]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: Enable EPT 1GB page support
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59 enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
65 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK \
67 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
69 (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
70 #define KVM_VM_CR0_ALWAYS_ON \
71 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS \
73 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
74 | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81 * ple_gap: upper bound on the amount of time between two successive
82 * executions of PAUSE in a loop. Also indicate if ple enabled.
83 * According to test, this time is usually small than 41 cycles.
84 * ple_window: upper bound on the amount of time a guest is allowed to execute
85 * in a PAUSE loop. Tests indicate that most spinlocks are held for
86 * less than 2^12 cycles
87 * Time is measured based on a counter that runs at the same rate as the TSC,
88 * refer SDM volume 3b section 21.6.13 & 22.1.3.
89 */
90 #define KVM_VMX_DEFAULT_PLE_GAP 41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99 u32 revision_id;
100 u32 abort;
101 char data[0];
102 };
103
104 struct shared_msr_entry {
105 unsigned index;
106 u64 data;
107 u64 mask;
108 };
109
110 struct vcpu_vmx {
111 struct kvm_vcpu vcpu;
112 struct list_head local_vcpus_link;
113 unsigned long host_rsp;
114 int launched;
115 u8 fail;
116 u32 idt_vectoring_info;
117 struct shared_msr_entry *guest_msrs;
118 int nmsrs;
119 int save_nmsrs;
120 #ifdef CONFIG_X86_64
121 u64 msr_host_kernel_gs_base;
122 u64 msr_guest_kernel_gs_base;
123 #endif
124 struct vmcs *vmcs;
125 struct {
126 int loaded;
127 u16 fs_sel, gs_sel, ldt_sel;
128 int gs_ldt_reload_needed;
129 int fs_reload_needed;
130 } host_state;
131 struct {
132 int vm86_active;
133 u8 save_iopl;
134 struct kvm_save_segment {
135 u16 selector;
136 unsigned long base;
137 u32 limit;
138 u32 ar;
139 } tr, es, ds, fs, gs;
140 struct {
141 bool pending;
142 u8 vector;
143 unsigned rip;
144 } irq;
145 } rmode;
146 int vpid;
147 bool emulation_required;
148
149 /* Support for vnmi-less CPUs */
150 int soft_vnmi_blocked;
151 ktime_t entry_time;
152 s64 vnmi_blocked_time;
153 u32 exit_reason;
154
155 bool rdtscp_enabled;
156 };
157
158 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
159 {
160 return container_of(vcpu, struct vcpu_vmx, vcpu);
161 }
162
163 static int init_rmode(struct kvm *kvm);
164 static u64 construct_eptp(unsigned long root_hpa);
165
166 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
167 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
168 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
169
170 static unsigned long *vmx_io_bitmap_a;
171 static unsigned long *vmx_io_bitmap_b;
172 static unsigned long *vmx_msr_bitmap_legacy;
173 static unsigned long *vmx_msr_bitmap_longmode;
174
175 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
176 static DEFINE_SPINLOCK(vmx_vpid_lock);
177
178 static struct vmcs_config {
179 int size;
180 int order;
181 u32 revision_id;
182 u32 pin_based_exec_ctrl;
183 u32 cpu_based_exec_ctrl;
184 u32 cpu_based_2nd_exec_ctrl;
185 u32 vmexit_ctrl;
186 u32 vmentry_ctrl;
187 } vmcs_config;
188
189 static struct vmx_capability {
190 u32 ept;
191 u32 vpid;
192 } vmx_capability;
193
194 #define VMX_SEGMENT_FIELD(seg) \
195 [VCPU_SREG_##seg] = { \
196 .selector = GUEST_##seg##_SELECTOR, \
197 .base = GUEST_##seg##_BASE, \
198 .limit = GUEST_##seg##_LIMIT, \
199 .ar_bytes = GUEST_##seg##_AR_BYTES, \
200 }
201
202 static struct kvm_vmx_segment_field {
203 unsigned selector;
204 unsigned base;
205 unsigned limit;
206 unsigned ar_bytes;
207 } kvm_vmx_segment_fields[] = {
208 VMX_SEGMENT_FIELD(CS),
209 VMX_SEGMENT_FIELD(DS),
210 VMX_SEGMENT_FIELD(ES),
211 VMX_SEGMENT_FIELD(FS),
212 VMX_SEGMENT_FIELD(GS),
213 VMX_SEGMENT_FIELD(SS),
214 VMX_SEGMENT_FIELD(TR),
215 VMX_SEGMENT_FIELD(LDTR),
216 };
217
218 static u64 host_efer;
219
220 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
221
222 /*
223 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
224 * away by decrementing the array size.
225 */
226 static const u32 vmx_msr_index[] = {
227 #ifdef CONFIG_X86_64
228 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
229 #endif
230 MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
231 };
232 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
233
234 static inline int is_page_fault(u32 intr_info)
235 {
236 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
237 INTR_INFO_VALID_MASK)) ==
238 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
239 }
240
241 static inline int is_no_device(u32 intr_info)
242 {
243 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
244 INTR_INFO_VALID_MASK)) ==
245 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
246 }
247
248 static inline int is_invalid_opcode(u32 intr_info)
249 {
250 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
251 INTR_INFO_VALID_MASK)) ==
252 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
253 }
254
255 static inline int is_external_interrupt(u32 intr_info)
256 {
257 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
258 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
259 }
260
261 static inline int is_machine_check(u32 intr_info)
262 {
263 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
264 INTR_INFO_VALID_MASK)) ==
265 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
266 }
267
268 static inline int cpu_has_vmx_msr_bitmap(void)
269 {
270 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
271 }
272
273 static inline int cpu_has_vmx_tpr_shadow(void)
274 {
275 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
276 }
277
278 static inline int vm_need_tpr_shadow(struct kvm *kvm)
279 {
280 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
281 }
282
283 static inline int cpu_has_secondary_exec_ctrls(void)
284 {
285 return vmcs_config.cpu_based_exec_ctrl &
286 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
287 }
288
289 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
290 {
291 return vmcs_config.cpu_based_2nd_exec_ctrl &
292 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
293 }
294
295 static inline bool cpu_has_vmx_flexpriority(void)
296 {
297 return cpu_has_vmx_tpr_shadow() &&
298 cpu_has_vmx_virtualize_apic_accesses();
299 }
300
301 static inline bool cpu_has_vmx_ept_execute_only(void)
302 {
303 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
304 }
305
306 static inline bool cpu_has_vmx_eptp_uncacheable(void)
307 {
308 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
309 }
310
311 static inline bool cpu_has_vmx_eptp_writeback(void)
312 {
313 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
314 }
315
316 static inline bool cpu_has_vmx_ept_2m_page(void)
317 {
318 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
319 }
320
321 static inline bool cpu_has_vmx_ept_1g_page(void)
322 {
323 return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
324 }
325
326 static inline int cpu_has_vmx_invept_individual_addr(void)
327 {
328 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
329 }
330
331 static inline int cpu_has_vmx_invept_context(void)
332 {
333 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
334 }
335
336 static inline int cpu_has_vmx_invept_global(void)
337 {
338 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
339 }
340
341 static inline int cpu_has_vmx_ept(void)
342 {
343 return vmcs_config.cpu_based_2nd_exec_ctrl &
344 SECONDARY_EXEC_ENABLE_EPT;
345 }
346
347 static inline int cpu_has_vmx_unrestricted_guest(void)
348 {
349 return vmcs_config.cpu_based_2nd_exec_ctrl &
350 SECONDARY_EXEC_UNRESTRICTED_GUEST;
351 }
352
353 static inline int cpu_has_vmx_ple(void)
354 {
355 return vmcs_config.cpu_based_2nd_exec_ctrl &
356 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
357 }
358
359 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
360 {
361 return flexpriority_enabled &&
362 (cpu_has_vmx_virtualize_apic_accesses()) &&
363 (irqchip_in_kernel(kvm));
364 }
365
366 static inline int cpu_has_vmx_vpid(void)
367 {
368 return vmcs_config.cpu_based_2nd_exec_ctrl &
369 SECONDARY_EXEC_ENABLE_VPID;
370 }
371
372 static inline int cpu_has_vmx_rdtscp(void)
373 {
374 return vmcs_config.cpu_based_2nd_exec_ctrl &
375 SECONDARY_EXEC_RDTSCP;
376 }
377
378 static inline int cpu_has_virtual_nmis(void)
379 {
380 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
381 }
382
383 static inline bool report_flexpriority(void)
384 {
385 return flexpriority_enabled;
386 }
387
388 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
389 {
390 int i;
391
392 for (i = 0; i < vmx->nmsrs; ++i)
393 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
394 return i;
395 return -1;
396 }
397
398 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
399 {
400 struct {
401 u64 vpid : 16;
402 u64 rsvd : 48;
403 u64 gva;
404 } operand = { vpid, 0, gva };
405
406 asm volatile (__ex(ASM_VMX_INVVPID)
407 /* CF==1 or ZF==1 --> rc = -1 */
408 "; ja 1f ; ud2 ; 1:"
409 : : "a"(&operand), "c"(ext) : "cc", "memory");
410 }
411
412 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
413 {
414 struct {
415 u64 eptp, gpa;
416 } operand = {eptp, gpa};
417
418 asm volatile (__ex(ASM_VMX_INVEPT)
419 /* CF==1 or ZF==1 --> rc = -1 */
420 "; ja 1f ; ud2 ; 1:\n"
421 : : "a" (&operand), "c" (ext) : "cc", "memory");
422 }
423
424 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
425 {
426 int i;
427
428 i = __find_msr_index(vmx, msr);
429 if (i >= 0)
430 return &vmx->guest_msrs[i];
431 return NULL;
432 }
433
434 static void vmcs_clear(struct vmcs *vmcs)
435 {
436 u64 phys_addr = __pa(vmcs);
437 u8 error;
438
439 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
440 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
441 : "cc", "memory");
442 if (error)
443 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
444 vmcs, phys_addr);
445 }
446
447 static void __vcpu_clear(void *arg)
448 {
449 struct vcpu_vmx *vmx = arg;
450 int cpu = raw_smp_processor_id();
451
452 if (vmx->vcpu.cpu == cpu)
453 vmcs_clear(vmx->vmcs);
454 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
455 per_cpu(current_vmcs, cpu) = NULL;
456 rdtscll(vmx->vcpu.arch.host_tsc);
457 list_del(&vmx->local_vcpus_link);
458 vmx->vcpu.cpu = -1;
459 vmx->launched = 0;
460 }
461
462 static void vcpu_clear(struct vcpu_vmx *vmx)
463 {
464 if (vmx->vcpu.cpu == -1)
465 return;
466 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
467 }
468
469 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
470 {
471 if (vmx->vpid == 0)
472 return;
473
474 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
475 }
476
477 static inline void ept_sync_global(void)
478 {
479 if (cpu_has_vmx_invept_global())
480 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
481 }
482
483 static inline void ept_sync_context(u64 eptp)
484 {
485 if (enable_ept) {
486 if (cpu_has_vmx_invept_context())
487 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
488 else
489 ept_sync_global();
490 }
491 }
492
493 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
494 {
495 if (enable_ept) {
496 if (cpu_has_vmx_invept_individual_addr())
497 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
498 eptp, gpa);
499 else
500 ept_sync_context(eptp);
501 }
502 }
503
504 static unsigned long vmcs_readl(unsigned long field)
505 {
506 unsigned long value;
507
508 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
509 : "=a"(value) : "d"(field) : "cc");
510 return value;
511 }
512
513 static u16 vmcs_read16(unsigned long field)
514 {
515 return vmcs_readl(field);
516 }
517
518 static u32 vmcs_read32(unsigned long field)
519 {
520 return vmcs_readl(field);
521 }
522
523 static u64 vmcs_read64(unsigned long field)
524 {
525 #ifdef CONFIG_X86_64
526 return vmcs_readl(field);
527 #else
528 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
529 #endif
530 }
531
532 static noinline void vmwrite_error(unsigned long field, unsigned long value)
533 {
534 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
535 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
536 dump_stack();
537 }
538
539 static void vmcs_writel(unsigned long field, unsigned long value)
540 {
541 u8 error;
542
543 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
544 : "=q"(error) : "a"(value), "d"(field) : "cc");
545 if (unlikely(error))
546 vmwrite_error(field, value);
547 }
548
549 static void vmcs_write16(unsigned long field, u16 value)
550 {
551 vmcs_writel(field, value);
552 }
553
554 static void vmcs_write32(unsigned long field, u32 value)
555 {
556 vmcs_writel(field, value);
557 }
558
559 static void vmcs_write64(unsigned long field, u64 value)
560 {
561 vmcs_writel(field, value);
562 #ifndef CONFIG_X86_64
563 asm volatile ("");
564 vmcs_writel(field+1, value >> 32);
565 #endif
566 }
567
568 static void vmcs_clear_bits(unsigned long field, u32 mask)
569 {
570 vmcs_writel(field, vmcs_readl(field) & ~mask);
571 }
572
573 static void vmcs_set_bits(unsigned long field, u32 mask)
574 {
575 vmcs_writel(field, vmcs_readl(field) | mask);
576 }
577
578 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
579 {
580 u32 eb;
581
582 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
583 if (!vcpu->fpu_active)
584 eb |= 1u << NM_VECTOR;
585 /*
586 * Unconditionally intercept #DB so we can maintain dr6 without
587 * reading it every exit.
588 */
589 eb |= 1u << DB_VECTOR;
590 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
591 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
592 eb |= 1u << BP_VECTOR;
593 }
594 if (to_vmx(vcpu)->rmode.vm86_active)
595 eb = ~0;
596 if (enable_ept)
597 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
598 vmcs_write32(EXCEPTION_BITMAP, eb);
599 }
600
601 static void reload_tss(void)
602 {
603 /*
604 * VT restores TR but not its size. Useless.
605 */
606 struct descriptor_table gdt;
607 struct desc_struct *descs;
608
609 kvm_get_gdt(&gdt);
610 descs = (void *)gdt.base;
611 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
612 load_TR_desc();
613 }
614
615 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
616 {
617 u64 guest_efer;
618 u64 ignore_bits;
619
620 guest_efer = vmx->vcpu.arch.shadow_efer;
621
622 /*
623 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
624 * outside long mode
625 */
626 ignore_bits = EFER_NX | EFER_SCE;
627 #ifdef CONFIG_X86_64
628 ignore_bits |= EFER_LMA | EFER_LME;
629 /* SCE is meaningful only in long mode on Intel */
630 if (guest_efer & EFER_LMA)
631 ignore_bits &= ~(u64)EFER_SCE;
632 #endif
633 guest_efer &= ~ignore_bits;
634 guest_efer |= host_efer & ignore_bits;
635 vmx->guest_msrs[efer_offset].data = guest_efer;
636 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
637 return true;
638 }
639
640 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
641 {
642 struct vcpu_vmx *vmx = to_vmx(vcpu);
643 int i;
644
645 if (vmx->host_state.loaded)
646 return;
647
648 vmx->host_state.loaded = 1;
649 /*
650 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
651 * allow segment selectors with cpl > 0 or ti == 1.
652 */
653 vmx->host_state.ldt_sel = kvm_read_ldt();
654 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
655 vmx->host_state.fs_sel = kvm_read_fs();
656 if (!(vmx->host_state.fs_sel & 7)) {
657 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
658 vmx->host_state.fs_reload_needed = 0;
659 } else {
660 vmcs_write16(HOST_FS_SELECTOR, 0);
661 vmx->host_state.fs_reload_needed = 1;
662 }
663 vmx->host_state.gs_sel = kvm_read_gs();
664 if (!(vmx->host_state.gs_sel & 7))
665 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
666 else {
667 vmcs_write16(HOST_GS_SELECTOR, 0);
668 vmx->host_state.gs_ldt_reload_needed = 1;
669 }
670
671 #ifdef CONFIG_X86_64
672 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
673 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
674 #else
675 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
676 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
677 #endif
678
679 #ifdef CONFIG_X86_64
680 if (is_long_mode(&vmx->vcpu)) {
681 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
682 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
683 }
684 #endif
685 for (i = 0; i < vmx->save_nmsrs; ++i)
686 kvm_set_shared_msr(vmx->guest_msrs[i].index,
687 vmx->guest_msrs[i].data,
688 vmx->guest_msrs[i].mask);
689 }
690
691 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
692 {
693 unsigned long flags;
694
695 if (!vmx->host_state.loaded)
696 return;
697
698 ++vmx->vcpu.stat.host_state_reload;
699 vmx->host_state.loaded = 0;
700 if (vmx->host_state.fs_reload_needed)
701 kvm_load_fs(vmx->host_state.fs_sel);
702 if (vmx->host_state.gs_ldt_reload_needed) {
703 kvm_load_ldt(vmx->host_state.ldt_sel);
704 /*
705 * If we have to reload gs, we must take care to
706 * preserve our gs base.
707 */
708 local_irq_save(flags);
709 kvm_load_gs(vmx->host_state.gs_sel);
710 #ifdef CONFIG_X86_64
711 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
712 #endif
713 local_irq_restore(flags);
714 }
715 reload_tss();
716 #ifdef CONFIG_X86_64
717 if (is_long_mode(&vmx->vcpu)) {
718 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
719 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
720 }
721 #endif
722 }
723
724 static void vmx_load_host_state(struct vcpu_vmx *vmx)
725 {
726 preempt_disable();
727 __vmx_load_host_state(vmx);
728 preempt_enable();
729 }
730
731 /*
732 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
733 * vcpu mutex is already taken.
734 */
735 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
736 {
737 struct vcpu_vmx *vmx = to_vmx(vcpu);
738 u64 phys_addr = __pa(vmx->vmcs);
739 u64 tsc_this, delta, new_offset;
740
741 if (vcpu->cpu != cpu) {
742 vcpu_clear(vmx);
743 kvm_migrate_timers(vcpu);
744 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
745 local_irq_disable();
746 list_add(&vmx->local_vcpus_link,
747 &per_cpu(vcpus_on_cpu, cpu));
748 local_irq_enable();
749 }
750
751 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
752 u8 error;
753
754 per_cpu(current_vmcs, cpu) = vmx->vmcs;
755 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
756 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
757 : "cc");
758 if (error)
759 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
760 vmx->vmcs, phys_addr);
761 }
762
763 if (vcpu->cpu != cpu) {
764 struct descriptor_table dt;
765 unsigned long sysenter_esp;
766
767 vcpu->cpu = cpu;
768 /*
769 * Linux uses per-cpu TSS and GDT, so set these when switching
770 * processors.
771 */
772 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
773 kvm_get_gdt(&dt);
774 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
775
776 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
777 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
778
779 /*
780 * Make sure the time stamp counter is monotonous.
781 */
782 rdtscll(tsc_this);
783 if (tsc_this < vcpu->arch.host_tsc) {
784 delta = vcpu->arch.host_tsc - tsc_this;
785 new_offset = vmcs_read64(TSC_OFFSET) + delta;
786 vmcs_write64(TSC_OFFSET, new_offset);
787 }
788 }
789 }
790
791 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
792 {
793 __vmx_load_host_state(to_vmx(vcpu));
794 }
795
796 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
797 {
798 if (vcpu->fpu_active)
799 return;
800 vcpu->fpu_active = 1;
801 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
802 if (vcpu->arch.cr0 & X86_CR0_TS)
803 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
804 update_exception_bitmap(vcpu);
805 }
806
807 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
808 {
809 if (!vcpu->fpu_active)
810 return;
811 vcpu->fpu_active = 0;
812 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
813 update_exception_bitmap(vcpu);
814 }
815
816 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
817 {
818 unsigned long rflags;
819
820 rflags = vmcs_readl(GUEST_RFLAGS);
821 if (to_vmx(vcpu)->rmode.vm86_active)
822 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
823 return rflags;
824 }
825
826 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
827 {
828 if (to_vmx(vcpu)->rmode.vm86_active)
829 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
830 vmcs_writel(GUEST_RFLAGS, rflags);
831 }
832
833 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
834 {
835 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
836 int ret = 0;
837
838 if (interruptibility & GUEST_INTR_STATE_STI)
839 ret |= X86_SHADOW_INT_STI;
840 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
841 ret |= X86_SHADOW_INT_MOV_SS;
842
843 return ret & mask;
844 }
845
846 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
847 {
848 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
849 u32 interruptibility = interruptibility_old;
850
851 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
852
853 if (mask & X86_SHADOW_INT_MOV_SS)
854 interruptibility |= GUEST_INTR_STATE_MOV_SS;
855 if (mask & X86_SHADOW_INT_STI)
856 interruptibility |= GUEST_INTR_STATE_STI;
857
858 if ((interruptibility != interruptibility_old))
859 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
860 }
861
862 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
863 {
864 unsigned long rip;
865
866 rip = kvm_rip_read(vcpu);
867 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
868 kvm_rip_write(vcpu, rip);
869
870 /* skipping an emulated instruction also counts */
871 vmx_set_interrupt_shadow(vcpu, 0);
872 }
873
874 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
875 bool has_error_code, u32 error_code)
876 {
877 struct vcpu_vmx *vmx = to_vmx(vcpu);
878 u32 intr_info = nr | INTR_INFO_VALID_MASK;
879
880 if (has_error_code) {
881 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
882 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
883 }
884
885 if (vmx->rmode.vm86_active) {
886 vmx->rmode.irq.pending = true;
887 vmx->rmode.irq.vector = nr;
888 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
889 if (kvm_exception_is_soft(nr))
890 vmx->rmode.irq.rip +=
891 vmx->vcpu.arch.event_exit_inst_len;
892 intr_info |= INTR_TYPE_SOFT_INTR;
893 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
894 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
895 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
896 return;
897 }
898
899 if (kvm_exception_is_soft(nr)) {
900 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
901 vmx->vcpu.arch.event_exit_inst_len);
902 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
903 } else
904 intr_info |= INTR_TYPE_HARD_EXCEPTION;
905
906 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
907 }
908
909 static bool vmx_rdtscp_supported(void)
910 {
911 return cpu_has_vmx_rdtscp();
912 }
913
914 /*
915 * Swap MSR entry in host/guest MSR entry array.
916 */
917 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
918 {
919 struct shared_msr_entry tmp;
920
921 tmp = vmx->guest_msrs[to];
922 vmx->guest_msrs[to] = vmx->guest_msrs[from];
923 vmx->guest_msrs[from] = tmp;
924 }
925
926 /*
927 * Set up the vmcs to automatically save and restore system
928 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
929 * mode, as fiddling with msrs is very expensive.
930 */
931 static void setup_msrs(struct vcpu_vmx *vmx)
932 {
933 int save_nmsrs, index;
934 unsigned long *msr_bitmap;
935
936 vmx_load_host_state(vmx);
937 save_nmsrs = 0;
938 #ifdef CONFIG_X86_64
939 if (is_long_mode(&vmx->vcpu)) {
940 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
941 if (index >= 0)
942 move_msr_up(vmx, index, save_nmsrs++);
943 index = __find_msr_index(vmx, MSR_LSTAR);
944 if (index >= 0)
945 move_msr_up(vmx, index, save_nmsrs++);
946 index = __find_msr_index(vmx, MSR_CSTAR);
947 if (index >= 0)
948 move_msr_up(vmx, index, save_nmsrs++);
949 index = __find_msr_index(vmx, MSR_TSC_AUX);
950 if (index >= 0 && vmx->rdtscp_enabled)
951 move_msr_up(vmx, index, save_nmsrs++);
952 /*
953 * MSR_K6_STAR is only needed on long mode guests, and only
954 * if efer.sce is enabled.
955 */
956 index = __find_msr_index(vmx, MSR_K6_STAR);
957 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
958 move_msr_up(vmx, index, save_nmsrs++);
959 }
960 #endif
961 index = __find_msr_index(vmx, MSR_EFER);
962 if (index >= 0 && update_transition_efer(vmx, index))
963 move_msr_up(vmx, index, save_nmsrs++);
964
965 vmx->save_nmsrs = save_nmsrs;
966
967 if (cpu_has_vmx_msr_bitmap()) {
968 if (is_long_mode(&vmx->vcpu))
969 msr_bitmap = vmx_msr_bitmap_longmode;
970 else
971 msr_bitmap = vmx_msr_bitmap_legacy;
972
973 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
974 }
975 }
976
977 /*
978 * reads and returns guest's timestamp counter "register"
979 * guest_tsc = host_tsc + tsc_offset -- 21.3
980 */
981 static u64 guest_read_tsc(void)
982 {
983 u64 host_tsc, tsc_offset;
984
985 rdtscll(host_tsc);
986 tsc_offset = vmcs_read64(TSC_OFFSET);
987 return host_tsc + tsc_offset;
988 }
989
990 /*
991 * writes 'guest_tsc' into guest's timestamp counter "register"
992 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
993 */
994 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
995 {
996 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
997 }
998
999 /*
1000 * Reads an msr value (of 'msr_index') into 'pdata'.
1001 * Returns 0 on success, non-0 otherwise.
1002 * Assumes vcpu_load() was already called.
1003 */
1004 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1005 {
1006 u64 data;
1007 struct shared_msr_entry *msr;
1008
1009 if (!pdata) {
1010 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1011 return -EINVAL;
1012 }
1013
1014 switch (msr_index) {
1015 #ifdef CONFIG_X86_64
1016 case MSR_FS_BASE:
1017 data = vmcs_readl(GUEST_FS_BASE);
1018 break;
1019 case MSR_GS_BASE:
1020 data = vmcs_readl(GUEST_GS_BASE);
1021 break;
1022 case MSR_KERNEL_GS_BASE:
1023 vmx_load_host_state(to_vmx(vcpu));
1024 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1025 break;
1026 #endif
1027 case MSR_EFER:
1028 return kvm_get_msr_common(vcpu, msr_index, pdata);
1029 case MSR_IA32_TSC:
1030 data = guest_read_tsc();
1031 break;
1032 case MSR_IA32_SYSENTER_CS:
1033 data = vmcs_read32(GUEST_SYSENTER_CS);
1034 break;
1035 case MSR_IA32_SYSENTER_EIP:
1036 data = vmcs_readl(GUEST_SYSENTER_EIP);
1037 break;
1038 case MSR_IA32_SYSENTER_ESP:
1039 data = vmcs_readl(GUEST_SYSENTER_ESP);
1040 break;
1041 case MSR_TSC_AUX:
1042 if (!to_vmx(vcpu)->rdtscp_enabled)
1043 return 1;
1044 /* Otherwise falls through */
1045 default:
1046 vmx_load_host_state(to_vmx(vcpu));
1047 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1048 if (msr) {
1049 vmx_load_host_state(to_vmx(vcpu));
1050 data = msr->data;
1051 break;
1052 }
1053 return kvm_get_msr_common(vcpu, msr_index, pdata);
1054 }
1055
1056 *pdata = data;
1057 return 0;
1058 }
1059
1060 /*
1061 * Writes msr value into into the appropriate "register".
1062 * Returns 0 on success, non-0 otherwise.
1063 * Assumes vcpu_load() was already called.
1064 */
1065 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1066 {
1067 struct vcpu_vmx *vmx = to_vmx(vcpu);
1068 struct shared_msr_entry *msr;
1069 u64 host_tsc;
1070 int ret = 0;
1071
1072 switch (msr_index) {
1073 case MSR_EFER:
1074 vmx_load_host_state(vmx);
1075 ret = kvm_set_msr_common(vcpu, msr_index, data);
1076 break;
1077 #ifdef CONFIG_X86_64
1078 case MSR_FS_BASE:
1079 vmcs_writel(GUEST_FS_BASE, data);
1080 break;
1081 case MSR_GS_BASE:
1082 vmcs_writel(GUEST_GS_BASE, data);
1083 break;
1084 case MSR_KERNEL_GS_BASE:
1085 vmx_load_host_state(vmx);
1086 vmx->msr_guest_kernel_gs_base = data;
1087 break;
1088 #endif
1089 case MSR_IA32_SYSENTER_CS:
1090 vmcs_write32(GUEST_SYSENTER_CS, data);
1091 break;
1092 case MSR_IA32_SYSENTER_EIP:
1093 vmcs_writel(GUEST_SYSENTER_EIP, data);
1094 break;
1095 case MSR_IA32_SYSENTER_ESP:
1096 vmcs_writel(GUEST_SYSENTER_ESP, data);
1097 break;
1098 case MSR_IA32_TSC:
1099 rdtscll(host_tsc);
1100 guest_write_tsc(data, host_tsc);
1101 break;
1102 case MSR_IA32_CR_PAT:
1103 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1104 vmcs_write64(GUEST_IA32_PAT, data);
1105 vcpu->arch.pat = data;
1106 break;
1107 }
1108 ret = kvm_set_msr_common(vcpu, msr_index, data);
1109 break;
1110 case MSR_TSC_AUX:
1111 if (!vmx->rdtscp_enabled)
1112 return 1;
1113 /* Check reserved bit, higher 32 bits should be zero */
1114 if ((data >> 32) != 0)
1115 return 1;
1116 /* Otherwise falls through */
1117 default:
1118 msr = find_msr_entry(vmx, msr_index);
1119 if (msr) {
1120 vmx_load_host_state(vmx);
1121 msr->data = data;
1122 break;
1123 }
1124 ret = kvm_set_msr_common(vcpu, msr_index, data);
1125 }
1126
1127 return ret;
1128 }
1129
1130 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1131 {
1132 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1133 switch (reg) {
1134 case VCPU_REGS_RSP:
1135 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1136 break;
1137 case VCPU_REGS_RIP:
1138 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1139 break;
1140 case VCPU_EXREG_PDPTR:
1141 if (enable_ept)
1142 ept_save_pdptrs(vcpu);
1143 break;
1144 default:
1145 break;
1146 }
1147 }
1148
1149 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1150 {
1151 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1152 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1153 else
1154 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1155
1156 update_exception_bitmap(vcpu);
1157 }
1158
1159 static __init int cpu_has_kvm_support(void)
1160 {
1161 return cpu_has_vmx();
1162 }
1163
1164 static __init int vmx_disabled_by_bios(void)
1165 {
1166 u64 msr;
1167
1168 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1169 return (msr & (FEATURE_CONTROL_LOCKED |
1170 FEATURE_CONTROL_VMXON_ENABLED))
1171 == FEATURE_CONTROL_LOCKED;
1172 /* locked but not enabled */
1173 }
1174
1175 static int hardware_enable(void *garbage)
1176 {
1177 int cpu = raw_smp_processor_id();
1178 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1179 u64 old;
1180
1181 if (read_cr4() & X86_CR4_VMXE)
1182 return -EBUSY;
1183
1184 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1185 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1186 if ((old & (FEATURE_CONTROL_LOCKED |
1187 FEATURE_CONTROL_VMXON_ENABLED))
1188 != (FEATURE_CONTROL_LOCKED |
1189 FEATURE_CONTROL_VMXON_ENABLED))
1190 /* enable and lock */
1191 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1192 FEATURE_CONTROL_LOCKED |
1193 FEATURE_CONTROL_VMXON_ENABLED);
1194 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1195 asm volatile (ASM_VMX_VMXON_RAX
1196 : : "a"(&phys_addr), "m"(phys_addr)
1197 : "memory", "cc");
1198
1199 ept_sync_global();
1200
1201 return 0;
1202 }
1203
1204 static void vmclear_local_vcpus(void)
1205 {
1206 int cpu = raw_smp_processor_id();
1207 struct vcpu_vmx *vmx, *n;
1208
1209 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1210 local_vcpus_link)
1211 __vcpu_clear(vmx);
1212 }
1213
1214
1215 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1216 * tricks.
1217 */
1218 static void kvm_cpu_vmxoff(void)
1219 {
1220 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1221 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1222 }
1223
1224 static void hardware_disable(void *garbage)
1225 {
1226 vmclear_local_vcpus();
1227 kvm_cpu_vmxoff();
1228 }
1229
1230 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1231 u32 msr, u32 *result)
1232 {
1233 u32 vmx_msr_low, vmx_msr_high;
1234 u32 ctl = ctl_min | ctl_opt;
1235
1236 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1237
1238 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1239 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1240
1241 /* Ensure minimum (required) set of control bits are supported. */
1242 if (ctl_min & ~ctl)
1243 return -EIO;
1244
1245 *result = ctl;
1246 return 0;
1247 }
1248
1249 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1250 {
1251 u32 vmx_msr_low, vmx_msr_high;
1252 u32 min, opt, min2, opt2;
1253 u32 _pin_based_exec_control = 0;
1254 u32 _cpu_based_exec_control = 0;
1255 u32 _cpu_based_2nd_exec_control = 0;
1256 u32 _vmexit_control = 0;
1257 u32 _vmentry_control = 0;
1258
1259 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1260 opt = PIN_BASED_VIRTUAL_NMIS;
1261 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1262 &_pin_based_exec_control) < 0)
1263 return -EIO;
1264
1265 min = CPU_BASED_HLT_EXITING |
1266 #ifdef CONFIG_X86_64
1267 CPU_BASED_CR8_LOAD_EXITING |
1268 CPU_BASED_CR8_STORE_EXITING |
1269 #endif
1270 CPU_BASED_CR3_LOAD_EXITING |
1271 CPU_BASED_CR3_STORE_EXITING |
1272 CPU_BASED_USE_IO_BITMAPS |
1273 CPU_BASED_MOV_DR_EXITING |
1274 CPU_BASED_USE_TSC_OFFSETING |
1275 CPU_BASED_MWAIT_EXITING |
1276 CPU_BASED_MONITOR_EXITING |
1277 CPU_BASED_INVLPG_EXITING;
1278 opt = CPU_BASED_TPR_SHADOW |
1279 CPU_BASED_USE_MSR_BITMAPS |
1280 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1281 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1282 &_cpu_based_exec_control) < 0)
1283 return -EIO;
1284 #ifdef CONFIG_X86_64
1285 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1286 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1287 ~CPU_BASED_CR8_STORE_EXITING;
1288 #endif
1289 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1290 min2 = 0;
1291 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1292 SECONDARY_EXEC_WBINVD_EXITING |
1293 SECONDARY_EXEC_ENABLE_VPID |
1294 SECONDARY_EXEC_ENABLE_EPT |
1295 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1296 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1297 SECONDARY_EXEC_RDTSCP;
1298 if (adjust_vmx_controls(min2, opt2,
1299 MSR_IA32_VMX_PROCBASED_CTLS2,
1300 &_cpu_based_2nd_exec_control) < 0)
1301 return -EIO;
1302 }
1303 #ifndef CONFIG_X86_64
1304 if (!(_cpu_based_2nd_exec_control &
1305 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1306 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1307 #endif
1308 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1309 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1310 enabled */
1311 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1312 CPU_BASED_CR3_STORE_EXITING |
1313 CPU_BASED_INVLPG_EXITING);
1314 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1315 vmx_capability.ept, vmx_capability.vpid);
1316 }
1317
1318 min = 0;
1319 #ifdef CONFIG_X86_64
1320 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1321 #endif
1322 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1323 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1324 &_vmexit_control) < 0)
1325 return -EIO;
1326
1327 min = 0;
1328 opt = VM_ENTRY_LOAD_IA32_PAT;
1329 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1330 &_vmentry_control) < 0)
1331 return -EIO;
1332
1333 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1334
1335 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1336 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1337 return -EIO;
1338
1339 #ifdef CONFIG_X86_64
1340 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1341 if (vmx_msr_high & (1u<<16))
1342 return -EIO;
1343 #endif
1344
1345 /* Require Write-Back (WB) memory type for VMCS accesses. */
1346 if (((vmx_msr_high >> 18) & 15) != 6)
1347 return -EIO;
1348
1349 vmcs_conf->size = vmx_msr_high & 0x1fff;
1350 vmcs_conf->order = get_order(vmcs_config.size);
1351 vmcs_conf->revision_id = vmx_msr_low;
1352
1353 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1354 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1355 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1356 vmcs_conf->vmexit_ctrl = _vmexit_control;
1357 vmcs_conf->vmentry_ctrl = _vmentry_control;
1358
1359 return 0;
1360 }
1361
1362 static struct vmcs *alloc_vmcs_cpu(int cpu)
1363 {
1364 int node = cpu_to_node(cpu);
1365 struct page *pages;
1366 struct vmcs *vmcs;
1367
1368 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1369 if (!pages)
1370 return NULL;
1371 vmcs = page_address(pages);
1372 memset(vmcs, 0, vmcs_config.size);
1373 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1374 return vmcs;
1375 }
1376
1377 static struct vmcs *alloc_vmcs(void)
1378 {
1379 return alloc_vmcs_cpu(raw_smp_processor_id());
1380 }
1381
1382 static void free_vmcs(struct vmcs *vmcs)
1383 {
1384 free_pages((unsigned long)vmcs, vmcs_config.order);
1385 }
1386
1387 static void free_kvm_area(void)
1388 {
1389 int cpu;
1390
1391 for_each_possible_cpu(cpu) {
1392 free_vmcs(per_cpu(vmxarea, cpu));
1393 per_cpu(vmxarea, cpu) = NULL;
1394 }
1395 }
1396
1397 static __init int alloc_kvm_area(void)
1398 {
1399 int cpu;
1400
1401 for_each_possible_cpu(cpu) {
1402 struct vmcs *vmcs;
1403
1404 vmcs = alloc_vmcs_cpu(cpu);
1405 if (!vmcs) {
1406 free_kvm_area();
1407 return -ENOMEM;
1408 }
1409
1410 per_cpu(vmxarea, cpu) = vmcs;
1411 }
1412 return 0;
1413 }
1414
1415 static __init int hardware_setup(void)
1416 {
1417 if (setup_vmcs_config(&vmcs_config) < 0)
1418 return -EIO;
1419
1420 if (boot_cpu_has(X86_FEATURE_NX))
1421 kvm_enable_efer_bits(EFER_NX);
1422
1423 if (!cpu_has_vmx_vpid())
1424 enable_vpid = 0;
1425
1426 if (!cpu_has_vmx_ept()) {
1427 enable_ept = 0;
1428 enable_unrestricted_guest = 0;
1429 }
1430
1431 if (!cpu_has_vmx_unrestricted_guest())
1432 enable_unrestricted_guest = 0;
1433
1434 if (!cpu_has_vmx_flexpriority())
1435 flexpriority_enabled = 0;
1436
1437 if (!cpu_has_vmx_tpr_shadow())
1438 kvm_x86_ops->update_cr8_intercept = NULL;
1439
1440 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1441 kvm_disable_largepages();
1442
1443 if (!cpu_has_vmx_ple())
1444 ple_gap = 0;
1445
1446 return alloc_kvm_area();
1447 }
1448
1449 static __exit void hardware_unsetup(void)
1450 {
1451 free_kvm_area();
1452 }
1453
1454 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1455 {
1456 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1457
1458 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1459 vmcs_write16(sf->selector, save->selector);
1460 vmcs_writel(sf->base, save->base);
1461 vmcs_write32(sf->limit, save->limit);
1462 vmcs_write32(sf->ar_bytes, save->ar);
1463 } else {
1464 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1465 << AR_DPL_SHIFT;
1466 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1467 }
1468 }
1469
1470 static void enter_pmode(struct kvm_vcpu *vcpu)
1471 {
1472 unsigned long flags;
1473 struct vcpu_vmx *vmx = to_vmx(vcpu);
1474
1475 vmx->emulation_required = 1;
1476 vmx->rmode.vm86_active = 0;
1477
1478 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1479 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1480 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1481
1482 flags = vmcs_readl(GUEST_RFLAGS);
1483 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1484 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1485 vmcs_writel(GUEST_RFLAGS, flags);
1486
1487 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1488 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1489
1490 update_exception_bitmap(vcpu);
1491
1492 if (emulate_invalid_guest_state)
1493 return;
1494
1495 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1496 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1497 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1498 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1499
1500 vmcs_write16(GUEST_SS_SELECTOR, 0);
1501 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1502
1503 vmcs_write16(GUEST_CS_SELECTOR,
1504 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1505 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1506 }
1507
1508 static gva_t rmode_tss_base(struct kvm *kvm)
1509 {
1510 if (!kvm->arch.tss_addr) {
1511 struct kvm_memslots *slots;
1512 gfn_t base_gfn;
1513
1514 slots = rcu_dereference(kvm->memslots);
1515 base_gfn = kvm->memslots->memslots[0].base_gfn +
1516 kvm->memslots->memslots[0].npages - 3;
1517 return base_gfn << PAGE_SHIFT;
1518 }
1519 return kvm->arch.tss_addr;
1520 }
1521
1522 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1523 {
1524 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1525
1526 save->selector = vmcs_read16(sf->selector);
1527 save->base = vmcs_readl(sf->base);
1528 save->limit = vmcs_read32(sf->limit);
1529 save->ar = vmcs_read32(sf->ar_bytes);
1530 vmcs_write16(sf->selector, save->base >> 4);
1531 vmcs_write32(sf->base, save->base & 0xfffff);
1532 vmcs_write32(sf->limit, 0xffff);
1533 vmcs_write32(sf->ar_bytes, 0xf3);
1534 }
1535
1536 static void enter_rmode(struct kvm_vcpu *vcpu)
1537 {
1538 unsigned long flags;
1539 struct vcpu_vmx *vmx = to_vmx(vcpu);
1540
1541 if (enable_unrestricted_guest)
1542 return;
1543
1544 vmx->emulation_required = 1;
1545 vmx->rmode.vm86_active = 1;
1546
1547 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1548 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1549
1550 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1551 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1552
1553 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1554 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1555
1556 flags = vmcs_readl(GUEST_RFLAGS);
1557 vmx->rmode.save_iopl
1558 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1559
1560 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1561
1562 vmcs_writel(GUEST_RFLAGS, flags);
1563 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1564 update_exception_bitmap(vcpu);
1565
1566 if (emulate_invalid_guest_state)
1567 goto continue_rmode;
1568
1569 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1570 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1571 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1572
1573 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1574 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1575 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1576 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1577 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1578
1579 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1580 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1581 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1582 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1583
1584 continue_rmode:
1585 kvm_mmu_reset_context(vcpu);
1586 init_rmode(vcpu->kvm);
1587 }
1588
1589 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1590 {
1591 struct vcpu_vmx *vmx = to_vmx(vcpu);
1592 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1593
1594 if (!msr)
1595 return;
1596
1597 /*
1598 * Force kernel_gs_base reloading before EFER changes, as control
1599 * of this msr depends on is_long_mode().
1600 */
1601 vmx_load_host_state(to_vmx(vcpu));
1602 vcpu->arch.shadow_efer = efer;
1603 if (!msr)
1604 return;
1605 if (efer & EFER_LMA) {
1606 vmcs_write32(VM_ENTRY_CONTROLS,
1607 vmcs_read32(VM_ENTRY_CONTROLS) |
1608 VM_ENTRY_IA32E_MODE);
1609 msr->data = efer;
1610 } else {
1611 vmcs_write32(VM_ENTRY_CONTROLS,
1612 vmcs_read32(VM_ENTRY_CONTROLS) &
1613 ~VM_ENTRY_IA32E_MODE);
1614
1615 msr->data = efer & ~EFER_LME;
1616 }
1617 setup_msrs(vmx);
1618 }
1619
1620 #ifdef CONFIG_X86_64
1621
1622 static void enter_lmode(struct kvm_vcpu *vcpu)
1623 {
1624 u32 guest_tr_ar;
1625
1626 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1627 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1628 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1629 __func__);
1630 vmcs_write32(GUEST_TR_AR_BYTES,
1631 (guest_tr_ar & ~AR_TYPE_MASK)
1632 | AR_TYPE_BUSY_64_TSS);
1633 }
1634 vcpu->arch.shadow_efer |= EFER_LMA;
1635 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1636 }
1637
1638 static void exit_lmode(struct kvm_vcpu *vcpu)
1639 {
1640 vcpu->arch.shadow_efer &= ~EFER_LMA;
1641
1642 vmcs_write32(VM_ENTRY_CONTROLS,
1643 vmcs_read32(VM_ENTRY_CONTROLS)
1644 & ~VM_ENTRY_IA32E_MODE);
1645 }
1646
1647 #endif
1648
1649 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1650 {
1651 vpid_sync_vcpu_all(to_vmx(vcpu));
1652 if (enable_ept)
1653 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1654 }
1655
1656 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1657 {
1658 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1659
1660 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1661 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1662 }
1663
1664 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1665 {
1666 if (!test_bit(VCPU_EXREG_PDPTR,
1667 (unsigned long *)&vcpu->arch.regs_dirty))
1668 return;
1669
1670 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1671 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1672 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1673 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1674 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1675 }
1676 }
1677
1678 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1679 {
1680 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1681 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1682 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1683 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1684 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1685 }
1686
1687 __set_bit(VCPU_EXREG_PDPTR,
1688 (unsigned long *)&vcpu->arch.regs_avail);
1689 __set_bit(VCPU_EXREG_PDPTR,
1690 (unsigned long *)&vcpu->arch.regs_dirty);
1691 }
1692
1693 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1694
1695 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1696 unsigned long cr0,
1697 struct kvm_vcpu *vcpu)
1698 {
1699 if (!(cr0 & X86_CR0_PG)) {
1700 /* From paging/starting to nonpaging */
1701 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1702 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1703 (CPU_BASED_CR3_LOAD_EXITING |
1704 CPU_BASED_CR3_STORE_EXITING));
1705 vcpu->arch.cr0 = cr0;
1706 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1707 } else if (!is_paging(vcpu)) {
1708 /* From nonpaging to paging */
1709 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1710 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1711 ~(CPU_BASED_CR3_LOAD_EXITING |
1712 CPU_BASED_CR3_STORE_EXITING));
1713 vcpu->arch.cr0 = cr0;
1714 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1715 }
1716
1717 if (!(cr0 & X86_CR0_WP))
1718 *hw_cr0 &= ~X86_CR0_WP;
1719 }
1720
1721 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1722 {
1723 struct vcpu_vmx *vmx = to_vmx(vcpu);
1724 unsigned long hw_cr0;
1725
1726 if (enable_unrestricted_guest)
1727 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1728 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1729 else
1730 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1731
1732 vmx_fpu_deactivate(vcpu);
1733
1734 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1735 enter_pmode(vcpu);
1736
1737 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1738 enter_rmode(vcpu);
1739
1740 #ifdef CONFIG_X86_64
1741 if (vcpu->arch.shadow_efer & EFER_LME) {
1742 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1743 enter_lmode(vcpu);
1744 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1745 exit_lmode(vcpu);
1746 }
1747 #endif
1748
1749 if (enable_ept)
1750 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1751
1752 vmcs_writel(CR0_READ_SHADOW, cr0);
1753 vmcs_writel(GUEST_CR0, hw_cr0);
1754 vcpu->arch.cr0 = cr0;
1755
1756 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1757 vmx_fpu_activate(vcpu);
1758 }
1759
1760 static u64 construct_eptp(unsigned long root_hpa)
1761 {
1762 u64 eptp;
1763
1764 /* TODO write the value reading from MSR */
1765 eptp = VMX_EPT_DEFAULT_MT |
1766 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1767 eptp |= (root_hpa & PAGE_MASK);
1768
1769 return eptp;
1770 }
1771
1772 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1773 {
1774 unsigned long guest_cr3;
1775 u64 eptp;
1776
1777 guest_cr3 = cr3;
1778 if (enable_ept) {
1779 eptp = construct_eptp(cr3);
1780 vmcs_write64(EPT_POINTER, eptp);
1781 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1782 vcpu->kvm->arch.ept_identity_map_addr;
1783 ept_load_pdptrs(vcpu);
1784 }
1785
1786 vmx_flush_tlb(vcpu);
1787 vmcs_writel(GUEST_CR3, guest_cr3);
1788 if (vcpu->arch.cr0 & X86_CR0_PE)
1789 vmx_fpu_deactivate(vcpu);
1790 }
1791
1792 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1793 {
1794 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1795 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1796
1797 vcpu->arch.cr4 = cr4;
1798 if (enable_ept) {
1799 if (!is_paging(vcpu)) {
1800 hw_cr4 &= ~X86_CR4_PAE;
1801 hw_cr4 |= X86_CR4_PSE;
1802 } else if (!(cr4 & X86_CR4_PAE)) {
1803 hw_cr4 &= ~X86_CR4_PAE;
1804 }
1805 }
1806
1807 vmcs_writel(CR4_READ_SHADOW, cr4);
1808 vmcs_writel(GUEST_CR4, hw_cr4);
1809 }
1810
1811 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1812 {
1813 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1814
1815 return vmcs_readl(sf->base);
1816 }
1817
1818 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1819 struct kvm_segment *var, int seg)
1820 {
1821 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1822 u32 ar;
1823
1824 var->base = vmcs_readl(sf->base);
1825 var->limit = vmcs_read32(sf->limit);
1826 var->selector = vmcs_read16(sf->selector);
1827 ar = vmcs_read32(sf->ar_bytes);
1828 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1829 ar = 0;
1830 var->type = ar & 15;
1831 var->s = (ar >> 4) & 1;
1832 var->dpl = (ar >> 5) & 3;
1833 var->present = (ar >> 7) & 1;
1834 var->avl = (ar >> 12) & 1;
1835 var->l = (ar >> 13) & 1;
1836 var->db = (ar >> 14) & 1;
1837 var->g = (ar >> 15) & 1;
1838 var->unusable = (ar >> 16) & 1;
1839 }
1840
1841 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1842 {
1843 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1844 return 0;
1845
1846 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1847 return 3;
1848
1849 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1850 }
1851
1852 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1853 {
1854 u32 ar;
1855
1856 if (var->unusable)
1857 ar = 1 << 16;
1858 else {
1859 ar = var->type & 15;
1860 ar |= (var->s & 1) << 4;
1861 ar |= (var->dpl & 3) << 5;
1862 ar |= (var->present & 1) << 7;
1863 ar |= (var->avl & 1) << 12;
1864 ar |= (var->l & 1) << 13;
1865 ar |= (var->db & 1) << 14;
1866 ar |= (var->g & 1) << 15;
1867 }
1868 if (ar == 0) /* a 0 value means unusable */
1869 ar = AR_UNUSABLE_MASK;
1870
1871 return ar;
1872 }
1873
1874 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1875 struct kvm_segment *var, int seg)
1876 {
1877 struct vcpu_vmx *vmx = to_vmx(vcpu);
1878 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1879 u32 ar;
1880
1881 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1882 vmx->rmode.tr.selector = var->selector;
1883 vmx->rmode.tr.base = var->base;
1884 vmx->rmode.tr.limit = var->limit;
1885 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1886 return;
1887 }
1888 vmcs_writel(sf->base, var->base);
1889 vmcs_write32(sf->limit, var->limit);
1890 vmcs_write16(sf->selector, var->selector);
1891 if (vmx->rmode.vm86_active && var->s) {
1892 /*
1893 * Hack real-mode segments into vm86 compatibility.
1894 */
1895 if (var->base == 0xffff0000 && var->selector == 0xf000)
1896 vmcs_writel(sf->base, 0xf0000);
1897 ar = 0xf3;
1898 } else
1899 ar = vmx_segment_access_rights(var);
1900
1901 /*
1902 * Fix the "Accessed" bit in AR field of segment registers for older
1903 * qemu binaries.
1904 * IA32 arch specifies that at the time of processor reset the
1905 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1906 * is setting it to 0 in the usedland code. This causes invalid guest
1907 * state vmexit when "unrestricted guest" mode is turned on.
1908 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1909 * tree. Newer qemu binaries with that qemu fix would not need this
1910 * kvm hack.
1911 */
1912 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1913 ar |= 0x1; /* Accessed */
1914
1915 vmcs_write32(sf->ar_bytes, ar);
1916 }
1917
1918 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1919 {
1920 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1921
1922 *db = (ar >> 14) & 1;
1923 *l = (ar >> 13) & 1;
1924 }
1925
1926 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1927 {
1928 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1929 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1930 }
1931
1932 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1933 {
1934 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1935 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1936 }
1937
1938 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1939 {
1940 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1941 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1942 }
1943
1944 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1945 {
1946 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1947 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1948 }
1949
1950 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1951 {
1952 struct kvm_segment var;
1953 u32 ar;
1954
1955 vmx_get_segment(vcpu, &var, seg);
1956 ar = vmx_segment_access_rights(&var);
1957
1958 if (var.base != (var.selector << 4))
1959 return false;
1960 if (var.limit != 0xffff)
1961 return false;
1962 if (ar != 0xf3)
1963 return false;
1964
1965 return true;
1966 }
1967
1968 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1969 {
1970 struct kvm_segment cs;
1971 unsigned int cs_rpl;
1972
1973 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1974 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1975
1976 if (cs.unusable)
1977 return false;
1978 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1979 return false;
1980 if (!cs.s)
1981 return false;
1982 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1983 if (cs.dpl > cs_rpl)
1984 return false;
1985 } else {
1986 if (cs.dpl != cs_rpl)
1987 return false;
1988 }
1989 if (!cs.present)
1990 return false;
1991
1992 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1993 return true;
1994 }
1995
1996 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1997 {
1998 struct kvm_segment ss;
1999 unsigned int ss_rpl;
2000
2001 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2002 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2003
2004 if (ss.unusable)
2005 return true;
2006 if (ss.type != 3 && ss.type != 7)
2007 return false;
2008 if (!ss.s)
2009 return false;
2010 if (ss.dpl != ss_rpl) /* DPL != RPL */
2011 return false;
2012 if (!ss.present)
2013 return false;
2014
2015 return true;
2016 }
2017
2018 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2019 {
2020 struct kvm_segment var;
2021 unsigned int rpl;
2022
2023 vmx_get_segment(vcpu, &var, seg);
2024 rpl = var.selector & SELECTOR_RPL_MASK;
2025
2026 if (var.unusable)
2027 return true;
2028 if (!var.s)
2029 return false;
2030 if (!var.present)
2031 return false;
2032 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2033 if (var.dpl < rpl) /* DPL < RPL */
2034 return false;
2035 }
2036
2037 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2038 * rights flags
2039 */
2040 return true;
2041 }
2042
2043 static bool tr_valid(struct kvm_vcpu *vcpu)
2044 {
2045 struct kvm_segment tr;
2046
2047 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2048
2049 if (tr.unusable)
2050 return false;
2051 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2052 return false;
2053 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2054 return false;
2055 if (!tr.present)
2056 return false;
2057
2058 return true;
2059 }
2060
2061 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2062 {
2063 struct kvm_segment ldtr;
2064
2065 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2066
2067 if (ldtr.unusable)
2068 return true;
2069 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2070 return false;
2071 if (ldtr.type != 2)
2072 return false;
2073 if (!ldtr.present)
2074 return false;
2075
2076 return true;
2077 }
2078
2079 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2080 {
2081 struct kvm_segment cs, ss;
2082
2083 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2084 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2085
2086 return ((cs.selector & SELECTOR_RPL_MASK) ==
2087 (ss.selector & SELECTOR_RPL_MASK));
2088 }
2089
2090 /*
2091 * Check if guest state is valid. Returns true if valid, false if
2092 * not.
2093 * We assume that registers are always usable
2094 */
2095 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2096 {
2097 /* real mode guest state checks */
2098 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2099 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2100 return false;
2101 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2102 return false;
2103 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2104 return false;
2105 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2106 return false;
2107 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2108 return false;
2109 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2110 return false;
2111 } else {
2112 /* protected mode guest state checks */
2113 if (!cs_ss_rpl_check(vcpu))
2114 return false;
2115 if (!code_segment_valid(vcpu))
2116 return false;
2117 if (!stack_segment_valid(vcpu))
2118 return false;
2119 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2120 return false;
2121 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2122 return false;
2123 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2124 return false;
2125 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2126 return false;
2127 if (!tr_valid(vcpu))
2128 return false;
2129 if (!ldtr_valid(vcpu))
2130 return false;
2131 }
2132 /* TODO:
2133 * - Add checks on RIP
2134 * - Add checks on RFLAGS
2135 */
2136
2137 return true;
2138 }
2139
2140 static int init_rmode_tss(struct kvm *kvm)
2141 {
2142 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2143 u16 data = 0;
2144 int ret = 0;
2145 int r;
2146
2147 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2148 if (r < 0)
2149 goto out;
2150 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2151 r = kvm_write_guest_page(kvm, fn++, &data,
2152 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2153 if (r < 0)
2154 goto out;
2155 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2156 if (r < 0)
2157 goto out;
2158 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2159 if (r < 0)
2160 goto out;
2161 data = ~0;
2162 r = kvm_write_guest_page(kvm, fn, &data,
2163 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2164 sizeof(u8));
2165 if (r < 0)
2166 goto out;
2167
2168 ret = 1;
2169 out:
2170 return ret;
2171 }
2172
2173 static int init_rmode_identity_map(struct kvm *kvm)
2174 {
2175 int i, r, ret;
2176 pfn_t identity_map_pfn;
2177 u32 tmp;
2178
2179 if (!enable_ept)
2180 return 1;
2181 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2182 printk(KERN_ERR "EPT: identity-mapping pagetable "
2183 "haven't been allocated!\n");
2184 return 0;
2185 }
2186 if (likely(kvm->arch.ept_identity_pagetable_done))
2187 return 1;
2188 ret = 0;
2189 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2190 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2191 if (r < 0)
2192 goto out;
2193 /* Set up identity-mapping pagetable for EPT in real mode */
2194 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2195 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2196 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2197 r = kvm_write_guest_page(kvm, identity_map_pfn,
2198 &tmp, i * sizeof(tmp), sizeof(tmp));
2199 if (r < 0)
2200 goto out;
2201 }
2202 kvm->arch.ept_identity_pagetable_done = true;
2203 ret = 1;
2204 out:
2205 return ret;
2206 }
2207
2208 static void seg_setup(int seg)
2209 {
2210 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2211 unsigned int ar;
2212
2213 vmcs_write16(sf->selector, 0);
2214 vmcs_writel(sf->base, 0);
2215 vmcs_write32(sf->limit, 0xffff);
2216 if (enable_unrestricted_guest) {
2217 ar = 0x93;
2218 if (seg == VCPU_SREG_CS)
2219 ar |= 0x08; /* code segment */
2220 } else
2221 ar = 0xf3;
2222
2223 vmcs_write32(sf->ar_bytes, ar);
2224 }
2225
2226 static int alloc_apic_access_page(struct kvm *kvm)
2227 {
2228 struct kvm_userspace_memory_region kvm_userspace_mem;
2229 int r = 0;
2230
2231 mutex_lock(&kvm->slots_lock);
2232 if (kvm->arch.apic_access_page)
2233 goto out;
2234 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2235 kvm_userspace_mem.flags = 0;
2236 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2237 kvm_userspace_mem.memory_size = PAGE_SIZE;
2238 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2239 if (r)
2240 goto out;
2241
2242 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2243 out:
2244 mutex_unlock(&kvm->slots_lock);
2245 return r;
2246 }
2247
2248 static int alloc_identity_pagetable(struct kvm *kvm)
2249 {
2250 struct kvm_userspace_memory_region kvm_userspace_mem;
2251 int r = 0;
2252
2253 mutex_lock(&kvm->slots_lock);
2254 if (kvm->arch.ept_identity_pagetable)
2255 goto out;
2256 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2257 kvm_userspace_mem.flags = 0;
2258 kvm_userspace_mem.guest_phys_addr =
2259 kvm->arch.ept_identity_map_addr;
2260 kvm_userspace_mem.memory_size = PAGE_SIZE;
2261 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2262 if (r)
2263 goto out;
2264
2265 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2266 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2267 out:
2268 mutex_unlock(&kvm->slots_lock);
2269 return r;
2270 }
2271
2272 static void allocate_vpid(struct vcpu_vmx *vmx)
2273 {
2274 int vpid;
2275
2276 vmx->vpid = 0;
2277 if (!enable_vpid)
2278 return;
2279 spin_lock(&vmx_vpid_lock);
2280 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2281 if (vpid < VMX_NR_VPIDS) {
2282 vmx->vpid = vpid;
2283 __set_bit(vpid, vmx_vpid_bitmap);
2284 }
2285 spin_unlock(&vmx_vpid_lock);
2286 }
2287
2288 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2289 {
2290 int f = sizeof(unsigned long);
2291
2292 if (!cpu_has_vmx_msr_bitmap())
2293 return;
2294
2295 /*
2296 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2297 * have the write-low and read-high bitmap offsets the wrong way round.
2298 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2299 */
2300 if (msr <= 0x1fff) {
2301 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2302 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2303 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2304 msr &= 0x1fff;
2305 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2306 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2307 }
2308 }
2309
2310 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2311 {
2312 if (!longmode_only)
2313 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2314 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2315 }
2316
2317 /*
2318 * Sets up the vmcs for emulated real mode.
2319 */
2320 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2321 {
2322 u32 host_sysenter_cs, msr_low, msr_high;
2323 u32 junk;
2324 u64 host_pat, tsc_this, tsc_base;
2325 unsigned long a;
2326 struct descriptor_table dt;
2327 int i;
2328 unsigned long kvm_vmx_return;
2329 u32 exec_control;
2330
2331 /* I/O */
2332 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2333 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2334
2335 if (cpu_has_vmx_msr_bitmap())
2336 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2337
2338 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2339
2340 /* Control */
2341 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2342 vmcs_config.pin_based_exec_ctrl);
2343
2344 exec_control = vmcs_config.cpu_based_exec_ctrl;
2345 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2346 exec_control &= ~CPU_BASED_TPR_SHADOW;
2347 #ifdef CONFIG_X86_64
2348 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2349 CPU_BASED_CR8_LOAD_EXITING;
2350 #endif
2351 }
2352 if (!enable_ept)
2353 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2354 CPU_BASED_CR3_LOAD_EXITING |
2355 CPU_BASED_INVLPG_EXITING;
2356 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2357
2358 if (cpu_has_secondary_exec_ctrls()) {
2359 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2360 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2361 exec_control &=
2362 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2363 if (vmx->vpid == 0)
2364 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2365 if (!enable_ept) {
2366 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2367 enable_unrestricted_guest = 0;
2368 }
2369 if (!enable_unrestricted_guest)
2370 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2371 if (!ple_gap)
2372 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2373 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2374 }
2375
2376 if (ple_gap) {
2377 vmcs_write32(PLE_GAP, ple_gap);
2378 vmcs_write32(PLE_WINDOW, ple_window);
2379 }
2380
2381 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2382 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2383 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2384
2385 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2386 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2387 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2388
2389 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2390 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2391 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2392 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2393 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2394 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2395 #ifdef CONFIG_X86_64
2396 rdmsrl(MSR_FS_BASE, a);
2397 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2398 rdmsrl(MSR_GS_BASE, a);
2399 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2400 #else
2401 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2402 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2403 #endif
2404
2405 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2406
2407 kvm_get_idt(&dt);
2408 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2409
2410 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2411 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2412 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2413 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2414 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2415
2416 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2417 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2418 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2419 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2420 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2421 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2422
2423 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2424 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2425 host_pat = msr_low | ((u64) msr_high << 32);
2426 vmcs_write64(HOST_IA32_PAT, host_pat);
2427 }
2428 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2429 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2430 host_pat = msr_low | ((u64) msr_high << 32);
2431 /* Write the default value follow host pat */
2432 vmcs_write64(GUEST_IA32_PAT, host_pat);
2433 /* Keep arch.pat sync with GUEST_IA32_PAT */
2434 vmx->vcpu.arch.pat = host_pat;
2435 }
2436
2437 for (i = 0; i < NR_VMX_MSR; ++i) {
2438 u32 index = vmx_msr_index[i];
2439 u32 data_low, data_high;
2440 int j = vmx->nmsrs;
2441
2442 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2443 continue;
2444 if (wrmsr_safe(index, data_low, data_high) < 0)
2445 continue;
2446 vmx->guest_msrs[j].index = i;
2447 vmx->guest_msrs[j].data = 0;
2448 vmx->guest_msrs[j].mask = -1ull;
2449 ++vmx->nmsrs;
2450 }
2451
2452 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2453
2454 /* 22.2.1, 20.8.1 */
2455 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2456
2457 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2458 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2459 if (enable_ept)
2460 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2461 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2462
2463 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2464 rdtscll(tsc_this);
2465 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2466 tsc_base = tsc_this;
2467
2468 guest_write_tsc(0, tsc_base);
2469
2470 return 0;
2471 }
2472
2473 static int init_rmode(struct kvm *kvm)
2474 {
2475 if (!init_rmode_tss(kvm))
2476 return 0;
2477 if (!init_rmode_identity_map(kvm))
2478 return 0;
2479 return 1;
2480 }
2481
2482 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2483 {
2484 struct vcpu_vmx *vmx = to_vmx(vcpu);
2485 u64 msr;
2486 int ret, idx;
2487
2488 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2489 idx = srcu_read_lock(&vcpu->kvm->srcu);
2490 if (!init_rmode(vmx->vcpu.kvm)) {
2491 ret = -ENOMEM;
2492 goto out;
2493 }
2494
2495 vmx->rmode.vm86_active = 0;
2496
2497 vmx->soft_vnmi_blocked = 0;
2498
2499 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2500 kvm_set_cr8(&vmx->vcpu, 0);
2501 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2502 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2503 msr |= MSR_IA32_APICBASE_BSP;
2504 kvm_set_apic_base(&vmx->vcpu, msr);
2505
2506 fx_init(&vmx->vcpu);
2507
2508 seg_setup(VCPU_SREG_CS);
2509 /*
2510 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2511 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2512 */
2513 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2514 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2515 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2516 } else {
2517 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2518 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2519 }
2520
2521 seg_setup(VCPU_SREG_DS);
2522 seg_setup(VCPU_SREG_ES);
2523 seg_setup(VCPU_SREG_FS);
2524 seg_setup(VCPU_SREG_GS);
2525 seg_setup(VCPU_SREG_SS);
2526
2527 vmcs_write16(GUEST_TR_SELECTOR, 0);
2528 vmcs_writel(GUEST_TR_BASE, 0);
2529 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2530 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2531
2532 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2533 vmcs_writel(GUEST_LDTR_BASE, 0);
2534 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2535 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2536
2537 vmcs_write32(GUEST_SYSENTER_CS, 0);
2538 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2539 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2540
2541 vmcs_writel(GUEST_RFLAGS, 0x02);
2542 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2543 kvm_rip_write(vcpu, 0xfff0);
2544 else
2545 kvm_rip_write(vcpu, 0);
2546 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2547
2548 vmcs_writel(GUEST_DR7, 0x400);
2549
2550 vmcs_writel(GUEST_GDTR_BASE, 0);
2551 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2552
2553 vmcs_writel(GUEST_IDTR_BASE, 0);
2554 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2555
2556 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2557 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2558 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2559
2560 /* Special registers */
2561 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2562
2563 setup_msrs(vmx);
2564
2565 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2566
2567 if (cpu_has_vmx_tpr_shadow()) {
2568 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2569 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2570 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2571 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2572 vmcs_write32(TPR_THRESHOLD, 0);
2573 }
2574
2575 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2576 vmcs_write64(APIC_ACCESS_ADDR,
2577 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2578
2579 if (vmx->vpid != 0)
2580 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2581
2582 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2583 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2584 vmx_set_cr4(&vmx->vcpu, 0);
2585 vmx_set_efer(&vmx->vcpu, 0);
2586 vmx_fpu_activate(&vmx->vcpu);
2587 update_exception_bitmap(&vmx->vcpu);
2588
2589 vpid_sync_vcpu_all(vmx);
2590
2591 ret = 0;
2592
2593 /* HACK: Don't enable emulation on guest boot/reset */
2594 vmx->emulation_required = 0;
2595
2596 out:
2597 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2598 return ret;
2599 }
2600
2601 static void enable_irq_window(struct kvm_vcpu *vcpu)
2602 {
2603 u32 cpu_based_vm_exec_control;
2604
2605 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2606 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2607 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2608 }
2609
2610 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2611 {
2612 u32 cpu_based_vm_exec_control;
2613
2614 if (!cpu_has_virtual_nmis()) {
2615 enable_irq_window(vcpu);
2616 return;
2617 }
2618
2619 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2620 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2621 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2622 }
2623
2624 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2625 {
2626 struct vcpu_vmx *vmx = to_vmx(vcpu);
2627 uint32_t intr;
2628 int irq = vcpu->arch.interrupt.nr;
2629
2630 trace_kvm_inj_virq(irq);
2631
2632 ++vcpu->stat.irq_injections;
2633 if (vmx->rmode.vm86_active) {
2634 vmx->rmode.irq.pending = true;
2635 vmx->rmode.irq.vector = irq;
2636 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2637 if (vcpu->arch.interrupt.soft)
2638 vmx->rmode.irq.rip +=
2639 vmx->vcpu.arch.event_exit_inst_len;
2640 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2641 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2642 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2643 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2644 return;
2645 }
2646 intr = irq | INTR_INFO_VALID_MASK;
2647 if (vcpu->arch.interrupt.soft) {
2648 intr |= INTR_TYPE_SOFT_INTR;
2649 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2650 vmx->vcpu.arch.event_exit_inst_len);
2651 } else
2652 intr |= INTR_TYPE_EXT_INTR;
2653 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2654 }
2655
2656 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2657 {
2658 struct vcpu_vmx *vmx = to_vmx(vcpu);
2659
2660 if (!cpu_has_virtual_nmis()) {
2661 /*
2662 * Tracking the NMI-blocked state in software is built upon
2663 * finding the next open IRQ window. This, in turn, depends on
2664 * well-behaving guests: They have to keep IRQs disabled at
2665 * least as long as the NMI handler runs. Otherwise we may
2666 * cause NMI nesting, maybe breaking the guest. But as this is
2667 * highly unlikely, we can live with the residual risk.
2668 */
2669 vmx->soft_vnmi_blocked = 1;
2670 vmx->vnmi_blocked_time = 0;
2671 }
2672
2673 ++vcpu->stat.nmi_injections;
2674 if (vmx->rmode.vm86_active) {
2675 vmx->rmode.irq.pending = true;
2676 vmx->rmode.irq.vector = NMI_VECTOR;
2677 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2678 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2679 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2680 INTR_INFO_VALID_MASK);
2681 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2682 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2683 return;
2684 }
2685 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2686 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2687 }
2688
2689 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2690 {
2691 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2692 return 0;
2693
2694 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2695 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2696 GUEST_INTR_STATE_NMI));
2697 }
2698
2699 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2700 {
2701 if (!cpu_has_virtual_nmis())
2702 return to_vmx(vcpu)->soft_vnmi_blocked;
2703 else
2704 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2705 GUEST_INTR_STATE_NMI);
2706 }
2707
2708 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2709 {
2710 struct vcpu_vmx *vmx = to_vmx(vcpu);
2711
2712 if (!cpu_has_virtual_nmis()) {
2713 if (vmx->soft_vnmi_blocked != masked) {
2714 vmx->soft_vnmi_blocked = masked;
2715 vmx->vnmi_blocked_time = 0;
2716 }
2717 } else {
2718 if (masked)
2719 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2720 GUEST_INTR_STATE_NMI);
2721 else
2722 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2723 GUEST_INTR_STATE_NMI);
2724 }
2725 }
2726
2727 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2728 {
2729 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2730 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2731 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2732 }
2733
2734 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2735 {
2736 int ret;
2737 struct kvm_userspace_memory_region tss_mem = {
2738 .slot = TSS_PRIVATE_MEMSLOT,
2739 .guest_phys_addr = addr,
2740 .memory_size = PAGE_SIZE * 3,
2741 .flags = 0,
2742 };
2743
2744 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2745 if (ret)
2746 return ret;
2747 kvm->arch.tss_addr = addr;
2748 return 0;
2749 }
2750
2751 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2752 int vec, u32 err_code)
2753 {
2754 /*
2755 * Instruction with address size override prefix opcode 0x67
2756 * Cause the #SS fault with 0 error code in VM86 mode.
2757 */
2758 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2759 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2760 return 1;
2761 /*
2762 * Forward all other exceptions that are valid in real mode.
2763 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2764 * the required debugging infrastructure rework.
2765 */
2766 switch (vec) {
2767 case DB_VECTOR:
2768 if (vcpu->guest_debug &
2769 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2770 return 0;
2771 kvm_queue_exception(vcpu, vec);
2772 return 1;
2773 case BP_VECTOR:
2774 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2775 return 0;
2776 /* fall through */
2777 case DE_VECTOR:
2778 case OF_VECTOR:
2779 case BR_VECTOR:
2780 case UD_VECTOR:
2781 case DF_VECTOR:
2782 case SS_VECTOR:
2783 case GP_VECTOR:
2784 case MF_VECTOR:
2785 kvm_queue_exception(vcpu, vec);
2786 return 1;
2787 }
2788 return 0;
2789 }
2790
2791 /*
2792 * Trigger machine check on the host. We assume all the MSRs are already set up
2793 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2794 * We pass a fake environment to the machine check handler because we want
2795 * the guest to be always treated like user space, no matter what context
2796 * it used internally.
2797 */
2798 static void kvm_machine_check(void)
2799 {
2800 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2801 struct pt_regs regs = {
2802 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2803 .flags = X86_EFLAGS_IF,
2804 };
2805
2806 do_machine_check(&regs, 0);
2807 #endif
2808 }
2809
2810 static int handle_machine_check(struct kvm_vcpu *vcpu)
2811 {
2812 /* already handled by vcpu_run */
2813 return 1;
2814 }
2815
2816 static int handle_exception(struct kvm_vcpu *vcpu)
2817 {
2818 struct vcpu_vmx *vmx = to_vmx(vcpu);
2819 struct kvm_run *kvm_run = vcpu->run;
2820 u32 intr_info, ex_no, error_code;
2821 unsigned long cr2, rip, dr6;
2822 u32 vect_info;
2823 enum emulation_result er;
2824
2825 vect_info = vmx->idt_vectoring_info;
2826 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2827
2828 if (is_machine_check(intr_info))
2829 return handle_machine_check(vcpu);
2830
2831 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2832 !is_page_fault(intr_info)) {
2833 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2834 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2835 vcpu->run->internal.ndata = 2;
2836 vcpu->run->internal.data[0] = vect_info;
2837 vcpu->run->internal.data[1] = intr_info;
2838 return 0;
2839 }
2840
2841 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2842 return 1; /* already handled by vmx_vcpu_run() */
2843
2844 if (is_no_device(intr_info)) {
2845 vmx_fpu_activate(vcpu);
2846 return 1;
2847 }
2848
2849 if (is_invalid_opcode(intr_info)) {
2850 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2851 if (er != EMULATE_DONE)
2852 kvm_queue_exception(vcpu, UD_VECTOR);
2853 return 1;
2854 }
2855
2856 error_code = 0;
2857 rip = kvm_rip_read(vcpu);
2858 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2859 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2860 if (is_page_fault(intr_info)) {
2861 /* EPT won't cause page fault directly */
2862 if (enable_ept)
2863 BUG();
2864 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2865 trace_kvm_page_fault(cr2, error_code);
2866
2867 if (kvm_event_needs_reinjection(vcpu))
2868 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2869 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2870 }
2871
2872 if (vmx->rmode.vm86_active &&
2873 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2874 error_code)) {
2875 if (vcpu->arch.halt_request) {
2876 vcpu->arch.halt_request = 0;
2877 return kvm_emulate_halt(vcpu);
2878 }
2879 return 1;
2880 }
2881
2882 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2883 switch (ex_no) {
2884 case DB_VECTOR:
2885 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2886 if (!(vcpu->guest_debug &
2887 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2888 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2889 kvm_queue_exception(vcpu, DB_VECTOR);
2890 return 1;
2891 }
2892 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2893 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2894 /* fall through */
2895 case BP_VECTOR:
2896 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2897 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2898 kvm_run->debug.arch.exception = ex_no;
2899 break;
2900 default:
2901 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2902 kvm_run->ex.exception = ex_no;
2903 kvm_run->ex.error_code = error_code;
2904 break;
2905 }
2906 return 0;
2907 }
2908
2909 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2910 {
2911 ++vcpu->stat.irq_exits;
2912 return 1;
2913 }
2914
2915 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2916 {
2917 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2918 return 0;
2919 }
2920
2921 static int handle_io(struct kvm_vcpu *vcpu)
2922 {
2923 unsigned long exit_qualification;
2924 int size, in, string;
2925 unsigned port;
2926
2927 ++vcpu->stat.io_exits;
2928 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2929 string = (exit_qualification & 16) != 0;
2930
2931 if (string) {
2932 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2933 return 0;
2934 return 1;
2935 }
2936
2937 size = (exit_qualification & 7) + 1;
2938 in = (exit_qualification & 8) != 0;
2939 port = exit_qualification >> 16;
2940
2941 skip_emulated_instruction(vcpu);
2942 return kvm_emulate_pio(vcpu, in, size, port);
2943 }
2944
2945 static void
2946 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2947 {
2948 /*
2949 * Patch in the VMCALL instruction:
2950 */
2951 hypercall[0] = 0x0f;
2952 hypercall[1] = 0x01;
2953 hypercall[2] = 0xc1;
2954 }
2955
2956 static int handle_cr(struct kvm_vcpu *vcpu)
2957 {
2958 unsigned long exit_qualification, val;
2959 int cr;
2960 int reg;
2961
2962 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2963 cr = exit_qualification & 15;
2964 reg = (exit_qualification >> 8) & 15;
2965 switch ((exit_qualification >> 4) & 3) {
2966 case 0: /* mov to cr */
2967 val = kvm_register_read(vcpu, reg);
2968 trace_kvm_cr_write(cr, val);
2969 switch (cr) {
2970 case 0:
2971 kvm_set_cr0(vcpu, val);
2972 skip_emulated_instruction(vcpu);
2973 return 1;
2974 case 3:
2975 kvm_set_cr3(vcpu, val);
2976 skip_emulated_instruction(vcpu);
2977 return 1;
2978 case 4:
2979 kvm_set_cr4(vcpu, val);
2980 skip_emulated_instruction(vcpu);
2981 return 1;
2982 case 8: {
2983 u8 cr8_prev = kvm_get_cr8(vcpu);
2984 u8 cr8 = kvm_register_read(vcpu, reg);
2985 kvm_set_cr8(vcpu, cr8);
2986 skip_emulated_instruction(vcpu);
2987 if (irqchip_in_kernel(vcpu->kvm))
2988 return 1;
2989 if (cr8_prev <= cr8)
2990 return 1;
2991 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2992 return 0;
2993 }
2994 };
2995 break;
2996 case 2: /* clts */
2997 vmx_fpu_deactivate(vcpu);
2998 vcpu->arch.cr0 &= ~X86_CR0_TS;
2999 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
3000 vmx_fpu_activate(vcpu);
3001 skip_emulated_instruction(vcpu);
3002 return 1;
3003 case 1: /*mov from cr*/
3004 switch (cr) {
3005 case 3:
3006 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3007 trace_kvm_cr_read(cr, vcpu->arch.cr3);
3008 skip_emulated_instruction(vcpu);
3009 return 1;
3010 case 8:
3011 val = kvm_get_cr8(vcpu);
3012 kvm_register_write(vcpu, reg, val);
3013 trace_kvm_cr_read(cr, val);
3014 skip_emulated_instruction(vcpu);
3015 return 1;
3016 }
3017 break;
3018 case 3: /* lmsw */
3019 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
3020
3021 skip_emulated_instruction(vcpu);
3022 return 1;
3023 default:
3024 break;
3025 }
3026 vcpu->run->exit_reason = 0;
3027 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3028 (int)(exit_qualification >> 4) & 3, cr);
3029 return 0;
3030 }
3031
3032 static int handle_dr(struct kvm_vcpu *vcpu)
3033 {
3034 unsigned long exit_qualification;
3035 unsigned long val;
3036 int dr, reg;
3037
3038 if (!kvm_require_cpl(vcpu, 0))
3039 return 1;
3040 dr = vmcs_readl(GUEST_DR7);
3041 if (dr & DR7_GD) {
3042 /*
3043 * As the vm-exit takes precedence over the debug trap, we
3044 * need to emulate the latter, either for the host or the
3045 * guest debugging itself.
3046 */
3047 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3048 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3049 vcpu->run->debug.arch.dr7 = dr;
3050 vcpu->run->debug.arch.pc =
3051 vmcs_readl(GUEST_CS_BASE) +
3052 vmcs_readl(GUEST_RIP);
3053 vcpu->run->debug.arch.exception = DB_VECTOR;
3054 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3055 return 0;
3056 } else {
3057 vcpu->arch.dr7 &= ~DR7_GD;
3058 vcpu->arch.dr6 |= DR6_BD;
3059 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3060 kvm_queue_exception(vcpu, DB_VECTOR);
3061 return 1;
3062 }
3063 }
3064
3065 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3066 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3067 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3068 if (exit_qualification & TYPE_MOV_FROM_DR) {
3069 switch (dr) {
3070 case 0 ... 3:
3071 val = vcpu->arch.db[dr];
3072 break;
3073 case 6:
3074 val = vcpu->arch.dr6;
3075 break;
3076 case 7:
3077 val = vcpu->arch.dr7;
3078 break;
3079 default:
3080 val = 0;
3081 }
3082 kvm_register_write(vcpu, reg, val);
3083 } else {
3084 val = vcpu->arch.regs[reg];
3085 switch (dr) {
3086 case 0 ... 3:
3087 vcpu->arch.db[dr] = val;
3088 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3089 vcpu->arch.eff_db[dr] = val;
3090 break;
3091 case 4 ... 5:
3092 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
3093 kvm_queue_exception(vcpu, UD_VECTOR);
3094 break;
3095 case 6:
3096 if (val & 0xffffffff00000000ULL) {
3097 kvm_queue_exception(vcpu, GP_VECTOR);
3098 break;
3099 }
3100 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3101 break;
3102 case 7:
3103 if (val & 0xffffffff00000000ULL) {
3104 kvm_queue_exception(vcpu, GP_VECTOR);
3105 break;
3106 }
3107 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3108 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3109 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3110 vcpu->arch.switch_db_regs =
3111 (val & DR7_BP_EN_MASK);
3112 }
3113 break;
3114 }
3115 }
3116 skip_emulated_instruction(vcpu);
3117 return 1;
3118 }
3119
3120 static int handle_cpuid(struct kvm_vcpu *vcpu)
3121 {
3122 kvm_emulate_cpuid(vcpu);
3123 return 1;
3124 }
3125
3126 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3127 {
3128 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3129 u64 data;
3130
3131 if (vmx_get_msr(vcpu, ecx, &data)) {
3132 kvm_inject_gp(vcpu, 0);
3133 return 1;
3134 }
3135
3136 trace_kvm_msr_read(ecx, data);
3137
3138 /* FIXME: handling of bits 32:63 of rax, rdx */
3139 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3140 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3141 skip_emulated_instruction(vcpu);
3142 return 1;
3143 }
3144
3145 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3146 {
3147 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3148 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3149 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3150
3151 trace_kvm_msr_write(ecx, data);
3152
3153 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3154 kvm_inject_gp(vcpu, 0);
3155 return 1;
3156 }
3157
3158 skip_emulated_instruction(vcpu);
3159 return 1;
3160 }
3161
3162 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3163 {
3164 return 1;
3165 }
3166
3167 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3168 {
3169 u32 cpu_based_vm_exec_control;
3170
3171 /* clear pending irq */
3172 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3173 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3174 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3175
3176 ++vcpu->stat.irq_window_exits;
3177
3178 /*
3179 * If the user space waits to inject interrupts, exit as soon as
3180 * possible
3181 */
3182 if (!irqchip_in_kernel(vcpu->kvm) &&
3183 vcpu->run->request_interrupt_window &&
3184 !kvm_cpu_has_interrupt(vcpu)) {
3185 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3186 return 0;
3187 }
3188 return 1;
3189 }
3190
3191 static int handle_halt(struct kvm_vcpu *vcpu)
3192 {
3193 skip_emulated_instruction(vcpu);
3194 return kvm_emulate_halt(vcpu);
3195 }
3196
3197 static int handle_vmcall(struct kvm_vcpu *vcpu)
3198 {
3199 skip_emulated_instruction(vcpu);
3200 kvm_emulate_hypercall(vcpu);
3201 return 1;
3202 }
3203
3204 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3205 {
3206 kvm_queue_exception(vcpu, UD_VECTOR);
3207 return 1;
3208 }
3209
3210 static int handle_invlpg(struct kvm_vcpu *vcpu)
3211 {
3212 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3213
3214 kvm_mmu_invlpg(vcpu, exit_qualification);
3215 skip_emulated_instruction(vcpu);
3216 return 1;
3217 }
3218
3219 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3220 {
3221 skip_emulated_instruction(vcpu);
3222 /* TODO: Add support for VT-d/pass-through device */
3223 return 1;
3224 }
3225
3226 static int handle_apic_access(struct kvm_vcpu *vcpu)
3227 {
3228 unsigned long exit_qualification;
3229 enum emulation_result er;
3230 unsigned long offset;
3231
3232 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3233 offset = exit_qualification & 0xffful;
3234
3235 er = emulate_instruction(vcpu, 0, 0, 0);
3236
3237 if (er != EMULATE_DONE) {
3238 printk(KERN_ERR
3239 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3240 offset);
3241 return -ENOEXEC;
3242 }
3243 return 1;
3244 }
3245
3246 static int handle_task_switch(struct kvm_vcpu *vcpu)
3247 {
3248 struct vcpu_vmx *vmx = to_vmx(vcpu);
3249 unsigned long exit_qualification;
3250 u16 tss_selector;
3251 int reason, type, idt_v;
3252
3253 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3254 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3255
3256 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3257
3258 reason = (u32)exit_qualification >> 30;
3259 if (reason == TASK_SWITCH_GATE && idt_v) {
3260 switch (type) {
3261 case INTR_TYPE_NMI_INTR:
3262 vcpu->arch.nmi_injected = false;
3263 if (cpu_has_virtual_nmis())
3264 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3265 GUEST_INTR_STATE_NMI);
3266 break;
3267 case INTR_TYPE_EXT_INTR:
3268 case INTR_TYPE_SOFT_INTR:
3269 kvm_clear_interrupt_queue(vcpu);
3270 break;
3271 case INTR_TYPE_HARD_EXCEPTION:
3272 case INTR_TYPE_SOFT_EXCEPTION:
3273 kvm_clear_exception_queue(vcpu);
3274 break;
3275 default:
3276 break;
3277 }
3278 }
3279 tss_selector = exit_qualification;
3280
3281 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3282 type != INTR_TYPE_EXT_INTR &&
3283 type != INTR_TYPE_NMI_INTR))
3284 skip_emulated_instruction(vcpu);
3285
3286 if (!kvm_task_switch(vcpu, tss_selector, reason))
3287 return 0;
3288
3289 /* clear all local breakpoint enable flags */
3290 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3291
3292 /*
3293 * TODO: What about debug traps on tss switch?
3294 * Are we supposed to inject them and update dr6?
3295 */
3296
3297 return 1;
3298 }
3299
3300 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3301 {
3302 unsigned long exit_qualification;
3303 gpa_t gpa;
3304 int gla_validity;
3305
3306 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3307
3308 if (exit_qualification & (1 << 6)) {
3309 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3310 return -EINVAL;
3311 }
3312
3313 gla_validity = (exit_qualification >> 7) & 0x3;
3314 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3315 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3316 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3317 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3318 vmcs_readl(GUEST_LINEAR_ADDRESS));
3319 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3320 (long unsigned int)exit_qualification);
3321 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3322 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3323 return 0;
3324 }
3325
3326 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3327 trace_kvm_page_fault(gpa, exit_qualification);
3328 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3329 }
3330
3331 static u64 ept_rsvd_mask(u64 spte, int level)
3332 {
3333 int i;
3334 u64 mask = 0;
3335
3336 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3337 mask |= (1ULL << i);
3338
3339 if (level > 2)
3340 /* bits 7:3 reserved */
3341 mask |= 0xf8;
3342 else if (level == 2) {
3343 if (spte & (1ULL << 7))
3344 /* 2MB ref, bits 20:12 reserved */
3345 mask |= 0x1ff000;
3346 else
3347 /* bits 6:3 reserved */
3348 mask |= 0x78;
3349 }
3350
3351 return mask;
3352 }
3353
3354 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3355 int level)
3356 {
3357 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3358
3359 /* 010b (write-only) */
3360 WARN_ON((spte & 0x7) == 0x2);
3361
3362 /* 110b (write/execute) */
3363 WARN_ON((spte & 0x7) == 0x6);
3364
3365 /* 100b (execute-only) and value not supported by logical processor */
3366 if (!cpu_has_vmx_ept_execute_only())
3367 WARN_ON((spte & 0x7) == 0x4);
3368
3369 /* not 000b */
3370 if ((spte & 0x7)) {
3371 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3372
3373 if (rsvd_bits != 0) {
3374 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3375 __func__, rsvd_bits);
3376 WARN_ON(1);
3377 }
3378
3379 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3380 u64 ept_mem_type = (spte & 0x38) >> 3;
3381
3382 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3383 ept_mem_type == 7) {
3384 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3385 __func__, ept_mem_type);
3386 WARN_ON(1);
3387 }
3388 }
3389 }
3390 }
3391
3392 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3393 {
3394 u64 sptes[4];
3395 int nr_sptes, i;
3396 gpa_t gpa;
3397
3398 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3399
3400 printk(KERN_ERR "EPT: Misconfiguration.\n");
3401 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3402
3403 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3404
3405 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3406 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3407
3408 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3409 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3410
3411 return 0;
3412 }
3413
3414 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3415 {
3416 u32 cpu_based_vm_exec_control;
3417
3418 /* clear pending NMI */
3419 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3420 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3421 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3422 ++vcpu->stat.nmi_window_exits;
3423
3424 return 1;
3425 }
3426
3427 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3428 {
3429 struct vcpu_vmx *vmx = to_vmx(vcpu);
3430 enum emulation_result err = EMULATE_DONE;
3431 int ret = 1;
3432
3433 while (!guest_state_valid(vcpu)) {
3434 err = emulate_instruction(vcpu, 0, 0, 0);
3435
3436 if (err == EMULATE_DO_MMIO) {
3437 ret = 0;
3438 goto out;
3439 }
3440
3441 if (err != EMULATE_DONE) {
3442 kvm_report_emulation_failure(vcpu, "emulation failure");
3443 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3444 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3445 vcpu->run->internal.ndata = 0;
3446 ret = 0;
3447 goto out;
3448 }
3449
3450 if (signal_pending(current))
3451 goto out;
3452 if (need_resched())
3453 schedule();
3454 }
3455
3456 vmx->emulation_required = 0;
3457 out:
3458 return ret;
3459 }
3460
3461 /*
3462 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3463 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3464 */
3465 static int handle_pause(struct kvm_vcpu *vcpu)
3466 {
3467 skip_emulated_instruction(vcpu);
3468 kvm_vcpu_on_spin(vcpu);
3469
3470 return 1;
3471 }
3472
3473 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3474 {
3475 kvm_queue_exception(vcpu, UD_VECTOR);
3476 return 1;
3477 }
3478
3479 /*
3480 * The exit handlers return 1 if the exit was handled fully and guest execution
3481 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3482 * to be done to userspace and return 0.
3483 */
3484 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3485 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3486 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3487 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3488 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3489 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3490 [EXIT_REASON_CR_ACCESS] = handle_cr,
3491 [EXIT_REASON_DR_ACCESS] = handle_dr,
3492 [EXIT_REASON_CPUID] = handle_cpuid,
3493 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3494 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3495 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3496 [EXIT_REASON_HLT] = handle_halt,
3497 [EXIT_REASON_INVLPG] = handle_invlpg,
3498 [EXIT_REASON_VMCALL] = handle_vmcall,
3499 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3500 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3501 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3502 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3503 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3504 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3505 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3506 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3507 [EXIT_REASON_VMON] = handle_vmx_insn,
3508 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3509 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3510 [EXIT_REASON_WBINVD] = handle_wbinvd,
3511 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3512 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3513 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3514 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3515 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3516 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3517 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3518 };
3519
3520 static const int kvm_vmx_max_exit_handlers =
3521 ARRAY_SIZE(kvm_vmx_exit_handlers);
3522
3523 /*
3524 * The guest has exited. See if we can fix it or if we need userspace
3525 * assistance.
3526 */
3527 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3528 {
3529 struct vcpu_vmx *vmx = to_vmx(vcpu);
3530 u32 exit_reason = vmx->exit_reason;
3531 u32 vectoring_info = vmx->idt_vectoring_info;
3532
3533 trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3534
3535 /* If guest state is invalid, start emulating */
3536 if (vmx->emulation_required && emulate_invalid_guest_state)
3537 return handle_invalid_guest_state(vcpu);
3538
3539 /* Access CR3 don't cause VMExit in paging mode, so we need
3540 * to sync with guest real CR3. */
3541 if (enable_ept && is_paging(vcpu))
3542 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3543
3544 if (unlikely(vmx->fail)) {
3545 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3546 vcpu->run->fail_entry.hardware_entry_failure_reason
3547 = vmcs_read32(VM_INSTRUCTION_ERROR);
3548 return 0;
3549 }
3550
3551 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3552 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3553 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3554 exit_reason != EXIT_REASON_TASK_SWITCH))
3555 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3556 "(0x%x) and exit reason is 0x%x\n",
3557 __func__, vectoring_info, exit_reason);
3558
3559 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3560 if (vmx_interrupt_allowed(vcpu)) {
3561 vmx->soft_vnmi_blocked = 0;
3562 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3563 vcpu->arch.nmi_pending) {
3564 /*
3565 * This CPU don't support us in finding the end of an
3566 * NMI-blocked window if the guest runs with IRQs
3567 * disabled. So we pull the trigger after 1 s of
3568 * futile waiting, but inform the user about this.
3569 */
3570 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3571 "state on VCPU %d after 1 s timeout\n",
3572 __func__, vcpu->vcpu_id);
3573 vmx->soft_vnmi_blocked = 0;
3574 }
3575 }
3576
3577 if (exit_reason < kvm_vmx_max_exit_handlers
3578 && kvm_vmx_exit_handlers[exit_reason])
3579 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3580 else {
3581 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3582 vcpu->run->hw.hardware_exit_reason = exit_reason;
3583 }
3584 return 0;
3585 }
3586
3587 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3588 {
3589 if (irr == -1 || tpr < irr) {
3590 vmcs_write32(TPR_THRESHOLD, 0);
3591 return;
3592 }
3593
3594 vmcs_write32(TPR_THRESHOLD, irr);
3595 }
3596
3597 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3598 {
3599 u32 exit_intr_info;
3600 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3601 bool unblock_nmi;
3602 u8 vector;
3603 int type;
3604 bool idtv_info_valid;
3605
3606 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3607
3608 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3609
3610 /* Handle machine checks before interrupts are enabled */
3611 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3612 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3613 && is_machine_check(exit_intr_info)))
3614 kvm_machine_check();
3615
3616 /* We need to handle NMIs before interrupts are enabled */
3617 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3618 (exit_intr_info & INTR_INFO_VALID_MASK))
3619 asm("int $2");
3620
3621 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3622
3623 if (cpu_has_virtual_nmis()) {
3624 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3625 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3626 /*
3627 * SDM 3: 27.7.1.2 (September 2008)
3628 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3629 * a guest IRET fault.
3630 * SDM 3: 23.2.2 (September 2008)
3631 * Bit 12 is undefined in any of the following cases:
3632 * If the VM exit sets the valid bit in the IDT-vectoring
3633 * information field.
3634 * If the VM exit is due to a double fault.
3635 */
3636 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3637 vector != DF_VECTOR && !idtv_info_valid)
3638 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3639 GUEST_INTR_STATE_NMI);
3640 } else if (unlikely(vmx->soft_vnmi_blocked))
3641 vmx->vnmi_blocked_time +=
3642 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3643
3644 vmx->vcpu.arch.nmi_injected = false;
3645 kvm_clear_exception_queue(&vmx->vcpu);
3646 kvm_clear_interrupt_queue(&vmx->vcpu);
3647
3648 if (!idtv_info_valid)
3649 return;
3650
3651 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3652 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3653
3654 switch (type) {
3655 case INTR_TYPE_NMI_INTR:
3656 vmx->vcpu.arch.nmi_injected = true;
3657 /*
3658 * SDM 3: 27.7.1.2 (September 2008)
3659 * Clear bit "block by NMI" before VM entry if a NMI
3660 * delivery faulted.
3661 */
3662 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3663 GUEST_INTR_STATE_NMI);
3664 break;
3665 case INTR_TYPE_SOFT_EXCEPTION:
3666 vmx->vcpu.arch.event_exit_inst_len =
3667 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3668 /* fall through */
3669 case INTR_TYPE_HARD_EXCEPTION:
3670 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3671 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3672 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3673 } else
3674 kvm_queue_exception(&vmx->vcpu, vector);
3675 break;
3676 case INTR_TYPE_SOFT_INTR:
3677 vmx->vcpu.arch.event_exit_inst_len =
3678 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3679 /* fall through */
3680 case INTR_TYPE_EXT_INTR:
3681 kvm_queue_interrupt(&vmx->vcpu, vector,
3682 type == INTR_TYPE_SOFT_INTR);
3683 break;
3684 default:
3685 break;
3686 }
3687 }
3688
3689 /*
3690 * Failure to inject an interrupt should give us the information
3691 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3692 * when fetching the interrupt redirection bitmap in the real-mode
3693 * tss, this doesn't happen. So we do it ourselves.
3694 */
3695 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3696 {
3697 vmx->rmode.irq.pending = 0;
3698 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3699 return;
3700 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3701 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3702 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3703 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3704 return;
3705 }
3706 vmx->idt_vectoring_info =
3707 VECTORING_INFO_VALID_MASK
3708 | INTR_TYPE_EXT_INTR
3709 | vmx->rmode.irq.vector;
3710 }
3711
3712 #ifdef CONFIG_X86_64
3713 #define R "r"
3714 #define Q "q"
3715 #else
3716 #define R "e"
3717 #define Q "l"
3718 #endif
3719
3720 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3721 {
3722 struct vcpu_vmx *vmx = to_vmx(vcpu);
3723
3724 /* Record the guest's net vcpu time for enforced NMI injections. */
3725 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3726 vmx->entry_time = ktime_get();
3727
3728 /* Don't enter VMX if guest state is invalid, let the exit handler
3729 start emulation until we arrive back to a valid state */
3730 if (vmx->emulation_required && emulate_invalid_guest_state)
3731 return;
3732
3733 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3734 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3735 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3736 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3737
3738 /* When single-stepping over STI and MOV SS, we must clear the
3739 * corresponding interruptibility bits in the guest state. Otherwise
3740 * vmentry fails as it then expects bit 14 (BS) in pending debug
3741 * exceptions being set, but that's not correct for the guest debugging
3742 * case. */
3743 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3744 vmx_set_interrupt_shadow(vcpu, 0);
3745
3746 /*
3747 * Loading guest fpu may have cleared host cr0.ts
3748 */
3749 vmcs_writel(HOST_CR0, read_cr0());
3750
3751 if (vcpu->arch.switch_db_regs)
3752 set_debugreg(vcpu->arch.dr6, 6);
3753
3754 asm(
3755 /* Store host registers */
3756 "push %%"R"dx; push %%"R"bp;"
3757 "push %%"R"cx \n\t"
3758 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3759 "je 1f \n\t"
3760 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3761 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3762 "1: \n\t"
3763 /* Reload cr2 if changed */
3764 "mov %c[cr2](%0), %%"R"ax \n\t"
3765 "mov %%cr2, %%"R"dx \n\t"
3766 "cmp %%"R"ax, %%"R"dx \n\t"
3767 "je 2f \n\t"
3768 "mov %%"R"ax, %%cr2 \n\t"
3769 "2: \n\t"
3770 /* Check if vmlaunch of vmresume is needed */
3771 "cmpl $0, %c[launched](%0) \n\t"
3772 /* Load guest registers. Don't clobber flags. */
3773 "mov %c[rax](%0), %%"R"ax \n\t"
3774 "mov %c[rbx](%0), %%"R"bx \n\t"
3775 "mov %c[rdx](%0), %%"R"dx \n\t"
3776 "mov %c[rsi](%0), %%"R"si \n\t"
3777 "mov %c[rdi](%0), %%"R"di \n\t"
3778 "mov %c[rbp](%0), %%"R"bp \n\t"
3779 #ifdef CONFIG_X86_64
3780 "mov %c[r8](%0), %%r8 \n\t"
3781 "mov %c[r9](%0), %%r9 \n\t"
3782 "mov %c[r10](%0), %%r10 \n\t"
3783 "mov %c[r11](%0), %%r11 \n\t"
3784 "mov %c[r12](%0), %%r12 \n\t"
3785 "mov %c[r13](%0), %%r13 \n\t"
3786 "mov %c[r14](%0), %%r14 \n\t"
3787 "mov %c[r15](%0), %%r15 \n\t"
3788 #endif
3789 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3790
3791 /* Enter guest mode */
3792 "jne .Llaunched \n\t"
3793 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3794 "jmp .Lkvm_vmx_return \n\t"
3795 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3796 ".Lkvm_vmx_return: "
3797 /* Save guest registers, load host registers, keep flags */
3798 "xchg %0, (%%"R"sp) \n\t"
3799 "mov %%"R"ax, %c[rax](%0) \n\t"
3800 "mov %%"R"bx, %c[rbx](%0) \n\t"
3801 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3802 "mov %%"R"dx, %c[rdx](%0) \n\t"
3803 "mov %%"R"si, %c[rsi](%0) \n\t"
3804 "mov %%"R"di, %c[rdi](%0) \n\t"
3805 "mov %%"R"bp, %c[rbp](%0) \n\t"
3806 #ifdef CONFIG_X86_64
3807 "mov %%r8, %c[r8](%0) \n\t"
3808 "mov %%r9, %c[r9](%0) \n\t"
3809 "mov %%r10, %c[r10](%0) \n\t"
3810 "mov %%r11, %c[r11](%0) \n\t"
3811 "mov %%r12, %c[r12](%0) \n\t"
3812 "mov %%r13, %c[r13](%0) \n\t"
3813 "mov %%r14, %c[r14](%0) \n\t"
3814 "mov %%r15, %c[r15](%0) \n\t"
3815 #endif
3816 "mov %%cr2, %%"R"ax \n\t"
3817 "mov %%"R"ax, %c[cr2](%0) \n\t"
3818
3819 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3820 "setbe %c[fail](%0) \n\t"
3821 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3822 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3823 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3824 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3825 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3826 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3827 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3828 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3829 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3830 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3831 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3832 #ifdef CONFIG_X86_64
3833 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3834 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3835 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3836 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3837 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3838 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3839 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3840 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3841 #endif
3842 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3843 : "cc", "memory"
3844 , R"bx", R"di", R"si"
3845 #ifdef CONFIG_X86_64
3846 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3847 #endif
3848 );
3849
3850 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3851 | (1 << VCPU_EXREG_PDPTR));
3852 vcpu->arch.regs_dirty = 0;
3853
3854 if (vcpu->arch.switch_db_regs)
3855 get_debugreg(vcpu->arch.dr6, 6);
3856
3857 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3858 if (vmx->rmode.irq.pending)
3859 fixup_rmode_irq(vmx);
3860
3861 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3862 vmx->launched = 1;
3863
3864 vmx_complete_interrupts(vmx);
3865 }
3866
3867 #undef R
3868 #undef Q
3869
3870 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3871 {
3872 struct vcpu_vmx *vmx = to_vmx(vcpu);
3873
3874 if (vmx->vmcs) {
3875 vcpu_clear(vmx);
3876 free_vmcs(vmx->vmcs);
3877 vmx->vmcs = NULL;
3878 }
3879 }
3880
3881 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3882 {
3883 struct vcpu_vmx *vmx = to_vmx(vcpu);
3884
3885 spin_lock(&vmx_vpid_lock);
3886 if (vmx->vpid != 0)
3887 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3888 spin_unlock(&vmx_vpid_lock);
3889 vmx_free_vmcs(vcpu);
3890 kfree(vmx->guest_msrs);
3891 kvm_vcpu_uninit(vcpu);
3892 kmem_cache_free(kvm_vcpu_cache, vmx);
3893 }
3894
3895 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3896 {
3897 int err;
3898 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3899 int cpu;
3900
3901 if (!vmx)
3902 return ERR_PTR(-ENOMEM);
3903
3904 allocate_vpid(vmx);
3905
3906 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3907 if (err)
3908 goto free_vcpu;
3909
3910 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3911 if (!vmx->guest_msrs) {
3912 err = -ENOMEM;
3913 goto uninit_vcpu;
3914 }
3915
3916 vmx->vmcs = alloc_vmcs();
3917 if (!vmx->vmcs)
3918 goto free_msrs;
3919
3920 vmcs_clear(vmx->vmcs);
3921
3922 cpu = get_cpu();
3923 vmx_vcpu_load(&vmx->vcpu, cpu);
3924 err = vmx_vcpu_setup(vmx);
3925 vmx_vcpu_put(&vmx->vcpu);
3926 put_cpu();
3927 if (err)
3928 goto free_vmcs;
3929 if (vm_need_virtualize_apic_accesses(kvm))
3930 if (alloc_apic_access_page(kvm) != 0)
3931 goto free_vmcs;
3932
3933 if (enable_ept) {
3934 if (!kvm->arch.ept_identity_map_addr)
3935 kvm->arch.ept_identity_map_addr =
3936 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3937 if (alloc_identity_pagetable(kvm) != 0)
3938 goto free_vmcs;
3939 }
3940
3941 return &vmx->vcpu;
3942
3943 free_vmcs:
3944 free_vmcs(vmx->vmcs);
3945 free_msrs:
3946 kfree(vmx->guest_msrs);
3947 uninit_vcpu:
3948 kvm_vcpu_uninit(&vmx->vcpu);
3949 free_vcpu:
3950 kmem_cache_free(kvm_vcpu_cache, vmx);
3951 return ERR_PTR(err);
3952 }
3953
3954 static void __init vmx_check_processor_compat(void *rtn)
3955 {
3956 struct vmcs_config vmcs_conf;
3957
3958 *(int *)rtn = 0;
3959 if (setup_vmcs_config(&vmcs_conf) < 0)
3960 *(int *)rtn = -EIO;
3961 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3962 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3963 smp_processor_id());
3964 *(int *)rtn = -EIO;
3965 }
3966 }
3967
3968 static int get_ept_level(void)
3969 {
3970 return VMX_EPT_DEFAULT_GAW + 1;
3971 }
3972
3973 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3974 {
3975 u64 ret;
3976
3977 /* For VT-d and EPT combination
3978 * 1. MMIO: always map as UC
3979 * 2. EPT with VT-d:
3980 * a. VT-d without snooping control feature: can't guarantee the
3981 * result, try to trust guest.
3982 * b. VT-d with snooping control feature: snooping control feature of
3983 * VT-d engine can guarantee the cache correctness. Just set it
3984 * to WB to keep consistent with host. So the same as item 3.
3985 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3986 * consistent with host MTRR
3987 */
3988 if (is_mmio)
3989 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3990 else if (vcpu->kvm->arch.iommu_domain &&
3991 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3992 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3993 VMX_EPT_MT_EPTE_SHIFT;
3994 else
3995 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3996 | VMX_EPT_IGMT_BIT;
3997
3998 return ret;
3999 }
4000
4001 #define _ER(x) { EXIT_REASON_##x, #x }
4002
4003 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4004 _ER(EXCEPTION_NMI),
4005 _ER(EXTERNAL_INTERRUPT),
4006 _ER(TRIPLE_FAULT),
4007 _ER(PENDING_INTERRUPT),
4008 _ER(NMI_WINDOW),
4009 _ER(TASK_SWITCH),
4010 _ER(CPUID),
4011 _ER(HLT),
4012 _ER(INVLPG),
4013 _ER(RDPMC),
4014 _ER(RDTSC),
4015 _ER(VMCALL),
4016 _ER(VMCLEAR),
4017 _ER(VMLAUNCH),
4018 _ER(VMPTRLD),
4019 _ER(VMPTRST),
4020 _ER(VMREAD),
4021 _ER(VMRESUME),
4022 _ER(VMWRITE),
4023 _ER(VMOFF),
4024 _ER(VMON),
4025 _ER(CR_ACCESS),
4026 _ER(DR_ACCESS),
4027 _ER(IO_INSTRUCTION),
4028 _ER(MSR_READ),
4029 _ER(MSR_WRITE),
4030 _ER(MWAIT_INSTRUCTION),
4031 _ER(MONITOR_INSTRUCTION),
4032 _ER(PAUSE_INSTRUCTION),
4033 _ER(MCE_DURING_VMENTRY),
4034 _ER(TPR_BELOW_THRESHOLD),
4035 _ER(APIC_ACCESS),
4036 _ER(EPT_VIOLATION),
4037 _ER(EPT_MISCONFIG),
4038 _ER(WBINVD),
4039 { -1, NULL }
4040 };
4041
4042 #undef _ER
4043
4044 static int vmx_get_lpage_level(void)
4045 {
4046 if (enable_ept && !cpu_has_vmx_ept_1g_page())
4047 return PT_DIRECTORY_LEVEL;
4048 else
4049 /* For shadow and EPT supported 1GB page */
4050 return PT_PDPE_LEVEL;
4051 }
4052
4053 static inline u32 bit(int bitno)
4054 {
4055 return 1 << (bitno & 31);
4056 }
4057
4058 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4059 {
4060 struct kvm_cpuid_entry2 *best;
4061 struct vcpu_vmx *vmx = to_vmx(vcpu);
4062 u32 exec_control;
4063
4064 vmx->rdtscp_enabled = false;
4065 if (vmx_rdtscp_supported()) {
4066 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4067 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4068 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4069 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4070 vmx->rdtscp_enabled = true;
4071 else {
4072 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4073 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4074 exec_control);
4075 }
4076 }
4077 }
4078 }
4079
4080 static struct kvm_x86_ops vmx_x86_ops = {
4081 .cpu_has_kvm_support = cpu_has_kvm_support,
4082 .disabled_by_bios = vmx_disabled_by_bios,
4083 .hardware_setup = hardware_setup,
4084 .hardware_unsetup = hardware_unsetup,
4085 .check_processor_compatibility = vmx_check_processor_compat,
4086 .hardware_enable = hardware_enable,
4087 .hardware_disable = hardware_disable,
4088 .cpu_has_accelerated_tpr = report_flexpriority,
4089
4090 .vcpu_create = vmx_create_vcpu,
4091 .vcpu_free = vmx_free_vcpu,
4092 .vcpu_reset = vmx_vcpu_reset,
4093
4094 .prepare_guest_switch = vmx_save_host_state,
4095 .vcpu_load = vmx_vcpu_load,
4096 .vcpu_put = vmx_vcpu_put,
4097
4098 .set_guest_debug = set_guest_debug,
4099 .get_msr = vmx_get_msr,
4100 .set_msr = vmx_set_msr,
4101 .get_segment_base = vmx_get_segment_base,
4102 .get_segment = vmx_get_segment,
4103 .set_segment = vmx_set_segment,
4104 .get_cpl = vmx_get_cpl,
4105 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4106 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4107 .set_cr0 = vmx_set_cr0,
4108 .set_cr3 = vmx_set_cr3,
4109 .set_cr4 = vmx_set_cr4,
4110 .set_efer = vmx_set_efer,
4111 .get_idt = vmx_get_idt,
4112 .set_idt = vmx_set_idt,
4113 .get_gdt = vmx_get_gdt,
4114 .set_gdt = vmx_set_gdt,
4115 .cache_reg = vmx_cache_reg,
4116 .get_rflags = vmx_get_rflags,
4117 .set_rflags = vmx_set_rflags,
4118
4119 .tlb_flush = vmx_flush_tlb,
4120
4121 .run = vmx_vcpu_run,
4122 .handle_exit = vmx_handle_exit,
4123 .skip_emulated_instruction = skip_emulated_instruction,
4124 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4125 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4126 .patch_hypercall = vmx_patch_hypercall,
4127 .set_irq = vmx_inject_irq,
4128 .set_nmi = vmx_inject_nmi,
4129 .queue_exception = vmx_queue_exception,
4130 .interrupt_allowed = vmx_interrupt_allowed,
4131 .nmi_allowed = vmx_nmi_allowed,
4132 .get_nmi_mask = vmx_get_nmi_mask,
4133 .set_nmi_mask = vmx_set_nmi_mask,
4134 .enable_nmi_window = enable_nmi_window,
4135 .enable_irq_window = enable_irq_window,
4136 .update_cr8_intercept = update_cr8_intercept,
4137
4138 .set_tss_addr = vmx_set_tss_addr,
4139 .get_tdp_level = get_ept_level,
4140 .get_mt_mask = vmx_get_mt_mask,
4141
4142 .exit_reasons_str = vmx_exit_reasons_str,
4143 .get_lpage_level = vmx_get_lpage_level,
4144
4145 .cpuid_update = vmx_cpuid_update,
4146
4147 .rdtscp_supported = vmx_rdtscp_supported,
4148 };
4149
4150 static int __init vmx_init(void)
4151 {
4152 int r, i;
4153
4154 rdmsrl_safe(MSR_EFER, &host_efer);
4155
4156 for (i = 0; i < NR_VMX_MSR; ++i)
4157 kvm_define_shared_msr(i, vmx_msr_index[i]);
4158
4159 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4160 if (!vmx_io_bitmap_a)
4161 return -ENOMEM;
4162
4163 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4164 if (!vmx_io_bitmap_b) {
4165 r = -ENOMEM;
4166 goto out;
4167 }
4168
4169 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4170 if (!vmx_msr_bitmap_legacy) {
4171 r = -ENOMEM;
4172 goto out1;
4173 }
4174
4175 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4176 if (!vmx_msr_bitmap_longmode) {
4177 r = -ENOMEM;
4178 goto out2;
4179 }
4180
4181 /*
4182 * Allow direct access to the PC debug port (it is often used for I/O
4183 * delays, but the vmexits simply slow things down).
4184 */
4185 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4186 clear_bit(0x80, vmx_io_bitmap_a);
4187
4188 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4189
4190 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4191 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4192
4193 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4194
4195 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4196 if (r)
4197 goto out3;
4198
4199 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4200 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4201 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4202 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4203 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4204 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4205
4206 if (enable_ept) {
4207 bypass_guest_pf = 0;
4208 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4209 VMX_EPT_WRITABLE_MASK);
4210 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4211 VMX_EPT_EXECUTABLE_MASK);
4212 kvm_enable_tdp();
4213 } else
4214 kvm_disable_tdp();
4215
4216 if (bypass_guest_pf)
4217 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4218
4219 return 0;
4220
4221 out3:
4222 free_page((unsigned long)vmx_msr_bitmap_longmode);
4223 out2:
4224 free_page((unsigned long)vmx_msr_bitmap_legacy);
4225 out1:
4226 free_page((unsigned long)vmx_io_bitmap_b);
4227 out:
4228 free_page((unsigned long)vmx_io_bitmap_a);
4229 return r;
4230 }
4231
4232 static void __exit vmx_exit(void)
4233 {
4234 free_page((unsigned long)vmx_msr_bitmap_legacy);
4235 free_page((unsigned long)vmx_msr_bitmap_longmode);
4236 free_page((unsigned long)vmx_io_bitmap_b);
4237 free_page((unsigned long)vmx_io_bitmap_a);
4238
4239 kvm_exit();
4240 }
4241
4242 module_init(vmx_init)
4243 module_exit(vmx_exit)