]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190 };
191
192 /*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197 struct loaded_vmcs {
198 struct vmcs *vmcs;
199 struct vmcs *shadow_vmcs;
200 int cpu;
201 int launched;
202 struct list_head loaded_vmcss_on_cpu_link;
203 };
204
205 struct shared_msr_entry {
206 unsigned index;
207 u64 data;
208 u64 mask;
209 };
210
211 /*
212 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
213 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
214 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
215 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
216 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
217 * More than one of these structures may exist, if L1 runs multiple L2 guests.
218 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
219 * underlying hardware which will be used to run L2.
220 * This structure is packed to ensure that its layout is identical across
221 * machines (necessary for live migration).
222 * If there are changes in this struct, VMCS12_REVISION must be changed.
223 */
224 typedef u64 natural_width;
225 struct __packed vmcs12 {
226 /* According to the Intel spec, a VMCS region must start with the
227 * following two fields. Then follow implementation-specific data.
228 */
229 u32 revision_id;
230 u32 abort;
231
232 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
233 u32 padding[7]; /* room for future expansion */
234
235 u64 io_bitmap_a;
236 u64 io_bitmap_b;
237 u64 msr_bitmap;
238 u64 vm_exit_msr_store_addr;
239 u64 vm_exit_msr_load_addr;
240 u64 vm_entry_msr_load_addr;
241 u64 tsc_offset;
242 u64 virtual_apic_page_addr;
243 u64 apic_access_addr;
244 u64 posted_intr_desc_addr;
245 u64 ept_pointer;
246 u64 eoi_exit_bitmap0;
247 u64 eoi_exit_bitmap1;
248 u64 eoi_exit_bitmap2;
249 u64 eoi_exit_bitmap3;
250 u64 xss_exit_bitmap;
251 u64 guest_physical_address;
252 u64 vmcs_link_pointer;
253 u64 pml_address;
254 u64 guest_ia32_debugctl;
255 u64 guest_ia32_pat;
256 u64 guest_ia32_efer;
257 u64 guest_ia32_perf_global_ctrl;
258 u64 guest_pdptr0;
259 u64 guest_pdptr1;
260 u64 guest_pdptr2;
261 u64 guest_pdptr3;
262 u64 guest_bndcfgs;
263 u64 host_ia32_pat;
264 u64 host_ia32_efer;
265 u64 host_ia32_perf_global_ctrl;
266 u64 padding64[8]; /* room for future expansion */
267 /*
268 * To allow migration of L1 (complete with its L2 guests) between
269 * machines of different natural widths (32 or 64 bit), we cannot have
270 * unsigned long fields with no explict size. We use u64 (aliased
271 * natural_width) instead. Luckily, x86 is little-endian.
272 */
273 natural_width cr0_guest_host_mask;
274 natural_width cr4_guest_host_mask;
275 natural_width cr0_read_shadow;
276 natural_width cr4_read_shadow;
277 natural_width cr3_target_value0;
278 natural_width cr3_target_value1;
279 natural_width cr3_target_value2;
280 natural_width cr3_target_value3;
281 natural_width exit_qualification;
282 natural_width guest_linear_address;
283 natural_width guest_cr0;
284 natural_width guest_cr3;
285 natural_width guest_cr4;
286 natural_width guest_es_base;
287 natural_width guest_cs_base;
288 natural_width guest_ss_base;
289 natural_width guest_ds_base;
290 natural_width guest_fs_base;
291 natural_width guest_gs_base;
292 natural_width guest_ldtr_base;
293 natural_width guest_tr_base;
294 natural_width guest_gdtr_base;
295 natural_width guest_idtr_base;
296 natural_width guest_dr7;
297 natural_width guest_rsp;
298 natural_width guest_rip;
299 natural_width guest_rflags;
300 natural_width guest_pending_dbg_exceptions;
301 natural_width guest_sysenter_esp;
302 natural_width guest_sysenter_eip;
303 natural_width host_cr0;
304 natural_width host_cr3;
305 natural_width host_cr4;
306 natural_width host_fs_base;
307 natural_width host_gs_base;
308 natural_width host_tr_base;
309 natural_width host_gdtr_base;
310 natural_width host_idtr_base;
311 natural_width host_ia32_sysenter_esp;
312 natural_width host_ia32_sysenter_eip;
313 natural_width host_rsp;
314 natural_width host_rip;
315 natural_width paddingl[8]; /* room for future expansion */
316 u32 pin_based_vm_exec_control;
317 u32 cpu_based_vm_exec_control;
318 u32 exception_bitmap;
319 u32 page_fault_error_code_mask;
320 u32 page_fault_error_code_match;
321 u32 cr3_target_count;
322 u32 vm_exit_controls;
323 u32 vm_exit_msr_store_count;
324 u32 vm_exit_msr_load_count;
325 u32 vm_entry_controls;
326 u32 vm_entry_msr_load_count;
327 u32 vm_entry_intr_info_field;
328 u32 vm_entry_exception_error_code;
329 u32 vm_entry_instruction_len;
330 u32 tpr_threshold;
331 u32 secondary_vm_exec_control;
332 u32 vm_instruction_error;
333 u32 vm_exit_reason;
334 u32 vm_exit_intr_info;
335 u32 vm_exit_intr_error_code;
336 u32 idt_vectoring_info_field;
337 u32 idt_vectoring_error_code;
338 u32 vm_exit_instruction_len;
339 u32 vmx_instruction_info;
340 u32 guest_es_limit;
341 u32 guest_cs_limit;
342 u32 guest_ss_limit;
343 u32 guest_ds_limit;
344 u32 guest_fs_limit;
345 u32 guest_gs_limit;
346 u32 guest_ldtr_limit;
347 u32 guest_tr_limit;
348 u32 guest_gdtr_limit;
349 u32 guest_idtr_limit;
350 u32 guest_es_ar_bytes;
351 u32 guest_cs_ar_bytes;
352 u32 guest_ss_ar_bytes;
353 u32 guest_ds_ar_bytes;
354 u32 guest_fs_ar_bytes;
355 u32 guest_gs_ar_bytes;
356 u32 guest_ldtr_ar_bytes;
357 u32 guest_tr_ar_bytes;
358 u32 guest_interruptibility_info;
359 u32 guest_activity_state;
360 u32 guest_sysenter_cs;
361 u32 host_ia32_sysenter_cs;
362 u32 vmx_preemption_timer_value;
363 u32 padding32[7]; /* room for future expansion */
364 u16 virtual_processor_id;
365 u16 posted_intr_nv;
366 u16 guest_es_selector;
367 u16 guest_cs_selector;
368 u16 guest_ss_selector;
369 u16 guest_ds_selector;
370 u16 guest_fs_selector;
371 u16 guest_gs_selector;
372 u16 guest_ldtr_selector;
373 u16 guest_tr_selector;
374 u16 guest_intr_status;
375 u16 guest_pml_index;
376 u16 host_es_selector;
377 u16 host_cs_selector;
378 u16 host_ss_selector;
379 u16 host_ds_selector;
380 u16 host_fs_selector;
381 u16 host_gs_selector;
382 u16 host_tr_selector;
383 };
384
385 /*
386 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
387 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
388 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
389 */
390 #define VMCS12_REVISION 0x11e57ed0
391
392 /*
393 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
394 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
395 * current implementation, 4K are reserved to avoid future complications.
396 */
397 #define VMCS12_SIZE 0x1000
398
399 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
400 struct vmcs02_list {
401 struct list_head list;
402 gpa_t vmptr;
403 struct loaded_vmcs vmcs02;
404 };
405
406 /*
407 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
408 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
409 */
410 struct nested_vmx {
411 /* Has the level1 guest done vmxon? */
412 bool vmxon;
413 gpa_t vmxon_ptr;
414 bool pml_full;
415
416 /* The guest-physical address of the current VMCS L1 keeps for L2 */
417 gpa_t current_vmptr;
418 /* The host-usable pointer to the above */
419 struct page *current_vmcs12_page;
420 struct vmcs12 *current_vmcs12;
421 /*
422 * Cache of the guest's VMCS, existing outside of guest memory.
423 * Loaded from guest memory during VMPTRLD. Flushed to guest
424 * memory during VMXOFF, VMCLEAR, VMPTRLD.
425 */
426 struct vmcs12 *cached_vmcs12;
427 /*
428 * Indicates if the shadow vmcs must be updated with the
429 * data hold by vmcs12
430 */
431 bool sync_shadow_vmcs;
432
433 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434 struct list_head vmcs02_pool;
435 int vmcs02_num;
436 bool change_vmcs01_virtual_x2apic_mode;
437 /* L2 must run next, and mustn't decide to exit to L1. */
438 bool nested_run_pending;
439 /*
440 * Guest pages referred to in vmcs02 with host-physical pointers, so
441 * we must keep them pinned while L2 runs.
442 */
443 struct page *apic_access_page;
444 struct page *virtual_apic_page;
445 struct page *pi_desc_page;
446 struct pi_desc *pi_desc;
447 bool pi_pending;
448 u16 posted_intr_nv;
449
450 unsigned long *msr_bitmap;
451
452 struct hrtimer preemption_timer;
453 bool preemption_timer_expired;
454
455 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456 u64 vmcs01_debugctl;
457
458 u16 vpid02;
459 u16 last_vpid;
460
461 /*
462 * We only store the "true" versions of the VMX capability MSRs. We
463 * generate the "non-true" versions by setting the must-be-1 bits
464 * according to the SDM.
465 */
466 u32 nested_vmx_procbased_ctls_low;
467 u32 nested_vmx_procbased_ctls_high;
468 u32 nested_vmx_secondary_ctls_low;
469 u32 nested_vmx_secondary_ctls_high;
470 u32 nested_vmx_pinbased_ctls_low;
471 u32 nested_vmx_pinbased_ctls_high;
472 u32 nested_vmx_exit_ctls_low;
473 u32 nested_vmx_exit_ctls_high;
474 u32 nested_vmx_entry_ctls_low;
475 u32 nested_vmx_entry_ctls_high;
476 u32 nested_vmx_misc_low;
477 u32 nested_vmx_misc_high;
478 u32 nested_vmx_ept_caps;
479 u32 nested_vmx_vpid_caps;
480 u64 nested_vmx_basic;
481 u64 nested_vmx_cr0_fixed0;
482 u64 nested_vmx_cr0_fixed1;
483 u64 nested_vmx_cr4_fixed0;
484 u64 nested_vmx_cr4_fixed1;
485 u64 nested_vmx_vmcs_enum;
486 };
487
488 #define POSTED_INTR_ON 0
489 #define POSTED_INTR_SN 1
490
491 /* Posted-Interrupt Descriptor */
492 struct pi_desc {
493 u32 pir[8]; /* Posted interrupt requested */
494 union {
495 struct {
496 /* bit 256 - Outstanding Notification */
497 u16 on : 1,
498 /* bit 257 - Suppress Notification */
499 sn : 1,
500 /* bit 271:258 - Reserved */
501 rsvd_1 : 14;
502 /* bit 279:272 - Notification Vector */
503 u8 nv;
504 /* bit 287:280 - Reserved */
505 u8 rsvd_2;
506 /* bit 319:288 - Notification Destination */
507 u32 ndst;
508 };
509 u64 control;
510 };
511 u32 rsvd[6];
512 } __aligned(64);
513
514 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
515 {
516 return test_and_set_bit(POSTED_INTR_ON,
517 (unsigned long *)&pi_desc->control);
518 }
519
520 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
521 {
522 return test_and_clear_bit(POSTED_INTR_ON,
523 (unsigned long *)&pi_desc->control);
524 }
525
526 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
527 {
528 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
529 }
530
531 static inline void pi_clear_sn(struct pi_desc *pi_desc)
532 {
533 return clear_bit(POSTED_INTR_SN,
534 (unsigned long *)&pi_desc->control);
535 }
536
537 static inline void pi_set_sn(struct pi_desc *pi_desc)
538 {
539 return set_bit(POSTED_INTR_SN,
540 (unsigned long *)&pi_desc->control);
541 }
542
543 static inline void pi_clear_on(struct pi_desc *pi_desc)
544 {
545 clear_bit(POSTED_INTR_ON,
546 (unsigned long *)&pi_desc->control);
547 }
548
549 static inline int pi_test_on(struct pi_desc *pi_desc)
550 {
551 return test_bit(POSTED_INTR_ON,
552 (unsigned long *)&pi_desc->control);
553 }
554
555 static inline int pi_test_sn(struct pi_desc *pi_desc)
556 {
557 return test_bit(POSTED_INTR_SN,
558 (unsigned long *)&pi_desc->control);
559 }
560
561 struct vcpu_vmx {
562 struct kvm_vcpu vcpu;
563 unsigned long host_rsp;
564 u8 fail;
565 bool nmi_known_unmasked;
566 u32 exit_intr_info;
567 u32 idt_vectoring_info;
568 ulong rflags;
569 struct shared_msr_entry *guest_msrs;
570 int nmsrs;
571 int save_nmsrs;
572 unsigned long host_idt_base;
573 #ifdef CONFIG_X86_64
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
576 #endif
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
579 /*
580 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581 * non-nested (L1) guest, it always points to vmcs01. For a nested
582 * guest (L2), it points to a different VMCS.
583 */
584 struct loaded_vmcs vmcs01;
585 struct loaded_vmcs *loaded_vmcs;
586 bool __launched; /* temporary, used in vmx_vcpu_run */
587 struct msr_autoload {
588 unsigned nr;
589 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591 } msr_autoload;
592 struct {
593 int loaded;
594 u16 fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596 u16 ds_sel, es_sel;
597 #endif
598 int gs_ldt_reload_needed;
599 int fs_reload_needed;
600 u64 msr_host_bndcfgs;
601 unsigned long vmcs_host_cr3; /* May not match real cr3 */
602 unsigned long vmcs_host_cr4; /* May not match real cr4 */
603 } host_state;
604 struct {
605 int vm86_active;
606 ulong save_rflags;
607 struct kvm_segment segs[8];
608 } rmode;
609 struct {
610 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611 struct kvm_save_segment {
612 u16 selector;
613 unsigned long base;
614 u32 limit;
615 u32 ar;
616 } seg[8];
617 } segment_cache;
618 int vpid;
619 bool emulation_required;
620
621 u32 exit_reason;
622
623 /* Posted interrupt descriptor */
624 struct pi_desc pi_desc;
625
626 /* Support for a guest hypervisor (nested VMX) */
627 struct nested_vmx nested;
628
629 /* Dynamic PLE window. */
630 int ple_window;
631 bool ple_window_dirty;
632
633 /* Support for PML */
634 #define PML_ENTITY_NUM 512
635 struct page *pml_pg;
636
637 /* apic deadline value in host tsc */
638 u64 hv_deadline_tsc;
639
640 u64 current_tsc_ratio;
641
642 bool guest_pkru_valid;
643 u32 guest_pkru;
644 u32 host_pkru;
645
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
651 u64 msr_ia32_feature_control;
652 u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666 return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671 return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704 ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707 TPR_THRESHOLD,
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
720 GUEST_BNDCFGS,
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737 ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741 FIELD(POSTED_INTR_NV, posted_intr_nv),
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
751 FIELD(GUEST_PML_INDEX, guest_pml_index),
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769 FIELD64(EPT_POINTER, ept_pointer),
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(PML_ADDRESS, pml_address),
778 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782 FIELD64(GUEST_PDPTR0, guest_pdptr0),
783 FIELD64(GUEST_PDPTR1, guest_pdptr1),
784 FIELD64(GUEST_PDPTR2, guest_pdptr2),
785 FIELD64(GUEST_PDPTR3, guest_pdptr3),
786 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787 FIELD64(HOST_IA32_PAT, host_ia32_pat),
788 FIELD64(HOST_IA32_EFER, host_ia32_efer),
789 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792 FIELD(EXCEPTION_BITMAP, exception_bitmap),
793 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795 FIELD(CR3_TARGET_COUNT, cr3_target_count),
796 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804 FIELD(TPR_THRESHOLD, tpr_threshold),
805 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807 FIELD(VM_EXIT_REASON, vm_exit_reason),
808 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814 FIELD(GUEST_ES_LIMIT, guest_es_limit),
815 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845 FIELD(EXIT_QUALIFICATION, exit_qualification),
846 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847 FIELD(GUEST_CR0, guest_cr0),
848 FIELD(GUEST_CR3, guest_cr3),
849 FIELD(GUEST_CR4, guest_cr4),
850 FIELD(GUEST_ES_BASE, guest_es_base),
851 FIELD(GUEST_CS_BASE, guest_cs_base),
852 FIELD(GUEST_SS_BASE, guest_ss_base),
853 FIELD(GUEST_DS_BASE, guest_ds_base),
854 FIELD(GUEST_FS_BASE, guest_fs_base),
855 FIELD(GUEST_GS_BASE, guest_gs_base),
856 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857 FIELD(GUEST_TR_BASE, guest_tr_base),
858 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860 FIELD(GUEST_DR7, guest_dr7),
861 FIELD(GUEST_RSP, guest_rsp),
862 FIELD(GUEST_RIP, guest_rip),
863 FIELD(GUEST_RFLAGS, guest_rflags),
864 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867 FIELD(HOST_CR0, host_cr0),
868 FIELD(HOST_CR3, host_cr3),
869 FIELD(HOST_CR4, host_cr4),
870 FIELD(HOST_FS_BASE, host_fs_base),
871 FIELD(HOST_GS_BASE, host_gs_base),
872 FIELD(HOST_TR_BASE, host_tr_base),
873 FIELD(HOST_GDTR_BASE, host_gdtr_base),
874 FIELD(HOST_IDTR_BASE, host_idtr_base),
875 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877 FIELD(HOST_RSP, host_rsp),
878 FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886 vmcs_field_to_offset_table[field] == 0)
887 return -ENOENT;
888
889 return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894 return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900 if (is_error_page(page))
901 return NULL;
902
903 return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908 kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913 kvm_release_page_clean(page);
914 }
915
916 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
917 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
918 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938
939 /*
940 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
941 * can find which vCPU should be waken up.
942 */
943 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
944 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
945
946 enum {
947 VMX_IO_BITMAP_A,
948 VMX_IO_BITMAP_B,
949 VMX_MSR_BITMAP_LEGACY,
950 VMX_MSR_BITMAP_LONGMODE,
951 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
952 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
953 VMX_MSR_BITMAP_LEGACY_X2APIC,
954 VMX_MSR_BITMAP_LONGMODE_X2APIC,
955 VMX_VMREAD_BITMAP,
956 VMX_VMWRITE_BITMAP,
957 VMX_BITMAP_NR
958 };
959
960 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
961
962 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
963 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
964 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
965 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
966 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
967 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
968 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
969 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
970 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
971 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
972
973 static bool cpu_has_load_ia32_efer;
974 static bool cpu_has_load_perf_global_ctrl;
975
976 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
977 static DEFINE_SPINLOCK(vmx_vpid_lock);
978
979 static struct vmcs_config {
980 int size;
981 int order;
982 u32 basic_cap;
983 u32 revision_id;
984 u32 pin_based_exec_ctrl;
985 u32 cpu_based_exec_ctrl;
986 u32 cpu_based_2nd_exec_ctrl;
987 u32 vmexit_ctrl;
988 u32 vmentry_ctrl;
989 } vmcs_config;
990
991 static struct vmx_capability {
992 u32 ept;
993 u32 vpid;
994 } vmx_capability;
995
996 #define VMX_SEGMENT_FIELD(seg) \
997 [VCPU_SREG_##seg] = { \
998 .selector = GUEST_##seg##_SELECTOR, \
999 .base = GUEST_##seg##_BASE, \
1000 .limit = GUEST_##seg##_LIMIT, \
1001 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1002 }
1003
1004 static const struct kvm_vmx_segment_field {
1005 unsigned selector;
1006 unsigned base;
1007 unsigned limit;
1008 unsigned ar_bytes;
1009 } kvm_vmx_segment_fields[] = {
1010 VMX_SEGMENT_FIELD(CS),
1011 VMX_SEGMENT_FIELD(DS),
1012 VMX_SEGMENT_FIELD(ES),
1013 VMX_SEGMENT_FIELD(FS),
1014 VMX_SEGMENT_FIELD(GS),
1015 VMX_SEGMENT_FIELD(SS),
1016 VMX_SEGMENT_FIELD(TR),
1017 VMX_SEGMENT_FIELD(LDTR),
1018 };
1019
1020 static u64 host_efer;
1021
1022 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1023
1024 /*
1025 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1026 * away by decrementing the array size.
1027 */
1028 static const u32 vmx_msr_index[] = {
1029 #ifdef CONFIG_X86_64
1030 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1031 #endif
1032 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1033 };
1034
1035 static inline bool is_exception_n(u32 intr_info, u8 vector)
1036 {
1037 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038 INTR_INFO_VALID_MASK)) ==
1039 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool is_debug(u32 intr_info)
1043 {
1044 return is_exception_n(intr_info, DB_VECTOR);
1045 }
1046
1047 static inline bool is_breakpoint(u32 intr_info)
1048 {
1049 return is_exception_n(intr_info, BP_VECTOR);
1050 }
1051
1052 static inline bool is_page_fault(u32 intr_info)
1053 {
1054 return is_exception_n(intr_info, PF_VECTOR);
1055 }
1056
1057 static inline bool is_no_device(u32 intr_info)
1058 {
1059 return is_exception_n(intr_info, NM_VECTOR);
1060 }
1061
1062 static inline bool is_invalid_opcode(u32 intr_info)
1063 {
1064 return is_exception_n(intr_info, UD_VECTOR);
1065 }
1066
1067 static inline bool is_external_interrupt(u32 intr_info)
1068 {
1069 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1070 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1071 }
1072
1073 static inline bool is_machine_check(u32 intr_info)
1074 {
1075 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1076 INTR_INFO_VALID_MASK)) ==
1077 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 {
1082 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1083 }
1084
1085 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 {
1087 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1088 }
1089
1090 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1091 {
1092 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1093 }
1094
1095 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 {
1097 return vmcs_config.cpu_based_exec_ctrl &
1098 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1099 }
1100
1101 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 {
1103 return vmcs_config.cpu_based_2nd_exec_ctrl &
1104 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1105 }
1106
1107 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 {
1109 return vmcs_config.cpu_based_2nd_exec_ctrl &
1110 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1111 }
1112
1113 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 {
1115 return vmcs_config.cpu_based_2nd_exec_ctrl &
1116 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1117 }
1118
1119 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 {
1121 return vmcs_config.cpu_based_2nd_exec_ctrl &
1122 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1123 }
1124
1125 /*
1126 * Comment's format: document - errata name - stepping - processor name.
1127 * Refer from
1128 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129 */
1130 static u32 vmx_preemption_cpu_tfms[] = {
1131 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1132 0x000206E6,
1133 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1134 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1135 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 0x00020652,
1137 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 0x00020655,
1139 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1140 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1141 /*
1142 * 320767.pdf - AAP86 - B1 -
1143 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1144 */
1145 0x000106E5,
1146 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 0x000106A0,
1148 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 0x000106A1,
1150 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 0x000106A4,
1152 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1153 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1154 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1155 0x000106A5,
1156 };
1157
1158 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 {
1160 u32 eax = cpuid_eax(0x00000001), i;
1161
1162 /* Clear the reserved bits */
1163 eax &= ~(0x3U << 14 | 0xfU << 28);
1164 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1165 if (eax == vmx_preemption_cpu_tfms[i])
1166 return true;
1167
1168 return false;
1169 }
1170
1171 static inline bool cpu_has_vmx_preemption_timer(void)
1172 {
1173 return vmcs_config.pin_based_exec_ctrl &
1174 PIN_BASED_VMX_PREEMPTION_TIMER;
1175 }
1176
1177 static inline bool cpu_has_vmx_posted_intr(void)
1178 {
1179 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1180 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1181 }
1182
1183 static inline bool cpu_has_vmx_apicv(void)
1184 {
1185 return cpu_has_vmx_apic_register_virt() &&
1186 cpu_has_vmx_virtual_intr_delivery() &&
1187 cpu_has_vmx_posted_intr();
1188 }
1189
1190 static inline bool cpu_has_vmx_flexpriority(void)
1191 {
1192 return cpu_has_vmx_tpr_shadow() &&
1193 cpu_has_vmx_virtualize_apic_accesses();
1194 }
1195
1196 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 {
1198 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1199 }
1200
1201 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 {
1203 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1204 }
1205
1206 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 {
1208 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1209 }
1210
1211 static inline bool cpu_has_vmx_ept_4levels(void)
1212 {
1213 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1214 }
1215
1216 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 {
1218 return vmx_capability.ept & VMX_EPT_AD_BIT;
1219 }
1220
1221 static inline bool cpu_has_vmx_invept_context(void)
1222 {
1223 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1224 }
1225
1226 static inline bool cpu_has_vmx_invept_global(void)
1227 {
1228 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1229 }
1230
1231 static inline bool cpu_has_vmx_invvpid_single(void)
1232 {
1233 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1234 }
1235
1236 static inline bool cpu_has_vmx_invvpid_global(void)
1237 {
1238 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1239 }
1240
1241 static inline bool cpu_has_vmx_invvpid(void)
1242 {
1243 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1244 }
1245
1246 static inline bool cpu_has_vmx_ept(void)
1247 {
1248 return vmcs_config.cpu_based_2nd_exec_ctrl &
1249 SECONDARY_EXEC_ENABLE_EPT;
1250 }
1251
1252 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 {
1254 return vmcs_config.cpu_based_2nd_exec_ctrl &
1255 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1256 }
1257
1258 static inline bool cpu_has_vmx_ple(void)
1259 {
1260 return vmcs_config.cpu_based_2nd_exec_ctrl &
1261 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1262 }
1263
1264 static inline bool cpu_has_vmx_basic_inout(void)
1265 {
1266 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1267 }
1268
1269 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1270 {
1271 return flexpriority_enabled && lapic_in_kernel(vcpu);
1272 }
1273
1274 static inline bool cpu_has_vmx_vpid(void)
1275 {
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_ENABLE_VPID;
1278 }
1279
1280 static inline bool cpu_has_vmx_rdtscp(void)
1281 {
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_RDTSCP;
1284 }
1285
1286 static inline bool cpu_has_vmx_invpcid(void)
1287 {
1288 return vmcs_config.cpu_based_2nd_exec_ctrl &
1289 SECONDARY_EXEC_ENABLE_INVPCID;
1290 }
1291
1292 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 {
1294 return vmcs_config.cpu_based_2nd_exec_ctrl &
1295 SECONDARY_EXEC_WBINVD_EXITING;
1296 }
1297
1298 static inline bool cpu_has_vmx_shadow_vmcs(void)
1299 {
1300 u64 vmx_msr;
1301 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1302 /* check if the cpu supports writing r/o exit information fields */
1303 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1304 return false;
1305
1306 return vmcs_config.cpu_based_2nd_exec_ctrl &
1307 SECONDARY_EXEC_SHADOW_VMCS;
1308 }
1309
1310 static inline bool cpu_has_vmx_pml(void)
1311 {
1312 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1313 }
1314
1315 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 {
1317 return vmcs_config.cpu_based_2nd_exec_ctrl &
1318 SECONDARY_EXEC_TSC_SCALING;
1319 }
1320
1321 static inline bool report_flexpriority(void)
1322 {
1323 return flexpriority_enabled;
1324 }
1325
1326 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327 {
1328 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329 }
1330
1331 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332 {
1333 return vmcs12->cpu_based_vm_exec_control & bit;
1334 }
1335
1336 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337 {
1338 return (vmcs12->cpu_based_vm_exec_control &
1339 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340 (vmcs12->secondary_vm_exec_control & bit);
1341 }
1342
1343 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1344 {
1345 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346 }
1347
1348 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349 {
1350 return vmcs12->pin_based_vm_exec_control &
1351 PIN_BASED_VMX_PREEMPTION_TIMER;
1352 }
1353
1354 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355 {
1356 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357 }
1358
1359 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360 {
1361 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1362 vmx_xsaves_supported();
1363 }
1364
1365 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1366 {
1367 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1368 }
1369
1370 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1371 {
1372 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1373 }
1374
1375 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1376 {
1377 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1378 }
1379
1380 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1381 {
1382 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1383 }
1384
1385 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1386 {
1387 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1388 }
1389
1390 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1391 {
1392 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1393 }
1394
1395 static inline bool is_nmi(u32 intr_info)
1396 {
1397 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1398 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1399 }
1400
1401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1402 u32 exit_intr_info,
1403 unsigned long exit_qualification);
1404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1405 struct vmcs12 *vmcs12,
1406 u32 reason, unsigned long qualification);
1407
1408 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1409 {
1410 int i;
1411
1412 for (i = 0; i < vmx->nmsrs; ++i)
1413 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1414 return i;
1415 return -1;
1416 }
1417
1418 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1419 {
1420 struct {
1421 u64 vpid : 16;
1422 u64 rsvd : 48;
1423 u64 gva;
1424 } operand = { vpid, 0, gva };
1425
1426 asm volatile (__ex(ASM_VMX_INVVPID)
1427 /* CF==1 or ZF==1 --> rc = -1 */
1428 "; ja 1f ; ud2 ; 1:"
1429 : : "a"(&operand), "c"(ext) : "cc", "memory");
1430 }
1431
1432 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1433 {
1434 struct {
1435 u64 eptp, gpa;
1436 } operand = {eptp, gpa};
1437
1438 asm volatile (__ex(ASM_VMX_INVEPT)
1439 /* CF==1 or ZF==1 --> rc = -1 */
1440 "; ja 1f ; ud2 ; 1:\n"
1441 : : "a" (&operand), "c" (ext) : "cc", "memory");
1442 }
1443
1444 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1445 {
1446 int i;
1447
1448 i = __find_msr_index(vmx, msr);
1449 if (i >= 0)
1450 return &vmx->guest_msrs[i];
1451 return NULL;
1452 }
1453
1454 static void vmcs_clear(struct vmcs *vmcs)
1455 {
1456 u64 phys_addr = __pa(vmcs);
1457 u8 error;
1458
1459 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1460 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461 : "cc", "memory");
1462 if (error)
1463 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1464 vmcs, phys_addr);
1465 }
1466
1467 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1468 {
1469 vmcs_clear(loaded_vmcs->vmcs);
1470 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1471 vmcs_clear(loaded_vmcs->shadow_vmcs);
1472 loaded_vmcs->cpu = -1;
1473 loaded_vmcs->launched = 0;
1474 }
1475
1476 static void vmcs_load(struct vmcs *vmcs)
1477 {
1478 u64 phys_addr = __pa(vmcs);
1479 u8 error;
1480
1481 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1482 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1483 : "cc", "memory");
1484 if (error)
1485 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1486 vmcs, phys_addr);
1487 }
1488
1489 #ifdef CONFIG_KEXEC_CORE
1490 /*
1491 * This bitmap is used to indicate whether the vmclear
1492 * operation is enabled on all cpus. All disabled by
1493 * default.
1494 */
1495 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1496
1497 static inline void crash_enable_local_vmclear(int cpu)
1498 {
1499 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1500 }
1501
1502 static inline void crash_disable_local_vmclear(int cpu)
1503 {
1504 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505 }
1506
1507 static inline int crash_local_vmclear_enabled(int cpu)
1508 {
1509 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510 }
1511
1512 static void crash_vmclear_local_loaded_vmcss(void)
1513 {
1514 int cpu = raw_smp_processor_id();
1515 struct loaded_vmcs *v;
1516
1517 if (!crash_local_vmclear_enabled(cpu))
1518 return;
1519
1520 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1521 loaded_vmcss_on_cpu_link)
1522 vmcs_clear(v->vmcs);
1523 }
1524 #else
1525 static inline void crash_enable_local_vmclear(int cpu) { }
1526 static inline void crash_disable_local_vmclear(int cpu) { }
1527 #endif /* CONFIG_KEXEC_CORE */
1528
1529 static void __loaded_vmcs_clear(void *arg)
1530 {
1531 struct loaded_vmcs *loaded_vmcs = arg;
1532 int cpu = raw_smp_processor_id();
1533
1534 if (loaded_vmcs->cpu != cpu)
1535 return; /* vcpu migration can race with cpu offline */
1536 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1537 per_cpu(current_vmcs, cpu) = NULL;
1538 crash_disable_local_vmclear(cpu);
1539 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1540
1541 /*
1542 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1543 * is before setting loaded_vmcs->vcpu to -1 which is done in
1544 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1545 * then adds the vmcs into percpu list before it is deleted.
1546 */
1547 smp_wmb();
1548
1549 loaded_vmcs_init(loaded_vmcs);
1550 crash_enable_local_vmclear(cpu);
1551 }
1552
1553 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1554 {
1555 int cpu = loaded_vmcs->cpu;
1556
1557 if (cpu != -1)
1558 smp_call_function_single(cpu,
1559 __loaded_vmcs_clear, loaded_vmcs, 1);
1560 }
1561
1562 static inline void vpid_sync_vcpu_single(int vpid)
1563 {
1564 if (vpid == 0)
1565 return;
1566
1567 if (cpu_has_vmx_invvpid_single())
1568 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1569 }
1570
1571 static inline void vpid_sync_vcpu_global(void)
1572 {
1573 if (cpu_has_vmx_invvpid_global())
1574 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1575 }
1576
1577 static inline void vpid_sync_context(int vpid)
1578 {
1579 if (cpu_has_vmx_invvpid_single())
1580 vpid_sync_vcpu_single(vpid);
1581 else
1582 vpid_sync_vcpu_global();
1583 }
1584
1585 static inline void ept_sync_global(void)
1586 {
1587 if (cpu_has_vmx_invept_global())
1588 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1589 }
1590
1591 static inline void ept_sync_context(u64 eptp)
1592 {
1593 if (enable_ept) {
1594 if (cpu_has_vmx_invept_context())
1595 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1596 else
1597 ept_sync_global();
1598 }
1599 }
1600
1601 static __always_inline void vmcs_check16(unsigned long field)
1602 {
1603 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1604 "16-bit accessor invalid for 64-bit field");
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1606 "16-bit accessor invalid for 64-bit high field");
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1608 "16-bit accessor invalid for 32-bit high field");
1609 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1610 "16-bit accessor invalid for natural width field");
1611 }
1612
1613 static __always_inline void vmcs_check32(unsigned long field)
1614 {
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1616 "32-bit accessor invalid for 16-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618 "32-bit accessor invalid for natural width field");
1619 }
1620
1621 static __always_inline void vmcs_check64(unsigned long field)
1622 {
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624 "64-bit accessor invalid for 16-bit field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1626 "64-bit accessor invalid for 64-bit high field");
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1628 "64-bit accessor invalid for 32-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630 "64-bit accessor invalid for natural width field");
1631 }
1632
1633 static __always_inline void vmcs_checkl(unsigned long field)
1634 {
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636 "Natural width accessor invalid for 16-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1638 "Natural width accessor invalid for 64-bit field");
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640 "Natural width accessor invalid for 64-bit high field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642 "Natural width accessor invalid for 32-bit field");
1643 }
1644
1645 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1646 {
1647 unsigned long value;
1648
1649 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1650 : "=a"(value) : "d"(field) : "cc");
1651 return value;
1652 }
1653
1654 static __always_inline u16 vmcs_read16(unsigned long field)
1655 {
1656 vmcs_check16(field);
1657 return __vmcs_readl(field);
1658 }
1659
1660 static __always_inline u32 vmcs_read32(unsigned long field)
1661 {
1662 vmcs_check32(field);
1663 return __vmcs_readl(field);
1664 }
1665
1666 static __always_inline u64 vmcs_read64(unsigned long field)
1667 {
1668 vmcs_check64(field);
1669 #ifdef CONFIG_X86_64
1670 return __vmcs_readl(field);
1671 #else
1672 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1673 #endif
1674 }
1675
1676 static __always_inline unsigned long vmcs_readl(unsigned long field)
1677 {
1678 vmcs_checkl(field);
1679 return __vmcs_readl(field);
1680 }
1681
1682 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1683 {
1684 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1685 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1686 dump_stack();
1687 }
1688
1689 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1690 {
1691 u8 error;
1692
1693 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1694 : "=q"(error) : "a"(value), "d"(field) : "cc");
1695 if (unlikely(error))
1696 vmwrite_error(field, value);
1697 }
1698
1699 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1700 {
1701 vmcs_check16(field);
1702 __vmcs_writel(field, value);
1703 }
1704
1705 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1706 {
1707 vmcs_check32(field);
1708 __vmcs_writel(field, value);
1709 }
1710
1711 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1712 {
1713 vmcs_check64(field);
1714 __vmcs_writel(field, value);
1715 #ifndef CONFIG_X86_64
1716 asm volatile ("");
1717 __vmcs_writel(field+1, value >> 32);
1718 #endif
1719 }
1720
1721 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723 vmcs_checkl(field);
1724 __vmcs_writel(field, value);
1725 }
1726
1727 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1728 {
1729 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1730 "vmcs_clear_bits does not support 64-bit fields");
1731 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1732 }
1733
1734 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1735 {
1736 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1737 "vmcs_set_bits does not support 64-bit fields");
1738 __vmcs_writel(field, __vmcs_readl(field) | mask);
1739 }
1740
1741 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1742 {
1743 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1744 }
1745
1746 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1747 {
1748 vmcs_write32(VM_ENTRY_CONTROLS, val);
1749 vmx->vm_entry_controls_shadow = val;
1750 }
1751
1752 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1753 {
1754 if (vmx->vm_entry_controls_shadow != val)
1755 vm_entry_controls_init(vmx, val);
1756 }
1757
1758 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1759 {
1760 return vmx->vm_entry_controls_shadow;
1761 }
1762
1763
1764 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1765 {
1766 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1767 }
1768
1769 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1770 {
1771 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1772 }
1773
1774 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1775 {
1776 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1777 }
1778
1779 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1780 {
1781 vmcs_write32(VM_EXIT_CONTROLS, val);
1782 vmx->vm_exit_controls_shadow = val;
1783 }
1784
1785 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1786 {
1787 if (vmx->vm_exit_controls_shadow != val)
1788 vm_exit_controls_init(vmx, val);
1789 }
1790
1791 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1792 {
1793 return vmx->vm_exit_controls_shadow;
1794 }
1795
1796
1797 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798 {
1799 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1800 }
1801
1802 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803 {
1804 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1805 }
1806
1807 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1808 {
1809 vmx->segment_cache.bitmask = 0;
1810 }
1811
1812 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1813 unsigned field)
1814 {
1815 bool ret;
1816 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1817
1818 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1819 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1820 vmx->segment_cache.bitmask = 0;
1821 }
1822 ret = vmx->segment_cache.bitmask & mask;
1823 vmx->segment_cache.bitmask |= mask;
1824 return ret;
1825 }
1826
1827 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829 u16 *p = &vmx->segment_cache.seg[seg].selector;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1832 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1833 return *p;
1834 }
1835
1836 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838 ulong *p = &vmx->segment_cache.seg[seg].base;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1841 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1842 return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847 u32 *p = &vmx->segment_cache.seg[seg].limit;
1848
1849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1850 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1851 return *p;
1852 }
1853
1854 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1855 {
1856 u32 *p = &vmx->segment_cache.seg[seg].ar;
1857
1858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1859 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1860 return *p;
1861 }
1862
1863 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1864 {
1865 u32 eb;
1866
1867 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1868 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1869 if ((vcpu->guest_debug &
1870 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1871 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1872 eb |= 1u << BP_VECTOR;
1873 if (to_vmx(vcpu)->rmode.vm86_active)
1874 eb = ~0;
1875 if (enable_ept)
1876 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1877
1878 /* When we are running a nested L2 guest and L1 specified for it a
1879 * certain exception bitmap, we must trap the same exceptions and pass
1880 * them to L1. When running L2, we will only handle the exceptions
1881 * specified above if L1 did not want them.
1882 */
1883 if (is_guest_mode(vcpu))
1884 eb |= get_vmcs12(vcpu)->exception_bitmap;
1885
1886 vmcs_write32(EXCEPTION_BITMAP, eb);
1887 }
1888
1889 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1890 unsigned long entry, unsigned long exit)
1891 {
1892 vm_entry_controls_clearbit(vmx, entry);
1893 vm_exit_controls_clearbit(vmx, exit);
1894 }
1895
1896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1897 {
1898 unsigned i;
1899 struct msr_autoload *m = &vmx->msr_autoload;
1900
1901 switch (msr) {
1902 case MSR_EFER:
1903 if (cpu_has_load_ia32_efer) {
1904 clear_atomic_switch_msr_special(vmx,
1905 VM_ENTRY_LOAD_IA32_EFER,
1906 VM_EXIT_LOAD_IA32_EFER);
1907 return;
1908 }
1909 break;
1910 case MSR_CORE_PERF_GLOBAL_CTRL:
1911 if (cpu_has_load_perf_global_ctrl) {
1912 clear_atomic_switch_msr_special(vmx,
1913 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1914 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1915 return;
1916 }
1917 break;
1918 }
1919
1920 for (i = 0; i < m->nr; ++i)
1921 if (m->guest[i].index == msr)
1922 break;
1923
1924 if (i == m->nr)
1925 return;
1926 --m->nr;
1927 m->guest[i] = m->guest[m->nr];
1928 m->host[i] = m->host[m->nr];
1929 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1930 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1931 }
1932
1933 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1934 unsigned long entry, unsigned long exit,
1935 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1936 u64 guest_val, u64 host_val)
1937 {
1938 vmcs_write64(guest_val_vmcs, guest_val);
1939 vmcs_write64(host_val_vmcs, host_val);
1940 vm_entry_controls_setbit(vmx, entry);
1941 vm_exit_controls_setbit(vmx, exit);
1942 }
1943
1944 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1945 u64 guest_val, u64 host_val)
1946 {
1947 unsigned i;
1948 struct msr_autoload *m = &vmx->msr_autoload;
1949
1950 switch (msr) {
1951 case MSR_EFER:
1952 if (cpu_has_load_ia32_efer) {
1953 add_atomic_switch_msr_special(vmx,
1954 VM_ENTRY_LOAD_IA32_EFER,
1955 VM_EXIT_LOAD_IA32_EFER,
1956 GUEST_IA32_EFER,
1957 HOST_IA32_EFER,
1958 guest_val, host_val);
1959 return;
1960 }
1961 break;
1962 case MSR_CORE_PERF_GLOBAL_CTRL:
1963 if (cpu_has_load_perf_global_ctrl) {
1964 add_atomic_switch_msr_special(vmx,
1965 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1966 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1967 GUEST_IA32_PERF_GLOBAL_CTRL,
1968 HOST_IA32_PERF_GLOBAL_CTRL,
1969 guest_val, host_val);
1970 return;
1971 }
1972 break;
1973 case MSR_IA32_PEBS_ENABLE:
1974 /* PEBS needs a quiescent period after being disabled (to write
1975 * a record). Disabling PEBS through VMX MSR swapping doesn't
1976 * provide that period, so a CPU could write host's record into
1977 * guest's memory.
1978 */
1979 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1980 }
1981
1982 for (i = 0; i < m->nr; ++i)
1983 if (m->guest[i].index == msr)
1984 break;
1985
1986 if (i == NR_AUTOLOAD_MSRS) {
1987 printk_once(KERN_WARNING "Not enough msr switch entries. "
1988 "Can't add msr %x\n", msr);
1989 return;
1990 } else if (i == m->nr) {
1991 ++m->nr;
1992 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1993 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1994 }
1995
1996 m->guest[i].index = msr;
1997 m->guest[i].value = guest_val;
1998 m->host[i].index = msr;
1999 m->host[i].value = host_val;
2000 }
2001
2002 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2003 {
2004 u64 guest_efer = vmx->vcpu.arch.efer;
2005 u64 ignore_bits = 0;
2006
2007 if (!enable_ept) {
2008 /*
2009 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2010 * host CPUID is more efficient than testing guest CPUID
2011 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2012 */
2013 if (boot_cpu_has(X86_FEATURE_SMEP))
2014 guest_efer |= EFER_NX;
2015 else if (!(guest_efer & EFER_NX))
2016 ignore_bits |= EFER_NX;
2017 }
2018
2019 /*
2020 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021 */
2022 ignore_bits |= EFER_SCE;
2023 #ifdef CONFIG_X86_64
2024 ignore_bits |= EFER_LMA | EFER_LME;
2025 /* SCE is meaningful only in long mode on Intel */
2026 if (guest_efer & EFER_LMA)
2027 ignore_bits &= ~(u64)EFER_SCE;
2028 #endif
2029
2030 clear_atomic_switch_msr(vmx, MSR_EFER);
2031
2032 /*
2033 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2034 * On CPUs that support "load IA32_EFER", always switch EFER
2035 * atomically, since it's faster than switching it manually.
2036 */
2037 if (cpu_has_load_ia32_efer ||
2038 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2039 if (!(guest_efer & EFER_LMA))
2040 guest_efer &= ~EFER_LME;
2041 if (guest_efer != host_efer)
2042 add_atomic_switch_msr(vmx, MSR_EFER,
2043 guest_efer, host_efer);
2044 return false;
2045 } else {
2046 guest_efer &= ~ignore_bits;
2047 guest_efer |= host_efer & ignore_bits;
2048
2049 vmx->guest_msrs[efer_offset].data = guest_efer;
2050 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2051
2052 return true;
2053 }
2054 }
2055
2056 #ifdef CONFIG_X86_32
2057 /*
2058 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2059 * VMCS rather than the segment table. KVM uses this helper to figure
2060 * out the current bases to poke them into the VMCS before entry.
2061 */
2062 static unsigned long segment_base(u16 selector)
2063 {
2064 struct desc_struct *table;
2065 unsigned long v;
2066
2067 if (!(selector & ~SEGMENT_RPL_MASK))
2068 return 0;
2069
2070 table = get_current_gdt_ro();
2071
2072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2073 u16 ldt_selector = kvm_read_ldt();
2074
2075 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2076 return 0;
2077
2078 table = (struct desc_struct *)segment_base(ldt_selector);
2079 }
2080 v = get_desc_base(&table[selector >> 3]);
2081 return v;
2082 }
2083 #endif
2084
2085 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2086 {
2087 struct vcpu_vmx *vmx = to_vmx(vcpu);
2088 int i;
2089
2090 if (vmx->host_state.loaded)
2091 return;
2092
2093 vmx->host_state.loaded = 1;
2094 /*
2095 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2096 * allow segment selectors with cpl > 0 or ti == 1.
2097 */
2098 vmx->host_state.ldt_sel = kvm_read_ldt();
2099 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2100 savesegment(fs, vmx->host_state.fs_sel);
2101 if (!(vmx->host_state.fs_sel & 7)) {
2102 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2103 vmx->host_state.fs_reload_needed = 0;
2104 } else {
2105 vmcs_write16(HOST_FS_SELECTOR, 0);
2106 vmx->host_state.fs_reload_needed = 1;
2107 }
2108 savesegment(gs, vmx->host_state.gs_sel);
2109 if (!(vmx->host_state.gs_sel & 7))
2110 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2111 else {
2112 vmcs_write16(HOST_GS_SELECTOR, 0);
2113 vmx->host_state.gs_ldt_reload_needed = 1;
2114 }
2115
2116 #ifdef CONFIG_X86_64
2117 savesegment(ds, vmx->host_state.ds_sel);
2118 savesegment(es, vmx->host_state.es_sel);
2119 #endif
2120
2121 #ifdef CONFIG_X86_64
2122 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2123 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2124 #else
2125 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2126 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2127 #endif
2128
2129 #ifdef CONFIG_X86_64
2130 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2131 if (is_long_mode(&vmx->vcpu))
2132 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2133 #endif
2134 if (boot_cpu_has(X86_FEATURE_MPX))
2135 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2136 for (i = 0; i < vmx->save_nmsrs; ++i)
2137 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2138 vmx->guest_msrs[i].data,
2139 vmx->guest_msrs[i].mask);
2140 }
2141
2142 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2143 {
2144 if (!vmx->host_state.loaded)
2145 return;
2146
2147 ++vmx->vcpu.stat.host_state_reload;
2148 vmx->host_state.loaded = 0;
2149 #ifdef CONFIG_X86_64
2150 if (is_long_mode(&vmx->vcpu))
2151 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2152 #endif
2153 if (vmx->host_state.gs_ldt_reload_needed) {
2154 kvm_load_ldt(vmx->host_state.ldt_sel);
2155 #ifdef CONFIG_X86_64
2156 load_gs_index(vmx->host_state.gs_sel);
2157 #else
2158 loadsegment(gs, vmx->host_state.gs_sel);
2159 #endif
2160 }
2161 if (vmx->host_state.fs_reload_needed)
2162 loadsegment(fs, vmx->host_state.fs_sel);
2163 #ifdef CONFIG_X86_64
2164 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2165 loadsegment(ds, vmx->host_state.ds_sel);
2166 loadsegment(es, vmx->host_state.es_sel);
2167 }
2168 #endif
2169 invalidate_tss_limit();
2170 #ifdef CONFIG_X86_64
2171 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2172 #endif
2173 if (vmx->host_state.msr_host_bndcfgs)
2174 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2175 load_fixmap_gdt(raw_smp_processor_id());
2176 }
2177
2178 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2179 {
2180 preempt_disable();
2181 __vmx_load_host_state(vmx);
2182 preempt_enable();
2183 }
2184
2185 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2188 struct pi_desc old, new;
2189 unsigned int dest;
2190
2191 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2192 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2193 !kvm_vcpu_apicv_active(vcpu))
2194 return;
2195
2196 do {
2197 old.control = new.control = pi_desc->control;
2198
2199 /*
2200 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2201 * are two possible cases:
2202 * 1. After running 'pre_block', context switch
2203 * happened. For this case, 'sn' was set in
2204 * vmx_vcpu_put(), so we need to clear it here.
2205 * 2. After running 'pre_block', we were blocked,
2206 * and woken up by some other guy. For this case,
2207 * we don't need to do anything, 'pi_post_block'
2208 * will do everything for us. However, we cannot
2209 * check whether it is case #1 or case #2 here
2210 * (maybe, not needed), so we also clear sn here,
2211 * I think it is not a big deal.
2212 */
2213 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2214 if (vcpu->cpu != cpu) {
2215 dest = cpu_physical_id(cpu);
2216
2217 if (x2apic_enabled())
2218 new.ndst = dest;
2219 else
2220 new.ndst = (dest << 8) & 0xFF00;
2221 }
2222
2223 /* set 'NV' to 'notification vector' */
2224 new.nv = POSTED_INTR_VECTOR;
2225 }
2226
2227 /* Allow posting non-urgent interrupts */
2228 new.sn = 0;
2229 } while (cmpxchg(&pi_desc->control, old.control,
2230 new.control) != old.control);
2231 }
2232
2233 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2234 {
2235 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2236 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2237 }
2238
2239 /*
2240 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2241 * vcpu mutex is already taken.
2242 */
2243 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245 struct vcpu_vmx *vmx = to_vmx(vcpu);
2246 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2247
2248 if (!already_loaded) {
2249 loaded_vmcs_clear(vmx->loaded_vmcs);
2250 local_irq_disable();
2251 crash_disable_local_vmclear(cpu);
2252
2253 /*
2254 * Read loaded_vmcs->cpu should be before fetching
2255 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2256 * See the comments in __loaded_vmcs_clear().
2257 */
2258 smp_rmb();
2259
2260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2261 &per_cpu(loaded_vmcss_on_cpu, cpu));
2262 crash_enable_local_vmclear(cpu);
2263 local_irq_enable();
2264 }
2265
2266 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2268 vmcs_load(vmx->loaded_vmcs->vmcs);
2269 }
2270
2271 if (!already_loaded) {
2272 void *gdt = get_current_gdt_ro();
2273 unsigned long sysenter_esp;
2274
2275 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2276
2277 /*
2278 * Linux uses per-cpu TSS and GDT, so set these when switching
2279 * processors. See 22.2.4.
2280 */
2281 vmcs_writel(HOST_TR_BASE,
2282 (unsigned long)this_cpu_ptr(&cpu_tss));
2283 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2284
2285 /*
2286 * VM exits change the host TR limit to 0x67 after a VM
2287 * exit. This is okay, since 0x67 covers everything except
2288 * the IO bitmap and have have code to handle the IO bitmap
2289 * being lost after a VM exit.
2290 */
2291 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2292
2293 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2294 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2295
2296 vmx->loaded_vmcs->cpu = cpu;
2297 }
2298
2299 /* Setup TSC multiplier */
2300 if (kvm_has_tsc_control &&
2301 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2302 decache_tsc_multiplier(vmx);
2303
2304 vmx_vcpu_pi_load(vcpu, cpu);
2305 vmx->host_pkru = read_pkru();
2306 }
2307
2308 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2309 {
2310 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2311
2312 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2313 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2314 !kvm_vcpu_apicv_active(vcpu))
2315 return;
2316
2317 /* Set SN when the vCPU is preempted */
2318 if (vcpu->preempted)
2319 pi_set_sn(pi_desc);
2320 }
2321
2322 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2323 {
2324 vmx_vcpu_pi_put(vcpu);
2325
2326 __vmx_load_host_state(to_vmx(vcpu));
2327 }
2328
2329 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2330
2331 /*
2332 * Return the cr0 value that a nested guest would read. This is a combination
2333 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2334 * its hypervisor (cr0_read_shadow).
2335 */
2336 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2337 {
2338 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2339 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2340 }
2341 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2342 {
2343 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2344 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2345 }
2346
2347 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2348 {
2349 unsigned long rflags, save_rflags;
2350
2351 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2352 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2353 rflags = vmcs_readl(GUEST_RFLAGS);
2354 if (to_vmx(vcpu)->rmode.vm86_active) {
2355 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2356 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2357 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2358 }
2359 to_vmx(vcpu)->rflags = rflags;
2360 }
2361 return to_vmx(vcpu)->rflags;
2362 }
2363
2364 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2365 {
2366 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2367 to_vmx(vcpu)->rflags = rflags;
2368 if (to_vmx(vcpu)->rmode.vm86_active) {
2369 to_vmx(vcpu)->rmode.save_rflags = rflags;
2370 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2371 }
2372 vmcs_writel(GUEST_RFLAGS, rflags);
2373 }
2374
2375 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2376 {
2377 return to_vmx(vcpu)->guest_pkru;
2378 }
2379
2380 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2381 {
2382 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2383 int ret = 0;
2384
2385 if (interruptibility & GUEST_INTR_STATE_STI)
2386 ret |= KVM_X86_SHADOW_INT_STI;
2387 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2388 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2389
2390 return ret;
2391 }
2392
2393 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2394 {
2395 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2396 u32 interruptibility = interruptibility_old;
2397
2398 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2399
2400 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2401 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2402 else if (mask & KVM_X86_SHADOW_INT_STI)
2403 interruptibility |= GUEST_INTR_STATE_STI;
2404
2405 if ((interruptibility != interruptibility_old))
2406 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2407 }
2408
2409 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2410 {
2411 unsigned long rip;
2412
2413 rip = kvm_rip_read(vcpu);
2414 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2415 kvm_rip_write(vcpu, rip);
2416
2417 /* skipping an emulated instruction also counts */
2418 vmx_set_interrupt_shadow(vcpu, 0);
2419 }
2420
2421 /*
2422 * KVM wants to inject page-faults which it got to the guest. This function
2423 * checks whether in a nested guest, we need to inject them to L1 or L2.
2424 */
2425 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2426 {
2427 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2428
2429 if (!(vmcs12->exception_bitmap & (1u << nr)))
2430 return 0;
2431
2432 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2433 vmcs_read32(VM_EXIT_INTR_INFO),
2434 vmcs_readl(EXIT_QUALIFICATION));
2435 return 1;
2436 }
2437
2438 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2439 bool has_error_code, u32 error_code,
2440 bool reinject)
2441 {
2442 struct vcpu_vmx *vmx = to_vmx(vcpu);
2443 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2444
2445 if (!reinject && is_guest_mode(vcpu) &&
2446 nested_vmx_check_exception(vcpu, nr))
2447 return;
2448
2449 if (has_error_code) {
2450 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2451 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2452 }
2453
2454 if (vmx->rmode.vm86_active) {
2455 int inc_eip = 0;
2456 if (kvm_exception_is_soft(nr))
2457 inc_eip = vcpu->arch.event_exit_inst_len;
2458 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2459 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2460 return;
2461 }
2462
2463 if (kvm_exception_is_soft(nr)) {
2464 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2465 vmx->vcpu.arch.event_exit_inst_len);
2466 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2467 } else
2468 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2469
2470 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2471 }
2472
2473 static bool vmx_rdtscp_supported(void)
2474 {
2475 return cpu_has_vmx_rdtscp();
2476 }
2477
2478 static bool vmx_invpcid_supported(void)
2479 {
2480 return cpu_has_vmx_invpcid() && enable_ept;
2481 }
2482
2483 /*
2484 * Swap MSR entry in host/guest MSR entry array.
2485 */
2486 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2487 {
2488 struct shared_msr_entry tmp;
2489
2490 tmp = vmx->guest_msrs[to];
2491 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2492 vmx->guest_msrs[from] = tmp;
2493 }
2494
2495 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2496 {
2497 unsigned long *msr_bitmap;
2498
2499 if (is_guest_mode(vcpu))
2500 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2501 else if (cpu_has_secondary_exec_ctrls() &&
2502 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2503 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2504 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2505 if (is_long_mode(vcpu))
2506 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2507 else
2508 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2509 } else {
2510 if (is_long_mode(vcpu))
2511 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2512 else
2513 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2514 }
2515 } else {
2516 if (is_long_mode(vcpu))
2517 msr_bitmap = vmx_msr_bitmap_longmode;
2518 else
2519 msr_bitmap = vmx_msr_bitmap_legacy;
2520 }
2521
2522 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2523 }
2524
2525 /*
2526 * Set up the vmcs to automatically save and restore system
2527 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2528 * mode, as fiddling with msrs is very expensive.
2529 */
2530 static void setup_msrs(struct vcpu_vmx *vmx)
2531 {
2532 int save_nmsrs, index;
2533
2534 save_nmsrs = 0;
2535 #ifdef CONFIG_X86_64
2536 if (is_long_mode(&vmx->vcpu)) {
2537 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2538 if (index >= 0)
2539 move_msr_up(vmx, index, save_nmsrs++);
2540 index = __find_msr_index(vmx, MSR_LSTAR);
2541 if (index >= 0)
2542 move_msr_up(vmx, index, save_nmsrs++);
2543 index = __find_msr_index(vmx, MSR_CSTAR);
2544 if (index >= 0)
2545 move_msr_up(vmx, index, save_nmsrs++);
2546 index = __find_msr_index(vmx, MSR_TSC_AUX);
2547 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2548 move_msr_up(vmx, index, save_nmsrs++);
2549 /*
2550 * MSR_STAR is only needed on long mode guests, and only
2551 * if efer.sce is enabled.
2552 */
2553 index = __find_msr_index(vmx, MSR_STAR);
2554 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2555 move_msr_up(vmx, index, save_nmsrs++);
2556 }
2557 #endif
2558 index = __find_msr_index(vmx, MSR_EFER);
2559 if (index >= 0 && update_transition_efer(vmx, index))
2560 move_msr_up(vmx, index, save_nmsrs++);
2561
2562 vmx->save_nmsrs = save_nmsrs;
2563
2564 if (cpu_has_vmx_msr_bitmap())
2565 vmx_set_msr_bitmap(&vmx->vcpu);
2566 }
2567
2568 /*
2569 * reads and returns guest's timestamp counter "register"
2570 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2571 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2572 */
2573 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2574 {
2575 u64 host_tsc, tsc_offset;
2576
2577 host_tsc = rdtsc();
2578 tsc_offset = vmcs_read64(TSC_OFFSET);
2579 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2580 }
2581
2582 /*
2583 * writes 'offset' into guest's timestamp counter offset register
2584 */
2585 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2586 {
2587 if (is_guest_mode(vcpu)) {
2588 /*
2589 * We're here if L1 chose not to trap WRMSR to TSC. According
2590 * to the spec, this should set L1's TSC; The offset that L1
2591 * set for L2 remains unchanged, and still needs to be added
2592 * to the newly set TSC to get L2's TSC.
2593 */
2594 struct vmcs12 *vmcs12;
2595 /* recalculate vmcs02.TSC_OFFSET: */
2596 vmcs12 = get_vmcs12(vcpu);
2597 vmcs_write64(TSC_OFFSET, offset +
2598 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2599 vmcs12->tsc_offset : 0));
2600 } else {
2601 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2602 vmcs_read64(TSC_OFFSET), offset);
2603 vmcs_write64(TSC_OFFSET, offset);
2604 }
2605 }
2606
2607 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2608 {
2609 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2610 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2611 }
2612
2613 /*
2614 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2615 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2616 * all guests if the "nested" module option is off, and can also be disabled
2617 * for a single guest by disabling its VMX cpuid bit.
2618 */
2619 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2620 {
2621 return nested && guest_cpuid_has_vmx(vcpu);
2622 }
2623
2624 /*
2625 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2626 * returned for the various VMX controls MSRs when nested VMX is enabled.
2627 * The same values should also be used to verify that vmcs12 control fields are
2628 * valid during nested entry from L1 to L2.
2629 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2630 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2631 * bit in the high half is on if the corresponding bit in the control field
2632 * may be on. See also vmx_control_verify().
2633 */
2634 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2635 {
2636 /*
2637 * Note that as a general rule, the high half of the MSRs (bits in
2638 * the control fields which may be 1) should be initialized by the
2639 * intersection of the underlying hardware's MSR (i.e., features which
2640 * can be supported) and the list of features we want to expose -
2641 * because they are known to be properly supported in our code.
2642 * Also, usually, the low half of the MSRs (bits which must be 1) can
2643 * be set to 0, meaning that L1 may turn off any of these bits. The
2644 * reason is that if one of these bits is necessary, it will appear
2645 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2646 * fields of vmcs01 and vmcs02, will turn these bits off - and
2647 * nested_vmx_exit_handled() will not pass related exits to L1.
2648 * These rules have exceptions below.
2649 */
2650
2651 /* pin-based controls */
2652 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2653 vmx->nested.nested_vmx_pinbased_ctls_low,
2654 vmx->nested.nested_vmx_pinbased_ctls_high);
2655 vmx->nested.nested_vmx_pinbased_ctls_low |=
2656 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2657 vmx->nested.nested_vmx_pinbased_ctls_high &=
2658 PIN_BASED_EXT_INTR_MASK |
2659 PIN_BASED_NMI_EXITING |
2660 PIN_BASED_VIRTUAL_NMIS;
2661 vmx->nested.nested_vmx_pinbased_ctls_high |=
2662 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2663 PIN_BASED_VMX_PREEMPTION_TIMER;
2664 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2665 vmx->nested.nested_vmx_pinbased_ctls_high |=
2666 PIN_BASED_POSTED_INTR;
2667
2668 /* exit controls */
2669 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2670 vmx->nested.nested_vmx_exit_ctls_low,
2671 vmx->nested.nested_vmx_exit_ctls_high);
2672 vmx->nested.nested_vmx_exit_ctls_low =
2673 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2674
2675 vmx->nested.nested_vmx_exit_ctls_high &=
2676 #ifdef CONFIG_X86_64
2677 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2678 #endif
2679 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2680 vmx->nested.nested_vmx_exit_ctls_high |=
2681 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2682 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2683 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2684
2685 if (kvm_mpx_supported())
2686 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2687
2688 /* We support free control of debug control saving. */
2689 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2690
2691 /* entry controls */
2692 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2693 vmx->nested.nested_vmx_entry_ctls_low,
2694 vmx->nested.nested_vmx_entry_ctls_high);
2695 vmx->nested.nested_vmx_entry_ctls_low =
2696 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2697 vmx->nested.nested_vmx_entry_ctls_high &=
2698 #ifdef CONFIG_X86_64
2699 VM_ENTRY_IA32E_MODE |
2700 #endif
2701 VM_ENTRY_LOAD_IA32_PAT;
2702 vmx->nested.nested_vmx_entry_ctls_high |=
2703 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2704 if (kvm_mpx_supported())
2705 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2706
2707 /* We support free control of debug control loading. */
2708 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2709
2710 /* cpu-based controls */
2711 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2712 vmx->nested.nested_vmx_procbased_ctls_low,
2713 vmx->nested.nested_vmx_procbased_ctls_high);
2714 vmx->nested.nested_vmx_procbased_ctls_low =
2715 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2716 vmx->nested.nested_vmx_procbased_ctls_high &=
2717 CPU_BASED_VIRTUAL_INTR_PENDING |
2718 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2719 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2720 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2721 CPU_BASED_CR3_STORE_EXITING |
2722 #ifdef CONFIG_X86_64
2723 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2724 #endif
2725 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2726 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2727 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2728 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2729 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2730 /*
2731 * We can allow some features even when not supported by the
2732 * hardware. For example, L1 can specify an MSR bitmap - and we
2733 * can use it to avoid exits to L1 - even when L0 runs L2
2734 * without MSR bitmaps.
2735 */
2736 vmx->nested.nested_vmx_procbased_ctls_high |=
2737 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2738 CPU_BASED_USE_MSR_BITMAPS;
2739
2740 /* We support free control of CR3 access interception. */
2741 vmx->nested.nested_vmx_procbased_ctls_low &=
2742 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2743
2744 /* secondary cpu-based controls */
2745 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2746 vmx->nested.nested_vmx_secondary_ctls_low,
2747 vmx->nested.nested_vmx_secondary_ctls_high);
2748 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2749 vmx->nested.nested_vmx_secondary_ctls_high &=
2750 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2751 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2752 SECONDARY_EXEC_RDTSCP |
2753 SECONDARY_EXEC_DESC |
2754 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2755 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2756 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2757 SECONDARY_EXEC_WBINVD_EXITING |
2758 SECONDARY_EXEC_XSAVES;
2759
2760 if (enable_ept) {
2761 /* nested EPT: emulate EPT also to L1 */
2762 vmx->nested.nested_vmx_secondary_ctls_high |=
2763 SECONDARY_EXEC_ENABLE_EPT;
2764 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2765 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2766 if (cpu_has_vmx_ept_execute_only())
2767 vmx->nested.nested_vmx_ept_caps |=
2768 VMX_EPT_EXECUTE_ONLY_BIT;
2769 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2770 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2771 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2772 VMX_EPT_1GB_PAGE_BIT;
2773 if (enable_ept_ad_bits) {
2774 vmx->nested.nested_vmx_secondary_ctls_high |=
2775 SECONDARY_EXEC_ENABLE_PML;
2776 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2777 }
2778 } else
2779 vmx->nested.nested_vmx_ept_caps = 0;
2780
2781 /*
2782 * Old versions of KVM use the single-context version without
2783 * checking for support, so declare that it is supported even
2784 * though it is treated as global context. The alternative is
2785 * not failing the single-context invvpid, and it is worse.
2786 */
2787 if (enable_vpid) {
2788 vmx->nested.nested_vmx_secondary_ctls_high |=
2789 SECONDARY_EXEC_ENABLE_VPID;
2790 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2791 VMX_VPID_EXTENT_SUPPORTED_MASK;
2792 } else
2793 vmx->nested.nested_vmx_vpid_caps = 0;
2794
2795 if (enable_unrestricted_guest)
2796 vmx->nested.nested_vmx_secondary_ctls_high |=
2797 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2798
2799 /* miscellaneous data */
2800 rdmsr(MSR_IA32_VMX_MISC,
2801 vmx->nested.nested_vmx_misc_low,
2802 vmx->nested.nested_vmx_misc_high);
2803 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2804 vmx->nested.nested_vmx_misc_low |=
2805 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2806 VMX_MISC_ACTIVITY_HLT;
2807 vmx->nested.nested_vmx_misc_high = 0;
2808
2809 /*
2810 * This MSR reports some information about VMX support. We
2811 * should return information about the VMX we emulate for the
2812 * guest, and the VMCS structure we give it - not about the
2813 * VMX support of the underlying hardware.
2814 */
2815 vmx->nested.nested_vmx_basic =
2816 VMCS12_REVISION |
2817 VMX_BASIC_TRUE_CTLS |
2818 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2819 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2820
2821 if (cpu_has_vmx_basic_inout())
2822 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2823
2824 /*
2825 * These MSRs specify bits which the guest must keep fixed on
2826 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2827 * We picked the standard core2 setting.
2828 */
2829 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2830 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2831 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2832 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2833
2834 /* These MSRs specify bits which the guest must keep fixed off. */
2835 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2836 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2837
2838 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2839 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2840 }
2841
2842 /*
2843 * if fixed0[i] == 1: val[i] must be 1
2844 * if fixed1[i] == 0: val[i] must be 0
2845 */
2846 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2847 {
2848 return ((val & fixed1) | fixed0) == val;
2849 }
2850
2851 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2852 {
2853 return fixed_bits_valid(control, low, high);
2854 }
2855
2856 static inline u64 vmx_control_msr(u32 low, u32 high)
2857 {
2858 return low | ((u64)high << 32);
2859 }
2860
2861 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2862 {
2863 superset &= mask;
2864 subset &= mask;
2865
2866 return (superset | subset) == superset;
2867 }
2868
2869 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2870 {
2871 const u64 feature_and_reserved =
2872 /* feature (except bit 48; see below) */
2873 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2874 /* reserved */
2875 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2876 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2877
2878 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2879 return -EINVAL;
2880
2881 /*
2882 * KVM does not emulate a version of VMX that constrains physical
2883 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2884 */
2885 if (data & BIT_ULL(48))
2886 return -EINVAL;
2887
2888 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2889 vmx_basic_vmcs_revision_id(data))
2890 return -EINVAL;
2891
2892 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2893 return -EINVAL;
2894
2895 vmx->nested.nested_vmx_basic = data;
2896 return 0;
2897 }
2898
2899 static int
2900 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2901 {
2902 u64 supported;
2903 u32 *lowp, *highp;
2904
2905 switch (msr_index) {
2906 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2907 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2908 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2909 break;
2910 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2911 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2912 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2913 break;
2914 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2915 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2916 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2917 break;
2918 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2919 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2920 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2921 break;
2922 case MSR_IA32_VMX_PROCBASED_CTLS2:
2923 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2924 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2925 break;
2926 default:
2927 BUG();
2928 }
2929
2930 supported = vmx_control_msr(*lowp, *highp);
2931
2932 /* Check must-be-1 bits are still 1. */
2933 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2934 return -EINVAL;
2935
2936 /* Check must-be-0 bits are still 0. */
2937 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2938 return -EINVAL;
2939
2940 *lowp = data;
2941 *highp = data >> 32;
2942 return 0;
2943 }
2944
2945 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2946 {
2947 const u64 feature_and_reserved_bits =
2948 /* feature */
2949 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2950 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2951 /* reserved */
2952 GENMASK_ULL(13, 9) | BIT_ULL(31);
2953 u64 vmx_misc;
2954
2955 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2956 vmx->nested.nested_vmx_misc_high);
2957
2958 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2959 return -EINVAL;
2960
2961 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2962 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2963 vmx_misc_preemption_timer_rate(data) !=
2964 vmx_misc_preemption_timer_rate(vmx_misc))
2965 return -EINVAL;
2966
2967 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2968 return -EINVAL;
2969
2970 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2971 return -EINVAL;
2972
2973 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2974 return -EINVAL;
2975
2976 vmx->nested.nested_vmx_misc_low = data;
2977 vmx->nested.nested_vmx_misc_high = data >> 32;
2978 return 0;
2979 }
2980
2981 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2982 {
2983 u64 vmx_ept_vpid_cap;
2984
2985 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2986 vmx->nested.nested_vmx_vpid_caps);
2987
2988 /* Every bit is either reserved or a feature bit. */
2989 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2990 return -EINVAL;
2991
2992 vmx->nested.nested_vmx_ept_caps = data;
2993 vmx->nested.nested_vmx_vpid_caps = data >> 32;
2994 return 0;
2995 }
2996
2997 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2998 {
2999 u64 *msr;
3000
3001 switch (msr_index) {
3002 case MSR_IA32_VMX_CR0_FIXED0:
3003 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3004 break;
3005 case MSR_IA32_VMX_CR4_FIXED0:
3006 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3007 break;
3008 default:
3009 BUG();
3010 }
3011
3012 /*
3013 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3014 * must be 1 in the restored value.
3015 */
3016 if (!is_bitwise_subset(data, *msr, -1ULL))
3017 return -EINVAL;
3018
3019 *msr = data;
3020 return 0;
3021 }
3022
3023 /*
3024 * Called when userspace is restoring VMX MSRs.
3025 *
3026 * Returns 0 on success, non-0 otherwise.
3027 */
3028 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3029 {
3030 struct vcpu_vmx *vmx = to_vmx(vcpu);
3031
3032 switch (msr_index) {
3033 case MSR_IA32_VMX_BASIC:
3034 return vmx_restore_vmx_basic(vmx, data);
3035 case MSR_IA32_VMX_PINBASED_CTLS:
3036 case MSR_IA32_VMX_PROCBASED_CTLS:
3037 case MSR_IA32_VMX_EXIT_CTLS:
3038 case MSR_IA32_VMX_ENTRY_CTLS:
3039 /*
3040 * The "non-true" VMX capability MSRs are generated from the
3041 * "true" MSRs, so we do not support restoring them directly.
3042 *
3043 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3044 * should restore the "true" MSRs with the must-be-1 bits
3045 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3046 * DEFAULT SETTINGS".
3047 */
3048 return -EINVAL;
3049 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3050 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3051 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3052 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3053 case MSR_IA32_VMX_PROCBASED_CTLS2:
3054 return vmx_restore_control_msr(vmx, msr_index, data);
3055 case MSR_IA32_VMX_MISC:
3056 return vmx_restore_vmx_misc(vmx, data);
3057 case MSR_IA32_VMX_CR0_FIXED0:
3058 case MSR_IA32_VMX_CR4_FIXED0:
3059 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3060 case MSR_IA32_VMX_CR0_FIXED1:
3061 case MSR_IA32_VMX_CR4_FIXED1:
3062 /*
3063 * These MSRs are generated based on the vCPU's CPUID, so we
3064 * do not support restoring them directly.
3065 */
3066 return -EINVAL;
3067 case MSR_IA32_VMX_EPT_VPID_CAP:
3068 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3069 case MSR_IA32_VMX_VMCS_ENUM:
3070 vmx->nested.nested_vmx_vmcs_enum = data;
3071 return 0;
3072 default:
3073 /*
3074 * The rest of the VMX capability MSRs do not support restore.
3075 */
3076 return -EINVAL;
3077 }
3078 }
3079
3080 /* Returns 0 on success, non-0 otherwise. */
3081 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3082 {
3083 struct vcpu_vmx *vmx = to_vmx(vcpu);
3084
3085 switch (msr_index) {
3086 case MSR_IA32_VMX_BASIC:
3087 *pdata = vmx->nested.nested_vmx_basic;
3088 break;
3089 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3090 case MSR_IA32_VMX_PINBASED_CTLS:
3091 *pdata = vmx_control_msr(
3092 vmx->nested.nested_vmx_pinbased_ctls_low,
3093 vmx->nested.nested_vmx_pinbased_ctls_high);
3094 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3095 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3096 break;
3097 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3098 case MSR_IA32_VMX_PROCBASED_CTLS:
3099 *pdata = vmx_control_msr(
3100 vmx->nested.nested_vmx_procbased_ctls_low,
3101 vmx->nested.nested_vmx_procbased_ctls_high);
3102 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3103 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3104 break;
3105 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3106 case MSR_IA32_VMX_EXIT_CTLS:
3107 *pdata = vmx_control_msr(
3108 vmx->nested.nested_vmx_exit_ctls_low,
3109 vmx->nested.nested_vmx_exit_ctls_high);
3110 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3111 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3112 break;
3113 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3114 case MSR_IA32_VMX_ENTRY_CTLS:
3115 *pdata = vmx_control_msr(
3116 vmx->nested.nested_vmx_entry_ctls_low,
3117 vmx->nested.nested_vmx_entry_ctls_high);
3118 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3119 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3120 break;
3121 case MSR_IA32_VMX_MISC:
3122 *pdata = vmx_control_msr(
3123 vmx->nested.nested_vmx_misc_low,
3124 vmx->nested.nested_vmx_misc_high);
3125 break;
3126 case MSR_IA32_VMX_CR0_FIXED0:
3127 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3128 break;
3129 case MSR_IA32_VMX_CR0_FIXED1:
3130 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3131 break;
3132 case MSR_IA32_VMX_CR4_FIXED0:
3133 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3134 break;
3135 case MSR_IA32_VMX_CR4_FIXED1:
3136 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3137 break;
3138 case MSR_IA32_VMX_VMCS_ENUM:
3139 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3140 break;
3141 case MSR_IA32_VMX_PROCBASED_CTLS2:
3142 *pdata = vmx_control_msr(
3143 vmx->nested.nested_vmx_secondary_ctls_low,
3144 vmx->nested.nested_vmx_secondary_ctls_high);
3145 break;
3146 case MSR_IA32_VMX_EPT_VPID_CAP:
3147 *pdata = vmx->nested.nested_vmx_ept_caps |
3148 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3149 break;
3150 default:
3151 return 1;
3152 }
3153
3154 return 0;
3155 }
3156
3157 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3158 uint64_t val)
3159 {
3160 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3161
3162 return !(val & ~valid_bits);
3163 }
3164
3165 /*
3166 * Reads an msr value (of 'msr_index') into 'pdata'.
3167 * Returns 0 on success, non-0 otherwise.
3168 * Assumes vcpu_load() was already called.
3169 */
3170 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3171 {
3172 struct shared_msr_entry *msr;
3173
3174 switch (msr_info->index) {
3175 #ifdef CONFIG_X86_64
3176 case MSR_FS_BASE:
3177 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3178 break;
3179 case MSR_GS_BASE:
3180 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3181 break;
3182 case MSR_KERNEL_GS_BASE:
3183 vmx_load_host_state(to_vmx(vcpu));
3184 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3185 break;
3186 #endif
3187 case MSR_EFER:
3188 return kvm_get_msr_common(vcpu, msr_info);
3189 case MSR_IA32_TSC:
3190 msr_info->data = guest_read_tsc(vcpu);
3191 break;
3192 case MSR_IA32_SYSENTER_CS:
3193 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3194 break;
3195 case MSR_IA32_SYSENTER_EIP:
3196 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3197 break;
3198 case MSR_IA32_SYSENTER_ESP:
3199 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3200 break;
3201 case MSR_IA32_BNDCFGS:
3202 if (!kvm_mpx_supported() ||
3203 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3204 return 1;
3205 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3206 break;
3207 case MSR_IA32_MCG_EXT_CTL:
3208 if (!msr_info->host_initiated &&
3209 !(to_vmx(vcpu)->msr_ia32_feature_control &
3210 FEATURE_CONTROL_LMCE))
3211 return 1;
3212 msr_info->data = vcpu->arch.mcg_ext_ctl;
3213 break;
3214 case MSR_IA32_FEATURE_CONTROL:
3215 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3216 break;
3217 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3218 if (!nested_vmx_allowed(vcpu))
3219 return 1;
3220 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3221 case MSR_IA32_XSS:
3222 if (!vmx_xsaves_supported())
3223 return 1;
3224 msr_info->data = vcpu->arch.ia32_xss;
3225 break;
3226 case MSR_TSC_AUX:
3227 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3228 return 1;
3229 /* Otherwise falls through */
3230 default:
3231 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3232 if (msr) {
3233 msr_info->data = msr->data;
3234 break;
3235 }
3236 return kvm_get_msr_common(vcpu, msr_info);
3237 }
3238
3239 return 0;
3240 }
3241
3242 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3243
3244 /*
3245 * Writes msr value into into the appropriate "register".
3246 * Returns 0 on success, non-0 otherwise.
3247 * Assumes vcpu_load() was already called.
3248 */
3249 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3250 {
3251 struct vcpu_vmx *vmx = to_vmx(vcpu);
3252 struct shared_msr_entry *msr;
3253 int ret = 0;
3254 u32 msr_index = msr_info->index;
3255 u64 data = msr_info->data;
3256
3257 switch (msr_index) {
3258 case MSR_EFER:
3259 ret = kvm_set_msr_common(vcpu, msr_info);
3260 break;
3261 #ifdef CONFIG_X86_64
3262 case MSR_FS_BASE:
3263 vmx_segment_cache_clear(vmx);
3264 vmcs_writel(GUEST_FS_BASE, data);
3265 break;
3266 case MSR_GS_BASE:
3267 vmx_segment_cache_clear(vmx);
3268 vmcs_writel(GUEST_GS_BASE, data);
3269 break;
3270 case MSR_KERNEL_GS_BASE:
3271 vmx_load_host_state(vmx);
3272 vmx->msr_guest_kernel_gs_base = data;
3273 break;
3274 #endif
3275 case MSR_IA32_SYSENTER_CS:
3276 vmcs_write32(GUEST_SYSENTER_CS, data);
3277 break;
3278 case MSR_IA32_SYSENTER_EIP:
3279 vmcs_writel(GUEST_SYSENTER_EIP, data);
3280 break;
3281 case MSR_IA32_SYSENTER_ESP:
3282 vmcs_writel(GUEST_SYSENTER_ESP, data);
3283 break;
3284 case MSR_IA32_BNDCFGS:
3285 if (!kvm_mpx_supported() ||
3286 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3287 return 1;
3288 if (is_noncanonical_address(data & PAGE_MASK) ||
3289 (data & MSR_IA32_BNDCFGS_RSVD))
3290 return 1;
3291 vmcs_write64(GUEST_BNDCFGS, data);
3292 break;
3293 case MSR_IA32_TSC:
3294 kvm_write_tsc(vcpu, msr_info);
3295 break;
3296 case MSR_IA32_CR_PAT:
3297 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3298 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3299 return 1;
3300 vmcs_write64(GUEST_IA32_PAT, data);
3301 vcpu->arch.pat = data;
3302 break;
3303 }
3304 ret = kvm_set_msr_common(vcpu, msr_info);
3305 break;
3306 case MSR_IA32_TSC_ADJUST:
3307 ret = kvm_set_msr_common(vcpu, msr_info);
3308 break;
3309 case MSR_IA32_MCG_EXT_CTL:
3310 if ((!msr_info->host_initiated &&
3311 !(to_vmx(vcpu)->msr_ia32_feature_control &
3312 FEATURE_CONTROL_LMCE)) ||
3313 (data & ~MCG_EXT_CTL_LMCE_EN))
3314 return 1;
3315 vcpu->arch.mcg_ext_ctl = data;
3316 break;
3317 case MSR_IA32_FEATURE_CONTROL:
3318 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3319 (to_vmx(vcpu)->msr_ia32_feature_control &
3320 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3321 return 1;
3322 vmx->msr_ia32_feature_control = data;
3323 if (msr_info->host_initiated && data == 0)
3324 vmx_leave_nested(vcpu);
3325 break;
3326 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3327 if (!msr_info->host_initiated)
3328 return 1; /* they are read-only */
3329 if (!nested_vmx_allowed(vcpu))
3330 return 1;
3331 return vmx_set_vmx_msr(vcpu, msr_index, data);
3332 case MSR_IA32_XSS:
3333 if (!vmx_xsaves_supported())
3334 return 1;
3335 /*
3336 * The only supported bit as of Skylake is bit 8, but
3337 * it is not supported on KVM.
3338 */
3339 if (data != 0)
3340 return 1;
3341 vcpu->arch.ia32_xss = data;
3342 if (vcpu->arch.ia32_xss != host_xss)
3343 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3344 vcpu->arch.ia32_xss, host_xss);
3345 else
3346 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3347 break;
3348 case MSR_TSC_AUX:
3349 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3350 return 1;
3351 /* Check reserved bit, higher 32 bits should be zero */
3352 if ((data >> 32) != 0)
3353 return 1;
3354 /* Otherwise falls through */
3355 default:
3356 msr = find_msr_entry(vmx, msr_index);
3357 if (msr) {
3358 u64 old_msr_data = msr->data;
3359 msr->data = data;
3360 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3361 preempt_disable();
3362 ret = kvm_set_shared_msr(msr->index, msr->data,
3363 msr->mask);
3364 preempt_enable();
3365 if (ret)
3366 msr->data = old_msr_data;
3367 }
3368 break;
3369 }
3370 ret = kvm_set_msr_common(vcpu, msr_info);
3371 }
3372
3373 return ret;
3374 }
3375
3376 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3377 {
3378 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3379 switch (reg) {
3380 case VCPU_REGS_RSP:
3381 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3382 break;
3383 case VCPU_REGS_RIP:
3384 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3385 break;
3386 case VCPU_EXREG_PDPTR:
3387 if (enable_ept)
3388 ept_save_pdptrs(vcpu);
3389 break;
3390 default:
3391 break;
3392 }
3393 }
3394
3395 static __init int cpu_has_kvm_support(void)
3396 {
3397 return cpu_has_vmx();
3398 }
3399
3400 static __init int vmx_disabled_by_bios(void)
3401 {
3402 u64 msr;
3403
3404 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3405 if (msr & FEATURE_CONTROL_LOCKED) {
3406 /* launched w/ TXT and VMX disabled */
3407 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3408 && tboot_enabled())
3409 return 1;
3410 /* launched w/o TXT and VMX only enabled w/ TXT */
3411 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3412 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3413 && !tboot_enabled()) {
3414 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3415 "activate TXT before enabling KVM\n");
3416 return 1;
3417 }
3418 /* launched w/o TXT and VMX disabled */
3419 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3420 && !tboot_enabled())
3421 return 1;
3422 }
3423
3424 return 0;
3425 }
3426
3427 static void kvm_cpu_vmxon(u64 addr)
3428 {
3429 cr4_set_bits(X86_CR4_VMXE);
3430 intel_pt_handle_vmx(1);
3431
3432 asm volatile (ASM_VMX_VMXON_RAX
3433 : : "a"(&addr), "m"(addr)
3434 : "memory", "cc");
3435 }
3436
3437 static int hardware_enable(void)
3438 {
3439 int cpu = raw_smp_processor_id();
3440 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3441 u64 old, test_bits;
3442
3443 if (cr4_read_shadow() & X86_CR4_VMXE)
3444 return -EBUSY;
3445
3446 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3447 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3448 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3449
3450 /*
3451 * Now we can enable the vmclear operation in kdump
3452 * since the loaded_vmcss_on_cpu list on this cpu
3453 * has been initialized.
3454 *
3455 * Though the cpu is not in VMX operation now, there
3456 * is no problem to enable the vmclear operation
3457 * for the loaded_vmcss_on_cpu list is empty!
3458 */
3459 crash_enable_local_vmclear(cpu);
3460
3461 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3462
3463 test_bits = FEATURE_CONTROL_LOCKED;
3464 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3465 if (tboot_enabled())
3466 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3467
3468 if ((old & test_bits) != test_bits) {
3469 /* enable and lock */
3470 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3471 }
3472 kvm_cpu_vmxon(phys_addr);
3473 ept_sync_global();
3474
3475 return 0;
3476 }
3477
3478 static void vmclear_local_loaded_vmcss(void)
3479 {
3480 int cpu = raw_smp_processor_id();
3481 struct loaded_vmcs *v, *n;
3482
3483 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3484 loaded_vmcss_on_cpu_link)
3485 __loaded_vmcs_clear(v);
3486 }
3487
3488
3489 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3490 * tricks.
3491 */
3492 static void kvm_cpu_vmxoff(void)
3493 {
3494 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3495
3496 intel_pt_handle_vmx(0);
3497 cr4_clear_bits(X86_CR4_VMXE);
3498 }
3499
3500 static void hardware_disable(void)
3501 {
3502 vmclear_local_loaded_vmcss();
3503 kvm_cpu_vmxoff();
3504 }
3505
3506 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3507 u32 msr, u32 *result)
3508 {
3509 u32 vmx_msr_low, vmx_msr_high;
3510 u32 ctl = ctl_min | ctl_opt;
3511
3512 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3513
3514 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3515 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3516
3517 /* Ensure minimum (required) set of control bits are supported. */
3518 if (ctl_min & ~ctl)
3519 return -EIO;
3520
3521 *result = ctl;
3522 return 0;
3523 }
3524
3525 static __init bool allow_1_setting(u32 msr, u32 ctl)
3526 {
3527 u32 vmx_msr_low, vmx_msr_high;
3528
3529 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3530 return vmx_msr_high & ctl;
3531 }
3532
3533 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3534 {
3535 u32 vmx_msr_low, vmx_msr_high;
3536 u32 min, opt, min2, opt2;
3537 u32 _pin_based_exec_control = 0;
3538 u32 _cpu_based_exec_control = 0;
3539 u32 _cpu_based_2nd_exec_control = 0;
3540 u32 _vmexit_control = 0;
3541 u32 _vmentry_control = 0;
3542
3543 min = CPU_BASED_HLT_EXITING |
3544 #ifdef CONFIG_X86_64
3545 CPU_BASED_CR8_LOAD_EXITING |
3546 CPU_BASED_CR8_STORE_EXITING |
3547 #endif
3548 CPU_BASED_CR3_LOAD_EXITING |
3549 CPU_BASED_CR3_STORE_EXITING |
3550 CPU_BASED_USE_IO_BITMAPS |
3551 CPU_BASED_MOV_DR_EXITING |
3552 CPU_BASED_USE_TSC_OFFSETING |
3553 CPU_BASED_INVLPG_EXITING |
3554 CPU_BASED_RDPMC_EXITING;
3555
3556 if (!kvm_mwait_in_guest())
3557 min |= CPU_BASED_MWAIT_EXITING |
3558 CPU_BASED_MONITOR_EXITING;
3559
3560 opt = CPU_BASED_TPR_SHADOW |
3561 CPU_BASED_USE_MSR_BITMAPS |
3562 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3563 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3564 &_cpu_based_exec_control) < 0)
3565 return -EIO;
3566 #ifdef CONFIG_X86_64
3567 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3568 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3569 ~CPU_BASED_CR8_STORE_EXITING;
3570 #endif
3571 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3572 min2 = 0;
3573 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3574 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3575 SECONDARY_EXEC_WBINVD_EXITING |
3576 SECONDARY_EXEC_ENABLE_VPID |
3577 SECONDARY_EXEC_ENABLE_EPT |
3578 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3579 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3580 SECONDARY_EXEC_RDTSCP |
3581 SECONDARY_EXEC_ENABLE_INVPCID |
3582 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3583 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3584 SECONDARY_EXEC_SHADOW_VMCS |
3585 SECONDARY_EXEC_XSAVES |
3586 SECONDARY_EXEC_ENABLE_PML |
3587 SECONDARY_EXEC_TSC_SCALING;
3588 if (adjust_vmx_controls(min2, opt2,
3589 MSR_IA32_VMX_PROCBASED_CTLS2,
3590 &_cpu_based_2nd_exec_control) < 0)
3591 return -EIO;
3592 }
3593 #ifndef CONFIG_X86_64
3594 if (!(_cpu_based_2nd_exec_control &
3595 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3596 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3597 #endif
3598
3599 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3600 _cpu_based_2nd_exec_control &= ~(
3601 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3602 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3603 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3604
3605 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3606 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3607 enabled */
3608 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3609 CPU_BASED_CR3_STORE_EXITING |
3610 CPU_BASED_INVLPG_EXITING);
3611 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3612 vmx_capability.ept, vmx_capability.vpid);
3613 }
3614
3615 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3616 #ifdef CONFIG_X86_64
3617 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3618 #endif
3619 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3620 VM_EXIT_CLEAR_BNDCFGS;
3621 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3622 &_vmexit_control) < 0)
3623 return -EIO;
3624
3625 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3626 PIN_BASED_VIRTUAL_NMIS;
3627 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3628 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3629 &_pin_based_exec_control) < 0)
3630 return -EIO;
3631
3632 if (cpu_has_broken_vmx_preemption_timer())
3633 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3634 if (!(_cpu_based_2nd_exec_control &
3635 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3636 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3637
3638 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3639 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3640 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3641 &_vmentry_control) < 0)
3642 return -EIO;
3643
3644 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3645
3646 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3647 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3648 return -EIO;
3649
3650 #ifdef CONFIG_X86_64
3651 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3652 if (vmx_msr_high & (1u<<16))
3653 return -EIO;
3654 #endif
3655
3656 /* Require Write-Back (WB) memory type for VMCS accesses. */
3657 if (((vmx_msr_high >> 18) & 15) != 6)
3658 return -EIO;
3659
3660 vmcs_conf->size = vmx_msr_high & 0x1fff;
3661 vmcs_conf->order = get_order(vmcs_conf->size);
3662 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3663 vmcs_conf->revision_id = vmx_msr_low;
3664
3665 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3666 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3667 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3668 vmcs_conf->vmexit_ctrl = _vmexit_control;
3669 vmcs_conf->vmentry_ctrl = _vmentry_control;
3670
3671 cpu_has_load_ia32_efer =
3672 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3673 VM_ENTRY_LOAD_IA32_EFER)
3674 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3675 VM_EXIT_LOAD_IA32_EFER);
3676
3677 cpu_has_load_perf_global_ctrl =
3678 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3679 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3680 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3681 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3682
3683 /*
3684 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3685 * but due to errata below it can't be used. Workaround is to use
3686 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3687 *
3688 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3689 *
3690 * AAK155 (model 26)
3691 * AAP115 (model 30)
3692 * AAT100 (model 37)
3693 * BC86,AAY89,BD102 (model 44)
3694 * BA97 (model 46)
3695 *
3696 */
3697 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3698 switch (boot_cpu_data.x86_model) {
3699 case 26:
3700 case 30:
3701 case 37:
3702 case 44:
3703 case 46:
3704 cpu_has_load_perf_global_ctrl = false;
3705 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3706 "does not work properly. Using workaround\n");
3707 break;
3708 default:
3709 break;
3710 }
3711 }
3712
3713 if (boot_cpu_has(X86_FEATURE_XSAVES))
3714 rdmsrl(MSR_IA32_XSS, host_xss);
3715
3716 return 0;
3717 }
3718
3719 static struct vmcs *alloc_vmcs_cpu(int cpu)
3720 {
3721 int node = cpu_to_node(cpu);
3722 struct page *pages;
3723 struct vmcs *vmcs;
3724
3725 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3726 if (!pages)
3727 return NULL;
3728 vmcs = page_address(pages);
3729 memset(vmcs, 0, vmcs_config.size);
3730 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3731 return vmcs;
3732 }
3733
3734 static struct vmcs *alloc_vmcs(void)
3735 {
3736 return alloc_vmcs_cpu(raw_smp_processor_id());
3737 }
3738
3739 static void free_vmcs(struct vmcs *vmcs)
3740 {
3741 free_pages((unsigned long)vmcs, vmcs_config.order);
3742 }
3743
3744 /*
3745 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3746 */
3747 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3748 {
3749 if (!loaded_vmcs->vmcs)
3750 return;
3751 loaded_vmcs_clear(loaded_vmcs);
3752 free_vmcs(loaded_vmcs->vmcs);
3753 loaded_vmcs->vmcs = NULL;
3754 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3755 }
3756
3757 static void free_kvm_area(void)
3758 {
3759 int cpu;
3760
3761 for_each_possible_cpu(cpu) {
3762 free_vmcs(per_cpu(vmxarea, cpu));
3763 per_cpu(vmxarea, cpu) = NULL;
3764 }
3765 }
3766
3767 static void init_vmcs_shadow_fields(void)
3768 {
3769 int i, j;
3770
3771 /* No checks for read only fields yet */
3772
3773 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3774 switch (shadow_read_write_fields[i]) {
3775 case GUEST_BNDCFGS:
3776 if (!kvm_mpx_supported())
3777 continue;
3778 break;
3779 default:
3780 break;
3781 }
3782
3783 if (j < i)
3784 shadow_read_write_fields[j] =
3785 shadow_read_write_fields[i];
3786 j++;
3787 }
3788 max_shadow_read_write_fields = j;
3789
3790 /* shadowed fields guest access without vmexit */
3791 for (i = 0; i < max_shadow_read_write_fields; i++) {
3792 clear_bit(shadow_read_write_fields[i],
3793 vmx_vmwrite_bitmap);
3794 clear_bit(shadow_read_write_fields[i],
3795 vmx_vmread_bitmap);
3796 }
3797 for (i = 0; i < max_shadow_read_only_fields; i++)
3798 clear_bit(shadow_read_only_fields[i],
3799 vmx_vmread_bitmap);
3800 }
3801
3802 static __init int alloc_kvm_area(void)
3803 {
3804 int cpu;
3805
3806 for_each_possible_cpu(cpu) {
3807 struct vmcs *vmcs;
3808
3809 vmcs = alloc_vmcs_cpu(cpu);
3810 if (!vmcs) {
3811 free_kvm_area();
3812 return -ENOMEM;
3813 }
3814
3815 per_cpu(vmxarea, cpu) = vmcs;
3816 }
3817 return 0;
3818 }
3819
3820 static bool emulation_required(struct kvm_vcpu *vcpu)
3821 {
3822 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3823 }
3824
3825 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3826 struct kvm_segment *save)
3827 {
3828 if (!emulate_invalid_guest_state) {
3829 /*
3830 * CS and SS RPL should be equal during guest entry according
3831 * to VMX spec, but in reality it is not always so. Since vcpu
3832 * is in the middle of the transition from real mode to
3833 * protected mode it is safe to assume that RPL 0 is a good
3834 * default value.
3835 */
3836 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3837 save->selector &= ~SEGMENT_RPL_MASK;
3838 save->dpl = save->selector & SEGMENT_RPL_MASK;
3839 save->s = 1;
3840 }
3841 vmx_set_segment(vcpu, save, seg);
3842 }
3843
3844 static void enter_pmode(struct kvm_vcpu *vcpu)
3845 {
3846 unsigned long flags;
3847 struct vcpu_vmx *vmx = to_vmx(vcpu);
3848
3849 /*
3850 * Update real mode segment cache. It may be not up-to-date if sement
3851 * register was written while vcpu was in a guest mode.
3852 */
3853 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3854 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3859
3860 vmx->rmode.vm86_active = 0;
3861
3862 vmx_segment_cache_clear(vmx);
3863
3864 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3865
3866 flags = vmcs_readl(GUEST_RFLAGS);
3867 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3868 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3869 vmcs_writel(GUEST_RFLAGS, flags);
3870
3871 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3872 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3873
3874 update_exception_bitmap(vcpu);
3875
3876 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3877 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3878 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3879 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3880 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3881 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3882 }
3883
3884 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3885 {
3886 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3887 struct kvm_segment var = *save;
3888
3889 var.dpl = 0x3;
3890 if (seg == VCPU_SREG_CS)
3891 var.type = 0x3;
3892
3893 if (!emulate_invalid_guest_state) {
3894 var.selector = var.base >> 4;
3895 var.base = var.base & 0xffff0;
3896 var.limit = 0xffff;
3897 var.g = 0;
3898 var.db = 0;
3899 var.present = 1;
3900 var.s = 1;
3901 var.l = 0;
3902 var.unusable = 0;
3903 var.type = 0x3;
3904 var.avl = 0;
3905 if (save->base & 0xf)
3906 printk_once(KERN_WARNING "kvm: segment base is not "
3907 "paragraph aligned when entering "
3908 "protected mode (seg=%d)", seg);
3909 }
3910
3911 vmcs_write16(sf->selector, var.selector);
3912 vmcs_writel(sf->base, var.base);
3913 vmcs_write32(sf->limit, var.limit);
3914 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3915 }
3916
3917 static void enter_rmode(struct kvm_vcpu *vcpu)
3918 {
3919 unsigned long flags;
3920 struct vcpu_vmx *vmx = to_vmx(vcpu);
3921
3922 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3923 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3924 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3925 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3926 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3927 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3928 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3929
3930 vmx->rmode.vm86_active = 1;
3931
3932 /*
3933 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3934 * vcpu. Warn the user that an update is overdue.
3935 */
3936 if (!vcpu->kvm->arch.tss_addr)
3937 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3938 "called before entering vcpu\n");
3939
3940 vmx_segment_cache_clear(vmx);
3941
3942 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3943 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3944 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3945
3946 flags = vmcs_readl(GUEST_RFLAGS);
3947 vmx->rmode.save_rflags = flags;
3948
3949 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3950
3951 vmcs_writel(GUEST_RFLAGS, flags);
3952 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3953 update_exception_bitmap(vcpu);
3954
3955 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3956 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3957 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3958 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3959 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3960 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3961
3962 kvm_mmu_reset_context(vcpu);
3963 }
3964
3965 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3966 {
3967 struct vcpu_vmx *vmx = to_vmx(vcpu);
3968 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3969
3970 if (!msr)
3971 return;
3972
3973 /*
3974 * Force kernel_gs_base reloading before EFER changes, as control
3975 * of this msr depends on is_long_mode().
3976 */
3977 vmx_load_host_state(to_vmx(vcpu));
3978 vcpu->arch.efer = efer;
3979 if (efer & EFER_LMA) {
3980 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3981 msr->data = efer;
3982 } else {
3983 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3984
3985 msr->data = efer & ~EFER_LME;
3986 }
3987 setup_msrs(vmx);
3988 }
3989
3990 #ifdef CONFIG_X86_64
3991
3992 static void enter_lmode(struct kvm_vcpu *vcpu)
3993 {
3994 u32 guest_tr_ar;
3995
3996 vmx_segment_cache_clear(to_vmx(vcpu));
3997
3998 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3999 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4000 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4001 __func__);
4002 vmcs_write32(GUEST_TR_AR_BYTES,
4003 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4004 | VMX_AR_TYPE_BUSY_64_TSS);
4005 }
4006 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4007 }
4008
4009 static void exit_lmode(struct kvm_vcpu *vcpu)
4010 {
4011 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4012 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4013 }
4014
4015 #endif
4016
4017 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4018 {
4019 if (enable_ept) {
4020 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4021 return;
4022 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4023 } else {
4024 vpid_sync_context(vpid);
4025 }
4026 }
4027
4028 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4029 {
4030 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4031 }
4032
4033 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4034 {
4035 if (enable_ept)
4036 vmx_flush_tlb(vcpu);
4037 }
4038
4039 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4040 {
4041 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4042
4043 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4044 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4045 }
4046
4047 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4048 {
4049 if (enable_ept && is_paging(vcpu))
4050 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4051 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4052 }
4053
4054 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4055 {
4056 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4057
4058 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4059 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4060 }
4061
4062 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4063 {
4064 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4065
4066 if (!test_bit(VCPU_EXREG_PDPTR,
4067 (unsigned long *)&vcpu->arch.regs_dirty))
4068 return;
4069
4070 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4071 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4072 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4073 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4074 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4075 }
4076 }
4077
4078 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4079 {
4080 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4081
4082 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4083 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4084 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4085 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4086 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4087 }
4088
4089 __set_bit(VCPU_EXREG_PDPTR,
4090 (unsigned long *)&vcpu->arch.regs_avail);
4091 __set_bit(VCPU_EXREG_PDPTR,
4092 (unsigned long *)&vcpu->arch.regs_dirty);
4093 }
4094
4095 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4096 {
4097 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4098 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4099 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4100
4101 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4102 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4103 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4104 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4105
4106 return fixed_bits_valid(val, fixed0, fixed1);
4107 }
4108
4109 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4110 {
4111 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4112 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4113
4114 return fixed_bits_valid(val, fixed0, fixed1);
4115 }
4116
4117 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4118 {
4119 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4120 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4121
4122 return fixed_bits_valid(val, fixed0, fixed1);
4123 }
4124
4125 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4126 #define nested_guest_cr4_valid nested_cr4_valid
4127 #define nested_host_cr4_valid nested_cr4_valid
4128
4129 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4130
4131 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4132 unsigned long cr0,
4133 struct kvm_vcpu *vcpu)
4134 {
4135 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4136 vmx_decache_cr3(vcpu);
4137 if (!(cr0 & X86_CR0_PG)) {
4138 /* From paging/starting to nonpaging */
4139 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4140 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4141 (CPU_BASED_CR3_LOAD_EXITING |
4142 CPU_BASED_CR3_STORE_EXITING));
4143 vcpu->arch.cr0 = cr0;
4144 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4145 } else if (!is_paging(vcpu)) {
4146 /* From nonpaging to paging */
4147 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4148 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4149 ~(CPU_BASED_CR3_LOAD_EXITING |
4150 CPU_BASED_CR3_STORE_EXITING));
4151 vcpu->arch.cr0 = cr0;
4152 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4153 }
4154
4155 if (!(cr0 & X86_CR0_WP))
4156 *hw_cr0 &= ~X86_CR0_WP;
4157 }
4158
4159 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4160 {
4161 struct vcpu_vmx *vmx = to_vmx(vcpu);
4162 unsigned long hw_cr0;
4163
4164 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4165 if (enable_unrestricted_guest)
4166 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4167 else {
4168 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4169
4170 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4171 enter_pmode(vcpu);
4172
4173 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4174 enter_rmode(vcpu);
4175 }
4176
4177 #ifdef CONFIG_X86_64
4178 if (vcpu->arch.efer & EFER_LME) {
4179 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4180 enter_lmode(vcpu);
4181 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4182 exit_lmode(vcpu);
4183 }
4184 #endif
4185
4186 if (enable_ept)
4187 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4188
4189 vmcs_writel(CR0_READ_SHADOW, cr0);
4190 vmcs_writel(GUEST_CR0, hw_cr0);
4191 vcpu->arch.cr0 = cr0;
4192
4193 /* depends on vcpu->arch.cr0 to be set to a new value */
4194 vmx->emulation_required = emulation_required(vcpu);
4195 }
4196
4197 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4198 {
4199 u64 eptp;
4200
4201 /* TODO write the value reading from MSR */
4202 eptp = VMX_EPT_DEFAULT_MT |
4203 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4204 if (enable_ept_ad_bits &&
4205 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4206 eptp |= VMX_EPT_AD_ENABLE_BIT;
4207 eptp |= (root_hpa & PAGE_MASK);
4208
4209 return eptp;
4210 }
4211
4212 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4213 {
4214 unsigned long guest_cr3;
4215 u64 eptp;
4216
4217 guest_cr3 = cr3;
4218 if (enable_ept) {
4219 eptp = construct_eptp(vcpu, cr3);
4220 vmcs_write64(EPT_POINTER, eptp);
4221 if (is_paging(vcpu) || is_guest_mode(vcpu))
4222 guest_cr3 = kvm_read_cr3(vcpu);
4223 else
4224 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4225 ept_load_pdptrs(vcpu);
4226 }
4227
4228 vmx_flush_tlb(vcpu);
4229 vmcs_writel(GUEST_CR3, guest_cr3);
4230 }
4231
4232 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4233 {
4234 /*
4235 * Pass through host's Machine Check Enable value to hw_cr4, which
4236 * is in force while we are in guest mode. Do not let guests control
4237 * this bit, even if host CR4.MCE == 0.
4238 */
4239 unsigned long hw_cr4 =
4240 (cr4_read_shadow() & X86_CR4_MCE) |
4241 (cr4 & ~X86_CR4_MCE) |
4242 (to_vmx(vcpu)->rmode.vm86_active ?
4243 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4244
4245 if (cr4 & X86_CR4_VMXE) {
4246 /*
4247 * To use VMXON (and later other VMX instructions), a guest
4248 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4249 * So basically the check on whether to allow nested VMX
4250 * is here.
4251 */
4252 if (!nested_vmx_allowed(vcpu))
4253 return 1;
4254 }
4255
4256 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4257 return 1;
4258
4259 vcpu->arch.cr4 = cr4;
4260 if (enable_ept) {
4261 if (!is_paging(vcpu)) {
4262 hw_cr4 &= ~X86_CR4_PAE;
4263 hw_cr4 |= X86_CR4_PSE;
4264 } else if (!(cr4 & X86_CR4_PAE)) {
4265 hw_cr4 &= ~X86_CR4_PAE;
4266 }
4267 }
4268
4269 if (!enable_unrestricted_guest && !is_paging(vcpu))
4270 /*
4271 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4272 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4273 * to be manually disabled when guest switches to non-paging
4274 * mode.
4275 *
4276 * If !enable_unrestricted_guest, the CPU is always running
4277 * with CR0.PG=1 and CR4 needs to be modified.
4278 * If enable_unrestricted_guest, the CPU automatically
4279 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4280 */
4281 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4282
4283 vmcs_writel(CR4_READ_SHADOW, cr4);
4284 vmcs_writel(GUEST_CR4, hw_cr4);
4285 return 0;
4286 }
4287
4288 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4289 struct kvm_segment *var, int seg)
4290 {
4291 struct vcpu_vmx *vmx = to_vmx(vcpu);
4292 u32 ar;
4293
4294 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4295 *var = vmx->rmode.segs[seg];
4296 if (seg == VCPU_SREG_TR
4297 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4298 return;
4299 var->base = vmx_read_guest_seg_base(vmx, seg);
4300 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4301 return;
4302 }
4303 var->base = vmx_read_guest_seg_base(vmx, seg);
4304 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4305 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4306 ar = vmx_read_guest_seg_ar(vmx, seg);
4307 var->unusable = (ar >> 16) & 1;
4308 var->type = ar & 15;
4309 var->s = (ar >> 4) & 1;
4310 var->dpl = (ar >> 5) & 3;
4311 /*
4312 * Some userspaces do not preserve unusable property. Since usable
4313 * segment has to be present according to VMX spec we can use present
4314 * property to amend userspace bug by making unusable segment always
4315 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4316 * segment as unusable.
4317 */
4318 var->present = !var->unusable;
4319 var->avl = (ar >> 12) & 1;
4320 var->l = (ar >> 13) & 1;
4321 var->db = (ar >> 14) & 1;
4322 var->g = (ar >> 15) & 1;
4323 }
4324
4325 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4326 {
4327 struct kvm_segment s;
4328
4329 if (to_vmx(vcpu)->rmode.vm86_active) {
4330 vmx_get_segment(vcpu, &s, seg);
4331 return s.base;
4332 }
4333 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4334 }
4335
4336 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4337 {
4338 struct vcpu_vmx *vmx = to_vmx(vcpu);
4339
4340 if (unlikely(vmx->rmode.vm86_active))
4341 return 0;
4342 else {
4343 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4344 return VMX_AR_DPL(ar);
4345 }
4346 }
4347
4348 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4349 {
4350 u32 ar;
4351
4352 if (var->unusable || !var->present)
4353 ar = 1 << 16;
4354 else {
4355 ar = var->type & 15;
4356 ar |= (var->s & 1) << 4;
4357 ar |= (var->dpl & 3) << 5;
4358 ar |= (var->present & 1) << 7;
4359 ar |= (var->avl & 1) << 12;
4360 ar |= (var->l & 1) << 13;
4361 ar |= (var->db & 1) << 14;
4362 ar |= (var->g & 1) << 15;
4363 }
4364
4365 return ar;
4366 }
4367
4368 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4369 struct kvm_segment *var, int seg)
4370 {
4371 struct vcpu_vmx *vmx = to_vmx(vcpu);
4372 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4373
4374 vmx_segment_cache_clear(vmx);
4375
4376 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4377 vmx->rmode.segs[seg] = *var;
4378 if (seg == VCPU_SREG_TR)
4379 vmcs_write16(sf->selector, var->selector);
4380 else if (var->s)
4381 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4382 goto out;
4383 }
4384
4385 vmcs_writel(sf->base, var->base);
4386 vmcs_write32(sf->limit, var->limit);
4387 vmcs_write16(sf->selector, var->selector);
4388
4389 /*
4390 * Fix the "Accessed" bit in AR field of segment registers for older
4391 * qemu binaries.
4392 * IA32 arch specifies that at the time of processor reset the
4393 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4394 * is setting it to 0 in the userland code. This causes invalid guest
4395 * state vmexit when "unrestricted guest" mode is turned on.
4396 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4397 * tree. Newer qemu binaries with that qemu fix would not need this
4398 * kvm hack.
4399 */
4400 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4401 var->type |= 0x1; /* Accessed */
4402
4403 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4404
4405 out:
4406 vmx->emulation_required = emulation_required(vcpu);
4407 }
4408
4409 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4410 {
4411 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4412
4413 *db = (ar >> 14) & 1;
4414 *l = (ar >> 13) & 1;
4415 }
4416
4417 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4418 {
4419 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4420 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4421 }
4422
4423 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4424 {
4425 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4426 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4427 }
4428
4429 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4430 {
4431 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4432 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4433 }
4434
4435 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4436 {
4437 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4438 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4439 }
4440
4441 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4442 {
4443 struct kvm_segment var;
4444 u32 ar;
4445
4446 vmx_get_segment(vcpu, &var, seg);
4447 var.dpl = 0x3;
4448 if (seg == VCPU_SREG_CS)
4449 var.type = 0x3;
4450 ar = vmx_segment_access_rights(&var);
4451
4452 if (var.base != (var.selector << 4))
4453 return false;
4454 if (var.limit != 0xffff)
4455 return false;
4456 if (ar != 0xf3)
4457 return false;
4458
4459 return true;
4460 }
4461
4462 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4463 {
4464 struct kvm_segment cs;
4465 unsigned int cs_rpl;
4466
4467 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4468 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4469
4470 if (cs.unusable)
4471 return false;
4472 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4473 return false;
4474 if (!cs.s)
4475 return false;
4476 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4477 if (cs.dpl > cs_rpl)
4478 return false;
4479 } else {
4480 if (cs.dpl != cs_rpl)
4481 return false;
4482 }
4483 if (!cs.present)
4484 return false;
4485
4486 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4487 return true;
4488 }
4489
4490 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4491 {
4492 struct kvm_segment ss;
4493 unsigned int ss_rpl;
4494
4495 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4496 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4497
4498 if (ss.unusable)
4499 return true;
4500 if (ss.type != 3 && ss.type != 7)
4501 return false;
4502 if (!ss.s)
4503 return false;
4504 if (ss.dpl != ss_rpl) /* DPL != RPL */
4505 return false;
4506 if (!ss.present)
4507 return false;
4508
4509 return true;
4510 }
4511
4512 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4513 {
4514 struct kvm_segment var;
4515 unsigned int rpl;
4516
4517 vmx_get_segment(vcpu, &var, seg);
4518 rpl = var.selector & SEGMENT_RPL_MASK;
4519
4520 if (var.unusable)
4521 return true;
4522 if (!var.s)
4523 return false;
4524 if (!var.present)
4525 return false;
4526 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4527 if (var.dpl < rpl) /* DPL < RPL */
4528 return false;
4529 }
4530
4531 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4532 * rights flags
4533 */
4534 return true;
4535 }
4536
4537 static bool tr_valid(struct kvm_vcpu *vcpu)
4538 {
4539 struct kvm_segment tr;
4540
4541 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4542
4543 if (tr.unusable)
4544 return false;
4545 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4546 return false;
4547 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4548 return false;
4549 if (!tr.present)
4550 return false;
4551
4552 return true;
4553 }
4554
4555 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4556 {
4557 struct kvm_segment ldtr;
4558
4559 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4560
4561 if (ldtr.unusable)
4562 return true;
4563 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4564 return false;
4565 if (ldtr.type != 2)
4566 return false;
4567 if (!ldtr.present)
4568 return false;
4569
4570 return true;
4571 }
4572
4573 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4574 {
4575 struct kvm_segment cs, ss;
4576
4577 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4578 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4579
4580 return ((cs.selector & SEGMENT_RPL_MASK) ==
4581 (ss.selector & SEGMENT_RPL_MASK));
4582 }
4583
4584 /*
4585 * Check if guest state is valid. Returns true if valid, false if
4586 * not.
4587 * We assume that registers are always usable
4588 */
4589 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4590 {
4591 if (enable_unrestricted_guest)
4592 return true;
4593
4594 /* real mode guest state checks */
4595 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4596 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4597 return false;
4598 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4599 return false;
4600 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4601 return false;
4602 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4603 return false;
4604 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4605 return false;
4606 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4607 return false;
4608 } else {
4609 /* protected mode guest state checks */
4610 if (!cs_ss_rpl_check(vcpu))
4611 return false;
4612 if (!code_segment_valid(vcpu))
4613 return false;
4614 if (!stack_segment_valid(vcpu))
4615 return false;
4616 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4617 return false;
4618 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4619 return false;
4620 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4621 return false;
4622 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4623 return false;
4624 if (!tr_valid(vcpu))
4625 return false;
4626 if (!ldtr_valid(vcpu))
4627 return false;
4628 }
4629 /* TODO:
4630 * - Add checks on RIP
4631 * - Add checks on RFLAGS
4632 */
4633
4634 return true;
4635 }
4636
4637 static int init_rmode_tss(struct kvm *kvm)
4638 {
4639 gfn_t fn;
4640 u16 data = 0;
4641 int idx, r;
4642
4643 idx = srcu_read_lock(&kvm->srcu);
4644 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4645 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4646 if (r < 0)
4647 goto out;
4648 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4649 r = kvm_write_guest_page(kvm, fn++, &data,
4650 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4651 if (r < 0)
4652 goto out;
4653 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4654 if (r < 0)
4655 goto out;
4656 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4657 if (r < 0)
4658 goto out;
4659 data = ~0;
4660 r = kvm_write_guest_page(kvm, fn, &data,
4661 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4662 sizeof(u8));
4663 out:
4664 srcu_read_unlock(&kvm->srcu, idx);
4665 return r;
4666 }
4667
4668 static int init_rmode_identity_map(struct kvm *kvm)
4669 {
4670 int i, idx, r = 0;
4671 kvm_pfn_t identity_map_pfn;
4672 u32 tmp;
4673
4674 if (!enable_ept)
4675 return 0;
4676
4677 /* Protect kvm->arch.ept_identity_pagetable_done. */
4678 mutex_lock(&kvm->slots_lock);
4679
4680 if (likely(kvm->arch.ept_identity_pagetable_done))
4681 goto out2;
4682
4683 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4684
4685 r = alloc_identity_pagetable(kvm);
4686 if (r < 0)
4687 goto out2;
4688
4689 idx = srcu_read_lock(&kvm->srcu);
4690 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4691 if (r < 0)
4692 goto out;
4693 /* Set up identity-mapping pagetable for EPT in real mode */
4694 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4695 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4696 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4697 r = kvm_write_guest_page(kvm, identity_map_pfn,
4698 &tmp, i * sizeof(tmp), sizeof(tmp));
4699 if (r < 0)
4700 goto out;
4701 }
4702 kvm->arch.ept_identity_pagetable_done = true;
4703
4704 out:
4705 srcu_read_unlock(&kvm->srcu, idx);
4706
4707 out2:
4708 mutex_unlock(&kvm->slots_lock);
4709 return r;
4710 }
4711
4712 static void seg_setup(int seg)
4713 {
4714 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4715 unsigned int ar;
4716
4717 vmcs_write16(sf->selector, 0);
4718 vmcs_writel(sf->base, 0);
4719 vmcs_write32(sf->limit, 0xffff);
4720 ar = 0x93;
4721 if (seg == VCPU_SREG_CS)
4722 ar |= 0x08; /* code segment */
4723
4724 vmcs_write32(sf->ar_bytes, ar);
4725 }
4726
4727 static int alloc_apic_access_page(struct kvm *kvm)
4728 {
4729 struct page *page;
4730 int r = 0;
4731
4732 mutex_lock(&kvm->slots_lock);
4733 if (kvm->arch.apic_access_page_done)
4734 goto out;
4735 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4736 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4737 if (r)
4738 goto out;
4739
4740 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4741 if (is_error_page(page)) {
4742 r = -EFAULT;
4743 goto out;
4744 }
4745
4746 /*
4747 * Do not pin the page in memory, so that memory hot-unplug
4748 * is able to migrate it.
4749 */
4750 put_page(page);
4751 kvm->arch.apic_access_page_done = true;
4752 out:
4753 mutex_unlock(&kvm->slots_lock);
4754 return r;
4755 }
4756
4757 static int alloc_identity_pagetable(struct kvm *kvm)
4758 {
4759 /* Called with kvm->slots_lock held. */
4760
4761 int r = 0;
4762
4763 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4764
4765 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4766 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4767
4768 return r;
4769 }
4770
4771 static int allocate_vpid(void)
4772 {
4773 int vpid;
4774
4775 if (!enable_vpid)
4776 return 0;
4777 spin_lock(&vmx_vpid_lock);
4778 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4779 if (vpid < VMX_NR_VPIDS)
4780 __set_bit(vpid, vmx_vpid_bitmap);
4781 else
4782 vpid = 0;
4783 spin_unlock(&vmx_vpid_lock);
4784 return vpid;
4785 }
4786
4787 static void free_vpid(int vpid)
4788 {
4789 if (!enable_vpid || vpid == 0)
4790 return;
4791 spin_lock(&vmx_vpid_lock);
4792 __clear_bit(vpid, vmx_vpid_bitmap);
4793 spin_unlock(&vmx_vpid_lock);
4794 }
4795
4796 #define MSR_TYPE_R 1
4797 #define MSR_TYPE_W 2
4798 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4799 u32 msr, int type)
4800 {
4801 int f = sizeof(unsigned long);
4802
4803 if (!cpu_has_vmx_msr_bitmap())
4804 return;
4805
4806 /*
4807 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4808 * have the write-low and read-high bitmap offsets the wrong way round.
4809 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4810 */
4811 if (msr <= 0x1fff) {
4812 if (type & MSR_TYPE_R)
4813 /* read-low */
4814 __clear_bit(msr, msr_bitmap + 0x000 / f);
4815
4816 if (type & MSR_TYPE_W)
4817 /* write-low */
4818 __clear_bit(msr, msr_bitmap + 0x800 / f);
4819
4820 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4821 msr &= 0x1fff;
4822 if (type & MSR_TYPE_R)
4823 /* read-high */
4824 __clear_bit(msr, msr_bitmap + 0x400 / f);
4825
4826 if (type & MSR_TYPE_W)
4827 /* write-high */
4828 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4829
4830 }
4831 }
4832
4833 /*
4834 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4835 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4836 */
4837 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4838 unsigned long *msr_bitmap_nested,
4839 u32 msr, int type)
4840 {
4841 int f = sizeof(unsigned long);
4842
4843 if (!cpu_has_vmx_msr_bitmap()) {
4844 WARN_ON(1);
4845 return;
4846 }
4847
4848 /*
4849 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4850 * have the write-low and read-high bitmap offsets the wrong way round.
4851 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4852 */
4853 if (msr <= 0x1fff) {
4854 if (type & MSR_TYPE_R &&
4855 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4856 /* read-low */
4857 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4858
4859 if (type & MSR_TYPE_W &&
4860 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4861 /* write-low */
4862 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4863
4864 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4865 msr &= 0x1fff;
4866 if (type & MSR_TYPE_R &&
4867 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4868 /* read-high */
4869 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4870
4871 if (type & MSR_TYPE_W &&
4872 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4873 /* write-high */
4874 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4875
4876 }
4877 }
4878
4879 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4880 {
4881 if (!longmode_only)
4882 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4883 msr, MSR_TYPE_R | MSR_TYPE_W);
4884 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4885 msr, MSR_TYPE_R | MSR_TYPE_W);
4886 }
4887
4888 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4889 {
4890 if (apicv_active) {
4891 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4892 msr, type);
4893 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4894 msr, type);
4895 } else {
4896 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4897 msr, type);
4898 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4899 msr, type);
4900 }
4901 }
4902
4903 static bool vmx_get_enable_apicv(void)
4904 {
4905 return enable_apicv;
4906 }
4907
4908 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4909 {
4910 struct vcpu_vmx *vmx = to_vmx(vcpu);
4911 int max_irr;
4912 void *vapic_page;
4913 u16 status;
4914
4915 if (vmx->nested.pi_desc &&
4916 vmx->nested.pi_pending) {
4917 vmx->nested.pi_pending = false;
4918 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4919 return;
4920
4921 max_irr = find_last_bit(
4922 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4923
4924 if (max_irr == 256)
4925 return;
4926
4927 vapic_page = kmap(vmx->nested.virtual_apic_page);
4928 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4929 kunmap(vmx->nested.virtual_apic_page);
4930
4931 status = vmcs_read16(GUEST_INTR_STATUS);
4932 if ((u8)max_irr > ((u8)status & 0xff)) {
4933 status &= ~0xff;
4934 status |= (u8)max_irr;
4935 vmcs_write16(GUEST_INTR_STATUS, status);
4936 }
4937 }
4938 }
4939
4940 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4941 {
4942 #ifdef CONFIG_SMP
4943 if (vcpu->mode == IN_GUEST_MODE) {
4944 struct vcpu_vmx *vmx = to_vmx(vcpu);
4945
4946 /*
4947 * Currently, we don't support urgent interrupt,
4948 * all interrupts are recognized as non-urgent
4949 * interrupt, so we cannot post interrupts when
4950 * 'SN' is set.
4951 *
4952 * If the vcpu is in guest mode, it means it is
4953 * running instead of being scheduled out and
4954 * waiting in the run queue, and that's the only
4955 * case when 'SN' is set currently, warning if
4956 * 'SN' is set.
4957 */
4958 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4959
4960 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4961 POSTED_INTR_VECTOR);
4962 return true;
4963 }
4964 #endif
4965 return false;
4966 }
4967
4968 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4969 int vector)
4970 {
4971 struct vcpu_vmx *vmx = to_vmx(vcpu);
4972
4973 if (is_guest_mode(vcpu) &&
4974 vector == vmx->nested.posted_intr_nv) {
4975 /* the PIR and ON have been set by L1. */
4976 kvm_vcpu_trigger_posted_interrupt(vcpu);
4977 /*
4978 * If a posted intr is not recognized by hardware,
4979 * we will accomplish it in the next vmentry.
4980 */
4981 vmx->nested.pi_pending = true;
4982 kvm_make_request(KVM_REQ_EVENT, vcpu);
4983 return 0;
4984 }
4985 return -1;
4986 }
4987 /*
4988 * Send interrupt to vcpu via posted interrupt way.
4989 * 1. If target vcpu is running(non-root mode), send posted interrupt
4990 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4991 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4992 * interrupt from PIR in next vmentry.
4993 */
4994 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4995 {
4996 struct vcpu_vmx *vmx = to_vmx(vcpu);
4997 int r;
4998
4999 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5000 if (!r)
5001 return;
5002
5003 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5004 return;
5005
5006 /* If a previous notification has sent the IPI, nothing to do. */
5007 if (pi_test_and_set_on(&vmx->pi_desc))
5008 return;
5009
5010 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5011 kvm_vcpu_kick(vcpu);
5012 }
5013
5014 /*
5015 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5016 * will not change in the lifetime of the guest.
5017 * Note that host-state that does change is set elsewhere. E.g., host-state
5018 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5019 */
5020 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5021 {
5022 u32 low32, high32;
5023 unsigned long tmpl;
5024 struct desc_ptr dt;
5025 unsigned long cr0, cr3, cr4;
5026
5027 cr0 = read_cr0();
5028 WARN_ON(cr0 & X86_CR0_TS);
5029 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5030
5031 /*
5032 * Save the most likely value for this task's CR3 in the VMCS.
5033 * We can't use __get_current_cr3_fast() because we're not atomic.
5034 */
5035 cr3 = __read_cr3();
5036 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5037 vmx->host_state.vmcs_host_cr3 = cr3;
5038
5039 /* Save the most likely value for this task's CR4 in the VMCS. */
5040 cr4 = cr4_read_shadow();
5041 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5042 vmx->host_state.vmcs_host_cr4 = cr4;
5043
5044 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5045 #ifdef CONFIG_X86_64
5046 /*
5047 * Load null selectors, so we can avoid reloading them in
5048 * __vmx_load_host_state(), in case userspace uses the null selectors
5049 * too (the expected case).
5050 */
5051 vmcs_write16(HOST_DS_SELECTOR, 0);
5052 vmcs_write16(HOST_ES_SELECTOR, 0);
5053 #else
5054 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5055 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5056 #endif
5057 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5058 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5059
5060 native_store_idt(&dt);
5061 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5062 vmx->host_idt_base = dt.address;
5063
5064 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5065
5066 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5067 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5068 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5069 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5070
5071 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5072 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5073 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5074 }
5075 }
5076
5077 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5078 {
5079 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5080 if (enable_ept)
5081 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5082 if (is_guest_mode(&vmx->vcpu))
5083 vmx->vcpu.arch.cr4_guest_owned_bits &=
5084 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5085 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5086 }
5087
5088 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5089 {
5090 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5091
5092 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5093 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5094 /* Enable the preemption timer dynamically */
5095 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5096 return pin_based_exec_ctrl;
5097 }
5098
5099 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5100 {
5101 struct vcpu_vmx *vmx = to_vmx(vcpu);
5102
5103 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5104 if (cpu_has_secondary_exec_ctrls()) {
5105 if (kvm_vcpu_apicv_active(vcpu))
5106 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5107 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5108 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5109 else
5110 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5111 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5112 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5113 }
5114
5115 if (cpu_has_vmx_msr_bitmap())
5116 vmx_set_msr_bitmap(vcpu);
5117 }
5118
5119 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5120 {
5121 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5122
5123 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5124 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5125
5126 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5127 exec_control &= ~CPU_BASED_TPR_SHADOW;
5128 #ifdef CONFIG_X86_64
5129 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5130 CPU_BASED_CR8_LOAD_EXITING;
5131 #endif
5132 }
5133 if (!enable_ept)
5134 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5135 CPU_BASED_CR3_LOAD_EXITING |
5136 CPU_BASED_INVLPG_EXITING;
5137 return exec_control;
5138 }
5139
5140 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5141 {
5142 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5143 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5144 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5145 if (vmx->vpid == 0)
5146 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5147 if (!enable_ept) {
5148 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5149 enable_unrestricted_guest = 0;
5150 /* Enable INVPCID for non-ept guests may cause performance regression. */
5151 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5152 }
5153 if (!enable_unrestricted_guest)
5154 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5155 if (!ple_gap)
5156 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5157 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5158 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5159 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5160 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5161 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5162 (handle_vmptrld).
5163 We can NOT enable shadow_vmcs here because we don't have yet
5164 a current VMCS12
5165 */
5166 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5167
5168 if (!enable_pml)
5169 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5170
5171 return exec_control;
5172 }
5173
5174 static void ept_set_mmio_spte_mask(void)
5175 {
5176 /*
5177 * EPT Misconfigurations can be generated if the value of bits 2:0
5178 * of an EPT paging-structure entry is 110b (write/execute).
5179 */
5180 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5181 VMX_EPT_MISCONFIG_WX_VALUE);
5182 }
5183
5184 #define VMX_XSS_EXIT_BITMAP 0
5185 /*
5186 * Sets up the vmcs for emulated real mode.
5187 */
5188 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5189 {
5190 #ifdef CONFIG_X86_64
5191 unsigned long a;
5192 #endif
5193 int i;
5194
5195 /* I/O */
5196 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5197 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5198
5199 if (enable_shadow_vmcs) {
5200 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5201 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5202 }
5203 if (cpu_has_vmx_msr_bitmap())
5204 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5205
5206 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5207
5208 /* Control */
5209 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5210 vmx->hv_deadline_tsc = -1;
5211
5212 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5213
5214 if (cpu_has_secondary_exec_ctrls()) {
5215 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5216 vmx_secondary_exec_control(vmx));
5217 }
5218
5219 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5220 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5221 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5222 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5223 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5224
5225 vmcs_write16(GUEST_INTR_STATUS, 0);
5226
5227 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5228 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5229 }
5230
5231 if (ple_gap) {
5232 vmcs_write32(PLE_GAP, ple_gap);
5233 vmx->ple_window = ple_window;
5234 vmx->ple_window_dirty = true;
5235 }
5236
5237 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5238 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5239 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5240
5241 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5242 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5243 vmx_set_constant_host_state(vmx);
5244 #ifdef CONFIG_X86_64
5245 rdmsrl(MSR_FS_BASE, a);
5246 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5247 rdmsrl(MSR_GS_BASE, a);
5248 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5249 #else
5250 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5251 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5252 #endif
5253
5254 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5255 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5256 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5257 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5258 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5259
5260 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5261 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5262
5263 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5264 u32 index = vmx_msr_index[i];
5265 u32 data_low, data_high;
5266 int j = vmx->nmsrs;
5267
5268 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5269 continue;
5270 if (wrmsr_safe(index, data_low, data_high) < 0)
5271 continue;
5272 vmx->guest_msrs[j].index = i;
5273 vmx->guest_msrs[j].data = 0;
5274 vmx->guest_msrs[j].mask = -1ull;
5275 ++vmx->nmsrs;
5276 }
5277
5278
5279 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5280
5281 /* 22.2.1, 20.8.1 */
5282 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5283
5284 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5285 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5286
5287 set_cr4_guest_host_mask(vmx);
5288
5289 if (vmx_xsaves_supported())
5290 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5291
5292 if (enable_pml) {
5293 ASSERT(vmx->pml_pg);
5294 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5295 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5296 }
5297
5298 return 0;
5299 }
5300
5301 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5302 {
5303 struct vcpu_vmx *vmx = to_vmx(vcpu);
5304 struct msr_data apic_base_msr;
5305 u64 cr0;
5306
5307 vmx->rmode.vm86_active = 0;
5308
5309 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5310 kvm_set_cr8(vcpu, 0);
5311
5312 if (!init_event) {
5313 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5314 MSR_IA32_APICBASE_ENABLE;
5315 if (kvm_vcpu_is_reset_bsp(vcpu))
5316 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5317 apic_base_msr.host_initiated = true;
5318 kvm_set_apic_base(vcpu, &apic_base_msr);
5319 }
5320
5321 vmx_segment_cache_clear(vmx);
5322
5323 seg_setup(VCPU_SREG_CS);
5324 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5325 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5326
5327 seg_setup(VCPU_SREG_DS);
5328 seg_setup(VCPU_SREG_ES);
5329 seg_setup(VCPU_SREG_FS);
5330 seg_setup(VCPU_SREG_GS);
5331 seg_setup(VCPU_SREG_SS);
5332
5333 vmcs_write16(GUEST_TR_SELECTOR, 0);
5334 vmcs_writel(GUEST_TR_BASE, 0);
5335 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5336 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5337
5338 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5339 vmcs_writel(GUEST_LDTR_BASE, 0);
5340 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5341 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5342
5343 if (!init_event) {
5344 vmcs_write32(GUEST_SYSENTER_CS, 0);
5345 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5346 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5347 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5348 }
5349
5350 vmcs_writel(GUEST_RFLAGS, 0x02);
5351 kvm_rip_write(vcpu, 0xfff0);
5352
5353 vmcs_writel(GUEST_GDTR_BASE, 0);
5354 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5355
5356 vmcs_writel(GUEST_IDTR_BASE, 0);
5357 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5358
5359 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5360 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5361 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5362
5363 setup_msrs(vmx);
5364
5365 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5366
5367 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5368 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5369 if (cpu_need_tpr_shadow(vcpu))
5370 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5371 __pa(vcpu->arch.apic->regs));
5372 vmcs_write32(TPR_THRESHOLD, 0);
5373 }
5374
5375 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5376
5377 if (kvm_vcpu_apicv_active(vcpu))
5378 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5379
5380 if (vmx->vpid != 0)
5381 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5382
5383 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5384 vmx->vcpu.arch.cr0 = cr0;
5385 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5386 vmx_set_cr4(vcpu, 0);
5387 vmx_set_efer(vcpu, 0);
5388
5389 update_exception_bitmap(vcpu);
5390
5391 vpid_sync_context(vmx->vpid);
5392 }
5393
5394 /*
5395 * In nested virtualization, check if L1 asked to exit on external interrupts.
5396 * For most existing hypervisors, this will always return true.
5397 */
5398 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5399 {
5400 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5401 PIN_BASED_EXT_INTR_MASK;
5402 }
5403
5404 /*
5405 * In nested virtualization, check if L1 has set
5406 * VM_EXIT_ACK_INTR_ON_EXIT
5407 */
5408 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5409 {
5410 return get_vmcs12(vcpu)->vm_exit_controls &
5411 VM_EXIT_ACK_INTR_ON_EXIT;
5412 }
5413
5414 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5415 {
5416 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5417 PIN_BASED_NMI_EXITING;
5418 }
5419
5420 static void enable_irq_window(struct kvm_vcpu *vcpu)
5421 {
5422 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5423 CPU_BASED_VIRTUAL_INTR_PENDING);
5424 }
5425
5426 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5427 {
5428 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5429 enable_irq_window(vcpu);
5430 return;
5431 }
5432
5433 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5434 CPU_BASED_VIRTUAL_NMI_PENDING);
5435 }
5436
5437 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5438 {
5439 struct vcpu_vmx *vmx = to_vmx(vcpu);
5440 uint32_t intr;
5441 int irq = vcpu->arch.interrupt.nr;
5442
5443 trace_kvm_inj_virq(irq);
5444
5445 ++vcpu->stat.irq_injections;
5446 if (vmx->rmode.vm86_active) {
5447 int inc_eip = 0;
5448 if (vcpu->arch.interrupt.soft)
5449 inc_eip = vcpu->arch.event_exit_inst_len;
5450 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5451 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5452 return;
5453 }
5454 intr = irq | INTR_INFO_VALID_MASK;
5455 if (vcpu->arch.interrupt.soft) {
5456 intr |= INTR_TYPE_SOFT_INTR;
5457 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5458 vmx->vcpu.arch.event_exit_inst_len);
5459 } else
5460 intr |= INTR_TYPE_EXT_INTR;
5461 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5462 }
5463
5464 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5465 {
5466 struct vcpu_vmx *vmx = to_vmx(vcpu);
5467
5468 if (!is_guest_mode(vcpu)) {
5469 ++vcpu->stat.nmi_injections;
5470 vmx->nmi_known_unmasked = false;
5471 }
5472
5473 if (vmx->rmode.vm86_active) {
5474 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5475 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5476 return;
5477 }
5478
5479 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5480 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5481 }
5482
5483 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5484 {
5485 if (to_vmx(vcpu)->nmi_known_unmasked)
5486 return false;
5487 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5488 }
5489
5490 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5491 {
5492 struct vcpu_vmx *vmx = to_vmx(vcpu);
5493
5494 vmx->nmi_known_unmasked = !masked;
5495 if (masked)
5496 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5497 GUEST_INTR_STATE_NMI);
5498 else
5499 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5500 GUEST_INTR_STATE_NMI);
5501 }
5502
5503 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5504 {
5505 if (to_vmx(vcpu)->nested.nested_run_pending)
5506 return 0;
5507
5508 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5509 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5510 | GUEST_INTR_STATE_NMI));
5511 }
5512
5513 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5514 {
5515 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5516 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5517 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5518 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5519 }
5520
5521 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5522 {
5523 int ret;
5524
5525 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5526 PAGE_SIZE * 3);
5527 if (ret)
5528 return ret;
5529 kvm->arch.tss_addr = addr;
5530 return init_rmode_tss(kvm);
5531 }
5532
5533 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5534 {
5535 switch (vec) {
5536 case BP_VECTOR:
5537 /*
5538 * Update instruction length as we may reinject the exception
5539 * from user space while in guest debugging mode.
5540 */
5541 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5542 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5543 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5544 return false;
5545 /* fall through */
5546 case DB_VECTOR:
5547 if (vcpu->guest_debug &
5548 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5549 return false;
5550 /* fall through */
5551 case DE_VECTOR:
5552 case OF_VECTOR:
5553 case BR_VECTOR:
5554 case UD_VECTOR:
5555 case DF_VECTOR:
5556 case SS_VECTOR:
5557 case GP_VECTOR:
5558 case MF_VECTOR:
5559 return true;
5560 break;
5561 }
5562 return false;
5563 }
5564
5565 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5566 int vec, u32 err_code)
5567 {
5568 /*
5569 * Instruction with address size override prefix opcode 0x67
5570 * Cause the #SS fault with 0 error code in VM86 mode.
5571 */
5572 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5573 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5574 if (vcpu->arch.halt_request) {
5575 vcpu->arch.halt_request = 0;
5576 return kvm_vcpu_halt(vcpu);
5577 }
5578 return 1;
5579 }
5580 return 0;
5581 }
5582
5583 /*
5584 * Forward all other exceptions that are valid in real mode.
5585 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5586 * the required debugging infrastructure rework.
5587 */
5588 kvm_queue_exception(vcpu, vec);
5589 return 1;
5590 }
5591
5592 /*
5593 * Trigger machine check on the host. We assume all the MSRs are already set up
5594 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5595 * We pass a fake environment to the machine check handler because we want
5596 * the guest to be always treated like user space, no matter what context
5597 * it used internally.
5598 */
5599 static void kvm_machine_check(void)
5600 {
5601 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5602 struct pt_regs regs = {
5603 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5604 .flags = X86_EFLAGS_IF,
5605 };
5606
5607 do_machine_check(&regs, 0);
5608 #endif
5609 }
5610
5611 static int handle_machine_check(struct kvm_vcpu *vcpu)
5612 {
5613 /* already handled by vcpu_run */
5614 return 1;
5615 }
5616
5617 static int handle_exception(struct kvm_vcpu *vcpu)
5618 {
5619 struct vcpu_vmx *vmx = to_vmx(vcpu);
5620 struct kvm_run *kvm_run = vcpu->run;
5621 u32 intr_info, ex_no, error_code;
5622 unsigned long cr2, rip, dr6;
5623 u32 vect_info;
5624 enum emulation_result er;
5625
5626 vect_info = vmx->idt_vectoring_info;
5627 intr_info = vmx->exit_intr_info;
5628
5629 if (is_machine_check(intr_info))
5630 return handle_machine_check(vcpu);
5631
5632 if (is_nmi(intr_info))
5633 return 1; /* already handled by vmx_vcpu_run() */
5634
5635 if (is_invalid_opcode(intr_info)) {
5636 if (is_guest_mode(vcpu)) {
5637 kvm_queue_exception(vcpu, UD_VECTOR);
5638 return 1;
5639 }
5640 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5641 if (er != EMULATE_DONE)
5642 kvm_queue_exception(vcpu, UD_VECTOR);
5643 return 1;
5644 }
5645
5646 error_code = 0;
5647 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5648 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5649
5650 /*
5651 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5652 * MMIO, it is better to report an internal error.
5653 * See the comments in vmx_handle_exit.
5654 */
5655 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5656 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5657 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5658 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5659 vcpu->run->internal.ndata = 3;
5660 vcpu->run->internal.data[0] = vect_info;
5661 vcpu->run->internal.data[1] = intr_info;
5662 vcpu->run->internal.data[2] = error_code;
5663 return 0;
5664 }
5665
5666 if (is_page_fault(intr_info)) {
5667 /* EPT won't cause page fault directly */
5668 BUG_ON(enable_ept);
5669 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5670 trace_kvm_page_fault(cr2, error_code);
5671
5672 if (kvm_event_needs_reinjection(vcpu))
5673 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5674 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5675 }
5676
5677 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5678
5679 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5680 return handle_rmode_exception(vcpu, ex_no, error_code);
5681
5682 switch (ex_no) {
5683 case AC_VECTOR:
5684 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5685 return 1;
5686 case DB_VECTOR:
5687 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5688 if (!(vcpu->guest_debug &
5689 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5690 vcpu->arch.dr6 &= ~15;
5691 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5692 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5693 skip_emulated_instruction(vcpu);
5694
5695 kvm_queue_exception(vcpu, DB_VECTOR);
5696 return 1;
5697 }
5698 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5699 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5700 /* fall through */
5701 case BP_VECTOR:
5702 /*
5703 * Update instruction length as we may reinject #BP from
5704 * user space while in guest debugging mode. Reading it for
5705 * #DB as well causes no harm, it is not used in that case.
5706 */
5707 vmx->vcpu.arch.event_exit_inst_len =
5708 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5709 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5710 rip = kvm_rip_read(vcpu);
5711 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5712 kvm_run->debug.arch.exception = ex_no;
5713 break;
5714 default:
5715 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5716 kvm_run->ex.exception = ex_no;
5717 kvm_run->ex.error_code = error_code;
5718 break;
5719 }
5720 return 0;
5721 }
5722
5723 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5724 {
5725 ++vcpu->stat.irq_exits;
5726 return 1;
5727 }
5728
5729 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5730 {
5731 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5732 return 0;
5733 }
5734
5735 static int handle_io(struct kvm_vcpu *vcpu)
5736 {
5737 unsigned long exit_qualification;
5738 int size, in, string, ret;
5739 unsigned port;
5740
5741 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5742 string = (exit_qualification & 16) != 0;
5743 in = (exit_qualification & 8) != 0;
5744
5745 ++vcpu->stat.io_exits;
5746
5747 if (string || in)
5748 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5749
5750 port = exit_qualification >> 16;
5751 size = (exit_qualification & 7) + 1;
5752
5753 ret = kvm_skip_emulated_instruction(vcpu);
5754
5755 /*
5756 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5757 * KVM_EXIT_DEBUG here.
5758 */
5759 return kvm_fast_pio_out(vcpu, size, port) && ret;
5760 }
5761
5762 static void
5763 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5764 {
5765 /*
5766 * Patch in the VMCALL instruction:
5767 */
5768 hypercall[0] = 0x0f;
5769 hypercall[1] = 0x01;
5770 hypercall[2] = 0xc1;
5771 }
5772
5773 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5774 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5775 {
5776 if (is_guest_mode(vcpu)) {
5777 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5778 unsigned long orig_val = val;
5779
5780 /*
5781 * We get here when L2 changed cr0 in a way that did not change
5782 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5783 * but did change L0 shadowed bits. So we first calculate the
5784 * effective cr0 value that L1 would like to write into the
5785 * hardware. It consists of the L2-owned bits from the new
5786 * value combined with the L1-owned bits from L1's guest_cr0.
5787 */
5788 val = (val & ~vmcs12->cr0_guest_host_mask) |
5789 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5790
5791 if (!nested_guest_cr0_valid(vcpu, val))
5792 return 1;
5793
5794 if (kvm_set_cr0(vcpu, val))
5795 return 1;
5796 vmcs_writel(CR0_READ_SHADOW, orig_val);
5797 return 0;
5798 } else {
5799 if (to_vmx(vcpu)->nested.vmxon &&
5800 !nested_host_cr0_valid(vcpu, val))
5801 return 1;
5802
5803 return kvm_set_cr0(vcpu, val);
5804 }
5805 }
5806
5807 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5808 {
5809 if (is_guest_mode(vcpu)) {
5810 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5811 unsigned long orig_val = val;
5812
5813 /* analogously to handle_set_cr0 */
5814 val = (val & ~vmcs12->cr4_guest_host_mask) |
5815 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5816 if (kvm_set_cr4(vcpu, val))
5817 return 1;
5818 vmcs_writel(CR4_READ_SHADOW, orig_val);
5819 return 0;
5820 } else
5821 return kvm_set_cr4(vcpu, val);
5822 }
5823
5824 static int handle_cr(struct kvm_vcpu *vcpu)
5825 {
5826 unsigned long exit_qualification, val;
5827 int cr;
5828 int reg;
5829 int err;
5830 int ret;
5831
5832 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5833 cr = exit_qualification & 15;
5834 reg = (exit_qualification >> 8) & 15;
5835 switch ((exit_qualification >> 4) & 3) {
5836 case 0: /* mov to cr */
5837 val = kvm_register_readl(vcpu, reg);
5838 trace_kvm_cr_write(cr, val);
5839 switch (cr) {
5840 case 0:
5841 err = handle_set_cr0(vcpu, val);
5842 return kvm_complete_insn_gp(vcpu, err);
5843 case 3:
5844 err = kvm_set_cr3(vcpu, val);
5845 return kvm_complete_insn_gp(vcpu, err);
5846 case 4:
5847 err = handle_set_cr4(vcpu, val);
5848 return kvm_complete_insn_gp(vcpu, err);
5849 case 8: {
5850 u8 cr8_prev = kvm_get_cr8(vcpu);
5851 u8 cr8 = (u8)val;
5852 err = kvm_set_cr8(vcpu, cr8);
5853 ret = kvm_complete_insn_gp(vcpu, err);
5854 if (lapic_in_kernel(vcpu))
5855 return ret;
5856 if (cr8_prev <= cr8)
5857 return ret;
5858 /*
5859 * TODO: we might be squashing a
5860 * KVM_GUESTDBG_SINGLESTEP-triggered
5861 * KVM_EXIT_DEBUG here.
5862 */
5863 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5864 return 0;
5865 }
5866 }
5867 break;
5868 case 2: /* clts */
5869 WARN_ONCE(1, "Guest should always own CR0.TS");
5870 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5871 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5872 return kvm_skip_emulated_instruction(vcpu);
5873 case 1: /*mov from cr*/
5874 switch (cr) {
5875 case 3:
5876 val = kvm_read_cr3(vcpu);
5877 kvm_register_write(vcpu, reg, val);
5878 trace_kvm_cr_read(cr, val);
5879 return kvm_skip_emulated_instruction(vcpu);
5880 case 8:
5881 val = kvm_get_cr8(vcpu);
5882 kvm_register_write(vcpu, reg, val);
5883 trace_kvm_cr_read(cr, val);
5884 return kvm_skip_emulated_instruction(vcpu);
5885 }
5886 break;
5887 case 3: /* lmsw */
5888 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5889 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5890 kvm_lmsw(vcpu, val);
5891
5892 return kvm_skip_emulated_instruction(vcpu);
5893 default:
5894 break;
5895 }
5896 vcpu->run->exit_reason = 0;
5897 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5898 (int)(exit_qualification >> 4) & 3, cr);
5899 return 0;
5900 }
5901
5902 static int handle_dr(struct kvm_vcpu *vcpu)
5903 {
5904 unsigned long exit_qualification;
5905 int dr, dr7, reg;
5906
5907 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5908 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5909
5910 /* First, if DR does not exist, trigger UD */
5911 if (!kvm_require_dr(vcpu, dr))
5912 return 1;
5913
5914 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5915 if (!kvm_require_cpl(vcpu, 0))
5916 return 1;
5917 dr7 = vmcs_readl(GUEST_DR7);
5918 if (dr7 & DR7_GD) {
5919 /*
5920 * As the vm-exit takes precedence over the debug trap, we
5921 * need to emulate the latter, either for the host or the
5922 * guest debugging itself.
5923 */
5924 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5925 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5926 vcpu->run->debug.arch.dr7 = dr7;
5927 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5928 vcpu->run->debug.arch.exception = DB_VECTOR;
5929 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5930 return 0;
5931 } else {
5932 vcpu->arch.dr6 &= ~15;
5933 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5934 kvm_queue_exception(vcpu, DB_VECTOR);
5935 return 1;
5936 }
5937 }
5938
5939 if (vcpu->guest_debug == 0) {
5940 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5941 CPU_BASED_MOV_DR_EXITING);
5942
5943 /*
5944 * No more DR vmexits; force a reload of the debug registers
5945 * and reenter on this instruction. The next vmexit will
5946 * retrieve the full state of the debug registers.
5947 */
5948 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5949 return 1;
5950 }
5951
5952 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5953 if (exit_qualification & TYPE_MOV_FROM_DR) {
5954 unsigned long val;
5955
5956 if (kvm_get_dr(vcpu, dr, &val))
5957 return 1;
5958 kvm_register_write(vcpu, reg, val);
5959 } else
5960 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5961 return 1;
5962
5963 return kvm_skip_emulated_instruction(vcpu);
5964 }
5965
5966 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5967 {
5968 return vcpu->arch.dr6;
5969 }
5970
5971 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5972 {
5973 }
5974
5975 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5976 {
5977 get_debugreg(vcpu->arch.db[0], 0);
5978 get_debugreg(vcpu->arch.db[1], 1);
5979 get_debugreg(vcpu->arch.db[2], 2);
5980 get_debugreg(vcpu->arch.db[3], 3);
5981 get_debugreg(vcpu->arch.dr6, 6);
5982 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5983
5984 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5985 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5986 }
5987
5988 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5989 {
5990 vmcs_writel(GUEST_DR7, val);
5991 }
5992
5993 static int handle_cpuid(struct kvm_vcpu *vcpu)
5994 {
5995 return kvm_emulate_cpuid(vcpu);
5996 }
5997
5998 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5999 {
6000 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6001 struct msr_data msr_info;
6002
6003 msr_info.index = ecx;
6004 msr_info.host_initiated = false;
6005 if (vmx_get_msr(vcpu, &msr_info)) {
6006 trace_kvm_msr_read_ex(ecx);
6007 kvm_inject_gp(vcpu, 0);
6008 return 1;
6009 }
6010
6011 trace_kvm_msr_read(ecx, msr_info.data);
6012
6013 /* FIXME: handling of bits 32:63 of rax, rdx */
6014 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6015 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6016 return kvm_skip_emulated_instruction(vcpu);
6017 }
6018
6019 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6020 {
6021 struct msr_data msr;
6022 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6023 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6024 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6025
6026 msr.data = data;
6027 msr.index = ecx;
6028 msr.host_initiated = false;
6029 if (kvm_set_msr(vcpu, &msr) != 0) {
6030 trace_kvm_msr_write_ex(ecx, data);
6031 kvm_inject_gp(vcpu, 0);
6032 return 1;
6033 }
6034
6035 trace_kvm_msr_write(ecx, data);
6036 return kvm_skip_emulated_instruction(vcpu);
6037 }
6038
6039 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6040 {
6041 kvm_apic_update_ppr(vcpu);
6042 return 1;
6043 }
6044
6045 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6046 {
6047 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6048 CPU_BASED_VIRTUAL_INTR_PENDING);
6049
6050 kvm_make_request(KVM_REQ_EVENT, vcpu);
6051
6052 ++vcpu->stat.irq_window_exits;
6053 return 1;
6054 }
6055
6056 static int handle_halt(struct kvm_vcpu *vcpu)
6057 {
6058 return kvm_emulate_halt(vcpu);
6059 }
6060
6061 static int handle_vmcall(struct kvm_vcpu *vcpu)
6062 {
6063 return kvm_emulate_hypercall(vcpu);
6064 }
6065
6066 static int handle_invd(struct kvm_vcpu *vcpu)
6067 {
6068 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6069 }
6070
6071 static int handle_invlpg(struct kvm_vcpu *vcpu)
6072 {
6073 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6074
6075 kvm_mmu_invlpg(vcpu, exit_qualification);
6076 return kvm_skip_emulated_instruction(vcpu);
6077 }
6078
6079 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6080 {
6081 int err;
6082
6083 err = kvm_rdpmc(vcpu);
6084 return kvm_complete_insn_gp(vcpu, err);
6085 }
6086
6087 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6088 {
6089 return kvm_emulate_wbinvd(vcpu);
6090 }
6091
6092 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6093 {
6094 u64 new_bv = kvm_read_edx_eax(vcpu);
6095 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6096
6097 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6098 return kvm_skip_emulated_instruction(vcpu);
6099 return 1;
6100 }
6101
6102 static int handle_xsaves(struct kvm_vcpu *vcpu)
6103 {
6104 kvm_skip_emulated_instruction(vcpu);
6105 WARN(1, "this should never happen\n");
6106 return 1;
6107 }
6108
6109 static int handle_xrstors(struct kvm_vcpu *vcpu)
6110 {
6111 kvm_skip_emulated_instruction(vcpu);
6112 WARN(1, "this should never happen\n");
6113 return 1;
6114 }
6115
6116 static int handle_apic_access(struct kvm_vcpu *vcpu)
6117 {
6118 if (likely(fasteoi)) {
6119 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6120 int access_type, offset;
6121
6122 access_type = exit_qualification & APIC_ACCESS_TYPE;
6123 offset = exit_qualification & APIC_ACCESS_OFFSET;
6124 /*
6125 * Sane guest uses MOV to write EOI, with written value
6126 * not cared. So make a short-circuit here by avoiding
6127 * heavy instruction emulation.
6128 */
6129 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6130 (offset == APIC_EOI)) {
6131 kvm_lapic_set_eoi(vcpu);
6132 return kvm_skip_emulated_instruction(vcpu);
6133 }
6134 }
6135 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6136 }
6137
6138 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6139 {
6140 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6141 int vector = exit_qualification & 0xff;
6142
6143 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6144 kvm_apic_set_eoi_accelerated(vcpu, vector);
6145 return 1;
6146 }
6147
6148 static int handle_apic_write(struct kvm_vcpu *vcpu)
6149 {
6150 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6151 u32 offset = exit_qualification & 0xfff;
6152
6153 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6154 kvm_apic_write_nodecode(vcpu, offset);
6155 return 1;
6156 }
6157
6158 static int handle_task_switch(struct kvm_vcpu *vcpu)
6159 {
6160 struct vcpu_vmx *vmx = to_vmx(vcpu);
6161 unsigned long exit_qualification;
6162 bool has_error_code = false;
6163 u32 error_code = 0;
6164 u16 tss_selector;
6165 int reason, type, idt_v, idt_index;
6166
6167 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6168 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6169 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6170
6171 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6172
6173 reason = (u32)exit_qualification >> 30;
6174 if (reason == TASK_SWITCH_GATE && idt_v) {
6175 switch (type) {
6176 case INTR_TYPE_NMI_INTR:
6177 vcpu->arch.nmi_injected = false;
6178 vmx_set_nmi_mask(vcpu, true);
6179 break;
6180 case INTR_TYPE_EXT_INTR:
6181 case INTR_TYPE_SOFT_INTR:
6182 kvm_clear_interrupt_queue(vcpu);
6183 break;
6184 case INTR_TYPE_HARD_EXCEPTION:
6185 if (vmx->idt_vectoring_info &
6186 VECTORING_INFO_DELIVER_CODE_MASK) {
6187 has_error_code = true;
6188 error_code =
6189 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6190 }
6191 /* fall through */
6192 case INTR_TYPE_SOFT_EXCEPTION:
6193 kvm_clear_exception_queue(vcpu);
6194 break;
6195 default:
6196 break;
6197 }
6198 }
6199 tss_selector = exit_qualification;
6200
6201 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6202 type != INTR_TYPE_EXT_INTR &&
6203 type != INTR_TYPE_NMI_INTR))
6204 skip_emulated_instruction(vcpu);
6205
6206 if (kvm_task_switch(vcpu, tss_selector,
6207 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6208 has_error_code, error_code) == EMULATE_FAIL) {
6209 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6210 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6211 vcpu->run->internal.ndata = 0;
6212 return 0;
6213 }
6214
6215 /*
6216 * TODO: What about debug traps on tss switch?
6217 * Are we supposed to inject them and update dr6?
6218 */
6219
6220 return 1;
6221 }
6222
6223 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6224 {
6225 unsigned long exit_qualification;
6226 gpa_t gpa;
6227 u32 error_code;
6228
6229 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6230
6231 /*
6232 * EPT violation happened while executing iret from NMI,
6233 * "blocked by NMI" bit has to be set before next VM entry.
6234 * There are errata that may cause this bit to not be set:
6235 * AAK134, BY25.
6236 */
6237 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6238 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6239 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6240
6241 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6242 trace_kvm_page_fault(gpa, exit_qualification);
6243
6244 /* Is it a read fault? */
6245 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6246 ? PFERR_USER_MASK : 0;
6247 /* Is it a write fault? */
6248 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6249 ? PFERR_WRITE_MASK : 0;
6250 /* Is it a fetch fault? */
6251 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6252 ? PFERR_FETCH_MASK : 0;
6253 /* ept page table entry is present? */
6254 error_code |= (exit_qualification &
6255 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6256 EPT_VIOLATION_EXECUTABLE))
6257 ? PFERR_PRESENT_MASK : 0;
6258
6259 vcpu->arch.gpa_available = true;
6260 vcpu->arch.exit_qualification = exit_qualification;
6261
6262 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6263 }
6264
6265 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6266 {
6267 int ret;
6268 gpa_t gpa;
6269
6270 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6271 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6272 trace_kvm_fast_mmio(gpa);
6273 return kvm_skip_emulated_instruction(vcpu);
6274 }
6275
6276 ret = handle_mmio_page_fault(vcpu, gpa, true);
6277 vcpu->arch.gpa_available = true;
6278 if (likely(ret == RET_MMIO_PF_EMULATE))
6279 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6280 EMULATE_DONE;
6281
6282 if (unlikely(ret == RET_MMIO_PF_INVALID))
6283 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6284
6285 if (unlikely(ret == RET_MMIO_PF_RETRY))
6286 return 1;
6287
6288 /* It is the real ept misconfig */
6289 WARN_ON(1);
6290
6291 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6292 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6293
6294 return 0;
6295 }
6296
6297 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6298 {
6299 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6300 CPU_BASED_VIRTUAL_NMI_PENDING);
6301 ++vcpu->stat.nmi_window_exits;
6302 kvm_make_request(KVM_REQ_EVENT, vcpu);
6303
6304 return 1;
6305 }
6306
6307 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6308 {
6309 struct vcpu_vmx *vmx = to_vmx(vcpu);
6310 enum emulation_result err = EMULATE_DONE;
6311 int ret = 1;
6312 u32 cpu_exec_ctrl;
6313 bool intr_window_requested;
6314 unsigned count = 130;
6315
6316 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6317 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6318
6319 while (vmx->emulation_required && count-- != 0) {
6320 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6321 return handle_interrupt_window(&vmx->vcpu);
6322
6323 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6324 return 1;
6325
6326 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6327
6328 if (err == EMULATE_USER_EXIT) {
6329 ++vcpu->stat.mmio_exits;
6330 ret = 0;
6331 goto out;
6332 }
6333
6334 if (err != EMULATE_DONE) {
6335 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6336 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6337 vcpu->run->internal.ndata = 0;
6338 return 0;
6339 }
6340
6341 if (vcpu->arch.halt_request) {
6342 vcpu->arch.halt_request = 0;
6343 ret = kvm_vcpu_halt(vcpu);
6344 goto out;
6345 }
6346
6347 if (signal_pending(current))
6348 goto out;
6349 if (need_resched())
6350 schedule();
6351 }
6352
6353 out:
6354 return ret;
6355 }
6356
6357 static int __grow_ple_window(int val)
6358 {
6359 if (ple_window_grow < 1)
6360 return ple_window;
6361
6362 val = min(val, ple_window_actual_max);
6363
6364 if (ple_window_grow < ple_window)
6365 val *= ple_window_grow;
6366 else
6367 val += ple_window_grow;
6368
6369 return val;
6370 }
6371
6372 static int __shrink_ple_window(int val, int modifier, int minimum)
6373 {
6374 if (modifier < 1)
6375 return ple_window;
6376
6377 if (modifier < ple_window)
6378 val /= modifier;
6379 else
6380 val -= modifier;
6381
6382 return max(val, minimum);
6383 }
6384
6385 static void grow_ple_window(struct kvm_vcpu *vcpu)
6386 {
6387 struct vcpu_vmx *vmx = to_vmx(vcpu);
6388 int old = vmx->ple_window;
6389
6390 vmx->ple_window = __grow_ple_window(old);
6391
6392 if (vmx->ple_window != old)
6393 vmx->ple_window_dirty = true;
6394
6395 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6396 }
6397
6398 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6399 {
6400 struct vcpu_vmx *vmx = to_vmx(vcpu);
6401 int old = vmx->ple_window;
6402
6403 vmx->ple_window = __shrink_ple_window(old,
6404 ple_window_shrink, ple_window);
6405
6406 if (vmx->ple_window != old)
6407 vmx->ple_window_dirty = true;
6408
6409 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6410 }
6411
6412 /*
6413 * ple_window_actual_max is computed to be one grow_ple_window() below
6414 * ple_window_max. (See __grow_ple_window for the reason.)
6415 * This prevents overflows, because ple_window_max is int.
6416 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6417 * this process.
6418 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6419 */
6420 static void update_ple_window_actual_max(void)
6421 {
6422 ple_window_actual_max =
6423 __shrink_ple_window(max(ple_window_max, ple_window),
6424 ple_window_grow, INT_MIN);
6425 }
6426
6427 /*
6428 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6429 */
6430 static void wakeup_handler(void)
6431 {
6432 struct kvm_vcpu *vcpu;
6433 int cpu = smp_processor_id();
6434
6435 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6436 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6437 blocked_vcpu_list) {
6438 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6439
6440 if (pi_test_on(pi_desc) == 1)
6441 kvm_vcpu_kick(vcpu);
6442 }
6443 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6444 }
6445
6446 void vmx_enable_tdp(void)
6447 {
6448 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6449 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6450 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6451 0ull, VMX_EPT_EXECUTABLE_MASK,
6452 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6453 VMX_EPT_RWX_MASK);
6454
6455 ept_set_mmio_spte_mask();
6456 kvm_enable_tdp();
6457 }
6458
6459 static __init int hardware_setup(void)
6460 {
6461 int r = -ENOMEM, i, msr;
6462
6463 rdmsrl_safe(MSR_EFER, &host_efer);
6464
6465 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6466 kvm_define_shared_msr(i, vmx_msr_index[i]);
6467
6468 for (i = 0; i < VMX_BITMAP_NR; i++) {
6469 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6470 if (!vmx_bitmap[i])
6471 goto out;
6472 }
6473
6474 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6475 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6476 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6477
6478 /*
6479 * Allow direct access to the PC debug port (it is often used for I/O
6480 * delays, but the vmexits simply slow things down).
6481 */
6482 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6483 clear_bit(0x80, vmx_io_bitmap_a);
6484
6485 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6486
6487 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6488 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6489
6490 if (setup_vmcs_config(&vmcs_config) < 0) {
6491 r = -EIO;
6492 goto out;
6493 }
6494
6495 if (boot_cpu_has(X86_FEATURE_NX))
6496 kvm_enable_efer_bits(EFER_NX);
6497
6498 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6499 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6500 enable_vpid = 0;
6501
6502 if (!cpu_has_vmx_shadow_vmcs())
6503 enable_shadow_vmcs = 0;
6504 if (enable_shadow_vmcs)
6505 init_vmcs_shadow_fields();
6506
6507 if (!cpu_has_vmx_ept() ||
6508 !cpu_has_vmx_ept_4levels()) {
6509 enable_ept = 0;
6510 enable_unrestricted_guest = 0;
6511 enable_ept_ad_bits = 0;
6512 }
6513
6514 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6515 enable_ept_ad_bits = 0;
6516
6517 if (!cpu_has_vmx_unrestricted_guest())
6518 enable_unrestricted_guest = 0;
6519
6520 if (!cpu_has_vmx_flexpriority())
6521 flexpriority_enabled = 0;
6522
6523 /*
6524 * set_apic_access_page_addr() is used to reload apic access
6525 * page upon invalidation. No need to do anything if not
6526 * using the APIC_ACCESS_ADDR VMCS field.
6527 */
6528 if (!flexpriority_enabled)
6529 kvm_x86_ops->set_apic_access_page_addr = NULL;
6530
6531 if (!cpu_has_vmx_tpr_shadow())
6532 kvm_x86_ops->update_cr8_intercept = NULL;
6533
6534 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6535 kvm_disable_largepages();
6536
6537 if (!cpu_has_vmx_ple())
6538 ple_gap = 0;
6539
6540 if (!cpu_has_vmx_apicv()) {
6541 enable_apicv = 0;
6542 kvm_x86_ops->sync_pir_to_irr = NULL;
6543 }
6544
6545 if (cpu_has_vmx_tsc_scaling()) {
6546 kvm_has_tsc_control = true;
6547 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6548 kvm_tsc_scaling_ratio_frac_bits = 48;
6549 }
6550
6551 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6552 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6553 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6554 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6555 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6556 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6557
6558 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6559 vmx_msr_bitmap_legacy, PAGE_SIZE);
6560 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6561 vmx_msr_bitmap_longmode, PAGE_SIZE);
6562 memcpy(vmx_msr_bitmap_legacy_x2apic,
6563 vmx_msr_bitmap_legacy, PAGE_SIZE);
6564 memcpy(vmx_msr_bitmap_longmode_x2apic,
6565 vmx_msr_bitmap_longmode, PAGE_SIZE);
6566
6567 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6568
6569 for (msr = 0x800; msr <= 0x8ff; msr++) {
6570 if (msr == 0x839 /* TMCCT */)
6571 continue;
6572 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6573 }
6574
6575 /*
6576 * TPR reads and writes can be virtualized even if virtual interrupt
6577 * delivery is not in use.
6578 */
6579 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6580 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6581
6582 /* EOI */
6583 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6584 /* SELF-IPI */
6585 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6586
6587 if (enable_ept)
6588 vmx_enable_tdp();
6589 else
6590 kvm_disable_tdp();
6591
6592 update_ple_window_actual_max();
6593
6594 /*
6595 * Only enable PML when hardware supports PML feature, and both EPT
6596 * and EPT A/D bit features are enabled -- PML depends on them to work.
6597 */
6598 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6599 enable_pml = 0;
6600
6601 if (!enable_pml) {
6602 kvm_x86_ops->slot_enable_log_dirty = NULL;
6603 kvm_x86_ops->slot_disable_log_dirty = NULL;
6604 kvm_x86_ops->flush_log_dirty = NULL;
6605 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6606 }
6607
6608 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6609 u64 vmx_msr;
6610
6611 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6612 cpu_preemption_timer_multi =
6613 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6614 } else {
6615 kvm_x86_ops->set_hv_timer = NULL;
6616 kvm_x86_ops->cancel_hv_timer = NULL;
6617 }
6618
6619 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6620
6621 kvm_mce_cap_supported |= MCG_LMCE_P;
6622
6623 return alloc_kvm_area();
6624
6625 out:
6626 for (i = 0; i < VMX_BITMAP_NR; i++)
6627 free_page((unsigned long)vmx_bitmap[i]);
6628
6629 return r;
6630 }
6631
6632 static __exit void hardware_unsetup(void)
6633 {
6634 int i;
6635
6636 for (i = 0; i < VMX_BITMAP_NR; i++)
6637 free_page((unsigned long)vmx_bitmap[i]);
6638
6639 free_kvm_area();
6640 }
6641
6642 /*
6643 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6644 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6645 */
6646 static int handle_pause(struct kvm_vcpu *vcpu)
6647 {
6648 if (ple_gap)
6649 grow_ple_window(vcpu);
6650
6651 kvm_vcpu_on_spin(vcpu);
6652 return kvm_skip_emulated_instruction(vcpu);
6653 }
6654
6655 static int handle_nop(struct kvm_vcpu *vcpu)
6656 {
6657 return kvm_skip_emulated_instruction(vcpu);
6658 }
6659
6660 static int handle_mwait(struct kvm_vcpu *vcpu)
6661 {
6662 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6663 return handle_nop(vcpu);
6664 }
6665
6666 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6667 {
6668 return 1;
6669 }
6670
6671 static int handle_monitor(struct kvm_vcpu *vcpu)
6672 {
6673 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6674 return handle_nop(vcpu);
6675 }
6676
6677 /*
6678 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6679 * We could reuse a single VMCS for all the L2 guests, but we also want the
6680 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6681 * allows keeping them loaded on the processor, and in the future will allow
6682 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6683 * every entry if they never change.
6684 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6685 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6686 *
6687 * The following functions allocate and free a vmcs02 in this pool.
6688 */
6689
6690 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6691 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6692 {
6693 struct vmcs02_list *item;
6694 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6695 if (item->vmptr == vmx->nested.current_vmptr) {
6696 list_move(&item->list, &vmx->nested.vmcs02_pool);
6697 return &item->vmcs02;
6698 }
6699
6700 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6701 /* Recycle the least recently used VMCS. */
6702 item = list_last_entry(&vmx->nested.vmcs02_pool,
6703 struct vmcs02_list, list);
6704 item->vmptr = vmx->nested.current_vmptr;
6705 list_move(&item->list, &vmx->nested.vmcs02_pool);
6706 return &item->vmcs02;
6707 }
6708
6709 /* Create a new VMCS */
6710 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6711 if (!item)
6712 return NULL;
6713 item->vmcs02.vmcs = alloc_vmcs();
6714 item->vmcs02.shadow_vmcs = NULL;
6715 if (!item->vmcs02.vmcs) {
6716 kfree(item);
6717 return NULL;
6718 }
6719 loaded_vmcs_init(&item->vmcs02);
6720 item->vmptr = vmx->nested.current_vmptr;
6721 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6722 vmx->nested.vmcs02_num++;
6723 return &item->vmcs02;
6724 }
6725
6726 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6727 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6728 {
6729 struct vmcs02_list *item;
6730 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6731 if (item->vmptr == vmptr) {
6732 free_loaded_vmcs(&item->vmcs02);
6733 list_del(&item->list);
6734 kfree(item);
6735 vmx->nested.vmcs02_num--;
6736 return;
6737 }
6738 }
6739
6740 /*
6741 * Free all VMCSs saved for this vcpu, except the one pointed by
6742 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6743 * must be &vmx->vmcs01.
6744 */
6745 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6746 {
6747 struct vmcs02_list *item, *n;
6748
6749 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6750 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6751 /*
6752 * Something will leak if the above WARN triggers. Better than
6753 * a use-after-free.
6754 */
6755 if (vmx->loaded_vmcs == &item->vmcs02)
6756 continue;
6757
6758 free_loaded_vmcs(&item->vmcs02);
6759 list_del(&item->list);
6760 kfree(item);
6761 vmx->nested.vmcs02_num--;
6762 }
6763 }
6764
6765 /*
6766 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6767 * set the success or error code of an emulated VMX instruction, as specified
6768 * by Vol 2B, VMX Instruction Reference, "Conventions".
6769 */
6770 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6771 {
6772 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6773 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6774 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6775 }
6776
6777 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6778 {
6779 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6780 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6781 X86_EFLAGS_SF | X86_EFLAGS_OF))
6782 | X86_EFLAGS_CF);
6783 }
6784
6785 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6786 u32 vm_instruction_error)
6787 {
6788 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6789 /*
6790 * failValid writes the error number to the current VMCS, which
6791 * can't be done there isn't a current VMCS.
6792 */
6793 nested_vmx_failInvalid(vcpu);
6794 return;
6795 }
6796 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6797 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6798 X86_EFLAGS_SF | X86_EFLAGS_OF))
6799 | X86_EFLAGS_ZF);
6800 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6801 /*
6802 * We don't need to force a shadow sync because
6803 * VM_INSTRUCTION_ERROR is not shadowed
6804 */
6805 }
6806
6807 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6808 {
6809 /* TODO: not to reset guest simply here. */
6810 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6811 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6812 }
6813
6814 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6815 {
6816 struct vcpu_vmx *vmx =
6817 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6818
6819 vmx->nested.preemption_timer_expired = true;
6820 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6821 kvm_vcpu_kick(&vmx->vcpu);
6822
6823 return HRTIMER_NORESTART;
6824 }
6825
6826 /*
6827 * Decode the memory-address operand of a vmx instruction, as recorded on an
6828 * exit caused by such an instruction (run by a guest hypervisor).
6829 * On success, returns 0. When the operand is invalid, returns 1 and throws
6830 * #UD or #GP.
6831 */
6832 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6833 unsigned long exit_qualification,
6834 u32 vmx_instruction_info, bool wr, gva_t *ret)
6835 {
6836 gva_t off;
6837 bool exn;
6838 struct kvm_segment s;
6839
6840 /*
6841 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6842 * Execution", on an exit, vmx_instruction_info holds most of the
6843 * addressing components of the operand. Only the displacement part
6844 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6845 * For how an actual address is calculated from all these components,
6846 * refer to Vol. 1, "Operand Addressing".
6847 */
6848 int scaling = vmx_instruction_info & 3;
6849 int addr_size = (vmx_instruction_info >> 7) & 7;
6850 bool is_reg = vmx_instruction_info & (1u << 10);
6851 int seg_reg = (vmx_instruction_info >> 15) & 7;
6852 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6853 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6854 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6855 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6856
6857 if (is_reg) {
6858 kvm_queue_exception(vcpu, UD_VECTOR);
6859 return 1;
6860 }
6861
6862 /* Addr = segment_base + offset */
6863 /* offset = base + [index * scale] + displacement */
6864 off = exit_qualification; /* holds the displacement */
6865 if (base_is_valid)
6866 off += kvm_register_read(vcpu, base_reg);
6867 if (index_is_valid)
6868 off += kvm_register_read(vcpu, index_reg)<<scaling;
6869 vmx_get_segment(vcpu, &s, seg_reg);
6870 *ret = s.base + off;
6871
6872 if (addr_size == 1) /* 32 bit */
6873 *ret &= 0xffffffff;
6874
6875 /* Checks for #GP/#SS exceptions. */
6876 exn = false;
6877 if (is_long_mode(vcpu)) {
6878 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6879 * non-canonical form. This is the only check on the memory
6880 * destination for long mode!
6881 */
6882 exn = is_noncanonical_address(*ret);
6883 } else if (is_protmode(vcpu)) {
6884 /* Protected mode: apply checks for segment validity in the
6885 * following order:
6886 * - segment type check (#GP(0) may be thrown)
6887 * - usability check (#GP(0)/#SS(0))
6888 * - limit check (#GP(0)/#SS(0))
6889 */
6890 if (wr)
6891 /* #GP(0) if the destination operand is located in a
6892 * read-only data segment or any code segment.
6893 */
6894 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6895 else
6896 /* #GP(0) if the source operand is located in an
6897 * execute-only code segment
6898 */
6899 exn = ((s.type & 0xa) == 8);
6900 if (exn) {
6901 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6902 return 1;
6903 }
6904 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6905 */
6906 exn = (s.unusable != 0);
6907 /* Protected mode: #GP(0)/#SS(0) if the memory
6908 * operand is outside the segment limit.
6909 */
6910 exn = exn || (off + sizeof(u64) > s.limit);
6911 }
6912 if (exn) {
6913 kvm_queue_exception_e(vcpu,
6914 seg_reg == VCPU_SREG_SS ?
6915 SS_VECTOR : GP_VECTOR,
6916 0);
6917 return 1;
6918 }
6919
6920 return 0;
6921 }
6922
6923 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6924 {
6925 gva_t gva;
6926 struct x86_exception e;
6927
6928 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6929 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6930 return 1;
6931
6932 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6933 sizeof(*vmpointer), &e)) {
6934 kvm_inject_page_fault(vcpu, &e);
6935 return 1;
6936 }
6937
6938 return 0;
6939 }
6940
6941 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6942 {
6943 struct vcpu_vmx *vmx = to_vmx(vcpu);
6944 struct vmcs *shadow_vmcs;
6945
6946 if (cpu_has_vmx_msr_bitmap()) {
6947 vmx->nested.msr_bitmap =
6948 (unsigned long *)__get_free_page(GFP_KERNEL);
6949 if (!vmx->nested.msr_bitmap)
6950 goto out_msr_bitmap;
6951 }
6952
6953 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6954 if (!vmx->nested.cached_vmcs12)
6955 goto out_cached_vmcs12;
6956
6957 if (enable_shadow_vmcs) {
6958 shadow_vmcs = alloc_vmcs();
6959 if (!shadow_vmcs)
6960 goto out_shadow_vmcs;
6961 /* mark vmcs as shadow */
6962 shadow_vmcs->revision_id |= (1u << 31);
6963 /* init shadow vmcs */
6964 vmcs_clear(shadow_vmcs);
6965 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
6966 }
6967
6968 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6969 vmx->nested.vmcs02_num = 0;
6970
6971 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6972 HRTIMER_MODE_REL_PINNED);
6973 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6974
6975 vmx->nested.vmxon = true;
6976 return 0;
6977
6978 out_shadow_vmcs:
6979 kfree(vmx->nested.cached_vmcs12);
6980
6981 out_cached_vmcs12:
6982 free_page((unsigned long)vmx->nested.msr_bitmap);
6983
6984 out_msr_bitmap:
6985 return -ENOMEM;
6986 }
6987
6988 /*
6989 * Emulate the VMXON instruction.
6990 * Currently, we just remember that VMX is active, and do not save or even
6991 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6992 * do not currently need to store anything in that guest-allocated memory
6993 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6994 * argument is different from the VMXON pointer (which the spec says they do).
6995 */
6996 static int handle_vmon(struct kvm_vcpu *vcpu)
6997 {
6998 int ret;
6999 gpa_t vmptr;
7000 struct page *page;
7001 struct vcpu_vmx *vmx = to_vmx(vcpu);
7002 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7003 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7004
7005 /*
7006 * The Intel VMX Instruction Reference lists a bunch of bits that are
7007 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7008 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7009 * Otherwise, we should fail with #UD. But most faulting conditions
7010 * have already been checked by hardware, prior to the VM-exit for
7011 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7012 * that bit set to 1 in non-root mode.
7013 */
7014 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7015 kvm_queue_exception(vcpu, UD_VECTOR);
7016 return 1;
7017 }
7018
7019 if (vmx->nested.vmxon) {
7020 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7021 return kvm_skip_emulated_instruction(vcpu);
7022 }
7023
7024 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7025 != VMXON_NEEDED_FEATURES) {
7026 kvm_inject_gp(vcpu, 0);
7027 return 1;
7028 }
7029
7030 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7031 return 1;
7032
7033 /*
7034 * SDM 3: 24.11.5
7035 * The first 4 bytes of VMXON region contain the supported
7036 * VMCS revision identifier
7037 *
7038 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7039 * which replaces physical address width with 32
7040 */
7041 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7042 nested_vmx_failInvalid(vcpu);
7043 return kvm_skip_emulated_instruction(vcpu);
7044 }
7045
7046 page = nested_get_page(vcpu, vmptr);
7047 if (page == NULL) {
7048 nested_vmx_failInvalid(vcpu);
7049 return kvm_skip_emulated_instruction(vcpu);
7050 }
7051 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7052 kunmap(page);
7053 nested_release_page_clean(page);
7054 nested_vmx_failInvalid(vcpu);
7055 return kvm_skip_emulated_instruction(vcpu);
7056 }
7057 kunmap(page);
7058 nested_release_page_clean(page);
7059
7060 vmx->nested.vmxon_ptr = vmptr;
7061 ret = enter_vmx_operation(vcpu);
7062 if (ret)
7063 return ret;
7064
7065 nested_vmx_succeed(vcpu);
7066 return kvm_skip_emulated_instruction(vcpu);
7067 }
7068
7069 /*
7070 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7071 * for running VMX instructions (except VMXON, whose prerequisites are
7072 * slightly different). It also specifies what exception to inject otherwise.
7073 * Note that many of these exceptions have priority over VM exits, so they
7074 * don't have to be checked again here.
7075 */
7076 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7077 {
7078 if (!to_vmx(vcpu)->nested.vmxon) {
7079 kvm_queue_exception(vcpu, UD_VECTOR);
7080 return 0;
7081 }
7082 return 1;
7083 }
7084
7085 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7086 {
7087 if (vmx->nested.current_vmptr == -1ull)
7088 return;
7089
7090 /* current_vmptr and current_vmcs12 are always set/reset together */
7091 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7092 return;
7093
7094 if (enable_shadow_vmcs) {
7095 /* copy to memory all shadowed fields in case
7096 they were modified */
7097 copy_shadow_to_vmcs12(vmx);
7098 vmx->nested.sync_shadow_vmcs = false;
7099 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7100 SECONDARY_EXEC_SHADOW_VMCS);
7101 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7102 }
7103 vmx->nested.posted_intr_nv = -1;
7104
7105 /* Flush VMCS12 to guest memory */
7106 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7107 VMCS12_SIZE);
7108
7109 kunmap(vmx->nested.current_vmcs12_page);
7110 nested_release_page(vmx->nested.current_vmcs12_page);
7111 vmx->nested.current_vmptr = -1ull;
7112 vmx->nested.current_vmcs12 = NULL;
7113 }
7114
7115 /*
7116 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7117 * just stops using VMX.
7118 */
7119 static void free_nested(struct vcpu_vmx *vmx)
7120 {
7121 if (!vmx->nested.vmxon)
7122 return;
7123
7124 vmx->nested.vmxon = false;
7125 free_vpid(vmx->nested.vpid02);
7126 nested_release_vmcs12(vmx);
7127 if (vmx->nested.msr_bitmap) {
7128 free_page((unsigned long)vmx->nested.msr_bitmap);
7129 vmx->nested.msr_bitmap = NULL;
7130 }
7131 if (enable_shadow_vmcs) {
7132 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7133 free_vmcs(vmx->vmcs01.shadow_vmcs);
7134 vmx->vmcs01.shadow_vmcs = NULL;
7135 }
7136 kfree(vmx->nested.cached_vmcs12);
7137 /* Unpin physical memory we referred to in current vmcs02 */
7138 if (vmx->nested.apic_access_page) {
7139 nested_release_page(vmx->nested.apic_access_page);
7140 vmx->nested.apic_access_page = NULL;
7141 }
7142 if (vmx->nested.virtual_apic_page) {
7143 nested_release_page(vmx->nested.virtual_apic_page);
7144 vmx->nested.virtual_apic_page = NULL;
7145 }
7146 if (vmx->nested.pi_desc_page) {
7147 kunmap(vmx->nested.pi_desc_page);
7148 nested_release_page(vmx->nested.pi_desc_page);
7149 vmx->nested.pi_desc_page = NULL;
7150 vmx->nested.pi_desc = NULL;
7151 }
7152
7153 nested_free_all_saved_vmcss(vmx);
7154 }
7155
7156 /* Emulate the VMXOFF instruction */
7157 static int handle_vmoff(struct kvm_vcpu *vcpu)
7158 {
7159 if (!nested_vmx_check_permission(vcpu))
7160 return 1;
7161 free_nested(to_vmx(vcpu));
7162 nested_vmx_succeed(vcpu);
7163 return kvm_skip_emulated_instruction(vcpu);
7164 }
7165
7166 /* Emulate the VMCLEAR instruction */
7167 static int handle_vmclear(struct kvm_vcpu *vcpu)
7168 {
7169 struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 u32 zero = 0;
7171 gpa_t vmptr;
7172
7173 if (!nested_vmx_check_permission(vcpu))
7174 return 1;
7175
7176 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7177 return 1;
7178
7179 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7180 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7181 return kvm_skip_emulated_instruction(vcpu);
7182 }
7183
7184 if (vmptr == vmx->nested.vmxon_ptr) {
7185 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7186 return kvm_skip_emulated_instruction(vcpu);
7187 }
7188
7189 if (vmptr == vmx->nested.current_vmptr)
7190 nested_release_vmcs12(vmx);
7191
7192 kvm_vcpu_write_guest(vcpu,
7193 vmptr + offsetof(struct vmcs12, launch_state),
7194 &zero, sizeof(zero));
7195
7196 nested_free_vmcs02(vmx, vmptr);
7197
7198 nested_vmx_succeed(vcpu);
7199 return kvm_skip_emulated_instruction(vcpu);
7200 }
7201
7202 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7203
7204 /* Emulate the VMLAUNCH instruction */
7205 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7206 {
7207 return nested_vmx_run(vcpu, true);
7208 }
7209
7210 /* Emulate the VMRESUME instruction */
7211 static int handle_vmresume(struct kvm_vcpu *vcpu)
7212 {
7213
7214 return nested_vmx_run(vcpu, false);
7215 }
7216
7217 enum vmcs_field_type {
7218 VMCS_FIELD_TYPE_U16 = 0,
7219 VMCS_FIELD_TYPE_U64 = 1,
7220 VMCS_FIELD_TYPE_U32 = 2,
7221 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7222 };
7223
7224 static inline int vmcs_field_type(unsigned long field)
7225 {
7226 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7227 return VMCS_FIELD_TYPE_U32;
7228 return (field >> 13) & 0x3 ;
7229 }
7230
7231 static inline int vmcs_field_readonly(unsigned long field)
7232 {
7233 return (((field >> 10) & 0x3) == 1);
7234 }
7235
7236 /*
7237 * Read a vmcs12 field. Since these can have varying lengths and we return
7238 * one type, we chose the biggest type (u64) and zero-extend the return value
7239 * to that size. Note that the caller, handle_vmread, might need to use only
7240 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7241 * 64-bit fields are to be returned).
7242 */
7243 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7244 unsigned long field, u64 *ret)
7245 {
7246 short offset = vmcs_field_to_offset(field);
7247 char *p;
7248
7249 if (offset < 0)
7250 return offset;
7251
7252 p = ((char *)(get_vmcs12(vcpu))) + offset;
7253
7254 switch (vmcs_field_type(field)) {
7255 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7256 *ret = *((natural_width *)p);
7257 return 0;
7258 case VMCS_FIELD_TYPE_U16:
7259 *ret = *((u16 *)p);
7260 return 0;
7261 case VMCS_FIELD_TYPE_U32:
7262 *ret = *((u32 *)p);
7263 return 0;
7264 case VMCS_FIELD_TYPE_U64:
7265 *ret = *((u64 *)p);
7266 return 0;
7267 default:
7268 WARN_ON(1);
7269 return -ENOENT;
7270 }
7271 }
7272
7273
7274 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7275 unsigned long field, u64 field_value){
7276 short offset = vmcs_field_to_offset(field);
7277 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7278 if (offset < 0)
7279 return offset;
7280
7281 switch (vmcs_field_type(field)) {
7282 case VMCS_FIELD_TYPE_U16:
7283 *(u16 *)p = field_value;
7284 return 0;
7285 case VMCS_FIELD_TYPE_U32:
7286 *(u32 *)p = field_value;
7287 return 0;
7288 case VMCS_FIELD_TYPE_U64:
7289 *(u64 *)p = field_value;
7290 return 0;
7291 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7292 *(natural_width *)p = field_value;
7293 return 0;
7294 default:
7295 WARN_ON(1);
7296 return -ENOENT;
7297 }
7298
7299 }
7300
7301 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7302 {
7303 int i;
7304 unsigned long field;
7305 u64 field_value;
7306 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7307 const unsigned long *fields = shadow_read_write_fields;
7308 const int num_fields = max_shadow_read_write_fields;
7309
7310 preempt_disable();
7311
7312 vmcs_load(shadow_vmcs);
7313
7314 for (i = 0; i < num_fields; i++) {
7315 field = fields[i];
7316 switch (vmcs_field_type(field)) {
7317 case VMCS_FIELD_TYPE_U16:
7318 field_value = vmcs_read16(field);
7319 break;
7320 case VMCS_FIELD_TYPE_U32:
7321 field_value = vmcs_read32(field);
7322 break;
7323 case VMCS_FIELD_TYPE_U64:
7324 field_value = vmcs_read64(field);
7325 break;
7326 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7327 field_value = vmcs_readl(field);
7328 break;
7329 default:
7330 WARN_ON(1);
7331 continue;
7332 }
7333 vmcs12_write_any(&vmx->vcpu, field, field_value);
7334 }
7335
7336 vmcs_clear(shadow_vmcs);
7337 vmcs_load(vmx->loaded_vmcs->vmcs);
7338
7339 preempt_enable();
7340 }
7341
7342 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7343 {
7344 const unsigned long *fields[] = {
7345 shadow_read_write_fields,
7346 shadow_read_only_fields
7347 };
7348 const int max_fields[] = {
7349 max_shadow_read_write_fields,
7350 max_shadow_read_only_fields
7351 };
7352 int i, q;
7353 unsigned long field;
7354 u64 field_value = 0;
7355 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7356
7357 vmcs_load(shadow_vmcs);
7358
7359 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7360 for (i = 0; i < max_fields[q]; i++) {
7361 field = fields[q][i];
7362 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7363
7364 switch (vmcs_field_type(field)) {
7365 case VMCS_FIELD_TYPE_U16:
7366 vmcs_write16(field, (u16)field_value);
7367 break;
7368 case VMCS_FIELD_TYPE_U32:
7369 vmcs_write32(field, (u32)field_value);
7370 break;
7371 case VMCS_FIELD_TYPE_U64:
7372 vmcs_write64(field, (u64)field_value);
7373 break;
7374 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7375 vmcs_writel(field, (long)field_value);
7376 break;
7377 default:
7378 WARN_ON(1);
7379 break;
7380 }
7381 }
7382 }
7383
7384 vmcs_clear(shadow_vmcs);
7385 vmcs_load(vmx->loaded_vmcs->vmcs);
7386 }
7387
7388 /*
7389 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7390 * used before) all generate the same failure when it is missing.
7391 */
7392 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7393 {
7394 struct vcpu_vmx *vmx = to_vmx(vcpu);
7395 if (vmx->nested.current_vmptr == -1ull) {
7396 nested_vmx_failInvalid(vcpu);
7397 return 0;
7398 }
7399 return 1;
7400 }
7401
7402 static int handle_vmread(struct kvm_vcpu *vcpu)
7403 {
7404 unsigned long field;
7405 u64 field_value;
7406 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7407 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7408 gva_t gva = 0;
7409
7410 if (!nested_vmx_check_permission(vcpu))
7411 return 1;
7412
7413 if (!nested_vmx_check_vmcs12(vcpu))
7414 return kvm_skip_emulated_instruction(vcpu);
7415
7416 /* Decode instruction info and find the field to read */
7417 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7418 /* Read the field, zero-extended to a u64 field_value */
7419 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7420 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7421 return kvm_skip_emulated_instruction(vcpu);
7422 }
7423 /*
7424 * Now copy part of this value to register or memory, as requested.
7425 * Note that the number of bits actually copied is 32 or 64 depending
7426 * on the guest's mode (32 or 64 bit), not on the given field's length.
7427 */
7428 if (vmx_instruction_info & (1u << 10)) {
7429 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7430 field_value);
7431 } else {
7432 if (get_vmx_mem_address(vcpu, exit_qualification,
7433 vmx_instruction_info, true, &gva))
7434 return 1;
7435 /* _system ok, as hardware has verified cpl=0 */
7436 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7437 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7438 }
7439
7440 nested_vmx_succeed(vcpu);
7441 return kvm_skip_emulated_instruction(vcpu);
7442 }
7443
7444
7445 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7446 {
7447 unsigned long field;
7448 gva_t gva;
7449 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7450 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7451 /* The value to write might be 32 or 64 bits, depending on L1's long
7452 * mode, and eventually we need to write that into a field of several
7453 * possible lengths. The code below first zero-extends the value to 64
7454 * bit (field_value), and then copies only the appropriate number of
7455 * bits into the vmcs12 field.
7456 */
7457 u64 field_value = 0;
7458 struct x86_exception e;
7459
7460 if (!nested_vmx_check_permission(vcpu))
7461 return 1;
7462
7463 if (!nested_vmx_check_vmcs12(vcpu))
7464 return kvm_skip_emulated_instruction(vcpu);
7465
7466 if (vmx_instruction_info & (1u << 10))
7467 field_value = kvm_register_readl(vcpu,
7468 (((vmx_instruction_info) >> 3) & 0xf));
7469 else {
7470 if (get_vmx_mem_address(vcpu, exit_qualification,
7471 vmx_instruction_info, false, &gva))
7472 return 1;
7473 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7474 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7475 kvm_inject_page_fault(vcpu, &e);
7476 return 1;
7477 }
7478 }
7479
7480
7481 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7482 if (vmcs_field_readonly(field)) {
7483 nested_vmx_failValid(vcpu,
7484 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7485 return kvm_skip_emulated_instruction(vcpu);
7486 }
7487
7488 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7489 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7490 return kvm_skip_emulated_instruction(vcpu);
7491 }
7492
7493 nested_vmx_succeed(vcpu);
7494 return kvm_skip_emulated_instruction(vcpu);
7495 }
7496
7497 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7498 {
7499 vmx->nested.current_vmptr = vmptr;
7500 if (enable_shadow_vmcs) {
7501 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7502 SECONDARY_EXEC_SHADOW_VMCS);
7503 vmcs_write64(VMCS_LINK_POINTER,
7504 __pa(vmx->vmcs01.shadow_vmcs));
7505 vmx->nested.sync_shadow_vmcs = true;
7506 }
7507 }
7508
7509 /* Emulate the VMPTRLD instruction */
7510 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7511 {
7512 struct vcpu_vmx *vmx = to_vmx(vcpu);
7513 gpa_t vmptr;
7514
7515 if (!nested_vmx_check_permission(vcpu))
7516 return 1;
7517
7518 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7519 return 1;
7520
7521 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7522 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7523 return kvm_skip_emulated_instruction(vcpu);
7524 }
7525
7526 if (vmptr == vmx->nested.vmxon_ptr) {
7527 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7528 return kvm_skip_emulated_instruction(vcpu);
7529 }
7530
7531 if (vmx->nested.current_vmptr != vmptr) {
7532 struct vmcs12 *new_vmcs12;
7533 struct page *page;
7534 page = nested_get_page(vcpu, vmptr);
7535 if (page == NULL) {
7536 nested_vmx_failInvalid(vcpu);
7537 return kvm_skip_emulated_instruction(vcpu);
7538 }
7539 new_vmcs12 = kmap(page);
7540 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7541 kunmap(page);
7542 nested_release_page_clean(page);
7543 nested_vmx_failValid(vcpu,
7544 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7545 return kvm_skip_emulated_instruction(vcpu);
7546 }
7547
7548 nested_release_vmcs12(vmx);
7549 vmx->nested.current_vmcs12 = new_vmcs12;
7550 vmx->nested.current_vmcs12_page = page;
7551 /*
7552 * Load VMCS12 from guest memory since it is not already
7553 * cached.
7554 */
7555 memcpy(vmx->nested.cached_vmcs12,
7556 vmx->nested.current_vmcs12, VMCS12_SIZE);
7557 set_current_vmptr(vmx, vmptr);
7558 }
7559
7560 nested_vmx_succeed(vcpu);
7561 return kvm_skip_emulated_instruction(vcpu);
7562 }
7563
7564 /* Emulate the VMPTRST instruction */
7565 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7566 {
7567 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7568 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7569 gva_t vmcs_gva;
7570 struct x86_exception e;
7571
7572 if (!nested_vmx_check_permission(vcpu))
7573 return 1;
7574
7575 if (get_vmx_mem_address(vcpu, exit_qualification,
7576 vmx_instruction_info, true, &vmcs_gva))
7577 return 1;
7578 /* ok to use *_system, as hardware has verified cpl=0 */
7579 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7580 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7581 sizeof(u64), &e)) {
7582 kvm_inject_page_fault(vcpu, &e);
7583 return 1;
7584 }
7585 nested_vmx_succeed(vcpu);
7586 return kvm_skip_emulated_instruction(vcpu);
7587 }
7588
7589 /* Emulate the INVEPT instruction */
7590 static int handle_invept(struct kvm_vcpu *vcpu)
7591 {
7592 struct vcpu_vmx *vmx = to_vmx(vcpu);
7593 u32 vmx_instruction_info, types;
7594 unsigned long type;
7595 gva_t gva;
7596 struct x86_exception e;
7597 struct {
7598 u64 eptp, gpa;
7599 } operand;
7600
7601 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7602 SECONDARY_EXEC_ENABLE_EPT) ||
7603 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7604 kvm_queue_exception(vcpu, UD_VECTOR);
7605 return 1;
7606 }
7607
7608 if (!nested_vmx_check_permission(vcpu))
7609 return 1;
7610
7611 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7612 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7613
7614 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7615
7616 if (type >= 32 || !(types & (1 << type))) {
7617 nested_vmx_failValid(vcpu,
7618 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7619 return kvm_skip_emulated_instruction(vcpu);
7620 }
7621
7622 /* According to the Intel VMX instruction reference, the memory
7623 * operand is read even if it isn't needed (e.g., for type==global)
7624 */
7625 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7626 vmx_instruction_info, false, &gva))
7627 return 1;
7628 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7629 sizeof(operand), &e)) {
7630 kvm_inject_page_fault(vcpu, &e);
7631 return 1;
7632 }
7633
7634 switch (type) {
7635 case VMX_EPT_EXTENT_GLOBAL:
7636 /*
7637 * TODO: track mappings and invalidate
7638 * single context requests appropriately
7639 */
7640 case VMX_EPT_EXTENT_CONTEXT:
7641 kvm_mmu_sync_roots(vcpu);
7642 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7643 nested_vmx_succeed(vcpu);
7644 break;
7645 default:
7646 BUG_ON(1);
7647 break;
7648 }
7649
7650 return kvm_skip_emulated_instruction(vcpu);
7651 }
7652
7653 static int handle_invvpid(struct kvm_vcpu *vcpu)
7654 {
7655 struct vcpu_vmx *vmx = to_vmx(vcpu);
7656 u32 vmx_instruction_info;
7657 unsigned long type, types;
7658 gva_t gva;
7659 struct x86_exception e;
7660 struct {
7661 u64 vpid;
7662 u64 gla;
7663 } operand;
7664
7665 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7666 SECONDARY_EXEC_ENABLE_VPID) ||
7667 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7668 kvm_queue_exception(vcpu, UD_VECTOR);
7669 return 1;
7670 }
7671
7672 if (!nested_vmx_check_permission(vcpu))
7673 return 1;
7674
7675 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7676 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7677
7678 types = (vmx->nested.nested_vmx_vpid_caps &
7679 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7680
7681 if (type >= 32 || !(types & (1 << type))) {
7682 nested_vmx_failValid(vcpu,
7683 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7684 return kvm_skip_emulated_instruction(vcpu);
7685 }
7686
7687 /* according to the intel vmx instruction reference, the memory
7688 * operand is read even if it isn't needed (e.g., for type==global)
7689 */
7690 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7691 vmx_instruction_info, false, &gva))
7692 return 1;
7693 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7694 sizeof(operand), &e)) {
7695 kvm_inject_page_fault(vcpu, &e);
7696 return 1;
7697 }
7698 if (operand.vpid >> 16) {
7699 nested_vmx_failValid(vcpu,
7700 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7701 return kvm_skip_emulated_instruction(vcpu);
7702 }
7703
7704 switch (type) {
7705 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7706 if (is_noncanonical_address(operand.gla)) {
7707 nested_vmx_failValid(vcpu,
7708 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7709 return kvm_skip_emulated_instruction(vcpu);
7710 }
7711 /* fall through */
7712 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7713 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7714 if (!operand.vpid) {
7715 nested_vmx_failValid(vcpu,
7716 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7717 return kvm_skip_emulated_instruction(vcpu);
7718 }
7719 break;
7720 case VMX_VPID_EXTENT_ALL_CONTEXT:
7721 break;
7722 default:
7723 WARN_ON_ONCE(1);
7724 return kvm_skip_emulated_instruction(vcpu);
7725 }
7726
7727 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7728 nested_vmx_succeed(vcpu);
7729
7730 return kvm_skip_emulated_instruction(vcpu);
7731 }
7732
7733 static int handle_pml_full(struct kvm_vcpu *vcpu)
7734 {
7735 unsigned long exit_qualification;
7736
7737 trace_kvm_pml_full(vcpu->vcpu_id);
7738
7739 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7740
7741 /*
7742 * PML buffer FULL happened while executing iret from NMI,
7743 * "blocked by NMI" bit has to be set before next VM entry.
7744 */
7745 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7746 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7747 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7748 GUEST_INTR_STATE_NMI);
7749
7750 /*
7751 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7752 * here.., and there's no userspace involvement needed for PML.
7753 */
7754 return 1;
7755 }
7756
7757 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7758 {
7759 kvm_lapic_expired_hv_timer(vcpu);
7760 return 1;
7761 }
7762
7763 /*
7764 * The exit handlers return 1 if the exit was handled fully and guest execution
7765 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7766 * to be done to userspace and return 0.
7767 */
7768 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7769 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7770 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7771 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7772 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7773 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7774 [EXIT_REASON_CR_ACCESS] = handle_cr,
7775 [EXIT_REASON_DR_ACCESS] = handle_dr,
7776 [EXIT_REASON_CPUID] = handle_cpuid,
7777 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7778 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7779 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7780 [EXIT_REASON_HLT] = handle_halt,
7781 [EXIT_REASON_INVD] = handle_invd,
7782 [EXIT_REASON_INVLPG] = handle_invlpg,
7783 [EXIT_REASON_RDPMC] = handle_rdpmc,
7784 [EXIT_REASON_VMCALL] = handle_vmcall,
7785 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7786 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7787 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7788 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7789 [EXIT_REASON_VMREAD] = handle_vmread,
7790 [EXIT_REASON_VMRESUME] = handle_vmresume,
7791 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7792 [EXIT_REASON_VMOFF] = handle_vmoff,
7793 [EXIT_REASON_VMON] = handle_vmon,
7794 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7795 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7796 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7797 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7798 [EXIT_REASON_WBINVD] = handle_wbinvd,
7799 [EXIT_REASON_XSETBV] = handle_xsetbv,
7800 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7801 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7802 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7803 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7804 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7805 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7806 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7807 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7808 [EXIT_REASON_INVEPT] = handle_invept,
7809 [EXIT_REASON_INVVPID] = handle_invvpid,
7810 [EXIT_REASON_XSAVES] = handle_xsaves,
7811 [EXIT_REASON_XRSTORS] = handle_xrstors,
7812 [EXIT_REASON_PML_FULL] = handle_pml_full,
7813 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7814 };
7815
7816 static const int kvm_vmx_max_exit_handlers =
7817 ARRAY_SIZE(kvm_vmx_exit_handlers);
7818
7819 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7820 struct vmcs12 *vmcs12)
7821 {
7822 unsigned long exit_qualification;
7823 gpa_t bitmap, last_bitmap;
7824 unsigned int port;
7825 int size;
7826 u8 b;
7827
7828 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7829 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7830
7831 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7832
7833 port = exit_qualification >> 16;
7834 size = (exit_qualification & 7) + 1;
7835
7836 last_bitmap = (gpa_t)-1;
7837 b = -1;
7838
7839 while (size > 0) {
7840 if (port < 0x8000)
7841 bitmap = vmcs12->io_bitmap_a;
7842 else if (port < 0x10000)
7843 bitmap = vmcs12->io_bitmap_b;
7844 else
7845 return true;
7846 bitmap += (port & 0x7fff) / 8;
7847
7848 if (last_bitmap != bitmap)
7849 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7850 return true;
7851 if (b & (1 << (port & 7)))
7852 return true;
7853
7854 port++;
7855 size--;
7856 last_bitmap = bitmap;
7857 }
7858
7859 return false;
7860 }
7861
7862 /*
7863 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7864 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7865 * disinterest in the current event (read or write a specific MSR) by using an
7866 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7867 */
7868 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7869 struct vmcs12 *vmcs12, u32 exit_reason)
7870 {
7871 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7872 gpa_t bitmap;
7873
7874 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7875 return true;
7876
7877 /*
7878 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7879 * for the four combinations of read/write and low/high MSR numbers.
7880 * First we need to figure out which of the four to use:
7881 */
7882 bitmap = vmcs12->msr_bitmap;
7883 if (exit_reason == EXIT_REASON_MSR_WRITE)
7884 bitmap += 2048;
7885 if (msr_index >= 0xc0000000) {
7886 msr_index -= 0xc0000000;
7887 bitmap += 1024;
7888 }
7889
7890 /* Then read the msr_index'th bit from this bitmap: */
7891 if (msr_index < 1024*8) {
7892 unsigned char b;
7893 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7894 return true;
7895 return 1 & (b >> (msr_index & 7));
7896 } else
7897 return true; /* let L1 handle the wrong parameter */
7898 }
7899
7900 /*
7901 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7902 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7903 * intercept (via guest_host_mask etc.) the current event.
7904 */
7905 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7906 struct vmcs12 *vmcs12)
7907 {
7908 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7909 int cr = exit_qualification & 15;
7910 int reg;
7911 unsigned long val;
7912
7913 switch ((exit_qualification >> 4) & 3) {
7914 case 0: /* mov to cr */
7915 reg = (exit_qualification >> 8) & 15;
7916 val = kvm_register_readl(vcpu, reg);
7917 switch (cr) {
7918 case 0:
7919 if (vmcs12->cr0_guest_host_mask &
7920 (val ^ vmcs12->cr0_read_shadow))
7921 return true;
7922 break;
7923 case 3:
7924 if ((vmcs12->cr3_target_count >= 1 &&
7925 vmcs12->cr3_target_value0 == val) ||
7926 (vmcs12->cr3_target_count >= 2 &&
7927 vmcs12->cr3_target_value1 == val) ||
7928 (vmcs12->cr3_target_count >= 3 &&
7929 vmcs12->cr3_target_value2 == val) ||
7930 (vmcs12->cr3_target_count >= 4 &&
7931 vmcs12->cr3_target_value3 == val))
7932 return false;
7933 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7934 return true;
7935 break;
7936 case 4:
7937 if (vmcs12->cr4_guest_host_mask &
7938 (vmcs12->cr4_read_shadow ^ val))
7939 return true;
7940 break;
7941 case 8:
7942 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7943 return true;
7944 break;
7945 }
7946 break;
7947 case 2: /* clts */
7948 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7949 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7950 return true;
7951 break;
7952 case 1: /* mov from cr */
7953 switch (cr) {
7954 case 3:
7955 if (vmcs12->cpu_based_vm_exec_control &
7956 CPU_BASED_CR3_STORE_EXITING)
7957 return true;
7958 break;
7959 case 8:
7960 if (vmcs12->cpu_based_vm_exec_control &
7961 CPU_BASED_CR8_STORE_EXITING)
7962 return true;
7963 break;
7964 }
7965 break;
7966 case 3: /* lmsw */
7967 /*
7968 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7969 * cr0. Other attempted changes are ignored, with no exit.
7970 */
7971 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7972 if (vmcs12->cr0_guest_host_mask & 0xe &
7973 (val ^ vmcs12->cr0_read_shadow))
7974 return true;
7975 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7976 !(vmcs12->cr0_read_shadow & 0x1) &&
7977 (val & 0x1))
7978 return true;
7979 break;
7980 }
7981 return false;
7982 }
7983
7984 /*
7985 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7986 * should handle it ourselves in L0 (and then continue L2). Only call this
7987 * when in is_guest_mode (L2).
7988 */
7989 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7990 {
7991 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7992 struct vcpu_vmx *vmx = to_vmx(vcpu);
7993 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7994 u32 exit_reason = vmx->exit_reason;
7995
7996 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7997 vmcs_readl(EXIT_QUALIFICATION),
7998 vmx->idt_vectoring_info,
7999 intr_info,
8000 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8001 KVM_ISA_VMX);
8002
8003 if (vmx->nested.nested_run_pending)
8004 return false;
8005
8006 if (unlikely(vmx->fail)) {
8007 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8008 vmcs_read32(VM_INSTRUCTION_ERROR));
8009 return true;
8010 }
8011
8012 switch (exit_reason) {
8013 case EXIT_REASON_EXCEPTION_NMI:
8014 if (is_nmi(intr_info))
8015 return false;
8016 else if (is_page_fault(intr_info))
8017 return enable_ept;
8018 else if (is_no_device(intr_info) &&
8019 !(vmcs12->guest_cr0 & X86_CR0_TS))
8020 return false;
8021 else if (is_debug(intr_info) &&
8022 vcpu->guest_debug &
8023 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8024 return false;
8025 else if (is_breakpoint(intr_info) &&
8026 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8027 return false;
8028 return vmcs12->exception_bitmap &
8029 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8030 case EXIT_REASON_EXTERNAL_INTERRUPT:
8031 return false;
8032 case EXIT_REASON_TRIPLE_FAULT:
8033 return true;
8034 case EXIT_REASON_PENDING_INTERRUPT:
8035 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8036 case EXIT_REASON_NMI_WINDOW:
8037 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8038 case EXIT_REASON_TASK_SWITCH:
8039 return true;
8040 case EXIT_REASON_CPUID:
8041 return true;
8042 case EXIT_REASON_HLT:
8043 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8044 case EXIT_REASON_INVD:
8045 return true;
8046 case EXIT_REASON_INVLPG:
8047 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8048 case EXIT_REASON_RDPMC:
8049 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8050 case EXIT_REASON_RDRAND:
8051 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8052 case EXIT_REASON_RDSEED:
8053 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8054 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8055 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8056 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8057 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8058 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8059 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8060 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8061 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8062 /*
8063 * VMX instructions trap unconditionally. This allows L1 to
8064 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8065 */
8066 return true;
8067 case EXIT_REASON_CR_ACCESS:
8068 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8069 case EXIT_REASON_DR_ACCESS:
8070 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8071 case EXIT_REASON_IO_INSTRUCTION:
8072 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8073 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8074 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8075 case EXIT_REASON_MSR_READ:
8076 case EXIT_REASON_MSR_WRITE:
8077 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8078 case EXIT_REASON_INVALID_STATE:
8079 return true;
8080 case EXIT_REASON_MWAIT_INSTRUCTION:
8081 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8082 case EXIT_REASON_MONITOR_TRAP_FLAG:
8083 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8084 case EXIT_REASON_MONITOR_INSTRUCTION:
8085 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8086 case EXIT_REASON_PAUSE_INSTRUCTION:
8087 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8088 nested_cpu_has2(vmcs12,
8089 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8090 case EXIT_REASON_MCE_DURING_VMENTRY:
8091 return false;
8092 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8093 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8094 case EXIT_REASON_APIC_ACCESS:
8095 return nested_cpu_has2(vmcs12,
8096 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8097 case EXIT_REASON_APIC_WRITE:
8098 case EXIT_REASON_EOI_INDUCED:
8099 /* apic_write and eoi_induced should exit unconditionally. */
8100 return true;
8101 case EXIT_REASON_EPT_VIOLATION:
8102 /*
8103 * L0 always deals with the EPT violation. If nested EPT is
8104 * used, and the nested mmu code discovers that the address is
8105 * missing in the guest EPT table (EPT12), the EPT violation
8106 * will be injected with nested_ept_inject_page_fault()
8107 */
8108 return false;
8109 case EXIT_REASON_EPT_MISCONFIG:
8110 /*
8111 * L2 never uses directly L1's EPT, but rather L0's own EPT
8112 * table (shadow on EPT) or a merged EPT table that L0 built
8113 * (EPT on EPT). So any problems with the structure of the
8114 * table is L0's fault.
8115 */
8116 return false;
8117 case EXIT_REASON_WBINVD:
8118 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8119 case EXIT_REASON_XSETBV:
8120 return true;
8121 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8122 /*
8123 * This should never happen, since it is not possible to
8124 * set XSS to a non-zero value---neither in L1 nor in L2.
8125 * If if it were, XSS would have to be checked against
8126 * the XSS exit bitmap in vmcs12.
8127 */
8128 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8129 case EXIT_REASON_PREEMPTION_TIMER:
8130 return false;
8131 case EXIT_REASON_PML_FULL:
8132 /* We emulate PML support to L1. */
8133 return false;
8134 default:
8135 return true;
8136 }
8137 }
8138
8139 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8140 {
8141 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8142 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8143 }
8144
8145 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8146 {
8147 if (vmx->pml_pg) {
8148 __free_page(vmx->pml_pg);
8149 vmx->pml_pg = NULL;
8150 }
8151 }
8152
8153 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8154 {
8155 struct vcpu_vmx *vmx = to_vmx(vcpu);
8156 u64 *pml_buf;
8157 u16 pml_idx;
8158
8159 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8160
8161 /* Do nothing if PML buffer is empty */
8162 if (pml_idx == (PML_ENTITY_NUM - 1))
8163 return;
8164
8165 /* PML index always points to next available PML buffer entity */
8166 if (pml_idx >= PML_ENTITY_NUM)
8167 pml_idx = 0;
8168 else
8169 pml_idx++;
8170
8171 pml_buf = page_address(vmx->pml_pg);
8172 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8173 u64 gpa;
8174
8175 gpa = pml_buf[pml_idx];
8176 WARN_ON(gpa & (PAGE_SIZE - 1));
8177 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8178 }
8179
8180 /* reset PML index */
8181 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8182 }
8183
8184 /*
8185 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8186 * Called before reporting dirty_bitmap to userspace.
8187 */
8188 static void kvm_flush_pml_buffers(struct kvm *kvm)
8189 {
8190 int i;
8191 struct kvm_vcpu *vcpu;
8192 /*
8193 * We only need to kick vcpu out of guest mode here, as PML buffer
8194 * is flushed at beginning of all VMEXITs, and it's obvious that only
8195 * vcpus running in guest are possible to have unflushed GPAs in PML
8196 * buffer.
8197 */
8198 kvm_for_each_vcpu(i, vcpu, kvm)
8199 kvm_vcpu_kick(vcpu);
8200 }
8201
8202 static void vmx_dump_sel(char *name, uint32_t sel)
8203 {
8204 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8205 name, vmcs_read16(sel),
8206 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8207 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8208 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8209 }
8210
8211 static void vmx_dump_dtsel(char *name, uint32_t limit)
8212 {
8213 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8214 name, vmcs_read32(limit),
8215 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8216 }
8217
8218 static void dump_vmcs(void)
8219 {
8220 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8221 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8222 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8223 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8224 u32 secondary_exec_control = 0;
8225 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8226 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8227 int i, n;
8228
8229 if (cpu_has_secondary_exec_ctrls())
8230 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8231
8232 pr_err("*** Guest State ***\n");
8233 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8234 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8235 vmcs_readl(CR0_GUEST_HOST_MASK));
8236 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8237 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8238 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8239 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8240 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8241 {
8242 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8243 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8244 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8245 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8246 }
8247 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8248 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8249 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8250 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8251 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8252 vmcs_readl(GUEST_SYSENTER_ESP),
8253 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8254 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8255 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8256 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8257 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8258 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8259 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8260 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8261 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8262 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8263 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8264 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8265 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8266 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8267 efer, vmcs_read64(GUEST_IA32_PAT));
8268 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8269 vmcs_read64(GUEST_IA32_DEBUGCTL),
8270 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8271 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8272 pr_err("PerfGlobCtl = 0x%016llx\n",
8273 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8274 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8275 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8276 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8277 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8278 vmcs_read32(GUEST_ACTIVITY_STATE));
8279 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8280 pr_err("InterruptStatus = %04x\n",
8281 vmcs_read16(GUEST_INTR_STATUS));
8282
8283 pr_err("*** Host State ***\n");
8284 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8285 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8286 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8287 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8288 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8289 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8290 vmcs_read16(HOST_TR_SELECTOR));
8291 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8292 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8293 vmcs_readl(HOST_TR_BASE));
8294 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8295 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8296 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8297 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8298 vmcs_readl(HOST_CR4));
8299 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8300 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8301 vmcs_read32(HOST_IA32_SYSENTER_CS),
8302 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8303 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8304 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8305 vmcs_read64(HOST_IA32_EFER),
8306 vmcs_read64(HOST_IA32_PAT));
8307 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8308 pr_err("PerfGlobCtl = 0x%016llx\n",
8309 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8310
8311 pr_err("*** Control State ***\n");
8312 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8313 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8314 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8315 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8316 vmcs_read32(EXCEPTION_BITMAP),
8317 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8318 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8319 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8320 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8321 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8322 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8323 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8324 vmcs_read32(VM_EXIT_INTR_INFO),
8325 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8326 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8327 pr_err(" reason=%08x qualification=%016lx\n",
8328 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8329 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8330 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8331 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8332 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8333 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8334 pr_err("TSC Multiplier = 0x%016llx\n",
8335 vmcs_read64(TSC_MULTIPLIER));
8336 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8337 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8338 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8339 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8340 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8341 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8342 n = vmcs_read32(CR3_TARGET_COUNT);
8343 for (i = 0; i + 1 < n; i += 4)
8344 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8345 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8346 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8347 if (i < n)
8348 pr_err("CR3 target%u=%016lx\n",
8349 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8350 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8351 pr_err("PLE Gap=%08x Window=%08x\n",
8352 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8353 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8354 pr_err("Virtual processor ID = 0x%04x\n",
8355 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8356 }
8357
8358 /*
8359 * The guest has exited. See if we can fix it or if we need userspace
8360 * assistance.
8361 */
8362 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8363 {
8364 struct vcpu_vmx *vmx = to_vmx(vcpu);
8365 u32 exit_reason = vmx->exit_reason;
8366 u32 vectoring_info = vmx->idt_vectoring_info;
8367
8368 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8369 vcpu->arch.gpa_available = false;
8370
8371 /*
8372 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8373 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8374 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8375 * mode as if vcpus is in root mode, the PML buffer must has been
8376 * flushed already.
8377 */
8378 if (enable_pml)
8379 vmx_flush_pml_buffer(vcpu);
8380
8381 /* If guest state is invalid, start emulating */
8382 if (vmx->emulation_required)
8383 return handle_invalid_guest_state(vcpu);
8384
8385 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8386 nested_vmx_vmexit(vcpu, exit_reason,
8387 vmcs_read32(VM_EXIT_INTR_INFO),
8388 vmcs_readl(EXIT_QUALIFICATION));
8389 return 1;
8390 }
8391
8392 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8393 dump_vmcs();
8394 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8395 vcpu->run->fail_entry.hardware_entry_failure_reason
8396 = exit_reason;
8397 return 0;
8398 }
8399
8400 if (unlikely(vmx->fail)) {
8401 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8402 vcpu->run->fail_entry.hardware_entry_failure_reason
8403 = vmcs_read32(VM_INSTRUCTION_ERROR);
8404 return 0;
8405 }
8406
8407 /*
8408 * Note:
8409 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8410 * delivery event since it indicates guest is accessing MMIO.
8411 * The vm-exit can be triggered again after return to guest that
8412 * will cause infinite loop.
8413 */
8414 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8415 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8416 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8417 exit_reason != EXIT_REASON_PML_FULL &&
8418 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8419 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8420 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8421 vcpu->run->internal.ndata = 2;
8422 vcpu->run->internal.data[0] = vectoring_info;
8423 vcpu->run->internal.data[1] = exit_reason;
8424 return 0;
8425 }
8426
8427 if (exit_reason < kvm_vmx_max_exit_handlers
8428 && kvm_vmx_exit_handlers[exit_reason])
8429 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8430 else {
8431 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8432 exit_reason);
8433 kvm_queue_exception(vcpu, UD_VECTOR);
8434 return 1;
8435 }
8436 }
8437
8438 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8439 {
8440 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8441
8442 if (is_guest_mode(vcpu) &&
8443 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8444 return;
8445
8446 if (irr == -1 || tpr < irr) {
8447 vmcs_write32(TPR_THRESHOLD, 0);
8448 return;
8449 }
8450
8451 vmcs_write32(TPR_THRESHOLD, irr);
8452 }
8453
8454 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8455 {
8456 u32 sec_exec_control;
8457
8458 /* Postpone execution until vmcs01 is the current VMCS. */
8459 if (is_guest_mode(vcpu)) {
8460 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8461 return;
8462 }
8463
8464 if (!cpu_has_vmx_virtualize_x2apic_mode())
8465 return;
8466
8467 if (!cpu_need_tpr_shadow(vcpu))
8468 return;
8469
8470 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8471
8472 if (set) {
8473 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8474 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8475 } else {
8476 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8477 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8478 vmx_flush_tlb_ept_only(vcpu);
8479 }
8480 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8481
8482 vmx_set_msr_bitmap(vcpu);
8483 }
8484
8485 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8486 {
8487 struct vcpu_vmx *vmx = to_vmx(vcpu);
8488
8489 /*
8490 * Currently we do not handle the nested case where L2 has an
8491 * APIC access page of its own; that page is still pinned.
8492 * Hence, we skip the case where the VCPU is in guest mode _and_
8493 * L1 prepared an APIC access page for L2.
8494 *
8495 * For the case where L1 and L2 share the same APIC access page
8496 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8497 * in the vmcs12), this function will only update either the vmcs01
8498 * or the vmcs02. If the former, the vmcs02 will be updated by
8499 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8500 * the next L2->L1 exit.
8501 */
8502 if (!is_guest_mode(vcpu) ||
8503 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8504 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8505 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8506 vmx_flush_tlb_ept_only(vcpu);
8507 }
8508 }
8509
8510 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8511 {
8512 u16 status;
8513 u8 old;
8514
8515 if (max_isr == -1)
8516 max_isr = 0;
8517
8518 status = vmcs_read16(GUEST_INTR_STATUS);
8519 old = status >> 8;
8520 if (max_isr != old) {
8521 status &= 0xff;
8522 status |= max_isr << 8;
8523 vmcs_write16(GUEST_INTR_STATUS, status);
8524 }
8525 }
8526
8527 static void vmx_set_rvi(int vector)
8528 {
8529 u16 status;
8530 u8 old;
8531
8532 if (vector == -1)
8533 vector = 0;
8534
8535 status = vmcs_read16(GUEST_INTR_STATUS);
8536 old = (u8)status & 0xff;
8537 if ((u8)vector != old) {
8538 status &= ~0xff;
8539 status |= (u8)vector;
8540 vmcs_write16(GUEST_INTR_STATUS, status);
8541 }
8542 }
8543
8544 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8545 {
8546 if (!is_guest_mode(vcpu)) {
8547 vmx_set_rvi(max_irr);
8548 return;
8549 }
8550
8551 if (max_irr == -1)
8552 return;
8553
8554 /*
8555 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8556 * handles it.
8557 */
8558 if (nested_exit_on_intr(vcpu))
8559 return;
8560
8561 /*
8562 * Else, fall back to pre-APICv interrupt injection since L2
8563 * is run without virtual interrupt delivery.
8564 */
8565 if (!kvm_event_needs_reinjection(vcpu) &&
8566 vmx_interrupt_allowed(vcpu)) {
8567 kvm_queue_interrupt(vcpu, max_irr, false);
8568 vmx_inject_irq(vcpu);
8569 }
8570 }
8571
8572 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8573 {
8574 struct vcpu_vmx *vmx = to_vmx(vcpu);
8575 int max_irr;
8576
8577 WARN_ON(!vcpu->arch.apicv_active);
8578 if (pi_test_on(&vmx->pi_desc)) {
8579 pi_clear_on(&vmx->pi_desc);
8580 /*
8581 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8582 * But on x86 this is just a compiler barrier anyway.
8583 */
8584 smp_mb__after_atomic();
8585 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8586 } else {
8587 max_irr = kvm_lapic_find_highest_irr(vcpu);
8588 }
8589 vmx_hwapic_irr_update(vcpu, max_irr);
8590 return max_irr;
8591 }
8592
8593 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8594 {
8595 if (!kvm_vcpu_apicv_active(vcpu))
8596 return;
8597
8598 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8599 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8600 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8601 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8602 }
8603
8604 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8605 {
8606 struct vcpu_vmx *vmx = to_vmx(vcpu);
8607
8608 pi_clear_on(&vmx->pi_desc);
8609 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8610 }
8611
8612 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8613 {
8614 u32 exit_intr_info;
8615
8616 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8617 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8618 return;
8619
8620 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8621 exit_intr_info = vmx->exit_intr_info;
8622
8623 /* Handle machine checks before interrupts are enabled */
8624 if (is_machine_check(exit_intr_info))
8625 kvm_machine_check();
8626
8627 /* We need to handle NMIs before interrupts are enabled */
8628 if (is_nmi(exit_intr_info)) {
8629 kvm_before_handle_nmi(&vmx->vcpu);
8630 asm("int $2");
8631 kvm_after_handle_nmi(&vmx->vcpu);
8632 }
8633 }
8634
8635 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8636 {
8637 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8638 register void *__sp asm(_ASM_SP);
8639
8640 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8641 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8642 unsigned int vector;
8643 unsigned long entry;
8644 gate_desc *desc;
8645 struct vcpu_vmx *vmx = to_vmx(vcpu);
8646 #ifdef CONFIG_X86_64
8647 unsigned long tmp;
8648 #endif
8649
8650 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8651 desc = (gate_desc *)vmx->host_idt_base + vector;
8652 entry = gate_offset(*desc);
8653 asm volatile(
8654 #ifdef CONFIG_X86_64
8655 "mov %%" _ASM_SP ", %[sp]\n\t"
8656 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8657 "push $%c[ss]\n\t"
8658 "push %[sp]\n\t"
8659 #endif
8660 "pushf\n\t"
8661 __ASM_SIZE(push) " $%c[cs]\n\t"
8662 "call *%[entry]\n\t"
8663 :
8664 #ifdef CONFIG_X86_64
8665 [sp]"=&r"(tmp),
8666 #endif
8667 "+r"(__sp)
8668 :
8669 [entry]"r"(entry),
8670 [ss]"i"(__KERNEL_DS),
8671 [cs]"i"(__KERNEL_CS)
8672 );
8673 }
8674 }
8675 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8676
8677 static bool vmx_has_high_real_mode_segbase(void)
8678 {
8679 return enable_unrestricted_guest || emulate_invalid_guest_state;
8680 }
8681
8682 static bool vmx_mpx_supported(void)
8683 {
8684 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8685 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8686 }
8687
8688 static bool vmx_xsaves_supported(void)
8689 {
8690 return vmcs_config.cpu_based_2nd_exec_ctrl &
8691 SECONDARY_EXEC_XSAVES;
8692 }
8693
8694 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8695 {
8696 u32 exit_intr_info;
8697 bool unblock_nmi;
8698 u8 vector;
8699 bool idtv_info_valid;
8700
8701 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8702
8703 if (vmx->nmi_known_unmasked)
8704 return;
8705 /*
8706 * Can't use vmx->exit_intr_info since we're not sure what
8707 * the exit reason is.
8708 */
8709 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8710 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8711 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8712 /*
8713 * SDM 3: 27.7.1.2 (September 2008)
8714 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8715 * a guest IRET fault.
8716 * SDM 3: 23.2.2 (September 2008)
8717 * Bit 12 is undefined in any of the following cases:
8718 * If the VM exit sets the valid bit in the IDT-vectoring
8719 * information field.
8720 * If the VM exit is due to a double fault.
8721 */
8722 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8723 vector != DF_VECTOR && !idtv_info_valid)
8724 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8725 GUEST_INTR_STATE_NMI);
8726 else
8727 vmx->nmi_known_unmasked =
8728 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8729 & GUEST_INTR_STATE_NMI);
8730 }
8731
8732 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8733 u32 idt_vectoring_info,
8734 int instr_len_field,
8735 int error_code_field)
8736 {
8737 u8 vector;
8738 int type;
8739 bool idtv_info_valid;
8740
8741 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8742
8743 vcpu->arch.nmi_injected = false;
8744 kvm_clear_exception_queue(vcpu);
8745 kvm_clear_interrupt_queue(vcpu);
8746
8747 if (!idtv_info_valid)
8748 return;
8749
8750 kvm_make_request(KVM_REQ_EVENT, vcpu);
8751
8752 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8753 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8754
8755 switch (type) {
8756 case INTR_TYPE_NMI_INTR:
8757 vcpu->arch.nmi_injected = true;
8758 /*
8759 * SDM 3: 27.7.1.2 (September 2008)
8760 * Clear bit "block by NMI" before VM entry if a NMI
8761 * delivery faulted.
8762 */
8763 vmx_set_nmi_mask(vcpu, false);
8764 break;
8765 case INTR_TYPE_SOFT_EXCEPTION:
8766 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8767 /* fall through */
8768 case INTR_TYPE_HARD_EXCEPTION:
8769 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8770 u32 err = vmcs_read32(error_code_field);
8771 kvm_requeue_exception_e(vcpu, vector, err);
8772 } else
8773 kvm_requeue_exception(vcpu, vector);
8774 break;
8775 case INTR_TYPE_SOFT_INTR:
8776 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8777 /* fall through */
8778 case INTR_TYPE_EXT_INTR:
8779 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8780 break;
8781 default:
8782 break;
8783 }
8784 }
8785
8786 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8787 {
8788 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8789 VM_EXIT_INSTRUCTION_LEN,
8790 IDT_VECTORING_ERROR_CODE);
8791 }
8792
8793 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8794 {
8795 __vmx_complete_interrupts(vcpu,
8796 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8797 VM_ENTRY_INSTRUCTION_LEN,
8798 VM_ENTRY_EXCEPTION_ERROR_CODE);
8799
8800 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8801 }
8802
8803 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8804 {
8805 int i, nr_msrs;
8806 struct perf_guest_switch_msr *msrs;
8807
8808 msrs = perf_guest_get_msrs(&nr_msrs);
8809
8810 if (!msrs)
8811 return;
8812
8813 for (i = 0; i < nr_msrs; i++)
8814 if (msrs[i].host == msrs[i].guest)
8815 clear_atomic_switch_msr(vmx, msrs[i].msr);
8816 else
8817 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8818 msrs[i].host);
8819 }
8820
8821 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8822 {
8823 struct vcpu_vmx *vmx = to_vmx(vcpu);
8824 u64 tscl;
8825 u32 delta_tsc;
8826
8827 if (vmx->hv_deadline_tsc == -1)
8828 return;
8829
8830 tscl = rdtsc();
8831 if (vmx->hv_deadline_tsc > tscl)
8832 /* sure to be 32 bit only because checked on set_hv_timer */
8833 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8834 cpu_preemption_timer_multi);
8835 else
8836 delta_tsc = 0;
8837
8838 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8839 }
8840
8841 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8842 {
8843 struct vcpu_vmx *vmx = to_vmx(vcpu);
8844 unsigned long debugctlmsr, cr3, cr4;
8845
8846 /* Don't enter VMX if guest state is invalid, let the exit handler
8847 start emulation until we arrive back to a valid state */
8848 if (vmx->emulation_required)
8849 return;
8850
8851 if (vmx->ple_window_dirty) {
8852 vmx->ple_window_dirty = false;
8853 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8854 }
8855
8856 if (vmx->nested.sync_shadow_vmcs) {
8857 copy_vmcs12_to_shadow(vmx);
8858 vmx->nested.sync_shadow_vmcs = false;
8859 }
8860
8861 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8862 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8863 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8864 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8865
8866 cr3 = __get_current_cr3_fast();
8867 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8868 vmcs_writel(HOST_CR3, cr3);
8869 vmx->host_state.vmcs_host_cr3 = cr3;
8870 }
8871
8872 cr4 = cr4_read_shadow();
8873 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8874 vmcs_writel(HOST_CR4, cr4);
8875 vmx->host_state.vmcs_host_cr4 = cr4;
8876 }
8877
8878 /* When single-stepping over STI and MOV SS, we must clear the
8879 * corresponding interruptibility bits in the guest state. Otherwise
8880 * vmentry fails as it then expects bit 14 (BS) in pending debug
8881 * exceptions being set, but that's not correct for the guest debugging
8882 * case. */
8883 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8884 vmx_set_interrupt_shadow(vcpu, 0);
8885
8886 if (vmx->guest_pkru_valid)
8887 __write_pkru(vmx->guest_pkru);
8888
8889 atomic_switch_perf_msrs(vmx);
8890 debugctlmsr = get_debugctlmsr();
8891
8892 vmx_arm_hv_timer(vcpu);
8893
8894 vmx->__launched = vmx->loaded_vmcs->launched;
8895 asm(
8896 /* Store host registers */
8897 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8898 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8899 "push %%" _ASM_CX " \n\t"
8900 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8901 "je 1f \n\t"
8902 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8903 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8904 "1: \n\t"
8905 /* Reload cr2 if changed */
8906 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8907 "mov %%cr2, %%" _ASM_DX " \n\t"
8908 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8909 "je 2f \n\t"
8910 "mov %%" _ASM_AX", %%cr2 \n\t"
8911 "2: \n\t"
8912 /* Check if vmlaunch of vmresume is needed */
8913 "cmpl $0, %c[launched](%0) \n\t"
8914 /* Load guest registers. Don't clobber flags. */
8915 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8916 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8917 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8918 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8919 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8920 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8921 #ifdef CONFIG_X86_64
8922 "mov %c[r8](%0), %%r8 \n\t"
8923 "mov %c[r9](%0), %%r9 \n\t"
8924 "mov %c[r10](%0), %%r10 \n\t"
8925 "mov %c[r11](%0), %%r11 \n\t"
8926 "mov %c[r12](%0), %%r12 \n\t"
8927 "mov %c[r13](%0), %%r13 \n\t"
8928 "mov %c[r14](%0), %%r14 \n\t"
8929 "mov %c[r15](%0), %%r15 \n\t"
8930 #endif
8931 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8932
8933 /* Enter guest mode */
8934 "jne 1f \n\t"
8935 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8936 "jmp 2f \n\t"
8937 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8938 "2: "
8939 /* Save guest registers, load host registers, keep flags */
8940 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8941 "pop %0 \n\t"
8942 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8943 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8944 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8945 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8946 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8947 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8948 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8949 #ifdef CONFIG_X86_64
8950 "mov %%r8, %c[r8](%0) \n\t"
8951 "mov %%r9, %c[r9](%0) \n\t"
8952 "mov %%r10, %c[r10](%0) \n\t"
8953 "mov %%r11, %c[r11](%0) \n\t"
8954 "mov %%r12, %c[r12](%0) \n\t"
8955 "mov %%r13, %c[r13](%0) \n\t"
8956 "mov %%r14, %c[r14](%0) \n\t"
8957 "mov %%r15, %c[r15](%0) \n\t"
8958 #endif
8959 "mov %%cr2, %%" _ASM_AX " \n\t"
8960 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8961
8962 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8963 "setbe %c[fail](%0) \n\t"
8964 ".pushsection .rodata \n\t"
8965 ".global vmx_return \n\t"
8966 "vmx_return: " _ASM_PTR " 2b \n\t"
8967 ".popsection"
8968 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8969 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8970 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8971 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8972 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8973 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8974 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8975 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8976 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8977 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8978 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8979 #ifdef CONFIG_X86_64
8980 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8981 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8982 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8983 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8984 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8985 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8986 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8987 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8988 #endif
8989 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8990 [wordsize]"i"(sizeof(ulong))
8991 : "cc", "memory"
8992 #ifdef CONFIG_X86_64
8993 , "rax", "rbx", "rdi", "rsi"
8994 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8995 #else
8996 , "eax", "ebx", "edi", "esi"
8997 #endif
8998 );
8999
9000 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9001 if (debugctlmsr)
9002 update_debugctlmsr(debugctlmsr);
9003
9004 #ifndef CONFIG_X86_64
9005 /*
9006 * The sysexit path does not restore ds/es, so we must set them to
9007 * a reasonable value ourselves.
9008 *
9009 * We can't defer this to vmx_load_host_state() since that function
9010 * may be executed in interrupt context, which saves and restore segments
9011 * around it, nullifying its effect.
9012 */
9013 loadsegment(ds, __USER_DS);
9014 loadsegment(es, __USER_DS);
9015 #endif
9016
9017 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9018 | (1 << VCPU_EXREG_RFLAGS)
9019 | (1 << VCPU_EXREG_PDPTR)
9020 | (1 << VCPU_EXREG_SEGMENTS)
9021 | (1 << VCPU_EXREG_CR3));
9022 vcpu->arch.regs_dirty = 0;
9023
9024 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9025
9026 vmx->loaded_vmcs->launched = 1;
9027
9028 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9029
9030 /*
9031 * eager fpu is enabled if PKEY is supported and CR4 is switched
9032 * back on host, so it is safe to read guest PKRU from current
9033 * XSAVE.
9034 */
9035 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9036 vmx->guest_pkru = __read_pkru();
9037 if (vmx->guest_pkru != vmx->host_pkru) {
9038 vmx->guest_pkru_valid = true;
9039 __write_pkru(vmx->host_pkru);
9040 } else
9041 vmx->guest_pkru_valid = false;
9042 }
9043
9044 /*
9045 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9046 * we did not inject a still-pending event to L1 now because of
9047 * nested_run_pending, we need to re-enable this bit.
9048 */
9049 if (vmx->nested.nested_run_pending)
9050 kvm_make_request(KVM_REQ_EVENT, vcpu);
9051
9052 vmx->nested.nested_run_pending = 0;
9053
9054 vmx_complete_atomic_exit(vmx);
9055 vmx_recover_nmi_blocking(vmx);
9056 vmx_complete_interrupts(vmx);
9057 }
9058 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9059
9060 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9061 {
9062 struct vcpu_vmx *vmx = to_vmx(vcpu);
9063 int cpu;
9064
9065 if (vmx->loaded_vmcs == vmcs)
9066 return;
9067
9068 cpu = get_cpu();
9069 vmx->loaded_vmcs = vmcs;
9070 vmx_vcpu_put(vcpu);
9071 vmx_vcpu_load(vcpu, cpu);
9072 vcpu->cpu = cpu;
9073 put_cpu();
9074 }
9075
9076 /*
9077 * Ensure that the current vmcs of the logical processor is the
9078 * vmcs01 of the vcpu before calling free_nested().
9079 */
9080 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9081 {
9082 struct vcpu_vmx *vmx = to_vmx(vcpu);
9083 int r;
9084
9085 r = vcpu_load(vcpu);
9086 BUG_ON(r);
9087 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9088 free_nested(vmx);
9089 vcpu_put(vcpu);
9090 }
9091
9092 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9093 {
9094 struct vcpu_vmx *vmx = to_vmx(vcpu);
9095
9096 if (enable_pml)
9097 vmx_destroy_pml_buffer(vmx);
9098 free_vpid(vmx->vpid);
9099 leave_guest_mode(vcpu);
9100 vmx_free_vcpu_nested(vcpu);
9101 free_loaded_vmcs(vmx->loaded_vmcs);
9102 kfree(vmx->guest_msrs);
9103 kvm_vcpu_uninit(vcpu);
9104 kmem_cache_free(kvm_vcpu_cache, vmx);
9105 }
9106
9107 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9108 {
9109 int err;
9110 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9111 int cpu;
9112
9113 if (!vmx)
9114 return ERR_PTR(-ENOMEM);
9115
9116 vmx->vpid = allocate_vpid();
9117
9118 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9119 if (err)
9120 goto free_vcpu;
9121
9122 err = -ENOMEM;
9123
9124 /*
9125 * If PML is turned on, failure on enabling PML just results in failure
9126 * of creating the vcpu, therefore we can simplify PML logic (by
9127 * avoiding dealing with cases, such as enabling PML partially on vcpus
9128 * for the guest, etc.
9129 */
9130 if (enable_pml) {
9131 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9132 if (!vmx->pml_pg)
9133 goto uninit_vcpu;
9134 }
9135
9136 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9137 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9138 > PAGE_SIZE);
9139
9140 if (!vmx->guest_msrs)
9141 goto free_pml;
9142
9143 vmx->loaded_vmcs = &vmx->vmcs01;
9144 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9145 vmx->loaded_vmcs->shadow_vmcs = NULL;
9146 if (!vmx->loaded_vmcs->vmcs)
9147 goto free_msrs;
9148 loaded_vmcs_init(vmx->loaded_vmcs);
9149
9150 cpu = get_cpu();
9151 vmx_vcpu_load(&vmx->vcpu, cpu);
9152 vmx->vcpu.cpu = cpu;
9153 err = vmx_vcpu_setup(vmx);
9154 vmx_vcpu_put(&vmx->vcpu);
9155 put_cpu();
9156 if (err)
9157 goto free_vmcs;
9158 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9159 err = alloc_apic_access_page(kvm);
9160 if (err)
9161 goto free_vmcs;
9162 }
9163
9164 if (enable_ept) {
9165 if (!kvm->arch.ept_identity_map_addr)
9166 kvm->arch.ept_identity_map_addr =
9167 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9168 err = init_rmode_identity_map(kvm);
9169 if (err)
9170 goto free_vmcs;
9171 }
9172
9173 if (nested) {
9174 nested_vmx_setup_ctls_msrs(vmx);
9175 vmx->nested.vpid02 = allocate_vpid();
9176 }
9177
9178 vmx->nested.posted_intr_nv = -1;
9179 vmx->nested.current_vmptr = -1ull;
9180 vmx->nested.current_vmcs12 = NULL;
9181
9182 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9183
9184 return &vmx->vcpu;
9185
9186 free_vmcs:
9187 free_vpid(vmx->nested.vpid02);
9188 free_loaded_vmcs(vmx->loaded_vmcs);
9189 free_msrs:
9190 kfree(vmx->guest_msrs);
9191 free_pml:
9192 vmx_destroy_pml_buffer(vmx);
9193 uninit_vcpu:
9194 kvm_vcpu_uninit(&vmx->vcpu);
9195 free_vcpu:
9196 free_vpid(vmx->vpid);
9197 kmem_cache_free(kvm_vcpu_cache, vmx);
9198 return ERR_PTR(err);
9199 }
9200
9201 static void __init vmx_check_processor_compat(void *rtn)
9202 {
9203 struct vmcs_config vmcs_conf;
9204
9205 *(int *)rtn = 0;
9206 if (setup_vmcs_config(&vmcs_conf) < 0)
9207 *(int *)rtn = -EIO;
9208 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9209 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9210 smp_processor_id());
9211 *(int *)rtn = -EIO;
9212 }
9213 }
9214
9215 static int get_ept_level(void)
9216 {
9217 return VMX_EPT_DEFAULT_GAW + 1;
9218 }
9219
9220 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9221 {
9222 u8 cache;
9223 u64 ipat = 0;
9224
9225 /* For VT-d and EPT combination
9226 * 1. MMIO: always map as UC
9227 * 2. EPT with VT-d:
9228 * a. VT-d without snooping control feature: can't guarantee the
9229 * result, try to trust guest.
9230 * b. VT-d with snooping control feature: snooping control feature of
9231 * VT-d engine can guarantee the cache correctness. Just set it
9232 * to WB to keep consistent with host. So the same as item 3.
9233 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9234 * consistent with host MTRR
9235 */
9236 if (is_mmio) {
9237 cache = MTRR_TYPE_UNCACHABLE;
9238 goto exit;
9239 }
9240
9241 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9242 ipat = VMX_EPT_IPAT_BIT;
9243 cache = MTRR_TYPE_WRBACK;
9244 goto exit;
9245 }
9246
9247 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9248 ipat = VMX_EPT_IPAT_BIT;
9249 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9250 cache = MTRR_TYPE_WRBACK;
9251 else
9252 cache = MTRR_TYPE_UNCACHABLE;
9253 goto exit;
9254 }
9255
9256 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9257
9258 exit:
9259 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9260 }
9261
9262 static int vmx_get_lpage_level(void)
9263 {
9264 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9265 return PT_DIRECTORY_LEVEL;
9266 else
9267 /* For shadow and EPT supported 1GB page */
9268 return PT_PDPE_LEVEL;
9269 }
9270
9271 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9272 {
9273 /*
9274 * These bits in the secondary execution controls field
9275 * are dynamic, the others are mostly based on the hypervisor
9276 * architecture and the guest's CPUID. Do not touch the
9277 * dynamic bits.
9278 */
9279 u32 mask =
9280 SECONDARY_EXEC_SHADOW_VMCS |
9281 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9282 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9283
9284 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9285
9286 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9287 (new_ctl & ~mask) | (cur_ctl & mask));
9288 }
9289
9290 /*
9291 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9292 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9293 */
9294 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9295 {
9296 struct vcpu_vmx *vmx = to_vmx(vcpu);
9297 struct kvm_cpuid_entry2 *entry;
9298
9299 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9300 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9301
9302 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9303 if (entry && (entry->_reg & (_cpuid_mask))) \
9304 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9305 } while (0)
9306
9307 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9308 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9309 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9310 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9311 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9312 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9313 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9314 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9315 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9316 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9317 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9318 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9319 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9320 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9321 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9322
9323 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9324 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9325 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9326 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9327 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9328 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9329 cr4_fixed1_update(bit(11), ecx, bit(2));
9330
9331 #undef cr4_fixed1_update
9332 }
9333
9334 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9335 {
9336 struct kvm_cpuid_entry2 *best;
9337 struct vcpu_vmx *vmx = to_vmx(vcpu);
9338 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9339
9340 if (vmx_rdtscp_supported()) {
9341 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9342 if (!rdtscp_enabled)
9343 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9344
9345 if (nested) {
9346 if (rdtscp_enabled)
9347 vmx->nested.nested_vmx_secondary_ctls_high |=
9348 SECONDARY_EXEC_RDTSCP;
9349 else
9350 vmx->nested.nested_vmx_secondary_ctls_high &=
9351 ~SECONDARY_EXEC_RDTSCP;
9352 }
9353 }
9354
9355 /* Exposing INVPCID only when PCID is exposed */
9356 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9357 if (vmx_invpcid_supported() &&
9358 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9359 !guest_cpuid_has_pcid(vcpu))) {
9360 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9361
9362 if (best)
9363 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9364 }
9365
9366 if (cpu_has_secondary_exec_ctrls())
9367 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9368
9369 if (nested_vmx_allowed(vcpu))
9370 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9371 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9372 else
9373 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9374 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9375
9376 if (nested_vmx_allowed(vcpu))
9377 nested_vmx_cr_fixed1_bits_update(vcpu);
9378 }
9379
9380 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9381 {
9382 if (func == 1 && nested)
9383 entry->ecx |= bit(X86_FEATURE_VMX);
9384 }
9385
9386 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9387 struct x86_exception *fault)
9388 {
9389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9390 struct vcpu_vmx *vmx = to_vmx(vcpu);
9391 u32 exit_reason;
9392 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9393
9394 if (vmx->nested.pml_full) {
9395 exit_reason = EXIT_REASON_PML_FULL;
9396 vmx->nested.pml_full = false;
9397 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9398 } else if (fault->error_code & PFERR_RSVD_MASK)
9399 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9400 else
9401 exit_reason = EXIT_REASON_EPT_VIOLATION;
9402
9403 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9404 vmcs12->guest_physical_address = fault->address;
9405 }
9406
9407 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9408 {
9409 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9410 }
9411
9412 /* Callbacks for nested_ept_init_mmu_context: */
9413
9414 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9415 {
9416 /* return the page table to be shadowed - in our case, EPT12 */
9417 return get_vmcs12(vcpu)->ept_pointer;
9418 }
9419
9420 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9421 {
9422 bool wants_ad;
9423
9424 WARN_ON(mmu_is_nested(vcpu));
9425 wants_ad = nested_ept_ad_enabled(vcpu);
9426 if (wants_ad && !enable_ept_ad_bits)
9427 return 1;
9428
9429 kvm_mmu_unload(vcpu);
9430 kvm_init_shadow_ept_mmu(vcpu,
9431 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9432 VMX_EPT_EXECUTE_ONLY_BIT,
9433 wants_ad);
9434 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9435 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9436 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9437
9438 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9439 return 0;
9440 }
9441
9442 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9443 {
9444 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9445 }
9446
9447 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9448 u16 error_code)
9449 {
9450 bool inequality, bit;
9451
9452 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9453 inequality =
9454 (error_code & vmcs12->page_fault_error_code_mask) !=
9455 vmcs12->page_fault_error_code_match;
9456 return inequality ^ bit;
9457 }
9458
9459 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9460 struct x86_exception *fault)
9461 {
9462 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9463
9464 WARN_ON(!is_guest_mode(vcpu));
9465
9466 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9467 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9468 vmcs_read32(VM_EXIT_INTR_INFO),
9469 vmcs_readl(EXIT_QUALIFICATION));
9470 else
9471 kvm_inject_page_fault(vcpu, fault);
9472 }
9473
9474 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9475 struct vmcs12 *vmcs12);
9476
9477 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9478 struct vmcs12 *vmcs12)
9479 {
9480 struct vcpu_vmx *vmx = to_vmx(vcpu);
9481 u64 hpa;
9482
9483 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9484 /*
9485 * Translate L1 physical address to host physical
9486 * address for vmcs02. Keep the page pinned, so this
9487 * physical address remains valid. We keep a reference
9488 * to it so we can release it later.
9489 */
9490 if (vmx->nested.apic_access_page) /* shouldn't happen */
9491 nested_release_page(vmx->nested.apic_access_page);
9492 vmx->nested.apic_access_page =
9493 nested_get_page(vcpu, vmcs12->apic_access_addr);
9494 /*
9495 * If translation failed, no matter: This feature asks
9496 * to exit when accessing the given address, and if it
9497 * can never be accessed, this feature won't do
9498 * anything anyway.
9499 */
9500 if (vmx->nested.apic_access_page) {
9501 hpa = page_to_phys(vmx->nested.apic_access_page);
9502 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9503 } else {
9504 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9505 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9506 }
9507 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9508 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9509 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9510 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9511 kvm_vcpu_reload_apic_access_page(vcpu);
9512 }
9513
9514 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9515 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9516 nested_release_page(vmx->nested.virtual_apic_page);
9517 vmx->nested.virtual_apic_page =
9518 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9519
9520 /*
9521 * If translation failed, VM entry will fail because
9522 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9523 * Failing the vm entry is _not_ what the processor
9524 * does but it's basically the only possibility we
9525 * have. We could still enter the guest if CR8 load
9526 * exits are enabled, CR8 store exits are enabled, and
9527 * virtualize APIC access is disabled; in this case
9528 * the processor would never use the TPR shadow and we
9529 * could simply clear the bit from the execution
9530 * control. But such a configuration is useless, so
9531 * let's keep the code simple.
9532 */
9533 if (vmx->nested.virtual_apic_page) {
9534 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9535 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9536 }
9537 }
9538
9539 if (nested_cpu_has_posted_intr(vmcs12)) {
9540 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9541 kunmap(vmx->nested.pi_desc_page);
9542 nested_release_page(vmx->nested.pi_desc_page);
9543 }
9544 vmx->nested.pi_desc_page =
9545 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9546 vmx->nested.pi_desc =
9547 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9548 if (!vmx->nested.pi_desc) {
9549 nested_release_page_clean(vmx->nested.pi_desc_page);
9550 return;
9551 }
9552 vmx->nested.pi_desc =
9553 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9554 (unsigned long)(vmcs12->posted_intr_desc_addr &
9555 (PAGE_SIZE - 1)));
9556 vmcs_write64(POSTED_INTR_DESC_ADDR,
9557 page_to_phys(vmx->nested.pi_desc_page) +
9558 (unsigned long)(vmcs12->posted_intr_desc_addr &
9559 (PAGE_SIZE - 1)));
9560 }
9561 if (cpu_has_vmx_msr_bitmap() &&
9562 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9563 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9564 ;
9565 else
9566 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9567 CPU_BASED_USE_MSR_BITMAPS);
9568 }
9569
9570 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9571 {
9572 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9573 struct vcpu_vmx *vmx = to_vmx(vcpu);
9574
9575 if (vcpu->arch.virtual_tsc_khz == 0)
9576 return;
9577
9578 /* Make sure short timeouts reliably trigger an immediate vmexit.
9579 * hrtimer_start does not guarantee this. */
9580 if (preemption_timeout <= 1) {
9581 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9582 return;
9583 }
9584
9585 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9586 preemption_timeout *= 1000000;
9587 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9588 hrtimer_start(&vmx->nested.preemption_timer,
9589 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9590 }
9591
9592 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9593 struct vmcs12 *vmcs12)
9594 {
9595 int maxphyaddr;
9596 u64 addr;
9597
9598 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9599 return 0;
9600
9601 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9602 WARN_ON(1);
9603 return -EINVAL;
9604 }
9605 maxphyaddr = cpuid_maxphyaddr(vcpu);
9606
9607 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9608 ((addr + PAGE_SIZE) >> maxphyaddr))
9609 return -EINVAL;
9610
9611 return 0;
9612 }
9613
9614 /*
9615 * Merge L0's and L1's MSR bitmap, return false to indicate that
9616 * we do not use the hardware.
9617 */
9618 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9619 struct vmcs12 *vmcs12)
9620 {
9621 int msr;
9622 struct page *page;
9623 unsigned long *msr_bitmap_l1;
9624 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9625
9626 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9627 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9628 return false;
9629
9630 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9631 if (!page)
9632 return false;
9633 msr_bitmap_l1 = (unsigned long *)kmap(page);
9634
9635 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9636
9637 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9638 if (nested_cpu_has_apic_reg_virt(vmcs12))
9639 for (msr = 0x800; msr <= 0x8ff; msr++)
9640 nested_vmx_disable_intercept_for_msr(
9641 msr_bitmap_l1, msr_bitmap_l0,
9642 msr, MSR_TYPE_R);
9643
9644 nested_vmx_disable_intercept_for_msr(
9645 msr_bitmap_l1, msr_bitmap_l0,
9646 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9647 MSR_TYPE_R | MSR_TYPE_W);
9648
9649 if (nested_cpu_has_vid(vmcs12)) {
9650 nested_vmx_disable_intercept_for_msr(
9651 msr_bitmap_l1, msr_bitmap_l0,
9652 APIC_BASE_MSR + (APIC_EOI >> 4),
9653 MSR_TYPE_W);
9654 nested_vmx_disable_intercept_for_msr(
9655 msr_bitmap_l1, msr_bitmap_l0,
9656 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9657 MSR_TYPE_W);
9658 }
9659 }
9660 kunmap(page);
9661 nested_release_page_clean(page);
9662
9663 return true;
9664 }
9665
9666 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9667 struct vmcs12 *vmcs12)
9668 {
9669 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9670 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9671 !nested_cpu_has_vid(vmcs12) &&
9672 !nested_cpu_has_posted_intr(vmcs12))
9673 return 0;
9674
9675 /*
9676 * If virtualize x2apic mode is enabled,
9677 * virtualize apic access must be disabled.
9678 */
9679 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9680 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9681 return -EINVAL;
9682
9683 /*
9684 * If virtual interrupt delivery is enabled,
9685 * we must exit on external interrupts.
9686 */
9687 if (nested_cpu_has_vid(vmcs12) &&
9688 !nested_exit_on_intr(vcpu))
9689 return -EINVAL;
9690
9691 /*
9692 * bits 15:8 should be zero in posted_intr_nv,
9693 * the descriptor address has been already checked
9694 * in nested_get_vmcs12_pages.
9695 */
9696 if (nested_cpu_has_posted_intr(vmcs12) &&
9697 (!nested_cpu_has_vid(vmcs12) ||
9698 !nested_exit_intr_ack_set(vcpu) ||
9699 vmcs12->posted_intr_nv & 0xff00))
9700 return -EINVAL;
9701
9702 /* tpr shadow is needed by all apicv features. */
9703 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9704 return -EINVAL;
9705
9706 return 0;
9707 }
9708
9709 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9710 unsigned long count_field,
9711 unsigned long addr_field)
9712 {
9713 int maxphyaddr;
9714 u64 count, addr;
9715
9716 if (vmcs12_read_any(vcpu, count_field, &count) ||
9717 vmcs12_read_any(vcpu, addr_field, &addr)) {
9718 WARN_ON(1);
9719 return -EINVAL;
9720 }
9721 if (count == 0)
9722 return 0;
9723 maxphyaddr = cpuid_maxphyaddr(vcpu);
9724 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9725 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9726 pr_debug_ratelimited(
9727 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9728 addr_field, maxphyaddr, count, addr);
9729 return -EINVAL;
9730 }
9731 return 0;
9732 }
9733
9734 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9735 struct vmcs12 *vmcs12)
9736 {
9737 if (vmcs12->vm_exit_msr_load_count == 0 &&
9738 vmcs12->vm_exit_msr_store_count == 0 &&
9739 vmcs12->vm_entry_msr_load_count == 0)
9740 return 0; /* Fast path */
9741 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9742 VM_EXIT_MSR_LOAD_ADDR) ||
9743 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9744 VM_EXIT_MSR_STORE_ADDR) ||
9745 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9746 VM_ENTRY_MSR_LOAD_ADDR))
9747 return -EINVAL;
9748 return 0;
9749 }
9750
9751 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9752 struct vmcs12 *vmcs12)
9753 {
9754 u64 address = vmcs12->pml_address;
9755 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9756
9757 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9758 if (!nested_cpu_has_ept(vmcs12) ||
9759 !IS_ALIGNED(address, 4096) ||
9760 address >> maxphyaddr)
9761 return -EINVAL;
9762 }
9763
9764 return 0;
9765 }
9766
9767 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9768 struct vmx_msr_entry *e)
9769 {
9770 /* x2APIC MSR accesses are not allowed */
9771 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9772 return -EINVAL;
9773 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9774 e->index == MSR_IA32_UCODE_REV)
9775 return -EINVAL;
9776 if (e->reserved != 0)
9777 return -EINVAL;
9778 return 0;
9779 }
9780
9781 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9782 struct vmx_msr_entry *e)
9783 {
9784 if (e->index == MSR_FS_BASE ||
9785 e->index == MSR_GS_BASE ||
9786 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9787 nested_vmx_msr_check_common(vcpu, e))
9788 return -EINVAL;
9789 return 0;
9790 }
9791
9792 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9793 struct vmx_msr_entry *e)
9794 {
9795 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9796 nested_vmx_msr_check_common(vcpu, e))
9797 return -EINVAL;
9798 return 0;
9799 }
9800
9801 /*
9802 * Load guest's/host's msr at nested entry/exit.
9803 * return 0 for success, entry index for failure.
9804 */
9805 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9806 {
9807 u32 i;
9808 struct vmx_msr_entry e;
9809 struct msr_data msr;
9810
9811 msr.host_initiated = false;
9812 for (i = 0; i < count; i++) {
9813 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9814 &e, sizeof(e))) {
9815 pr_debug_ratelimited(
9816 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9817 __func__, i, gpa + i * sizeof(e));
9818 goto fail;
9819 }
9820 if (nested_vmx_load_msr_check(vcpu, &e)) {
9821 pr_debug_ratelimited(
9822 "%s check failed (%u, 0x%x, 0x%x)\n",
9823 __func__, i, e.index, e.reserved);
9824 goto fail;
9825 }
9826 msr.index = e.index;
9827 msr.data = e.value;
9828 if (kvm_set_msr(vcpu, &msr)) {
9829 pr_debug_ratelimited(
9830 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9831 __func__, i, e.index, e.value);
9832 goto fail;
9833 }
9834 }
9835 return 0;
9836 fail:
9837 return i + 1;
9838 }
9839
9840 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9841 {
9842 u32 i;
9843 struct vmx_msr_entry e;
9844
9845 for (i = 0; i < count; i++) {
9846 struct msr_data msr_info;
9847 if (kvm_vcpu_read_guest(vcpu,
9848 gpa + i * sizeof(e),
9849 &e, 2 * sizeof(u32))) {
9850 pr_debug_ratelimited(
9851 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9852 __func__, i, gpa + i * sizeof(e));
9853 return -EINVAL;
9854 }
9855 if (nested_vmx_store_msr_check(vcpu, &e)) {
9856 pr_debug_ratelimited(
9857 "%s check failed (%u, 0x%x, 0x%x)\n",
9858 __func__, i, e.index, e.reserved);
9859 return -EINVAL;
9860 }
9861 msr_info.host_initiated = false;
9862 msr_info.index = e.index;
9863 if (kvm_get_msr(vcpu, &msr_info)) {
9864 pr_debug_ratelimited(
9865 "%s cannot read MSR (%u, 0x%x)\n",
9866 __func__, i, e.index);
9867 return -EINVAL;
9868 }
9869 if (kvm_vcpu_write_guest(vcpu,
9870 gpa + i * sizeof(e) +
9871 offsetof(struct vmx_msr_entry, value),
9872 &msr_info.data, sizeof(msr_info.data))) {
9873 pr_debug_ratelimited(
9874 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9875 __func__, i, e.index, msr_info.data);
9876 return -EINVAL;
9877 }
9878 }
9879 return 0;
9880 }
9881
9882 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9883 {
9884 unsigned long invalid_mask;
9885
9886 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9887 return (val & invalid_mask) == 0;
9888 }
9889
9890 /*
9891 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9892 * emulating VM entry into a guest with EPT enabled.
9893 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9894 * is assigned to entry_failure_code on failure.
9895 */
9896 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9897 u32 *entry_failure_code)
9898 {
9899 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9900 if (!nested_cr3_valid(vcpu, cr3)) {
9901 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9902 return 1;
9903 }
9904
9905 /*
9906 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9907 * must not be dereferenced.
9908 */
9909 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9910 !nested_ept) {
9911 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9912 *entry_failure_code = ENTRY_FAIL_PDPTE;
9913 return 1;
9914 }
9915 }
9916
9917 vcpu->arch.cr3 = cr3;
9918 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9919 }
9920
9921 kvm_mmu_reset_context(vcpu);
9922 return 0;
9923 }
9924
9925 /*
9926 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9927 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9928 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9929 * guest in a way that will both be appropriate to L1's requests, and our
9930 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9931 * function also has additional necessary side-effects, like setting various
9932 * vcpu->arch fields.
9933 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9934 * is assigned to entry_failure_code on failure.
9935 */
9936 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9937 bool from_vmentry, u32 *entry_failure_code)
9938 {
9939 struct vcpu_vmx *vmx = to_vmx(vcpu);
9940 u32 exec_control, vmcs12_exec_ctrl;
9941
9942 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9943 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9944 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9945 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9946 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9947 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9948 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9949 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9950 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9951 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9952 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9953 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9954 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9955 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9956 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9957 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9958 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9959 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9960 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9961 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9962 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9963 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9964 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9965 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9966 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9967 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9968 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9969 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9970 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9971 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9972 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9973 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9974 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9975 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9976 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9977 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9978
9979 if (from_vmentry &&
9980 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
9981 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9982 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9983 } else {
9984 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9985 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9986 }
9987 if (from_vmentry) {
9988 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9989 vmcs12->vm_entry_intr_info_field);
9990 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9991 vmcs12->vm_entry_exception_error_code);
9992 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9993 vmcs12->vm_entry_instruction_len);
9994 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9995 vmcs12->guest_interruptibility_info);
9996 } else {
9997 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9998 }
9999 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10000 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10001 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10002 vmcs12->guest_pending_dbg_exceptions);
10003 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10004 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10005
10006 if (nested_cpu_has_xsaves(vmcs12))
10007 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10008 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10009
10010 exec_control = vmcs12->pin_based_vm_exec_control;
10011
10012 /* Preemption timer setting is only taken from vmcs01. */
10013 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10014 exec_control |= vmcs_config.pin_based_exec_ctrl;
10015 if (vmx->hv_deadline_tsc == -1)
10016 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10017
10018 /* Posted interrupts setting is only taken from vmcs12. */
10019 if (nested_cpu_has_posted_intr(vmcs12)) {
10020 /*
10021 * Note that we use L0's vector here and in
10022 * vmx_deliver_nested_posted_interrupt.
10023 */
10024 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10025 vmx->nested.pi_pending = false;
10026 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10027 } else {
10028 exec_control &= ~PIN_BASED_POSTED_INTR;
10029 }
10030
10031 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10032
10033 vmx->nested.preemption_timer_expired = false;
10034 if (nested_cpu_has_preemption_timer(vmcs12))
10035 vmx_start_preemption_timer(vcpu);
10036
10037 /*
10038 * Whether page-faults are trapped is determined by a combination of
10039 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10040 * If enable_ept, L0 doesn't care about page faults and we should
10041 * set all of these to L1's desires. However, if !enable_ept, L0 does
10042 * care about (at least some) page faults, and because it is not easy
10043 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10044 * to exit on each and every L2 page fault. This is done by setting
10045 * MASK=MATCH=0 and (see below) EB.PF=1.
10046 * Note that below we don't need special code to set EB.PF beyond the
10047 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10048 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10049 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10050 *
10051 * A problem with this approach (when !enable_ept) is that L1 may be
10052 * injected with more page faults than it asked for. This could have
10053 * caused problems, but in practice existing hypervisors don't care.
10054 * To fix this, we will need to emulate the PFEC checking (on the L1
10055 * page tables), using walk_addr(), when injecting PFs to L1.
10056 */
10057 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10058 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10059 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10060 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10061
10062 if (cpu_has_secondary_exec_ctrls()) {
10063 exec_control = vmx_secondary_exec_control(vmx);
10064
10065 /* Take the following fields only from vmcs12 */
10066 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10067 SECONDARY_EXEC_RDTSCP |
10068 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10069 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10070 if (nested_cpu_has(vmcs12,
10071 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10072 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10073 ~SECONDARY_EXEC_ENABLE_PML;
10074 exec_control |= vmcs12_exec_ctrl;
10075 }
10076
10077 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10078 vmcs_write64(EOI_EXIT_BITMAP0,
10079 vmcs12->eoi_exit_bitmap0);
10080 vmcs_write64(EOI_EXIT_BITMAP1,
10081 vmcs12->eoi_exit_bitmap1);
10082 vmcs_write64(EOI_EXIT_BITMAP2,
10083 vmcs12->eoi_exit_bitmap2);
10084 vmcs_write64(EOI_EXIT_BITMAP3,
10085 vmcs12->eoi_exit_bitmap3);
10086 vmcs_write16(GUEST_INTR_STATUS,
10087 vmcs12->guest_intr_status);
10088 }
10089
10090 /*
10091 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10092 * nested_get_vmcs12_pages will either fix it up or
10093 * remove the VM execution control.
10094 */
10095 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10096 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10097
10098 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10099 }
10100
10101
10102 /*
10103 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10104 * Some constant fields are set here by vmx_set_constant_host_state().
10105 * Other fields are different per CPU, and will be set later when
10106 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10107 */
10108 vmx_set_constant_host_state(vmx);
10109
10110 /*
10111 * Set the MSR load/store lists to match L0's settings.
10112 */
10113 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10114 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10115 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10116 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10117 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10118
10119 /*
10120 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10121 * entry, but only if the current (host) sp changed from the value
10122 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10123 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10124 * here we just force the write to happen on entry.
10125 */
10126 vmx->host_rsp = 0;
10127
10128 exec_control = vmx_exec_control(vmx); /* L0's desires */
10129 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10130 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10131 exec_control &= ~CPU_BASED_TPR_SHADOW;
10132 exec_control |= vmcs12->cpu_based_vm_exec_control;
10133
10134 /*
10135 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10136 * nested_get_vmcs12_pages can't fix it up, the illegal value
10137 * will result in a VM entry failure.
10138 */
10139 if (exec_control & CPU_BASED_TPR_SHADOW) {
10140 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10141 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10142 }
10143
10144 /*
10145 * Merging of IO bitmap not currently supported.
10146 * Rather, exit every time.
10147 */
10148 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10149 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10150
10151 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10152
10153 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10154 * bitwise-or of what L1 wants to trap for L2, and what we want to
10155 * trap. Note that CR0.TS also needs updating - we do this later.
10156 */
10157 update_exception_bitmap(vcpu);
10158 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10159 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10160
10161 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10162 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10163 * bits are further modified by vmx_set_efer() below.
10164 */
10165 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10166
10167 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10168 * emulated by vmx_set_efer(), below.
10169 */
10170 vm_entry_controls_init(vmx,
10171 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10172 ~VM_ENTRY_IA32E_MODE) |
10173 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10174
10175 if (from_vmentry &&
10176 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10177 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10178 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10179 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10180 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10181 }
10182
10183 set_cr4_guest_host_mask(vmx);
10184
10185 if (from_vmentry &&
10186 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10187 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10188
10189 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10190 vmcs_write64(TSC_OFFSET,
10191 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10192 else
10193 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10194 if (kvm_has_tsc_control)
10195 decache_tsc_multiplier(vmx);
10196
10197 if (enable_vpid) {
10198 /*
10199 * There is no direct mapping between vpid02 and vpid12, the
10200 * vpid02 is per-vCPU for L0 and reused while the value of
10201 * vpid12 is changed w/ one invvpid during nested vmentry.
10202 * The vpid12 is allocated by L1 for L2, so it will not
10203 * influence global bitmap(for vpid01 and vpid02 allocation)
10204 * even if spawn a lot of nested vCPUs.
10205 */
10206 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10207 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10208 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10209 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10210 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10211 }
10212 } else {
10213 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10214 vmx_flush_tlb(vcpu);
10215 }
10216
10217 }
10218
10219 if (enable_pml) {
10220 /*
10221 * Conceptually we want to copy the PML address and index from
10222 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10223 * since we always flush the log on each vmexit, this happens
10224 * to be equivalent to simply resetting the fields in vmcs02.
10225 */
10226 ASSERT(vmx->pml_pg);
10227 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10228 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10229 }
10230
10231 if (nested_cpu_has_ept(vmcs12)) {
10232 if (nested_ept_init_mmu_context(vcpu)) {
10233 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10234 return 1;
10235 }
10236 } else if (nested_cpu_has2(vmcs12,
10237 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10238 vmx_flush_tlb_ept_only(vcpu);
10239 }
10240
10241 /*
10242 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10243 * bits which we consider mandatory enabled.
10244 * The CR0_READ_SHADOW is what L2 should have expected to read given
10245 * the specifications by L1; It's not enough to take
10246 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10247 * have more bits than L1 expected.
10248 */
10249 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10250 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10251
10252 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10253 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10254
10255 if (from_vmentry &&
10256 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10257 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10258 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10259 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10260 else
10261 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10262 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10263 vmx_set_efer(vcpu, vcpu->arch.efer);
10264
10265 /* Shadow page tables on either EPT or shadow page tables. */
10266 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10267 entry_failure_code))
10268 return 1;
10269
10270 if (!enable_ept)
10271 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10272
10273 /*
10274 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10275 */
10276 if (enable_ept) {
10277 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10278 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10279 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10280 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10281 }
10282
10283 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10284 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10285 return 0;
10286 }
10287
10288 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10289 {
10290 struct vcpu_vmx *vmx = to_vmx(vcpu);
10291
10292 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10293 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10294 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10295
10296 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10297 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10298
10299 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10300 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10301
10302 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10303 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10304
10305 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10306 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10307
10308 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10309 vmx->nested.nested_vmx_procbased_ctls_low,
10310 vmx->nested.nested_vmx_procbased_ctls_high) ||
10311 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10312 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10313 vmx->nested.nested_vmx_secondary_ctls_low,
10314 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10315 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10316 vmx->nested.nested_vmx_pinbased_ctls_low,
10317 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10318 !vmx_control_verify(vmcs12->vm_exit_controls,
10319 vmx->nested.nested_vmx_exit_ctls_low,
10320 vmx->nested.nested_vmx_exit_ctls_high) ||
10321 !vmx_control_verify(vmcs12->vm_entry_controls,
10322 vmx->nested.nested_vmx_entry_ctls_low,
10323 vmx->nested.nested_vmx_entry_ctls_high))
10324 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10325
10326 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10327 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10328
10329 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10330 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10331 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10332 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10333
10334 return 0;
10335 }
10336
10337 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10338 u32 *exit_qual)
10339 {
10340 bool ia32e;
10341
10342 *exit_qual = ENTRY_FAIL_DEFAULT;
10343
10344 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10345 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10346 return 1;
10347
10348 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10349 vmcs12->vmcs_link_pointer != -1ull) {
10350 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10351 return 1;
10352 }
10353
10354 /*
10355 * If the load IA32_EFER VM-entry control is 1, the following checks
10356 * are performed on the field for the IA32_EFER MSR:
10357 * - Bits reserved in the IA32_EFER MSR must be 0.
10358 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10359 * the IA-32e mode guest VM-exit control. It must also be identical
10360 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10361 * CR0.PG) is 1.
10362 */
10363 if (to_vmx(vcpu)->nested.nested_run_pending &&
10364 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10365 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10366 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10367 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10368 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10369 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10370 return 1;
10371 }
10372
10373 /*
10374 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10375 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10376 * the values of the LMA and LME bits in the field must each be that of
10377 * the host address-space size VM-exit control.
10378 */
10379 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10380 ia32e = (vmcs12->vm_exit_controls &
10381 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10382 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10383 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10384 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10385 return 1;
10386 }
10387
10388 return 0;
10389 }
10390
10391 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10392 {
10393 struct vcpu_vmx *vmx = to_vmx(vcpu);
10394 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10395 struct loaded_vmcs *vmcs02;
10396 u32 msr_entry_idx;
10397 u32 exit_qual;
10398
10399 vmcs02 = nested_get_current_vmcs02(vmx);
10400 if (!vmcs02)
10401 return -ENOMEM;
10402
10403 enter_guest_mode(vcpu);
10404
10405 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10406 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10407
10408 vmx_switch_vmcs(vcpu, vmcs02);
10409 vmx_segment_cache_clear(vmx);
10410
10411 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10412 leave_guest_mode(vcpu);
10413 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10414 nested_vmx_entry_failure(vcpu, vmcs12,
10415 EXIT_REASON_INVALID_STATE, exit_qual);
10416 return 1;
10417 }
10418
10419 nested_get_vmcs12_pages(vcpu, vmcs12);
10420
10421 msr_entry_idx = nested_vmx_load_msr(vcpu,
10422 vmcs12->vm_entry_msr_load_addr,
10423 vmcs12->vm_entry_msr_load_count);
10424 if (msr_entry_idx) {
10425 leave_guest_mode(vcpu);
10426 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10427 nested_vmx_entry_failure(vcpu, vmcs12,
10428 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10429 return 1;
10430 }
10431
10432 vmcs12->launch_state = 1;
10433
10434 /*
10435 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10436 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10437 * returned as far as L1 is concerned. It will only return (and set
10438 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10439 */
10440 return 0;
10441 }
10442
10443 /*
10444 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10445 * for running an L2 nested guest.
10446 */
10447 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10448 {
10449 struct vmcs12 *vmcs12;
10450 struct vcpu_vmx *vmx = to_vmx(vcpu);
10451 u32 exit_qual;
10452 int ret;
10453
10454 if (!nested_vmx_check_permission(vcpu))
10455 return 1;
10456
10457 if (!nested_vmx_check_vmcs12(vcpu))
10458 goto out;
10459
10460 vmcs12 = get_vmcs12(vcpu);
10461
10462 if (enable_shadow_vmcs)
10463 copy_shadow_to_vmcs12(vmx);
10464
10465 /*
10466 * The nested entry process starts with enforcing various prerequisites
10467 * on vmcs12 as required by the Intel SDM, and act appropriately when
10468 * they fail: As the SDM explains, some conditions should cause the
10469 * instruction to fail, while others will cause the instruction to seem
10470 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10471 * To speed up the normal (success) code path, we should avoid checking
10472 * for misconfigurations which will anyway be caught by the processor
10473 * when using the merged vmcs02.
10474 */
10475 if (vmcs12->launch_state == launch) {
10476 nested_vmx_failValid(vcpu,
10477 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10478 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10479 goto out;
10480 }
10481
10482 ret = check_vmentry_prereqs(vcpu, vmcs12);
10483 if (ret) {
10484 nested_vmx_failValid(vcpu, ret);
10485 goto out;
10486 }
10487
10488 /*
10489 * After this point, the trap flag no longer triggers a singlestep trap
10490 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10491 * This is not 100% correct; for performance reasons, we delegate most
10492 * of the checks on host state to the processor. If those fail,
10493 * the singlestep trap is missed.
10494 */
10495 skip_emulated_instruction(vcpu);
10496
10497 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10498 if (ret) {
10499 nested_vmx_entry_failure(vcpu, vmcs12,
10500 EXIT_REASON_INVALID_STATE, exit_qual);
10501 return 1;
10502 }
10503
10504 /*
10505 * We're finally done with prerequisite checking, and can start with
10506 * the nested entry.
10507 */
10508
10509 ret = enter_vmx_non_root_mode(vcpu, true);
10510 if (ret)
10511 return ret;
10512
10513 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10514 return kvm_vcpu_halt(vcpu);
10515
10516 vmx->nested.nested_run_pending = 1;
10517
10518 return 1;
10519
10520 out:
10521 return kvm_skip_emulated_instruction(vcpu);
10522 }
10523
10524 /*
10525 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10526 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10527 * This function returns the new value we should put in vmcs12.guest_cr0.
10528 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10529 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10530 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10531 * didn't trap the bit, because if L1 did, so would L0).
10532 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10533 * been modified by L2, and L1 knows it. So just leave the old value of
10534 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10535 * isn't relevant, because if L0 traps this bit it can set it to anything.
10536 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10537 * changed these bits, and therefore they need to be updated, but L0
10538 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10539 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10540 */
10541 static inline unsigned long
10542 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10543 {
10544 return
10545 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10546 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10547 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10548 vcpu->arch.cr0_guest_owned_bits));
10549 }
10550
10551 static inline unsigned long
10552 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10553 {
10554 return
10555 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10556 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10557 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10558 vcpu->arch.cr4_guest_owned_bits));
10559 }
10560
10561 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10562 struct vmcs12 *vmcs12)
10563 {
10564 u32 idt_vectoring;
10565 unsigned int nr;
10566
10567 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10568 nr = vcpu->arch.exception.nr;
10569 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10570
10571 if (kvm_exception_is_soft(nr)) {
10572 vmcs12->vm_exit_instruction_len =
10573 vcpu->arch.event_exit_inst_len;
10574 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10575 } else
10576 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10577
10578 if (vcpu->arch.exception.has_error_code) {
10579 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10580 vmcs12->idt_vectoring_error_code =
10581 vcpu->arch.exception.error_code;
10582 }
10583
10584 vmcs12->idt_vectoring_info_field = idt_vectoring;
10585 } else if (vcpu->arch.nmi_injected) {
10586 vmcs12->idt_vectoring_info_field =
10587 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10588 } else if (vcpu->arch.interrupt.pending) {
10589 nr = vcpu->arch.interrupt.nr;
10590 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10591
10592 if (vcpu->arch.interrupt.soft) {
10593 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10594 vmcs12->vm_entry_instruction_len =
10595 vcpu->arch.event_exit_inst_len;
10596 } else
10597 idt_vectoring |= INTR_TYPE_EXT_INTR;
10598
10599 vmcs12->idt_vectoring_info_field = idt_vectoring;
10600 }
10601 }
10602
10603 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10604 {
10605 struct vcpu_vmx *vmx = to_vmx(vcpu);
10606
10607 if (vcpu->arch.exception.pending ||
10608 vcpu->arch.nmi_injected ||
10609 vcpu->arch.interrupt.pending)
10610 return -EBUSY;
10611
10612 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10613 vmx->nested.preemption_timer_expired) {
10614 if (vmx->nested.nested_run_pending)
10615 return -EBUSY;
10616 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10617 return 0;
10618 }
10619
10620 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10621 if (vmx->nested.nested_run_pending)
10622 return -EBUSY;
10623 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10624 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10625 INTR_INFO_VALID_MASK, 0);
10626 /*
10627 * The NMI-triggered VM exit counts as injection:
10628 * clear this one and block further NMIs.
10629 */
10630 vcpu->arch.nmi_pending = 0;
10631 vmx_set_nmi_mask(vcpu, true);
10632 return 0;
10633 }
10634
10635 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10636 nested_exit_on_intr(vcpu)) {
10637 if (vmx->nested.nested_run_pending)
10638 return -EBUSY;
10639 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10640 return 0;
10641 }
10642
10643 vmx_complete_nested_posted_interrupt(vcpu);
10644 return 0;
10645 }
10646
10647 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10648 {
10649 ktime_t remaining =
10650 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10651 u64 value;
10652
10653 if (ktime_to_ns(remaining) <= 0)
10654 return 0;
10655
10656 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10657 do_div(value, 1000000);
10658 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10659 }
10660
10661 /*
10662 * Update the guest state fields of vmcs12 to reflect changes that
10663 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10664 * VM-entry controls is also updated, since this is really a guest
10665 * state bit.)
10666 */
10667 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10668 {
10669 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10670 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10671
10672 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10673 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10674 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10675
10676 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10677 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10678 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10679 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10680 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10681 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10682 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10683 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10684 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10685 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10686 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10687 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10688 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10689 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10690 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10691 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10692 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10693 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10694 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10695 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10696 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10697 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10698 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10699 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10700 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10701 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10702 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10703 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10704 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10705 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10706 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10707 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10708 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10709 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10710 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10711 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10712
10713 vmcs12->guest_interruptibility_info =
10714 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10715 vmcs12->guest_pending_dbg_exceptions =
10716 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10717 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10718 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10719 else
10720 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10721
10722 if (nested_cpu_has_preemption_timer(vmcs12)) {
10723 if (vmcs12->vm_exit_controls &
10724 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10725 vmcs12->vmx_preemption_timer_value =
10726 vmx_get_preemption_timer_value(vcpu);
10727 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10728 }
10729
10730 /*
10731 * In some cases (usually, nested EPT), L2 is allowed to change its
10732 * own CR3 without exiting. If it has changed it, we must keep it.
10733 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10734 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10735 *
10736 * Additionally, restore L2's PDPTR to vmcs12.
10737 */
10738 if (enable_ept) {
10739 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10740 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10741 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10742 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10743 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10744 }
10745
10746 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10747
10748 if (nested_cpu_has_vid(vmcs12))
10749 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10750
10751 vmcs12->vm_entry_controls =
10752 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10753 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10754
10755 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10756 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10757 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10758 }
10759
10760 /* TODO: These cannot have changed unless we have MSR bitmaps and
10761 * the relevant bit asks not to trap the change */
10762 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10763 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10764 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10765 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10766 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10767 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10768 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10769 if (kvm_mpx_supported())
10770 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10771 }
10772
10773 /*
10774 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10775 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10776 * and this function updates it to reflect the changes to the guest state while
10777 * L2 was running (and perhaps made some exits which were handled directly by L0
10778 * without going back to L1), and to reflect the exit reason.
10779 * Note that we do not have to copy here all VMCS fields, just those that
10780 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10781 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10782 * which already writes to vmcs12 directly.
10783 */
10784 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10785 u32 exit_reason, u32 exit_intr_info,
10786 unsigned long exit_qualification)
10787 {
10788 /* update guest state fields: */
10789 sync_vmcs12(vcpu, vmcs12);
10790
10791 /* update exit information fields: */
10792
10793 vmcs12->vm_exit_reason = exit_reason;
10794 vmcs12->exit_qualification = exit_qualification;
10795
10796 vmcs12->vm_exit_intr_info = exit_intr_info;
10797 if ((vmcs12->vm_exit_intr_info &
10798 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10799 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10800 vmcs12->vm_exit_intr_error_code =
10801 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10802 vmcs12->idt_vectoring_info_field = 0;
10803 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10804 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10805
10806 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10807 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10808 * instead of reading the real value. */
10809 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10810
10811 /*
10812 * Transfer the event that L0 or L1 may wanted to inject into
10813 * L2 to IDT_VECTORING_INFO_FIELD.
10814 */
10815 vmcs12_save_pending_event(vcpu, vmcs12);
10816 }
10817
10818 /*
10819 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10820 * preserved above and would only end up incorrectly in L1.
10821 */
10822 vcpu->arch.nmi_injected = false;
10823 kvm_clear_exception_queue(vcpu);
10824 kvm_clear_interrupt_queue(vcpu);
10825 }
10826
10827 /*
10828 * A part of what we need to when the nested L2 guest exits and we want to
10829 * run its L1 parent, is to reset L1's guest state to the host state specified
10830 * in vmcs12.
10831 * This function is to be called not only on normal nested exit, but also on
10832 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10833 * Failures During or After Loading Guest State").
10834 * This function should be called when the active VMCS is L1's (vmcs01).
10835 */
10836 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10837 struct vmcs12 *vmcs12)
10838 {
10839 struct kvm_segment seg;
10840 u32 entry_failure_code;
10841
10842 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10843 vcpu->arch.efer = vmcs12->host_ia32_efer;
10844 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10845 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10846 else
10847 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10848 vmx_set_efer(vcpu, vcpu->arch.efer);
10849
10850 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10851 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10852 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10853 /*
10854 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10855 * actually changed, because vmx_set_cr0 refers to efer set above.
10856 *
10857 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10858 * (KVM doesn't change it);
10859 */
10860 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10861 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10862
10863 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
10864 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10865 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10866
10867 nested_ept_uninit_mmu_context(vcpu);
10868
10869 /*
10870 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10871 * couldn't have changed.
10872 */
10873 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10874 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10875
10876 if (!enable_ept)
10877 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10878
10879 if (enable_vpid) {
10880 /*
10881 * Trivially support vpid by letting L2s share their parent
10882 * L1's vpid. TODO: move to a more elaborate solution, giving
10883 * each L2 its own vpid and exposing the vpid feature to L1.
10884 */
10885 vmx_flush_tlb(vcpu);
10886 }
10887
10888
10889 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10890 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10891 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10892 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10893 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10894
10895 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10896 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10897 vmcs_write64(GUEST_BNDCFGS, 0);
10898
10899 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10900 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10901 vcpu->arch.pat = vmcs12->host_ia32_pat;
10902 }
10903 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10904 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10905 vmcs12->host_ia32_perf_global_ctrl);
10906
10907 /* Set L1 segment info according to Intel SDM
10908 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10909 seg = (struct kvm_segment) {
10910 .base = 0,
10911 .limit = 0xFFFFFFFF,
10912 .selector = vmcs12->host_cs_selector,
10913 .type = 11,
10914 .present = 1,
10915 .s = 1,
10916 .g = 1
10917 };
10918 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10919 seg.l = 1;
10920 else
10921 seg.db = 1;
10922 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10923 seg = (struct kvm_segment) {
10924 .base = 0,
10925 .limit = 0xFFFFFFFF,
10926 .type = 3,
10927 .present = 1,
10928 .s = 1,
10929 .db = 1,
10930 .g = 1
10931 };
10932 seg.selector = vmcs12->host_ds_selector;
10933 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10934 seg.selector = vmcs12->host_es_selector;
10935 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10936 seg.selector = vmcs12->host_ss_selector;
10937 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10938 seg.selector = vmcs12->host_fs_selector;
10939 seg.base = vmcs12->host_fs_base;
10940 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10941 seg.selector = vmcs12->host_gs_selector;
10942 seg.base = vmcs12->host_gs_base;
10943 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10944 seg = (struct kvm_segment) {
10945 .base = vmcs12->host_tr_base,
10946 .limit = 0x67,
10947 .selector = vmcs12->host_tr_selector,
10948 .type = 11,
10949 .present = 1
10950 };
10951 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10952
10953 kvm_set_dr(vcpu, 7, 0x400);
10954 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10955
10956 if (cpu_has_vmx_msr_bitmap())
10957 vmx_set_msr_bitmap(vcpu);
10958
10959 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10960 vmcs12->vm_exit_msr_load_count))
10961 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10962 }
10963
10964 /*
10965 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10966 * and modify vmcs12 to make it see what it would expect to see there if
10967 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10968 */
10969 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10970 u32 exit_intr_info,
10971 unsigned long exit_qualification)
10972 {
10973 struct vcpu_vmx *vmx = to_vmx(vcpu);
10974 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10975 u32 vm_inst_error = 0;
10976
10977 /* trying to cancel vmlaunch/vmresume is a bug */
10978 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10979
10980 leave_guest_mode(vcpu);
10981 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10982 exit_qualification);
10983
10984 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10985 vmcs12->vm_exit_msr_store_count))
10986 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10987
10988 if (unlikely(vmx->fail))
10989 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
10990
10991 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10992
10993 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10994 && nested_exit_intr_ack_set(vcpu)) {
10995 int irq = kvm_cpu_get_interrupt(vcpu);
10996 WARN_ON(irq < 0);
10997 vmcs12->vm_exit_intr_info = irq |
10998 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10999 }
11000
11001 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11002 vmcs12->exit_qualification,
11003 vmcs12->idt_vectoring_info_field,
11004 vmcs12->vm_exit_intr_info,
11005 vmcs12->vm_exit_intr_error_code,
11006 KVM_ISA_VMX);
11007
11008 vm_entry_controls_reset_shadow(vmx);
11009 vm_exit_controls_reset_shadow(vmx);
11010 vmx_segment_cache_clear(vmx);
11011
11012 /* if no vmcs02 cache requested, remove the one we used */
11013 if (VMCS02_POOL_SIZE == 0)
11014 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11015
11016 load_vmcs12_host_state(vcpu, vmcs12);
11017
11018 /* Update any VMCS fields that might have changed while L2 ran */
11019 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11020 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11021 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11022 if (vmx->hv_deadline_tsc == -1)
11023 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11024 PIN_BASED_VMX_PREEMPTION_TIMER);
11025 else
11026 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11027 PIN_BASED_VMX_PREEMPTION_TIMER);
11028 if (kvm_has_tsc_control)
11029 decache_tsc_multiplier(vmx);
11030
11031 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11032 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11033 vmx_set_virtual_x2apic_mode(vcpu,
11034 vcpu->arch.apic_base & X2APIC_ENABLE);
11035 } else if (!nested_cpu_has_ept(vmcs12) &&
11036 nested_cpu_has2(vmcs12,
11037 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11038 vmx_flush_tlb_ept_only(vcpu);
11039 }
11040
11041 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11042 vmx->host_rsp = 0;
11043
11044 /* Unpin physical memory we referred to in vmcs02 */
11045 if (vmx->nested.apic_access_page) {
11046 nested_release_page(vmx->nested.apic_access_page);
11047 vmx->nested.apic_access_page = NULL;
11048 }
11049 if (vmx->nested.virtual_apic_page) {
11050 nested_release_page(vmx->nested.virtual_apic_page);
11051 vmx->nested.virtual_apic_page = NULL;
11052 }
11053 if (vmx->nested.pi_desc_page) {
11054 kunmap(vmx->nested.pi_desc_page);
11055 nested_release_page(vmx->nested.pi_desc_page);
11056 vmx->nested.pi_desc_page = NULL;
11057 vmx->nested.pi_desc = NULL;
11058 }
11059
11060 /*
11061 * We are now running in L2, mmu_notifier will force to reload the
11062 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11063 */
11064 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11065
11066 /*
11067 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11068 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11069 * success or failure flag accordingly.
11070 */
11071 if (unlikely(vmx->fail)) {
11072 vmx->fail = 0;
11073 nested_vmx_failValid(vcpu, vm_inst_error);
11074 } else
11075 nested_vmx_succeed(vcpu);
11076 if (enable_shadow_vmcs)
11077 vmx->nested.sync_shadow_vmcs = true;
11078
11079 /* in case we halted in L2 */
11080 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11081 }
11082
11083 /*
11084 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11085 */
11086 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11087 {
11088 if (is_guest_mode(vcpu)) {
11089 to_vmx(vcpu)->nested.nested_run_pending = 0;
11090 nested_vmx_vmexit(vcpu, -1, 0, 0);
11091 }
11092 free_nested(to_vmx(vcpu));
11093 }
11094
11095 /*
11096 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11097 * 23.7 "VM-entry failures during or after loading guest state" (this also
11098 * lists the acceptable exit-reason and exit-qualification parameters).
11099 * It should only be called before L2 actually succeeded to run, and when
11100 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11101 */
11102 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11103 struct vmcs12 *vmcs12,
11104 u32 reason, unsigned long qualification)
11105 {
11106 load_vmcs12_host_state(vcpu, vmcs12);
11107 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11108 vmcs12->exit_qualification = qualification;
11109 nested_vmx_succeed(vcpu);
11110 if (enable_shadow_vmcs)
11111 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11112 }
11113
11114 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11115 struct x86_instruction_info *info,
11116 enum x86_intercept_stage stage)
11117 {
11118 return X86EMUL_CONTINUE;
11119 }
11120
11121 #ifdef CONFIG_X86_64
11122 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11123 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11124 u64 divisor, u64 *result)
11125 {
11126 u64 low = a << shift, high = a >> (64 - shift);
11127
11128 /* To avoid the overflow on divq */
11129 if (high >= divisor)
11130 return 1;
11131
11132 /* Low hold the result, high hold rem which is discarded */
11133 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11134 "rm" (divisor), "0" (low), "1" (high));
11135 *result = low;
11136
11137 return 0;
11138 }
11139
11140 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11141 {
11142 struct vcpu_vmx *vmx = to_vmx(vcpu);
11143 u64 tscl = rdtsc();
11144 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11145 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11146
11147 /* Convert to host delta tsc if tsc scaling is enabled */
11148 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11149 u64_shl_div_u64(delta_tsc,
11150 kvm_tsc_scaling_ratio_frac_bits,
11151 vcpu->arch.tsc_scaling_ratio,
11152 &delta_tsc))
11153 return -ERANGE;
11154
11155 /*
11156 * If the delta tsc can't fit in the 32 bit after the multi shift,
11157 * we can't use the preemption timer.
11158 * It's possible that it fits on later vmentries, but checking
11159 * on every vmentry is costly so we just use an hrtimer.
11160 */
11161 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11162 return -ERANGE;
11163
11164 vmx->hv_deadline_tsc = tscl + delta_tsc;
11165 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11166 PIN_BASED_VMX_PREEMPTION_TIMER);
11167
11168 return delta_tsc == 0;
11169 }
11170
11171 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11172 {
11173 struct vcpu_vmx *vmx = to_vmx(vcpu);
11174 vmx->hv_deadline_tsc = -1;
11175 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11176 PIN_BASED_VMX_PREEMPTION_TIMER);
11177 }
11178 #endif
11179
11180 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11181 {
11182 if (ple_gap)
11183 shrink_ple_window(vcpu);
11184 }
11185
11186 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11187 struct kvm_memory_slot *slot)
11188 {
11189 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11190 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11191 }
11192
11193 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11194 struct kvm_memory_slot *slot)
11195 {
11196 kvm_mmu_slot_set_dirty(kvm, slot);
11197 }
11198
11199 static void vmx_flush_log_dirty(struct kvm *kvm)
11200 {
11201 kvm_flush_pml_buffers(kvm);
11202 }
11203
11204 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11205 {
11206 struct vmcs12 *vmcs12;
11207 struct vcpu_vmx *vmx = to_vmx(vcpu);
11208 gpa_t gpa;
11209 struct page *page = NULL;
11210 u64 *pml_address;
11211
11212 if (is_guest_mode(vcpu)) {
11213 WARN_ON_ONCE(vmx->nested.pml_full);
11214
11215 /*
11216 * Check if PML is enabled for the nested guest.
11217 * Whether eptp bit 6 is set is already checked
11218 * as part of A/D emulation.
11219 */
11220 vmcs12 = get_vmcs12(vcpu);
11221 if (!nested_cpu_has_pml(vmcs12))
11222 return 0;
11223
11224 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11225 vmx->nested.pml_full = true;
11226 return 1;
11227 }
11228
11229 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11230
11231 page = nested_get_page(vcpu, vmcs12->pml_address);
11232 if (!page)
11233 return 0;
11234
11235 pml_address = kmap(page);
11236 pml_address[vmcs12->guest_pml_index--] = gpa;
11237 kunmap(page);
11238 nested_release_page_clean(page);
11239 }
11240
11241 return 0;
11242 }
11243
11244 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11245 struct kvm_memory_slot *memslot,
11246 gfn_t offset, unsigned long mask)
11247 {
11248 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11249 }
11250
11251 /*
11252 * This routine does the following things for vCPU which is going
11253 * to be blocked if VT-d PI is enabled.
11254 * - Store the vCPU to the wakeup list, so when interrupts happen
11255 * we can find the right vCPU to wake up.
11256 * - Change the Posted-interrupt descriptor as below:
11257 * 'NDST' <-- vcpu->pre_pcpu
11258 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11259 * - If 'ON' is set during this process, which means at least one
11260 * interrupt is posted for this vCPU, we cannot block it, in
11261 * this case, return 1, otherwise, return 0.
11262 *
11263 */
11264 static int pi_pre_block(struct kvm_vcpu *vcpu)
11265 {
11266 unsigned long flags;
11267 unsigned int dest;
11268 struct pi_desc old, new;
11269 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11270
11271 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11272 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11273 !kvm_vcpu_apicv_active(vcpu))
11274 return 0;
11275
11276 vcpu->pre_pcpu = vcpu->cpu;
11277 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11278 vcpu->pre_pcpu), flags);
11279 list_add_tail(&vcpu->blocked_vcpu_list,
11280 &per_cpu(blocked_vcpu_on_cpu,
11281 vcpu->pre_pcpu));
11282 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11283 vcpu->pre_pcpu), flags);
11284
11285 do {
11286 old.control = new.control = pi_desc->control;
11287
11288 /*
11289 * We should not block the vCPU if
11290 * an interrupt is posted for it.
11291 */
11292 if (pi_test_on(pi_desc) == 1) {
11293 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11294 vcpu->pre_pcpu), flags);
11295 list_del(&vcpu->blocked_vcpu_list);
11296 spin_unlock_irqrestore(
11297 &per_cpu(blocked_vcpu_on_cpu_lock,
11298 vcpu->pre_pcpu), flags);
11299 vcpu->pre_pcpu = -1;
11300
11301 return 1;
11302 }
11303
11304 WARN((pi_desc->sn == 1),
11305 "Warning: SN field of posted-interrupts "
11306 "is set before blocking\n");
11307
11308 /*
11309 * Since vCPU can be preempted during this process,
11310 * vcpu->cpu could be different with pre_pcpu, we
11311 * need to set pre_pcpu as the destination of wakeup
11312 * notification event, then we can find the right vCPU
11313 * to wakeup in wakeup handler if interrupts happen
11314 * when the vCPU is in blocked state.
11315 */
11316 dest = cpu_physical_id(vcpu->pre_pcpu);
11317
11318 if (x2apic_enabled())
11319 new.ndst = dest;
11320 else
11321 new.ndst = (dest << 8) & 0xFF00;
11322
11323 /* set 'NV' to 'wakeup vector' */
11324 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11325 } while (cmpxchg(&pi_desc->control, old.control,
11326 new.control) != old.control);
11327
11328 return 0;
11329 }
11330
11331 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11332 {
11333 if (pi_pre_block(vcpu))
11334 return 1;
11335
11336 if (kvm_lapic_hv_timer_in_use(vcpu))
11337 kvm_lapic_switch_to_sw_timer(vcpu);
11338
11339 return 0;
11340 }
11341
11342 static void pi_post_block(struct kvm_vcpu *vcpu)
11343 {
11344 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11345 struct pi_desc old, new;
11346 unsigned int dest;
11347 unsigned long flags;
11348
11349 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11350 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11351 !kvm_vcpu_apicv_active(vcpu))
11352 return;
11353
11354 do {
11355 old.control = new.control = pi_desc->control;
11356
11357 dest = cpu_physical_id(vcpu->cpu);
11358
11359 if (x2apic_enabled())
11360 new.ndst = dest;
11361 else
11362 new.ndst = (dest << 8) & 0xFF00;
11363
11364 /* Allow posting non-urgent interrupts */
11365 new.sn = 0;
11366
11367 /* set 'NV' to 'notification vector' */
11368 new.nv = POSTED_INTR_VECTOR;
11369 } while (cmpxchg(&pi_desc->control, old.control,
11370 new.control) != old.control);
11371
11372 if(vcpu->pre_pcpu != -1) {
11373 spin_lock_irqsave(
11374 &per_cpu(blocked_vcpu_on_cpu_lock,
11375 vcpu->pre_pcpu), flags);
11376 list_del(&vcpu->blocked_vcpu_list);
11377 spin_unlock_irqrestore(
11378 &per_cpu(blocked_vcpu_on_cpu_lock,
11379 vcpu->pre_pcpu), flags);
11380 vcpu->pre_pcpu = -1;
11381 }
11382 }
11383
11384 static void vmx_post_block(struct kvm_vcpu *vcpu)
11385 {
11386 if (kvm_x86_ops->set_hv_timer)
11387 kvm_lapic_switch_to_hv_timer(vcpu);
11388
11389 pi_post_block(vcpu);
11390 }
11391
11392 /*
11393 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11394 *
11395 * @kvm: kvm
11396 * @host_irq: host irq of the interrupt
11397 * @guest_irq: gsi of the interrupt
11398 * @set: set or unset PI
11399 * returns 0 on success, < 0 on failure
11400 */
11401 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11402 uint32_t guest_irq, bool set)
11403 {
11404 struct kvm_kernel_irq_routing_entry *e;
11405 struct kvm_irq_routing_table *irq_rt;
11406 struct kvm_lapic_irq irq;
11407 struct kvm_vcpu *vcpu;
11408 struct vcpu_data vcpu_info;
11409 int idx, ret = -EINVAL;
11410
11411 if (!kvm_arch_has_assigned_device(kvm) ||
11412 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11413 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11414 return 0;
11415
11416 idx = srcu_read_lock(&kvm->irq_srcu);
11417 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11418 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11419
11420 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11421 if (e->type != KVM_IRQ_ROUTING_MSI)
11422 continue;
11423 /*
11424 * VT-d PI cannot support posting multicast/broadcast
11425 * interrupts to a vCPU, we still use interrupt remapping
11426 * for these kind of interrupts.
11427 *
11428 * For lowest-priority interrupts, we only support
11429 * those with single CPU as the destination, e.g. user
11430 * configures the interrupts via /proc/irq or uses
11431 * irqbalance to make the interrupts single-CPU.
11432 *
11433 * We will support full lowest-priority interrupt later.
11434 */
11435
11436 kvm_set_msi_irq(kvm, e, &irq);
11437 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11438 /*
11439 * Make sure the IRTE is in remapped mode if
11440 * we don't handle it in posted mode.
11441 */
11442 ret = irq_set_vcpu_affinity(host_irq, NULL);
11443 if (ret < 0) {
11444 printk(KERN_INFO
11445 "failed to back to remapped mode, irq: %u\n",
11446 host_irq);
11447 goto out;
11448 }
11449
11450 continue;
11451 }
11452
11453 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11454 vcpu_info.vector = irq.vector;
11455
11456 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11457 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11458
11459 if (set)
11460 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11461 else {
11462 /* suppress notification event before unposting */
11463 pi_set_sn(vcpu_to_pi_desc(vcpu));
11464 ret = irq_set_vcpu_affinity(host_irq, NULL);
11465 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11466 }
11467
11468 if (ret < 0) {
11469 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11470 __func__);
11471 goto out;
11472 }
11473 }
11474
11475 ret = 0;
11476 out:
11477 srcu_read_unlock(&kvm->irq_srcu, idx);
11478 return ret;
11479 }
11480
11481 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11482 {
11483 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11484 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11485 FEATURE_CONTROL_LMCE;
11486 else
11487 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11488 ~FEATURE_CONTROL_LMCE;
11489 }
11490
11491 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11492 .cpu_has_kvm_support = cpu_has_kvm_support,
11493 .disabled_by_bios = vmx_disabled_by_bios,
11494 .hardware_setup = hardware_setup,
11495 .hardware_unsetup = hardware_unsetup,
11496 .check_processor_compatibility = vmx_check_processor_compat,
11497 .hardware_enable = hardware_enable,
11498 .hardware_disable = hardware_disable,
11499 .cpu_has_accelerated_tpr = report_flexpriority,
11500 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11501
11502 .vcpu_create = vmx_create_vcpu,
11503 .vcpu_free = vmx_free_vcpu,
11504 .vcpu_reset = vmx_vcpu_reset,
11505
11506 .prepare_guest_switch = vmx_save_host_state,
11507 .vcpu_load = vmx_vcpu_load,
11508 .vcpu_put = vmx_vcpu_put,
11509
11510 .update_bp_intercept = update_exception_bitmap,
11511 .get_msr = vmx_get_msr,
11512 .set_msr = vmx_set_msr,
11513 .get_segment_base = vmx_get_segment_base,
11514 .get_segment = vmx_get_segment,
11515 .set_segment = vmx_set_segment,
11516 .get_cpl = vmx_get_cpl,
11517 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11518 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11519 .decache_cr3 = vmx_decache_cr3,
11520 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11521 .set_cr0 = vmx_set_cr0,
11522 .set_cr3 = vmx_set_cr3,
11523 .set_cr4 = vmx_set_cr4,
11524 .set_efer = vmx_set_efer,
11525 .get_idt = vmx_get_idt,
11526 .set_idt = vmx_set_idt,
11527 .get_gdt = vmx_get_gdt,
11528 .set_gdt = vmx_set_gdt,
11529 .get_dr6 = vmx_get_dr6,
11530 .set_dr6 = vmx_set_dr6,
11531 .set_dr7 = vmx_set_dr7,
11532 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11533 .cache_reg = vmx_cache_reg,
11534 .get_rflags = vmx_get_rflags,
11535 .set_rflags = vmx_set_rflags,
11536
11537 .get_pkru = vmx_get_pkru,
11538
11539 .tlb_flush = vmx_flush_tlb,
11540
11541 .run = vmx_vcpu_run,
11542 .handle_exit = vmx_handle_exit,
11543 .skip_emulated_instruction = skip_emulated_instruction,
11544 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11545 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11546 .patch_hypercall = vmx_patch_hypercall,
11547 .set_irq = vmx_inject_irq,
11548 .set_nmi = vmx_inject_nmi,
11549 .queue_exception = vmx_queue_exception,
11550 .cancel_injection = vmx_cancel_injection,
11551 .interrupt_allowed = vmx_interrupt_allowed,
11552 .nmi_allowed = vmx_nmi_allowed,
11553 .get_nmi_mask = vmx_get_nmi_mask,
11554 .set_nmi_mask = vmx_set_nmi_mask,
11555 .enable_nmi_window = enable_nmi_window,
11556 .enable_irq_window = enable_irq_window,
11557 .update_cr8_intercept = update_cr8_intercept,
11558 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11559 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11560 .get_enable_apicv = vmx_get_enable_apicv,
11561 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11562 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11563 .apicv_post_state_restore = vmx_apicv_post_state_restore,
11564 .hwapic_irr_update = vmx_hwapic_irr_update,
11565 .hwapic_isr_update = vmx_hwapic_isr_update,
11566 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11567 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11568
11569 .set_tss_addr = vmx_set_tss_addr,
11570 .get_tdp_level = get_ept_level,
11571 .get_mt_mask = vmx_get_mt_mask,
11572
11573 .get_exit_info = vmx_get_exit_info,
11574
11575 .get_lpage_level = vmx_get_lpage_level,
11576
11577 .cpuid_update = vmx_cpuid_update,
11578
11579 .rdtscp_supported = vmx_rdtscp_supported,
11580 .invpcid_supported = vmx_invpcid_supported,
11581
11582 .set_supported_cpuid = vmx_set_supported_cpuid,
11583
11584 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11585
11586 .write_tsc_offset = vmx_write_tsc_offset,
11587
11588 .set_tdp_cr3 = vmx_set_cr3,
11589
11590 .check_intercept = vmx_check_intercept,
11591 .handle_external_intr = vmx_handle_external_intr,
11592 .mpx_supported = vmx_mpx_supported,
11593 .xsaves_supported = vmx_xsaves_supported,
11594
11595 .check_nested_events = vmx_check_nested_events,
11596
11597 .sched_in = vmx_sched_in,
11598
11599 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11600 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11601 .flush_log_dirty = vmx_flush_log_dirty,
11602 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11603 .write_log_dirty = vmx_write_pml_buffer,
11604
11605 .pre_block = vmx_pre_block,
11606 .post_block = vmx_post_block,
11607
11608 .pmu_ops = &intel_pmu_ops,
11609
11610 .update_pi_irte = vmx_update_pi_irte,
11611
11612 #ifdef CONFIG_X86_64
11613 .set_hv_timer = vmx_set_hv_timer,
11614 .cancel_hv_timer = vmx_cancel_hv_timer,
11615 #endif
11616
11617 .setup_mce = vmx_setup_mce,
11618 };
11619
11620 static int __init vmx_init(void)
11621 {
11622 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11623 __alignof__(struct vcpu_vmx), THIS_MODULE);
11624 if (r)
11625 return r;
11626
11627 #ifdef CONFIG_KEXEC_CORE
11628 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11629 crash_vmclear_local_loaded_vmcss);
11630 #endif
11631
11632 return 0;
11633 }
11634
11635 static void __exit vmx_exit(void)
11636 {
11637 #ifdef CONFIG_KEXEC_CORE
11638 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11639 synchronize_rcu();
11640 #endif
11641
11642 kvm_exit();
11643 }
11644
11645 module_init(vmx_init)
11646 module_exit(vmx_exit)