }
4805
4806 /*
4807 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
4808 * set the success or error code of an emulated VMX instruction, as specified
4809 * by Vol 2B, VMX Instruction Reference, "Conventions".
4810 */
4811 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
4812 {
4813 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
4814 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
4815 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
4816 }
4817
4818 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
4819 {
4820 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
4821 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
4822 X86_EFLAGS_SF | X86_EFLAGS_OF))
4823 | X86_EFLAGS_CF);
4824 }
4825
4826 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
4827 u32 vm_instruction_error)
4828 {
4829 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
4830 /*
4831 * failValid writes the error number to the current VMCS, which
4832 * can't be done there isn't a current VMCS.
4833 */
4834 nested_vmx_failInvalid(vcpu);
4835 return;
4836 }
4837 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
4838 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
4839 X86_EFLAGS_SF | X86_EFLAGS_OF))
4840 | X86_EFLAGS_ZF);
4841 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
4842 }
4843
4844 /* Emulate the VMCLEAR instruction */
4845 static int handle_vmclear(struct kvm_vcpu *vcpu)
4846 {
4847 struct vcpu_vmx *vmx = to_vmx(vcpu);
4848 gva_t gva;
4849 gpa_t vmptr;
4850 struct vmcs12 *vmcs12;
4851 struct page *page;
4852 struct x86_exception e;
4853
4854 if (!nested_vmx_check_permission(vcpu))
4855 return 1;
4856
4857 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4858 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
4859 return 1;
4860
4861 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
4862 sizeof(vmptr), &e)) {
4863 kvm_inject_page_fault(vcpu, &e);
4864 return 1;
4865 }
4866
4867 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
4868 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4869 skip_emulated_instruction(vcpu);
4870 return 1;
4871 }
4872
4873 if (vmptr == vmx->nested.current_vmptr) {
4874 kunmap(vmx->nested.current_vmcs12_page);
4875 nested_release_page(vmx->nested.current_vmcs12_page);
4876 vmx->nested.current_vmptr = -1ull;
4877 vmx->nested.current_vmcs12 = NULL;
4878 }
4879
4880 page = nested_get_page(vcpu, vmptr);
4881 if (page == NULL) {
4882 /*
4883 * For accurate processor emulation, VMCLEAR beyond available
4884 * physical memory should do nothing at all. However, it is
4885 * possible that a nested vmx bug, not a guest hypervisor bug,
4886 * resulted in this case, so let's shut down before doing any
4887 * more damage:
4888 */
4889 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4890 return 1;
4891 }
4892 vmcs12 = kmap(page);
4893 vmcs12->launch_state = 0;
4894 kunmap(page);
4895 nested_release_page(page);
4896
4897 nested_free_vmcs02(vmx, vmptr);
4898
4899 skip_emulated_instruction(vcpu);
4900 nested_vmx_succeed(vcpu);
4901 return 1;
4902 }
4903
4904 enum vmcs_field_type {
4905 VMCS_FIELD_TYPE_U16 = 0,
4906 VMCS_FIELD_TYPE_U64 = 1,
4907 VMCS_FIELD_TYPE_U32 = 2,
4908 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
4909 };
4910
4911 static inline int vmcs_field_type(unsigned long field)
4912 {
4913 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
4914 return VMCS_FIELD_TYPE_U32;
4915 return (field >> 13) & 0x3 ;
4916 }
4917
4918 static inline int vmcs_field_readonly(unsigned long field)
4919 {
4920 return (((field >> 10) & 0x3) == 1);
4921 }
4922
4923 /*
4924 * Read a vmcs12 field. Since these can have varying lengths and we return
4925 * one type, we chose the biggest type (u64) and zero-extend the return value
4926 * to that size. Note that the caller, handle_vmread, might need to use only
4927 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
4928 * 64-bit fields are to be returned).
4929 */
4930 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
4931 unsigned long field, u64 *ret)
4932 {
4933 short offset = vmcs_field_to_offset(field);
4934 char *p;
4935
4936 if (offset < 0)
4937 return 0;
4938
4939 p = ((char *)(get_vmcs12(vcpu))) + offset;
4940
4941 switch (vmcs_field_type(field)) {
4942 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
4943 *ret = *((natural_width *)p);
4944 return 1;
4945 case VMCS_FIELD_TYPE_U16:
4946 *ret = *((u16 *)p);
4947 return 1;
4948 case VMCS_FIELD_TYPE_U32:
4949 *ret = *((u32 *)p);
4950 return 1;
4951 case VMCS_FIELD_TYPE_U64:
4952 *ret = *((u64 *)p);
4953 return 1;
4954 default:
4955 return 0; /* can never happen. */
4956 }
4957 }
4958
4959 /*
4960 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
4961 * used before) all generate the same failure when it is missing.
4962 */
4963 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
4964 {
4965 struct vcpu_vmx *vmx = to_vmx(vcpu);
4966 if (vmx->nested.current_vmptr == -1ull) {
4967 nested_vmx_failInvalid(vcpu);
4968 skip_emulated_instruction(vcpu);
4969 return 0;
4970 }
4971 return 1;
4972 }
4973
4974 static int handle_vmread(struct kvm_vcpu *vcpu)
4975 {
4976 unsigned long field;
4977 u64 field_value;
4978 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4979 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4980 gva_t gva = 0;
4981
4982 if (!nested_vmx_check_permission(vcpu) ||
4983 !nested_vmx_check_vmcs12(vcpu))
4984 return 1;
4985
4986 /* Decode instruction info and find the field to read */
4987 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4988 /* Read the field, zero-extended to a u64 field_value */
4989 if (!vmcs12_read_any(vcpu, field, &field_value)) {
4990 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4991 skip_emulated_instruction(vcpu);
4992 return 1;
4993 }
4994 /*
4995 * Now copy part of this value to register or memory, as requested.
4996 * Note that the number of bits actually copied is 32 or 64 depending
4997 * on the guest's mode (32 or 64 bit), not on the given field's length.
4998 */
4999 if (vmx_instruction_info & (1u << 10)) {
5000 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5001 field_value);
5002 } else {
5003 if (get_vmx_mem_address(vcpu, exit_qualification,
5004 vmx_instruction_info, &gva))
5005 return 1;
5006 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5007 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5008 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5009 }
5010
5011 nested_vmx_succeed(vcpu);
5012 skip_emulated_instruction(vcpu);
5013 return 1;
5014 }
5015
5016
5017 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5018 {
5019 unsigned long field;
5020 gva_t gva;
5021 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5022 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5023 char *p;
5024 short offset;
5025 /* The value to write might be 32 or 64 bits, depending on L1's long
5026 * mode, and eventually we need to write that into a field of several
5027 * possible lengths. The code below first zero-extends the value to 64
5028 * bit (field_value), and then copies only the approriate number of
5029 * bits into the vmcs12 field.
5030 */
5031 u64 field_value = 0;
5032 struct x86_exception e;
5033
5034 if (!nested_vmx_check_permission(vcpu) ||
5035 !nested_vmx_check_vmcs12(vcpu))
5036 return 1;
5037
5038 if (vmx_instruction_info & (1u << 10))
5039 field_value = kvm_register_read(vcpu,
5040 (((vmx_instruction_info) >> 3) & 0xf));
5041 else {
5042 if (get_vmx_mem_address(vcpu, exit_qualification,
5043 vmx_instruction_info, &gva))
5044 return 1;
5045 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5046 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5047 kvm_inject_page_fault(vcpu, &e);
5048 return 1;
5049 }
5050 }
5051
5052
5053 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5054 if (vmcs_field_readonly(field)) {
5055 nested_vmx_failValid(vcpu,
5056 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5057 skip_emulated_instruction(vcpu);
5058 return 1;
5059 }
5060
5061 offset = vmcs_field_to_offset(field);
5062 if (offset < 0) {
5063 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5064 skip_emulated_instruction(vcpu);
5065 return 1;
5066 }
5067 p = ((char *) get_vmcs12(vcpu)) + offset;
5068
5069 switch (vmcs_field_type(field)) {
5070 case VMCS_FIELD_TYPE_U16:
5071 *(u16 *)p = field_value;
5072 break;
5073 case VMCS_FIELD_TYPE_U32:
5074 *(u32 *)p = field_value;
5075 break;
5076 case VMCS_FIELD_TYPE_U64:
5077 *(u64 *)p = field_value;
5078 break;
5079 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5080 *(natural_width *)p = field_value;
5081 break;
5082 default:
5083 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5084 skip_emulated_instruction(vcpu);
5085 return 1;
5086 }
5087
5088 nested_vmx_succeed(vcpu);
5089 skip_emulated_instruction(vcpu);
5090 return 1;
5091 }
5092
5093 /* Emulate the VMPTRLD instruction */
5094 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5095 {
5096 struct vcpu_vmx *vmx = to_vmx(vcpu);
5097 gva_t gva;
5098 gpa_t vmptr;
5099 struct x86_exception e;
5100
5101 if (!nested_vmx_check_permission(vcpu))
5102 return 1;
5103
5104 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5105 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5106 return 1;
5107
5108 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5109 sizeof(vmptr), &e)) {
5110 kvm_inject_page_fault(vcpu, &e);
5111 return 1;
5112 }
5113
5114 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5115 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5116 skip_emulated_instruction(vcpu);
5117 return 1;
5118 }
5119
5120 if (vmx->nested.current_vmptr != vmptr) {
5121 struct vmcs12 *new_vmcs12;
5122 struct page *page;
5123 page = nested_get_page(vcpu, vmptr);
5124 if (page == NULL) {
5125 nested_vmx_failInvalid(vcpu);
5126 skip_emulated_instruction(vcpu);
5127 return 1;
5128 }
5129 new_vmcs12 = kmap(page);
5130 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5131 kunmap(page);
5132 nested_release_page_clean(page);
5133 nested_vmx_failValid(vcpu,
5134 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5135 skip_emulated_instruction(vcpu);
5136 return 1;
5137 }
5138 if (vmx->nested.current_vmptr != -1ull) {
5139 kunmap(vmx->nested.current_vmcs12_page);
5140 nested_release_page(vmx->nested.current_vmcs12_page);
5141 }
5142
5143 vmx->nested.current_vmptr = vmptr;
5144 vmx->nested.current_vmcs12 = new_vmcs12;
5145 vmx->nested.current_vmcs12_page = page;
5146 }
5147
5148 nested_vmx_succeed(vcpu);
5149 skip_emulated_instruction(vcpu);
5150 return 1;
5151 }
5152
5153 /* Emulate the VMPTRST instruction */
5154 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5155 {
5156 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5157 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5158 gva_t vmcs_gva;
5159 struct x86_exception e;
5160
5161 if (!nested_vmx_check_permission(vcpu))
5162 return 1;
5163
5164 if (get_vmx_mem_address(vcpu, exit_qualification,
5165 vmx_instruction_info, &vmcs_gva))
5166 return 1;
5167 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5168 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5169 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5170 sizeof(u64), &e)) {
5171 kvm_inject_page_fault(vcpu, &e);
5172 return 1;
5173 }
5174 nested_vmx_succeed(vcpu);
5175 skip_emulated_instruction(vcpu);
5176 return 1;
5177 }
5178
5179 /*
5180 * The exit handlers return 1 if the exit was handled fully and guest execution
5181 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5182 * to be done to userspace and return 0.
5183 */
5184 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5185 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5186 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5187 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5188 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5189 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5190 [EXIT_REASON_CR_ACCESS] = handle_cr,
5191 [EXIT_REASON_DR_ACCESS] = handle_dr,
5192 [EXIT_REASON_CPUID] = handle_cpuid,
5193 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5194 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5195 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5196 [EXIT_REASON_HLT] = handle_halt,
5197 [EXIT_REASON_INVD] = handle_invd,
5198 [EXIT_REASON_INVLPG] = handle_invlpg,
5199 [EXIT_REASON_VMCALL] = handle_vmcall,
5200 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5201 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
5202 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5203 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5204 [EXIT_REASON_VMREAD] = handle_vmread,
5205 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
5206 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5207 [EXIT_REASON_VMOFF] = handle_vmoff,
5208 [EXIT_REASON_VMON] = handle_vmon,
5209 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5210 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5211 [EXIT_REASON_WBINVD] = handle_wbinvd,
5212 [EXIT_REASON_XSETBV] = handle_xsetbv,
5213 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5214 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5215 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5216 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5217 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5218 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5219 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5220 };
5221
5222 static const int kvm_vmx_max_exit_handlers =
5223 ARRAY_SIZE(kvm_vmx_exit_handlers);
5224
5225 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5226 {
5227 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5228 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5229 }
5230
5231 /*
5232 * The guest has exited. See if we can fix it or if we need userspace
5233 * assistance.
5234 */
5235 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5236 {
5237 struct vcpu_vmx *vmx = to_vmx(vcpu);
5238 u32 exit_reason = vmx->exit_reason;
5239 u32 vectoring_info = vmx->idt_vectoring_info;
5240
5241 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5242
5243 /* If guest state is invalid, start emulating */
5244 if (vmx->emulation_required && emulate_invalid_guest_state)
5245 return handle_invalid_guest_state(vcpu);
5246
5247 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5248 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5249 vcpu->run->fail_entry.hardware_entry_failure_reason
5250 = exit_reason;
5251 return 0;
5252 }
5253
5254 if (unlikely(vmx->fail)) {
5255 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5256 vcpu->run->fail_entry.hardware_entry_failure_reason
5257 = vmcs_read32(VM_INSTRUCTION_ERROR);
5258 return 0;
5259 }
5260
5261 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5262 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5263 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5264 exit_reason != EXIT_REASON_TASK_SWITCH))
5265 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5266 "(0x%x) and exit reason is 0x%x\n",
5267 __func__, vectoring_info, exit_reason);
5268
5269 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
5270 if (vmx_interrupt_allowed(vcpu)) {
5271 vmx->soft_vnmi_blocked = 0;
5272 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5273 vcpu->arch.nmi_pending) {
5274 /*
5275 * This CPU don't support us in finding the end of an
5276 * NMI-blocked window if the guest runs with IRQs
5277 * disabled. So we pull the trigger after 1 s of
5278 * futile waiting, but inform the user about this.
5279 */
5280 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5281 "state on VCPU %d after 1 s timeout\n",
5282 __func__, vcpu->vcpu_id);
5283 vmx->soft_vnmi_blocked = 0;
5284 }
5285 }
5286
5287 if (exit_reason < kvm_vmx_max_exit_handlers
5288 && kvm_vmx_exit_handlers[exit_reason])
5289 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5290 else {
5291 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5292 vcpu->run->hw.hardware_exit_reason = exit_reason;
5293 }
5294 return 0;
5295 }
5296
5297 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5298 {
5299 if (irr == -1 || tpr < irr) {
5300 vmcs_write32(TPR_THRESHOLD, 0);
5301 return;
5302 }
5303
5304 vmcs_write32(TPR_THRESHOLD, irr);
5305 }
5306
5307 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5308 {
5309 u32 exit_intr_info;
5310
5311 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5312 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5313 return;
5314
5315 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5316 exit_intr_info = vmx->exit_intr_info;
5317
5318 /* Handle machine checks before interrupts are enabled */
5319 if (is_machine_check(exit_intr_info))
5320 kvm_machine_check();
5321
5322 /* We need to handle NMIs before interrupts are enabled */
5323 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5324 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5325 kvm_before_handle_nmi(&vmx->vcpu);
5326 asm("int $2");
5327 kvm_after_handle_nmi(&vmx->vcpu);
5328 }
5329 }
5330
5331 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5332 {
5333 u32 exit_intr_info;
5334 bool unblock_nmi;
5335 u8 vector;
5336 bool idtv_info_valid;
5337
5338 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5339
5340 if (cpu_has_virtual_nmis()) {
5341 if (vmx->nmi_known_unmasked)
5342 return;
5343 /*
5344 * Can't use vmx->exit_intr_info since we're not sure what
5345 * the exit reason is.
5346 */
5347 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5348 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5349 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5350 /*
5351 * SDM 3: 27.7.1.2 (September 2008)
5352 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5353 * a guest IRET fault.
5354 * SDM 3: 23.2.2 (September 2008)
5355 * Bit 12 is undefined in any of the following cases:
5356 * If the VM exit sets the valid bit in the IDT-vectoring
5357 * information field.
5358 * If the VM exit is due to a double fault.
5359 */
5360 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5361 vector != DF_VECTOR && !idtv_info_valid)
5362 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5363 GUEST_INTR_STATE_NMI);
5364 else
5365 vmx->nmi_known_unmasked =
5366 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5367 & GUEST_INTR_STATE_NMI);
5368 } else if (unlikely(vmx->soft_vnmi_blocked))
5369 vmx->vnmi_blocked_time +=
5370 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5371 }
5372
5373 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5374 u32 idt_vectoring_info,
5375 int instr_len_field,
5376 int error_code_field)
5377 {
5378 u8 vector;
5379 int type;
5380 bool idtv_info_valid;
5381
5382 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5383
5384 vmx->vcpu.arch.nmi_injected = false;
5385 kvm_clear_exception_queue(&vmx->vcpu);
5386 kvm_clear_interrupt_queue(&vmx->vcpu);
5387
5388 if (!idtv_info_valid)
5389 return;
5390
5391 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5392
5393 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5394 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5395
5396 switch (type) {
5397 case INTR_TYPE_NMI_INTR:
5398 vmx->vcpu.arch.nmi_injected = true;
5399 /*
5400 * SDM 3: 27.7.1.2 (September 2008)
5401 * Clear bit "block by NMI" before VM entry if a NMI
5402 * delivery faulted.
5403 */
5404 vmx_set_nmi_mask(&vmx->vcpu, false);
5405 break;
5406 case INTR_TYPE_SOFT_EXCEPTION:
5407 vmx->vcpu.arch.event_exit_inst_len =
5408 vmcs_read32(instr_len_field);
5409 /* fall through */
5410 case INTR_TYPE_HARD_EXCEPTION:
5411 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
5412 u32 err = vmcs_read32(error_code_field);
5413 kvm_queue_exception_e(&vmx->vcpu, vector, err);
5414 } else
5415 kvm_queue_exception(&vmx->vcpu, vector);
5416 break;
5417 case INTR_TYPE_SOFT_INTR:
5418 vmx->vcpu.arch.event_exit_inst_len =
5419 vmcs_read32(instr_len_field);
5420 /* fall through */
5421 case INTR_TYPE_EXT_INTR:
5422 kvm_queue_interrupt(&vmx->vcpu, vector,
5423 type == INTR_TYPE_SOFT_INTR);
5424 break;
5425 default:
5426 break;
5427 }
5428 }
5429
5430 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5431 {
5432 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5433 VM_EXIT_INSTRUCTION_LEN,
5434 IDT_VECTORING_ERROR_CODE);
5435 }
5436
5437 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5438 {
5439 __vmx_complete_interrupts(to_vmx(vcpu),
5440 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5441 VM_ENTRY_INSTRUCTION_LEN,
5442 VM_ENTRY_EXCEPTION_ERROR_CODE);
5443
5444 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5445 }
5446
5447 #ifdef CONFIG_X86_64
5448 #define R "r"
5449 #define Q "q"
5450 #else
5451 #define R "e"
5452 #define Q "l"
5453 #endif
5454
5455 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
5456 {
5457 struct vcpu_vmx *vmx = to_vmx(vcpu);
5458
5459 /* Record the guest's net vcpu time for enforced NMI injections. */
5460 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
5461 vmx->entry_time = ktime_get();
5462
5463 /* Don't enter VMX if guest state is invalid, let the exit handler
5464 start emulation until we arrive back to a valid state */
5465 if (vmx->emulation_required && emulate_invalid_guest_state)
5466 return;
5467
5468 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
5469 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
5470 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
5471 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
5472
5473 /* When single-stepping over STI and MOV SS, we must clear the
5474 * corresponding interruptibility bits in the guest state. Otherwise
5475 * vmentry fails as it then expects bit 14 (BS) in pending debug
5476 * exceptions being set, but that's not correct for the guest debugging
5477 * case. */
5478 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5479 vmx_set_interrupt_shadow(vcpu, 0);
5480
5481 vmx->__launched = vmx->loaded_vmcs->launched;
5482 asm(
5483 /* Store host registers */
5484 "push %%"R"dx; push %%"R"bp;"
5485 "push %%"R"cx \n\t" /* placeholder for guest rcx */
5486 "push %%"R"cx \n\t"
5487 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
5488 "je 1f \n\t"
5489 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
5490 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
5491 "1: \n\t"
5492 /* Reload cr2 if changed */
5493 "mov %c[cr2](%0), %%"R"ax \n\t"
5494 "mov %%cr2, %%"R"dx \n\t"
5495 "cmp %%"R"ax, %%"R"dx \n\t"
5496 "je 2f \n\t"
5497 "mov %%"R"ax, %%cr2 \n\t"
5498 "2: \n\t"
5499 /* Check if vmlaunch of vmresume is needed */
5500 "cmpl $0, %c[launched](%0) \n\t"
5501 /* Load guest registers. Don't clobber flags. */
5502 "mov %c[rax](%0), %%"R"ax \n\t"
5503 "mov %c[rbx](%0), %%"R"bx \n\t"
5504 "mov %c[rdx](%0), %%"R"dx \n\t"
5505 "mov %c[rsi](%0), %%"R"si \n\t"
5506 "mov %c[rdi](%0), %%"R"di \n\t"
5507 "mov %c[rbp](%0), %%"R"bp \n\t"
5508 #ifdef CONFIG_X86_64
5509 "mov %c[r8](%0), %%r8 \n\t"
5510 "mov %c[r9](%0), %%r9 \n\t"
5511 "mov %c[r10](%0), %%r10 \n\t"
5512 "mov %c[r11](%0), %%r11 \n\t"
5513 "mov %c[r12](%0), %%r12 \n\t"
5514 "mov %c[r13](%0), %%r13 \n\t"
5515 "mov %c[r14](%0), %%r14 \n\t"
5516 "mov %c[r15](%0), %%r15 \n\t"
5517 #endif
5518 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
5519
5520 /* Enter guest mode */
5521 "jne .Llaunched \n\t"
5522 __ex(ASM_VMX_VMLAUNCH) "\n\t"
5523 "jmp .Lkvm_vmx_return \n\t"
5524 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
5525 ".Lkvm_vmx_return: "
5526 /* Save guest registers, load host registers, keep flags */
5527 "mov %0, %c[wordsize](%%"R"sp) \n\t"
5528 "pop %0 \n\t"
5529 "mov %%"R"ax, %c[rax](%0) \n\t"
5530 "mov %%"R"bx, %c[rbx](%0) \n\t"
5531 "pop"Q" %c[rcx](%0) \n\t"
5532 "mov %%"R"dx, %c[rdx](%0) \n\t"
5533 "mov %%"R"si, %c[rsi](%0) \n\t"
5534 "mov %%"R"di, %c[rdi](%0) \n\t"
5535 "mov %%"R"bp, %c[rbp](%0) \n\t"
5536 #ifdef CONFIG_X86_64
5537 "mov %%r8, %c[r8](%0) \n\t"
5538 "mov %%r9, %c[r9](%0) \n\t"
5539 "mov %%r10, %c[r10](%0) \n\t"
5540 "mov %%r11, %c[r11](%0) \n\t"
5541 "mov %%r12, %c[r12](%0) \n\t"
5542 "mov %%r13, %c[r13](%0) \n\t"
5543 "mov %%r14, %c[r14](%0) \n\t"
5544 "mov %%r15, %c[r15](%0) \n\t"
5545 #endif
5546 "mov %%cr2, %%"R"ax \n\t"
5547 "mov %%"R"ax, %c[cr2](%0) \n\t"
5548
5549 "pop %%"R"bp; pop %%"R"dx \n\t"
5550 "setbe %c[fail](%0) \n\t"
5551 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
5552 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
5553 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
5554 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
5555 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
5556 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
5557 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
5558 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
5559 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
5560 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
5561 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
5562 #ifdef CONFIG_X86_64
5563 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
5564 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
5565 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
5566 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
5567 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
5568 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
5569 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
5570 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
5571 #endif
5572 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
5573 [wordsize]"i"(sizeof(ulong))
5574 : "cc", "memory"
5575 , R"ax", R"bx", R"di", R"si"
5576 #ifdef CONFIG_X86_64
5577 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
5578 #endif
5579 );
5580
5581 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
5582 | (1 << VCPU_EXREG_RFLAGS)
5583 | (1 << VCPU_EXREG_CPL)
5584 | (1 << VCPU_EXREG_PDPTR)
5585 | (1 << VCPU_EXREG_SEGMENTS)
5586 | (1 << VCPU_EXREG_CR3));
5587 vcpu->arch.regs_dirty = 0;
5588
5589 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
5590
5591 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
5592 vmx->loaded_vmcs->launched = 1;
5593
5594 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
5595
5596 vmx_complete_atomic_exit(vmx);
5597 vmx_recover_nmi_blocking(vmx);
5598 vmx_complete_interrupts(vmx);
5599 }
5600
5601 #undef R
5602 #undef Q
5603
5604 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
5605 {
5606 struct vcpu_vmx *vmx = to_vmx(vcpu);
5607
5608 free_vpid(vmx);
5609 free_nested(vmx);
5610 free_loaded_vmcs(vmx->loaded_vmcs);
5611 kfree(vmx->guest_msrs);
5612 kvm_vcpu_uninit(vcpu);
5613 kmem_cache_free(kvm_vcpu_cache, vmx);
5614 }
5615
5616 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
5617 {
5618 int err;
5619 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
5620 int cpu;
5621
5622 if (!vmx)
5623 return ERR_PTR(-ENOMEM);
5624
5625 allocate_vpid(vmx);
5626
5627 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
5628 if (err)
5629 goto free_vcpu;
5630
5631 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
5632 err = -ENOMEM;
5633 if (!vmx->guest_msrs) {
5634 goto uninit_vcpu;
5635 }
5636
5637 vmx->loaded_vmcs = &vmx->vmcs01;
5638 vmx->loaded_vmcs->vmcs = alloc_vmcs();
5639 if (!vmx->loaded_vmcs->vmcs)
5640 goto free_msrs;
5641 if (!vmm_exclusive)
5642 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
5643 loaded_vmcs_init(vmx->loaded_vmcs);
5644 if (!vmm_exclusive)
5645 kvm_cpu_vmxoff();
5646
5647 cpu = get_cpu();
5648 vmx_vcpu_load(&vmx->vcpu, cpu);
5649 vmx->vcpu.cpu = cpu;
5650 err = vmx_vcpu_setup(vmx);
5651 vmx_vcpu_put(&vmx->vcpu);
5652 put_cpu();
5653 if (err)
5654 goto free_vmcs;
5655 if (vm_need_virtualize_apic_accesses(kvm))
5656 err = alloc_apic_access_page(kvm);
5657 if (err)
5658 goto free_vmcs;
5659
5660 if (enable_ept) {
5661 if (!kvm->arch.ept_identity_map_addr)
5662 kvm->arch.ept_identity_map_addr =
5663 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5664 err = -ENOMEM;
5665 if (alloc_identity_pagetable(kvm) != 0)
5666 goto free_vmcs;
5667 if (!init_rmode_identity_map(kvm))
5668 goto free_vmcs;
5669 }
5670
5671 vmx->nested.current_vmptr = -1ull;
5672 vmx->nested.current_vmcs12 = NULL;
5673
5674 return &vmx->vcpu;
5675
5676 free_vmcs:
5677 free_vmcs(vmx->loaded_vmcs->vmcs);
5678 free_msrs:
5679 kfree(vmx->guest_msrs);
5680 uninit_vcpu:
5681 kvm_vcpu_uninit(&vmx->vcpu);
5682 free_vcpu:
5683 free_vpid(vmx);
5684 kmem_cache_free(kvm_vcpu_cache, vmx);
5685 return ERR_PTR(err);
5686 }
5687
5688 static void __init vmx_check_processor_compat(void *rtn)
5689 {
5690 struct vmcs_config vmcs_conf;
5691
5692 *(int *)rtn = 0;
5693 if (setup_vmcs_config(&vmcs_conf) < 0)
5694 *(int *)rtn = -EIO;
5695 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
5696 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
5697 smp_processor_id());
5698 *(int *)rtn = -EIO;
5699 }
5700 }
5701
5702 static int get_ept_level(void)
5703 {
5704 return VMX_EPT_DEFAULT_GAW + 1;
5705 }
5706
5707 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5708 {
5709 u64 ret;
5710
5711 /* For VT-d and EPT combination
5712 * 1. MMIO: always map as UC
5713 * 2. EPT with VT-d:
5714 * a. VT-d without snooping control feature: can't guarantee the
5715 * result, try to trust guest.
5716 * b. VT-d with snooping control feature: snooping control feature of
5717 * VT-d engine can guarantee the cache correctness. Just set it
5718 * to WB to keep consistent with host. So the same as item 3.
5719 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
5720 * consistent with host MTRR
5721 */
5722 if (is_mmio)
5723 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
5724 else if (vcpu->kvm->arch.iommu_domain &&
5725 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
5726 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
5727 VMX_EPT_MT_EPTE_SHIFT;
5728 else
5729 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
5730 | VMX_EPT_IPAT_BIT;
5731
5732 return ret;
5733 }
5734
5735 #define _ER(x) { EXIT_REASON_##x, #x }
5736
5737 static const struct trace_print_flags vmx_exit_reasons_str[] = {
5738 _ER(EXCEPTION_NMI),
5739 _ER(EXTERNAL_INTERRUPT),
5740 _ER(TRIPLE_FAULT),
5741 _ER(PENDING_INTERRUPT),
5742 _ER(NMI_WINDOW),
5743 _ER(TASK_SWITCH),
5744 _ER(CPUID),
5745 _ER(HLT),
5746 _ER(INVLPG),
5747 _ER(RDPMC),
5748 _ER(RDTSC),
5749 _ER(VMCALL),
5750 _ER(VMCLEAR),
5751 _ER(VMLAUNCH),
5752 _ER(VMPTRLD),
5753 _ER(VMPTRST),
5754 _ER(VMREAD),
5755 _ER(VMRESUME),
5756 _ER(VMWRITE),
5757 _ER(VMOFF),
5758 _ER(VMON),
5759 _ER(CR_ACCESS),
5760 _ER(DR_ACCESS),
5761 _ER(IO_INSTRUCTION),
5762 _ER(MSR_READ),
5763 _ER(MSR_WRITE),
5764 _ER(MWAIT_INSTRUCTION),
5765 _ER(MONITOR_INSTRUCTION),
5766 _ER(PAUSE_INSTRUCTION),
5767 _ER(MCE_DURING_VMENTRY),
5768 _ER(TPR_BELOW_THRESHOLD),
5769 _ER(APIC_ACCESS),
5770 _ER(EPT_VIOLATION),
5771 _ER(EPT_MISCONFIG),
5772 _ER(WBINVD),
5773 { -1, NULL }
5774 };
5775
5776 #undef _ER
5777
5778 static int vmx_get_lpage_level(void)
5779 {
5780 if (enable_ept && !cpu_has_vmx_ept_1g_page())
5781 return PT_DIRECTORY_LEVEL;
5782 else
5783 /* For shadow and EPT supported 1GB page */
5784 return PT_PDPE_LEVEL;
5785 }
5786
5787 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
5788 {
5789 struct kvm_cpuid_entry2 *best;
5790 struct vcpu_vmx *vmx = to_vmx(vcpu);
5791 u32 exec_control;
5792
5793 vmx->rdtscp_enabled = false;
5794 if (vmx_rdtscp_supported()) {
5795 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5796 if (exec_control & SECONDARY_EXEC_RDTSCP) {
5797 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
5798 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
5799 vmx->rdtscp_enabled = true;
5800 else {
5801 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5802 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5803 exec_control);
5804 }
5805 }
5806 }
5807 }
5808
5809 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5810 {
5811 }
5812
5813 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
5814 struct x86_instruction_info *info,
5815 enum x86_intercept_stage stage)
5816 {
5817 return X86EMUL_CONTINUE;
5818 }
5819
5820 static struct kvm_x86_ops vmx_x86_ops = {
5821 .cpu_has_kvm_support = cpu_has_kvm_support,
5822 .disabled_by_bios = vmx_disabled_by_bios,
5823 .hardware_setup = hardware_setup,
5824 .hardware_unsetup = hardware_unsetup,
5825 .check_processor_compatibility = vmx_check_processor_compat,
5826 .hardware_enable = hardware_enable,
5827 .hardware_disable = hardware_disable,
5828 .cpu_has_accelerated_tpr = report_flexpriority,
5829
5830 .vcpu_create = vmx_create_vcpu,
5831 .vcpu_free = vmx_free_vcpu,
5832 .vcpu_reset = vmx_vcpu_reset,
5833
5834 .prepare_guest_switch = vmx_save_host_state,
5835 .vcpu_load = vmx_vcpu_load,
5836 .vcpu_put = vmx_vcpu_put,
5837
5838 .set_guest_debug = set_guest_debug,
5839 .get_msr = vmx_get_msr,
5840 .set_msr = vmx_set_msr,
5841 .get_segment_base = vmx_get_segment_base,
5842 .get_segment = vmx_get_segment,
5843 .set_segment = vmx_set_segment,
5844 .get_cpl = vmx_get_cpl,
5845 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
5846 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
5847 .decache_cr3 = vmx_decache_cr3,
5848 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
5849 .set_cr0 = vmx_set_cr0,
5850 .set_cr3 = vmx_set_cr3,
5851 .set_cr4 = vmx_set_cr4,
5852 .set_efer = vmx_set_efer,
5853 .get_idt = vmx_get_idt,
5854 .set_idt = vmx_set_idt,
5855 .get_gdt = vmx_get_gdt,
5856 .set_gdt = vmx_set_gdt,
5857 .set_dr7 = vmx_set_dr7,
5858 .cache_reg = vmx_cache_reg,
5859 .get_rflags = vmx_get_rflags,
5860 .set_rflags = vmx_set_rflags,
5861 .fpu_activate = vmx_fpu_activate,
5862 .fpu_deactivate = vmx_fpu_deactivate,
5863
5864 .tlb_flush = vmx_flush_tlb,
5865
5866 .run = vmx_vcpu_run,
5867 .handle_exit = vmx_handle_exit,
5868 .skip_emulated_instruction = skip_emulated_instruction,
5869 .set_interrupt_shadow = vmx_set_interrupt_shadow,
5870 .get_interrupt_shadow = vmx_get_interrupt_shadow,
5871 .patch_hypercall = vmx_patch_hypercall,
5872 .set_irq = vmx_inject_irq,
5873 .set_nmi = vmx_inject_nmi,
5874 .queue_exception = vmx_queue_exception,
5875 .cancel_injection = vmx_cancel_injection,
5876 .interrupt_allowed = vmx_interrupt_allowed,
5877 .nmi_allowed = vmx_nmi_allowed,
5878 .get_nmi_mask = vmx_get_nmi_mask,
5879 .set_nmi_mask = vmx_set_nmi_mask,
5880 .enable_nmi_window = enable_nmi_window,
5881 .enable_irq_window = enable_irq_window,
5882 .update_cr8_intercept = update_cr8_intercept,
5883
5884 .set_tss_addr = vmx_set_tss_addr,
5885 .get_tdp_level = get_ept_level,
5886 .get_mt_mask = vmx_get_mt_mask,
5887
5888 .get_exit_info = vmx_get_exit_info,
5889 .exit_reasons_str = vmx_exit_reasons_str,
5890
5891 .get_lpage_level = vmx_get_lpage_level,
5892
5893 .cpuid_update = vmx_cpuid_update,
5894
5895 .rdtscp_supported = vmx_rdtscp_supported,
5896
5897 .set_supported_cpuid = vmx_set_supported_cpuid,
5898
5899 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
5900
5901 .set_tsc_khz = vmx_set_tsc_khz,
5902 .write_tsc_offset = vmx_write_tsc_offset,
5903 .adjust_tsc_offset = vmx_adjust_tsc_offset,
5904 .compute_tsc_offset = vmx_compute_tsc_offset,
5905
5906 .set_tdp_cr3 = vmx_set_cr3,
5907
5908 .check_intercept = vmx_check_intercept,
5909 };
5910
5911 static int __init vmx_init(void)
5912 {
5913 int r, i;
5914
5915 rdmsrl_safe(MSR_EFER, &host_efer);
5916
5917 for (i = 0; i < NR_VMX_MSR; ++i)
5918 kvm_define_shared_msr(i, vmx_msr_index[i]);
5919
5920 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5921 if (!vmx_io_bitmap_a)
5922 return -ENOMEM;
5923
5924 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5925 if (!vmx_io_bitmap_b) {
5926 r = -ENOMEM;
5927 goto out;
5928 }
5929
5930 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5931 if (!vmx_msr_bitmap_legacy) {
5932 r = -ENOMEM;
5933 goto out1;
5934 }
5935
5936 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5937 if (!vmx_msr_bitmap_longmode) {
5938 r = -ENOMEM;
5939 goto out2;
5940 }
5941
5942 /*
5943 * Allow direct access to the PC debug port (it is often used for I/O
5944 * delays, but the vmexits simply slow things down).
5945 */
5946 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5947 clear_bit(0x80, vmx_io_bitmap_a);
5948
5949 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5950
5951 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5952 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5953
5954 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
5955
5956 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
5957 __alignof__(struct vcpu_vmx), THIS_MODULE);
5958 if (r)
5959 goto out3;
5960
5961 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5962 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5963 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5964 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5965 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5966 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5967
5968 if (enable_ept) {
5969 bypass_guest_pf = 0;
5970 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
5971 VMX_EPT_EXECUTABLE_MASK);
5972 kvm_enable_tdp();
5973 } else
5974 kvm_disable_tdp();
5975
5976 if (bypass_guest_pf)
5977 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
5978
5979 return 0;
5980
5981 out3:
5982 free_page((unsigned long)vmx_msr_bitmap_longmode);
5983 out2:
5984 free_page((unsigned long)vmx_msr_bitmap_legacy);
5985 out1:
5986 free_page((unsigned long)vmx_io_bitmap_b);
5987 out:
5988 free_page((unsigned long)vmx_io_bitmap_a);
5989 return r;
5990 }
5991
5992 static void __exit vmx_exit(void)
5993 {
5994 free_page((unsigned long)vmx_msr_bitmap_legacy);
5995 free_page((unsigned long)vmx_msr_bitmap_longmode);
5996 free_page((unsigned long)vmx_io_bitmap_b);
5997 free_page((unsigned long)vmx_io_bitmap_a);
5998
5999 kvm_exit();
6000 }
6001
6002 module_init(vmx_init)
6003 module_exit(vmx_exit)