]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
x86, kvm, vmx: Don't set LOAD_IA32_EFER when host and guest match
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
121 * According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
128 #define KVM_VMX_DEFAULT_PLE_GAP 128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
133 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160 u32 revision_id;
161 u32 abort;
162 char data[0];
163 };
164
165 /*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170 struct loaded_vmcs {
171 struct vmcs *vmcs;
172 int cpu;
173 int launched;
174 struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178 unsigned index;
179 u64 data;
180 u64 mask;
181 };
182
183 /*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198 /* According to the Intel spec, a VMCS region must start with the
199 * following two fields. Then follow implementation-specific data.
200 */
201 u32 revision_id;
202 u32 abort;
203
204 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205 u32 padding[7]; /* room for future expansion */
206
207 u64 io_bitmap_a;
208 u64 io_bitmap_b;
209 u64 msr_bitmap;
210 u64 vm_exit_msr_store_addr;
211 u64 vm_exit_msr_load_addr;
212 u64 vm_entry_msr_load_addr;
213 u64 tsc_offset;
214 u64 virtual_apic_page_addr;
215 u64 apic_access_addr;
216 u64 ept_pointer;
217 u64 guest_physical_address;
218 u64 vmcs_link_pointer;
219 u64 guest_ia32_debugctl;
220 u64 guest_ia32_pat;
221 u64 guest_ia32_efer;
222 u64 guest_ia32_perf_global_ctrl;
223 u64 guest_pdptr0;
224 u64 guest_pdptr1;
225 u64 guest_pdptr2;
226 u64 guest_pdptr3;
227 u64 guest_bndcfgs;
228 u64 host_ia32_pat;
229 u64 host_ia32_efer;
230 u64 host_ia32_perf_global_ctrl;
231 u64 padding64[8]; /* room for future expansion */
232 /*
233 * To allow migration of L1 (complete with its L2 guests) between
234 * machines of different natural widths (32 or 64 bit), we cannot have
235 * unsigned long fields with no explict size. We use u64 (aliased
236 * natural_width) instead. Luckily, x86 is little-endian.
237 */
238 natural_width cr0_guest_host_mask;
239 natural_width cr4_guest_host_mask;
240 natural_width cr0_read_shadow;
241 natural_width cr4_read_shadow;
242 natural_width cr3_target_value0;
243 natural_width cr3_target_value1;
244 natural_width cr3_target_value2;
245 natural_width cr3_target_value3;
246 natural_width exit_qualification;
247 natural_width guest_linear_address;
248 natural_width guest_cr0;
249 natural_width guest_cr3;
250 natural_width guest_cr4;
251 natural_width guest_es_base;
252 natural_width guest_cs_base;
253 natural_width guest_ss_base;
254 natural_width guest_ds_base;
255 natural_width guest_fs_base;
256 natural_width guest_gs_base;
257 natural_width guest_ldtr_base;
258 natural_width guest_tr_base;
259 natural_width guest_gdtr_base;
260 natural_width guest_idtr_base;
261 natural_width guest_dr7;
262 natural_width guest_rsp;
263 natural_width guest_rip;
264 natural_width guest_rflags;
265 natural_width guest_pending_dbg_exceptions;
266 natural_width guest_sysenter_esp;
267 natural_width guest_sysenter_eip;
268 natural_width host_cr0;
269 natural_width host_cr3;
270 natural_width host_cr4;
271 natural_width host_fs_base;
272 natural_width host_gs_base;
273 natural_width host_tr_base;
274 natural_width host_gdtr_base;
275 natural_width host_idtr_base;
276 natural_width host_ia32_sysenter_esp;
277 natural_width host_ia32_sysenter_eip;
278 natural_width host_rsp;
279 natural_width host_rip;
280 natural_width paddingl[8]; /* room for future expansion */
281 u32 pin_based_vm_exec_control;
282 u32 cpu_based_vm_exec_control;
283 u32 exception_bitmap;
284 u32 page_fault_error_code_mask;
285 u32 page_fault_error_code_match;
286 u32 cr3_target_count;
287 u32 vm_exit_controls;
288 u32 vm_exit_msr_store_count;
289 u32 vm_exit_msr_load_count;
290 u32 vm_entry_controls;
291 u32 vm_entry_msr_load_count;
292 u32 vm_entry_intr_info_field;
293 u32 vm_entry_exception_error_code;
294 u32 vm_entry_instruction_len;
295 u32 tpr_threshold;
296 u32 secondary_vm_exec_control;
297 u32 vm_instruction_error;
298 u32 vm_exit_reason;
299 u32 vm_exit_intr_info;
300 u32 vm_exit_intr_error_code;
301 u32 idt_vectoring_info_field;
302 u32 idt_vectoring_error_code;
303 u32 vm_exit_instruction_len;
304 u32 vmx_instruction_info;
305 u32 guest_es_limit;
306 u32 guest_cs_limit;
307 u32 guest_ss_limit;
308 u32 guest_ds_limit;
309 u32 guest_fs_limit;
310 u32 guest_gs_limit;
311 u32 guest_ldtr_limit;
312 u32 guest_tr_limit;
313 u32 guest_gdtr_limit;
314 u32 guest_idtr_limit;
315 u32 guest_es_ar_bytes;
316 u32 guest_cs_ar_bytes;
317 u32 guest_ss_ar_bytes;
318 u32 guest_ds_ar_bytes;
319 u32 guest_fs_ar_bytes;
320 u32 guest_gs_ar_bytes;
321 u32 guest_ldtr_ar_bytes;
322 u32 guest_tr_ar_bytes;
323 u32 guest_interruptibility_info;
324 u32 guest_activity_state;
325 u32 guest_sysenter_cs;
326 u32 host_ia32_sysenter_cs;
327 u32 vmx_preemption_timer_value;
328 u32 padding32[7]; /* room for future expansion */
329 u16 virtual_processor_id;
330 u16 guest_es_selector;
331 u16 guest_cs_selector;
332 u16 guest_ss_selector;
333 u16 guest_ds_selector;
334 u16 guest_fs_selector;
335 u16 guest_gs_selector;
336 u16 guest_ldtr_selector;
337 u16 guest_tr_selector;
338 u16 host_es_selector;
339 u16 host_cs_selector;
340 u16 host_ss_selector;
341 u16 host_ds_selector;
342 u16 host_fs_selector;
343 u16 host_gs_selector;
344 u16 host_tr_selector;
345 };
346
347 /*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363 struct list_head list;
364 gpa_t vmptr;
365 struct loaded_vmcs vmcs02;
366 };
367
368 /*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372 struct nested_vmx {
373 /* Has the level1 guest done vmxon? */
374 bool vmxon;
375 gpa_t vmxon_ptr;
376
377 /* The guest-physical address of the current VMCS L1 keeps for L2 */
378 gpa_t current_vmptr;
379 /* The host-usable pointer to the above */
380 struct page *current_vmcs12_page;
381 struct vmcs12 *current_vmcs12;
382 struct vmcs *current_shadow_vmcs;
383 /*
384 * Indicates if the shadow vmcs must be updated with the
385 * data hold by vmcs12
386 */
387 bool sync_shadow_vmcs;
388
389 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390 struct list_head vmcs02_pool;
391 int vmcs02_num;
392 u64 vmcs01_tsc_offset;
393 /* L2 must run next, and mustn't decide to exit to L1. */
394 bool nested_run_pending;
395 /*
396 * Guest pages referred to in vmcs02 with host-physical pointers, so
397 * we must keep them pinned while L2 runs.
398 */
399 struct page *apic_access_page;
400 struct page *virtual_apic_page;
401 u64 msr_ia32_feature_control;
402
403 struct hrtimer preemption_timer;
404 bool preemption_timer_expired;
405
406 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407 u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON 0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413 u32 pir[8]; /* Posted interrupt requested */
414 u32 control; /* bit 0 of control is outstanding notification bit */
415 u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420 return test_and_set_bit(POSTED_INTR_ON,
421 (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426 return test_and_clear_bit(POSTED_INTR_ON,
427 (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436 struct kvm_vcpu vcpu;
437 unsigned long host_rsp;
438 u8 fail;
439 bool nmi_known_unmasked;
440 u32 exit_intr_info;
441 u32 idt_vectoring_info;
442 ulong rflags;
443 struct shared_msr_entry *guest_msrs;
444 int nmsrs;
445 int save_nmsrs;
446 unsigned long host_idt_base;
447 #ifdef CONFIG_X86_64
448 u64 msr_host_kernel_gs_base;
449 u64 msr_guest_kernel_gs_base;
450 #endif
451 u32 vm_entry_controls_shadow;
452 u32 vm_exit_controls_shadow;
453 /*
454 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455 * non-nested (L1) guest, it always points to vmcs01. For a nested
456 * guest (L2), it points to a different VMCS.
457 */
458 struct loaded_vmcs vmcs01;
459 struct loaded_vmcs *loaded_vmcs;
460 bool __launched; /* temporary, used in vmx_vcpu_run */
461 struct msr_autoload {
462 unsigned nr;
463 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465 } msr_autoload;
466 struct {
467 int loaded;
468 u16 fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470 u16 ds_sel, es_sel;
471 #endif
472 int gs_ldt_reload_needed;
473 int fs_reload_needed;
474 u64 msr_host_bndcfgs;
475 unsigned long vmcs_host_cr4; /* May not match real cr4 */
476 } host_state;
477 struct {
478 int vm86_active;
479 ulong save_rflags;
480 struct kvm_segment segs[8];
481 } rmode;
482 struct {
483 u32 bitmask; /* 4 bits per segment (1 bit per field) */
484 struct kvm_save_segment {
485 u16 selector;
486 unsigned long base;
487 u32 limit;
488 u32 ar;
489 } seg[8];
490 } segment_cache;
491 int vpid;
492 bool emulation_required;
493
494 /* Support for vnmi-less CPUs */
495 int soft_vnmi_blocked;
496 ktime_t entry_time;
497 s64 vnmi_blocked_time;
498 u32 exit_reason;
499
500 bool rdtscp_enabled;
501
502 /* Posted interrupt descriptor */
503 struct pi_desc pi_desc;
504
505 /* Support for a guest hypervisor (nested VMX) */
506 struct nested_vmx nested;
507
508 /* Dynamic PLE window. */
509 int ple_window;
510 bool ple_window_dirty;
511 };
512
513 enum segment_cache_field {
514 SEG_FIELD_SEL = 0,
515 SEG_FIELD_BASE = 1,
516 SEG_FIELD_LIMIT = 2,
517 SEG_FIELD_AR = 3,
518
519 SEG_FIELD_NR = 4
520 };
521
522 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523 {
524 return container_of(vcpu, struct vcpu_vmx, vcpu);
525 }
526
527 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
529 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
530 [number##_HIGH] = VMCS12_OFFSET(name)+4
531
532
533 static unsigned long shadow_read_only_fields[] = {
534 /*
535 * We do NOT shadow fields that are modified when L0
536 * traps and emulates any vmx instruction (e.g. VMPTRLD,
537 * VMXON...) executed by L1.
538 * For example, VM_INSTRUCTION_ERROR is read
539 * by L1 if a vmx instruction fails (part of the error path).
540 * Note the code assumes this logic. If for some reason
541 * we start shadowing these fields then we need to
542 * force a shadow sync when L0 emulates vmx instructions
543 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544 * by nested_vmx_failValid)
545 */
546 VM_EXIT_REASON,
547 VM_EXIT_INTR_INFO,
548 VM_EXIT_INSTRUCTION_LEN,
549 IDT_VECTORING_INFO_FIELD,
550 IDT_VECTORING_ERROR_CODE,
551 VM_EXIT_INTR_ERROR_CODE,
552 EXIT_QUALIFICATION,
553 GUEST_LINEAR_ADDRESS,
554 GUEST_PHYSICAL_ADDRESS
555 };
556 static int max_shadow_read_only_fields =
557 ARRAY_SIZE(shadow_read_only_fields);
558
559 static unsigned long shadow_read_write_fields[] = {
560 TPR_THRESHOLD,
561 GUEST_RIP,
562 GUEST_RSP,
563 GUEST_CR0,
564 GUEST_CR3,
565 GUEST_CR4,
566 GUEST_INTERRUPTIBILITY_INFO,
567 GUEST_RFLAGS,
568 GUEST_CS_SELECTOR,
569 GUEST_CS_AR_BYTES,
570 GUEST_CS_LIMIT,
571 GUEST_CS_BASE,
572 GUEST_ES_BASE,
573 GUEST_BNDCFGS,
574 CR0_GUEST_HOST_MASK,
575 CR0_READ_SHADOW,
576 CR4_READ_SHADOW,
577 TSC_OFFSET,
578 EXCEPTION_BITMAP,
579 CPU_BASED_VM_EXEC_CONTROL,
580 VM_ENTRY_EXCEPTION_ERROR_CODE,
581 VM_ENTRY_INTR_INFO_FIELD,
582 VM_ENTRY_INSTRUCTION_LEN,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 HOST_FS_BASE,
585 HOST_GS_BASE,
586 HOST_FS_SELECTOR,
587 HOST_GS_SELECTOR
588 };
589 static int max_shadow_read_write_fields =
590 ARRAY_SIZE(shadow_read_write_fields);
591
592 static const unsigned short vmcs_field_to_offset_table[] = {
593 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602 FIELD(HOST_ES_SELECTOR, host_es_selector),
603 FIELD(HOST_CS_SELECTOR, host_cs_selector),
604 FIELD(HOST_SS_SELECTOR, host_ss_selector),
605 FIELD(HOST_DS_SELECTOR, host_ds_selector),
606 FIELD(HOST_FS_SELECTOR, host_fs_selector),
607 FIELD(HOST_GS_SELECTOR, host_gs_selector),
608 FIELD(HOST_TR_SELECTOR, host_tr_selector),
609 FIELD64(IO_BITMAP_A, io_bitmap_a),
610 FIELD64(IO_BITMAP_B, io_bitmap_b),
611 FIELD64(MSR_BITMAP, msr_bitmap),
612 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615 FIELD64(TSC_OFFSET, tsc_offset),
616 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618 FIELD64(EPT_POINTER, ept_pointer),
619 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625 FIELD64(GUEST_PDPTR0, guest_pdptr0),
626 FIELD64(GUEST_PDPTR1, guest_pdptr1),
627 FIELD64(GUEST_PDPTR2, guest_pdptr2),
628 FIELD64(GUEST_PDPTR3, guest_pdptr3),
629 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
630 FIELD64(HOST_IA32_PAT, host_ia32_pat),
631 FIELD64(HOST_IA32_EFER, host_ia32_efer),
632 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635 FIELD(EXCEPTION_BITMAP, exception_bitmap),
636 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638 FIELD(CR3_TARGET_COUNT, cr3_target_count),
639 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647 FIELD(TPR_THRESHOLD, tpr_threshold),
648 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650 FIELD(VM_EXIT_REASON, vm_exit_reason),
651 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657 FIELD(GUEST_ES_LIMIT, guest_es_limit),
658 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
679 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
680 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688 FIELD(EXIT_QUALIFICATION, exit_qualification),
689 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690 FIELD(GUEST_CR0, guest_cr0),
691 FIELD(GUEST_CR3, guest_cr3),
692 FIELD(GUEST_CR4, guest_cr4),
693 FIELD(GUEST_ES_BASE, guest_es_base),
694 FIELD(GUEST_CS_BASE, guest_cs_base),
695 FIELD(GUEST_SS_BASE, guest_ss_base),
696 FIELD(GUEST_DS_BASE, guest_ds_base),
697 FIELD(GUEST_FS_BASE, guest_fs_base),
698 FIELD(GUEST_GS_BASE, guest_gs_base),
699 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700 FIELD(GUEST_TR_BASE, guest_tr_base),
701 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703 FIELD(GUEST_DR7, guest_dr7),
704 FIELD(GUEST_RSP, guest_rsp),
705 FIELD(GUEST_RIP, guest_rip),
706 FIELD(GUEST_RFLAGS, guest_rflags),
707 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710 FIELD(HOST_CR0, host_cr0),
711 FIELD(HOST_CR3, host_cr3),
712 FIELD(HOST_CR4, host_cr4),
713 FIELD(HOST_FS_BASE, host_fs_base),
714 FIELD(HOST_GS_BASE, host_gs_base),
715 FIELD(HOST_TR_BASE, host_tr_base),
716 FIELD(HOST_GDTR_BASE, host_gdtr_base),
717 FIELD(HOST_IDTR_BASE, host_idtr_base),
718 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720 FIELD(HOST_RSP, host_rsp),
721 FIELD(HOST_RIP, host_rip),
722 };
723
724 static inline short vmcs_field_to_offset(unsigned long field)
725 {
726 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
727
728 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
729 vmcs_field_to_offset_table[field] == 0)
730 return -ENOENT;
731
732 return vmcs_field_to_offset_table[field];
733 }
734
735 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
736 {
737 return to_vmx(vcpu)->nested.current_vmcs12;
738 }
739
740 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
741 {
742 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
743 if (is_error_page(page))
744 return NULL;
745
746 return page;
747 }
748
749 static void nested_release_page(struct page *page)
750 {
751 kvm_release_page_dirty(page);
752 }
753
754 static void nested_release_page_clean(struct page *page)
755 {
756 kvm_release_page_clean(page);
757 }
758
759 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
760 static u64 construct_eptp(unsigned long root_hpa);
761 static void kvm_cpu_vmxon(u64 addr);
762 static void kvm_cpu_vmxoff(void);
763 static bool vmx_mpx_supported(void);
764 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
765 static void vmx_set_segment(struct kvm_vcpu *vcpu,
766 struct kvm_segment *var, int seg);
767 static void vmx_get_segment(struct kvm_vcpu *vcpu,
768 struct kvm_segment *var, int seg);
769 static bool guest_state_valid(struct kvm_vcpu *vcpu);
770 static u32 vmx_segment_access_rights(struct kvm_segment *var);
771 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
772 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
773 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
774 static int alloc_identity_pagetable(struct kvm *kvm);
775
776 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
777 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
778 /*
779 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
780 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
781 */
782 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
783 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
784
785 static unsigned long *vmx_io_bitmap_a;
786 static unsigned long *vmx_io_bitmap_b;
787 static unsigned long *vmx_msr_bitmap_legacy;
788 static unsigned long *vmx_msr_bitmap_longmode;
789 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
790 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
791 static unsigned long *vmx_vmread_bitmap;
792 static unsigned long *vmx_vmwrite_bitmap;
793
794 static bool cpu_has_load_ia32_efer;
795 static bool cpu_has_load_perf_global_ctrl;
796
797 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
798 static DEFINE_SPINLOCK(vmx_vpid_lock);
799
800 static struct vmcs_config {
801 int size;
802 int order;
803 u32 revision_id;
804 u32 pin_based_exec_ctrl;
805 u32 cpu_based_exec_ctrl;
806 u32 cpu_based_2nd_exec_ctrl;
807 u32 vmexit_ctrl;
808 u32 vmentry_ctrl;
809 } vmcs_config;
810
811 static struct vmx_capability {
812 u32 ept;
813 u32 vpid;
814 } vmx_capability;
815
816 #define VMX_SEGMENT_FIELD(seg) \
817 [VCPU_SREG_##seg] = { \
818 .selector = GUEST_##seg##_SELECTOR, \
819 .base = GUEST_##seg##_BASE, \
820 .limit = GUEST_##seg##_LIMIT, \
821 .ar_bytes = GUEST_##seg##_AR_BYTES, \
822 }
823
824 static const struct kvm_vmx_segment_field {
825 unsigned selector;
826 unsigned base;
827 unsigned limit;
828 unsigned ar_bytes;
829 } kvm_vmx_segment_fields[] = {
830 VMX_SEGMENT_FIELD(CS),
831 VMX_SEGMENT_FIELD(DS),
832 VMX_SEGMENT_FIELD(ES),
833 VMX_SEGMENT_FIELD(FS),
834 VMX_SEGMENT_FIELD(GS),
835 VMX_SEGMENT_FIELD(SS),
836 VMX_SEGMENT_FIELD(TR),
837 VMX_SEGMENT_FIELD(LDTR),
838 };
839
840 static u64 host_efer;
841
842 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
843
844 /*
845 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
846 * away by decrementing the array size.
847 */
848 static const u32 vmx_msr_index[] = {
849 #ifdef CONFIG_X86_64
850 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
851 #endif
852 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
853 };
854
855 static inline bool is_page_fault(u32 intr_info)
856 {
857 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
858 INTR_INFO_VALID_MASK)) ==
859 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
860 }
861
862 static inline bool is_no_device(u32 intr_info)
863 {
864 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
865 INTR_INFO_VALID_MASK)) ==
866 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
867 }
868
869 static inline bool is_invalid_opcode(u32 intr_info)
870 {
871 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
872 INTR_INFO_VALID_MASK)) ==
873 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
874 }
875
876 static inline bool is_external_interrupt(u32 intr_info)
877 {
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
880 }
881
882 static inline bool is_machine_check(u32 intr_info)
883 {
884 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
885 INTR_INFO_VALID_MASK)) ==
886 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
887 }
888
889 static inline bool cpu_has_vmx_msr_bitmap(void)
890 {
891 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
892 }
893
894 static inline bool cpu_has_vmx_tpr_shadow(void)
895 {
896 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
897 }
898
899 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
900 {
901 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
902 }
903
904 static inline bool cpu_has_secondary_exec_ctrls(void)
905 {
906 return vmcs_config.cpu_based_exec_ctrl &
907 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
908 }
909
910 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
911 {
912 return vmcs_config.cpu_based_2nd_exec_ctrl &
913 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
914 }
915
916 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
917 {
918 return vmcs_config.cpu_based_2nd_exec_ctrl &
919 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
920 }
921
922 static inline bool cpu_has_vmx_apic_register_virt(void)
923 {
924 return vmcs_config.cpu_based_2nd_exec_ctrl &
925 SECONDARY_EXEC_APIC_REGISTER_VIRT;
926 }
927
928 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
929 {
930 return vmcs_config.cpu_based_2nd_exec_ctrl &
931 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
932 }
933
934 static inline bool cpu_has_vmx_posted_intr(void)
935 {
936 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
937 }
938
939 static inline bool cpu_has_vmx_apicv(void)
940 {
941 return cpu_has_vmx_apic_register_virt() &&
942 cpu_has_vmx_virtual_intr_delivery() &&
943 cpu_has_vmx_posted_intr();
944 }
945
946 static inline bool cpu_has_vmx_flexpriority(void)
947 {
948 return cpu_has_vmx_tpr_shadow() &&
949 cpu_has_vmx_virtualize_apic_accesses();
950 }
951
952 static inline bool cpu_has_vmx_ept_execute_only(void)
953 {
954 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
955 }
956
957 static inline bool cpu_has_vmx_eptp_uncacheable(void)
958 {
959 return vmx_capability.ept & VMX_EPTP_UC_BIT;
960 }
961
962 static inline bool cpu_has_vmx_eptp_writeback(void)
963 {
964 return vmx_capability.ept & VMX_EPTP_WB_BIT;
965 }
966
967 static inline bool cpu_has_vmx_ept_2m_page(void)
968 {
969 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
970 }
971
972 static inline bool cpu_has_vmx_ept_1g_page(void)
973 {
974 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept_4levels(void)
978 {
979 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
980 }
981
982 static inline bool cpu_has_vmx_ept_ad_bits(void)
983 {
984 return vmx_capability.ept & VMX_EPT_AD_BIT;
985 }
986
987 static inline bool cpu_has_vmx_invept_context(void)
988 {
989 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
990 }
991
992 static inline bool cpu_has_vmx_invept_global(void)
993 {
994 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
995 }
996
997 static inline bool cpu_has_vmx_invvpid_single(void)
998 {
999 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1000 }
1001
1002 static inline bool cpu_has_vmx_invvpid_global(void)
1003 {
1004 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept(void)
1008 {
1009 return vmcs_config.cpu_based_2nd_exec_ctrl &
1010 SECONDARY_EXEC_ENABLE_EPT;
1011 }
1012
1013 static inline bool cpu_has_vmx_unrestricted_guest(void)
1014 {
1015 return vmcs_config.cpu_based_2nd_exec_ctrl &
1016 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1017 }
1018
1019 static inline bool cpu_has_vmx_ple(void)
1020 {
1021 return vmcs_config.cpu_based_2nd_exec_ctrl &
1022 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1023 }
1024
1025 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1026 {
1027 return flexpriority_enabled && irqchip_in_kernel(kvm);
1028 }
1029
1030 static inline bool cpu_has_vmx_vpid(void)
1031 {
1032 return vmcs_config.cpu_based_2nd_exec_ctrl &
1033 SECONDARY_EXEC_ENABLE_VPID;
1034 }
1035
1036 static inline bool cpu_has_vmx_rdtscp(void)
1037 {
1038 return vmcs_config.cpu_based_2nd_exec_ctrl &
1039 SECONDARY_EXEC_RDTSCP;
1040 }
1041
1042 static inline bool cpu_has_vmx_invpcid(void)
1043 {
1044 return vmcs_config.cpu_based_2nd_exec_ctrl &
1045 SECONDARY_EXEC_ENABLE_INVPCID;
1046 }
1047
1048 static inline bool cpu_has_virtual_nmis(void)
1049 {
1050 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1051 }
1052
1053 static inline bool cpu_has_vmx_wbinvd_exit(void)
1054 {
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_WBINVD_EXITING;
1057 }
1058
1059 static inline bool cpu_has_vmx_shadow_vmcs(void)
1060 {
1061 u64 vmx_msr;
1062 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1063 /* check if the cpu supports writing r/o exit information fields */
1064 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1065 return false;
1066
1067 return vmcs_config.cpu_based_2nd_exec_ctrl &
1068 SECONDARY_EXEC_SHADOW_VMCS;
1069 }
1070
1071 static inline bool report_flexpriority(void)
1072 {
1073 return flexpriority_enabled;
1074 }
1075
1076 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1077 {
1078 return vmcs12->cpu_based_vm_exec_control & bit;
1079 }
1080
1081 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1082 {
1083 return (vmcs12->cpu_based_vm_exec_control &
1084 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1085 (vmcs12->secondary_vm_exec_control & bit);
1086 }
1087
1088 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1089 {
1090 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1094 {
1095 return vmcs12->pin_based_vm_exec_control &
1096 PIN_BASED_VMX_PREEMPTION_TIMER;
1097 }
1098
1099 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1100 {
1101 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1102 }
1103
1104 static inline bool is_exception(u32 intr_info)
1105 {
1106 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1107 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1108 }
1109
1110 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1111 u32 exit_intr_info,
1112 unsigned long exit_qualification);
1113 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1114 struct vmcs12 *vmcs12,
1115 u32 reason, unsigned long qualification);
1116
1117 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1118 {
1119 int i;
1120
1121 for (i = 0; i < vmx->nmsrs; ++i)
1122 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1123 return i;
1124 return -1;
1125 }
1126
1127 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1128 {
1129 struct {
1130 u64 vpid : 16;
1131 u64 rsvd : 48;
1132 u64 gva;
1133 } operand = { vpid, 0, gva };
1134
1135 asm volatile (__ex(ASM_VMX_INVVPID)
1136 /* CF==1 or ZF==1 --> rc = -1 */
1137 "; ja 1f ; ud2 ; 1:"
1138 : : "a"(&operand), "c"(ext) : "cc", "memory");
1139 }
1140
1141 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1142 {
1143 struct {
1144 u64 eptp, gpa;
1145 } operand = {eptp, gpa};
1146
1147 asm volatile (__ex(ASM_VMX_INVEPT)
1148 /* CF==1 or ZF==1 --> rc = -1 */
1149 "; ja 1f ; ud2 ; 1:\n"
1150 : : "a" (&operand), "c" (ext) : "cc", "memory");
1151 }
1152
1153 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1154 {
1155 int i;
1156
1157 i = __find_msr_index(vmx, msr);
1158 if (i >= 0)
1159 return &vmx->guest_msrs[i];
1160 return NULL;
1161 }
1162
1163 static void vmcs_clear(struct vmcs *vmcs)
1164 {
1165 u64 phys_addr = __pa(vmcs);
1166 u8 error;
1167
1168 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1169 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1170 : "cc", "memory");
1171 if (error)
1172 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1173 vmcs, phys_addr);
1174 }
1175
1176 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1177 {
1178 vmcs_clear(loaded_vmcs->vmcs);
1179 loaded_vmcs->cpu = -1;
1180 loaded_vmcs->launched = 0;
1181 }
1182
1183 static void vmcs_load(struct vmcs *vmcs)
1184 {
1185 u64 phys_addr = __pa(vmcs);
1186 u8 error;
1187
1188 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1189 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1190 : "cc", "memory");
1191 if (error)
1192 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1193 vmcs, phys_addr);
1194 }
1195
1196 #ifdef CONFIG_KEXEC
1197 /*
1198 * This bitmap is used to indicate whether the vmclear
1199 * operation is enabled on all cpus. All disabled by
1200 * default.
1201 */
1202 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1203
1204 static inline void crash_enable_local_vmclear(int cpu)
1205 {
1206 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1207 }
1208
1209 static inline void crash_disable_local_vmclear(int cpu)
1210 {
1211 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1212 }
1213
1214 static inline int crash_local_vmclear_enabled(int cpu)
1215 {
1216 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1217 }
1218
1219 static void crash_vmclear_local_loaded_vmcss(void)
1220 {
1221 int cpu = raw_smp_processor_id();
1222 struct loaded_vmcs *v;
1223
1224 if (!crash_local_vmclear_enabled(cpu))
1225 return;
1226
1227 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1228 loaded_vmcss_on_cpu_link)
1229 vmcs_clear(v->vmcs);
1230 }
1231 #else
1232 static inline void crash_enable_local_vmclear(int cpu) { }
1233 static inline void crash_disable_local_vmclear(int cpu) { }
1234 #endif /* CONFIG_KEXEC */
1235
1236 static void __loaded_vmcs_clear(void *arg)
1237 {
1238 struct loaded_vmcs *loaded_vmcs = arg;
1239 int cpu = raw_smp_processor_id();
1240
1241 if (loaded_vmcs->cpu != cpu)
1242 return; /* vcpu migration can race with cpu offline */
1243 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1244 per_cpu(current_vmcs, cpu) = NULL;
1245 crash_disable_local_vmclear(cpu);
1246 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1247
1248 /*
1249 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1250 * is before setting loaded_vmcs->vcpu to -1 which is done in
1251 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1252 * then adds the vmcs into percpu list before it is deleted.
1253 */
1254 smp_wmb();
1255
1256 loaded_vmcs_init(loaded_vmcs);
1257 crash_enable_local_vmclear(cpu);
1258 }
1259
1260 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1261 {
1262 int cpu = loaded_vmcs->cpu;
1263
1264 if (cpu != -1)
1265 smp_call_function_single(cpu,
1266 __loaded_vmcs_clear, loaded_vmcs, 1);
1267 }
1268
1269 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1270 {
1271 if (vmx->vpid == 0)
1272 return;
1273
1274 if (cpu_has_vmx_invvpid_single())
1275 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1276 }
1277
1278 static inline void vpid_sync_vcpu_global(void)
1279 {
1280 if (cpu_has_vmx_invvpid_global())
1281 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1282 }
1283
1284 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1285 {
1286 if (cpu_has_vmx_invvpid_single())
1287 vpid_sync_vcpu_single(vmx);
1288 else
1289 vpid_sync_vcpu_global();
1290 }
1291
1292 static inline void ept_sync_global(void)
1293 {
1294 if (cpu_has_vmx_invept_global())
1295 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1296 }
1297
1298 static inline void ept_sync_context(u64 eptp)
1299 {
1300 if (enable_ept) {
1301 if (cpu_has_vmx_invept_context())
1302 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1303 else
1304 ept_sync_global();
1305 }
1306 }
1307
1308 static __always_inline unsigned long vmcs_readl(unsigned long field)
1309 {
1310 unsigned long value;
1311
1312 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1313 : "=a"(value) : "d"(field) : "cc");
1314 return value;
1315 }
1316
1317 static __always_inline u16 vmcs_read16(unsigned long field)
1318 {
1319 return vmcs_readl(field);
1320 }
1321
1322 static __always_inline u32 vmcs_read32(unsigned long field)
1323 {
1324 return vmcs_readl(field);
1325 }
1326
1327 static __always_inline u64 vmcs_read64(unsigned long field)
1328 {
1329 #ifdef CONFIG_X86_64
1330 return vmcs_readl(field);
1331 #else
1332 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1333 #endif
1334 }
1335
1336 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1337 {
1338 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1339 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1340 dump_stack();
1341 }
1342
1343 static void vmcs_writel(unsigned long field, unsigned long value)
1344 {
1345 u8 error;
1346
1347 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1348 : "=q"(error) : "a"(value), "d"(field) : "cc");
1349 if (unlikely(error))
1350 vmwrite_error(field, value);
1351 }
1352
1353 static void vmcs_write16(unsigned long field, u16 value)
1354 {
1355 vmcs_writel(field, value);
1356 }
1357
1358 static void vmcs_write32(unsigned long field, u32 value)
1359 {
1360 vmcs_writel(field, value);
1361 }
1362
1363 static void vmcs_write64(unsigned long field, u64 value)
1364 {
1365 vmcs_writel(field, value);
1366 #ifndef CONFIG_X86_64
1367 asm volatile ("");
1368 vmcs_writel(field+1, value >> 32);
1369 #endif
1370 }
1371
1372 static void vmcs_clear_bits(unsigned long field, u32 mask)
1373 {
1374 vmcs_writel(field, vmcs_readl(field) & ~mask);
1375 }
1376
1377 static void vmcs_set_bits(unsigned long field, u32 mask)
1378 {
1379 vmcs_writel(field, vmcs_readl(field) | mask);
1380 }
1381
1382 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1383 {
1384 vmcs_write32(VM_ENTRY_CONTROLS, val);
1385 vmx->vm_entry_controls_shadow = val;
1386 }
1387
1388 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1389 {
1390 if (vmx->vm_entry_controls_shadow != val)
1391 vm_entry_controls_init(vmx, val);
1392 }
1393
1394 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1395 {
1396 return vmx->vm_entry_controls_shadow;
1397 }
1398
1399
1400 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1401 {
1402 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1403 }
1404
1405 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1406 {
1407 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1408 }
1409
1410 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1411 {
1412 vmcs_write32(VM_EXIT_CONTROLS, val);
1413 vmx->vm_exit_controls_shadow = val;
1414 }
1415
1416 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1417 {
1418 if (vmx->vm_exit_controls_shadow != val)
1419 vm_exit_controls_init(vmx, val);
1420 }
1421
1422 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1423 {
1424 return vmx->vm_exit_controls_shadow;
1425 }
1426
1427
1428 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1429 {
1430 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1431 }
1432
1433 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1434 {
1435 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1436 }
1437
1438 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1439 {
1440 vmx->segment_cache.bitmask = 0;
1441 }
1442
1443 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1444 unsigned field)
1445 {
1446 bool ret;
1447 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1448
1449 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1450 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1451 vmx->segment_cache.bitmask = 0;
1452 }
1453 ret = vmx->segment_cache.bitmask & mask;
1454 vmx->segment_cache.bitmask |= mask;
1455 return ret;
1456 }
1457
1458 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1459 {
1460 u16 *p = &vmx->segment_cache.seg[seg].selector;
1461
1462 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1463 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1464 return *p;
1465 }
1466
1467 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1468 {
1469 ulong *p = &vmx->segment_cache.seg[seg].base;
1470
1471 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1472 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1473 return *p;
1474 }
1475
1476 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1477 {
1478 u32 *p = &vmx->segment_cache.seg[seg].limit;
1479
1480 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1481 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1482 return *p;
1483 }
1484
1485 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1486 {
1487 u32 *p = &vmx->segment_cache.seg[seg].ar;
1488
1489 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1490 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1491 return *p;
1492 }
1493
1494 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1495 {
1496 u32 eb;
1497
1498 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1499 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1500 if ((vcpu->guest_debug &
1501 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1502 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1503 eb |= 1u << BP_VECTOR;
1504 if (to_vmx(vcpu)->rmode.vm86_active)
1505 eb = ~0;
1506 if (enable_ept)
1507 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1508 if (vcpu->fpu_active)
1509 eb &= ~(1u << NM_VECTOR);
1510
1511 /* When we are running a nested L2 guest and L1 specified for it a
1512 * certain exception bitmap, we must trap the same exceptions and pass
1513 * them to L1. When running L2, we will only handle the exceptions
1514 * specified above if L1 did not want them.
1515 */
1516 if (is_guest_mode(vcpu))
1517 eb |= get_vmcs12(vcpu)->exception_bitmap;
1518
1519 vmcs_write32(EXCEPTION_BITMAP, eb);
1520 }
1521
1522 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1523 unsigned long entry, unsigned long exit)
1524 {
1525 vm_entry_controls_clearbit(vmx, entry);
1526 vm_exit_controls_clearbit(vmx, exit);
1527 }
1528
1529 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1530 {
1531 unsigned i;
1532 struct msr_autoload *m = &vmx->msr_autoload;
1533
1534 switch (msr) {
1535 case MSR_EFER:
1536 if (cpu_has_load_ia32_efer) {
1537 clear_atomic_switch_msr_special(vmx,
1538 VM_ENTRY_LOAD_IA32_EFER,
1539 VM_EXIT_LOAD_IA32_EFER);
1540 return;
1541 }
1542 break;
1543 case MSR_CORE_PERF_GLOBAL_CTRL:
1544 if (cpu_has_load_perf_global_ctrl) {
1545 clear_atomic_switch_msr_special(vmx,
1546 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1547 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1548 return;
1549 }
1550 break;
1551 }
1552
1553 for (i = 0; i < m->nr; ++i)
1554 if (m->guest[i].index == msr)
1555 break;
1556
1557 if (i == m->nr)
1558 return;
1559 --m->nr;
1560 m->guest[i] = m->guest[m->nr];
1561 m->host[i] = m->host[m->nr];
1562 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1563 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1564 }
1565
1566 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1567 unsigned long entry, unsigned long exit,
1568 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1569 u64 guest_val, u64 host_val)
1570 {
1571 vmcs_write64(guest_val_vmcs, guest_val);
1572 vmcs_write64(host_val_vmcs, host_val);
1573 vm_entry_controls_setbit(vmx, entry);
1574 vm_exit_controls_setbit(vmx, exit);
1575 }
1576
1577 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1578 u64 guest_val, u64 host_val)
1579 {
1580 unsigned i;
1581 struct msr_autoload *m = &vmx->msr_autoload;
1582
1583 switch (msr) {
1584 case MSR_EFER:
1585 if (cpu_has_load_ia32_efer) {
1586 add_atomic_switch_msr_special(vmx,
1587 VM_ENTRY_LOAD_IA32_EFER,
1588 VM_EXIT_LOAD_IA32_EFER,
1589 GUEST_IA32_EFER,
1590 HOST_IA32_EFER,
1591 guest_val, host_val);
1592 return;
1593 }
1594 break;
1595 case MSR_CORE_PERF_GLOBAL_CTRL:
1596 if (cpu_has_load_perf_global_ctrl) {
1597 add_atomic_switch_msr_special(vmx,
1598 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1599 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1600 GUEST_IA32_PERF_GLOBAL_CTRL,
1601 HOST_IA32_PERF_GLOBAL_CTRL,
1602 guest_val, host_val);
1603 return;
1604 }
1605 break;
1606 }
1607
1608 for (i = 0; i < m->nr; ++i)
1609 if (m->guest[i].index == msr)
1610 break;
1611
1612 if (i == NR_AUTOLOAD_MSRS) {
1613 printk_once(KERN_WARNING "Not enough msr switch entries. "
1614 "Can't add msr %x\n", msr);
1615 return;
1616 } else if (i == m->nr) {
1617 ++m->nr;
1618 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1619 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1620 }
1621
1622 m->guest[i].index = msr;
1623 m->guest[i].value = guest_val;
1624 m->host[i].index = msr;
1625 m->host[i].value = host_val;
1626 }
1627
1628 static void reload_tss(void)
1629 {
1630 /*
1631 * VT restores TR but not its size. Useless.
1632 */
1633 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1634 struct desc_struct *descs;
1635
1636 descs = (void *)gdt->address;
1637 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1638 load_TR_desc();
1639 }
1640
1641 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1642 {
1643 u64 guest_efer;
1644 u64 ignore_bits;
1645
1646 guest_efer = vmx->vcpu.arch.efer;
1647
1648 /*
1649 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1650 * outside long mode
1651 */
1652 ignore_bits = EFER_NX | EFER_SCE;
1653 #ifdef CONFIG_X86_64
1654 ignore_bits |= EFER_LMA | EFER_LME;
1655 /* SCE is meaningful only in long mode on Intel */
1656 if (guest_efer & EFER_LMA)
1657 ignore_bits &= ~(u64)EFER_SCE;
1658 #endif
1659 guest_efer &= ~ignore_bits;
1660 guest_efer |= host_efer & ignore_bits;
1661 vmx->guest_msrs[efer_offset].data = guest_efer;
1662 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1663
1664 clear_atomic_switch_msr(vmx, MSR_EFER);
1665
1666 /*
1667 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1668 * On CPUs that support "load IA32_EFER", always switch EFER
1669 * atomically, since it's faster than switching it manually.
1670 */
1671 if (cpu_has_load_ia32_efer ||
1672 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1673 guest_efer = vmx->vcpu.arch.efer;
1674 if (!(guest_efer & EFER_LMA))
1675 guest_efer &= ~EFER_LME;
1676 if (guest_efer != host_efer)
1677 add_atomic_switch_msr(vmx, MSR_EFER,
1678 guest_efer, host_efer);
1679 return false;
1680 }
1681
1682 return true;
1683 }
1684
1685 static unsigned long segment_base(u16 selector)
1686 {
1687 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1688 struct desc_struct *d;
1689 unsigned long table_base;
1690 unsigned long v;
1691
1692 if (!(selector & ~3))
1693 return 0;
1694
1695 table_base = gdt->address;
1696
1697 if (selector & 4) { /* from ldt */
1698 u16 ldt_selector = kvm_read_ldt();
1699
1700 if (!(ldt_selector & ~3))
1701 return 0;
1702
1703 table_base = segment_base(ldt_selector);
1704 }
1705 d = (struct desc_struct *)(table_base + (selector & ~7));
1706 v = get_desc_base(d);
1707 #ifdef CONFIG_X86_64
1708 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1709 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1710 #endif
1711 return v;
1712 }
1713
1714 static inline unsigned long kvm_read_tr_base(void)
1715 {
1716 u16 tr;
1717 asm("str %0" : "=g"(tr));
1718 return segment_base(tr);
1719 }
1720
1721 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1722 {
1723 struct vcpu_vmx *vmx = to_vmx(vcpu);
1724 int i;
1725
1726 if (vmx->host_state.loaded)
1727 return;
1728
1729 vmx->host_state.loaded = 1;
1730 /*
1731 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1732 * allow segment selectors with cpl > 0 or ti == 1.
1733 */
1734 vmx->host_state.ldt_sel = kvm_read_ldt();
1735 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1736 savesegment(fs, vmx->host_state.fs_sel);
1737 if (!(vmx->host_state.fs_sel & 7)) {
1738 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1739 vmx->host_state.fs_reload_needed = 0;
1740 } else {
1741 vmcs_write16(HOST_FS_SELECTOR, 0);
1742 vmx->host_state.fs_reload_needed = 1;
1743 }
1744 savesegment(gs, vmx->host_state.gs_sel);
1745 if (!(vmx->host_state.gs_sel & 7))
1746 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1747 else {
1748 vmcs_write16(HOST_GS_SELECTOR, 0);
1749 vmx->host_state.gs_ldt_reload_needed = 1;
1750 }
1751
1752 #ifdef CONFIG_X86_64
1753 savesegment(ds, vmx->host_state.ds_sel);
1754 savesegment(es, vmx->host_state.es_sel);
1755 #endif
1756
1757 #ifdef CONFIG_X86_64
1758 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1759 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1760 #else
1761 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1762 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1763 #endif
1764
1765 #ifdef CONFIG_X86_64
1766 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1767 if (is_long_mode(&vmx->vcpu))
1768 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1769 #endif
1770 if (boot_cpu_has(X86_FEATURE_MPX))
1771 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1772 for (i = 0; i < vmx->save_nmsrs; ++i)
1773 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1774 vmx->guest_msrs[i].data,
1775 vmx->guest_msrs[i].mask);
1776 }
1777
1778 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1779 {
1780 if (!vmx->host_state.loaded)
1781 return;
1782
1783 ++vmx->vcpu.stat.host_state_reload;
1784 vmx->host_state.loaded = 0;
1785 #ifdef CONFIG_X86_64
1786 if (is_long_mode(&vmx->vcpu))
1787 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1788 #endif
1789 if (vmx->host_state.gs_ldt_reload_needed) {
1790 kvm_load_ldt(vmx->host_state.ldt_sel);
1791 #ifdef CONFIG_X86_64
1792 load_gs_index(vmx->host_state.gs_sel);
1793 #else
1794 loadsegment(gs, vmx->host_state.gs_sel);
1795 #endif
1796 }
1797 if (vmx->host_state.fs_reload_needed)
1798 loadsegment(fs, vmx->host_state.fs_sel);
1799 #ifdef CONFIG_X86_64
1800 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1801 loadsegment(ds, vmx->host_state.ds_sel);
1802 loadsegment(es, vmx->host_state.es_sel);
1803 }
1804 #endif
1805 reload_tss();
1806 #ifdef CONFIG_X86_64
1807 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1808 #endif
1809 if (vmx->host_state.msr_host_bndcfgs)
1810 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1811 /*
1812 * If the FPU is not active (through the host task or
1813 * the guest vcpu), then restore the cr0.TS bit.
1814 */
1815 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1816 stts();
1817 load_gdt(this_cpu_ptr(&host_gdt));
1818 }
1819
1820 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1821 {
1822 preempt_disable();
1823 __vmx_load_host_state(vmx);
1824 preempt_enable();
1825 }
1826
1827 /*
1828 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1829 * vcpu mutex is already taken.
1830 */
1831 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1832 {
1833 struct vcpu_vmx *vmx = to_vmx(vcpu);
1834 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1835
1836 if (!vmm_exclusive)
1837 kvm_cpu_vmxon(phys_addr);
1838 else if (vmx->loaded_vmcs->cpu != cpu)
1839 loaded_vmcs_clear(vmx->loaded_vmcs);
1840
1841 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1842 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1843 vmcs_load(vmx->loaded_vmcs->vmcs);
1844 }
1845
1846 if (vmx->loaded_vmcs->cpu != cpu) {
1847 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1848 unsigned long sysenter_esp;
1849
1850 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1851 local_irq_disable();
1852 crash_disable_local_vmclear(cpu);
1853
1854 /*
1855 * Read loaded_vmcs->cpu should be before fetching
1856 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1857 * See the comments in __loaded_vmcs_clear().
1858 */
1859 smp_rmb();
1860
1861 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1862 &per_cpu(loaded_vmcss_on_cpu, cpu));
1863 crash_enable_local_vmclear(cpu);
1864 local_irq_enable();
1865
1866 /*
1867 * Linux uses per-cpu TSS and GDT, so set these when switching
1868 * processors.
1869 */
1870 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1871 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1872
1873 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1874 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1875 vmx->loaded_vmcs->cpu = cpu;
1876 }
1877 }
1878
1879 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1880 {
1881 __vmx_load_host_state(to_vmx(vcpu));
1882 if (!vmm_exclusive) {
1883 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1884 vcpu->cpu = -1;
1885 kvm_cpu_vmxoff();
1886 }
1887 }
1888
1889 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1890 {
1891 ulong cr0;
1892
1893 if (vcpu->fpu_active)
1894 return;
1895 vcpu->fpu_active = 1;
1896 cr0 = vmcs_readl(GUEST_CR0);
1897 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1898 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1899 vmcs_writel(GUEST_CR0, cr0);
1900 update_exception_bitmap(vcpu);
1901 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1902 if (is_guest_mode(vcpu))
1903 vcpu->arch.cr0_guest_owned_bits &=
1904 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1905 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1906 }
1907
1908 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1909
1910 /*
1911 * Return the cr0 value that a nested guest would read. This is a combination
1912 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1913 * its hypervisor (cr0_read_shadow).
1914 */
1915 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1916 {
1917 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1918 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1919 }
1920 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1921 {
1922 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1923 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1924 }
1925
1926 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1927 {
1928 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1929 * set this *before* calling this function.
1930 */
1931 vmx_decache_cr0_guest_bits(vcpu);
1932 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1933 update_exception_bitmap(vcpu);
1934 vcpu->arch.cr0_guest_owned_bits = 0;
1935 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1936 if (is_guest_mode(vcpu)) {
1937 /*
1938 * L1's specified read shadow might not contain the TS bit,
1939 * so now that we turned on shadowing of this bit, we need to
1940 * set this bit of the shadow. Like in nested_vmx_run we need
1941 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1942 * up-to-date here because we just decached cr0.TS (and we'll
1943 * only update vmcs12->guest_cr0 on nested exit).
1944 */
1945 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1946 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1947 (vcpu->arch.cr0 & X86_CR0_TS);
1948 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1949 } else
1950 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1951 }
1952
1953 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1954 {
1955 unsigned long rflags, save_rflags;
1956
1957 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1958 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1959 rflags = vmcs_readl(GUEST_RFLAGS);
1960 if (to_vmx(vcpu)->rmode.vm86_active) {
1961 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1962 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1963 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1964 }
1965 to_vmx(vcpu)->rflags = rflags;
1966 }
1967 return to_vmx(vcpu)->rflags;
1968 }
1969
1970 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1971 {
1972 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1973 to_vmx(vcpu)->rflags = rflags;
1974 if (to_vmx(vcpu)->rmode.vm86_active) {
1975 to_vmx(vcpu)->rmode.save_rflags = rflags;
1976 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1977 }
1978 vmcs_writel(GUEST_RFLAGS, rflags);
1979 }
1980
1981 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1982 {
1983 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1984 int ret = 0;
1985
1986 if (interruptibility & GUEST_INTR_STATE_STI)
1987 ret |= KVM_X86_SHADOW_INT_STI;
1988 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1989 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1990
1991 return ret;
1992 }
1993
1994 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1995 {
1996 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1997 u32 interruptibility = interruptibility_old;
1998
1999 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2000
2001 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2002 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2003 else if (mask & KVM_X86_SHADOW_INT_STI)
2004 interruptibility |= GUEST_INTR_STATE_STI;
2005
2006 if ((interruptibility != interruptibility_old))
2007 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2008 }
2009
2010 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2011 {
2012 unsigned long rip;
2013
2014 rip = kvm_rip_read(vcpu);
2015 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2016 kvm_rip_write(vcpu, rip);
2017
2018 /* skipping an emulated instruction also counts */
2019 vmx_set_interrupt_shadow(vcpu, 0);
2020 }
2021
2022 /*
2023 * KVM wants to inject page-faults which it got to the guest. This function
2024 * checks whether in a nested guest, we need to inject them to L1 or L2.
2025 */
2026 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2027 {
2028 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2029
2030 if (!(vmcs12->exception_bitmap & (1u << nr)))
2031 return 0;
2032
2033 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2034 vmcs_read32(VM_EXIT_INTR_INFO),
2035 vmcs_readl(EXIT_QUALIFICATION));
2036 return 1;
2037 }
2038
2039 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2040 bool has_error_code, u32 error_code,
2041 bool reinject)
2042 {
2043 struct vcpu_vmx *vmx = to_vmx(vcpu);
2044 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2045
2046 if (!reinject && is_guest_mode(vcpu) &&
2047 nested_vmx_check_exception(vcpu, nr))
2048 return;
2049
2050 if (has_error_code) {
2051 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2052 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2053 }
2054
2055 if (vmx->rmode.vm86_active) {
2056 int inc_eip = 0;
2057 if (kvm_exception_is_soft(nr))
2058 inc_eip = vcpu->arch.event_exit_inst_len;
2059 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2060 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2061 return;
2062 }
2063
2064 if (kvm_exception_is_soft(nr)) {
2065 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2066 vmx->vcpu.arch.event_exit_inst_len);
2067 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2068 } else
2069 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2070
2071 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2072 }
2073
2074 static bool vmx_rdtscp_supported(void)
2075 {
2076 return cpu_has_vmx_rdtscp();
2077 }
2078
2079 static bool vmx_invpcid_supported(void)
2080 {
2081 return cpu_has_vmx_invpcid() && enable_ept;
2082 }
2083
2084 /*
2085 * Swap MSR entry in host/guest MSR entry array.
2086 */
2087 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2088 {
2089 struct shared_msr_entry tmp;
2090
2091 tmp = vmx->guest_msrs[to];
2092 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2093 vmx->guest_msrs[from] = tmp;
2094 }
2095
2096 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2097 {
2098 unsigned long *msr_bitmap;
2099
2100 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2101 if (is_long_mode(vcpu))
2102 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2103 else
2104 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2105 } else {
2106 if (is_long_mode(vcpu))
2107 msr_bitmap = vmx_msr_bitmap_longmode;
2108 else
2109 msr_bitmap = vmx_msr_bitmap_legacy;
2110 }
2111
2112 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2113 }
2114
2115 /*
2116 * Set up the vmcs to automatically save and restore system
2117 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2118 * mode, as fiddling with msrs is very expensive.
2119 */
2120 static void setup_msrs(struct vcpu_vmx *vmx)
2121 {
2122 int save_nmsrs, index;
2123
2124 save_nmsrs = 0;
2125 #ifdef CONFIG_X86_64
2126 if (is_long_mode(&vmx->vcpu)) {
2127 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2128 if (index >= 0)
2129 move_msr_up(vmx, index, save_nmsrs++);
2130 index = __find_msr_index(vmx, MSR_LSTAR);
2131 if (index >= 0)
2132 move_msr_up(vmx, index, save_nmsrs++);
2133 index = __find_msr_index(vmx, MSR_CSTAR);
2134 if (index >= 0)
2135 move_msr_up(vmx, index, save_nmsrs++);
2136 index = __find_msr_index(vmx, MSR_TSC_AUX);
2137 if (index >= 0 && vmx->rdtscp_enabled)
2138 move_msr_up(vmx, index, save_nmsrs++);
2139 /*
2140 * MSR_STAR is only needed on long mode guests, and only
2141 * if efer.sce is enabled.
2142 */
2143 index = __find_msr_index(vmx, MSR_STAR);
2144 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2145 move_msr_up(vmx, index, save_nmsrs++);
2146 }
2147 #endif
2148 index = __find_msr_index(vmx, MSR_EFER);
2149 if (index >= 0 && update_transition_efer(vmx, index))
2150 move_msr_up(vmx, index, save_nmsrs++);
2151
2152 vmx->save_nmsrs = save_nmsrs;
2153
2154 if (cpu_has_vmx_msr_bitmap())
2155 vmx_set_msr_bitmap(&vmx->vcpu);
2156 }
2157
2158 /*
2159 * reads and returns guest's timestamp counter "register"
2160 * guest_tsc = host_tsc + tsc_offset -- 21.3
2161 */
2162 static u64 guest_read_tsc(void)
2163 {
2164 u64 host_tsc, tsc_offset;
2165
2166 rdtscll(host_tsc);
2167 tsc_offset = vmcs_read64(TSC_OFFSET);
2168 return host_tsc + tsc_offset;
2169 }
2170
2171 /*
2172 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2173 * counter, even if a nested guest (L2) is currently running.
2174 */
2175 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2176 {
2177 u64 tsc_offset;
2178
2179 tsc_offset = is_guest_mode(vcpu) ?
2180 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2181 vmcs_read64(TSC_OFFSET);
2182 return host_tsc + tsc_offset;
2183 }
2184
2185 /*
2186 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2187 * software catchup for faster rates on slower CPUs.
2188 */
2189 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2190 {
2191 if (!scale)
2192 return;
2193
2194 if (user_tsc_khz > tsc_khz) {
2195 vcpu->arch.tsc_catchup = 1;
2196 vcpu->arch.tsc_always_catchup = 1;
2197 } else
2198 WARN(1, "user requested TSC rate below hardware speed\n");
2199 }
2200
2201 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2202 {
2203 return vmcs_read64(TSC_OFFSET);
2204 }
2205
2206 /*
2207 * writes 'offset' into guest's timestamp counter offset register
2208 */
2209 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2210 {
2211 if (is_guest_mode(vcpu)) {
2212 /*
2213 * We're here if L1 chose not to trap WRMSR to TSC. According
2214 * to the spec, this should set L1's TSC; The offset that L1
2215 * set for L2 remains unchanged, and still needs to be added
2216 * to the newly set TSC to get L2's TSC.
2217 */
2218 struct vmcs12 *vmcs12;
2219 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2220 /* recalculate vmcs02.TSC_OFFSET: */
2221 vmcs12 = get_vmcs12(vcpu);
2222 vmcs_write64(TSC_OFFSET, offset +
2223 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2224 vmcs12->tsc_offset : 0));
2225 } else {
2226 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2227 vmcs_read64(TSC_OFFSET), offset);
2228 vmcs_write64(TSC_OFFSET, offset);
2229 }
2230 }
2231
2232 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2233 {
2234 u64 offset = vmcs_read64(TSC_OFFSET);
2235
2236 vmcs_write64(TSC_OFFSET, offset + adjustment);
2237 if (is_guest_mode(vcpu)) {
2238 /* Even when running L2, the adjustment needs to apply to L1 */
2239 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2240 } else
2241 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2242 offset + adjustment);
2243 }
2244
2245 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2246 {
2247 return target_tsc - native_read_tsc();
2248 }
2249
2250 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2251 {
2252 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2253 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2254 }
2255
2256 /*
2257 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2258 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2259 * all guests if the "nested" module option is off, and can also be disabled
2260 * for a single guest by disabling its VMX cpuid bit.
2261 */
2262 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2263 {
2264 return nested && guest_cpuid_has_vmx(vcpu);
2265 }
2266
2267 /*
2268 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2269 * returned for the various VMX controls MSRs when nested VMX is enabled.
2270 * The same values should also be used to verify that vmcs12 control fields are
2271 * valid during nested entry from L1 to L2.
2272 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2273 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2274 * bit in the high half is on if the corresponding bit in the control field
2275 * may be on. See also vmx_control_verify().
2276 * TODO: allow these variables to be modified (downgraded) by module options
2277 * or other means.
2278 */
2279 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2280 static u32 nested_vmx_true_procbased_ctls_low;
2281 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2282 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2283 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2284 static u32 nested_vmx_true_exit_ctls_low;
2285 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2286 static u32 nested_vmx_true_entry_ctls_low;
2287 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2288 static u32 nested_vmx_ept_caps;
2289 static __init void nested_vmx_setup_ctls_msrs(void)
2290 {
2291 /*
2292 * Note that as a general rule, the high half of the MSRs (bits in
2293 * the control fields which may be 1) should be initialized by the
2294 * intersection of the underlying hardware's MSR (i.e., features which
2295 * can be supported) and the list of features we want to expose -
2296 * because they are known to be properly supported in our code.
2297 * Also, usually, the low half of the MSRs (bits which must be 1) can
2298 * be set to 0, meaning that L1 may turn off any of these bits. The
2299 * reason is that if one of these bits is necessary, it will appear
2300 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2301 * fields of vmcs01 and vmcs02, will turn these bits off - and
2302 * nested_vmx_exit_handled() will not pass related exits to L1.
2303 * These rules have exceptions below.
2304 */
2305
2306 /* pin-based controls */
2307 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2308 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2309 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2310 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2311 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2312 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2313 PIN_BASED_VMX_PREEMPTION_TIMER;
2314
2315 /* exit controls */
2316 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2317 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2318 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2319
2320 nested_vmx_exit_ctls_high &=
2321 #ifdef CONFIG_X86_64
2322 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2323 #endif
2324 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2325 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2326 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2327 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2328
2329 if (vmx_mpx_supported())
2330 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2331
2332 /* We support free control of debug control saving. */
2333 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2334 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2335
2336 /* entry controls */
2337 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2338 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2339 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2340 nested_vmx_entry_ctls_high &=
2341 #ifdef CONFIG_X86_64
2342 VM_ENTRY_IA32E_MODE |
2343 #endif
2344 VM_ENTRY_LOAD_IA32_PAT;
2345 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2346 VM_ENTRY_LOAD_IA32_EFER);
2347 if (vmx_mpx_supported())
2348 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2349
2350 /* We support free control of debug control loading. */
2351 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2352 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2353
2354 /* cpu-based controls */
2355 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2356 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2357 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2358 nested_vmx_procbased_ctls_high &=
2359 CPU_BASED_VIRTUAL_INTR_PENDING |
2360 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2361 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2362 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2363 CPU_BASED_CR3_STORE_EXITING |
2364 #ifdef CONFIG_X86_64
2365 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2366 #endif
2367 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2368 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2369 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2370 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2371 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2372 /*
2373 * We can allow some features even when not supported by the
2374 * hardware. For example, L1 can specify an MSR bitmap - and we
2375 * can use it to avoid exits to L1 - even when L0 runs L2
2376 * without MSR bitmaps.
2377 */
2378 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2379 CPU_BASED_USE_MSR_BITMAPS;
2380
2381 /* We support free control of CR3 access interception. */
2382 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2383 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2384
2385 /* secondary cpu-based controls */
2386 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2387 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2388 nested_vmx_secondary_ctls_low = 0;
2389 nested_vmx_secondary_ctls_high &=
2390 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2391 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2392 SECONDARY_EXEC_WBINVD_EXITING;
2393
2394 if (enable_ept) {
2395 /* nested EPT: emulate EPT also to L1 */
2396 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2397 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2398 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2399 VMX_EPT_INVEPT_BIT;
2400 nested_vmx_ept_caps &= vmx_capability.ept;
2401 /*
2402 * For nested guests, we don't do anything specific
2403 * for single context invalidation. Hence, only advertise
2404 * support for global context invalidation.
2405 */
2406 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2407 } else
2408 nested_vmx_ept_caps = 0;
2409
2410 /* miscellaneous data */
2411 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2412 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2413 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2414 VMX_MISC_ACTIVITY_HLT;
2415 nested_vmx_misc_high = 0;
2416 }
2417
2418 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2419 {
2420 /*
2421 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2422 */
2423 return ((control & high) | low) == control;
2424 }
2425
2426 static inline u64 vmx_control_msr(u32 low, u32 high)
2427 {
2428 return low | ((u64)high << 32);
2429 }
2430
2431 /* Returns 0 on success, non-0 otherwise. */
2432 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2433 {
2434 switch (msr_index) {
2435 case MSR_IA32_VMX_BASIC:
2436 /*
2437 * This MSR reports some information about VMX support. We
2438 * should return information about the VMX we emulate for the
2439 * guest, and the VMCS structure we give it - not about the
2440 * VMX support of the underlying hardware.
2441 */
2442 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2443 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2444 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2445 break;
2446 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2447 case MSR_IA32_VMX_PINBASED_CTLS:
2448 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2449 nested_vmx_pinbased_ctls_high);
2450 break;
2451 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2452 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2453 nested_vmx_procbased_ctls_high);
2454 break;
2455 case MSR_IA32_VMX_PROCBASED_CTLS:
2456 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2457 nested_vmx_procbased_ctls_high);
2458 break;
2459 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2460 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2461 nested_vmx_exit_ctls_high);
2462 break;
2463 case MSR_IA32_VMX_EXIT_CTLS:
2464 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2465 nested_vmx_exit_ctls_high);
2466 break;
2467 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2468 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2469 nested_vmx_entry_ctls_high);
2470 break;
2471 case MSR_IA32_VMX_ENTRY_CTLS:
2472 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2473 nested_vmx_entry_ctls_high);
2474 break;
2475 case MSR_IA32_VMX_MISC:
2476 *pdata = vmx_control_msr(nested_vmx_misc_low,
2477 nested_vmx_misc_high);
2478 break;
2479 /*
2480 * These MSRs specify bits which the guest must keep fixed (on or off)
2481 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2482 * We picked the standard core2 setting.
2483 */
2484 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2485 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2486 case MSR_IA32_VMX_CR0_FIXED0:
2487 *pdata = VMXON_CR0_ALWAYSON;
2488 break;
2489 case MSR_IA32_VMX_CR0_FIXED1:
2490 *pdata = -1ULL;
2491 break;
2492 case MSR_IA32_VMX_CR4_FIXED0:
2493 *pdata = VMXON_CR4_ALWAYSON;
2494 break;
2495 case MSR_IA32_VMX_CR4_FIXED1:
2496 *pdata = -1ULL;
2497 break;
2498 case MSR_IA32_VMX_VMCS_ENUM:
2499 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2500 break;
2501 case MSR_IA32_VMX_PROCBASED_CTLS2:
2502 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2503 nested_vmx_secondary_ctls_high);
2504 break;
2505 case MSR_IA32_VMX_EPT_VPID_CAP:
2506 /* Currently, no nested vpid support */
2507 *pdata = nested_vmx_ept_caps;
2508 break;
2509 default:
2510 return 1;
2511 }
2512
2513 return 0;
2514 }
2515
2516 /*
2517 * Reads an msr value (of 'msr_index') into 'pdata'.
2518 * Returns 0 on success, non-0 otherwise.
2519 * Assumes vcpu_load() was already called.
2520 */
2521 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2522 {
2523 u64 data;
2524 struct shared_msr_entry *msr;
2525
2526 if (!pdata) {
2527 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2528 return -EINVAL;
2529 }
2530
2531 switch (msr_index) {
2532 #ifdef CONFIG_X86_64
2533 case MSR_FS_BASE:
2534 data = vmcs_readl(GUEST_FS_BASE);
2535 break;
2536 case MSR_GS_BASE:
2537 data = vmcs_readl(GUEST_GS_BASE);
2538 break;
2539 case MSR_KERNEL_GS_BASE:
2540 vmx_load_host_state(to_vmx(vcpu));
2541 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2542 break;
2543 #endif
2544 case MSR_EFER:
2545 return kvm_get_msr_common(vcpu, msr_index, pdata);
2546 case MSR_IA32_TSC:
2547 data = guest_read_tsc();
2548 break;
2549 case MSR_IA32_SYSENTER_CS:
2550 data = vmcs_read32(GUEST_SYSENTER_CS);
2551 break;
2552 case MSR_IA32_SYSENTER_EIP:
2553 data = vmcs_readl(GUEST_SYSENTER_EIP);
2554 break;
2555 case MSR_IA32_SYSENTER_ESP:
2556 data = vmcs_readl(GUEST_SYSENTER_ESP);
2557 break;
2558 case MSR_IA32_BNDCFGS:
2559 if (!vmx_mpx_supported())
2560 return 1;
2561 data = vmcs_read64(GUEST_BNDCFGS);
2562 break;
2563 case MSR_IA32_FEATURE_CONTROL:
2564 if (!nested_vmx_allowed(vcpu))
2565 return 1;
2566 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2567 break;
2568 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2569 if (!nested_vmx_allowed(vcpu))
2570 return 1;
2571 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2572 case MSR_TSC_AUX:
2573 if (!to_vmx(vcpu)->rdtscp_enabled)
2574 return 1;
2575 /* Otherwise falls through */
2576 default:
2577 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2578 if (msr) {
2579 data = msr->data;
2580 break;
2581 }
2582 return kvm_get_msr_common(vcpu, msr_index, pdata);
2583 }
2584
2585 *pdata = data;
2586 return 0;
2587 }
2588
2589 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2590
2591 /*
2592 * Writes msr value into into the appropriate "register".
2593 * Returns 0 on success, non-0 otherwise.
2594 * Assumes vcpu_load() was already called.
2595 */
2596 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2597 {
2598 struct vcpu_vmx *vmx = to_vmx(vcpu);
2599 struct shared_msr_entry *msr;
2600 int ret = 0;
2601 u32 msr_index = msr_info->index;
2602 u64 data = msr_info->data;
2603
2604 switch (msr_index) {
2605 case MSR_EFER:
2606 ret = kvm_set_msr_common(vcpu, msr_info);
2607 break;
2608 #ifdef CONFIG_X86_64
2609 case MSR_FS_BASE:
2610 vmx_segment_cache_clear(vmx);
2611 vmcs_writel(GUEST_FS_BASE, data);
2612 break;
2613 case MSR_GS_BASE:
2614 vmx_segment_cache_clear(vmx);
2615 vmcs_writel(GUEST_GS_BASE, data);
2616 break;
2617 case MSR_KERNEL_GS_BASE:
2618 vmx_load_host_state(vmx);
2619 vmx->msr_guest_kernel_gs_base = data;
2620 break;
2621 #endif
2622 case MSR_IA32_SYSENTER_CS:
2623 vmcs_write32(GUEST_SYSENTER_CS, data);
2624 break;
2625 case MSR_IA32_SYSENTER_EIP:
2626 vmcs_writel(GUEST_SYSENTER_EIP, data);
2627 break;
2628 case MSR_IA32_SYSENTER_ESP:
2629 vmcs_writel(GUEST_SYSENTER_ESP, data);
2630 break;
2631 case MSR_IA32_BNDCFGS:
2632 if (!vmx_mpx_supported())
2633 return 1;
2634 vmcs_write64(GUEST_BNDCFGS, data);
2635 break;
2636 case MSR_IA32_TSC:
2637 kvm_write_tsc(vcpu, msr_info);
2638 break;
2639 case MSR_IA32_CR_PAT:
2640 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2641 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2642 return 1;
2643 vmcs_write64(GUEST_IA32_PAT, data);
2644 vcpu->arch.pat = data;
2645 break;
2646 }
2647 ret = kvm_set_msr_common(vcpu, msr_info);
2648 break;
2649 case MSR_IA32_TSC_ADJUST:
2650 ret = kvm_set_msr_common(vcpu, msr_info);
2651 break;
2652 case MSR_IA32_FEATURE_CONTROL:
2653 if (!nested_vmx_allowed(vcpu) ||
2654 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2655 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2656 return 1;
2657 vmx->nested.msr_ia32_feature_control = data;
2658 if (msr_info->host_initiated && data == 0)
2659 vmx_leave_nested(vcpu);
2660 break;
2661 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2662 return 1; /* they are read-only */
2663 case MSR_TSC_AUX:
2664 if (!vmx->rdtscp_enabled)
2665 return 1;
2666 /* Check reserved bit, higher 32 bits should be zero */
2667 if ((data >> 32) != 0)
2668 return 1;
2669 /* Otherwise falls through */
2670 default:
2671 msr = find_msr_entry(vmx, msr_index);
2672 if (msr) {
2673 u64 old_msr_data = msr->data;
2674 msr->data = data;
2675 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2676 preempt_disable();
2677 ret = kvm_set_shared_msr(msr->index, msr->data,
2678 msr->mask);
2679 preempt_enable();
2680 if (ret)
2681 msr->data = old_msr_data;
2682 }
2683 break;
2684 }
2685 ret = kvm_set_msr_common(vcpu, msr_info);
2686 }
2687
2688 return ret;
2689 }
2690
2691 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2692 {
2693 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2694 switch (reg) {
2695 case VCPU_REGS_RSP:
2696 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2697 break;
2698 case VCPU_REGS_RIP:
2699 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2700 break;
2701 case VCPU_EXREG_PDPTR:
2702 if (enable_ept)
2703 ept_save_pdptrs(vcpu);
2704 break;
2705 default:
2706 break;
2707 }
2708 }
2709
2710 static __init int cpu_has_kvm_support(void)
2711 {
2712 return cpu_has_vmx();
2713 }
2714
2715 static __init int vmx_disabled_by_bios(void)
2716 {
2717 u64 msr;
2718
2719 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2720 if (msr & FEATURE_CONTROL_LOCKED) {
2721 /* launched w/ TXT and VMX disabled */
2722 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2723 && tboot_enabled())
2724 return 1;
2725 /* launched w/o TXT and VMX only enabled w/ TXT */
2726 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2727 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2728 && !tboot_enabled()) {
2729 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2730 "activate TXT before enabling KVM\n");
2731 return 1;
2732 }
2733 /* launched w/o TXT and VMX disabled */
2734 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2735 && !tboot_enabled())
2736 return 1;
2737 }
2738
2739 return 0;
2740 }
2741
2742 static void kvm_cpu_vmxon(u64 addr)
2743 {
2744 asm volatile (ASM_VMX_VMXON_RAX
2745 : : "a"(&addr), "m"(addr)
2746 : "memory", "cc");
2747 }
2748
2749 static int hardware_enable(void)
2750 {
2751 int cpu = raw_smp_processor_id();
2752 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2753 u64 old, test_bits;
2754
2755 if (read_cr4() & X86_CR4_VMXE)
2756 return -EBUSY;
2757
2758 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2759
2760 /*
2761 * Now we can enable the vmclear operation in kdump
2762 * since the loaded_vmcss_on_cpu list on this cpu
2763 * has been initialized.
2764 *
2765 * Though the cpu is not in VMX operation now, there
2766 * is no problem to enable the vmclear operation
2767 * for the loaded_vmcss_on_cpu list is empty!
2768 */
2769 crash_enable_local_vmclear(cpu);
2770
2771 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2772
2773 test_bits = FEATURE_CONTROL_LOCKED;
2774 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2775 if (tboot_enabled())
2776 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2777
2778 if ((old & test_bits) != test_bits) {
2779 /* enable and lock */
2780 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2781 }
2782 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2783
2784 if (vmm_exclusive) {
2785 kvm_cpu_vmxon(phys_addr);
2786 ept_sync_global();
2787 }
2788
2789 native_store_gdt(this_cpu_ptr(&host_gdt));
2790
2791 return 0;
2792 }
2793
2794 static void vmclear_local_loaded_vmcss(void)
2795 {
2796 int cpu = raw_smp_processor_id();
2797 struct loaded_vmcs *v, *n;
2798
2799 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2800 loaded_vmcss_on_cpu_link)
2801 __loaded_vmcs_clear(v);
2802 }
2803
2804
2805 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2806 * tricks.
2807 */
2808 static void kvm_cpu_vmxoff(void)
2809 {
2810 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2811 }
2812
2813 static void hardware_disable(void)
2814 {
2815 if (vmm_exclusive) {
2816 vmclear_local_loaded_vmcss();
2817 kvm_cpu_vmxoff();
2818 }
2819 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2820 }
2821
2822 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2823 u32 msr, u32 *result)
2824 {
2825 u32 vmx_msr_low, vmx_msr_high;
2826 u32 ctl = ctl_min | ctl_opt;
2827
2828 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2829
2830 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2831 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2832
2833 /* Ensure minimum (required) set of control bits are supported. */
2834 if (ctl_min & ~ctl)
2835 return -EIO;
2836
2837 *result = ctl;
2838 return 0;
2839 }
2840
2841 static __init bool allow_1_setting(u32 msr, u32 ctl)
2842 {
2843 u32 vmx_msr_low, vmx_msr_high;
2844
2845 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2846 return vmx_msr_high & ctl;
2847 }
2848
2849 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2850 {
2851 u32 vmx_msr_low, vmx_msr_high;
2852 u32 min, opt, min2, opt2;
2853 u32 _pin_based_exec_control = 0;
2854 u32 _cpu_based_exec_control = 0;
2855 u32 _cpu_based_2nd_exec_control = 0;
2856 u32 _vmexit_control = 0;
2857 u32 _vmentry_control = 0;
2858
2859 min = CPU_BASED_HLT_EXITING |
2860 #ifdef CONFIG_X86_64
2861 CPU_BASED_CR8_LOAD_EXITING |
2862 CPU_BASED_CR8_STORE_EXITING |
2863 #endif
2864 CPU_BASED_CR3_LOAD_EXITING |
2865 CPU_BASED_CR3_STORE_EXITING |
2866 CPU_BASED_USE_IO_BITMAPS |
2867 CPU_BASED_MOV_DR_EXITING |
2868 CPU_BASED_USE_TSC_OFFSETING |
2869 CPU_BASED_MWAIT_EXITING |
2870 CPU_BASED_MONITOR_EXITING |
2871 CPU_BASED_INVLPG_EXITING |
2872 CPU_BASED_RDPMC_EXITING;
2873
2874 opt = CPU_BASED_TPR_SHADOW |
2875 CPU_BASED_USE_MSR_BITMAPS |
2876 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2877 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2878 &_cpu_based_exec_control) < 0)
2879 return -EIO;
2880 #ifdef CONFIG_X86_64
2881 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2882 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2883 ~CPU_BASED_CR8_STORE_EXITING;
2884 #endif
2885 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2886 min2 = 0;
2887 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2888 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2889 SECONDARY_EXEC_WBINVD_EXITING |
2890 SECONDARY_EXEC_ENABLE_VPID |
2891 SECONDARY_EXEC_ENABLE_EPT |
2892 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2893 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2894 SECONDARY_EXEC_RDTSCP |
2895 SECONDARY_EXEC_ENABLE_INVPCID |
2896 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2897 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2898 SECONDARY_EXEC_SHADOW_VMCS;
2899 if (adjust_vmx_controls(min2, opt2,
2900 MSR_IA32_VMX_PROCBASED_CTLS2,
2901 &_cpu_based_2nd_exec_control) < 0)
2902 return -EIO;
2903 }
2904 #ifndef CONFIG_X86_64
2905 if (!(_cpu_based_2nd_exec_control &
2906 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2907 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2908 #endif
2909
2910 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2911 _cpu_based_2nd_exec_control &= ~(
2912 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2913 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2914 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2915
2916 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2917 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2918 enabled */
2919 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2920 CPU_BASED_CR3_STORE_EXITING |
2921 CPU_BASED_INVLPG_EXITING);
2922 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2923 vmx_capability.ept, vmx_capability.vpid);
2924 }
2925
2926 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2927 #ifdef CONFIG_X86_64
2928 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2929 #endif
2930 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2931 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2932 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2933 &_vmexit_control) < 0)
2934 return -EIO;
2935
2936 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2937 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2938 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2939 &_pin_based_exec_control) < 0)
2940 return -EIO;
2941
2942 if (!(_cpu_based_2nd_exec_control &
2943 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2944 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2945 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2946
2947 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2948 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2949 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2950 &_vmentry_control) < 0)
2951 return -EIO;
2952
2953 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2954
2955 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2956 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2957 return -EIO;
2958
2959 #ifdef CONFIG_X86_64
2960 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2961 if (vmx_msr_high & (1u<<16))
2962 return -EIO;
2963 #endif
2964
2965 /* Require Write-Back (WB) memory type for VMCS accesses. */
2966 if (((vmx_msr_high >> 18) & 15) != 6)
2967 return -EIO;
2968
2969 vmcs_conf->size = vmx_msr_high & 0x1fff;
2970 vmcs_conf->order = get_order(vmcs_config.size);
2971 vmcs_conf->revision_id = vmx_msr_low;
2972
2973 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2974 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2975 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2976 vmcs_conf->vmexit_ctrl = _vmexit_control;
2977 vmcs_conf->vmentry_ctrl = _vmentry_control;
2978
2979 cpu_has_load_ia32_efer =
2980 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2981 VM_ENTRY_LOAD_IA32_EFER)
2982 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2983 VM_EXIT_LOAD_IA32_EFER);
2984
2985 cpu_has_load_perf_global_ctrl =
2986 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2987 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2988 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2989 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2990
2991 /*
2992 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2993 * but due to arrata below it can't be used. Workaround is to use
2994 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2995 *
2996 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2997 *
2998 * AAK155 (model 26)
2999 * AAP115 (model 30)
3000 * AAT100 (model 37)
3001 * BC86,AAY89,BD102 (model 44)
3002 * BA97 (model 46)
3003 *
3004 */
3005 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3006 switch (boot_cpu_data.x86_model) {
3007 case 26:
3008 case 30:
3009 case 37:
3010 case 44:
3011 case 46:
3012 cpu_has_load_perf_global_ctrl = false;
3013 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3014 "does not work properly. Using workaround\n");
3015 break;
3016 default:
3017 break;
3018 }
3019 }
3020
3021 return 0;
3022 }
3023
3024 static struct vmcs *alloc_vmcs_cpu(int cpu)
3025 {
3026 int node = cpu_to_node(cpu);
3027 struct page *pages;
3028 struct vmcs *vmcs;
3029
3030 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3031 if (!pages)
3032 return NULL;
3033 vmcs = page_address(pages);
3034 memset(vmcs, 0, vmcs_config.size);
3035 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3036 return vmcs;
3037 }
3038
3039 static struct vmcs *alloc_vmcs(void)
3040 {
3041 return alloc_vmcs_cpu(raw_smp_processor_id());
3042 }
3043
3044 static void free_vmcs(struct vmcs *vmcs)
3045 {
3046 free_pages((unsigned long)vmcs, vmcs_config.order);
3047 }
3048
3049 /*
3050 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3051 */
3052 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3053 {
3054 if (!loaded_vmcs->vmcs)
3055 return;
3056 loaded_vmcs_clear(loaded_vmcs);
3057 free_vmcs(loaded_vmcs->vmcs);
3058 loaded_vmcs->vmcs = NULL;
3059 }
3060
3061 static void free_kvm_area(void)
3062 {
3063 int cpu;
3064
3065 for_each_possible_cpu(cpu) {
3066 free_vmcs(per_cpu(vmxarea, cpu));
3067 per_cpu(vmxarea, cpu) = NULL;
3068 }
3069 }
3070
3071 static void init_vmcs_shadow_fields(void)
3072 {
3073 int i, j;
3074
3075 /* No checks for read only fields yet */
3076
3077 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3078 switch (shadow_read_write_fields[i]) {
3079 case GUEST_BNDCFGS:
3080 if (!vmx_mpx_supported())
3081 continue;
3082 break;
3083 default:
3084 break;
3085 }
3086
3087 if (j < i)
3088 shadow_read_write_fields[j] =
3089 shadow_read_write_fields[i];
3090 j++;
3091 }
3092 max_shadow_read_write_fields = j;
3093
3094 /* shadowed fields guest access without vmexit */
3095 for (i = 0; i < max_shadow_read_write_fields; i++) {
3096 clear_bit(shadow_read_write_fields[i],
3097 vmx_vmwrite_bitmap);
3098 clear_bit(shadow_read_write_fields[i],
3099 vmx_vmread_bitmap);
3100 }
3101 for (i = 0; i < max_shadow_read_only_fields; i++)
3102 clear_bit(shadow_read_only_fields[i],
3103 vmx_vmread_bitmap);
3104 }
3105
3106 static __init int alloc_kvm_area(void)
3107 {
3108 int cpu;
3109
3110 for_each_possible_cpu(cpu) {
3111 struct vmcs *vmcs;
3112
3113 vmcs = alloc_vmcs_cpu(cpu);
3114 if (!vmcs) {
3115 free_kvm_area();
3116 return -ENOMEM;
3117 }
3118
3119 per_cpu(vmxarea, cpu) = vmcs;
3120 }
3121 return 0;
3122 }
3123
3124 static bool emulation_required(struct kvm_vcpu *vcpu)
3125 {
3126 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3127 }
3128
3129 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3130 struct kvm_segment *save)
3131 {
3132 if (!emulate_invalid_guest_state) {
3133 /*
3134 * CS and SS RPL should be equal during guest entry according
3135 * to VMX spec, but in reality it is not always so. Since vcpu
3136 * is in the middle of the transition from real mode to
3137 * protected mode it is safe to assume that RPL 0 is a good
3138 * default value.
3139 */
3140 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3141 save->selector &= ~SELECTOR_RPL_MASK;
3142 save->dpl = save->selector & SELECTOR_RPL_MASK;
3143 save->s = 1;
3144 }
3145 vmx_set_segment(vcpu, save, seg);
3146 }
3147
3148 static void enter_pmode(struct kvm_vcpu *vcpu)
3149 {
3150 unsigned long flags;
3151 struct vcpu_vmx *vmx = to_vmx(vcpu);
3152
3153 /*
3154 * Update real mode segment cache. It may be not up-to-date if sement
3155 * register was written while vcpu was in a guest mode.
3156 */
3157 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3158 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3159 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3160 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3161 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3162 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3163
3164 vmx->rmode.vm86_active = 0;
3165
3166 vmx_segment_cache_clear(vmx);
3167
3168 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3169
3170 flags = vmcs_readl(GUEST_RFLAGS);
3171 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3172 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3173 vmcs_writel(GUEST_RFLAGS, flags);
3174
3175 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3176 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3177
3178 update_exception_bitmap(vcpu);
3179
3180 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3181 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3182 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3183 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3184 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3185 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3186 }
3187
3188 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3189 {
3190 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3191 struct kvm_segment var = *save;
3192
3193 var.dpl = 0x3;
3194 if (seg == VCPU_SREG_CS)
3195 var.type = 0x3;
3196
3197 if (!emulate_invalid_guest_state) {
3198 var.selector = var.base >> 4;
3199 var.base = var.base & 0xffff0;
3200 var.limit = 0xffff;
3201 var.g = 0;
3202 var.db = 0;
3203 var.present = 1;
3204 var.s = 1;
3205 var.l = 0;
3206 var.unusable = 0;
3207 var.type = 0x3;
3208 var.avl = 0;
3209 if (save->base & 0xf)
3210 printk_once(KERN_WARNING "kvm: segment base is not "
3211 "paragraph aligned when entering "
3212 "protected mode (seg=%d)", seg);
3213 }
3214
3215 vmcs_write16(sf->selector, var.selector);
3216 vmcs_write32(sf->base, var.base);
3217 vmcs_write32(sf->limit, var.limit);
3218 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3219 }
3220
3221 static void enter_rmode(struct kvm_vcpu *vcpu)
3222 {
3223 unsigned long flags;
3224 struct vcpu_vmx *vmx = to_vmx(vcpu);
3225
3226 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3227 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3228 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3229 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3230 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3231 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3232 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3233
3234 vmx->rmode.vm86_active = 1;
3235
3236 /*
3237 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3238 * vcpu. Warn the user that an update is overdue.
3239 */
3240 if (!vcpu->kvm->arch.tss_addr)
3241 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3242 "called before entering vcpu\n");
3243
3244 vmx_segment_cache_clear(vmx);
3245
3246 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3247 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3248 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3249
3250 flags = vmcs_readl(GUEST_RFLAGS);
3251 vmx->rmode.save_rflags = flags;
3252
3253 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3254
3255 vmcs_writel(GUEST_RFLAGS, flags);
3256 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3257 update_exception_bitmap(vcpu);
3258
3259 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3260 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3261 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3262 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3263 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3264 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3265
3266 kvm_mmu_reset_context(vcpu);
3267 }
3268
3269 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3270 {
3271 struct vcpu_vmx *vmx = to_vmx(vcpu);
3272 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3273
3274 if (!msr)
3275 return;
3276
3277 /*
3278 * Force kernel_gs_base reloading before EFER changes, as control
3279 * of this msr depends on is_long_mode().
3280 */
3281 vmx_load_host_state(to_vmx(vcpu));
3282 vcpu->arch.efer = efer;
3283 if (efer & EFER_LMA) {
3284 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3285 msr->data = efer;
3286 } else {
3287 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3288
3289 msr->data = efer & ~EFER_LME;
3290 }
3291 setup_msrs(vmx);
3292 }
3293
3294 #ifdef CONFIG_X86_64
3295
3296 static void enter_lmode(struct kvm_vcpu *vcpu)
3297 {
3298 u32 guest_tr_ar;
3299
3300 vmx_segment_cache_clear(to_vmx(vcpu));
3301
3302 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3303 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3304 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3305 __func__);
3306 vmcs_write32(GUEST_TR_AR_BYTES,
3307 (guest_tr_ar & ~AR_TYPE_MASK)
3308 | AR_TYPE_BUSY_64_TSS);
3309 }
3310 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3311 }
3312
3313 static void exit_lmode(struct kvm_vcpu *vcpu)
3314 {
3315 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3316 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3317 }
3318
3319 #endif
3320
3321 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3322 {
3323 vpid_sync_context(to_vmx(vcpu));
3324 if (enable_ept) {
3325 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326 return;
3327 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3328 }
3329 }
3330
3331 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3332 {
3333 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3334
3335 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3336 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3337 }
3338
3339 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3340 {
3341 if (enable_ept && is_paging(vcpu))
3342 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3343 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3344 }
3345
3346 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3347 {
3348 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3349
3350 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3351 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3352 }
3353
3354 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3355 {
3356 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3357
3358 if (!test_bit(VCPU_EXREG_PDPTR,
3359 (unsigned long *)&vcpu->arch.regs_dirty))
3360 return;
3361
3362 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3363 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3364 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3365 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3366 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3367 }
3368 }
3369
3370 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3371 {
3372 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3373
3374 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3375 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3376 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3377 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3378 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3379 }
3380
3381 __set_bit(VCPU_EXREG_PDPTR,
3382 (unsigned long *)&vcpu->arch.regs_avail);
3383 __set_bit(VCPU_EXREG_PDPTR,
3384 (unsigned long *)&vcpu->arch.regs_dirty);
3385 }
3386
3387 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3388
3389 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3390 unsigned long cr0,
3391 struct kvm_vcpu *vcpu)
3392 {
3393 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3394 vmx_decache_cr3(vcpu);
3395 if (!(cr0 & X86_CR0_PG)) {
3396 /* From paging/starting to nonpaging */
3397 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3398 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3399 (CPU_BASED_CR3_LOAD_EXITING |
3400 CPU_BASED_CR3_STORE_EXITING));
3401 vcpu->arch.cr0 = cr0;
3402 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3403 } else if (!is_paging(vcpu)) {
3404 /* From nonpaging to paging */
3405 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3406 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3407 ~(CPU_BASED_CR3_LOAD_EXITING |
3408 CPU_BASED_CR3_STORE_EXITING));
3409 vcpu->arch.cr0 = cr0;
3410 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3411 }
3412
3413 if (!(cr0 & X86_CR0_WP))
3414 *hw_cr0 &= ~X86_CR0_WP;
3415 }
3416
3417 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3418 {
3419 struct vcpu_vmx *vmx = to_vmx(vcpu);
3420 unsigned long hw_cr0;
3421
3422 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3423 if (enable_unrestricted_guest)
3424 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3425 else {
3426 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3427
3428 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3429 enter_pmode(vcpu);
3430
3431 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3432 enter_rmode(vcpu);
3433 }
3434
3435 #ifdef CONFIG_X86_64
3436 if (vcpu->arch.efer & EFER_LME) {
3437 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3438 enter_lmode(vcpu);
3439 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3440 exit_lmode(vcpu);
3441 }
3442 #endif
3443
3444 if (enable_ept)
3445 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3446
3447 if (!vcpu->fpu_active)
3448 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3449
3450 vmcs_writel(CR0_READ_SHADOW, cr0);
3451 vmcs_writel(GUEST_CR0, hw_cr0);
3452 vcpu->arch.cr0 = cr0;
3453
3454 /* depends on vcpu->arch.cr0 to be set to a new value */
3455 vmx->emulation_required = emulation_required(vcpu);
3456 }
3457
3458 static u64 construct_eptp(unsigned long root_hpa)
3459 {
3460 u64 eptp;
3461
3462 /* TODO write the value reading from MSR */
3463 eptp = VMX_EPT_DEFAULT_MT |
3464 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3465 if (enable_ept_ad_bits)
3466 eptp |= VMX_EPT_AD_ENABLE_BIT;
3467 eptp |= (root_hpa & PAGE_MASK);
3468
3469 return eptp;
3470 }
3471
3472 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3473 {
3474 unsigned long guest_cr3;
3475 u64 eptp;
3476
3477 guest_cr3 = cr3;
3478 if (enable_ept) {
3479 eptp = construct_eptp(cr3);
3480 vmcs_write64(EPT_POINTER, eptp);
3481 if (is_paging(vcpu) || is_guest_mode(vcpu))
3482 guest_cr3 = kvm_read_cr3(vcpu);
3483 else
3484 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3485 ept_load_pdptrs(vcpu);
3486 }
3487
3488 vmx_flush_tlb(vcpu);
3489 vmcs_writel(GUEST_CR3, guest_cr3);
3490 }
3491
3492 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3493 {
3494 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3495 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3496
3497 if (cr4 & X86_CR4_VMXE) {
3498 /*
3499 * To use VMXON (and later other VMX instructions), a guest
3500 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3501 * So basically the check on whether to allow nested VMX
3502 * is here.
3503 */
3504 if (!nested_vmx_allowed(vcpu))
3505 return 1;
3506 }
3507 if (to_vmx(vcpu)->nested.vmxon &&
3508 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3509 return 1;
3510
3511 vcpu->arch.cr4 = cr4;
3512 if (enable_ept) {
3513 if (!is_paging(vcpu)) {
3514 hw_cr4 &= ~X86_CR4_PAE;
3515 hw_cr4 |= X86_CR4_PSE;
3516 /*
3517 * SMEP/SMAP is disabled if CPU is in non-paging mode
3518 * in hardware. However KVM always uses paging mode to
3519 * emulate guest non-paging mode with TDP.
3520 * To emulate this behavior, SMEP/SMAP needs to be
3521 * manually disabled when guest switches to non-paging
3522 * mode.
3523 */
3524 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3525 } else if (!(cr4 & X86_CR4_PAE)) {
3526 hw_cr4 &= ~X86_CR4_PAE;
3527 }
3528 }
3529
3530 vmcs_writel(CR4_READ_SHADOW, cr4);
3531 vmcs_writel(GUEST_CR4, hw_cr4);
3532 return 0;
3533 }
3534
3535 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3536 struct kvm_segment *var, int seg)
3537 {
3538 struct vcpu_vmx *vmx = to_vmx(vcpu);
3539 u32 ar;
3540
3541 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3542 *var = vmx->rmode.segs[seg];
3543 if (seg == VCPU_SREG_TR
3544 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3545 return;
3546 var->base = vmx_read_guest_seg_base(vmx, seg);
3547 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3548 return;
3549 }
3550 var->base = vmx_read_guest_seg_base(vmx, seg);
3551 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3552 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3553 ar = vmx_read_guest_seg_ar(vmx, seg);
3554 var->unusable = (ar >> 16) & 1;
3555 var->type = ar & 15;
3556 var->s = (ar >> 4) & 1;
3557 var->dpl = (ar >> 5) & 3;
3558 /*
3559 * Some userspaces do not preserve unusable property. Since usable
3560 * segment has to be present according to VMX spec we can use present
3561 * property to amend userspace bug by making unusable segment always
3562 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3563 * segment as unusable.
3564 */
3565 var->present = !var->unusable;
3566 var->avl = (ar >> 12) & 1;
3567 var->l = (ar >> 13) & 1;
3568 var->db = (ar >> 14) & 1;
3569 var->g = (ar >> 15) & 1;
3570 }
3571
3572 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3573 {
3574 struct kvm_segment s;
3575
3576 if (to_vmx(vcpu)->rmode.vm86_active) {
3577 vmx_get_segment(vcpu, &s, seg);
3578 return s.base;
3579 }
3580 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3581 }
3582
3583 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3584 {
3585 struct vcpu_vmx *vmx = to_vmx(vcpu);
3586
3587 if (unlikely(vmx->rmode.vm86_active))
3588 return 0;
3589 else {
3590 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3591 return AR_DPL(ar);
3592 }
3593 }
3594
3595 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3596 {
3597 u32 ar;
3598
3599 if (var->unusable || !var->present)
3600 ar = 1 << 16;
3601 else {
3602 ar = var->type & 15;
3603 ar |= (var->s & 1) << 4;
3604 ar |= (var->dpl & 3) << 5;
3605 ar |= (var->present & 1) << 7;
3606 ar |= (var->avl & 1) << 12;
3607 ar |= (var->l & 1) << 13;
3608 ar |= (var->db & 1) << 14;
3609 ar |= (var->g & 1) << 15;
3610 }
3611
3612 return ar;
3613 }
3614
3615 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3616 struct kvm_segment *var, int seg)
3617 {
3618 struct vcpu_vmx *vmx = to_vmx(vcpu);
3619 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3620
3621 vmx_segment_cache_clear(vmx);
3622
3623 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3624 vmx->rmode.segs[seg] = *var;
3625 if (seg == VCPU_SREG_TR)
3626 vmcs_write16(sf->selector, var->selector);
3627 else if (var->s)
3628 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3629 goto out;
3630 }
3631
3632 vmcs_writel(sf->base, var->base);
3633 vmcs_write32(sf->limit, var->limit);
3634 vmcs_write16(sf->selector, var->selector);
3635
3636 /*
3637 * Fix the "Accessed" bit in AR field of segment registers for older
3638 * qemu binaries.
3639 * IA32 arch specifies that at the time of processor reset the
3640 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3641 * is setting it to 0 in the userland code. This causes invalid guest
3642 * state vmexit when "unrestricted guest" mode is turned on.
3643 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3644 * tree. Newer qemu binaries with that qemu fix would not need this
3645 * kvm hack.
3646 */
3647 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3648 var->type |= 0x1; /* Accessed */
3649
3650 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3651
3652 out:
3653 vmx->emulation_required = emulation_required(vcpu);
3654 }
3655
3656 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3657 {
3658 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3659
3660 *db = (ar >> 14) & 1;
3661 *l = (ar >> 13) & 1;
3662 }
3663
3664 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3665 {
3666 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3667 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3668 }
3669
3670 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3671 {
3672 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3673 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3674 }
3675
3676 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3677 {
3678 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3679 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3680 }
3681
3682 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3683 {
3684 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3685 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3686 }
3687
3688 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3689 {
3690 struct kvm_segment var;
3691 u32 ar;
3692
3693 vmx_get_segment(vcpu, &var, seg);
3694 var.dpl = 0x3;
3695 if (seg == VCPU_SREG_CS)
3696 var.type = 0x3;
3697 ar = vmx_segment_access_rights(&var);
3698
3699 if (var.base != (var.selector << 4))
3700 return false;
3701 if (var.limit != 0xffff)
3702 return false;
3703 if (ar != 0xf3)
3704 return false;
3705
3706 return true;
3707 }
3708
3709 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3710 {
3711 struct kvm_segment cs;
3712 unsigned int cs_rpl;
3713
3714 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3715 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3716
3717 if (cs.unusable)
3718 return false;
3719 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3720 return false;
3721 if (!cs.s)
3722 return false;
3723 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3724 if (cs.dpl > cs_rpl)
3725 return false;
3726 } else {
3727 if (cs.dpl != cs_rpl)
3728 return false;
3729 }
3730 if (!cs.present)
3731 return false;
3732
3733 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3734 return true;
3735 }
3736
3737 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3738 {
3739 struct kvm_segment ss;
3740 unsigned int ss_rpl;
3741
3742 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3743 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3744
3745 if (ss.unusable)
3746 return true;
3747 if (ss.type != 3 && ss.type != 7)
3748 return false;
3749 if (!ss.s)
3750 return false;
3751 if (ss.dpl != ss_rpl) /* DPL != RPL */
3752 return false;
3753 if (!ss.present)
3754 return false;
3755
3756 return true;
3757 }
3758
3759 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3760 {
3761 struct kvm_segment var;
3762 unsigned int rpl;
3763
3764 vmx_get_segment(vcpu, &var, seg);
3765 rpl = var.selector & SELECTOR_RPL_MASK;
3766
3767 if (var.unusable)
3768 return true;
3769 if (!var.s)
3770 return false;
3771 if (!var.present)
3772 return false;
3773 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3774 if (var.dpl < rpl) /* DPL < RPL */
3775 return false;
3776 }
3777
3778 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3779 * rights flags
3780 */
3781 return true;
3782 }
3783
3784 static bool tr_valid(struct kvm_vcpu *vcpu)
3785 {
3786 struct kvm_segment tr;
3787
3788 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3789
3790 if (tr.unusable)
3791 return false;
3792 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3793 return false;
3794 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3795 return false;
3796 if (!tr.present)
3797 return false;
3798
3799 return true;
3800 }
3801
3802 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3803 {
3804 struct kvm_segment ldtr;
3805
3806 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3807
3808 if (ldtr.unusable)
3809 return true;
3810 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3811 return false;
3812 if (ldtr.type != 2)
3813 return false;
3814 if (!ldtr.present)
3815 return false;
3816
3817 return true;
3818 }
3819
3820 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3821 {
3822 struct kvm_segment cs, ss;
3823
3824 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3825 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3826
3827 return ((cs.selector & SELECTOR_RPL_MASK) ==
3828 (ss.selector & SELECTOR_RPL_MASK));
3829 }
3830
3831 /*
3832 * Check if guest state is valid. Returns true if valid, false if
3833 * not.
3834 * We assume that registers are always usable
3835 */
3836 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3837 {
3838 if (enable_unrestricted_guest)
3839 return true;
3840
3841 /* real mode guest state checks */
3842 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3843 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3844 return false;
3845 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3846 return false;
3847 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3848 return false;
3849 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3850 return false;
3851 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3852 return false;
3853 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3854 return false;
3855 } else {
3856 /* protected mode guest state checks */
3857 if (!cs_ss_rpl_check(vcpu))
3858 return false;
3859 if (!code_segment_valid(vcpu))
3860 return false;
3861 if (!stack_segment_valid(vcpu))
3862 return false;
3863 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3864 return false;
3865 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3866 return false;
3867 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3868 return false;
3869 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3870 return false;
3871 if (!tr_valid(vcpu))
3872 return false;
3873 if (!ldtr_valid(vcpu))
3874 return false;
3875 }
3876 /* TODO:
3877 * - Add checks on RIP
3878 * - Add checks on RFLAGS
3879 */
3880
3881 return true;
3882 }
3883
3884 static int init_rmode_tss(struct kvm *kvm)
3885 {
3886 gfn_t fn;
3887 u16 data = 0;
3888 int idx, r;
3889
3890 idx = srcu_read_lock(&kvm->srcu);
3891 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3892 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3893 if (r < 0)
3894 goto out;
3895 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3896 r = kvm_write_guest_page(kvm, fn++, &data,
3897 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3898 if (r < 0)
3899 goto out;
3900 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3901 if (r < 0)
3902 goto out;
3903 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3904 if (r < 0)
3905 goto out;
3906 data = ~0;
3907 r = kvm_write_guest_page(kvm, fn, &data,
3908 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3909 sizeof(u8));
3910 out:
3911 srcu_read_unlock(&kvm->srcu, idx);
3912 return r;
3913 }
3914
3915 static int init_rmode_identity_map(struct kvm *kvm)
3916 {
3917 int i, idx, r = 0;
3918 pfn_t identity_map_pfn;
3919 u32 tmp;
3920
3921 if (!enable_ept)
3922 return 0;
3923
3924 /* Protect kvm->arch.ept_identity_pagetable_done. */
3925 mutex_lock(&kvm->slots_lock);
3926
3927 if (likely(kvm->arch.ept_identity_pagetable_done))
3928 goto out2;
3929
3930 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3931
3932 r = alloc_identity_pagetable(kvm);
3933 if (r < 0)
3934 goto out2;
3935
3936 idx = srcu_read_lock(&kvm->srcu);
3937 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3938 if (r < 0)
3939 goto out;
3940 /* Set up identity-mapping pagetable for EPT in real mode */
3941 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3942 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3943 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3944 r = kvm_write_guest_page(kvm, identity_map_pfn,
3945 &tmp, i * sizeof(tmp), sizeof(tmp));
3946 if (r < 0)
3947 goto out;
3948 }
3949 kvm->arch.ept_identity_pagetable_done = true;
3950
3951 out:
3952 srcu_read_unlock(&kvm->srcu, idx);
3953
3954 out2:
3955 mutex_unlock(&kvm->slots_lock);
3956 return r;
3957 }
3958
3959 static void seg_setup(int seg)
3960 {
3961 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3962 unsigned int ar;
3963
3964 vmcs_write16(sf->selector, 0);
3965 vmcs_writel(sf->base, 0);
3966 vmcs_write32(sf->limit, 0xffff);
3967 ar = 0x93;
3968 if (seg == VCPU_SREG_CS)
3969 ar |= 0x08; /* code segment */
3970
3971 vmcs_write32(sf->ar_bytes, ar);
3972 }
3973
3974 static int alloc_apic_access_page(struct kvm *kvm)
3975 {
3976 struct page *page;
3977 struct kvm_userspace_memory_region kvm_userspace_mem;
3978 int r = 0;
3979
3980 mutex_lock(&kvm->slots_lock);
3981 if (kvm->arch.apic_access_page_done)
3982 goto out;
3983 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3984 kvm_userspace_mem.flags = 0;
3985 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
3986 kvm_userspace_mem.memory_size = PAGE_SIZE;
3987 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3988 if (r)
3989 goto out;
3990
3991 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3992 if (is_error_page(page)) {
3993 r = -EFAULT;
3994 goto out;
3995 }
3996
3997 /*
3998 * Do not pin the page in memory, so that memory hot-unplug
3999 * is able to migrate it.
4000 */
4001 put_page(page);
4002 kvm->arch.apic_access_page_done = true;
4003 out:
4004 mutex_unlock(&kvm->slots_lock);
4005 return r;
4006 }
4007
4008 static int alloc_identity_pagetable(struct kvm *kvm)
4009 {
4010 /* Called with kvm->slots_lock held. */
4011
4012 struct kvm_userspace_memory_region kvm_userspace_mem;
4013 int r = 0;
4014
4015 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4016
4017 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4018 kvm_userspace_mem.flags = 0;
4019 kvm_userspace_mem.guest_phys_addr =
4020 kvm->arch.ept_identity_map_addr;
4021 kvm_userspace_mem.memory_size = PAGE_SIZE;
4022 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4023
4024 return r;
4025 }
4026
4027 static void allocate_vpid(struct vcpu_vmx *vmx)
4028 {
4029 int vpid;
4030
4031 vmx->vpid = 0;
4032 if (!enable_vpid)
4033 return;
4034 spin_lock(&vmx_vpid_lock);
4035 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4036 if (vpid < VMX_NR_VPIDS) {
4037 vmx->vpid = vpid;
4038 __set_bit(vpid, vmx_vpid_bitmap);
4039 }
4040 spin_unlock(&vmx_vpid_lock);
4041 }
4042
4043 static void free_vpid(struct vcpu_vmx *vmx)
4044 {
4045 if (!enable_vpid)
4046 return;
4047 spin_lock(&vmx_vpid_lock);
4048 if (vmx->vpid != 0)
4049 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4050 spin_unlock(&vmx_vpid_lock);
4051 }
4052
4053 #define MSR_TYPE_R 1
4054 #define MSR_TYPE_W 2
4055 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4056 u32 msr, int type)
4057 {
4058 int f = sizeof(unsigned long);
4059
4060 if (!cpu_has_vmx_msr_bitmap())
4061 return;
4062
4063 /*
4064 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4065 * have the write-low and read-high bitmap offsets the wrong way round.
4066 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4067 */
4068 if (msr <= 0x1fff) {
4069 if (type & MSR_TYPE_R)
4070 /* read-low */
4071 __clear_bit(msr, msr_bitmap + 0x000 / f);
4072
4073 if (type & MSR_TYPE_W)
4074 /* write-low */
4075 __clear_bit(msr, msr_bitmap + 0x800 / f);
4076
4077 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4078 msr &= 0x1fff;
4079 if (type & MSR_TYPE_R)
4080 /* read-high */
4081 __clear_bit(msr, msr_bitmap + 0x400 / f);
4082
4083 if (type & MSR_TYPE_W)
4084 /* write-high */
4085 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4086
4087 }
4088 }
4089
4090 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4091 u32 msr, int type)
4092 {
4093 int f = sizeof(unsigned long);
4094
4095 if (!cpu_has_vmx_msr_bitmap())
4096 return;
4097
4098 /*
4099 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4100 * have the write-low and read-high bitmap offsets the wrong way round.
4101 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4102 */
4103 if (msr <= 0x1fff) {
4104 if (type & MSR_TYPE_R)
4105 /* read-low */
4106 __set_bit(msr, msr_bitmap + 0x000 / f);
4107
4108 if (type & MSR_TYPE_W)
4109 /* write-low */
4110 __set_bit(msr, msr_bitmap + 0x800 / f);
4111
4112 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4113 msr &= 0x1fff;
4114 if (type & MSR_TYPE_R)
4115 /* read-high */
4116 __set_bit(msr, msr_bitmap + 0x400 / f);
4117
4118 if (type & MSR_TYPE_W)
4119 /* write-high */
4120 __set_bit(msr, msr_bitmap + 0xc00 / f);
4121
4122 }
4123 }
4124
4125 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4126 {
4127 if (!longmode_only)
4128 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4129 msr, MSR_TYPE_R | MSR_TYPE_W);
4130 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4131 msr, MSR_TYPE_R | MSR_TYPE_W);
4132 }
4133
4134 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4135 {
4136 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4137 msr, MSR_TYPE_R);
4138 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4139 msr, MSR_TYPE_R);
4140 }
4141
4142 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4143 {
4144 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4145 msr, MSR_TYPE_R);
4146 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4147 msr, MSR_TYPE_R);
4148 }
4149
4150 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4151 {
4152 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4153 msr, MSR_TYPE_W);
4154 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4155 msr, MSR_TYPE_W);
4156 }
4157
4158 static int vmx_vm_has_apicv(struct kvm *kvm)
4159 {
4160 return enable_apicv && irqchip_in_kernel(kvm);
4161 }
4162
4163 /*
4164 * Send interrupt to vcpu via posted interrupt way.
4165 * 1. If target vcpu is running(non-root mode), send posted interrupt
4166 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4167 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4168 * interrupt from PIR in next vmentry.
4169 */
4170 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4171 {
4172 struct vcpu_vmx *vmx = to_vmx(vcpu);
4173 int r;
4174
4175 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4176 return;
4177
4178 r = pi_test_and_set_on(&vmx->pi_desc);
4179 kvm_make_request(KVM_REQ_EVENT, vcpu);
4180 #ifdef CONFIG_SMP
4181 if (!r && (vcpu->mode == IN_GUEST_MODE))
4182 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4183 POSTED_INTR_VECTOR);
4184 else
4185 #endif
4186 kvm_vcpu_kick(vcpu);
4187 }
4188
4189 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4190 {
4191 struct vcpu_vmx *vmx = to_vmx(vcpu);
4192
4193 if (!pi_test_and_clear_on(&vmx->pi_desc))
4194 return;
4195
4196 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4197 }
4198
4199 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4200 {
4201 return;
4202 }
4203
4204 /*
4205 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4206 * will not change in the lifetime of the guest.
4207 * Note that host-state that does change is set elsewhere. E.g., host-state
4208 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4209 */
4210 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4211 {
4212 u32 low32, high32;
4213 unsigned long tmpl;
4214 struct desc_ptr dt;
4215 unsigned long cr4;
4216
4217 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4218 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4219
4220 /* Save the most likely value for this task's CR4 in the VMCS. */
4221 cr4 = read_cr4();
4222 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4223 vmx->host_state.vmcs_host_cr4 = cr4;
4224
4225 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4226 #ifdef CONFIG_X86_64
4227 /*
4228 * Load null selectors, so we can avoid reloading them in
4229 * __vmx_load_host_state(), in case userspace uses the null selectors
4230 * too (the expected case).
4231 */
4232 vmcs_write16(HOST_DS_SELECTOR, 0);
4233 vmcs_write16(HOST_ES_SELECTOR, 0);
4234 #else
4235 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4236 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4237 #endif
4238 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4239 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4240
4241 native_store_idt(&dt);
4242 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4243 vmx->host_idt_base = dt.address;
4244
4245 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4246
4247 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4248 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4249 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4250 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4251
4252 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4253 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4254 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4255 }
4256 }
4257
4258 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4259 {
4260 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4261 if (enable_ept)
4262 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4263 if (is_guest_mode(&vmx->vcpu))
4264 vmx->vcpu.arch.cr4_guest_owned_bits &=
4265 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4266 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4267 }
4268
4269 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4270 {
4271 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4272
4273 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4274 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4275 return pin_based_exec_ctrl;
4276 }
4277
4278 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4279 {
4280 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4281
4282 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4283 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4284
4285 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4286 exec_control &= ~CPU_BASED_TPR_SHADOW;
4287 #ifdef CONFIG_X86_64
4288 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4289 CPU_BASED_CR8_LOAD_EXITING;
4290 #endif
4291 }
4292 if (!enable_ept)
4293 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4294 CPU_BASED_CR3_LOAD_EXITING |
4295 CPU_BASED_INVLPG_EXITING;
4296 return exec_control;
4297 }
4298
4299 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4300 {
4301 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4302 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4303 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4304 if (vmx->vpid == 0)
4305 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4306 if (!enable_ept) {
4307 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4308 enable_unrestricted_guest = 0;
4309 /* Enable INVPCID for non-ept guests may cause performance regression. */
4310 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4311 }
4312 if (!enable_unrestricted_guest)
4313 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4314 if (!ple_gap)
4315 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4316 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4317 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4318 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4319 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4320 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4321 (handle_vmptrld).
4322 We can NOT enable shadow_vmcs here because we don't have yet
4323 a current VMCS12
4324 */
4325 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4326 return exec_control;
4327 }
4328
4329 static void ept_set_mmio_spte_mask(void)
4330 {
4331 /*
4332 * EPT Misconfigurations can be generated if the value of bits 2:0
4333 * of an EPT paging-structure entry is 110b (write/execute).
4334 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4335 * spte.
4336 */
4337 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4338 }
4339
4340 /*
4341 * Sets up the vmcs for emulated real mode.
4342 */
4343 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4344 {
4345 #ifdef CONFIG_X86_64
4346 unsigned long a;
4347 #endif
4348 int i;
4349
4350 /* I/O */
4351 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4352 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4353
4354 if (enable_shadow_vmcs) {
4355 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4356 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4357 }
4358 if (cpu_has_vmx_msr_bitmap())
4359 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4360
4361 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4362
4363 /* Control */
4364 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4365
4366 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4367
4368 if (cpu_has_secondary_exec_ctrls()) {
4369 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4370 vmx_secondary_exec_control(vmx));
4371 }
4372
4373 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4374 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4375 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4376 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4377 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4378
4379 vmcs_write16(GUEST_INTR_STATUS, 0);
4380
4381 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4382 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4383 }
4384
4385 if (ple_gap) {
4386 vmcs_write32(PLE_GAP, ple_gap);
4387 vmx->ple_window = ple_window;
4388 vmx->ple_window_dirty = true;
4389 }
4390
4391 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4392 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4393 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4394
4395 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4396 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4397 vmx_set_constant_host_state(vmx);
4398 #ifdef CONFIG_X86_64
4399 rdmsrl(MSR_FS_BASE, a);
4400 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4401 rdmsrl(MSR_GS_BASE, a);
4402 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4403 #else
4404 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4405 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4406 #endif
4407
4408 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4409 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4410 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4411 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4412 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4413
4414 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4415 u32 msr_low, msr_high;
4416 u64 host_pat;
4417 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4418 host_pat = msr_low | ((u64) msr_high << 32);
4419 /* Write the default value follow host pat */
4420 vmcs_write64(GUEST_IA32_PAT, host_pat);
4421 /* Keep arch.pat sync with GUEST_IA32_PAT */
4422 vmx->vcpu.arch.pat = host_pat;
4423 }
4424
4425 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4426 u32 index = vmx_msr_index[i];
4427 u32 data_low, data_high;
4428 int j = vmx->nmsrs;
4429
4430 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4431 continue;
4432 if (wrmsr_safe(index, data_low, data_high) < 0)
4433 continue;
4434 vmx->guest_msrs[j].index = i;
4435 vmx->guest_msrs[j].data = 0;
4436 vmx->guest_msrs[j].mask = -1ull;
4437 ++vmx->nmsrs;
4438 }
4439
4440
4441 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4442
4443 /* 22.2.1, 20.8.1 */
4444 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4445
4446 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4447 set_cr4_guest_host_mask(vmx);
4448
4449 return 0;
4450 }
4451
4452 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4453 {
4454 struct vcpu_vmx *vmx = to_vmx(vcpu);
4455 struct msr_data apic_base_msr;
4456
4457 vmx->rmode.vm86_active = 0;
4458
4459 vmx->soft_vnmi_blocked = 0;
4460
4461 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4462 kvm_set_cr8(&vmx->vcpu, 0);
4463 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4464 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4465 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4466 apic_base_msr.host_initiated = true;
4467 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4468
4469 vmx_segment_cache_clear(vmx);
4470
4471 seg_setup(VCPU_SREG_CS);
4472 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4473 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4474
4475 seg_setup(VCPU_SREG_DS);
4476 seg_setup(VCPU_SREG_ES);
4477 seg_setup(VCPU_SREG_FS);
4478 seg_setup(VCPU_SREG_GS);
4479 seg_setup(VCPU_SREG_SS);
4480
4481 vmcs_write16(GUEST_TR_SELECTOR, 0);
4482 vmcs_writel(GUEST_TR_BASE, 0);
4483 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4484 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4485
4486 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4487 vmcs_writel(GUEST_LDTR_BASE, 0);
4488 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4489 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4490
4491 vmcs_write32(GUEST_SYSENTER_CS, 0);
4492 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4493 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4494
4495 vmcs_writel(GUEST_RFLAGS, 0x02);
4496 kvm_rip_write(vcpu, 0xfff0);
4497
4498 vmcs_writel(GUEST_GDTR_BASE, 0);
4499 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4500
4501 vmcs_writel(GUEST_IDTR_BASE, 0);
4502 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4503
4504 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4505 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4506 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4507
4508 /* Special registers */
4509 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4510
4511 setup_msrs(vmx);
4512
4513 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4514
4515 if (cpu_has_vmx_tpr_shadow()) {
4516 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4517 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4518 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4519 __pa(vmx->vcpu.arch.apic->regs));
4520 vmcs_write32(TPR_THRESHOLD, 0);
4521 }
4522
4523 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4524
4525 if (vmx_vm_has_apicv(vcpu->kvm))
4526 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4527
4528 if (vmx->vpid != 0)
4529 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4530
4531 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4532 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4533 vmx_set_cr4(&vmx->vcpu, 0);
4534 vmx_set_efer(&vmx->vcpu, 0);
4535 vmx_fpu_activate(&vmx->vcpu);
4536 update_exception_bitmap(&vmx->vcpu);
4537
4538 vpid_sync_context(vmx);
4539 }
4540
4541 /*
4542 * In nested virtualization, check if L1 asked to exit on external interrupts.
4543 * For most existing hypervisors, this will always return true.
4544 */
4545 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4546 {
4547 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4548 PIN_BASED_EXT_INTR_MASK;
4549 }
4550
4551 /*
4552 * In nested virtualization, check if L1 has set
4553 * VM_EXIT_ACK_INTR_ON_EXIT
4554 */
4555 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4556 {
4557 return get_vmcs12(vcpu)->vm_exit_controls &
4558 VM_EXIT_ACK_INTR_ON_EXIT;
4559 }
4560
4561 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4562 {
4563 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4564 PIN_BASED_NMI_EXITING;
4565 }
4566
4567 static void enable_irq_window(struct kvm_vcpu *vcpu)
4568 {
4569 u32 cpu_based_vm_exec_control;
4570
4571 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4572 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4573 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4574 }
4575
4576 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4577 {
4578 u32 cpu_based_vm_exec_control;
4579
4580 if (!cpu_has_virtual_nmis() ||
4581 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4582 enable_irq_window(vcpu);
4583 return;
4584 }
4585
4586 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4587 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4588 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4589 }
4590
4591 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4592 {
4593 struct vcpu_vmx *vmx = to_vmx(vcpu);
4594 uint32_t intr;
4595 int irq = vcpu->arch.interrupt.nr;
4596
4597 trace_kvm_inj_virq(irq);
4598
4599 ++vcpu->stat.irq_injections;
4600 if (vmx->rmode.vm86_active) {
4601 int inc_eip = 0;
4602 if (vcpu->arch.interrupt.soft)
4603 inc_eip = vcpu->arch.event_exit_inst_len;
4604 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4605 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4606 return;
4607 }
4608 intr = irq | INTR_INFO_VALID_MASK;
4609 if (vcpu->arch.interrupt.soft) {
4610 intr |= INTR_TYPE_SOFT_INTR;
4611 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4612 vmx->vcpu.arch.event_exit_inst_len);
4613 } else
4614 intr |= INTR_TYPE_EXT_INTR;
4615 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4616 }
4617
4618 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4619 {
4620 struct vcpu_vmx *vmx = to_vmx(vcpu);
4621
4622 if (is_guest_mode(vcpu))
4623 return;
4624
4625 if (!cpu_has_virtual_nmis()) {
4626 /*
4627 * Tracking the NMI-blocked state in software is built upon
4628 * finding the next open IRQ window. This, in turn, depends on
4629 * well-behaving guests: They have to keep IRQs disabled at
4630 * least as long as the NMI handler runs. Otherwise we may
4631 * cause NMI nesting, maybe breaking the guest. But as this is
4632 * highly unlikely, we can live with the residual risk.
4633 */
4634 vmx->soft_vnmi_blocked = 1;
4635 vmx->vnmi_blocked_time = 0;
4636 }
4637
4638 ++vcpu->stat.nmi_injections;
4639 vmx->nmi_known_unmasked = false;
4640 if (vmx->rmode.vm86_active) {
4641 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4642 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4643 return;
4644 }
4645 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4646 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4647 }
4648
4649 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4650 {
4651 if (!cpu_has_virtual_nmis())
4652 return to_vmx(vcpu)->soft_vnmi_blocked;
4653 if (to_vmx(vcpu)->nmi_known_unmasked)
4654 return false;
4655 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4656 }
4657
4658 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4659 {
4660 struct vcpu_vmx *vmx = to_vmx(vcpu);
4661
4662 if (!cpu_has_virtual_nmis()) {
4663 if (vmx->soft_vnmi_blocked != masked) {
4664 vmx->soft_vnmi_blocked = masked;
4665 vmx->vnmi_blocked_time = 0;
4666 }
4667 } else {
4668 vmx->nmi_known_unmasked = !masked;
4669 if (masked)
4670 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4671 GUEST_INTR_STATE_NMI);
4672 else
4673 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4674 GUEST_INTR_STATE_NMI);
4675 }
4676 }
4677
4678 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4679 {
4680 if (to_vmx(vcpu)->nested.nested_run_pending)
4681 return 0;
4682
4683 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4684 return 0;
4685
4686 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4687 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4688 | GUEST_INTR_STATE_NMI));
4689 }
4690
4691 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4692 {
4693 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4694 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4695 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4696 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4697 }
4698
4699 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4700 {
4701 int ret;
4702 struct kvm_userspace_memory_region tss_mem = {
4703 .slot = TSS_PRIVATE_MEMSLOT,
4704 .guest_phys_addr = addr,
4705 .memory_size = PAGE_SIZE * 3,
4706 .flags = 0,
4707 };
4708
4709 ret = kvm_set_memory_region(kvm, &tss_mem);
4710 if (ret)
4711 return ret;
4712 kvm->arch.tss_addr = addr;
4713 return init_rmode_tss(kvm);
4714 }
4715
4716 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4717 {
4718 switch (vec) {
4719 case BP_VECTOR:
4720 /*
4721 * Update instruction length as we may reinject the exception
4722 * from user space while in guest debugging mode.
4723 */
4724 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4725 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4726 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4727 return false;
4728 /* fall through */
4729 case DB_VECTOR:
4730 if (vcpu->guest_debug &
4731 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4732 return false;
4733 /* fall through */
4734 case DE_VECTOR:
4735 case OF_VECTOR:
4736 case BR_VECTOR:
4737 case UD_VECTOR:
4738 case DF_VECTOR:
4739 case SS_VECTOR:
4740 case GP_VECTOR:
4741 case MF_VECTOR:
4742 return true;
4743 break;
4744 }
4745 return false;
4746 }
4747
4748 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4749 int vec, u32 err_code)
4750 {
4751 /*
4752 * Instruction with address size override prefix opcode 0x67
4753 * Cause the #SS fault with 0 error code in VM86 mode.
4754 */
4755 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4756 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4757 if (vcpu->arch.halt_request) {
4758 vcpu->arch.halt_request = 0;
4759 return kvm_emulate_halt(vcpu);
4760 }
4761 return 1;
4762 }
4763 return 0;
4764 }
4765
4766 /*
4767 * Forward all other exceptions that are valid in real mode.
4768 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4769 * the required debugging infrastructure rework.
4770 */
4771 kvm_queue_exception(vcpu, vec);
4772 return 1;
4773 }
4774
4775 /*
4776 * Trigger machine check on the host. We assume all the MSRs are already set up
4777 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4778 * We pass a fake environment to the machine check handler because we want
4779 * the guest to be always treated like user space, no matter what context
4780 * it used internally.
4781 */
4782 static void kvm_machine_check(void)
4783 {
4784 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4785 struct pt_regs regs = {
4786 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4787 .flags = X86_EFLAGS_IF,
4788 };
4789
4790 do_machine_check(&regs, 0);
4791 #endif
4792 }
4793
4794 static int handle_machine_check(struct kvm_vcpu *vcpu)
4795 {
4796 /* already handled by vcpu_run */
4797 return 1;
4798 }
4799
4800 static int handle_exception(struct kvm_vcpu *vcpu)
4801 {
4802 struct vcpu_vmx *vmx = to_vmx(vcpu);
4803 struct kvm_run *kvm_run = vcpu->run;
4804 u32 intr_info, ex_no, error_code;
4805 unsigned long cr2, rip, dr6;
4806 u32 vect_info;
4807 enum emulation_result er;
4808
4809 vect_info = vmx->idt_vectoring_info;
4810 intr_info = vmx->exit_intr_info;
4811
4812 if (is_machine_check(intr_info))
4813 return handle_machine_check(vcpu);
4814
4815 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4816 return 1; /* already handled by vmx_vcpu_run() */
4817
4818 if (is_no_device(intr_info)) {
4819 vmx_fpu_activate(vcpu);
4820 return 1;
4821 }
4822
4823 if (is_invalid_opcode(intr_info)) {
4824 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4825 if (er != EMULATE_DONE)
4826 kvm_queue_exception(vcpu, UD_VECTOR);
4827 return 1;
4828 }
4829
4830 error_code = 0;
4831 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4832 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4833
4834 /*
4835 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4836 * MMIO, it is better to report an internal error.
4837 * See the comments in vmx_handle_exit.
4838 */
4839 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4840 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4841 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4842 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4843 vcpu->run->internal.ndata = 2;
4844 vcpu->run->internal.data[0] = vect_info;
4845 vcpu->run->internal.data[1] = intr_info;
4846 return 0;
4847 }
4848
4849 if (is_page_fault(intr_info)) {
4850 /* EPT won't cause page fault directly */
4851 BUG_ON(enable_ept);
4852 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4853 trace_kvm_page_fault(cr2, error_code);
4854
4855 if (kvm_event_needs_reinjection(vcpu))
4856 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4857 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4858 }
4859
4860 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4861
4862 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4863 return handle_rmode_exception(vcpu, ex_no, error_code);
4864
4865 switch (ex_no) {
4866 case DB_VECTOR:
4867 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4868 if (!(vcpu->guest_debug &
4869 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4870 vcpu->arch.dr6 &= ~15;
4871 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4872 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4873 skip_emulated_instruction(vcpu);
4874
4875 kvm_queue_exception(vcpu, DB_VECTOR);
4876 return 1;
4877 }
4878 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4879 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4880 /* fall through */
4881 case BP_VECTOR:
4882 /*
4883 * Update instruction length as we may reinject #BP from
4884 * user space while in guest debugging mode. Reading it for
4885 * #DB as well causes no harm, it is not used in that case.
4886 */
4887 vmx->vcpu.arch.event_exit_inst_len =
4888 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4889 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4890 rip = kvm_rip_read(vcpu);
4891 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4892 kvm_run->debug.arch.exception = ex_no;
4893 break;
4894 default:
4895 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4896 kvm_run->ex.exception = ex_no;
4897 kvm_run->ex.error_code = error_code;
4898 break;
4899 }
4900 return 0;
4901 }
4902
4903 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4904 {
4905 ++vcpu->stat.irq_exits;
4906 return 1;
4907 }
4908
4909 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4910 {
4911 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4912 return 0;
4913 }
4914
4915 static int handle_io(struct kvm_vcpu *vcpu)
4916 {
4917 unsigned long exit_qualification;
4918 int size, in, string;
4919 unsigned port;
4920
4921 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4922 string = (exit_qualification & 16) != 0;
4923 in = (exit_qualification & 8) != 0;
4924
4925 ++vcpu->stat.io_exits;
4926
4927 if (string || in)
4928 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4929
4930 port = exit_qualification >> 16;
4931 size = (exit_qualification & 7) + 1;
4932 skip_emulated_instruction(vcpu);
4933
4934 return kvm_fast_pio_out(vcpu, size, port);
4935 }
4936
4937 static void
4938 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4939 {
4940 /*
4941 * Patch in the VMCALL instruction:
4942 */
4943 hypercall[0] = 0x0f;
4944 hypercall[1] = 0x01;
4945 hypercall[2] = 0xc1;
4946 }
4947
4948 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4949 {
4950 unsigned long always_on = VMXON_CR0_ALWAYSON;
4951
4952 if (nested_vmx_secondary_ctls_high &
4953 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4954 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4955 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4956 return (val & always_on) == always_on;
4957 }
4958
4959 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4960 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4961 {
4962 if (is_guest_mode(vcpu)) {
4963 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4964 unsigned long orig_val = val;
4965
4966 /*
4967 * We get here when L2 changed cr0 in a way that did not change
4968 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4969 * but did change L0 shadowed bits. So we first calculate the
4970 * effective cr0 value that L1 would like to write into the
4971 * hardware. It consists of the L2-owned bits from the new
4972 * value combined with the L1-owned bits from L1's guest_cr0.
4973 */
4974 val = (val & ~vmcs12->cr0_guest_host_mask) |
4975 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4976
4977 if (!nested_cr0_valid(vmcs12, val))
4978 return 1;
4979
4980 if (kvm_set_cr0(vcpu, val))
4981 return 1;
4982 vmcs_writel(CR0_READ_SHADOW, orig_val);
4983 return 0;
4984 } else {
4985 if (to_vmx(vcpu)->nested.vmxon &&
4986 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4987 return 1;
4988 return kvm_set_cr0(vcpu, val);
4989 }
4990 }
4991
4992 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4993 {
4994 if (is_guest_mode(vcpu)) {
4995 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4996 unsigned long orig_val = val;
4997
4998 /* analogously to handle_set_cr0 */
4999 val = (val & ~vmcs12->cr4_guest_host_mask) |
5000 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5001 if (kvm_set_cr4(vcpu, val))
5002 return 1;
5003 vmcs_writel(CR4_READ_SHADOW, orig_val);
5004 return 0;
5005 } else
5006 return kvm_set_cr4(vcpu, val);
5007 }
5008
5009 /* called to set cr0 as approriate for clts instruction exit. */
5010 static void handle_clts(struct kvm_vcpu *vcpu)
5011 {
5012 if (is_guest_mode(vcpu)) {
5013 /*
5014 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5015 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5016 * just pretend it's off (also in arch.cr0 for fpu_activate).
5017 */
5018 vmcs_writel(CR0_READ_SHADOW,
5019 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5020 vcpu->arch.cr0 &= ~X86_CR0_TS;
5021 } else
5022 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5023 }
5024
5025 static int handle_cr(struct kvm_vcpu *vcpu)
5026 {
5027 unsigned long exit_qualification, val;
5028 int cr;
5029 int reg;
5030 int err;
5031
5032 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5033 cr = exit_qualification & 15;
5034 reg = (exit_qualification >> 8) & 15;
5035 switch ((exit_qualification >> 4) & 3) {
5036 case 0: /* mov to cr */
5037 val = kvm_register_readl(vcpu, reg);
5038 trace_kvm_cr_write(cr, val);
5039 switch (cr) {
5040 case 0:
5041 err = handle_set_cr0(vcpu, val);
5042 kvm_complete_insn_gp(vcpu, err);
5043 return 1;
5044 case 3:
5045 err = kvm_set_cr3(vcpu, val);
5046 kvm_complete_insn_gp(vcpu, err);
5047 return 1;
5048 case 4:
5049 err = handle_set_cr4(vcpu, val);
5050 kvm_complete_insn_gp(vcpu, err);
5051 return 1;
5052 case 8: {
5053 u8 cr8_prev = kvm_get_cr8(vcpu);
5054 u8 cr8 = (u8)val;
5055 err = kvm_set_cr8(vcpu, cr8);
5056 kvm_complete_insn_gp(vcpu, err);
5057 if (irqchip_in_kernel(vcpu->kvm))
5058 return 1;
5059 if (cr8_prev <= cr8)
5060 return 1;
5061 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5062 return 0;
5063 }
5064 }
5065 break;
5066 case 2: /* clts */
5067 handle_clts(vcpu);
5068 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5069 skip_emulated_instruction(vcpu);
5070 vmx_fpu_activate(vcpu);
5071 return 1;
5072 case 1: /*mov from cr*/
5073 switch (cr) {
5074 case 3:
5075 val = kvm_read_cr3(vcpu);
5076 kvm_register_write(vcpu, reg, val);
5077 trace_kvm_cr_read(cr, val);
5078 skip_emulated_instruction(vcpu);
5079 return 1;
5080 case 8:
5081 val = kvm_get_cr8(vcpu);
5082 kvm_register_write(vcpu, reg, val);
5083 trace_kvm_cr_read(cr, val);
5084 skip_emulated_instruction(vcpu);
5085 return 1;
5086 }
5087 break;
5088 case 3: /* lmsw */
5089 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5090 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5091 kvm_lmsw(vcpu, val);
5092
5093 skip_emulated_instruction(vcpu);
5094 return 1;
5095 default:
5096 break;
5097 }
5098 vcpu->run->exit_reason = 0;
5099 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5100 (int)(exit_qualification >> 4) & 3, cr);
5101 return 0;
5102 }
5103
5104 static int handle_dr(struct kvm_vcpu *vcpu)
5105 {
5106 unsigned long exit_qualification;
5107 int dr, dr7, reg;
5108
5109 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5110 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5111
5112 /* First, if DR does not exist, trigger UD */
5113 if (!kvm_require_dr(vcpu, dr))
5114 return 1;
5115
5116 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5117 if (!kvm_require_cpl(vcpu, 0))
5118 return 1;
5119 dr7 = vmcs_readl(GUEST_DR7);
5120 if (dr7 & DR7_GD) {
5121 /*
5122 * As the vm-exit takes precedence over the debug trap, we
5123 * need to emulate the latter, either for the host or the
5124 * guest debugging itself.
5125 */
5126 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5127 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5128 vcpu->run->debug.arch.dr7 = dr7;
5129 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5130 vcpu->run->debug.arch.exception = DB_VECTOR;
5131 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5132 return 0;
5133 } else {
5134 vcpu->arch.dr6 &= ~15;
5135 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5136 kvm_queue_exception(vcpu, DB_VECTOR);
5137 return 1;
5138 }
5139 }
5140
5141 if (vcpu->guest_debug == 0) {
5142 u32 cpu_based_vm_exec_control;
5143
5144 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5145 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5146 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5147
5148 /*
5149 * No more DR vmexits; force a reload of the debug registers
5150 * and reenter on this instruction. The next vmexit will
5151 * retrieve the full state of the debug registers.
5152 */
5153 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5154 return 1;
5155 }
5156
5157 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5158 if (exit_qualification & TYPE_MOV_FROM_DR) {
5159 unsigned long val;
5160
5161 if (kvm_get_dr(vcpu, dr, &val))
5162 return 1;
5163 kvm_register_write(vcpu, reg, val);
5164 } else
5165 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5166 return 1;
5167
5168 skip_emulated_instruction(vcpu);
5169 return 1;
5170 }
5171
5172 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5173 {
5174 return vcpu->arch.dr6;
5175 }
5176
5177 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5178 {
5179 }
5180
5181 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5182 {
5183 u32 cpu_based_vm_exec_control;
5184
5185 get_debugreg(vcpu->arch.db[0], 0);
5186 get_debugreg(vcpu->arch.db[1], 1);
5187 get_debugreg(vcpu->arch.db[2], 2);
5188 get_debugreg(vcpu->arch.db[3], 3);
5189 get_debugreg(vcpu->arch.dr6, 6);
5190 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5191
5192 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5193
5194 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5195 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5196 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5197 }
5198
5199 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5200 {
5201 vmcs_writel(GUEST_DR7, val);
5202 }
5203
5204 static int handle_cpuid(struct kvm_vcpu *vcpu)
5205 {
5206 kvm_emulate_cpuid(vcpu);
5207 return 1;
5208 }
5209
5210 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5211 {
5212 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5213 u64 data;
5214
5215 if (vmx_get_msr(vcpu, ecx, &data)) {
5216 trace_kvm_msr_read_ex(ecx);
5217 kvm_inject_gp(vcpu, 0);
5218 return 1;
5219 }
5220
5221 trace_kvm_msr_read(ecx, data);
5222
5223 /* FIXME: handling of bits 32:63 of rax, rdx */
5224 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5225 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5226 skip_emulated_instruction(vcpu);
5227 return 1;
5228 }
5229
5230 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5231 {
5232 struct msr_data msr;
5233 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5234 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5235 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5236
5237 msr.data = data;
5238 msr.index = ecx;
5239 msr.host_initiated = false;
5240 if (kvm_set_msr(vcpu, &msr) != 0) {
5241 trace_kvm_msr_write_ex(ecx, data);
5242 kvm_inject_gp(vcpu, 0);
5243 return 1;
5244 }
5245
5246 trace_kvm_msr_write(ecx, data);
5247 skip_emulated_instruction(vcpu);
5248 return 1;
5249 }
5250
5251 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5252 {
5253 kvm_make_request(KVM_REQ_EVENT, vcpu);
5254 return 1;
5255 }
5256
5257 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5258 {
5259 u32 cpu_based_vm_exec_control;
5260
5261 /* clear pending irq */
5262 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5263 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5264 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5265
5266 kvm_make_request(KVM_REQ_EVENT, vcpu);
5267
5268 ++vcpu->stat.irq_window_exits;
5269
5270 /*
5271 * If the user space waits to inject interrupts, exit as soon as
5272 * possible
5273 */
5274 if (!irqchip_in_kernel(vcpu->kvm) &&
5275 vcpu->run->request_interrupt_window &&
5276 !kvm_cpu_has_interrupt(vcpu)) {
5277 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5278 return 0;
5279 }
5280 return 1;
5281 }
5282
5283 static int handle_halt(struct kvm_vcpu *vcpu)
5284 {
5285 skip_emulated_instruction(vcpu);
5286 return kvm_emulate_halt(vcpu);
5287 }
5288
5289 static int handle_vmcall(struct kvm_vcpu *vcpu)
5290 {
5291 skip_emulated_instruction(vcpu);
5292 kvm_emulate_hypercall(vcpu);
5293 return 1;
5294 }
5295
5296 static int handle_invd(struct kvm_vcpu *vcpu)
5297 {
5298 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5299 }
5300
5301 static int handle_invlpg(struct kvm_vcpu *vcpu)
5302 {
5303 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5304
5305 kvm_mmu_invlpg(vcpu, exit_qualification);
5306 skip_emulated_instruction(vcpu);
5307 return 1;
5308 }
5309
5310 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5311 {
5312 int err;
5313
5314 err = kvm_rdpmc(vcpu);
5315 kvm_complete_insn_gp(vcpu, err);
5316
5317 return 1;
5318 }
5319
5320 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5321 {
5322 skip_emulated_instruction(vcpu);
5323 kvm_emulate_wbinvd(vcpu);
5324 return 1;
5325 }
5326
5327 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5328 {
5329 u64 new_bv = kvm_read_edx_eax(vcpu);
5330 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5331
5332 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5333 skip_emulated_instruction(vcpu);
5334 return 1;
5335 }
5336
5337 static int handle_apic_access(struct kvm_vcpu *vcpu)
5338 {
5339 if (likely(fasteoi)) {
5340 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5341 int access_type, offset;
5342
5343 access_type = exit_qualification & APIC_ACCESS_TYPE;
5344 offset = exit_qualification & APIC_ACCESS_OFFSET;
5345 /*
5346 * Sane guest uses MOV to write EOI, with written value
5347 * not cared. So make a short-circuit here by avoiding
5348 * heavy instruction emulation.
5349 */
5350 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5351 (offset == APIC_EOI)) {
5352 kvm_lapic_set_eoi(vcpu);
5353 skip_emulated_instruction(vcpu);
5354 return 1;
5355 }
5356 }
5357 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5358 }
5359
5360 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5361 {
5362 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5363 int vector = exit_qualification & 0xff;
5364
5365 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5366 kvm_apic_set_eoi_accelerated(vcpu, vector);
5367 return 1;
5368 }
5369
5370 static int handle_apic_write(struct kvm_vcpu *vcpu)
5371 {
5372 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5373 u32 offset = exit_qualification & 0xfff;
5374
5375 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5376 kvm_apic_write_nodecode(vcpu, offset);
5377 return 1;
5378 }
5379
5380 static int handle_task_switch(struct kvm_vcpu *vcpu)
5381 {
5382 struct vcpu_vmx *vmx = to_vmx(vcpu);
5383 unsigned long exit_qualification;
5384 bool has_error_code = false;
5385 u32 error_code = 0;
5386 u16 tss_selector;
5387 int reason, type, idt_v, idt_index;
5388
5389 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5390 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5391 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5392
5393 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5394
5395 reason = (u32)exit_qualification >> 30;
5396 if (reason == TASK_SWITCH_GATE && idt_v) {
5397 switch (type) {
5398 case INTR_TYPE_NMI_INTR:
5399 vcpu->arch.nmi_injected = false;
5400 vmx_set_nmi_mask(vcpu, true);
5401 break;
5402 case INTR_TYPE_EXT_INTR:
5403 case INTR_TYPE_SOFT_INTR:
5404 kvm_clear_interrupt_queue(vcpu);
5405 break;
5406 case INTR_TYPE_HARD_EXCEPTION:
5407 if (vmx->idt_vectoring_info &
5408 VECTORING_INFO_DELIVER_CODE_MASK) {
5409 has_error_code = true;
5410 error_code =
5411 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5412 }
5413 /* fall through */
5414 case INTR_TYPE_SOFT_EXCEPTION:
5415 kvm_clear_exception_queue(vcpu);
5416 break;
5417 default:
5418 break;
5419 }
5420 }
5421 tss_selector = exit_qualification;
5422
5423 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5424 type != INTR_TYPE_EXT_INTR &&
5425 type != INTR_TYPE_NMI_INTR))
5426 skip_emulated_instruction(vcpu);
5427
5428 if (kvm_task_switch(vcpu, tss_selector,
5429 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5430 has_error_code, error_code) == EMULATE_FAIL) {
5431 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5432 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5433 vcpu->run->internal.ndata = 0;
5434 return 0;
5435 }
5436
5437 /* clear all local breakpoint enable flags */
5438 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5439
5440 /*
5441 * TODO: What about debug traps on tss switch?
5442 * Are we supposed to inject them and update dr6?
5443 */
5444
5445 return 1;
5446 }
5447
5448 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5449 {
5450 unsigned long exit_qualification;
5451 gpa_t gpa;
5452 u32 error_code;
5453 int gla_validity;
5454
5455 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5456
5457 gla_validity = (exit_qualification >> 7) & 0x3;
5458 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5459 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5460 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5461 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5462 vmcs_readl(GUEST_LINEAR_ADDRESS));
5463 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5464 (long unsigned int)exit_qualification);
5465 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5466 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5467 return 0;
5468 }
5469
5470 /*
5471 * EPT violation happened while executing iret from NMI,
5472 * "blocked by NMI" bit has to be set before next VM entry.
5473 * There are errata that may cause this bit to not be set:
5474 * AAK134, BY25.
5475 */
5476 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5477 cpu_has_virtual_nmis() &&
5478 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5479 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5480
5481 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5482 trace_kvm_page_fault(gpa, exit_qualification);
5483
5484 /* It is a write fault? */
5485 error_code = exit_qualification & (1U << 1);
5486 /* It is a fetch fault? */
5487 error_code |= (exit_qualification & (1U << 2)) << 2;
5488 /* ept page table is present? */
5489 error_code |= (exit_qualification >> 3) & 0x1;
5490
5491 vcpu->arch.exit_qualification = exit_qualification;
5492
5493 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5494 }
5495
5496 static u64 ept_rsvd_mask(u64 spte, int level)
5497 {
5498 int i;
5499 u64 mask = 0;
5500
5501 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5502 mask |= (1ULL << i);
5503
5504 if (level == 4)
5505 /* bits 7:3 reserved */
5506 mask |= 0xf8;
5507 else if (spte & (1ULL << 7))
5508 /*
5509 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5510 * level == 1 if the hypervisor is using the ignored bit 7.
5511 */
5512 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5513 else if (level > 1)
5514 /* bits 6:3 reserved */
5515 mask |= 0x78;
5516
5517 return mask;
5518 }
5519
5520 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5521 int level)
5522 {
5523 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5524
5525 /* 010b (write-only) */
5526 WARN_ON((spte & 0x7) == 0x2);
5527
5528 /* 110b (write/execute) */
5529 WARN_ON((spte & 0x7) == 0x6);
5530
5531 /* 100b (execute-only) and value not supported by logical processor */
5532 if (!cpu_has_vmx_ept_execute_only())
5533 WARN_ON((spte & 0x7) == 0x4);
5534
5535 /* not 000b */
5536 if ((spte & 0x7)) {
5537 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5538
5539 if (rsvd_bits != 0) {
5540 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5541 __func__, rsvd_bits);
5542 WARN_ON(1);
5543 }
5544
5545 /* bits 5:3 are _not_ reserved for large page or leaf page */
5546 if ((rsvd_bits & 0x38) == 0) {
5547 u64 ept_mem_type = (spte & 0x38) >> 3;
5548
5549 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5550 ept_mem_type == 7) {
5551 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5552 __func__, ept_mem_type);
5553 WARN_ON(1);
5554 }
5555 }
5556 }
5557 }
5558
5559 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5560 {
5561 u64 sptes[4];
5562 int nr_sptes, i, ret;
5563 gpa_t gpa;
5564
5565 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5566 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5567 skip_emulated_instruction(vcpu);
5568 return 1;
5569 }
5570
5571 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5572 if (likely(ret == RET_MMIO_PF_EMULATE))
5573 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5574 EMULATE_DONE;
5575
5576 if (unlikely(ret == RET_MMIO_PF_INVALID))
5577 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5578
5579 if (unlikely(ret == RET_MMIO_PF_RETRY))
5580 return 1;
5581
5582 /* It is the real ept misconfig */
5583 printk(KERN_ERR "EPT: Misconfiguration.\n");
5584 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5585
5586 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5587
5588 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5589 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5590
5591 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5592 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5593
5594 return 0;
5595 }
5596
5597 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5598 {
5599 u32 cpu_based_vm_exec_control;
5600
5601 /* clear pending NMI */
5602 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5603 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5604 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5605 ++vcpu->stat.nmi_window_exits;
5606 kvm_make_request(KVM_REQ_EVENT, vcpu);
5607
5608 return 1;
5609 }
5610
5611 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5612 {
5613 struct vcpu_vmx *vmx = to_vmx(vcpu);
5614 enum emulation_result err = EMULATE_DONE;
5615 int ret = 1;
5616 u32 cpu_exec_ctrl;
5617 bool intr_window_requested;
5618 unsigned count = 130;
5619
5620 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5621 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5622
5623 while (vmx->emulation_required && count-- != 0) {
5624 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5625 return handle_interrupt_window(&vmx->vcpu);
5626
5627 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5628 return 1;
5629
5630 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5631
5632 if (err == EMULATE_USER_EXIT) {
5633 ++vcpu->stat.mmio_exits;
5634 ret = 0;
5635 goto out;
5636 }
5637
5638 if (err != EMULATE_DONE) {
5639 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5640 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5641 vcpu->run->internal.ndata = 0;
5642 return 0;
5643 }
5644
5645 if (vcpu->arch.halt_request) {
5646 vcpu->arch.halt_request = 0;
5647 ret = kvm_emulate_halt(vcpu);
5648 goto out;
5649 }
5650
5651 if (signal_pending(current))
5652 goto out;
5653 if (need_resched())
5654 schedule();
5655 }
5656
5657 out:
5658 return ret;
5659 }
5660
5661 static int __grow_ple_window(int val)
5662 {
5663 if (ple_window_grow < 1)
5664 return ple_window;
5665
5666 val = min(val, ple_window_actual_max);
5667
5668 if (ple_window_grow < ple_window)
5669 val *= ple_window_grow;
5670 else
5671 val += ple_window_grow;
5672
5673 return val;
5674 }
5675
5676 static int __shrink_ple_window(int val, int modifier, int minimum)
5677 {
5678 if (modifier < 1)
5679 return ple_window;
5680
5681 if (modifier < ple_window)
5682 val /= modifier;
5683 else
5684 val -= modifier;
5685
5686 return max(val, minimum);
5687 }
5688
5689 static void grow_ple_window(struct kvm_vcpu *vcpu)
5690 {
5691 struct vcpu_vmx *vmx = to_vmx(vcpu);
5692 int old = vmx->ple_window;
5693
5694 vmx->ple_window = __grow_ple_window(old);
5695
5696 if (vmx->ple_window != old)
5697 vmx->ple_window_dirty = true;
5698
5699 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5700 }
5701
5702 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5703 {
5704 struct vcpu_vmx *vmx = to_vmx(vcpu);
5705 int old = vmx->ple_window;
5706
5707 vmx->ple_window = __shrink_ple_window(old,
5708 ple_window_shrink, ple_window);
5709
5710 if (vmx->ple_window != old)
5711 vmx->ple_window_dirty = true;
5712
5713 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5714 }
5715
5716 /*
5717 * ple_window_actual_max is computed to be one grow_ple_window() below
5718 * ple_window_max. (See __grow_ple_window for the reason.)
5719 * This prevents overflows, because ple_window_max is int.
5720 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5721 * this process.
5722 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5723 */
5724 static void update_ple_window_actual_max(void)
5725 {
5726 ple_window_actual_max =
5727 __shrink_ple_window(max(ple_window_max, ple_window),
5728 ple_window_grow, INT_MIN);
5729 }
5730
5731 static __init int hardware_setup(void)
5732 {
5733 int r = -ENOMEM, i, msr;
5734
5735 rdmsrl_safe(MSR_EFER, &host_efer);
5736
5737 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5738 kvm_define_shared_msr(i, vmx_msr_index[i]);
5739
5740 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5741 if (!vmx_io_bitmap_a)
5742 return r;
5743
5744 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5745 if (!vmx_io_bitmap_b)
5746 goto out;
5747
5748 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5749 if (!vmx_msr_bitmap_legacy)
5750 goto out1;
5751
5752 vmx_msr_bitmap_legacy_x2apic =
5753 (unsigned long *)__get_free_page(GFP_KERNEL);
5754 if (!vmx_msr_bitmap_legacy_x2apic)
5755 goto out2;
5756
5757 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5758 if (!vmx_msr_bitmap_longmode)
5759 goto out3;
5760
5761 vmx_msr_bitmap_longmode_x2apic =
5762 (unsigned long *)__get_free_page(GFP_KERNEL);
5763 if (!vmx_msr_bitmap_longmode_x2apic)
5764 goto out4;
5765 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5766 if (!vmx_vmread_bitmap)
5767 goto out5;
5768
5769 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5770 if (!vmx_vmwrite_bitmap)
5771 goto out6;
5772
5773 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5774 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5775
5776 /*
5777 * Allow direct access to the PC debug port (it is often used for I/O
5778 * delays, but the vmexits simply slow things down).
5779 */
5780 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5781 clear_bit(0x80, vmx_io_bitmap_a);
5782
5783 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5784
5785 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5786 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5787
5788 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5789 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5790 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5791 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5792 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5793 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5794 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
5795
5796 memcpy(vmx_msr_bitmap_legacy_x2apic,
5797 vmx_msr_bitmap_legacy, PAGE_SIZE);
5798 memcpy(vmx_msr_bitmap_longmode_x2apic,
5799 vmx_msr_bitmap_longmode, PAGE_SIZE);
5800
5801 if (enable_apicv) {
5802 for (msr = 0x800; msr <= 0x8ff; msr++)
5803 vmx_disable_intercept_msr_read_x2apic(msr);
5804
5805 /* According SDM, in x2apic mode, the whole id reg is used.
5806 * But in KVM, it only use the highest eight bits. Need to
5807 * intercept it */
5808 vmx_enable_intercept_msr_read_x2apic(0x802);
5809 /* TMCCT */
5810 vmx_enable_intercept_msr_read_x2apic(0x839);
5811 /* TPR */
5812 vmx_disable_intercept_msr_write_x2apic(0x808);
5813 /* EOI */
5814 vmx_disable_intercept_msr_write_x2apic(0x80b);
5815 /* SELF-IPI */
5816 vmx_disable_intercept_msr_write_x2apic(0x83f);
5817 }
5818
5819 if (enable_ept) {
5820 kvm_mmu_set_mask_ptes(0ull,
5821 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
5822 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
5823 0ull, VMX_EPT_EXECUTABLE_MASK);
5824 ept_set_mmio_spte_mask();
5825 kvm_enable_tdp();
5826 } else
5827 kvm_disable_tdp();
5828
5829 update_ple_window_actual_max();
5830
5831 if (setup_vmcs_config(&vmcs_config) < 0) {
5832 r = -EIO;
5833 goto out7;
5834 }
5835
5836 if (boot_cpu_has(X86_FEATURE_NX))
5837 kvm_enable_efer_bits(EFER_NX);
5838
5839 if (!cpu_has_vmx_vpid())
5840 enable_vpid = 0;
5841 if (!cpu_has_vmx_shadow_vmcs())
5842 enable_shadow_vmcs = 0;
5843 if (enable_shadow_vmcs)
5844 init_vmcs_shadow_fields();
5845
5846 if (!cpu_has_vmx_ept() ||
5847 !cpu_has_vmx_ept_4levels()) {
5848 enable_ept = 0;
5849 enable_unrestricted_guest = 0;
5850 enable_ept_ad_bits = 0;
5851 }
5852
5853 if (!cpu_has_vmx_ept_ad_bits())
5854 enable_ept_ad_bits = 0;
5855
5856 if (!cpu_has_vmx_unrestricted_guest())
5857 enable_unrestricted_guest = 0;
5858
5859 if (!cpu_has_vmx_flexpriority()) {
5860 flexpriority_enabled = 0;
5861
5862 /*
5863 * set_apic_access_page_addr() is used to reload apic access
5864 * page upon invalidation. No need to do anything if the
5865 * processor does not have the APIC_ACCESS_ADDR VMCS field.
5866 */
5867 kvm_x86_ops->set_apic_access_page_addr = NULL;
5868 }
5869
5870 if (!cpu_has_vmx_tpr_shadow())
5871 kvm_x86_ops->update_cr8_intercept = NULL;
5872
5873 if (enable_ept && !cpu_has_vmx_ept_2m_page())
5874 kvm_disable_largepages();
5875
5876 if (!cpu_has_vmx_ple())
5877 ple_gap = 0;
5878
5879 if (!cpu_has_vmx_apicv())
5880 enable_apicv = 0;
5881
5882 if (enable_apicv)
5883 kvm_x86_ops->update_cr8_intercept = NULL;
5884 else {
5885 kvm_x86_ops->hwapic_irr_update = NULL;
5886 kvm_x86_ops->deliver_posted_interrupt = NULL;
5887 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
5888 }
5889
5890 if (nested)
5891 nested_vmx_setup_ctls_msrs();
5892
5893 return alloc_kvm_area();
5894
5895 out7:
5896 free_page((unsigned long)vmx_vmwrite_bitmap);
5897 out6:
5898 free_page((unsigned long)vmx_vmread_bitmap);
5899 out5:
5900 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5901 out4:
5902 free_page((unsigned long)vmx_msr_bitmap_longmode);
5903 out3:
5904 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5905 out2:
5906 free_page((unsigned long)vmx_msr_bitmap_legacy);
5907 out1:
5908 free_page((unsigned long)vmx_io_bitmap_b);
5909 out:
5910 free_page((unsigned long)vmx_io_bitmap_a);
5911
5912 return r;
5913 }
5914
5915 static __exit void hardware_unsetup(void)
5916 {
5917 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5918 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5919 free_page((unsigned long)vmx_msr_bitmap_legacy);
5920 free_page((unsigned long)vmx_msr_bitmap_longmode);
5921 free_page((unsigned long)vmx_io_bitmap_b);
5922 free_page((unsigned long)vmx_io_bitmap_a);
5923 free_page((unsigned long)vmx_vmwrite_bitmap);
5924 free_page((unsigned long)vmx_vmread_bitmap);
5925
5926 free_kvm_area();
5927 }
5928
5929 /*
5930 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5931 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5932 */
5933 static int handle_pause(struct kvm_vcpu *vcpu)
5934 {
5935 if (ple_gap)
5936 grow_ple_window(vcpu);
5937
5938 skip_emulated_instruction(vcpu);
5939 kvm_vcpu_on_spin(vcpu);
5940
5941 return 1;
5942 }
5943
5944 static int handle_nop(struct kvm_vcpu *vcpu)
5945 {
5946 skip_emulated_instruction(vcpu);
5947 return 1;
5948 }
5949
5950 static int handle_mwait(struct kvm_vcpu *vcpu)
5951 {
5952 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5953 return handle_nop(vcpu);
5954 }
5955
5956 static int handle_monitor(struct kvm_vcpu *vcpu)
5957 {
5958 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5959 return handle_nop(vcpu);
5960 }
5961
5962 /*
5963 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5964 * We could reuse a single VMCS for all the L2 guests, but we also want the
5965 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5966 * allows keeping them loaded on the processor, and in the future will allow
5967 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5968 * every entry if they never change.
5969 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5970 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5971 *
5972 * The following functions allocate and free a vmcs02 in this pool.
5973 */
5974
5975 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5976 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5977 {
5978 struct vmcs02_list *item;
5979 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5980 if (item->vmptr == vmx->nested.current_vmptr) {
5981 list_move(&item->list, &vmx->nested.vmcs02_pool);
5982 return &item->vmcs02;
5983 }
5984
5985 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5986 /* Recycle the least recently used VMCS. */
5987 item = list_entry(vmx->nested.vmcs02_pool.prev,
5988 struct vmcs02_list, list);
5989 item->vmptr = vmx->nested.current_vmptr;
5990 list_move(&item->list, &vmx->nested.vmcs02_pool);
5991 return &item->vmcs02;
5992 }
5993
5994 /* Create a new VMCS */
5995 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5996 if (!item)
5997 return NULL;
5998 item->vmcs02.vmcs = alloc_vmcs();
5999 if (!item->vmcs02.vmcs) {
6000 kfree(item);
6001 return NULL;
6002 }
6003 loaded_vmcs_init(&item->vmcs02);
6004 item->vmptr = vmx->nested.current_vmptr;
6005 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6006 vmx->nested.vmcs02_num++;
6007 return &item->vmcs02;
6008 }
6009
6010 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6011 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6012 {
6013 struct vmcs02_list *item;
6014 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6015 if (item->vmptr == vmptr) {
6016 free_loaded_vmcs(&item->vmcs02);
6017 list_del(&item->list);
6018 kfree(item);
6019 vmx->nested.vmcs02_num--;
6020 return;
6021 }
6022 }
6023
6024 /*
6025 * Free all VMCSs saved for this vcpu, except the one pointed by
6026 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6027 * must be &vmx->vmcs01.
6028 */
6029 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6030 {
6031 struct vmcs02_list *item, *n;
6032
6033 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6034 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6035 /*
6036 * Something will leak if the above WARN triggers. Better than
6037 * a use-after-free.
6038 */
6039 if (vmx->loaded_vmcs == &item->vmcs02)
6040 continue;
6041
6042 free_loaded_vmcs(&item->vmcs02);
6043 list_del(&item->list);
6044 kfree(item);
6045 vmx->nested.vmcs02_num--;
6046 }
6047 }
6048
6049 /*
6050 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6051 * set the success or error code of an emulated VMX instruction, as specified
6052 * by Vol 2B, VMX Instruction Reference, "Conventions".
6053 */
6054 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6055 {
6056 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6057 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6058 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6059 }
6060
6061 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6062 {
6063 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6064 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6065 X86_EFLAGS_SF | X86_EFLAGS_OF))
6066 | X86_EFLAGS_CF);
6067 }
6068
6069 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6070 u32 vm_instruction_error)
6071 {
6072 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6073 /*
6074 * failValid writes the error number to the current VMCS, which
6075 * can't be done there isn't a current VMCS.
6076 */
6077 nested_vmx_failInvalid(vcpu);
6078 return;
6079 }
6080 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6081 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6082 X86_EFLAGS_SF | X86_EFLAGS_OF))
6083 | X86_EFLAGS_ZF);
6084 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6085 /*
6086 * We don't need to force a shadow sync because
6087 * VM_INSTRUCTION_ERROR is not shadowed
6088 */
6089 }
6090
6091 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6092 {
6093 struct vcpu_vmx *vmx =
6094 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6095
6096 vmx->nested.preemption_timer_expired = true;
6097 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6098 kvm_vcpu_kick(&vmx->vcpu);
6099
6100 return HRTIMER_NORESTART;
6101 }
6102
6103 /*
6104 * Decode the memory-address operand of a vmx instruction, as recorded on an
6105 * exit caused by such an instruction (run by a guest hypervisor).
6106 * On success, returns 0. When the operand is invalid, returns 1 and throws
6107 * #UD or #GP.
6108 */
6109 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6110 unsigned long exit_qualification,
6111 u32 vmx_instruction_info, gva_t *ret)
6112 {
6113 /*
6114 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6115 * Execution", on an exit, vmx_instruction_info holds most of the
6116 * addressing components of the operand. Only the displacement part
6117 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6118 * For how an actual address is calculated from all these components,
6119 * refer to Vol. 1, "Operand Addressing".
6120 */
6121 int scaling = vmx_instruction_info & 3;
6122 int addr_size = (vmx_instruction_info >> 7) & 7;
6123 bool is_reg = vmx_instruction_info & (1u << 10);
6124 int seg_reg = (vmx_instruction_info >> 15) & 7;
6125 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6126 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6127 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6128 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6129
6130 if (is_reg) {
6131 kvm_queue_exception(vcpu, UD_VECTOR);
6132 return 1;
6133 }
6134
6135 /* Addr = segment_base + offset */
6136 /* offset = base + [index * scale] + displacement */
6137 *ret = vmx_get_segment_base(vcpu, seg_reg);
6138 if (base_is_valid)
6139 *ret += kvm_register_read(vcpu, base_reg);
6140 if (index_is_valid)
6141 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6142 *ret += exit_qualification; /* holds the displacement */
6143
6144 if (addr_size == 1) /* 32 bit */
6145 *ret &= 0xffffffff;
6146
6147 /*
6148 * TODO: throw #GP (and return 1) in various cases that the VM*
6149 * instructions require it - e.g., offset beyond segment limit,
6150 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6151 * address, and so on. Currently these are not checked.
6152 */
6153 return 0;
6154 }
6155
6156 /*
6157 * This function performs the various checks including
6158 * - if it's 4KB aligned
6159 * - No bits beyond the physical address width are set
6160 * - Returns 0 on success or else 1
6161 * (Intel SDM Section 30.3)
6162 */
6163 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6164 gpa_t *vmpointer)
6165 {
6166 gva_t gva;
6167 gpa_t vmptr;
6168 struct x86_exception e;
6169 struct page *page;
6170 struct vcpu_vmx *vmx = to_vmx(vcpu);
6171 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6172
6173 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6174 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6175 return 1;
6176
6177 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6178 sizeof(vmptr), &e)) {
6179 kvm_inject_page_fault(vcpu, &e);
6180 return 1;
6181 }
6182
6183 switch (exit_reason) {
6184 case EXIT_REASON_VMON:
6185 /*
6186 * SDM 3: 24.11.5
6187 * The first 4 bytes of VMXON region contain the supported
6188 * VMCS revision identifier
6189 *
6190 * Note - IA32_VMX_BASIC[48] will never be 1
6191 * for the nested case;
6192 * which replaces physical address width with 32
6193 *
6194 */
6195 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6196 nested_vmx_failInvalid(vcpu);
6197 skip_emulated_instruction(vcpu);
6198 return 1;
6199 }
6200
6201 page = nested_get_page(vcpu, vmptr);
6202 if (page == NULL ||
6203 *(u32 *)kmap(page) != VMCS12_REVISION) {
6204 nested_vmx_failInvalid(vcpu);
6205 kunmap(page);
6206 skip_emulated_instruction(vcpu);
6207 return 1;
6208 }
6209 kunmap(page);
6210 vmx->nested.vmxon_ptr = vmptr;
6211 break;
6212 case EXIT_REASON_VMCLEAR:
6213 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6214 nested_vmx_failValid(vcpu,
6215 VMXERR_VMCLEAR_INVALID_ADDRESS);
6216 skip_emulated_instruction(vcpu);
6217 return 1;
6218 }
6219
6220 if (vmptr == vmx->nested.vmxon_ptr) {
6221 nested_vmx_failValid(vcpu,
6222 VMXERR_VMCLEAR_VMXON_POINTER);
6223 skip_emulated_instruction(vcpu);
6224 return 1;
6225 }
6226 break;
6227 case EXIT_REASON_VMPTRLD:
6228 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6229 nested_vmx_failValid(vcpu,
6230 VMXERR_VMPTRLD_INVALID_ADDRESS);
6231 skip_emulated_instruction(vcpu);
6232 return 1;
6233 }
6234
6235 if (vmptr == vmx->nested.vmxon_ptr) {
6236 nested_vmx_failValid(vcpu,
6237 VMXERR_VMCLEAR_VMXON_POINTER);
6238 skip_emulated_instruction(vcpu);
6239 return 1;
6240 }
6241 break;
6242 default:
6243 return 1; /* shouldn't happen */
6244 }
6245
6246 if (vmpointer)
6247 *vmpointer = vmptr;
6248 return 0;
6249 }
6250
6251 /*
6252 * Emulate the VMXON instruction.
6253 * Currently, we just remember that VMX is active, and do not save or even
6254 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6255 * do not currently need to store anything in that guest-allocated memory
6256 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6257 * argument is different from the VMXON pointer (which the spec says they do).
6258 */
6259 static int handle_vmon(struct kvm_vcpu *vcpu)
6260 {
6261 struct kvm_segment cs;
6262 struct vcpu_vmx *vmx = to_vmx(vcpu);
6263 struct vmcs *shadow_vmcs;
6264 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6265 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6266
6267 /* The Intel VMX Instruction Reference lists a bunch of bits that
6268 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6269 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6270 * Otherwise, we should fail with #UD. We test these now:
6271 */
6272 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6273 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6274 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6275 kvm_queue_exception(vcpu, UD_VECTOR);
6276 return 1;
6277 }
6278
6279 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6280 if (is_long_mode(vcpu) && !cs.l) {
6281 kvm_queue_exception(vcpu, UD_VECTOR);
6282 return 1;
6283 }
6284
6285 if (vmx_get_cpl(vcpu)) {
6286 kvm_inject_gp(vcpu, 0);
6287 return 1;
6288 }
6289
6290 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6291 return 1;
6292
6293 if (vmx->nested.vmxon) {
6294 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6295 skip_emulated_instruction(vcpu);
6296 return 1;
6297 }
6298
6299 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6300 != VMXON_NEEDED_FEATURES) {
6301 kvm_inject_gp(vcpu, 0);
6302 return 1;
6303 }
6304
6305 if (enable_shadow_vmcs) {
6306 shadow_vmcs = alloc_vmcs();
6307 if (!shadow_vmcs)
6308 return -ENOMEM;
6309 /* mark vmcs as shadow */
6310 shadow_vmcs->revision_id |= (1u << 31);
6311 /* init shadow vmcs */
6312 vmcs_clear(shadow_vmcs);
6313 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6314 }
6315
6316 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6317 vmx->nested.vmcs02_num = 0;
6318
6319 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6320 HRTIMER_MODE_REL);
6321 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6322
6323 vmx->nested.vmxon = true;
6324
6325 skip_emulated_instruction(vcpu);
6326 nested_vmx_succeed(vcpu);
6327 return 1;
6328 }
6329
6330 /*
6331 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6332 * for running VMX instructions (except VMXON, whose prerequisites are
6333 * slightly different). It also specifies what exception to inject otherwise.
6334 */
6335 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6336 {
6337 struct kvm_segment cs;
6338 struct vcpu_vmx *vmx = to_vmx(vcpu);
6339
6340 if (!vmx->nested.vmxon) {
6341 kvm_queue_exception(vcpu, UD_VECTOR);
6342 return 0;
6343 }
6344
6345 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6346 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6347 (is_long_mode(vcpu) && !cs.l)) {
6348 kvm_queue_exception(vcpu, UD_VECTOR);
6349 return 0;
6350 }
6351
6352 if (vmx_get_cpl(vcpu)) {
6353 kvm_inject_gp(vcpu, 0);
6354 return 0;
6355 }
6356
6357 return 1;
6358 }
6359
6360 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6361 {
6362 u32 exec_control;
6363 if (vmx->nested.current_vmptr == -1ull)
6364 return;
6365
6366 /* current_vmptr and current_vmcs12 are always set/reset together */
6367 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6368 return;
6369
6370 if (enable_shadow_vmcs) {
6371 /* copy to memory all shadowed fields in case
6372 they were modified */
6373 copy_shadow_to_vmcs12(vmx);
6374 vmx->nested.sync_shadow_vmcs = false;
6375 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6376 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6377 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6378 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6379 }
6380 kunmap(vmx->nested.current_vmcs12_page);
6381 nested_release_page(vmx->nested.current_vmcs12_page);
6382 vmx->nested.current_vmptr = -1ull;
6383 vmx->nested.current_vmcs12 = NULL;
6384 }
6385
6386 /*
6387 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6388 * just stops using VMX.
6389 */
6390 static void free_nested(struct vcpu_vmx *vmx)
6391 {
6392 if (!vmx->nested.vmxon)
6393 return;
6394
6395 vmx->nested.vmxon = false;
6396 nested_release_vmcs12(vmx);
6397 if (enable_shadow_vmcs)
6398 free_vmcs(vmx->nested.current_shadow_vmcs);
6399 /* Unpin physical memory we referred to in current vmcs02 */
6400 if (vmx->nested.apic_access_page) {
6401 nested_release_page(vmx->nested.apic_access_page);
6402 vmx->nested.apic_access_page = NULL;
6403 }
6404 if (vmx->nested.virtual_apic_page) {
6405 nested_release_page(vmx->nested.virtual_apic_page);
6406 vmx->nested.virtual_apic_page = NULL;
6407 }
6408
6409 nested_free_all_saved_vmcss(vmx);
6410 }
6411
6412 /* Emulate the VMXOFF instruction */
6413 static int handle_vmoff(struct kvm_vcpu *vcpu)
6414 {
6415 if (!nested_vmx_check_permission(vcpu))
6416 return 1;
6417 free_nested(to_vmx(vcpu));
6418 skip_emulated_instruction(vcpu);
6419 nested_vmx_succeed(vcpu);
6420 return 1;
6421 }
6422
6423 /* Emulate the VMCLEAR instruction */
6424 static int handle_vmclear(struct kvm_vcpu *vcpu)
6425 {
6426 struct vcpu_vmx *vmx = to_vmx(vcpu);
6427 gpa_t vmptr;
6428 struct vmcs12 *vmcs12;
6429 struct page *page;
6430
6431 if (!nested_vmx_check_permission(vcpu))
6432 return 1;
6433
6434 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6435 return 1;
6436
6437 if (vmptr == vmx->nested.current_vmptr)
6438 nested_release_vmcs12(vmx);
6439
6440 page = nested_get_page(vcpu, vmptr);
6441 if (page == NULL) {
6442 /*
6443 * For accurate processor emulation, VMCLEAR beyond available
6444 * physical memory should do nothing at all. However, it is
6445 * possible that a nested vmx bug, not a guest hypervisor bug,
6446 * resulted in this case, so let's shut down before doing any
6447 * more damage:
6448 */
6449 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6450 return 1;
6451 }
6452 vmcs12 = kmap(page);
6453 vmcs12->launch_state = 0;
6454 kunmap(page);
6455 nested_release_page(page);
6456
6457 nested_free_vmcs02(vmx, vmptr);
6458
6459 skip_emulated_instruction(vcpu);
6460 nested_vmx_succeed(vcpu);
6461 return 1;
6462 }
6463
6464 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6465
6466 /* Emulate the VMLAUNCH instruction */
6467 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6468 {
6469 return nested_vmx_run(vcpu, true);
6470 }
6471
6472 /* Emulate the VMRESUME instruction */
6473 static int handle_vmresume(struct kvm_vcpu *vcpu)
6474 {
6475
6476 return nested_vmx_run(vcpu, false);
6477 }
6478
6479 enum vmcs_field_type {
6480 VMCS_FIELD_TYPE_U16 = 0,
6481 VMCS_FIELD_TYPE_U64 = 1,
6482 VMCS_FIELD_TYPE_U32 = 2,
6483 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6484 };
6485
6486 static inline int vmcs_field_type(unsigned long field)
6487 {
6488 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6489 return VMCS_FIELD_TYPE_U32;
6490 return (field >> 13) & 0x3 ;
6491 }
6492
6493 static inline int vmcs_field_readonly(unsigned long field)
6494 {
6495 return (((field >> 10) & 0x3) == 1);
6496 }
6497
6498 /*
6499 * Read a vmcs12 field. Since these can have varying lengths and we return
6500 * one type, we chose the biggest type (u64) and zero-extend the return value
6501 * to that size. Note that the caller, handle_vmread, might need to use only
6502 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6503 * 64-bit fields are to be returned).
6504 */
6505 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6506 unsigned long field, u64 *ret)
6507 {
6508 short offset = vmcs_field_to_offset(field);
6509 char *p;
6510
6511 if (offset < 0)
6512 return offset;
6513
6514 p = ((char *)(get_vmcs12(vcpu))) + offset;
6515
6516 switch (vmcs_field_type(field)) {
6517 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6518 *ret = *((natural_width *)p);
6519 return 0;
6520 case VMCS_FIELD_TYPE_U16:
6521 *ret = *((u16 *)p);
6522 return 0;
6523 case VMCS_FIELD_TYPE_U32:
6524 *ret = *((u32 *)p);
6525 return 0;
6526 case VMCS_FIELD_TYPE_U64:
6527 *ret = *((u64 *)p);
6528 return 0;
6529 default:
6530 WARN_ON(1);
6531 return -ENOENT;
6532 }
6533 }
6534
6535
6536 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6537 unsigned long field, u64 field_value){
6538 short offset = vmcs_field_to_offset(field);
6539 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6540 if (offset < 0)
6541 return offset;
6542
6543 switch (vmcs_field_type(field)) {
6544 case VMCS_FIELD_TYPE_U16:
6545 *(u16 *)p = field_value;
6546 return 0;
6547 case VMCS_FIELD_TYPE_U32:
6548 *(u32 *)p = field_value;
6549 return 0;
6550 case VMCS_FIELD_TYPE_U64:
6551 *(u64 *)p = field_value;
6552 return 0;
6553 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6554 *(natural_width *)p = field_value;
6555 return 0;
6556 default:
6557 WARN_ON(1);
6558 return -ENOENT;
6559 }
6560
6561 }
6562
6563 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6564 {
6565 int i;
6566 unsigned long field;
6567 u64 field_value;
6568 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6569 const unsigned long *fields = shadow_read_write_fields;
6570 const int num_fields = max_shadow_read_write_fields;
6571
6572 preempt_disable();
6573
6574 vmcs_load(shadow_vmcs);
6575
6576 for (i = 0; i < num_fields; i++) {
6577 field = fields[i];
6578 switch (vmcs_field_type(field)) {
6579 case VMCS_FIELD_TYPE_U16:
6580 field_value = vmcs_read16(field);
6581 break;
6582 case VMCS_FIELD_TYPE_U32:
6583 field_value = vmcs_read32(field);
6584 break;
6585 case VMCS_FIELD_TYPE_U64:
6586 field_value = vmcs_read64(field);
6587 break;
6588 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6589 field_value = vmcs_readl(field);
6590 break;
6591 default:
6592 WARN_ON(1);
6593 continue;
6594 }
6595 vmcs12_write_any(&vmx->vcpu, field, field_value);
6596 }
6597
6598 vmcs_clear(shadow_vmcs);
6599 vmcs_load(vmx->loaded_vmcs->vmcs);
6600
6601 preempt_enable();
6602 }
6603
6604 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6605 {
6606 const unsigned long *fields[] = {
6607 shadow_read_write_fields,
6608 shadow_read_only_fields
6609 };
6610 const int max_fields[] = {
6611 max_shadow_read_write_fields,
6612 max_shadow_read_only_fields
6613 };
6614 int i, q;
6615 unsigned long field;
6616 u64 field_value = 0;
6617 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6618
6619 vmcs_load(shadow_vmcs);
6620
6621 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6622 for (i = 0; i < max_fields[q]; i++) {
6623 field = fields[q][i];
6624 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6625
6626 switch (vmcs_field_type(field)) {
6627 case VMCS_FIELD_TYPE_U16:
6628 vmcs_write16(field, (u16)field_value);
6629 break;
6630 case VMCS_FIELD_TYPE_U32:
6631 vmcs_write32(field, (u32)field_value);
6632 break;
6633 case VMCS_FIELD_TYPE_U64:
6634 vmcs_write64(field, (u64)field_value);
6635 break;
6636 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6637 vmcs_writel(field, (long)field_value);
6638 break;
6639 default:
6640 WARN_ON(1);
6641 break;
6642 }
6643 }
6644 }
6645
6646 vmcs_clear(shadow_vmcs);
6647 vmcs_load(vmx->loaded_vmcs->vmcs);
6648 }
6649
6650 /*
6651 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6652 * used before) all generate the same failure when it is missing.
6653 */
6654 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6655 {
6656 struct vcpu_vmx *vmx = to_vmx(vcpu);
6657 if (vmx->nested.current_vmptr == -1ull) {
6658 nested_vmx_failInvalid(vcpu);
6659 skip_emulated_instruction(vcpu);
6660 return 0;
6661 }
6662 return 1;
6663 }
6664
6665 static int handle_vmread(struct kvm_vcpu *vcpu)
6666 {
6667 unsigned long field;
6668 u64 field_value;
6669 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6670 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6671 gva_t gva = 0;
6672
6673 if (!nested_vmx_check_permission(vcpu) ||
6674 !nested_vmx_check_vmcs12(vcpu))
6675 return 1;
6676
6677 /* Decode instruction info and find the field to read */
6678 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6679 /* Read the field, zero-extended to a u64 field_value */
6680 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6681 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6682 skip_emulated_instruction(vcpu);
6683 return 1;
6684 }
6685 /*
6686 * Now copy part of this value to register or memory, as requested.
6687 * Note that the number of bits actually copied is 32 or 64 depending
6688 * on the guest's mode (32 or 64 bit), not on the given field's length.
6689 */
6690 if (vmx_instruction_info & (1u << 10)) {
6691 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6692 field_value);
6693 } else {
6694 if (get_vmx_mem_address(vcpu, exit_qualification,
6695 vmx_instruction_info, &gva))
6696 return 1;
6697 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6698 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6699 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6700 }
6701
6702 nested_vmx_succeed(vcpu);
6703 skip_emulated_instruction(vcpu);
6704 return 1;
6705 }
6706
6707
6708 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6709 {
6710 unsigned long field;
6711 gva_t gva;
6712 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6713 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6714 /* The value to write might be 32 or 64 bits, depending on L1's long
6715 * mode, and eventually we need to write that into a field of several
6716 * possible lengths. The code below first zero-extends the value to 64
6717 * bit (field_value), and then copies only the approriate number of
6718 * bits into the vmcs12 field.
6719 */
6720 u64 field_value = 0;
6721 struct x86_exception e;
6722
6723 if (!nested_vmx_check_permission(vcpu) ||
6724 !nested_vmx_check_vmcs12(vcpu))
6725 return 1;
6726
6727 if (vmx_instruction_info & (1u << 10))
6728 field_value = kvm_register_readl(vcpu,
6729 (((vmx_instruction_info) >> 3) & 0xf));
6730 else {
6731 if (get_vmx_mem_address(vcpu, exit_qualification,
6732 vmx_instruction_info, &gva))
6733 return 1;
6734 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6735 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6736 kvm_inject_page_fault(vcpu, &e);
6737 return 1;
6738 }
6739 }
6740
6741
6742 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6743 if (vmcs_field_readonly(field)) {
6744 nested_vmx_failValid(vcpu,
6745 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6746 skip_emulated_instruction(vcpu);
6747 return 1;
6748 }
6749
6750 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
6751 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6752 skip_emulated_instruction(vcpu);
6753 return 1;
6754 }
6755
6756 nested_vmx_succeed(vcpu);
6757 skip_emulated_instruction(vcpu);
6758 return 1;
6759 }
6760
6761 /* Emulate the VMPTRLD instruction */
6762 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6763 {
6764 struct vcpu_vmx *vmx = to_vmx(vcpu);
6765 gpa_t vmptr;
6766 u32 exec_control;
6767
6768 if (!nested_vmx_check_permission(vcpu))
6769 return 1;
6770
6771 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6772 return 1;
6773
6774 if (vmx->nested.current_vmptr != vmptr) {
6775 struct vmcs12 *new_vmcs12;
6776 struct page *page;
6777 page = nested_get_page(vcpu, vmptr);
6778 if (page == NULL) {
6779 nested_vmx_failInvalid(vcpu);
6780 skip_emulated_instruction(vcpu);
6781 return 1;
6782 }
6783 new_vmcs12 = kmap(page);
6784 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6785 kunmap(page);
6786 nested_release_page_clean(page);
6787 nested_vmx_failValid(vcpu,
6788 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6789 skip_emulated_instruction(vcpu);
6790 return 1;
6791 }
6792
6793 nested_release_vmcs12(vmx);
6794 vmx->nested.current_vmptr = vmptr;
6795 vmx->nested.current_vmcs12 = new_vmcs12;
6796 vmx->nested.current_vmcs12_page = page;
6797 if (enable_shadow_vmcs) {
6798 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6799 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6800 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6801 vmcs_write64(VMCS_LINK_POINTER,
6802 __pa(vmx->nested.current_shadow_vmcs));
6803 vmx->nested.sync_shadow_vmcs = true;
6804 }
6805 }
6806
6807 nested_vmx_succeed(vcpu);
6808 skip_emulated_instruction(vcpu);
6809 return 1;
6810 }
6811
6812 /* Emulate the VMPTRST instruction */
6813 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6814 {
6815 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6816 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6817 gva_t vmcs_gva;
6818 struct x86_exception e;
6819
6820 if (!nested_vmx_check_permission(vcpu))
6821 return 1;
6822
6823 if (get_vmx_mem_address(vcpu, exit_qualification,
6824 vmx_instruction_info, &vmcs_gva))
6825 return 1;
6826 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6827 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6828 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6829 sizeof(u64), &e)) {
6830 kvm_inject_page_fault(vcpu, &e);
6831 return 1;
6832 }
6833 nested_vmx_succeed(vcpu);
6834 skip_emulated_instruction(vcpu);
6835 return 1;
6836 }
6837
6838 /* Emulate the INVEPT instruction */
6839 static int handle_invept(struct kvm_vcpu *vcpu)
6840 {
6841 u32 vmx_instruction_info, types;
6842 unsigned long type;
6843 gva_t gva;
6844 struct x86_exception e;
6845 struct {
6846 u64 eptp, gpa;
6847 } operand;
6848
6849 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6850 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6851 kvm_queue_exception(vcpu, UD_VECTOR);
6852 return 1;
6853 }
6854
6855 if (!nested_vmx_check_permission(vcpu))
6856 return 1;
6857
6858 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6859 kvm_queue_exception(vcpu, UD_VECTOR);
6860 return 1;
6861 }
6862
6863 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6864 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6865
6866 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6867
6868 if (!(types & (1UL << type))) {
6869 nested_vmx_failValid(vcpu,
6870 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6871 return 1;
6872 }
6873
6874 /* According to the Intel VMX instruction reference, the memory
6875 * operand is read even if it isn't needed (e.g., for type==global)
6876 */
6877 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6878 vmx_instruction_info, &gva))
6879 return 1;
6880 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6881 sizeof(operand), &e)) {
6882 kvm_inject_page_fault(vcpu, &e);
6883 return 1;
6884 }
6885
6886 switch (type) {
6887 case VMX_EPT_EXTENT_GLOBAL:
6888 kvm_mmu_sync_roots(vcpu);
6889 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6890 nested_vmx_succeed(vcpu);
6891 break;
6892 default:
6893 /* Trap single context invalidation invept calls */
6894 BUG_ON(1);
6895 break;
6896 }
6897
6898 skip_emulated_instruction(vcpu);
6899 return 1;
6900 }
6901
6902 static int handle_invvpid(struct kvm_vcpu *vcpu)
6903 {
6904 kvm_queue_exception(vcpu, UD_VECTOR);
6905 return 1;
6906 }
6907
6908 /*
6909 * The exit handlers return 1 if the exit was handled fully and guest execution
6910 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6911 * to be done to userspace and return 0.
6912 */
6913 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6914 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6915 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6916 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6917 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6918 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6919 [EXIT_REASON_CR_ACCESS] = handle_cr,
6920 [EXIT_REASON_DR_ACCESS] = handle_dr,
6921 [EXIT_REASON_CPUID] = handle_cpuid,
6922 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6923 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6924 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6925 [EXIT_REASON_HLT] = handle_halt,
6926 [EXIT_REASON_INVD] = handle_invd,
6927 [EXIT_REASON_INVLPG] = handle_invlpg,
6928 [EXIT_REASON_RDPMC] = handle_rdpmc,
6929 [EXIT_REASON_VMCALL] = handle_vmcall,
6930 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6931 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6932 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6933 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6934 [EXIT_REASON_VMREAD] = handle_vmread,
6935 [EXIT_REASON_VMRESUME] = handle_vmresume,
6936 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6937 [EXIT_REASON_VMOFF] = handle_vmoff,
6938 [EXIT_REASON_VMON] = handle_vmon,
6939 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6940 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6941 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6942 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6943 [EXIT_REASON_WBINVD] = handle_wbinvd,
6944 [EXIT_REASON_XSETBV] = handle_xsetbv,
6945 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6946 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6947 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6948 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6949 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6950 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
6951 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
6952 [EXIT_REASON_INVEPT] = handle_invept,
6953 [EXIT_REASON_INVVPID] = handle_invvpid,
6954 };
6955
6956 static const int kvm_vmx_max_exit_handlers =
6957 ARRAY_SIZE(kvm_vmx_exit_handlers);
6958
6959 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6960 struct vmcs12 *vmcs12)
6961 {
6962 unsigned long exit_qualification;
6963 gpa_t bitmap, last_bitmap;
6964 unsigned int port;
6965 int size;
6966 u8 b;
6967
6968 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6969 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6970
6971 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6972
6973 port = exit_qualification >> 16;
6974 size = (exit_qualification & 7) + 1;
6975
6976 last_bitmap = (gpa_t)-1;
6977 b = -1;
6978
6979 while (size > 0) {
6980 if (port < 0x8000)
6981 bitmap = vmcs12->io_bitmap_a;
6982 else if (port < 0x10000)
6983 bitmap = vmcs12->io_bitmap_b;
6984 else
6985 return 1;
6986 bitmap += (port & 0x7fff) / 8;
6987
6988 if (last_bitmap != bitmap)
6989 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6990 return 1;
6991 if (b & (1 << (port & 7)))
6992 return 1;
6993
6994 port++;
6995 size--;
6996 last_bitmap = bitmap;
6997 }
6998
6999 return 0;
7000 }
7001
7002 /*
7003 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7004 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7005 * disinterest in the current event (read or write a specific MSR) by using an
7006 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7007 */
7008 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7009 struct vmcs12 *vmcs12, u32 exit_reason)
7010 {
7011 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7012 gpa_t bitmap;
7013
7014 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7015 return 1;
7016
7017 /*
7018 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7019 * for the four combinations of read/write and low/high MSR numbers.
7020 * First we need to figure out which of the four to use:
7021 */
7022 bitmap = vmcs12->msr_bitmap;
7023 if (exit_reason == EXIT_REASON_MSR_WRITE)
7024 bitmap += 2048;
7025 if (msr_index >= 0xc0000000) {
7026 msr_index -= 0xc0000000;
7027 bitmap += 1024;
7028 }
7029
7030 /* Then read the msr_index'th bit from this bitmap: */
7031 if (msr_index < 1024*8) {
7032 unsigned char b;
7033 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7034 return 1;
7035 return 1 & (b >> (msr_index & 7));
7036 } else
7037 return 1; /* let L1 handle the wrong parameter */
7038 }
7039
7040 /*
7041 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7042 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7043 * intercept (via guest_host_mask etc.) the current event.
7044 */
7045 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7046 struct vmcs12 *vmcs12)
7047 {
7048 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7049 int cr = exit_qualification & 15;
7050 int reg = (exit_qualification >> 8) & 15;
7051 unsigned long val = kvm_register_readl(vcpu, reg);
7052
7053 switch ((exit_qualification >> 4) & 3) {
7054 case 0: /* mov to cr */
7055 switch (cr) {
7056 case 0:
7057 if (vmcs12->cr0_guest_host_mask &
7058 (val ^ vmcs12->cr0_read_shadow))
7059 return 1;
7060 break;
7061 case 3:
7062 if ((vmcs12->cr3_target_count >= 1 &&
7063 vmcs12->cr3_target_value0 == val) ||
7064 (vmcs12->cr3_target_count >= 2 &&
7065 vmcs12->cr3_target_value1 == val) ||
7066 (vmcs12->cr3_target_count >= 3 &&
7067 vmcs12->cr3_target_value2 == val) ||
7068 (vmcs12->cr3_target_count >= 4 &&
7069 vmcs12->cr3_target_value3 == val))
7070 return 0;
7071 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7072 return 1;
7073 break;
7074 case 4:
7075 if (vmcs12->cr4_guest_host_mask &
7076 (vmcs12->cr4_read_shadow ^ val))
7077 return 1;
7078 break;
7079 case 8:
7080 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7081 return 1;
7082 break;
7083 }
7084 break;
7085 case 2: /* clts */
7086 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7087 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7088 return 1;
7089 break;
7090 case 1: /* mov from cr */
7091 switch (cr) {
7092 case 3:
7093 if (vmcs12->cpu_based_vm_exec_control &
7094 CPU_BASED_CR3_STORE_EXITING)
7095 return 1;
7096 break;
7097 case 8:
7098 if (vmcs12->cpu_based_vm_exec_control &
7099 CPU_BASED_CR8_STORE_EXITING)
7100 return 1;
7101 break;
7102 }
7103 break;
7104 case 3: /* lmsw */
7105 /*
7106 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7107 * cr0. Other attempted changes are ignored, with no exit.
7108 */
7109 if (vmcs12->cr0_guest_host_mask & 0xe &
7110 (val ^ vmcs12->cr0_read_shadow))
7111 return 1;
7112 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7113 !(vmcs12->cr0_read_shadow & 0x1) &&
7114 (val & 0x1))
7115 return 1;
7116 break;
7117 }
7118 return 0;
7119 }
7120
7121 /*
7122 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7123 * should handle it ourselves in L0 (and then continue L2). Only call this
7124 * when in is_guest_mode (L2).
7125 */
7126 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7127 {
7128 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7129 struct vcpu_vmx *vmx = to_vmx(vcpu);
7130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7131 u32 exit_reason = vmx->exit_reason;
7132
7133 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7134 vmcs_readl(EXIT_QUALIFICATION),
7135 vmx->idt_vectoring_info,
7136 intr_info,
7137 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7138 KVM_ISA_VMX);
7139
7140 if (vmx->nested.nested_run_pending)
7141 return 0;
7142
7143 if (unlikely(vmx->fail)) {
7144 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7145 vmcs_read32(VM_INSTRUCTION_ERROR));
7146 return 1;
7147 }
7148
7149 switch (exit_reason) {
7150 case EXIT_REASON_EXCEPTION_NMI:
7151 if (!is_exception(intr_info))
7152 return 0;
7153 else if (is_page_fault(intr_info))
7154 return enable_ept;
7155 else if (is_no_device(intr_info) &&
7156 !(vmcs12->guest_cr0 & X86_CR0_TS))
7157 return 0;
7158 return vmcs12->exception_bitmap &
7159 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7160 case EXIT_REASON_EXTERNAL_INTERRUPT:
7161 return 0;
7162 case EXIT_REASON_TRIPLE_FAULT:
7163 return 1;
7164 case EXIT_REASON_PENDING_INTERRUPT:
7165 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7166 case EXIT_REASON_NMI_WINDOW:
7167 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7168 case EXIT_REASON_TASK_SWITCH:
7169 return 1;
7170 case EXIT_REASON_CPUID:
7171 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7172 return 0;
7173 return 1;
7174 case EXIT_REASON_HLT:
7175 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7176 case EXIT_REASON_INVD:
7177 return 1;
7178 case EXIT_REASON_INVLPG:
7179 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7180 case EXIT_REASON_RDPMC:
7181 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7182 case EXIT_REASON_RDTSC:
7183 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7184 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7185 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7186 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7187 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7188 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7189 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7190 /*
7191 * VMX instructions trap unconditionally. This allows L1 to
7192 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7193 */
7194 return 1;
7195 case EXIT_REASON_CR_ACCESS:
7196 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7197 case EXIT_REASON_DR_ACCESS:
7198 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7199 case EXIT_REASON_IO_INSTRUCTION:
7200 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7201 case EXIT_REASON_MSR_READ:
7202 case EXIT_REASON_MSR_WRITE:
7203 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7204 case EXIT_REASON_INVALID_STATE:
7205 return 1;
7206 case EXIT_REASON_MWAIT_INSTRUCTION:
7207 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7208 case EXIT_REASON_MONITOR_INSTRUCTION:
7209 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7210 case EXIT_REASON_PAUSE_INSTRUCTION:
7211 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7212 nested_cpu_has2(vmcs12,
7213 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7214 case EXIT_REASON_MCE_DURING_VMENTRY:
7215 return 0;
7216 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7217 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7218 case EXIT_REASON_APIC_ACCESS:
7219 return nested_cpu_has2(vmcs12,
7220 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7221 case EXIT_REASON_EPT_VIOLATION:
7222 /*
7223 * L0 always deals with the EPT violation. If nested EPT is
7224 * used, and the nested mmu code discovers that the address is
7225 * missing in the guest EPT table (EPT12), the EPT violation
7226 * will be injected with nested_ept_inject_page_fault()
7227 */
7228 return 0;
7229 case EXIT_REASON_EPT_MISCONFIG:
7230 /*
7231 * L2 never uses directly L1's EPT, but rather L0's own EPT
7232 * table (shadow on EPT) or a merged EPT table that L0 built
7233 * (EPT on EPT). So any problems with the structure of the
7234 * table is L0's fault.
7235 */
7236 return 0;
7237 case EXIT_REASON_WBINVD:
7238 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7239 case EXIT_REASON_XSETBV:
7240 return 1;
7241 default:
7242 return 1;
7243 }
7244 }
7245
7246 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7247 {
7248 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7249 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7250 }
7251
7252 /*
7253 * The guest has exited. See if we can fix it or if we need userspace
7254 * assistance.
7255 */
7256 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7257 {
7258 struct vcpu_vmx *vmx = to_vmx(vcpu);
7259 u32 exit_reason = vmx->exit_reason;
7260 u32 vectoring_info = vmx->idt_vectoring_info;
7261
7262 /* If guest state is invalid, start emulating */
7263 if (vmx->emulation_required)
7264 return handle_invalid_guest_state(vcpu);
7265
7266 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7267 nested_vmx_vmexit(vcpu, exit_reason,
7268 vmcs_read32(VM_EXIT_INTR_INFO),
7269 vmcs_readl(EXIT_QUALIFICATION));
7270 return 1;
7271 }
7272
7273 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7274 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7275 vcpu->run->fail_entry.hardware_entry_failure_reason
7276 = exit_reason;
7277 return 0;
7278 }
7279
7280 if (unlikely(vmx->fail)) {
7281 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7282 vcpu->run->fail_entry.hardware_entry_failure_reason
7283 = vmcs_read32(VM_INSTRUCTION_ERROR);
7284 return 0;
7285 }
7286
7287 /*
7288 * Note:
7289 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7290 * delivery event since it indicates guest is accessing MMIO.
7291 * The vm-exit can be triggered again after return to guest that
7292 * will cause infinite loop.
7293 */
7294 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7295 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7296 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7297 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7298 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7299 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7300 vcpu->run->internal.ndata = 2;
7301 vcpu->run->internal.data[0] = vectoring_info;
7302 vcpu->run->internal.data[1] = exit_reason;
7303 return 0;
7304 }
7305
7306 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7307 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7308 get_vmcs12(vcpu))))) {
7309 if (vmx_interrupt_allowed(vcpu)) {
7310 vmx->soft_vnmi_blocked = 0;
7311 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7312 vcpu->arch.nmi_pending) {
7313 /*
7314 * This CPU don't support us in finding the end of an
7315 * NMI-blocked window if the guest runs with IRQs
7316 * disabled. So we pull the trigger after 1 s of
7317 * futile waiting, but inform the user about this.
7318 */
7319 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7320 "state on VCPU %d after 1 s timeout\n",
7321 __func__, vcpu->vcpu_id);
7322 vmx->soft_vnmi_blocked = 0;
7323 }
7324 }
7325
7326 if (exit_reason < kvm_vmx_max_exit_handlers
7327 && kvm_vmx_exit_handlers[exit_reason])
7328 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7329 else {
7330 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7331 kvm_queue_exception(vcpu, UD_VECTOR);
7332 return 1;
7333 }
7334 }
7335
7336 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7337 {
7338 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7339
7340 if (is_guest_mode(vcpu) &&
7341 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7342 return;
7343
7344 if (irr == -1 || tpr < irr) {
7345 vmcs_write32(TPR_THRESHOLD, 0);
7346 return;
7347 }
7348
7349 vmcs_write32(TPR_THRESHOLD, irr);
7350 }
7351
7352 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7353 {
7354 u32 sec_exec_control;
7355
7356 /*
7357 * There is not point to enable virtualize x2apic without enable
7358 * apicv
7359 */
7360 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7361 !vmx_vm_has_apicv(vcpu->kvm))
7362 return;
7363
7364 if (!vm_need_tpr_shadow(vcpu->kvm))
7365 return;
7366
7367 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7368
7369 if (set) {
7370 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7371 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7372 } else {
7373 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7374 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7375 }
7376 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7377
7378 vmx_set_msr_bitmap(vcpu);
7379 }
7380
7381 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7382 {
7383 struct vcpu_vmx *vmx = to_vmx(vcpu);
7384
7385 /*
7386 * Currently we do not handle the nested case where L2 has an
7387 * APIC access page of its own; that page is still pinned.
7388 * Hence, we skip the case where the VCPU is in guest mode _and_
7389 * L1 prepared an APIC access page for L2.
7390 *
7391 * For the case where L1 and L2 share the same APIC access page
7392 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7393 * in the vmcs12), this function will only update either the vmcs01
7394 * or the vmcs02. If the former, the vmcs02 will be updated by
7395 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7396 * the next L2->L1 exit.
7397 */
7398 if (!is_guest_mode(vcpu) ||
7399 !nested_cpu_has2(vmx->nested.current_vmcs12,
7400 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7401 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7402 }
7403
7404 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7405 {
7406 u16 status;
7407 u8 old;
7408
7409 if (!vmx_vm_has_apicv(kvm))
7410 return;
7411
7412 if (isr == -1)
7413 isr = 0;
7414
7415 status = vmcs_read16(GUEST_INTR_STATUS);
7416 old = status >> 8;
7417 if (isr != old) {
7418 status &= 0xff;
7419 status |= isr << 8;
7420 vmcs_write16(GUEST_INTR_STATUS, status);
7421 }
7422 }
7423
7424 static void vmx_set_rvi(int vector)
7425 {
7426 u16 status;
7427 u8 old;
7428
7429 if (vector == -1)
7430 vector = 0;
7431
7432 status = vmcs_read16(GUEST_INTR_STATUS);
7433 old = (u8)status & 0xff;
7434 if ((u8)vector != old) {
7435 status &= ~0xff;
7436 status |= (u8)vector;
7437 vmcs_write16(GUEST_INTR_STATUS, status);
7438 }
7439 }
7440
7441 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7442 {
7443 if (!is_guest_mode(vcpu)) {
7444 vmx_set_rvi(max_irr);
7445 return;
7446 }
7447
7448 if (max_irr == -1)
7449 return;
7450
7451 /*
7452 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7453 * handles it.
7454 */
7455 if (nested_exit_on_intr(vcpu))
7456 return;
7457
7458 /*
7459 * Else, fall back to pre-APICv interrupt injection since L2
7460 * is run without virtual interrupt delivery.
7461 */
7462 if (!kvm_event_needs_reinjection(vcpu) &&
7463 vmx_interrupt_allowed(vcpu)) {
7464 kvm_queue_interrupt(vcpu, max_irr, false);
7465 vmx_inject_irq(vcpu);
7466 }
7467 }
7468
7469 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7470 {
7471 if (!vmx_vm_has_apicv(vcpu->kvm))
7472 return;
7473
7474 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7475 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7476 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7477 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7478 }
7479
7480 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7481 {
7482 u32 exit_intr_info;
7483
7484 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7485 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7486 return;
7487
7488 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7489 exit_intr_info = vmx->exit_intr_info;
7490
7491 /* Handle machine checks before interrupts are enabled */
7492 if (is_machine_check(exit_intr_info))
7493 kvm_machine_check();
7494
7495 /* We need to handle NMIs before interrupts are enabled */
7496 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7497 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7498 kvm_before_handle_nmi(&vmx->vcpu);
7499 asm("int $2");
7500 kvm_after_handle_nmi(&vmx->vcpu);
7501 }
7502 }
7503
7504 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7505 {
7506 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7507
7508 /*
7509 * If external interrupt exists, IF bit is set in rflags/eflags on the
7510 * interrupt stack frame, and interrupt will be enabled on a return
7511 * from interrupt handler.
7512 */
7513 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7514 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7515 unsigned int vector;
7516 unsigned long entry;
7517 gate_desc *desc;
7518 struct vcpu_vmx *vmx = to_vmx(vcpu);
7519 #ifdef CONFIG_X86_64
7520 unsigned long tmp;
7521 #endif
7522
7523 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7524 desc = (gate_desc *)vmx->host_idt_base + vector;
7525 entry = gate_offset(*desc);
7526 asm volatile(
7527 #ifdef CONFIG_X86_64
7528 "mov %%" _ASM_SP ", %[sp]\n\t"
7529 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7530 "push $%c[ss]\n\t"
7531 "push %[sp]\n\t"
7532 #endif
7533 "pushf\n\t"
7534 "orl $0x200, (%%" _ASM_SP ")\n\t"
7535 __ASM_SIZE(push) " $%c[cs]\n\t"
7536 "call *%[entry]\n\t"
7537 :
7538 #ifdef CONFIG_X86_64
7539 [sp]"=&r"(tmp)
7540 #endif
7541 :
7542 [entry]"r"(entry),
7543 [ss]"i"(__KERNEL_DS),
7544 [cs]"i"(__KERNEL_CS)
7545 );
7546 } else
7547 local_irq_enable();
7548 }
7549
7550 static bool vmx_mpx_supported(void)
7551 {
7552 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7553 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7554 }
7555
7556 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7557 {
7558 u32 exit_intr_info;
7559 bool unblock_nmi;
7560 u8 vector;
7561 bool idtv_info_valid;
7562
7563 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7564
7565 if (cpu_has_virtual_nmis()) {
7566 if (vmx->nmi_known_unmasked)
7567 return;
7568 /*
7569 * Can't use vmx->exit_intr_info since we're not sure what
7570 * the exit reason is.
7571 */
7572 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7573 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7574 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7575 /*
7576 * SDM 3: 27.7.1.2 (September 2008)
7577 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7578 * a guest IRET fault.
7579 * SDM 3: 23.2.2 (September 2008)
7580 * Bit 12 is undefined in any of the following cases:
7581 * If the VM exit sets the valid bit in the IDT-vectoring
7582 * information field.
7583 * If the VM exit is due to a double fault.
7584 */
7585 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7586 vector != DF_VECTOR && !idtv_info_valid)
7587 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7588 GUEST_INTR_STATE_NMI);
7589 else
7590 vmx->nmi_known_unmasked =
7591 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7592 & GUEST_INTR_STATE_NMI);
7593 } else if (unlikely(vmx->soft_vnmi_blocked))
7594 vmx->vnmi_blocked_time +=
7595 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7596 }
7597
7598 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7599 u32 idt_vectoring_info,
7600 int instr_len_field,
7601 int error_code_field)
7602 {
7603 u8 vector;
7604 int type;
7605 bool idtv_info_valid;
7606
7607 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7608
7609 vcpu->arch.nmi_injected = false;
7610 kvm_clear_exception_queue(vcpu);
7611 kvm_clear_interrupt_queue(vcpu);
7612
7613 if (!idtv_info_valid)
7614 return;
7615
7616 kvm_make_request(KVM_REQ_EVENT, vcpu);
7617
7618 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7619 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7620
7621 switch (type) {
7622 case INTR_TYPE_NMI_INTR:
7623 vcpu->arch.nmi_injected = true;
7624 /*
7625 * SDM 3: 27.7.1.2 (September 2008)
7626 * Clear bit "block by NMI" before VM entry if a NMI
7627 * delivery faulted.
7628 */
7629 vmx_set_nmi_mask(vcpu, false);
7630 break;
7631 case INTR_TYPE_SOFT_EXCEPTION:
7632 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7633 /* fall through */
7634 case INTR_TYPE_HARD_EXCEPTION:
7635 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7636 u32 err = vmcs_read32(error_code_field);
7637 kvm_requeue_exception_e(vcpu, vector, err);
7638 } else
7639 kvm_requeue_exception(vcpu, vector);
7640 break;
7641 case INTR_TYPE_SOFT_INTR:
7642 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7643 /* fall through */
7644 case INTR_TYPE_EXT_INTR:
7645 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7646 break;
7647 default:
7648 break;
7649 }
7650 }
7651
7652 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7653 {
7654 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7655 VM_EXIT_INSTRUCTION_LEN,
7656 IDT_VECTORING_ERROR_CODE);
7657 }
7658
7659 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7660 {
7661 __vmx_complete_interrupts(vcpu,
7662 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7663 VM_ENTRY_INSTRUCTION_LEN,
7664 VM_ENTRY_EXCEPTION_ERROR_CODE);
7665
7666 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7667 }
7668
7669 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7670 {
7671 int i, nr_msrs;
7672 struct perf_guest_switch_msr *msrs;
7673
7674 msrs = perf_guest_get_msrs(&nr_msrs);
7675
7676 if (!msrs)
7677 return;
7678
7679 for (i = 0; i < nr_msrs; i++)
7680 if (msrs[i].host == msrs[i].guest)
7681 clear_atomic_switch_msr(vmx, msrs[i].msr);
7682 else
7683 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7684 msrs[i].host);
7685 }
7686
7687 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7688 {
7689 struct vcpu_vmx *vmx = to_vmx(vcpu);
7690 unsigned long debugctlmsr, cr4;
7691
7692 /* Record the guest's net vcpu time for enforced NMI injections. */
7693 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7694 vmx->entry_time = ktime_get();
7695
7696 /* Don't enter VMX if guest state is invalid, let the exit handler
7697 start emulation until we arrive back to a valid state */
7698 if (vmx->emulation_required)
7699 return;
7700
7701 if (vmx->ple_window_dirty) {
7702 vmx->ple_window_dirty = false;
7703 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7704 }
7705
7706 if (vmx->nested.sync_shadow_vmcs) {
7707 copy_vmcs12_to_shadow(vmx);
7708 vmx->nested.sync_shadow_vmcs = false;
7709 }
7710
7711 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7712 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7713 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7714 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7715
7716 cr4 = read_cr4();
7717 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7718 vmcs_writel(HOST_CR4, cr4);
7719 vmx->host_state.vmcs_host_cr4 = cr4;
7720 }
7721
7722 /* When single-stepping over STI and MOV SS, we must clear the
7723 * corresponding interruptibility bits in the guest state. Otherwise
7724 * vmentry fails as it then expects bit 14 (BS) in pending debug
7725 * exceptions being set, but that's not correct for the guest debugging
7726 * case. */
7727 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7728 vmx_set_interrupt_shadow(vcpu, 0);
7729
7730 atomic_switch_perf_msrs(vmx);
7731 debugctlmsr = get_debugctlmsr();
7732
7733 vmx->__launched = vmx->loaded_vmcs->launched;
7734 asm(
7735 /* Store host registers */
7736 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7737 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7738 "push %%" _ASM_CX " \n\t"
7739 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7740 "je 1f \n\t"
7741 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7742 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7743 "1: \n\t"
7744 /* Reload cr2 if changed */
7745 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7746 "mov %%cr2, %%" _ASM_DX " \n\t"
7747 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7748 "je 2f \n\t"
7749 "mov %%" _ASM_AX", %%cr2 \n\t"
7750 "2: \n\t"
7751 /* Check if vmlaunch of vmresume is needed */
7752 "cmpl $0, %c[launched](%0) \n\t"
7753 /* Load guest registers. Don't clobber flags. */
7754 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7755 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7756 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7757 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7758 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7759 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7760 #ifdef CONFIG_X86_64
7761 "mov %c[r8](%0), %%r8 \n\t"
7762 "mov %c[r9](%0), %%r9 \n\t"
7763 "mov %c[r10](%0), %%r10 \n\t"
7764 "mov %c[r11](%0), %%r11 \n\t"
7765 "mov %c[r12](%0), %%r12 \n\t"
7766 "mov %c[r13](%0), %%r13 \n\t"
7767 "mov %c[r14](%0), %%r14 \n\t"
7768 "mov %c[r15](%0), %%r15 \n\t"
7769 #endif
7770 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7771
7772 /* Enter guest mode */
7773 "jne 1f \n\t"
7774 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7775 "jmp 2f \n\t"
7776 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7777 "2: "
7778 /* Save guest registers, load host registers, keep flags */
7779 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7780 "pop %0 \n\t"
7781 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7782 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7783 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7784 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7785 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7786 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7787 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7788 #ifdef CONFIG_X86_64
7789 "mov %%r8, %c[r8](%0) \n\t"
7790 "mov %%r9, %c[r9](%0) \n\t"
7791 "mov %%r10, %c[r10](%0) \n\t"
7792 "mov %%r11, %c[r11](%0) \n\t"
7793 "mov %%r12, %c[r12](%0) \n\t"
7794 "mov %%r13, %c[r13](%0) \n\t"
7795 "mov %%r14, %c[r14](%0) \n\t"
7796 "mov %%r15, %c[r15](%0) \n\t"
7797 #endif
7798 "mov %%cr2, %%" _ASM_AX " \n\t"
7799 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7800
7801 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7802 "setbe %c[fail](%0) \n\t"
7803 ".pushsection .rodata \n\t"
7804 ".global vmx_return \n\t"
7805 "vmx_return: " _ASM_PTR " 2b \n\t"
7806 ".popsection"
7807 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7808 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7809 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7810 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7811 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7812 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7813 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7814 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7815 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7816 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7817 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7818 #ifdef CONFIG_X86_64
7819 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7820 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7821 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7822 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7823 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7824 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7825 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7826 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7827 #endif
7828 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7829 [wordsize]"i"(sizeof(ulong))
7830 : "cc", "memory"
7831 #ifdef CONFIG_X86_64
7832 , "rax", "rbx", "rdi", "rsi"
7833 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7834 #else
7835 , "eax", "ebx", "edi", "esi"
7836 #endif
7837 );
7838
7839 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7840 if (debugctlmsr)
7841 update_debugctlmsr(debugctlmsr);
7842
7843 #ifndef CONFIG_X86_64
7844 /*
7845 * The sysexit path does not restore ds/es, so we must set them to
7846 * a reasonable value ourselves.
7847 *
7848 * We can't defer this to vmx_load_host_state() since that function
7849 * may be executed in interrupt context, which saves and restore segments
7850 * around it, nullifying its effect.
7851 */
7852 loadsegment(ds, __USER_DS);
7853 loadsegment(es, __USER_DS);
7854 #endif
7855
7856 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7857 | (1 << VCPU_EXREG_RFLAGS)
7858 | (1 << VCPU_EXREG_PDPTR)
7859 | (1 << VCPU_EXREG_SEGMENTS)
7860 | (1 << VCPU_EXREG_CR3));
7861 vcpu->arch.regs_dirty = 0;
7862
7863 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7864
7865 vmx->loaded_vmcs->launched = 1;
7866
7867 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7868 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7869
7870 /*
7871 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7872 * we did not inject a still-pending event to L1 now because of
7873 * nested_run_pending, we need to re-enable this bit.
7874 */
7875 if (vmx->nested.nested_run_pending)
7876 kvm_make_request(KVM_REQ_EVENT, vcpu);
7877
7878 vmx->nested.nested_run_pending = 0;
7879
7880 vmx_complete_atomic_exit(vmx);
7881 vmx_recover_nmi_blocking(vmx);
7882 vmx_complete_interrupts(vmx);
7883 }
7884
7885 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7886 {
7887 struct vcpu_vmx *vmx = to_vmx(vcpu);
7888 int cpu;
7889
7890 if (vmx->loaded_vmcs == &vmx->vmcs01)
7891 return;
7892
7893 cpu = get_cpu();
7894 vmx->loaded_vmcs = &vmx->vmcs01;
7895 vmx_vcpu_put(vcpu);
7896 vmx_vcpu_load(vcpu, cpu);
7897 vcpu->cpu = cpu;
7898 put_cpu();
7899 }
7900
7901 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7902 {
7903 struct vcpu_vmx *vmx = to_vmx(vcpu);
7904
7905 free_vpid(vmx);
7906 leave_guest_mode(vcpu);
7907 vmx_load_vmcs01(vcpu);
7908 free_nested(vmx);
7909 free_loaded_vmcs(vmx->loaded_vmcs);
7910 kfree(vmx->guest_msrs);
7911 kvm_vcpu_uninit(vcpu);
7912 kmem_cache_free(kvm_vcpu_cache, vmx);
7913 }
7914
7915 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7916 {
7917 int err;
7918 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7919 int cpu;
7920
7921 if (!vmx)
7922 return ERR_PTR(-ENOMEM);
7923
7924 allocate_vpid(vmx);
7925
7926 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7927 if (err)
7928 goto free_vcpu;
7929
7930 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7931 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7932 > PAGE_SIZE);
7933
7934 err = -ENOMEM;
7935 if (!vmx->guest_msrs) {
7936 goto uninit_vcpu;
7937 }
7938
7939 vmx->loaded_vmcs = &vmx->vmcs01;
7940 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7941 if (!vmx->loaded_vmcs->vmcs)
7942 goto free_msrs;
7943 if (!vmm_exclusive)
7944 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7945 loaded_vmcs_init(vmx->loaded_vmcs);
7946 if (!vmm_exclusive)
7947 kvm_cpu_vmxoff();
7948
7949 cpu = get_cpu();
7950 vmx_vcpu_load(&vmx->vcpu, cpu);
7951 vmx->vcpu.cpu = cpu;
7952 err = vmx_vcpu_setup(vmx);
7953 vmx_vcpu_put(&vmx->vcpu);
7954 put_cpu();
7955 if (err)
7956 goto free_vmcs;
7957 if (vm_need_virtualize_apic_accesses(kvm)) {
7958 err = alloc_apic_access_page(kvm);
7959 if (err)
7960 goto free_vmcs;
7961 }
7962
7963 if (enable_ept) {
7964 if (!kvm->arch.ept_identity_map_addr)
7965 kvm->arch.ept_identity_map_addr =
7966 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7967 err = init_rmode_identity_map(kvm);
7968 if (err)
7969 goto free_vmcs;
7970 }
7971
7972 vmx->nested.current_vmptr = -1ull;
7973 vmx->nested.current_vmcs12 = NULL;
7974
7975 return &vmx->vcpu;
7976
7977 free_vmcs:
7978 free_loaded_vmcs(vmx->loaded_vmcs);
7979 free_msrs:
7980 kfree(vmx->guest_msrs);
7981 uninit_vcpu:
7982 kvm_vcpu_uninit(&vmx->vcpu);
7983 free_vcpu:
7984 free_vpid(vmx);
7985 kmem_cache_free(kvm_vcpu_cache, vmx);
7986 return ERR_PTR(err);
7987 }
7988
7989 static void __init vmx_check_processor_compat(void *rtn)
7990 {
7991 struct vmcs_config vmcs_conf;
7992
7993 *(int *)rtn = 0;
7994 if (setup_vmcs_config(&vmcs_conf) < 0)
7995 *(int *)rtn = -EIO;
7996 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7997 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7998 smp_processor_id());
7999 *(int *)rtn = -EIO;
8000 }
8001 }
8002
8003 static int get_ept_level(void)
8004 {
8005 return VMX_EPT_DEFAULT_GAW + 1;
8006 }
8007
8008 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8009 {
8010 u64 ret;
8011
8012 /* For VT-d and EPT combination
8013 * 1. MMIO: always map as UC
8014 * 2. EPT with VT-d:
8015 * a. VT-d without snooping control feature: can't guarantee the
8016 * result, try to trust guest.
8017 * b. VT-d with snooping control feature: snooping control feature of
8018 * VT-d engine can guarantee the cache correctness. Just set it
8019 * to WB to keep consistent with host. So the same as item 3.
8020 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8021 * consistent with host MTRR
8022 */
8023 if (is_mmio)
8024 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8025 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8026 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8027 VMX_EPT_MT_EPTE_SHIFT;
8028 else
8029 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8030 | VMX_EPT_IPAT_BIT;
8031
8032 return ret;
8033 }
8034
8035 static int vmx_get_lpage_level(void)
8036 {
8037 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8038 return PT_DIRECTORY_LEVEL;
8039 else
8040 /* For shadow and EPT supported 1GB page */
8041 return PT_PDPE_LEVEL;
8042 }
8043
8044 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8045 {
8046 struct kvm_cpuid_entry2 *best;
8047 struct vcpu_vmx *vmx = to_vmx(vcpu);
8048 u32 exec_control;
8049
8050 vmx->rdtscp_enabled = false;
8051 if (vmx_rdtscp_supported()) {
8052 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8053 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8054 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8055 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8056 vmx->rdtscp_enabled = true;
8057 else {
8058 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8059 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8060 exec_control);
8061 }
8062 }
8063 }
8064
8065 /* Exposing INVPCID only when PCID is exposed */
8066 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8067 if (vmx_invpcid_supported() &&
8068 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8069 guest_cpuid_has_pcid(vcpu)) {
8070 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8071 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8072 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8073 exec_control);
8074 } else {
8075 if (cpu_has_secondary_exec_ctrls()) {
8076 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8077 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8078 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8079 exec_control);
8080 }
8081 if (best)
8082 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8083 }
8084 }
8085
8086 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8087 {
8088 if (func == 1 && nested)
8089 entry->ecx |= bit(X86_FEATURE_VMX);
8090 }
8091
8092 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8093 struct x86_exception *fault)
8094 {
8095 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8096 u32 exit_reason;
8097
8098 if (fault->error_code & PFERR_RSVD_MASK)
8099 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8100 else
8101 exit_reason = EXIT_REASON_EPT_VIOLATION;
8102 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8103 vmcs12->guest_physical_address = fault->address;
8104 }
8105
8106 /* Callbacks for nested_ept_init_mmu_context: */
8107
8108 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8109 {
8110 /* return the page table to be shadowed - in our case, EPT12 */
8111 return get_vmcs12(vcpu)->ept_pointer;
8112 }
8113
8114 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8115 {
8116 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
8117 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
8118
8119 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8120 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8121 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8122
8123 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8124 }
8125
8126 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8127 {
8128 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8129 }
8130
8131 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8132 struct x86_exception *fault)
8133 {
8134 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8135
8136 WARN_ON(!is_guest_mode(vcpu));
8137
8138 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8139 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
8140 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8141 vmcs_read32(VM_EXIT_INTR_INFO),
8142 vmcs_readl(EXIT_QUALIFICATION));
8143 else
8144 kvm_inject_page_fault(vcpu, fault);
8145 }
8146
8147 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8148 struct vmcs12 *vmcs12)
8149 {
8150 struct vcpu_vmx *vmx = to_vmx(vcpu);
8151
8152 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8153 /* TODO: Also verify bits beyond physical address width are 0 */
8154 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8155 return false;
8156
8157 /*
8158 * Translate L1 physical address to host physical
8159 * address for vmcs02. Keep the page pinned, so this
8160 * physical address remains valid. We keep a reference
8161 * to it so we can release it later.
8162 */
8163 if (vmx->nested.apic_access_page) /* shouldn't happen */
8164 nested_release_page(vmx->nested.apic_access_page);
8165 vmx->nested.apic_access_page =
8166 nested_get_page(vcpu, vmcs12->apic_access_addr);
8167 }
8168
8169 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8170 /* TODO: Also verify bits beyond physical address width are 0 */
8171 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8172 return false;
8173
8174 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8175 nested_release_page(vmx->nested.virtual_apic_page);
8176 vmx->nested.virtual_apic_page =
8177 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8178
8179 /*
8180 * Failing the vm entry is _not_ what the processor does
8181 * but it's basically the only possibility we have.
8182 * We could still enter the guest if CR8 load exits are
8183 * enabled, CR8 store exits are enabled, and virtualize APIC
8184 * access is disabled; in this case the processor would never
8185 * use the TPR shadow and we could simply clear the bit from
8186 * the execution control. But such a configuration is useless,
8187 * so let's keep the code simple.
8188 */
8189 if (!vmx->nested.virtual_apic_page)
8190 return false;
8191 }
8192
8193 return true;
8194 }
8195
8196 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8197 {
8198 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8199 struct vcpu_vmx *vmx = to_vmx(vcpu);
8200
8201 if (vcpu->arch.virtual_tsc_khz == 0)
8202 return;
8203
8204 /* Make sure short timeouts reliably trigger an immediate vmexit.
8205 * hrtimer_start does not guarantee this. */
8206 if (preemption_timeout <= 1) {
8207 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8208 return;
8209 }
8210
8211 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8212 preemption_timeout *= 1000000;
8213 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8214 hrtimer_start(&vmx->nested.preemption_timer,
8215 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8216 }
8217
8218 /*
8219 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8220 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8221 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8222 * guest in a way that will both be appropriate to L1's requests, and our
8223 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8224 * function also has additional necessary side-effects, like setting various
8225 * vcpu->arch fields.
8226 */
8227 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8228 {
8229 struct vcpu_vmx *vmx = to_vmx(vcpu);
8230 u32 exec_control;
8231
8232 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8233 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8234 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8235 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8236 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8237 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8238 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8239 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8240 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8241 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8242 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8243 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8244 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8245 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8246 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8247 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8248 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8249 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8250 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8251 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8252 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8253 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8254 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8255 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8256 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8257 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8258 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8259 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8260 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8261 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8262 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8263 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8264 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8265 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8266 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8267 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8268
8269 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8270 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8271 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8272 } else {
8273 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8274 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8275 }
8276 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8277 vmcs12->vm_entry_intr_info_field);
8278 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8279 vmcs12->vm_entry_exception_error_code);
8280 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8281 vmcs12->vm_entry_instruction_len);
8282 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8283 vmcs12->guest_interruptibility_info);
8284 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8285 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8286 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8287 vmcs12->guest_pending_dbg_exceptions);
8288 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8289 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8290
8291 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8292
8293 exec_control = vmcs12->pin_based_vm_exec_control;
8294 exec_control |= vmcs_config.pin_based_exec_ctrl;
8295 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8296 PIN_BASED_POSTED_INTR);
8297 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8298
8299 vmx->nested.preemption_timer_expired = false;
8300 if (nested_cpu_has_preemption_timer(vmcs12))
8301 vmx_start_preemption_timer(vcpu);
8302
8303 /*
8304 * Whether page-faults are trapped is determined by a combination of
8305 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8306 * If enable_ept, L0 doesn't care about page faults and we should
8307 * set all of these to L1's desires. However, if !enable_ept, L0 does
8308 * care about (at least some) page faults, and because it is not easy
8309 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8310 * to exit on each and every L2 page fault. This is done by setting
8311 * MASK=MATCH=0 and (see below) EB.PF=1.
8312 * Note that below we don't need special code to set EB.PF beyond the
8313 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8314 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8315 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8316 *
8317 * A problem with this approach (when !enable_ept) is that L1 may be
8318 * injected with more page faults than it asked for. This could have
8319 * caused problems, but in practice existing hypervisors don't care.
8320 * To fix this, we will need to emulate the PFEC checking (on the L1
8321 * page tables), using walk_addr(), when injecting PFs to L1.
8322 */
8323 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8324 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8325 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8326 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8327
8328 if (cpu_has_secondary_exec_ctrls()) {
8329 exec_control = vmx_secondary_exec_control(vmx);
8330 if (!vmx->rdtscp_enabled)
8331 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8332 /* Take the following fields only from vmcs12 */
8333 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8334 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8335 SECONDARY_EXEC_APIC_REGISTER_VIRT);
8336 if (nested_cpu_has(vmcs12,
8337 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8338 exec_control |= vmcs12->secondary_vm_exec_control;
8339
8340 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8341 /*
8342 * If translation failed, no matter: This feature asks
8343 * to exit when accessing the given address, and if it
8344 * can never be accessed, this feature won't do
8345 * anything anyway.
8346 */
8347 if (!vmx->nested.apic_access_page)
8348 exec_control &=
8349 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8350 else
8351 vmcs_write64(APIC_ACCESS_ADDR,
8352 page_to_phys(vmx->nested.apic_access_page));
8353 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8354 exec_control |=
8355 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8356 kvm_vcpu_reload_apic_access_page(vcpu);
8357 }
8358
8359 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8360 }
8361
8362
8363 /*
8364 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8365 * Some constant fields are set here by vmx_set_constant_host_state().
8366 * Other fields are different per CPU, and will be set later when
8367 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8368 */
8369 vmx_set_constant_host_state(vmx);
8370
8371 /*
8372 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8373 * entry, but only if the current (host) sp changed from the value
8374 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8375 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8376 * here we just force the write to happen on entry.
8377 */
8378 vmx->host_rsp = 0;
8379
8380 exec_control = vmx_exec_control(vmx); /* L0's desires */
8381 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8382 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8383 exec_control &= ~CPU_BASED_TPR_SHADOW;
8384 exec_control |= vmcs12->cpu_based_vm_exec_control;
8385
8386 if (exec_control & CPU_BASED_TPR_SHADOW) {
8387 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8388 page_to_phys(vmx->nested.virtual_apic_page));
8389 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8390 }
8391
8392 /*
8393 * Merging of IO and MSR bitmaps not currently supported.
8394 * Rather, exit every time.
8395 */
8396 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8397 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8398 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8399
8400 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8401
8402 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8403 * bitwise-or of what L1 wants to trap for L2, and what we want to
8404 * trap. Note that CR0.TS also needs updating - we do this later.
8405 */
8406 update_exception_bitmap(vcpu);
8407 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8408 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8409
8410 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8411 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8412 * bits are further modified by vmx_set_efer() below.
8413 */
8414 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8415
8416 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8417 * emulated by vmx_set_efer(), below.
8418 */
8419 vm_entry_controls_init(vmx,
8420 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8421 ~VM_ENTRY_IA32E_MODE) |
8422 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8423
8424 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8425 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8426 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8427 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8428 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8429
8430
8431 set_cr4_guest_host_mask(vmx);
8432
8433 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8434 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8435
8436 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8437 vmcs_write64(TSC_OFFSET,
8438 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8439 else
8440 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8441
8442 if (enable_vpid) {
8443 /*
8444 * Trivially support vpid by letting L2s share their parent
8445 * L1's vpid. TODO: move to a more elaborate solution, giving
8446 * each L2 its own vpid and exposing the vpid feature to L1.
8447 */
8448 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8449 vmx_flush_tlb(vcpu);
8450 }
8451
8452 if (nested_cpu_has_ept(vmcs12)) {
8453 kvm_mmu_unload(vcpu);
8454 nested_ept_init_mmu_context(vcpu);
8455 }
8456
8457 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8458 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8459 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8460 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8461 else
8462 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8463 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8464 vmx_set_efer(vcpu, vcpu->arch.efer);
8465
8466 /*
8467 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8468 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8469 * The CR0_READ_SHADOW is what L2 should have expected to read given
8470 * the specifications by L1; It's not enough to take
8471 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8472 * have more bits than L1 expected.
8473 */
8474 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8475 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8476
8477 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8478 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8479
8480 /* shadow page tables on either EPT or shadow page tables */
8481 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8482 kvm_mmu_reset_context(vcpu);
8483
8484 if (!enable_ept)
8485 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8486
8487 /*
8488 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8489 */
8490 if (enable_ept) {
8491 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8492 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8493 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8494 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8495 }
8496
8497 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8498 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8499 }
8500
8501 /*
8502 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8503 * for running an L2 nested guest.
8504 */
8505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8506 {
8507 struct vmcs12 *vmcs12;
8508 struct vcpu_vmx *vmx = to_vmx(vcpu);
8509 int cpu;
8510 struct loaded_vmcs *vmcs02;
8511 bool ia32e;
8512
8513 if (!nested_vmx_check_permission(vcpu) ||
8514 !nested_vmx_check_vmcs12(vcpu))
8515 return 1;
8516
8517 skip_emulated_instruction(vcpu);
8518 vmcs12 = get_vmcs12(vcpu);
8519
8520 if (enable_shadow_vmcs)
8521 copy_shadow_to_vmcs12(vmx);
8522
8523 /*
8524 * The nested entry process starts with enforcing various prerequisites
8525 * on vmcs12 as required by the Intel SDM, and act appropriately when
8526 * they fail: As the SDM explains, some conditions should cause the
8527 * instruction to fail, while others will cause the instruction to seem
8528 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8529 * To speed up the normal (success) code path, we should avoid checking
8530 * for misconfigurations which will anyway be caught by the processor
8531 * when using the merged vmcs02.
8532 */
8533 if (vmcs12->launch_state == launch) {
8534 nested_vmx_failValid(vcpu,
8535 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8536 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8537 return 1;
8538 }
8539
8540 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8541 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8542 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8543 return 1;
8544 }
8545
8546 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8547 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8548 /*TODO: Also verify bits beyond physical address width are 0*/
8549 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8550 return 1;
8551 }
8552
8553 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8554 /*TODO: Also verify bits beyond physical address width are 0*/
8555 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8556 return 1;
8557 }
8558
8559 if (vmcs12->vm_entry_msr_load_count > 0 ||
8560 vmcs12->vm_exit_msr_load_count > 0 ||
8561 vmcs12->vm_exit_msr_store_count > 0) {
8562 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8563 __func__);
8564 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8565 return 1;
8566 }
8567
8568 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8569 nested_vmx_true_procbased_ctls_low,
8570 nested_vmx_procbased_ctls_high) ||
8571 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8572 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8573 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8574 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8575 !vmx_control_verify(vmcs12->vm_exit_controls,
8576 nested_vmx_true_exit_ctls_low,
8577 nested_vmx_exit_ctls_high) ||
8578 !vmx_control_verify(vmcs12->vm_entry_controls,
8579 nested_vmx_true_entry_ctls_low,
8580 nested_vmx_entry_ctls_high))
8581 {
8582 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8583 return 1;
8584 }
8585
8586 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8587 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8588 nested_vmx_failValid(vcpu,
8589 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8590 return 1;
8591 }
8592
8593 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8594 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8595 nested_vmx_entry_failure(vcpu, vmcs12,
8596 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8597 return 1;
8598 }
8599 if (vmcs12->vmcs_link_pointer != -1ull) {
8600 nested_vmx_entry_failure(vcpu, vmcs12,
8601 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8602 return 1;
8603 }
8604
8605 /*
8606 * If the load IA32_EFER VM-entry control is 1, the following checks
8607 * are performed on the field for the IA32_EFER MSR:
8608 * - Bits reserved in the IA32_EFER MSR must be 0.
8609 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8610 * the IA-32e mode guest VM-exit control. It must also be identical
8611 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8612 * CR0.PG) is 1.
8613 */
8614 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8615 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8616 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8617 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8618 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8619 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8620 nested_vmx_entry_failure(vcpu, vmcs12,
8621 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8622 return 1;
8623 }
8624 }
8625
8626 /*
8627 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8628 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8629 * the values of the LMA and LME bits in the field must each be that of
8630 * the host address-space size VM-exit control.
8631 */
8632 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8633 ia32e = (vmcs12->vm_exit_controls &
8634 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8635 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8636 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8637 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8638 nested_vmx_entry_failure(vcpu, vmcs12,
8639 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8640 return 1;
8641 }
8642 }
8643
8644 /*
8645 * We're finally done with prerequisite checking, and can start with
8646 * the nested entry.
8647 */
8648
8649 vmcs02 = nested_get_current_vmcs02(vmx);
8650 if (!vmcs02)
8651 return -ENOMEM;
8652
8653 enter_guest_mode(vcpu);
8654
8655 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8656
8657 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8658 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8659
8660 cpu = get_cpu();
8661 vmx->loaded_vmcs = vmcs02;
8662 vmx_vcpu_put(vcpu);
8663 vmx_vcpu_load(vcpu, cpu);
8664 vcpu->cpu = cpu;
8665 put_cpu();
8666
8667 vmx_segment_cache_clear(vmx);
8668
8669 vmcs12->launch_state = 1;
8670
8671 prepare_vmcs02(vcpu, vmcs12);
8672
8673 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8674 return kvm_emulate_halt(vcpu);
8675
8676 vmx->nested.nested_run_pending = 1;
8677
8678 /*
8679 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8680 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8681 * returned as far as L1 is concerned. It will only return (and set
8682 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8683 */
8684 return 1;
8685 }
8686
8687 /*
8688 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8689 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8690 * This function returns the new value we should put in vmcs12.guest_cr0.
8691 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8692 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8693 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8694 * didn't trap the bit, because if L1 did, so would L0).
8695 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8696 * been modified by L2, and L1 knows it. So just leave the old value of
8697 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8698 * isn't relevant, because if L0 traps this bit it can set it to anything.
8699 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8700 * changed these bits, and therefore they need to be updated, but L0
8701 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8702 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8703 */
8704 static inline unsigned long
8705 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8706 {
8707 return
8708 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8709 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8710 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8711 vcpu->arch.cr0_guest_owned_bits));
8712 }
8713
8714 static inline unsigned long
8715 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8716 {
8717 return
8718 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8719 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8720 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8721 vcpu->arch.cr4_guest_owned_bits));
8722 }
8723
8724 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8725 struct vmcs12 *vmcs12)
8726 {
8727 u32 idt_vectoring;
8728 unsigned int nr;
8729
8730 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8731 nr = vcpu->arch.exception.nr;
8732 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8733
8734 if (kvm_exception_is_soft(nr)) {
8735 vmcs12->vm_exit_instruction_len =
8736 vcpu->arch.event_exit_inst_len;
8737 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8738 } else
8739 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8740
8741 if (vcpu->arch.exception.has_error_code) {
8742 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8743 vmcs12->idt_vectoring_error_code =
8744 vcpu->arch.exception.error_code;
8745 }
8746
8747 vmcs12->idt_vectoring_info_field = idt_vectoring;
8748 } else if (vcpu->arch.nmi_injected) {
8749 vmcs12->idt_vectoring_info_field =
8750 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8751 } else if (vcpu->arch.interrupt.pending) {
8752 nr = vcpu->arch.interrupt.nr;
8753 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8754
8755 if (vcpu->arch.interrupt.soft) {
8756 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8757 vmcs12->vm_entry_instruction_len =
8758 vcpu->arch.event_exit_inst_len;
8759 } else
8760 idt_vectoring |= INTR_TYPE_EXT_INTR;
8761
8762 vmcs12->idt_vectoring_info_field = idt_vectoring;
8763 }
8764 }
8765
8766 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8767 {
8768 struct vcpu_vmx *vmx = to_vmx(vcpu);
8769
8770 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8771 vmx->nested.preemption_timer_expired) {
8772 if (vmx->nested.nested_run_pending)
8773 return -EBUSY;
8774 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8775 return 0;
8776 }
8777
8778 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8779 if (vmx->nested.nested_run_pending ||
8780 vcpu->arch.interrupt.pending)
8781 return -EBUSY;
8782 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8783 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8784 INTR_INFO_VALID_MASK, 0);
8785 /*
8786 * The NMI-triggered VM exit counts as injection:
8787 * clear this one and block further NMIs.
8788 */
8789 vcpu->arch.nmi_pending = 0;
8790 vmx_set_nmi_mask(vcpu, true);
8791 return 0;
8792 }
8793
8794 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8795 nested_exit_on_intr(vcpu)) {
8796 if (vmx->nested.nested_run_pending)
8797 return -EBUSY;
8798 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8799 }
8800
8801 return 0;
8802 }
8803
8804 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8805 {
8806 ktime_t remaining =
8807 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8808 u64 value;
8809
8810 if (ktime_to_ns(remaining) <= 0)
8811 return 0;
8812
8813 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8814 do_div(value, 1000000);
8815 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8816 }
8817
8818 /*
8819 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8820 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8821 * and this function updates it to reflect the changes to the guest state while
8822 * L2 was running (and perhaps made some exits which were handled directly by L0
8823 * without going back to L1), and to reflect the exit reason.
8824 * Note that we do not have to copy here all VMCS fields, just those that
8825 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8826 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8827 * which already writes to vmcs12 directly.
8828 */
8829 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8830 u32 exit_reason, u32 exit_intr_info,
8831 unsigned long exit_qualification)
8832 {
8833 /* update guest state fields: */
8834 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8835 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8836
8837 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8838 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8839 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8840
8841 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8842 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8843 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8844 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8845 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8846 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8847 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8848 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8849 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8850 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8851 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8852 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8853 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8854 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8855 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8856 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8857 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8858 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8859 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8860 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8861 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8862 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8863 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8864 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8865 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8866 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8867 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8868 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8869 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8870 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8871 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8872 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8873 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8874 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8875 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8876 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8877
8878 vmcs12->guest_interruptibility_info =
8879 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8880 vmcs12->guest_pending_dbg_exceptions =
8881 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8882 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8883 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8884 else
8885 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8886
8887 if (nested_cpu_has_preemption_timer(vmcs12)) {
8888 if (vmcs12->vm_exit_controls &
8889 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8890 vmcs12->vmx_preemption_timer_value =
8891 vmx_get_preemption_timer_value(vcpu);
8892 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8893 }
8894
8895 /*
8896 * In some cases (usually, nested EPT), L2 is allowed to change its
8897 * own CR3 without exiting. If it has changed it, we must keep it.
8898 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8899 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8900 *
8901 * Additionally, restore L2's PDPTR to vmcs12.
8902 */
8903 if (enable_ept) {
8904 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8905 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8906 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8907 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8908 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8909 }
8910
8911 vmcs12->vm_entry_controls =
8912 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8913 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8914
8915 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8916 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8917 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8918 }
8919
8920 /* TODO: These cannot have changed unless we have MSR bitmaps and
8921 * the relevant bit asks not to trap the change */
8922 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8923 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8924 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8925 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8926 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8927 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8928 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8929 if (vmx_mpx_supported())
8930 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8931
8932 /* update exit information fields: */
8933
8934 vmcs12->vm_exit_reason = exit_reason;
8935 vmcs12->exit_qualification = exit_qualification;
8936
8937 vmcs12->vm_exit_intr_info = exit_intr_info;
8938 if ((vmcs12->vm_exit_intr_info &
8939 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8940 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8941 vmcs12->vm_exit_intr_error_code =
8942 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8943 vmcs12->idt_vectoring_info_field = 0;
8944 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8945 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8946
8947 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8948 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8949 * instead of reading the real value. */
8950 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8951
8952 /*
8953 * Transfer the event that L0 or L1 may wanted to inject into
8954 * L2 to IDT_VECTORING_INFO_FIELD.
8955 */
8956 vmcs12_save_pending_event(vcpu, vmcs12);
8957 }
8958
8959 /*
8960 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8961 * preserved above and would only end up incorrectly in L1.
8962 */
8963 vcpu->arch.nmi_injected = false;
8964 kvm_clear_exception_queue(vcpu);
8965 kvm_clear_interrupt_queue(vcpu);
8966 }
8967
8968 /*
8969 * A part of what we need to when the nested L2 guest exits and we want to
8970 * run its L1 parent, is to reset L1's guest state to the host state specified
8971 * in vmcs12.
8972 * This function is to be called not only on normal nested exit, but also on
8973 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8974 * Failures During or After Loading Guest State").
8975 * This function should be called when the active VMCS is L1's (vmcs01).
8976 */
8977 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8978 struct vmcs12 *vmcs12)
8979 {
8980 struct kvm_segment seg;
8981
8982 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8983 vcpu->arch.efer = vmcs12->host_ia32_efer;
8984 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8985 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8986 else
8987 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8988 vmx_set_efer(vcpu, vcpu->arch.efer);
8989
8990 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8991 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8992 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8993 /*
8994 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8995 * actually changed, because it depends on the current state of
8996 * fpu_active (which may have changed).
8997 * Note that vmx_set_cr0 refers to efer set above.
8998 */
8999 vmx_set_cr0(vcpu, vmcs12->host_cr0);
9000 /*
9001 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9002 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9003 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9004 */
9005 update_exception_bitmap(vcpu);
9006 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9007 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9008
9009 /*
9010 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9011 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9012 */
9013 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9014 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9015
9016 nested_ept_uninit_mmu_context(vcpu);
9017
9018 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9019 kvm_mmu_reset_context(vcpu);
9020
9021 if (!enable_ept)
9022 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9023
9024 if (enable_vpid) {
9025 /*
9026 * Trivially support vpid by letting L2s share their parent
9027 * L1's vpid. TODO: move to a more elaborate solution, giving
9028 * each L2 its own vpid and exposing the vpid feature to L1.
9029 */
9030 vmx_flush_tlb(vcpu);
9031 }
9032
9033
9034 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9035 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9036 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9037 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9038 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9039
9040 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9041 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9042 vmcs_write64(GUEST_BNDCFGS, 0);
9043
9044 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9045 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9046 vcpu->arch.pat = vmcs12->host_ia32_pat;
9047 }
9048 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9049 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9050 vmcs12->host_ia32_perf_global_ctrl);
9051
9052 /* Set L1 segment info according to Intel SDM
9053 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9054 seg = (struct kvm_segment) {
9055 .base = 0,
9056 .limit = 0xFFFFFFFF,
9057 .selector = vmcs12->host_cs_selector,
9058 .type = 11,
9059 .present = 1,
9060 .s = 1,
9061 .g = 1
9062 };
9063 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9064 seg.l = 1;
9065 else
9066 seg.db = 1;
9067 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9068 seg = (struct kvm_segment) {
9069 .base = 0,
9070 .limit = 0xFFFFFFFF,
9071 .type = 3,
9072 .present = 1,
9073 .s = 1,
9074 .db = 1,
9075 .g = 1
9076 };
9077 seg.selector = vmcs12->host_ds_selector;
9078 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9079 seg.selector = vmcs12->host_es_selector;
9080 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9081 seg.selector = vmcs12->host_ss_selector;
9082 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9083 seg.selector = vmcs12->host_fs_selector;
9084 seg.base = vmcs12->host_fs_base;
9085 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9086 seg.selector = vmcs12->host_gs_selector;
9087 seg.base = vmcs12->host_gs_base;
9088 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9089 seg = (struct kvm_segment) {
9090 .base = vmcs12->host_tr_base,
9091 .limit = 0x67,
9092 .selector = vmcs12->host_tr_selector,
9093 .type = 11,
9094 .present = 1
9095 };
9096 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9097
9098 kvm_set_dr(vcpu, 7, 0x400);
9099 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9100 }
9101
9102 /*
9103 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9104 * and modify vmcs12 to make it see what it would expect to see there if
9105 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9106 */
9107 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9108 u32 exit_intr_info,
9109 unsigned long exit_qualification)
9110 {
9111 struct vcpu_vmx *vmx = to_vmx(vcpu);
9112 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9113
9114 /* trying to cancel vmlaunch/vmresume is a bug */
9115 WARN_ON_ONCE(vmx->nested.nested_run_pending);
9116
9117 leave_guest_mode(vcpu);
9118 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9119 exit_qualification);
9120
9121 vmx_load_vmcs01(vcpu);
9122
9123 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9124 && nested_exit_intr_ack_set(vcpu)) {
9125 int irq = kvm_cpu_get_interrupt(vcpu);
9126 WARN_ON(irq < 0);
9127 vmcs12->vm_exit_intr_info = irq |
9128 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9129 }
9130
9131 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9132 vmcs12->exit_qualification,
9133 vmcs12->idt_vectoring_info_field,
9134 vmcs12->vm_exit_intr_info,
9135 vmcs12->vm_exit_intr_error_code,
9136 KVM_ISA_VMX);
9137
9138 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9139 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
9140 vmx_segment_cache_clear(vmx);
9141
9142 /* if no vmcs02 cache requested, remove the one we used */
9143 if (VMCS02_POOL_SIZE == 0)
9144 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
9145
9146 load_vmcs12_host_state(vcpu, vmcs12);
9147
9148 /* Update TSC_OFFSET if TSC was changed while L2 ran */
9149 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9150
9151 /* This is needed for same reason as it was needed in prepare_vmcs02 */
9152 vmx->host_rsp = 0;
9153
9154 /* Unpin physical memory we referred to in vmcs02 */
9155 if (vmx->nested.apic_access_page) {
9156 nested_release_page(vmx->nested.apic_access_page);
9157 vmx->nested.apic_access_page = NULL;
9158 }
9159 if (vmx->nested.virtual_apic_page) {
9160 nested_release_page(vmx->nested.virtual_apic_page);
9161 vmx->nested.virtual_apic_page = NULL;
9162 }
9163
9164 /*
9165 * We are now running in L2, mmu_notifier will force to reload the
9166 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9167 */
9168 kvm_vcpu_reload_apic_access_page(vcpu);
9169
9170 /*
9171 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9172 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9173 * success or failure flag accordingly.
9174 */
9175 if (unlikely(vmx->fail)) {
9176 vmx->fail = 0;
9177 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9178 } else
9179 nested_vmx_succeed(vcpu);
9180 if (enable_shadow_vmcs)
9181 vmx->nested.sync_shadow_vmcs = true;
9182
9183 /* in case we halted in L2 */
9184 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9185 }
9186
9187 /*
9188 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9189 */
9190 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9191 {
9192 if (is_guest_mode(vcpu))
9193 nested_vmx_vmexit(vcpu, -1, 0, 0);
9194 free_nested(to_vmx(vcpu));
9195 }
9196
9197 /*
9198 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9199 * 23.7 "VM-entry failures during or after loading guest state" (this also
9200 * lists the acceptable exit-reason and exit-qualification parameters).
9201 * It should only be called before L2 actually succeeded to run, and when
9202 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9203 */
9204 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9205 struct vmcs12 *vmcs12,
9206 u32 reason, unsigned long qualification)
9207 {
9208 load_vmcs12_host_state(vcpu, vmcs12);
9209 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9210 vmcs12->exit_qualification = qualification;
9211 nested_vmx_succeed(vcpu);
9212 if (enable_shadow_vmcs)
9213 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9214 }
9215
9216 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9217 struct x86_instruction_info *info,
9218 enum x86_intercept_stage stage)
9219 {
9220 return X86EMUL_CONTINUE;
9221 }
9222
9223 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9224 {
9225 if (ple_gap)
9226 shrink_ple_window(vcpu);
9227 }
9228
9229 static struct kvm_x86_ops vmx_x86_ops = {
9230 .cpu_has_kvm_support = cpu_has_kvm_support,
9231 .disabled_by_bios = vmx_disabled_by_bios,
9232 .hardware_setup = hardware_setup,
9233 .hardware_unsetup = hardware_unsetup,
9234 .check_processor_compatibility = vmx_check_processor_compat,
9235 .hardware_enable = hardware_enable,
9236 .hardware_disable = hardware_disable,
9237 .cpu_has_accelerated_tpr = report_flexpriority,
9238
9239 .vcpu_create = vmx_create_vcpu,
9240 .vcpu_free = vmx_free_vcpu,
9241 .vcpu_reset = vmx_vcpu_reset,
9242
9243 .prepare_guest_switch = vmx_save_host_state,
9244 .vcpu_load = vmx_vcpu_load,
9245 .vcpu_put = vmx_vcpu_put,
9246
9247 .update_db_bp_intercept = update_exception_bitmap,
9248 .get_msr = vmx_get_msr,
9249 .set_msr = vmx_set_msr,
9250 .get_segment_base = vmx_get_segment_base,
9251 .get_segment = vmx_get_segment,
9252 .set_segment = vmx_set_segment,
9253 .get_cpl = vmx_get_cpl,
9254 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9255 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9256 .decache_cr3 = vmx_decache_cr3,
9257 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9258 .set_cr0 = vmx_set_cr0,
9259 .set_cr3 = vmx_set_cr3,
9260 .set_cr4 = vmx_set_cr4,
9261 .set_efer = vmx_set_efer,
9262 .get_idt = vmx_get_idt,
9263 .set_idt = vmx_set_idt,
9264 .get_gdt = vmx_get_gdt,
9265 .set_gdt = vmx_set_gdt,
9266 .get_dr6 = vmx_get_dr6,
9267 .set_dr6 = vmx_set_dr6,
9268 .set_dr7 = vmx_set_dr7,
9269 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9270 .cache_reg = vmx_cache_reg,
9271 .get_rflags = vmx_get_rflags,
9272 .set_rflags = vmx_set_rflags,
9273 .fpu_deactivate = vmx_fpu_deactivate,
9274
9275 .tlb_flush = vmx_flush_tlb,
9276
9277 .run = vmx_vcpu_run,
9278 .handle_exit = vmx_handle_exit,
9279 .skip_emulated_instruction = skip_emulated_instruction,
9280 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9281 .get_interrupt_shadow = vmx_get_interrupt_shadow,
9282 .patch_hypercall = vmx_patch_hypercall,
9283 .set_irq = vmx_inject_irq,
9284 .set_nmi = vmx_inject_nmi,
9285 .queue_exception = vmx_queue_exception,
9286 .cancel_injection = vmx_cancel_injection,
9287 .interrupt_allowed = vmx_interrupt_allowed,
9288 .nmi_allowed = vmx_nmi_allowed,
9289 .get_nmi_mask = vmx_get_nmi_mask,
9290 .set_nmi_mask = vmx_set_nmi_mask,
9291 .enable_nmi_window = enable_nmi_window,
9292 .enable_irq_window = enable_irq_window,
9293 .update_cr8_intercept = update_cr8_intercept,
9294 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9295 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9296 .vm_has_apicv = vmx_vm_has_apicv,
9297 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9298 .hwapic_irr_update = vmx_hwapic_irr_update,
9299 .hwapic_isr_update = vmx_hwapic_isr_update,
9300 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9301 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9302
9303 .set_tss_addr = vmx_set_tss_addr,
9304 .get_tdp_level = get_ept_level,
9305 .get_mt_mask = vmx_get_mt_mask,
9306
9307 .get_exit_info = vmx_get_exit_info,
9308
9309 .get_lpage_level = vmx_get_lpage_level,
9310
9311 .cpuid_update = vmx_cpuid_update,
9312
9313 .rdtscp_supported = vmx_rdtscp_supported,
9314 .invpcid_supported = vmx_invpcid_supported,
9315
9316 .set_supported_cpuid = vmx_set_supported_cpuid,
9317
9318 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9319
9320 .set_tsc_khz = vmx_set_tsc_khz,
9321 .read_tsc_offset = vmx_read_tsc_offset,
9322 .write_tsc_offset = vmx_write_tsc_offset,
9323 .adjust_tsc_offset = vmx_adjust_tsc_offset,
9324 .compute_tsc_offset = vmx_compute_tsc_offset,
9325 .read_l1_tsc = vmx_read_l1_tsc,
9326
9327 .set_tdp_cr3 = vmx_set_cr3,
9328
9329 .check_intercept = vmx_check_intercept,
9330 .handle_external_intr = vmx_handle_external_intr,
9331 .mpx_supported = vmx_mpx_supported,
9332
9333 .check_nested_events = vmx_check_nested_events,
9334
9335 .sched_in = vmx_sched_in,
9336 };
9337
9338 static int __init vmx_init(void)
9339 {
9340 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9341 __alignof__(struct vcpu_vmx), THIS_MODULE);
9342 if (r)
9343 return r;
9344
9345 #ifdef CONFIG_KEXEC
9346 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9347 crash_vmclear_local_loaded_vmcss);
9348 #endif
9349
9350 return 0;
9351 }
9352
9353 static void __exit vmx_exit(void)
9354 {
9355 #ifdef CONFIG_KEXEC
9356 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9357 synchronize_rcu();
9358 #endif
9359
9360 kvm_exit();
9361 }
9362
9363 module_init(vmx_init)
9364 module_exit(vmx_exit)