]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: Add kvm_x86_ops get_tdp_level()
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
38
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
41
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
44
45 static int enable_ept;
46 module_param(enable_ept, bool, 0);
47
48 struct vmcs {
49 u32 revision_id;
50 u32 abort;
51 char data[0];
52 };
53
54 struct vcpu_vmx {
55 struct kvm_vcpu vcpu;
56 int launched;
57 u8 fail;
58 u32 idt_vectoring_info;
59 struct kvm_msr_entry *guest_msrs;
60 struct kvm_msr_entry *host_msrs;
61 int nmsrs;
62 int save_nmsrs;
63 int msr_offset_efer;
64 #ifdef CONFIG_X86_64
65 int msr_offset_kernel_gs_base;
66 #endif
67 struct vmcs *vmcs;
68 struct {
69 int loaded;
70 u16 fs_sel, gs_sel, ldt_sel;
71 int gs_ldt_reload_needed;
72 int fs_reload_needed;
73 int guest_efer_loaded;
74 } host_state;
75 struct {
76 struct {
77 bool pending;
78 u8 vector;
79 unsigned rip;
80 } irq;
81 } rmode;
82 int vpid;
83 };
84
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
86 {
87 return container_of(vcpu, struct vcpu_vmx, vcpu);
88 }
89
90 static int init_rmode_tss(struct kvm *kvm);
91
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
94
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
98
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
101
102 static struct vmcs_config {
103 int size;
104 int order;
105 u32 revision_id;
106 u32 pin_based_exec_ctrl;
107 u32 cpu_based_exec_ctrl;
108 u32 cpu_based_2nd_exec_ctrl;
109 u32 vmexit_ctrl;
110 u32 vmentry_ctrl;
111 } vmcs_config;
112
113 struct vmx_capability {
114 u32 ept;
115 u32 vpid;
116 } vmx_capability;
117
118 #define VMX_SEGMENT_FIELD(seg) \
119 [VCPU_SREG_##seg] = { \
120 .selector = GUEST_##seg##_SELECTOR, \
121 .base = GUEST_##seg##_BASE, \
122 .limit = GUEST_##seg##_LIMIT, \
123 .ar_bytes = GUEST_##seg##_AR_BYTES, \
124 }
125
126 static struct kvm_vmx_segment_field {
127 unsigned selector;
128 unsigned base;
129 unsigned limit;
130 unsigned ar_bytes;
131 } kvm_vmx_segment_fields[] = {
132 VMX_SEGMENT_FIELD(CS),
133 VMX_SEGMENT_FIELD(DS),
134 VMX_SEGMENT_FIELD(ES),
135 VMX_SEGMENT_FIELD(FS),
136 VMX_SEGMENT_FIELD(GS),
137 VMX_SEGMENT_FIELD(SS),
138 VMX_SEGMENT_FIELD(TR),
139 VMX_SEGMENT_FIELD(LDTR),
140 };
141
142 /*
143 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144 * away by decrementing the array size.
145 */
146 static const u32 vmx_msr_index[] = {
147 #ifdef CONFIG_X86_64
148 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
149 #endif
150 MSR_EFER, MSR_K6_STAR,
151 };
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
153
154 static void load_msrs(struct kvm_msr_entry *e, int n)
155 {
156 int i;
157
158 for (i = 0; i < n; ++i)
159 wrmsrl(e[i].index, e[i].data);
160 }
161
162 static void save_msrs(struct kvm_msr_entry *e, int n)
163 {
164 int i;
165
166 for (i = 0; i < n; ++i)
167 rdmsrl(e[i].index, e[i].data);
168 }
169
170 static inline int is_page_fault(u32 intr_info)
171 {
172 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173 INTR_INFO_VALID_MASK)) ==
174 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
175 }
176
177 static inline int is_no_device(u32 intr_info)
178 {
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_invalid_opcode(u32 intr_info)
185 {
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_external_interrupt(u32 intr_info)
192 {
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int cpu_has_vmx_msr_bitmap(void)
198 {
199 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
200 }
201
202 static inline int cpu_has_vmx_tpr_shadow(void)
203 {
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
205 }
206
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
208 {
209 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
210 }
211
212 static inline int cpu_has_secondary_exec_ctrls(void)
213 {
214 return (vmcs_config.cpu_based_exec_ctrl &
215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
216 }
217
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
219 {
220 return flexpriority_enabled
221 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
223 }
224
225 static inline int cpu_has_vmx_invept_individual_addr(void)
226 {
227 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
228 }
229
230 static inline int cpu_has_vmx_invept_context(void)
231 {
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
233 }
234
235 static inline int cpu_has_vmx_invept_global(void)
236 {
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
238 }
239
240 static inline int cpu_has_vmx_ept(void)
241 {
242 return (vmcs_config.cpu_based_2nd_exec_ctrl &
243 SECONDARY_EXEC_ENABLE_EPT);
244 }
245
246 static inline int vm_need_ept(void)
247 {
248 return (cpu_has_vmx_ept() && enable_ept);
249 }
250
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
252 {
253 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254 (irqchip_in_kernel(kvm)));
255 }
256
257 static inline int cpu_has_vmx_vpid(void)
258 {
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_VPID);
261 }
262
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
264 {
265 int i;
266
267 for (i = 0; i < vmx->nmsrs; ++i)
268 if (vmx->guest_msrs[i].index == msr)
269 return i;
270 return -1;
271 }
272
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
274 {
275 struct {
276 u64 vpid : 16;
277 u64 rsvd : 48;
278 u64 gva;
279 } operand = { vpid, 0, gva };
280
281 asm volatile (ASM_VMX_INVVPID
282 /* CF==1 or ZF==1 --> rc = -1 */
283 "; ja 1f ; ud2 ; 1:"
284 : : "a"(&operand), "c"(ext) : "cc", "memory");
285 }
286
287 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
288 {
289 int i;
290
291 i = __find_msr_index(vmx, msr);
292 if (i >= 0)
293 return &vmx->guest_msrs[i];
294 return NULL;
295 }
296
297 static void vmcs_clear(struct vmcs *vmcs)
298 {
299 u64 phys_addr = __pa(vmcs);
300 u8 error;
301
302 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
303 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
304 : "cc", "memory");
305 if (error)
306 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
307 vmcs, phys_addr);
308 }
309
310 static void __vcpu_clear(void *arg)
311 {
312 struct vcpu_vmx *vmx = arg;
313 int cpu = raw_smp_processor_id();
314
315 if (vmx->vcpu.cpu == cpu)
316 vmcs_clear(vmx->vmcs);
317 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
318 per_cpu(current_vmcs, cpu) = NULL;
319 rdtscll(vmx->vcpu.arch.host_tsc);
320 }
321
322 static void vcpu_clear(struct vcpu_vmx *vmx)
323 {
324 if (vmx->vcpu.cpu == -1)
325 return;
326 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
327 vmx->launched = 0;
328 }
329
330 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
331 {
332 if (vmx->vpid == 0)
333 return;
334
335 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
336 }
337
338 static unsigned long vmcs_readl(unsigned long field)
339 {
340 unsigned long value;
341
342 asm volatile (ASM_VMX_VMREAD_RDX_RAX
343 : "=a"(value) : "d"(field) : "cc");
344 return value;
345 }
346
347 static u16 vmcs_read16(unsigned long field)
348 {
349 return vmcs_readl(field);
350 }
351
352 static u32 vmcs_read32(unsigned long field)
353 {
354 return vmcs_readl(field);
355 }
356
357 static u64 vmcs_read64(unsigned long field)
358 {
359 #ifdef CONFIG_X86_64
360 return vmcs_readl(field);
361 #else
362 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
363 #endif
364 }
365
366 static noinline void vmwrite_error(unsigned long field, unsigned long value)
367 {
368 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
369 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
370 dump_stack();
371 }
372
373 static void vmcs_writel(unsigned long field, unsigned long value)
374 {
375 u8 error;
376
377 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
378 : "=q"(error) : "a"(value), "d"(field) : "cc");
379 if (unlikely(error))
380 vmwrite_error(field, value);
381 }
382
383 static void vmcs_write16(unsigned long field, u16 value)
384 {
385 vmcs_writel(field, value);
386 }
387
388 static void vmcs_write32(unsigned long field, u32 value)
389 {
390 vmcs_writel(field, value);
391 }
392
393 static void vmcs_write64(unsigned long field, u64 value)
394 {
395 #ifdef CONFIG_X86_64
396 vmcs_writel(field, value);
397 #else
398 vmcs_writel(field, value);
399 asm volatile ("");
400 vmcs_writel(field+1, value >> 32);
401 #endif
402 }
403
404 static void vmcs_clear_bits(unsigned long field, u32 mask)
405 {
406 vmcs_writel(field, vmcs_readl(field) & ~mask);
407 }
408
409 static void vmcs_set_bits(unsigned long field, u32 mask)
410 {
411 vmcs_writel(field, vmcs_readl(field) | mask);
412 }
413
414 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
415 {
416 u32 eb;
417
418 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
419 if (!vcpu->fpu_active)
420 eb |= 1u << NM_VECTOR;
421 if (vcpu->guest_debug.enabled)
422 eb |= 1u << 1;
423 if (vcpu->arch.rmode.active)
424 eb = ~0;
425 vmcs_write32(EXCEPTION_BITMAP, eb);
426 }
427
428 static void reload_tss(void)
429 {
430 /*
431 * VT restores TR but not its size. Useless.
432 */
433 struct descriptor_table gdt;
434 struct desc_struct *descs;
435
436 get_gdt(&gdt);
437 descs = (void *)gdt.base;
438 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
439 load_TR_desc();
440 }
441
442 static void load_transition_efer(struct vcpu_vmx *vmx)
443 {
444 int efer_offset = vmx->msr_offset_efer;
445 u64 host_efer = vmx->host_msrs[efer_offset].data;
446 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
447 u64 ignore_bits;
448
449 if (efer_offset < 0)
450 return;
451 /*
452 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
453 * outside long mode
454 */
455 ignore_bits = EFER_NX | EFER_SCE;
456 #ifdef CONFIG_X86_64
457 ignore_bits |= EFER_LMA | EFER_LME;
458 /* SCE is meaningful only in long mode on Intel */
459 if (guest_efer & EFER_LMA)
460 ignore_bits &= ~(u64)EFER_SCE;
461 #endif
462 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
463 return;
464
465 vmx->host_state.guest_efer_loaded = 1;
466 guest_efer &= ~ignore_bits;
467 guest_efer |= host_efer & ignore_bits;
468 wrmsrl(MSR_EFER, guest_efer);
469 vmx->vcpu.stat.efer_reload++;
470 }
471
472 static void reload_host_efer(struct vcpu_vmx *vmx)
473 {
474 if (vmx->host_state.guest_efer_loaded) {
475 vmx->host_state.guest_efer_loaded = 0;
476 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
477 }
478 }
479
480 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
481 {
482 struct vcpu_vmx *vmx = to_vmx(vcpu);
483
484 if (vmx->host_state.loaded)
485 return;
486
487 vmx->host_state.loaded = 1;
488 /*
489 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
490 * allow segment selectors with cpl > 0 or ti == 1.
491 */
492 vmx->host_state.ldt_sel = read_ldt();
493 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
494 vmx->host_state.fs_sel = read_fs();
495 if (!(vmx->host_state.fs_sel & 7)) {
496 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
497 vmx->host_state.fs_reload_needed = 0;
498 } else {
499 vmcs_write16(HOST_FS_SELECTOR, 0);
500 vmx->host_state.fs_reload_needed = 1;
501 }
502 vmx->host_state.gs_sel = read_gs();
503 if (!(vmx->host_state.gs_sel & 7))
504 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
505 else {
506 vmcs_write16(HOST_GS_SELECTOR, 0);
507 vmx->host_state.gs_ldt_reload_needed = 1;
508 }
509
510 #ifdef CONFIG_X86_64
511 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
512 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
513 #else
514 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
515 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
516 #endif
517
518 #ifdef CONFIG_X86_64
519 if (is_long_mode(&vmx->vcpu))
520 save_msrs(vmx->host_msrs +
521 vmx->msr_offset_kernel_gs_base, 1);
522
523 #endif
524 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
525 load_transition_efer(vmx);
526 }
527
528 static void vmx_load_host_state(struct vcpu_vmx *vmx)
529 {
530 unsigned long flags;
531
532 if (!vmx->host_state.loaded)
533 return;
534
535 ++vmx->vcpu.stat.host_state_reload;
536 vmx->host_state.loaded = 0;
537 if (vmx->host_state.fs_reload_needed)
538 load_fs(vmx->host_state.fs_sel);
539 if (vmx->host_state.gs_ldt_reload_needed) {
540 load_ldt(vmx->host_state.ldt_sel);
541 /*
542 * If we have to reload gs, we must take care to
543 * preserve our gs base.
544 */
545 local_irq_save(flags);
546 load_gs(vmx->host_state.gs_sel);
547 #ifdef CONFIG_X86_64
548 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
549 #endif
550 local_irq_restore(flags);
551 }
552 reload_tss();
553 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
554 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
555 reload_host_efer(vmx);
556 }
557
558 /*
559 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
560 * vcpu mutex is already taken.
561 */
562 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
563 {
564 struct vcpu_vmx *vmx = to_vmx(vcpu);
565 u64 phys_addr = __pa(vmx->vmcs);
566 u64 tsc_this, delta, new_offset;
567
568 if (vcpu->cpu != cpu) {
569 vcpu_clear(vmx);
570 kvm_migrate_apic_timer(vcpu);
571 vpid_sync_vcpu_all(vmx);
572 }
573
574 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
575 u8 error;
576
577 per_cpu(current_vmcs, cpu) = vmx->vmcs;
578 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
579 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
580 : "cc");
581 if (error)
582 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
583 vmx->vmcs, phys_addr);
584 }
585
586 if (vcpu->cpu != cpu) {
587 struct descriptor_table dt;
588 unsigned long sysenter_esp;
589
590 vcpu->cpu = cpu;
591 /*
592 * Linux uses per-cpu TSS and GDT, so set these when switching
593 * processors.
594 */
595 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
596 get_gdt(&dt);
597 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
598
599 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
600 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
601
602 /*
603 * Make sure the time stamp counter is monotonous.
604 */
605 rdtscll(tsc_this);
606 if (tsc_this < vcpu->arch.host_tsc) {
607 delta = vcpu->arch.host_tsc - tsc_this;
608 new_offset = vmcs_read64(TSC_OFFSET) + delta;
609 vmcs_write64(TSC_OFFSET, new_offset);
610 }
611 }
612 }
613
614 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
615 {
616 vmx_load_host_state(to_vmx(vcpu));
617 }
618
619 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
620 {
621 if (vcpu->fpu_active)
622 return;
623 vcpu->fpu_active = 1;
624 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
625 if (vcpu->arch.cr0 & X86_CR0_TS)
626 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
627 update_exception_bitmap(vcpu);
628 }
629
630 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
631 {
632 if (!vcpu->fpu_active)
633 return;
634 vcpu->fpu_active = 0;
635 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
636 update_exception_bitmap(vcpu);
637 }
638
639 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
640 {
641 vcpu_clear(to_vmx(vcpu));
642 }
643
644 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
645 {
646 return vmcs_readl(GUEST_RFLAGS);
647 }
648
649 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
650 {
651 if (vcpu->arch.rmode.active)
652 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
653 vmcs_writel(GUEST_RFLAGS, rflags);
654 }
655
656 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
657 {
658 unsigned long rip;
659 u32 interruptibility;
660
661 rip = vmcs_readl(GUEST_RIP);
662 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
663 vmcs_writel(GUEST_RIP, rip);
664
665 /*
666 * We emulated an instruction, so temporary interrupt blocking
667 * should be removed, if set.
668 */
669 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
670 if (interruptibility & 3)
671 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
672 interruptibility & ~3);
673 vcpu->arch.interrupt_window_open = 1;
674 }
675
676 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
677 bool has_error_code, u32 error_code)
678 {
679 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
680 nr | INTR_TYPE_EXCEPTION
681 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
682 | INTR_INFO_VALID_MASK);
683 if (has_error_code)
684 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
685 }
686
687 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
688 {
689 struct vcpu_vmx *vmx = to_vmx(vcpu);
690
691 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
692 }
693
694 /*
695 * Swap MSR entry in host/guest MSR entry array.
696 */
697 #ifdef CONFIG_X86_64
698 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
699 {
700 struct kvm_msr_entry tmp;
701
702 tmp = vmx->guest_msrs[to];
703 vmx->guest_msrs[to] = vmx->guest_msrs[from];
704 vmx->guest_msrs[from] = tmp;
705 tmp = vmx->host_msrs[to];
706 vmx->host_msrs[to] = vmx->host_msrs[from];
707 vmx->host_msrs[from] = tmp;
708 }
709 #endif
710
711 /*
712 * Set up the vmcs to automatically save and restore system
713 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
714 * mode, as fiddling with msrs is very expensive.
715 */
716 static void setup_msrs(struct vcpu_vmx *vmx)
717 {
718 int save_nmsrs;
719
720 vmx_load_host_state(vmx);
721 save_nmsrs = 0;
722 #ifdef CONFIG_X86_64
723 if (is_long_mode(&vmx->vcpu)) {
724 int index;
725
726 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
727 if (index >= 0)
728 move_msr_up(vmx, index, save_nmsrs++);
729 index = __find_msr_index(vmx, MSR_LSTAR);
730 if (index >= 0)
731 move_msr_up(vmx, index, save_nmsrs++);
732 index = __find_msr_index(vmx, MSR_CSTAR);
733 if (index >= 0)
734 move_msr_up(vmx, index, save_nmsrs++);
735 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
736 if (index >= 0)
737 move_msr_up(vmx, index, save_nmsrs++);
738 /*
739 * MSR_K6_STAR is only needed on long mode guests, and only
740 * if efer.sce is enabled.
741 */
742 index = __find_msr_index(vmx, MSR_K6_STAR);
743 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
744 move_msr_up(vmx, index, save_nmsrs++);
745 }
746 #endif
747 vmx->save_nmsrs = save_nmsrs;
748
749 #ifdef CONFIG_X86_64
750 vmx->msr_offset_kernel_gs_base =
751 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
752 #endif
753 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
754 }
755
756 /*
757 * reads and returns guest's timestamp counter "register"
758 * guest_tsc = host_tsc + tsc_offset -- 21.3
759 */
760 static u64 guest_read_tsc(void)
761 {
762 u64 host_tsc, tsc_offset;
763
764 rdtscll(host_tsc);
765 tsc_offset = vmcs_read64(TSC_OFFSET);
766 return host_tsc + tsc_offset;
767 }
768
769 /*
770 * writes 'guest_tsc' into guest's timestamp counter "register"
771 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
772 */
773 static void guest_write_tsc(u64 guest_tsc)
774 {
775 u64 host_tsc;
776
777 rdtscll(host_tsc);
778 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
779 }
780
781 /*
782 * Reads an msr value (of 'msr_index') into 'pdata'.
783 * Returns 0 on success, non-0 otherwise.
784 * Assumes vcpu_load() was already called.
785 */
786 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
787 {
788 u64 data;
789 struct kvm_msr_entry *msr;
790
791 if (!pdata) {
792 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
793 return -EINVAL;
794 }
795
796 switch (msr_index) {
797 #ifdef CONFIG_X86_64
798 case MSR_FS_BASE:
799 data = vmcs_readl(GUEST_FS_BASE);
800 break;
801 case MSR_GS_BASE:
802 data = vmcs_readl(GUEST_GS_BASE);
803 break;
804 case MSR_EFER:
805 return kvm_get_msr_common(vcpu, msr_index, pdata);
806 #endif
807 case MSR_IA32_TIME_STAMP_COUNTER:
808 data = guest_read_tsc();
809 break;
810 case MSR_IA32_SYSENTER_CS:
811 data = vmcs_read32(GUEST_SYSENTER_CS);
812 break;
813 case MSR_IA32_SYSENTER_EIP:
814 data = vmcs_readl(GUEST_SYSENTER_EIP);
815 break;
816 case MSR_IA32_SYSENTER_ESP:
817 data = vmcs_readl(GUEST_SYSENTER_ESP);
818 break;
819 default:
820 msr = find_msr_entry(to_vmx(vcpu), msr_index);
821 if (msr) {
822 data = msr->data;
823 break;
824 }
825 return kvm_get_msr_common(vcpu, msr_index, pdata);
826 }
827
828 *pdata = data;
829 return 0;
830 }
831
832 /*
833 * Writes msr value into into the appropriate "register".
834 * Returns 0 on success, non-0 otherwise.
835 * Assumes vcpu_load() was already called.
836 */
837 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
838 {
839 struct vcpu_vmx *vmx = to_vmx(vcpu);
840 struct kvm_msr_entry *msr;
841 int ret = 0;
842
843 switch (msr_index) {
844 #ifdef CONFIG_X86_64
845 case MSR_EFER:
846 ret = kvm_set_msr_common(vcpu, msr_index, data);
847 if (vmx->host_state.loaded) {
848 reload_host_efer(vmx);
849 load_transition_efer(vmx);
850 }
851 break;
852 case MSR_FS_BASE:
853 vmcs_writel(GUEST_FS_BASE, data);
854 break;
855 case MSR_GS_BASE:
856 vmcs_writel(GUEST_GS_BASE, data);
857 break;
858 #endif
859 case MSR_IA32_SYSENTER_CS:
860 vmcs_write32(GUEST_SYSENTER_CS, data);
861 break;
862 case MSR_IA32_SYSENTER_EIP:
863 vmcs_writel(GUEST_SYSENTER_EIP, data);
864 break;
865 case MSR_IA32_SYSENTER_ESP:
866 vmcs_writel(GUEST_SYSENTER_ESP, data);
867 break;
868 case MSR_IA32_TIME_STAMP_COUNTER:
869 guest_write_tsc(data);
870 break;
871 default:
872 msr = find_msr_entry(vmx, msr_index);
873 if (msr) {
874 msr->data = data;
875 if (vmx->host_state.loaded)
876 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
877 break;
878 }
879 ret = kvm_set_msr_common(vcpu, msr_index, data);
880 }
881
882 return ret;
883 }
884
885 /*
886 * Sync the rsp and rip registers into the vcpu structure. This allows
887 * registers to be accessed by indexing vcpu->arch.regs.
888 */
889 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
890 {
891 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
892 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
893 }
894
895 /*
896 * Syncs rsp and rip back into the vmcs. Should be called after possible
897 * modification.
898 */
899 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
900 {
901 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
902 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
903 }
904
905 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
906 {
907 unsigned long dr7 = 0x400;
908 int old_singlestep;
909
910 old_singlestep = vcpu->guest_debug.singlestep;
911
912 vcpu->guest_debug.enabled = dbg->enabled;
913 if (vcpu->guest_debug.enabled) {
914 int i;
915
916 dr7 |= 0x200; /* exact */
917 for (i = 0; i < 4; ++i) {
918 if (!dbg->breakpoints[i].enabled)
919 continue;
920 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
921 dr7 |= 2 << (i*2); /* global enable */
922 dr7 |= 0 << (i*4+16); /* execution breakpoint */
923 }
924
925 vcpu->guest_debug.singlestep = dbg->singlestep;
926 } else
927 vcpu->guest_debug.singlestep = 0;
928
929 if (old_singlestep && !vcpu->guest_debug.singlestep) {
930 unsigned long flags;
931
932 flags = vmcs_readl(GUEST_RFLAGS);
933 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
934 vmcs_writel(GUEST_RFLAGS, flags);
935 }
936
937 update_exception_bitmap(vcpu);
938 vmcs_writel(GUEST_DR7, dr7);
939
940 return 0;
941 }
942
943 static int vmx_get_irq(struct kvm_vcpu *vcpu)
944 {
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 u32 idtv_info_field;
947
948 idtv_info_field = vmx->idt_vectoring_info;
949 if (idtv_info_field & INTR_INFO_VALID_MASK) {
950 if (is_external_interrupt(idtv_info_field))
951 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
952 else
953 printk(KERN_DEBUG "pending exception: not handled yet\n");
954 }
955 return -1;
956 }
957
958 static __init int cpu_has_kvm_support(void)
959 {
960 unsigned long ecx = cpuid_ecx(1);
961 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
962 }
963
964 static __init int vmx_disabled_by_bios(void)
965 {
966 u64 msr;
967
968 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
969 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
970 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
971 == MSR_IA32_FEATURE_CONTROL_LOCKED;
972 /* locked but not enabled */
973 }
974
975 static void hardware_enable(void *garbage)
976 {
977 int cpu = raw_smp_processor_id();
978 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
979 u64 old;
980
981 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
982 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
983 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
984 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
985 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
986 /* enable and lock */
987 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
988 MSR_IA32_FEATURE_CONTROL_LOCKED |
989 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
990 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
991 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
992 : "memory", "cc");
993 }
994
995 static void hardware_disable(void *garbage)
996 {
997 asm volatile (ASM_VMX_VMXOFF : : : "cc");
998 }
999
1000 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1001 u32 msr, u32 *result)
1002 {
1003 u32 vmx_msr_low, vmx_msr_high;
1004 u32 ctl = ctl_min | ctl_opt;
1005
1006 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1007
1008 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1009 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1010
1011 /* Ensure minimum (required) set of control bits are supported. */
1012 if (ctl_min & ~ctl)
1013 return -EIO;
1014
1015 *result = ctl;
1016 return 0;
1017 }
1018
1019 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1020 {
1021 u32 vmx_msr_low, vmx_msr_high;
1022 u32 min, opt, min2, opt2;
1023 u32 _pin_based_exec_control = 0;
1024 u32 _cpu_based_exec_control = 0;
1025 u32 _cpu_based_2nd_exec_control = 0;
1026 u32 _vmexit_control = 0;
1027 u32 _vmentry_control = 0;
1028
1029 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1030 opt = 0;
1031 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1032 &_pin_based_exec_control) < 0)
1033 return -EIO;
1034
1035 min = CPU_BASED_HLT_EXITING |
1036 #ifdef CONFIG_X86_64
1037 CPU_BASED_CR8_LOAD_EXITING |
1038 CPU_BASED_CR8_STORE_EXITING |
1039 #endif
1040 CPU_BASED_CR3_LOAD_EXITING |
1041 CPU_BASED_CR3_STORE_EXITING |
1042 CPU_BASED_USE_IO_BITMAPS |
1043 CPU_BASED_MOV_DR_EXITING |
1044 CPU_BASED_USE_TSC_OFFSETING;
1045 opt = CPU_BASED_TPR_SHADOW |
1046 CPU_BASED_USE_MSR_BITMAPS |
1047 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1048 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1049 &_cpu_based_exec_control) < 0)
1050 return -EIO;
1051 #ifdef CONFIG_X86_64
1052 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1053 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1054 ~CPU_BASED_CR8_STORE_EXITING;
1055 #endif
1056 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1057 min2 = 0;
1058 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1059 SECONDARY_EXEC_WBINVD_EXITING |
1060 SECONDARY_EXEC_ENABLE_VPID |
1061 SECONDARY_EXEC_ENABLE_EPT;
1062 if (adjust_vmx_controls(min2, opt2,
1063 MSR_IA32_VMX_PROCBASED_CTLS2,
1064 &_cpu_based_2nd_exec_control) < 0)
1065 return -EIO;
1066 }
1067 #ifndef CONFIG_X86_64
1068 if (!(_cpu_based_2nd_exec_control &
1069 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1070 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1071 #endif
1072 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1073 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1074 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1075 CPU_BASED_CR3_STORE_EXITING);
1076 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1077 &_cpu_based_exec_control) < 0)
1078 return -EIO;
1079 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1080 vmx_capability.ept, vmx_capability.vpid);
1081 }
1082
1083 min = 0;
1084 #ifdef CONFIG_X86_64
1085 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1086 #endif
1087 opt = 0;
1088 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1089 &_vmexit_control) < 0)
1090 return -EIO;
1091
1092 min = opt = 0;
1093 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1094 &_vmentry_control) < 0)
1095 return -EIO;
1096
1097 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1098
1099 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1100 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1101 return -EIO;
1102
1103 #ifdef CONFIG_X86_64
1104 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1105 if (vmx_msr_high & (1u<<16))
1106 return -EIO;
1107 #endif
1108
1109 /* Require Write-Back (WB) memory type for VMCS accesses. */
1110 if (((vmx_msr_high >> 18) & 15) != 6)
1111 return -EIO;
1112
1113 vmcs_conf->size = vmx_msr_high & 0x1fff;
1114 vmcs_conf->order = get_order(vmcs_config.size);
1115 vmcs_conf->revision_id = vmx_msr_low;
1116
1117 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1118 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1119 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1120 vmcs_conf->vmexit_ctrl = _vmexit_control;
1121 vmcs_conf->vmentry_ctrl = _vmentry_control;
1122
1123 return 0;
1124 }
1125
1126 static struct vmcs *alloc_vmcs_cpu(int cpu)
1127 {
1128 int node = cpu_to_node(cpu);
1129 struct page *pages;
1130 struct vmcs *vmcs;
1131
1132 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1133 if (!pages)
1134 return NULL;
1135 vmcs = page_address(pages);
1136 memset(vmcs, 0, vmcs_config.size);
1137 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1138 return vmcs;
1139 }
1140
1141 static struct vmcs *alloc_vmcs(void)
1142 {
1143 return alloc_vmcs_cpu(raw_smp_processor_id());
1144 }
1145
1146 static void free_vmcs(struct vmcs *vmcs)
1147 {
1148 free_pages((unsigned long)vmcs, vmcs_config.order);
1149 }
1150
1151 static void free_kvm_area(void)
1152 {
1153 int cpu;
1154
1155 for_each_online_cpu(cpu)
1156 free_vmcs(per_cpu(vmxarea, cpu));
1157 }
1158
1159 static __init int alloc_kvm_area(void)
1160 {
1161 int cpu;
1162
1163 for_each_online_cpu(cpu) {
1164 struct vmcs *vmcs;
1165
1166 vmcs = alloc_vmcs_cpu(cpu);
1167 if (!vmcs) {
1168 free_kvm_area();
1169 return -ENOMEM;
1170 }
1171
1172 per_cpu(vmxarea, cpu) = vmcs;
1173 }
1174 return 0;
1175 }
1176
1177 static __init int hardware_setup(void)
1178 {
1179 if (setup_vmcs_config(&vmcs_config) < 0)
1180 return -EIO;
1181
1182 if (boot_cpu_has(X86_FEATURE_NX))
1183 kvm_enable_efer_bits(EFER_NX);
1184
1185 return alloc_kvm_area();
1186 }
1187
1188 static __exit void hardware_unsetup(void)
1189 {
1190 free_kvm_area();
1191 }
1192
1193 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1194 {
1195 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1196
1197 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1198 vmcs_write16(sf->selector, save->selector);
1199 vmcs_writel(sf->base, save->base);
1200 vmcs_write32(sf->limit, save->limit);
1201 vmcs_write32(sf->ar_bytes, save->ar);
1202 } else {
1203 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1204 << AR_DPL_SHIFT;
1205 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1206 }
1207 }
1208
1209 static void enter_pmode(struct kvm_vcpu *vcpu)
1210 {
1211 unsigned long flags;
1212
1213 vcpu->arch.rmode.active = 0;
1214
1215 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1216 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1217 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1218
1219 flags = vmcs_readl(GUEST_RFLAGS);
1220 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1221 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1222 vmcs_writel(GUEST_RFLAGS, flags);
1223
1224 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1225 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1226
1227 update_exception_bitmap(vcpu);
1228
1229 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1230 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1231 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1232 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1233
1234 vmcs_write16(GUEST_SS_SELECTOR, 0);
1235 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1236
1237 vmcs_write16(GUEST_CS_SELECTOR,
1238 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1239 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1240 }
1241
1242 static gva_t rmode_tss_base(struct kvm *kvm)
1243 {
1244 if (!kvm->arch.tss_addr) {
1245 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1246 kvm->memslots[0].npages - 3;
1247 return base_gfn << PAGE_SHIFT;
1248 }
1249 return kvm->arch.tss_addr;
1250 }
1251
1252 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1253 {
1254 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1255
1256 save->selector = vmcs_read16(sf->selector);
1257 save->base = vmcs_readl(sf->base);
1258 save->limit = vmcs_read32(sf->limit);
1259 save->ar = vmcs_read32(sf->ar_bytes);
1260 vmcs_write16(sf->selector, save->base >> 4);
1261 vmcs_write32(sf->base, save->base & 0xfffff);
1262 vmcs_write32(sf->limit, 0xffff);
1263 vmcs_write32(sf->ar_bytes, 0xf3);
1264 }
1265
1266 static void enter_rmode(struct kvm_vcpu *vcpu)
1267 {
1268 unsigned long flags;
1269
1270 vcpu->arch.rmode.active = 1;
1271
1272 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1273 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1274
1275 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1276 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1277
1278 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1279 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1280
1281 flags = vmcs_readl(GUEST_RFLAGS);
1282 vcpu->arch.rmode.save_iopl
1283 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1284
1285 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1286
1287 vmcs_writel(GUEST_RFLAGS, flags);
1288 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1289 update_exception_bitmap(vcpu);
1290
1291 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1292 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1293 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1294
1295 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1296 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1297 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1298 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1299 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1300
1301 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1302 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1303 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1304 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1305
1306 kvm_mmu_reset_context(vcpu);
1307 init_rmode_tss(vcpu->kvm);
1308 }
1309
1310 #ifdef CONFIG_X86_64
1311
1312 static void enter_lmode(struct kvm_vcpu *vcpu)
1313 {
1314 u32 guest_tr_ar;
1315
1316 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1317 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1318 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1319 __func__);
1320 vmcs_write32(GUEST_TR_AR_BYTES,
1321 (guest_tr_ar & ~AR_TYPE_MASK)
1322 | AR_TYPE_BUSY_64_TSS);
1323 }
1324
1325 vcpu->arch.shadow_efer |= EFER_LMA;
1326
1327 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1328 vmcs_write32(VM_ENTRY_CONTROLS,
1329 vmcs_read32(VM_ENTRY_CONTROLS)
1330 | VM_ENTRY_IA32E_MODE);
1331 }
1332
1333 static void exit_lmode(struct kvm_vcpu *vcpu)
1334 {
1335 vcpu->arch.shadow_efer &= ~EFER_LMA;
1336
1337 vmcs_write32(VM_ENTRY_CONTROLS,
1338 vmcs_read32(VM_ENTRY_CONTROLS)
1339 & ~VM_ENTRY_IA32E_MODE);
1340 }
1341
1342 #endif
1343
1344 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1345 {
1346 vpid_sync_vcpu_all(to_vmx(vcpu));
1347 }
1348
1349 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1350 {
1351 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1352 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1353 }
1354
1355 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1356 {
1357 vmx_fpu_deactivate(vcpu);
1358
1359 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1360 enter_pmode(vcpu);
1361
1362 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1363 enter_rmode(vcpu);
1364
1365 #ifdef CONFIG_X86_64
1366 if (vcpu->arch.shadow_efer & EFER_LME) {
1367 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1368 enter_lmode(vcpu);
1369 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1370 exit_lmode(vcpu);
1371 }
1372 #endif
1373
1374 vmcs_writel(CR0_READ_SHADOW, cr0);
1375 vmcs_writel(GUEST_CR0,
1376 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1377 vcpu->arch.cr0 = cr0;
1378
1379 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1380 vmx_fpu_activate(vcpu);
1381 }
1382
1383 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1384 {
1385 vmx_flush_tlb(vcpu);
1386 vmcs_writel(GUEST_CR3, cr3);
1387 if (vcpu->arch.cr0 & X86_CR0_PE)
1388 vmx_fpu_deactivate(vcpu);
1389 }
1390
1391 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1392 {
1393 vmcs_writel(CR4_READ_SHADOW, cr4);
1394 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1395 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1396 vcpu->arch.cr4 = cr4;
1397 }
1398
1399 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1400 {
1401 struct vcpu_vmx *vmx = to_vmx(vcpu);
1402 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1403
1404 vcpu->arch.shadow_efer = efer;
1405 if (!msr)
1406 return;
1407 if (efer & EFER_LMA) {
1408 vmcs_write32(VM_ENTRY_CONTROLS,
1409 vmcs_read32(VM_ENTRY_CONTROLS) |
1410 VM_ENTRY_IA32E_MODE);
1411 msr->data = efer;
1412
1413 } else {
1414 vmcs_write32(VM_ENTRY_CONTROLS,
1415 vmcs_read32(VM_ENTRY_CONTROLS) &
1416 ~VM_ENTRY_IA32E_MODE);
1417
1418 msr->data = efer & ~EFER_LME;
1419 }
1420 setup_msrs(vmx);
1421 }
1422
1423 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1424 {
1425 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1426
1427 return vmcs_readl(sf->base);
1428 }
1429
1430 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1431 struct kvm_segment *var, int seg)
1432 {
1433 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1434 u32 ar;
1435
1436 var->base = vmcs_readl(sf->base);
1437 var->limit = vmcs_read32(sf->limit);
1438 var->selector = vmcs_read16(sf->selector);
1439 ar = vmcs_read32(sf->ar_bytes);
1440 if (ar & AR_UNUSABLE_MASK)
1441 ar = 0;
1442 var->type = ar & 15;
1443 var->s = (ar >> 4) & 1;
1444 var->dpl = (ar >> 5) & 3;
1445 var->present = (ar >> 7) & 1;
1446 var->avl = (ar >> 12) & 1;
1447 var->l = (ar >> 13) & 1;
1448 var->db = (ar >> 14) & 1;
1449 var->g = (ar >> 15) & 1;
1450 var->unusable = (ar >> 16) & 1;
1451 }
1452
1453 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1454 {
1455 struct kvm_segment kvm_seg;
1456
1457 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1458 return 0;
1459
1460 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1461 return 3;
1462
1463 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1464 return kvm_seg.selector & 3;
1465 }
1466
1467 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1468 {
1469 u32 ar;
1470
1471 if (var->unusable)
1472 ar = 1 << 16;
1473 else {
1474 ar = var->type & 15;
1475 ar |= (var->s & 1) << 4;
1476 ar |= (var->dpl & 3) << 5;
1477 ar |= (var->present & 1) << 7;
1478 ar |= (var->avl & 1) << 12;
1479 ar |= (var->l & 1) << 13;
1480 ar |= (var->db & 1) << 14;
1481 ar |= (var->g & 1) << 15;
1482 }
1483 if (ar == 0) /* a 0 value means unusable */
1484 ar = AR_UNUSABLE_MASK;
1485
1486 return ar;
1487 }
1488
1489 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1490 struct kvm_segment *var, int seg)
1491 {
1492 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1493 u32 ar;
1494
1495 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1496 vcpu->arch.rmode.tr.selector = var->selector;
1497 vcpu->arch.rmode.tr.base = var->base;
1498 vcpu->arch.rmode.tr.limit = var->limit;
1499 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1500 return;
1501 }
1502 vmcs_writel(sf->base, var->base);
1503 vmcs_write32(sf->limit, var->limit);
1504 vmcs_write16(sf->selector, var->selector);
1505 if (vcpu->arch.rmode.active && var->s) {
1506 /*
1507 * Hack real-mode segments into vm86 compatibility.
1508 */
1509 if (var->base == 0xffff0000 && var->selector == 0xf000)
1510 vmcs_writel(sf->base, 0xf0000);
1511 ar = 0xf3;
1512 } else
1513 ar = vmx_segment_access_rights(var);
1514 vmcs_write32(sf->ar_bytes, ar);
1515 }
1516
1517 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1518 {
1519 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1520
1521 *db = (ar >> 14) & 1;
1522 *l = (ar >> 13) & 1;
1523 }
1524
1525 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1526 {
1527 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1528 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1529 }
1530
1531 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1532 {
1533 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1534 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1535 }
1536
1537 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1538 {
1539 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1540 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1541 }
1542
1543 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1544 {
1545 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1546 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1547 }
1548
1549 static int init_rmode_tss(struct kvm *kvm)
1550 {
1551 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1552 u16 data = 0;
1553 int ret = 0;
1554 int r;
1555
1556 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1557 if (r < 0)
1558 goto out;
1559 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1560 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1561 if (r < 0)
1562 goto out;
1563 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1564 if (r < 0)
1565 goto out;
1566 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1567 if (r < 0)
1568 goto out;
1569 data = ~0;
1570 r = kvm_write_guest_page(kvm, fn, &data,
1571 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1572 sizeof(u8));
1573 if (r < 0)
1574 goto out;
1575
1576 ret = 1;
1577 out:
1578 return ret;
1579 }
1580
1581 static void seg_setup(int seg)
1582 {
1583 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1584
1585 vmcs_write16(sf->selector, 0);
1586 vmcs_writel(sf->base, 0);
1587 vmcs_write32(sf->limit, 0xffff);
1588 vmcs_write32(sf->ar_bytes, 0x93);
1589 }
1590
1591 static int alloc_apic_access_page(struct kvm *kvm)
1592 {
1593 struct kvm_userspace_memory_region kvm_userspace_mem;
1594 int r = 0;
1595
1596 down_write(&kvm->slots_lock);
1597 if (kvm->arch.apic_access_page)
1598 goto out;
1599 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1600 kvm_userspace_mem.flags = 0;
1601 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1602 kvm_userspace_mem.memory_size = PAGE_SIZE;
1603 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1604 if (r)
1605 goto out;
1606
1607 down_read(&current->mm->mmap_sem);
1608 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1609 up_read(&current->mm->mmap_sem);
1610 out:
1611 up_write(&kvm->slots_lock);
1612 return r;
1613 }
1614
1615 static void allocate_vpid(struct vcpu_vmx *vmx)
1616 {
1617 int vpid;
1618
1619 vmx->vpid = 0;
1620 if (!enable_vpid || !cpu_has_vmx_vpid())
1621 return;
1622 spin_lock(&vmx_vpid_lock);
1623 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1624 if (vpid < VMX_NR_VPIDS) {
1625 vmx->vpid = vpid;
1626 __set_bit(vpid, vmx_vpid_bitmap);
1627 }
1628 spin_unlock(&vmx_vpid_lock);
1629 }
1630
1631 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1632 {
1633 void *va;
1634
1635 if (!cpu_has_vmx_msr_bitmap())
1636 return;
1637
1638 /*
1639 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1640 * have the write-low and read-high bitmap offsets the wrong way round.
1641 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1642 */
1643 va = kmap(msr_bitmap);
1644 if (msr <= 0x1fff) {
1645 __clear_bit(msr, va + 0x000); /* read-low */
1646 __clear_bit(msr, va + 0x800); /* write-low */
1647 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1648 msr &= 0x1fff;
1649 __clear_bit(msr, va + 0x400); /* read-high */
1650 __clear_bit(msr, va + 0xc00); /* write-high */
1651 }
1652 kunmap(msr_bitmap);
1653 }
1654
1655 /*
1656 * Sets up the vmcs for emulated real mode.
1657 */
1658 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1659 {
1660 u32 host_sysenter_cs;
1661 u32 junk;
1662 unsigned long a;
1663 struct descriptor_table dt;
1664 int i;
1665 unsigned long kvm_vmx_return;
1666 u32 exec_control;
1667
1668 /* I/O */
1669 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1670 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1671
1672 if (cpu_has_vmx_msr_bitmap())
1673 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1674
1675 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1676
1677 /* Control */
1678 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1679 vmcs_config.pin_based_exec_ctrl);
1680
1681 exec_control = vmcs_config.cpu_based_exec_ctrl;
1682 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1683 exec_control &= ~CPU_BASED_TPR_SHADOW;
1684 #ifdef CONFIG_X86_64
1685 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1686 CPU_BASED_CR8_LOAD_EXITING;
1687 #endif
1688 }
1689 if (!vm_need_ept())
1690 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1691 CPU_BASED_CR3_LOAD_EXITING;
1692 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1693
1694 if (cpu_has_secondary_exec_ctrls()) {
1695 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1696 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1697 exec_control &=
1698 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1699 if (vmx->vpid == 0)
1700 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1701 if (!vm_need_ept())
1702 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1703 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1704 }
1705
1706 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1707 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1708 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1709
1710 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1711 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1712 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1713
1714 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1715 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1716 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1717 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1718 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1719 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1720 #ifdef CONFIG_X86_64
1721 rdmsrl(MSR_FS_BASE, a);
1722 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1723 rdmsrl(MSR_GS_BASE, a);
1724 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1725 #else
1726 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1727 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1728 #endif
1729
1730 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1731
1732 get_idt(&dt);
1733 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1734
1735 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1736 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1737 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1738 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1739 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1740
1741 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1742 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1743 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1744 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1745 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1746 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1747
1748 for (i = 0; i < NR_VMX_MSR; ++i) {
1749 u32 index = vmx_msr_index[i];
1750 u32 data_low, data_high;
1751 u64 data;
1752 int j = vmx->nmsrs;
1753
1754 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1755 continue;
1756 if (wrmsr_safe(index, data_low, data_high) < 0)
1757 continue;
1758 data = data_low | ((u64)data_high << 32);
1759 vmx->host_msrs[j].index = index;
1760 vmx->host_msrs[j].reserved = 0;
1761 vmx->host_msrs[j].data = data;
1762 vmx->guest_msrs[j] = vmx->host_msrs[j];
1763 ++vmx->nmsrs;
1764 }
1765
1766 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1767
1768 /* 22.2.1, 20.8.1 */
1769 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1770
1771 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1772 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1773
1774
1775 return 0;
1776 }
1777
1778 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1779 {
1780 struct vcpu_vmx *vmx = to_vmx(vcpu);
1781 u64 msr;
1782 int ret;
1783
1784 down_read(&vcpu->kvm->slots_lock);
1785 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1786 ret = -ENOMEM;
1787 goto out;
1788 }
1789
1790 vmx->vcpu.arch.rmode.active = 0;
1791
1792 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1793 kvm_set_cr8(&vmx->vcpu, 0);
1794 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1795 if (vmx->vcpu.vcpu_id == 0)
1796 msr |= MSR_IA32_APICBASE_BSP;
1797 kvm_set_apic_base(&vmx->vcpu, msr);
1798
1799 fx_init(&vmx->vcpu);
1800
1801 /*
1802 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1803 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1804 */
1805 if (vmx->vcpu.vcpu_id == 0) {
1806 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1807 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1808 } else {
1809 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1810 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1811 }
1812 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1813 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1814
1815 seg_setup(VCPU_SREG_DS);
1816 seg_setup(VCPU_SREG_ES);
1817 seg_setup(VCPU_SREG_FS);
1818 seg_setup(VCPU_SREG_GS);
1819 seg_setup(VCPU_SREG_SS);
1820
1821 vmcs_write16(GUEST_TR_SELECTOR, 0);
1822 vmcs_writel(GUEST_TR_BASE, 0);
1823 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1824 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1825
1826 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1827 vmcs_writel(GUEST_LDTR_BASE, 0);
1828 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1829 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1830
1831 vmcs_write32(GUEST_SYSENTER_CS, 0);
1832 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1833 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1834
1835 vmcs_writel(GUEST_RFLAGS, 0x02);
1836 if (vmx->vcpu.vcpu_id == 0)
1837 vmcs_writel(GUEST_RIP, 0xfff0);
1838 else
1839 vmcs_writel(GUEST_RIP, 0);
1840 vmcs_writel(GUEST_RSP, 0);
1841
1842 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1843 vmcs_writel(GUEST_DR7, 0x400);
1844
1845 vmcs_writel(GUEST_GDTR_BASE, 0);
1846 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1847
1848 vmcs_writel(GUEST_IDTR_BASE, 0);
1849 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1850
1851 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1852 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1853 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1854
1855 guest_write_tsc(0);
1856
1857 /* Special registers */
1858 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1859
1860 setup_msrs(vmx);
1861
1862 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1863
1864 if (cpu_has_vmx_tpr_shadow()) {
1865 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1866 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1867 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1868 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1869 vmcs_write32(TPR_THRESHOLD, 0);
1870 }
1871
1872 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1873 vmcs_write64(APIC_ACCESS_ADDR,
1874 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1875
1876 if (vmx->vpid != 0)
1877 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1878
1879 vmx->vcpu.arch.cr0 = 0x60000010;
1880 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1881 vmx_set_cr4(&vmx->vcpu, 0);
1882 vmx_set_efer(&vmx->vcpu, 0);
1883 vmx_fpu_activate(&vmx->vcpu);
1884 update_exception_bitmap(&vmx->vcpu);
1885
1886 vpid_sync_vcpu_all(vmx);
1887
1888 ret = 0;
1889
1890 out:
1891 up_read(&vcpu->kvm->slots_lock);
1892 return ret;
1893 }
1894
1895 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1896 {
1897 struct vcpu_vmx *vmx = to_vmx(vcpu);
1898
1899 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
1900
1901 if (vcpu->arch.rmode.active) {
1902 vmx->rmode.irq.pending = true;
1903 vmx->rmode.irq.vector = irq;
1904 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1905 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1906 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1907 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1908 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1909 return;
1910 }
1911 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1912 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1913 }
1914
1915 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1916 {
1917 int word_index = __ffs(vcpu->arch.irq_summary);
1918 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1919 int irq = word_index * BITS_PER_LONG + bit_index;
1920
1921 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1922 if (!vcpu->arch.irq_pending[word_index])
1923 clear_bit(word_index, &vcpu->arch.irq_summary);
1924 vmx_inject_irq(vcpu, irq);
1925 }
1926
1927
1928 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1929 struct kvm_run *kvm_run)
1930 {
1931 u32 cpu_based_vm_exec_control;
1932
1933 vcpu->arch.interrupt_window_open =
1934 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1935 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1936
1937 if (vcpu->arch.interrupt_window_open &&
1938 vcpu->arch.irq_summary &&
1939 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1940 /*
1941 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1942 */
1943 kvm_do_inject_irq(vcpu);
1944
1945 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1946 if (!vcpu->arch.interrupt_window_open &&
1947 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1948 /*
1949 * Interrupts blocked. Wait for unblock.
1950 */
1951 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1952 else
1953 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1954 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1955 }
1956
1957 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1958 {
1959 int ret;
1960 struct kvm_userspace_memory_region tss_mem = {
1961 .slot = 8,
1962 .guest_phys_addr = addr,
1963 .memory_size = PAGE_SIZE * 3,
1964 .flags = 0,
1965 };
1966
1967 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1968 if (ret)
1969 return ret;
1970 kvm->arch.tss_addr = addr;
1971 return 0;
1972 }
1973
1974 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1975 {
1976 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1977
1978 set_debugreg(dbg->bp[0], 0);
1979 set_debugreg(dbg->bp[1], 1);
1980 set_debugreg(dbg->bp[2], 2);
1981 set_debugreg(dbg->bp[3], 3);
1982
1983 if (dbg->singlestep) {
1984 unsigned long flags;
1985
1986 flags = vmcs_readl(GUEST_RFLAGS);
1987 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1988 vmcs_writel(GUEST_RFLAGS, flags);
1989 }
1990 }
1991
1992 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1993 int vec, u32 err_code)
1994 {
1995 if (!vcpu->arch.rmode.active)
1996 return 0;
1997
1998 /*
1999 * Instruction with address size override prefix opcode 0x67
2000 * Cause the #SS fault with 0 error code in VM86 mode.
2001 */
2002 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2003 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2004 return 1;
2005 return 0;
2006 }
2007
2008 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2009 {
2010 struct vcpu_vmx *vmx = to_vmx(vcpu);
2011 u32 intr_info, error_code;
2012 unsigned long cr2, rip;
2013 u32 vect_info;
2014 enum emulation_result er;
2015
2016 vect_info = vmx->idt_vectoring_info;
2017 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2018
2019 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2020 !is_page_fault(intr_info))
2021 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2022 "intr info 0x%x\n", __func__, vect_info, intr_info);
2023
2024 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2025 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2026 set_bit(irq, vcpu->arch.irq_pending);
2027 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2028 }
2029
2030 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2031 return 1; /* already handled by vmx_vcpu_run() */
2032
2033 if (is_no_device(intr_info)) {
2034 vmx_fpu_activate(vcpu);
2035 return 1;
2036 }
2037
2038 if (is_invalid_opcode(intr_info)) {
2039 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2040 if (er != EMULATE_DONE)
2041 kvm_queue_exception(vcpu, UD_VECTOR);
2042 return 1;
2043 }
2044
2045 error_code = 0;
2046 rip = vmcs_readl(GUEST_RIP);
2047 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2048 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2049 if (is_page_fault(intr_info)) {
2050 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2051 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2052 (u32)((u64)cr2 >> 32), handler);
2053 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2054 }
2055
2056 if (vcpu->arch.rmode.active &&
2057 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2058 error_code)) {
2059 if (vcpu->arch.halt_request) {
2060 vcpu->arch.halt_request = 0;
2061 return kvm_emulate_halt(vcpu);
2062 }
2063 return 1;
2064 }
2065
2066 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2067 (INTR_TYPE_EXCEPTION | 1)) {
2068 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2069 return 0;
2070 }
2071 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2072 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2073 kvm_run->ex.error_code = error_code;
2074 return 0;
2075 }
2076
2077 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2078 struct kvm_run *kvm_run)
2079 {
2080 ++vcpu->stat.irq_exits;
2081 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2082 return 1;
2083 }
2084
2085 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2086 {
2087 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2088 return 0;
2089 }
2090
2091 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2092 {
2093 unsigned long exit_qualification;
2094 int size, down, in, string, rep;
2095 unsigned port;
2096
2097 ++vcpu->stat.io_exits;
2098 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2099 string = (exit_qualification & 16) != 0;
2100
2101 if (string) {
2102 if (emulate_instruction(vcpu,
2103 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2104 return 0;
2105 return 1;
2106 }
2107
2108 size = (exit_qualification & 7) + 1;
2109 in = (exit_qualification & 8) != 0;
2110 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2111 rep = (exit_qualification & 32) != 0;
2112 port = exit_qualification >> 16;
2113
2114 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2115 }
2116
2117 static void
2118 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2119 {
2120 /*
2121 * Patch in the VMCALL instruction:
2122 */
2123 hypercall[0] = 0x0f;
2124 hypercall[1] = 0x01;
2125 hypercall[2] = 0xc1;
2126 }
2127
2128 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2129 {
2130 unsigned long exit_qualification;
2131 int cr;
2132 int reg;
2133
2134 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2135 cr = exit_qualification & 15;
2136 reg = (exit_qualification >> 8) & 15;
2137 switch ((exit_qualification >> 4) & 3) {
2138 case 0: /* mov to cr */
2139 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2140 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2141 switch (cr) {
2142 case 0:
2143 vcpu_load_rsp_rip(vcpu);
2144 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2145 skip_emulated_instruction(vcpu);
2146 return 1;
2147 case 3:
2148 vcpu_load_rsp_rip(vcpu);
2149 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2150 skip_emulated_instruction(vcpu);
2151 return 1;
2152 case 4:
2153 vcpu_load_rsp_rip(vcpu);
2154 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2155 skip_emulated_instruction(vcpu);
2156 return 1;
2157 case 8:
2158 vcpu_load_rsp_rip(vcpu);
2159 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2160 skip_emulated_instruction(vcpu);
2161 if (irqchip_in_kernel(vcpu->kvm))
2162 return 1;
2163 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2164 return 0;
2165 };
2166 break;
2167 case 2: /* clts */
2168 vcpu_load_rsp_rip(vcpu);
2169 vmx_fpu_deactivate(vcpu);
2170 vcpu->arch.cr0 &= ~X86_CR0_TS;
2171 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2172 vmx_fpu_activate(vcpu);
2173 KVMTRACE_0D(CLTS, vcpu, handler);
2174 skip_emulated_instruction(vcpu);
2175 return 1;
2176 case 1: /*mov from cr*/
2177 switch (cr) {
2178 case 3:
2179 vcpu_load_rsp_rip(vcpu);
2180 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2181 vcpu_put_rsp_rip(vcpu);
2182 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2183 (u32)vcpu->arch.regs[reg],
2184 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2185 handler);
2186 skip_emulated_instruction(vcpu);
2187 return 1;
2188 case 8:
2189 vcpu_load_rsp_rip(vcpu);
2190 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2191 vcpu_put_rsp_rip(vcpu);
2192 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2193 (u32)vcpu->arch.regs[reg], handler);
2194 skip_emulated_instruction(vcpu);
2195 return 1;
2196 }
2197 break;
2198 case 3: /* lmsw */
2199 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2200
2201 skip_emulated_instruction(vcpu);
2202 return 1;
2203 default:
2204 break;
2205 }
2206 kvm_run->exit_reason = 0;
2207 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2208 (int)(exit_qualification >> 4) & 3, cr);
2209 return 0;
2210 }
2211
2212 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2213 {
2214 unsigned long exit_qualification;
2215 unsigned long val;
2216 int dr, reg;
2217
2218 /*
2219 * FIXME: this code assumes the host is debugging the guest.
2220 * need to deal with guest debugging itself too.
2221 */
2222 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2223 dr = exit_qualification & 7;
2224 reg = (exit_qualification >> 8) & 15;
2225 vcpu_load_rsp_rip(vcpu);
2226 if (exit_qualification & 16) {
2227 /* mov from dr */
2228 switch (dr) {
2229 case 6:
2230 val = 0xffff0ff0;
2231 break;
2232 case 7:
2233 val = 0x400;
2234 break;
2235 default:
2236 val = 0;
2237 }
2238 vcpu->arch.regs[reg] = val;
2239 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2240 } else {
2241 /* mov to dr */
2242 }
2243 vcpu_put_rsp_rip(vcpu);
2244 skip_emulated_instruction(vcpu);
2245 return 1;
2246 }
2247
2248 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2249 {
2250 kvm_emulate_cpuid(vcpu);
2251 return 1;
2252 }
2253
2254 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2255 {
2256 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2257 u64 data;
2258
2259 if (vmx_get_msr(vcpu, ecx, &data)) {
2260 kvm_inject_gp(vcpu, 0);
2261 return 1;
2262 }
2263
2264 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2265 handler);
2266
2267 /* FIXME: handling of bits 32:63 of rax, rdx */
2268 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2269 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2270 skip_emulated_instruction(vcpu);
2271 return 1;
2272 }
2273
2274 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2275 {
2276 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2277 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2278 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2279
2280 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2281 handler);
2282
2283 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2284 kvm_inject_gp(vcpu, 0);
2285 return 1;
2286 }
2287
2288 skip_emulated_instruction(vcpu);
2289 return 1;
2290 }
2291
2292 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2293 struct kvm_run *kvm_run)
2294 {
2295 return 1;
2296 }
2297
2298 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2299 struct kvm_run *kvm_run)
2300 {
2301 u32 cpu_based_vm_exec_control;
2302
2303 /* clear pending irq */
2304 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2305 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2306 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2307
2308 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2309
2310 /*
2311 * If the user space waits to inject interrupts, exit as soon as
2312 * possible
2313 */
2314 if (kvm_run->request_interrupt_window &&
2315 !vcpu->arch.irq_summary) {
2316 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2317 ++vcpu->stat.irq_window_exits;
2318 return 0;
2319 }
2320 return 1;
2321 }
2322
2323 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2324 {
2325 skip_emulated_instruction(vcpu);
2326 return kvm_emulate_halt(vcpu);
2327 }
2328
2329 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2330 {
2331 skip_emulated_instruction(vcpu);
2332 kvm_emulate_hypercall(vcpu);
2333 return 1;
2334 }
2335
2336 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2337 {
2338 skip_emulated_instruction(vcpu);
2339 /* TODO: Add support for VT-d/pass-through device */
2340 return 1;
2341 }
2342
2343 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2344 {
2345 u64 exit_qualification;
2346 enum emulation_result er;
2347 unsigned long offset;
2348
2349 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2350 offset = exit_qualification & 0xffful;
2351
2352 KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2353
2354 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2355
2356 if (er != EMULATE_DONE) {
2357 printk(KERN_ERR
2358 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2359 offset);
2360 return -ENOTSUPP;
2361 }
2362 return 1;
2363 }
2364
2365 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2366 {
2367 unsigned long exit_qualification;
2368 u16 tss_selector;
2369 int reason;
2370
2371 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2372
2373 reason = (u32)exit_qualification >> 30;
2374 tss_selector = exit_qualification;
2375
2376 return kvm_task_switch(vcpu, tss_selector, reason);
2377 }
2378
2379 /*
2380 * The exit handlers return 1 if the exit was handled fully and guest execution
2381 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2382 * to be done to userspace and return 0.
2383 */
2384 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2385 struct kvm_run *kvm_run) = {
2386 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2387 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2388 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2389 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2390 [EXIT_REASON_CR_ACCESS] = handle_cr,
2391 [EXIT_REASON_DR_ACCESS] = handle_dr,
2392 [EXIT_REASON_CPUID] = handle_cpuid,
2393 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2394 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2395 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2396 [EXIT_REASON_HLT] = handle_halt,
2397 [EXIT_REASON_VMCALL] = handle_vmcall,
2398 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2399 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2400 [EXIT_REASON_WBINVD] = handle_wbinvd,
2401 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2402 };
2403
2404 static const int kvm_vmx_max_exit_handlers =
2405 ARRAY_SIZE(kvm_vmx_exit_handlers);
2406
2407 /*
2408 * The guest has exited. See if we can fix it or if we need userspace
2409 * assistance.
2410 */
2411 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2412 {
2413 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2414 struct vcpu_vmx *vmx = to_vmx(vcpu);
2415 u32 vectoring_info = vmx->idt_vectoring_info;
2416
2417 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2418 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2419
2420 if (unlikely(vmx->fail)) {
2421 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2422 kvm_run->fail_entry.hardware_entry_failure_reason
2423 = vmcs_read32(VM_INSTRUCTION_ERROR);
2424 return 0;
2425 }
2426
2427 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2428 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2429 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2430 "exit reason is 0x%x\n", __func__, exit_reason);
2431 if (exit_reason < kvm_vmx_max_exit_handlers
2432 && kvm_vmx_exit_handlers[exit_reason])
2433 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2434 else {
2435 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2436 kvm_run->hw.hardware_exit_reason = exit_reason;
2437 }
2438 return 0;
2439 }
2440
2441 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2442 {
2443 int max_irr, tpr;
2444
2445 if (!vm_need_tpr_shadow(vcpu->kvm))
2446 return;
2447
2448 if (!kvm_lapic_enabled(vcpu) ||
2449 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2450 vmcs_write32(TPR_THRESHOLD, 0);
2451 return;
2452 }
2453
2454 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2455 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2456 }
2457
2458 static void enable_irq_window(struct kvm_vcpu *vcpu)
2459 {
2460 u32 cpu_based_vm_exec_control;
2461
2462 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2463 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2464 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2465 }
2466
2467 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2468 {
2469 struct vcpu_vmx *vmx = to_vmx(vcpu);
2470 u32 idtv_info_field, intr_info_field;
2471 int has_ext_irq, interrupt_window_open;
2472 int vector;
2473
2474 update_tpr_threshold(vcpu);
2475
2476 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2477 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2478 idtv_info_field = vmx->idt_vectoring_info;
2479 if (intr_info_field & INTR_INFO_VALID_MASK) {
2480 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2481 /* TODO: fault when IDT_Vectoring */
2482 if (printk_ratelimit())
2483 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2484 }
2485 if (has_ext_irq)
2486 enable_irq_window(vcpu);
2487 return;
2488 }
2489 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2490 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2491 == INTR_TYPE_EXT_INTR
2492 && vcpu->arch.rmode.active) {
2493 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2494
2495 vmx_inject_irq(vcpu, vect);
2496 if (unlikely(has_ext_irq))
2497 enable_irq_window(vcpu);
2498 return;
2499 }
2500
2501 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2502
2503 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2504 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2505 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2506
2507 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2508 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2509 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2510 if (unlikely(has_ext_irq))
2511 enable_irq_window(vcpu);
2512 return;
2513 }
2514 if (!has_ext_irq)
2515 return;
2516 interrupt_window_open =
2517 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2518 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2519 if (interrupt_window_open) {
2520 vector = kvm_cpu_get_interrupt(vcpu);
2521 vmx_inject_irq(vcpu, vector);
2522 kvm_timer_intr_post(vcpu, vector);
2523 } else
2524 enable_irq_window(vcpu);
2525 }
2526
2527 /*
2528 * Failure to inject an interrupt should give us the information
2529 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2530 * when fetching the interrupt redirection bitmap in the real-mode
2531 * tss, this doesn't happen. So we do it ourselves.
2532 */
2533 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2534 {
2535 vmx->rmode.irq.pending = 0;
2536 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2537 return;
2538 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2539 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2540 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2541 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2542 return;
2543 }
2544 vmx->idt_vectoring_info =
2545 VECTORING_INFO_VALID_MASK
2546 | INTR_TYPE_EXT_INTR
2547 | vmx->rmode.irq.vector;
2548 }
2549
2550 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2551 {
2552 struct vcpu_vmx *vmx = to_vmx(vcpu);
2553 u32 intr_info;
2554
2555 /*
2556 * Loading guest fpu may have cleared host cr0.ts
2557 */
2558 vmcs_writel(HOST_CR0, read_cr0());
2559
2560 asm(
2561 /* Store host registers */
2562 #ifdef CONFIG_X86_64
2563 "push %%rdx; push %%rbp;"
2564 "push %%rcx \n\t"
2565 #else
2566 "push %%edx; push %%ebp;"
2567 "push %%ecx \n\t"
2568 #endif
2569 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2570 /* Check if vmlaunch of vmresume is needed */
2571 "cmpl $0, %c[launched](%0) \n\t"
2572 /* Load guest registers. Don't clobber flags. */
2573 #ifdef CONFIG_X86_64
2574 "mov %c[cr2](%0), %%rax \n\t"
2575 "mov %%rax, %%cr2 \n\t"
2576 "mov %c[rax](%0), %%rax \n\t"
2577 "mov %c[rbx](%0), %%rbx \n\t"
2578 "mov %c[rdx](%0), %%rdx \n\t"
2579 "mov %c[rsi](%0), %%rsi \n\t"
2580 "mov %c[rdi](%0), %%rdi \n\t"
2581 "mov %c[rbp](%0), %%rbp \n\t"
2582 "mov %c[r8](%0), %%r8 \n\t"
2583 "mov %c[r9](%0), %%r9 \n\t"
2584 "mov %c[r10](%0), %%r10 \n\t"
2585 "mov %c[r11](%0), %%r11 \n\t"
2586 "mov %c[r12](%0), %%r12 \n\t"
2587 "mov %c[r13](%0), %%r13 \n\t"
2588 "mov %c[r14](%0), %%r14 \n\t"
2589 "mov %c[r15](%0), %%r15 \n\t"
2590 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2591 #else
2592 "mov %c[cr2](%0), %%eax \n\t"
2593 "mov %%eax, %%cr2 \n\t"
2594 "mov %c[rax](%0), %%eax \n\t"
2595 "mov %c[rbx](%0), %%ebx \n\t"
2596 "mov %c[rdx](%0), %%edx \n\t"
2597 "mov %c[rsi](%0), %%esi \n\t"
2598 "mov %c[rdi](%0), %%edi \n\t"
2599 "mov %c[rbp](%0), %%ebp \n\t"
2600 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2601 #endif
2602 /* Enter guest mode */
2603 "jne .Llaunched \n\t"
2604 ASM_VMX_VMLAUNCH "\n\t"
2605 "jmp .Lkvm_vmx_return \n\t"
2606 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2607 ".Lkvm_vmx_return: "
2608 /* Save guest registers, load host registers, keep flags */
2609 #ifdef CONFIG_X86_64
2610 "xchg %0, (%%rsp) \n\t"
2611 "mov %%rax, %c[rax](%0) \n\t"
2612 "mov %%rbx, %c[rbx](%0) \n\t"
2613 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2614 "mov %%rdx, %c[rdx](%0) \n\t"
2615 "mov %%rsi, %c[rsi](%0) \n\t"
2616 "mov %%rdi, %c[rdi](%0) \n\t"
2617 "mov %%rbp, %c[rbp](%0) \n\t"
2618 "mov %%r8, %c[r8](%0) \n\t"
2619 "mov %%r9, %c[r9](%0) \n\t"
2620 "mov %%r10, %c[r10](%0) \n\t"
2621 "mov %%r11, %c[r11](%0) \n\t"
2622 "mov %%r12, %c[r12](%0) \n\t"
2623 "mov %%r13, %c[r13](%0) \n\t"
2624 "mov %%r14, %c[r14](%0) \n\t"
2625 "mov %%r15, %c[r15](%0) \n\t"
2626 "mov %%cr2, %%rax \n\t"
2627 "mov %%rax, %c[cr2](%0) \n\t"
2628
2629 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2630 #else
2631 "xchg %0, (%%esp) \n\t"
2632 "mov %%eax, %c[rax](%0) \n\t"
2633 "mov %%ebx, %c[rbx](%0) \n\t"
2634 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2635 "mov %%edx, %c[rdx](%0) \n\t"
2636 "mov %%esi, %c[rsi](%0) \n\t"
2637 "mov %%edi, %c[rdi](%0) \n\t"
2638 "mov %%ebp, %c[rbp](%0) \n\t"
2639 "mov %%cr2, %%eax \n\t"
2640 "mov %%eax, %c[cr2](%0) \n\t"
2641
2642 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2643 #endif
2644 "setbe %c[fail](%0) \n\t"
2645 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2646 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2647 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2648 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2649 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2650 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2651 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2652 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2653 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2654 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2655 #ifdef CONFIG_X86_64
2656 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2657 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2658 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2659 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2660 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2661 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2662 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2663 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2664 #endif
2665 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2666 : "cc", "memory"
2667 #ifdef CONFIG_X86_64
2668 , "rbx", "rdi", "rsi"
2669 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2670 #else
2671 , "ebx", "edi", "rsi"
2672 #endif
2673 );
2674
2675 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2676 if (vmx->rmode.irq.pending)
2677 fixup_rmode_irq(vmx);
2678
2679 vcpu->arch.interrupt_window_open =
2680 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2681
2682 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2683 vmx->launched = 1;
2684
2685 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2686
2687 /* We need to handle NMIs before interrupts are enabled */
2688 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2689 KVMTRACE_0D(NMI, vcpu, handler);
2690 asm("int $2");
2691 }
2692 }
2693
2694 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2695 {
2696 struct vcpu_vmx *vmx = to_vmx(vcpu);
2697
2698 if (vmx->vmcs) {
2699 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2700 free_vmcs(vmx->vmcs);
2701 vmx->vmcs = NULL;
2702 }
2703 }
2704
2705 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2706 {
2707 struct vcpu_vmx *vmx = to_vmx(vcpu);
2708
2709 spin_lock(&vmx_vpid_lock);
2710 if (vmx->vpid != 0)
2711 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2712 spin_unlock(&vmx_vpid_lock);
2713 vmx_free_vmcs(vcpu);
2714 kfree(vmx->host_msrs);
2715 kfree(vmx->guest_msrs);
2716 kvm_vcpu_uninit(vcpu);
2717 kmem_cache_free(kvm_vcpu_cache, vmx);
2718 }
2719
2720 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2721 {
2722 int err;
2723 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2724 int cpu;
2725
2726 if (!vmx)
2727 return ERR_PTR(-ENOMEM);
2728
2729 allocate_vpid(vmx);
2730
2731 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2732 if (err)
2733 goto free_vcpu;
2734
2735 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2736 if (!vmx->guest_msrs) {
2737 err = -ENOMEM;
2738 goto uninit_vcpu;
2739 }
2740
2741 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2742 if (!vmx->host_msrs)
2743 goto free_guest_msrs;
2744
2745 vmx->vmcs = alloc_vmcs();
2746 if (!vmx->vmcs)
2747 goto free_msrs;
2748
2749 vmcs_clear(vmx->vmcs);
2750
2751 cpu = get_cpu();
2752 vmx_vcpu_load(&vmx->vcpu, cpu);
2753 err = vmx_vcpu_setup(vmx);
2754 vmx_vcpu_put(&vmx->vcpu);
2755 put_cpu();
2756 if (err)
2757 goto free_vmcs;
2758 if (vm_need_virtualize_apic_accesses(kvm))
2759 if (alloc_apic_access_page(kvm) != 0)
2760 goto free_vmcs;
2761
2762 return &vmx->vcpu;
2763
2764 free_vmcs:
2765 free_vmcs(vmx->vmcs);
2766 free_msrs:
2767 kfree(vmx->host_msrs);
2768 free_guest_msrs:
2769 kfree(vmx->guest_msrs);
2770 uninit_vcpu:
2771 kvm_vcpu_uninit(&vmx->vcpu);
2772 free_vcpu:
2773 kmem_cache_free(kvm_vcpu_cache, vmx);
2774 return ERR_PTR(err);
2775 }
2776
2777 static void __init vmx_check_processor_compat(void *rtn)
2778 {
2779 struct vmcs_config vmcs_conf;
2780
2781 *(int *)rtn = 0;
2782 if (setup_vmcs_config(&vmcs_conf) < 0)
2783 *(int *)rtn = -EIO;
2784 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2785 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2786 smp_processor_id());
2787 *(int *)rtn = -EIO;
2788 }
2789 }
2790
2791 static int get_ept_level(void)
2792 {
2793 return VMX_EPT_DEFAULT_GAW + 1;
2794 }
2795
2796 static struct kvm_x86_ops vmx_x86_ops = {
2797 .cpu_has_kvm_support = cpu_has_kvm_support,
2798 .disabled_by_bios = vmx_disabled_by_bios,
2799 .hardware_setup = hardware_setup,
2800 .hardware_unsetup = hardware_unsetup,
2801 .check_processor_compatibility = vmx_check_processor_compat,
2802 .hardware_enable = hardware_enable,
2803 .hardware_disable = hardware_disable,
2804 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2805
2806 .vcpu_create = vmx_create_vcpu,
2807 .vcpu_free = vmx_free_vcpu,
2808 .vcpu_reset = vmx_vcpu_reset,
2809
2810 .prepare_guest_switch = vmx_save_host_state,
2811 .vcpu_load = vmx_vcpu_load,
2812 .vcpu_put = vmx_vcpu_put,
2813 .vcpu_decache = vmx_vcpu_decache,
2814
2815 .set_guest_debug = set_guest_debug,
2816 .guest_debug_pre = kvm_guest_debug_pre,
2817 .get_msr = vmx_get_msr,
2818 .set_msr = vmx_set_msr,
2819 .get_segment_base = vmx_get_segment_base,
2820 .get_segment = vmx_get_segment,
2821 .set_segment = vmx_set_segment,
2822 .get_cpl = vmx_get_cpl,
2823 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2824 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2825 .set_cr0 = vmx_set_cr0,
2826 .set_cr3 = vmx_set_cr3,
2827 .set_cr4 = vmx_set_cr4,
2828 .set_efer = vmx_set_efer,
2829 .get_idt = vmx_get_idt,
2830 .set_idt = vmx_set_idt,
2831 .get_gdt = vmx_get_gdt,
2832 .set_gdt = vmx_set_gdt,
2833 .cache_regs = vcpu_load_rsp_rip,
2834 .decache_regs = vcpu_put_rsp_rip,
2835 .get_rflags = vmx_get_rflags,
2836 .set_rflags = vmx_set_rflags,
2837
2838 .tlb_flush = vmx_flush_tlb,
2839
2840 .run = vmx_vcpu_run,
2841 .handle_exit = kvm_handle_exit,
2842 .skip_emulated_instruction = skip_emulated_instruction,
2843 .patch_hypercall = vmx_patch_hypercall,
2844 .get_irq = vmx_get_irq,
2845 .set_irq = vmx_inject_irq,
2846 .queue_exception = vmx_queue_exception,
2847 .exception_injected = vmx_exception_injected,
2848 .inject_pending_irq = vmx_intr_assist,
2849 .inject_pending_vectors = do_interrupt_requests,
2850
2851 .set_tss_addr = vmx_set_tss_addr,
2852 .get_tdp_level = get_ept_level,
2853 };
2854
2855 static int __init vmx_init(void)
2856 {
2857 void *va;
2858 int r;
2859
2860 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2861 if (!vmx_io_bitmap_a)
2862 return -ENOMEM;
2863
2864 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2865 if (!vmx_io_bitmap_b) {
2866 r = -ENOMEM;
2867 goto out;
2868 }
2869
2870 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2871 if (!vmx_msr_bitmap) {
2872 r = -ENOMEM;
2873 goto out1;
2874 }
2875
2876 /*
2877 * Allow direct access to the PC debug port (it is often used for I/O
2878 * delays, but the vmexits simply slow things down).
2879 */
2880 va = kmap(vmx_io_bitmap_a);
2881 memset(va, 0xff, PAGE_SIZE);
2882 clear_bit(0x80, va);
2883 kunmap(vmx_io_bitmap_a);
2884
2885 va = kmap(vmx_io_bitmap_b);
2886 memset(va, 0xff, PAGE_SIZE);
2887 kunmap(vmx_io_bitmap_b);
2888
2889 va = kmap(vmx_msr_bitmap);
2890 memset(va, 0xff, PAGE_SIZE);
2891 kunmap(vmx_msr_bitmap);
2892
2893 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
2894
2895 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2896 if (r)
2897 goto out2;
2898
2899 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
2900 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
2901 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
2902 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
2903 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
2904
2905 if (bypass_guest_pf)
2906 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2907
2908 return 0;
2909
2910 out2:
2911 __free_page(vmx_msr_bitmap);
2912 out1:
2913 __free_page(vmx_io_bitmap_b);
2914 out:
2915 __free_page(vmx_io_bitmap_a);
2916 return r;
2917 }
2918
2919 static void __exit vmx_exit(void)
2920 {
2921 __free_page(vmx_msr_bitmap);
2922 __free_page(vmx_io_bitmap_b);
2923 __free_page(vmx_io_bitmap_a);
2924
2925 kvm_exit();
2926 }
2927
2928 module_init(vmx_init)
2929 module_exit(vmx_exit)