]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: avoid guest hang on invalid invept instruction
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/cpu.h>
39 #include <asm/io.h>
40 #include <asm/desc.h>
41 #include <asm/vmx.h>
42 #include <asm/virtext.h>
43 #include <asm/mce.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49 #include <asm/irq_remapping.h>
50
51 #include "trace.h"
52 #include "pmu.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 #define __ex_clear(x, reg) \
56 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_LICENSE("GPL");
60
61 static const struct x86_cpu_id vmx_cpu_id[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_VMX),
63 {}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
66
67 static bool __read_mostly enable_vpid = 1;
68 module_param_named(vpid, enable_vpid, bool, 0444);
69
70 static bool __read_mostly flexpriority_enabled = 1;
71 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
72
73 static bool __read_mostly enable_ept = 1;
74 module_param_named(ept, enable_ept, bool, S_IRUGO);
75
76 static bool __read_mostly enable_unrestricted_guest = 1;
77 module_param_named(unrestricted_guest,
78 enable_unrestricted_guest, bool, S_IRUGO);
79
80 static bool __read_mostly enable_ept_ad_bits = 1;
81 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
82
83 static bool __read_mostly emulate_invalid_guest_state = true;
84 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
85
86 static bool __read_mostly vmm_exclusive = 1;
87 module_param(vmm_exclusive, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
112 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
113 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
114 #define KVM_VM_CR0_ALWAYS_ON \
115 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
116 #define KVM_CR4_GUEST_OWNED_BITS \
117 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
118 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
119
120 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
121 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
122
123 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
124
125 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
126
127 /*
128 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
129 * ple_gap: upper bound on the amount of time between two successive
130 * executions of PAUSE in a loop. Also indicate if ple enabled.
131 * According to test, this time is usually smaller than 128 cycles.
132 * ple_window: upper bound on the amount of time a guest is allowed to execute
133 * in a PAUSE loop. Tests indicate that most spinlocks are held for
134 * less than 2^12 cycles
135 * Time is measured based on a counter that runs at the same rate as the TSC,
136 * refer SDM volume 3b section 21.6.13 & 22.1.3.
137 */
138 #define KVM_VMX_DEFAULT_PLE_GAP 128
139 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
140 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
143 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
144
145 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
146 module_param(ple_gap, int, S_IRUGO);
147
148 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
149 module_param(ple_window, int, S_IRUGO);
150
151 /* Default doubles per-vcpu window every exit. */
152 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
153 module_param(ple_window_grow, int, S_IRUGO);
154
155 /* Default resets per-vcpu window every exit to ple_window. */
156 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
157 module_param(ple_window_shrink, int, S_IRUGO);
158
159 /* Default is to compute the maximum so we can never overflow. */
160 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
161 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 module_param(ple_window_max, int, S_IRUGO);
163
164 extern const ulong vmx_return;
165
166 #define NR_AUTOLOAD_MSRS 8
167 #define VMCS02_POOL_SIZE 1
168
169 struct vmcs {
170 u32 revision_id;
171 u32 abort;
172 char data[0];
173 };
174
175 /*
176 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
177 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
178 * loaded on this CPU (so we can clear them if the CPU goes down).
179 */
180 struct loaded_vmcs {
181 struct vmcs *vmcs;
182 int cpu;
183 int launched;
184 struct list_head loaded_vmcss_on_cpu_link;
185 };
186
187 struct shared_msr_entry {
188 unsigned index;
189 u64 data;
190 u64 mask;
191 };
192
193 /*
194 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
195 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
196 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
197 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
198 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
199 * More than one of these structures may exist, if L1 runs multiple L2 guests.
200 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
201 * underlying hardware which will be used to run L2.
202 * This structure is packed to ensure that its layout is identical across
203 * machines (necessary for live migration).
204 * If there are changes in this struct, VMCS12_REVISION must be changed.
205 */
206 typedef u64 natural_width;
207 struct __packed vmcs12 {
208 /* According to the Intel spec, a VMCS region must start with the
209 * following two fields. Then follow implementation-specific data.
210 */
211 u32 revision_id;
212 u32 abort;
213
214 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
215 u32 padding[7]; /* room for future expansion */
216
217 u64 io_bitmap_a;
218 u64 io_bitmap_b;
219 u64 msr_bitmap;
220 u64 vm_exit_msr_store_addr;
221 u64 vm_exit_msr_load_addr;
222 u64 vm_entry_msr_load_addr;
223 u64 tsc_offset;
224 u64 virtual_apic_page_addr;
225 u64 apic_access_addr;
226 u64 posted_intr_desc_addr;
227 u64 ept_pointer;
228 u64 eoi_exit_bitmap0;
229 u64 eoi_exit_bitmap1;
230 u64 eoi_exit_bitmap2;
231 u64 eoi_exit_bitmap3;
232 u64 xss_exit_bitmap;
233 u64 guest_physical_address;
234 u64 vmcs_link_pointer;
235 u64 guest_ia32_debugctl;
236 u64 guest_ia32_pat;
237 u64 guest_ia32_efer;
238 u64 guest_ia32_perf_global_ctrl;
239 u64 guest_pdptr0;
240 u64 guest_pdptr1;
241 u64 guest_pdptr2;
242 u64 guest_pdptr3;
243 u64 guest_bndcfgs;
244 u64 host_ia32_pat;
245 u64 host_ia32_efer;
246 u64 host_ia32_perf_global_ctrl;
247 u64 padding64[8]; /* room for future expansion */
248 /*
249 * To allow migration of L1 (complete with its L2 guests) between
250 * machines of different natural widths (32 or 64 bit), we cannot have
251 * unsigned long fields with no explict size. We use u64 (aliased
252 * natural_width) instead. Luckily, x86 is little-endian.
253 */
254 natural_width cr0_guest_host_mask;
255 natural_width cr4_guest_host_mask;
256 natural_width cr0_read_shadow;
257 natural_width cr4_read_shadow;
258 natural_width cr3_target_value0;
259 natural_width cr3_target_value1;
260 natural_width cr3_target_value2;
261 natural_width cr3_target_value3;
262 natural_width exit_qualification;
263 natural_width guest_linear_address;
264 natural_width guest_cr0;
265 natural_width guest_cr3;
266 natural_width guest_cr4;
267 natural_width guest_es_base;
268 natural_width guest_cs_base;
269 natural_width guest_ss_base;
270 natural_width guest_ds_base;
271 natural_width guest_fs_base;
272 natural_width guest_gs_base;
273 natural_width guest_ldtr_base;
274 natural_width guest_tr_base;
275 natural_width guest_gdtr_base;
276 natural_width guest_idtr_base;
277 natural_width guest_dr7;
278 natural_width guest_rsp;
279 natural_width guest_rip;
280 natural_width guest_rflags;
281 natural_width guest_pending_dbg_exceptions;
282 natural_width guest_sysenter_esp;
283 natural_width guest_sysenter_eip;
284 natural_width host_cr0;
285 natural_width host_cr3;
286 natural_width host_cr4;
287 natural_width host_fs_base;
288 natural_width host_gs_base;
289 natural_width host_tr_base;
290 natural_width host_gdtr_base;
291 natural_width host_idtr_base;
292 natural_width host_ia32_sysenter_esp;
293 natural_width host_ia32_sysenter_eip;
294 natural_width host_rsp;
295 natural_width host_rip;
296 natural_width paddingl[8]; /* room for future expansion */
297 u32 pin_based_vm_exec_control;
298 u32 cpu_based_vm_exec_control;
299 u32 exception_bitmap;
300 u32 page_fault_error_code_mask;
301 u32 page_fault_error_code_match;
302 u32 cr3_target_count;
303 u32 vm_exit_controls;
304 u32 vm_exit_msr_store_count;
305 u32 vm_exit_msr_load_count;
306 u32 vm_entry_controls;
307 u32 vm_entry_msr_load_count;
308 u32 vm_entry_intr_info_field;
309 u32 vm_entry_exception_error_code;
310 u32 vm_entry_instruction_len;
311 u32 tpr_threshold;
312 u32 secondary_vm_exec_control;
313 u32 vm_instruction_error;
314 u32 vm_exit_reason;
315 u32 vm_exit_intr_info;
316 u32 vm_exit_intr_error_code;
317 u32 idt_vectoring_info_field;
318 u32 idt_vectoring_error_code;
319 u32 vm_exit_instruction_len;
320 u32 vmx_instruction_info;
321 u32 guest_es_limit;
322 u32 guest_cs_limit;
323 u32 guest_ss_limit;
324 u32 guest_ds_limit;
325 u32 guest_fs_limit;
326 u32 guest_gs_limit;
327 u32 guest_ldtr_limit;
328 u32 guest_tr_limit;
329 u32 guest_gdtr_limit;
330 u32 guest_idtr_limit;
331 u32 guest_es_ar_bytes;
332 u32 guest_cs_ar_bytes;
333 u32 guest_ss_ar_bytes;
334 u32 guest_ds_ar_bytes;
335 u32 guest_fs_ar_bytes;
336 u32 guest_gs_ar_bytes;
337 u32 guest_ldtr_ar_bytes;
338 u32 guest_tr_ar_bytes;
339 u32 guest_interruptibility_info;
340 u32 guest_activity_state;
341 u32 guest_sysenter_cs;
342 u32 host_ia32_sysenter_cs;
343 u32 vmx_preemption_timer_value;
344 u32 padding32[7]; /* room for future expansion */
345 u16 virtual_processor_id;
346 u16 posted_intr_nv;
347 u16 guest_es_selector;
348 u16 guest_cs_selector;
349 u16 guest_ss_selector;
350 u16 guest_ds_selector;
351 u16 guest_fs_selector;
352 u16 guest_gs_selector;
353 u16 guest_ldtr_selector;
354 u16 guest_tr_selector;
355 u16 guest_intr_status;
356 u16 host_es_selector;
357 u16 host_cs_selector;
358 u16 host_ss_selector;
359 u16 host_ds_selector;
360 u16 host_fs_selector;
361 u16 host_gs_selector;
362 u16 host_tr_selector;
363 };
364
365 /*
366 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
367 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
368 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
369 */
370 #define VMCS12_REVISION 0x11e57ed0
371
372 /*
373 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
374 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
375 * current implementation, 4K are reserved to avoid future complications.
376 */
377 #define VMCS12_SIZE 0x1000
378
379 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
380 struct vmcs02_list {
381 struct list_head list;
382 gpa_t vmptr;
383 struct loaded_vmcs vmcs02;
384 };
385
386 /*
387 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
388 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
389 */
390 struct nested_vmx {
391 /* Has the level1 guest done vmxon? */
392 bool vmxon;
393 gpa_t vmxon_ptr;
394
395 /* The guest-physical address of the current VMCS L1 keeps for L2 */
396 gpa_t current_vmptr;
397 /* The host-usable pointer to the above */
398 struct page *current_vmcs12_page;
399 struct vmcs12 *current_vmcs12;
400 struct vmcs *current_shadow_vmcs;
401 /*
402 * Indicates if the shadow vmcs must be updated with the
403 * data hold by vmcs12
404 */
405 bool sync_shadow_vmcs;
406
407 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
408 struct list_head vmcs02_pool;
409 int vmcs02_num;
410 u64 vmcs01_tsc_offset;
411 /* L2 must run next, and mustn't decide to exit to L1. */
412 bool nested_run_pending;
413 /*
414 * Guest pages referred to in vmcs02 with host-physical pointers, so
415 * we must keep them pinned while L2 runs.
416 */
417 struct page *apic_access_page;
418 struct page *virtual_apic_page;
419 struct page *pi_desc_page;
420 struct pi_desc *pi_desc;
421 bool pi_pending;
422 u16 posted_intr_nv;
423 u64 msr_ia32_feature_control;
424
425 struct hrtimer preemption_timer;
426 bool preemption_timer_expired;
427
428 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
429 u64 vmcs01_debugctl;
430
431 u16 vpid02;
432 u16 last_vpid;
433
434 u32 nested_vmx_procbased_ctls_low;
435 u32 nested_vmx_procbased_ctls_high;
436 u32 nested_vmx_true_procbased_ctls_low;
437 u32 nested_vmx_secondary_ctls_low;
438 u32 nested_vmx_secondary_ctls_high;
439 u32 nested_vmx_pinbased_ctls_low;
440 u32 nested_vmx_pinbased_ctls_high;
441 u32 nested_vmx_exit_ctls_low;
442 u32 nested_vmx_exit_ctls_high;
443 u32 nested_vmx_true_exit_ctls_low;
444 u32 nested_vmx_entry_ctls_low;
445 u32 nested_vmx_entry_ctls_high;
446 u32 nested_vmx_true_entry_ctls_low;
447 u32 nested_vmx_misc_low;
448 u32 nested_vmx_misc_high;
449 u32 nested_vmx_ept_caps;
450 u32 nested_vmx_vpid_caps;
451 };
452
453 #define POSTED_INTR_ON 0
454 #define POSTED_INTR_SN 1
455
456 /* Posted-Interrupt Descriptor */
457 struct pi_desc {
458 u32 pir[8]; /* Posted interrupt requested */
459 union {
460 struct {
461 /* bit 256 - Outstanding Notification */
462 u16 on : 1,
463 /* bit 257 - Suppress Notification */
464 sn : 1,
465 /* bit 271:258 - Reserved */
466 rsvd_1 : 14;
467 /* bit 279:272 - Notification Vector */
468 u8 nv;
469 /* bit 287:280 - Reserved */
470 u8 rsvd_2;
471 /* bit 319:288 - Notification Destination */
472 u32 ndst;
473 };
474 u64 control;
475 };
476 u32 rsvd[6];
477 } __aligned(64);
478
479 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
480 {
481 return test_and_set_bit(POSTED_INTR_ON,
482 (unsigned long *)&pi_desc->control);
483 }
484
485 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
486 {
487 return test_and_clear_bit(POSTED_INTR_ON,
488 (unsigned long *)&pi_desc->control);
489 }
490
491 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
492 {
493 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
494 }
495
496 static inline void pi_clear_sn(struct pi_desc *pi_desc)
497 {
498 return clear_bit(POSTED_INTR_SN,
499 (unsigned long *)&pi_desc->control);
500 }
501
502 static inline void pi_set_sn(struct pi_desc *pi_desc)
503 {
504 return set_bit(POSTED_INTR_SN,
505 (unsigned long *)&pi_desc->control);
506 }
507
508 static inline int pi_test_on(struct pi_desc *pi_desc)
509 {
510 return test_bit(POSTED_INTR_ON,
511 (unsigned long *)&pi_desc->control);
512 }
513
514 static inline int pi_test_sn(struct pi_desc *pi_desc)
515 {
516 return test_bit(POSTED_INTR_SN,
517 (unsigned long *)&pi_desc->control);
518 }
519
520 struct vcpu_vmx {
521 struct kvm_vcpu vcpu;
522 unsigned long host_rsp;
523 u8 fail;
524 bool nmi_known_unmasked;
525 u32 exit_intr_info;
526 u32 idt_vectoring_info;
527 ulong rflags;
528 struct shared_msr_entry *guest_msrs;
529 int nmsrs;
530 int save_nmsrs;
531 unsigned long host_idt_base;
532 #ifdef CONFIG_X86_64
533 u64 msr_host_kernel_gs_base;
534 u64 msr_guest_kernel_gs_base;
535 #endif
536 u32 vm_entry_controls_shadow;
537 u32 vm_exit_controls_shadow;
538 /*
539 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
540 * non-nested (L1) guest, it always points to vmcs01. For a nested
541 * guest (L2), it points to a different VMCS.
542 */
543 struct loaded_vmcs vmcs01;
544 struct loaded_vmcs *loaded_vmcs;
545 bool __launched; /* temporary, used in vmx_vcpu_run */
546 struct msr_autoload {
547 unsigned nr;
548 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
549 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
550 } msr_autoload;
551 struct {
552 int loaded;
553 u16 fs_sel, gs_sel, ldt_sel;
554 #ifdef CONFIG_X86_64
555 u16 ds_sel, es_sel;
556 #endif
557 int gs_ldt_reload_needed;
558 int fs_reload_needed;
559 u64 msr_host_bndcfgs;
560 unsigned long vmcs_host_cr4; /* May not match real cr4 */
561 } host_state;
562 struct {
563 int vm86_active;
564 ulong save_rflags;
565 struct kvm_segment segs[8];
566 } rmode;
567 struct {
568 u32 bitmask; /* 4 bits per segment (1 bit per field) */
569 struct kvm_save_segment {
570 u16 selector;
571 unsigned long base;
572 u32 limit;
573 u32 ar;
574 } seg[8];
575 } segment_cache;
576 int vpid;
577 bool emulation_required;
578
579 /* Support for vnmi-less CPUs */
580 int soft_vnmi_blocked;
581 ktime_t entry_time;
582 s64 vnmi_blocked_time;
583 u32 exit_reason;
584
585 /* Posted interrupt descriptor */
586 struct pi_desc pi_desc;
587
588 /* Support for a guest hypervisor (nested VMX) */
589 struct nested_vmx nested;
590
591 /* Dynamic PLE window. */
592 int ple_window;
593 bool ple_window_dirty;
594
595 /* Support for PML */
596 #define PML_ENTITY_NUM 512
597 struct page *pml_pg;
598
599 u64 current_tsc_ratio;
600 };
601
602 enum segment_cache_field {
603 SEG_FIELD_SEL = 0,
604 SEG_FIELD_BASE = 1,
605 SEG_FIELD_LIMIT = 2,
606 SEG_FIELD_AR = 3,
607
608 SEG_FIELD_NR = 4
609 };
610
611 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
612 {
613 return container_of(vcpu, struct vcpu_vmx, vcpu);
614 }
615
616 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
617 {
618 return &(to_vmx(vcpu)->pi_desc);
619 }
620
621 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
622 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
623 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
624 [number##_HIGH] = VMCS12_OFFSET(name)+4
625
626
627 static unsigned long shadow_read_only_fields[] = {
628 /*
629 * We do NOT shadow fields that are modified when L0
630 * traps and emulates any vmx instruction (e.g. VMPTRLD,
631 * VMXON...) executed by L1.
632 * For example, VM_INSTRUCTION_ERROR is read
633 * by L1 if a vmx instruction fails (part of the error path).
634 * Note the code assumes this logic. If for some reason
635 * we start shadowing these fields then we need to
636 * force a shadow sync when L0 emulates vmx instructions
637 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
638 * by nested_vmx_failValid)
639 */
640 VM_EXIT_REASON,
641 VM_EXIT_INTR_INFO,
642 VM_EXIT_INSTRUCTION_LEN,
643 IDT_VECTORING_INFO_FIELD,
644 IDT_VECTORING_ERROR_CODE,
645 VM_EXIT_INTR_ERROR_CODE,
646 EXIT_QUALIFICATION,
647 GUEST_LINEAR_ADDRESS,
648 GUEST_PHYSICAL_ADDRESS
649 };
650 static int max_shadow_read_only_fields =
651 ARRAY_SIZE(shadow_read_only_fields);
652
653 static unsigned long shadow_read_write_fields[] = {
654 TPR_THRESHOLD,
655 GUEST_RIP,
656 GUEST_RSP,
657 GUEST_CR0,
658 GUEST_CR3,
659 GUEST_CR4,
660 GUEST_INTERRUPTIBILITY_INFO,
661 GUEST_RFLAGS,
662 GUEST_CS_SELECTOR,
663 GUEST_CS_AR_BYTES,
664 GUEST_CS_LIMIT,
665 GUEST_CS_BASE,
666 GUEST_ES_BASE,
667 GUEST_BNDCFGS,
668 CR0_GUEST_HOST_MASK,
669 CR0_READ_SHADOW,
670 CR4_READ_SHADOW,
671 TSC_OFFSET,
672 EXCEPTION_BITMAP,
673 CPU_BASED_VM_EXEC_CONTROL,
674 VM_ENTRY_EXCEPTION_ERROR_CODE,
675 VM_ENTRY_INTR_INFO_FIELD,
676 VM_ENTRY_INSTRUCTION_LEN,
677 VM_ENTRY_EXCEPTION_ERROR_CODE,
678 HOST_FS_BASE,
679 HOST_GS_BASE,
680 HOST_FS_SELECTOR,
681 HOST_GS_SELECTOR
682 };
683 static int max_shadow_read_write_fields =
684 ARRAY_SIZE(shadow_read_write_fields);
685
686 static const unsigned short vmcs_field_to_offset_table[] = {
687 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
688 FIELD(POSTED_INTR_NV, posted_intr_nv),
689 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
690 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
691 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
692 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
693 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
694 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
695 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
696 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
697 FIELD(GUEST_INTR_STATUS, guest_intr_status),
698 FIELD(HOST_ES_SELECTOR, host_es_selector),
699 FIELD(HOST_CS_SELECTOR, host_cs_selector),
700 FIELD(HOST_SS_SELECTOR, host_ss_selector),
701 FIELD(HOST_DS_SELECTOR, host_ds_selector),
702 FIELD(HOST_FS_SELECTOR, host_fs_selector),
703 FIELD(HOST_GS_SELECTOR, host_gs_selector),
704 FIELD(HOST_TR_SELECTOR, host_tr_selector),
705 FIELD64(IO_BITMAP_A, io_bitmap_a),
706 FIELD64(IO_BITMAP_B, io_bitmap_b),
707 FIELD64(MSR_BITMAP, msr_bitmap),
708 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
709 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
710 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
711 FIELD64(TSC_OFFSET, tsc_offset),
712 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
713 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
714 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
715 FIELD64(EPT_POINTER, ept_pointer),
716 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
717 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
718 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
719 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
720 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
721 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
722 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
723 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
724 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
725 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
726 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
727 FIELD64(GUEST_PDPTR0, guest_pdptr0),
728 FIELD64(GUEST_PDPTR1, guest_pdptr1),
729 FIELD64(GUEST_PDPTR2, guest_pdptr2),
730 FIELD64(GUEST_PDPTR3, guest_pdptr3),
731 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
732 FIELD64(HOST_IA32_PAT, host_ia32_pat),
733 FIELD64(HOST_IA32_EFER, host_ia32_efer),
734 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
735 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
736 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
737 FIELD(EXCEPTION_BITMAP, exception_bitmap),
738 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
739 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
740 FIELD(CR3_TARGET_COUNT, cr3_target_count),
741 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
742 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
743 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
744 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
745 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
746 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
747 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
748 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
749 FIELD(TPR_THRESHOLD, tpr_threshold),
750 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
751 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
752 FIELD(VM_EXIT_REASON, vm_exit_reason),
753 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
754 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
755 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
756 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
757 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
758 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
759 FIELD(GUEST_ES_LIMIT, guest_es_limit),
760 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
761 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
762 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
763 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
764 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
765 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
766 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
767 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
768 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
769 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
770 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
771 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
772 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
773 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
774 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
775 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
776 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
777 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
778 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
779 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
780 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
781 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
782 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
783 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
784 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
785 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
786 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
787 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
788 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
789 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
790 FIELD(EXIT_QUALIFICATION, exit_qualification),
791 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
792 FIELD(GUEST_CR0, guest_cr0),
793 FIELD(GUEST_CR3, guest_cr3),
794 FIELD(GUEST_CR4, guest_cr4),
795 FIELD(GUEST_ES_BASE, guest_es_base),
796 FIELD(GUEST_CS_BASE, guest_cs_base),
797 FIELD(GUEST_SS_BASE, guest_ss_base),
798 FIELD(GUEST_DS_BASE, guest_ds_base),
799 FIELD(GUEST_FS_BASE, guest_fs_base),
800 FIELD(GUEST_GS_BASE, guest_gs_base),
801 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
802 FIELD(GUEST_TR_BASE, guest_tr_base),
803 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
804 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
805 FIELD(GUEST_DR7, guest_dr7),
806 FIELD(GUEST_RSP, guest_rsp),
807 FIELD(GUEST_RIP, guest_rip),
808 FIELD(GUEST_RFLAGS, guest_rflags),
809 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
810 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
811 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
812 FIELD(HOST_CR0, host_cr0),
813 FIELD(HOST_CR3, host_cr3),
814 FIELD(HOST_CR4, host_cr4),
815 FIELD(HOST_FS_BASE, host_fs_base),
816 FIELD(HOST_GS_BASE, host_gs_base),
817 FIELD(HOST_TR_BASE, host_tr_base),
818 FIELD(HOST_GDTR_BASE, host_gdtr_base),
819 FIELD(HOST_IDTR_BASE, host_idtr_base),
820 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
821 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
822 FIELD(HOST_RSP, host_rsp),
823 FIELD(HOST_RIP, host_rip),
824 };
825
826 static inline short vmcs_field_to_offset(unsigned long field)
827 {
828 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
829
830 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
831 vmcs_field_to_offset_table[field] == 0)
832 return -ENOENT;
833
834 return vmcs_field_to_offset_table[field];
835 }
836
837 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
838 {
839 return to_vmx(vcpu)->nested.current_vmcs12;
840 }
841
842 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
843 {
844 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
845 if (is_error_page(page))
846 return NULL;
847
848 return page;
849 }
850
851 static void nested_release_page(struct page *page)
852 {
853 kvm_release_page_dirty(page);
854 }
855
856 static void nested_release_page_clean(struct page *page)
857 {
858 kvm_release_page_clean(page);
859 }
860
861 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
862 static u64 construct_eptp(unsigned long root_hpa);
863 static void kvm_cpu_vmxon(u64 addr);
864 static void kvm_cpu_vmxoff(void);
865 static bool vmx_mpx_supported(void);
866 static bool vmx_xsaves_supported(void);
867 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
868 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
869 static void vmx_set_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg);
871 static void vmx_get_segment(struct kvm_vcpu *vcpu,
872 struct kvm_segment *var, int seg);
873 static bool guest_state_valid(struct kvm_vcpu *vcpu);
874 static u32 vmx_segment_access_rights(struct kvm_segment *var);
875 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
876 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
877 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
878 static int alloc_identity_pagetable(struct kvm *kvm);
879
880 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
881 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
882 /*
883 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
884 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
885 */
886 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
887 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
888
889 /*
890 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
891 * can find which vCPU should be waken up.
892 */
893 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
894 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
895
896 static unsigned long *vmx_io_bitmap_a;
897 static unsigned long *vmx_io_bitmap_b;
898 static unsigned long *vmx_msr_bitmap_legacy;
899 static unsigned long *vmx_msr_bitmap_longmode;
900 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
901 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
902 static unsigned long *vmx_msr_bitmap_nested;
903 static unsigned long *vmx_vmread_bitmap;
904 static unsigned long *vmx_vmwrite_bitmap;
905
906 static bool cpu_has_load_ia32_efer;
907 static bool cpu_has_load_perf_global_ctrl;
908
909 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
910 static DEFINE_SPINLOCK(vmx_vpid_lock);
911
912 static struct vmcs_config {
913 int size;
914 int order;
915 u32 revision_id;
916 u32 pin_based_exec_ctrl;
917 u32 cpu_based_exec_ctrl;
918 u32 cpu_based_2nd_exec_ctrl;
919 u32 vmexit_ctrl;
920 u32 vmentry_ctrl;
921 } vmcs_config;
922
923 static struct vmx_capability {
924 u32 ept;
925 u32 vpid;
926 } vmx_capability;
927
928 #define VMX_SEGMENT_FIELD(seg) \
929 [VCPU_SREG_##seg] = { \
930 .selector = GUEST_##seg##_SELECTOR, \
931 .base = GUEST_##seg##_BASE, \
932 .limit = GUEST_##seg##_LIMIT, \
933 .ar_bytes = GUEST_##seg##_AR_BYTES, \
934 }
935
936 static const struct kvm_vmx_segment_field {
937 unsigned selector;
938 unsigned base;
939 unsigned limit;
940 unsigned ar_bytes;
941 } kvm_vmx_segment_fields[] = {
942 VMX_SEGMENT_FIELD(CS),
943 VMX_SEGMENT_FIELD(DS),
944 VMX_SEGMENT_FIELD(ES),
945 VMX_SEGMENT_FIELD(FS),
946 VMX_SEGMENT_FIELD(GS),
947 VMX_SEGMENT_FIELD(SS),
948 VMX_SEGMENT_FIELD(TR),
949 VMX_SEGMENT_FIELD(LDTR),
950 };
951
952 static u64 host_efer;
953
954 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
955
956 /*
957 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
958 * away by decrementing the array size.
959 */
960 static const u32 vmx_msr_index[] = {
961 #ifdef CONFIG_X86_64
962 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
963 #endif
964 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
965 };
966
967 static inline bool is_page_fault(u32 intr_info)
968 {
969 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
970 INTR_INFO_VALID_MASK)) ==
971 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
972 }
973
974 static inline bool is_no_device(u32 intr_info)
975 {
976 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
977 INTR_INFO_VALID_MASK)) ==
978 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
979 }
980
981 static inline bool is_invalid_opcode(u32 intr_info)
982 {
983 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
984 INTR_INFO_VALID_MASK)) ==
985 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
986 }
987
988 static inline bool is_external_interrupt(u32 intr_info)
989 {
990 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
991 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
992 }
993
994 static inline bool is_machine_check(u32 intr_info)
995 {
996 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
997 INTR_INFO_VALID_MASK)) ==
998 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
999 }
1000
1001 static inline bool cpu_has_vmx_msr_bitmap(void)
1002 {
1003 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1004 }
1005
1006 static inline bool cpu_has_vmx_tpr_shadow(void)
1007 {
1008 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1009 }
1010
1011 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1012 {
1013 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1014 }
1015
1016 static inline bool cpu_has_secondary_exec_ctrls(void)
1017 {
1018 return vmcs_config.cpu_based_exec_ctrl &
1019 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1020 }
1021
1022 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1023 {
1024 return vmcs_config.cpu_based_2nd_exec_ctrl &
1025 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1026 }
1027
1028 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1029 {
1030 return vmcs_config.cpu_based_2nd_exec_ctrl &
1031 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1032 }
1033
1034 static inline bool cpu_has_vmx_apic_register_virt(void)
1035 {
1036 return vmcs_config.cpu_based_2nd_exec_ctrl &
1037 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1038 }
1039
1040 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1041 {
1042 return vmcs_config.cpu_based_2nd_exec_ctrl &
1043 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1044 }
1045
1046 static inline bool cpu_has_vmx_posted_intr(void)
1047 {
1048 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1049 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1050 }
1051
1052 static inline bool cpu_has_vmx_apicv(void)
1053 {
1054 return cpu_has_vmx_apic_register_virt() &&
1055 cpu_has_vmx_virtual_intr_delivery() &&
1056 cpu_has_vmx_posted_intr();
1057 }
1058
1059 static inline bool cpu_has_vmx_flexpriority(void)
1060 {
1061 return cpu_has_vmx_tpr_shadow() &&
1062 cpu_has_vmx_virtualize_apic_accesses();
1063 }
1064
1065 static inline bool cpu_has_vmx_ept_execute_only(void)
1066 {
1067 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1068 }
1069
1070 static inline bool cpu_has_vmx_ept_2m_page(void)
1071 {
1072 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1073 }
1074
1075 static inline bool cpu_has_vmx_ept_1g_page(void)
1076 {
1077 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1078 }
1079
1080 static inline bool cpu_has_vmx_ept_4levels(void)
1081 {
1082 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1083 }
1084
1085 static inline bool cpu_has_vmx_ept_ad_bits(void)
1086 {
1087 return vmx_capability.ept & VMX_EPT_AD_BIT;
1088 }
1089
1090 static inline bool cpu_has_vmx_invept_context(void)
1091 {
1092 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1093 }
1094
1095 static inline bool cpu_has_vmx_invept_global(void)
1096 {
1097 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1098 }
1099
1100 static inline bool cpu_has_vmx_invvpid_single(void)
1101 {
1102 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1103 }
1104
1105 static inline bool cpu_has_vmx_invvpid_global(void)
1106 {
1107 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1108 }
1109
1110 static inline bool cpu_has_vmx_ept(void)
1111 {
1112 return vmcs_config.cpu_based_2nd_exec_ctrl &
1113 SECONDARY_EXEC_ENABLE_EPT;
1114 }
1115
1116 static inline bool cpu_has_vmx_unrestricted_guest(void)
1117 {
1118 return vmcs_config.cpu_based_2nd_exec_ctrl &
1119 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1120 }
1121
1122 static inline bool cpu_has_vmx_ple(void)
1123 {
1124 return vmcs_config.cpu_based_2nd_exec_ctrl &
1125 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1126 }
1127
1128 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1129 {
1130 return flexpriority_enabled && lapic_in_kernel(vcpu);
1131 }
1132
1133 static inline bool cpu_has_vmx_vpid(void)
1134 {
1135 return vmcs_config.cpu_based_2nd_exec_ctrl &
1136 SECONDARY_EXEC_ENABLE_VPID;
1137 }
1138
1139 static inline bool cpu_has_vmx_rdtscp(void)
1140 {
1141 return vmcs_config.cpu_based_2nd_exec_ctrl &
1142 SECONDARY_EXEC_RDTSCP;
1143 }
1144
1145 static inline bool cpu_has_vmx_invpcid(void)
1146 {
1147 return vmcs_config.cpu_based_2nd_exec_ctrl &
1148 SECONDARY_EXEC_ENABLE_INVPCID;
1149 }
1150
1151 static inline bool cpu_has_virtual_nmis(void)
1152 {
1153 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1154 }
1155
1156 static inline bool cpu_has_vmx_wbinvd_exit(void)
1157 {
1158 return vmcs_config.cpu_based_2nd_exec_ctrl &
1159 SECONDARY_EXEC_WBINVD_EXITING;
1160 }
1161
1162 static inline bool cpu_has_vmx_shadow_vmcs(void)
1163 {
1164 u64 vmx_msr;
1165 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1166 /* check if the cpu supports writing r/o exit information fields */
1167 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1168 return false;
1169
1170 return vmcs_config.cpu_based_2nd_exec_ctrl &
1171 SECONDARY_EXEC_SHADOW_VMCS;
1172 }
1173
1174 static inline bool cpu_has_vmx_pml(void)
1175 {
1176 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1177 }
1178
1179 static inline bool cpu_has_vmx_tsc_scaling(void)
1180 {
1181 return vmcs_config.cpu_based_2nd_exec_ctrl &
1182 SECONDARY_EXEC_TSC_SCALING;
1183 }
1184
1185 static inline bool report_flexpriority(void)
1186 {
1187 return flexpriority_enabled;
1188 }
1189
1190 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1191 {
1192 return vmcs12->cpu_based_vm_exec_control & bit;
1193 }
1194
1195 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1196 {
1197 return (vmcs12->cpu_based_vm_exec_control &
1198 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1199 (vmcs12->secondary_vm_exec_control & bit);
1200 }
1201
1202 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1203 {
1204 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1205 }
1206
1207 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1208 {
1209 return vmcs12->pin_based_vm_exec_control &
1210 PIN_BASED_VMX_PREEMPTION_TIMER;
1211 }
1212
1213 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1214 {
1215 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1216 }
1217
1218 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1219 {
1220 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1221 vmx_xsaves_supported();
1222 }
1223
1224 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1225 {
1226 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1227 }
1228
1229 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1230 {
1231 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1232 }
1233
1234 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1235 {
1236 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1237 }
1238
1239 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1240 {
1241 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1242 }
1243
1244 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1245 {
1246 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1247 }
1248
1249 static inline bool is_exception(u32 intr_info)
1250 {
1251 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1252 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1253 }
1254
1255 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1256 u32 exit_intr_info,
1257 unsigned long exit_qualification);
1258 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1259 struct vmcs12 *vmcs12,
1260 u32 reason, unsigned long qualification);
1261
1262 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1263 {
1264 int i;
1265
1266 for (i = 0; i < vmx->nmsrs; ++i)
1267 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1268 return i;
1269 return -1;
1270 }
1271
1272 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1273 {
1274 struct {
1275 u64 vpid : 16;
1276 u64 rsvd : 48;
1277 u64 gva;
1278 } operand = { vpid, 0, gva };
1279
1280 asm volatile (__ex(ASM_VMX_INVVPID)
1281 /* CF==1 or ZF==1 --> rc = -1 */
1282 "; ja 1f ; ud2 ; 1:"
1283 : : "a"(&operand), "c"(ext) : "cc", "memory");
1284 }
1285
1286 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1287 {
1288 struct {
1289 u64 eptp, gpa;
1290 } operand = {eptp, gpa};
1291
1292 asm volatile (__ex(ASM_VMX_INVEPT)
1293 /* CF==1 or ZF==1 --> rc = -1 */
1294 "; ja 1f ; ud2 ; 1:\n"
1295 : : "a" (&operand), "c" (ext) : "cc", "memory");
1296 }
1297
1298 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1299 {
1300 int i;
1301
1302 i = __find_msr_index(vmx, msr);
1303 if (i >= 0)
1304 return &vmx->guest_msrs[i];
1305 return NULL;
1306 }
1307
1308 static void vmcs_clear(struct vmcs *vmcs)
1309 {
1310 u64 phys_addr = __pa(vmcs);
1311 u8 error;
1312
1313 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1314 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1315 : "cc", "memory");
1316 if (error)
1317 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1318 vmcs, phys_addr);
1319 }
1320
1321 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1322 {
1323 vmcs_clear(loaded_vmcs->vmcs);
1324 loaded_vmcs->cpu = -1;
1325 loaded_vmcs->launched = 0;
1326 }
1327
1328 static void vmcs_load(struct vmcs *vmcs)
1329 {
1330 u64 phys_addr = __pa(vmcs);
1331 u8 error;
1332
1333 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1334 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1335 : "cc", "memory");
1336 if (error)
1337 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1338 vmcs, phys_addr);
1339 }
1340
1341 #ifdef CONFIG_KEXEC_CORE
1342 /*
1343 * This bitmap is used to indicate whether the vmclear
1344 * operation is enabled on all cpus. All disabled by
1345 * default.
1346 */
1347 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1348
1349 static inline void crash_enable_local_vmclear(int cpu)
1350 {
1351 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1352 }
1353
1354 static inline void crash_disable_local_vmclear(int cpu)
1355 {
1356 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1357 }
1358
1359 static inline int crash_local_vmclear_enabled(int cpu)
1360 {
1361 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1362 }
1363
1364 static void crash_vmclear_local_loaded_vmcss(void)
1365 {
1366 int cpu = raw_smp_processor_id();
1367 struct loaded_vmcs *v;
1368
1369 if (!crash_local_vmclear_enabled(cpu))
1370 return;
1371
1372 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1373 loaded_vmcss_on_cpu_link)
1374 vmcs_clear(v->vmcs);
1375 }
1376 #else
1377 static inline void crash_enable_local_vmclear(int cpu) { }
1378 static inline void crash_disable_local_vmclear(int cpu) { }
1379 #endif /* CONFIG_KEXEC_CORE */
1380
1381 static void __loaded_vmcs_clear(void *arg)
1382 {
1383 struct loaded_vmcs *loaded_vmcs = arg;
1384 int cpu = raw_smp_processor_id();
1385
1386 if (loaded_vmcs->cpu != cpu)
1387 return; /* vcpu migration can race with cpu offline */
1388 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1389 per_cpu(current_vmcs, cpu) = NULL;
1390 crash_disable_local_vmclear(cpu);
1391 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1392
1393 /*
1394 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1395 * is before setting loaded_vmcs->vcpu to -1 which is done in
1396 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1397 * then adds the vmcs into percpu list before it is deleted.
1398 */
1399 smp_wmb();
1400
1401 loaded_vmcs_init(loaded_vmcs);
1402 crash_enable_local_vmclear(cpu);
1403 }
1404
1405 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1406 {
1407 int cpu = loaded_vmcs->cpu;
1408
1409 if (cpu != -1)
1410 smp_call_function_single(cpu,
1411 __loaded_vmcs_clear, loaded_vmcs, 1);
1412 }
1413
1414 static inline void vpid_sync_vcpu_single(int vpid)
1415 {
1416 if (vpid == 0)
1417 return;
1418
1419 if (cpu_has_vmx_invvpid_single())
1420 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1421 }
1422
1423 static inline void vpid_sync_vcpu_global(void)
1424 {
1425 if (cpu_has_vmx_invvpid_global())
1426 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1427 }
1428
1429 static inline void vpid_sync_context(int vpid)
1430 {
1431 if (cpu_has_vmx_invvpid_single())
1432 vpid_sync_vcpu_single(vpid);
1433 else
1434 vpid_sync_vcpu_global();
1435 }
1436
1437 static inline void ept_sync_global(void)
1438 {
1439 if (cpu_has_vmx_invept_global())
1440 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1441 }
1442
1443 static inline void ept_sync_context(u64 eptp)
1444 {
1445 if (enable_ept) {
1446 if (cpu_has_vmx_invept_context())
1447 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1448 else
1449 ept_sync_global();
1450 }
1451 }
1452
1453 static __always_inline unsigned long vmcs_readl(unsigned long field)
1454 {
1455 unsigned long value;
1456
1457 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1458 : "=a"(value) : "d"(field) : "cc");
1459 return value;
1460 }
1461
1462 static __always_inline u16 vmcs_read16(unsigned long field)
1463 {
1464 return vmcs_readl(field);
1465 }
1466
1467 static __always_inline u32 vmcs_read32(unsigned long field)
1468 {
1469 return vmcs_readl(field);
1470 }
1471
1472 static __always_inline u64 vmcs_read64(unsigned long field)
1473 {
1474 #ifdef CONFIG_X86_64
1475 return vmcs_readl(field);
1476 #else
1477 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1478 #endif
1479 }
1480
1481 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1482 {
1483 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1484 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1485 dump_stack();
1486 }
1487
1488 static void vmcs_writel(unsigned long field, unsigned long value)
1489 {
1490 u8 error;
1491
1492 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1493 : "=q"(error) : "a"(value), "d"(field) : "cc");
1494 if (unlikely(error))
1495 vmwrite_error(field, value);
1496 }
1497
1498 static void vmcs_write16(unsigned long field, u16 value)
1499 {
1500 vmcs_writel(field, value);
1501 }
1502
1503 static void vmcs_write32(unsigned long field, u32 value)
1504 {
1505 vmcs_writel(field, value);
1506 }
1507
1508 static void vmcs_write64(unsigned long field, u64 value)
1509 {
1510 vmcs_writel(field, value);
1511 #ifndef CONFIG_X86_64
1512 asm volatile ("");
1513 vmcs_writel(field+1, value >> 32);
1514 #endif
1515 }
1516
1517 static void vmcs_clear_bits(unsigned long field, u32 mask)
1518 {
1519 vmcs_writel(field, vmcs_readl(field) & ~mask);
1520 }
1521
1522 static void vmcs_set_bits(unsigned long field, u32 mask)
1523 {
1524 vmcs_writel(field, vmcs_readl(field) | mask);
1525 }
1526
1527 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1528 {
1529 vmcs_write32(VM_ENTRY_CONTROLS, val);
1530 vmx->vm_entry_controls_shadow = val;
1531 }
1532
1533 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1534 {
1535 if (vmx->vm_entry_controls_shadow != val)
1536 vm_entry_controls_init(vmx, val);
1537 }
1538
1539 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1540 {
1541 return vmx->vm_entry_controls_shadow;
1542 }
1543
1544
1545 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1546 {
1547 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1548 }
1549
1550 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1551 {
1552 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1553 }
1554
1555 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1556 {
1557 vmcs_write32(VM_EXIT_CONTROLS, val);
1558 vmx->vm_exit_controls_shadow = val;
1559 }
1560
1561 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1562 {
1563 if (vmx->vm_exit_controls_shadow != val)
1564 vm_exit_controls_init(vmx, val);
1565 }
1566
1567 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1568 {
1569 return vmx->vm_exit_controls_shadow;
1570 }
1571
1572
1573 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1574 {
1575 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1576 }
1577
1578 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1579 {
1580 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1581 }
1582
1583 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1584 {
1585 vmx->segment_cache.bitmask = 0;
1586 }
1587
1588 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1589 unsigned field)
1590 {
1591 bool ret;
1592 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1593
1594 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1595 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1596 vmx->segment_cache.bitmask = 0;
1597 }
1598 ret = vmx->segment_cache.bitmask & mask;
1599 vmx->segment_cache.bitmask |= mask;
1600 return ret;
1601 }
1602
1603 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1604 {
1605 u16 *p = &vmx->segment_cache.seg[seg].selector;
1606
1607 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1608 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1609 return *p;
1610 }
1611
1612 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1613 {
1614 ulong *p = &vmx->segment_cache.seg[seg].base;
1615
1616 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1617 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1618 return *p;
1619 }
1620
1621 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1622 {
1623 u32 *p = &vmx->segment_cache.seg[seg].limit;
1624
1625 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1626 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1627 return *p;
1628 }
1629
1630 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1631 {
1632 u32 *p = &vmx->segment_cache.seg[seg].ar;
1633
1634 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1635 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1636 return *p;
1637 }
1638
1639 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1640 {
1641 u32 eb;
1642
1643 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1644 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1645 if ((vcpu->guest_debug &
1646 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1647 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1648 eb |= 1u << BP_VECTOR;
1649 if (to_vmx(vcpu)->rmode.vm86_active)
1650 eb = ~0;
1651 if (enable_ept)
1652 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1653 if (vcpu->fpu_active)
1654 eb &= ~(1u << NM_VECTOR);
1655
1656 /* When we are running a nested L2 guest and L1 specified for it a
1657 * certain exception bitmap, we must trap the same exceptions and pass
1658 * them to L1. When running L2, we will only handle the exceptions
1659 * specified above if L1 did not want them.
1660 */
1661 if (is_guest_mode(vcpu))
1662 eb |= get_vmcs12(vcpu)->exception_bitmap;
1663
1664 vmcs_write32(EXCEPTION_BITMAP, eb);
1665 }
1666
1667 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1668 unsigned long entry, unsigned long exit)
1669 {
1670 vm_entry_controls_clearbit(vmx, entry);
1671 vm_exit_controls_clearbit(vmx, exit);
1672 }
1673
1674 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1675 {
1676 unsigned i;
1677 struct msr_autoload *m = &vmx->msr_autoload;
1678
1679 switch (msr) {
1680 case MSR_EFER:
1681 if (cpu_has_load_ia32_efer) {
1682 clear_atomic_switch_msr_special(vmx,
1683 VM_ENTRY_LOAD_IA32_EFER,
1684 VM_EXIT_LOAD_IA32_EFER);
1685 return;
1686 }
1687 break;
1688 case MSR_CORE_PERF_GLOBAL_CTRL:
1689 if (cpu_has_load_perf_global_ctrl) {
1690 clear_atomic_switch_msr_special(vmx,
1691 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1692 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1693 return;
1694 }
1695 break;
1696 }
1697
1698 for (i = 0; i < m->nr; ++i)
1699 if (m->guest[i].index == msr)
1700 break;
1701
1702 if (i == m->nr)
1703 return;
1704 --m->nr;
1705 m->guest[i] = m->guest[m->nr];
1706 m->host[i] = m->host[m->nr];
1707 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1708 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1709 }
1710
1711 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1712 unsigned long entry, unsigned long exit,
1713 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1714 u64 guest_val, u64 host_val)
1715 {
1716 vmcs_write64(guest_val_vmcs, guest_val);
1717 vmcs_write64(host_val_vmcs, host_val);
1718 vm_entry_controls_setbit(vmx, entry);
1719 vm_exit_controls_setbit(vmx, exit);
1720 }
1721
1722 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1723 u64 guest_val, u64 host_val)
1724 {
1725 unsigned i;
1726 struct msr_autoload *m = &vmx->msr_autoload;
1727
1728 switch (msr) {
1729 case MSR_EFER:
1730 if (cpu_has_load_ia32_efer) {
1731 add_atomic_switch_msr_special(vmx,
1732 VM_ENTRY_LOAD_IA32_EFER,
1733 VM_EXIT_LOAD_IA32_EFER,
1734 GUEST_IA32_EFER,
1735 HOST_IA32_EFER,
1736 guest_val, host_val);
1737 return;
1738 }
1739 break;
1740 case MSR_CORE_PERF_GLOBAL_CTRL:
1741 if (cpu_has_load_perf_global_ctrl) {
1742 add_atomic_switch_msr_special(vmx,
1743 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1744 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1745 GUEST_IA32_PERF_GLOBAL_CTRL,
1746 HOST_IA32_PERF_GLOBAL_CTRL,
1747 guest_val, host_val);
1748 return;
1749 }
1750 break;
1751 case MSR_IA32_PEBS_ENABLE:
1752 /* PEBS needs a quiescent period after being disabled (to write
1753 * a record). Disabling PEBS through VMX MSR swapping doesn't
1754 * provide that period, so a CPU could write host's record into
1755 * guest's memory.
1756 */
1757 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1758 }
1759
1760 for (i = 0; i < m->nr; ++i)
1761 if (m->guest[i].index == msr)
1762 break;
1763
1764 if (i == NR_AUTOLOAD_MSRS) {
1765 printk_once(KERN_WARNING "Not enough msr switch entries. "
1766 "Can't add msr %x\n", msr);
1767 return;
1768 } else if (i == m->nr) {
1769 ++m->nr;
1770 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1771 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1772 }
1773
1774 m->guest[i].index = msr;
1775 m->guest[i].value = guest_val;
1776 m->host[i].index = msr;
1777 m->host[i].value = host_val;
1778 }
1779
1780 static void reload_tss(void)
1781 {
1782 /*
1783 * VT restores TR but not its size. Useless.
1784 */
1785 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1786 struct desc_struct *descs;
1787
1788 descs = (void *)gdt->address;
1789 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1790 load_TR_desc();
1791 }
1792
1793 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1794 {
1795 u64 guest_efer = vmx->vcpu.arch.efer;
1796 u64 ignore_bits = 0;
1797
1798 if (!enable_ept) {
1799 /*
1800 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1801 * host CPUID is more efficient than testing guest CPUID
1802 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1803 */
1804 if (boot_cpu_has(X86_FEATURE_SMEP))
1805 guest_efer |= EFER_NX;
1806 else if (!(guest_efer & EFER_NX))
1807 ignore_bits |= EFER_NX;
1808 }
1809
1810 /*
1811 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1812 */
1813 ignore_bits |= EFER_SCE;
1814 #ifdef CONFIG_X86_64
1815 ignore_bits |= EFER_LMA | EFER_LME;
1816 /* SCE is meaningful only in long mode on Intel */
1817 if (guest_efer & EFER_LMA)
1818 ignore_bits &= ~(u64)EFER_SCE;
1819 #endif
1820
1821 clear_atomic_switch_msr(vmx, MSR_EFER);
1822
1823 /*
1824 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1825 * On CPUs that support "load IA32_EFER", always switch EFER
1826 * atomically, since it's faster than switching it manually.
1827 */
1828 if (cpu_has_load_ia32_efer ||
1829 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1830 if (!(guest_efer & EFER_LMA))
1831 guest_efer &= ~EFER_LME;
1832 if (guest_efer != host_efer)
1833 add_atomic_switch_msr(vmx, MSR_EFER,
1834 guest_efer, host_efer);
1835 return false;
1836 } else {
1837 guest_efer &= ~ignore_bits;
1838 guest_efer |= host_efer & ignore_bits;
1839
1840 vmx->guest_msrs[efer_offset].data = guest_efer;
1841 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1842
1843 return true;
1844 }
1845 }
1846
1847 static unsigned long segment_base(u16 selector)
1848 {
1849 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1850 struct desc_struct *d;
1851 unsigned long table_base;
1852 unsigned long v;
1853
1854 if (!(selector & ~3))
1855 return 0;
1856
1857 table_base = gdt->address;
1858
1859 if (selector & 4) { /* from ldt */
1860 u16 ldt_selector = kvm_read_ldt();
1861
1862 if (!(ldt_selector & ~3))
1863 return 0;
1864
1865 table_base = segment_base(ldt_selector);
1866 }
1867 d = (struct desc_struct *)(table_base + (selector & ~7));
1868 v = get_desc_base(d);
1869 #ifdef CONFIG_X86_64
1870 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1871 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1872 #endif
1873 return v;
1874 }
1875
1876 static inline unsigned long kvm_read_tr_base(void)
1877 {
1878 u16 tr;
1879 asm("str %0" : "=g"(tr));
1880 return segment_base(tr);
1881 }
1882
1883 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1884 {
1885 struct vcpu_vmx *vmx = to_vmx(vcpu);
1886 int i;
1887
1888 if (vmx->host_state.loaded)
1889 return;
1890
1891 vmx->host_state.loaded = 1;
1892 /*
1893 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1894 * allow segment selectors with cpl > 0 or ti == 1.
1895 */
1896 vmx->host_state.ldt_sel = kvm_read_ldt();
1897 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1898 savesegment(fs, vmx->host_state.fs_sel);
1899 if (!(vmx->host_state.fs_sel & 7)) {
1900 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1901 vmx->host_state.fs_reload_needed = 0;
1902 } else {
1903 vmcs_write16(HOST_FS_SELECTOR, 0);
1904 vmx->host_state.fs_reload_needed = 1;
1905 }
1906 savesegment(gs, vmx->host_state.gs_sel);
1907 if (!(vmx->host_state.gs_sel & 7))
1908 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1909 else {
1910 vmcs_write16(HOST_GS_SELECTOR, 0);
1911 vmx->host_state.gs_ldt_reload_needed = 1;
1912 }
1913
1914 #ifdef CONFIG_X86_64
1915 savesegment(ds, vmx->host_state.ds_sel);
1916 savesegment(es, vmx->host_state.es_sel);
1917 #endif
1918
1919 #ifdef CONFIG_X86_64
1920 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1921 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1922 #else
1923 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1924 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1925 #endif
1926
1927 #ifdef CONFIG_X86_64
1928 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1929 if (is_long_mode(&vmx->vcpu))
1930 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1931 #endif
1932 if (boot_cpu_has(X86_FEATURE_MPX))
1933 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1934 for (i = 0; i < vmx->save_nmsrs; ++i)
1935 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1936 vmx->guest_msrs[i].data,
1937 vmx->guest_msrs[i].mask);
1938 }
1939
1940 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1941 {
1942 if (!vmx->host_state.loaded)
1943 return;
1944
1945 ++vmx->vcpu.stat.host_state_reload;
1946 vmx->host_state.loaded = 0;
1947 #ifdef CONFIG_X86_64
1948 if (is_long_mode(&vmx->vcpu))
1949 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1950 #endif
1951 if (vmx->host_state.gs_ldt_reload_needed) {
1952 kvm_load_ldt(vmx->host_state.ldt_sel);
1953 #ifdef CONFIG_X86_64
1954 load_gs_index(vmx->host_state.gs_sel);
1955 #else
1956 loadsegment(gs, vmx->host_state.gs_sel);
1957 #endif
1958 }
1959 if (vmx->host_state.fs_reload_needed)
1960 loadsegment(fs, vmx->host_state.fs_sel);
1961 #ifdef CONFIG_X86_64
1962 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1963 loadsegment(ds, vmx->host_state.ds_sel);
1964 loadsegment(es, vmx->host_state.es_sel);
1965 }
1966 #endif
1967 reload_tss();
1968 #ifdef CONFIG_X86_64
1969 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1970 #endif
1971 if (vmx->host_state.msr_host_bndcfgs)
1972 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1973 /*
1974 * If the FPU is not active (through the host task or
1975 * the guest vcpu), then restore the cr0.TS bit.
1976 */
1977 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1978 stts();
1979 load_gdt(this_cpu_ptr(&host_gdt));
1980 }
1981
1982 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1983 {
1984 preempt_disable();
1985 __vmx_load_host_state(vmx);
1986 preempt_enable();
1987 }
1988
1989 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1990 {
1991 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1992 struct pi_desc old, new;
1993 unsigned int dest;
1994
1995 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1996 !irq_remapping_cap(IRQ_POSTING_CAP))
1997 return;
1998
1999 do {
2000 old.control = new.control = pi_desc->control;
2001
2002 /*
2003 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2004 * are two possible cases:
2005 * 1. After running 'pre_block', context switch
2006 * happened. For this case, 'sn' was set in
2007 * vmx_vcpu_put(), so we need to clear it here.
2008 * 2. After running 'pre_block', we were blocked,
2009 * and woken up by some other guy. For this case,
2010 * we don't need to do anything, 'pi_post_block'
2011 * will do everything for us. However, we cannot
2012 * check whether it is case #1 or case #2 here
2013 * (maybe, not needed), so we also clear sn here,
2014 * I think it is not a big deal.
2015 */
2016 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2017 if (vcpu->cpu != cpu) {
2018 dest = cpu_physical_id(cpu);
2019
2020 if (x2apic_enabled())
2021 new.ndst = dest;
2022 else
2023 new.ndst = (dest << 8) & 0xFF00;
2024 }
2025
2026 /* set 'NV' to 'notification vector' */
2027 new.nv = POSTED_INTR_VECTOR;
2028 }
2029
2030 /* Allow posting non-urgent interrupts */
2031 new.sn = 0;
2032 } while (cmpxchg(&pi_desc->control, old.control,
2033 new.control) != old.control);
2034 }
2035 /*
2036 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2037 * vcpu mutex is already taken.
2038 */
2039 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2040 {
2041 struct vcpu_vmx *vmx = to_vmx(vcpu);
2042 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2043
2044 if (!vmm_exclusive)
2045 kvm_cpu_vmxon(phys_addr);
2046 else if (vmx->loaded_vmcs->cpu != cpu)
2047 loaded_vmcs_clear(vmx->loaded_vmcs);
2048
2049 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2050 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2051 vmcs_load(vmx->loaded_vmcs->vmcs);
2052 }
2053
2054 if (vmx->loaded_vmcs->cpu != cpu) {
2055 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2056 unsigned long sysenter_esp;
2057
2058 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2059 local_irq_disable();
2060 crash_disable_local_vmclear(cpu);
2061
2062 /*
2063 * Read loaded_vmcs->cpu should be before fetching
2064 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2065 * See the comments in __loaded_vmcs_clear().
2066 */
2067 smp_rmb();
2068
2069 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2070 &per_cpu(loaded_vmcss_on_cpu, cpu));
2071 crash_enable_local_vmclear(cpu);
2072 local_irq_enable();
2073
2074 /*
2075 * Linux uses per-cpu TSS and GDT, so set these when switching
2076 * processors.
2077 */
2078 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2079 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2080
2081 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2082 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2083
2084 vmx->loaded_vmcs->cpu = cpu;
2085 }
2086
2087 /* Setup TSC multiplier */
2088 if (kvm_has_tsc_control &&
2089 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2090 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2091 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2092 }
2093
2094 vmx_vcpu_pi_load(vcpu, cpu);
2095 }
2096
2097 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2098 {
2099 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2100
2101 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2102 !irq_remapping_cap(IRQ_POSTING_CAP))
2103 return;
2104
2105 /* Set SN when the vCPU is preempted */
2106 if (vcpu->preempted)
2107 pi_set_sn(pi_desc);
2108 }
2109
2110 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2111 {
2112 vmx_vcpu_pi_put(vcpu);
2113
2114 __vmx_load_host_state(to_vmx(vcpu));
2115 if (!vmm_exclusive) {
2116 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2117 vcpu->cpu = -1;
2118 kvm_cpu_vmxoff();
2119 }
2120 }
2121
2122 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2123 {
2124 ulong cr0;
2125
2126 if (vcpu->fpu_active)
2127 return;
2128 vcpu->fpu_active = 1;
2129 cr0 = vmcs_readl(GUEST_CR0);
2130 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2131 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2132 vmcs_writel(GUEST_CR0, cr0);
2133 update_exception_bitmap(vcpu);
2134 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2135 if (is_guest_mode(vcpu))
2136 vcpu->arch.cr0_guest_owned_bits &=
2137 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2138 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2139 }
2140
2141 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2142
2143 /*
2144 * Return the cr0 value that a nested guest would read. This is a combination
2145 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2146 * its hypervisor (cr0_read_shadow).
2147 */
2148 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2149 {
2150 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2151 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2152 }
2153 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2154 {
2155 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2156 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2157 }
2158
2159 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2160 {
2161 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2162 * set this *before* calling this function.
2163 */
2164 vmx_decache_cr0_guest_bits(vcpu);
2165 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2166 update_exception_bitmap(vcpu);
2167 vcpu->arch.cr0_guest_owned_bits = 0;
2168 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2169 if (is_guest_mode(vcpu)) {
2170 /*
2171 * L1's specified read shadow might not contain the TS bit,
2172 * so now that we turned on shadowing of this bit, we need to
2173 * set this bit of the shadow. Like in nested_vmx_run we need
2174 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2175 * up-to-date here because we just decached cr0.TS (and we'll
2176 * only update vmcs12->guest_cr0 on nested exit).
2177 */
2178 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2179 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2180 (vcpu->arch.cr0 & X86_CR0_TS);
2181 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2182 } else
2183 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2184 }
2185
2186 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2187 {
2188 unsigned long rflags, save_rflags;
2189
2190 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2191 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2192 rflags = vmcs_readl(GUEST_RFLAGS);
2193 if (to_vmx(vcpu)->rmode.vm86_active) {
2194 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2195 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2196 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2197 }
2198 to_vmx(vcpu)->rflags = rflags;
2199 }
2200 return to_vmx(vcpu)->rflags;
2201 }
2202
2203 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2204 {
2205 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2206 to_vmx(vcpu)->rflags = rflags;
2207 if (to_vmx(vcpu)->rmode.vm86_active) {
2208 to_vmx(vcpu)->rmode.save_rflags = rflags;
2209 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2210 }
2211 vmcs_writel(GUEST_RFLAGS, rflags);
2212 }
2213
2214 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2215 {
2216 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2217 int ret = 0;
2218
2219 if (interruptibility & GUEST_INTR_STATE_STI)
2220 ret |= KVM_X86_SHADOW_INT_STI;
2221 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2222 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2223
2224 return ret;
2225 }
2226
2227 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2228 {
2229 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2230 u32 interruptibility = interruptibility_old;
2231
2232 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2233
2234 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2235 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2236 else if (mask & KVM_X86_SHADOW_INT_STI)
2237 interruptibility |= GUEST_INTR_STATE_STI;
2238
2239 if ((interruptibility != interruptibility_old))
2240 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2241 }
2242
2243 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2244 {
2245 unsigned long rip;
2246
2247 rip = kvm_rip_read(vcpu);
2248 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2249 kvm_rip_write(vcpu, rip);
2250
2251 /* skipping an emulated instruction also counts */
2252 vmx_set_interrupt_shadow(vcpu, 0);
2253 }
2254
2255 /*
2256 * KVM wants to inject page-faults which it got to the guest. This function
2257 * checks whether in a nested guest, we need to inject them to L1 or L2.
2258 */
2259 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2260 {
2261 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2262
2263 if (!(vmcs12->exception_bitmap & (1u << nr)))
2264 return 0;
2265
2266 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2267 vmcs_read32(VM_EXIT_INTR_INFO),
2268 vmcs_readl(EXIT_QUALIFICATION));
2269 return 1;
2270 }
2271
2272 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2273 bool has_error_code, u32 error_code,
2274 bool reinject)
2275 {
2276 struct vcpu_vmx *vmx = to_vmx(vcpu);
2277 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2278
2279 if (!reinject && is_guest_mode(vcpu) &&
2280 nested_vmx_check_exception(vcpu, nr))
2281 return;
2282
2283 if (has_error_code) {
2284 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2285 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2286 }
2287
2288 if (vmx->rmode.vm86_active) {
2289 int inc_eip = 0;
2290 if (kvm_exception_is_soft(nr))
2291 inc_eip = vcpu->arch.event_exit_inst_len;
2292 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2293 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2294 return;
2295 }
2296
2297 if (kvm_exception_is_soft(nr)) {
2298 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2299 vmx->vcpu.arch.event_exit_inst_len);
2300 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2301 } else
2302 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2303
2304 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2305 }
2306
2307 static bool vmx_rdtscp_supported(void)
2308 {
2309 return cpu_has_vmx_rdtscp();
2310 }
2311
2312 static bool vmx_invpcid_supported(void)
2313 {
2314 return cpu_has_vmx_invpcid() && enable_ept;
2315 }
2316
2317 /*
2318 * Swap MSR entry in host/guest MSR entry array.
2319 */
2320 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2321 {
2322 struct shared_msr_entry tmp;
2323
2324 tmp = vmx->guest_msrs[to];
2325 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2326 vmx->guest_msrs[from] = tmp;
2327 }
2328
2329 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2330 {
2331 unsigned long *msr_bitmap;
2332
2333 if (is_guest_mode(vcpu))
2334 msr_bitmap = vmx_msr_bitmap_nested;
2335 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2336 if (is_long_mode(vcpu))
2337 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2338 else
2339 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2340 } else {
2341 if (is_long_mode(vcpu))
2342 msr_bitmap = vmx_msr_bitmap_longmode;
2343 else
2344 msr_bitmap = vmx_msr_bitmap_legacy;
2345 }
2346
2347 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2348 }
2349
2350 /*
2351 * Set up the vmcs to automatically save and restore system
2352 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2353 * mode, as fiddling with msrs is very expensive.
2354 */
2355 static void setup_msrs(struct vcpu_vmx *vmx)
2356 {
2357 int save_nmsrs, index;
2358
2359 save_nmsrs = 0;
2360 #ifdef CONFIG_X86_64
2361 if (is_long_mode(&vmx->vcpu)) {
2362 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2363 if (index >= 0)
2364 move_msr_up(vmx, index, save_nmsrs++);
2365 index = __find_msr_index(vmx, MSR_LSTAR);
2366 if (index >= 0)
2367 move_msr_up(vmx, index, save_nmsrs++);
2368 index = __find_msr_index(vmx, MSR_CSTAR);
2369 if (index >= 0)
2370 move_msr_up(vmx, index, save_nmsrs++);
2371 index = __find_msr_index(vmx, MSR_TSC_AUX);
2372 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2373 move_msr_up(vmx, index, save_nmsrs++);
2374 /*
2375 * MSR_STAR is only needed on long mode guests, and only
2376 * if efer.sce is enabled.
2377 */
2378 index = __find_msr_index(vmx, MSR_STAR);
2379 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2380 move_msr_up(vmx, index, save_nmsrs++);
2381 }
2382 #endif
2383 index = __find_msr_index(vmx, MSR_EFER);
2384 if (index >= 0 && update_transition_efer(vmx, index))
2385 move_msr_up(vmx, index, save_nmsrs++);
2386
2387 vmx->save_nmsrs = save_nmsrs;
2388
2389 if (cpu_has_vmx_msr_bitmap())
2390 vmx_set_msr_bitmap(&vmx->vcpu);
2391 }
2392
2393 /*
2394 * reads and returns guest's timestamp counter "register"
2395 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2396 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2397 */
2398 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2399 {
2400 u64 host_tsc, tsc_offset;
2401
2402 host_tsc = rdtsc();
2403 tsc_offset = vmcs_read64(TSC_OFFSET);
2404 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2405 }
2406
2407 /*
2408 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2409 * counter, even if a nested guest (L2) is currently running.
2410 */
2411 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2412 {
2413 u64 tsc_offset;
2414
2415 tsc_offset = is_guest_mode(vcpu) ?
2416 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2417 vmcs_read64(TSC_OFFSET);
2418 return host_tsc + tsc_offset;
2419 }
2420
2421 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2422 {
2423 return vmcs_read64(TSC_OFFSET);
2424 }
2425
2426 /*
2427 * writes 'offset' into guest's timestamp counter offset register
2428 */
2429 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2430 {
2431 if (is_guest_mode(vcpu)) {
2432 /*
2433 * We're here if L1 chose not to trap WRMSR to TSC. According
2434 * to the spec, this should set L1's TSC; The offset that L1
2435 * set for L2 remains unchanged, and still needs to be added
2436 * to the newly set TSC to get L2's TSC.
2437 */
2438 struct vmcs12 *vmcs12;
2439 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2440 /* recalculate vmcs02.TSC_OFFSET: */
2441 vmcs12 = get_vmcs12(vcpu);
2442 vmcs_write64(TSC_OFFSET, offset +
2443 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2444 vmcs12->tsc_offset : 0));
2445 } else {
2446 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2447 vmcs_read64(TSC_OFFSET), offset);
2448 vmcs_write64(TSC_OFFSET, offset);
2449 }
2450 }
2451
2452 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2453 {
2454 u64 offset = vmcs_read64(TSC_OFFSET);
2455
2456 vmcs_write64(TSC_OFFSET, offset + adjustment);
2457 if (is_guest_mode(vcpu)) {
2458 /* Even when running L2, the adjustment needs to apply to L1 */
2459 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2460 } else
2461 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2462 offset + adjustment);
2463 }
2464
2465 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2466 {
2467 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2468 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2469 }
2470
2471 /*
2472 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2473 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2474 * all guests if the "nested" module option is off, and can also be disabled
2475 * for a single guest by disabling its VMX cpuid bit.
2476 */
2477 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2478 {
2479 return nested && guest_cpuid_has_vmx(vcpu);
2480 }
2481
2482 /*
2483 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2484 * returned for the various VMX controls MSRs when nested VMX is enabled.
2485 * The same values should also be used to verify that vmcs12 control fields are
2486 * valid during nested entry from L1 to L2.
2487 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2488 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2489 * bit in the high half is on if the corresponding bit in the control field
2490 * may be on. See also vmx_control_verify().
2491 */
2492 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2493 {
2494 /*
2495 * Note that as a general rule, the high half of the MSRs (bits in
2496 * the control fields which may be 1) should be initialized by the
2497 * intersection of the underlying hardware's MSR (i.e., features which
2498 * can be supported) and the list of features we want to expose -
2499 * because they are known to be properly supported in our code.
2500 * Also, usually, the low half of the MSRs (bits which must be 1) can
2501 * be set to 0, meaning that L1 may turn off any of these bits. The
2502 * reason is that if one of these bits is necessary, it will appear
2503 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2504 * fields of vmcs01 and vmcs02, will turn these bits off - and
2505 * nested_vmx_exit_handled() will not pass related exits to L1.
2506 * These rules have exceptions below.
2507 */
2508
2509 /* pin-based controls */
2510 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2511 vmx->nested.nested_vmx_pinbased_ctls_low,
2512 vmx->nested.nested_vmx_pinbased_ctls_high);
2513 vmx->nested.nested_vmx_pinbased_ctls_low |=
2514 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2515 vmx->nested.nested_vmx_pinbased_ctls_high &=
2516 PIN_BASED_EXT_INTR_MASK |
2517 PIN_BASED_NMI_EXITING |
2518 PIN_BASED_VIRTUAL_NMIS;
2519 vmx->nested.nested_vmx_pinbased_ctls_high |=
2520 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2521 PIN_BASED_VMX_PREEMPTION_TIMER;
2522 if (vmx_cpu_uses_apicv(&vmx->vcpu))
2523 vmx->nested.nested_vmx_pinbased_ctls_high |=
2524 PIN_BASED_POSTED_INTR;
2525
2526 /* exit controls */
2527 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2528 vmx->nested.nested_vmx_exit_ctls_low,
2529 vmx->nested.nested_vmx_exit_ctls_high);
2530 vmx->nested.nested_vmx_exit_ctls_low =
2531 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2532
2533 vmx->nested.nested_vmx_exit_ctls_high &=
2534 #ifdef CONFIG_X86_64
2535 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2536 #endif
2537 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2538 vmx->nested.nested_vmx_exit_ctls_high |=
2539 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2540 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2541 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2542
2543 if (vmx_mpx_supported())
2544 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2545
2546 /* We support free control of debug control saving. */
2547 vmx->nested.nested_vmx_true_exit_ctls_low =
2548 vmx->nested.nested_vmx_exit_ctls_low &
2549 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2550
2551 /* entry controls */
2552 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2553 vmx->nested.nested_vmx_entry_ctls_low,
2554 vmx->nested.nested_vmx_entry_ctls_high);
2555 vmx->nested.nested_vmx_entry_ctls_low =
2556 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2557 vmx->nested.nested_vmx_entry_ctls_high &=
2558 #ifdef CONFIG_X86_64
2559 VM_ENTRY_IA32E_MODE |
2560 #endif
2561 VM_ENTRY_LOAD_IA32_PAT;
2562 vmx->nested.nested_vmx_entry_ctls_high |=
2563 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2564 if (vmx_mpx_supported())
2565 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2566
2567 /* We support free control of debug control loading. */
2568 vmx->nested.nested_vmx_true_entry_ctls_low =
2569 vmx->nested.nested_vmx_entry_ctls_low &
2570 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2571
2572 /* cpu-based controls */
2573 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2574 vmx->nested.nested_vmx_procbased_ctls_low,
2575 vmx->nested.nested_vmx_procbased_ctls_high);
2576 vmx->nested.nested_vmx_procbased_ctls_low =
2577 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2578 vmx->nested.nested_vmx_procbased_ctls_high &=
2579 CPU_BASED_VIRTUAL_INTR_PENDING |
2580 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2581 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2582 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2583 CPU_BASED_CR3_STORE_EXITING |
2584 #ifdef CONFIG_X86_64
2585 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2586 #endif
2587 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2588 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2589 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2590 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2591 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2592 /*
2593 * We can allow some features even when not supported by the
2594 * hardware. For example, L1 can specify an MSR bitmap - and we
2595 * can use it to avoid exits to L1 - even when L0 runs L2
2596 * without MSR bitmaps.
2597 */
2598 vmx->nested.nested_vmx_procbased_ctls_high |=
2599 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2600 CPU_BASED_USE_MSR_BITMAPS;
2601
2602 /* We support free control of CR3 access interception. */
2603 vmx->nested.nested_vmx_true_procbased_ctls_low =
2604 vmx->nested.nested_vmx_procbased_ctls_low &
2605 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2606
2607 /* secondary cpu-based controls */
2608 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2609 vmx->nested.nested_vmx_secondary_ctls_low,
2610 vmx->nested.nested_vmx_secondary_ctls_high);
2611 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2612 vmx->nested.nested_vmx_secondary_ctls_high &=
2613 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2614 SECONDARY_EXEC_RDTSCP |
2615 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616 SECONDARY_EXEC_ENABLE_VPID |
2617 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2618 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2619 SECONDARY_EXEC_WBINVD_EXITING |
2620 SECONDARY_EXEC_XSAVES |
2621 SECONDARY_EXEC_PCOMMIT;
2622
2623 if (enable_ept) {
2624 /* nested EPT: emulate EPT also to L1 */
2625 vmx->nested.nested_vmx_secondary_ctls_high |=
2626 SECONDARY_EXEC_ENABLE_EPT;
2627 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2628 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2629 VMX_EPT_INVEPT_BIT;
2630 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2631 /*
2632 * For nested guests, we don't do anything specific
2633 * for single context invalidation. Hence, only advertise
2634 * support for global context invalidation.
2635 */
2636 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2637 } else
2638 vmx->nested.nested_vmx_ept_caps = 0;
2639
2640 if (enable_vpid)
2641 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2642 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2643 else
2644 vmx->nested.nested_vmx_vpid_caps = 0;
2645
2646 if (enable_unrestricted_guest)
2647 vmx->nested.nested_vmx_secondary_ctls_high |=
2648 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2649
2650 /* miscellaneous data */
2651 rdmsr(MSR_IA32_VMX_MISC,
2652 vmx->nested.nested_vmx_misc_low,
2653 vmx->nested.nested_vmx_misc_high);
2654 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2655 vmx->nested.nested_vmx_misc_low |=
2656 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2657 VMX_MISC_ACTIVITY_HLT;
2658 vmx->nested.nested_vmx_misc_high = 0;
2659 }
2660
2661 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2662 {
2663 /*
2664 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2665 */
2666 return ((control & high) | low) == control;
2667 }
2668
2669 static inline u64 vmx_control_msr(u32 low, u32 high)
2670 {
2671 return low | ((u64)high << 32);
2672 }
2673
2674 /* Returns 0 on success, non-0 otherwise. */
2675 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2676 {
2677 struct vcpu_vmx *vmx = to_vmx(vcpu);
2678
2679 switch (msr_index) {
2680 case MSR_IA32_VMX_BASIC:
2681 /*
2682 * This MSR reports some information about VMX support. We
2683 * should return information about the VMX we emulate for the
2684 * guest, and the VMCS structure we give it - not about the
2685 * VMX support of the underlying hardware.
2686 */
2687 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2688 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2689 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2690 break;
2691 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2692 case MSR_IA32_VMX_PINBASED_CTLS:
2693 *pdata = vmx_control_msr(
2694 vmx->nested.nested_vmx_pinbased_ctls_low,
2695 vmx->nested.nested_vmx_pinbased_ctls_high);
2696 break;
2697 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2698 *pdata = vmx_control_msr(
2699 vmx->nested.nested_vmx_true_procbased_ctls_low,
2700 vmx->nested.nested_vmx_procbased_ctls_high);
2701 break;
2702 case MSR_IA32_VMX_PROCBASED_CTLS:
2703 *pdata = vmx_control_msr(
2704 vmx->nested.nested_vmx_procbased_ctls_low,
2705 vmx->nested.nested_vmx_procbased_ctls_high);
2706 break;
2707 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2708 *pdata = vmx_control_msr(
2709 vmx->nested.nested_vmx_true_exit_ctls_low,
2710 vmx->nested.nested_vmx_exit_ctls_high);
2711 break;
2712 case MSR_IA32_VMX_EXIT_CTLS:
2713 *pdata = vmx_control_msr(
2714 vmx->nested.nested_vmx_exit_ctls_low,
2715 vmx->nested.nested_vmx_exit_ctls_high);
2716 break;
2717 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2718 *pdata = vmx_control_msr(
2719 vmx->nested.nested_vmx_true_entry_ctls_low,
2720 vmx->nested.nested_vmx_entry_ctls_high);
2721 break;
2722 case MSR_IA32_VMX_ENTRY_CTLS:
2723 *pdata = vmx_control_msr(
2724 vmx->nested.nested_vmx_entry_ctls_low,
2725 vmx->nested.nested_vmx_entry_ctls_high);
2726 break;
2727 case MSR_IA32_VMX_MISC:
2728 *pdata = vmx_control_msr(
2729 vmx->nested.nested_vmx_misc_low,
2730 vmx->nested.nested_vmx_misc_high);
2731 break;
2732 /*
2733 * These MSRs specify bits which the guest must keep fixed (on or off)
2734 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2735 * We picked the standard core2 setting.
2736 */
2737 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2738 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2739 case MSR_IA32_VMX_CR0_FIXED0:
2740 *pdata = VMXON_CR0_ALWAYSON;
2741 break;
2742 case MSR_IA32_VMX_CR0_FIXED1:
2743 *pdata = -1ULL;
2744 break;
2745 case MSR_IA32_VMX_CR4_FIXED0:
2746 *pdata = VMXON_CR4_ALWAYSON;
2747 break;
2748 case MSR_IA32_VMX_CR4_FIXED1:
2749 *pdata = -1ULL;
2750 break;
2751 case MSR_IA32_VMX_VMCS_ENUM:
2752 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2753 break;
2754 case MSR_IA32_VMX_PROCBASED_CTLS2:
2755 *pdata = vmx_control_msr(
2756 vmx->nested.nested_vmx_secondary_ctls_low,
2757 vmx->nested.nested_vmx_secondary_ctls_high);
2758 break;
2759 case MSR_IA32_VMX_EPT_VPID_CAP:
2760 /* Currently, no nested vpid support */
2761 *pdata = vmx->nested.nested_vmx_ept_caps |
2762 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2763 break;
2764 default:
2765 return 1;
2766 }
2767
2768 return 0;
2769 }
2770
2771 /*
2772 * Reads an msr value (of 'msr_index') into 'pdata'.
2773 * Returns 0 on success, non-0 otherwise.
2774 * Assumes vcpu_load() was already called.
2775 */
2776 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2777 {
2778 struct shared_msr_entry *msr;
2779
2780 switch (msr_info->index) {
2781 #ifdef CONFIG_X86_64
2782 case MSR_FS_BASE:
2783 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2784 break;
2785 case MSR_GS_BASE:
2786 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2787 break;
2788 case MSR_KERNEL_GS_BASE:
2789 vmx_load_host_state(to_vmx(vcpu));
2790 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2791 break;
2792 #endif
2793 case MSR_EFER:
2794 return kvm_get_msr_common(vcpu, msr_info);
2795 case MSR_IA32_TSC:
2796 msr_info->data = guest_read_tsc(vcpu);
2797 break;
2798 case MSR_IA32_SYSENTER_CS:
2799 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2800 break;
2801 case MSR_IA32_SYSENTER_EIP:
2802 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2803 break;
2804 case MSR_IA32_SYSENTER_ESP:
2805 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2806 break;
2807 case MSR_IA32_BNDCFGS:
2808 if (!vmx_mpx_supported())
2809 return 1;
2810 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2811 break;
2812 case MSR_IA32_FEATURE_CONTROL:
2813 if (!nested_vmx_allowed(vcpu))
2814 return 1;
2815 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2816 break;
2817 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2818 if (!nested_vmx_allowed(vcpu))
2819 return 1;
2820 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2821 case MSR_IA32_XSS:
2822 if (!vmx_xsaves_supported())
2823 return 1;
2824 msr_info->data = vcpu->arch.ia32_xss;
2825 break;
2826 case MSR_TSC_AUX:
2827 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2828 return 1;
2829 /* Otherwise falls through */
2830 default:
2831 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2832 if (msr) {
2833 msr_info->data = msr->data;
2834 break;
2835 }
2836 return kvm_get_msr_common(vcpu, msr_info);
2837 }
2838
2839 return 0;
2840 }
2841
2842 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2843
2844 /*
2845 * Writes msr value into into the appropriate "register".
2846 * Returns 0 on success, non-0 otherwise.
2847 * Assumes vcpu_load() was already called.
2848 */
2849 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2850 {
2851 struct vcpu_vmx *vmx = to_vmx(vcpu);
2852 struct shared_msr_entry *msr;
2853 int ret = 0;
2854 u32 msr_index = msr_info->index;
2855 u64 data = msr_info->data;
2856
2857 switch (msr_index) {
2858 case MSR_EFER:
2859 ret = kvm_set_msr_common(vcpu, msr_info);
2860 break;
2861 #ifdef CONFIG_X86_64
2862 case MSR_FS_BASE:
2863 vmx_segment_cache_clear(vmx);
2864 vmcs_writel(GUEST_FS_BASE, data);
2865 break;
2866 case MSR_GS_BASE:
2867 vmx_segment_cache_clear(vmx);
2868 vmcs_writel(GUEST_GS_BASE, data);
2869 break;
2870 case MSR_KERNEL_GS_BASE:
2871 vmx_load_host_state(vmx);
2872 vmx->msr_guest_kernel_gs_base = data;
2873 break;
2874 #endif
2875 case MSR_IA32_SYSENTER_CS:
2876 vmcs_write32(GUEST_SYSENTER_CS, data);
2877 break;
2878 case MSR_IA32_SYSENTER_EIP:
2879 vmcs_writel(GUEST_SYSENTER_EIP, data);
2880 break;
2881 case MSR_IA32_SYSENTER_ESP:
2882 vmcs_writel(GUEST_SYSENTER_ESP, data);
2883 break;
2884 case MSR_IA32_BNDCFGS:
2885 if (!vmx_mpx_supported())
2886 return 1;
2887 vmcs_write64(GUEST_BNDCFGS, data);
2888 break;
2889 case MSR_IA32_TSC:
2890 kvm_write_tsc(vcpu, msr_info);
2891 break;
2892 case MSR_IA32_CR_PAT:
2893 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2894 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2895 return 1;
2896 vmcs_write64(GUEST_IA32_PAT, data);
2897 vcpu->arch.pat = data;
2898 break;
2899 }
2900 ret = kvm_set_msr_common(vcpu, msr_info);
2901 break;
2902 case MSR_IA32_TSC_ADJUST:
2903 ret = kvm_set_msr_common(vcpu, msr_info);
2904 break;
2905 case MSR_IA32_FEATURE_CONTROL:
2906 if (!nested_vmx_allowed(vcpu) ||
2907 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2908 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2909 return 1;
2910 vmx->nested.msr_ia32_feature_control = data;
2911 if (msr_info->host_initiated && data == 0)
2912 vmx_leave_nested(vcpu);
2913 break;
2914 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2915 return 1; /* they are read-only */
2916 case MSR_IA32_XSS:
2917 if (!vmx_xsaves_supported())
2918 return 1;
2919 /*
2920 * The only supported bit as of Skylake is bit 8, but
2921 * it is not supported on KVM.
2922 */
2923 if (data != 0)
2924 return 1;
2925 vcpu->arch.ia32_xss = data;
2926 if (vcpu->arch.ia32_xss != host_xss)
2927 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2928 vcpu->arch.ia32_xss, host_xss);
2929 else
2930 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2931 break;
2932 case MSR_TSC_AUX:
2933 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2934 return 1;
2935 /* Check reserved bit, higher 32 bits should be zero */
2936 if ((data >> 32) != 0)
2937 return 1;
2938 /* Otherwise falls through */
2939 default:
2940 msr = find_msr_entry(vmx, msr_index);
2941 if (msr) {
2942 u64 old_msr_data = msr->data;
2943 msr->data = data;
2944 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2945 preempt_disable();
2946 ret = kvm_set_shared_msr(msr->index, msr->data,
2947 msr->mask);
2948 preempt_enable();
2949 if (ret)
2950 msr->data = old_msr_data;
2951 }
2952 break;
2953 }
2954 ret = kvm_set_msr_common(vcpu, msr_info);
2955 }
2956
2957 return ret;
2958 }
2959
2960 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2961 {
2962 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2963 switch (reg) {
2964 case VCPU_REGS_RSP:
2965 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2966 break;
2967 case VCPU_REGS_RIP:
2968 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2969 break;
2970 case VCPU_EXREG_PDPTR:
2971 if (enable_ept)
2972 ept_save_pdptrs(vcpu);
2973 break;
2974 default:
2975 break;
2976 }
2977 }
2978
2979 static __init int cpu_has_kvm_support(void)
2980 {
2981 return cpu_has_vmx();
2982 }
2983
2984 static __init int vmx_disabled_by_bios(void)
2985 {
2986 u64 msr;
2987
2988 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2989 if (msr & FEATURE_CONTROL_LOCKED) {
2990 /* launched w/ TXT and VMX disabled */
2991 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2992 && tboot_enabled())
2993 return 1;
2994 /* launched w/o TXT and VMX only enabled w/ TXT */
2995 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2996 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2997 && !tboot_enabled()) {
2998 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2999 "activate TXT before enabling KVM\n");
3000 return 1;
3001 }
3002 /* launched w/o TXT and VMX disabled */
3003 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3004 && !tboot_enabled())
3005 return 1;
3006 }
3007
3008 return 0;
3009 }
3010
3011 static void kvm_cpu_vmxon(u64 addr)
3012 {
3013 asm volatile (ASM_VMX_VMXON_RAX
3014 : : "a"(&addr), "m"(addr)
3015 : "memory", "cc");
3016 }
3017
3018 static int hardware_enable(void)
3019 {
3020 int cpu = raw_smp_processor_id();
3021 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3022 u64 old, test_bits;
3023
3024 if (cr4_read_shadow() & X86_CR4_VMXE)
3025 return -EBUSY;
3026
3027 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3028 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3029 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3030
3031 /*
3032 * Now we can enable the vmclear operation in kdump
3033 * since the loaded_vmcss_on_cpu list on this cpu
3034 * has been initialized.
3035 *
3036 * Though the cpu is not in VMX operation now, there
3037 * is no problem to enable the vmclear operation
3038 * for the loaded_vmcss_on_cpu list is empty!
3039 */
3040 crash_enable_local_vmclear(cpu);
3041
3042 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3043
3044 test_bits = FEATURE_CONTROL_LOCKED;
3045 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3046 if (tboot_enabled())
3047 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3048
3049 if ((old & test_bits) != test_bits) {
3050 /* enable and lock */
3051 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3052 }
3053 cr4_set_bits(X86_CR4_VMXE);
3054
3055 if (vmm_exclusive) {
3056 kvm_cpu_vmxon(phys_addr);
3057 ept_sync_global();
3058 }
3059
3060 native_store_gdt(this_cpu_ptr(&host_gdt));
3061
3062 return 0;
3063 }
3064
3065 static void vmclear_local_loaded_vmcss(void)
3066 {
3067 int cpu = raw_smp_processor_id();
3068 struct loaded_vmcs *v, *n;
3069
3070 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3071 loaded_vmcss_on_cpu_link)
3072 __loaded_vmcs_clear(v);
3073 }
3074
3075
3076 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3077 * tricks.
3078 */
3079 static void kvm_cpu_vmxoff(void)
3080 {
3081 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3082 }
3083
3084 static void hardware_disable(void)
3085 {
3086 if (vmm_exclusive) {
3087 vmclear_local_loaded_vmcss();
3088 kvm_cpu_vmxoff();
3089 }
3090 cr4_clear_bits(X86_CR4_VMXE);
3091 }
3092
3093 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3094 u32 msr, u32 *result)
3095 {
3096 u32 vmx_msr_low, vmx_msr_high;
3097 u32 ctl = ctl_min | ctl_opt;
3098
3099 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3100
3101 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3102 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3103
3104 /* Ensure minimum (required) set of control bits are supported. */
3105 if (ctl_min & ~ctl)
3106 return -EIO;
3107
3108 *result = ctl;
3109 return 0;
3110 }
3111
3112 static __init bool allow_1_setting(u32 msr, u32 ctl)
3113 {
3114 u32 vmx_msr_low, vmx_msr_high;
3115
3116 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3117 return vmx_msr_high & ctl;
3118 }
3119
3120 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3121 {
3122 u32 vmx_msr_low, vmx_msr_high;
3123 u32 min, opt, min2, opt2;
3124 u32 _pin_based_exec_control = 0;
3125 u32 _cpu_based_exec_control = 0;
3126 u32 _cpu_based_2nd_exec_control = 0;
3127 u32 _vmexit_control = 0;
3128 u32 _vmentry_control = 0;
3129
3130 min = CPU_BASED_HLT_EXITING |
3131 #ifdef CONFIG_X86_64
3132 CPU_BASED_CR8_LOAD_EXITING |
3133 CPU_BASED_CR8_STORE_EXITING |
3134 #endif
3135 CPU_BASED_CR3_LOAD_EXITING |
3136 CPU_BASED_CR3_STORE_EXITING |
3137 CPU_BASED_USE_IO_BITMAPS |
3138 CPU_BASED_MOV_DR_EXITING |
3139 CPU_BASED_USE_TSC_OFFSETING |
3140 CPU_BASED_MWAIT_EXITING |
3141 CPU_BASED_MONITOR_EXITING |
3142 CPU_BASED_INVLPG_EXITING |
3143 CPU_BASED_RDPMC_EXITING;
3144
3145 opt = CPU_BASED_TPR_SHADOW |
3146 CPU_BASED_USE_MSR_BITMAPS |
3147 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3148 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3149 &_cpu_based_exec_control) < 0)
3150 return -EIO;
3151 #ifdef CONFIG_X86_64
3152 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3153 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3154 ~CPU_BASED_CR8_STORE_EXITING;
3155 #endif
3156 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3157 min2 = 0;
3158 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3159 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3160 SECONDARY_EXEC_WBINVD_EXITING |
3161 SECONDARY_EXEC_ENABLE_VPID |
3162 SECONDARY_EXEC_ENABLE_EPT |
3163 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3164 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3165 SECONDARY_EXEC_RDTSCP |
3166 SECONDARY_EXEC_ENABLE_INVPCID |
3167 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3168 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3169 SECONDARY_EXEC_SHADOW_VMCS |
3170 SECONDARY_EXEC_XSAVES |
3171 SECONDARY_EXEC_ENABLE_PML |
3172 SECONDARY_EXEC_PCOMMIT |
3173 SECONDARY_EXEC_TSC_SCALING;
3174 if (adjust_vmx_controls(min2, opt2,
3175 MSR_IA32_VMX_PROCBASED_CTLS2,
3176 &_cpu_based_2nd_exec_control) < 0)
3177 return -EIO;
3178 }
3179 #ifndef CONFIG_X86_64
3180 if (!(_cpu_based_2nd_exec_control &
3181 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3182 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3183 #endif
3184
3185 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3186 _cpu_based_2nd_exec_control &= ~(
3187 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3188 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3189 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3190
3191 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3192 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3193 enabled */
3194 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3195 CPU_BASED_CR3_STORE_EXITING |
3196 CPU_BASED_INVLPG_EXITING);
3197 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3198 vmx_capability.ept, vmx_capability.vpid);
3199 }
3200
3201 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3202 #ifdef CONFIG_X86_64
3203 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3204 #endif
3205 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3206 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3207 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3208 &_vmexit_control) < 0)
3209 return -EIO;
3210
3211 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3212 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3213 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3214 &_pin_based_exec_control) < 0)
3215 return -EIO;
3216
3217 if (!(_cpu_based_2nd_exec_control &
3218 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3219 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3220 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3221
3222 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3223 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3224 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3225 &_vmentry_control) < 0)
3226 return -EIO;
3227
3228 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3229
3230 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3231 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3232 return -EIO;
3233
3234 #ifdef CONFIG_X86_64
3235 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3236 if (vmx_msr_high & (1u<<16))
3237 return -EIO;
3238 #endif
3239
3240 /* Require Write-Back (WB) memory type for VMCS accesses. */
3241 if (((vmx_msr_high >> 18) & 15) != 6)
3242 return -EIO;
3243
3244 vmcs_conf->size = vmx_msr_high & 0x1fff;
3245 vmcs_conf->order = get_order(vmcs_config.size);
3246 vmcs_conf->revision_id = vmx_msr_low;
3247
3248 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3249 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3250 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3251 vmcs_conf->vmexit_ctrl = _vmexit_control;
3252 vmcs_conf->vmentry_ctrl = _vmentry_control;
3253
3254 cpu_has_load_ia32_efer =
3255 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3256 VM_ENTRY_LOAD_IA32_EFER)
3257 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3258 VM_EXIT_LOAD_IA32_EFER);
3259
3260 cpu_has_load_perf_global_ctrl =
3261 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3262 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3263 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3264 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3265
3266 /*
3267 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3268 * but due to arrata below it can't be used. Workaround is to use
3269 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3270 *
3271 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3272 *
3273 * AAK155 (model 26)
3274 * AAP115 (model 30)
3275 * AAT100 (model 37)
3276 * BC86,AAY89,BD102 (model 44)
3277 * BA97 (model 46)
3278 *
3279 */
3280 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3281 switch (boot_cpu_data.x86_model) {
3282 case 26:
3283 case 30:
3284 case 37:
3285 case 44:
3286 case 46:
3287 cpu_has_load_perf_global_ctrl = false;
3288 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3289 "does not work properly. Using workaround\n");
3290 break;
3291 default:
3292 break;
3293 }
3294 }
3295
3296 if (cpu_has_xsaves)
3297 rdmsrl(MSR_IA32_XSS, host_xss);
3298
3299 return 0;
3300 }
3301
3302 static struct vmcs *alloc_vmcs_cpu(int cpu)
3303 {
3304 int node = cpu_to_node(cpu);
3305 struct page *pages;
3306 struct vmcs *vmcs;
3307
3308 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3309 if (!pages)
3310 return NULL;
3311 vmcs = page_address(pages);
3312 memset(vmcs, 0, vmcs_config.size);
3313 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3314 return vmcs;
3315 }
3316
3317 static struct vmcs *alloc_vmcs(void)
3318 {
3319 return alloc_vmcs_cpu(raw_smp_processor_id());
3320 }
3321
3322 static void free_vmcs(struct vmcs *vmcs)
3323 {
3324 free_pages((unsigned long)vmcs, vmcs_config.order);
3325 }
3326
3327 /*
3328 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3329 */
3330 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3331 {
3332 if (!loaded_vmcs->vmcs)
3333 return;
3334 loaded_vmcs_clear(loaded_vmcs);
3335 free_vmcs(loaded_vmcs->vmcs);
3336 loaded_vmcs->vmcs = NULL;
3337 }
3338
3339 static void free_kvm_area(void)
3340 {
3341 int cpu;
3342
3343 for_each_possible_cpu(cpu) {
3344 free_vmcs(per_cpu(vmxarea, cpu));
3345 per_cpu(vmxarea, cpu) = NULL;
3346 }
3347 }
3348
3349 static void init_vmcs_shadow_fields(void)
3350 {
3351 int i, j;
3352
3353 /* No checks for read only fields yet */
3354
3355 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3356 switch (shadow_read_write_fields[i]) {
3357 case GUEST_BNDCFGS:
3358 if (!vmx_mpx_supported())
3359 continue;
3360 break;
3361 default:
3362 break;
3363 }
3364
3365 if (j < i)
3366 shadow_read_write_fields[j] =
3367 shadow_read_write_fields[i];
3368 j++;
3369 }
3370 max_shadow_read_write_fields = j;
3371
3372 /* shadowed fields guest access without vmexit */
3373 for (i = 0; i < max_shadow_read_write_fields; i++) {
3374 clear_bit(shadow_read_write_fields[i],
3375 vmx_vmwrite_bitmap);
3376 clear_bit(shadow_read_write_fields[i],
3377 vmx_vmread_bitmap);
3378 }
3379 for (i = 0; i < max_shadow_read_only_fields; i++)
3380 clear_bit(shadow_read_only_fields[i],
3381 vmx_vmread_bitmap);
3382 }
3383
3384 static __init int alloc_kvm_area(void)
3385 {
3386 int cpu;
3387
3388 for_each_possible_cpu(cpu) {
3389 struct vmcs *vmcs;
3390
3391 vmcs = alloc_vmcs_cpu(cpu);
3392 if (!vmcs) {
3393 free_kvm_area();
3394 return -ENOMEM;
3395 }
3396
3397 per_cpu(vmxarea, cpu) = vmcs;
3398 }
3399 return 0;
3400 }
3401
3402 static bool emulation_required(struct kvm_vcpu *vcpu)
3403 {
3404 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3405 }
3406
3407 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3408 struct kvm_segment *save)
3409 {
3410 if (!emulate_invalid_guest_state) {
3411 /*
3412 * CS and SS RPL should be equal during guest entry according
3413 * to VMX spec, but in reality it is not always so. Since vcpu
3414 * is in the middle of the transition from real mode to
3415 * protected mode it is safe to assume that RPL 0 is a good
3416 * default value.
3417 */
3418 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3419 save->selector &= ~SEGMENT_RPL_MASK;
3420 save->dpl = save->selector & SEGMENT_RPL_MASK;
3421 save->s = 1;
3422 }
3423 vmx_set_segment(vcpu, save, seg);
3424 }
3425
3426 static void enter_pmode(struct kvm_vcpu *vcpu)
3427 {
3428 unsigned long flags;
3429 struct vcpu_vmx *vmx = to_vmx(vcpu);
3430
3431 /*
3432 * Update real mode segment cache. It may be not up-to-date if sement
3433 * register was written while vcpu was in a guest mode.
3434 */
3435 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3436 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3437 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3438 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3439 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3440 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3441
3442 vmx->rmode.vm86_active = 0;
3443
3444 vmx_segment_cache_clear(vmx);
3445
3446 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3447
3448 flags = vmcs_readl(GUEST_RFLAGS);
3449 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3450 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3451 vmcs_writel(GUEST_RFLAGS, flags);
3452
3453 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3454 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3455
3456 update_exception_bitmap(vcpu);
3457
3458 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3459 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3460 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3461 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3462 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3463 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3464 }
3465
3466 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3467 {
3468 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3469 struct kvm_segment var = *save;
3470
3471 var.dpl = 0x3;
3472 if (seg == VCPU_SREG_CS)
3473 var.type = 0x3;
3474
3475 if (!emulate_invalid_guest_state) {
3476 var.selector = var.base >> 4;
3477 var.base = var.base & 0xffff0;
3478 var.limit = 0xffff;
3479 var.g = 0;
3480 var.db = 0;
3481 var.present = 1;
3482 var.s = 1;
3483 var.l = 0;
3484 var.unusable = 0;
3485 var.type = 0x3;
3486 var.avl = 0;
3487 if (save->base & 0xf)
3488 printk_once(KERN_WARNING "kvm: segment base is not "
3489 "paragraph aligned when entering "
3490 "protected mode (seg=%d)", seg);
3491 }
3492
3493 vmcs_write16(sf->selector, var.selector);
3494 vmcs_write32(sf->base, var.base);
3495 vmcs_write32(sf->limit, var.limit);
3496 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3497 }
3498
3499 static void enter_rmode(struct kvm_vcpu *vcpu)
3500 {
3501 unsigned long flags;
3502 struct vcpu_vmx *vmx = to_vmx(vcpu);
3503
3504 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3505 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3506 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3507 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3508 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3509 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3510 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3511
3512 vmx->rmode.vm86_active = 1;
3513
3514 /*
3515 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3516 * vcpu. Warn the user that an update is overdue.
3517 */
3518 if (!vcpu->kvm->arch.tss_addr)
3519 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3520 "called before entering vcpu\n");
3521
3522 vmx_segment_cache_clear(vmx);
3523
3524 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3525 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3526 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3527
3528 flags = vmcs_readl(GUEST_RFLAGS);
3529 vmx->rmode.save_rflags = flags;
3530
3531 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3532
3533 vmcs_writel(GUEST_RFLAGS, flags);
3534 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3535 update_exception_bitmap(vcpu);
3536
3537 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3538 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3539 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3540 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3541 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3542 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3543
3544 kvm_mmu_reset_context(vcpu);
3545 }
3546
3547 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3548 {
3549 struct vcpu_vmx *vmx = to_vmx(vcpu);
3550 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3551
3552 if (!msr)
3553 return;
3554
3555 /*
3556 * Force kernel_gs_base reloading before EFER changes, as control
3557 * of this msr depends on is_long_mode().
3558 */
3559 vmx_load_host_state(to_vmx(vcpu));
3560 vcpu->arch.efer = efer;
3561 if (efer & EFER_LMA) {
3562 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3563 msr->data = efer;
3564 } else {
3565 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3566
3567 msr->data = efer & ~EFER_LME;
3568 }
3569 setup_msrs(vmx);
3570 }
3571
3572 #ifdef CONFIG_X86_64
3573
3574 static void enter_lmode(struct kvm_vcpu *vcpu)
3575 {
3576 u32 guest_tr_ar;
3577
3578 vmx_segment_cache_clear(to_vmx(vcpu));
3579
3580 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3581 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3582 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3583 __func__);
3584 vmcs_write32(GUEST_TR_AR_BYTES,
3585 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3586 | VMX_AR_TYPE_BUSY_64_TSS);
3587 }
3588 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3589 }
3590
3591 static void exit_lmode(struct kvm_vcpu *vcpu)
3592 {
3593 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3594 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3595 }
3596
3597 #endif
3598
3599 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3600 {
3601 vpid_sync_context(vpid);
3602 if (enable_ept) {
3603 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3604 return;
3605 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3606 }
3607 }
3608
3609 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3610 {
3611 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3612 }
3613
3614 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3615 {
3616 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3617
3618 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3619 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3620 }
3621
3622 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3623 {
3624 if (enable_ept && is_paging(vcpu))
3625 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3626 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3627 }
3628
3629 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3630 {
3631 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3632
3633 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3634 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3635 }
3636
3637 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3638 {
3639 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3640
3641 if (!test_bit(VCPU_EXREG_PDPTR,
3642 (unsigned long *)&vcpu->arch.regs_dirty))
3643 return;
3644
3645 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3646 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3647 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3648 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3649 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3650 }
3651 }
3652
3653 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3654 {
3655 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3656
3657 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3658 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3659 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3660 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3661 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3662 }
3663
3664 __set_bit(VCPU_EXREG_PDPTR,
3665 (unsigned long *)&vcpu->arch.regs_avail);
3666 __set_bit(VCPU_EXREG_PDPTR,
3667 (unsigned long *)&vcpu->arch.regs_dirty);
3668 }
3669
3670 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3671
3672 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3673 unsigned long cr0,
3674 struct kvm_vcpu *vcpu)
3675 {
3676 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3677 vmx_decache_cr3(vcpu);
3678 if (!(cr0 & X86_CR0_PG)) {
3679 /* From paging/starting to nonpaging */
3680 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3681 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3682 (CPU_BASED_CR3_LOAD_EXITING |
3683 CPU_BASED_CR3_STORE_EXITING));
3684 vcpu->arch.cr0 = cr0;
3685 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3686 } else if (!is_paging(vcpu)) {
3687 /* From nonpaging to paging */
3688 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3689 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3690 ~(CPU_BASED_CR3_LOAD_EXITING |
3691 CPU_BASED_CR3_STORE_EXITING));
3692 vcpu->arch.cr0 = cr0;
3693 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3694 }
3695
3696 if (!(cr0 & X86_CR0_WP))
3697 *hw_cr0 &= ~X86_CR0_WP;
3698 }
3699
3700 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3701 {
3702 struct vcpu_vmx *vmx = to_vmx(vcpu);
3703 unsigned long hw_cr0;
3704
3705 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3706 if (enable_unrestricted_guest)
3707 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3708 else {
3709 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3710
3711 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3712 enter_pmode(vcpu);
3713
3714 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3715 enter_rmode(vcpu);
3716 }
3717
3718 #ifdef CONFIG_X86_64
3719 if (vcpu->arch.efer & EFER_LME) {
3720 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3721 enter_lmode(vcpu);
3722 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3723 exit_lmode(vcpu);
3724 }
3725 #endif
3726
3727 if (enable_ept)
3728 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3729
3730 if (!vcpu->fpu_active)
3731 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3732
3733 vmcs_writel(CR0_READ_SHADOW, cr0);
3734 vmcs_writel(GUEST_CR0, hw_cr0);
3735 vcpu->arch.cr0 = cr0;
3736
3737 /* depends on vcpu->arch.cr0 to be set to a new value */
3738 vmx->emulation_required = emulation_required(vcpu);
3739 }
3740
3741 static u64 construct_eptp(unsigned long root_hpa)
3742 {
3743 u64 eptp;
3744
3745 /* TODO write the value reading from MSR */
3746 eptp = VMX_EPT_DEFAULT_MT |
3747 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3748 if (enable_ept_ad_bits)
3749 eptp |= VMX_EPT_AD_ENABLE_BIT;
3750 eptp |= (root_hpa & PAGE_MASK);
3751
3752 return eptp;
3753 }
3754
3755 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3756 {
3757 unsigned long guest_cr3;
3758 u64 eptp;
3759
3760 guest_cr3 = cr3;
3761 if (enable_ept) {
3762 eptp = construct_eptp(cr3);
3763 vmcs_write64(EPT_POINTER, eptp);
3764 if (is_paging(vcpu) || is_guest_mode(vcpu))
3765 guest_cr3 = kvm_read_cr3(vcpu);
3766 else
3767 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3768 ept_load_pdptrs(vcpu);
3769 }
3770
3771 vmx_flush_tlb(vcpu);
3772 vmcs_writel(GUEST_CR3, guest_cr3);
3773 }
3774
3775 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3776 {
3777 /*
3778 * Pass through host's Machine Check Enable value to hw_cr4, which
3779 * is in force while we are in guest mode. Do not let guests control
3780 * this bit, even if host CR4.MCE == 0.
3781 */
3782 unsigned long hw_cr4 =
3783 (cr4_read_shadow() & X86_CR4_MCE) |
3784 (cr4 & ~X86_CR4_MCE) |
3785 (to_vmx(vcpu)->rmode.vm86_active ?
3786 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3787
3788 if (cr4 & X86_CR4_VMXE) {
3789 /*
3790 * To use VMXON (and later other VMX instructions), a guest
3791 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3792 * So basically the check on whether to allow nested VMX
3793 * is here.
3794 */
3795 if (!nested_vmx_allowed(vcpu))
3796 return 1;
3797 }
3798 if (to_vmx(vcpu)->nested.vmxon &&
3799 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3800 return 1;
3801
3802 vcpu->arch.cr4 = cr4;
3803 if (enable_ept) {
3804 if (!is_paging(vcpu)) {
3805 hw_cr4 &= ~X86_CR4_PAE;
3806 hw_cr4 |= X86_CR4_PSE;
3807 } else if (!(cr4 & X86_CR4_PAE)) {
3808 hw_cr4 &= ~X86_CR4_PAE;
3809 }
3810 }
3811
3812 if (!enable_unrestricted_guest && !is_paging(vcpu))
3813 /*
3814 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3815 * hardware. However KVM always uses paging mode without
3816 * unrestricted guest.
3817 * To emulate this behavior, SMEP/SMAP needs to be manually
3818 * disabled when guest switches to non-paging mode.
3819 */
3820 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3821
3822 vmcs_writel(CR4_READ_SHADOW, cr4);
3823 vmcs_writel(GUEST_CR4, hw_cr4);
3824 return 0;
3825 }
3826
3827 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3828 struct kvm_segment *var, int seg)
3829 {
3830 struct vcpu_vmx *vmx = to_vmx(vcpu);
3831 u32 ar;
3832
3833 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3834 *var = vmx->rmode.segs[seg];
3835 if (seg == VCPU_SREG_TR
3836 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3837 return;
3838 var->base = vmx_read_guest_seg_base(vmx, seg);
3839 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3840 return;
3841 }
3842 var->base = vmx_read_guest_seg_base(vmx, seg);
3843 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3844 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3845 ar = vmx_read_guest_seg_ar(vmx, seg);
3846 var->unusable = (ar >> 16) & 1;
3847 var->type = ar & 15;
3848 var->s = (ar >> 4) & 1;
3849 var->dpl = (ar >> 5) & 3;
3850 /*
3851 * Some userspaces do not preserve unusable property. Since usable
3852 * segment has to be present according to VMX spec we can use present
3853 * property to amend userspace bug by making unusable segment always
3854 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3855 * segment as unusable.
3856 */
3857 var->present = !var->unusable;
3858 var->avl = (ar >> 12) & 1;
3859 var->l = (ar >> 13) & 1;
3860 var->db = (ar >> 14) & 1;
3861 var->g = (ar >> 15) & 1;
3862 }
3863
3864 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3865 {
3866 struct kvm_segment s;
3867
3868 if (to_vmx(vcpu)->rmode.vm86_active) {
3869 vmx_get_segment(vcpu, &s, seg);
3870 return s.base;
3871 }
3872 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3873 }
3874
3875 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3876 {
3877 struct vcpu_vmx *vmx = to_vmx(vcpu);
3878
3879 if (unlikely(vmx->rmode.vm86_active))
3880 return 0;
3881 else {
3882 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3883 return VMX_AR_DPL(ar);
3884 }
3885 }
3886
3887 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3888 {
3889 u32 ar;
3890
3891 if (var->unusable || !var->present)
3892 ar = 1 << 16;
3893 else {
3894 ar = var->type & 15;
3895 ar |= (var->s & 1) << 4;
3896 ar |= (var->dpl & 3) << 5;
3897 ar |= (var->present & 1) << 7;
3898 ar |= (var->avl & 1) << 12;
3899 ar |= (var->l & 1) << 13;
3900 ar |= (var->db & 1) << 14;
3901 ar |= (var->g & 1) << 15;
3902 }
3903
3904 return ar;
3905 }
3906
3907 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3908 struct kvm_segment *var, int seg)
3909 {
3910 struct vcpu_vmx *vmx = to_vmx(vcpu);
3911 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3912
3913 vmx_segment_cache_clear(vmx);
3914
3915 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3916 vmx->rmode.segs[seg] = *var;
3917 if (seg == VCPU_SREG_TR)
3918 vmcs_write16(sf->selector, var->selector);
3919 else if (var->s)
3920 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3921 goto out;
3922 }
3923
3924 vmcs_writel(sf->base, var->base);
3925 vmcs_write32(sf->limit, var->limit);
3926 vmcs_write16(sf->selector, var->selector);
3927
3928 /*
3929 * Fix the "Accessed" bit in AR field of segment registers for older
3930 * qemu binaries.
3931 * IA32 arch specifies that at the time of processor reset the
3932 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3933 * is setting it to 0 in the userland code. This causes invalid guest
3934 * state vmexit when "unrestricted guest" mode is turned on.
3935 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3936 * tree. Newer qemu binaries with that qemu fix would not need this
3937 * kvm hack.
3938 */
3939 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3940 var->type |= 0x1; /* Accessed */
3941
3942 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3943
3944 out:
3945 vmx->emulation_required = emulation_required(vcpu);
3946 }
3947
3948 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3949 {
3950 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3951
3952 *db = (ar >> 14) & 1;
3953 *l = (ar >> 13) & 1;
3954 }
3955
3956 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3957 {
3958 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3959 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3960 }
3961
3962 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3963 {
3964 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3965 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3966 }
3967
3968 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3969 {
3970 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3971 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3972 }
3973
3974 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3975 {
3976 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3977 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3978 }
3979
3980 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3981 {
3982 struct kvm_segment var;
3983 u32 ar;
3984
3985 vmx_get_segment(vcpu, &var, seg);
3986 var.dpl = 0x3;
3987 if (seg == VCPU_SREG_CS)
3988 var.type = 0x3;
3989 ar = vmx_segment_access_rights(&var);
3990
3991 if (var.base != (var.selector << 4))
3992 return false;
3993 if (var.limit != 0xffff)
3994 return false;
3995 if (ar != 0xf3)
3996 return false;
3997
3998 return true;
3999 }
4000
4001 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4002 {
4003 struct kvm_segment cs;
4004 unsigned int cs_rpl;
4005
4006 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4007 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4008
4009 if (cs.unusable)
4010 return false;
4011 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4012 return false;
4013 if (!cs.s)
4014 return false;
4015 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4016 if (cs.dpl > cs_rpl)
4017 return false;
4018 } else {
4019 if (cs.dpl != cs_rpl)
4020 return false;
4021 }
4022 if (!cs.present)
4023 return false;
4024
4025 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4026 return true;
4027 }
4028
4029 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4030 {
4031 struct kvm_segment ss;
4032 unsigned int ss_rpl;
4033
4034 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4035 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4036
4037 if (ss.unusable)
4038 return true;
4039 if (ss.type != 3 && ss.type != 7)
4040 return false;
4041 if (!ss.s)
4042 return false;
4043 if (ss.dpl != ss_rpl) /* DPL != RPL */
4044 return false;
4045 if (!ss.present)
4046 return false;
4047
4048 return true;
4049 }
4050
4051 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4052 {
4053 struct kvm_segment var;
4054 unsigned int rpl;
4055
4056 vmx_get_segment(vcpu, &var, seg);
4057 rpl = var.selector & SEGMENT_RPL_MASK;
4058
4059 if (var.unusable)
4060 return true;
4061 if (!var.s)
4062 return false;
4063 if (!var.present)
4064 return false;
4065 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4066 if (var.dpl < rpl) /* DPL < RPL */
4067 return false;
4068 }
4069
4070 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4071 * rights flags
4072 */
4073 return true;
4074 }
4075
4076 static bool tr_valid(struct kvm_vcpu *vcpu)
4077 {
4078 struct kvm_segment tr;
4079
4080 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4081
4082 if (tr.unusable)
4083 return false;
4084 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4085 return false;
4086 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4087 return false;
4088 if (!tr.present)
4089 return false;
4090
4091 return true;
4092 }
4093
4094 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4095 {
4096 struct kvm_segment ldtr;
4097
4098 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4099
4100 if (ldtr.unusable)
4101 return true;
4102 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4103 return false;
4104 if (ldtr.type != 2)
4105 return false;
4106 if (!ldtr.present)
4107 return false;
4108
4109 return true;
4110 }
4111
4112 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4113 {
4114 struct kvm_segment cs, ss;
4115
4116 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4117 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4118
4119 return ((cs.selector & SEGMENT_RPL_MASK) ==
4120 (ss.selector & SEGMENT_RPL_MASK));
4121 }
4122
4123 /*
4124 * Check if guest state is valid. Returns true if valid, false if
4125 * not.
4126 * We assume that registers are always usable
4127 */
4128 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4129 {
4130 if (enable_unrestricted_guest)
4131 return true;
4132
4133 /* real mode guest state checks */
4134 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4135 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4136 return false;
4137 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4138 return false;
4139 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4140 return false;
4141 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4142 return false;
4143 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4144 return false;
4145 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4146 return false;
4147 } else {
4148 /* protected mode guest state checks */
4149 if (!cs_ss_rpl_check(vcpu))
4150 return false;
4151 if (!code_segment_valid(vcpu))
4152 return false;
4153 if (!stack_segment_valid(vcpu))
4154 return false;
4155 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4156 return false;
4157 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4158 return false;
4159 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4160 return false;
4161 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4162 return false;
4163 if (!tr_valid(vcpu))
4164 return false;
4165 if (!ldtr_valid(vcpu))
4166 return false;
4167 }
4168 /* TODO:
4169 * - Add checks on RIP
4170 * - Add checks on RFLAGS
4171 */
4172
4173 return true;
4174 }
4175
4176 static int init_rmode_tss(struct kvm *kvm)
4177 {
4178 gfn_t fn;
4179 u16 data = 0;
4180 int idx, r;
4181
4182 idx = srcu_read_lock(&kvm->srcu);
4183 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4184 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4185 if (r < 0)
4186 goto out;
4187 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4188 r = kvm_write_guest_page(kvm, fn++, &data,
4189 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4190 if (r < 0)
4191 goto out;
4192 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4193 if (r < 0)
4194 goto out;
4195 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4196 if (r < 0)
4197 goto out;
4198 data = ~0;
4199 r = kvm_write_guest_page(kvm, fn, &data,
4200 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4201 sizeof(u8));
4202 out:
4203 srcu_read_unlock(&kvm->srcu, idx);
4204 return r;
4205 }
4206
4207 static int init_rmode_identity_map(struct kvm *kvm)
4208 {
4209 int i, idx, r = 0;
4210 pfn_t identity_map_pfn;
4211 u32 tmp;
4212
4213 if (!enable_ept)
4214 return 0;
4215
4216 /* Protect kvm->arch.ept_identity_pagetable_done. */
4217 mutex_lock(&kvm->slots_lock);
4218
4219 if (likely(kvm->arch.ept_identity_pagetable_done))
4220 goto out2;
4221
4222 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4223
4224 r = alloc_identity_pagetable(kvm);
4225 if (r < 0)
4226 goto out2;
4227
4228 idx = srcu_read_lock(&kvm->srcu);
4229 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4230 if (r < 0)
4231 goto out;
4232 /* Set up identity-mapping pagetable for EPT in real mode */
4233 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4234 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4235 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4236 r = kvm_write_guest_page(kvm, identity_map_pfn,
4237 &tmp, i * sizeof(tmp), sizeof(tmp));
4238 if (r < 0)
4239 goto out;
4240 }
4241 kvm->arch.ept_identity_pagetable_done = true;
4242
4243 out:
4244 srcu_read_unlock(&kvm->srcu, idx);
4245
4246 out2:
4247 mutex_unlock(&kvm->slots_lock);
4248 return r;
4249 }
4250
4251 static void seg_setup(int seg)
4252 {
4253 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4254 unsigned int ar;
4255
4256 vmcs_write16(sf->selector, 0);
4257 vmcs_writel(sf->base, 0);
4258 vmcs_write32(sf->limit, 0xffff);
4259 ar = 0x93;
4260 if (seg == VCPU_SREG_CS)
4261 ar |= 0x08; /* code segment */
4262
4263 vmcs_write32(sf->ar_bytes, ar);
4264 }
4265
4266 static int alloc_apic_access_page(struct kvm *kvm)
4267 {
4268 struct page *page;
4269 int r = 0;
4270
4271 mutex_lock(&kvm->slots_lock);
4272 if (kvm->arch.apic_access_page_done)
4273 goto out;
4274 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4275 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4276 if (r)
4277 goto out;
4278
4279 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4280 if (is_error_page(page)) {
4281 r = -EFAULT;
4282 goto out;
4283 }
4284
4285 /*
4286 * Do not pin the page in memory, so that memory hot-unplug
4287 * is able to migrate it.
4288 */
4289 put_page(page);
4290 kvm->arch.apic_access_page_done = true;
4291 out:
4292 mutex_unlock(&kvm->slots_lock);
4293 return r;
4294 }
4295
4296 static int alloc_identity_pagetable(struct kvm *kvm)
4297 {
4298 /* Called with kvm->slots_lock held. */
4299
4300 int r = 0;
4301
4302 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4303
4304 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4305 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4306
4307 return r;
4308 }
4309
4310 static int allocate_vpid(void)
4311 {
4312 int vpid;
4313
4314 if (!enable_vpid)
4315 return 0;
4316 spin_lock(&vmx_vpid_lock);
4317 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4318 if (vpid < VMX_NR_VPIDS)
4319 __set_bit(vpid, vmx_vpid_bitmap);
4320 else
4321 vpid = 0;
4322 spin_unlock(&vmx_vpid_lock);
4323 return vpid;
4324 }
4325
4326 static void free_vpid(int vpid)
4327 {
4328 if (!enable_vpid || vpid == 0)
4329 return;
4330 spin_lock(&vmx_vpid_lock);
4331 __clear_bit(vpid, vmx_vpid_bitmap);
4332 spin_unlock(&vmx_vpid_lock);
4333 }
4334
4335 #define MSR_TYPE_R 1
4336 #define MSR_TYPE_W 2
4337 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4338 u32 msr, int type)
4339 {
4340 int f = sizeof(unsigned long);
4341
4342 if (!cpu_has_vmx_msr_bitmap())
4343 return;
4344
4345 /*
4346 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4347 * have the write-low and read-high bitmap offsets the wrong way round.
4348 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4349 */
4350 if (msr <= 0x1fff) {
4351 if (type & MSR_TYPE_R)
4352 /* read-low */
4353 __clear_bit(msr, msr_bitmap + 0x000 / f);
4354
4355 if (type & MSR_TYPE_W)
4356 /* write-low */
4357 __clear_bit(msr, msr_bitmap + 0x800 / f);
4358
4359 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4360 msr &= 0x1fff;
4361 if (type & MSR_TYPE_R)
4362 /* read-high */
4363 __clear_bit(msr, msr_bitmap + 0x400 / f);
4364
4365 if (type & MSR_TYPE_W)
4366 /* write-high */
4367 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4368
4369 }
4370 }
4371
4372 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4373 u32 msr, int type)
4374 {
4375 int f = sizeof(unsigned long);
4376
4377 if (!cpu_has_vmx_msr_bitmap())
4378 return;
4379
4380 /*
4381 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4382 * have the write-low and read-high bitmap offsets the wrong way round.
4383 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4384 */
4385 if (msr <= 0x1fff) {
4386 if (type & MSR_TYPE_R)
4387 /* read-low */
4388 __set_bit(msr, msr_bitmap + 0x000 / f);
4389
4390 if (type & MSR_TYPE_W)
4391 /* write-low */
4392 __set_bit(msr, msr_bitmap + 0x800 / f);
4393
4394 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4395 msr &= 0x1fff;
4396 if (type & MSR_TYPE_R)
4397 /* read-high */
4398 __set_bit(msr, msr_bitmap + 0x400 / f);
4399
4400 if (type & MSR_TYPE_W)
4401 /* write-high */
4402 __set_bit(msr, msr_bitmap + 0xc00 / f);
4403
4404 }
4405 }
4406
4407 /*
4408 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4409 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4410 */
4411 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4412 unsigned long *msr_bitmap_nested,
4413 u32 msr, int type)
4414 {
4415 int f = sizeof(unsigned long);
4416
4417 if (!cpu_has_vmx_msr_bitmap()) {
4418 WARN_ON(1);
4419 return;
4420 }
4421
4422 /*
4423 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4424 * have the write-low and read-high bitmap offsets the wrong way round.
4425 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4426 */
4427 if (msr <= 0x1fff) {
4428 if (type & MSR_TYPE_R &&
4429 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4430 /* read-low */
4431 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4432
4433 if (type & MSR_TYPE_W &&
4434 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4435 /* write-low */
4436 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4437
4438 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4439 msr &= 0x1fff;
4440 if (type & MSR_TYPE_R &&
4441 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4442 /* read-high */
4443 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4444
4445 if (type & MSR_TYPE_W &&
4446 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4447 /* write-high */
4448 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4449
4450 }
4451 }
4452
4453 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4454 {
4455 if (!longmode_only)
4456 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4457 msr, MSR_TYPE_R | MSR_TYPE_W);
4458 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4459 msr, MSR_TYPE_R | MSR_TYPE_W);
4460 }
4461
4462 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4463 {
4464 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4465 msr, MSR_TYPE_R);
4466 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4467 msr, MSR_TYPE_R);
4468 }
4469
4470 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4471 {
4472 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4473 msr, MSR_TYPE_R);
4474 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4475 msr, MSR_TYPE_R);
4476 }
4477
4478 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4479 {
4480 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4481 msr, MSR_TYPE_W);
4482 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4483 msr, MSR_TYPE_W);
4484 }
4485
4486 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4487 {
4488 return enable_apicv && lapic_in_kernel(vcpu);
4489 }
4490
4491 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4492 {
4493 struct vcpu_vmx *vmx = to_vmx(vcpu);
4494 int max_irr;
4495 void *vapic_page;
4496 u16 status;
4497
4498 if (vmx->nested.pi_desc &&
4499 vmx->nested.pi_pending) {
4500 vmx->nested.pi_pending = false;
4501 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4502 return 0;
4503
4504 max_irr = find_last_bit(
4505 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4506
4507 if (max_irr == 256)
4508 return 0;
4509
4510 vapic_page = kmap(vmx->nested.virtual_apic_page);
4511 if (!vapic_page) {
4512 WARN_ON(1);
4513 return -ENOMEM;
4514 }
4515 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4516 kunmap(vmx->nested.virtual_apic_page);
4517
4518 status = vmcs_read16(GUEST_INTR_STATUS);
4519 if ((u8)max_irr > ((u8)status & 0xff)) {
4520 status &= ~0xff;
4521 status |= (u8)max_irr;
4522 vmcs_write16(GUEST_INTR_STATUS, status);
4523 }
4524 }
4525 return 0;
4526 }
4527
4528 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4529 {
4530 #ifdef CONFIG_SMP
4531 if (vcpu->mode == IN_GUEST_MODE) {
4532 struct vcpu_vmx *vmx = to_vmx(vcpu);
4533
4534 /*
4535 * Currently, we don't support urgent interrupt,
4536 * all interrupts are recognized as non-urgent
4537 * interrupt, so we cannot post interrupts when
4538 * 'SN' is set.
4539 *
4540 * If the vcpu is in guest mode, it means it is
4541 * running instead of being scheduled out and
4542 * waiting in the run queue, and that's the only
4543 * case when 'SN' is set currently, warning if
4544 * 'SN' is set.
4545 */
4546 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4547
4548 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4549 POSTED_INTR_VECTOR);
4550 return true;
4551 }
4552 #endif
4553 return false;
4554 }
4555
4556 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4557 int vector)
4558 {
4559 struct vcpu_vmx *vmx = to_vmx(vcpu);
4560
4561 if (is_guest_mode(vcpu) &&
4562 vector == vmx->nested.posted_intr_nv) {
4563 /* the PIR and ON have been set by L1. */
4564 kvm_vcpu_trigger_posted_interrupt(vcpu);
4565 /*
4566 * If a posted intr is not recognized by hardware,
4567 * we will accomplish it in the next vmentry.
4568 */
4569 vmx->nested.pi_pending = true;
4570 kvm_make_request(KVM_REQ_EVENT, vcpu);
4571 return 0;
4572 }
4573 return -1;
4574 }
4575 /*
4576 * Send interrupt to vcpu via posted interrupt way.
4577 * 1. If target vcpu is running(non-root mode), send posted interrupt
4578 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4579 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4580 * interrupt from PIR in next vmentry.
4581 */
4582 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4583 {
4584 struct vcpu_vmx *vmx = to_vmx(vcpu);
4585 int r;
4586
4587 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4588 if (!r)
4589 return;
4590
4591 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4592 return;
4593
4594 r = pi_test_and_set_on(&vmx->pi_desc);
4595 kvm_make_request(KVM_REQ_EVENT, vcpu);
4596 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4597 kvm_vcpu_kick(vcpu);
4598 }
4599
4600 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4601 {
4602 struct vcpu_vmx *vmx = to_vmx(vcpu);
4603
4604 if (!pi_test_and_clear_on(&vmx->pi_desc))
4605 return;
4606
4607 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4608 }
4609
4610 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4611 {
4612 return;
4613 }
4614
4615 /*
4616 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4617 * will not change in the lifetime of the guest.
4618 * Note that host-state that does change is set elsewhere. E.g., host-state
4619 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4620 */
4621 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4622 {
4623 u32 low32, high32;
4624 unsigned long tmpl;
4625 struct desc_ptr dt;
4626 unsigned long cr4;
4627
4628 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4629 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4630
4631 /* Save the most likely value for this task's CR4 in the VMCS. */
4632 cr4 = cr4_read_shadow();
4633 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4634 vmx->host_state.vmcs_host_cr4 = cr4;
4635
4636 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4637 #ifdef CONFIG_X86_64
4638 /*
4639 * Load null selectors, so we can avoid reloading them in
4640 * __vmx_load_host_state(), in case userspace uses the null selectors
4641 * too (the expected case).
4642 */
4643 vmcs_write16(HOST_DS_SELECTOR, 0);
4644 vmcs_write16(HOST_ES_SELECTOR, 0);
4645 #else
4646 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4647 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4648 #endif
4649 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4650 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4651
4652 native_store_idt(&dt);
4653 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4654 vmx->host_idt_base = dt.address;
4655
4656 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4657
4658 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4659 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4660 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4661 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4662
4663 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4664 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4665 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4666 }
4667 }
4668
4669 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4670 {
4671 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4672 if (enable_ept)
4673 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4674 if (is_guest_mode(&vmx->vcpu))
4675 vmx->vcpu.arch.cr4_guest_owned_bits &=
4676 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4677 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4678 }
4679
4680 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4681 {
4682 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4683
4684 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4685 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4686 return pin_based_exec_ctrl;
4687 }
4688
4689 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4690 {
4691 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4692
4693 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4694 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4695
4696 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4697 exec_control &= ~CPU_BASED_TPR_SHADOW;
4698 #ifdef CONFIG_X86_64
4699 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4700 CPU_BASED_CR8_LOAD_EXITING;
4701 #endif
4702 }
4703 if (!enable_ept)
4704 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4705 CPU_BASED_CR3_LOAD_EXITING |
4706 CPU_BASED_INVLPG_EXITING;
4707 return exec_control;
4708 }
4709
4710 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4711 {
4712 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4713 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4714 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4715 if (vmx->vpid == 0)
4716 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4717 if (!enable_ept) {
4718 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4719 enable_unrestricted_guest = 0;
4720 /* Enable INVPCID for non-ept guests may cause performance regression. */
4721 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4722 }
4723 if (!enable_unrestricted_guest)
4724 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4725 if (!ple_gap)
4726 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4727 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4728 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4729 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4730 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4731 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4732 (handle_vmptrld).
4733 We can NOT enable shadow_vmcs here because we don't have yet
4734 a current VMCS12
4735 */
4736 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4737
4738 if (!enable_pml)
4739 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4740
4741 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4742 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4743
4744 return exec_control;
4745 }
4746
4747 static void ept_set_mmio_spte_mask(void)
4748 {
4749 /*
4750 * EPT Misconfigurations can be generated if the value of bits 2:0
4751 * of an EPT paging-structure entry is 110b (write/execute).
4752 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4753 * spte.
4754 */
4755 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4756 }
4757
4758 #define VMX_XSS_EXIT_BITMAP 0
4759 /*
4760 * Sets up the vmcs for emulated real mode.
4761 */
4762 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4763 {
4764 #ifdef CONFIG_X86_64
4765 unsigned long a;
4766 #endif
4767 int i;
4768
4769 /* I/O */
4770 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4771 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4772
4773 if (enable_shadow_vmcs) {
4774 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4775 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4776 }
4777 if (cpu_has_vmx_msr_bitmap())
4778 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4779
4780 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4781
4782 /* Control */
4783 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4784
4785 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4786
4787 if (cpu_has_secondary_exec_ctrls())
4788 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4789 vmx_secondary_exec_control(vmx));
4790
4791 if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
4792 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4793 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4794 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4795 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4796
4797 vmcs_write16(GUEST_INTR_STATUS, 0);
4798
4799 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4800 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4801 }
4802
4803 if (ple_gap) {
4804 vmcs_write32(PLE_GAP, ple_gap);
4805 vmx->ple_window = ple_window;
4806 vmx->ple_window_dirty = true;
4807 }
4808
4809 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4810 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4811 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4812
4813 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4814 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4815 vmx_set_constant_host_state(vmx);
4816 #ifdef CONFIG_X86_64
4817 rdmsrl(MSR_FS_BASE, a);
4818 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4819 rdmsrl(MSR_GS_BASE, a);
4820 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4821 #else
4822 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4823 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4824 #endif
4825
4826 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4827 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4828 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4829 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4830 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4831
4832 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4833 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4834
4835 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4836 u32 index = vmx_msr_index[i];
4837 u32 data_low, data_high;
4838 int j = vmx->nmsrs;
4839
4840 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4841 continue;
4842 if (wrmsr_safe(index, data_low, data_high) < 0)
4843 continue;
4844 vmx->guest_msrs[j].index = i;
4845 vmx->guest_msrs[j].data = 0;
4846 vmx->guest_msrs[j].mask = -1ull;
4847 ++vmx->nmsrs;
4848 }
4849
4850
4851 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4852
4853 /* 22.2.1, 20.8.1 */
4854 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4855
4856 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4857 set_cr4_guest_host_mask(vmx);
4858
4859 if (vmx_xsaves_supported())
4860 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4861
4862 return 0;
4863 }
4864
4865 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4866 {
4867 struct vcpu_vmx *vmx = to_vmx(vcpu);
4868 struct msr_data apic_base_msr;
4869 u64 cr0;
4870
4871 vmx->rmode.vm86_active = 0;
4872
4873 vmx->soft_vnmi_blocked = 0;
4874
4875 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4876 kvm_set_cr8(vcpu, 0);
4877
4878 if (!init_event) {
4879 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4880 MSR_IA32_APICBASE_ENABLE;
4881 if (kvm_vcpu_is_reset_bsp(vcpu))
4882 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4883 apic_base_msr.host_initiated = true;
4884 kvm_set_apic_base(vcpu, &apic_base_msr);
4885 }
4886
4887 vmx_segment_cache_clear(vmx);
4888
4889 seg_setup(VCPU_SREG_CS);
4890 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4891 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4892
4893 seg_setup(VCPU_SREG_DS);
4894 seg_setup(VCPU_SREG_ES);
4895 seg_setup(VCPU_SREG_FS);
4896 seg_setup(VCPU_SREG_GS);
4897 seg_setup(VCPU_SREG_SS);
4898
4899 vmcs_write16(GUEST_TR_SELECTOR, 0);
4900 vmcs_writel(GUEST_TR_BASE, 0);
4901 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4902 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4903
4904 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4905 vmcs_writel(GUEST_LDTR_BASE, 0);
4906 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4907 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4908
4909 if (!init_event) {
4910 vmcs_write32(GUEST_SYSENTER_CS, 0);
4911 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4912 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4913 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4914 }
4915
4916 vmcs_writel(GUEST_RFLAGS, 0x02);
4917 kvm_rip_write(vcpu, 0xfff0);
4918
4919 vmcs_writel(GUEST_GDTR_BASE, 0);
4920 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4921
4922 vmcs_writel(GUEST_IDTR_BASE, 0);
4923 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4924
4925 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4926 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4927 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4928
4929 setup_msrs(vmx);
4930
4931 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4932
4933 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4934 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4935 if (cpu_need_tpr_shadow(vcpu))
4936 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4937 __pa(vcpu->arch.apic->regs));
4938 vmcs_write32(TPR_THRESHOLD, 0);
4939 }
4940
4941 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4942
4943 if (vmx_cpu_uses_apicv(vcpu))
4944 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4945
4946 if (vmx->vpid != 0)
4947 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4948
4949 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4950 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4951 vmx->vcpu.arch.cr0 = cr0;
4952 vmx_set_cr4(vcpu, 0);
4953 vmx_set_efer(vcpu, 0);
4954 vmx_fpu_activate(vcpu);
4955 update_exception_bitmap(vcpu);
4956
4957 vpid_sync_context(vmx->vpid);
4958 }
4959
4960 /*
4961 * In nested virtualization, check if L1 asked to exit on external interrupts.
4962 * For most existing hypervisors, this will always return true.
4963 */
4964 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4965 {
4966 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4967 PIN_BASED_EXT_INTR_MASK;
4968 }
4969
4970 /*
4971 * In nested virtualization, check if L1 has set
4972 * VM_EXIT_ACK_INTR_ON_EXIT
4973 */
4974 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4975 {
4976 return get_vmcs12(vcpu)->vm_exit_controls &
4977 VM_EXIT_ACK_INTR_ON_EXIT;
4978 }
4979
4980 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4981 {
4982 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4983 PIN_BASED_NMI_EXITING;
4984 }
4985
4986 static void enable_irq_window(struct kvm_vcpu *vcpu)
4987 {
4988 u32 cpu_based_vm_exec_control;
4989
4990 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4991 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4992 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4993 }
4994
4995 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4996 {
4997 u32 cpu_based_vm_exec_control;
4998
4999 if (!cpu_has_virtual_nmis() ||
5000 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5001 enable_irq_window(vcpu);
5002 return;
5003 }
5004
5005 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5006 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5007 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5008 }
5009
5010 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5011 {
5012 struct vcpu_vmx *vmx = to_vmx(vcpu);
5013 uint32_t intr;
5014 int irq = vcpu->arch.interrupt.nr;
5015
5016 trace_kvm_inj_virq(irq);
5017
5018 ++vcpu->stat.irq_injections;
5019 if (vmx->rmode.vm86_active) {
5020 int inc_eip = 0;
5021 if (vcpu->arch.interrupt.soft)
5022 inc_eip = vcpu->arch.event_exit_inst_len;
5023 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5024 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5025 return;
5026 }
5027 intr = irq | INTR_INFO_VALID_MASK;
5028 if (vcpu->arch.interrupt.soft) {
5029 intr |= INTR_TYPE_SOFT_INTR;
5030 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5031 vmx->vcpu.arch.event_exit_inst_len);
5032 } else
5033 intr |= INTR_TYPE_EXT_INTR;
5034 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5035 }
5036
5037 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5038 {
5039 struct vcpu_vmx *vmx = to_vmx(vcpu);
5040
5041 if (is_guest_mode(vcpu))
5042 return;
5043
5044 if (!cpu_has_virtual_nmis()) {
5045 /*
5046 * Tracking the NMI-blocked state in software is built upon
5047 * finding the next open IRQ window. This, in turn, depends on
5048 * well-behaving guests: They have to keep IRQs disabled at
5049 * least as long as the NMI handler runs. Otherwise we may
5050 * cause NMI nesting, maybe breaking the guest. But as this is
5051 * highly unlikely, we can live with the residual risk.
5052 */
5053 vmx->soft_vnmi_blocked = 1;
5054 vmx->vnmi_blocked_time = 0;
5055 }
5056
5057 ++vcpu->stat.nmi_injections;
5058 vmx->nmi_known_unmasked = false;
5059 if (vmx->rmode.vm86_active) {
5060 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5061 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5062 return;
5063 }
5064 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5065 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5066 }
5067
5068 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5069 {
5070 if (!cpu_has_virtual_nmis())
5071 return to_vmx(vcpu)->soft_vnmi_blocked;
5072 if (to_vmx(vcpu)->nmi_known_unmasked)
5073 return false;
5074 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5075 }
5076
5077 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5078 {
5079 struct vcpu_vmx *vmx = to_vmx(vcpu);
5080
5081 if (!cpu_has_virtual_nmis()) {
5082 if (vmx->soft_vnmi_blocked != masked) {
5083 vmx->soft_vnmi_blocked = masked;
5084 vmx->vnmi_blocked_time = 0;
5085 }
5086 } else {
5087 vmx->nmi_known_unmasked = !masked;
5088 if (masked)
5089 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5090 GUEST_INTR_STATE_NMI);
5091 else
5092 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5093 GUEST_INTR_STATE_NMI);
5094 }
5095 }
5096
5097 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5098 {
5099 if (to_vmx(vcpu)->nested.nested_run_pending)
5100 return 0;
5101
5102 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5103 return 0;
5104
5105 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5106 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5107 | GUEST_INTR_STATE_NMI));
5108 }
5109
5110 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5111 {
5112 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5113 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5114 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5115 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5116 }
5117
5118 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5119 {
5120 int ret;
5121
5122 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5123 PAGE_SIZE * 3);
5124 if (ret)
5125 return ret;
5126 kvm->arch.tss_addr = addr;
5127 return init_rmode_tss(kvm);
5128 }
5129
5130 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5131 {
5132 switch (vec) {
5133 case BP_VECTOR:
5134 /*
5135 * Update instruction length as we may reinject the exception
5136 * from user space while in guest debugging mode.
5137 */
5138 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5139 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5140 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5141 return false;
5142 /* fall through */
5143 case DB_VECTOR:
5144 if (vcpu->guest_debug &
5145 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5146 return false;
5147 /* fall through */
5148 case DE_VECTOR:
5149 case OF_VECTOR:
5150 case BR_VECTOR:
5151 case UD_VECTOR:
5152 case DF_VECTOR:
5153 case SS_VECTOR:
5154 case GP_VECTOR:
5155 case MF_VECTOR:
5156 return true;
5157 break;
5158 }
5159 return false;
5160 }
5161
5162 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5163 int vec, u32 err_code)
5164 {
5165 /*
5166 * Instruction with address size override prefix opcode 0x67
5167 * Cause the #SS fault with 0 error code in VM86 mode.
5168 */
5169 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5170 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5171 if (vcpu->arch.halt_request) {
5172 vcpu->arch.halt_request = 0;
5173 return kvm_vcpu_halt(vcpu);
5174 }
5175 return 1;
5176 }
5177 return 0;
5178 }
5179
5180 /*
5181 * Forward all other exceptions that are valid in real mode.
5182 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5183 * the required debugging infrastructure rework.
5184 */
5185 kvm_queue_exception(vcpu, vec);
5186 return 1;
5187 }
5188
5189 /*
5190 * Trigger machine check on the host. We assume all the MSRs are already set up
5191 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5192 * We pass a fake environment to the machine check handler because we want
5193 * the guest to be always treated like user space, no matter what context
5194 * it used internally.
5195 */
5196 static void kvm_machine_check(void)
5197 {
5198 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5199 struct pt_regs regs = {
5200 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5201 .flags = X86_EFLAGS_IF,
5202 };
5203
5204 do_machine_check(&regs, 0);
5205 #endif
5206 }
5207
5208 static int handle_machine_check(struct kvm_vcpu *vcpu)
5209 {
5210 /* already handled by vcpu_run */
5211 return 1;
5212 }
5213
5214 static int handle_exception(struct kvm_vcpu *vcpu)
5215 {
5216 struct vcpu_vmx *vmx = to_vmx(vcpu);
5217 struct kvm_run *kvm_run = vcpu->run;
5218 u32 intr_info, ex_no, error_code;
5219 unsigned long cr2, rip, dr6;
5220 u32 vect_info;
5221 enum emulation_result er;
5222
5223 vect_info = vmx->idt_vectoring_info;
5224 intr_info = vmx->exit_intr_info;
5225
5226 if (is_machine_check(intr_info))
5227 return handle_machine_check(vcpu);
5228
5229 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5230 return 1; /* already handled by vmx_vcpu_run() */
5231
5232 if (is_no_device(intr_info)) {
5233 vmx_fpu_activate(vcpu);
5234 return 1;
5235 }
5236
5237 if (is_invalid_opcode(intr_info)) {
5238 if (is_guest_mode(vcpu)) {
5239 kvm_queue_exception(vcpu, UD_VECTOR);
5240 return 1;
5241 }
5242 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5243 if (er != EMULATE_DONE)
5244 kvm_queue_exception(vcpu, UD_VECTOR);
5245 return 1;
5246 }
5247
5248 error_code = 0;
5249 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5250 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5251
5252 /*
5253 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5254 * MMIO, it is better to report an internal error.
5255 * See the comments in vmx_handle_exit.
5256 */
5257 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5258 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5259 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5260 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5261 vcpu->run->internal.ndata = 3;
5262 vcpu->run->internal.data[0] = vect_info;
5263 vcpu->run->internal.data[1] = intr_info;
5264 vcpu->run->internal.data[2] = error_code;
5265 return 0;
5266 }
5267
5268 if (is_page_fault(intr_info)) {
5269 /* EPT won't cause page fault directly */
5270 BUG_ON(enable_ept);
5271 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5272 trace_kvm_page_fault(cr2, error_code);
5273
5274 if (kvm_event_needs_reinjection(vcpu))
5275 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5276 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5277 }
5278
5279 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5280
5281 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5282 return handle_rmode_exception(vcpu, ex_no, error_code);
5283
5284 switch (ex_no) {
5285 case AC_VECTOR:
5286 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5287 return 1;
5288 case DB_VECTOR:
5289 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5290 if (!(vcpu->guest_debug &
5291 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5292 vcpu->arch.dr6 &= ~15;
5293 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5294 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5295 skip_emulated_instruction(vcpu);
5296
5297 kvm_queue_exception(vcpu, DB_VECTOR);
5298 return 1;
5299 }
5300 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5301 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5302 /* fall through */
5303 case BP_VECTOR:
5304 /*
5305 * Update instruction length as we may reinject #BP from
5306 * user space while in guest debugging mode. Reading it for
5307 * #DB as well causes no harm, it is not used in that case.
5308 */
5309 vmx->vcpu.arch.event_exit_inst_len =
5310 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5311 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312 rip = kvm_rip_read(vcpu);
5313 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5314 kvm_run->debug.arch.exception = ex_no;
5315 break;
5316 default:
5317 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5318 kvm_run->ex.exception = ex_no;
5319 kvm_run->ex.error_code = error_code;
5320 break;
5321 }
5322 return 0;
5323 }
5324
5325 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5326 {
5327 ++vcpu->stat.irq_exits;
5328 return 1;
5329 }
5330
5331 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5332 {
5333 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5334 return 0;
5335 }
5336
5337 static int handle_io(struct kvm_vcpu *vcpu)
5338 {
5339 unsigned long exit_qualification;
5340 int size, in, string;
5341 unsigned port;
5342
5343 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5344 string = (exit_qualification & 16) != 0;
5345 in = (exit_qualification & 8) != 0;
5346
5347 ++vcpu->stat.io_exits;
5348
5349 if (string || in)
5350 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5351
5352 port = exit_qualification >> 16;
5353 size = (exit_qualification & 7) + 1;
5354 skip_emulated_instruction(vcpu);
5355
5356 return kvm_fast_pio_out(vcpu, size, port);
5357 }
5358
5359 static void
5360 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5361 {
5362 /*
5363 * Patch in the VMCALL instruction:
5364 */
5365 hypercall[0] = 0x0f;
5366 hypercall[1] = 0x01;
5367 hypercall[2] = 0xc1;
5368 }
5369
5370 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5371 {
5372 unsigned long always_on = VMXON_CR0_ALWAYSON;
5373 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5374
5375 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5376 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5377 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5378 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5379 return (val & always_on) == always_on;
5380 }
5381
5382 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5383 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5384 {
5385 if (is_guest_mode(vcpu)) {
5386 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5387 unsigned long orig_val = val;
5388
5389 /*
5390 * We get here when L2 changed cr0 in a way that did not change
5391 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5392 * but did change L0 shadowed bits. So we first calculate the
5393 * effective cr0 value that L1 would like to write into the
5394 * hardware. It consists of the L2-owned bits from the new
5395 * value combined with the L1-owned bits from L1's guest_cr0.
5396 */
5397 val = (val & ~vmcs12->cr0_guest_host_mask) |
5398 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5399
5400 if (!nested_cr0_valid(vcpu, val))
5401 return 1;
5402
5403 if (kvm_set_cr0(vcpu, val))
5404 return 1;
5405 vmcs_writel(CR0_READ_SHADOW, orig_val);
5406 return 0;
5407 } else {
5408 if (to_vmx(vcpu)->nested.vmxon &&
5409 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5410 return 1;
5411 return kvm_set_cr0(vcpu, val);
5412 }
5413 }
5414
5415 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5416 {
5417 if (is_guest_mode(vcpu)) {
5418 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5419 unsigned long orig_val = val;
5420
5421 /* analogously to handle_set_cr0 */
5422 val = (val & ~vmcs12->cr4_guest_host_mask) |
5423 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5424 if (kvm_set_cr4(vcpu, val))
5425 return 1;
5426 vmcs_writel(CR4_READ_SHADOW, orig_val);
5427 return 0;
5428 } else
5429 return kvm_set_cr4(vcpu, val);
5430 }
5431
5432 /* called to set cr0 as approriate for clts instruction exit. */
5433 static void handle_clts(struct kvm_vcpu *vcpu)
5434 {
5435 if (is_guest_mode(vcpu)) {
5436 /*
5437 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5438 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5439 * just pretend it's off (also in arch.cr0 for fpu_activate).
5440 */
5441 vmcs_writel(CR0_READ_SHADOW,
5442 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5443 vcpu->arch.cr0 &= ~X86_CR0_TS;
5444 } else
5445 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5446 }
5447
5448 static int handle_cr(struct kvm_vcpu *vcpu)
5449 {
5450 unsigned long exit_qualification, val;
5451 int cr;
5452 int reg;
5453 int err;
5454
5455 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5456 cr = exit_qualification & 15;
5457 reg = (exit_qualification >> 8) & 15;
5458 switch ((exit_qualification >> 4) & 3) {
5459 case 0: /* mov to cr */
5460 val = kvm_register_readl(vcpu, reg);
5461 trace_kvm_cr_write(cr, val);
5462 switch (cr) {
5463 case 0:
5464 err = handle_set_cr0(vcpu, val);
5465 kvm_complete_insn_gp(vcpu, err);
5466 return 1;
5467 case 3:
5468 err = kvm_set_cr3(vcpu, val);
5469 kvm_complete_insn_gp(vcpu, err);
5470 return 1;
5471 case 4:
5472 err = handle_set_cr4(vcpu, val);
5473 kvm_complete_insn_gp(vcpu, err);
5474 return 1;
5475 case 8: {
5476 u8 cr8_prev = kvm_get_cr8(vcpu);
5477 u8 cr8 = (u8)val;
5478 err = kvm_set_cr8(vcpu, cr8);
5479 kvm_complete_insn_gp(vcpu, err);
5480 if (lapic_in_kernel(vcpu))
5481 return 1;
5482 if (cr8_prev <= cr8)
5483 return 1;
5484 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5485 return 0;
5486 }
5487 }
5488 break;
5489 case 2: /* clts */
5490 handle_clts(vcpu);
5491 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5492 skip_emulated_instruction(vcpu);
5493 vmx_fpu_activate(vcpu);
5494 return 1;
5495 case 1: /*mov from cr*/
5496 switch (cr) {
5497 case 3:
5498 val = kvm_read_cr3(vcpu);
5499 kvm_register_write(vcpu, reg, val);
5500 trace_kvm_cr_read(cr, val);
5501 skip_emulated_instruction(vcpu);
5502 return 1;
5503 case 8:
5504 val = kvm_get_cr8(vcpu);
5505 kvm_register_write(vcpu, reg, val);
5506 trace_kvm_cr_read(cr, val);
5507 skip_emulated_instruction(vcpu);
5508 return 1;
5509 }
5510 break;
5511 case 3: /* lmsw */
5512 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5513 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5514 kvm_lmsw(vcpu, val);
5515
5516 skip_emulated_instruction(vcpu);
5517 return 1;
5518 default:
5519 break;
5520 }
5521 vcpu->run->exit_reason = 0;
5522 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5523 (int)(exit_qualification >> 4) & 3, cr);
5524 return 0;
5525 }
5526
5527 static int handle_dr(struct kvm_vcpu *vcpu)
5528 {
5529 unsigned long exit_qualification;
5530 int dr, dr7, reg;
5531
5532 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5533 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5534
5535 /* First, if DR does not exist, trigger UD */
5536 if (!kvm_require_dr(vcpu, dr))
5537 return 1;
5538
5539 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5540 if (!kvm_require_cpl(vcpu, 0))
5541 return 1;
5542 dr7 = vmcs_readl(GUEST_DR7);
5543 if (dr7 & DR7_GD) {
5544 /*
5545 * As the vm-exit takes precedence over the debug trap, we
5546 * need to emulate the latter, either for the host or the
5547 * guest debugging itself.
5548 */
5549 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5550 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5551 vcpu->run->debug.arch.dr7 = dr7;
5552 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5553 vcpu->run->debug.arch.exception = DB_VECTOR;
5554 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5555 return 0;
5556 } else {
5557 vcpu->arch.dr6 &= ~15;
5558 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5559 kvm_queue_exception(vcpu, DB_VECTOR);
5560 return 1;
5561 }
5562 }
5563
5564 if (vcpu->guest_debug == 0) {
5565 u32 cpu_based_vm_exec_control;
5566
5567 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5568 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5569 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5570
5571 /*
5572 * No more DR vmexits; force a reload of the debug registers
5573 * and reenter on this instruction. The next vmexit will
5574 * retrieve the full state of the debug registers.
5575 */
5576 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5577 return 1;
5578 }
5579
5580 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5581 if (exit_qualification & TYPE_MOV_FROM_DR) {
5582 unsigned long val;
5583
5584 if (kvm_get_dr(vcpu, dr, &val))
5585 return 1;
5586 kvm_register_write(vcpu, reg, val);
5587 } else
5588 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5589 return 1;
5590
5591 skip_emulated_instruction(vcpu);
5592 return 1;
5593 }
5594
5595 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5596 {
5597 return vcpu->arch.dr6;
5598 }
5599
5600 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5601 {
5602 }
5603
5604 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5605 {
5606 u32 cpu_based_vm_exec_control;
5607
5608 get_debugreg(vcpu->arch.db[0], 0);
5609 get_debugreg(vcpu->arch.db[1], 1);
5610 get_debugreg(vcpu->arch.db[2], 2);
5611 get_debugreg(vcpu->arch.db[3], 3);
5612 get_debugreg(vcpu->arch.dr6, 6);
5613 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5614
5615 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5616
5617 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5618 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5619 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5620 }
5621
5622 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5623 {
5624 vmcs_writel(GUEST_DR7, val);
5625 }
5626
5627 static int handle_cpuid(struct kvm_vcpu *vcpu)
5628 {
5629 kvm_emulate_cpuid(vcpu);
5630 return 1;
5631 }
5632
5633 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5634 {
5635 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5636 struct msr_data msr_info;
5637
5638 msr_info.index = ecx;
5639 msr_info.host_initiated = false;
5640 if (vmx_get_msr(vcpu, &msr_info)) {
5641 trace_kvm_msr_read_ex(ecx);
5642 kvm_inject_gp(vcpu, 0);
5643 return 1;
5644 }
5645
5646 trace_kvm_msr_read(ecx, msr_info.data);
5647
5648 /* FIXME: handling of bits 32:63 of rax, rdx */
5649 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5650 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5651 skip_emulated_instruction(vcpu);
5652 return 1;
5653 }
5654
5655 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5656 {
5657 struct msr_data msr;
5658 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5659 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5660 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5661
5662 msr.data = data;
5663 msr.index = ecx;
5664 msr.host_initiated = false;
5665 if (kvm_set_msr(vcpu, &msr) != 0) {
5666 trace_kvm_msr_write_ex(ecx, data);
5667 kvm_inject_gp(vcpu, 0);
5668 return 1;
5669 }
5670
5671 trace_kvm_msr_write(ecx, data);
5672 skip_emulated_instruction(vcpu);
5673 return 1;
5674 }
5675
5676 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5677 {
5678 kvm_make_request(KVM_REQ_EVENT, vcpu);
5679 return 1;
5680 }
5681
5682 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5683 {
5684 u32 cpu_based_vm_exec_control;
5685
5686 /* clear pending irq */
5687 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5688 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5689 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5690
5691 kvm_make_request(KVM_REQ_EVENT, vcpu);
5692
5693 ++vcpu->stat.irq_window_exits;
5694 return 1;
5695 }
5696
5697 static int handle_halt(struct kvm_vcpu *vcpu)
5698 {
5699 return kvm_emulate_halt(vcpu);
5700 }
5701
5702 static int handle_vmcall(struct kvm_vcpu *vcpu)
5703 {
5704 kvm_emulate_hypercall(vcpu);
5705 return 1;
5706 }
5707
5708 static int handle_invd(struct kvm_vcpu *vcpu)
5709 {
5710 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5711 }
5712
5713 static int handle_invlpg(struct kvm_vcpu *vcpu)
5714 {
5715 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5716
5717 kvm_mmu_invlpg(vcpu, exit_qualification);
5718 skip_emulated_instruction(vcpu);
5719 return 1;
5720 }
5721
5722 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5723 {
5724 int err;
5725
5726 err = kvm_rdpmc(vcpu);
5727 kvm_complete_insn_gp(vcpu, err);
5728
5729 return 1;
5730 }
5731
5732 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5733 {
5734 kvm_emulate_wbinvd(vcpu);
5735 return 1;
5736 }
5737
5738 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5739 {
5740 u64 new_bv = kvm_read_edx_eax(vcpu);
5741 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5742
5743 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5744 skip_emulated_instruction(vcpu);
5745 return 1;
5746 }
5747
5748 static int handle_xsaves(struct kvm_vcpu *vcpu)
5749 {
5750 skip_emulated_instruction(vcpu);
5751 WARN(1, "this should never happen\n");
5752 return 1;
5753 }
5754
5755 static int handle_xrstors(struct kvm_vcpu *vcpu)
5756 {
5757 skip_emulated_instruction(vcpu);
5758 WARN(1, "this should never happen\n");
5759 return 1;
5760 }
5761
5762 static int handle_apic_access(struct kvm_vcpu *vcpu)
5763 {
5764 if (likely(fasteoi)) {
5765 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5766 int access_type, offset;
5767
5768 access_type = exit_qualification & APIC_ACCESS_TYPE;
5769 offset = exit_qualification & APIC_ACCESS_OFFSET;
5770 /*
5771 * Sane guest uses MOV to write EOI, with written value
5772 * not cared. So make a short-circuit here by avoiding
5773 * heavy instruction emulation.
5774 */
5775 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5776 (offset == APIC_EOI)) {
5777 kvm_lapic_set_eoi(vcpu);
5778 skip_emulated_instruction(vcpu);
5779 return 1;
5780 }
5781 }
5782 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5783 }
5784
5785 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5786 {
5787 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5788 int vector = exit_qualification & 0xff;
5789
5790 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5791 kvm_apic_set_eoi_accelerated(vcpu, vector);
5792 return 1;
5793 }
5794
5795 static int handle_apic_write(struct kvm_vcpu *vcpu)
5796 {
5797 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5798 u32 offset = exit_qualification & 0xfff;
5799
5800 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5801 kvm_apic_write_nodecode(vcpu, offset);
5802 return 1;
5803 }
5804
5805 static int handle_task_switch(struct kvm_vcpu *vcpu)
5806 {
5807 struct vcpu_vmx *vmx = to_vmx(vcpu);
5808 unsigned long exit_qualification;
5809 bool has_error_code = false;
5810 u32 error_code = 0;
5811 u16 tss_selector;
5812 int reason, type, idt_v, idt_index;
5813
5814 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5815 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5816 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5817
5818 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5819
5820 reason = (u32)exit_qualification >> 30;
5821 if (reason == TASK_SWITCH_GATE && idt_v) {
5822 switch (type) {
5823 case INTR_TYPE_NMI_INTR:
5824 vcpu->arch.nmi_injected = false;
5825 vmx_set_nmi_mask(vcpu, true);
5826 break;
5827 case INTR_TYPE_EXT_INTR:
5828 case INTR_TYPE_SOFT_INTR:
5829 kvm_clear_interrupt_queue(vcpu);
5830 break;
5831 case INTR_TYPE_HARD_EXCEPTION:
5832 if (vmx->idt_vectoring_info &
5833 VECTORING_INFO_DELIVER_CODE_MASK) {
5834 has_error_code = true;
5835 error_code =
5836 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5837 }
5838 /* fall through */
5839 case INTR_TYPE_SOFT_EXCEPTION:
5840 kvm_clear_exception_queue(vcpu);
5841 break;
5842 default:
5843 break;
5844 }
5845 }
5846 tss_selector = exit_qualification;
5847
5848 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5849 type != INTR_TYPE_EXT_INTR &&
5850 type != INTR_TYPE_NMI_INTR))
5851 skip_emulated_instruction(vcpu);
5852
5853 if (kvm_task_switch(vcpu, tss_selector,
5854 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5855 has_error_code, error_code) == EMULATE_FAIL) {
5856 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5857 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5858 vcpu->run->internal.ndata = 0;
5859 return 0;
5860 }
5861
5862 /*
5863 * TODO: What about debug traps on tss switch?
5864 * Are we supposed to inject them and update dr6?
5865 */
5866
5867 return 1;
5868 }
5869
5870 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5871 {
5872 unsigned long exit_qualification;
5873 gpa_t gpa;
5874 u32 error_code;
5875 int gla_validity;
5876
5877 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5878
5879 gla_validity = (exit_qualification >> 7) & 0x3;
5880 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5881 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5882 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5883 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5884 vmcs_readl(GUEST_LINEAR_ADDRESS));
5885 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5886 (long unsigned int)exit_qualification);
5887 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5888 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5889 return 0;
5890 }
5891
5892 /*
5893 * EPT violation happened while executing iret from NMI,
5894 * "blocked by NMI" bit has to be set before next VM entry.
5895 * There are errata that may cause this bit to not be set:
5896 * AAK134, BY25.
5897 */
5898 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5899 cpu_has_virtual_nmis() &&
5900 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5901 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5902
5903 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5904 trace_kvm_page_fault(gpa, exit_qualification);
5905
5906 /* It is a write fault? */
5907 error_code = exit_qualification & PFERR_WRITE_MASK;
5908 /* It is a fetch fault? */
5909 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5910 /* ept page table is present? */
5911 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5912
5913 vcpu->arch.exit_qualification = exit_qualification;
5914
5915 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5916 }
5917
5918 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5919 {
5920 int ret;
5921 gpa_t gpa;
5922
5923 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5924 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5925 skip_emulated_instruction(vcpu);
5926 trace_kvm_fast_mmio(gpa);
5927 return 1;
5928 }
5929
5930 ret = handle_mmio_page_fault(vcpu, gpa, true);
5931 if (likely(ret == RET_MMIO_PF_EMULATE))
5932 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5933 EMULATE_DONE;
5934
5935 if (unlikely(ret == RET_MMIO_PF_INVALID))
5936 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5937
5938 if (unlikely(ret == RET_MMIO_PF_RETRY))
5939 return 1;
5940
5941 /* It is the real ept misconfig */
5942 WARN_ON(1);
5943
5944 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5945 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5946
5947 return 0;
5948 }
5949
5950 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5951 {
5952 u32 cpu_based_vm_exec_control;
5953
5954 /* clear pending NMI */
5955 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5956 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5958 ++vcpu->stat.nmi_window_exits;
5959 kvm_make_request(KVM_REQ_EVENT, vcpu);
5960
5961 return 1;
5962 }
5963
5964 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5965 {
5966 struct vcpu_vmx *vmx = to_vmx(vcpu);
5967 enum emulation_result err = EMULATE_DONE;
5968 int ret = 1;
5969 u32 cpu_exec_ctrl;
5970 bool intr_window_requested;
5971 unsigned count = 130;
5972
5973 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5974 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5975
5976 while (vmx->emulation_required && count-- != 0) {
5977 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5978 return handle_interrupt_window(&vmx->vcpu);
5979
5980 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5981 return 1;
5982
5983 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5984
5985 if (err == EMULATE_USER_EXIT) {
5986 ++vcpu->stat.mmio_exits;
5987 ret = 0;
5988 goto out;
5989 }
5990
5991 if (err != EMULATE_DONE) {
5992 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5993 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5994 vcpu->run->internal.ndata = 0;
5995 return 0;
5996 }
5997
5998 if (vcpu->arch.halt_request) {
5999 vcpu->arch.halt_request = 0;
6000 ret = kvm_vcpu_halt(vcpu);
6001 goto out;
6002 }
6003
6004 if (signal_pending(current))
6005 goto out;
6006 if (need_resched())
6007 schedule();
6008 }
6009
6010 out:
6011 return ret;
6012 }
6013
6014 static int __grow_ple_window(int val)
6015 {
6016 if (ple_window_grow < 1)
6017 return ple_window;
6018
6019 val = min(val, ple_window_actual_max);
6020
6021 if (ple_window_grow < ple_window)
6022 val *= ple_window_grow;
6023 else
6024 val += ple_window_grow;
6025
6026 return val;
6027 }
6028
6029 static int __shrink_ple_window(int val, int modifier, int minimum)
6030 {
6031 if (modifier < 1)
6032 return ple_window;
6033
6034 if (modifier < ple_window)
6035 val /= modifier;
6036 else
6037 val -= modifier;
6038
6039 return max(val, minimum);
6040 }
6041
6042 static void grow_ple_window(struct kvm_vcpu *vcpu)
6043 {
6044 struct vcpu_vmx *vmx = to_vmx(vcpu);
6045 int old = vmx->ple_window;
6046
6047 vmx->ple_window = __grow_ple_window(old);
6048
6049 if (vmx->ple_window != old)
6050 vmx->ple_window_dirty = true;
6051
6052 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6053 }
6054
6055 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6056 {
6057 struct vcpu_vmx *vmx = to_vmx(vcpu);
6058 int old = vmx->ple_window;
6059
6060 vmx->ple_window = __shrink_ple_window(old,
6061 ple_window_shrink, ple_window);
6062
6063 if (vmx->ple_window != old)
6064 vmx->ple_window_dirty = true;
6065
6066 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6067 }
6068
6069 /*
6070 * ple_window_actual_max is computed to be one grow_ple_window() below
6071 * ple_window_max. (See __grow_ple_window for the reason.)
6072 * This prevents overflows, because ple_window_max is int.
6073 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6074 * this process.
6075 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6076 */
6077 static void update_ple_window_actual_max(void)
6078 {
6079 ple_window_actual_max =
6080 __shrink_ple_window(max(ple_window_max, ple_window),
6081 ple_window_grow, INT_MIN);
6082 }
6083
6084 /*
6085 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6086 */
6087 static void wakeup_handler(void)
6088 {
6089 struct kvm_vcpu *vcpu;
6090 int cpu = smp_processor_id();
6091
6092 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6093 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6094 blocked_vcpu_list) {
6095 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6096
6097 if (pi_test_on(pi_desc) == 1)
6098 kvm_vcpu_kick(vcpu);
6099 }
6100 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6101 }
6102
6103 static __init int hardware_setup(void)
6104 {
6105 int r = -ENOMEM, i, msr;
6106
6107 rdmsrl_safe(MSR_EFER, &host_efer);
6108
6109 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6110 kvm_define_shared_msr(i, vmx_msr_index[i]);
6111
6112 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6113 if (!vmx_io_bitmap_a)
6114 return r;
6115
6116 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6117 if (!vmx_io_bitmap_b)
6118 goto out;
6119
6120 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6121 if (!vmx_msr_bitmap_legacy)
6122 goto out1;
6123
6124 vmx_msr_bitmap_legacy_x2apic =
6125 (unsigned long *)__get_free_page(GFP_KERNEL);
6126 if (!vmx_msr_bitmap_legacy_x2apic)
6127 goto out2;
6128
6129 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6130 if (!vmx_msr_bitmap_longmode)
6131 goto out3;
6132
6133 vmx_msr_bitmap_longmode_x2apic =
6134 (unsigned long *)__get_free_page(GFP_KERNEL);
6135 if (!vmx_msr_bitmap_longmode_x2apic)
6136 goto out4;
6137
6138 if (nested) {
6139 vmx_msr_bitmap_nested =
6140 (unsigned long *)__get_free_page(GFP_KERNEL);
6141 if (!vmx_msr_bitmap_nested)
6142 goto out5;
6143 }
6144
6145 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6146 if (!vmx_vmread_bitmap)
6147 goto out6;
6148
6149 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6150 if (!vmx_vmwrite_bitmap)
6151 goto out7;
6152
6153 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6154 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6155
6156 /*
6157 * Allow direct access to the PC debug port (it is often used for I/O
6158 * delays, but the vmexits simply slow things down).
6159 */
6160 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6161 clear_bit(0x80, vmx_io_bitmap_a);
6162
6163 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6164
6165 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6166 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6167 if (nested)
6168 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6169
6170 if (setup_vmcs_config(&vmcs_config) < 0) {
6171 r = -EIO;
6172 goto out8;
6173 }
6174
6175 if (boot_cpu_has(X86_FEATURE_NX))
6176 kvm_enable_efer_bits(EFER_NX);
6177
6178 if (!cpu_has_vmx_vpid())
6179 enable_vpid = 0;
6180 if (!cpu_has_vmx_shadow_vmcs())
6181 enable_shadow_vmcs = 0;
6182 if (enable_shadow_vmcs)
6183 init_vmcs_shadow_fields();
6184
6185 if (!cpu_has_vmx_ept() ||
6186 !cpu_has_vmx_ept_4levels()) {
6187 enable_ept = 0;
6188 enable_unrestricted_guest = 0;
6189 enable_ept_ad_bits = 0;
6190 }
6191
6192 if (!cpu_has_vmx_ept_ad_bits())
6193 enable_ept_ad_bits = 0;
6194
6195 if (!cpu_has_vmx_unrestricted_guest())
6196 enable_unrestricted_guest = 0;
6197
6198 if (!cpu_has_vmx_flexpriority())
6199 flexpriority_enabled = 0;
6200
6201 /*
6202 * set_apic_access_page_addr() is used to reload apic access
6203 * page upon invalidation. No need to do anything if not
6204 * using the APIC_ACCESS_ADDR VMCS field.
6205 */
6206 if (!flexpriority_enabled)
6207 kvm_x86_ops->set_apic_access_page_addr = NULL;
6208
6209 if (!cpu_has_vmx_tpr_shadow())
6210 kvm_x86_ops->update_cr8_intercept = NULL;
6211
6212 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6213 kvm_disable_largepages();
6214
6215 if (!cpu_has_vmx_ple())
6216 ple_gap = 0;
6217
6218 if (!cpu_has_vmx_apicv())
6219 enable_apicv = 0;
6220
6221 if (cpu_has_vmx_tsc_scaling()) {
6222 kvm_has_tsc_control = true;
6223 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6224 kvm_tsc_scaling_ratio_frac_bits = 48;
6225 }
6226
6227 if (enable_apicv)
6228 kvm_x86_ops->update_cr8_intercept = NULL;
6229 else {
6230 kvm_x86_ops->hwapic_irr_update = NULL;
6231 kvm_x86_ops->hwapic_isr_update = NULL;
6232 kvm_x86_ops->deliver_posted_interrupt = NULL;
6233 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6234 }
6235
6236 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6237 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6238 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6239 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6240 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6241 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6242 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6243
6244 memcpy(vmx_msr_bitmap_legacy_x2apic,
6245 vmx_msr_bitmap_legacy, PAGE_SIZE);
6246 memcpy(vmx_msr_bitmap_longmode_x2apic,
6247 vmx_msr_bitmap_longmode, PAGE_SIZE);
6248
6249 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6250
6251 if (enable_apicv) {
6252 for (msr = 0x800; msr <= 0x8ff; msr++)
6253 vmx_disable_intercept_msr_read_x2apic(msr);
6254
6255 /* According SDM, in x2apic mode, the whole id reg is used.
6256 * But in KVM, it only use the highest eight bits. Need to
6257 * intercept it */
6258 vmx_enable_intercept_msr_read_x2apic(0x802);
6259 /* TMCCT */
6260 vmx_enable_intercept_msr_read_x2apic(0x839);
6261 /* TPR */
6262 vmx_disable_intercept_msr_write_x2apic(0x808);
6263 /* EOI */
6264 vmx_disable_intercept_msr_write_x2apic(0x80b);
6265 /* SELF-IPI */
6266 vmx_disable_intercept_msr_write_x2apic(0x83f);
6267 }
6268
6269 if (enable_ept) {
6270 kvm_mmu_set_mask_ptes(0ull,
6271 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6272 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6273 0ull, VMX_EPT_EXECUTABLE_MASK);
6274 ept_set_mmio_spte_mask();
6275 kvm_enable_tdp();
6276 } else
6277 kvm_disable_tdp();
6278
6279 update_ple_window_actual_max();
6280
6281 /*
6282 * Only enable PML when hardware supports PML feature, and both EPT
6283 * and EPT A/D bit features are enabled -- PML depends on them to work.
6284 */
6285 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6286 enable_pml = 0;
6287
6288 if (!enable_pml) {
6289 kvm_x86_ops->slot_enable_log_dirty = NULL;
6290 kvm_x86_ops->slot_disable_log_dirty = NULL;
6291 kvm_x86_ops->flush_log_dirty = NULL;
6292 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6293 }
6294
6295 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6296
6297 return alloc_kvm_area();
6298
6299 out8:
6300 free_page((unsigned long)vmx_vmwrite_bitmap);
6301 out7:
6302 free_page((unsigned long)vmx_vmread_bitmap);
6303 out6:
6304 if (nested)
6305 free_page((unsigned long)vmx_msr_bitmap_nested);
6306 out5:
6307 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6308 out4:
6309 free_page((unsigned long)vmx_msr_bitmap_longmode);
6310 out3:
6311 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6312 out2:
6313 free_page((unsigned long)vmx_msr_bitmap_legacy);
6314 out1:
6315 free_page((unsigned long)vmx_io_bitmap_b);
6316 out:
6317 free_page((unsigned long)vmx_io_bitmap_a);
6318
6319 return r;
6320 }
6321
6322 static __exit void hardware_unsetup(void)
6323 {
6324 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6325 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6326 free_page((unsigned long)vmx_msr_bitmap_legacy);
6327 free_page((unsigned long)vmx_msr_bitmap_longmode);
6328 free_page((unsigned long)vmx_io_bitmap_b);
6329 free_page((unsigned long)vmx_io_bitmap_a);
6330 free_page((unsigned long)vmx_vmwrite_bitmap);
6331 free_page((unsigned long)vmx_vmread_bitmap);
6332 if (nested)
6333 free_page((unsigned long)vmx_msr_bitmap_nested);
6334
6335 free_kvm_area();
6336 }
6337
6338 /*
6339 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6340 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6341 */
6342 static int handle_pause(struct kvm_vcpu *vcpu)
6343 {
6344 if (ple_gap)
6345 grow_ple_window(vcpu);
6346
6347 skip_emulated_instruction(vcpu);
6348 kvm_vcpu_on_spin(vcpu);
6349
6350 return 1;
6351 }
6352
6353 static int handle_nop(struct kvm_vcpu *vcpu)
6354 {
6355 skip_emulated_instruction(vcpu);
6356 return 1;
6357 }
6358
6359 static int handle_mwait(struct kvm_vcpu *vcpu)
6360 {
6361 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6362 return handle_nop(vcpu);
6363 }
6364
6365 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6366 {
6367 return 1;
6368 }
6369
6370 static int handle_monitor(struct kvm_vcpu *vcpu)
6371 {
6372 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6373 return handle_nop(vcpu);
6374 }
6375
6376 /*
6377 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6378 * We could reuse a single VMCS for all the L2 guests, but we also want the
6379 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6380 * allows keeping them loaded on the processor, and in the future will allow
6381 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6382 * every entry if they never change.
6383 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6384 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6385 *
6386 * The following functions allocate and free a vmcs02 in this pool.
6387 */
6388
6389 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6390 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6391 {
6392 struct vmcs02_list *item;
6393 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6394 if (item->vmptr == vmx->nested.current_vmptr) {
6395 list_move(&item->list, &vmx->nested.vmcs02_pool);
6396 return &item->vmcs02;
6397 }
6398
6399 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6400 /* Recycle the least recently used VMCS. */
6401 item = list_entry(vmx->nested.vmcs02_pool.prev,
6402 struct vmcs02_list, list);
6403 item->vmptr = vmx->nested.current_vmptr;
6404 list_move(&item->list, &vmx->nested.vmcs02_pool);
6405 return &item->vmcs02;
6406 }
6407
6408 /* Create a new VMCS */
6409 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6410 if (!item)
6411 return NULL;
6412 item->vmcs02.vmcs = alloc_vmcs();
6413 if (!item->vmcs02.vmcs) {
6414 kfree(item);
6415 return NULL;
6416 }
6417 loaded_vmcs_init(&item->vmcs02);
6418 item->vmptr = vmx->nested.current_vmptr;
6419 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6420 vmx->nested.vmcs02_num++;
6421 return &item->vmcs02;
6422 }
6423
6424 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6425 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6426 {
6427 struct vmcs02_list *item;
6428 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6429 if (item->vmptr == vmptr) {
6430 free_loaded_vmcs(&item->vmcs02);
6431 list_del(&item->list);
6432 kfree(item);
6433 vmx->nested.vmcs02_num--;
6434 return;
6435 }
6436 }
6437
6438 /*
6439 * Free all VMCSs saved for this vcpu, except the one pointed by
6440 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6441 * must be &vmx->vmcs01.
6442 */
6443 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6444 {
6445 struct vmcs02_list *item, *n;
6446
6447 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6448 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6449 /*
6450 * Something will leak if the above WARN triggers. Better than
6451 * a use-after-free.
6452 */
6453 if (vmx->loaded_vmcs == &item->vmcs02)
6454 continue;
6455
6456 free_loaded_vmcs(&item->vmcs02);
6457 list_del(&item->list);
6458 kfree(item);
6459 vmx->nested.vmcs02_num--;
6460 }
6461 }
6462
6463 /*
6464 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6465 * set the success or error code of an emulated VMX instruction, as specified
6466 * by Vol 2B, VMX Instruction Reference, "Conventions".
6467 */
6468 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6469 {
6470 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6471 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6472 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6473 }
6474
6475 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6476 {
6477 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6478 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6479 X86_EFLAGS_SF | X86_EFLAGS_OF))
6480 | X86_EFLAGS_CF);
6481 }
6482
6483 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6484 u32 vm_instruction_error)
6485 {
6486 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6487 /*
6488 * failValid writes the error number to the current VMCS, which
6489 * can't be done there isn't a current VMCS.
6490 */
6491 nested_vmx_failInvalid(vcpu);
6492 return;
6493 }
6494 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6495 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6496 X86_EFLAGS_SF | X86_EFLAGS_OF))
6497 | X86_EFLAGS_ZF);
6498 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6499 /*
6500 * We don't need to force a shadow sync because
6501 * VM_INSTRUCTION_ERROR is not shadowed
6502 */
6503 }
6504
6505 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6506 {
6507 /* TODO: not to reset guest simply here. */
6508 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6509 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6510 }
6511
6512 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6513 {
6514 struct vcpu_vmx *vmx =
6515 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6516
6517 vmx->nested.preemption_timer_expired = true;
6518 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6519 kvm_vcpu_kick(&vmx->vcpu);
6520
6521 return HRTIMER_NORESTART;
6522 }
6523
6524 /*
6525 * Decode the memory-address operand of a vmx instruction, as recorded on an
6526 * exit caused by such an instruction (run by a guest hypervisor).
6527 * On success, returns 0. When the operand is invalid, returns 1 and throws
6528 * #UD or #GP.
6529 */
6530 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6531 unsigned long exit_qualification,
6532 u32 vmx_instruction_info, bool wr, gva_t *ret)
6533 {
6534 gva_t off;
6535 bool exn;
6536 struct kvm_segment s;
6537
6538 /*
6539 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6540 * Execution", on an exit, vmx_instruction_info holds most of the
6541 * addressing components of the operand. Only the displacement part
6542 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6543 * For how an actual address is calculated from all these components,
6544 * refer to Vol. 1, "Operand Addressing".
6545 */
6546 int scaling = vmx_instruction_info & 3;
6547 int addr_size = (vmx_instruction_info >> 7) & 7;
6548 bool is_reg = vmx_instruction_info & (1u << 10);
6549 int seg_reg = (vmx_instruction_info >> 15) & 7;
6550 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6551 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6552 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6553 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6554
6555 if (is_reg) {
6556 kvm_queue_exception(vcpu, UD_VECTOR);
6557 return 1;
6558 }
6559
6560 /* Addr = segment_base + offset */
6561 /* offset = base + [index * scale] + displacement */
6562 off = exit_qualification; /* holds the displacement */
6563 if (base_is_valid)
6564 off += kvm_register_read(vcpu, base_reg);
6565 if (index_is_valid)
6566 off += kvm_register_read(vcpu, index_reg)<<scaling;
6567 vmx_get_segment(vcpu, &s, seg_reg);
6568 *ret = s.base + off;
6569
6570 if (addr_size == 1) /* 32 bit */
6571 *ret &= 0xffffffff;
6572
6573 /* Checks for #GP/#SS exceptions. */
6574 exn = false;
6575 if (is_protmode(vcpu)) {
6576 /* Protected mode: apply checks for segment validity in the
6577 * following order:
6578 * - segment type check (#GP(0) may be thrown)
6579 * - usability check (#GP(0)/#SS(0))
6580 * - limit check (#GP(0)/#SS(0))
6581 */
6582 if (wr)
6583 /* #GP(0) if the destination operand is located in a
6584 * read-only data segment or any code segment.
6585 */
6586 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6587 else
6588 /* #GP(0) if the source operand is located in an
6589 * execute-only code segment
6590 */
6591 exn = ((s.type & 0xa) == 8);
6592 }
6593 if (exn) {
6594 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6595 return 1;
6596 }
6597 if (is_long_mode(vcpu)) {
6598 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6599 * non-canonical form. This is an only check for long mode.
6600 */
6601 exn = is_noncanonical_address(*ret);
6602 } else if (is_protmode(vcpu)) {
6603 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6604 */
6605 exn = (s.unusable != 0);
6606 /* Protected mode: #GP(0)/#SS(0) if the memory
6607 * operand is outside the segment limit.
6608 */
6609 exn = exn || (off + sizeof(u64) > s.limit);
6610 }
6611 if (exn) {
6612 kvm_queue_exception_e(vcpu,
6613 seg_reg == VCPU_SREG_SS ?
6614 SS_VECTOR : GP_VECTOR,
6615 0);
6616 return 1;
6617 }
6618
6619 return 0;
6620 }
6621
6622 /*
6623 * This function performs the various checks including
6624 * - if it's 4KB aligned
6625 * - No bits beyond the physical address width are set
6626 * - Returns 0 on success or else 1
6627 * (Intel SDM Section 30.3)
6628 */
6629 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6630 gpa_t *vmpointer)
6631 {
6632 gva_t gva;
6633 gpa_t vmptr;
6634 struct x86_exception e;
6635 struct page *page;
6636 struct vcpu_vmx *vmx = to_vmx(vcpu);
6637 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6638
6639 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6640 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6641 return 1;
6642
6643 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6644 sizeof(vmptr), &e)) {
6645 kvm_inject_page_fault(vcpu, &e);
6646 return 1;
6647 }
6648
6649 switch (exit_reason) {
6650 case EXIT_REASON_VMON:
6651 /*
6652 * SDM 3: 24.11.5
6653 * The first 4 bytes of VMXON region contain the supported
6654 * VMCS revision identifier
6655 *
6656 * Note - IA32_VMX_BASIC[48] will never be 1
6657 * for the nested case;
6658 * which replaces physical address width with 32
6659 *
6660 */
6661 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6662 nested_vmx_failInvalid(vcpu);
6663 skip_emulated_instruction(vcpu);
6664 return 1;
6665 }
6666
6667 page = nested_get_page(vcpu, vmptr);
6668 if (page == NULL ||
6669 *(u32 *)kmap(page) != VMCS12_REVISION) {
6670 nested_vmx_failInvalid(vcpu);
6671 kunmap(page);
6672 skip_emulated_instruction(vcpu);
6673 return 1;
6674 }
6675 kunmap(page);
6676 vmx->nested.vmxon_ptr = vmptr;
6677 break;
6678 case EXIT_REASON_VMCLEAR:
6679 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6680 nested_vmx_failValid(vcpu,
6681 VMXERR_VMCLEAR_INVALID_ADDRESS);
6682 skip_emulated_instruction(vcpu);
6683 return 1;
6684 }
6685
6686 if (vmptr == vmx->nested.vmxon_ptr) {
6687 nested_vmx_failValid(vcpu,
6688 VMXERR_VMCLEAR_VMXON_POINTER);
6689 skip_emulated_instruction(vcpu);
6690 return 1;
6691 }
6692 break;
6693 case EXIT_REASON_VMPTRLD:
6694 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6695 nested_vmx_failValid(vcpu,
6696 VMXERR_VMPTRLD_INVALID_ADDRESS);
6697 skip_emulated_instruction(vcpu);
6698 return 1;
6699 }
6700
6701 if (vmptr == vmx->nested.vmxon_ptr) {
6702 nested_vmx_failValid(vcpu,
6703 VMXERR_VMCLEAR_VMXON_POINTER);
6704 skip_emulated_instruction(vcpu);
6705 return 1;
6706 }
6707 break;
6708 default:
6709 return 1; /* shouldn't happen */
6710 }
6711
6712 if (vmpointer)
6713 *vmpointer = vmptr;
6714 return 0;
6715 }
6716
6717 /*
6718 * Emulate the VMXON instruction.
6719 * Currently, we just remember that VMX is active, and do not save or even
6720 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6721 * do not currently need to store anything in that guest-allocated memory
6722 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6723 * argument is different from the VMXON pointer (which the spec says they do).
6724 */
6725 static int handle_vmon(struct kvm_vcpu *vcpu)
6726 {
6727 struct kvm_segment cs;
6728 struct vcpu_vmx *vmx = to_vmx(vcpu);
6729 struct vmcs *shadow_vmcs;
6730 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6731 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6732
6733 /* The Intel VMX Instruction Reference lists a bunch of bits that
6734 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6735 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6736 * Otherwise, we should fail with #UD. We test these now:
6737 */
6738 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6739 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6740 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6741 kvm_queue_exception(vcpu, UD_VECTOR);
6742 return 1;
6743 }
6744
6745 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6746 if (is_long_mode(vcpu) && !cs.l) {
6747 kvm_queue_exception(vcpu, UD_VECTOR);
6748 return 1;
6749 }
6750
6751 if (vmx_get_cpl(vcpu)) {
6752 kvm_inject_gp(vcpu, 0);
6753 return 1;
6754 }
6755
6756 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6757 return 1;
6758
6759 if (vmx->nested.vmxon) {
6760 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6761 skip_emulated_instruction(vcpu);
6762 return 1;
6763 }
6764
6765 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6766 != VMXON_NEEDED_FEATURES) {
6767 kvm_inject_gp(vcpu, 0);
6768 return 1;
6769 }
6770
6771 if (enable_shadow_vmcs) {
6772 shadow_vmcs = alloc_vmcs();
6773 if (!shadow_vmcs)
6774 return -ENOMEM;
6775 /* mark vmcs as shadow */
6776 shadow_vmcs->revision_id |= (1u << 31);
6777 /* init shadow vmcs */
6778 vmcs_clear(shadow_vmcs);
6779 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6780 }
6781
6782 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6783 vmx->nested.vmcs02_num = 0;
6784
6785 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6786 HRTIMER_MODE_REL);
6787 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6788
6789 vmx->nested.vmxon = true;
6790
6791 skip_emulated_instruction(vcpu);
6792 nested_vmx_succeed(vcpu);
6793 return 1;
6794 }
6795
6796 /*
6797 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6798 * for running VMX instructions (except VMXON, whose prerequisites are
6799 * slightly different). It also specifies what exception to inject otherwise.
6800 */
6801 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6802 {
6803 struct kvm_segment cs;
6804 struct vcpu_vmx *vmx = to_vmx(vcpu);
6805
6806 if (!vmx->nested.vmxon) {
6807 kvm_queue_exception(vcpu, UD_VECTOR);
6808 return 0;
6809 }
6810
6811 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6812 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6813 (is_long_mode(vcpu) && !cs.l)) {
6814 kvm_queue_exception(vcpu, UD_VECTOR);
6815 return 0;
6816 }
6817
6818 if (vmx_get_cpl(vcpu)) {
6819 kvm_inject_gp(vcpu, 0);
6820 return 0;
6821 }
6822
6823 return 1;
6824 }
6825
6826 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6827 {
6828 if (vmx->nested.current_vmptr == -1ull)
6829 return;
6830
6831 /* current_vmptr and current_vmcs12 are always set/reset together */
6832 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6833 return;
6834
6835 if (enable_shadow_vmcs) {
6836 /* copy to memory all shadowed fields in case
6837 they were modified */
6838 copy_shadow_to_vmcs12(vmx);
6839 vmx->nested.sync_shadow_vmcs = false;
6840 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6841 SECONDARY_EXEC_SHADOW_VMCS);
6842 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6843 }
6844 vmx->nested.posted_intr_nv = -1;
6845 kunmap(vmx->nested.current_vmcs12_page);
6846 nested_release_page(vmx->nested.current_vmcs12_page);
6847 vmx->nested.current_vmptr = -1ull;
6848 vmx->nested.current_vmcs12 = NULL;
6849 }
6850
6851 /*
6852 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6853 * just stops using VMX.
6854 */
6855 static void free_nested(struct vcpu_vmx *vmx)
6856 {
6857 if (!vmx->nested.vmxon)
6858 return;
6859
6860 vmx->nested.vmxon = false;
6861 free_vpid(vmx->nested.vpid02);
6862 nested_release_vmcs12(vmx);
6863 if (enable_shadow_vmcs)
6864 free_vmcs(vmx->nested.current_shadow_vmcs);
6865 /* Unpin physical memory we referred to in current vmcs02 */
6866 if (vmx->nested.apic_access_page) {
6867 nested_release_page(vmx->nested.apic_access_page);
6868 vmx->nested.apic_access_page = NULL;
6869 }
6870 if (vmx->nested.virtual_apic_page) {
6871 nested_release_page(vmx->nested.virtual_apic_page);
6872 vmx->nested.virtual_apic_page = NULL;
6873 }
6874 if (vmx->nested.pi_desc_page) {
6875 kunmap(vmx->nested.pi_desc_page);
6876 nested_release_page(vmx->nested.pi_desc_page);
6877 vmx->nested.pi_desc_page = NULL;
6878 vmx->nested.pi_desc = NULL;
6879 }
6880
6881 nested_free_all_saved_vmcss(vmx);
6882 }
6883
6884 /* Emulate the VMXOFF instruction */
6885 static int handle_vmoff(struct kvm_vcpu *vcpu)
6886 {
6887 if (!nested_vmx_check_permission(vcpu))
6888 return 1;
6889 free_nested(to_vmx(vcpu));
6890 skip_emulated_instruction(vcpu);
6891 nested_vmx_succeed(vcpu);
6892 return 1;
6893 }
6894
6895 /* Emulate the VMCLEAR instruction */
6896 static int handle_vmclear(struct kvm_vcpu *vcpu)
6897 {
6898 struct vcpu_vmx *vmx = to_vmx(vcpu);
6899 gpa_t vmptr;
6900 struct vmcs12 *vmcs12;
6901 struct page *page;
6902
6903 if (!nested_vmx_check_permission(vcpu))
6904 return 1;
6905
6906 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6907 return 1;
6908
6909 if (vmptr == vmx->nested.current_vmptr)
6910 nested_release_vmcs12(vmx);
6911
6912 page = nested_get_page(vcpu, vmptr);
6913 if (page == NULL) {
6914 /*
6915 * For accurate processor emulation, VMCLEAR beyond available
6916 * physical memory should do nothing at all. However, it is
6917 * possible that a nested vmx bug, not a guest hypervisor bug,
6918 * resulted in this case, so let's shut down before doing any
6919 * more damage:
6920 */
6921 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6922 return 1;
6923 }
6924 vmcs12 = kmap(page);
6925 vmcs12->launch_state = 0;
6926 kunmap(page);
6927 nested_release_page(page);
6928
6929 nested_free_vmcs02(vmx, vmptr);
6930
6931 skip_emulated_instruction(vcpu);
6932 nested_vmx_succeed(vcpu);
6933 return 1;
6934 }
6935
6936 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6937
6938 /* Emulate the VMLAUNCH instruction */
6939 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6940 {
6941 return nested_vmx_run(vcpu, true);
6942 }
6943
6944 /* Emulate the VMRESUME instruction */
6945 static int handle_vmresume(struct kvm_vcpu *vcpu)
6946 {
6947
6948 return nested_vmx_run(vcpu, false);
6949 }
6950
6951 enum vmcs_field_type {
6952 VMCS_FIELD_TYPE_U16 = 0,
6953 VMCS_FIELD_TYPE_U64 = 1,
6954 VMCS_FIELD_TYPE_U32 = 2,
6955 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6956 };
6957
6958 static inline int vmcs_field_type(unsigned long field)
6959 {
6960 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6961 return VMCS_FIELD_TYPE_U32;
6962 return (field >> 13) & 0x3 ;
6963 }
6964
6965 static inline int vmcs_field_readonly(unsigned long field)
6966 {
6967 return (((field >> 10) & 0x3) == 1);
6968 }
6969
6970 /*
6971 * Read a vmcs12 field. Since these can have varying lengths and we return
6972 * one type, we chose the biggest type (u64) and zero-extend the return value
6973 * to that size. Note that the caller, handle_vmread, might need to use only
6974 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6975 * 64-bit fields are to be returned).
6976 */
6977 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6978 unsigned long field, u64 *ret)
6979 {
6980 short offset = vmcs_field_to_offset(field);
6981 char *p;
6982
6983 if (offset < 0)
6984 return offset;
6985
6986 p = ((char *)(get_vmcs12(vcpu))) + offset;
6987
6988 switch (vmcs_field_type(field)) {
6989 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6990 *ret = *((natural_width *)p);
6991 return 0;
6992 case VMCS_FIELD_TYPE_U16:
6993 *ret = *((u16 *)p);
6994 return 0;
6995 case VMCS_FIELD_TYPE_U32:
6996 *ret = *((u32 *)p);
6997 return 0;
6998 case VMCS_FIELD_TYPE_U64:
6999 *ret = *((u64 *)p);
7000 return 0;
7001 default:
7002 WARN_ON(1);
7003 return -ENOENT;
7004 }
7005 }
7006
7007
7008 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7009 unsigned long field, u64 field_value){
7010 short offset = vmcs_field_to_offset(field);
7011 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7012 if (offset < 0)
7013 return offset;
7014
7015 switch (vmcs_field_type(field)) {
7016 case VMCS_FIELD_TYPE_U16:
7017 *(u16 *)p = field_value;
7018 return 0;
7019 case VMCS_FIELD_TYPE_U32:
7020 *(u32 *)p = field_value;
7021 return 0;
7022 case VMCS_FIELD_TYPE_U64:
7023 *(u64 *)p = field_value;
7024 return 0;
7025 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7026 *(natural_width *)p = field_value;
7027 return 0;
7028 default:
7029 WARN_ON(1);
7030 return -ENOENT;
7031 }
7032
7033 }
7034
7035 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7036 {
7037 int i;
7038 unsigned long field;
7039 u64 field_value;
7040 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7041 const unsigned long *fields = shadow_read_write_fields;
7042 const int num_fields = max_shadow_read_write_fields;
7043
7044 preempt_disable();
7045
7046 vmcs_load(shadow_vmcs);
7047
7048 for (i = 0; i < num_fields; i++) {
7049 field = fields[i];
7050 switch (vmcs_field_type(field)) {
7051 case VMCS_FIELD_TYPE_U16:
7052 field_value = vmcs_read16(field);
7053 break;
7054 case VMCS_FIELD_TYPE_U32:
7055 field_value = vmcs_read32(field);
7056 break;
7057 case VMCS_FIELD_TYPE_U64:
7058 field_value = vmcs_read64(field);
7059 break;
7060 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7061 field_value = vmcs_readl(field);
7062 break;
7063 default:
7064 WARN_ON(1);
7065 continue;
7066 }
7067 vmcs12_write_any(&vmx->vcpu, field, field_value);
7068 }
7069
7070 vmcs_clear(shadow_vmcs);
7071 vmcs_load(vmx->loaded_vmcs->vmcs);
7072
7073 preempt_enable();
7074 }
7075
7076 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7077 {
7078 const unsigned long *fields[] = {
7079 shadow_read_write_fields,
7080 shadow_read_only_fields
7081 };
7082 const int max_fields[] = {
7083 max_shadow_read_write_fields,
7084 max_shadow_read_only_fields
7085 };
7086 int i, q;
7087 unsigned long field;
7088 u64 field_value = 0;
7089 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7090
7091 vmcs_load(shadow_vmcs);
7092
7093 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7094 for (i = 0; i < max_fields[q]; i++) {
7095 field = fields[q][i];
7096 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7097
7098 switch (vmcs_field_type(field)) {
7099 case VMCS_FIELD_TYPE_U16:
7100 vmcs_write16(field, (u16)field_value);
7101 break;
7102 case VMCS_FIELD_TYPE_U32:
7103 vmcs_write32(field, (u32)field_value);
7104 break;
7105 case VMCS_FIELD_TYPE_U64:
7106 vmcs_write64(field, (u64)field_value);
7107 break;
7108 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7109 vmcs_writel(field, (long)field_value);
7110 break;
7111 default:
7112 WARN_ON(1);
7113 break;
7114 }
7115 }
7116 }
7117
7118 vmcs_clear(shadow_vmcs);
7119 vmcs_load(vmx->loaded_vmcs->vmcs);
7120 }
7121
7122 /*
7123 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7124 * used before) all generate the same failure when it is missing.
7125 */
7126 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7127 {
7128 struct vcpu_vmx *vmx = to_vmx(vcpu);
7129 if (vmx->nested.current_vmptr == -1ull) {
7130 nested_vmx_failInvalid(vcpu);
7131 skip_emulated_instruction(vcpu);
7132 return 0;
7133 }
7134 return 1;
7135 }
7136
7137 static int handle_vmread(struct kvm_vcpu *vcpu)
7138 {
7139 unsigned long field;
7140 u64 field_value;
7141 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7142 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7143 gva_t gva = 0;
7144
7145 if (!nested_vmx_check_permission(vcpu) ||
7146 !nested_vmx_check_vmcs12(vcpu))
7147 return 1;
7148
7149 /* Decode instruction info and find the field to read */
7150 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7151 /* Read the field, zero-extended to a u64 field_value */
7152 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7153 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7154 skip_emulated_instruction(vcpu);
7155 return 1;
7156 }
7157 /*
7158 * Now copy part of this value to register or memory, as requested.
7159 * Note that the number of bits actually copied is 32 or 64 depending
7160 * on the guest's mode (32 or 64 bit), not on the given field's length.
7161 */
7162 if (vmx_instruction_info & (1u << 10)) {
7163 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7164 field_value);
7165 } else {
7166 if (get_vmx_mem_address(vcpu, exit_qualification,
7167 vmx_instruction_info, true, &gva))
7168 return 1;
7169 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7170 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7171 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7172 }
7173
7174 nested_vmx_succeed(vcpu);
7175 skip_emulated_instruction(vcpu);
7176 return 1;
7177 }
7178
7179
7180 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7181 {
7182 unsigned long field;
7183 gva_t gva;
7184 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7185 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7186 /* The value to write might be 32 or 64 bits, depending on L1's long
7187 * mode, and eventually we need to write that into a field of several
7188 * possible lengths. The code below first zero-extends the value to 64
7189 * bit (field_value), and then copies only the approriate number of
7190 * bits into the vmcs12 field.
7191 */
7192 u64 field_value = 0;
7193 struct x86_exception e;
7194
7195 if (!nested_vmx_check_permission(vcpu) ||
7196 !nested_vmx_check_vmcs12(vcpu))
7197 return 1;
7198
7199 if (vmx_instruction_info & (1u << 10))
7200 field_value = kvm_register_readl(vcpu,
7201 (((vmx_instruction_info) >> 3) & 0xf));
7202 else {
7203 if (get_vmx_mem_address(vcpu, exit_qualification,
7204 vmx_instruction_info, false, &gva))
7205 return 1;
7206 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7207 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7208 kvm_inject_page_fault(vcpu, &e);
7209 return 1;
7210 }
7211 }
7212
7213
7214 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7215 if (vmcs_field_readonly(field)) {
7216 nested_vmx_failValid(vcpu,
7217 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7218 skip_emulated_instruction(vcpu);
7219 return 1;
7220 }
7221
7222 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7223 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7224 skip_emulated_instruction(vcpu);
7225 return 1;
7226 }
7227
7228 nested_vmx_succeed(vcpu);
7229 skip_emulated_instruction(vcpu);
7230 return 1;
7231 }
7232
7233 /* Emulate the VMPTRLD instruction */
7234 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7235 {
7236 struct vcpu_vmx *vmx = to_vmx(vcpu);
7237 gpa_t vmptr;
7238
7239 if (!nested_vmx_check_permission(vcpu))
7240 return 1;
7241
7242 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7243 return 1;
7244
7245 if (vmx->nested.current_vmptr != vmptr) {
7246 struct vmcs12 *new_vmcs12;
7247 struct page *page;
7248 page = nested_get_page(vcpu, vmptr);
7249 if (page == NULL) {
7250 nested_vmx_failInvalid(vcpu);
7251 skip_emulated_instruction(vcpu);
7252 return 1;
7253 }
7254 new_vmcs12 = kmap(page);
7255 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7256 kunmap(page);
7257 nested_release_page_clean(page);
7258 nested_vmx_failValid(vcpu,
7259 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7260 skip_emulated_instruction(vcpu);
7261 return 1;
7262 }
7263
7264 nested_release_vmcs12(vmx);
7265 vmx->nested.current_vmptr = vmptr;
7266 vmx->nested.current_vmcs12 = new_vmcs12;
7267 vmx->nested.current_vmcs12_page = page;
7268 if (enable_shadow_vmcs) {
7269 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7270 SECONDARY_EXEC_SHADOW_VMCS);
7271 vmcs_write64(VMCS_LINK_POINTER,
7272 __pa(vmx->nested.current_shadow_vmcs));
7273 vmx->nested.sync_shadow_vmcs = true;
7274 }
7275 }
7276
7277 nested_vmx_succeed(vcpu);
7278 skip_emulated_instruction(vcpu);
7279 return 1;
7280 }
7281
7282 /* Emulate the VMPTRST instruction */
7283 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7284 {
7285 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7286 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7287 gva_t vmcs_gva;
7288 struct x86_exception e;
7289
7290 if (!nested_vmx_check_permission(vcpu))
7291 return 1;
7292
7293 if (get_vmx_mem_address(vcpu, exit_qualification,
7294 vmx_instruction_info, true, &vmcs_gva))
7295 return 1;
7296 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7297 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7298 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7299 sizeof(u64), &e)) {
7300 kvm_inject_page_fault(vcpu, &e);
7301 return 1;
7302 }
7303 nested_vmx_succeed(vcpu);
7304 skip_emulated_instruction(vcpu);
7305 return 1;
7306 }
7307
7308 /* Emulate the INVEPT instruction */
7309 static int handle_invept(struct kvm_vcpu *vcpu)
7310 {
7311 struct vcpu_vmx *vmx = to_vmx(vcpu);
7312 u32 vmx_instruction_info, types;
7313 unsigned long type;
7314 gva_t gva;
7315 struct x86_exception e;
7316 struct {
7317 u64 eptp, gpa;
7318 } operand;
7319
7320 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7321 SECONDARY_EXEC_ENABLE_EPT) ||
7322 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7323 kvm_queue_exception(vcpu, UD_VECTOR);
7324 return 1;
7325 }
7326
7327 if (!nested_vmx_check_permission(vcpu))
7328 return 1;
7329
7330 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7331 kvm_queue_exception(vcpu, UD_VECTOR);
7332 return 1;
7333 }
7334
7335 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7336 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7337
7338 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7339
7340 if (!(types & (1UL << type))) {
7341 nested_vmx_failValid(vcpu,
7342 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7343 skip_emulated_instruction(vcpu);
7344 return 1;
7345 }
7346
7347 /* According to the Intel VMX instruction reference, the memory
7348 * operand is read even if it isn't needed (e.g., for type==global)
7349 */
7350 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7351 vmx_instruction_info, false, &gva))
7352 return 1;
7353 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7354 sizeof(operand), &e)) {
7355 kvm_inject_page_fault(vcpu, &e);
7356 return 1;
7357 }
7358
7359 switch (type) {
7360 case VMX_EPT_EXTENT_GLOBAL:
7361 kvm_mmu_sync_roots(vcpu);
7362 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7363 nested_vmx_succeed(vcpu);
7364 break;
7365 default:
7366 /* Trap single context invalidation invept calls */
7367 BUG_ON(1);
7368 break;
7369 }
7370
7371 skip_emulated_instruction(vcpu);
7372 return 1;
7373 }
7374
7375 static int handle_invvpid(struct kvm_vcpu *vcpu)
7376 {
7377 struct vcpu_vmx *vmx = to_vmx(vcpu);
7378 u32 vmx_instruction_info;
7379 unsigned long type, types;
7380 gva_t gva;
7381 struct x86_exception e;
7382 int vpid;
7383
7384 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7385 SECONDARY_EXEC_ENABLE_VPID) ||
7386 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7387 kvm_queue_exception(vcpu, UD_VECTOR);
7388 return 1;
7389 }
7390
7391 if (!nested_vmx_check_permission(vcpu))
7392 return 1;
7393
7394 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7395 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7396
7397 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7398
7399 if (!(types & (1UL << type))) {
7400 nested_vmx_failValid(vcpu,
7401 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7402 return 1;
7403 }
7404
7405 /* according to the intel vmx instruction reference, the memory
7406 * operand is read even if it isn't needed (e.g., for type==global)
7407 */
7408 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7409 vmx_instruction_info, false, &gva))
7410 return 1;
7411 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7412 sizeof(u32), &e)) {
7413 kvm_inject_page_fault(vcpu, &e);
7414 return 1;
7415 }
7416
7417 switch (type) {
7418 case VMX_VPID_EXTENT_ALL_CONTEXT:
7419 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7420 nested_vmx_succeed(vcpu);
7421 break;
7422 default:
7423 /* Trap single context invalidation invvpid calls */
7424 BUG_ON(1);
7425 break;
7426 }
7427
7428 skip_emulated_instruction(vcpu);
7429 return 1;
7430 }
7431
7432 static int handle_pml_full(struct kvm_vcpu *vcpu)
7433 {
7434 unsigned long exit_qualification;
7435
7436 trace_kvm_pml_full(vcpu->vcpu_id);
7437
7438 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7439
7440 /*
7441 * PML buffer FULL happened while executing iret from NMI,
7442 * "blocked by NMI" bit has to be set before next VM entry.
7443 */
7444 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7445 cpu_has_virtual_nmis() &&
7446 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7447 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7448 GUEST_INTR_STATE_NMI);
7449
7450 /*
7451 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7452 * here.., and there's no userspace involvement needed for PML.
7453 */
7454 return 1;
7455 }
7456
7457 static int handle_pcommit(struct kvm_vcpu *vcpu)
7458 {
7459 /* we never catch pcommit instruct for L1 guest. */
7460 WARN_ON(1);
7461 return 1;
7462 }
7463
7464 /*
7465 * The exit handlers return 1 if the exit was handled fully and guest execution
7466 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7467 * to be done to userspace and return 0.
7468 */
7469 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7470 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7471 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7472 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7473 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7474 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7475 [EXIT_REASON_CR_ACCESS] = handle_cr,
7476 [EXIT_REASON_DR_ACCESS] = handle_dr,
7477 [EXIT_REASON_CPUID] = handle_cpuid,
7478 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7479 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7480 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7481 [EXIT_REASON_HLT] = handle_halt,
7482 [EXIT_REASON_INVD] = handle_invd,
7483 [EXIT_REASON_INVLPG] = handle_invlpg,
7484 [EXIT_REASON_RDPMC] = handle_rdpmc,
7485 [EXIT_REASON_VMCALL] = handle_vmcall,
7486 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7487 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7488 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7489 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7490 [EXIT_REASON_VMREAD] = handle_vmread,
7491 [EXIT_REASON_VMRESUME] = handle_vmresume,
7492 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7493 [EXIT_REASON_VMOFF] = handle_vmoff,
7494 [EXIT_REASON_VMON] = handle_vmon,
7495 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7496 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7497 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7498 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7499 [EXIT_REASON_WBINVD] = handle_wbinvd,
7500 [EXIT_REASON_XSETBV] = handle_xsetbv,
7501 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7502 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7503 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7504 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7505 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7506 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7507 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7508 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7509 [EXIT_REASON_INVEPT] = handle_invept,
7510 [EXIT_REASON_INVVPID] = handle_invvpid,
7511 [EXIT_REASON_XSAVES] = handle_xsaves,
7512 [EXIT_REASON_XRSTORS] = handle_xrstors,
7513 [EXIT_REASON_PML_FULL] = handle_pml_full,
7514 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7515 };
7516
7517 static const int kvm_vmx_max_exit_handlers =
7518 ARRAY_SIZE(kvm_vmx_exit_handlers);
7519
7520 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7521 struct vmcs12 *vmcs12)
7522 {
7523 unsigned long exit_qualification;
7524 gpa_t bitmap, last_bitmap;
7525 unsigned int port;
7526 int size;
7527 u8 b;
7528
7529 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7530 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7531
7532 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7533
7534 port = exit_qualification >> 16;
7535 size = (exit_qualification & 7) + 1;
7536
7537 last_bitmap = (gpa_t)-1;
7538 b = -1;
7539
7540 while (size > 0) {
7541 if (port < 0x8000)
7542 bitmap = vmcs12->io_bitmap_a;
7543 else if (port < 0x10000)
7544 bitmap = vmcs12->io_bitmap_b;
7545 else
7546 return true;
7547 bitmap += (port & 0x7fff) / 8;
7548
7549 if (last_bitmap != bitmap)
7550 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7551 return true;
7552 if (b & (1 << (port & 7)))
7553 return true;
7554
7555 port++;
7556 size--;
7557 last_bitmap = bitmap;
7558 }
7559
7560 return false;
7561 }
7562
7563 /*
7564 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7565 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7566 * disinterest in the current event (read or write a specific MSR) by using an
7567 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7568 */
7569 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7570 struct vmcs12 *vmcs12, u32 exit_reason)
7571 {
7572 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7573 gpa_t bitmap;
7574
7575 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7576 return true;
7577
7578 /*
7579 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7580 * for the four combinations of read/write and low/high MSR numbers.
7581 * First we need to figure out which of the four to use:
7582 */
7583 bitmap = vmcs12->msr_bitmap;
7584 if (exit_reason == EXIT_REASON_MSR_WRITE)
7585 bitmap += 2048;
7586 if (msr_index >= 0xc0000000) {
7587 msr_index -= 0xc0000000;
7588 bitmap += 1024;
7589 }
7590
7591 /* Then read the msr_index'th bit from this bitmap: */
7592 if (msr_index < 1024*8) {
7593 unsigned char b;
7594 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7595 return true;
7596 return 1 & (b >> (msr_index & 7));
7597 } else
7598 return true; /* let L1 handle the wrong parameter */
7599 }
7600
7601 /*
7602 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7603 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7604 * intercept (via guest_host_mask etc.) the current event.
7605 */
7606 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7607 struct vmcs12 *vmcs12)
7608 {
7609 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7610 int cr = exit_qualification & 15;
7611 int reg = (exit_qualification >> 8) & 15;
7612 unsigned long val = kvm_register_readl(vcpu, reg);
7613
7614 switch ((exit_qualification >> 4) & 3) {
7615 case 0: /* mov to cr */
7616 switch (cr) {
7617 case 0:
7618 if (vmcs12->cr0_guest_host_mask &
7619 (val ^ vmcs12->cr0_read_shadow))
7620 return true;
7621 break;
7622 case 3:
7623 if ((vmcs12->cr3_target_count >= 1 &&
7624 vmcs12->cr3_target_value0 == val) ||
7625 (vmcs12->cr3_target_count >= 2 &&
7626 vmcs12->cr3_target_value1 == val) ||
7627 (vmcs12->cr3_target_count >= 3 &&
7628 vmcs12->cr3_target_value2 == val) ||
7629 (vmcs12->cr3_target_count >= 4 &&
7630 vmcs12->cr3_target_value3 == val))
7631 return false;
7632 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7633 return true;
7634 break;
7635 case 4:
7636 if (vmcs12->cr4_guest_host_mask &
7637 (vmcs12->cr4_read_shadow ^ val))
7638 return true;
7639 break;
7640 case 8:
7641 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7642 return true;
7643 break;
7644 }
7645 break;
7646 case 2: /* clts */
7647 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7648 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7649 return true;
7650 break;
7651 case 1: /* mov from cr */
7652 switch (cr) {
7653 case 3:
7654 if (vmcs12->cpu_based_vm_exec_control &
7655 CPU_BASED_CR3_STORE_EXITING)
7656 return true;
7657 break;
7658 case 8:
7659 if (vmcs12->cpu_based_vm_exec_control &
7660 CPU_BASED_CR8_STORE_EXITING)
7661 return true;
7662 break;
7663 }
7664 break;
7665 case 3: /* lmsw */
7666 /*
7667 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7668 * cr0. Other attempted changes are ignored, with no exit.
7669 */
7670 if (vmcs12->cr0_guest_host_mask & 0xe &
7671 (val ^ vmcs12->cr0_read_shadow))
7672 return true;
7673 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7674 !(vmcs12->cr0_read_shadow & 0x1) &&
7675 (val & 0x1))
7676 return true;
7677 break;
7678 }
7679 return false;
7680 }
7681
7682 /*
7683 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7684 * should handle it ourselves in L0 (and then continue L2). Only call this
7685 * when in is_guest_mode (L2).
7686 */
7687 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7688 {
7689 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7690 struct vcpu_vmx *vmx = to_vmx(vcpu);
7691 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7692 u32 exit_reason = vmx->exit_reason;
7693
7694 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7695 vmcs_readl(EXIT_QUALIFICATION),
7696 vmx->idt_vectoring_info,
7697 intr_info,
7698 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7699 KVM_ISA_VMX);
7700
7701 if (vmx->nested.nested_run_pending)
7702 return false;
7703
7704 if (unlikely(vmx->fail)) {
7705 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7706 vmcs_read32(VM_INSTRUCTION_ERROR));
7707 return true;
7708 }
7709
7710 switch (exit_reason) {
7711 case EXIT_REASON_EXCEPTION_NMI:
7712 if (!is_exception(intr_info))
7713 return false;
7714 else if (is_page_fault(intr_info))
7715 return enable_ept;
7716 else if (is_no_device(intr_info) &&
7717 !(vmcs12->guest_cr0 & X86_CR0_TS))
7718 return false;
7719 return vmcs12->exception_bitmap &
7720 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7721 case EXIT_REASON_EXTERNAL_INTERRUPT:
7722 return false;
7723 case EXIT_REASON_TRIPLE_FAULT:
7724 return true;
7725 case EXIT_REASON_PENDING_INTERRUPT:
7726 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7727 case EXIT_REASON_NMI_WINDOW:
7728 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7729 case EXIT_REASON_TASK_SWITCH:
7730 return true;
7731 case EXIT_REASON_CPUID:
7732 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7733 return false;
7734 return true;
7735 case EXIT_REASON_HLT:
7736 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7737 case EXIT_REASON_INVD:
7738 return true;
7739 case EXIT_REASON_INVLPG:
7740 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7741 case EXIT_REASON_RDPMC:
7742 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7743 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7744 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7745 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7746 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7747 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7748 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7749 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7750 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7751 /*
7752 * VMX instructions trap unconditionally. This allows L1 to
7753 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7754 */
7755 return true;
7756 case EXIT_REASON_CR_ACCESS:
7757 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7758 case EXIT_REASON_DR_ACCESS:
7759 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7760 case EXIT_REASON_IO_INSTRUCTION:
7761 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7762 case EXIT_REASON_MSR_READ:
7763 case EXIT_REASON_MSR_WRITE:
7764 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7765 case EXIT_REASON_INVALID_STATE:
7766 return true;
7767 case EXIT_REASON_MWAIT_INSTRUCTION:
7768 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7769 case EXIT_REASON_MONITOR_TRAP_FLAG:
7770 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7771 case EXIT_REASON_MONITOR_INSTRUCTION:
7772 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7773 case EXIT_REASON_PAUSE_INSTRUCTION:
7774 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7775 nested_cpu_has2(vmcs12,
7776 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7777 case EXIT_REASON_MCE_DURING_VMENTRY:
7778 return false;
7779 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7780 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7781 case EXIT_REASON_APIC_ACCESS:
7782 return nested_cpu_has2(vmcs12,
7783 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7784 case EXIT_REASON_APIC_WRITE:
7785 case EXIT_REASON_EOI_INDUCED:
7786 /* apic_write and eoi_induced should exit unconditionally. */
7787 return true;
7788 case EXIT_REASON_EPT_VIOLATION:
7789 /*
7790 * L0 always deals with the EPT violation. If nested EPT is
7791 * used, and the nested mmu code discovers that the address is
7792 * missing in the guest EPT table (EPT12), the EPT violation
7793 * will be injected with nested_ept_inject_page_fault()
7794 */
7795 return false;
7796 case EXIT_REASON_EPT_MISCONFIG:
7797 /*
7798 * L2 never uses directly L1's EPT, but rather L0's own EPT
7799 * table (shadow on EPT) or a merged EPT table that L0 built
7800 * (EPT on EPT). So any problems with the structure of the
7801 * table is L0's fault.
7802 */
7803 return false;
7804 case EXIT_REASON_WBINVD:
7805 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7806 case EXIT_REASON_XSETBV:
7807 return true;
7808 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7809 /*
7810 * This should never happen, since it is not possible to
7811 * set XSS to a non-zero value---neither in L1 nor in L2.
7812 * If if it were, XSS would have to be checked against
7813 * the XSS exit bitmap in vmcs12.
7814 */
7815 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7816 case EXIT_REASON_PCOMMIT:
7817 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7818 default:
7819 return true;
7820 }
7821 }
7822
7823 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7824 {
7825 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7826 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7827 }
7828
7829 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7830 {
7831 struct page *pml_pg;
7832
7833 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7834 if (!pml_pg)
7835 return -ENOMEM;
7836
7837 vmx->pml_pg = pml_pg;
7838
7839 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7840 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7841
7842 return 0;
7843 }
7844
7845 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7846 {
7847 if (vmx->pml_pg) {
7848 __free_page(vmx->pml_pg);
7849 vmx->pml_pg = NULL;
7850 }
7851 }
7852
7853 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7854 {
7855 struct vcpu_vmx *vmx = to_vmx(vcpu);
7856 u64 *pml_buf;
7857 u16 pml_idx;
7858
7859 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7860
7861 /* Do nothing if PML buffer is empty */
7862 if (pml_idx == (PML_ENTITY_NUM - 1))
7863 return;
7864
7865 /* PML index always points to next available PML buffer entity */
7866 if (pml_idx >= PML_ENTITY_NUM)
7867 pml_idx = 0;
7868 else
7869 pml_idx++;
7870
7871 pml_buf = page_address(vmx->pml_pg);
7872 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7873 u64 gpa;
7874
7875 gpa = pml_buf[pml_idx];
7876 WARN_ON(gpa & (PAGE_SIZE - 1));
7877 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7878 }
7879
7880 /* reset PML index */
7881 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7882 }
7883
7884 /*
7885 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7886 * Called before reporting dirty_bitmap to userspace.
7887 */
7888 static void kvm_flush_pml_buffers(struct kvm *kvm)
7889 {
7890 int i;
7891 struct kvm_vcpu *vcpu;
7892 /*
7893 * We only need to kick vcpu out of guest mode here, as PML buffer
7894 * is flushed at beginning of all VMEXITs, and it's obvious that only
7895 * vcpus running in guest are possible to have unflushed GPAs in PML
7896 * buffer.
7897 */
7898 kvm_for_each_vcpu(i, vcpu, kvm)
7899 kvm_vcpu_kick(vcpu);
7900 }
7901
7902 static void vmx_dump_sel(char *name, uint32_t sel)
7903 {
7904 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7905 name, vmcs_read32(sel),
7906 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7907 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7908 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7909 }
7910
7911 static void vmx_dump_dtsel(char *name, uint32_t limit)
7912 {
7913 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7914 name, vmcs_read32(limit),
7915 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7916 }
7917
7918 static void dump_vmcs(void)
7919 {
7920 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7921 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7922 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7923 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7924 u32 secondary_exec_control = 0;
7925 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7926 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7927 int i, n;
7928
7929 if (cpu_has_secondary_exec_ctrls())
7930 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7931
7932 pr_err("*** Guest State ***\n");
7933 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7934 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7935 vmcs_readl(CR0_GUEST_HOST_MASK));
7936 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7937 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7938 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7939 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7940 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7941 {
7942 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7943 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7944 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7945 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7946 }
7947 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7948 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7949 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7950 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7951 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7952 vmcs_readl(GUEST_SYSENTER_ESP),
7953 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7954 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7955 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7956 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7957 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7958 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7959 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7960 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7961 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7962 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7963 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7964 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7965 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7966 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7967 efer, vmcs_readl(GUEST_IA32_PAT));
7968 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7969 vmcs_readl(GUEST_IA32_DEBUGCTL),
7970 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7971 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7972 pr_err("PerfGlobCtl = 0x%016lx\n",
7973 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7974 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7975 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7976 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7977 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7978 vmcs_read32(GUEST_ACTIVITY_STATE));
7979 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7980 pr_err("InterruptStatus = %04x\n",
7981 vmcs_read16(GUEST_INTR_STATUS));
7982
7983 pr_err("*** Host State ***\n");
7984 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7985 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7986 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7987 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7988 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7989 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7990 vmcs_read16(HOST_TR_SELECTOR));
7991 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7992 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7993 vmcs_readl(HOST_TR_BASE));
7994 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7995 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7996 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7997 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7998 vmcs_readl(HOST_CR4));
7999 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8000 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8001 vmcs_read32(HOST_IA32_SYSENTER_CS),
8002 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8003 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8004 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
8005 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
8006 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8007 pr_err("PerfGlobCtl = 0x%016lx\n",
8008 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
8009
8010 pr_err("*** Control State ***\n");
8011 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8012 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8013 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8014 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8015 vmcs_read32(EXCEPTION_BITMAP),
8016 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8017 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8018 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8019 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8020 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8021 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8022 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8023 vmcs_read32(VM_EXIT_INTR_INFO),
8024 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8025 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8026 pr_err(" reason=%08x qualification=%016lx\n",
8027 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8028 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8029 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8030 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8031 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8032 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8033 pr_err("TSC Multiplier = 0x%016lx\n",
8034 vmcs_readl(TSC_MULTIPLIER));
8035 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8036 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8037 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8038 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8039 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8040 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8041 n = vmcs_read32(CR3_TARGET_COUNT);
8042 for (i = 0; i + 1 < n; i += 4)
8043 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8044 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8045 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8046 if (i < n)
8047 pr_err("CR3 target%u=%016lx\n",
8048 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8049 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8050 pr_err("PLE Gap=%08x Window=%08x\n",
8051 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8052 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8053 pr_err("Virtual processor ID = 0x%04x\n",
8054 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8055 }
8056
8057 /*
8058 * The guest has exited. See if we can fix it or if we need userspace
8059 * assistance.
8060 */
8061 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8062 {
8063 struct vcpu_vmx *vmx = to_vmx(vcpu);
8064 u32 exit_reason = vmx->exit_reason;
8065 u32 vectoring_info = vmx->idt_vectoring_info;
8066
8067 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8068
8069 /*
8070 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8071 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8072 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8073 * mode as if vcpus is in root mode, the PML buffer must has been
8074 * flushed already.
8075 */
8076 if (enable_pml)
8077 vmx_flush_pml_buffer(vcpu);
8078
8079 /* If guest state is invalid, start emulating */
8080 if (vmx->emulation_required)
8081 return handle_invalid_guest_state(vcpu);
8082
8083 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8084 nested_vmx_vmexit(vcpu, exit_reason,
8085 vmcs_read32(VM_EXIT_INTR_INFO),
8086 vmcs_readl(EXIT_QUALIFICATION));
8087 return 1;
8088 }
8089
8090 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8091 dump_vmcs();
8092 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8093 vcpu->run->fail_entry.hardware_entry_failure_reason
8094 = exit_reason;
8095 return 0;
8096 }
8097
8098 if (unlikely(vmx->fail)) {
8099 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8100 vcpu->run->fail_entry.hardware_entry_failure_reason
8101 = vmcs_read32(VM_INSTRUCTION_ERROR);
8102 return 0;
8103 }
8104
8105 /*
8106 * Note:
8107 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8108 * delivery event since it indicates guest is accessing MMIO.
8109 * The vm-exit can be triggered again after return to guest that
8110 * will cause infinite loop.
8111 */
8112 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8113 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8114 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8115 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8116 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8117 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8118 vcpu->run->internal.ndata = 2;
8119 vcpu->run->internal.data[0] = vectoring_info;
8120 vcpu->run->internal.data[1] = exit_reason;
8121 return 0;
8122 }
8123
8124 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8125 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8126 get_vmcs12(vcpu))))) {
8127 if (vmx_interrupt_allowed(vcpu)) {
8128 vmx->soft_vnmi_blocked = 0;
8129 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8130 vcpu->arch.nmi_pending) {
8131 /*
8132 * This CPU don't support us in finding the end of an
8133 * NMI-blocked window if the guest runs with IRQs
8134 * disabled. So we pull the trigger after 1 s of
8135 * futile waiting, but inform the user about this.
8136 */
8137 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8138 "state on VCPU %d after 1 s timeout\n",
8139 __func__, vcpu->vcpu_id);
8140 vmx->soft_vnmi_blocked = 0;
8141 }
8142 }
8143
8144 if (exit_reason < kvm_vmx_max_exit_handlers
8145 && kvm_vmx_exit_handlers[exit_reason])
8146 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8147 else {
8148 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8149 kvm_queue_exception(vcpu, UD_VECTOR);
8150 return 1;
8151 }
8152 }
8153
8154 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8155 {
8156 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8157
8158 if (is_guest_mode(vcpu) &&
8159 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8160 return;
8161
8162 if (irr == -1 || tpr < irr) {
8163 vmcs_write32(TPR_THRESHOLD, 0);
8164 return;
8165 }
8166
8167 vmcs_write32(TPR_THRESHOLD, irr);
8168 }
8169
8170 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8171 {
8172 u32 sec_exec_control;
8173
8174 /*
8175 * There is not point to enable virtualize x2apic without enable
8176 * apicv
8177 */
8178 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8179 !vmx_cpu_uses_apicv(vcpu))
8180 return;
8181
8182 if (!cpu_need_tpr_shadow(vcpu))
8183 return;
8184
8185 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8186
8187 if (set) {
8188 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8189 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8190 } else {
8191 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8192 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8193 }
8194 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8195
8196 vmx_set_msr_bitmap(vcpu);
8197 }
8198
8199 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8200 {
8201 struct vcpu_vmx *vmx = to_vmx(vcpu);
8202
8203 /*
8204 * Currently we do not handle the nested case where L2 has an
8205 * APIC access page of its own; that page is still pinned.
8206 * Hence, we skip the case where the VCPU is in guest mode _and_
8207 * L1 prepared an APIC access page for L2.
8208 *
8209 * For the case where L1 and L2 share the same APIC access page
8210 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8211 * in the vmcs12), this function will only update either the vmcs01
8212 * or the vmcs02. If the former, the vmcs02 will be updated by
8213 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8214 * the next L2->L1 exit.
8215 */
8216 if (!is_guest_mode(vcpu) ||
8217 !nested_cpu_has2(vmx->nested.current_vmcs12,
8218 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8219 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8220 }
8221
8222 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8223 {
8224 u16 status;
8225 u8 old;
8226
8227 if (isr == -1)
8228 isr = 0;
8229
8230 status = vmcs_read16(GUEST_INTR_STATUS);
8231 old = status >> 8;
8232 if (isr != old) {
8233 status &= 0xff;
8234 status |= isr << 8;
8235 vmcs_write16(GUEST_INTR_STATUS, status);
8236 }
8237 }
8238
8239 static void vmx_set_rvi(int vector)
8240 {
8241 u16 status;
8242 u8 old;
8243
8244 if (vector == -1)
8245 vector = 0;
8246
8247 status = vmcs_read16(GUEST_INTR_STATUS);
8248 old = (u8)status & 0xff;
8249 if ((u8)vector != old) {
8250 status &= ~0xff;
8251 status |= (u8)vector;
8252 vmcs_write16(GUEST_INTR_STATUS, status);
8253 }
8254 }
8255
8256 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8257 {
8258 if (!is_guest_mode(vcpu)) {
8259 vmx_set_rvi(max_irr);
8260 return;
8261 }
8262
8263 if (max_irr == -1)
8264 return;
8265
8266 /*
8267 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8268 * handles it.
8269 */
8270 if (nested_exit_on_intr(vcpu))
8271 return;
8272
8273 /*
8274 * Else, fall back to pre-APICv interrupt injection since L2
8275 * is run without virtual interrupt delivery.
8276 */
8277 if (!kvm_event_needs_reinjection(vcpu) &&
8278 vmx_interrupt_allowed(vcpu)) {
8279 kvm_queue_interrupt(vcpu, max_irr, false);
8280 vmx_inject_irq(vcpu);
8281 }
8282 }
8283
8284 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8285 {
8286 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8287 if (!vmx_cpu_uses_apicv(vcpu))
8288 return;
8289
8290 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8291 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8292 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8293 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8294 }
8295
8296 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8297 {
8298 u32 exit_intr_info;
8299
8300 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8301 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8302 return;
8303
8304 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8305 exit_intr_info = vmx->exit_intr_info;
8306
8307 /* Handle machine checks before interrupts are enabled */
8308 if (is_machine_check(exit_intr_info))
8309 kvm_machine_check();
8310
8311 /* We need to handle NMIs before interrupts are enabled */
8312 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8313 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8314 kvm_before_handle_nmi(&vmx->vcpu);
8315 asm("int $2");
8316 kvm_after_handle_nmi(&vmx->vcpu);
8317 }
8318 }
8319
8320 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8321 {
8322 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8323
8324 /*
8325 * If external interrupt exists, IF bit is set in rflags/eflags on the
8326 * interrupt stack frame, and interrupt will be enabled on a return
8327 * from interrupt handler.
8328 */
8329 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8330 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8331 unsigned int vector;
8332 unsigned long entry;
8333 gate_desc *desc;
8334 struct vcpu_vmx *vmx = to_vmx(vcpu);
8335 #ifdef CONFIG_X86_64
8336 unsigned long tmp;
8337 #endif
8338
8339 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8340 desc = (gate_desc *)vmx->host_idt_base + vector;
8341 entry = gate_offset(*desc);
8342 asm volatile(
8343 #ifdef CONFIG_X86_64
8344 "mov %%" _ASM_SP ", %[sp]\n\t"
8345 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8346 "push $%c[ss]\n\t"
8347 "push %[sp]\n\t"
8348 #endif
8349 "pushf\n\t"
8350 "orl $0x200, (%%" _ASM_SP ")\n\t"
8351 __ASM_SIZE(push) " $%c[cs]\n\t"
8352 "call *%[entry]\n\t"
8353 :
8354 #ifdef CONFIG_X86_64
8355 [sp]"=&r"(tmp)
8356 #endif
8357 :
8358 [entry]"r"(entry),
8359 [ss]"i"(__KERNEL_DS),
8360 [cs]"i"(__KERNEL_CS)
8361 );
8362 } else
8363 local_irq_enable();
8364 }
8365
8366 static bool vmx_has_high_real_mode_segbase(void)
8367 {
8368 return enable_unrestricted_guest || emulate_invalid_guest_state;
8369 }
8370
8371 static bool vmx_mpx_supported(void)
8372 {
8373 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8374 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8375 }
8376
8377 static bool vmx_xsaves_supported(void)
8378 {
8379 return vmcs_config.cpu_based_2nd_exec_ctrl &
8380 SECONDARY_EXEC_XSAVES;
8381 }
8382
8383 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8384 {
8385 u32 exit_intr_info;
8386 bool unblock_nmi;
8387 u8 vector;
8388 bool idtv_info_valid;
8389
8390 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8391
8392 if (cpu_has_virtual_nmis()) {
8393 if (vmx->nmi_known_unmasked)
8394 return;
8395 /*
8396 * Can't use vmx->exit_intr_info since we're not sure what
8397 * the exit reason is.
8398 */
8399 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8400 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8401 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8402 /*
8403 * SDM 3: 27.7.1.2 (September 2008)
8404 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8405 * a guest IRET fault.
8406 * SDM 3: 23.2.2 (September 2008)
8407 * Bit 12 is undefined in any of the following cases:
8408 * If the VM exit sets the valid bit in the IDT-vectoring
8409 * information field.
8410 * If the VM exit is due to a double fault.
8411 */
8412 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8413 vector != DF_VECTOR && !idtv_info_valid)
8414 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8415 GUEST_INTR_STATE_NMI);
8416 else
8417 vmx->nmi_known_unmasked =
8418 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8419 & GUEST_INTR_STATE_NMI);
8420 } else if (unlikely(vmx->soft_vnmi_blocked))
8421 vmx->vnmi_blocked_time +=
8422 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8423 }
8424
8425 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8426 u32 idt_vectoring_info,
8427 int instr_len_field,
8428 int error_code_field)
8429 {
8430 u8 vector;
8431 int type;
8432 bool idtv_info_valid;
8433
8434 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8435
8436 vcpu->arch.nmi_injected = false;
8437 kvm_clear_exception_queue(vcpu);
8438 kvm_clear_interrupt_queue(vcpu);
8439
8440 if (!idtv_info_valid)
8441 return;
8442
8443 kvm_make_request(KVM_REQ_EVENT, vcpu);
8444
8445 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8446 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8447
8448 switch (type) {
8449 case INTR_TYPE_NMI_INTR:
8450 vcpu->arch.nmi_injected = true;
8451 /*
8452 * SDM 3: 27.7.1.2 (September 2008)
8453 * Clear bit "block by NMI" before VM entry if a NMI
8454 * delivery faulted.
8455 */
8456 vmx_set_nmi_mask(vcpu, false);
8457 break;
8458 case INTR_TYPE_SOFT_EXCEPTION:
8459 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8460 /* fall through */
8461 case INTR_TYPE_HARD_EXCEPTION:
8462 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8463 u32 err = vmcs_read32(error_code_field);
8464 kvm_requeue_exception_e(vcpu, vector, err);
8465 } else
8466 kvm_requeue_exception(vcpu, vector);
8467 break;
8468 case INTR_TYPE_SOFT_INTR:
8469 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8470 /* fall through */
8471 case INTR_TYPE_EXT_INTR:
8472 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8473 break;
8474 default:
8475 break;
8476 }
8477 }
8478
8479 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8480 {
8481 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8482 VM_EXIT_INSTRUCTION_LEN,
8483 IDT_VECTORING_ERROR_CODE);
8484 }
8485
8486 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8487 {
8488 __vmx_complete_interrupts(vcpu,
8489 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8490 VM_ENTRY_INSTRUCTION_LEN,
8491 VM_ENTRY_EXCEPTION_ERROR_CODE);
8492
8493 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8494 }
8495
8496 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8497 {
8498 int i, nr_msrs;
8499 struct perf_guest_switch_msr *msrs;
8500
8501 msrs = perf_guest_get_msrs(&nr_msrs);
8502
8503 if (!msrs)
8504 return;
8505
8506 for (i = 0; i < nr_msrs; i++)
8507 if (msrs[i].host == msrs[i].guest)
8508 clear_atomic_switch_msr(vmx, msrs[i].msr);
8509 else
8510 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8511 msrs[i].host);
8512 }
8513
8514 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8515 {
8516 struct vcpu_vmx *vmx = to_vmx(vcpu);
8517 unsigned long debugctlmsr, cr4;
8518
8519 /* Record the guest's net vcpu time for enforced NMI injections. */
8520 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8521 vmx->entry_time = ktime_get();
8522
8523 /* Don't enter VMX if guest state is invalid, let the exit handler
8524 start emulation until we arrive back to a valid state */
8525 if (vmx->emulation_required)
8526 return;
8527
8528 if (vmx->ple_window_dirty) {
8529 vmx->ple_window_dirty = false;
8530 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8531 }
8532
8533 if (vmx->nested.sync_shadow_vmcs) {
8534 copy_vmcs12_to_shadow(vmx);
8535 vmx->nested.sync_shadow_vmcs = false;
8536 }
8537
8538 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8539 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8540 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8541 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8542
8543 cr4 = cr4_read_shadow();
8544 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8545 vmcs_writel(HOST_CR4, cr4);
8546 vmx->host_state.vmcs_host_cr4 = cr4;
8547 }
8548
8549 /* When single-stepping over STI and MOV SS, we must clear the
8550 * corresponding interruptibility bits in the guest state. Otherwise
8551 * vmentry fails as it then expects bit 14 (BS) in pending debug
8552 * exceptions being set, but that's not correct for the guest debugging
8553 * case. */
8554 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8555 vmx_set_interrupt_shadow(vcpu, 0);
8556
8557 atomic_switch_perf_msrs(vmx);
8558 debugctlmsr = get_debugctlmsr();
8559
8560 vmx->__launched = vmx->loaded_vmcs->launched;
8561 asm(
8562 /* Store host registers */
8563 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8564 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8565 "push %%" _ASM_CX " \n\t"
8566 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8567 "je 1f \n\t"
8568 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8569 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8570 "1: \n\t"
8571 /* Reload cr2 if changed */
8572 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8573 "mov %%cr2, %%" _ASM_DX " \n\t"
8574 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8575 "je 2f \n\t"
8576 "mov %%" _ASM_AX", %%cr2 \n\t"
8577 "2: \n\t"
8578 /* Check if vmlaunch of vmresume is needed */
8579 "cmpl $0, %c[launched](%0) \n\t"
8580 /* Load guest registers. Don't clobber flags. */
8581 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8582 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8583 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8584 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8585 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8586 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8587 #ifdef CONFIG_X86_64
8588 "mov %c[r8](%0), %%r8 \n\t"
8589 "mov %c[r9](%0), %%r9 \n\t"
8590 "mov %c[r10](%0), %%r10 \n\t"
8591 "mov %c[r11](%0), %%r11 \n\t"
8592 "mov %c[r12](%0), %%r12 \n\t"
8593 "mov %c[r13](%0), %%r13 \n\t"
8594 "mov %c[r14](%0), %%r14 \n\t"
8595 "mov %c[r15](%0), %%r15 \n\t"
8596 #endif
8597 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8598
8599 /* Enter guest mode */
8600 "jne 1f \n\t"
8601 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8602 "jmp 2f \n\t"
8603 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8604 "2: "
8605 /* Save guest registers, load host registers, keep flags */
8606 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8607 "pop %0 \n\t"
8608 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8609 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8610 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8611 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8612 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8613 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8614 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8615 #ifdef CONFIG_X86_64
8616 "mov %%r8, %c[r8](%0) \n\t"
8617 "mov %%r9, %c[r9](%0) \n\t"
8618 "mov %%r10, %c[r10](%0) \n\t"
8619 "mov %%r11, %c[r11](%0) \n\t"
8620 "mov %%r12, %c[r12](%0) \n\t"
8621 "mov %%r13, %c[r13](%0) \n\t"
8622 "mov %%r14, %c[r14](%0) \n\t"
8623 "mov %%r15, %c[r15](%0) \n\t"
8624 #endif
8625 "mov %%cr2, %%" _ASM_AX " \n\t"
8626 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8627
8628 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8629 "setbe %c[fail](%0) \n\t"
8630 ".pushsection .rodata \n\t"
8631 ".global vmx_return \n\t"
8632 "vmx_return: " _ASM_PTR " 2b \n\t"
8633 ".popsection"
8634 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8635 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8636 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8637 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8638 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8639 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8640 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8641 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8642 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8643 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8644 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8645 #ifdef CONFIG_X86_64
8646 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8647 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8648 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8649 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8650 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8651 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8652 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8653 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8654 #endif
8655 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8656 [wordsize]"i"(sizeof(ulong))
8657 : "cc", "memory"
8658 #ifdef CONFIG_X86_64
8659 , "rax", "rbx", "rdi", "rsi"
8660 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8661 #else
8662 , "eax", "ebx", "edi", "esi"
8663 #endif
8664 );
8665
8666 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8667 if (debugctlmsr)
8668 update_debugctlmsr(debugctlmsr);
8669
8670 #ifndef CONFIG_X86_64
8671 /*
8672 * The sysexit path does not restore ds/es, so we must set them to
8673 * a reasonable value ourselves.
8674 *
8675 * We can't defer this to vmx_load_host_state() since that function
8676 * may be executed in interrupt context, which saves and restore segments
8677 * around it, nullifying its effect.
8678 */
8679 loadsegment(ds, __USER_DS);
8680 loadsegment(es, __USER_DS);
8681 #endif
8682
8683 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8684 | (1 << VCPU_EXREG_RFLAGS)
8685 | (1 << VCPU_EXREG_PDPTR)
8686 | (1 << VCPU_EXREG_SEGMENTS)
8687 | (1 << VCPU_EXREG_CR3));
8688 vcpu->arch.regs_dirty = 0;
8689
8690 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8691
8692 vmx->loaded_vmcs->launched = 1;
8693
8694 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8695
8696 /*
8697 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8698 * we did not inject a still-pending event to L1 now because of
8699 * nested_run_pending, we need to re-enable this bit.
8700 */
8701 if (vmx->nested.nested_run_pending)
8702 kvm_make_request(KVM_REQ_EVENT, vcpu);
8703
8704 vmx->nested.nested_run_pending = 0;
8705
8706 vmx_complete_atomic_exit(vmx);
8707 vmx_recover_nmi_blocking(vmx);
8708 vmx_complete_interrupts(vmx);
8709 }
8710
8711 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8712 {
8713 struct vcpu_vmx *vmx = to_vmx(vcpu);
8714 int cpu;
8715
8716 if (vmx->loaded_vmcs == &vmx->vmcs01)
8717 return;
8718
8719 cpu = get_cpu();
8720 vmx->loaded_vmcs = &vmx->vmcs01;
8721 vmx_vcpu_put(vcpu);
8722 vmx_vcpu_load(vcpu, cpu);
8723 vcpu->cpu = cpu;
8724 put_cpu();
8725 }
8726
8727 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8728 {
8729 struct vcpu_vmx *vmx = to_vmx(vcpu);
8730
8731 if (enable_pml)
8732 vmx_destroy_pml_buffer(vmx);
8733 free_vpid(vmx->vpid);
8734 leave_guest_mode(vcpu);
8735 vmx_load_vmcs01(vcpu);
8736 free_nested(vmx);
8737 free_loaded_vmcs(vmx->loaded_vmcs);
8738 kfree(vmx->guest_msrs);
8739 kvm_vcpu_uninit(vcpu);
8740 kmem_cache_free(kvm_vcpu_cache, vmx);
8741 }
8742
8743 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8744 {
8745 int err;
8746 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8747 int cpu;
8748
8749 if (!vmx)
8750 return ERR_PTR(-ENOMEM);
8751
8752 vmx->vpid = allocate_vpid();
8753
8754 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8755 if (err)
8756 goto free_vcpu;
8757
8758 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8759 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8760 > PAGE_SIZE);
8761
8762 err = -ENOMEM;
8763 if (!vmx->guest_msrs) {
8764 goto uninit_vcpu;
8765 }
8766
8767 vmx->loaded_vmcs = &vmx->vmcs01;
8768 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8769 if (!vmx->loaded_vmcs->vmcs)
8770 goto free_msrs;
8771 if (!vmm_exclusive)
8772 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8773 loaded_vmcs_init(vmx->loaded_vmcs);
8774 if (!vmm_exclusive)
8775 kvm_cpu_vmxoff();
8776
8777 cpu = get_cpu();
8778 vmx_vcpu_load(&vmx->vcpu, cpu);
8779 vmx->vcpu.cpu = cpu;
8780 err = vmx_vcpu_setup(vmx);
8781 vmx_vcpu_put(&vmx->vcpu);
8782 put_cpu();
8783 if (err)
8784 goto free_vmcs;
8785 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8786 err = alloc_apic_access_page(kvm);
8787 if (err)
8788 goto free_vmcs;
8789 }
8790
8791 if (enable_ept) {
8792 if (!kvm->arch.ept_identity_map_addr)
8793 kvm->arch.ept_identity_map_addr =
8794 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8795 err = init_rmode_identity_map(kvm);
8796 if (err)
8797 goto free_vmcs;
8798 }
8799
8800 if (nested) {
8801 nested_vmx_setup_ctls_msrs(vmx);
8802 vmx->nested.vpid02 = allocate_vpid();
8803 }
8804
8805 vmx->nested.posted_intr_nv = -1;
8806 vmx->nested.current_vmptr = -1ull;
8807 vmx->nested.current_vmcs12 = NULL;
8808
8809 /*
8810 * If PML is turned on, failure on enabling PML just results in failure
8811 * of creating the vcpu, therefore we can simplify PML logic (by
8812 * avoiding dealing with cases, such as enabling PML partially on vcpus
8813 * for the guest, etc.
8814 */
8815 if (enable_pml) {
8816 err = vmx_create_pml_buffer(vmx);
8817 if (err)
8818 goto free_vmcs;
8819 }
8820
8821 return &vmx->vcpu;
8822
8823 free_vmcs:
8824 free_vpid(vmx->nested.vpid02);
8825 free_loaded_vmcs(vmx->loaded_vmcs);
8826 free_msrs:
8827 kfree(vmx->guest_msrs);
8828 uninit_vcpu:
8829 kvm_vcpu_uninit(&vmx->vcpu);
8830 free_vcpu:
8831 free_vpid(vmx->vpid);
8832 kmem_cache_free(kvm_vcpu_cache, vmx);
8833 return ERR_PTR(err);
8834 }
8835
8836 static void __init vmx_check_processor_compat(void *rtn)
8837 {
8838 struct vmcs_config vmcs_conf;
8839
8840 *(int *)rtn = 0;
8841 if (setup_vmcs_config(&vmcs_conf) < 0)
8842 *(int *)rtn = -EIO;
8843 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8844 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8845 smp_processor_id());
8846 *(int *)rtn = -EIO;
8847 }
8848 }
8849
8850 static int get_ept_level(void)
8851 {
8852 return VMX_EPT_DEFAULT_GAW + 1;
8853 }
8854
8855 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8856 {
8857 u8 cache;
8858 u64 ipat = 0;
8859
8860 /* For VT-d and EPT combination
8861 * 1. MMIO: always map as UC
8862 * 2. EPT with VT-d:
8863 * a. VT-d without snooping control feature: can't guarantee the
8864 * result, try to trust guest.
8865 * b. VT-d with snooping control feature: snooping control feature of
8866 * VT-d engine can guarantee the cache correctness. Just set it
8867 * to WB to keep consistent with host. So the same as item 3.
8868 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8869 * consistent with host MTRR
8870 */
8871 if (is_mmio) {
8872 cache = MTRR_TYPE_UNCACHABLE;
8873 goto exit;
8874 }
8875
8876 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8877 ipat = VMX_EPT_IPAT_BIT;
8878 cache = MTRR_TYPE_WRBACK;
8879 goto exit;
8880 }
8881
8882 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8883 ipat = VMX_EPT_IPAT_BIT;
8884 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8885 cache = MTRR_TYPE_WRBACK;
8886 else
8887 cache = MTRR_TYPE_UNCACHABLE;
8888 goto exit;
8889 }
8890
8891 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8892
8893 exit:
8894 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8895 }
8896
8897 static int vmx_get_lpage_level(void)
8898 {
8899 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8900 return PT_DIRECTORY_LEVEL;
8901 else
8902 /* For shadow and EPT supported 1GB page */
8903 return PT_PDPE_LEVEL;
8904 }
8905
8906 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8907 {
8908 /*
8909 * These bits in the secondary execution controls field
8910 * are dynamic, the others are mostly based on the hypervisor
8911 * architecture and the guest's CPUID. Do not touch the
8912 * dynamic bits.
8913 */
8914 u32 mask =
8915 SECONDARY_EXEC_SHADOW_VMCS |
8916 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8917 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8918
8919 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8920
8921 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8922 (new_ctl & ~mask) | (cur_ctl & mask));
8923 }
8924
8925 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8926 {
8927 struct kvm_cpuid_entry2 *best;
8928 struct vcpu_vmx *vmx = to_vmx(vcpu);
8929 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8930
8931 if (vmx_rdtscp_supported()) {
8932 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8933 if (!rdtscp_enabled)
8934 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8935
8936 if (nested) {
8937 if (rdtscp_enabled)
8938 vmx->nested.nested_vmx_secondary_ctls_high |=
8939 SECONDARY_EXEC_RDTSCP;
8940 else
8941 vmx->nested.nested_vmx_secondary_ctls_high &=
8942 ~SECONDARY_EXEC_RDTSCP;
8943 }
8944 }
8945
8946 /* Exposing INVPCID only when PCID is exposed */
8947 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8948 if (vmx_invpcid_supported() &&
8949 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8950 !guest_cpuid_has_pcid(vcpu))) {
8951 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8952
8953 if (best)
8954 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8955 }
8956
8957 if (cpu_has_secondary_exec_ctrls())
8958 vmcs_set_secondary_exec_control(secondary_exec_ctl);
8959
8960 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8961 if (guest_cpuid_has_pcommit(vcpu))
8962 vmx->nested.nested_vmx_secondary_ctls_high |=
8963 SECONDARY_EXEC_PCOMMIT;
8964 else
8965 vmx->nested.nested_vmx_secondary_ctls_high &=
8966 ~SECONDARY_EXEC_PCOMMIT;
8967 }
8968 }
8969
8970 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8971 {
8972 if (func == 1 && nested)
8973 entry->ecx |= bit(X86_FEATURE_VMX);
8974 }
8975
8976 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8977 struct x86_exception *fault)
8978 {
8979 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8980 u32 exit_reason;
8981
8982 if (fault->error_code & PFERR_RSVD_MASK)
8983 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8984 else
8985 exit_reason = EXIT_REASON_EPT_VIOLATION;
8986 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8987 vmcs12->guest_physical_address = fault->address;
8988 }
8989
8990 /* Callbacks for nested_ept_init_mmu_context: */
8991
8992 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8993 {
8994 /* return the page table to be shadowed - in our case, EPT12 */
8995 return get_vmcs12(vcpu)->ept_pointer;
8996 }
8997
8998 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8999 {
9000 WARN_ON(mmu_is_nested(vcpu));
9001 kvm_init_shadow_ept_mmu(vcpu,
9002 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9003 VMX_EPT_EXECUTE_ONLY_BIT);
9004 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9005 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9006 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9007
9008 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9009 }
9010
9011 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9012 {
9013 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9014 }
9015
9016 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9017 u16 error_code)
9018 {
9019 bool inequality, bit;
9020
9021 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9022 inequality =
9023 (error_code & vmcs12->page_fault_error_code_mask) !=
9024 vmcs12->page_fault_error_code_match;
9025 return inequality ^ bit;
9026 }
9027
9028 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9029 struct x86_exception *fault)
9030 {
9031 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9032
9033 WARN_ON(!is_guest_mode(vcpu));
9034
9035 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9036 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9037 vmcs_read32(VM_EXIT_INTR_INFO),
9038 vmcs_readl(EXIT_QUALIFICATION));
9039 else
9040 kvm_inject_page_fault(vcpu, fault);
9041 }
9042
9043 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9044 struct vmcs12 *vmcs12)
9045 {
9046 struct vcpu_vmx *vmx = to_vmx(vcpu);
9047 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9048
9049 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9050 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9051 vmcs12->apic_access_addr >> maxphyaddr)
9052 return false;
9053
9054 /*
9055 * Translate L1 physical address to host physical
9056 * address for vmcs02. Keep the page pinned, so this
9057 * physical address remains valid. We keep a reference
9058 * to it so we can release it later.
9059 */
9060 if (vmx->nested.apic_access_page) /* shouldn't happen */
9061 nested_release_page(vmx->nested.apic_access_page);
9062 vmx->nested.apic_access_page =
9063 nested_get_page(vcpu, vmcs12->apic_access_addr);
9064 }
9065
9066 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9067 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9068 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9069 return false;
9070
9071 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9072 nested_release_page(vmx->nested.virtual_apic_page);
9073 vmx->nested.virtual_apic_page =
9074 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9075
9076 /*
9077 * Failing the vm entry is _not_ what the processor does
9078 * but it's basically the only possibility we have.
9079 * We could still enter the guest if CR8 load exits are
9080 * enabled, CR8 store exits are enabled, and virtualize APIC
9081 * access is disabled; in this case the processor would never
9082 * use the TPR shadow and we could simply clear the bit from
9083 * the execution control. But such a configuration is useless,
9084 * so let's keep the code simple.
9085 */
9086 if (!vmx->nested.virtual_apic_page)
9087 return false;
9088 }
9089
9090 if (nested_cpu_has_posted_intr(vmcs12)) {
9091 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9092 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9093 return false;
9094
9095 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9096 kunmap(vmx->nested.pi_desc_page);
9097 nested_release_page(vmx->nested.pi_desc_page);
9098 }
9099 vmx->nested.pi_desc_page =
9100 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9101 if (!vmx->nested.pi_desc_page)
9102 return false;
9103
9104 vmx->nested.pi_desc =
9105 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9106 if (!vmx->nested.pi_desc) {
9107 nested_release_page_clean(vmx->nested.pi_desc_page);
9108 return false;
9109 }
9110 vmx->nested.pi_desc =
9111 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9112 (unsigned long)(vmcs12->posted_intr_desc_addr &
9113 (PAGE_SIZE - 1)));
9114 }
9115
9116 return true;
9117 }
9118
9119 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9120 {
9121 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9122 struct vcpu_vmx *vmx = to_vmx(vcpu);
9123
9124 if (vcpu->arch.virtual_tsc_khz == 0)
9125 return;
9126
9127 /* Make sure short timeouts reliably trigger an immediate vmexit.
9128 * hrtimer_start does not guarantee this. */
9129 if (preemption_timeout <= 1) {
9130 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9131 return;
9132 }
9133
9134 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9135 preemption_timeout *= 1000000;
9136 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9137 hrtimer_start(&vmx->nested.preemption_timer,
9138 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9139 }
9140
9141 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9142 struct vmcs12 *vmcs12)
9143 {
9144 int maxphyaddr;
9145 u64 addr;
9146
9147 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9148 return 0;
9149
9150 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9151 WARN_ON(1);
9152 return -EINVAL;
9153 }
9154 maxphyaddr = cpuid_maxphyaddr(vcpu);
9155
9156 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9157 ((addr + PAGE_SIZE) >> maxphyaddr))
9158 return -EINVAL;
9159
9160 return 0;
9161 }
9162
9163 /*
9164 * Merge L0's and L1's MSR bitmap, return false to indicate that
9165 * we do not use the hardware.
9166 */
9167 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9168 struct vmcs12 *vmcs12)
9169 {
9170 int msr;
9171 struct page *page;
9172 unsigned long *msr_bitmap;
9173
9174 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9175 return false;
9176
9177 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9178 if (!page) {
9179 WARN_ON(1);
9180 return false;
9181 }
9182 msr_bitmap = (unsigned long *)kmap(page);
9183 if (!msr_bitmap) {
9184 nested_release_page_clean(page);
9185 WARN_ON(1);
9186 return false;
9187 }
9188
9189 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9190 if (nested_cpu_has_apic_reg_virt(vmcs12))
9191 for (msr = 0x800; msr <= 0x8ff; msr++)
9192 nested_vmx_disable_intercept_for_msr(
9193 msr_bitmap,
9194 vmx_msr_bitmap_nested,
9195 msr, MSR_TYPE_R);
9196 /* TPR is allowed */
9197 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9198 vmx_msr_bitmap_nested,
9199 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9200 MSR_TYPE_R | MSR_TYPE_W);
9201 if (nested_cpu_has_vid(vmcs12)) {
9202 /* EOI and self-IPI are allowed */
9203 nested_vmx_disable_intercept_for_msr(
9204 msr_bitmap,
9205 vmx_msr_bitmap_nested,
9206 APIC_BASE_MSR + (APIC_EOI >> 4),
9207 MSR_TYPE_W);
9208 nested_vmx_disable_intercept_for_msr(
9209 msr_bitmap,
9210 vmx_msr_bitmap_nested,
9211 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9212 MSR_TYPE_W);
9213 }
9214 } else {
9215 /*
9216 * Enable reading intercept of all the x2apic
9217 * MSRs. We should not rely on vmcs12 to do any
9218 * optimizations here, it may have been modified
9219 * by L1.
9220 */
9221 for (msr = 0x800; msr <= 0x8ff; msr++)
9222 __vmx_enable_intercept_for_msr(
9223 vmx_msr_bitmap_nested,
9224 msr,
9225 MSR_TYPE_R);
9226
9227 __vmx_enable_intercept_for_msr(
9228 vmx_msr_bitmap_nested,
9229 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9230 MSR_TYPE_W);
9231 __vmx_enable_intercept_for_msr(
9232 vmx_msr_bitmap_nested,
9233 APIC_BASE_MSR + (APIC_EOI >> 4),
9234 MSR_TYPE_W);
9235 __vmx_enable_intercept_for_msr(
9236 vmx_msr_bitmap_nested,
9237 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9238 MSR_TYPE_W);
9239 }
9240 kunmap(page);
9241 nested_release_page_clean(page);
9242
9243 return true;
9244 }
9245
9246 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9247 struct vmcs12 *vmcs12)
9248 {
9249 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9250 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9251 !nested_cpu_has_vid(vmcs12) &&
9252 !nested_cpu_has_posted_intr(vmcs12))
9253 return 0;
9254
9255 /*
9256 * If virtualize x2apic mode is enabled,
9257 * virtualize apic access must be disabled.
9258 */
9259 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9260 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9261 return -EINVAL;
9262
9263 /*
9264 * If virtual interrupt delivery is enabled,
9265 * we must exit on external interrupts.
9266 */
9267 if (nested_cpu_has_vid(vmcs12) &&
9268 !nested_exit_on_intr(vcpu))
9269 return -EINVAL;
9270
9271 /*
9272 * bits 15:8 should be zero in posted_intr_nv,
9273 * the descriptor address has been already checked
9274 * in nested_get_vmcs12_pages.
9275 */
9276 if (nested_cpu_has_posted_intr(vmcs12) &&
9277 (!nested_cpu_has_vid(vmcs12) ||
9278 !nested_exit_intr_ack_set(vcpu) ||
9279 vmcs12->posted_intr_nv & 0xff00))
9280 return -EINVAL;
9281
9282 /* tpr shadow is needed by all apicv features. */
9283 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9284 return -EINVAL;
9285
9286 return 0;
9287 }
9288
9289 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9290 unsigned long count_field,
9291 unsigned long addr_field)
9292 {
9293 int maxphyaddr;
9294 u64 count, addr;
9295
9296 if (vmcs12_read_any(vcpu, count_field, &count) ||
9297 vmcs12_read_any(vcpu, addr_field, &addr)) {
9298 WARN_ON(1);
9299 return -EINVAL;
9300 }
9301 if (count == 0)
9302 return 0;
9303 maxphyaddr = cpuid_maxphyaddr(vcpu);
9304 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9305 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9306 pr_warn_ratelimited(
9307 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9308 addr_field, maxphyaddr, count, addr);
9309 return -EINVAL;
9310 }
9311 return 0;
9312 }
9313
9314 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9315 struct vmcs12 *vmcs12)
9316 {
9317 if (vmcs12->vm_exit_msr_load_count == 0 &&
9318 vmcs12->vm_exit_msr_store_count == 0 &&
9319 vmcs12->vm_entry_msr_load_count == 0)
9320 return 0; /* Fast path */
9321 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9322 VM_EXIT_MSR_LOAD_ADDR) ||
9323 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9324 VM_EXIT_MSR_STORE_ADDR) ||
9325 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9326 VM_ENTRY_MSR_LOAD_ADDR))
9327 return -EINVAL;
9328 return 0;
9329 }
9330
9331 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9332 struct vmx_msr_entry *e)
9333 {
9334 /* x2APIC MSR accesses are not allowed */
9335 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9336 return -EINVAL;
9337 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9338 e->index == MSR_IA32_UCODE_REV)
9339 return -EINVAL;
9340 if (e->reserved != 0)
9341 return -EINVAL;
9342 return 0;
9343 }
9344
9345 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9346 struct vmx_msr_entry *e)
9347 {
9348 if (e->index == MSR_FS_BASE ||
9349 e->index == MSR_GS_BASE ||
9350 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9351 nested_vmx_msr_check_common(vcpu, e))
9352 return -EINVAL;
9353 return 0;
9354 }
9355
9356 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9357 struct vmx_msr_entry *e)
9358 {
9359 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9360 nested_vmx_msr_check_common(vcpu, e))
9361 return -EINVAL;
9362 return 0;
9363 }
9364
9365 /*
9366 * Load guest's/host's msr at nested entry/exit.
9367 * return 0 for success, entry index for failure.
9368 */
9369 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9370 {
9371 u32 i;
9372 struct vmx_msr_entry e;
9373 struct msr_data msr;
9374
9375 msr.host_initiated = false;
9376 for (i = 0; i < count; i++) {
9377 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9378 &e, sizeof(e))) {
9379 pr_warn_ratelimited(
9380 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9381 __func__, i, gpa + i * sizeof(e));
9382 goto fail;
9383 }
9384 if (nested_vmx_load_msr_check(vcpu, &e)) {
9385 pr_warn_ratelimited(
9386 "%s check failed (%u, 0x%x, 0x%x)\n",
9387 __func__, i, e.index, e.reserved);
9388 goto fail;
9389 }
9390 msr.index = e.index;
9391 msr.data = e.value;
9392 if (kvm_set_msr(vcpu, &msr)) {
9393 pr_warn_ratelimited(
9394 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9395 __func__, i, e.index, e.value);
9396 goto fail;
9397 }
9398 }
9399 return 0;
9400 fail:
9401 return i + 1;
9402 }
9403
9404 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9405 {
9406 u32 i;
9407 struct vmx_msr_entry e;
9408
9409 for (i = 0; i < count; i++) {
9410 struct msr_data msr_info;
9411 if (kvm_vcpu_read_guest(vcpu,
9412 gpa + i * sizeof(e),
9413 &e, 2 * sizeof(u32))) {
9414 pr_warn_ratelimited(
9415 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9416 __func__, i, gpa + i * sizeof(e));
9417 return -EINVAL;
9418 }
9419 if (nested_vmx_store_msr_check(vcpu, &e)) {
9420 pr_warn_ratelimited(
9421 "%s check failed (%u, 0x%x, 0x%x)\n",
9422 __func__, i, e.index, e.reserved);
9423 return -EINVAL;
9424 }
9425 msr_info.host_initiated = false;
9426 msr_info.index = e.index;
9427 if (kvm_get_msr(vcpu, &msr_info)) {
9428 pr_warn_ratelimited(
9429 "%s cannot read MSR (%u, 0x%x)\n",
9430 __func__, i, e.index);
9431 return -EINVAL;
9432 }
9433 if (kvm_vcpu_write_guest(vcpu,
9434 gpa + i * sizeof(e) +
9435 offsetof(struct vmx_msr_entry, value),
9436 &msr_info.data, sizeof(msr_info.data))) {
9437 pr_warn_ratelimited(
9438 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9439 __func__, i, e.index, msr_info.data);
9440 return -EINVAL;
9441 }
9442 }
9443 return 0;
9444 }
9445
9446 /*
9447 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9448 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9449 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9450 * guest in a way that will both be appropriate to L1's requests, and our
9451 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9452 * function also has additional necessary side-effects, like setting various
9453 * vcpu->arch fields.
9454 */
9455 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9456 {
9457 struct vcpu_vmx *vmx = to_vmx(vcpu);
9458 u32 exec_control;
9459
9460 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9461 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9462 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9463 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9464 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9465 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9466 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9467 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9468 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9469 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9470 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9471 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9472 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9473 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9474 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9475 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9476 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9477 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9478 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9479 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9480 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9481 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9482 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9483 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9484 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9485 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9486 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9487 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9488 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9489 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9490 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9491 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9492 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9493 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9494 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9495 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9496
9497 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9498 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9499 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9500 } else {
9501 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9502 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9503 }
9504 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9505 vmcs12->vm_entry_intr_info_field);
9506 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9507 vmcs12->vm_entry_exception_error_code);
9508 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9509 vmcs12->vm_entry_instruction_len);
9510 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9511 vmcs12->guest_interruptibility_info);
9512 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9513 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9514 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9515 vmcs12->guest_pending_dbg_exceptions);
9516 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9517 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9518
9519 if (nested_cpu_has_xsaves(vmcs12))
9520 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9521 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9522
9523 exec_control = vmcs12->pin_based_vm_exec_control;
9524 exec_control |= vmcs_config.pin_based_exec_ctrl;
9525 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9526
9527 if (nested_cpu_has_posted_intr(vmcs12)) {
9528 /*
9529 * Note that we use L0's vector here and in
9530 * vmx_deliver_nested_posted_interrupt.
9531 */
9532 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9533 vmx->nested.pi_pending = false;
9534 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9535 vmcs_write64(POSTED_INTR_DESC_ADDR,
9536 page_to_phys(vmx->nested.pi_desc_page) +
9537 (unsigned long)(vmcs12->posted_intr_desc_addr &
9538 (PAGE_SIZE - 1)));
9539 } else
9540 exec_control &= ~PIN_BASED_POSTED_INTR;
9541
9542 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9543
9544 vmx->nested.preemption_timer_expired = false;
9545 if (nested_cpu_has_preemption_timer(vmcs12))
9546 vmx_start_preemption_timer(vcpu);
9547
9548 /*
9549 * Whether page-faults are trapped is determined by a combination of
9550 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9551 * If enable_ept, L0 doesn't care about page faults and we should
9552 * set all of these to L1's desires. However, if !enable_ept, L0 does
9553 * care about (at least some) page faults, and because it is not easy
9554 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9555 * to exit on each and every L2 page fault. This is done by setting
9556 * MASK=MATCH=0 and (see below) EB.PF=1.
9557 * Note that below we don't need special code to set EB.PF beyond the
9558 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9559 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9560 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9561 *
9562 * A problem with this approach (when !enable_ept) is that L1 may be
9563 * injected with more page faults than it asked for. This could have
9564 * caused problems, but in practice existing hypervisors don't care.
9565 * To fix this, we will need to emulate the PFEC checking (on the L1
9566 * page tables), using walk_addr(), when injecting PFs to L1.
9567 */
9568 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9569 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9570 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9571 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9572
9573 if (cpu_has_secondary_exec_ctrls()) {
9574 exec_control = vmx_secondary_exec_control(vmx);
9575
9576 /* Take the following fields only from vmcs12 */
9577 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9578 SECONDARY_EXEC_RDTSCP |
9579 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9580 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9581 SECONDARY_EXEC_PCOMMIT);
9582 if (nested_cpu_has(vmcs12,
9583 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9584 exec_control |= vmcs12->secondary_vm_exec_control;
9585
9586 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9587 /*
9588 * If translation failed, no matter: This feature asks
9589 * to exit when accessing the given address, and if it
9590 * can never be accessed, this feature won't do
9591 * anything anyway.
9592 */
9593 if (!vmx->nested.apic_access_page)
9594 exec_control &=
9595 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9596 else
9597 vmcs_write64(APIC_ACCESS_ADDR,
9598 page_to_phys(vmx->nested.apic_access_page));
9599 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9600 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9601 exec_control |=
9602 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9603 kvm_vcpu_reload_apic_access_page(vcpu);
9604 }
9605
9606 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9607 vmcs_write64(EOI_EXIT_BITMAP0,
9608 vmcs12->eoi_exit_bitmap0);
9609 vmcs_write64(EOI_EXIT_BITMAP1,
9610 vmcs12->eoi_exit_bitmap1);
9611 vmcs_write64(EOI_EXIT_BITMAP2,
9612 vmcs12->eoi_exit_bitmap2);
9613 vmcs_write64(EOI_EXIT_BITMAP3,
9614 vmcs12->eoi_exit_bitmap3);
9615 vmcs_write16(GUEST_INTR_STATUS,
9616 vmcs12->guest_intr_status);
9617 }
9618
9619 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9620 }
9621
9622
9623 /*
9624 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9625 * Some constant fields are set here by vmx_set_constant_host_state().
9626 * Other fields are different per CPU, and will be set later when
9627 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9628 */
9629 vmx_set_constant_host_state(vmx);
9630
9631 /*
9632 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9633 * entry, but only if the current (host) sp changed from the value
9634 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9635 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9636 * here we just force the write to happen on entry.
9637 */
9638 vmx->host_rsp = 0;
9639
9640 exec_control = vmx_exec_control(vmx); /* L0's desires */
9641 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9642 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9643 exec_control &= ~CPU_BASED_TPR_SHADOW;
9644 exec_control |= vmcs12->cpu_based_vm_exec_control;
9645
9646 if (exec_control & CPU_BASED_TPR_SHADOW) {
9647 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9648 page_to_phys(vmx->nested.virtual_apic_page));
9649 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9650 }
9651
9652 if (cpu_has_vmx_msr_bitmap() &&
9653 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9654 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9655 /* MSR_BITMAP will be set by following vmx_set_efer. */
9656 } else
9657 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9658
9659 /*
9660 * Merging of IO bitmap not currently supported.
9661 * Rather, exit every time.
9662 */
9663 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9664 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9665
9666 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9667
9668 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9669 * bitwise-or of what L1 wants to trap for L2, and what we want to
9670 * trap. Note that CR0.TS also needs updating - we do this later.
9671 */
9672 update_exception_bitmap(vcpu);
9673 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9674 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9675
9676 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9677 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9678 * bits are further modified by vmx_set_efer() below.
9679 */
9680 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9681
9682 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9683 * emulated by vmx_set_efer(), below.
9684 */
9685 vm_entry_controls_init(vmx,
9686 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9687 ~VM_ENTRY_IA32E_MODE) |
9688 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9689
9690 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9691 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9692 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9693 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9694 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9695
9696
9697 set_cr4_guest_host_mask(vmx);
9698
9699 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9700 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9701
9702 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9703 vmcs_write64(TSC_OFFSET,
9704 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9705 else
9706 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9707
9708 if (enable_vpid) {
9709 /*
9710 * There is no direct mapping between vpid02 and vpid12, the
9711 * vpid02 is per-vCPU for L0 and reused while the value of
9712 * vpid12 is changed w/ one invvpid during nested vmentry.
9713 * The vpid12 is allocated by L1 for L2, so it will not
9714 * influence global bitmap(for vpid01 and vpid02 allocation)
9715 * even if spawn a lot of nested vCPUs.
9716 */
9717 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9718 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9719 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9720 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9721 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9722 }
9723 } else {
9724 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9725 vmx_flush_tlb(vcpu);
9726 }
9727
9728 }
9729
9730 if (nested_cpu_has_ept(vmcs12)) {
9731 kvm_mmu_unload(vcpu);
9732 nested_ept_init_mmu_context(vcpu);
9733 }
9734
9735 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9736 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9737 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9738 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9739 else
9740 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9741 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9742 vmx_set_efer(vcpu, vcpu->arch.efer);
9743
9744 /*
9745 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9746 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9747 * The CR0_READ_SHADOW is what L2 should have expected to read given
9748 * the specifications by L1; It's not enough to take
9749 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9750 * have more bits than L1 expected.
9751 */
9752 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9753 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9754
9755 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9756 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9757
9758 /* shadow page tables on either EPT or shadow page tables */
9759 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9760 kvm_mmu_reset_context(vcpu);
9761
9762 if (!enable_ept)
9763 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9764
9765 /*
9766 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9767 */
9768 if (enable_ept) {
9769 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9770 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9771 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9772 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9773 }
9774
9775 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9776 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9777 }
9778
9779 /*
9780 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9781 * for running an L2 nested guest.
9782 */
9783 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9784 {
9785 struct vmcs12 *vmcs12;
9786 struct vcpu_vmx *vmx = to_vmx(vcpu);
9787 int cpu;
9788 struct loaded_vmcs *vmcs02;
9789 bool ia32e;
9790 u32 msr_entry_idx;
9791
9792 if (!nested_vmx_check_permission(vcpu) ||
9793 !nested_vmx_check_vmcs12(vcpu))
9794 return 1;
9795
9796 skip_emulated_instruction(vcpu);
9797 vmcs12 = get_vmcs12(vcpu);
9798
9799 if (enable_shadow_vmcs)
9800 copy_shadow_to_vmcs12(vmx);
9801
9802 /*
9803 * The nested entry process starts with enforcing various prerequisites
9804 * on vmcs12 as required by the Intel SDM, and act appropriately when
9805 * they fail: As the SDM explains, some conditions should cause the
9806 * instruction to fail, while others will cause the instruction to seem
9807 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9808 * To speed up the normal (success) code path, we should avoid checking
9809 * for misconfigurations which will anyway be caught by the processor
9810 * when using the merged vmcs02.
9811 */
9812 if (vmcs12->launch_state == launch) {
9813 nested_vmx_failValid(vcpu,
9814 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9815 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9816 return 1;
9817 }
9818
9819 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9820 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9821 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9822 return 1;
9823 }
9824
9825 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9826 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9827 return 1;
9828 }
9829
9830 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9831 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9832 return 1;
9833 }
9834
9835 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9836 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9837 return 1;
9838 }
9839
9840 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9841 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9842 return 1;
9843 }
9844
9845 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9846 vmx->nested.nested_vmx_true_procbased_ctls_low,
9847 vmx->nested.nested_vmx_procbased_ctls_high) ||
9848 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9849 vmx->nested.nested_vmx_secondary_ctls_low,
9850 vmx->nested.nested_vmx_secondary_ctls_high) ||
9851 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9852 vmx->nested.nested_vmx_pinbased_ctls_low,
9853 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9854 !vmx_control_verify(vmcs12->vm_exit_controls,
9855 vmx->nested.nested_vmx_true_exit_ctls_low,
9856 vmx->nested.nested_vmx_exit_ctls_high) ||
9857 !vmx_control_verify(vmcs12->vm_entry_controls,
9858 vmx->nested.nested_vmx_true_entry_ctls_low,
9859 vmx->nested.nested_vmx_entry_ctls_high))
9860 {
9861 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9862 return 1;
9863 }
9864
9865 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9866 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9867 nested_vmx_failValid(vcpu,
9868 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9869 return 1;
9870 }
9871
9872 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9873 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9874 nested_vmx_entry_failure(vcpu, vmcs12,
9875 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9876 return 1;
9877 }
9878 if (vmcs12->vmcs_link_pointer != -1ull) {
9879 nested_vmx_entry_failure(vcpu, vmcs12,
9880 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9881 return 1;
9882 }
9883
9884 /*
9885 * If the load IA32_EFER VM-entry control is 1, the following checks
9886 * are performed on the field for the IA32_EFER MSR:
9887 * - Bits reserved in the IA32_EFER MSR must be 0.
9888 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9889 * the IA-32e mode guest VM-exit control. It must also be identical
9890 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9891 * CR0.PG) is 1.
9892 */
9893 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9894 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9895 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9896 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9897 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9898 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9899 nested_vmx_entry_failure(vcpu, vmcs12,
9900 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9901 return 1;
9902 }
9903 }
9904
9905 /*
9906 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9907 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9908 * the values of the LMA and LME bits in the field must each be that of
9909 * the host address-space size VM-exit control.
9910 */
9911 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9912 ia32e = (vmcs12->vm_exit_controls &
9913 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9914 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9915 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9916 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9917 nested_vmx_entry_failure(vcpu, vmcs12,
9918 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9919 return 1;
9920 }
9921 }
9922
9923 /*
9924 * We're finally done with prerequisite checking, and can start with
9925 * the nested entry.
9926 */
9927
9928 vmcs02 = nested_get_current_vmcs02(vmx);
9929 if (!vmcs02)
9930 return -ENOMEM;
9931
9932 enter_guest_mode(vcpu);
9933
9934 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9935
9936 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9937 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9938
9939 cpu = get_cpu();
9940 vmx->loaded_vmcs = vmcs02;
9941 vmx_vcpu_put(vcpu);
9942 vmx_vcpu_load(vcpu, cpu);
9943 vcpu->cpu = cpu;
9944 put_cpu();
9945
9946 vmx_segment_cache_clear(vmx);
9947
9948 prepare_vmcs02(vcpu, vmcs12);
9949
9950 msr_entry_idx = nested_vmx_load_msr(vcpu,
9951 vmcs12->vm_entry_msr_load_addr,
9952 vmcs12->vm_entry_msr_load_count);
9953 if (msr_entry_idx) {
9954 leave_guest_mode(vcpu);
9955 vmx_load_vmcs01(vcpu);
9956 nested_vmx_entry_failure(vcpu, vmcs12,
9957 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9958 return 1;
9959 }
9960
9961 vmcs12->launch_state = 1;
9962
9963 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9964 return kvm_vcpu_halt(vcpu);
9965
9966 vmx->nested.nested_run_pending = 1;
9967
9968 /*
9969 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9970 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9971 * returned as far as L1 is concerned. It will only return (and set
9972 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9973 */
9974 return 1;
9975 }
9976
9977 /*
9978 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9979 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9980 * This function returns the new value we should put in vmcs12.guest_cr0.
9981 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9982 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9983 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9984 * didn't trap the bit, because if L1 did, so would L0).
9985 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9986 * been modified by L2, and L1 knows it. So just leave the old value of
9987 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9988 * isn't relevant, because if L0 traps this bit it can set it to anything.
9989 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9990 * changed these bits, and therefore they need to be updated, but L0
9991 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9992 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9993 */
9994 static inline unsigned long
9995 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9996 {
9997 return
9998 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9999 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10000 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10001 vcpu->arch.cr0_guest_owned_bits));
10002 }
10003
10004 static inline unsigned long
10005 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10006 {
10007 return
10008 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10009 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10010 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10011 vcpu->arch.cr4_guest_owned_bits));
10012 }
10013
10014 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10015 struct vmcs12 *vmcs12)
10016 {
10017 u32 idt_vectoring;
10018 unsigned int nr;
10019
10020 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10021 nr = vcpu->arch.exception.nr;
10022 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10023
10024 if (kvm_exception_is_soft(nr)) {
10025 vmcs12->vm_exit_instruction_len =
10026 vcpu->arch.event_exit_inst_len;
10027 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10028 } else
10029 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10030
10031 if (vcpu->arch.exception.has_error_code) {
10032 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10033 vmcs12->idt_vectoring_error_code =
10034 vcpu->arch.exception.error_code;
10035 }
10036
10037 vmcs12->idt_vectoring_info_field = idt_vectoring;
10038 } else if (vcpu->arch.nmi_injected) {
10039 vmcs12->idt_vectoring_info_field =
10040 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10041 } else if (vcpu->arch.interrupt.pending) {
10042 nr = vcpu->arch.interrupt.nr;
10043 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10044
10045 if (vcpu->arch.interrupt.soft) {
10046 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10047 vmcs12->vm_entry_instruction_len =
10048 vcpu->arch.event_exit_inst_len;
10049 } else
10050 idt_vectoring |= INTR_TYPE_EXT_INTR;
10051
10052 vmcs12->idt_vectoring_info_field = idt_vectoring;
10053 }
10054 }
10055
10056 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10057 {
10058 struct vcpu_vmx *vmx = to_vmx(vcpu);
10059
10060 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10061 vmx->nested.preemption_timer_expired) {
10062 if (vmx->nested.nested_run_pending)
10063 return -EBUSY;
10064 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10065 return 0;
10066 }
10067
10068 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10069 if (vmx->nested.nested_run_pending ||
10070 vcpu->arch.interrupt.pending)
10071 return -EBUSY;
10072 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10073 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10074 INTR_INFO_VALID_MASK, 0);
10075 /*
10076 * The NMI-triggered VM exit counts as injection:
10077 * clear this one and block further NMIs.
10078 */
10079 vcpu->arch.nmi_pending = 0;
10080 vmx_set_nmi_mask(vcpu, true);
10081 return 0;
10082 }
10083
10084 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10085 nested_exit_on_intr(vcpu)) {
10086 if (vmx->nested.nested_run_pending)
10087 return -EBUSY;
10088 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10089 return 0;
10090 }
10091
10092 return vmx_complete_nested_posted_interrupt(vcpu);
10093 }
10094
10095 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10096 {
10097 ktime_t remaining =
10098 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10099 u64 value;
10100
10101 if (ktime_to_ns(remaining) <= 0)
10102 return 0;
10103
10104 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10105 do_div(value, 1000000);
10106 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10107 }
10108
10109 /*
10110 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10111 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10112 * and this function updates it to reflect the changes to the guest state while
10113 * L2 was running (and perhaps made some exits which were handled directly by L0
10114 * without going back to L1), and to reflect the exit reason.
10115 * Note that we do not have to copy here all VMCS fields, just those that
10116 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10117 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10118 * which already writes to vmcs12 directly.
10119 */
10120 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10121 u32 exit_reason, u32 exit_intr_info,
10122 unsigned long exit_qualification)
10123 {
10124 /* update guest state fields: */
10125 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10126 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10127
10128 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10129 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10130 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10131
10132 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10133 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10134 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10135 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10136 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10137 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10138 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10139 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10140 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10141 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10142 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10143 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10144 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10145 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10146 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10147 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10148 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10149 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10150 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10151 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10152 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10153 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10154 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10155 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10156 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10157 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10158 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10159 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10160 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10161 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10162 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10163 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10164 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10165 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10166 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10167 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10168
10169 vmcs12->guest_interruptibility_info =
10170 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10171 vmcs12->guest_pending_dbg_exceptions =
10172 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10173 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10174 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10175 else
10176 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10177
10178 if (nested_cpu_has_preemption_timer(vmcs12)) {
10179 if (vmcs12->vm_exit_controls &
10180 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10181 vmcs12->vmx_preemption_timer_value =
10182 vmx_get_preemption_timer_value(vcpu);
10183 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10184 }
10185
10186 /*
10187 * In some cases (usually, nested EPT), L2 is allowed to change its
10188 * own CR3 without exiting. If it has changed it, we must keep it.
10189 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10190 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10191 *
10192 * Additionally, restore L2's PDPTR to vmcs12.
10193 */
10194 if (enable_ept) {
10195 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10196 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10197 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10198 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10199 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10200 }
10201
10202 if (nested_cpu_has_vid(vmcs12))
10203 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10204
10205 vmcs12->vm_entry_controls =
10206 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10207 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10208
10209 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10210 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10211 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10212 }
10213
10214 /* TODO: These cannot have changed unless we have MSR bitmaps and
10215 * the relevant bit asks not to trap the change */
10216 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10217 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10218 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10219 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10220 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10221 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10222 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10223 if (vmx_mpx_supported())
10224 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10225 if (nested_cpu_has_xsaves(vmcs12))
10226 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10227
10228 /* update exit information fields: */
10229
10230 vmcs12->vm_exit_reason = exit_reason;
10231 vmcs12->exit_qualification = exit_qualification;
10232
10233 vmcs12->vm_exit_intr_info = exit_intr_info;
10234 if ((vmcs12->vm_exit_intr_info &
10235 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10236 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10237 vmcs12->vm_exit_intr_error_code =
10238 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10239 vmcs12->idt_vectoring_info_field = 0;
10240 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10241 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10242
10243 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10244 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10245 * instead of reading the real value. */
10246 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10247
10248 /*
10249 * Transfer the event that L0 or L1 may wanted to inject into
10250 * L2 to IDT_VECTORING_INFO_FIELD.
10251 */
10252 vmcs12_save_pending_event(vcpu, vmcs12);
10253 }
10254
10255 /*
10256 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10257 * preserved above and would only end up incorrectly in L1.
10258 */
10259 vcpu->arch.nmi_injected = false;
10260 kvm_clear_exception_queue(vcpu);
10261 kvm_clear_interrupt_queue(vcpu);
10262 }
10263
10264 /*
10265 * A part of what we need to when the nested L2 guest exits and we want to
10266 * run its L1 parent, is to reset L1's guest state to the host state specified
10267 * in vmcs12.
10268 * This function is to be called not only on normal nested exit, but also on
10269 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10270 * Failures During or After Loading Guest State").
10271 * This function should be called when the active VMCS is L1's (vmcs01).
10272 */
10273 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10274 struct vmcs12 *vmcs12)
10275 {
10276 struct kvm_segment seg;
10277
10278 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10279 vcpu->arch.efer = vmcs12->host_ia32_efer;
10280 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10281 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10282 else
10283 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10284 vmx_set_efer(vcpu, vcpu->arch.efer);
10285
10286 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10287 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10288 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10289 /*
10290 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10291 * actually changed, because it depends on the current state of
10292 * fpu_active (which may have changed).
10293 * Note that vmx_set_cr0 refers to efer set above.
10294 */
10295 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10296 /*
10297 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10298 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10299 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10300 */
10301 update_exception_bitmap(vcpu);
10302 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10303 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10304
10305 /*
10306 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10307 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10308 */
10309 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10310 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10311
10312 nested_ept_uninit_mmu_context(vcpu);
10313
10314 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10315 kvm_mmu_reset_context(vcpu);
10316
10317 if (!enable_ept)
10318 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10319
10320 if (enable_vpid) {
10321 /*
10322 * Trivially support vpid by letting L2s share their parent
10323 * L1's vpid. TODO: move to a more elaborate solution, giving
10324 * each L2 its own vpid and exposing the vpid feature to L1.
10325 */
10326 vmx_flush_tlb(vcpu);
10327 }
10328
10329
10330 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10331 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10332 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10333 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10334 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10335
10336 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10337 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10338 vmcs_write64(GUEST_BNDCFGS, 0);
10339
10340 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10341 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10342 vcpu->arch.pat = vmcs12->host_ia32_pat;
10343 }
10344 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10345 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10346 vmcs12->host_ia32_perf_global_ctrl);
10347
10348 /* Set L1 segment info according to Intel SDM
10349 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10350 seg = (struct kvm_segment) {
10351 .base = 0,
10352 .limit = 0xFFFFFFFF,
10353 .selector = vmcs12->host_cs_selector,
10354 .type = 11,
10355 .present = 1,
10356 .s = 1,
10357 .g = 1
10358 };
10359 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10360 seg.l = 1;
10361 else
10362 seg.db = 1;
10363 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10364 seg = (struct kvm_segment) {
10365 .base = 0,
10366 .limit = 0xFFFFFFFF,
10367 .type = 3,
10368 .present = 1,
10369 .s = 1,
10370 .db = 1,
10371 .g = 1
10372 };
10373 seg.selector = vmcs12->host_ds_selector;
10374 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10375 seg.selector = vmcs12->host_es_selector;
10376 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10377 seg.selector = vmcs12->host_ss_selector;
10378 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10379 seg.selector = vmcs12->host_fs_selector;
10380 seg.base = vmcs12->host_fs_base;
10381 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10382 seg.selector = vmcs12->host_gs_selector;
10383 seg.base = vmcs12->host_gs_base;
10384 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10385 seg = (struct kvm_segment) {
10386 .base = vmcs12->host_tr_base,
10387 .limit = 0x67,
10388 .selector = vmcs12->host_tr_selector,
10389 .type = 11,
10390 .present = 1
10391 };
10392 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10393
10394 kvm_set_dr(vcpu, 7, 0x400);
10395 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10396
10397 if (cpu_has_vmx_msr_bitmap())
10398 vmx_set_msr_bitmap(vcpu);
10399
10400 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10401 vmcs12->vm_exit_msr_load_count))
10402 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10403 }
10404
10405 /*
10406 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10407 * and modify vmcs12 to make it see what it would expect to see there if
10408 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10409 */
10410 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10411 u32 exit_intr_info,
10412 unsigned long exit_qualification)
10413 {
10414 struct vcpu_vmx *vmx = to_vmx(vcpu);
10415 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10416
10417 /* trying to cancel vmlaunch/vmresume is a bug */
10418 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10419
10420 leave_guest_mode(vcpu);
10421 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10422 exit_qualification);
10423
10424 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10425 vmcs12->vm_exit_msr_store_count))
10426 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10427
10428 vmx_load_vmcs01(vcpu);
10429
10430 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10431 && nested_exit_intr_ack_set(vcpu)) {
10432 int irq = kvm_cpu_get_interrupt(vcpu);
10433 WARN_ON(irq < 0);
10434 vmcs12->vm_exit_intr_info = irq |
10435 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10436 }
10437
10438 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10439 vmcs12->exit_qualification,
10440 vmcs12->idt_vectoring_info_field,
10441 vmcs12->vm_exit_intr_info,
10442 vmcs12->vm_exit_intr_error_code,
10443 KVM_ISA_VMX);
10444
10445 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10446 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10447 vmx_segment_cache_clear(vmx);
10448
10449 /* if no vmcs02 cache requested, remove the one we used */
10450 if (VMCS02_POOL_SIZE == 0)
10451 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10452
10453 load_vmcs12_host_state(vcpu, vmcs12);
10454
10455 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10456 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10457
10458 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10459 vmx->host_rsp = 0;
10460
10461 /* Unpin physical memory we referred to in vmcs02 */
10462 if (vmx->nested.apic_access_page) {
10463 nested_release_page(vmx->nested.apic_access_page);
10464 vmx->nested.apic_access_page = NULL;
10465 }
10466 if (vmx->nested.virtual_apic_page) {
10467 nested_release_page(vmx->nested.virtual_apic_page);
10468 vmx->nested.virtual_apic_page = NULL;
10469 }
10470 if (vmx->nested.pi_desc_page) {
10471 kunmap(vmx->nested.pi_desc_page);
10472 nested_release_page(vmx->nested.pi_desc_page);
10473 vmx->nested.pi_desc_page = NULL;
10474 vmx->nested.pi_desc = NULL;
10475 }
10476
10477 /*
10478 * We are now running in L2, mmu_notifier will force to reload the
10479 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10480 */
10481 kvm_vcpu_reload_apic_access_page(vcpu);
10482
10483 /*
10484 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10485 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10486 * success or failure flag accordingly.
10487 */
10488 if (unlikely(vmx->fail)) {
10489 vmx->fail = 0;
10490 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10491 } else
10492 nested_vmx_succeed(vcpu);
10493 if (enable_shadow_vmcs)
10494 vmx->nested.sync_shadow_vmcs = true;
10495
10496 /* in case we halted in L2 */
10497 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10498 }
10499
10500 /*
10501 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10502 */
10503 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10504 {
10505 if (is_guest_mode(vcpu))
10506 nested_vmx_vmexit(vcpu, -1, 0, 0);
10507 free_nested(to_vmx(vcpu));
10508 }
10509
10510 /*
10511 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10512 * 23.7 "VM-entry failures during or after loading guest state" (this also
10513 * lists the acceptable exit-reason and exit-qualification parameters).
10514 * It should only be called before L2 actually succeeded to run, and when
10515 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10516 */
10517 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10518 struct vmcs12 *vmcs12,
10519 u32 reason, unsigned long qualification)
10520 {
10521 load_vmcs12_host_state(vcpu, vmcs12);
10522 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10523 vmcs12->exit_qualification = qualification;
10524 nested_vmx_succeed(vcpu);
10525 if (enable_shadow_vmcs)
10526 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10527 }
10528
10529 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10530 struct x86_instruction_info *info,
10531 enum x86_intercept_stage stage)
10532 {
10533 return X86EMUL_CONTINUE;
10534 }
10535
10536 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10537 {
10538 if (ple_gap)
10539 shrink_ple_window(vcpu);
10540 }
10541
10542 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10543 struct kvm_memory_slot *slot)
10544 {
10545 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10546 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10547 }
10548
10549 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10550 struct kvm_memory_slot *slot)
10551 {
10552 kvm_mmu_slot_set_dirty(kvm, slot);
10553 }
10554
10555 static void vmx_flush_log_dirty(struct kvm *kvm)
10556 {
10557 kvm_flush_pml_buffers(kvm);
10558 }
10559
10560 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10561 struct kvm_memory_slot *memslot,
10562 gfn_t offset, unsigned long mask)
10563 {
10564 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10565 }
10566
10567 /*
10568 * This routine does the following things for vCPU which is going
10569 * to be blocked if VT-d PI is enabled.
10570 * - Store the vCPU to the wakeup list, so when interrupts happen
10571 * we can find the right vCPU to wake up.
10572 * - Change the Posted-interrupt descriptor as below:
10573 * 'NDST' <-- vcpu->pre_pcpu
10574 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10575 * - If 'ON' is set during this process, which means at least one
10576 * interrupt is posted for this vCPU, we cannot block it, in
10577 * this case, return 1, otherwise, return 0.
10578 *
10579 */
10580 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10581 {
10582 unsigned long flags;
10583 unsigned int dest;
10584 struct pi_desc old, new;
10585 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10586
10587 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10588 !irq_remapping_cap(IRQ_POSTING_CAP))
10589 return 0;
10590
10591 vcpu->pre_pcpu = vcpu->cpu;
10592 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10593 vcpu->pre_pcpu), flags);
10594 list_add_tail(&vcpu->blocked_vcpu_list,
10595 &per_cpu(blocked_vcpu_on_cpu,
10596 vcpu->pre_pcpu));
10597 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10598 vcpu->pre_pcpu), flags);
10599
10600 do {
10601 old.control = new.control = pi_desc->control;
10602
10603 /*
10604 * We should not block the vCPU if
10605 * an interrupt is posted for it.
10606 */
10607 if (pi_test_on(pi_desc) == 1) {
10608 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10609 vcpu->pre_pcpu), flags);
10610 list_del(&vcpu->blocked_vcpu_list);
10611 spin_unlock_irqrestore(
10612 &per_cpu(blocked_vcpu_on_cpu_lock,
10613 vcpu->pre_pcpu), flags);
10614 vcpu->pre_pcpu = -1;
10615
10616 return 1;
10617 }
10618
10619 WARN((pi_desc->sn == 1),
10620 "Warning: SN field of posted-interrupts "
10621 "is set before blocking\n");
10622
10623 /*
10624 * Since vCPU can be preempted during this process,
10625 * vcpu->cpu could be different with pre_pcpu, we
10626 * need to set pre_pcpu as the destination of wakeup
10627 * notification event, then we can find the right vCPU
10628 * to wakeup in wakeup handler if interrupts happen
10629 * when the vCPU is in blocked state.
10630 */
10631 dest = cpu_physical_id(vcpu->pre_pcpu);
10632
10633 if (x2apic_enabled())
10634 new.ndst = dest;
10635 else
10636 new.ndst = (dest << 8) & 0xFF00;
10637
10638 /* set 'NV' to 'wakeup vector' */
10639 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10640 } while (cmpxchg(&pi_desc->control, old.control,
10641 new.control) != old.control);
10642
10643 return 0;
10644 }
10645
10646 static void vmx_post_block(struct kvm_vcpu *vcpu)
10647 {
10648 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10649 struct pi_desc old, new;
10650 unsigned int dest;
10651 unsigned long flags;
10652
10653 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10654 !irq_remapping_cap(IRQ_POSTING_CAP))
10655 return;
10656
10657 do {
10658 old.control = new.control = pi_desc->control;
10659
10660 dest = cpu_physical_id(vcpu->cpu);
10661
10662 if (x2apic_enabled())
10663 new.ndst = dest;
10664 else
10665 new.ndst = (dest << 8) & 0xFF00;
10666
10667 /* Allow posting non-urgent interrupts */
10668 new.sn = 0;
10669
10670 /* set 'NV' to 'notification vector' */
10671 new.nv = POSTED_INTR_VECTOR;
10672 } while (cmpxchg(&pi_desc->control, old.control,
10673 new.control) != old.control);
10674
10675 if(vcpu->pre_pcpu != -1) {
10676 spin_lock_irqsave(
10677 &per_cpu(blocked_vcpu_on_cpu_lock,
10678 vcpu->pre_pcpu), flags);
10679 list_del(&vcpu->blocked_vcpu_list);
10680 spin_unlock_irqrestore(
10681 &per_cpu(blocked_vcpu_on_cpu_lock,
10682 vcpu->pre_pcpu), flags);
10683 vcpu->pre_pcpu = -1;
10684 }
10685 }
10686
10687 /*
10688 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10689 *
10690 * @kvm: kvm
10691 * @host_irq: host irq of the interrupt
10692 * @guest_irq: gsi of the interrupt
10693 * @set: set or unset PI
10694 * returns 0 on success, < 0 on failure
10695 */
10696 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10697 uint32_t guest_irq, bool set)
10698 {
10699 struct kvm_kernel_irq_routing_entry *e;
10700 struct kvm_irq_routing_table *irq_rt;
10701 struct kvm_lapic_irq irq;
10702 struct kvm_vcpu *vcpu;
10703 struct vcpu_data vcpu_info;
10704 int idx, ret = -EINVAL;
10705
10706 if (!kvm_arch_has_assigned_device(kvm) ||
10707 !irq_remapping_cap(IRQ_POSTING_CAP))
10708 return 0;
10709
10710 idx = srcu_read_lock(&kvm->irq_srcu);
10711 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10712 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10713
10714 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10715 if (e->type != KVM_IRQ_ROUTING_MSI)
10716 continue;
10717 /*
10718 * VT-d PI cannot support posting multicast/broadcast
10719 * interrupts to a vCPU, we still use interrupt remapping
10720 * for these kind of interrupts.
10721 *
10722 * For lowest-priority interrupts, we only support
10723 * those with single CPU as the destination, e.g. user
10724 * configures the interrupts via /proc/irq or uses
10725 * irqbalance to make the interrupts single-CPU.
10726 *
10727 * We will support full lowest-priority interrupt later.
10728 */
10729
10730 kvm_set_msi_irq(e, &irq);
10731 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10732 continue;
10733
10734 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10735 vcpu_info.vector = irq.vector;
10736
10737 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10738 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10739
10740 if (set)
10741 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10742 else {
10743 /* suppress notification event before unposting */
10744 pi_set_sn(vcpu_to_pi_desc(vcpu));
10745 ret = irq_set_vcpu_affinity(host_irq, NULL);
10746 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10747 }
10748
10749 if (ret < 0) {
10750 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10751 __func__);
10752 goto out;
10753 }
10754 }
10755
10756 ret = 0;
10757 out:
10758 srcu_read_unlock(&kvm->irq_srcu, idx);
10759 return ret;
10760 }
10761
10762 static struct kvm_x86_ops vmx_x86_ops = {
10763 .cpu_has_kvm_support = cpu_has_kvm_support,
10764 .disabled_by_bios = vmx_disabled_by_bios,
10765 .hardware_setup = hardware_setup,
10766 .hardware_unsetup = hardware_unsetup,
10767 .check_processor_compatibility = vmx_check_processor_compat,
10768 .hardware_enable = hardware_enable,
10769 .hardware_disable = hardware_disable,
10770 .cpu_has_accelerated_tpr = report_flexpriority,
10771 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10772
10773 .vcpu_create = vmx_create_vcpu,
10774 .vcpu_free = vmx_free_vcpu,
10775 .vcpu_reset = vmx_vcpu_reset,
10776
10777 .prepare_guest_switch = vmx_save_host_state,
10778 .vcpu_load = vmx_vcpu_load,
10779 .vcpu_put = vmx_vcpu_put,
10780
10781 .update_bp_intercept = update_exception_bitmap,
10782 .get_msr = vmx_get_msr,
10783 .set_msr = vmx_set_msr,
10784 .get_segment_base = vmx_get_segment_base,
10785 .get_segment = vmx_get_segment,
10786 .set_segment = vmx_set_segment,
10787 .get_cpl = vmx_get_cpl,
10788 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10789 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10790 .decache_cr3 = vmx_decache_cr3,
10791 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10792 .set_cr0 = vmx_set_cr0,
10793 .set_cr3 = vmx_set_cr3,
10794 .set_cr4 = vmx_set_cr4,
10795 .set_efer = vmx_set_efer,
10796 .get_idt = vmx_get_idt,
10797 .set_idt = vmx_set_idt,
10798 .get_gdt = vmx_get_gdt,
10799 .set_gdt = vmx_set_gdt,
10800 .get_dr6 = vmx_get_dr6,
10801 .set_dr6 = vmx_set_dr6,
10802 .set_dr7 = vmx_set_dr7,
10803 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10804 .cache_reg = vmx_cache_reg,
10805 .get_rflags = vmx_get_rflags,
10806 .set_rflags = vmx_set_rflags,
10807 .fpu_activate = vmx_fpu_activate,
10808 .fpu_deactivate = vmx_fpu_deactivate,
10809
10810 .tlb_flush = vmx_flush_tlb,
10811
10812 .run = vmx_vcpu_run,
10813 .handle_exit = vmx_handle_exit,
10814 .skip_emulated_instruction = skip_emulated_instruction,
10815 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10816 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10817 .patch_hypercall = vmx_patch_hypercall,
10818 .set_irq = vmx_inject_irq,
10819 .set_nmi = vmx_inject_nmi,
10820 .queue_exception = vmx_queue_exception,
10821 .cancel_injection = vmx_cancel_injection,
10822 .interrupt_allowed = vmx_interrupt_allowed,
10823 .nmi_allowed = vmx_nmi_allowed,
10824 .get_nmi_mask = vmx_get_nmi_mask,
10825 .set_nmi_mask = vmx_set_nmi_mask,
10826 .enable_nmi_window = enable_nmi_window,
10827 .enable_irq_window = enable_irq_window,
10828 .update_cr8_intercept = update_cr8_intercept,
10829 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10830 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10831 .cpu_uses_apicv = vmx_cpu_uses_apicv,
10832 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10833 .hwapic_irr_update = vmx_hwapic_irr_update,
10834 .hwapic_isr_update = vmx_hwapic_isr_update,
10835 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10836 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10837
10838 .set_tss_addr = vmx_set_tss_addr,
10839 .get_tdp_level = get_ept_level,
10840 .get_mt_mask = vmx_get_mt_mask,
10841
10842 .get_exit_info = vmx_get_exit_info,
10843
10844 .get_lpage_level = vmx_get_lpage_level,
10845
10846 .cpuid_update = vmx_cpuid_update,
10847
10848 .rdtscp_supported = vmx_rdtscp_supported,
10849 .invpcid_supported = vmx_invpcid_supported,
10850
10851 .set_supported_cpuid = vmx_set_supported_cpuid,
10852
10853 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10854
10855 .read_tsc_offset = vmx_read_tsc_offset,
10856 .write_tsc_offset = vmx_write_tsc_offset,
10857 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10858 .read_l1_tsc = vmx_read_l1_tsc,
10859
10860 .set_tdp_cr3 = vmx_set_cr3,
10861
10862 .check_intercept = vmx_check_intercept,
10863 .handle_external_intr = vmx_handle_external_intr,
10864 .mpx_supported = vmx_mpx_supported,
10865 .xsaves_supported = vmx_xsaves_supported,
10866
10867 .check_nested_events = vmx_check_nested_events,
10868
10869 .sched_in = vmx_sched_in,
10870
10871 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10872 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10873 .flush_log_dirty = vmx_flush_log_dirty,
10874 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10875
10876 .pre_block = vmx_pre_block,
10877 .post_block = vmx_post_block,
10878
10879 .pmu_ops = &intel_pmu_ops,
10880
10881 .update_pi_irte = vmx_update_pi_irte,
10882 };
10883
10884 static int __init vmx_init(void)
10885 {
10886 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10887 __alignof__(struct vcpu_vmx), THIS_MODULE);
10888 if (r)
10889 return r;
10890
10891 #ifdef CONFIG_KEXEC_CORE
10892 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10893 crash_vmclear_local_loaded_vmcss);
10894 #endif
10895
10896 return 0;
10897 }
10898
10899 static void __exit vmx_exit(void)
10900 {
10901 #ifdef CONFIG_KEXEC_CORE
10902 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10903 synchronize_rcu();
10904 #endif
10905
10906 kvm_exit();
10907 }
10908
10909 module_init(vmx_init)
10910 module_exit(vmx_exit)