]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
Merge branch 'linux-4.8' of git://github.com/skeggsb/linux into drm-next
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
128 /*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
132 * According to test, this time is usually smaller than 128 cycles.
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
139 #define KVM_VMX_DEFAULT_PLE_GAP 128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
146 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147 module_param(ple_gap, int, S_IRUGO);
148
149 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150 module_param(ple_window, int, S_IRUGO);
151
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154 module_param(ple_window_grow, int, S_IRUGO);
155
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158 module_param(ple_window_shrink, int, S_IRUGO);
159
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163 module_param(ple_window_max, int, S_IRUGO);
164
165 extern const ulong vmx_return;
166
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
169
170 struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174 };
175
176 /*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181 struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186 };
187
188 struct shared_msr_entry {
189 unsigned index;
190 u64 data;
191 u64 mask;
192 };
193
194 /*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
207 typedef u64 natural_width;
208 struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
214
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
227 u64 posted_intr_desc_addr;
228 u64 ept_pointer;
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
233 u64 xss_exit_bitmap;
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
244 u64 guest_bndcfgs;
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
346 u16 virtual_processor_id;
347 u16 posted_intr_nv;
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
356 u16 guest_intr_status;
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
364 };
365
366 /*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371 #define VMCS12_REVISION 0x11e57ed0
372
373 /*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378 #define VMCS12_SIZE 0x1000
379
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385 };
386
387 /*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391 struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
394 gpa_t vmxon_ptr;
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
401 struct vmcs *current_shadow_vmcs;
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
411 u64 vmcs01_tsc_offset;
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
419 struct page *virtual_apic_page;
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
424 u64 msr_ia32_feature_control;
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
431
432 u16 vpid02;
433 u16 last_vpid;
434
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
451 u32 nested_vmx_vpid_caps;
452 };
453
454 #define POSTED_INTR_ON 0
455 #define POSTED_INTR_SN 1
456
457 /* Posted-Interrupt Descriptor */
458 struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
478 } __aligned(64);
479
480 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481 {
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484 }
485
486 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487 {
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490 }
491
492 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493 {
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495 }
496
497 static inline void pi_clear_sn(struct pi_desc *pi_desc)
498 {
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501 }
502
503 static inline void pi_set_sn(struct pi_desc *pi_desc)
504 {
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507 }
508
509 static inline int pi_test_on(struct pi_desc *pi_desc)
510 {
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_sn(struct pi_desc *pi_desc)
516 {
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 struct vcpu_vmx {
522 struct kvm_vcpu vcpu;
523 unsigned long host_rsp;
524 u8 fail;
525 bool nmi_known_unmasked;
526 u32 exit_intr_info;
527 u32 idt_vectoring_info;
528 ulong rflags;
529 struct shared_msr_entry *guest_msrs;
530 int nmsrs;
531 int save_nmsrs;
532 unsigned long host_idt_base;
533 #ifdef CONFIG_X86_64
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
536 #endif
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
555 #ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557 #endif
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
560 u64 msr_host_bndcfgs;
561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
562 } host_state;
563 struct {
564 int vm86_active;
565 ulong save_rflags;
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
575 } seg[8];
576 } segment_cache;
577 int vpid;
578 bool emulation_required;
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
584 u32 exit_reason;
585
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
595
596 /* Support for PML */
597 #define PML_ENTITY_NUM 512
598 struct page *pml_pg;
599
600 u64 current_tsc_ratio;
601
602 bool guest_pkru_valid;
603 u32 guest_pkru;
604 u32 host_pkru;
605 };
606
607 enum segment_cache_field {
608 SEG_FIELD_SEL = 0,
609 SEG_FIELD_BASE = 1,
610 SEG_FIELD_LIMIT = 2,
611 SEG_FIELD_AR = 3,
612
613 SEG_FIELD_NR = 4
614 };
615
616 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617 {
618 return container_of(vcpu, struct vcpu_vmx, vcpu);
619 }
620
621 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622 {
623 return &(to_vmx(vcpu)->pi_desc);
624 }
625
626 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
631
632 static unsigned long shadow_read_only_fields[] = {
633 /*
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
644 */
645 VM_EXIT_REASON,
646 VM_EXIT_INTR_INFO,
647 VM_EXIT_INSTRUCTION_LEN,
648 IDT_VECTORING_INFO_FIELD,
649 IDT_VECTORING_ERROR_CODE,
650 VM_EXIT_INTR_ERROR_CODE,
651 EXIT_QUALIFICATION,
652 GUEST_LINEAR_ADDRESS,
653 GUEST_PHYSICAL_ADDRESS
654 };
655 static int max_shadow_read_only_fields =
656 ARRAY_SIZE(shadow_read_only_fields);
657
658 static unsigned long shadow_read_write_fields[] = {
659 TPR_THRESHOLD,
660 GUEST_RIP,
661 GUEST_RSP,
662 GUEST_CR0,
663 GUEST_CR3,
664 GUEST_CR4,
665 GUEST_INTERRUPTIBILITY_INFO,
666 GUEST_RFLAGS,
667 GUEST_CS_SELECTOR,
668 GUEST_CS_AR_BYTES,
669 GUEST_CS_LIMIT,
670 GUEST_CS_BASE,
671 GUEST_ES_BASE,
672 GUEST_BNDCFGS,
673 CR0_GUEST_HOST_MASK,
674 CR0_READ_SHADOW,
675 CR4_READ_SHADOW,
676 TSC_OFFSET,
677 EXCEPTION_BITMAP,
678 CPU_BASED_VM_EXEC_CONTROL,
679 VM_ENTRY_EXCEPTION_ERROR_CODE,
680 VM_ENTRY_INTR_INFO_FIELD,
681 VM_ENTRY_INSTRUCTION_LEN,
682 VM_ENTRY_EXCEPTION_ERROR_CODE,
683 HOST_FS_BASE,
684 HOST_GS_BASE,
685 HOST_FS_SELECTOR,
686 HOST_GS_SELECTOR
687 };
688 static int max_shadow_read_write_fields =
689 ARRAY_SIZE(shadow_read_write_fields);
690
691 static const unsigned short vmcs_field_to_offset_table[] = {
692 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
693 FIELD(POSTED_INTR_NV, posted_intr_nv),
694 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
702 FIELD(GUEST_INTR_STATUS, guest_intr_status),
703 FIELD(HOST_ES_SELECTOR, host_es_selector),
704 FIELD(HOST_CS_SELECTOR, host_cs_selector),
705 FIELD(HOST_SS_SELECTOR, host_ss_selector),
706 FIELD(HOST_DS_SELECTOR, host_ds_selector),
707 FIELD(HOST_FS_SELECTOR, host_fs_selector),
708 FIELD(HOST_GS_SELECTOR, host_gs_selector),
709 FIELD(HOST_TR_SELECTOR, host_tr_selector),
710 FIELD64(IO_BITMAP_A, io_bitmap_a),
711 FIELD64(IO_BITMAP_B, io_bitmap_b),
712 FIELD64(MSR_BITMAP, msr_bitmap),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716 FIELD64(TSC_OFFSET, tsc_offset),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
719 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
720 FIELD64(EPT_POINTER, ept_pointer),
721 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
725 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
726 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732 FIELD64(GUEST_PDPTR0, guest_pdptr0),
733 FIELD64(GUEST_PDPTR1, guest_pdptr1),
734 FIELD64(GUEST_PDPTR2, guest_pdptr2),
735 FIELD64(GUEST_PDPTR3, guest_pdptr3),
736 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
737 FIELD64(HOST_IA32_PAT, host_ia32_pat),
738 FIELD64(HOST_IA32_EFER, host_ia32_efer),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742 FIELD(EXCEPTION_BITMAP, exception_bitmap),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745 FIELD(CR3_TARGET_COUNT, cr3_target_count),
746 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754 FIELD(TPR_THRESHOLD, tpr_threshold),
755 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757 FIELD(VM_EXIT_REASON, vm_exit_reason),
758 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764 FIELD(GUEST_ES_LIMIT, guest_es_limit),
765 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
786 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
787 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795 FIELD(EXIT_QUALIFICATION, exit_qualification),
796 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797 FIELD(GUEST_CR0, guest_cr0),
798 FIELD(GUEST_CR3, guest_cr3),
799 FIELD(GUEST_CR4, guest_cr4),
800 FIELD(GUEST_ES_BASE, guest_es_base),
801 FIELD(GUEST_CS_BASE, guest_cs_base),
802 FIELD(GUEST_SS_BASE, guest_ss_base),
803 FIELD(GUEST_DS_BASE, guest_ds_base),
804 FIELD(GUEST_FS_BASE, guest_fs_base),
805 FIELD(GUEST_GS_BASE, guest_gs_base),
806 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807 FIELD(GUEST_TR_BASE, guest_tr_base),
808 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810 FIELD(GUEST_DR7, guest_dr7),
811 FIELD(GUEST_RSP, guest_rsp),
812 FIELD(GUEST_RIP, guest_rip),
813 FIELD(GUEST_RFLAGS, guest_rflags),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817 FIELD(HOST_CR0, host_cr0),
818 FIELD(HOST_CR3, host_cr3),
819 FIELD(HOST_CR4, host_cr4),
820 FIELD(HOST_FS_BASE, host_fs_base),
821 FIELD(HOST_GS_BASE, host_gs_base),
822 FIELD(HOST_TR_BASE, host_tr_base),
823 FIELD(HOST_GDTR_BASE, host_gdtr_base),
824 FIELD(HOST_IDTR_BASE, host_idtr_base),
825 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827 FIELD(HOST_RSP, host_rsp),
828 FIELD(HOST_RIP, host_rip),
829 };
830
831 static inline short vmcs_field_to_offset(unsigned long field)
832 {
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836 vmcs_field_to_offset_table[field] == 0)
837 return -ENOENT;
838
839 return vmcs_field_to_offset_table[field];
840 }
841
842 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843 {
844 return to_vmx(vcpu)->nested.current_vmcs12;
845 }
846
847 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848 {
849 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
850 if (is_error_page(page))
851 return NULL;
852
853 return page;
854 }
855
856 static void nested_release_page(struct page *page)
857 {
858 kvm_release_page_dirty(page);
859 }
860
861 static void nested_release_page_clean(struct page *page)
862 {
863 kvm_release_page_clean(page);
864 }
865
866 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
867 static u64 construct_eptp(unsigned long root_hpa);
868 static void kvm_cpu_vmxon(u64 addr);
869 static void kvm_cpu_vmxoff(void);
870 static bool vmx_xsaves_supported(void);
871 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
872 static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg);
874 static void vmx_get_segment(struct kvm_vcpu *vcpu,
875 struct kvm_segment *var, int seg);
876 static bool guest_state_valid(struct kvm_vcpu *vcpu);
877 static u32 vmx_segment_access_rights(struct kvm_segment *var);
878 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
879 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
880 static int alloc_identity_pagetable(struct kvm *kvm);
881
882 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
884 /*
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887 */
888 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
889 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
890
891 /*
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
894 */
895 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
898 static unsigned long *vmx_io_bitmap_a;
899 static unsigned long *vmx_io_bitmap_b;
900 static unsigned long *vmx_msr_bitmap_legacy;
901 static unsigned long *vmx_msr_bitmap_longmode;
902 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
904 static unsigned long *vmx_msr_bitmap_nested;
905 static unsigned long *vmx_vmread_bitmap;
906 static unsigned long *vmx_vmwrite_bitmap;
907
908 static bool cpu_has_load_ia32_efer;
909 static bool cpu_has_load_perf_global_ctrl;
910
911 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912 static DEFINE_SPINLOCK(vmx_vpid_lock);
913
914 static struct vmcs_config {
915 int size;
916 int order;
917 u32 revision_id;
918 u32 pin_based_exec_ctrl;
919 u32 cpu_based_exec_ctrl;
920 u32 cpu_based_2nd_exec_ctrl;
921 u32 vmexit_ctrl;
922 u32 vmentry_ctrl;
923 } vmcs_config;
924
925 static struct vmx_capability {
926 u32 ept;
927 u32 vpid;
928 } vmx_capability;
929
930 #define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
936 }
937
938 static const struct kvm_vmx_segment_field {
939 unsigned selector;
940 unsigned base;
941 unsigned limit;
942 unsigned ar_bytes;
943 } kvm_vmx_segment_fields[] = {
944 VMX_SEGMENT_FIELD(CS),
945 VMX_SEGMENT_FIELD(DS),
946 VMX_SEGMENT_FIELD(ES),
947 VMX_SEGMENT_FIELD(FS),
948 VMX_SEGMENT_FIELD(GS),
949 VMX_SEGMENT_FIELD(SS),
950 VMX_SEGMENT_FIELD(TR),
951 VMX_SEGMENT_FIELD(LDTR),
952 };
953
954 static u64 host_efer;
955
956 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
958 /*
959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
960 * away by decrementing the array size.
961 */
962 static const u32 vmx_msr_index[] = {
963 #ifdef CONFIG_X86_64
964 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
965 #endif
966 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
967 };
968
969 static inline bool is_exception_n(u32 intr_info, u8 vector)
970 {
971 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972 INTR_INFO_VALID_MASK)) ==
973 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974 }
975
976 static inline bool is_debug(u32 intr_info)
977 {
978 return is_exception_n(intr_info, DB_VECTOR);
979 }
980
981 static inline bool is_breakpoint(u32 intr_info)
982 {
983 return is_exception_n(intr_info, BP_VECTOR);
984 }
985
986 static inline bool is_page_fault(u32 intr_info)
987 {
988 return is_exception_n(intr_info, PF_VECTOR);
989 }
990
991 static inline bool is_no_device(u32 intr_info)
992 {
993 return is_exception_n(intr_info, NM_VECTOR);
994 }
995
996 static inline bool is_invalid_opcode(u32 intr_info)
997 {
998 return is_exception_n(intr_info, UD_VECTOR);
999 }
1000
1001 static inline bool is_external_interrupt(u32 intr_info)
1002 {
1003 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005 }
1006
1007 static inline bool is_machine_check(u32 intr_info)
1008 {
1009 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010 INTR_INFO_VALID_MASK)) ==
1011 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012 }
1013
1014 static inline bool cpu_has_vmx_msr_bitmap(void)
1015 {
1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1017 }
1018
1019 static inline bool cpu_has_vmx_tpr_shadow(void)
1020 {
1021 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1022 }
1023
1024 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1025 {
1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1027 }
1028
1029 static inline bool cpu_has_secondary_exec_ctrls(void)
1030 {
1031 return vmcs_config.cpu_based_exec_ctrl &
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1033 }
1034
1035 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1036 {
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039 }
1040
1041 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042 {
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045 }
1046
1047 static inline bool cpu_has_vmx_apic_register_virt(void)
1048 {
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051 }
1052
1053 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054 {
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057 }
1058
1059 static inline bool cpu_has_vmx_posted_intr(void)
1060 {
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1063 }
1064
1065 static inline bool cpu_has_vmx_apicv(void)
1066 {
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1070 }
1071
1072 static inline bool cpu_has_vmx_flexpriority(void)
1073 {
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
1076 }
1077
1078 static inline bool cpu_has_vmx_ept_execute_only(void)
1079 {
1080 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1081 }
1082
1083 static inline bool cpu_has_vmx_ept_2m_page(void)
1084 {
1085 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1086 }
1087
1088 static inline bool cpu_has_vmx_ept_1g_page(void)
1089 {
1090 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1091 }
1092
1093 static inline bool cpu_has_vmx_ept_4levels(void)
1094 {
1095 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096 }
1097
1098 static inline bool cpu_has_vmx_ept_ad_bits(void)
1099 {
1100 return vmx_capability.ept & VMX_EPT_AD_BIT;
1101 }
1102
1103 static inline bool cpu_has_vmx_invept_context(void)
1104 {
1105 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1106 }
1107
1108 static inline bool cpu_has_vmx_invept_global(void)
1109 {
1110 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1111 }
1112
1113 static inline bool cpu_has_vmx_invvpid_single(void)
1114 {
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116 }
1117
1118 static inline bool cpu_has_vmx_invvpid_global(void)
1119 {
1120 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121 }
1122
1123 static inline bool cpu_has_vmx_ept(void)
1124 {
1125 return vmcs_config.cpu_based_2nd_exec_ctrl &
1126 SECONDARY_EXEC_ENABLE_EPT;
1127 }
1128
1129 static inline bool cpu_has_vmx_unrestricted_guest(void)
1130 {
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133 }
1134
1135 static inline bool cpu_has_vmx_ple(void)
1136 {
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139 }
1140
1141 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1142 {
1143 return flexpriority_enabled && lapic_in_kernel(vcpu);
1144 }
1145
1146 static inline bool cpu_has_vmx_vpid(void)
1147 {
1148 return vmcs_config.cpu_based_2nd_exec_ctrl &
1149 SECONDARY_EXEC_ENABLE_VPID;
1150 }
1151
1152 static inline bool cpu_has_vmx_rdtscp(void)
1153 {
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_RDTSCP;
1156 }
1157
1158 static inline bool cpu_has_vmx_invpcid(void)
1159 {
1160 return vmcs_config.cpu_based_2nd_exec_ctrl &
1161 SECONDARY_EXEC_ENABLE_INVPCID;
1162 }
1163
1164 static inline bool cpu_has_virtual_nmis(void)
1165 {
1166 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167 }
1168
1169 static inline bool cpu_has_vmx_wbinvd_exit(void)
1170 {
1171 return vmcs_config.cpu_based_2nd_exec_ctrl &
1172 SECONDARY_EXEC_WBINVD_EXITING;
1173 }
1174
1175 static inline bool cpu_has_vmx_shadow_vmcs(void)
1176 {
1177 u64 vmx_msr;
1178 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181 return false;
1182
1183 return vmcs_config.cpu_based_2nd_exec_ctrl &
1184 SECONDARY_EXEC_SHADOW_VMCS;
1185 }
1186
1187 static inline bool cpu_has_vmx_pml(void)
1188 {
1189 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190 }
1191
1192 static inline bool cpu_has_vmx_tsc_scaling(void)
1193 {
1194 return vmcs_config.cpu_based_2nd_exec_ctrl &
1195 SECONDARY_EXEC_TSC_SCALING;
1196 }
1197
1198 static inline bool report_flexpriority(void)
1199 {
1200 return flexpriority_enabled;
1201 }
1202
1203 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204 {
1205 return vmcs12->cpu_based_vm_exec_control & bit;
1206 }
1207
1208 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209 {
1210 return (vmcs12->cpu_based_vm_exec_control &
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212 (vmcs12->secondary_vm_exec_control & bit);
1213 }
1214
1215 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1216 {
1217 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218 }
1219
1220 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221 {
1222 return vmcs12->pin_based_vm_exec_control &
1223 PIN_BASED_VMX_PREEMPTION_TIMER;
1224 }
1225
1226 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227 {
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229 }
1230
1231 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232 {
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234 vmx_xsaves_supported();
1235 }
1236
1237 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238 {
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240 }
1241
1242 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243 {
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245 }
1246
1247 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248 {
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250 }
1251
1252 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253 {
1254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255 }
1256
1257 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258 {
1259 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260 }
1261
1262 static inline bool is_exception(u32 intr_info)
1263 {
1264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266 }
1267
1268 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269 u32 exit_intr_info,
1270 unsigned long exit_qualification);
1271 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272 struct vmcs12 *vmcs12,
1273 u32 reason, unsigned long qualification);
1274
1275 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1276 {
1277 int i;
1278
1279 for (i = 0; i < vmx->nmsrs; ++i)
1280 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1281 return i;
1282 return -1;
1283 }
1284
1285 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286 {
1287 struct {
1288 u64 vpid : 16;
1289 u64 rsvd : 48;
1290 u64 gva;
1291 } operand = { vpid, 0, gva };
1292
1293 asm volatile (__ex(ASM_VMX_INVVPID)
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand), "c"(ext) : "cc", "memory");
1297 }
1298
1299 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300 {
1301 struct {
1302 u64 eptp, gpa;
1303 } operand = {eptp, gpa};
1304
1305 asm volatile (__ex(ASM_VMX_INVEPT)
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand), "c" (ext) : "cc", "memory");
1309 }
1310
1311 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1312 {
1313 int i;
1314
1315 i = __find_msr_index(vmx, msr);
1316 if (i >= 0)
1317 return &vmx->guest_msrs[i];
1318 return NULL;
1319 }
1320
1321 static void vmcs_clear(struct vmcs *vmcs)
1322 {
1323 u64 phys_addr = __pa(vmcs);
1324 u8 error;
1325
1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1327 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1328 : "cc", "memory");
1329 if (error)
1330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331 vmcs, phys_addr);
1332 }
1333
1334 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335 {
1336 vmcs_clear(loaded_vmcs->vmcs);
1337 loaded_vmcs->cpu = -1;
1338 loaded_vmcs->launched = 0;
1339 }
1340
1341 static void vmcs_load(struct vmcs *vmcs)
1342 {
1343 u64 phys_addr = __pa(vmcs);
1344 u8 error;
1345
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1347 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1348 : "cc", "memory");
1349 if (error)
1350 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1351 vmcs, phys_addr);
1352 }
1353
1354 #ifdef CONFIG_KEXEC_CORE
1355 /*
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1358 * default.
1359 */
1360 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362 static inline void crash_enable_local_vmclear(int cpu)
1363 {
1364 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365 }
1366
1367 static inline void crash_disable_local_vmclear(int cpu)
1368 {
1369 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370 }
1371
1372 static inline int crash_local_vmclear_enabled(int cpu)
1373 {
1374 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375 }
1376
1377 static void crash_vmclear_local_loaded_vmcss(void)
1378 {
1379 int cpu = raw_smp_processor_id();
1380 struct loaded_vmcs *v;
1381
1382 if (!crash_local_vmclear_enabled(cpu))
1383 return;
1384
1385 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386 loaded_vmcss_on_cpu_link)
1387 vmcs_clear(v->vmcs);
1388 }
1389 #else
1390 static inline void crash_enable_local_vmclear(int cpu) { }
1391 static inline void crash_disable_local_vmclear(int cpu) { }
1392 #endif /* CONFIG_KEXEC_CORE */
1393
1394 static void __loaded_vmcs_clear(void *arg)
1395 {
1396 struct loaded_vmcs *loaded_vmcs = arg;
1397 int cpu = raw_smp_processor_id();
1398
1399 if (loaded_vmcs->cpu != cpu)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1402 per_cpu(current_vmcs, cpu) = NULL;
1403 crash_disable_local_vmclear(cpu);
1404 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1405
1406 /*
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1411 */
1412 smp_wmb();
1413
1414 loaded_vmcs_init(loaded_vmcs);
1415 crash_enable_local_vmclear(cpu);
1416 }
1417
1418 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1419 {
1420 int cpu = loaded_vmcs->cpu;
1421
1422 if (cpu != -1)
1423 smp_call_function_single(cpu,
1424 __loaded_vmcs_clear, loaded_vmcs, 1);
1425 }
1426
1427 static inline void vpid_sync_vcpu_single(int vpid)
1428 {
1429 if (vpid == 0)
1430 return;
1431
1432 if (cpu_has_vmx_invvpid_single())
1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1434 }
1435
1436 static inline void vpid_sync_vcpu_global(void)
1437 {
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440 }
1441
1442 static inline void vpid_sync_context(int vpid)
1443 {
1444 if (cpu_has_vmx_invvpid_single())
1445 vpid_sync_vcpu_single(vpid);
1446 else
1447 vpid_sync_vcpu_global();
1448 }
1449
1450 static inline void ept_sync_global(void)
1451 {
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454 }
1455
1456 static inline void ept_sync_context(u64 eptp)
1457 {
1458 if (enable_ept) {
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461 else
1462 ept_sync_global();
1463 }
1464 }
1465
1466 static __always_inline void vmcs_check16(unsigned long field)
1467 {
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1476 }
1477
1478 static __always_inline void vmcs_check32(unsigned long field)
1479 {
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1484 }
1485
1486 static __always_inline void vmcs_check64(unsigned long field)
1487 {
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1496 }
1497
1498 static __always_inline void vmcs_checkl(unsigned long field)
1499 {
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1508 }
1509
1510 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1511 {
1512 unsigned long value;
1513
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515 : "=a"(value) : "d"(field) : "cc");
1516 return value;
1517 }
1518
1519 static __always_inline u16 vmcs_read16(unsigned long field)
1520 {
1521 vmcs_check16(field);
1522 return __vmcs_readl(field);
1523 }
1524
1525 static __always_inline u32 vmcs_read32(unsigned long field)
1526 {
1527 vmcs_check32(field);
1528 return __vmcs_readl(field);
1529 }
1530
1531 static __always_inline u64 vmcs_read64(unsigned long field)
1532 {
1533 vmcs_check64(field);
1534 #ifdef CONFIG_X86_64
1535 return __vmcs_readl(field);
1536 #else
1537 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1538 #endif
1539 }
1540
1541 static __always_inline unsigned long vmcs_readl(unsigned long field)
1542 {
1543 vmcs_checkl(field);
1544 return __vmcs_readl(field);
1545 }
1546
1547 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548 {
1549 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551 dump_stack();
1552 }
1553
1554 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1555 {
1556 u8 error;
1557
1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1559 : "=q"(error) : "a"(value), "d"(field) : "cc");
1560 if (unlikely(error))
1561 vmwrite_error(field, value);
1562 }
1563
1564 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1565 {
1566 vmcs_check16(field);
1567 __vmcs_writel(field, value);
1568 }
1569
1570 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1571 {
1572 vmcs_check32(field);
1573 __vmcs_writel(field, value);
1574 }
1575
1576 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1577 {
1578 vmcs_check64(field);
1579 __vmcs_writel(field, value);
1580 #ifndef CONFIG_X86_64
1581 asm volatile ("");
1582 __vmcs_writel(field+1, value >> 32);
1583 #endif
1584 }
1585
1586 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1587 {
1588 vmcs_checkl(field);
1589 __vmcs_writel(field, value);
1590 }
1591
1592 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1593 {
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1597 }
1598
1599 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1600 {
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field, __vmcs_readl(field) | mask);
1604 }
1605
1606 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607 {
1608 vmcs_write32(VM_ENTRY_CONTROLS, val);
1609 vmx->vm_entry_controls_shadow = val;
1610 }
1611
1612 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613 {
1614 if (vmx->vm_entry_controls_shadow != val)
1615 vm_entry_controls_init(vmx, val);
1616 }
1617
1618 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619 {
1620 return vmx->vm_entry_controls_shadow;
1621 }
1622
1623
1624 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625 {
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627 }
1628
1629 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630 {
1631 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632 }
1633
1634 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635 {
1636 vmcs_write32(VM_EXIT_CONTROLS, val);
1637 vmx->vm_exit_controls_shadow = val;
1638 }
1639
1640 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641 {
1642 if (vmx->vm_exit_controls_shadow != val)
1643 vm_exit_controls_init(vmx, val);
1644 }
1645
1646 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647 {
1648 return vmx->vm_exit_controls_shadow;
1649 }
1650
1651
1652 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653 {
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655 }
1656
1657 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658 {
1659 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660 }
1661
1662 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663 {
1664 vmx->segment_cache.bitmask = 0;
1665 }
1666
1667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668 unsigned field)
1669 {
1670 bool ret;
1671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675 vmx->segment_cache.bitmask = 0;
1676 }
1677 ret = vmx->segment_cache.bitmask & mask;
1678 vmx->segment_cache.bitmask |= mask;
1679 return ret;
1680 }
1681
1682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683 {
1684 u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688 return *p;
1689 }
1690
1691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692 {
1693 ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697 return *p;
1698 }
1699
1700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701 {
1702 u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706 return *p;
1707 }
1708
1709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710 {
1711 u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715 return *p;
1716 }
1717
1718 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719 {
1720 u32 eb;
1721
1722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1723 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1724 if ((vcpu->guest_debug &
1725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727 eb |= 1u << BP_VECTOR;
1728 if (to_vmx(vcpu)->rmode.vm86_active)
1729 eb = ~0;
1730 if (enable_ept)
1731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1732 if (vcpu->fpu_active)
1733 eb &= ~(1u << NM_VECTOR);
1734
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1739 */
1740 if (is_guest_mode(vcpu))
1741 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
1743 vmcs_write32(EXCEPTION_BITMAP, eb);
1744 }
1745
1746 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747 unsigned long entry, unsigned long exit)
1748 {
1749 vm_entry_controls_clearbit(vmx, entry);
1750 vm_exit_controls_clearbit(vmx, exit);
1751 }
1752
1753 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754 {
1755 unsigned i;
1756 struct msr_autoload *m = &vmx->msr_autoload;
1757
1758 switch (msr) {
1759 case MSR_EFER:
1760 if (cpu_has_load_ia32_efer) {
1761 clear_atomic_switch_msr_special(vmx,
1762 VM_ENTRY_LOAD_IA32_EFER,
1763 VM_EXIT_LOAD_IA32_EFER);
1764 return;
1765 }
1766 break;
1767 case MSR_CORE_PERF_GLOBAL_CTRL:
1768 if (cpu_has_load_perf_global_ctrl) {
1769 clear_atomic_switch_msr_special(vmx,
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772 return;
1773 }
1774 break;
1775 }
1776
1777 for (i = 0; i < m->nr; ++i)
1778 if (m->guest[i].index == msr)
1779 break;
1780
1781 if (i == m->nr)
1782 return;
1783 --m->nr;
1784 m->guest[i] = m->guest[m->nr];
1785 m->host[i] = m->host[m->nr];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788 }
1789
1790 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791 unsigned long entry, unsigned long exit,
1792 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793 u64 guest_val, u64 host_val)
1794 {
1795 vmcs_write64(guest_val_vmcs, guest_val);
1796 vmcs_write64(host_val_vmcs, host_val);
1797 vm_entry_controls_setbit(vmx, entry);
1798 vm_exit_controls_setbit(vmx, exit);
1799 }
1800
1801 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802 u64 guest_val, u64 host_val)
1803 {
1804 unsigned i;
1805 struct msr_autoload *m = &vmx->msr_autoload;
1806
1807 switch (msr) {
1808 case MSR_EFER:
1809 if (cpu_has_load_ia32_efer) {
1810 add_atomic_switch_msr_special(vmx,
1811 VM_ENTRY_LOAD_IA32_EFER,
1812 VM_EXIT_LOAD_IA32_EFER,
1813 GUEST_IA32_EFER,
1814 HOST_IA32_EFER,
1815 guest_val, host_val);
1816 return;
1817 }
1818 break;
1819 case MSR_CORE_PERF_GLOBAL_CTRL:
1820 if (cpu_has_load_perf_global_ctrl) {
1821 add_atomic_switch_msr_special(vmx,
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824 GUEST_IA32_PERF_GLOBAL_CTRL,
1825 HOST_IA32_PERF_GLOBAL_CTRL,
1826 guest_val, host_val);
1827 return;
1828 }
1829 break;
1830 case MSR_IA32_PEBS_ENABLE:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1834 * guest's memory.
1835 */
1836 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1837 }
1838
1839 for (i = 0; i < m->nr; ++i)
1840 if (m->guest[i].index == msr)
1841 break;
1842
1843 if (i == NR_AUTOLOAD_MSRS) {
1844 printk_once(KERN_WARNING "Not enough msr switch entries. "
1845 "Can't add msr %x\n", msr);
1846 return;
1847 } else if (i == m->nr) {
1848 ++m->nr;
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851 }
1852
1853 m->guest[i].index = msr;
1854 m->guest[i].value = guest_val;
1855 m->host[i].index = msr;
1856 m->host[i].value = host_val;
1857 }
1858
1859 static void reload_tss(void)
1860 {
1861 /*
1862 * VT restores TR but not its size. Useless.
1863 */
1864 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1865 struct desc_struct *descs;
1866
1867 descs = (void *)gdt->address;
1868 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869 load_TR_desc();
1870 }
1871
1872 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1873 {
1874 u64 guest_efer = vmx->vcpu.arch.efer;
1875 u64 ignore_bits = 0;
1876
1877 if (!enable_ept) {
1878 /*
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1882 */
1883 if (boot_cpu_has(X86_FEATURE_SMEP))
1884 guest_efer |= EFER_NX;
1885 else if (!(guest_efer & EFER_NX))
1886 ignore_bits |= EFER_NX;
1887 }
1888
1889 /*
1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1891 */
1892 ignore_bits |= EFER_SCE;
1893 #ifdef CONFIG_X86_64
1894 ignore_bits |= EFER_LMA | EFER_LME;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer & EFER_LMA)
1897 ignore_bits &= ~(u64)EFER_SCE;
1898 #endif
1899
1900 clear_atomic_switch_msr(vmx, MSR_EFER);
1901
1902 /*
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1906 */
1907 if (cpu_has_load_ia32_efer ||
1908 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1909 if (!(guest_efer & EFER_LMA))
1910 guest_efer &= ~EFER_LME;
1911 if (guest_efer != host_efer)
1912 add_atomic_switch_msr(vmx, MSR_EFER,
1913 guest_efer, host_efer);
1914 return false;
1915 } else {
1916 guest_efer &= ~ignore_bits;
1917 guest_efer |= host_efer & ignore_bits;
1918
1919 vmx->guest_msrs[efer_offset].data = guest_efer;
1920 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1921
1922 return true;
1923 }
1924 }
1925
1926 static unsigned long segment_base(u16 selector)
1927 {
1928 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1929 struct desc_struct *d;
1930 unsigned long table_base;
1931 unsigned long v;
1932
1933 if (!(selector & ~3))
1934 return 0;
1935
1936 table_base = gdt->address;
1937
1938 if (selector & 4) { /* from ldt */
1939 u16 ldt_selector = kvm_read_ldt();
1940
1941 if (!(ldt_selector & ~3))
1942 return 0;
1943
1944 table_base = segment_base(ldt_selector);
1945 }
1946 d = (struct desc_struct *)(table_base + (selector & ~7));
1947 v = get_desc_base(d);
1948 #ifdef CONFIG_X86_64
1949 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951 #endif
1952 return v;
1953 }
1954
1955 static inline unsigned long kvm_read_tr_base(void)
1956 {
1957 u16 tr;
1958 asm("str %0" : "=g"(tr));
1959 return segment_base(tr);
1960 }
1961
1962 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1963 {
1964 struct vcpu_vmx *vmx = to_vmx(vcpu);
1965 int i;
1966
1967 if (vmx->host_state.loaded)
1968 return;
1969
1970 vmx->host_state.loaded = 1;
1971 /*
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1974 */
1975 vmx->host_state.ldt_sel = kvm_read_ldt();
1976 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1977 savesegment(fs, vmx->host_state.fs_sel);
1978 if (!(vmx->host_state.fs_sel & 7)) {
1979 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1980 vmx->host_state.fs_reload_needed = 0;
1981 } else {
1982 vmcs_write16(HOST_FS_SELECTOR, 0);
1983 vmx->host_state.fs_reload_needed = 1;
1984 }
1985 savesegment(gs, vmx->host_state.gs_sel);
1986 if (!(vmx->host_state.gs_sel & 7))
1987 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1988 else {
1989 vmcs_write16(HOST_GS_SELECTOR, 0);
1990 vmx->host_state.gs_ldt_reload_needed = 1;
1991 }
1992
1993 #ifdef CONFIG_X86_64
1994 savesegment(ds, vmx->host_state.ds_sel);
1995 savesegment(es, vmx->host_state.es_sel);
1996 #endif
1997
1998 #ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001 #else
2002 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2004 #endif
2005
2006 #ifdef CONFIG_X86_64
2007 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008 if (is_long_mode(&vmx->vcpu))
2009 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2010 #endif
2011 if (boot_cpu_has(X86_FEATURE_MPX))
2012 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2013 for (i = 0; i < vmx->save_nmsrs; ++i)
2014 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2015 vmx->guest_msrs[i].data,
2016 vmx->guest_msrs[i].mask);
2017 }
2018
2019 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2020 {
2021 if (!vmx->host_state.loaded)
2022 return;
2023
2024 ++vmx->vcpu.stat.host_state_reload;
2025 vmx->host_state.loaded = 0;
2026 #ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx->vcpu))
2028 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029 #endif
2030 if (vmx->host_state.gs_ldt_reload_needed) {
2031 kvm_load_ldt(vmx->host_state.ldt_sel);
2032 #ifdef CONFIG_X86_64
2033 load_gs_index(vmx->host_state.gs_sel);
2034 #else
2035 loadsegment(gs, vmx->host_state.gs_sel);
2036 #endif
2037 }
2038 if (vmx->host_state.fs_reload_needed)
2039 loadsegment(fs, vmx->host_state.fs_sel);
2040 #ifdef CONFIG_X86_64
2041 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042 loadsegment(ds, vmx->host_state.ds_sel);
2043 loadsegment(es, vmx->host_state.es_sel);
2044 }
2045 #endif
2046 reload_tss();
2047 #ifdef CONFIG_X86_64
2048 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2049 #endif
2050 if (vmx->host_state.msr_host_bndcfgs)
2051 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2052 /*
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2055 */
2056 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2057 stts();
2058 load_gdt(this_cpu_ptr(&host_gdt));
2059 }
2060
2061 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062 {
2063 preempt_disable();
2064 __vmx_load_host_state(vmx);
2065 preempt_enable();
2066 }
2067
2068 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069 {
2070 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071 struct pi_desc old, new;
2072 unsigned int dest;
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2076 !kvm_vcpu_apicv_active(vcpu))
2077 return;
2078
2079 do {
2080 old.control = new.control = pi_desc->control;
2081
2082 /*
2083 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2084 * are two possible cases:
2085 * 1. After running 'pre_block', context switch
2086 * happened. For this case, 'sn' was set in
2087 * vmx_vcpu_put(), so we need to clear it here.
2088 * 2. After running 'pre_block', we were blocked,
2089 * and woken up by some other guy. For this case,
2090 * we don't need to do anything, 'pi_post_block'
2091 * will do everything for us. However, we cannot
2092 * check whether it is case #1 or case #2 here
2093 * (maybe, not needed), so we also clear sn here,
2094 * I think it is not a big deal.
2095 */
2096 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2097 if (vcpu->cpu != cpu) {
2098 dest = cpu_physical_id(cpu);
2099
2100 if (x2apic_enabled())
2101 new.ndst = dest;
2102 else
2103 new.ndst = (dest << 8) & 0xFF00;
2104 }
2105
2106 /* set 'NV' to 'notification vector' */
2107 new.nv = POSTED_INTR_VECTOR;
2108 }
2109
2110 /* Allow posting non-urgent interrupts */
2111 new.sn = 0;
2112 } while (cmpxchg(&pi_desc->control, old.control,
2113 new.control) != old.control);
2114 }
2115
2116 /*
2117 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2118 * vcpu mutex is already taken.
2119 */
2120 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2121 {
2122 struct vcpu_vmx *vmx = to_vmx(vcpu);
2123 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2124
2125 if (!vmm_exclusive)
2126 kvm_cpu_vmxon(phys_addr);
2127 else if (vmx->loaded_vmcs->cpu != cpu)
2128 loaded_vmcs_clear(vmx->loaded_vmcs);
2129
2130 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2131 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2132 vmcs_load(vmx->loaded_vmcs->vmcs);
2133 }
2134
2135 if (vmx->loaded_vmcs->cpu != cpu) {
2136 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2137 unsigned long sysenter_esp;
2138
2139 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2140 local_irq_disable();
2141 crash_disable_local_vmclear(cpu);
2142
2143 /*
2144 * Read loaded_vmcs->cpu should be before fetching
2145 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2146 * See the comments in __loaded_vmcs_clear().
2147 */
2148 smp_rmb();
2149
2150 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2151 &per_cpu(loaded_vmcss_on_cpu, cpu));
2152 crash_enable_local_vmclear(cpu);
2153 local_irq_enable();
2154
2155 /*
2156 * Linux uses per-cpu TSS and GDT, so set these when switching
2157 * processors.
2158 */
2159 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2160 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2161
2162 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2163 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2164
2165 vmx->loaded_vmcs->cpu = cpu;
2166 }
2167
2168 /* Setup TSC multiplier */
2169 if (kvm_has_tsc_control &&
2170 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2171 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2172 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2173 }
2174
2175 vmx_vcpu_pi_load(vcpu, cpu);
2176 vmx->host_pkru = read_pkru();
2177 }
2178
2179 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2180 {
2181 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2182
2183 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2184 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2185 !kvm_vcpu_apicv_active(vcpu))
2186 return;
2187
2188 /* Set SN when the vCPU is preempted */
2189 if (vcpu->preempted)
2190 pi_set_sn(pi_desc);
2191 }
2192
2193 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2194 {
2195 vmx_vcpu_pi_put(vcpu);
2196
2197 __vmx_load_host_state(to_vmx(vcpu));
2198 if (!vmm_exclusive) {
2199 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2200 vcpu->cpu = -1;
2201 kvm_cpu_vmxoff();
2202 }
2203 }
2204
2205 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2206 {
2207 ulong cr0;
2208
2209 if (vcpu->fpu_active)
2210 return;
2211 vcpu->fpu_active = 1;
2212 cr0 = vmcs_readl(GUEST_CR0);
2213 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2214 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2215 vmcs_writel(GUEST_CR0, cr0);
2216 update_exception_bitmap(vcpu);
2217 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2218 if (is_guest_mode(vcpu))
2219 vcpu->arch.cr0_guest_owned_bits &=
2220 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2221 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2222 }
2223
2224 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2225
2226 /*
2227 * Return the cr0 value that a nested guest would read. This is a combination
2228 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2229 * its hypervisor (cr0_read_shadow).
2230 */
2231 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2232 {
2233 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2234 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2235 }
2236 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2237 {
2238 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2239 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2240 }
2241
2242 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2243 {
2244 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2245 * set this *before* calling this function.
2246 */
2247 vmx_decache_cr0_guest_bits(vcpu);
2248 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2249 update_exception_bitmap(vcpu);
2250 vcpu->arch.cr0_guest_owned_bits = 0;
2251 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2252 if (is_guest_mode(vcpu)) {
2253 /*
2254 * L1's specified read shadow might not contain the TS bit,
2255 * so now that we turned on shadowing of this bit, we need to
2256 * set this bit of the shadow. Like in nested_vmx_run we need
2257 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2258 * up-to-date here because we just decached cr0.TS (and we'll
2259 * only update vmcs12->guest_cr0 on nested exit).
2260 */
2261 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2262 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2263 (vcpu->arch.cr0 & X86_CR0_TS);
2264 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2265 } else
2266 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2267 }
2268
2269 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2270 {
2271 unsigned long rflags, save_rflags;
2272
2273 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2274 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2275 rflags = vmcs_readl(GUEST_RFLAGS);
2276 if (to_vmx(vcpu)->rmode.vm86_active) {
2277 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2278 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2279 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2280 }
2281 to_vmx(vcpu)->rflags = rflags;
2282 }
2283 return to_vmx(vcpu)->rflags;
2284 }
2285
2286 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2287 {
2288 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2289 to_vmx(vcpu)->rflags = rflags;
2290 if (to_vmx(vcpu)->rmode.vm86_active) {
2291 to_vmx(vcpu)->rmode.save_rflags = rflags;
2292 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2293 }
2294 vmcs_writel(GUEST_RFLAGS, rflags);
2295 }
2296
2297 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2298 {
2299 return to_vmx(vcpu)->guest_pkru;
2300 }
2301
2302 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2303 {
2304 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2305 int ret = 0;
2306
2307 if (interruptibility & GUEST_INTR_STATE_STI)
2308 ret |= KVM_X86_SHADOW_INT_STI;
2309 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2310 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2311
2312 return ret;
2313 }
2314
2315 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2316 {
2317 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2318 u32 interruptibility = interruptibility_old;
2319
2320 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2321
2322 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2323 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2324 else if (mask & KVM_X86_SHADOW_INT_STI)
2325 interruptibility |= GUEST_INTR_STATE_STI;
2326
2327 if ((interruptibility != interruptibility_old))
2328 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2329 }
2330
2331 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2332 {
2333 unsigned long rip;
2334
2335 rip = kvm_rip_read(vcpu);
2336 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2337 kvm_rip_write(vcpu, rip);
2338
2339 /* skipping an emulated instruction also counts */
2340 vmx_set_interrupt_shadow(vcpu, 0);
2341 }
2342
2343 /*
2344 * KVM wants to inject page-faults which it got to the guest. This function
2345 * checks whether in a nested guest, we need to inject them to L1 or L2.
2346 */
2347 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2348 {
2349 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2350
2351 if (!(vmcs12->exception_bitmap & (1u << nr)))
2352 return 0;
2353
2354 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2355 vmcs_read32(VM_EXIT_INTR_INFO),
2356 vmcs_readl(EXIT_QUALIFICATION));
2357 return 1;
2358 }
2359
2360 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2361 bool has_error_code, u32 error_code,
2362 bool reinject)
2363 {
2364 struct vcpu_vmx *vmx = to_vmx(vcpu);
2365 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2366
2367 if (!reinject && is_guest_mode(vcpu) &&
2368 nested_vmx_check_exception(vcpu, nr))
2369 return;
2370
2371 if (has_error_code) {
2372 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2373 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2374 }
2375
2376 if (vmx->rmode.vm86_active) {
2377 int inc_eip = 0;
2378 if (kvm_exception_is_soft(nr))
2379 inc_eip = vcpu->arch.event_exit_inst_len;
2380 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2381 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2382 return;
2383 }
2384
2385 if (kvm_exception_is_soft(nr)) {
2386 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2387 vmx->vcpu.arch.event_exit_inst_len);
2388 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2389 } else
2390 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2391
2392 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2393 }
2394
2395 static bool vmx_rdtscp_supported(void)
2396 {
2397 return cpu_has_vmx_rdtscp();
2398 }
2399
2400 static bool vmx_invpcid_supported(void)
2401 {
2402 return cpu_has_vmx_invpcid() && enable_ept;
2403 }
2404
2405 /*
2406 * Swap MSR entry in host/guest MSR entry array.
2407 */
2408 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2409 {
2410 struct shared_msr_entry tmp;
2411
2412 tmp = vmx->guest_msrs[to];
2413 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2414 vmx->guest_msrs[from] = tmp;
2415 }
2416
2417 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2418 {
2419 unsigned long *msr_bitmap;
2420
2421 if (is_guest_mode(vcpu))
2422 msr_bitmap = vmx_msr_bitmap_nested;
2423 else if (cpu_has_secondary_exec_ctrls() &&
2424 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2425 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2426 if (is_long_mode(vcpu))
2427 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2428 else
2429 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2430 } else {
2431 if (is_long_mode(vcpu))
2432 msr_bitmap = vmx_msr_bitmap_longmode;
2433 else
2434 msr_bitmap = vmx_msr_bitmap_legacy;
2435 }
2436
2437 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2438 }
2439
2440 /*
2441 * Set up the vmcs to automatically save and restore system
2442 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2443 * mode, as fiddling with msrs is very expensive.
2444 */
2445 static void setup_msrs(struct vcpu_vmx *vmx)
2446 {
2447 int save_nmsrs, index;
2448
2449 save_nmsrs = 0;
2450 #ifdef CONFIG_X86_64
2451 if (is_long_mode(&vmx->vcpu)) {
2452 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2453 if (index >= 0)
2454 move_msr_up(vmx, index, save_nmsrs++);
2455 index = __find_msr_index(vmx, MSR_LSTAR);
2456 if (index >= 0)
2457 move_msr_up(vmx, index, save_nmsrs++);
2458 index = __find_msr_index(vmx, MSR_CSTAR);
2459 if (index >= 0)
2460 move_msr_up(vmx, index, save_nmsrs++);
2461 index = __find_msr_index(vmx, MSR_TSC_AUX);
2462 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2463 move_msr_up(vmx, index, save_nmsrs++);
2464 /*
2465 * MSR_STAR is only needed on long mode guests, and only
2466 * if efer.sce is enabled.
2467 */
2468 index = __find_msr_index(vmx, MSR_STAR);
2469 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2470 move_msr_up(vmx, index, save_nmsrs++);
2471 }
2472 #endif
2473 index = __find_msr_index(vmx, MSR_EFER);
2474 if (index >= 0 && update_transition_efer(vmx, index))
2475 move_msr_up(vmx, index, save_nmsrs++);
2476
2477 vmx->save_nmsrs = save_nmsrs;
2478
2479 if (cpu_has_vmx_msr_bitmap())
2480 vmx_set_msr_bitmap(&vmx->vcpu);
2481 }
2482
2483 /*
2484 * reads and returns guest's timestamp counter "register"
2485 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2486 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2487 */
2488 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2489 {
2490 u64 host_tsc, tsc_offset;
2491
2492 host_tsc = rdtsc();
2493 tsc_offset = vmcs_read64(TSC_OFFSET);
2494 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2495 }
2496
2497 /*
2498 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2499 * counter, even if a nested guest (L2) is currently running.
2500 */
2501 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2502 {
2503 u64 tsc_offset;
2504
2505 tsc_offset = is_guest_mode(vcpu) ?
2506 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2507 vmcs_read64(TSC_OFFSET);
2508 return host_tsc + tsc_offset;
2509 }
2510
2511 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2512 {
2513 return vmcs_read64(TSC_OFFSET);
2514 }
2515
2516 /*
2517 * writes 'offset' into guest's timestamp counter offset register
2518 */
2519 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2520 {
2521 if (is_guest_mode(vcpu)) {
2522 /*
2523 * We're here if L1 chose not to trap WRMSR to TSC. According
2524 * to the spec, this should set L1's TSC; The offset that L1
2525 * set for L2 remains unchanged, and still needs to be added
2526 * to the newly set TSC to get L2's TSC.
2527 */
2528 struct vmcs12 *vmcs12;
2529 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2530 /* recalculate vmcs02.TSC_OFFSET: */
2531 vmcs12 = get_vmcs12(vcpu);
2532 vmcs_write64(TSC_OFFSET, offset +
2533 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2534 vmcs12->tsc_offset : 0));
2535 } else {
2536 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2537 vmcs_read64(TSC_OFFSET), offset);
2538 vmcs_write64(TSC_OFFSET, offset);
2539 }
2540 }
2541
2542 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2543 {
2544 u64 offset = vmcs_read64(TSC_OFFSET);
2545
2546 vmcs_write64(TSC_OFFSET, offset + adjustment);
2547 if (is_guest_mode(vcpu)) {
2548 /* Even when running L2, the adjustment needs to apply to L1 */
2549 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2550 } else
2551 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2552 offset + adjustment);
2553 }
2554
2555 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2556 {
2557 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2558 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2559 }
2560
2561 /*
2562 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2563 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2564 * all guests if the "nested" module option is off, and can also be disabled
2565 * for a single guest by disabling its VMX cpuid bit.
2566 */
2567 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2568 {
2569 return nested && guest_cpuid_has_vmx(vcpu);
2570 }
2571
2572 /*
2573 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2574 * returned for the various VMX controls MSRs when nested VMX is enabled.
2575 * The same values should also be used to verify that vmcs12 control fields are
2576 * valid during nested entry from L1 to L2.
2577 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2578 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2579 * bit in the high half is on if the corresponding bit in the control field
2580 * may be on. See also vmx_control_verify().
2581 */
2582 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2583 {
2584 /*
2585 * Note that as a general rule, the high half of the MSRs (bits in
2586 * the control fields which may be 1) should be initialized by the
2587 * intersection of the underlying hardware's MSR (i.e., features which
2588 * can be supported) and the list of features we want to expose -
2589 * because they are known to be properly supported in our code.
2590 * Also, usually, the low half of the MSRs (bits which must be 1) can
2591 * be set to 0, meaning that L1 may turn off any of these bits. The
2592 * reason is that if one of these bits is necessary, it will appear
2593 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2594 * fields of vmcs01 and vmcs02, will turn these bits off - and
2595 * nested_vmx_exit_handled() will not pass related exits to L1.
2596 * These rules have exceptions below.
2597 */
2598
2599 /* pin-based controls */
2600 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2601 vmx->nested.nested_vmx_pinbased_ctls_low,
2602 vmx->nested.nested_vmx_pinbased_ctls_high);
2603 vmx->nested.nested_vmx_pinbased_ctls_low |=
2604 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2605 vmx->nested.nested_vmx_pinbased_ctls_high &=
2606 PIN_BASED_EXT_INTR_MASK |
2607 PIN_BASED_NMI_EXITING |
2608 PIN_BASED_VIRTUAL_NMIS;
2609 vmx->nested.nested_vmx_pinbased_ctls_high |=
2610 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2611 PIN_BASED_VMX_PREEMPTION_TIMER;
2612 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2613 vmx->nested.nested_vmx_pinbased_ctls_high |=
2614 PIN_BASED_POSTED_INTR;
2615
2616 /* exit controls */
2617 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2618 vmx->nested.nested_vmx_exit_ctls_low,
2619 vmx->nested.nested_vmx_exit_ctls_high);
2620 vmx->nested.nested_vmx_exit_ctls_low =
2621 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2622
2623 vmx->nested.nested_vmx_exit_ctls_high &=
2624 #ifdef CONFIG_X86_64
2625 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2626 #endif
2627 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2628 vmx->nested.nested_vmx_exit_ctls_high |=
2629 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2630 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2631 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2632
2633 if (kvm_mpx_supported())
2634 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2635
2636 /* We support free control of debug control saving. */
2637 vmx->nested.nested_vmx_true_exit_ctls_low =
2638 vmx->nested.nested_vmx_exit_ctls_low &
2639 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2640
2641 /* entry controls */
2642 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2643 vmx->nested.nested_vmx_entry_ctls_low,
2644 vmx->nested.nested_vmx_entry_ctls_high);
2645 vmx->nested.nested_vmx_entry_ctls_low =
2646 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2647 vmx->nested.nested_vmx_entry_ctls_high &=
2648 #ifdef CONFIG_X86_64
2649 VM_ENTRY_IA32E_MODE |
2650 #endif
2651 VM_ENTRY_LOAD_IA32_PAT;
2652 vmx->nested.nested_vmx_entry_ctls_high |=
2653 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2654 if (kvm_mpx_supported())
2655 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2656
2657 /* We support free control of debug control loading. */
2658 vmx->nested.nested_vmx_true_entry_ctls_low =
2659 vmx->nested.nested_vmx_entry_ctls_low &
2660 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2661
2662 /* cpu-based controls */
2663 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2664 vmx->nested.nested_vmx_procbased_ctls_low,
2665 vmx->nested.nested_vmx_procbased_ctls_high);
2666 vmx->nested.nested_vmx_procbased_ctls_low =
2667 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2668 vmx->nested.nested_vmx_procbased_ctls_high &=
2669 CPU_BASED_VIRTUAL_INTR_PENDING |
2670 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2671 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2672 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2673 CPU_BASED_CR3_STORE_EXITING |
2674 #ifdef CONFIG_X86_64
2675 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2676 #endif
2677 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2678 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2679 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2680 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2681 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2682 /*
2683 * We can allow some features even when not supported by the
2684 * hardware. For example, L1 can specify an MSR bitmap - and we
2685 * can use it to avoid exits to L1 - even when L0 runs L2
2686 * without MSR bitmaps.
2687 */
2688 vmx->nested.nested_vmx_procbased_ctls_high |=
2689 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2690 CPU_BASED_USE_MSR_BITMAPS;
2691
2692 /* We support free control of CR3 access interception. */
2693 vmx->nested.nested_vmx_true_procbased_ctls_low =
2694 vmx->nested.nested_vmx_procbased_ctls_low &
2695 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2696
2697 /* secondary cpu-based controls */
2698 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2699 vmx->nested.nested_vmx_secondary_ctls_low,
2700 vmx->nested.nested_vmx_secondary_ctls_high);
2701 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2702 vmx->nested.nested_vmx_secondary_ctls_high &=
2703 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2704 SECONDARY_EXEC_RDTSCP |
2705 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2706 SECONDARY_EXEC_ENABLE_VPID |
2707 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2708 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2709 SECONDARY_EXEC_WBINVD_EXITING |
2710 SECONDARY_EXEC_XSAVES |
2711 SECONDARY_EXEC_PCOMMIT;
2712
2713 if (enable_ept) {
2714 /* nested EPT: emulate EPT also to L1 */
2715 vmx->nested.nested_vmx_secondary_ctls_high |=
2716 SECONDARY_EXEC_ENABLE_EPT;
2717 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2718 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2719 VMX_EPT_INVEPT_BIT;
2720 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2721 /*
2722 * For nested guests, we don't do anything specific
2723 * for single context invalidation. Hence, only advertise
2724 * support for global context invalidation.
2725 */
2726 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2727 } else
2728 vmx->nested.nested_vmx_ept_caps = 0;
2729
2730 /*
2731 * Old versions of KVM use the single-context version without
2732 * checking for support, so declare that it is supported even
2733 * though it is treated as global context. The alternative is
2734 * not failing the single-context invvpid, and it is worse.
2735 */
2736 if (enable_vpid)
2737 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2738 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2739 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2740 else
2741 vmx->nested.nested_vmx_vpid_caps = 0;
2742
2743 if (enable_unrestricted_guest)
2744 vmx->nested.nested_vmx_secondary_ctls_high |=
2745 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2746
2747 /* miscellaneous data */
2748 rdmsr(MSR_IA32_VMX_MISC,
2749 vmx->nested.nested_vmx_misc_low,
2750 vmx->nested.nested_vmx_misc_high);
2751 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2752 vmx->nested.nested_vmx_misc_low |=
2753 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2754 VMX_MISC_ACTIVITY_HLT;
2755 vmx->nested.nested_vmx_misc_high = 0;
2756 }
2757
2758 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2759 {
2760 /*
2761 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2762 */
2763 return ((control & high) | low) == control;
2764 }
2765
2766 static inline u64 vmx_control_msr(u32 low, u32 high)
2767 {
2768 return low | ((u64)high << 32);
2769 }
2770
2771 /* Returns 0 on success, non-0 otherwise. */
2772 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2773 {
2774 struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776 switch (msr_index) {
2777 case MSR_IA32_VMX_BASIC:
2778 /*
2779 * This MSR reports some information about VMX support. We
2780 * should return information about the VMX we emulate for the
2781 * guest, and the VMCS structure we give it - not about the
2782 * VMX support of the underlying hardware.
2783 */
2784 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2785 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2786 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2787 break;
2788 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2789 case MSR_IA32_VMX_PINBASED_CTLS:
2790 *pdata = vmx_control_msr(
2791 vmx->nested.nested_vmx_pinbased_ctls_low,
2792 vmx->nested.nested_vmx_pinbased_ctls_high);
2793 break;
2794 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2795 *pdata = vmx_control_msr(
2796 vmx->nested.nested_vmx_true_procbased_ctls_low,
2797 vmx->nested.nested_vmx_procbased_ctls_high);
2798 break;
2799 case MSR_IA32_VMX_PROCBASED_CTLS:
2800 *pdata = vmx_control_msr(
2801 vmx->nested.nested_vmx_procbased_ctls_low,
2802 vmx->nested.nested_vmx_procbased_ctls_high);
2803 break;
2804 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2805 *pdata = vmx_control_msr(
2806 vmx->nested.nested_vmx_true_exit_ctls_low,
2807 vmx->nested.nested_vmx_exit_ctls_high);
2808 break;
2809 case MSR_IA32_VMX_EXIT_CTLS:
2810 *pdata = vmx_control_msr(
2811 vmx->nested.nested_vmx_exit_ctls_low,
2812 vmx->nested.nested_vmx_exit_ctls_high);
2813 break;
2814 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2815 *pdata = vmx_control_msr(
2816 vmx->nested.nested_vmx_true_entry_ctls_low,
2817 vmx->nested.nested_vmx_entry_ctls_high);
2818 break;
2819 case MSR_IA32_VMX_ENTRY_CTLS:
2820 *pdata = vmx_control_msr(
2821 vmx->nested.nested_vmx_entry_ctls_low,
2822 vmx->nested.nested_vmx_entry_ctls_high);
2823 break;
2824 case MSR_IA32_VMX_MISC:
2825 *pdata = vmx_control_msr(
2826 vmx->nested.nested_vmx_misc_low,
2827 vmx->nested.nested_vmx_misc_high);
2828 break;
2829 /*
2830 * These MSRs specify bits which the guest must keep fixed (on or off)
2831 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2832 * We picked the standard core2 setting.
2833 */
2834 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2835 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2836 case MSR_IA32_VMX_CR0_FIXED0:
2837 *pdata = VMXON_CR0_ALWAYSON;
2838 break;
2839 case MSR_IA32_VMX_CR0_FIXED1:
2840 *pdata = -1ULL;
2841 break;
2842 case MSR_IA32_VMX_CR4_FIXED0:
2843 *pdata = VMXON_CR4_ALWAYSON;
2844 break;
2845 case MSR_IA32_VMX_CR4_FIXED1:
2846 *pdata = -1ULL;
2847 break;
2848 case MSR_IA32_VMX_VMCS_ENUM:
2849 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2850 break;
2851 case MSR_IA32_VMX_PROCBASED_CTLS2:
2852 *pdata = vmx_control_msr(
2853 vmx->nested.nested_vmx_secondary_ctls_low,
2854 vmx->nested.nested_vmx_secondary_ctls_high);
2855 break;
2856 case MSR_IA32_VMX_EPT_VPID_CAP:
2857 /* Currently, no nested vpid support */
2858 *pdata = vmx->nested.nested_vmx_ept_caps |
2859 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2860 break;
2861 default:
2862 return 1;
2863 }
2864
2865 return 0;
2866 }
2867
2868 /*
2869 * Reads an msr value (of 'msr_index') into 'pdata'.
2870 * Returns 0 on success, non-0 otherwise.
2871 * Assumes vcpu_load() was already called.
2872 */
2873 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2874 {
2875 struct shared_msr_entry *msr;
2876
2877 switch (msr_info->index) {
2878 #ifdef CONFIG_X86_64
2879 case MSR_FS_BASE:
2880 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2881 break;
2882 case MSR_GS_BASE:
2883 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2884 break;
2885 case MSR_KERNEL_GS_BASE:
2886 vmx_load_host_state(to_vmx(vcpu));
2887 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2888 break;
2889 #endif
2890 case MSR_EFER:
2891 return kvm_get_msr_common(vcpu, msr_info);
2892 case MSR_IA32_TSC:
2893 msr_info->data = guest_read_tsc(vcpu);
2894 break;
2895 case MSR_IA32_SYSENTER_CS:
2896 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2897 break;
2898 case MSR_IA32_SYSENTER_EIP:
2899 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2900 break;
2901 case MSR_IA32_SYSENTER_ESP:
2902 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2903 break;
2904 case MSR_IA32_BNDCFGS:
2905 if (!kvm_mpx_supported())
2906 return 1;
2907 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2908 break;
2909 case MSR_IA32_FEATURE_CONTROL:
2910 if (!nested_vmx_allowed(vcpu))
2911 return 1;
2912 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2913 break;
2914 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2915 if (!nested_vmx_allowed(vcpu))
2916 return 1;
2917 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2918 case MSR_IA32_XSS:
2919 if (!vmx_xsaves_supported())
2920 return 1;
2921 msr_info->data = vcpu->arch.ia32_xss;
2922 break;
2923 case MSR_TSC_AUX:
2924 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2925 return 1;
2926 /* Otherwise falls through */
2927 default:
2928 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2929 if (msr) {
2930 msr_info->data = msr->data;
2931 break;
2932 }
2933 return kvm_get_msr_common(vcpu, msr_info);
2934 }
2935
2936 return 0;
2937 }
2938
2939 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2940
2941 /*
2942 * Writes msr value into into the appropriate "register".
2943 * Returns 0 on success, non-0 otherwise.
2944 * Assumes vcpu_load() was already called.
2945 */
2946 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2947 {
2948 struct vcpu_vmx *vmx = to_vmx(vcpu);
2949 struct shared_msr_entry *msr;
2950 int ret = 0;
2951 u32 msr_index = msr_info->index;
2952 u64 data = msr_info->data;
2953
2954 switch (msr_index) {
2955 case MSR_EFER:
2956 ret = kvm_set_msr_common(vcpu, msr_info);
2957 break;
2958 #ifdef CONFIG_X86_64
2959 case MSR_FS_BASE:
2960 vmx_segment_cache_clear(vmx);
2961 vmcs_writel(GUEST_FS_BASE, data);
2962 break;
2963 case MSR_GS_BASE:
2964 vmx_segment_cache_clear(vmx);
2965 vmcs_writel(GUEST_GS_BASE, data);
2966 break;
2967 case MSR_KERNEL_GS_BASE:
2968 vmx_load_host_state(vmx);
2969 vmx->msr_guest_kernel_gs_base = data;
2970 break;
2971 #endif
2972 case MSR_IA32_SYSENTER_CS:
2973 vmcs_write32(GUEST_SYSENTER_CS, data);
2974 break;
2975 case MSR_IA32_SYSENTER_EIP:
2976 vmcs_writel(GUEST_SYSENTER_EIP, data);
2977 break;
2978 case MSR_IA32_SYSENTER_ESP:
2979 vmcs_writel(GUEST_SYSENTER_ESP, data);
2980 break;
2981 case MSR_IA32_BNDCFGS:
2982 if (!kvm_mpx_supported())
2983 return 1;
2984 vmcs_write64(GUEST_BNDCFGS, data);
2985 break;
2986 case MSR_IA32_TSC:
2987 kvm_write_tsc(vcpu, msr_info);
2988 break;
2989 case MSR_IA32_CR_PAT:
2990 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2991 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2992 return 1;
2993 vmcs_write64(GUEST_IA32_PAT, data);
2994 vcpu->arch.pat = data;
2995 break;
2996 }
2997 ret = kvm_set_msr_common(vcpu, msr_info);
2998 break;
2999 case MSR_IA32_TSC_ADJUST:
3000 ret = kvm_set_msr_common(vcpu, msr_info);
3001 break;
3002 case MSR_IA32_FEATURE_CONTROL:
3003 if (!nested_vmx_allowed(vcpu) ||
3004 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3005 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3006 return 1;
3007 vmx->nested.msr_ia32_feature_control = data;
3008 if (msr_info->host_initiated && data == 0)
3009 vmx_leave_nested(vcpu);
3010 break;
3011 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3012 return 1; /* they are read-only */
3013 case MSR_IA32_XSS:
3014 if (!vmx_xsaves_supported())
3015 return 1;
3016 /*
3017 * The only supported bit as of Skylake is bit 8, but
3018 * it is not supported on KVM.
3019 */
3020 if (data != 0)
3021 return 1;
3022 vcpu->arch.ia32_xss = data;
3023 if (vcpu->arch.ia32_xss != host_xss)
3024 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3025 vcpu->arch.ia32_xss, host_xss);
3026 else
3027 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3028 break;
3029 case MSR_TSC_AUX:
3030 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3031 return 1;
3032 /* Check reserved bit, higher 32 bits should be zero */
3033 if ((data >> 32) != 0)
3034 return 1;
3035 /* Otherwise falls through */
3036 default:
3037 msr = find_msr_entry(vmx, msr_index);
3038 if (msr) {
3039 u64 old_msr_data = msr->data;
3040 msr->data = data;
3041 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3042 preempt_disable();
3043 ret = kvm_set_shared_msr(msr->index, msr->data,
3044 msr->mask);
3045 preempt_enable();
3046 if (ret)
3047 msr->data = old_msr_data;
3048 }
3049 break;
3050 }
3051 ret = kvm_set_msr_common(vcpu, msr_info);
3052 }
3053
3054 return ret;
3055 }
3056
3057 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3058 {
3059 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3060 switch (reg) {
3061 case VCPU_REGS_RSP:
3062 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3063 break;
3064 case VCPU_REGS_RIP:
3065 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3066 break;
3067 case VCPU_EXREG_PDPTR:
3068 if (enable_ept)
3069 ept_save_pdptrs(vcpu);
3070 break;
3071 default:
3072 break;
3073 }
3074 }
3075
3076 static __init int cpu_has_kvm_support(void)
3077 {
3078 return cpu_has_vmx();
3079 }
3080
3081 static __init int vmx_disabled_by_bios(void)
3082 {
3083 u64 msr;
3084
3085 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3086 if (msr & FEATURE_CONTROL_LOCKED) {
3087 /* launched w/ TXT and VMX disabled */
3088 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3089 && tboot_enabled())
3090 return 1;
3091 /* launched w/o TXT and VMX only enabled w/ TXT */
3092 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3093 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3094 && !tboot_enabled()) {
3095 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3096 "activate TXT before enabling KVM\n");
3097 return 1;
3098 }
3099 /* launched w/o TXT and VMX disabled */
3100 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3101 && !tboot_enabled())
3102 return 1;
3103 }
3104
3105 return 0;
3106 }
3107
3108 static void kvm_cpu_vmxon(u64 addr)
3109 {
3110 intel_pt_handle_vmx(1);
3111
3112 asm volatile (ASM_VMX_VMXON_RAX
3113 : : "a"(&addr), "m"(addr)
3114 : "memory", "cc");
3115 }
3116
3117 static int hardware_enable(void)
3118 {
3119 int cpu = raw_smp_processor_id();
3120 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3121 u64 old, test_bits;
3122
3123 if (cr4_read_shadow() & X86_CR4_VMXE)
3124 return -EBUSY;
3125
3126 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3127 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3128 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3129
3130 /*
3131 * Now we can enable the vmclear operation in kdump
3132 * since the loaded_vmcss_on_cpu list on this cpu
3133 * has been initialized.
3134 *
3135 * Though the cpu is not in VMX operation now, there
3136 * is no problem to enable the vmclear operation
3137 * for the loaded_vmcss_on_cpu list is empty!
3138 */
3139 crash_enable_local_vmclear(cpu);
3140
3141 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3142
3143 test_bits = FEATURE_CONTROL_LOCKED;
3144 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3145 if (tboot_enabled())
3146 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3147
3148 if ((old & test_bits) != test_bits) {
3149 /* enable and lock */
3150 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3151 }
3152 cr4_set_bits(X86_CR4_VMXE);
3153
3154 if (vmm_exclusive) {
3155 kvm_cpu_vmxon(phys_addr);
3156 ept_sync_global();
3157 }
3158
3159 native_store_gdt(this_cpu_ptr(&host_gdt));
3160
3161 return 0;
3162 }
3163
3164 static void vmclear_local_loaded_vmcss(void)
3165 {
3166 int cpu = raw_smp_processor_id();
3167 struct loaded_vmcs *v, *n;
3168
3169 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3170 loaded_vmcss_on_cpu_link)
3171 __loaded_vmcs_clear(v);
3172 }
3173
3174
3175 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3176 * tricks.
3177 */
3178 static void kvm_cpu_vmxoff(void)
3179 {
3180 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3181
3182 intel_pt_handle_vmx(0);
3183 }
3184
3185 static void hardware_disable(void)
3186 {
3187 if (vmm_exclusive) {
3188 vmclear_local_loaded_vmcss();
3189 kvm_cpu_vmxoff();
3190 }
3191 cr4_clear_bits(X86_CR4_VMXE);
3192 }
3193
3194 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3195 u32 msr, u32 *result)
3196 {
3197 u32 vmx_msr_low, vmx_msr_high;
3198 u32 ctl = ctl_min | ctl_opt;
3199
3200 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3201
3202 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3203 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3204
3205 /* Ensure minimum (required) set of control bits are supported. */
3206 if (ctl_min & ~ctl)
3207 return -EIO;
3208
3209 *result = ctl;
3210 return 0;
3211 }
3212
3213 static __init bool allow_1_setting(u32 msr, u32 ctl)
3214 {
3215 u32 vmx_msr_low, vmx_msr_high;
3216
3217 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3218 return vmx_msr_high & ctl;
3219 }
3220
3221 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3222 {
3223 u32 vmx_msr_low, vmx_msr_high;
3224 u32 min, opt, min2, opt2;
3225 u32 _pin_based_exec_control = 0;
3226 u32 _cpu_based_exec_control = 0;
3227 u32 _cpu_based_2nd_exec_control = 0;
3228 u32 _vmexit_control = 0;
3229 u32 _vmentry_control = 0;
3230
3231 min = CPU_BASED_HLT_EXITING |
3232 #ifdef CONFIG_X86_64
3233 CPU_BASED_CR8_LOAD_EXITING |
3234 CPU_BASED_CR8_STORE_EXITING |
3235 #endif
3236 CPU_BASED_CR3_LOAD_EXITING |
3237 CPU_BASED_CR3_STORE_EXITING |
3238 CPU_BASED_USE_IO_BITMAPS |
3239 CPU_BASED_MOV_DR_EXITING |
3240 CPU_BASED_USE_TSC_OFFSETING |
3241 CPU_BASED_MWAIT_EXITING |
3242 CPU_BASED_MONITOR_EXITING |
3243 CPU_BASED_INVLPG_EXITING |
3244 CPU_BASED_RDPMC_EXITING;
3245
3246 opt = CPU_BASED_TPR_SHADOW |
3247 CPU_BASED_USE_MSR_BITMAPS |
3248 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3249 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3250 &_cpu_based_exec_control) < 0)
3251 return -EIO;
3252 #ifdef CONFIG_X86_64
3253 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3254 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3255 ~CPU_BASED_CR8_STORE_EXITING;
3256 #endif
3257 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3258 min2 = 0;
3259 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3260 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3261 SECONDARY_EXEC_WBINVD_EXITING |
3262 SECONDARY_EXEC_ENABLE_VPID |
3263 SECONDARY_EXEC_ENABLE_EPT |
3264 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3265 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3266 SECONDARY_EXEC_RDTSCP |
3267 SECONDARY_EXEC_ENABLE_INVPCID |
3268 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3269 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3270 SECONDARY_EXEC_SHADOW_VMCS |
3271 SECONDARY_EXEC_XSAVES |
3272 SECONDARY_EXEC_ENABLE_PML |
3273 SECONDARY_EXEC_PCOMMIT |
3274 SECONDARY_EXEC_TSC_SCALING;
3275 if (adjust_vmx_controls(min2, opt2,
3276 MSR_IA32_VMX_PROCBASED_CTLS2,
3277 &_cpu_based_2nd_exec_control) < 0)
3278 return -EIO;
3279 }
3280 #ifndef CONFIG_X86_64
3281 if (!(_cpu_based_2nd_exec_control &
3282 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3283 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3284 #endif
3285
3286 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3287 _cpu_based_2nd_exec_control &= ~(
3288 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3289 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3290 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3291
3292 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3293 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3294 enabled */
3295 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3296 CPU_BASED_CR3_STORE_EXITING |
3297 CPU_BASED_INVLPG_EXITING);
3298 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3299 vmx_capability.ept, vmx_capability.vpid);
3300 }
3301
3302 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3303 #ifdef CONFIG_X86_64
3304 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3305 #endif
3306 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3307 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3308 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3309 &_vmexit_control) < 0)
3310 return -EIO;
3311
3312 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3313 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3314 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3315 &_pin_based_exec_control) < 0)
3316 return -EIO;
3317
3318 if (!(_cpu_based_2nd_exec_control &
3319 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3320 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3321 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3322
3323 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3324 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3325 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3326 &_vmentry_control) < 0)
3327 return -EIO;
3328
3329 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3330
3331 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3332 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3333 return -EIO;
3334
3335 #ifdef CONFIG_X86_64
3336 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3337 if (vmx_msr_high & (1u<<16))
3338 return -EIO;
3339 #endif
3340
3341 /* Require Write-Back (WB) memory type for VMCS accesses. */
3342 if (((vmx_msr_high >> 18) & 15) != 6)
3343 return -EIO;
3344
3345 vmcs_conf->size = vmx_msr_high & 0x1fff;
3346 vmcs_conf->order = get_order(vmcs_config.size);
3347 vmcs_conf->revision_id = vmx_msr_low;
3348
3349 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3350 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3351 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3352 vmcs_conf->vmexit_ctrl = _vmexit_control;
3353 vmcs_conf->vmentry_ctrl = _vmentry_control;
3354
3355 cpu_has_load_ia32_efer =
3356 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3357 VM_ENTRY_LOAD_IA32_EFER)
3358 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3359 VM_EXIT_LOAD_IA32_EFER);
3360
3361 cpu_has_load_perf_global_ctrl =
3362 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3363 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3364 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3365 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3366
3367 /*
3368 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3369 * but due to arrata below it can't be used. Workaround is to use
3370 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3371 *
3372 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3373 *
3374 * AAK155 (model 26)
3375 * AAP115 (model 30)
3376 * AAT100 (model 37)
3377 * BC86,AAY89,BD102 (model 44)
3378 * BA97 (model 46)
3379 *
3380 */
3381 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3382 switch (boot_cpu_data.x86_model) {
3383 case 26:
3384 case 30:
3385 case 37:
3386 case 44:
3387 case 46:
3388 cpu_has_load_perf_global_ctrl = false;
3389 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3390 "does not work properly. Using workaround\n");
3391 break;
3392 default:
3393 break;
3394 }
3395 }
3396
3397 if (boot_cpu_has(X86_FEATURE_XSAVES))
3398 rdmsrl(MSR_IA32_XSS, host_xss);
3399
3400 return 0;
3401 }
3402
3403 static struct vmcs *alloc_vmcs_cpu(int cpu)
3404 {
3405 int node = cpu_to_node(cpu);
3406 struct page *pages;
3407 struct vmcs *vmcs;
3408
3409 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3410 if (!pages)
3411 return NULL;
3412 vmcs = page_address(pages);
3413 memset(vmcs, 0, vmcs_config.size);
3414 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3415 return vmcs;
3416 }
3417
3418 static struct vmcs *alloc_vmcs(void)
3419 {
3420 return alloc_vmcs_cpu(raw_smp_processor_id());
3421 }
3422
3423 static void free_vmcs(struct vmcs *vmcs)
3424 {
3425 free_pages((unsigned long)vmcs, vmcs_config.order);
3426 }
3427
3428 /*
3429 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3430 */
3431 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3432 {
3433 if (!loaded_vmcs->vmcs)
3434 return;
3435 loaded_vmcs_clear(loaded_vmcs);
3436 free_vmcs(loaded_vmcs->vmcs);
3437 loaded_vmcs->vmcs = NULL;
3438 }
3439
3440 static void free_kvm_area(void)
3441 {
3442 int cpu;
3443
3444 for_each_possible_cpu(cpu) {
3445 free_vmcs(per_cpu(vmxarea, cpu));
3446 per_cpu(vmxarea, cpu) = NULL;
3447 }
3448 }
3449
3450 static void init_vmcs_shadow_fields(void)
3451 {
3452 int i, j;
3453
3454 /* No checks for read only fields yet */
3455
3456 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3457 switch (shadow_read_write_fields[i]) {
3458 case GUEST_BNDCFGS:
3459 if (!kvm_mpx_supported())
3460 continue;
3461 break;
3462 default:
3463 break;
3464 }
3465
3466 if (j < i)
3467 shadow_read_write_fields[j] =
3468 shadow_read_write_fields[i];
3469 j++;
3470 }
3471 max_shadow_read_write_fields = j;
3472
3473 /* shadowed fields guest access without vmexit */
3474 for (i = 0; i < max_shadow_read_write_fields; i++) {
3475 clear_bit(shadow_read_write_fields[i],
3476 vmx_vmwrite_bitmap);
3477 clear_bit(shadow_read_write_fields[i],
3478 vmx_vmread_bitmap);
3479 }
3480 for (i = 0; i < max_shadow_read_only_fields; i++)
3481 clear_bit(shadow_read_only_fields[i],
3482 vmx_vmread_bitmap);
3483 }
3484
3485 static __init int alloc_kvm_area(void)
3486 {
3487 int cpu;
3488
3489 for_each_possible_cpu(cpu) {
3490 struct vmcs *vmcs;
3491
3492 vmcs = alloc_vmcs_cpu(cpu);
3493 if (!vmcs) {
3494 free_kvm_area();
3495 return -ENOMEM;
3496 }
3497
3498 per_cpu(vmxarea, cpu) = vmcs;
3499 }
3500 return 0;
3501 }
3502
3503 static bool emulation_required(struct kvm_vcpu *vcpu)
3504 {
3505 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3506 }
3507
3508 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3509 struct kvm_segment *save)
3510 {
3511 if (!emulate_invalid_guest_state) {
3512 /*
3513 * CS and SS RPL should be equal during guest entry according
3514 * to VMX spec, but in reality it is not always so. Since vcpu
3515 * is in the middle of the transition from real mode to
3516 * protected mode it is safe to assume that RPL 0 is a good
3517 * default value.
3518 */
3519 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3520 save->selector &= ~SEGMENT_RPL_MASK;
3521 save->dpl = save->selector & SEGMENT_RPL_MASK;
3522 save->s = 1;
3523 }
3524 vmx_set_segment(vcpu, save, seg);
3525 }
3526
3527 static void enter_pmode(struct kvm_vcpu *vcpu)
3528 {
3529 unsigned long flags;
3530 struct vcpu_vmx *vmx = to_vmx(vcpu);
3531
3532 /*
3533 * Update real mode segment cache. It may be not up-to-date if sement
3534 * register was written while vcpu was in a guest mode.
3535 */
3536 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3537 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3538 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3539 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3540 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3541 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3542
3543 vmx->rmode.vm86_active = 0;
3544
3545 vmx_segment_cache_clear(vmx);
3546
3547 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3548
3549 flags = vmcs_readl(GUEST_RFLAGS);
3550 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3551 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3552 vmcs_writel(GUEST_RFLAGS, flags);
3553
3554 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3555 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3556
3557 update_exception_bitmap(vcpu);
3558
3559 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3560 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3561 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3562 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3563 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3564 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3565 }
3566
3567 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3568 {
3569 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3570 struct kvm_segment var = *save;
3571
3572 var.dpl = 0x3;
3573 if (seg == VCPU_SREG_CS)
3574 var.type = 0x3;
3575
3576 if (!emulate_invalid_guest_state) {
3577 var.selector = var.base >> 4;
3578 var.base = var.base & 0xffff0;
3579 var.limit = 0xffff;
3580 var.g = 0;
3581 var.db = 0;
3582 var.present = 1;
3583 var.s = 1;
3584 var.l = 0;
3585 var.unusable = 0;
3586 var.type = 0x3;
3587 var.avl = 0;
3588 if (save->base & 0xf)
3589 printk_once(KERN_WARNING "kvm: segment base is not "
3590 "paragraph aligned when entering "
3591 "protected mode (seg=%d)", seg);
3592 }
3593
3594 vmcs_write16(sf->selector, var.selector);
3595 vmcs_write32(sf->base, var.base);
3596 vmcs_write32(sf->limit, var.limit);
3597 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3598 }
3599
3600 static void enter_rmode(struct kvm_vcpu *vcpu)
3601 {
3602 unsigned long flags;
3603 struct vcpu_vmx *vmx = to_vmx(vcpu);
3604
3605 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3606 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3607 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3608 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3609 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3610 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3611 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3612
3613 vmx->rmode.vm86_active = 1;
3614
3615 /*
3616 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3617 * vcpu. Warn the user that an update is overdue.
3618 */
3619 if (!vcpu->kvm->arch.tss_addr)
3620 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3621 "called before entering vcpu\n");
3622
3623 vmx_segment_cache_clear(vmx);
3624
3625 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3626 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3627 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3628
3629 flags = vmcs_readl(GUEST_RFLAGS);
3630 vmx->rmode.save_rflags = flags;
3631
3632 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3633
3634 vmcs_writel(GUEST_RFLAGS, flags);
3635 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3636 update_exception_bitmap(vcpu);
3637
3638 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3639 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3640 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3641 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3642 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3643 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3644
3645 kvm_mmu_reset_context(vcpu);
3646 }
3647
3648 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3649 {
3650 struct vcpu_vmx *vmx = to_vmx(vcpu);
3651 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3652
3653 if (!msr)
3654 return;
3655
3656 /*
3657 * Force kernel_gs_base reloading before EFER changes, as control
3658 * of this msr depends on is_long_mode().
3659 */
3660 vmx_load_host_state(to_vmx(vcpu));
3661 vcpu->arch.efer = efer;
3662 if (efer & EFER_LMA) {
3663 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3664 msr->data = efer;
3665 } else {
3666 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3667
3668 msr->data = efer & ~EFER_LME;
3669 }
3670 setup_msrs(vmx);
3671 }
3672
3673 #ifdef CONFIG_X86_64
3674
3675 static void enter_lmode(struct kvm_vcpu *vcpu)
3676 {
3677 u32 guest_tr_ar;
3678
3679 vmx_segment_cache_clear(to_vmx(vcpu));
3680
3681 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3682 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3683 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3684 __func__);
3685 vmcs_write32(GUEST_TR_AR_BYTES,
3686 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3687 | VMX_AR_TYPE_BUSY_64_TSS);
3688 }
3689 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3690 }
3691
3692 static void exit_lmode(struct kvm_vcpu *vcpu)
3693 {
3694 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3695 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3696 }
3697
3698 #endif
3699
3700 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3701 {
3702 vpid_sync_context(vpid);
3703 if (enable_ept) {
3704 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3705 return;
3706 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3707 }
3708 }
3709
3710 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3711 {
3712 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3713 }
3714
3715 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3716 {
3717 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3718
3719 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3720 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3721 }
3722
3723 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3724 {
3725 if (enable_ept && is_paging(vcpu))
3726 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3727 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3728 }
3729
3730 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3731 {
3732 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3733
3734 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3735 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3736 }
3737
3738 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3739 {
3740 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3741
3742 if (!test_bit(VCPU_EXREG_PDPTR,
3743 (unsigned long *)&vcpu->arch.regs_dirty))
3744 return;
3745
3746 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3747 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3748 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3749 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3750 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3751 }
3752 }
3753
3754 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3755 {
3756 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3757
3758 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3759 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3760 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3761 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3762 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3763 }
3764
3765 __set_bit(VCPU_EXREG_PDPTR,
3766 (unsigned long *)&vcpu->arch.regs_avail);
3767 __set_bit(VCPU_EXREG_PDPTR,
3768 (unsigned long *)&vcpu->arch.regs_dirty);
3769 }
3770
3771 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3772
3773 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3774 unsigned long cr0,
3775 struct kvm_vcpu *vcpu)
3776 {
3777 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3778 vmx_decache_cr3(vcpu);
3779 if (!(cr0 & X86_CR0_PG)) {
3780 /* From paging/starting to nonpaging */
3781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3782 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3783 (CPU_BASED_CR3_LOAD_EXITING |
3784 CPU_BASED_CR3_STORE_EXITING));
3785 vcpu->arch.cr0 = cr0;
3786 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3787 } else if (!is_paging(vcpu)) {
3788 /* From nonpaging to paging */
3789 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3790 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3791 ~(CPU_BASED_CR3_LOAD_EXITING |
3792 CPU_BASED_CR3_STORE_EXITING));
3793 vcpu->arch.cr0 = cr0;
3794 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3795 }
3796
3797 if (!(cr0 & X86_CR0_WP))
3798 *hw_cr0 &= ~X86_CR0_WP;
3799 }
3800
3801 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3802 {
3803 struct vcpu_vmx *vmx = to_vmx(vcpu);
3804 unsigned long hw_cr0;
3805
3806 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3807 if (enable_unrestricted_guest)
3808 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3809 else {
3810 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3811
3812 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3813 enter_pmode(vcpu);
3814
3815 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3816 enter_rmode(vcpu);
3817 }
3818
3819 #ifdef CONFIG_X86_64
3820 if (vcpu->arch.efer & EFER_LME) {
3821 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3822 enter_lmode(vcpu);
3823 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3824 exit_lmode(vcpu);
3825 }
3826 #endif
3827
3828 if (enable_ept)
3829 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3830
3831 if (!vcpu->fpu_active)
3832 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3833
3834 vmcs_writel(CR0_READ_SHADOW, cr0);
3835 vmcs_writel(GUEST_CR0, hw_cr0);
3836 vcpu->arch.cr0 = cr0;
3837
3838 /* depends on vcpu->arch.cr0 to be set to a new value */
3839 vmx->emulation_required = emulation_required(vcpu);
3840 }
3841
3842 static u64 construct_eptp(unsigned long root_hpa)
3843 {
3844 u64 eptp;
3845
3846 /* TODO write the value reading from MSR */
3847 eptp = VMX_EPT_DEFAULT_MT |
3848 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3849 if (enable_ept_ad_bits)
3850 eptp |= VMX_EPT_AD_ENABLE_BIT;
3851 eptp |= (root_hpa & PAGE_MASK);
3852
3853 return eptp;
3854 }
3855
3856 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3857 {
3858 unsigned long guest_cr3;
3859 u64 eptp;
3860
3861 guest_cr3 = cr3;
3862 if (enable_ept) {
3863 eptp = construct_eptp(cr3);
3864 vmcs_write64(EPT_POINTER, eptp);
3865 if (is_paging(vcpu) || is_guest_mode(vcpu))
3866 guest_cr3 = kvm_read_cr3(vcpu);
3867 else
3868 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3869 ept_load_pdptrs(vcpu);
3870 }
3871
3872 vmx_flush_tlb(vcpu);
3873 vmcs_writel(GUEST_CR3, guest_cr3);
3874 }
3875
3876 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3877 {
3878 /*
3879 * Pass through host's Machine Check Enable value to hw_cr4, which
3880 * is in force while we are in guest mode. Do not let guests control
3881 * this bit, even if host CR4.MCE == 0.
3882 */
3883 unsigned long hw_cr4 =
3884 (cr4_read_shadow() & X86_CR4_MCE) |
3885 (cr4 & ~X86_CR4_MCE) |
3886 (to_vmx(vcpu)->rmode.vm86_active ?
3887 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3888
3889 if (cr4 & X86_CR4_VMXE) {
3890 /*
3891 * To use VMXON (and later other VMX instructions), a guest
3892 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3893 * So basically the check on whether to allow nested VMX
3894 * is here.
3895 */
3896 if (!nested_vmx_allowed(vcpu))
3897 return 1;
3898 }
3899 if (to_vmx(vcpu)->nested.vmxon &&
3900 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3901 return 1;
3902
3903 vcpu->arch.cr4 = cr4;
3904 if (enable_ept) {
3905 if (!is_paging(vcpu)) {
3906 hw_cr4 &= ~X86_CR4_PAE;
3907 hw_cr4 |= X86_CR4_PSE;
3908 } else if (!(cr4 & X86_CR4_PAE)) {
3909 hw_cr4 &= ~X86_CR4_PAE;
3910 }
3911 }
3912
3913 if (!enable_unrestricted_guest && !is_paging(vcpu))
3914 /*
3915 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3916 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3917 * to be manually disabled when guest switches to non-paging
3918 * mode.
3919 *
3920 * If !enable_unrestricted_guest, the CPU is always running
3921 * with CR0.PG=1 and CR4 needs to be modified.
3922 * If enable_unrestricted_guest, the CPU automatically
3923 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3924 */
3925 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3926
3927 vmcs_writel(CR4_READ_SHADOW, cr4);
3928 vmcs_writel(GUEST_CR4, hw_cr4);
3929 return 0;
3930 }
3931
3932 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3933 struct kvm_segment *var, int seg)
3934 {
3935 struct vcpu_vmx *vmx = to_vmx(vcpu);
3936 u32 ar;
3937
3938 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3939 *var = vmx->rmode.segs[seg];
3940 if (seg == VCPU_SREG_TR
3941 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3942 return;
3943 var->base = vmx_read_guest_seg_base(vmx, seg);
3944 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3945 return;
3946 }
3947 var->base = vmx_read_guest_seg_base(vmx, seg);
3948 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3949 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3950 ar = vmx_read_guest_seg_ar(vmx, seg);
3951 var->unusable = (ar >> 16) & 1;
3952 var->type = ar & 15;
3953 var->s = (ar >> 4) & 1;
3954 var->dpl = (ar >> 5) & 3;
3955 /*
3956 * Some userspaces do not preserve unusable property. Since usable
3957 * segment has to be present according to VMX spec we can use present
3958 * property to amend userspace bug by making unusable segment always
3959 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3960 * segment as unusable.
3961 */
3962 var->present = !var->unusable;
3963 var->avl = (ar >> 12) & 1;
3964 var->l = (ar >> 13) & 1;
3965 var->db = (ar >> 14) & 1;
3966 var->g = (ar >> 15) & 1;
3967 }
3968
3969 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3970 {
3971 struct kvm_segment s;
3972
3973 if (to_vmx(vcpu)->rmode.vm86_active) {
3974 vmx_get_segment(vcpu, &s, seg);
3975 return s.base;
3976 }
3977 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3978 }
3979
3980 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3981 {
3982 struct vcpu_vmx *vmx = to_vmx(vcpu);
3983
3984 if (unlikely(vmx->rmode.vm86_active))
3985 return 0;
3986 else {
3987 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3988 return VMX_AR_DPL(ar);
3989 }
3990 }
3991
3992 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3993 {
3994 u32 ar;
3995
3996 if (var->unusable || !var->present)
3997 ar = 1 << 16;
3998 else {
3999 ar = var->type & 15;
4000 ar |= (var->s & 1) << 4;
4001 ar |= (var->dpl & 3) << 5;
4002 ar |= (var->present & 1) << 7;
4003 ar |= (var->avl & 1) << 12;
4004 ar |= (var->l & 1) << 13;
4005 ar |= (var->db & 1) << 14;
4006 ar |= (var->g & 1) << 15;
4007 }
4008
4009 return ar;
4010 }
4011
4012 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4013 struct kvm_segment *var, int seg)
4014 {
4015 struct vcpu_vmx *vmx = to_vmx(vcpu);
4016 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4017
4018 vmx_segment_cache_clear(vmx);
4019
4020 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4021 vmx->rmode.segs[seg] = *var;
4022 if (seg == VCPU_SREG_TR)
4023 vmcs_write16(sf->selector, var->selector);
4024 else if (var->s)
4025 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4026 goto out;
4027 }
4028
4029 vmcs_writel(sf->base, var->base);
4030 vmcs_write32(sf->limit, var->limit);
4031 vmcs_write16(sf->selector, var->selector);
4032
4033 /*
4034 * Fix the "Accessed" bit in AR field of segment registers for older
4035 * qemu binaries.
4036 * IA32 arch specifies that at the time of processor reset the
4037 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4038 * is setting it to 0 in the userland code. This causes invalid guest
4039 * state vmexit when "unrestricted guest" mode is turned on.
4040 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4041 * tree. Newer qemu binaries with that qemu fix would not need this
4042 * kvm hack.
4043 */
4044 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4045 var->type |= 0x1; /* Accessed */
4046
4047 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4048
4049 out:
4050 vmx->emulation_required = emulation_required(vcpu);
4051 }
4052
4053 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4054 {
4055 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4056
4057 *db = (ar >> 14) & 1;
4058 *l = (ar >> 13) & 1;
4059 }
4060
4061 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4062 {
4063 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4064 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4065 }
4066
4067 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4068 {
4069 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4070 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4071 }
4072
4073 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4074 {
4075 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4076 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4077 }
4078
4079 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4080 {
4081 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4082 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4083 }
4084
4085 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4086 {
4087 struct kvm_segment var;
4088 u32 ar;
4089
4090 vmx_get_segment(vcpu, &var, seg);
4091 var.dpl = 0x3;
4092 if (seg == VCPU_SREG_CS)
4093 var.type = 0x3;
4094 ar = vmx_segment_access_rights(&var);
4095
4096 if (var.base != (var.selector << 4))
4097 return false;
4098 if (var.limit != 0xffff)
4099 return false;
4100 if (ar != 0xf3)
4101 return false;
4102
4103 return true;
4104 }
4105
4106 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4107 {
4108 struct kvm_segment cs;
4109 unsigned int cs_rpl;
4110
4111 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4112 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4113
4114 if (cs.unusable)
4115 return false;
4116 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4117 return false;
4118 if (!cs.s)
4119 return false;
4120 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4121 if (cs.dpl > cs_rpl)
4122 return false;
4123 } else {
4124 if (cs.dpl != cs_rpl)
4125 return false;
4126 }
4127 if (!cs.present)
4128 return false;
4129
4130 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4131 return true;
4132 }
4133
4134 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4135 {
4136 struct kvm_segment ss;
4137 unsigned int ss_rpl;
4138
4139 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4140 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4141
4142 if (ss.unusable)
4143 return true;
4144 if (ss.type != 3 && ss.type != 7)
4145 return false;
4146 if (!ss.s)
4147 return false;
4148 if (ss.dpl != ss_rpl) /* DPL != RPL */
4149 return false;
4150 if (!ss.present)
4151 return false;
4152
4153 return true;
4154 }
4155
4156 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4157 {
4158 struct kvm_segment var;
4159 unsigned int rpl;
4160
4161 vmx_get_segment(vcpu, &var, seg);
4162 rpl = var.selector & SEGMENT_RPL_MASK;
4163
4164 if (var.unusable)
4165 return true;
4166 if (!var.s)
4167 return false;
4168 if (!var.present)
4169 return false;
4170 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4171 if (var.dpl < rpl) /* DPL < RPL */
4172 return false;
4173 }
4174
4175 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4176 * rights flags
4177 */
4178 return true;
4179 }
4180
4181 static bool tr_valid(struct kvm_vcpu *vcpu)
4182 {
4183 struct kvm_segment tr;
4184
4185 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4186
4187 if (tr.unusable)
4188 return false;
4189 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4190 return false;
4191 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4192 return false;
4193 if (!tr.present)
4194 return false;
4195
4196 return true;
4197 }
4198
4199 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4200 {
4201 struct kvm_segment ldtr;
4202
4203 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4204
4205 if (ldtr.unusable)
4206 return true;
4207 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4208 return false;
4209 if (ldtr.type != 2)
4210 return false;
4211 if (!ldtr.present)
4212 return false;
4213
4214 return true;
4215 }
4216
4217 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4218 {
4219 struct kvm_segment cs, ss;
4220
4221 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4222 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4223
4224 return ((cs.selector & SEGMENT_RPL_MASK) ==
4225 (ss.selector & SEGMENT_RPL_MASK));
4226 }
4227
4228 /*
4229 * Check if guest state is valid. Returns true if valid, false if
4230 * not.
4231 * We assume that registers are always usable
4232 */
4233 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4234 {
4235 if (enable_unrestricted_guest)
4236 return true;
4237
4238 /* real mode guest state checks */
4239 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4240 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4241 return false;
4242 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4243 return false;
4244 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4245 return false;
4246 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4247 return false;
4248 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4249 return false;
4250 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4251 return false;
4252 } else {
4253 /* protected mode guest state checks */
4254 if (!cs_ss_rpl_check(vcpu))
4255 return false;
4256 if (!code_segment_valid(vcpu))
4257 return false;
4258 if (!stack_segment_valid(vcpu))
4259 return false;
4260 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4261 return false;
4262 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4263 return false;
4264 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4265 return false;
4266 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4267 return false;
4268 if (!tr_valid(vcpu))
4269 return false;
4270 if (!ldtr_valid(vcpu))
4271 return false;
4272 }
4273 /* TODO:
4274 * - Add checks on RIP
4275 * - Add checks on RFLAGS
4276 */
4277
4278 return true;
4279 }
4280
4281 static int init_rmode_tss(struct kvm *kvm)
4282 {
4283 gfn_t fn;
4284 u16 data = 0;
4285 int idx, r;
4286
4287 idx = srcu_read_lock(&kvm->srcu);
4288 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4289 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4290 if (r < 0)
4291 goto out;
4292 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4293 r = kvm_write_guest_page(kvm, fn++, &data,
4294 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4295 if (r < 0)
4296 goto out;
4297 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4298 if (r < 0)
4299 goto out;
4300 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4301 if (r < 0)
4302 goto out;
4303 data = ~0;
4304 r = kvm_write_guest_page(kvm, fn, &data,
4305 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4306 sizeof(u8));
4307 out:
4308 srcu_read_unlock(&kvm->srcu, idx);
4309 return r;
4310 }
4311
4312 static int init_rmode_identity_map(struct kvm *kvm)
4313 {
4314 int i, idx, r = 0;
4315 kvm_pfn_t identity_map_pfn;
4316 u32 tmp;
4317
4318 if (!enable_ept)
4319 return 0;
4320
4321 /* Protect kvm->arch.ept_identity_pagetable_done. */
4322 mutex_lock(&kvm->slots_lock);
4323
4324 if (likely(kvm->arch.ept_identity_pagetable_done))
4325 goto out2;
4326
4327 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4328
4329 r = alloc_identity_pagetable(kvm);
4330 if (r < 0)
4331 goto out2;
4332
4333 idx = srcu_read_lock(&kvm->srcu);
4334 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4335 if (r < 0)
4336 goto out;
4337 /* Set up identity-mapping pagetable for EPT in real mode */
4338 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4339 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4340 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4341 r = kvm_write_guest_page(kvm, identity_map_pfn,
4342 &tmp, i * sizeof(tmp), sizeof(tmp));
4343 if (r < 0)
4344 goto out;
4345 }
4346 kvm->arch.ept_identity_pagetable_done = true;
4347
4348 out:
4349 srcu_read_unlock(&kvm->srcu, idx);
4350
4351 out2:
4352 mutex_unlock(&kvm->slots_lock);
4353 return r;
4354 }
4355
4356 static void seg_setup(int seg)
4357 {
4358 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4359 unsigned int ar;
4360
4361 vmcs_write16(sf->selector, 0);
4362 vmcs_writel(sf->base, 0);
4363 vmcs_write32(sf->limit, 0xffff);
4364 ar = 0x93;
4365 if (seg == VCPU_SREG_CS)
4366 ar |= 0x08; /* code segment */
4367
4368 vmcs_write32(sf->ar_bytes, ar);
4369 }
4370
4371 static int alloc_apic_access_page(struct kvm *kvm)
4372 {
4373 struct page *page;
4374 int r = 0;
4375
4376 mutex_lock(&kvm->slots_lock);
4377 if (kvm->arch.apic_access_page_done)
4378 goto out;
4379 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4380 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4381 if (r)
4382 goto out;
4383
4384 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4385 if (is_error_page(page)) {
4386 r = -EFAULT;
4387 goto out;
4388 }
4389
4390 /*
4391 * Do not pin the page in memory, so that memory hot-unplug
4392 * is able to migrate it.
4393 */
4394 put_page(page);
4395 kvm->arch.apic_access_page_done = true;
4396 out:
4397 mutex_unlock(&kvm->slots_lock);
4398 return r;
4399 }
4400
4401 static int alloc_identity_pagetable(struct kvm *kvm)
4402 {
4403 /* Called with kvm->slots_lock held. */
4404
4405 int r = 0;
4406
4407 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4408
4409 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4410 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4411
4412 return r;
4413 }
4414
4415 static int allocate_vpid(void)
4416 {
4417 int vpid;
4418
4419 if (!enable_vpid)
4420 return 0;
4421 spin_lock(&vmx_vpid_lock);
4422 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4423 if (vpid < VMX_NR_VPIDS)
4424 __set_bit(vpid, vmx_vpid_bitmap);
4425 else
4426 vpid = 0;
4427 spin_unlock(&vmx_vpid_lock);
4428 return vpid;
4429 }
4430
4431 static void free_vpid(int vpid)
4432 {
4433 if (!enable_vpid || vpid == 0)
4434 return;
4435 spin_lock(&vmx_vpid_lock);
4436 __clear_bit(vpid, vmx_vpid_bitmap);
4437 spin_unlock(&vmx_vpid_lock);
4438 }
4439
4440 #define MSR_TYPE_R 1
4441 #define MSR_TYPE_W 2
4442 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4443 u32 msr, int type)
4444 {
4445 int f = sizeof(unsigned long);
4446
4447 if (!cpu_has_vmx_msr_bitmap())
4448 return;
4449
4450 /*
4451 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4452 * have the write-low and read-high bitmap offsets the wrong way round.
4453 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4454 */
4455 if (msr <= 0x1fff) {
4456 if (type & MSR_TYPE_R)
4457 /* read-low */
4458 __clear_bit(msr, msr_bitmap + 0x000 / f);
4459
4460 if (type & MSR_TYPE_W)
4461 /* write-low */
4462 __clear_bit(msr, msr_bitmap + 0x800 / f);
4463
4464 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4465 msr &= 0x1fff;
4466 if (type & MSR_TYPE_R)
4467 /* read-high */
4468 __clear_bit(msr, msr_bitmap + 0x400 / f);
4469
4470 if (type & MSR_TYPE_W)
4471 /* write-high */
4472 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4473
4474 }
4475 }
4476
4477 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4478 u32 msr, int type)
4479 {
4480 int f = sizeof(unsigned long);
4481
4482 if (!cpu_has_vmx_msr_bitmap())
4483 return;
4484
4485 /*
4486 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4487 * have the write-low and read-high bitmap offsets the wrong way round.
4488 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4489 */
4490 if (msr <= 0x1fff) {
4491 if (type & MSR_TYPE_R)
4492 /* read-low */
4493 __set_bit(msr, msr_bitmap + 0x000 / f);
4494
4495 if (type & MSR_TYPE_W)
4496 /* write-low */
4497 __set_bit(msr, msr_bitmap + 0x800 / f);
4498
4499 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4500 msr &= 0x1fff;
4501 if (type & MSR_TYPE_R)
4502 /* read-high */
4503 __set_bit(msr, msr_bitmap + 0x400 / f);
4504
4505 if (type & MSR_TYPE_W)
4506 /* write-high */
4507 __set_bit(msr, msr_bitmap + 0xc00 / f);
4508
4509 }
4510 }
4511
4512 /*
4513 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4514 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4515 */
4516 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4517 unsigned long *msr_bitmap_nested,
4518 u32 msr, int type)
4519 {
4520 int f = sizeof(unsigned long);
4521
4522 if (!cpu_has_vmx_msr_bitmap()) {
4523 WARN_ON(1);
4524 return;
4525 }
4526
4527 /*
4528 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4529 * have the write-low and read-high bitmap offsets the wrong way round.
4530 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4531 */
4532 if (msr <= 0x1fff) {
4533 if (type & MSR_TYPE_R &&
4534 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4535 /* read-low */
4536 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4537
4538 if (type & MSR_TYPE_W &&
4539 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4540 /* write-low */
4541 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4542
4543 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4544 msr &= 0x1fff;
4545 if (type & MSR_TYPE_R &&
4546 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4547 /* read-high */
4548 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4549
4550 if (type & MSR_TYPE_W &&
4551 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4552 /* write-high */
4553 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4554
4555 }
4556 }
4557
4558 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4559 {
4560 if (!longmode_only)
4561 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4562 msr, MSR_TYPE_R | MSR_TYPE_W);
4563 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4564 msr, MSR_TYPE_R | MSR_TYPE_W);
4565 }
4566
4567 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4568 {
4569 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4570 msr, MSR_TYPE_R);
4571 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4572 msr, MSR_TYPE_R);
4573 }
4574
4575 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4576 {
4577 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4578 msr, MSR_TYPE_R);
4579 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4580 msr, MSR_TYPE_R);
4581 }
4582
4583 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4584 {
4585 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4586 msr, MSR_TYPE_W);
4587 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4588 msr, MSR_TYPE_W);
4589 }
4590
4591 static bool vmx_get_enable_apicv(void)
4592 {
4593 return enable_apicv;
4594 }
4595
4596 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4597 {
4598 struct vcpu_vmx *vmx = to_vmx(vcpu);
4599 int max_irr;
4600 void *vapic_page;
4601 u16 status;
4602
4603 if (vmx->nested.pi_desc &&
4604 vmx->nested.pi_pending) {
4605 vmx->nested.pi_pending = false;
4606 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4607 return 0;
4608
4609 max_irr = find_last_bit(
4610 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4611
4612 if (max_irr == 256)
4613 return 0;
4614
4615 vapic_page = kmap(vmx->nested.virtual_apic_page);
4616 if (!vapic_page) {
4617 WARN_ON(1);
4618 return -ENOMEM;
4619 }
4620 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4621 kunmap(vmx->nested.virtual_apic_page);
4622
4623 status = vmcs_read16(GUEST_INTR_STATUS);
4624 if ((u8)max_irr > ((u8)status & 0xff)) {
4625 status &= ~0xff;
4626 status |= (u8)max_irr;
4627 vmcs_write16(GUEST_INTR_STATUS, status);
4628 }
4629 }
4630 return 0;
4631 }
4632
4633 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4634 {
4635 #ifdef CONFIG_SMP
4636 if (vcpu->mode == IN_GUEST_MODE) {
4637 struct vcpu_vmx *vmx = to_vmx(vcpu);
4638
4639 /*
4640 * Currently, we don't support urgent interrupt,
4641 * all interrupts are recognized as non-urgent
4642 * interrupt, so we cannot post interrupts when
4643 * 'SN' is set.
4644 *
4645 * If the vcpu is in guest mode, it means it is
4646 * running instead of being scheduled out and
4647 * waiting in the run queue, and that's the only
4648 * case when 'SN' is set currently, warning if
4649 * 'SN' is set.
4650 */
4651 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4652
4653 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4654 POSTED_INTR_VECTOR);
4655 return true;
4656 }
4657 #endif
4658 return false;
4659 }
4660
4661 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4662 int vector)
4663 {
4664 struct vcpu_vmx *vmx = to_vmx(vcpu);
4665
4666 if (is_guest_mode(vcpu) &&
4667 vector == vmx->nested.posted_intr_nv) {
4668 /* the PIR and ON have been set by L1. */
4669 kvm_vcpu_trigger_posted_interrupt(vcpu);
4670 /*
4671 * If a posted intr is not recognized by hardware,
4672 * we will accomplish it in the next vmentry.
4673 */
4674 vmx->nested.pi_pending = true;
4675 kvm_make_request(KVM_REQ_EVENT, vcpu);
4676 return 0;
4677 }
4678 return -1;
4679 }
4680 /*
4681 * Send interrupt to vcpu via posted interrupt way.
4682 * 1. If target vcpu is running(non-root mode), send posted interrupt
4683 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4684 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4685 * interrupt from PIR in next vmentry.
4686 */
4687 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4688 {
4689 struct vcpu_vmx *vmx = to_vmx(vcpu);
4690 int r;
4691
4692 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4693 if (!r)
4694 return;
4695
4696 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4697 return;
4698
4699 r = pi_test_and_set_on(&vmx->pi_desc);
4700 kvm_make_request(KVM_REQ_EVENT, vcpu);
4701 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4702 kvm_vcpu_kick(vcpu);
4703 }
4704
4705 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4706 {
4707 struct vcpu_vmx *vmx = to_vmx(vcpu);
4708
4709 if (!pi_test_and_clear_on(&vmx->pi_desc))
4710 return;
4711
4712 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4713 }
4714
4715 /*
4716 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4717 * will not change in the lifetime of the guest.
4718 * Note that host-state that does change is set elsewhere. E.g., host-state
4719 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4720 */
4721 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4722 {
4723 u32 low32, high32;
4724 unsigned long tmpl;
4725 struct desc_ptr dt;
4726 unsigned long cr4;
4727
4728 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4729 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4730
4731 /* Save the most likely value for this task's CR4 in the VMCS. */
4732 cr4 = cr4_read_shadow();
4733 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4734 vmx->host_state.vmcs_host_cr4 = cr4;
4735
4736 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4737 #ifdef CONFIG_X86_64
4738 /*
4739 * Load null selectors, so we can avoid reloading them in
4740 * __vmx_load_host_state(), in case userspace uses the null selectors
4741 * too (the expected case).
4742 */
4743 vmcs_write16(HOST_DS_SELECTOR, 0);
4744 vmcs_write16(HOST_ES_SELECTOR, 0);
4745 #else
4746 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4747 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4748 #endif
4749 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4750 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4751
4752 native_store_idt(&dt);
4753 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4754 vmx->host_idt_base = dt.address;
4755
4756 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4757
4758 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4759 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4760 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4761 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4762
4763 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4764 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4765 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4766 }
4767 }
4768
4769 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4770 {
4771 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4772 if (enable_ept)
4773 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4774 if (is_guest_mode(&vmx->vcpu))
4775 vmx->vcpu.arch.cr4_guest_owned_bits &=
4776 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4777 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4778 }
4779
4780 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4781 {
4782 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4783
4784 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4785 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4786 return pin_based_exec_ctrl;
4787 }
4788
4789 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4790 {
4791 struct vcpu_vmx *vmx = to_vmx(vcpu);
4792
4793 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4794 if (cpu_has_secondary_exec_ctrls()) {
4795 if (kvm_vcpu_apicv_active(vcpu))
4796 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4797 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4798 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4799 else
4800 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4801 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4802 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4803 }
4804
4805 if (cpu_has_vmx_msr_bitmap())
4806 vmx_set_msr_bitmap(vcpu);
4807 }
4808
4809 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4810 {
4811 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4812
4813 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4814 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4815
4816 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4817 exec_control &= ~CPU_BASED_TPR_SHADOW;
4818 #ifdef CONFIG_X86_64
4819 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4820 CPU_BASED_CR8_LOAD_EXITING;
4821 #endif
4822 }
4823 if (!enable_ept)
4824 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4825 CPU_BASED_CR3_LOAD_EXITING |
4826 CPU_BASED_INVLPG_EXITING;
4827 return exec_control;
4828 }
4829
4830 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4831 {
4832 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4833 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4834 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4835 if (vmx->vpid == 0)
4836 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4837 if (!enable_ept) {
4838 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4839 enable_unrestricted_guest = 0;
4840 /* Enable INVPCID for non-ept guests may cause performance regression. */
4841 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4842 }
4843 if (!enable_unrestricted_guest)
4844 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4845 if (!ple_gap)
4846 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4847 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4848 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4849 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4850 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4851 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4852 (handle_vmptrld).
4853 We can NOT enable shadow_vmcs here because we don't have yet
4854 a current VMCS12
4855 */
4856 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4857
4858 if (!enable_pml)
4859 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4860
4861 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4862 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4863
4864 return exec_control;
4865 }
4866
4867 static void ept_set_mmio_spte_mask(void)
4868 {
4869 /*
4870 * EPT Misconfigurations can be generated if the value of bits 2:0
4871 * of an EPT paging-structure entry is 110b (write/execute).
4872 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4873 * spte.
4874 */
4875 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4876 }
4877
4878 #define VMX_XSS_EXIT_BITMAP 0
4879 /*
4880 * Sets up the vmcs for emulated real mode.
4881 */
4882 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4883 {
4884 #ifdef CONFIG_X86_64
4885 unsigned long a;
4886 #endif
4887 int i;
4888
4889 /* I/O */
4890 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4891 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4892
4893 if (enable_shadow_vmcs) {
4894 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4895 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4896 }
4897 if (cpu_has_vmx_msr_bitmap())
4898 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4899
4900 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4901
4902 /* Control */
4903 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4904
4905 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4906
4907 if (cpu_has_secondary_exec_ctrls())
4908 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4909 vmx_secondary_exec_control(vmx));
4910
4911 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4912 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4913 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4914 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4915 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4916
4917 vmcs_write16(GUEST_INTR_STATUS, 0);
4918
4919 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4920 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4921 }
4922
4923 if (ple_gap) {
4924 vmcs_write32(PLE_GAP, ple_gap);
4925 vmx->ple_window = ple_window;
4926 vmx->ple_window_dirty = true;
4927 }
4928
4929 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4930 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4931 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4932
4933 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4934 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4935 vmx_set_constant_host_state(vmx);
4936 #ifdef CONFIG_X86_64
4937 rdmsrl(MSR_FS_BASE, a);
4938 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4939 rdmsrl(MSR_GS_BASE, a);
4940 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4941 #else
4942 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4943 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4944 #endif
4945
4946 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4947 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4948 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4949 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4950 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4951
4952 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4953 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4954
4955 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4956 u32 index = vmx_msr_index[i];
4957 u32 data_low, data_high;
4958 int j = vmx->nmsrs;
4959
4960 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4961 continue;
4962 if (wrmsr_safe(index, data_low, data_high) < 0)
4963 continue;
4964 vmx->guest_msrs[j].index = i;
4965 vmx->guest_msrs[j].data = 0;
4966 vmx->guest_msrs[j].mask = -1ull;
4967 ++vmx->nmsrs;
4968 }
4969
4970
4971 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4972
4973 /* 22.2.1, 20.8.1 */
4974 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4975
4976 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4977 set_cr4_guest_host_mask(vmx);
4978
4979 if (vmx_xsaves_supported())
4980 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4981
4982 return 0;
4983 }
4984
4985 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4986 {
4987 struct vcpu_vmx *vmx = to_vmx(vcpu);
4988 struct msr_data apic_base_msr;
4989 u64 cr0;
4990
4991 vmx->rmode.vm86_active = 0;
4992
4993 vmx->soft_vnmi_blocked = 0;
4994
4995 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4996 kvm_set_cr8(vcpu, 0);
4997
4998 if (!init_event) {
4999 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5000 MSR_IA32_APICBASE_ENABLE;
5001 if (kvm_vcpu_is_reset_bsp(vcpu))
5002 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5003 apic_base_msr.host_initiated = true;
5004 kvm_set_apic_base(vcpu, &apic_base_msr);
5005 }
5006
5007 vmx_segment_cache_clear(vmx);
5008
5009 seg_setup(VCPU_SREG_CS);
5010 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5011 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5012
5013 seg_setup(VCPU_SREG_DS);
5014 seg_setup(VCPU_SREG_ES);
5015 seg_setup(VCPU_SREG_FS);
5016 seg_setup(VCPU_SREG_GS);
5017 seg_setup(VCPU_SREG_SS);
5018
5019 vmcs_write16(GUEST_TR_SELECTOR, 0);
5020 vmcs_writel(GUEST_TR_BASE, 0);
5021 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5022 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5023
5024 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5025 vmcs_writel(GUEST_LDTR_BASE, 0);
5026 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5027 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5028
5029 if (!init_event) {
5030 vmcs_write32(GUEST_SYSENTER_CS, 0);
5031 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5032 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5033 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5034 }
5035
5036 vmcs_writel(GUEST_RFLAGS, 0x02);
5037 kvm_rip_write(vcpu, 0xfff0);
5038
5039 vmcs_writel(GUEST_GDTR_BASE, 0);
5040 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5041
5042 vmcs_writel(GUEST_IDTR_BASE, 0);
5043 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5044
5045 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5046 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5047 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5048
5049 setup_msrs(vmx);
5050
5051 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5052
5053 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5054 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5055 if (cpu_need_tpr_shadow(vcpu))
5056 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5057 __pa(vcpu->arch.apic->regs));
5058 vmcs_write32(TPR_THRESHOLD, 0);
5059 }
5060
5061 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5062
5063 if (kvm_vcpu_apicv_active(vcpu))
5064 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5065
5066 if (vmx->vpid != 0)
5067 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5068
5069 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5070 vmx->vcpu.arch.cr0 = cr0;
5071 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5072 vmx_set_cr4(vcpu, 0);
5073 vmx_set_efer(vcpu, 0);
5074 vmx_fpu_activate(vcpu);
5075 update_exception_bitmap(vcpu);
5076
5077 vpid_sync_context(vmx->vpid);
5078 }
5079
5080 /*
5081 * In nested virtualization, check if L1 asked to exit on external interrupts.
5082 * For most existing hypervisors, this will always return true.
5083 */
5084 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5085 {
5086 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5087 PIN_BASED_EXT_INTR_MASK;
5088 }
5089
5090 /*
5091 * In nested virtualization, check if L1 has set
5092 * VM_EXIT_ACK_INTR_ON_EXIT
5093 */
5094 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5095 {
5096 return get_vmcs12(vcpu)->vm_exit_controls &
5097 VM_EXIT_ACK_INTR_ON_EXIT;
5098 }
5099
5100 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5101 {
5102 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5103 PIN_BASED_NMI_EXITING;
5104 }
5105
5106 static void enable_irq_window(struct kvm_vcpu *vcpu)
5107 {
5108 u32 cpu_based_vm_exec_control;
5109
5110 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5111 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5112 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5113 }
5114
5115 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5116 {
5117 u32 cpu_based_vm_exec_control;
5118
5119 if (!cpu_has_virtual_nmis() ||
5120 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5121 enable_irq_window(vcpu);
5122 return;
5123 }
5124
5125 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5126 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5127 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5128 }
5129
5130 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5131 {
5132 struct vcpu_vmx *vmx = to_vmx(vcpu);
5133 uint32_t intr;
5134 int irq = vcpu->arch.interrupt.nr;
5135
5136 trace_kvm_inj_virq(irq);
5137
5138 ++vcpu->stat.irq_injections;
5139 if (vmx->rmode.vm86_active) {
5140 int inc_eip = 0;
5141 if (vcpu->arch.interrupt.soft)
5142 inc_eip = vcpu->arch.event_exit_inst_len;
5143 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5144 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5145 return;
5146 }
5147 intr = irq | INTR_INFO_VALID_MASK;
5148 if (vcpu->arch.interrupt.soft) {
5149 intr |= INTR_TYPE_SOFT_INTR;
5150 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5151 vmx->vcpu.arch.event_exit_inst_len);
5152 } else
5153 intr |= INTR_TYPE_EXT_INTR;
5154 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5155 }
5156
5157 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5158 {
5159 struct vcpu_vmx *vmx = to_vmx(vcpu);
5160
5161 if (is_guest_mode(vcpu))
5162 return;
5163
5164 if (!cpu_has_virtual_nmis()) {
5165 /*
5166 * Tracking the NMI-blocked state in software is built upon
5167 * finding the next open IRQ window. This, in turn, depends on
5168 * well-behaving guests: They have to keep IRQs disabled at
5169 * least as long as the NMI handler runs. Otherwise we may
5170 * cause NMI nesting, maybe breaking the guest. But as this is
5171 * highly unlikely, we can live with the residual risk.
5172 */
5173 vmx->soft_vnmi_blocked = 1;
5174 vmx->vnmi_blocked_time = 0;
5175 }
5176
5177 ++vcpu->stat.nmi_injections;
5178 vmx->nmi_known_unmasked = false;
5179 if (vmx->rmode.vm86_active) {
5180 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5181 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5182 return;
5183 }
5184 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5185 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5186 }
5187
5188 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5189 {
5190 if (!cpu_has_virtual_nmis())
5191 return to_vmx(vcpu)->soft_vnmi_blocked;
5192 if (to_vmx(vcpu)->nmi_known_unmasked)
5193 return false;
5194 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5195 }
5196
5197 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5198 {
5199 struct vcpu_vmx *vmx = to_vmx(vcpu);
5200
5201 if (!cpu_has_virtual_nmis()) {
5202 if (vmx->soft_vnmi_blocked != masked) {
5203 vmx->soft_vnmi_blocked = masked;
5204 vmx->vnmi_blocked_time = 0;
5205 }
5206 } else {
5207 vmx->nmi_known_unmasked = !masked;
5208 if (masked)
5209 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5210 GUEST_INTR_STATE_NMI);
5211 else
5212 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5213 GUEST_INTR_STATE_NMI);
5214 }
5215 }
5216
5217 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5218 {
5219 if (to_vmx(vcpu)->nested.nested_run_pending)
5220 return 0;
5221
5222 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5223 return 0;
5224
5225 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5226 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5227 | GUEST_INTR_STATE_NMI));
5228 }
5229
5230 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5231 {
5232 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5233 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5234 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5235 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5236 }
5237
5238 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5239 {
5240 int ret;
5241
5242 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5243 PAGE_SIZE * 3);
5244 if (ret)
5245 return ret;
5246 kvm->arch.tss_addr = addr;
5247 return init_rmode_tss(kvm);
5248 }
5249
5250 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5251 {
5252 switch (vec) {
5253 case BP_VECTOR:
5254 /*
5255 * Update instruction length as we may reinject the exception
5256 * from user space while in guest debugging mode.
5257 */
5258 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5259 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5260 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5261 return false;
5262 /* fall through */
5263 case DB_VECTOR:
5264 if (vcpu->guest_debug &
5265 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5266 return false;
5267 /* fall through */
5268 case DE_VECTOR:
5269 case OF_VECTOR:
5270 case BR_VECTOR:
5271 case UD_VECTOR:
5272 case DF_VECTOR:
5273 case SS_VECTOR:
5274 case GP_VECTOR:
5275 case MF_VECTOR:
5276 return true;
5277 break;
5278 }
5279 return false;
5280 }
5281
5282 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5283 int vec, u32 err_code)
5284 {
5285 /*
5286 * Instruction with address size override prefix opcode 0x67
5287 * Cause the #SS fault with 0 error code in VM86 mode.
5288 */
5289 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5290 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5291 if (vcpu->arch.halt_request) {
5292 vcpu->arch.halt_request = 0;
5293 return kvm_vcpu_halt(vcpu);
5294 }
5295 return 1;
5296 }
5297 return 0;
5298 }
5299
5300 /*
5301 * Forward all other exceptions that are valid in real mode.
5302 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5303 * the required debugging infrastructure rework.
5304 */
5305 kvm_queue_exception(vcpu, vec);
5306 return 1;
5307 }
5308
5309 /*
5310 * Trigger machine check on the host. We assume all the MSRs are already set up
5311 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5312 * We pass a fake environment to the machine check handler because we want
5313 * the guest to be always treated like user space, no matter what context
5314 * it used internally.
5315 */
5316 static void kvm_machine_check(void)
5317 {
5318 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5319 struct pt_regs regs = {
5320 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5321 .flags = X86_EFLAGS_IF,
5322 };
5323
5324 do_machine_check(&regs, 0);
5325 #endif
5326 }
5327
5328 static int handle_machine_check(struct kvm_vcpu *vcpu)
5329 {
5330 /* already handled by vcpu_run */
5331 return 1;
5332 }
5333
5334 static int handle_exception(struct kvm_vcpu *vcpu)
5335 {
5336 struct vcpu_vmx *vmx = to_vmx(vcpu);
5337 struct kvm_run *kvm_run = vcpu->run;
5338 u32 intr_info, ex_no, error_code;
5339 unsigned long cr2, rip, dr6;
5340 u32 vect_info;
5341 enum emulation_result er;
5342
5343 vect_info = vmx->idt_vectoring_info;
5344 intr_info = vmx->exit_intr_info;
5345
5346 if (is_machine_check(intr_info))
5347 return handle_machine_check(vcpu);
5348
5349 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5350 return 1; /* already handled by vmx_vcpu_run() */
5351
5352 if (is_no_device(intr_info)) {
5353 vmx_fpu_activate(vcpu);
5354 return 1;
5355 }
5356
5357 if (is_invalid_opcode(intr_info)) {
5358 if (is_guest_mode(vcpu)) {
5359 kvm_queue_exception(vcpu, UD_VECTOR);
5360 return 1;
5361 }
5362 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5363 if (er != EMULATE_DONE)
5364 kvm_queue_exception(vcpu, UD_VECTOR);
5365 return 1;
5366 }
5367
5368 error_code = 0;
5369 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5370 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5371
5372 /*
5373 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5374 * MMIO, it is better to report an internal error.
5375 * See the comments in vmx_handle_exit.
5376 */
5377 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5378 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5379 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5380 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5381 vcpu->run->internal.ndata = 3;
5382 vcpu->run->internal.data[0] = vect_info;
5383 vcpu->run->internal.data[1] = intr_info;
5384 vcpu->run->internal.data[2] = error_code;
5385 return 0;
5386 }
5387
5388 if (is_page_fault(intr_info)) {
5389 /* EPT won't cause page fault directly */
5390 BUG_ON(enable_ept);
5391 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5392 trace_kvm_page_fault(cr2, error_code);
5393
5394 if (kvm_event_needs_reinjection(vcpu))
5395 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5396 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5397 }
5398
5399 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5400
5401 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5402 return handle_rmode_exception(vcpu, ex_no, error_code);
5403
5404 switch (ex_no) {
5405 case AC_VECTOR:
5406 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5407 return 1;
5408 case DB_VECTOR:
5409 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5410 if (!(vcpu->guest_debug &
5411 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5412 vcpu->arch.dr6 &= ~15;
5413 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5414 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5415 skip_emulated_instruction(vcpu);
5416
5417 kvm_queue_exception(vcpu, DB_VECTOR);
5418 return 1;
5419 }
5420 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5421 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5422 /* fall through */
5423 case BP_VECTOR:
5424 /*
5425 * Update instruction length as we may reinject #BP from
5426 * user space while in guest debugging mode. Reading it for
5427 * #DB as well causes no harm, it is not used in that case.
5428 */
5429 vmx->vcpu.arch.event_exit_inst_len =
5430 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5431 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5432 rip = kvm_rip_read(vcpu);
5433 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5434 kvm_run->debug.arch.exception = ex_no;
5435 break;
5436 default:
5437 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5438 kvm_run->ex.exception = ex_no;
5439 kvm_run->ex.error_code = error_code;
5440 break;
5441 }
5442 return 0;
5443 }
5444
5445 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5446 {
5447 ++vcpu->stat.irq_exits;
5448 return 1;
5449 }
5450
5451 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5452 {
5453 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5454 return 0;
5455 }
5456
5457 static int handle_io(struct kvm_vcpu *vcpu)
5458 {
5459 unsigned long exit_qualification;
5460 int size, in, string;
5461 unsigned port;
5462
5463 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5464 string = (exit_qualification & 16) != 0;
5465 in = (exit_qualification & 8) != 0;
5466
5467 ++vcpu->stat.io_exits;
5468
5469 if (string || in)
5470 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5471
5472 port = exit_qualification >> 16;
5473 size = (exit_qualification & 7) + 1;
5474 skip_emulated_instruction(vcpu);
5475
5476 return kvm_fast_pio_out(vcpu, size, port);
5477 }
5478
5479 static void
5480 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5481 {
5482 /*
5483 * Patch in the VMCALL instruction:
5484 */
5485 hypercall[0] = 0x0f;
5486 hypercall[1] = 0x01;
5487 hypercall[2] = 0xc1;
5488 }
5489
5490 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5491 {
5492 unsigned long always_on = VMXON_CR0_ALWAYSON;
5493 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5494
5495 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5496 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5497 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5498 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5499 return (val & always_on) == always_on;
5500 }
5501
5502 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5503 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5504 {
5505 if (is_guest_mode(vcpu)) {
5506 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5507 unsigned long orig_val = val;
5508
5509 /*
5510 * We get here when L2 changed cr0 in a way that did not change
5511 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5512 * but did change L0 shadowed bits. So we first calculate the
5513 * effective cr0 value that L1 would like to write into the
5514 * hardware. It consists of the L2-owned bits from the new
5515 * value combined with the L1-owned bits from L1's guest_cr0.
5516 */
5517 val = (val & ~vmcs12->cr0_guest_host_mask) |
5518 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5519
5520 if (!nested_cr0_valid(vcpu, val))
5521 return 1;
5522
5523 if (kvm_set_cr0(vcpu, val))
5524 return 1;
5525 vmcs_writel(CR0_READ_SHADOW, orig_val);
5526 return 0;
5527 } else {
5528 if (to_vmx(vcpu)->nested.vmxon &&
5529 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5530 return 1;
5531 return kvm_set_cr0(vcpu, val);
5532 }
5533 }
5534
5535 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5536 {
5537 if (is_guest_mode(vcpu)) {
5538 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5539 unsigned long orig_val = val;
5540
5541 /* analogously to handle_set_cr0 */
5542 val = (val & ~vmcs12->cr4_guest_host_mask) |
5543 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5544 if (kvm_set_cr4(vcpu, val))
5545 return 1;
5546 vmcs_writel(CR4_READ_SHADOW, orig_val);
5547 return 0;
5548 } else
5549 return kvm_set_cr4(vcpu, val);
5550 }
5551
5552 /* called to set cr0 as appropriate for clts instruction exit. */
5553 static void handle_clts(struct kvm_vcpu *vcpu)
5554 {
5555 if (is_guest_mode(vcpu)) {
5556 /*
5557 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5558 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5559 * just pretend it's off (also in arch.cr0 for fpu_activate).
5560 */
5561 vmcs_writel(CR0_READ_SHADOW,
5562 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5563 vcpu->arch.cr0 &= ~X86_CR0_TS;
5564 } else
5565 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5566 }
5567
5568 static int handle_cr(struct kvm_vcpu *vcpu)
5569 {
5570 unsigned long exit_qualification, val;
5571 int cr;
5572 int reg;
5573 int err;
5574
5575 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5576 cr = exit_qualification & 15;
5577 reg = (exit_qualification >> 8) & 15;
5578 switch ((exit_qualification >> 4) & 3) {
5579 case 0: /* mov to cr */
5580 val = kvm_register_readl(vcpu, reg);
5581 trace_kvm_cr_write(cr, val);
5582 switch (cr) {
5583 case 0:
5584 err = handle_set_cr0(vcpu, val);
5585 kvm_complete_insn_gp(vcpu, err);
5586 return 1;
5587 case 3:
5588 err = kvm_set_cr3(vcpu, val);
5589 kvm_complete_insn_gp(vcpu, err);
5590 return 1;
5591 case 4:
5592 err = handle_set_cr4(vcpu, val);
5593 kvm_complete_insn_gp(vcpu, err);
5594 return 1;
5595 case 8: {
5596 u8 cr8_prev = kvm_get_cr8(vcpu);
5597 u8 cr8 = (u8)val;
5598 err = kvm_set_cr8(vcpu, cr8);
5599 kvm_complete_insn_gp(vcpu, err);
5600 if (lapic_in_kernel(vcpu))
5601 return 1;
5602 if (cr8_prev <= cr8)
5603 return 1;
5604 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5605 return 0;
5606 }
5607 }
5608 break;
5609 case 2: /* clts */
5610 handle_clts(vcpu);
5611 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5612 skip_emulated_instruction(vcpu);
5613 vmx_fpu_activate(vcpu);
5614 return 1;
5615 case 1: /*mov from cr*/
5616 switch (cr) {
5617 case 3:
5618 val = kvm_read_cr3(vcpu);
5619 kvm_register_write(vcpu, reg, val);
5620 trace_kvm_cr_read(cr, val);
5621 skip_emulated_instruction(vcpu);
5622 return 1;
5623 case 8:
5624 val = kvm_get_cr8(vcpu);
5625 kvm_register_write(vcpu, reg, val);
5626 trace_kvm_cr_read(cr, val);
5627 skip_emulated_instruction(vcpu);
5628 return 1;
5629 }
5630 break;
5631 case 3: /* lmsw */
5632 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5633 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5634 kvm_lmsw(vcpu, val);
5635
5636 skip_emulated_instruction(vcpu);
5637 return 1;
5638 default:
5639 break;
5640 }
5641 vcpu->run->exit_reason = 0;
5642 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5643 (int)(exit_qualification >> 4) & 3, cr);
5644 return 0;
5645 }
5646
5647 static int handle_dr(struct kvm_vcpu *vcpu)
5648 {
5649 unsigned long exit_qualification;
5650 int dr, dr7, reg;
5651
5652 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5653 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5654
5655 /* First, if DR does not exist, trigger UD */
5656 if (!kvm_require_dr(vcpu, dr))
5657 return 1;
5658
5659 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5660 if (!kvm_require_cpl(vcpu, 0))
5661 return 1;
5662 dr7 = vmcs_readl(GUEST_DR7);
5663 if (dr7 & DR7_GD) {
5664 /*
5665 * As the vm-exit takes precedence over the debug trap, we
5666 * need to emulate the latter, either for the host or the
5667 * guest debugging itself.
5668 */
5669 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5670 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5671 vcpu->run->debug.arch.dr7 = dr7;
5672 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5673 vcpu->run->debug.arch.exception = DB_VECTOR;
5674 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5675 return 0;
5676 } else {
5677 vcpu->arch.dr6 &= ~15;
5678 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5679 kvm_queue_exception(vcpu, DB_VECTOR);
5680 return 1;
5681 }
5682 }
5683
5684 if (vcpu->guest_debug == 0) {
5685 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5686 CPU_BASED_MOV_DR_EXITING);
5687
5688 /*
5689 * No more DR vmexits; force a reload of the debug registers
5690 * and reenter on this instruction. The next vmexit will
5691 * retrieve the full state of the debug registers.
5692 */
5693 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5694 return 1;
5695 }
5696
5697 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5698 if (exit_qualification & TYPE_MOV_FROM_DR) {
5699 unsigned long val;
5700
5701 if (kvm_get_dr(vcpu, dr, &val))
5702 return 1;
5703 kvm_register_write(vcpu, reg, val);
5704 } else
5705 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5706 return 1;
5707
5708 skip_emulated_instruction(vcpu);
5709 return 1;
5710 }
5711
5712 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5713 {
5714 return vcpu->arch.dr6;
5715 }
5716
5717 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5718 {
5719 }
5720
5721 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5722 {
5723 get_debugreg(vcpu->arch.db[0], 0);
5724 get_debugreg(vcpu->arch.db[1], 1);
5725 get_debugreg(vcpu->arch.db[2], 2);
5726 get_debugreg(vcpu->arch.db[3], 3);
5727 get_debugreg(vcpu->arch.dr6, 6);
5728 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5729
5730 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5731 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5732 }
5733
5734 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5735 {
5736 vmcs_writel(GUEST_DR7, val);
5737 }
5738
5739 static int handle_cpuid(struct kvm_vcpu *vcpu)
5740 {
5741 kvm_emulate_cpuid(vcpu);
5742 return 1;
5743 }
5744
5745 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5746 {
5747 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5748 struct msr_data msr_info;
5749
5750 msr_info.index = ecx;
5751 msr_info.host_initiated = false;
5752 if (vmx_get_msr(vcpu, &msr_info)) {
5753 trace_kvm_msr_read_ex(ecx);
5754 kvm_inject_gp(vcpu, 0);
5755 return 1;
5756 }
5757
5758 trace_kvm_msr_read(ecx, msr_info.data);
5759
5760 /* FIXME: handling of bits 32:63 of rax, rdx */
5761 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5762 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5763 skip_emulated_instruction(vcpu);
5764 return 1;
5765 }
5766
5767 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5768 {
5769 struct msr_data msr;
5770 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5771 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5772 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5773
5774 msr.data = data;
5775 msr.index = ecx;
5776 msr.host_initiated = false;
5777 if (kvm_set_msr(vcpu, &msr) != 0) {
5778 trace_kvm_msr_write_ex(ecx, data);
5779 kvm_inject_gp(vcpu, 0);
5780 return 1;
5781 }
5782
5783 trace_kvm_msr_write(ecx, data);
5784 skip_emulated_instruction(vcpu);
5785 return 1;
5786 }
5787
5788 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5789 {
5790 kvm_make_request(KVM_REQ_EVENT, vcpu);
5791 return 1;
5792 }
5793
5794 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5795 {
5796 u32 cpu_based_vm_exec_control;
5797
5798 /* clear pending irq */
5799 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5800 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5801 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5802
5803 kvm_make_request(KVM_REQ_EVENT, vcpu);
5804
5805 ++vcpu->stat.irq_window_exits;
5806 return 1;
5807 }
5808
5809 static int handle_halt(struct kvm_vcpu *vcpu)
5810 {
5811 return kvm_emulate_halt(vcpu);
5812 }
5813
5814 static int handle_vmcall(struct kvm_vcpu *vcpu)
5815 {
5816 return kvm_emulate_hypercall(vcpu);
5817 }
5818
5819 static int handle_invd(struct kvm_vcpu *vcpu)
5820 {
5821 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5822 }
5823
5824 static int handle_invlpg(struct kvm_vcpu *vcpu)
5825 {
5826 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5827
5828 kvm_mmu_invlpg(vcpu, exit_qualification);
5829 skip_emulated_instruction(vcpu);
5830 return 1;
5831 }
5832
5833 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5834 {
5835 int err;
5836
5837 err = kvm_rdpmc(vcpu);
5838 kvm_complete_insn_gp(vcpu, err);
5839
5840 return 1;
5841 }
5842
5843 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5844 {
5845 kvm_emulate_wbinvd(vcpu);
5846 return 1;
5847 }
5848
5849 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5850 {
5851 u64 new_bv = kvm_read_edx_eax(vcpu);
5852 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5853
5854 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5855 skip_emulated_instruction(vcpu);
5856 return 1;
5857 }
5858
5859 static int handle_xsaves(struct kvm_vcpu *vcpu)
5860 {
5861 skip_emulated_instruction(vcpu);
5862 WARN(1, "this should never happen\n");
5863 return 1;
5864 }
5865
5866 static int handle_xrstors(struct kvm_vcpu *vcpu)
5867 {
5868 skip_emulated_instruction(vcpu);
5869 WARN(1, "this should never happen\n");
5870 return 1;
5871 }
5872
5873 static int handle_apic_access(struct kvm_vcpu *vcpu)
5874 {
5875 if (likely(fasteoi)) {
5876 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5877 int access_type, offset;
5878
5879 access_type = exit_qualification & APIC_ACCESS_TYPE;
5880 offset = exit_qualification & APIC_ACCESS_OFFSET;
5881 /*
5882 * Sane guest uses MOV to write EOI, with written value
5883 * not cared. So make a short-circuit here by avoiding
5884 * heavy instruction emulation.
5885 */
5886 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5887 (offset == APIC_EOI)) {
5888 kvm_lapic_set_eoi(vcpu);
5889 skip_emulated_instruction(vcpu);
5890 return 1;
5891 }
5892 }
5893 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5894 }
5895
5896 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5897 {
5898 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5899 int vector = exit_qualification & 0xff;
5900
5901 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5902 kvm_apic_set_eoi_accelerated(vcpu, vector);
5903 return 1;
5904 }
5905
5906 static int handle_apic_write(struct kvm_vcpu *vcpu)
5907 {
5908 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5909 u32 offset = exit_qualification & 0xfff;
5910
5911 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5912 kvm_apic_write_nodecode(vcpu, offset);
5913 return 1;
5914 }
5915
5916 static int handle_task_switch(struct kvm_vcpu *vcpu)
5917 {
5918 struct vcpu_vmx *vmx = to_vmx(vcpu);
5919 unsigned long exit_qualification;
5920 bool has_error_code = false;
5921 u32 error_code = 0;
5922 u16 tss_selector;
5923 int reason, type, idt_v, idt_index;
5924
5925 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5926 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5927 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5928
5929 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5930
5931 reason = (u32)exit_qualification >> 30;
5932 if (reason == TASK_SWITCH_GATE && idt_v) {
5933 switch (type) {
5934 case INTR_TYPE_NMI_INTR:
5935 vcpu->arch.nmi_injected = false;
5936 vmx_set_nmi_mask(vcpu, true);
5937 break;
5938 case INTR_TYPE_EXT_INTR:
5939 case INTR_TYPE_SOFT_INTR:
5940 kvm_clear_interrupt_queue(vcpu);
5941 break;
5942 case INTR_TYPE_HARD_EXCEPTION:
5943 if (vmx->idt_vectoring_info &
5944 VECTORING_INFO_DELIVER_CODE_MASK) {
5945 has_error_code = true;
5946 error_code =
5947 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5948 }
5949 /* fall through */
5950 case INTR_TYPE_SOFT_EXCEPTION:
5951 kvm_clear_exception_queue(vcpu);
5952 break;
5953 default:
5954 break;
5955 }
5956 }
5957 tss_selector = exit_qualification;
5958
5959 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5960 type != INTR_TYPE_EXT_INTR &&
5961 type != INTR_TYPE_NMI_INTR))
5962 skip_emulated_instruction(vcpu);
5963
5964 if (kvm_task_switch(vcpu, tss_selector,
5965 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5966 has_error_code, error_code) == EMULATE_FAIL) {
5967 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5968 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5969 vcpu->run->internal.ndata = 0;
5970 return 0;
5971 }
5972
5973 /*
5974 * TODO: What about debug traps on tss switch?
5975 * Are we supposed to inject them and update dr6?
5976 */
5977
5978 return 1;
5979 }
5980
5981 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5982 {
5983 unsigned long exit_qualification;
5984 gpa_t gpa;
5985 u32 error_code;
5986 int gla_validity;
5987
5988 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5989
5990 gla_validity = (exit_qualification >> 7) & 0x3;
5991 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5992 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5993 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5994 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5995 vmcs_readl(GUEST_LINEAR_ADDRESS));
5996 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5997 (long unsigned int)exit_qualification);
5998 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5999 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6000 return 0;
6001 }
6002
6003 /*
6004 * EPT violation happened while executing iret from NMI,
6005 * "blocked by NMI" bit has to be set before next VM entry.
6006 * There are errata that may cause this bit to not be set:
6007 * AAK134, BY25.
6008 */
6009 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6010 cpu_has_virtual_nmis() &&
6011 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6012 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6013
6014 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6015 trace_kvm_page_fault(gpa, exit_qualification);
6016
6017 /* It is a write fault? */
6018 error_code = exit_qualification & PFERR_WRITE_MASK;
6019 /* It is a fetch fault? */
6020 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6021 /* ept page table is present? */
6022 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6023
6024 vcpu->arch.exit_qualification = exit_qualification;
6025
6026 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6027 }
6028
6029 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6030 {
6031 int ret;
6032 gpa_t gpa;
6033
6034 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6035 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6036 skip_emulated_instruction(vcpu);
6037 trace_kvm_fast_mmio(gpa);
6038 return 1;
6039 }
6040
6041 ret = handle_mmio_page_fault(vcpu, gpa, true);
6042 if (likely(ret == RET_MMIO_PF_EMULATE))
6043 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6044 EMULATE_DONE;
6045
6046 if (unlikely(ret == RET_MMIO_PF_INVALID))
6047 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6048
6049 if (unlikely(ret == RET_MMIO_PF_RETRY))
6050 return 1;
6051
6052 /* It is the real ept misconfig */
6053 WARN_ON(1);
6054
6055 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6056 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6057
6058 return 0;
6059 }
6060
6061 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6062 {
6063 u32 cpu_based_vm_exec_control;
6064
6065 /* clear pending NMI */
6066 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6067 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6068 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6069 ++vcpu->stat.nmi_window_exits;
6070 kvm_make_request(KVM_REQ_EVENT, vcpu);
6071
6072 return 1;
6073 }
6074
6075 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6076 {
6077 struct vcpu_vmx *vmx = to_vmx(vcpu);
6078 enum emulation_result err = EMULATE_DONE;
6079 int ret = 1;
6080 u32 cpu_exec_ctrl;
6081 bool intr_window_requested;
6082 unsigned count = 130;
6083
6084 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6085 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6086
6087 while (vmx->emulation_required && count-- != 0) {
6088 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6089 return handle_interrupt_window(&vmx->vcpu);
6090
6091 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6092 return 1;
6093
6094 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6095
6096 if (err == EMULATE_USER_EXIT) {
6097 ++vcpu->stat.mmio_exits;
6098 ret = 0;
6099 goto out;
6100 }
6101
6102 if (err != EMULATE_DONE) {
6103 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6104 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6105 vcpu->run->internal.ndata = 0;
6106 return 0;
6107 }
6108
6109 if (vcpu->arch.halt_request) {
6110 vcpu->arch.halt_request = 0;
6111 ret = kvm_vcpu_halt(vcpu);
6112 goto out;
6113 }
6114
6115 if (signal_pending(current))
6116 goto out;
6117 if (need_resched())
6118 schedule();
6119 }
6120
6121 out:
6122 return ret;
6123 }
6124
6125 static int __grow_ple_window(int val)
6126 {
6127 if (ple_window_grow < 1)
6128 return ple_window;
6129
6130 val = min(val, ple_window_actual_max);
6131
6132 if (ple_window_grow < ple_window)
6133 val *= ple_window_grow;
6134 else
6135 val += ple_window_grow;
6136
6137 return val;
6138 }
6139
6140 static int __shrink_ple_window(int val, int modifier, int minimum)
6141 {
6142 if (modifier < 1)
6143 return ple_window;
6144
6145 if (modifier < ple_window)
6146 val /= modifier;
6147 else
6148 val -= modifier;
6149
6150 return max(val, minimum);
6151 }
6152
6153 static void grow_ple_window(struct kvm_vcpu *vcpu)
6154 {
6155 struct vcpu_vmx *vmx = to_vmx(vcpu);
6156 int old = vmx->ple_window;
6157
6158 vmx->ple_window = __grow_ple_window(old);
6159
6160 if (vmx->ple_window != old)
6161 vmx->ple_window_dirty = true;
6162
6163 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6164 }
6165
6166 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6167 {
6168 struct vcpu_vmx *vmx = to_vmx(vcpu);
6169 int old = vmx->ple_window;
6170
6171 vmx->ple_window = __shrink_ple_window(old,
6172 ple_window_shrink, ple_window);
6173
6174 if (vmx->ple_window != old)
6175 vmx->ple_window_dirty = true;
6176
6177 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6178 }
6179
6180 /*
6181 * ple_window_actual_max is computed to be one grow_ple_window() below
6182 * ple_window_max. (See __grow_ple_window for the reason.)
6183 * This prevents overflows, because ple_window_max is int.
6184 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6185 * this process.
6186 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6187 */
6188 static void update_ple_window_actual_max(void)
6189 {
6190 ple_window_actual_max =
6191 __shrink_ple_window(max(ple_window_max, ple_window),
6192 ple_window_grow, INT_MIN);
6193 }
6194
6195 /*
6196 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6197 */
6198 static void wakeup_handler(void)
6199 {
6200 struct kvm_vcpu *vcpu;
6201 int cpu = smp_processor_id();
6202
6203 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6204 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6205 blocked_vcpu_list) {
6206 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6207
6208 if (pi_test_on(pi_desc) == 1)
6209 kvm_vcpu_kick(vcpu);
6210 }
6211 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6212 }
6213
6214 static __init int hardware_setup(void)
6215 {
6216 int r = -ENOMEM, i, msr;
6217
6218 rdmsrl_safe(MSR_EFER, &host_efer);
6219
6220 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6221 kvm_define_shared_msr(i, vmx_msr_index[i]);
6222
6223 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6224 if (!vmx_io_bitmap_a)
6225 return r;
6226
6227 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6228 if (!vmx_io_bitmap_b)
6229 goto out;
6230
6231 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6232 if (!vmx_msr_bitmap_legacy)
6233 goto out1;
6234
6235 vmx_msr_bitmap_legacy_x2apic =
6236 (unsigned long *)__get_free_page(GFP_KERNEL);
6237 if (!vmx_msr_bitmap_legacy_x2apic)
6238 goto out2;
6239
6240 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6241 if (!vmx_msr_bitmap_longmode)
6242 goto out3;
6243
6244 vmx_msr_bitmap_longmode_x2apic =
6245 (unsigned long *)__get_free_page(GFP_KERNEL);
6246 if (!vmx_msr_bitmap_longmode_x2apic)
6247 goto out4;
6248
6249 if (nested) {
6250 vmx_msr_bitmap_nested =
6251 (unsigned long *)__get_free_page(GFP_KERNEL);
6252 if (!vmx_msr_bitmap_nested)
6253 goto out5;
6254 }
6255
6256 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6257 if (!vmx_vmread_bitmap)
6258 goto out6;
6259
6260 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6261 if (!vmx_vmwrite_bitmap)
6262 goto out7;
6263
6264 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6265 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6266
6267 /*
6268 * Allow direct access to the PC debug port (it is often used for I/O
6269 * delays, but the vmexits simply slow things down).
6270 */
6271 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6272 clear_bit(0x80, vmx_io_bitmap_a);
6273
6274 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6275
6276 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6277 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6278 if (nested)
6279 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6280
6281 if (setup_vmcs_config(&vmcs_config) < 0) {
6282 r = -EIO;
6283 goto out8;
6284 }
6285
6286 if (boot_cpu_has(X86_FEATURE_NX))
6287 kvm_enable_efer_bits(EFER_NX);
6288
6289 if (!cpu_has_vmx_vpid())
6290 enable_vpid = 0;
6291 if (!cpu_has_vmx_shadow_vmcs())
6292 enable_shadow_vmcs = 0;
6293 if (enable_shadow_vmcs)
6294 init_vmcs_shadow_fields();
6295
6296 if (!cpu_has_vmx_ept() ||
6297 !cpu_has_vmx_ept_4levels()) {
6298 enable_ept = 0;
6299 enable_unrestricted_guest = 0;
6300 enable_ept_ad_bits = 0;
6301 }
6302
6303 if (!cpu_has_vmx_ept_ad_bits())
6304 enable_ept_ad_bits = 0;
6305
6306 if (!cpu_has_vmx_unrestricted_guest())
6307 enable_unrestricted_guest = 0;
6308
6309 if (!cpu_has_vmx_flexpriority())
6310 flexpriority_enabled = 0;
6311
6312 /*
6313 * set_apic_access_page_addr() is used to reload apic access
6314 * page upon invalidation. No need to do anything if not
6315 * using the APIC_ACCESS_ADDR VMCS field.
6316 */
6317 if (!flexpriority_enabled)
6318 kvm_x86_ops->set_apic_access_page_addr = NULL;
6319
6320 if (!cpu_has_vmx_tpr_shadow())
6321 kvm_x86_ops->update_cr8_intercept = NULL;
6322
6323 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6324 kvm_disable_largepages();
6325
6326 if (!cpu_has_vmx_ple())
6327 ple_gap = 0;
6328
6329 if (!cpu_has_vmx_apicv())
6330 enable_apicv = 0;
6331
6332 if (cpu_has_vmx_tsc_scaling()) {
6333 kvm_has_tsc_control = true;
6334 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6335 kvm_tsc_scaling_ratio_frac_bits = 48;
6336 }
6337
6338 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6339 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6340 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6341 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6342 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6343 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6344 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6345
6346 memcpy(vmx_msr_bitmap_legacy_x2apic,
6347 vmx_msr_bitmap_legacy, PAGE_SIZE);
6348 memcpy(vmx_msr_bitmap_longmode_x2apic,
6349 vmx_msr_bitmap_longmode, PAGE_SIZE);
6350
6351 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6352
6353 for (msr = 0x800; msr <= 0x8ff; msr++)
6354 vmx_disable_intercept_msr_read_x2apic(msr);
6355
6356 /* According SDM, in x2apic mode, the whole id reg is used. But in
6357 * KVM, it only use the highest eight bits. Need to intercept it */
6358 vmx_enable_intercept_msr_read_x2apic(0x802);
6359 /* TMCCT */
6360 vmx_enable_intercept_msr_read_x2apic(0x839);
6361 /* TPR */
6362 vmx_disable_intercept_msr_write_x2apic(0x808);
6363 /* EOI */
6364 vmx_disable_intercept_msr_write_x2apic(0x80b);
6365 /* SELF-IPI */
6366 vmx_disable_intercept_msr_write_x2apic(0x83f);
6367
6368 if (enable_ept) {
6369 kvm_mmu_set_mask_ptes(0ull,
6370 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6371 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6372 0ull, VMX_EPT_EXECUTABLE_MASK);
6373 ept_set_mmio_spte_mask();
6374 kvm_enable_tdp();
6375 } else
6376 kvm_disable_tdp();
6377
6378 update_ple_window_actual_max();
6379
6380 /*
6381 * Only enable PML when hardware supports PML feature, and both EPT
6382 * and EPT A/D bit features are enabled -- PML depends on them to work.
6383 */
6384 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6385 enable_pml = 0;
6386
6387 if (!enable_pml) {
6388 kvm_x86_ops->slot_enable_log_dirty = NULL;
6389 kvm_x86_ops->slot_disable_log_dirty = NULL;
6390 kvm_x86_ops->flush_log_dirty = NULL;
6391 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6392 }
6393
6394 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6395
6396 return alloc_kvm_area();
6397
6398 out8:
6399 free_page((unsigned long)vmx_vmwrite_bitmap);
6400 out7:
6401 free_page((unsigned long)vmx_vmread_bitmap);
6402 out6:
6403 if (nested)
6404 free_page((unsigned long)vmx_msr_bitmap_nested);
6405 out5:
6406 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6407 out4:
6408 free_page((unsigned long)vmx_msr_bitmap_longmode);
6409 out3:
6410 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6411 out2:
6412 free_page((unsigned long)vmx_msr_bitmap_legacy);
6413 out1:
6414 free_page((unsigned long)vmx_io_bitmap_b);
6415 out:
6416 free_page((unsigned long)vmx_io_bitmap_a);
6417
6418 return r;
6419 }
6420
6421 static __exit void hardware_unsetup(void)
6422 {
6423 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6424 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6425 free_page((unsigned long)vmx_msr_bitmap_legacy);
6426 free_page((unsigned long)vmx_msr_bitmap_longmode);
6427 free_page((unsigned long)vmx_io_bitmap_b);
6428 free_page((unsigned long)vmx_io_bitmap_a);
6429 free_page((unsigned long)vmx_vmwrite_bitmap);
6430 free_page((unsigned long)vmx_vmread_bitmap);
6431 if (nested)
6432 free_page((unsigned long)vmx_msr_bitmap_nested);
6433
6434 free_kvm_area();
6435 }
6436
6437 /*
6438 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6439 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6440 */
6441 static int handle_pause(struct kvm_vcpu *vcpu)
6442 {
6443 if (ple_gap)
6444 grow_ple_window(vcpu);
6445
6446 skip_emulated_instruction(vcpu);
6447 kvm_vcpu_on_spin(vcpu);
6448
6449 return 1;
6450 }
6451
6452 static int handle_nop(struct kvm_vcpu *vcpu)
6453 {
6454 skip_emulated_instruction(vcpu);
6455 return 1;
6456 }
6457
6458 static int handle_mwait(struct kvm_vcpu *vcpu)
6459 {
6460 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6461 return handle_nop(vcpu);
6462 }
6463
6464 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6465 {
6466 return 1;
6467 }
6468
6469 static int handle_monitor(struct kvm_vcpu *vcpu)
6470 {
6471 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6472 return handle_nop(vcpu);
6473 }
6474
6475 /*
6476 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6477 * We could reuse a single VMCS for all the L2 guests, but we also want the
6478 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6479 * allows keeping them loaded on the processor, and in the future will allow
6480 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6481 * every entry if they never change.
6482 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6483 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6484 *
6485 * The following functions allocate and free a vmcs02 in this pool.
6486 */
6487
6488 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6489 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6490 {
6491 struct vmcs02_list *item;
6492 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6493 if (item->vmptr == vmx->nested.current_vmptr) {
6494 list_move(&item->list, &vmx->nested.vmcs02_pool);
6495 return &item->vmcs02;
6496 }
6497
6498 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6499 /* Recycle the least recently used VMCS. */
6500 item = list_last_entry(&vmx->nested.vmcs02_pool,
6501 struct vmcs02_list, list);
6502 item->vmptr = vmx->nested.current_vmptr;
6503 list_move(&item->list, &vmx->nested.vmcs02_pool);
6504 return &item->vmcs02;
6505 }
6506
6507 /* Create a new VMCS */
6508 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6509 if (!item)
6510 return NULL;
6511 item->vmcs02.vmcs = alloc_vmcs();
6512 if (!item->vmcs02.vmcs) {
6513 kfree(item);
6514 return NULL;
6515 }
6516 loaded_vmcs_init(&item->vmcs02);
6517 item->vmptr = vmx->nested.current_vmptr;
6518 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6519 vmx->nested.vmcs02_num++;
6520 return &item->vmcs02;
6521 }
6522
6523 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6524 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6525 {
6526 struct vmcs02_list *item;
6527 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6528 if (item->vmptr == vmptr) {
6529 free_loaded_vmcs(&item->vmcs02);
6530 list_del(&item->list);
6531 kfree(item);
6532 vmx->nested.vmcs02_num--;
6533 return;
6534 }
6535 }
6536
6537 /*
6538 * Free all VMCSs saved for this vcpu, except the one pointed by
6539 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6540 * must be &vmx->vmcs01.
6541 */
6542 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6543 {
6544 struct vmcs02_list *item, *n;
6545
6546 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6547 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6548 /*
6549 * Something will leak if the above WARN triggers. Better than
6550 * a use-after-free.
6551 */
6552 if (vmx->loaded_vmcs == &item->vmcs02)
6553 continue;
6554
6555 free_loaded_vmcs(&item->vmcs02);
6556 list_del(&item->list);
6557 kfree(item);
6558 vmx->nested.vmcs02_num--;
6559 }
6560 }
6561
6562 /*
6563 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6564 * set the success or error code of an emulated VMX instruction, as specified
6565 * by Vol 2B, VMX Instruction Reference, "Conventions".
6566 */
6567 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6568 {
6569 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6570 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6571 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6572 }
6573
6574 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6575 {
6576 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6577 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6578 X86_EFLAGS_SF | X86_EFLAGS_OF))
6579 | X86_EFLAGS_CF);
6580 }
6581
6582 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6583 u32 vm_instruction_error)
6584 {
6585 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6586 /*
6587 * failValid writes the error number to the current VMCS, which
6588 * can't be done there isn't a current VMCS.
6589 */
6590 nested_vmx_failInvalid(vcpu);
6591 return;
6592 }
6593 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6594 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6595 X86_EFLAGS_SF | X86_EFLAGS_OF))
6596 | X86_EFLAGS_ZF);
6597 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6598 /*
6599 * We don't need to force a shadow sync because
6600 * VM_INSTRUCTION_ERROR is not shadowed
6601 */
6602 }
6603
6604 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6605 {
6606 /* TODO: not to reset guest simply here. */
6607 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6608 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6609 }
6610
6611 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6612 {
6613 struct vcpu_vmx *vmx =
6614 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6615
6616 vmx->nested.preemption_timer_expired = true;
6617 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6618 kvm_vcpu_kick(&vmx->vcpu);
6619
6620 return HRTIMER_NORESTART;
6621 }
6622
6623 /*
6624 * Decode the memory-address operand of a vmx instruction, as recorded on an
6625 * exit caused by such an instruction (run by a guest hypervisor).
6626 * On success, returns 0. When the operand is invalid, returns 1 and throws
6627 * #UD or #GP.
6628 */
6629 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6630 unsigned long exit_qualification,
6631 u32 vmx_instruction_info, bool wr, gva_t *ret)
6632 {
6633 gva_t off;
6634 bool exn;
6635 struct kvm_segment s;
6636
6637 /*
6638 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6639 * Execution", on an exit, vmx_instruction_info holds most of the
6640 * addressing components of the operand. Only the displacement part
6641 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6642 * For how an actual address is calculated from all these components,
6643 * refer to Vol. 1, "Operand Addressing".
6644 */
6645 int scaling = vmx_instruction_info & 3;
6646 int addr_size = (vmx_instruction_info >> 7) & 7;
6647 bool is_reg = vmx_instruction_info & (1u << 10);
6648 int seg_reg = (vmx_instruction_info >> 15) & 7;
6649 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6650 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6651 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6652 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6653
6654 if (is_reg) {
6655 kvm_queue_exception(vcpu, UD_VECTOR);
6656 return 1;
6657 }
6658
6659 /* Addr = segment_base + offset */
6660 /* offset = base + [index * scale] + displacement */
6661 off = exit_qualification; /* holds the displacement */
6662 if (base_is_valid)
6663 off += kvm_register_read(vcpu, base_reg);
6664 if (index_is_valid)
6665 off += kvm_register_read(vcpu, index_reg)<<scaling;
6666 vmx_get_segment(vcpu, &s, seg_reg);
6667 *ret = s.base + off;
6668
6669 if (addr_size == 1) /* 32 bit */
6670 *ret &= 0xffffffff;
6671
6672 /* Checks for #GP/#SS exceptions. */
6673 exn = false;
6674 if (is_long_mode(vcpu)) {
6675 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6676 * non-canonical form. This is the only check on the memory
6677 * destination for long mode!
6678 */
6679 exn = is_noncanonical_address(*ret);
6680 } else if (is_protmode(vcpu)) {
6681 /* Protected mode: apply checks for segment validity in the
6682 * following order:
6683 * - segment type check (#GP(0) may be thrown)
6684 * - usability check (#GP(0)/#SS(0))
6685 * - limit check (#GP(0)/#SS(0))
6686 */
6687 if (wr)
6688 /* #GP(0) if the destination operand is located in a
6689 * read-only data segment or any code segment.
6690 */
6691 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6692 else
6693 /* #GP(0) if the source operand is located in an
6694 * execute-only code segment
6695 */
6696 exn = ((s.type & 0xa) == 8);
6697 if (exn) {
6698 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6699 return 1;
6700 }
6701 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6702 */
6703 exn = (s.unusable != 0);
6704 /* Protected mode: #GP(0)/#SS(0) if the memory
6705 * operand is outside the segment limit.
6706 */
6707 exn = exn || (off + sizeof(u64) > s.limit);
6708 }
6709 if (exn) {
6710 kvm_queue_exception_e(vcpu,
6711 seg_reg == VCPU_SREG_SS ?
6712 SS_VECTOR : GP_VECTOR,
6713 0);
6714 return 1;
6715 }
6716
6717 return 0;
6718 }
6719
6720 /*
6721 * This function performs the various checks including
6722 * - if it's 4KB aligned
6723 * - No bits beyond the physical address width are set
6724 * - Returns 0 on success or else 1
6725 * (Intel SDM Section 30.3)
6726 */
6727 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6728 gpa_t *vmpointer)
6729 {
6730 gva_t gva;
6731 gpa_t vmptr;
6732 struct x86_exception e;
6733 struct page *page;
6734 struct vcpu_vmx *vmx = to_vmx(vcpu);
6735 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6736
6737 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6738 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6739 return 1;
6740
6741 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6742 sizeof(vmptr), &e)) {
6743 kvm_inject_page_fault(vcpu, &e);
6744 return 1;
6745 }
6746
6747 switch (exit_reason) {
6748 case EXIT_REASON_VMON:
6749 /*
6750 * SDM 3: 24.11.5
6751 * The first 4 bytes of VMXON region contain the supported
6752 * VMCS revision identifier
6753 *
6754 * Note - IA32_VMX_BASIC[48] will never be 1
6755 * for the nested case;
6756 * which replaces physical address width with 32
6757 *
6758 */
6759 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6760 nested_vmx_failInvalid(vcpu);
6761 skip_emulated_instruction(vcpu);
6762 return 1;
6763 }
6764
6765 page = nested_get_page(vcpu, vmptr);
6766 if (page == NULL ||
6767 *(u32 *)kmap(page) != VMCS12_REVISION) {
6768 nested_vmx_failInvalid(vcpu);
6769 kunmap(page);
6770 skip_emulated_instruction(vcpu);
6771 return 1;
6772 }
6773 kunmap(page);
6774 vmx->nested.vmxon_ptr = vmptr;
6775 break;
6776 case EXIT_REASON_VMCLEAR:
6777 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6778 nested_vmx_failValid(vcpu,
6779 VMXERR_VMCLEAR_INVALID_ADDRESS);
6780 skip_emulated_instruction(vcpu);
6781 return 1;
6782 }
6783
6784 if (vmptr == vmx->nested.vmxon_ptr) {
6785 nested_vmx_failValid(vcpu,
6786 VMXERR_VMCLEAR_VMXON_POINTER);
6787 skip_emulated_instruction(vcpu);
6788 return 1;
6789 }
6790 break;
6791 case EXIT_REASON_VMPTRLD:
6792 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6793 nested_vmx_failValid(vcpu,
6794 VMXERR_VMPTRLD_INVALID_ADDRESS);
6795 skip_emulated_instruction(vcpu);
6796 return 1;
6797 }
6798
6799 if (vmptr == vmx->nested.vmxon_ptr) {
6800 nested_vmx_failValid(vcpu,
6801 VMXERR_VMCLEAR_VMXON_POINTER);
6802 skip_emulated_instruction(vcpu);
6803 return 1;
6804 }
6805 break;
6806 default:
6807 return 1; /* shouldn't happen */
6808 }
6809
6810 if (vmpointer)
6811 *vmpointer = vmptr;
6812 return 0;
6813 }
6814
6815 /*
6816 * Emulate the VMXON instruction.
6817 * Currently, we just remember that VMX is active, and do not save or even
6818 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6819 * do not currently need to store anything in that guest-allocated memory
6820 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6821 * argument is different from the VMXON pointer (which the spec says they do).
6822 */
6823 static int handle_vmon(struct kvm_vcpu *vcpu)
6824 {
6825 struct kvm_segment cs;
6826 struct vcpu_vmx *vmx = to_vmx(vcpu);
6827 struct vmcs *shadow_vmcs;
6828 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6829 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6830
6831 /* The Intel VMX Instruction Reference lists a bunch of bits that
6832 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6833 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6834 * Otherwise, we should fail with #UD. We test these now:
6835 */
6836 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6837 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6838 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6839 kvm_queue_exception(vcpu, UD_VECTOR);
6840 return 1;
6841 }
6842
6843 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6844 if (is_long_mode(vcpu) && !cs.l) {
6845 kvm_queue_exception(vcpu, UD_VECTOR);
6846 return 1;
6847 }
6848
6849 if (vmx_get_cpl(vcpu)) {
6850 kvm_inject_gp(vcpu, 0);
6851 return 1;
6852 }
6853
6854 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6855 return 1;
6856
6857 if (vmx->nested.vmxon) {
6858 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6859 skip_emulated_instruction(vcpu);
6860 return 1;
6861 }
6862
6863 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6864 != VMXON_NEEDED_FEATURES) {
6865 kvm_inject_gp(vcpu, 0);
6866 return 1;
6867 }
6868
6869 if (enable_shadow_vmcs) {
6870 shadow_vmcs = alloc_vmcs();
6871 if (!shadow_vmcs)
6872 return -ENOMEM;
6873 /* mark vmcs as shadow */
6874 shadow_vmcs->revision_id |= (1u << 31);
6875 /* init shadow vmcs */
6876 vmcs_clear(shadow_vmcs);
6877 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6878 }
6879
6880 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6881 vmx->nested.vmcs02_num = 0;
6882
6883 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6884 HRTIMER_MODE_REL);
6885 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6886
6887 vmx->nested.vmxon = true;
6888
6889 skip_emulated_instruction(vcpu);
6890 nested_vmx_succeed(vcpu);
6891 return 1;
6892 }
6893
6894 /*
6895 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6896 * for running VMX instructions (except VMXON, whose prerequisites are
6897 * slightly different). It also specifies what exception to inject otherwise.
6898 */
6899 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6900 {
6901 struct kvm_segment cs;
6902 struct vcpu_vmx *vmx = to_vmx(vcpu);
6903
6904 if (!vmx->nested.vmxon) {
6905 kvm_queue_exception(vcpu, UD_VECTOR);
6906 return 0;
6907 }
6908
6909 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6910 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6911 (is_long_mode(vcpu) && !cs.l)) {
6912 kvm_queue_exception(vcpu, UD_VECTOR);
6913 return 0;
6914 }
6915
6916 if (vmx_get_cpl(vcpu)) {
6917 kvm_inject_gp(vcpu, 0);
6918 return 0;
6919 }
6920
6921 return 1;
6922 }
6923
6924 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6925 {
6926 if (vmx->nested.current_vmptr == -1ull)
6927 return;
6928
6929 /* current_vmptr and current_vmcs12 are always set/reset together */
6930 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6931 return;
6932
6933 if (enable_shadow_vmcs) {
6934 /* copy to memory all shadowed fields in case
6935 they were modified */
6936 copy_shadow_to_vmcs12(vmx);
6937 vmx->nested.sync_shadow_vmcs = false;
6938 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6939 SECONDARY_EXEC_SHADOW_VMCS);
6940 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6941 }
6942 vmx->nested.posted_intr_nv = -1;
6943 kunmap(vmx->nested.current_vmcs12_page);
6944 nested_release_page(vmx->nested.current_vmcs12_page);
6945 vmx->nested.current_vmptr = -1ull;
6946 vmx->nested.current_vmcs12 = NULL;
6947 }
6948
6949 /*
6950 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6951 * just stops using VMX.
6952 */
6953 static void free_nested(struct vcpu_vmx *vmx)
6954 {
6955 if (!vmx->nested.vmxon)
6956 return;
6957
6958 vmx->nested.vmxon = false;
6959 free_vpid(vmx->nested.vpid02);
6960 nested_release_vmcs12(vmx);
6961 if (enable_shadow_vmcs)
6962 free_vmcs(vmx->nested.current_shadow_vmcs);
6963 /* Unpin physical memory we referred to in current vmcs02 */
6964 if (vmx->nested.apic_access_page) {
6965 nested_release_page(vmx->nested.apic_access_page);
6966 vmx->nested.apic_access_page = NULL;
6967 }
6968 if (vmx->nested.virtual_apic_page) {
6969 nested_release_page(vmx->nested.virtual_apic_page);
6970 vmx->nested.virtual_apic_page = NULL;
6971 }
6972 if (vmx->nested.pi_desc_page) {
6973 kunmap(vmx->nested.pi_desc_page);
6974 nested_release_page(vmx->nested.pi_desc_page);
6975 vmx->nested.pi_desc_page = NULL;
6976 vmx->nested.pi_desc = NULL;
6977 }
6978
6979 nested_free_all_saved_vmcss(vmx);
6980 }
6981
6982 /* Emulate the VMXOFF instruction */
6983 static int handle_vmoff(struct kvm_vcpu *vcpu)
6984 {
6985 if (!nested_vmx_check_permission(vcpu))
6986 return 1;
6987 free_nested(to_vmx(vcpu));
6988 skip_emulated_instruction(vcpu);
6989 nested_vmx_succeed(vcpu);
6990 return 1;
6991 }
6992
6993 /* Emulate the VMCLEAR instruction */
6994 static int handle_vmclear(struct kvm_vcpu *vcpu)
6995 {
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 gpa_t vmptr;
6998 struct vmcs12 *vmcs12;
6999 struct page *page;
7000
7001 if (!nested_vmx_check_permission(vcpu))
7002 return 1;
7003
7004 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7005 return 1;
7006
7007 if (vmptr == vmx->nested.current_vmptr)
7008 nested_release_vmcs12(vmx);
7009
7010 page = nested_get_page(vcpu, vmptr);
7011 if (page == NULL) {
7012 /*
7013 * For accurate processor emulation, VMCLEAR beyond available
7014 * physical memory should do nothing at all. However, it is
7015 * possible that a nested vmx bug, not a guest hypervisor bug,
7016 * resulted in this case, so let's shut down before doing any
7017 * more damage:
7018 */
7019 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7020 return 1;
7021 }
7022 vmcs12 = kmap(page);
7023 vmcs12->launch_state = 0;
7024 kunmap(page);
7025 nested_release_page(page);
7026
7027 nested_free_vmcs02(vmx, vmptr);
7028
7029 skip_emulated_instruction(vcpu);
7030 nested_vmx_succeed(vcpu);
7031 return 1;
7032 }
7033
7034 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7035
7036 /* Emulate the VMLAUNCH instruction */
7037 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7038 {
7039 return nested_vmx_run(vcpu, true);
7040 }
7041
7042 /* Emulate the VMRESUME instruction */
7043 static int handle_vmresume(struct kvm_vcpu *vcpu)
7044 {
7045
7046 return nested_vmx_run(vcpu, false);
7047 }
7048
7049 enum vmcs_field_type {
7050 VMCS_FIELD_TYPE_U16 = 0,
7051 VMCS_FIELD_TYPE_U64 = 1,
7052 VMCS_FIELD_TYPE_U32 = 2,
7053 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7054 };
7055
7056 static inline int vmcs_field_type(unsigned long field)
7057 {
7058 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7059 return VMCS_FIELD_TYPE_U32;
7060 return (field >> 13) & 0x3 ;
7061 }
7062
7063 static inline int vmcs_field_readonly(unsigned long field)
7064 {
7065 return (((field >> 10) & 0x3) == 1);
7066 }
7067
7068 /*
7069 * Read a vmcs12 field. Since these can have varying lengths and we return
7070 * one type, we chose the biggest type (u64) and zero-extend the return value
7071 * to that size. Note that the caller, handle_vmread, might need to use only
7072 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7073 * 64-bit fields are to be returned).
7074 */
7075 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7076 unsigned long field, u64 *ret)
7077 {
7078 short offset = vmcs_field_to_offset(field);
7079 char *p;
7080
7081 if (offset < 0)
7082 return offset;
7083
7084 p = ((char *)(get_vmcs12(vcpu))) + offset;
7085
7086 switch (vmcs_field_type(field)) {
7087 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7088 *ret = *((natural_width *)p);
7089 return 0;
7090 case VMCS_FIELD_TYPE_U16:
7091 *ret = *((u16 *)p);
7092 return 0;
7093 case VMCS_FIELD_TYPE_U32:
7094 *ret = *((u32 *)p);
7095 return 0;
7096 case VMCS_FIELD_TYPE_U64:
7097 *ret = *((u64 *)p);
7098 return 0;
7099 default:
7100 WARN_ON(1);
7101 return -ENOENT;
7102 }
7103 }
7104
7105
7106 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7107 unsigned long field, u64 field_value){
7108 short offset = vmcs_field_to_offset(field);
7109 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7110 if (offset < 0)
7111 return offset;
7112
7113 switch (vmcs_field_type(field)) {
7114 case VMCS_FIELD_TYPE_U16:
7115 *(u16 *)p = field_value;
7116 return 0;
7117 case VMCS_FIELD_TYPE_U32:
7118 *(u32 *)p = field_value;
7119 return 0;
7120 case VMCS_FIELD_TYPE_U64:
7121 *(u64 *)p = field_value;
7122 return 0;
7123 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7124 *(natural_width *)p = field_value;
7125 return 0;
7126 default:
7127 WARN_ON(1);
7128 return -ENOENT;
7129 }
7130
7131 }
7132
7133 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7134 {
7135 int i;
7136 unsigned long field;
7137 u64 field_value;
7138 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7139 const unsigned long *fields = shadow_read_write_fields;
7140 const int num_fields = max_shadow_read_write_fields;
7141
7142 preempt_disable();
7143
7144 vmcs_load(shadow_vmcs);
7145
7146 for (i = 0; i < num_fields; i++) {
7147 field = fields[i];
7148 switch (vmcs_field_type(field)) {
7149 case VMCS_FIELD_TYPE_U16:
7150 field_value = vmcs_read16(field);
7151 break;
7152 case VMCS_FIELD_TYPE_U32:
7153 field_value = vmcs_read32(field);
7154 break;
7155 case VMCS_FIELD_TYPE_U64:
7156 field_value = vmcs_read64(field);
7157 break;
7158 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7159 field_value = vmcs_readl(field);
7160 break;
7161 default:
7162 WARN_ON(1);
7163 continue;
7164 }
7165 vmcs12_write_any(&vmx->vcpu, field, field_value);
7166 }
7167
7168 vmcs_clear(shadow_vmcs);
7169 vmcs_load(vmx->loaded_vmcs->vmcs);
7170
7171 preempt_enable();
7172 }
7173
7174 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7175 {
7176 const unsigned long *fields[] = {
7177 shadow_read_write_fields,
7178 shadow_read_only_fields
7179 };
7180 const int max_fields[] = {
7181 max_shadow_read_write_fields,
7182 max_shadow_read_only_fields
7183 };
7184 int i, q;
7185 unsigned long field;
7186 u64 field_value = 0;
7187 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7188
7189 vmcs_load(shadow_vmcs);
7190
7191 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7192 for (i = 0; i < max_fields[q]; i++) {
7193 field = fields[q][i];
7194 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7195
7196 switch (vmcs_field_type(field)) {
7197 case VMCS_FIELD_TYPE_U16:
7198 vmcs_write16(field, (u16)field_value);
7199 break;
7200 case VMCS_FIELD_TYPE_U32:
7201 vmcs_write32(field, (u32)field_value);
7202 break;
7203 case VMCS_FIELD_TYPE_U64:
7204 vmcs_write64(field, (u64)field_value);
7205 break;
7206 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7207 vmcs_writel(field, (long)field_value);
7208 break;
7209 default:
7210 WARN_ON(1);
7211 break;
7212 }
7213 }
7214 }
7215
7216 vmcs_clear(shadow_vmcs);
7217 vmcs_load(vmx->loaded_vmcs->vmcs);
7218 }
7219
7220 /*
7221 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7222 * used before) all generate the same failure when it is missing.
7223 */
7224 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7225 {
7226 struct vcpu_vmx *vmx = to_vmx(vcpu);
7227 if (vmx->nested.current_vmptr == -1ull) {
7228 nested_vmx_failInvalid(vcpu);
7229 skip_emulated_instruction(vcpu);
7230 return 0;
7231 }
7232 return 1;
7233 }
7234
7235 static int handle_vmread(struct kvm_vcpu *vcpu)
7236 {
7237 unsigned long field;
7238 u64 field_value;
7239 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7240 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7241 gva_t gva = 0;
7242
7243 if (!nested_vmx_check_permission(vcpu) ||
7244 !nested_vmx_check_vmcs12(vcpu))
7245 return 1;
7246
7247 /* Decode instruction info and find the field to read */
7248 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7249 /* Read the field, zero-extended to a u64 field_value */
7250 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7251 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7252 skip_emulated_instruction(vcpu);
7253 return 1;
7254 }
7255 /*
7256 * Now copy part of this value to register or memory, as requested.
7257 * Note that the number of bits actually copied is 32 or 64 depending
7258 * on the guest's mode (32 or 64 bit), not on the given field's length.
7259 */
7260 if (vmx_instruction_info & (1u << 10)) {
7261 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7262 field_value);
7263 } else {
7264 if (get_vmx_mem_address(vcpu, exit_qualification,
7265 vmx_instruction_info, true, &gva))
7266 return 1;
7267 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7268 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7269 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7270 }
7271
7272 nested_vmx_succeed(vcpu);
7273 skip_emulated_instruction(vcpu);
7274 return 1;
7275 }
7276
7277
7278 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7279 {
7280 unsigned long field;
7281 gva_t gva;
7282 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7283 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7284 /* The value to write might be 32 or 64 bits, depending on L1's long
7285 * mode, and eventually we need to write that into a field of several
7286 * possible lengths. The code below first zero-extends the value to 64
7287 * bit (field_value), and then copies only the appropriate number of
7288 * bits into the vmcs12 field.
7289 */
7290 u64 field_value = 0;
7291 struct x86_exception e;
7292
7293 if (!nested_vmx_check_permission(vcpu) ||
7294 !nested_vmx_check_vmcs12(vcpu))
7295 return 1;
7296
7297 if (vmx_instruction_info & (1u << 10))
7298 field_value = kvm_register_readl(vcpu,
7299 (((vmx_instruction_info) >> 3) & 0xf));
7300 else {
7301 if (get_vmx_mem_address(vcpu, exit_qualification,
7302 vmx_instruction_info, false, &gva))
7303 return 1;
7304 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7305 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7306 kvm_inject_page_fault(vcpu, &e);
7307 return 1;
7308 }
7309 }
7310
7311
7312 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7313 if (vmcs_field_readonly(field)) {
7314 nested_vmx_failValid(vcpu,
7315 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7316 skip_emulated_instruction(vcpu);
7317 return 1;
7318 }
7319
7320 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7321 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7322 skip_emulated_instruction(vcpu);
7323 return 1;
7324 }
7325
7326 nested_vmx_succeed(vcpu);
7327 skip_emulated_instruction(vcpu);
7328 return 1;
7329 }
7330
7331 /* Emulate the VMPTRLD instruction */
7332 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7333 {
7334 struct vcpu_vmx *vmx = to_vmx(vcpu);
7335 gpa_t vmptr;
7336
7337 if (!nested_vmx_check_permission(vcpu))
7338 return 1;
7339
7340 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7341 return 1;
7342
7343 if (vmx->nested.current_vmptr != vmptr) {
7344 struct vmcs12 *new_vmcs12;
7345 struct page *page;
7346 page = nested_get_page(vcpu, vmptr);
7347 if (page == NULL) {
7348 nested_vmx_failInvalid(vcpu);
7349 skip_emulated_instruction(vcpu);
7350 return 1;
7351 }
7352 new_vmcs12 = kmap(page);
7353 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7354 kunmap(page);
7355 nested_release_page_clean(page);
7356 nested_vmx_failValid(vcpu,
7357 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7358 skip_emulated_instruction(vcpu);
7359 return 1;
7360 }
7361
7362 nested_release_vmcs12(vmx);
7363 vmx->nested.current_vmptr = vmptr;
7364 vmx->nested.current_vmcs12 = new_vmcs12;
7365 vmx->nested.current_vmcs12_page = page;
7366 if (enable_shadow_vmcs) {
7367 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7368 SECONDARY_EXEC_SHADOW_VMCS);
7369 vmcs_write64(VMCS_LINK_POINTER,
7370 __pa(vmx->nested.current_shadow_vmcs));
7371 vmx->nested.sync_shadow_vmcs = true;
7372 }
7373 }
7374
7375 nested_vmx_succeed(vcpu);
7376 skip_emulated_instruction(vcpu);
7377 return 1;
7378 }
7379
7380 /* Emulate the VMPTRST instruction */
7381 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7382 {
7383 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7384 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7385 gva_t vmcs_gva;
7386 struct x86_exception e;
7387
7388 if (!nested_vmx_check_permission(vcpu))
7389 return 1;
7390
7391 if (get_vmx_mem_address(vcpu, exit_qualification,
7392 vmx_instruction_info, true, &vmcs_gva))
7393 return 1;
7394 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7395 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7396 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7397 sizeof(u64), &e)) {
7398 kvm_inject_page_fault(vcpu, &e);
7399 return 1;
7400 }
7401 nested_vmx_succeed(vcpu);
7402 skip_emulated_instruction(vcpu);
7403 return 1;
7404 }
7405
7406 /* Emulate the INVEPT instruction */
7407 static int handle_invept(struct kvm_vcpu *vcpu)
7408 {
7409 struct vcpu_vmx *vmx = to_vmx(vcpu);
7410 u32 vmx_instruction_info, types;
7411 unsigned long type;
7412 gva_t gva;
7413 struct x86_exception e;
7414 struct {
7415 u64 eptp, gpa;
7416 } operand;
7417
7418 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7419 SECONDARY_EXEC_ENABLE_EPT) ||
7420 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7421 kvm_queue_exception(vcpu, UD_VECTOR);
7422 return 1;
7423 }
7424
7425 if (!nested_vmx_check_permission(vcpu))
7426 return 1;
7427
7428 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7429 kvm_queue_exception(vcpu, UD_VECTOR);
7430 return 1;
7431 }
7432
7433 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7434 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7435
7436 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7437
7438 if (!(types & (1UL << type))) {
7439 nested_vmx_failValid(vcpu,
7440 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7441 skip_emulated_instruction(vcpu);
7442 return 1;
7443 }
7444
7445 /* According to the Intel VMX instruction reference, the memory
7446 * operand is read even if it isn't needed (e.g., for type==global)
7447 */
7448 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7449 vmx_instruction_info, false, &gva))
7450 return 1;
7451 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7452 sizeof(operand), &e)) {
7453 kvm_inject_page_fault(vcpu, &e);
7454 return 1;
7455 }
7456
7457 switch (type) {
7458 case VMX_EPT_EXTENT_GLOBAL:
7459 kvm_mmu_sync_roots(vcpu);
7460 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7461 nested_vmx_succeed(vcpu);
7462 break;
7463 default:
7464 /* Trap single context invalidation invept calls */
7465 BUG_ON(1);
7466 break;
7467 }
7468
7469 skip_emulated_instruction(vcpu);
7470 return 1;
7471 }
7472
7473 static int handle_invvpid(struct kvm_vcpu *vcpu)
7474 {
7475 struct vcpu_vmx *vmx = to_vmx(vcpu);
7476 u32 vmx_instruction_info;
7477 unsigned long type, types;
7478 gva_t gva;
7479 struct x86_exception e;
7480 int vpid;
7481
7482 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7483 SECONDARY_EXEC_ENABLE_VPID) ||
7484 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7485 kvm_queue_exception(vcpu, UD_VECTOR);
7486 return 1;
7487 }
7488
7489 if (!nested_vmx_check_permission(vcpu))
7490 return 1;
7491
7492 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7493 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7494
7495 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7496
7497 if (!(types & (1UL << type))) {
7498 nested_vmx_failValid(vcpu,
7499 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7500 skip_emulated_instruction(vcpu);
7501 return 1;
7502 }
7503
7504 /* according to the intel vmx instruction reference, the memory
7505 * operand is read even if it isn't needed (e.g., for type==global)
7506 */
7507 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7508 vmx_instruction_info, false, &gva))
7509 return 1;
7510 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7511 sizeof(u32), &e)) {
7512 kvm_inject_page_fault(vcpu, &e);
7513 return 1;
7514 }
7515
7516 switch (type) {
7517 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7518 /*
7519 * Old versions of KVM use the single-context version so we
7520 * have to support it; just treat it the same as all-context.
7521 */
7522 case VMX_VPID_EXTENT_ALL_CONTEXT:
7523 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7524 nested_vmx_succeed(vcpu);
7525 break;
7526 default:
7527 /* Trap individual address invalidation invvpid calls */
7528 BUG_ON(1);
7529 break;
7530 }
7531
7532 skip_emulated_instruction(vcpu);
7533 return 1;
7534 }
7535
7536 static int handle_pml_full(struct kvm_vcpu *vcpu)
7537 {
7538 unsigned long exit_qualification;
7539
7540 trace_kvm_pml_full(vcpu->vcpu_id);
7541
7542 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7543
7544 /*
7545 * PML buffer FULL happened while executing iret from NMI,
7546 * "blocked by NMI" bit has to be set before next VM entry.
7547 */
7548 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7549 cpu_has_virtual_nmis() &&
7550 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7551 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7552 GUEST_INTR_STATE_NMI);
7553
7554 /*
7555 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7556 * here.., and there's no userspace involvement needed for PML.
7557 */
7558 return 1;
7559 }
7560
7561 static int handle_pcommit(struct kvm_vcpu *vcpu)
7562 {
7563 /* we never catch pcommit instruct for L1 guest. */
7564 WARN_ON(1);
7565 return 1;
7566 }
7567
7568 /*
7569 * The exit handlers return 1 if the exit was handled fully and guest execution
7570 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7571 * to be done to userspace and return 0.
7572 */
7573 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7574 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7575 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7576 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7577 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7578 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7579 [EXIT_REASON_CR_ACCESS] = handle_cr,
7580 [EXIT_REASON_DR_ACCESS] = handle_dr,
7581 [EXIT_REASON_CPUID] = handle_cpuid,
7582 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7583 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7584 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7585 [EXIT_REASON_HLT] = handle_halt,
7586 [EXIT_REASON_INVD] = handle_invd,
7587 [EXIT_REASON_INVLPG] = handle_invlpg,
7588 [EXIT_REASON_RDPMC] = handle_rdpmc,
7589 [EXIT_REASON_VMCALL] = handle_vmcall,
7590 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7591 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7592 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7593 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7594 [EXIT_REASON_VMREAD] = handle_vmread,
7595 [EXIT_REASON_VMRESUME] = handle_vmresume,
7596 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7597 [EXIT_REASON_VMOFF] = handle_vmoff,
7598 [EXIT_REASON_VMON] = handle_vmon,
7599 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7600 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7601 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7602 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7603 [EXIT_REASON_WBINVD] = handle_wbinvd,
7604 [EXIT_REASON_XSETBV] = handle_xsetbv,
7605 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7606 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7607 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7608 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7609 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7610 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7611 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7612 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7613 [EXIT_REASON_INVEPT] = handle_invept,
7614 [EXIT_REASON_INVVPID] = handle_invvpid,
7615 [EXIT_REASON_XSAVES] = handle_xsaves,
7616 [EXIT_REASON_XRSTORS] = handle_xrstors,
7617 [EXIT_REASON_PML_FULL] = handle_pml_full,
7618 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7619 };
7620
7621 static const int kvm_vmx_max_exit_handlers =
7622 ARRAY_SIZE(kvm_vmx_exit_handlers);
7623
7624 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7625 struct vmcs12 *vmcs12)
7626 {
7627 unsigned long exit_qualification;
7628 gpa_t bitmap, last_bitmap;
7629 unsigned int port;
7630 int size;
7631 u8 b;
7632
7633 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7634 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7635
7636 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7637
7638 port = exit_qualification >> 16;
7639 size = (exit_qualification & 7) + 1;
7640
7641 last_bitmap = (gpa_t)-1;
7642 b = -1;
7643
7644 while (size > 0) {
7645 if (port < 0x8000)
7646 bitmap = vmcs12->io_bitmap_a;
7647 else if (port < 0x10000)
7648 bitmap = vmcs12->io_bitmap_b;
7649 else
7650 return true;
7651 bitmap += (port & 0x7fff) / 8;
7652
7653 if (last_bitmap != bitmap)
7654 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7655 return true;
7656 if (b & (1 << (port & 7)))
7657 return true;
7658
7659 port++;
7660 size--;
7661 last_bitmap = bitmap;
7662 }
7663
7664 return false;
7665 }
7666
7667 /*
7668 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7669 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7670 * disinterest in the current event (read or write a specific MSR) by using an
7671 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7672 */
7673 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7674 struct vmcs12 *vmcs12, u32 exit_reason)
7675 {
7676 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7677 gpa_t bitmap;
7678
7679 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7680 return true;
7681
7682 /*
7683 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7684 * for the four combinations of read/write and low/high MSR numbers.
7685 * First we need to figure out which of the four to use:
7686 */
7687 bitmap = vmcs12->msr_bitmap;
7688 if (exit_reason == EXIT_REASON_MSR_WRITE)
7689 bitmap += 2048;
7690 if (msr_index >= 0xc0000000) {
7691 msr_index -= 0xc0000000;
7692 bitmap += 1024;
7693 }
7694
7695 /* Then read the msr_index'th bit from this bitmap: */
7696 if (msr_index < 1024*8) {
7697 unsigned char b;
7698 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7699 return true;
7700 return 1 & (b >> (msr_index & 7));
7701 } else
7702 return true; /* let L1 handle the wrong parameter */
7703 }
7704
7705 /*
7706 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7707 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7708 * intercept (via guest_host_mask etc.) the current event.
7709 */
7710 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7711 struct vmcs12 *vmcs12)
7712 {
7713 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7714 int cr = exit_qualification & 15;
7715 int reg = (exit_qualification >> 8) & 15;
7716 unsigned long val = kvm_register_readl(vcpu, reg);
7717
7718 switch ((exit_qualification >> 4) & 3) {
7719 case 0: /* mov to cr */
7720 switch (cr) {
7721 case 0:
7722 if (vmcs12->cr0_guest_host_mask &
7723 (val ^ vmcs12->cr0_read_shadow))
7724 return true;
7725 break;
7726 case 3:
7727 if ((vmcs12->cr3_target_count >= 1 &&
7728 vmcs12->cr3_target_value0 == val) ||
7729 (vmcs12->cr3_target_count >= 2 &&
7730 vmcs12->cr3_target_value1 == val) ||
7731 (vmcs12->cr3_target_count >= 3 &&
7732 vmcs12->cr3_target_value2 == val) ||
7733 (vmcs12->cr3_target_count >= 4 &&
7734 vmcs12->cr3_target_value3 == val))
7735 return false;
7736 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7737 return true;
7738 break;
7739 case 4:
7740 if (vmcs12->cr4_guest_host_mask &
7741 (vmcs12->cr4_read_shadow ^ val))
7742 return true;
7743 break;
7744 case 8:
7745 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7746 return true;
7747 break;
7748 }
7749 break;
7750 case 2: /* clts */
7751 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7752 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7753 return true;
7754 break;
7755 case 1: /* mov from cr */
7756 switch (cr) {
7757 case 3:
7758 if (vmcs12->cpu_based_vm_exec_control &
7759 CPU_BASED_CR3_STORE_EXITING)
7760 return true;
7761 break;
7762 case 8:
7763 if (vmcs12->cpu_based_vm_exec_control &
7764 CPU_BASED_CR8_STORE_EXITING)
7765 return true;
7766 break;
7767 }
7768 break;
7769 case 3: /* lmsw */
7770 /*
7771 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7772 * cr0. Other attempted changes are ignored, with no exit.
7773 */
7774 if (vmcs12->cr0_guest_host_mask & 0xe &
7775 (val ^ vmcs12->cr0_read_shadow))
7776 return true;
7777 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7778 !(vmcs12->cr0_read_shadow & 0x1) &&
7779 (val & 0x1))
7780 return true;
7781 break;
7782 }
7783 return false;
7784 }
7785
7786 /*
7787 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7788 * should handle it ourselves in L0 (and then continue L2). Only call this
7789 * when in is_guest_mode (L2).
7790 */
7791 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7792 {
7793 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7794 struct vcpu_vmx *vmx = to_vmx(vcpu);
7795 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7796 u32 exit_reason = vmx->exit_reason;
7797
7798 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7799 vmcs_readl(EXIT_QUALIFICATION),
7800 vmx->idt_vectoring_info,
7801 intr_info,
7802 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7803 KVM_ISA_VMX);
7804
7805 if (vmx->nested.nested_run_pending)
7806 return false;
7807
7808 if (unlikely(vmx->fail)) {
7809 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7810 vmcs_read32(VM_INSTRUCTION_ERROR));
7811 return true;
7812 }
7813
7814 switch (exit_reason) {
7815 case EXIT_REASON_EXCEPTION_NMI:
7816 if (!is_exception(intr_info))
7817 return false;
7818 else if (is_page_fault(intr_info))
7819 return enable_ept;
7820 else if (is_no_device(intr_info) &&
7821 !(vmcs12->guest_cr0 & X86_CR0_TS))
7822 return false;
7823 else if (is_debug(intr_info) &&
7824 vcpu->guest_debug &
7825 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7826 return false;
7827 else if (is_breakpoint(intr_info) &&
7828 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7829 return false;
7830 return vmcs12->exception_bitmap &
7831 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7832 case EXIT_REASON_EXTERNAL_INTERRUPT:
7833 return false;
7834 case EXIT_REASON_TRIPLE_FAULT:
7835 return true;
7836 case EXIT_REASON_PENDING_INTERRUPT:
7837 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7838 case EXIT_REASON_NMI_WINDOW:
7839 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7840 case EXIT_REASON_TASK_SWITCH:
7841 return true;
7842 case EXIT_REASON_CPUID:
7843 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7844 return false;
7845 return true;
7846 case EXIT_REASON_HLT:
7847 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7848 case EXIT_REASON_INVD:
7849 return true;
7850 case EXIT_REASON_INVLPG:
7851 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7852 case EXIT_REASON_RDPMC:
7853 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7854 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7855 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7856 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7857 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7858 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7859 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7860 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7861 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7862 /*
7863 * VMX instructions trap unconditionally. This allows L1 to
7864 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7865 */
7866 return true;
7867 case EXIT_REASON_CR_ACCESS:
7868 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7869 case EXIT_REASON_DR_ACCESS:
7870 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7871 case EXIT_REASON_IO_INSTRUCTION:
7872 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7873 case EXIT_REASON_MSR_READ:
7874 case EXIT_REASON_MSR_WRITE:
7875 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7876 case EXIT_REASON_INVALID_STATE:
7877 return true;
7878 case EXIT_REASON_MWAIT_INSTRUCTION:
7879 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7880 case EXIT_REASON_MONITOR_TRAP_FLAG:
7881 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7882 case EXIT_REASON_MONITOR_INSTRUCTION:
7883 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7884 case EXIT_REASON_PAUSE_INSTRUCTION:
7885 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7886 nested_cpu_has2(vmcs12,
7887 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7888 case EXIT_REASON_MCE_DURING_VMENTRY:
7889 return false;
7890 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7891 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7892 case EXIT_REASON_APIC_ACCESS:
7893 return nested_cpu_has2(vmcs12,
7894 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7895 case EXIT_REASON_APIC_WRITE:
7896 case EXIT_REASON_EOI_INDUCED:
7897 /* apic_write and eoi_induced should exit unconditionally. */
7898 return true;
7899 case EXIT_REASON_EPT_VIOLATION:
7900 /*
7901 * L0 always deals with the EPT violation. If nested EPT is
7902 * used, and the nested mmu code discovers that the address is
7903 * missing in the guest EPT table (EPT12), the EPT violation
7904 * will be injected with nested_ept_inject_page_fault()
7905 */
7906 return false;
7907 case EXIT_REASON_EPT_MISCONFIG:
7908 /*
7909 * L2 never uses directly L1's EPT, but rather L0's own EPT
7910 * table (shadow on EPT) or a merged EPT table that L0 built
7911 * (EPT on EPT). So any problems with the structure of the
7912 * table is L0's fault.
7913 */
7914 return false;
7915 case EXIT_REASON_WBINVD:
7916 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7917 case EXIT_REASON_XSETBV:
7918 return true;
7919 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7920 /*
7921 * This should never happen, since it is not possible to
7922 * set XSS to a non-zero value---neither in L1 nor in L2.
7923 * If if it were, XSS would have to be checked against
7924 * the XSS exit bitmap in vmcs12.
7925 */
7926 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7927 case EXIT_REASON_PCOMMIT:
7928 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7929 default:
7930 return true;
7931 }
7932 }
7933
7934 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7935 {
7936 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7937 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7938 }
7939
7940 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7941 {
7942 struct page *pml_pg;
7943
7944 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7945 if (!pml_pg)
7946 return -ENOMEM;
7947
7948 vmx->pml_pg = pml_pg;
7949
7950 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7951 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7952
7953 return 0;
7954 }
7955
7956 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7957 {
7958 if (vmx->pml_pg) {
7959 __free_page(vmx->pml_pg);
7960 vmx->pml_pg = NULL;
7961 }
7962 }
7963
7964 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7965 {
7966 struct vcpu_vmx *vmx = to_vmx(vcpu);
7967 u64 *pml_buf;
7968 u16 pml_idx;
7969
7970 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7971
7972 /* Do nothing if PML buffer is empty */
7973 if (pml_idx == (PML_ENTITY_NUM - 1))
7974 return;
7975
7976 /* PML index always points to next available PML buffer entity */
7977 if (pml_idx >= PML_ENTITY_NUM)
7978 pml_idx = 0;
7979 else
7980 pml_idx++;
7981
7982 pml_buf = page_address(vmx->pml_pg);
7983 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7984 u64 gpa;
7985
7986 gpa = pml_buf[pml_idx];
7987 WARN_ON(gpa & (PAGE_SIZE - 1));
7988 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7989 }
7990
7991 /* reset PML index */
7992 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7993 }
7994
7995 /*
7996 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7997 * Called before reporting dirty_bitmap to userspace.
7998 */
7999 static void kvm_flush_pml_buffers(struct kvm *kvm)
8000 {
8001 int i;
8002 struct kvm_vcpu *vcpu;
8003 /*
8004 * We only need to kick vcpu out of guest mode here, as PML buffer
8005 * is flushed at beginning of all VMEXITs, and it's obvious that only
8006 * vcpus running in guest are possible to have unflushed GPAs in PML
8007 * buffer.
8008 */
8009 kvm_for_each_vcpu(i, vcpu, kvm)
8010 kvm_vcpu_kick(vcpu);
8011 }
8012
8013 static void vmx_dump_sel(char *name, uint32_t sel)
8014 {
8015 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8016 name, vmcs_read32(sel),
8017 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8018 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8019 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8020 }
8021
8022 static void vmx_dump_dtsel(char *name, uint32_t limit)
8023 {
8024 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8025 name, vmcs_read32(limit),
8026 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8027 }
8028
8029 static void dump_vmcs(void)
8030 {
8031 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8032 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8033 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8034 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8035 u32 secondary_exec_control = 0;
8036 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8037 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8038 int i, n;
8039
8040 if (cpu_has_secondary_exec_ctrls())
8041 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8042
8043 pr_err("*** Guest State ***\n");
8044 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8045 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8046 vmcs_readl(CR0_GUEST_HOST_MASK));
8047 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8048 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8049 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8050 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8051 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8052 {
8053 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8054 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8055 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8056 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8057 }
8058 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8059 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8060 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8061 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8062 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8063 vmcs_readl(GUEST_SYSENTER_ESP),
8064 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8065 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8066 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8067 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8068 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8069 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8070 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8071 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8072 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8073 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8074 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8075 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8076 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8077 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8078 efer, vmcs_read64(GUEST_IA32_PAT));
8079 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8080 vmcs_read64(GUEST_IA32_DEBUGCTL),
8081 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8082 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8083 pr_err("PerfGlobCtl = 0x%016llx\n",
8084 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8085 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8086 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8087 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8088 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8089 vmcs_read32(GUEST_ACTIVITY_STATE));
8090 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8091 pr_err("InterruptStatus = %04x\n",
8092 vmcs_read16(GUEST_INTR_STATUS));
8093
8094 pr_err("*** Host State ***\n");
8095 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8096 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8097 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8098 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8099 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8100 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8101 vmcs_read16(HOST_TR_SELECTOR));
8102 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8103 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8104 vmcs_readl(HOST_TR_BASE));
8105 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8106 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8107 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8108 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8109 vmcs_readl(HOST_CR4));
8110 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8111 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8112 vmcs_read32(HOST_IA32_SYSENTER_CS),
8113 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8114 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8115 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8116 vmcs_read64(HOST_IA32_EFER),
8117 vmcs_read64(HOST_IA32_PAT));
8118 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8119 pr_err("PerfGlobCtl = 0x%016llx\n",
8120 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8121
8122 pr_err("*** Control State ***\n");
8123 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8124 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8125 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8126 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8127 vmcs_read32(EXCEPTION_BITMAP),
8128 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8129 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8130 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8131 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8132 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8133 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8134 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8135 vmcs_read32(VM_EXIT_INTR_INFO),
8136 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8137 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8138 pr_err(" reason=%08x qualification=%016lx\n",
8139 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8140 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8141 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8142 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8143 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8144 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8145 pr_err("TSC Multiplier = 0x%016llx\n",
8146 vmcs_read64(TSC_MULTIPLIER));
8147 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8148 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8149 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8150 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8151 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8152 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8153 n = vmcs_read32(CR3_TARGET_COUNT);
8154 for (i = 0; i + 1 < n; i += 4)
8155 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8156 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8157 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8158 if (i < n)
8159 pr_err("CR3 target%u=%016lx\n",
8160 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8161 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8162 pr_err("PLE Gap=%08x Window=%08x\n",
8163 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8164 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8165 pr_err("Virtual processor ID = 0x%04x\n",
8166 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8167 }
8168
8169 /*
8170 * The guest has exited. See if we can fix it or if we need userspace
8171 * assistance.
8172 */
8173 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8174 {
8175 struct vcpu_vmx *vmx = to_vmx(vcpu);
8176 u32 exit_reason = vmx->exit_reason;
8177 u32 vectoring_info = vmx->idt_vectoring_info;
8178
8179 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8180
8181 /*
8182 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8183 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8184 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8185 * mode as if vcpus is in root mode, the PML buffer must has been
8186 * flushed already.
8187 */
8188 if (enable_pml)
8189 vmx_flush_pml_buffer(vcpu);
8190
8191 /* If guest state is invalid, start emulating */
8192 if (vmx->emulation_required)
8193 return handle_invalid_guest_state(vcpu);
8194
8195 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8196 nested_vmx_vmexit(vcpu, exit_reason,
8197 vmcs_read32(VM_EXIT_INTR_INFO),
8198 vmcs_readl(EXIT_QUALIFICATION));
8199 return 1;
8200 }
8201
8202 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8203 dump_vmcs();
8204 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8205 vcpu->run->fail_entry.hardware_entry_failure_reason
8206 = exit_reason;
8207 return 0;
8208 }
8209
8210 if (unlikely(vmx->fail)) {
8211 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8212 vcpu->run->fail_entry.hardware_entry_failure_reason
8213 = vmcs_read32(VM_INSTRUCTION_ERROR);
8214 return 0;
8215 }
8216
8217 /*
8218 * Note:
8219 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8220 * delivery event since it indicates guest is accessing MMIO.
8221 * The vm-exit can be triggered again after return to guest that
8222 * will cause infinite loop.
8223 */
8224 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8225 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8226 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8227 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8228 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8229 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8230 vcpu->run->internal.ndata = 2;
8231 vcpu->run->internal.data[0] = vectoring_info;
8232 vcpu->run->internal.data[1] = exit_reason;
8233 return 0;
8234 }
8235
8236 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8237 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8238 get_vmcs12(vcpu))))) {
8239 if (vmx_interrupt_allowed(vcpu)) {
8240 vmx->soft_vnmi_blocked = 0;
8241 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8242 vcpu->arch.nmi_pending) {
8243 /*
8244 * This CPU don't support us in finding the end of an
8245 * NMI-blocked window if the guest runs with IRQs
8246 * disabled. So we pull the trigger after 1 s of
8247 * futile waiting, but inform the user about this.
8248 */
8249 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8250 "state on VCPU %d after 1 s timeout\n",
8251 __func__, vcpu->vcpu_id);
8252 vmx->soft_vnmi_blocked = 0;
8253 }
8254 }
8255
8256 if (exit_reason < kvm_vmx_max_exit_handlers
8257 && kvm_vmx_exit_handlers[exit_reason])
8258 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8259 else {
8260 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8261 kvm_queue_exception(vcpu, UD_VECTOR);
8262 return 1;
8263 }
8264 }
8265
8266 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8267 {
8268 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8269
8270 if (is_guest_mode(vcpu) &&
8271 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8272 return;
8273
8274 if (irr == -1 || tpr < irr) {
8275 vmcs_write32(TPR_THRESHOLD, 0);
8276 return;
8277 }
8278
8279 vmcs_write32(TPR_THRESHOLD, irr);
8280 }
8281
8282 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8283 {
8284 u32 sec_exec_control;
8285
8286 /*
8287 * There is not point to enable virtualize x2apic without enable
8288 * apicv
8289 */
8290 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8291 !kvm_vcpu_apicv_active(vcpu))
8292 return;
8293
8294 if (!cpu_need_tpr_shadow(vcpu))
8295 return;
8296
8297 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8298
8299 if (set) {
8300 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8301 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8302 } else {
8303 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8304 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8305 }
8306 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8307
8308 vmx_set_msr_bitmap(vcpu);
8309 }
8310
8311 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8312 {
8313 struct vcpu_vmx *vmx = to_vmx(vcpu);
8314
8315 /*
8316 * Currently we do not handle the nested case where L2 has an
8317 * APIC access page of its own; that page is still pinned.
8318 * Hence, we skip the case where the VCPU is in guest mode _and_
8319 * L1 prepared an APIC access page for L2.
8320 *
8321 * For the case where L1 and L2 share the same APIC access page
8322 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8323 * in the vmcs12), this function will only update either the vmcs01
8324 * or the vmcs02. If the former, the vmcs02 will be updated by
8325 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8326 * the next L2->L1 exit.
8327 */
8328 if (!is_guest_mode(vcpu) ||
8329 !nested_cpu_has2(vmx->nested.current_vmcs12,
8330 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8331 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8332 }
8333
8334 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8335 {
8336 u16 status;
8337 u8 old;
8338
8339 if (max_isr == -1)
8340 max_isr = 0;
8341
8342 status = vmcs_read16(GUEST_INTR_STATUS);
8343 old = status >> 8;
8344 if (max_isr != old) {
8345 status &= 0xff;
8346 status |= max_isr << 8;
8347 vmcs_write16(GUEST_INTR_STATUS, status);
8348 }
8349 }
8350
8351 static void vmx_set_rvi(int vector)
8352 {
8353 u16 status;
8354 u8 old;
8355
8356 if (vector == -1)
8357 vector = 0;
8358
8359 status = vmcs_read16(GUEST_INTR_STATUS);
8360 old = (u8)status & 0xff;
8361 if ((u8)vector != old) {
8362 status &= ~0xff;
8363 status |= (u8)vector;
8364 vmcs_write16(GUEST_INTR_STATUS, status);
8365 }
8366 }
8367
8368 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8369 {
8370 if (!is_guest_mode(vcpu)) {
8371 vmx_set_rvi(max_irr);
8372 return;
8373 }
8374
8375 if (max_irr == -1)
8376 return;
8377
8378 /*
8379 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8380 * handles it.
8381 */
8382 if (nested_exit_on_intr(vcpu))
8383 return;
8384
8385 /*
8386 * Else, fall back to pre-APICv interrupt injection since L2
8387 * is run without virtual interrupt delivery.
8388 */
8389 if (!kvm_event_needs_reinjection(vcpu) &&
8390 vmx_interrupt_allowed(vcpu)) {
8391 kvm_queue_interrupt(vcpu, max_irr, false);
8392 vmx_inject_irq(vcpu);
8393 }
8394 }
8395
8396 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8397 {
8398 if (!kvm_vcpu_apicv_active(vcpu))
8399 return;
8400
8401 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8402 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8403 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8404 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8405 }
8406
8407 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8408 {
8409 u32 exit_intr_info;
8410
8411 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8412 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8413 return;
8414
8415 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8416 exit_intr_info = vmx->exit_intr_info;
8417
8418 /* Handle machine checks before interrupts are enabled */
8419 if (is_machine_check(exit_intr_info))
8420 kvm_machine_check();
8421
8422 /* We need to handle NMIs before interrupts are enabled */
8423 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8424 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8425 kvm_before_handle_nmi(&vmx->vcpu);
8426 asm("int $2");
8427 kvm_after_handle_nmi(&vmx->vcpu);
8428 }
8429 }
8430
8431 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8432 {
8433 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8434 register void *__sp asm(_ASM_SP);
8435
8436 /*
8437 * If external interrupt exists, IF bit is set in rflags/eflags on the
8438 * interrupt stack frame, and interrupt will be enabled on a return
8439 * from interrupt handler.
8440 */
8441 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8442 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8443 unsigned int vector;
8444 unsigned long entry;
8445 gate_desc *desc;
8446 struct vcpu_vmx *vmx = to_vmx(vcpu);
8447 #ifdef CONFIG_X86_64
8448 unsigned long tmp;
8449 #endif
8450
8451 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8452 desc = (gate_desc *)vmx->host_idt_base + vector;
8453 entry = gate_offset(*desc);
8454 asm volatile(
8455 #ifdef CONFIG_X86_64
8456 "mov %%" _ASM_SP ", %[sp]\n\t"
8457 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8458 "push $%c[ss]\n\t"
8459 "push %[sp]\n\t"
8460 #endif
8461 "pushf\n\t"
8462 "orl $0x200, (%%" _ASM_SP ")\n\t"
8463 __ASM_SIZE(push) " $%c[cs]\n\t"
8464 "call *%[entry]\n\t"
8465 :
8466 #ifdef CONFIG_X86_64
8467 [sp]"=&r"(tmp),
8468 #endif
8469 "+r"(__sp)
8470 :
8471 [entry]"r"(entry),
8472 [ss]"i"(__KERNEL_DS),
8473 [cs]"i"(__KERNEL_CS)
8474 );
8475 } else
8476 local_irq_enable();
8477 }
8478
8479 static bool vmx_has_high_real_mode_segbase(void)
8480 {
8481 return enable_unrestricted_guest || emulate_invalid_guest_state;
8482 }
8483
8484 static bool vmx_mpx_supported(void)
8485 {
8486 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8487 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8488 }
8489
8490 static bool vmx_xsaves_supported(void)
8491 {
8492 return vmcs_config.cpu_based_2nd_exec_ctrl &
8493 SECONDARY_EXEC_XSAVES;
8494 }
8495
8496 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8497 {
8498 u32 exit_intr_info;
8499 bool unblock_nmi;
8500 u8 vector;
8501 bool idtv_info_valid;
8502
8503 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8504
8505 if (cpu_has_virtual_nmis()) {
8506 if (vmx->nmi_known_unmasked)
8507 return;
8508 /*
8509 * Can't use vmx->exit_intr_info since we're not sure what
8510 * the exit reason is.
8511 */
8512 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8513 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8514 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8515 /*
8516 * SDM 3: 27.7.1.2 (September 2008)
8517 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8518 * a guest IRET fault.
8519 * SDM 3: 23.2.2 (September 2008)
8520 * Bit 12 is undefined in any of the following cases:
8521 * If the VM exit sets the valid bit in the IDT-vectoring
8522 * information field.
8523 * If the VM exit is due to a double fault.
8524 */
8525 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8526 vector != DF_VECTOR && !idtv_info_valid)
8527 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8528 GUEST_INTR_STATE_NMI);
8529 else
8530 vmx->nmi_known_unmasked =
8531 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8532 & GUEST_INTR_STATE_NMI);
8533 } else if (unlikely(vmx->soft_vnmi_blocked))
8534 vmx->vnmi_blocked_time +=
8535 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8536 }
8537
8538 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8539 u32 idt_vectoring_info,
8540 int instr_len_field,
8541 int error_code_field)
8542 {
8543 u8 vector;
8544 int type;
8545 bool idtv_info_valid;
8546
8547 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8548
8549 vcpu->arch.nmi_injected = false;
8550 kvm_clear_exception_queue(vcpu);
8551 kvm_clear_interrupt_queue(vcpu);
8552
8553 if (!idtv_info_valid)
8554 return;
8555
8556 kvm_make_request(KVM_REQ_EVENT, vcpu);
8557
8558 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8559 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8560
8561 switch (type) {
8562 case INTR_TYPE_NMI_INTR:
8563 vcpu->arch.nmi_injected = true;
8564 /*
8565 * SDM 3: 27.7.1.2 (September 2008)
8566 * Clear bit "block by NMI" before VM entry if a NMI
8567 * delivery faulted.
8568 */
8569 vmx_set_nmi_mask(vcpu, false);
8570 break;
8571 case INTR_TYPE_SOFT_EXCEPTION:
8572 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8573 /* fall through */
8574 case INTR_TYPE_HARD_EXCEPTION:
8575 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8576 u32 err = vmcs_read32(error_code_field);
8577 kvm_requeue_exception_e(vcpu, vector, err);
8578 } else
8579 kvm_requeue_exception(vcpu, vector);
8580 break;
8581 case INTR_TYPE_SOFT_INTR:
8582 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8583 /* fall through */
8584 case INTR_TYPE_EXT_INTR:
8585 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8586 break;
8587 default:
8588 break;
8589 }
8590 }
8591
8592 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8593 {
8594 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8595 VM_EXIT_INSTRUCTION_LEN,
8596 IDT_VECTORING_ERROR_CODE);
8597 }
8598
8599 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8600 {
8601 __vmx_complete_interrupts(vcpu,
8602 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8603 VM_ENTRY_INSTRUCTION_LEN,
8604 VM_ENTRY_EXCEPTION_ERROR_CODE);
8605
8606 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8607 }
8608
8609 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8610 {
8611 int i, nr_msrs;
8612 struct perf_guest_switch_msr *msrs;
8613
8614 msrs = perf_guest_get_msrs(&nr_msrs);
8615
8616 if (!msrs)
8617 return;
8618
8619 for (i = 0; i < nr_msrs; i++)
8620 if (msrs[i].host == msrs[i].guest)
8621 clear_atomic_switch_msr(vmx, msrs[i].msr);
8622 else
8623 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8624 msrs[i].host);
8625 }
8626
8627 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8628 {
8629 struct vcpu_vmx *vmx = to_vmx(vcpu);
8630 unsigned long debugctlmsr, cr4;
8631
8632 /* Record the guest's net vcpu time for enforced NMI injections. */
8633 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8634 vmx->entry_time = ktime_get();
8635
8636 /* Don't enter VMX if guest state is invalid, let the exit handler
8637 start emulation until we arrive back to a valid state */
8638 if (vmx->emulation_required)
8639 return;
8640
8641 if (vmx->ple_window_dirty) {
8642 vmx->ple_window_dirty = false;
8643 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8644 }
8645
8646 if (vmx->nested.sync_shadow_vmcs) {
8647 copy_vmcs12_to_shadow(vmx);
8648 vmx->nested.sync_shadow_vmcs = false;
8649 }
8650
8651 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8652 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8653 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8654 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8655
8656 cr4 = cr4_read_shadow();
8657 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8658 vmcs_writel(HOST_CR4, cr4);
8659 vmx->host_state.vmcs_host_cr4 = cr4;
8660 }
8661
8662 /* When single-stepping over STI and MOV SS, we must clear the
8663 * corresponding interruptibility bits in the guest state. Otherwise
8664 * vmentry fails as it then expects bit 14 (BS) in pending debug
8665 * exceptions being set, but that's not correct for the guest debugging
8666 * case. */
8667 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8668 vmx_set_interrupt_shadow(vcpu, 0);
8669
8670 if (vmx->guest_pkru_valid)
8671 __write_pkru(vmx->guest_pkru);
8672
8673 atomic_switch_perf_msrs(vmx);
8674 debugctlmsr = get_debugctlmsr();
8675
8676 vmx->__launched = vmx->loaded_vmcs->launched;
8677 asm(
8678 /* Store host registers */
8679 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8680 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8681 "push %%" _ASM_CX " \n\t"
8682 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8683 "je 1f \n\t"
8684 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8685 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8686 "1: \n\t"
8687 /* Reload cr2 if changed */
8688 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8689 "mov %%cr2, %%" _ASM_DX " \n\t"
8690 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8691 "je 2f \n\t"
8692 "mov %%" _ASM_AX", %%cr2 \n\t"
8693 "2: \n\t"
8694 /* Check if vmlaunch of vmresume is needed */
8695 "cmpl $0, %c[launched](%0) \n\t"
8696 /* Load guest registers. Don't clobber flags. */
8697 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8698 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8699 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8700 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8701 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8702 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8703 #ifdef CONFIG_X86_64
8704 "mov %c[r8](%0), %%r8 \n\t"
8705 "mov %c[r9](%0), %%r9 \n\t"
8706 "mov %c[r10](%0), %%r10 \n\t"
8707 "mov %c[r11](%0), %%r11 \n\t"
8708 "mov %c[r12](%0), %%r12 \n\t"
8709 "mov %c[r13](%0), %%r13 \n\t"
8710 "mov %c[r14](%0), %%r14 \n\t"
8711 "mov %c[r15](%0), %%r15 \n\t"
8712 #endif
8713 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8714
8715 /* Enter guest mode */
8716 "jne 1f \n\t"
8717 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8718 "jmp 2f \n\t"
8719 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8720 "2: "
8721 /* Save guest registers, load host registers, keep flags */
8722 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8723 "pop %0 \n\t"
8724 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8725 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8726 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8727 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8728 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8729 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8730 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8731 #ifdef CONFIG_X86_64
8732 "mov %%r8, %c[r8](%0) \n\t"
8733 "mov %%r9, %c[r9](%0) \n\t"
8734 "mov %%r10, %c[r10](%0) \n\t"
8735 "mov %%r11, %c[r11](%0) \n\t"
8736 "mov %%r12, %c[r12](%0) \n\t"
8737 "mov %%r13, %c[r13](%0) \n\t"
8738 "mov %%r14, %c[r14](%0) \n\t"
8739 "mov %%r15, %c[r15](%0) \n\t"
8740 #endif
8741 "mov %%cr2, %%" _ASM_AX " \n\t"
8742 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8743
8744 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8745 "setbe %c[fail](%0) \n\t"
8746 ".pushsection .rodata \n\t"
8747 ".global vmx_return \n\t"
8748 "vmx_return: " _ASM_PTR " 2b \n\t"
8749 ".popsection"
8750 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8751 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8752 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8753 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8754 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8755 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8756 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8757 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8758 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8759 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8760 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8761 #ifdef CONFIG_X86_64
8762 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8763 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8764 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8765 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8766 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8767 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8768 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8769 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8770 #endif
8771 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8772 [wordsize]"i"(sizeof(ulong))
8773 : "cc", "memory"
8774 #ifdef CONFIG_X86_64
8775 , "rax", "rbx", "rdi", "rsi"
8776 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8777 #else
8778 , "eax", "ebx", "edi", "esi"
8779 #endif
8780 );
8781
8782 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8783 if (debugctlmsr)
8784 update_debugctlmsr(debugctlmsr);
8785
8786 #ifndef CONFIG_X86_64
8787 /*
8788 * The sysexit path does not restore ds/es, so we must set them to
8789 * a reasonable value ourselves.
8790 *
8791 * We can't defer this to vmx_load_host_state() since that function
8792 * may be executed in interrupt context, which saves and restore segments
8793 * around it, nullifying its effect.
8794 */
8795 loadsegment(ds, __USER_DS);
8796 loadsegment(es, __USER_DS);
8797 #endif
8798
8799 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8800 | (1 << VCPU_EXREG_RFLAGS)
8801 | (1 << VCPU_EXREG_PDPTR)
8802 | (1 << VCPU_EXREG_SEGMENTS)
8803 | (1 << VCPU_EXREG_CR3));
8804 vcpu->arch.regs_dirty = 0;
8805
8806 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8807
8808 vmx->loaded_vmcs->launched = 1;
8809
8810 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8811
8812 /*
8813 * eager fpu is enabled if PKEY is supported and CR4 is switched
8814 * back on host, so it is safe to read guest PKRU from current
8815 * XSAVE.
8816 */
8817 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8818 vmx->guest_pkru = __read_pkru();
8819 if (vmx->guest_pkru != vmx->host_pkru) {
8820 vmx->guest_pkru_valid = true;
8821 __write_pkru(vmx->host_pkru);
8822 } else
8823 vmx->guest_pkru_valid = false;
8824 }
8825
8826 /*
8827 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8828 * we did not inject a still-pending event to L1 now because of
8829 * nested_run_pending, we need to re-enable this bit.
8830 */
8831 if (vmx->nested.nested_run_pending)
8832 kvm_make_request(KVM_REQ_EVENT, vcpu);
8833
8834 vmx->nested.nested_run_pending = 0;
8835
8836 vmx_complete_atomic_exit(vmx);
8837 vmx_recover_nmi_blocking(vmx);
8838 vmx_complete_interrupts(vmx);
8839 }
8840
8841 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8842 {
8843 struct vcpu_vmx *vmx = to_vmx(vcpu);
8844 int cpu;
8845
8846 if (vmx->loaded_vmcs == &vmx->vmcs01)
8847 return;
8848
8849 cpu = get_cpu();
8850 vmx->loaded_vmcs = &vmx->vmcs01;
8851 vmx_vcpu_put(vcpu);
8852 vmx_vcpu_load(vcpu, cpu);
8853 vcpu->cpu = cpu;
8854 put_cpu();
8855 }
8856
8857 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8858 {
8859 struct vcpu_vmx *vmx = to_vmx(vcpu);
8860
8861 if (enable_pml)
8862 vmx_destroy_pml_buffer(vmx);
8863 free_vpid(vmx->vpid);
8864 leave_guest_mode(vcpu);
8865 vmx_load_vmcs01(vcpu);
8866 free_nested(vmx);
8867 free_loaded_vmcs(vmx->loaded_vmcs);
8868 kfree(vmx->guest_msrs);
8869 kvm_vcpu_uninit(vcpu);
8870 kmem_cache_free(kvm_vcpu_cache, vmx);
8871 }
8872
8873 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8874 {
8875 int err;
8876 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8877 int cpu;
8878
8879 if (!vmx)
8880 return ERR_PTR(-ENOMEM);
8881
8882 vmx->vpid = allocate_vpid();
8883
8884 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8885 if (err)
8886 goto free_vcpu;
8887
8888 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8889 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8890 > PAGE_SIZE);
8891
8892 err = -ENOMEM;
8893 if (!vmx->guest_msrs) {
8894 goto uninit_vcpu;
8895 }
8896
8897 vmx->loaded_vmcs = &vmx->vmcs01;
8898 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8899 if (!vmx->loaded_vmcs->vmcs)
8900 goto free_msrs;
8901 if (!vmm_exclusive)
8902 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8903 loaded_vmcs_init(vmx->loaded_vmcs);
8904 if (!vmm_exclusive)
8905 kvm_cpu_vmxoff();
8906
8907 cpu = get_cpu();
8908 vmx_vcpu_load(&vmx->vcpu, cpu);
8909 vmx->vcpu.cpu = cpu;
8910 err = vmx_vcpu_setup(vmx);
8911 vmx_vcpu_put(&vmx->vcpu);
8912 put_cpu();
8913 if (err)
8914 goto free_vmcs;
8915 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8916 err = alloc_apic_access_page(kvm);
8917 if (err)
8918 goto free_vmcs;
8919 }
8920
8921 if (enable_ept) {
8922 if (!kvm->arch.ept_identity_map_addr)
8923 kvm->arch.ept_identity_map_addr =
8924 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8925 err = init_rmode_identity_map(kvm);
8926 if (err)
8927 goto free_vmcs;
8928 }
8929
8930 if (nested) {
8931 nested_vmx_setup_ctls_msrs(vmx);
8932 vmx->nested.vpid02 = allocate_vpid();
8933 }
8934
8935 vmx->nested.posted_intr_nv = -1;
8936 vmx->nested.current_vmptr = -1ull;
8937 vmx->nested.current_vmcs12 = NULL;
8938
8939 /*
8940 * If PML is turned on, failure on enabling PML just results in failure
8941 * of creating the vcpu, therefore we can simplify PML logic (by
8942 * avoiding dealing with cases, such as enabling PML partially on vcpus
8943 * for the guest, etc.
8944 */
8945 if (enable_pml) {
8946 err = vmx_create_pml_buffer(vmx);
8947 if (err)
8948 goto free_vmcs;
8949 }
8950
8951 return &vmx->vcpu;
8952
8953 free_vmcs:
8954 free_vpid(vmx->nested.vpid02);
8955 free_loaded_vmcs(vmx->loaded_vmcs);
8956 free_msrs:
8957 kfree(vmx->guest_msrs);
8958 uninit_vcpu:
8959 kvm_vcpu_uninit(&vmx->vcpu);
8960 free_vcpu:
8961 free_vpid(vmx->vpid);
8962 kmem_cache_free(kvm_vcpu_cache, vmx);
8963 return ERR_PTR(err);
8964 }
8965
8966 static void __init vmx_check_processor_compat(void *rtn)
8967 {
8968 struct vmcs_config vmcs_conf;
8969
8970 *(int *)rtn = 0;
8971 if (setup_vmcs_config(&vmcs_conf) < 0)
8972 *(int *)rtn = -EIO;
8973 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8974 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8975 smp_processor_id());
8976 *(int *)rtn = -EIO;
8977 }
8978 }
8979
8980 static int get_ept_level(void)
8981 {
8982 return VMX_EPT_DEFAULT_GAW + 1;
8983 }
8984
8985 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8986 {
8987 u8 cache;
8988 u64 ipat = 0;
8989
8990 /* For VT-d and EPT combination
8991 * 1. MMIO: always map as UC
8992 * 2. EPT with VT-d:
8993 * a. VT-d without snooping control feature: can't guarantee the
8994 * result, try to trust guest.
8995 * b. VT-d with snooping control feature: snooping control feature of
8996 * VT-d engine can guarantee the cache correctness. Just set it
8997 * to WB to keep consistent with host. So the same as item 3.
8998 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8999 * consistent with host MTRR
9000 */
9001 if (is_mmio) {
9002 cache = MTRR_TYPE_UNCACHABLE;
9003 goto exit;
9004 }
9005
9006 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9007 ipat = VMX_EPT_IPAT_BIT;
9008 cache = MTRR_TYPE_WRBACK;
9009 goto exit;
9010 }
9011
9012 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9013 ipat = VMX_EPT_IPAT_BIT;
9014 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9015 cache = MTRR_TYPE_WRBACK;
9016 else
9017 cache = MTRR_TYPE_UNCACHABLE;
9018 goto exit;
9019 }
9020
9021 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9022
9023 exit:
9024 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9025 }
9026
9027 static int vmx_get_lpage_level(void)
9028 {
9029 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9030 return PT_DIRECTORY_LEVEL;
9031 else
9032 /* For shadow and EPT supported 1GB page */
9033 return PT_PDPE_LEVEL;
9034 }
9035
9036 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9037 {
9038 /*
9039 * These bits in the secondary execution controls field
9040 * are dynamic, the others are mostly based on the hypervisor
9041 * architecture and the guest's CPUID. Do not touch the
9042 * dynamic bits.
9043 */
9044 u32 mask =
9045 SECONDARY_EXEC_SHADOW_VMCS |
9046 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9047 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9048
9049 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9050
9051 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9052 (new_ctl & ~mask) | (cur_ctl & mask));
9053 }
9054
9055 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9056 {
9057 struct kvm_cpuid_entry2 *best;
9058 struct vcpu_vmx *vmx = to_vmx(vcpu);
9059 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9060
9061 if (vmx_rdtscp_supported()) {
9062 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9063 if (!rdtscp_enabled)
9064 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9065
9066 if (nested) {
9067 if (rdtscp_enabled)
9068 vmx->nested.nested_vmx_secondary_ctls_high |=
9069 SECONDARY_EXEC_RDTSCP;
9070 else
9071 vmx->nested.nested_vmx_secondary_ctls_high &=
9072 ~SECONDARY_EXEC_RDTSCP;
9073 }
9074 }
9075
9076 /* Exposing INVPCID only when PCID is exposed */
9077 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9078 if (vmx_invpcid_supported() &&
9079 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9080 !guest_cpuid_has_pcid(vcpu))) {
9081 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9082
9083 if (best)
9084 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9085 }
9086
9087 if (cpu_has_secondary_exec_ctrls())
9088 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9089
9090 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9091 if (guest_cpuid_has_pcommit(vcpu))
9092 vmx->nested.nested_vmx_secondary_ctls_high |=
9093 SECONDARY_EXEC_PCOMMIT;
9094 else
9095 vmx->nested.nested_vmx_secondary_ctls_high &=
9096 ~SECONDARY_EXEC_PCOMMIT;
9097 }
9098 }
9099
9100 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9101 {
9102 if (func == 1 && nested)
9103 entry->ecx |= bit(X86_FEATURE_VMX);
9104 }
9105
9106 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9107 struct x86_exception *fault)
9108 {
9109 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9110 u32 exit_reason;
9111
9112 if (fault->error_code & PFERR_RSVD_MASK)
9113 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9114 else
9115 exit_reason = EXIT_REASON_EPT_VIOLATION;
9116 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9117 vmcs12->guest_physical_address = fault->address;
9118 }
9119
9120 /* Callbacks for nested_ept_init_mmu_context: */
9121
9122 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9123 {
9124 /* return the page table to be shadowed - in our case, EPT12 */
9125 return get_vmcs12(vcpu)->ept_pointer;
9126 }
9127
9128 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9129 {
9130 WARN_ON(mmu_is_nested(vcpu));
9131 kvm_init_shadow_ept_mmu(vcpu,
9132 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9133 VMX_EPT_EXECUTE_ONLY_BIT);
9134 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9135 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9136 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9137
9138 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9139 }
9140
9141 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9142 {
9143 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9144 }
9145
9146 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9147 u16 error_code)
9148 {
9149 bool inequality, bit;
9150
9151 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9152 inequality =
9153 (error_code & vmcs12->page_fault_error_code_mask) !=
9154 vmcs12->page_fault_error_code_match;
9155 return inequality ^ bit;
9156 }
9157
9158 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9159 struct x86_exception *fault)
9160 {
9161 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9162
9163 WARN_ON(!is_guest_mode(vcpu));
9164
9165 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9166 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9167 vmcs_read32(VM_EXIT_INTR_INFO),
9168 vmcs_readl(EXIT_QUALIFICATION));
9169 else
9170 kvm_inject_page_fault(vcpu, fault);
9171 }
9172
9173 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9174 struct vmcs12 *vmcs12)
9175 {
9176 struct vcpu_vmx *vmx = to_vmx(vcpu);
9177 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9178
9179 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9180 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9181 vmcs12->apic_access_addr >> maxphyaddr)
9182 return false;
9183
9184 /*
9185 * Translate L1 physical address to host physical
9186 * address for vmcs02. Keep the page pinned, so this
9187 * physical address remains valid. We keep a reference
9188 * to it so we can release it later.
9189 */
9190 if (vmx->nested.apic_access_page) /* shouldn't happen */
9191 nested_release_page(vmx->nested.apic_access_page);
9192 vmx->nested.apic_access_page =
9193 nested_get_page(vcpu, vmcs12->apic_access_addr);
9194 }
9195
9196 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9197 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9198 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9199 return false;
9200
9201 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9202 nested_release_page(vmx->nested.virtual_apic_page);
9203 vmx->nested.virtual_apic_page =
9204 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9205
9206 /*
9207 * Failing the vm entry is _not_ what the processor does
9208 * but it's basically the only possibility we have.
9209 * We could still enter the guest if CR8 load exits are
9210 * enabled, CR8 store exits are enabled, and virtualize APIC
9211 * access is disabled; in this case the processor would never
9212 * use the TPR shadow and we could simply clear the bit from
9213 * the execution control. But such a configuration is useless,
9214 * so let's keep the code simple.
9215 */
9216 if (!vmx->nested.virtual_apic_page)
9217 return false;
9218 }
9219
9220 if (nested_cpu_has_posted_intr(vmcs12)) {
9221 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9222 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9223 return false;
9224
9225 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9226 kunmap(vmx->nested.pi_desc_page);
9227 nested_release_page(vmx->nested.pi_desc_page);
9228 }
9229 vmx->nested.pi_desc_page =
9230 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9231 if (!vmx->nested.pi_desc_page)
9232 return false;
9233
9234 vmx->nested.pi_desc =
9235 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9236 if (!vmx->nested.pi_desc) {
9237 nested_release_page_clean(vmx->nested.pi_desc_page);
9238 return false;
9239 }
9240 vmx->nested.pi_desc =
9241 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9242 (unsigned long)(vmcs12->posted_intr_desc_addr &
9243 (PAGE_SIZE - 1)));
9244 }
9245
9246 return true;
9247 }
9248
9249 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9250 {
9251 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9252 struct vcpu_vmx *vmx = to_vmx(vcpu);
9253
9254 if (vcpu->arch.virtual_tsc_khz == 0)
9255 return;
9256
9257 /* Make sure short timeouts reliably trigger an immediate vmexit.
9258 * hrtimer_start does not guarantee this. */
9259 if (preemption_timeout <= 1) {
9260 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9261 return;
9262 }
9263
9264 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9265 preemption_timeout *= 1000000;
9266 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9267 hrtimer_start(&vmx->nested.preemption_timer,
9268 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9269 }
9270
9271 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9272 struct vmcs12 *vmcs12)
9273 {
9274 int maxphyaddr;
9275 u64 addr;
9276
9277 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9278 return 0;
9279
9280 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9281 WARN_ON(1);
9282 return -EINVAL;
9283 }
9284 maxphyaddr = cpuid_maxphyaddr(vcpu);
9285
9286 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9287 ((addr + PAGE_SIZE) >> maxphyaddr))
9288 return -EINVAL;
9289
9290 return 0;
9291 }
9292
9293 /*
9294 * Merge L0's and L1's MSR bitmap, return false to indicate that
9295 * we do not use the hardware.
9296 */
9297 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9298 struct vmcs12 *vmcs12)
9299 {
9300 int msr;
9301 struct page *page;
9302 unsigned long *msr_bitmap;
9303
9304 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9305 return false;
9306
9307 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9308 if (!page) {
9309 WARN_ON(1);
9310 return false;
9311 }
9312 msr_bitmap = (unsigned long *)kmap(page);
9313 if (!msr_bitmap) {
9314 nested_release_page_clean(page);
9315 WARN_ON(1);
9316 return false;
9317 }
9318
9319 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9320 if (nested_cpu_has_apic_reg_virt(vmcs12))
9321 for (msr = 0x800; msr <= 0x8ff; msr++)
9322 nested_vmx_disable_intercept_for_msr(
9323 msr_bitmap,
9324 vmx_msr_bitmap_nested,
9325 msr, MSR_TYPE_R);
9326 /* TPR is allowed */
9327 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9328 vmx_msr_bitmap_nested,
9329 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9330 MSR_TYPE_R | MSR_TYPE_W);
9331 if (nested_cpu_has_vid(vmcs12)) {
9332 /* EOI and self-IPI are allowed */
9333 nested_vmx_disable_intercept_for_msr(
9334 msr_bitmap,
9335 vmx_msr_bitmap_nested,
9336 APIC_BASE_MSR + (APIC_EOI >> 4),
9337 MSR_TYPE_W);
9338 nested_vmx_disable_intercept_for_msr(
9339 msr_bitmap,
9340 vmx_msr_bitmap_nested,
9341 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9342 MSR_TYPE_W);
9343 }
9344 } else {
9345 /*
9346 * Enable reading intercept of all the x2apic
9347 * MSRs. We should not rely on vmcs12 to do any
9348 * optimizations here, it may have been modified
9349 * by L1.
9350 */
9351 for (msr = 0x800; msr <= 0x8ff; msr++)
9352 __vmx_enable_intercept_for_msr(
9353 vmx_msr_bitmap_nested,
9354 msr,
9355 MSR_TYPE_R);
9356
9357 __vmx_enable_intercept_for_msr(
9358 vmx_msr_bitmap_nested,
9359 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9360 MSR_TYPE_W);
9361 __vmx_enable_intercept_for_msr(
9362 vmx_msr_bitmap_nested,
9363 APIC_BASE_MSR + (APIC_EOI >> 4),
9364 MSR_TYPE_W);
9365 __vmx_enable_intercept_for_msr(
9366 vmx_msr_bitmap_nested,
9367 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9368 MSR_TYPE_W);
9369 }
9370 kunmap(page);
9371 nested_release_page_clean(page);
9372
9373 return true;
9374 }
9375
9376 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9377 struct vmcs12 *vmcs12)
9378 {
9379 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9380 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9381 !nested_cpu_has_vid(vmcs12) &&
9382 !nested_cpu_has_posted_intr(vmcs12))
9383 return 0;
9384
9385 /*
9386 * If virtualize x2apic mode is enabled,
9387 * virtualize apic access must be disabled.
9388 */
9389 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9390 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9391 return -EINVAL;
9392
9393 /*
9394 * If virtual interrupt delivery is enabled,
9395 * we must exit on external interrupts.
9396 */
9397 if (nested_cpu_has_vid(vmcs12) &&
9398 !nested_exit_on_intr(vcpu))
9399 return -EINVAL;
9400
9401 /*
9402 * bits 15:8 should be zero in posted_intr_nv,
9403 * the descriptor address has been already checked
9404 * in nested_get_vmcs12_pages.
9405 */
9406 if (nested_cpu_has_posted_intr(vmcs12) &&
9407 (!nested_cpu_has_vid(vmcs12) ||
9408 !nested_exit_intr_ack_set(vcpu) ||
9409 vmcs12->posted_intr_nv & 0xff00))
9410 return -EINVAL;
9411
9412 /* tpr shadow is needed by all apicv features. */
9413 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9414 return -EINVAL;
9415
9416 return 0;
9417 }
9418
9419 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9420 unsigned long count_field,
9421 unsigned long addr_field)
9422 {
9423 int maxphyaddr;
9424 u64 count, addr;
9425
9426 if (vmcs12_read_any(vcpu, count_field, &count) ||
9427 vmcs12_read_any(vcpu, addr_field, &addr)) {
9428 WARN_ON(1);
9429 return -EINVAL;
9430 }
9431 if (count == 0)
9432 return 0;
9433 maxphyaddr = cpuid_maxphyaddr(vcpu);
9434 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9435 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9436 pr_warn_ratelimited(
9437 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9438 addr_field, maxphyaddr, count, addr);
9439 return -EINVAL;
9440 }
9441 return 0;
9442 }
9443
9444 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9445 struct vmcs12 *vmcs12)
9446 {
9447 if (vmcs12->vm_exit_msr_load_count == 0 &&
9448 vmcs12->vm_exit_msr_store_count == 0 &&
9449 vmcs12->vm_entry_msr_load_count == 0)
9450 return 0; /* Fast path */
9451 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9452 VM_EXIT_MSR_LOAD_ADDR) ||
9453 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9454 VM_EXIT_MSR_STORE_ADDR) ||
9455 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9456 VM_ENTRY_MSR_LOAD_ADDR))
9457 return -EINVAL;
9458 return 0;
9459 }
9460
9461 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9462 struct vmx_msr_entry *e)
9463 {
9464 /* x2APIC MSR accesses are not allowed */
9465 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9466 return -EINVAL;
9467 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9468 e->index == MSR_IA32_UCODE_REV)
9469 return -EINVAL;
9470 if (e->reserved != 0)
9471 return -EINVAL;
9472 return 0;
9473 }
9474
9475 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9476 struct vmx_msr_entry *e)
9477 {
9478 if (e->index == MSR_FS_BASE ||
9479 e->index == MSR_GS_BASE ||
9480 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9481 nested_vmx_msr_check_common(vcpu, e))
9482 return -EINVAL;
9483 return 0;
9484 }
9485
9486 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9487 struct vmx_msr_entry *e)
9488 {
9489 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9490 nested_vmx_msr_check_common(vcpu, e))
9491 return -EINVAL;
9492 return 0;
9493 }
9494
9495 /*
9496 * Load guest's/host's msr at nested entry/exit.
9497 * return 0 for success, entry index for failure.
9498 */
9499 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9500 {
9501 u32 i;
9502 struct vmx_msr_entry e;
9503 struct msr_data msr;
9504
9505 msr.host_initiated = false;
9506 for (i = 0; i < count; i++) {
9507 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9508 &e, sizeof(e))) {
9509 pr_warn_ratelimited(
9510 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9511 __func__, i, gpa + i * sizeof(e));
9512 goto fail;
9513 }
9514 if (nested_vmx_load_msr_check(vcpu, &e)) {
9515 pr_warn_ratelimited(
9516 "%s check failed (%u, 0x%x, 0x%x)\n",
9517 __func__, i, e.index, e.reserved);
9518 goto fail;
9519 }
9520 msr.index = e.index;
9521 msr.data = e.value;
9522 if (kvm_set_msr(vcpu, &msr)) {
9523 pr_warn_ratelimited(
9524 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9525 __func__, i, e.index, e.value);
9526 goto fail;
9527 }
9528 }
9529 return 0;
9530 fail:
9531 return i + 1;
9532 }
9533
9534 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9535 {
9536 u32 i;
9537 struct vmx_msr_entry e;
9538
9539 for (i = 0; i < count; i++) {
9540 struct msr_data msr_info;
9541 if (kvm_vcpu_read_guest(vcpu,
9542 gpa + i * sizeof(e),
9543 &e, 2 * sizeof(u32))) {
9544 pr_warn_ratelimited(
9545 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9546 __func__, i, gpa + i * sizeof(e));
9547 return -EINVAL;
9548 }
9549 if (nested_vmx_store_msr_check(vcpu, &e)) {
9550 pr_warn_ratelimited(
9551 "%s check failed (%u, 0x%x, 0x%x)\n",
9552 __func__, i, e.index, e.reserved);
9553 return -EINVAL;
9554 }
9555 msr_info.host_initiated = false;
9556 msr_info.index = e.index;
9557 if (kvm_get_msr(vcpu, &msr_info)) {
9558 pr_warn_ratelimited(
9559 "%s cannot read MSR (%u, 0x%x)\n",
9560 __func__, i, e.index);
9561 return -EINVAL;
9562 }
9563 if (kvm_vcpu_write_guest(vcpu,
9564 gpa + i * sizeof(e) +
9565 offsetof(struct vmx_msr_entry, value),
9566 &msr_info.data, sizeof(msr_info.data))) {
9567 pr_warn_ratelimited(
9568 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9569 __func__, i, e.index, msr_info.data);
9570 return -EINVAL;
9571 }
9572 }
9573 return 0;
9574 }
9575
9576 /*
9577 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9578 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9579 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9580 * guest in a way that will both be appropriate to L1's requests, and our
9581 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9582 * function also has additional necessary side-effects, like setting various
9583 * vcpu->arch fields.
9584 */
9585 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9586 {
9587 struct vcpu_vmx *vmx = to_vmx(vcpu);
9588 u32 exec_control;
9589
9590 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9591 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9592 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9593 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9594 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9595 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9596 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9597 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9598 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9599 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9600 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9601 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9602 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9603 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9604 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9605 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9606 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9607 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9608 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9609 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9610 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9611 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9612 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9613 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9614 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9615 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9616 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9617 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9618 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9619 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9620 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9621 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9622 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9623 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9624 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9625 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9626
9627 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9628 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9629 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9630 } else {
9631 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9632 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9633 }
9634 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9635 vmcs12->vm_entry_intr_info_field);
9636 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9637 vmcs12->vm_entry_exception_error_code);
9638 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9639 vmcs12->vm_entry_instruction_len);
9640 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9641 vmcs12->guest_interruptibility_info);
9642 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9643 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9644 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9645 vmcs12->guest_pending_dbg_exceptions);
9646 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9647 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9648
9649 if (nested_cpu_has_xsaves(vmcs12))
9650 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9651 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9652
9653 exec_control = vmcs12->pin_based_vm_exec_control;
9654 exec_control |= vmcs_config.pin_based_exec_ctrl;
9655 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9656
9657 if (nested_cpu_has_posted_intr(vmcs12)) {
9658 /*
9659 * Note that we use L0's vector here and in
9660 * vmx_deliver_nested_posted_interrupt.
9661 */
9662 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9663 vmx->nested.pi_pending = false;
9664 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9665 vmcs_write64(POSTED_INTR_DESC_ADDR,
9666 page_to_phys(vmx->nested.pi_desc_page) +
9667 (unsigned long)(vmcs12->posted_intr_desc_addr &
9668 (PAGE_SIZE - 1)));
9669 } else
9670 exec_control &= ~PIN_BASED_POSTED_INTR;
9671
9672 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9673
9674 vmx->nested.preemption_timer_expired = false;
9675 if (nested_cpu_has_preemption_timer(vmcs12))
9676 vmx_start_preemption_timer(vcpu);
9677
9678 /*
9679 * Whether page-faults are trapped is determined by a combination of
9680 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9681 * If enable_ept, L0 doesn't care about page faults and we should
9682 * set all of these to L1's desires. However, if !enable_ept, L0 does
9683 * care about (at least some) page faults, and because it is not easy
9684 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9685 * to exit on each and every L2 page fault. This is done by setting
9686 * MASK=MATCH=0 and (see below) EB.PF=1.
9687 * Note that below we don't need special code to set EB.PF beyond the
9688 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9689 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9690 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9691 *
9692 * A problem with this approach (when !enable_ept) is that L1 may be
9693 * injected with more page faults than it asked for. This could have
9694 * caused problems, but in practice existing hypervisors don't care.
9695 * To fix this, we will need to emulate the PFEC checking (on the L1
9696 * page tables), using walk_addr(), when injecting PFs to L1.
9697 */
9698 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9699 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9700 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9701 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9702
9703 if (cpu_has_secondary_exec_ctrls()) {
9704 exec_control = vmx_secondary_exec_control(vmx);
9705
9706 /* Take the following fields only from vmcs12 */
9707 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9708 SECONDARY_EXEC_RDTSCP |
9709 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9710 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9711 SECONDARY_EXEC_PCOMMIT);
9712 if (nested_cpu_has(vmcs12,
9713 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9714 exec_control |= vmcs12->secondary_vm_exec_control;
9715
9716 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9717 /*
9718 * If translation failed, no matter: This feature asks
9719 * to exit when accessing the given address, and if it
9720 * can never be accessed, this feature won't do
9721 * anything anyway.
9722 */
9723 if (!vmx->nested.apic_access_page)
9724 exec_control &=
9725 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9726 else
9727 vmcs_write64(APIC_ACCESS_ADDR,
9728 page_to_phys(vmx->nested.apic_access_page));
9729 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9730 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9731 exec_control |=
9732 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9733 kvm_vcpu_reload_apic_access_page(vcpu);
9734 }
9735
9736 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9737 vmcs_write64(EOI_EXIT_BITMAP0,
9738 vmcs12->eoi_exit_bitmap0);
9739 vmcs_write64(EOI_EXIT_BITMAP1,
9740 vmcs12->eoi_exit_bitmap1);
9741 vmcs_write64(EOI_EXIT_BITMAP2,
9742 vmcs12->eoi_exit_bitmap2);
9743 vmcs_write64(EOI_EXIT_BITMAP3,
9744 vmcs12->eoi_exit_bitmap3);
9745 vmcs_write16(GUEST_INTR_STATUS,
9746 vmcs12->guest_intr_status);
9747 }
9748
9749 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9750 }
9751
9752
9753 /*
9754 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9755 * Some constant fields are set here by vmx_set_constant_host_state().
9756 * Other fields are different per CPU, and will be set later when
9757 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9758 */
9759 vmx_set_constant_host_state(vmx);
9760
9761 /*
9762 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9763 * entry, but only if the current (host) sp changed from the value
9764 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9765 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9766 * here we just force the write to happen on entry.
9767 */
9768 vmx->host_rsp = 0;
9769
9770 exec_control = vmx_exec_control(vmx); /* L0's desires */
9771 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9772 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9773 exec_control &= ~CPU_BASED_TPR_SHADOW;
9774 exec_control |= vmcs12->cpu_based_vm_exec_control;
9775
9776 if (exec_control & CPU_BASED_TPR_SHADOW) {
9777 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9778 page_to_phys(vmx->nested.virtual_apic_page));
9779 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9780 }
9781
9782 if (cpu_has_vmx_msr_bitmap() &&
9783 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9784 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9785 /* MSR_BITMAP will be set by following vmx_set_efer. */
9786 } else
9787 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9788
9789 /*
9790 * Merging of IO bitmap not currently supported.
9791 * Rather, exit every time.
9792 */
9793 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9794 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9795
9796 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9797
9798 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9799 * bitwise-or of what L1 wants to trap for L2, and what we want to
9800 * trap. Note that CR0.TS also needs updating - we do this later.
9801 */
9802 update_exception_bitmap(vcpu);
9803 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9804 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9805
9806 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9807 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9808 * bits are further modified by vmx_set_efer() below.
9809 */
9810 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9811
9812 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9813 * emulated by vmx_set_efer(), below.
9814 */
9815 vm_entry_controls_init(vmx,
9816 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9817 ~VM_ENTRY_IA32E_MODE) |
9818 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9819
9820 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9821 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9822 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9823 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9824 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9825
9826
9827 set_cr4_guest_host_mask(vmx);
9828
9829 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9830 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9831
9832 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9833 vmcs_write64(TSC_OFFSET,
9834 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9835 else
9836 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9837
9838 if (enable_vpid) {
9839 /*
9840 * There is no direct mapping between vpid02 and vpid12, the
9841 * vpid02 is per-vCPU for L0 and reused while the value of
9842 * vpid12 is changed w/ one invvpid during nested vmentry.
9843 * The vpid12 is allocated by L1 for L2, so it will not
9844 * influence global bitmap(for vpid01 and vpid02 allocation)
9845 * even if spawn a lot of nested vCPUs.
9846 */
9847 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9848 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9849 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9850 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9851 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9852 }
9853 } else {
9854 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9855 vmx_flush_tlb(vcpu);
9856 }
9857
9858 }
9859
9860 if (nested_cpu_has_ept(vmcs12)) {
9861 kvm_mmu_unload(vcpu);
9862 nested_ept_init_mmu_context(vcpu);
9863 }
9864
9865 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9866 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9867 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9868 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9869 else
9870 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9871 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9872 vmx_set_efer(vcpu, vcpu->arch.efer);
9873
9874 /*
9875 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9876 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9877 * The CR0_READ_SHADOW is what L2 should have expected to read given
9878 * the specifications by L1; It's not enough to take
9879 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9880 * have more bits than L1 expected.
9881 */
9882 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9883 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9884
9885 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9886 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9887
9888 /* shadow page tables on either EPT or shadow page tables */
9889 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9890 kvm_mmu_reset_context(vcpu);
9891
9892 if (!enable_ept)
9893 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9894
9895 /*
9896 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9897 */
9898 if (enable_ept) {
9899 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9900 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9901 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9902 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9903 }
9904
9905 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9906 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9907 }
9908
9909 /*
9910 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9911 * for running an L2 nested guest.
9912 */
9913 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9914 {
9915 struct vmcs12 *vmcs12;
9916 struct vcpu_vmx *vmx = to_vmx(vcpu);
9917 int cpu;
9918 struct loaded_vmcs *vmcs02;
9919 bool ia32e;
9920 u32 msr_entry_idx;
9921
9922 if (!nested_vmx_check_permission(vcpu) ||
9923 !nested_vmx_check_vmcs12(vcpu))
9924 return 1;
9925
9926 skip_emulated_instruction(vcpu);
9927 vmcs12 = get_vmcs12(vcpu);
9928
9929 if (enable_shadow_vmcs)
9930 copy_shadow_to_vmcs12(vmx);
9931
9932 /*
9933 * The nested entry process starts with enforcing various prerequisites
9934 * on vmcs12 as required by the Intel SDM, and act appropriately when
9935 * they fail: As the SDM explains, some conditions should cause the
9936 * instruction to fail, while others will cause the instruction to seem
9937 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9938 * To speed up the normal (success) code path, we should avoid checking
9939 * for misconfigurations which will anyway be caught by the processor
9940 * when using the merged vmcs02.
9941 */
9942 if (vmcs12->launch_state == launch) {
9943 nested_vmx_failValid(vcpu,
9944 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9945 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9946 return 1;
9947 }
9948
9949 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9950 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9951 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9952 return 1;
9953 }
9954
9955 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9956 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9957 return 1;
9958 }
9959
9960 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9961 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9962 return 1;
9963 }
9964
9965 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9966 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9967 return 1;
9968 }
9969
9970 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9971 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9972 return 1;
9973 }
9974
9975 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9976 vmx->nested.nested_vmx_true_procbased_ctls_low,
9977 vmx->nested.nested_vmx_procbased_ctls_high) ||
9978 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9979 vmx->nested.nested_vmx_secondary_ctls_low,
9980 vmx->nested.nested_vmx_secondary_ctls_high) ||
9981 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9982 vmx->nested.nested_vmx_pinbased_ctls_low,
9983 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9984 !vmx_control_verify(vmcs12->vm_exit_controls,
9985 vmx->nested.nested_vmx_true_exit_ctls_low,
9986 vmx->nested.nested_vmx_exit_ctls_high) ||
9987 !vmx_control_verify(vmcs12->vm_entry_controls,
9988 vmx->nested.nested_vmx_true_entry_ctls_low,
9989 vmx->nested.nested_vmx_entry_ctls_high))
9990 {
9991 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9992 return 1;
9993 }
9994
9995 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9996 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9997 nested_vmx_failValid(vcpu,
9998 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9999 return 1;
10000 }
10001
10002 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10003 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10004 nested_vmx_entry_failure(vcpu, vmcs12,
10005 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10006 return 1;
10007 }
10008 if (vmcs12->vmcs_link_pointer != -1ull) {
10009 nested_vmx_entry_failure(vcpu, vmcs12,
10010 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10011 return 1;
10012 }
10013
10014 /*
10015 * If the load IA32_EFER VM-entry control is 1, the following checks
10016 * are performed on the field for the IA32_EFER MSR:
10017 * - Bits reserved in the IA32_EFER MSR must be 0.
10018 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10019 * the IA-32e mode guest VM-exit control. It must also be identical
10020 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10021 * CR0.PG) is 1.
10022 */
10023 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10024 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10025 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10026 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10027 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10028 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10029 nested_vmx_entry_failure(vcpu, vmcs12,
10030 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10031 return 1;
10032 }
10033 }
10034
10035 /*
10036 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10037 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10038 * the values of the LMA and LME bits in the field must each be that of
10039 * the host address-space size VM-exit control.
10040 */
10041 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10042 ia32e = (vmcs12->vm_exit_controls &
10043 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10044 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10045 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10046 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10047 nested_vmx_entry_failure(vcpu, vmcs12,
10048 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10049 return 1;
10050 }
10051 }
10052
10053 /*
10054 * We're finally done with prerequisite checking, and can start with
10055 * the nested entry.
10056 */
10057
10058 vmcs02 = nested_get_current_vmcs02(vmx);
10059 if (!vmcs02)
10060 return -ENOMEM;
10061
10062 enter_guest_mode(vcpu);
10063
10064 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10065
10066 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10067 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10068
10069 cpu = get_cpu();
10070 vmx->loaded_vmcs = vmcs02;
10071 vmx_vcpu_put(vcpu);
10072 vmx_vcpu_load(vcpu, cpu);
10073 vcpu->cpu = cpu;
10074 put_cpu();
10075
10076 vmx_segment_cache_clear(vmx);
10077
10078 prepare_vmcs02(vcpu, vmcs12);
10079
10080 msr_entry_idx = nested_vmx_load_msr(vcpu,
10081 vmcs12->vm_entry_msr_load_addr,
10082 vmcs12->vm_entry_msr_load_count);
10083 if (msr_entry_idx) {
10084 leave_guest_mode(vcpu);
10085 vmx_load_vmcs01(vcpu);
10086 nested_vmx_entry_failure(vcpu, vmcs12,
10087 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10088 return 1;
10089 }
10090
10091 vmcs12->launch_state = 1;
10092
10093 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10094 return kvm_vcpu_halt(vcpu);
10095
10096 vmx->nested.nested_run_pending = 1;
10097
10098 /*
10099 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10100 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10101 * returned as far as L1 is concerned. It will only return (and set
10102 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10103 */
10104 return 1;
10105 }
10106
10107 /*
10108 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10109 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10110 * This function returns the new value we should put in vmcs12.guest_cr0.
10111 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10112 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10113 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10114 * didn't trap the bit, because if L1 did, so would L0).
10115 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10116 * been modified by L2, and L1 knows it. So just leave the old value of
10117 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10118 * isn't relevant, because if L0 traps this bit it can set it to anything.
10119 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10120 * changed these bits, and therefore they need to be updated, but L0
10121 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10122 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10123 */
10124 static inline unsigned long
10125 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10126 {
10127 return
10128 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10129 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10130 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10131 vcpu->arch.cr0_guest_owned_bits));
10132 }
10133
10134 static inline unsigned long
10135 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10136 {
10137 return
10138 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10139 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10140 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10141 vcpu->arch.cr4_guest_owned_bits));
10142 }
10143
10144 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10145 struct vmcs12 *vmcs12)
10146 {
10147 u32 idt_vectoring;
10148 unsigned int nr;
10149
10150 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10151 nr = vcpu->arch.exception.nr;
10152 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10153
10154 if (kvm_exception_is_soft(nr)) {
10155 vmcs12->vm_exit_instruction_len =
10156 vcpu->arch.event_exit_inst_len;
10157 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10158 } else
10159 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10160
10161 if (vcpu->arch.exception.has_error_code) {
10162 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10163 vmcs12->idt_vectoring_error_code =
10164 vcpu->arch.exception.error_code;
10165 }
10166
10167 vmcs12->idt_vectoring_info_field = idt_vectoring;
10168 } else if (vcpu->arch.nmi_injected) {
10169 vmcs12->idt_vectoring_info_field =
10170 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10171 } else if (vcpu->arch.interrupt.pending) {
10172 nr = vcpu->arch.interrupt.nr;
10173 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10174
10175 if (vcpu->arch.interrupt.soft) {
10176 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10177 vmcs12->vm_entry_instruction_len =
10178 vcpu->arch.event_exit_inst_len;
10179 } else
10180 idt_vectoring |= INTR_TYPE_EXT_INTR;
10181
10182 vmcs12->idt_vectoring_info_field = idt_vectoring;
10183 }
10184 }
10185
10186 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10187 {
10188 struct vcpu_vmx *vmx = to_vmx(vcpu);
10189
10190 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10191 vmx->nested.preemption_timer_expired) {
10192 if (vmx->nested.nested_run_pending)
10193 return -EBUSY;
10194 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10195 return 0;
10196 }
10197
10198 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10199 if (vmx->nested.nested_run_pending ||
10200 vcpu->arch.interrupt.pending)
10201 return -EBUSY;
10202 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10203 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10204 INTR_INFO_VALID_MASK, 0);
10205 /*
10206 * The NMI-triggered VM exit counts as injection:
10207 * clear this one and block further NMIs.
10208 */
10209 vcpu->arch.nmi_pending = 0;
10210 vmx_set_nmi_mask(vcpu, true);
10211 return 0;
10212 }
10213
10214 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10215 nested_exit_on_intr(vcpu)) {
10216 if (vmx->nested.nested_run_pending)
10217 return -EBUSY;
10218 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10219 return 0;
10220 }
10221
10222 return vmx_complete_nested_posted_interrupt(vcpu);
10223 }
10224
10225 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10226 {
10227 ktime_t remaining =
10228 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10229 u64 value;
10230
10231 if (ktime_to_ns(remaining) <= 0)
10232 return 0;
10233
10234 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10235 do_div(value, 1000000);
10236 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10237 }
10238
10239 /*
10240 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10241 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10242 * and this function updates it to reflect the changes to the guest state while
10243 * L2 was running (and perhaps made some exits which were handled directly by L0
10244 * without going back to L1), and to reflect the exit reason.
10245 * Note that we do not have to copy here all VMCS fields, just those that
10246 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10247 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10248 * which already writes to vmcs12 directly.
10249 */
10250 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10251 u32 exit_reason, u32 exit_intr_info,
10252 unsigned long exit_qualification)
10253 {
10254 /* update guest state fields: */
10255 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10256 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10257
10258 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10259 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10260 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10261
10262 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10263 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10264 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10265 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10266 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10267 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10268 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10269 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10270 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10271 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10272 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10273 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10274 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10275 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10276 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10277 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10278 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10279 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10280 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10281 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10282 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10283 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10284 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10285 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10286 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10287 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10288 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10289 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10290 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10291 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10292 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10293 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10294 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10295 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10296 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10297 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10298
10299 vmcs12->guest_interruptibility_info =
10300 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10301 vmcs12->guest_pending_dbg_exceptions =
10302 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10303 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10304 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10305 else
10306 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10307
10308 if (nested_cpu_has_preemption_timer(vmcs12)) {
10309 if (vmcs12->vm_exit_controls &
10310 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10311 vmcs12->vmx_preemption_timer_value =
10312 vmx_get_preemption_timer_value(vcpu);
10313 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10314 }
10315
10316 /*
10317 * In some cases (usually, nested EPT), L2 is allowed to change its
10318 * own CR3 without exiting. If it has changed it, we must keep it.
10319 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10320 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10321 *
10322 * Additionally, restore L2's PDPTR to vmcs12.
10323 */
10324 if (enable_ept) {
10325 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10326 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10327 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10328 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10329 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10330 }
10331
10332 if (nested_cpu_has_vid(vmcs12))
10333 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10334
10335 vmcs12->vm_entry_controls =
10336 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10337 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10338
10339 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10340 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10341 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10342 }
10343
10344 /* TODO: These cannot have changed unless we have MSR bitmaps and
10345 * the relevant bit asks not to trap the change */
10346 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10347 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10348 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10349 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10350 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10351 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10352 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10353 if (kvm_mpx_supported())
10354 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10355 if (nested_cpu_has_xsaves(vmcs12))
10356 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10357
10358 /* update exit information fields: */
10359
10360 vmcs12->vm_exit_reason = exit_reason;
10361 vmcs12->exit_qualification = exit_qualification;
10362
10363 vmcs12->vm_exit_intr_info = exit_intr_info;
10364 if ((vmcs12->vm_exit_intr_info &
10365 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10366 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10367 vmcs12->vm_exit_intr_error_code =
10368 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10369 vmcs12->idt_vectoring_info_field = 0;
10370 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10371 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10372
10373 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10374 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10375 * instead of reading the real value. */
10376 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10377
10378 /*
10379 * Transfer the event that L0 or L1 may wanted to inject into
10380 * L2 to IDT_VECTORING_INFO_FIELD.
10381 */
10382 vmcs12_save_pending_event(vcpu, vmcs12);
10383 }
10384
10385 /*
10386 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10387 * preserved above and would only end up incorrectly in L1.
10388 */
10389 vcpu->arch.nmi_injected = false;
10390 kvm_clear_exception_queue(vcpu);
10391 kvm_clear_interrupt_queue(vcpu);
10392 }
10393
10394 /*
10395 * A part of what we need to when the nested L2 guest exits and we want to
10396 * run its L1 parent, is to reset L1's guest state to the host state specified
10397 * in vmcs12.
10398 * This function is to be called not only on normal nested exit, but also on
10399 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10400 * Failures During or After Loading Guest State").
10401 * This function should be called when the active VMCS is L1's (vmcs01).
10402 */
10403 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10404 struct vmcs12 *vmcs12)
10405 {
10406 struct kvm_segment seg;
10407
10408 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10409 vcpu->arch.efer = vmcs12->host_ia32_efer;
10410 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10411 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10412 else
10413 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10414 vmx_set_efer(vcpu, vcpu->arch.efer);
10415
10416 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10417 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10418 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10419 /*
10420 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10421 * actually changed, because it depends on the current state of
10422 * fpu_active (which may have changed).
10423 * Note that vmx_set_cr0 refers to efer set above.
10424 */
10425 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10426 /*
10427 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10428 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10429 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10430 */
10431 update_exception_bitmap(vcpu);
10432 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10433 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10434
10435 /*
10436 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10437 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10438 */
10439 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10440 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10441
10442 nested_ept_uninit_mmu_context(vcpu);
10443
10444 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10445 kvm_mmu_reset_context(vcpu);
10446
10447 if (!enable_ept)
10448 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10449
10450 if (enable_vpid) {
10451 /*
10452 * Trivially support vpid by letting L2s share their parent
10453 * L1's vpid. TODO: move to a more elaborate solution, giving
10454 * each L2 its own vpid and exposing the vpid feature to L1.
10455 */
10456 vmx_flush_tlb(vcpu);
10457 }
10458
10459
10460 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10461 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10462 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10463 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10464 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10465
10466 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10467 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10468 vmcs_write64(GUEST_BNDCFGS, 0);
10469
10470 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10471 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10472 vcpu->arch.pat = vmcs12->host_ia32_pat;
10473 }
10474 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10475 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10476 vmcs12->host_ia32_perf_global_ctrl);
10477
10478 /* Set L1 segment info according to Intel SDM
10479 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10480 seg = (struct kvm_segment) {
10481 .base = 0,
10482 .limit = 0xFFFFFFFF,
10483 .selector = vmcs12->host_cs_selector,
10484 .type = 11,
10485 .present = 1,
10486 .s = 1,
10487 .g = 1
10488 };
10489 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10490 seg.l = 1;
10491 else
10492 seg.db = 1;
10493 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10494 seg = (struct kvm_segment) {
10495 .base = 0,
10496 .limit = 0xFFFFFFFF,
10497 .type = 3,
10498 .present = 1,
10499 .s = 1,
10500 .db = 1,
10501 .g = 1
10502 };
10503 seg.selector = vmcs12->host_ds_selector;
10504 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10505 seg.selector = vmcs12->host_es_selector;
10506 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10507 seg.selector = vmcs12->host_ss_selector;
10508 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10509 seg.selector = vmcs12->host_fs_selector;
10510 seg.base = vmcs12->host_fs_base;
10511 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10512 seg.selector = vmcs12->host_gs_selector;
10513 seg.base = vmcs12->host_gs_base;
10514 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10515 seg = (struct kvm_segment) {
10516 .base = vmcs12->host_tr_base,
10517 .limit = 0x67,
10518 .selector = vmcs12->host_tr_selector,
10519 .type = 11,
10520 .present = 1
10521 };
10522 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10523
10524 kvm_set_dr(vcpu, 7, 0x400);
10525 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10526
10527 if (cpu_has_vmx_msr_bitmap())
10528 vmx_set_msr_bitmap(vcpu);
10529
10530 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10531 vmcs12->vm_exit_msr_load_count))
10532 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10533 }
10534
10535 /*
10536 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10537 * and modify vmcs12 to make it see what it would expect to see there if
10538 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10539 */
10540 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10541 u32 exit_intr_info,
10542 unsigned long exit_qualification)
10543 {
10544 struct vcpu_vmx *vmx = to_vmx(vcpu);
10545 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10546
10547 /* trying to cancel vmlaunch/vmresume is a bug */
10548 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10549
10550 leave_guest_mode(vcpu);
10551 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10552 exit_qualification);
10553
10554 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10555 vmcs12->vm_exit_msr_store_count))
10556 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10557
10558 vmx_load_vmcs01(vcpu);
10559
10560 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10561 && nested_exit_intr_ack_set(vcpu)) {
10562 int irq = kvm_cpu_get_interrupt(vcpu);
10563 WARN_ON(irq < 0);
10564 vmcs12->vm_exit_intr_info = irq |
10565 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10566 }
10567
10568 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10569 vmcs12->exit_qualification,
10570 vmcs12->idt_vectoring_info_field,
10571 vmcs12->vm_exit_intr_info,
10572 vmcs12->vm_exit_intr_error_code,
10573 KVM_ISA_VMX);
10574
10575 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10576 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10577 vmx_segment_cache_clear(vmx);
10578
10579 /* if no vmcs02 cache requested, remove the one we used */
10580 if (VMCS02_POOL_SIZE == 0)
10581 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10582
10583 load_vmcs12_host_state(vcpu, vmcs12);
10584
10585 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10586 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10587
10588 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10589 vmx->host_rsp = 0;
10590
10591 /* Unpin physical memory we referred to in vmcs02 */
10592 if (vmx->nested.apic_access_page) {
10593 nested_release_page(vmx->nested.apic_access_page);
10594 vmx->nested.apic_access_page = NULL;
10595 }
10596 if (vmx->nested.virtual_apic_page) {
10597 nested_release_page(vmx->nested.virtual_apic_page);
10598 vmx->nested.virtual_apic_page = NULL;
10599 }
10600 if (vmx->nested.pi_desc_page) {
10601 kunmap(vmx->nested.pi_desc_page);
10602 nested_release_page(vmx->nested.pi_desc_page);
10603 vmx->nested.pi_desc_page = NULL;
10604 vmx->nested.pi_desc = NULL;
10605 }
10606
10607 /*
10608 * We are now running in L2, mmu_notifier will force to reload the
10609 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10610 */
10611 kvm_vcpu_reload_apic_access_page(vcpu);
10612
10613 /*
10614 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10615 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10616 * success or failure flag accordingly.
10617 */
10618 if (unlikely(vmx->fail)) {
10619 vmx->fail = 0;
10620 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10621 } else
10622 nested_vmx_succeed(vcpu);
10623 if (enable_shadow_vmcs)
10624 vmx->nested.sync_shadow_vmcs = true;
10625
10626 /* in case we halted in L2 */
10627 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10628 }
10629
10630 /*
10631 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10632 */
10633 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10634 {
10635 if (is_guest_mode(vcpu))
10636 nested_vmx_vmexit(vcpu, -1, 0, 0);
10637 free_nested(to_vmx(vcpu));
10638 }
10639
10640 /*
10641 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10642 * 23.7 "VM-entry failures during or after loading guest state" (this also
10643 * lists the acceptable exit-reason and exit-qualification parameters).
10644 * It should only be called before L2 actually succeeded to run, and when
10645 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10646 */
10647 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10648 struct vmcs12 *vmcs12,
10649 u32 reason, unsigned long qualification)
10650 {
10651 load_vmcs12_host_state(vcpu, vmcs12);
10652 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10653 vmcs12->exit_qualification = qualification;
10654 nested_vmx_succeed(vcpu);
10655 if (enable_shadow_vmcs)
10656 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10657 }
10658
10659 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10660 struct x86_instruction_info *info,
10661 enum x86_intercept_stage stage)
10662 {
10663 return X86EMUL_CONTINUE;
10664 }
10665
10666 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10667 {
10668 if (ple_gap)
10669 shrink_ple_window(vcpu);
10670 }
10671
10672 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10673 struct kvm_memory_slot *slot)
10674 {
10675 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10676 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10677 }
10678
10679 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10680 struct kvm_memory_slot *slot)
10681 {
10682 kvm_mmu_slot_set_dirty(kvm, slot);
10683 }
10684
10685 static void vmx_flush_log_dirty(struct kvm *kvm)
10686 {
10687 kvm_flush_pml_buffers(kvm);
10688 }
10689
10690 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10691 struct kvm_memory_slot *memslot,
10692 gfn_t offset, unsigned long mask)
10693 {
10694 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10695 }
10696
10697 /*
10698 * This routine does the following things for vCPU which is going
10699 * to be blocked if VT-d PI is enabled.
10700 * - Store the vCPU to the wakeup list, so when interrupts happen
10701 * we can find the right vCPU to wake up.
10702 * - Change the Posted-interrupt descriptor as below:
10703 * 'NDST' <-- vcpu->pre_pcpu
10704 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10705 * - If 'ON' is set during this process, which means at least one
10706 * interrupt is posted for this vCPU, we cannot block it, in
10707 * this case, return 1, otherwise, return 0.
10708 *
10709 */
10710 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10711 {
10712 unsigned long flags;
10713 unsigned int dest;
10714 struct pi_desc old, new;
10715 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10716
10717 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10718 !irq_remapping_cap(IRQ_POSTING_CAP) ||
10719 !kvm_vcpu_apicv_active(vcpu))
10720 return 0;
10721
10722 vcpu->pre_pcpu = vcpu->cpu;
10723 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10724 vcpu->pre_pcpu), flags);
10725 list_add_tail(&vcpu->blocked_vcpu_list,
10726 &per_cpu(blocked_vcpu_on_cpu,
10727 vcpu->pre_pcpu));
10728 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10729 vcpu->pre_pcpu), flags);
10730
10731 do {
10732 old.control = new.control = pi_desc->control;
10733
10734 /*
10735 * We should not block the vCPU if
10736 * an interrupt is posted for it.
10737 */
10738 if (pi_test_on(pi_desc) == 1) {
10739 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10740 vcpu->pre_pcpu), flags);
10741 list_del(&vcpu->blocked_vcpu_list);
10742 spin_unlock_irqrestore(
10743 &per_cpu(blocked_vcpu_on_cpu_lock,
10744 vcpu->pre_pcpu), flags);
10745 vcpu->pre_pcpu = -1;
10746
10747 return 1;
10748 }
10749
10750 WARN((pi_desc->sn == 1),
10751 "Warning: SN field of posted-interrupts "
10752 "is set before blocking\n");
10753
10754 /*
10755 * Since vCPU can be preempted during this process,
10756 * vcpu->cpu could be different with pre_pcpu, we
10757 * need to set pre_pcpu as the destination of wakeup
10758 * notification event, then we can find the right vCPU
10759 * to wakeup in wakeup handler if interrupts happen
10760 * when the vCPU is in blocked state.
10761 */
10762 dest = cpu_physical_id(vcpu->pre_pcpu);
10763
10764 if (x2apic_enabled())
10765 new.ndst = dest;
10766 else
10767 new.ndst = (dest << 8) & 0xFF00;
10768
10769 /* set 'NV' to 'wakeup vector' */
10770 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10771 } while (cmpxchg(&pi_desc->control, old.control,
10772 new.control) != old.control);
10773
10774 return 0;
10775 }
10776
10777 static void vmx_post_block(struct kvm_vcpu *vcpu)
10778 {
10779 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10780 struct pi_desc old, new;
10781 unsigned int dest;
10782 unsigned long flags;
10783
10784 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10785 !irq_remapping_cap(IRQ_POSTING_CAP) ||
10786 !kvm_vcpu_apicv_active(vcpu))
10787 return;
10788
10789 do {
10790 old.control = new.control = pi_desc->control;
10791
10792 dest = cpu_physical_id(vcpu->cpu);
10793
10794 if (x2apic_enabled())
10795 new.ndst = dest;
10796 else
10797 new.ndst = (dest << 8) & 0xFF00;
10798
10799 /* Allow posting non-urgent interrupts */
10800 new.sn = 0;
10801
10802 /* set 'NV' to 'notification vector' */
10803 new.nv = POSTED_INTR_VECTOR;
10804 } while (cmpxchg(&pi_desc->control, old.control,
10805 new.control) != old.control);
10806
10807 if(vcpu->pre_pcpu != -1) {
10808 spin_lock_irqsave(
10809 &per_cpu(blocked_vcpu_on_cpu_lock,
10810 vcpu->pre_pcpu), flags);
10811 list_del(&vcpu->blocked_vcpu_list);
10812 spin_unlock_irqrestore(
10813 &per_cpu(blocked_vcpu_on_cpu_lock,
10814 vcpu->pre_pcpu), flags);
10815 vcpu->pre_pcpu = -1;
10816 }
10817 }
10818
10819 /*
10820 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10821 *
10822 * @kvm: kvm
10823 * @host_irq: host irq of the interrupt
10824 * @guest_irq: gsi of the interrupt
10825 * @set: set or unset PI
10826 * returns 0 on success, < 0 on failure
10827 */
10828 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10829 uint32_t guest_irq, bool set)
10830 {
10831 struct kvm_kernel_irq_routing_entry *e;
10832 struct kvm_irq_routing_table *irq_rt;
10833 struct kvm_lapic_irq irq;
10834 struct kvm_vcpu *vcpu;
10835 struct vcpu_data vcpu_info;
10836 int idx, ret = -EINVAL;
10837
10838 if (!kvm_arch_has_assigned_device(kvm) ||
10839 !irq_remapping_cap(IRQ_POSTING_CAP) ||
10840 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
10841 return 0;
10842
10843 idx = srcu_read_lock(&kvm->irq_srcu);
10844 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10845 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10846
10847 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10848 if (e->type != KVM_IRQ_ROUTING_MSI)
10849 continue;
10850 /*
10851 * VT-d PI cannot support posting multicast/broadcast
10852 * interrupts to a vCPU, we still use interrupt remapping
10853 * for these kind of interrupts.
10854 *
10855 * For lowest-priority interrupts, we only support
10856 * those with single CPU as the destination, e.g. user
10857 * configures the interrupts via /proc/irq or uses
10858 * irqbalance to make the interrupts single-CPU.
10859 *
10860 * We will support full lowest-priority interrupt later.
10861 */
10862
10863 kvm_set_msi_irq(e, &irq);
10864 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10865 /*
10866 * Make sure the IRTE is in remapped mode if
10867 * we don't handle it in posted mode.
10868 */
10869 ret = irq_set_vcpu_affinity(host_irq, NULL);
10870 if (ret < 0) {
10871 printk(KERN_INFO
10872 "failed to back to remapped mode, irq: %u\n",
10873 host_irq);
10874 goto out;
10875 }
10876
10877 continue;
10878 }
10879
10880 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10881 vcpu_info.vector = irq.vector;
10882
10883 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
10884 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10885
10886 if (set)
10887 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10888 else {
10889 /* suppress notification event before unposting */
10890 pi_set_sn(vcpu_to_pi_desc(vcpu));
10891 ret = irq_set_vcpu_affinity(host_irq, NULL);
10892 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10893 }
10894
10895 if (ret < 0) {
10896 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10897 __func__);
10898 goto out;
10899 }
10900 }
10901
10902 ret = 0;
10903 out:
10904 srcu_read_unlock(&kvm->irq_srcu, idx);
10905 return ret;
10906 }
10907
10908 static struct kvm_x86_ops vmx_x86_ops = {
10909 .cpu_has_kvm_support = cpu_has_kvm_support,
10910 .disabled_by_bios = vmx_disabled_by_bios,
10911 .hardware_setup = hardware_setup,
10912 .hardware_unsetup = hardware_unsetup,
10913 .check_processor_compatibility = vmx_check_processor_compat,
10914 .hardware_enable = hardware_enable,
10915 .hardware_disable = hardware_disable,
10916 .cpu_has_accelerated_tpr = report_flexpriority,
10917 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10918
10919 .vcpu_create = vmx_create_vcpu,
10920 .vcpu_free = vmx_free_vcpu,
10921 .vcpu_reset = vmx_vcpu_reset,
10922
10923 .prepare_guest_switch = vmx_save_host_state,
10924 .vcpu_load = vmx_vcpu_load,
10925 .vcpu_put = vmx_vcpu_put,
10926
10927 .update_bp_intercept = update_exception_bitmap,
10928 .get_msr = vmx_get_msr,
10929 .set_msr = vmx_set_msr,
10930 .get_segment_base = vmx_get_segment_base,
10931 .get_segment = vmx_get_segment,
10932 .set_segment = vmx_set_segment,
10933 .get_cpl = vmx_get_cpl,
10934 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10935 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10936 .decache_cr3 = vmx_decache_cr3,
10937 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10938 .set_cr0 = vmx_set_cr0,
10939 .set_cr3 = vmx_set_cr3,
10940 .set_cr4 = vmx_set_cr4,
10941 .set_efer = vmx_set_efer,
10942 .get_idt = vmx_get_idt,
10943 .set_idt = vmx_set_idt,
10944 .get_gdt = vmx_get_gdt,
10945 .set_gdt = vmx_set_gdt,
10946 .get_dr6 = vmx_get_dr6,
10947 .set_dr6 = vmx_set_dr6,
10948 .set_dr7 = vmx_set_dr7,
10949 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10950 .cache_reg = vmx_cache_reg,
10951 .get_rflags = vmx_get_rflags,
10952 .set_rflags = vmx_set_rflags,
10953
10954 .get_pkru = vmx_get_pkru,
10955
10956 .fpu_activate = vmx_fpu_activate,
10957 .fpu_deactivate = vmx_fpu_deactivate,
10958
10959 .tlb_flush = vmx_flush_tlb,
10960
10961 .run = vmx_vcpu_run,
10962 .handle_exit = vmx_handle_exit,
10963 .skip_emulated_instruction = skip_emulated_instruction,
10964 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10965 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10966 .patch_hypercall = vmx_patch_hypercall,
10967 .set_irq = vmx_inject_irq,
10968 .set_nmi = vmx_inject_nmi,
10969 .queue_exception = vmx_queue_exception,
10970 .cancel_injection = vmx_cancel_injection,
10971 .interrupt_allowed = vmx_interrupt_allowed,
10972 .nmi_allowed = vmx_nmi_allowed,
10973 .get_nmi_mask = vmx_get_nmi_mask,
10974 .set_nmi_mask = vmx_set_nmi_mask,
10975 .enable_nmi_window = enable_nmi_window,
10976 .enable_irq_window = enable_irq_window,
10977 .update_cr8_intercept = update_cr8_intercept,
10978 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10979 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10980 .get_enable_apicv = vmx_get_enable_apicv,
10981 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
10982 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10983 .hwapic_irr_update = vmx_hwapic_irr_update,
10984 .hwapic_isr_update = vmx_hwapic_isr_update,
10985 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10986 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10987
10988 .set_tss_addr = vmx_set_tss_addr,
10989 .get_tdp_level = get_ept_level,
10990 .get_mt_mask = vmx_get_mt_mask,
10991
10992 .get_exit_info = vmx_get_exit_info,
10993
10994 .get_lpage_level = vmx_get_lpage_level,
10995
10996 .cpuid_update = vmx_cpuid_update,
10997
10998 .rdtscp_supported = vmx_rdtscp_supported,
10999 .invpcid_supported = vmx_invpcid_supported,
11000
11001 .set_supported_cpuid = vmx_set_supported_cpuid,
11002
11003 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11004
11005 .read_tsc_offset = vmx_read_tsc_offset,
11006 .write_tsc_offset = vmx_write_tsc_offset,
11007 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11008 .read_l1_tsc = vmx_read_l1_tsc,
11009
11010 .set_tdp_cr3 = vmx_set_cr3,
11011
11012 .check_intercept = vmx_check_intercept,
11013 .handle_external_intr = vmx_handle_external_intr,
11014 .mpx_supported = vmx_mpx_supported,
11015 .xsaves_supported = vmx_xsaves_supported,
11016
11017 .check_nested_events = vmx_check_nested_events,
11018
11019 .sched_in = vmx_sched_in,
11020
11021 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11022 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11023 .flush_log_dirty = vmx_flush_log_dirty,
11024 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11025
11026 .pre_block = vmx_pre_block,
11027 .post_block = vmx_post_block,
11028
11029 .pmu_ops = &intel_pmu_ops,
11030
11031 .update_pi_irte = vmx_update_pi_irte,
11032 };
11033
11034 static int __init vmx_init(void)
11035 {
11036 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11037 __alignof__(struct vcpu_vmx), THIS_MODULE);
11038 if (r)
11039 return r;
11040
11041 #ifdef CONFIG_KEXEC_CORE
11042 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11043 crash_vmclear_local_loaded_vmcss);
11044 #endif
11045
11046 return 0;
11047 }
11048
11049 static void __exit vmx_exit(void)
11050 {
11051 #ifdef CONFIG_KEXEC_CORE
11052 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11053 synchronize_rcu();
11054 #endif
11055
11056 kvm_exit();
11057 }
11058
11059 module_init(vmx_init)
11060 module_exit(vmx_exit)