]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: nVMX: Decoding memory operands of VMX instructions
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static int __read_mostly bypass_guest_pf = 1;
53 module_param(bypass_guest_pf, bool, S_IRUGO);
54
55 static int __read_mostly enable_vpid = 1;
56 module_param_named(vpid, enable_vpid, bool, 0444);
57
58 static int __read_mostly flexpriority_enabled = 1;
59 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60
61 static int __read_mostly enable_ept = 1;
62 module_param_named(ept, enable_ept, bool, S_IRUGO);
63
64 static int __read_mostly enable_unrestricted_guest = 1;
65 module_param_named(unrestricted_guest,
66 enable_unrestricted_guest, bool, S_IRUGO);
67
68 static int __read_mostly emulate_invalid_guest_state = 0;
69 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70
71 static int __read_mostly vmm_exclusive = 1;
72 module_param(vmm_exclusive, bool, S_IRUGO);
73
74 static int __read_mostly yield_on_hlt = 1;
75 module_param(yield_on_hlt, bool, S_IRUGO);
76
77 /*
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
81 */
82 static int __read_mostly nested = 0;
83 module_param(nested, bool, S_IRUGO);
84
85 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87 #define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
90 (X86_CR0_WP | X86_CR0_NE)
91 #define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
93 #define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
96
97 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
100 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
102 /*
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
106 * According to test, this time is usually smaller than 128 cycles.
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 */
113 #define KVM_VMX_DEFAULT_PLE_GAP 128
114 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116 module_param(ple_gap, int, S_IRUGO);
117
118 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119 module_param(ple_window, int, S_IRUGO);
120
121 #define NR_AUTOLOAD_MSRS 1
122
123 struct vmcs {
124 u32 revision_id;
125 u32 abort;
126 char data[0];
127 };
128
129 /*
130 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132 * loaded on this CPU (so we can clear them if the CPU goes down).
133 */
134 struct loaded_vmcs {
135 struct vmcs *vmcs;
136 int cpu;
137 int launched;
138 struct list_head loaded_vmcss_on_cpu_link;
139 };
140
141 struct shared_msr_entry {
142 unsigned index;
143 u64 data;
144 u64 mask;
145 };
146
147 /*
148 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153 * More than one of these structures may exist, if L1 runs multiple L2 guests.
154 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155 * underlying hardware which will be used to run L2.
156 * This structure is packed to ensure that its layout is identical across
157 * machines (necessary for live migration).
158 * If there are changes in this struct, VMCS12_REVISION must be changed.
159 */
160 struct __packed vmcs12 {
161 /* According to the Intel spec, a VMCS region must start with the
162 * following two fields. Then follow implementation-specific data.
163 */
164 u32 revision_id;
165 u32 abort;
166 };
167
168 /*
169 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
170 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
171 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
172 */
173 #define VMCS12_REVISION 0x11e57ed0
174
175 /*
176 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
177 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
178 * current implementation, 4K are reserved to avoid future complications.
179 */
180 #define VMCS12_SIZE 0x1000
181
182 /*
183 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
184 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
185 */
186 struct nested_vmx {
187 /* Has the level1 guest done vmxon? */
188 bool vmxon;
189
190 /* The guest-physical address of the current VMCS L1 keeps for L2 */
191 gpa_t current_vmptr;
192 /* The host-usable pointer to the above */
193 struct page *current_vmcs12_page;
194 struct vmcs12 *current_vmcs12;
195 };
196
197 struct vcpu_vmx {
198 struct kvm_vcpu vcpu;
199 unsigned long host_rsp;
200 u8 fail;
201 u8 cpl;
202 bool nmi_known_unmasked;
203 u32 exit_intr_info;
204 u32 idt_vectoring_info;
205 ulong rflags;
206 struct shared_msr_entry *guest_msrs;
207 int nmsrs;
208 int save_nmsrs;
209 #ifdef CONFIG_X86_64
210 u64 msr_host_kernel_gs_base;
211 u64 msr_guest_kernel_gs_base;
212 #endif
213 /*
214 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
215 * non-nested (L1) guest, it always points to vmcs01. For a nested
216 * guest (L2), it points to a different VMCS.
217 */
218 struct loaded_vmcs vmcs01;
219 struct loaded_vmcs *loaded_vmcs;
220 bool __launched; /* temporary, used in vmx_vcpu_run */
221 struct msr_autoload {
222 unsigned nr;
223 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
224 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
225 } msr_autoload;
226 struct {
227 int loaded;
228 u16 fs_sel, gs_sel, ldt_sel;
229 int gs_ldt_reload_needed;
230 int fs_reload_needed;
231 } host_state;
232 struct {
233 int vm86_active;
234 ulong save_rflags;
235 struct kvm_save_segment {
236 u16 selector;
237 unsigned long base;
238 u32 limit;
239 u32 ar;
240 } tr, es, ds, fs, gs;
241 } rmode;
242 struct {
243 u32 bitmask; /* 4 bits per segment (1 bit per field) */
244 struct kvm_save_segment seg[8];
245 } segment_cache;
246 int vpid;
247 bool emulation_required;
248
249 /* Support for vnmi-less CPUs */
250 int soft_vnmi_blocked;
251 ktime_t entry_time;
252 s64 vnmi_blocked_time;
253 u32 exit_reason;
254
255 bool rdtscp_enabled;
256
257 /* Support for a guest hypervisor (nested VMX) */
258 struct nested_vmx nested;
259 };
260
261 enum segment_cache_field {
262 SEG_FIELD_SEL = 0,
263 SEG_FIELD_BASE = 1,
264 SEG_FIELD_LIMIT = 2,
265 SEG_FIELD_AR = 3,
266
267 SEG_FIELD_NR = 4
268 };
269
270 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
271 {
272 return container_of(vcpu, struct vcpu_vmx, vcpu);
273 }
274
275 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
276 {
277 return to_vmx(vcpu)->nested.current_vmcs12;
278 }
279
280 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
281 {
282 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
283 if (is_error_page(page)) {
284 kvm_release_page_clean(page);
285 return NULL;
286 }
287 return page;
288 }
289
290 static void nested_release_page(struct page *page)
291 {
292 kvm_release_page_dirty(page);
293 }
294
295 static void nested_release_page_clean(struct page *page)
296 {
297 kvm_release_page_clean(page);
298 }
299
300 static u64 construct_eptp(unsigned long root_hpa);
301 static void kvm_cpu_vmxon(u64 addr);
302 static void kvm_cpu_vmxoff(void);
303 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
304 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
305
306 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
307 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
308 /*
309 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
310 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
311 */
312 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
313 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
314
315 static unsigned long *vmx_io_bitmap_a;
316 static unsigned long *vmx_io_bitmap_b;
317 static unsigned long *vmx_msr_bitmap_legacy;
318 static unsigned long *vmx_msr_bitmap_longmode;
319
320 static bool cpu_has_load_ia32_efer;
321
322 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
323 static DEFINE_SPINLOCK(vmx_vpid_lock);
324
325 static struct vmcs_config {
326 int size;
327 int order;
328 u32 revision_id;
329 u32 pin_based_exec_ctrl;
330 u32 cpu_based_exec_ctrl;
331 u32 cpu_based_2nd_exec_ctrl;
332 u32 vmexit_ctrl;
333 u32 vmentry_ctrl;
334 } vmcs_config;
335
336 static struct vmx_capability {
337 u32 ept;
338 u32 vpid;
339 } vmx_capability;
340
341 #define VMX_SEGMENT_FIELD(seg) \
342 [VCPU_SREG_##seg] = { \
343 .selector = GUEST_##seg##_SELECTOR, \
344 .base = GUEST_##seg##_BASE, \
345 .limit = GUEST_##seg##_LIMIT, \
346 .ar_bytes = GUEST_##seg##_AR_BYTES, \
347 }
348
349 static struct kvm_vmx_segment_field {
350 unsigned selector;
351 unsigned base;
352 unsigned limit;
353 unsigned ar_bytes;
354 } kvm_vmx_segment_fields[] = {
355 VMX_SEGMENT_FIELD(CS),
356 VMX_SEGMENT_FIELD(DS),
357 VMX_SEGMENT_FIELD(ES),
358 VMX_SEGMENT_FIELD(FS),
359 VMX_SEGMENT_FIELD(GS),
360 VMX_SEGMENT_FIELD(SS),
361 VMX_SEGMENT_FIELD(TR),
362 VMX_SEGMENT_FIELD(LDTR),
363 };
364
365 static u64 host_efer;
366
367 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
368
369 /*
370 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
371 * away by decrementing the array size.
372 */
373 static const u32 vmx_msr_index[] = {
374 #ifdef CONFIG_X86_64
375 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
376 #endif
377 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
378 };
379 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
380
381 static inline bool is_page_fault(u32 intr_info)
382 {
383 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
384 INTR_INFO_VALID_MASK)) ==
385 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
386 }
387
388 static inline bool is_no_device(u32 intr_info)
389 {
390 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
391 INTR_INFO_VALID_MASK)) ==
392 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
393 }
394
395 static inline bool is_invalid_opcode(u32 intr_info)
396 {
397 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
398 INTR_INFO_VALID_MASK)) ==
399 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
400 }
401
402 static inline bool is_external_interrupt(u32 intr_info)
403 {
404 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
405 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
406 }
407
408 static inline bool is_machine_check(u32 intr_info)
409 {
410 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
411 INTR_INFO_VALID_MASK)) ==
412 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
413 }
414
415 static inline bool cpu_has_vmx_msr_bitmap(void)
416 {
417 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
418 }
419
420 static inline bool cpu_has_vmx_tpr_shadow(void)
421 {
422 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
423 }
424
425 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
426 {
427 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
428 }
429
430 static inline bool cpu_has_secondary_exec_ctrls(void)
431 {
432 return vmcs_config.cpu_based_exec_ctrl &
433 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
434 }
435
436 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
437 {
438 return vmcs_config.cpu_based_2nd_exec_ctrl &
439 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
440 }
441
442 static inline bool cpu_has_vmx_flexpriority(void)
443 {
444 return cpu_has_vmx_tpr_shadow() &&
445 cpu_has_vmx_virtualize_apic_accesses();
446 }
447
448 static inline bool cpu_has_vmx_ept_execute_only(void)
449 {
450 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
451 }
452
453 static inline bool cpu_has_vmx_eptp_uncacheable(void)
454 {
455 return vmx_capability.ept & VMX_EPTP_UC_BIT;
456 }
457
458 static inline bool cpu_has_vmx_eptp_writeback(void)
459 {
460 return vmx_capability.ept & VMX_EPTP_WB_BIT;
461 }
462
463 static inline bool cpu_has_vmx_ept_2m_page(void)
464 {
465 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
466 }
467
468 static inline bool cpu_has_vmx_ept_1g_page(void)
469 {
470 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
471 }
472
473 static inline bool cpu_has_vmx_ept_4levels(void)
474 {
475 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
476 }
477
478 static inline bool cpu_has_vmx_invept_individual_addr(void)
479 {
480 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
481 }
482
483 static inline bool cpu_has_vmx_invept_context(void)
484 {
485 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
486 }
487
488 static inline bool cpu_has_vmx_invept_global(void)
489 {
490 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
491 }
492
493 static inline bool cpu_has_vmx_invvpid_single(void)
494 {
495 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
496 }
497
498 static inline bool cpu_has_vmx_invvpid_global(void)
499 {
500 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
501 }
502
503 static inline bool cpu_has_vmx_ept(void)
504 {
505 return vmcs_config.cpu_based_2nd_exec_ctrl &
506 SECONDARY_EXEC_ENABLE_EPT;
507 }
508
509 static inline bool cpu_has_vmx_unrestricted_guest(void)
510 {
511 return vmcs_config.cpu_based_2nd_exec_ctrl &
512 SECONDARY_EXEC_UNRESTRICTED_GUEST;
513 }
514
515 static inline bool cpu_has_vmx_ple(void)
516 {
517 return vmcs_config.cpu_based_2nd_exec_ctrl &
518 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
519 }
520
521 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
522 {
523 return flexpriority_enabled && irqchip_in_kernel(kvm);
524 }
525
526 static inline bool cpu_has_vmx_vpid(void)
527 {
528 return vmcs_config.cpu_based_2nd_exec_ctrl &
529 SECONDARY_EXEC_ENABLE_VPID;
530 }
531
532 static inline bool cpu_has_vmx_rdtscp(void)
533 {
534 return vmcs_config.cpu_based_2nd_exec_ctrl &
535 SECONDARY_EXEC_RDTSCP;
536 }
537
538 static inline bool cpu_has_virtual_nmis(void)
539 {
540 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
541 }
542
543 static inline bool cpu_has_vmx_wbinvd_exit(void)
544 {
545 return vmcs_config.cpu_based_2nd_exec_ctrl &
546 SECONDARY_EXEC_WBINVD_EXITING;
547 }
548
549 static inline bool report_flexpriority(void)
550 {
551 return flexpriority_enabled;
552 }
553
554 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
555 {
556 int i;
557
558 for (i = 0; i < vmx->nmsrs; ++i)
559 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
560 return i;
561 return -1;
562 }
563
564 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
565 {
566 struct {
567 u64 vpid : 16;
568 u64 rsvd : 48;
569 u64 gva;
570 } operand = { vpid, 0, gva };
571
572 asm volatile (__ex(ASM_VMX_INVVPID)
573 /* CF==1 or ZF==1 --> rc = -1 */
574 "; ja 1f ; ud2 ; 1:"
575 : : "a"(&operand), "c"(ext) : "cc", "memory");
576 }
577
578 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
579 {
580 struct {
581 u64 eptp, gpa;
582 } operand = {eptp, gpa};
583
584 asm volatile (__ex(ASM_VMX_INVEPT)
585 /* CF==1 or ZF==1 --> rc = -1 */
586 "; ja 1f ; ud2 ; 1:\n"
587 : : "a" (&operand), "c" (ext) : "cc", "memory");
588 }
589
590 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
591 {
592 int i;
593
594 i = __find_msr_index(vmx, msr);
595 if (i >= 0)
596 return &vmx->guest_msrs[i];
597 return NULL;
598 }
599
600 static void vmcs_clear(struct vmcs *vmcs)
601 {
602 u64 phys_addr = __pa(vmcs);
603 u8 error;
604
605 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
606 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
607 : "cc", "memory");
608 if (error)
609 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
610 vmcs, phys_addr);
611 }
612
613 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
614 {
615 vmcs_clear(loaded_vmcs->vmcs);
616 loaded_vmcs->cpu = -1;
617 loaded_vmcs->launched = 0;
618 }
619
620 static void vmcs_load(struct vmcs *vmcs)
621 {
622 u64 phys_addr = __pa(vmcs);
623 u8 error;
624
625 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
626 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
627 : "cc", "memory");
628 if (error)
629 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
630 vmcs, phys_addr);
631 }
632
633 static void __loaded_vmcs_clear(void *arg)
634 {
635 struct loaded_vmcs *loaded_vmcs = arg;
636 int cpu = raw_smp_processor_id();
637
638 if (loaded_vmcs->cpu != cpu)
639 return; /* vcpu migration can race with cpu offline */
640 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
641 per_cpu(current_vmcs, cpu) = NULL;
642 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
643 loaded_vmcs_init(loaded_vmcs);
644 }
645
646 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
647 {
648 if (loaded_vmcs->cpu != -1)
649 smp_call_function_single(
650 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
651 }
652
653 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
654 {
655 if (vmx->vpid == 0)
656 return;
657
658 if (cpu_has_vmx_invvpid_single())
659 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
660 }
661
662 static inline void vpid_sync_vcpu_global(void)
663 {
664 if (cpu_has_vmx_invvpid_global())
665 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
666 }
667
668 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
669 {
670 if (cpu_has_vmx_invvpid_single())
671 vpid_sync_vcpu_single(vmx);
672 else
673 vpid_sync_vcpu_global();
674 }
675
676 static inline void ept_sync_global(void)
677 {
678 if (cpu_has_vmx_invept_global())
679 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
680 }
681
682 static inline void ept_sync_context(u64 eptp)
683 {
684 if (enable_ept) {
685 if (cpu_has_vmx_invept_context())
686 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
687 else
688 ept_sync_global();
689 }
690 }
691
692 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
693 {
694 if (enable_ept) {
695 if (cpu_has_vmx_invept_individual_addr())
696 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
697 eptp, gpa);
698 else
699 ept_sync_context(eptp);
700 }
701 }
702
703 static __always_inline unsigned long vmcs_readl(unsigned long field)
704 {
705 unsigned long value;
706
707 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
708 : "=a"(value) : "d"(field) : "cc");
709 return value;
710 }
711
712 static __always_inline u16 vmcs_read16(unsigned long field)
713 {
714 return vmcs_readl(field);
715 }
716
717 static __always_inline u32 vmcs_read32(unsigned long field)
718 {
719 return vmcs_readl(field);
720 }
721
722 static __always_inline u64 vmcs_read64(unsigned long field)
723 {
724 #ifdef CONFIG_X86_64
725 return vmcs_readl(field);
726 #else
727 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
728 #endif
729 }
730
731 static noinline void vmwrite_error(unsigned long field, unsigned long value)
732 {
733 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
734 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
735 dump_stack();
736 }
737
738 static void vmcs_writel(unsigned long field, unsigned long value)
739 {
740 u8 error;
741
742 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
743 : "=q"(error) : "a"(value), "d"(field) : "cc");
744 if (unlikely(error))
745 vmwrite_error(field, value);
746 }
747
748 static void vmcs_write16(unsigned long field, u16 value)
749 {
750 vmcs_writel(field, value);
751 }
752
753 static void vmcs_write32(unsigned long field, u32 value)
754 {
755 vmcs_writel(field, value);
756 }
757
758 static void vmcs_write64(unsigned long field, u64 value)
759 {
760 vmcs_writel(field, value);
761 #ifndef CONFIG_X86_64
762 asm volatile ("");
763 vmcs_writel(field+1, value >> 32);
764 #endif
765 }
766
767 static void vmcs_clear_bits(unsigned long field, u32 mask)
768 {
769 vmcs_writel(field, vmcs_readl(field) & ~mask);
770 }
771
772 static void vmcs_set_bits(unsigned long field, u32 mask)
773 {
774 vmcs_writel(field, vmcs_readl(field) | mask);
775 }
776
777 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
778 {
779 vmx->segment_cache.bitmask = 0;
780 }
781
782 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
783 unsigned field)
784 {
785 bool ret;
786 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
787
788 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
789 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
790 vmx->segment_cache.bitmask = 0;
791 }
792 ret = vmx->segment_cache.bitmask & mask;
793 vmx->segment_cache.bitmask |= mask;
794 return ret;
795 }
796
797 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
798 {
799 u16 *p = &vmx->segment_cache.seg[seg].selector;
800
801 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
802 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
803 return *p;
804 }
805
806 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
807 {
808 ulong *p = &vmx->segment_cache.seg[seg].base;
809
810 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
811 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
812 return *p;
813 }
814
815 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
816 {
817 u32 *p = &vmx->segment_cache.seg[seg].limit;
818
819 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
820 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
821 return *p;
822 }
823
824 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
825 {
826 u32 *p = &vmx->segment_cache.seg[seg].ar;
827
828 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
829 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
830 return *p;
831 }
832
833 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
834 {
835 u32 eb;
836
837 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
838 (1u << NM_VECTOR) | (1u << DB_VECTOR);
839 if ((vcpu->guest_debug &
840 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
841 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
842 eb |= 1u << BP_VECTOR;
843 if (to_vmx(vcpu)->rmode.vm86_active)
844 eb = ~0;
845 if (enable_ept)
846 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
847 if (vcpu->fpu_active)
848 eb &= ~(1u << NM_VECTOR);
849 vmcs_write32(EXCEPTION_BITMAP, eb);
850 }
851
852 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
853 {
854 unsigned i;
855 struct msr_autoload *m = &vmx->msr_autoload;
856
857 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
858 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
859 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
860 return;
861 }
862
863 for (i = 0; i < m->nr; ++i)
864 if (m->guest[i].index == msr)
865 break;
866
867 if (i == m->nr)
868 return;
869 --m->nr;
870 m->guest[i] = m->guest[m->nr];
871 m->host[i] = m->host[m->nr];
872 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
873 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
874 }
875
876 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
877 u64 guest_val, u64 host_val)
878 {
879 unsigned i;
880 struct msr_autoload *m = &vmx->msr_autoload;
881
882 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
883 vmcs_write64(GUEST_IA32_EFER, guest_val);
884 vmcs_write64(HOST_IA32_EFER, host_val);
885 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
886 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
887 return;
888 }
889
890 for (i = 0; i < m->nr; ++i)
891 if (m->guest[i].index == msr)
892 break;
893
894 if (i == m->nr) {
895 ++m->nr;
896 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
897 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
898 }
899
900 m->guest[i].index = msr;
901 m->guest[i].value = guest_val;
902 m->host[i].index = msr;
903 m->host[i].value = host_val;
904 }
905
906 static void reload_tss(void)
907 {
908 /*
909 * VT restores TR but not its size. Useless.
910 */
911 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912 struct desc_struct *descs;
913
914 descs = (void *)gdt->address;
915 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
916 load_TR_desc();
917 }
918
919 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
920 {
921 u64 guest_efer;
922 u64 ignore_bits;
923
924 guest_efer = vmx->vcpu.arch.efer;
925
926 /*
927 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
928 * outside long mode
929 */
930 ignore_bits = EFER_NX | EFER_SCE;
931 #ifdef CONFIG_X86_64
932 ignore_bits |= EFER_LMA | EFER_LME;
933 /* SCE is meaningful only in long mode on Intel */
934 if (guest_efer & EFER_LMA)
935 ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937 guest_efer &= ~ignore_bits;
938 guest_efer |= host_efer & ignore_bits;
939 vmx->guest_msrs[efer_offset].data = guest_efer;
940 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
941
942 clear_atomic_switch_msr(vmx, MSR_EFER);
943 /* On ept, can't emulate nx, and must switch nx atomically */
944 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
945 guest_efer = vmx->vcpu.arch.efer;
946 if (!(guest_efer & EFER_LMA))
947 guest_efer &= ~EFER_LME;
948 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
949 return false;
950 }
951
952 return true;
953 }
954
955 static unsigned long segment_base(u16 selector)
956 {
957 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
958 struct desc_struct *d;
959 unsigned long table_base;
960 unsigned long v;
961
962 if (!(selector & ~3))
963 return 0;
964
965 table_base = gdt->address;
966
967 if (selector & 4) { /* from ldt */
968 u16 ldt_selector = kvm_read_ldt();
969
970 if (!(ldt_selector & ~3))
971 return 0;
972
973 table_base = segment_base(ldt_selector);
974 }
975 d = (struct desc_struct *)(table_base + (selector & ~7));
976 v = get_desc_base(d);
977 #ifdef CONFIG_X86_64
978 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
979 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
980 #endif
981 return v;
982 }
983
984 static inline unsigned long kvm_read_tr_base(void)
985 {
986 u16 tr;
987 asm("str %0" : "=g"(tr));
988 return segment_base(tr);
989 }
990
991 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
992 {
993 struct vcpu_vmx *vmx = to_vmx(vcpu);
994 int i;
995
996 if (vmx->host_state.loaded)
997 return;
998
999 vmx->host_state.loaded = 1;
1000 /*
1001 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1002 * allow segment selectors with cpl > 0 or ti == 1.
1003 */
1004 vmx->host_state.ldt_sel = kvm_read_ldt();
1005 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1006 savesegment(fs, vmx->host_state.fs_sel);
1007 if (!(vmx->host_state.fs_sel & 7)) {
1008 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1009 vmx->host_state.fs_reload_needed = 0;
1010 } else {
1011 vmcs_write16(HOST_FS_SELECTOR, 0);
1012 vmx->host_state.fs_reload_needed = 1;
1013 }
1014 savesegment(gs, vmx->host_state.gs_sel);
1015 if (!(vmx->host_state.gs_sel & 7))
1016 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1017 else {
1018 vmcs_write16(HOST_GS_SELECTOR, 0);
1019 vmx->host_state.gs_ldt_reload_needed = 1;
1020 }
1021
1022 #ifdef CONFIG_X86_64
1023 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1024 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1025 #else
1026 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1027 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1028 #endif
1029
1030 #ifdef CONFIG_X86_64
1031 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1032 if (is_long_mode(&vmx->vcpu))
1033 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1034 #endif
1035 for (i = 0; i < vmx->save_nmsrs; ++i)
1036 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1037 vmx->guest_msrs[i].data,
1038 vmx->guest_msrs[i].mask);
1039 }
1040
1041 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1042 {
1043 if (!vmx->host_state.loaded)
1044 return;
1045
1046 ++vmx->vcpu.stat.host_state_reload;
1047 vmx->host_state.loaded = 0;
1048 #ifdef CONFIG_X86_64
1049 if (is_long_mode(&vmx->vcpu))
1050 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1051 #endif
1052 if (vmx->host_state.gs_ldt_reload_needed) {
1053 kvm_load_ldt(vmx->host_state.ldt_sel);
1054 #ifdef CONFIG_X86_64
1055 load_gs_index(vmx->host_state.gs_sel);
1056 #else
1057 loadsegment(gs, vmx->host_state.gs_sel);
1058 #endif
1059 }
1060 if (vmx->host_state.fs_reload_needed)
1061 loadsegment(fs, vmx->host_state.fs_sel);
1062 reload_tss();
1063 #ifdef CONFIG_X86_64
1064 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1065 #endif
1066 if (current_thread_info()->status & TS_USEDFPU)
1067 clts();
1068 load_gdt(&__get_cpu_var(host_gdt));
1069 }
1070
1071 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1072 {
1073 preempt_disable();
1074 __vmx_load_host_state(vmx);
1075 preempt_enable();
1076 }
1077
1078 /*
1079 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1080 * vcpu mutex is already taken.
1081 */
1082 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1083 {
1084 struct vcpu_vmx *vmx = to_vmx(vcpu);
1085 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1086
1087 if (!vmm_exclusive)
1088 kvm_cpu_vmxon(phys_addr);
1089 else if (vmx->loaded_vmcs->cpu != cpu)
1090 loaded_vmcs_clear(vmx->loaded_vmcs);
1091
1092 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1093 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1094 vmcs_load(vmx->loaded_vmcs->vmcs);
1095 }
1096
1097 if (vmx->loaded_vmcs->cpu != cpu) {
1098 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1099 unsigned long sysenter_esp;
1100
1101 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1102 local_irq_disable();
1103 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1104 &per_cpu(loaded_vmcss_on_cpu, cpu));
1105 local_irq_enable();
1106
1107 /*
1108 * Linux uses per-cpu TSS and GDT, so set these when switching
1109 * processors.
1110 */
1111 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1112 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1113
1114 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1115 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1116 vmx->loaded_vmcs->cpu = cpu;
1117 }
1118 }
1119
1120 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1121 {
1122 __vmx_load_host_state(to_vmx(vcpu));
1123 if (!vmm_exclusive) {
1124 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1125 vcpu->cpu = -1;
1126 kvm_cpu_vmxoff();
1127 }
1128 }
1129
1130 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1131 {
1132 ulong cr0;
1133
1134 if (vcpu->fpu_active)
1135 return;
1136 vcpu->fpu_active = 1;
1137 cr0 = vmcs_readl(GUEST_CR0);
1138 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1139 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1140 vmcs_writel(GUEST_CR0, cr0);
1141 update_exception_bitmap(vcpu);
1142 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1143 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1144 }
1145
1146 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1147
1148 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1149 {
1150 vmx_decache_cr0_guest_bits(vcpu);
1151 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1152 update_exception_bitmap(vcpu);
1153 vcpu->arch.cr0_guest_owned_bits = 0;
1154 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1155 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1156 }
1157
1158 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1159 {
1160 unsigned long rflags, save_rflags;
1161
1162 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1163 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1164 rflags = vmcs_readl(GUEST_RFLAGS);
1165 if (to_vmx(vcpu)->rmode.vm86_active) {
1166 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1167 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1168 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1169 }
1170 to_vmx(vcpu)->rflags = rflags;
1171 }
1172 return to_vmx(vcpu)->rflags;
1173 }
1174
1175 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1176 {
1177 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1178 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1179 to_vmx(vcpu)->rflags = rflags;
1180 if (to_vmx(vcpu)->rmode.vm86_active) {
1181 to_vmx(vcpu)->rmode.save_rflags = rflags;
1182 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1183 }
1184 vmcs_writel(GUEST_RFLAGS, rflags);
1185 }
1186
1187 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1188 {
1189 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1190 int ret = 0;
1191
1192 if (interruptibility & GUEST_INTR_STATE_STI)
1193 ret |= KVM_X86_SHADOW_INT_STI;
1194 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1195 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1196
1197 return ret & mask;
1198 }
1199
1200 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1201 {
1202 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1203 u32 interruptibility = interruptibility_old;
1204
1205 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1206
1207 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1208 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1209 else if (mask & KVM_X86_SHADOW_INT_STI)
1210 interruptibility |= GUEST_INTR_STATE_STI;
1211
1212 if ((interruptibility != interruptibility_old))
1213 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1214 }
1215
1216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1217 {
1218 unsigned long rip;
1219
1220 rip = kvm_rip_read(vcpu);
1221 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1222 kvm_rip_write(vcpu, rip);
1223
1224 /* skipping an emulated instruction also counts */
1225 vmx_set_interrupt_shadow(vcpu, 0);
1226 }
1227
1228 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1229 {
1230 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1231 * explicitly skip the instruction because if the HLT state is set, then
1232 * the instruction is already executing and RIP has already been
1233 * advanced. */
1234 if (!yield_on_hlt &&
1235 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1236 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1237 }
1238
1239 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1240 bool has_error_code, u32 error_code,
1241 bool reinject)
1242 {
1243 struct vcpu_vmx *vmx = to_vmx(vcpu);
1244 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1245
1246 if (has_error_code) {
1247 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1248 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1249 }
1250
1251 if (vmx->rmode.vm86_active) {
1252 int inc_eip = 0;
1253 if (kvm_exception_is_soft(nr))
1254 inc_eip = vcpu->arch.event_exit_inst_len;
1255 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1256 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1257 return;
1258 }
1259
1260 if (kvm_exception_is_soft(nr)) {
1261 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1262 vmx->vcpu.arch.event_exit_inst_len);
1263 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1264 } else
1265 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1266
1267 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1268 vmx_clear_hlt(vcpu);
1269 }
1270
1271 static bool vmx_rdtscp_supported(void)
1272 {
1273 return cpu_has_vmx_rdtscp();
1274 }
1275
1276 /*
1277 * Swap MSR entry in host/guest MSR entry array.
1278 */
1279 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1280 {
1281 struct shared_msr_entry tmp;
1282
1283 tmp = vmx->guest_msrs[to];
1284 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1285 vmx->guest_msrs[from] = tmp;
1286 }
1287
1288 /*
1289 * Set up the vmcs to automatically save and restore system
1290 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1291 * mode, as fiddling with msrs is very expensive.
1292 */
1293 static void setup_msrs(struct vcpu_vmx *vmx)
1294 {
1295 int save_nmsrs, index;
1296 unsigned long *msr_bitmap;
1297
1298 vmx_load_host_state(vmx);
1299 save_nmsrs = 0;
1300 #ifdef CONFIG_X86_64
1301 if (is_long_mode(&vmx->vcpu)) {
1302 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1303 if (index >= 0)
1304 move_msr_up(vmx, index, save_nmsrs++);
1305 index = __find_msr_index(vmx, MSR_LSTAR);
1306 if (index >= 0)
1307 move_msr_up(vmx, index, save_nmsrs++);
1308 index = __find_msr_index(vmx, MSR_CSTAR);
1309 if (index >= 0)
1310 move_msr_up(vmx, index, save_nmsrs++);
1311 index = __find_msr_index(vmx, MSR_TSC_AUX);
1312 if (index >= 0 && vmx->rdtscp_enabled)
1313 move_msr_up(vmx, index, save_nmsrs++);
1314 /*
1315 * MSR_STAR is only needed on long mode guests, and only
1316 * if efer.sce is enabled.
1317 */
1318 index = __find_msr_index(vmx, MSR_STAR);
1319 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1320 move_msr_up(vmx, index, save_nmsrs++);
1321 }
1322 #endif
1323 index = __find_msr_index(vmx, MSR_EFER);
1324 if (index >= 0 && update_transition_efer(vmx, index))
1325 move_msr_up(vmx, index, save_nmsrs++);
1326
1327 vmx->save_nmsrs = save_nmsrs;
1328
1329 if (cpu_has_vmx_msr_bitmap()) {
1330 if (is_long_mode(&vmx->vcpu))
1331 msr_bitmap = vmx_msr_bitmap_longmode;
1332 else
1333 msr_bitmap = vmx_msr_bitmap_legacy;
1334
1335 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1336 }
1337 }
1338
1339 /*
1340 * reads and returns guest's timestamp counter "register"
1341 * guest_tsc = host_tsc + tsc_offset -- 21.3
1342 */
1343 static u64 guest_read_tsc(void)
1344 {
1345 u64 host_tsc, tsc_offset;
1346
1347 rdtscll(host_tsc);
1348 tsc_offset = vmcs_read64(TSC_OFFSET);
1349 return host_tsc + tsc_offset;
1350 }
1351
1352 /*
1353 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1354 * ioctl. In this case the call-back should update internal vmx state to make
1355 * the changes effective.
1356 */
1357 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1358 {
1359 /* Nothing to do here */
1360 }
1361
1362 /*
1363 * writes 'offset' into guest's timestamp counter offset register
1364 */
1365 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1366 {
1367 vmcs_write64(TSC_OFFSET, offset);
1368 }
1369
1370 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1371 {
1372 u64 offset = vmcs_read64(TSC_OFFSET);
1373 vmcs_write64(TSC_OFFSET, offset + adjustment);
1374 }
1375
1376 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1377 {
1378 return target_tsc - native_read_tsc();
1379 }
1380
1381 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1382 {
1383 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1384 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1385 }
1386
1387 /*
1388 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1389 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1390 * all guests if the "nested" module option is off, and can also be disabled
1391 * for a single guest by disabling its VMX cpuid bit.
1392 */
1393 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1394 {
1395 return nested && guest_cpuid_has_vmx(vcpu);
1396 }
1397
1398 /*
1399 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1400 * returned for the various VMX controls MSRs when nested VMX is enabled.
1401 * The same values should also be used to verify that vmcs12 control fields are
1402 * valid during nested entry from L1 to L2.
1403 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1404 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1405 * bit in the high half is on if the corresponding bit in the control field
1406 * may be on. See also vmx_control_verify().
1407 * TODO: allow these variables to be modified (downgraded) by module options
1408 * or other means.
1409 */
1410 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1411 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1412 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1413 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1414 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1415 static __init void nested_vmx_setup_ctls_msrs(void)
1416 {
1417 /*
1418 * Note that as a general rule, the high half of the MSRs (bits in
1419 * the control fields which may be 1) should be initialized by the
1420 * intersection of the underlying hardware's MSR (i.e., features which
1421 * can be supported) and the list of features we want to expose -
1422 * because they are known to be properly supported in our code.
1423 * Also, usually, the low half of the MSRs (bits which must be 1) can
1424 * be set to 0, meaning that L1 may turn off any of these bits. The
1425 * reason is that if one of these bits is necessary, it will appear
1426 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1427 * fields of vmcs01 and vmcs02, will turn these bits off - and
1428 * nested_vmx_exit_handled() will not pass related exits to L1.
1429 * These rules have exceptions below.
1430 */
1431
1432 /* pin-based controls */
1433 /*
1434 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1435 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1436 */
1437 nested_vmx_pinbased_ctls_low = 0x16 ;
1438 nested_vmx_pinbased_ctls_high = 0x16 |
1439 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1440 PIN_BASED_VIRTUAL_NMIS;
1441
1442 /* exit controls */
1443 nested_vmx_exit_ctls_low = 0;
1444 #ifdef CONFIG_X86_64
1445 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1446 #else
1447 nested_vmx_exit_ctls_high = 0;
1448 #endif
1449
1450 /* entry controls */
1451 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1452 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1453 nested_vmx_entry_ctls_low = 0;
1454 nested_vmx_entry_ctls_high &=
1455 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1456
1457 /* cpu-based controls */
1458 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1459 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1460 nested_vmx_procbased_ctls_low = 0;
1461 nested_vmx_procbased_ctls_high &=
1462 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1463 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1464 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1465 CPU_BASED_CR3_STORE_EXITING |
1466 #ifdef CONFIG_X86_64
1467 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1468 #endif
1469 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1470 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1471 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1472 /*
1473 * We can allow some features even when not supported by the
1474 * hardware. For example, L1 can specify an MSR bitmap - and we
1475 * can use it to avoid exits to L1 - even when L0 runs L2
1476 * without MSR bitmaps.
1477 */
1478 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1479
1480 /* secondary cpu-based controls */
1481 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1482 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1483 nested_vmx_secondary_ctls_low = 0;
1484 nested_vmx_secondary_ctls_high &=
1485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1486 }
1487
1488 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1489 {
1490 /*
1491 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1492 */
1493 return ((control & high) | low) == control;
1494 }
1495
1496 static inline u64 vmx_control_msr(u32 low, u32 high)
1497 {
1498 return low | ((u64)high << 32);
1499 }
1500
1501 /*
1502 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1503 * also let it use VMX-specific MSRs.
1504 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1505 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1506 * like all other MSRs).
1507 */
1508 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1509 {
1510 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1511 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1512 /*
1513 * According to the spec, processors which do not support VMX
1514 * should throw a #GP(0) when VMX capability MSRs are read.
1515 */
1516 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1517 return 1;
1518 }
1519
1520 switch (msr_index) {
1521 case MSR_IA32_FEATURE_CONTROL:
1522 *pdata = 0;
1523 break;
1524 case MSR_IA32_VMX_BASIC:
1525 /*
1526 * This MSR reports some information about VMX support. We
1527 * should return information about the VMX we emulate for the
1528 * guest, and the VMCS structure we give it - not about the
1529 * VMX support of the underlying hardware.
1530 */
1531 *pdata = VMCS12_REVISION |
1532 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1533 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1534 break;
1535 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1536 case MSR_IA32_VMX_PINBASED_CTLS:
1537 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1538 nested_vmx_pinbased_ctls_high);
1539 break;
1540 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1541 case MSR_IA32_VMX_PROCBASED_CTLS:
1542 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1543 nested_vmx_procbased_ctls_high);
1544 break;
1545 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1546 case MSR_IA32_VMX_EXIT_CTLS:
1547 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1548 nested_vmx_exit_ctls_high);
1549 break;
1550 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1551 case MSR_IA32_VMX_ENTRY_CTLS:
1552 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1553 nested_vmx_entry_ctls_high);
1554 break;
1555 case MSR_IA32_VMX_MISC:
1556 *pdata = 0;
1557 break;
1558 /*
1559 * These MSRs specify bits which the guest must keep fixed (on or off)
1560 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1561 * We picked the standard core2 setting.
1562 */
1563 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1564 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
1565 case MSR_IA32_VMX_CR0_FIXED0:
1566 *pdata = VMXON_CR0_ALWAYSON;
1567 break;
1568 case MSR_IA32_VMX_CR0_FIXED1:
1569 *pdata = -1ULL;
1570 break;
1571 case MSR_IA32_VMX_CR4_FIXED0:
1572 *pdata = VMXON_CR4_ALWAYSON;
1573 break;
1574 case MSR_IA32_VMX_CR4_FIXED1:
1575 *pdata = -1ULL;
1576 break;
1577 case MSR_IA32_VMX_VMCS_ENUM:
1578 *pdata = 0x1f;
1579 break;
1580 case MSR_IA32_VMX_PROCBASED_CTLS2:
1581 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1582 nested_vmx_secondary_ctls_high);
1583 break;
1584 case MSR_IA32_VMX_EPT_VPID_CAP:
1585 /* Currently, no nested ept or nested vpid */
1586 *pdata = 0;
1587 break;
1588 default:
1589 return 0;
1590 }
1591
1592 return 1;
1593 }
1594
1595 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1596 {
1597 if (!nested_vmx_allowed(vcpu))
1598 return 0;
1599
1600 if (msr_index == MSR_IA32_FEATURE_CONTROL)
1601 /* TODO: the right thing. */
1602 return 1;
1603 /*
1604 * No need to treat VMX capability MSRs specially: If we don't handle
1605 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
1606 */
1607 return 0;
1608 }
1609
1610 /*
1611 * Reads an msr value (of 'msr_index') into 'pdata'.
1612 * Returns 0 on success, non-0 otherwise.
1613 * Assumes vcpu_load() was already called.
1614 */
1615 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1616 {
1617 u64 data;
1618 struct shared_msr_entry *msr;
1619
1620 if (!pdata) {
1621 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1622 return -EINVAL;
1623 }
1624
1625 switch (msr_index) {
1626 #ifdef CONFIG_X86_64
1627 case MSR_FS_BASE:
1628 data = vmcs_readl(GUEST_FS_BASE);
1629 break;
1630 case MSR_GS_BASE:
1631 data = vmcs_readl(GUEST_GS_BASE);
1632 break;
1633 case MSR_KERNEL_GS_BASE:
1634 vmx_load_host_state(to_vmx(vcpu));
1635 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1636 break;
1637 #endif
1638 case MSR_EFER:
1639 return kvm_get_msr_common(vcpu, msr_index, pdata);
1640 case MSR_IA32_TSC:
1641 data = guest_read_tsc();
1642 break;
1643 case MSR_IA32_SYSENTER_CS:
1644 data = vmcs_read32(GUEST_SYSENTER_CS);
1645 break;
1646 case MSR_IA32_SYSENTER_EIP:
1647 data = vmcs_readl(GUEST_SYSENTER_EIP);
1648 break;
1649 case MSR_IA32_SYSENTER_ESP:
1650 data = vmcs_readl(GUEST_SYSENTER_ESP);
1651 break;
1652 case MSR_TSC_AUX:
1653 if (!to_vmx(vcpu)->rdtscp_enabled)
1654 return 1;
1655 /* Otherwise falls through */
1656 default:
1657 vmx_load_host_state(to_vmx(vcpu));
1658 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
1659 return 0;
1660 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1661 if (msr) {
1662 vmx_load_host_state(to_vmx(vcpu));
1663 data = msr->data;
1664 break;
1665 }
1666 return kvm_get_msr_common(vcpu, msr_index, pdata);
1667 }
1668
1669 *pdata = data;
1670 return 0;
1671 }
1672
1673 /*
1674 * Writes msr value into into the appropriate "register".
1675 * Returns 0 on success, non-0 otherwise.
1676 * Assumes vcpu_load() was already called.
1677 */
1678 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1679 {
1680 struct vcpu_vmx *vmx = to_vmx(vcpu);
1681 struct shared_msr_entry *msr;
1682 int ret = 0;
1683
1684 switch (msr_index) {
1685 case MSR_EFER:
1686 vmx_load_host_state(vmx);
1687 ret = kvm_set_msr_common(vcpu, msr_index, data);
1688 break;
1689 #ifdef CONFIG_X86_64
1690 case MSR_FS_BASE:
1691 vmx_segment_cache_clear(vmx);
1692 vmcs_writel(GUEST_FS_BASE, data);
1693 break;
1694 case MSR_GS_BASE:
1695 vmx_segment_cache_clear(vmx);
1696 vmcs_writel(GUEST_GS_BASE, data);
1697 break;
1698 case MSR_KERNEL_GS_BASE:
1699 vmx_load_host_state(vmx);
1700 vmx->msr_guest_kernel_gs_base = data;
1701 break;
1702 #endif
1703 case MSR_IA32_SYSENTER_CS:
1704 vmcs_write32(GUEST_SYSENTER_CS, data);
1705 break;
1706 case MSR_IA32_SYSENTER_EIP:
1707 vmcs_writel(GUEST_SYSENTER_EIP, data);
1708 break;
1709 case MSR_IA32_SYSENTER_ESP:
1710 vmcs_writel(GUEST_SYSENTER_ESP, data);
1711 break;
1712 case MSR_IA32_TSC:
1713 kvm_write_tsc(vcpu, data);
1714 break;
1715 case MSR_IA32_CR_PAT:
1716 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1717 vmcs_write64(GUEST_IA32_PAT, data);
1718 vcpu->arch.pat = data;
1719 break;
1720 }
1721 ret = kvm_set_msr_common(vcpu, msr_index, data);
1722 break;
1723 case MSR_TSC_AUX:
1724 if (!vmx->rdtscp_enabled)
1725 return 1;
1726 /* Check reserved bit, higher 32 bits should be zero */
1727 if ((data >> 32) != 0)
1728 return 1;
1729 /* Otherwise falls through */
1730 default:
1731 if (vmx_set_vmx_msr(vcpu, msr_index, data))
1732 break;
1733 msr = find_msr_entry(vmx, msr_index);
1734 if (msr) {
1735 vmx_load_host_state(vmx);
1736 msr->data = data;
1737 break;
1738 }
1739 ret = kvm_set_msr_common(vcpu, msr_index, data);
1740 }
1741
1742 return ret;
1743 }
1744
1745 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1746 {
1747 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1748 switch (reg) {
1749 case VCPU_REGS_RSP:
1750 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1751 break;
1752 case VCPU_REGS_RIP:
1753 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1754 break;
1755 case VCPU_EXREG_PDPTR:
1756 if (enable_ept)
1757 ept_save_pdptrs(vcpu);
1758 break;
1759 default:
1760 break;
1761 }
1762 }
1763
1764 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1765 {
1766 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1767 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1768 else
1769 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1770
1771 update_exception_bitmap(vcpu);
1772 }
1773
1774 static __init int cpu_has_kvm_support(void)
1775 {
1776 return cpu_has_vmx();
1777 }
1778
1779 static __init int vmx_disabled_by_bios(void)
1780 {
1781 u64 msr;
1782
1783 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1784 if (msr & FEATURE_CONTROL_LOCKED) {
1785 /* launched w/ TXT and VMX disabled */
1786 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1787 && tboot_enabled())
1788 return 1;
1789 /* launched w/o TXT and VMX only enabled w/ TXT */
1790 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1791 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1792 && !tboot_enabled()) {
1793 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1794 "activate TXT before enabling KVM\n");
1795 return 1;
1796 }
1797 /* launched w/o TXT and VMX disabled */
1798 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1799 && !tboot_enabled())
1800 return 1;
1801 }
1802
1803 return 0;
1804 }
1805
1806 static void kvm_cpu_vmxon(u64 addr)
1807 {
1808 asm volatile (ASM_VMX_VMXON_RAX
1809 : : "a"(&addr), "m"(addr)
1810 : "memory", "cc");
1811 }
1812
1813 static int hardware_enable(void *garbage)
1814 {
1815 int cpu = raw_smp_processor_id();
1816 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1817 u64 old, test_bits;
1818
1819 if (read_cr4() & X86_CR4_VMXE)
1820 return -EBUSY;
1821
1822 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
1823 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1824
1825 test_bits = FEATURE_CONTROL_LOCKED;
1826 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1827 if (tboot_enabled())
1828 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1829
1830 if ((old & test_bits) != test_bits) {
1831 /* enable and lock */
1832 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1833 }
1834 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1835
1836 if (vmm_exclusive) {
1837 kvm_cpu_vmxon(phys_addr);
1838 ept_sync_global();
1839 }
1840
1841 store_gdt(&__get_cpu_var(host_gdt));
1842
1843 return 0;
1844 }
1845
1846 static void vmclear_local_loaded_vmcss(void)
1847 {
1848 int cpu = raw_smp_processor_id();
1849 struct loaded_vmcs *v, *n;
1850
1851 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
1852 loaded_vmcss_on_cpu_link)
1853 __loaded_vmcs_clear(v);
1854 }
1855
1856
1857 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1858 * tricks.
1859 */
1860 static void kvm_cpu_vmxoff(void)
1861 {
1862 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1863 }
1864
1865 static void hardware_disable(void *garbage)
1866 {
1867 if (vmm_exclusive) {
1868 vmclear_local_loaded_vmcss();
1869 kvm_cpu_vmxoff();
1870 }
1871 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1872 }
1873
1874 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1875 u32 msr, u32 *result)
1876 {
1877 u32 vmx_msr_low, vmx_msr_high;
1878 u32 ctl = ctl_min | ctl_opt;
1879
1880 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1881
1882 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1883 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1884
1885 /* Ensure minimum (required) set of control bits are supported. */
1886 if (ctl_min & ~ctl)
1887 return -EIO;
1888
1889 *result = ctl;
1890 return 0;
1891 }
1892
1893 static __init bool allow_1_setting(u32 msr, u32 ctl)
1894 {
1895 u32 vmx_msr_low, vmx_msr_high;
1896
1897 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1898 return vmx_msr_high & ctl;
1899 }
1900
1901 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1902 {
1903 u32 vmx_msr_low, vmx_msr_high;
1904 u32 min, opt, min2, opt2;
1905 u32 _pin_based_exec_control = 0;
1906 u32 _cpu_based_exec_control = 0;
1907 u32 _cpu_based_2nd_exec_control = 0;
1908 u32 _vmexit_control = 0;
1909 u32 _vmentry_control = 0;
1910
1911 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1912 opt = PIN_BASED_VIRTUAL_NMIS;
1913 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1914 &_pin_based_exec_control) < 0)
1915 return -EIO;
1916
1917 min =
1918 #ifdef CONFIG_X86_64
1919 CPU_BASED_CR8_LOAD_EXITING |
1920 CPU_BASED_CR8_STORE_EXITING |
1921 #endif
1922 CPU_BASED_CR3_LOAD_EXITING |
1923 CPU_BASED_CR3_STORE_EXITING |
1924 CPU_BASED_USE_IO_BITMAPS |
1925 CPU_BASED_MOV_DR_EXITING |
1926 CPU_BASED_USE_TSC_OFFSETING |
1927 CPU_BASED_MWAIT_EXITING |
1928 CPU_BASED_MONITOR_EXITING |
1929 CPU_BASED_INVLPG_EXITING;
1930
1931 if (yield_on_hlt)
1932 min |= CPU_BASED_HLT_EXITING;
1933
1934 opt = CPU_BASED_TPR_SHADOW |
1935 CPU_BASED_USE_MSR_BITMAPS |
1936 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1937 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1938 &_cpu_based_exec_control) < 0)
1939 return -EIO;
1940 #ifdef CONFIG_X86_64
1941 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1942 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1943 ~CPU_BASED_CR8_STORE_EXITING;
1944 #endif
1945 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1946 min2 = 0;
1947 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1948 SECONDARY_EXEC_WBINVD_EXITING |
1949 SECONDARY_EXEC_ENABLE_VPID |
1950 SECONDARY_EXEC_ENABLE_EPT |
1951 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1952 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1953 SECONDARY_EXEC_RDTSCP;
1954 if (adjust_vmx_controls(min2, opt2,
1955 MSR_IA32_VMX_PROCBASED_CTLS2,
1956 &_cpu_based_2nd_exec_control) < 0)
1957 return -EIO;
1958 }
1959 #ifndef CONFIG_X86_64
1960 if (!(_cpu_based_2nd_exec_control &
1961 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1962 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1963 #endif
1964 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1965 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1966 enabled */
1967 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1968 CPU_BASED_CR3_STORE_EXITING |
1969 CPU_BASED_INVLPG_EXITING);
1970 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1971 vmx_capability.ept, vmx_capability.vpid);
1972 }
1973
1974 min = 0;
1975 #ifdef CONFIG_X86_64
1976 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1977 #endif
1978 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1979 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1980 &_vmexit_control) < 0)
1981 return -EIO;
1982
1983 min = 0;
1984 opt = VM_ENTRY_LOAD_IA32_PAT;
1985 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1986 &_vmentry_control) < 0)
1987 return -EIO;
1988
1989 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1990
1991 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1992 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1993 return -EIO;
1994
1995 #ifdef CONFIG_X86_64
1996 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1997 if (vmx_msr_high & (1u<<16))
1998 return -EIO;
1999 #endif
2000
2001 /* Require Write-Back (WB) memory type for VMCS accesses. */
2002 if (((vmx_msr_high >> 18) & 15) != 6)
2003 return -EIO;
2004
2005 vmcs_conf->size = vmx_msr_high & 0x1fff;
2006 vmcs_conf->order = get_order(vmcs_config.size);
2007 vmcs_conf->revision_id = vmx_msr_low;
2008
2009 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2010 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2011 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2012 vmcs_conf->vmexit_ctrl = _vmexit_control;
2013 vmcs_conf->vmentry_ctrl = _vmentry_control;
2014
2015 cpu_has_load_ia32_efer =
2016 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2017 VM_ENTRY_LOAD_IA32_EFER)
2018 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2019 VM_EXIT_LOAD_IA32_EFER);
2020
2021 return 0;
2022 }
2023
2024 static struct vmcs *alloc_vmcs_cpu(int cpu)
2025 {
2026 int node = cpu_to_node(cpu);
2027 struct page *pages;
2028 struct vmcs *vmcs;
2029
2030 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2031 if (!pages)
2032 return NULL;
2033 vmcs = page_address(pages);
2034 memset(vmcs, 0, vmcs_config.size);
2035 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2036 return vmcs;
2037 }
2038
2039 static struct vmcs *alloc_vmcs(void)
2040 {
2041 return alloc_vmcs_cpu(raw_smp_processor_id());
2042 }
2043
2044 static void free_vmcs(struct vmcs *vmcs)
2045 {
2046 free_pages((unsigned long)vmcs, vmcs_config.order);
2047 }
2048
2049 /*
2050 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2051 */
2052 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2053 {
2054 if (!loaded_vmcs->vmcs)
2055 return;
2056 loaded_vmcs_clear(loaded_vmcs);
2057 free_vmcs(loaded_vmcs->vmcs);
2058 loaded_vmcs->vmcs = NULL;
2059 }
2060
2061 static void free_kvm_area(void)
2062 {
2063 int cpu;
2064
2065 for_each_possible_cpu(cpu) {
2066 free_vmcs(per_cpu(vmxarea, cpu));
2067 per_cpu(vmxarea, cpu) = NULL;
2068 }
2069 }
2070
2071 static __init int alloc_kvm_area(void)
2072 {
2073 int cpu;
2074
2075 for_each_possible_cpu(cpu) {
2076 struct vmcs *vmcs;
2077
2078 vmcs = alloc_vmcs_cpu(cpu);
2079 if (!vmcs) {
2080 free_kvm_area();
2081 return -ENOMEM;
2082 }
2083
2084 per_cpu(vmxarea, cpu) = vmcs;
2085 }
2086 return 0;
2087 }
2088
2089 static __init int hardware_setup(void)
2090 {
2091 if (setup_vmcs_config(&vmcs_config) < 0)
2092 return -EIO;
2093
2094 if (boot_cpu_has(X86_FEATURE_NX))
2095 kvm_enable_efer_bits(EFER_NX);
2096
2097 if (!cpu_has_vmx_vpid())
2098 enable_vpid = 0;
2099
2100 if (!cpu_has_vmx_ept() ||
2101 !cpu_has_vmx_ept_4levels()) {
2102 enable_ept = 0;
2103 enable_unrestricted_guest = 0;
2104 }
2105
2106 if (!cpu_has_vmx_unrestricted_guest())
2107 enable_unrestricted_guest = 0;
2108
2109 if (!cpu_has_vmx_flexpriority())
2110 flexpriority_enabled = 0;
2111
2112 if (!cpu_has_vmx_tpr_shadow())
2113 kvm_x86_ops->update_cr8_intercept = NULL;
2114
2115 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2116 kvm_disable_largepages();
2117
2118 if (!cpu_has_vmx_ple())
2119 ple_gap = 0;
2120
2121 if (nested)
2122 nested_vmx_setup_ctls_msrs();
2123
2124 return alloc_kvm_area();
2125 }
2126
2127 static __exit void hardware_unsetup(void)
2128 {
2129 free_kvm_area();
2130 }
2131
2132 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2133 {
2134 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2135
2136 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2137 vmcs_write16(sf->selector, save->selector);
2138 vmcs_writel(sf->base, save->base);
2139 vmcs_write32(sf->limit, save->limit);
2140 vmcs_write32(sf->ar_bytes, save->ar);
2141 } else {
2142 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2143 << AR_DPL_SHIFT;
2144 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2145 }
2146 }
2147
2148 static void enter_pmode(struct kvm_vcpu *vcpu)
2149 {
2150 unsigned long flags;
2151 struct vcpu_vmx *vmx = to_vmx(vcpu);
2152
2153 vmx->emulation_required = 1;
2154 vmx->rmode.vm86_active = 0;
2155
2156 vmx_segment_cache_clear(vmx);
2157
2158 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2159 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2160 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2161 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2162
2163 flags = vmcs_readl(GUEST_RFLAGS);
2164 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2165 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2166 vmcs_writel(GUEST_RFLAGS, flags);
2167
2168 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2169 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2170
2171 update_exception_bitmap(vcpu);
2172
2173 if (emulate_invalid_guest_state)
2174 return;
2175
2176 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2177 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2178 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2179 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2180
2181 vmx_segment_cache_clear(vmx);
2182
2183 vmcs_write16(GUEST_SS_SELECTOR, 0);
2184 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2185
2186 vmcs_write16(GUEST_CS_SELECTOR,
2187 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2188 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2189 }
2190
2191 static gva_t rmode_tss_base(struct kvm *kvm)
2192 {
2193 if (!kvm->arch.tss_addr) {
2194 struct kvm_memslots *slots;
2195 gfn_t base_gfn;
2196
2197 slots = kvm_memslots(kvm);
2198 base_gfn = slots->memslots[0].base_gfn +
2199 kvm->memslots->memslots[0].npages - 3;
2200 return base_gfn << PAGE_SHIFT;
2201 }
2202 return kvm->arch.tss_addr;
2203 }
2204
2205 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2206 {
2207 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2208
2209 save->selector = vmcs_read16(sf->selector);
2210 save->base = vmcs_readl(sf->base);
2211 save->limit = vmcs_read32(sf->limit);
2212 save->ar = vmcs_read32(sf->ar_bytes);
2213 vmcs_write16(sf->selector, save->base >> 4);
2214 vmcs_write32(sf->base, save->base & 0xffff0);
2215 vmcs_write32(sf->limit, 0xffff);
2216 vmcs_write32(sf->ar_bytes, 0xf3);
2217 if (save->base & 0xf)
2218 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2219 " aligned when entering protected mode (seg=%d)",
2220 seg);
2221 }
2222
2223 static void enter_rmode(struct kvm_vcpu *vcpu)
2224 {
2225 unsigned long flags;
2226 struct vcpu_vmx *vmx = to_vmx(vcpu);
2227
2228 if (enable_unrestricted_guest)
2229 return;
2230
2231 vmx->emulation_required = 1;
2232 vmx->rmode.vm86_active = 1;
2233
2234 /*
2235 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2236 * vcpu. Call it here with phys address pointing 16M below 4G.
2237 */
2238 if (!vcpu->kvm->arch.tss_addr) {
2239 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2240 "called before entering vcpu\n");
2241 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2242 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2243 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2244 }
2245
2246 vmx_segment_cache_clear(vmx);
2247
2248 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2249 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2250 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2251
2252 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2253 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2254
2255 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2256 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2257
2258 flags = vmcs_readl(GUEST_RFLAGS);
2259 vmx->rmode.save_rflags = flags;
2260
2261 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2262
2263 vmcs_writel(GUEST_RFLAGS, flags);
2264 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2265 update_exception_bitmap(vcpu);
2266
2267 if (emulate_invalid_guest_state)
2268 goto continue_rmode;
2269
2270 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2271 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2272 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2273
2274 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2275 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2276 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2277 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2278 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2279
2280 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2281 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2282 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2283 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2284
2285 continue_rmode:
2286 kvm_mmu_reset_context(vcpu);
2287 }
2288
2289 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2290 {
2291 struct vcpu_vmx *vmx = to_vmx(vcpu);
2292 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2293
2294 if (!msr)
2295 return;
2296
2297 /*
2298 * Force kernel_gs_base reloading before EFER changes, as control
2299 * of this msr depends on is_long_mode().
2300 */
2301 vmx_load_host_state(to_vmx(vcpu));
2302 vcpu->arch.efer = efer;
2303 if (efer & EFER_LMA) {
2304 vmcs_write32(VM_ENTRY_CONTROLS,
2305 vmcs_read32(VM_ENTRY_CONTROLS) |
2306 VM_ENTRY_IA32E_MODE);
2307 msr->data = efer;
2308 } else {
2309 vmcs_write32(VM_ENTRY_CONTROLS,
2310 vmcs_read32(VM_ENTRY_CONTROLS) &
2311 ~VM_ENTRY_IA32E_MODE);
2312
2313 msr->data = efer & ~EFER_LME;
2314 }
2315 setup_msrs(vmx);
2316 }
2317
2318 #ifdef CONFIG_X86_64
2319
2320 static void enter_lmode(struct kvm_vcpu *vcpu)
2321 {
2322 u32 guest_tr_ar;
2323
2324 vmx_segment_cache_clear(to_vmx(vcpu));
2325
2326 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2327 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2328 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2329 __func__);
2330 vmcs_write32(GUEST_TR_AR_BYTES,
2331 (guest_tr_ar & ~AR_TYPE_MASK)
2332 | AR_TYPE_BUSY_64_TSS);
2333 }
2334 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2335 }
2336
2337 static void exit_lmode(struct kvm_vcpu *vcpu)
2338 {
2339 vmcs_write32(VM_ENTRY_CONTROLS,
2340 vmcs_read32(VM_ENTRY_CONTROLS)
2341 & ~VM_ENTRY_IA32E_MODE);
2342 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2343 }
2344
2345 #endif
2346
2347 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2348 {
2349 vpid_sync_context(to_vmx(vcpu));
2350 if (enable_ept) {
2351 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2352 return;
2353 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2354 }
2355 }
2356
2357 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2358 {
2359 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2360
2361 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2362 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2363 }
2364
2365 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2366 {
2367 if (enable_ept && is_paging(vcpu))
2368 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2369 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2370 }
2371
2372 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2373 {
2374 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2375
2376 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2377 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2378 }
2379
2380 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2381 {
2382 if (!test_bit(VCPU_EXREG_PDPTR,
2383 (unsigned long *)&vcpu->arch.regs_dirty))
2384 return;
2385
2386 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2387 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2388 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2389 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2390 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2391 }
2392 }
2393
2394 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2395 {
2396 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2397 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2398 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2399 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2400 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2401 }
2402
2403 __set_bit(VCPU_EXREG_PDPTR,
2404 (unsigned long *)&vcpu->arch.regs_avail);
2405 __set_bit(VCPU_EXREG_PDPTR,
2406 (unsigned long *)&vcpu->arch.regs_dirty);
2407 }
2408
2409 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2410
2411 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2412 unsigned long cr0,
2413 struct kvm_vcpu *vcpu)
2414 {
2415 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2416 vmx_decache_cr3(vcpu);
2417 if (!(cr0 & X86_CR0_PG)) {
2418 /* From paging/starting to nonpaging */
2419 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2420 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2421 (CPU_BASED_CR3_LOAD_EXITING |
2422 CPU_BASED_CR3_STORE_EXITING));
2423 vcpu->arch.cr0 = cr0;
2424 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2425 } else if (!is_paging(vcpu)) {
2426 /* From nonpaging to paging */
2427 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2428 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2429 ~(CPU_BASED_CR3_LOAD_EXITING |
2430 CPU_BASED_CR3_STORE_EXITING));
2431 vcpu->arch.cr0 = cr0;
2432 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2433 }
2434
2435 if (!(cr0 & X86_CR0_WP))
2436 *hw_cr0 &= ~X86_CR0_WP;
2437 }
2438
2439 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2440 {
2441 struct vcpu_vmx *vmx = to_vmx(vcpu);
2442 unsigned long hw_cr0;
2443
2444 if (enable_unrestricted_guest)
2445 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2446 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2447 else
2448 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2449
2450 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2451 enter_pmode(vcpu);
2452
2453 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2454 enter_rmode(vcpu);
2455
2456 #ifdef CONFIG_X86_64
2457 if (vcpu->arch.efer & EFER_LME) {
2458 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2459 enter_lmode(vcpu);
2460 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2461 exit_lmode(vcpu);
2462 }
2463 #endif
2464
2465 if (enable_ept)
2466 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2467
2468 if (!vcpu->fpu_active)
2469 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2470
2471 vmcs_writel(CR0_READ_SHADOW, cr0);
2472 vmcs_writel(GUEST_CR0, hw_cr0);
2473 vcpu->arch.cr0 = cr0;
2474 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2475 }
2476
2477 static u64 construct_eptp(unsigned long root_hpa)
2478 {
2479 u64 eptp;
2480
2481 /* TODO write the value reading from MSR */
2482 eptp = VMX_EPT_DEFAULT_MT |
2483 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2484 eptp |= (root_hpa & PAGE_MASK);
2485
2486 return eptp;
2487 }
2488
2489 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2490 {
2491 unsigned long guest_cr3;
2492 u64 eptp;
2493
2494 guest_cr3 = cr3;
2495 if (enable_ept) {
2496 eptp = construct_eptp(cr3);
2497 vmcs_write64(EPT_POINTER, eptp);
2498 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2499 vcpu->kvm->arch.ept_identity_map_addr;
2500 ept_load_pdptrs(vcpu);
2501 }
2502
2503 vmx_flush_tlb(vcpu);
2504 vmcs_writel(GUEST_CR3, guest_cr3);
2505 }
2506
2507 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2508 {
2509 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2510 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2511
2512 if (cr4 & X86_CR4_VMXE) {
2513 /*
2514 * To use VMXON (and later other VMX instructions), a guest
2515 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2516 * So basically the check on whether to allow nested VMX
2517 * is here.
2518 */
2519 if (!nested_vmx_allowed(vcpu))
2520 return 1;
2521 } else if (to_vmx(vcpu)->nested.vmxon)
2522 return 1;
2523
2524 vcpu->arch.cr4 = cr4;
2525 if (enable_ept) {
2526 if (!is_paging(vcpu)) {
2527 hw_cr4 &= ~X86_CR4_PAE;
2528 hw_cr4 |= X86_CR4_PSE;
2529 } else if (!(cr4 & X86_CR4_PAE)) {
2530 hw_cr4 &= ~X86_CR4_PAE;
2531 }
2532 }
2533
2534 vmcs_writel(CR4_READ_SHADOW, cr4);
2535 vmcs_writel(GUEST_CR4, hw_cr4);
2536 return 0;
2537 }
2538
2539 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2540 struct kvm_segment *var, int seg)
2541 {
2542 struct vcpu_vmx *vmx = to_vmx(vcpu);
2543 struct kvm_save_segment *save;
2544 u32 ar;
2545
2546 if (vmx->rmode.vm86_active
2547 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2548 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2549 || seg == VCPU_SREG_GS)
2550 && !emulate_invalid_guest_state) {
2551 switch (seg) {
2552 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2553 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2554 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2555 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2556 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2557 default: BUG();
2558 }
2559 var->selector = save->selector;
2560 var->base = save->base;
2561 var->limit = save->limit;
2562 ar = save->ar;
2563 if (seg == VCPU_SREG_TR
2564 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2565 goto use_saved_rmode_seg;
2566 }
2567 var->base = vmx_read_guest_seg_base(vmx, seg);
2568 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2569 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2570 ar = vmx_read_guest_seg_ar(vmx, seg);
2571 use_saved_rmode_seg:
2572 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2573 ar = 0;
2574 var->type = ar & 15;
2575 var->s = (ar >> 4) & 1;
2576 var->dpl = (ar >> 5) & 3;
2577 var->present = (ar >> 7) & 1;
2578 var->avl = (ar >> 12) & 1;
2579 var->l = (ar >> 13) & 1;
2580 var->db = (ar >> 14) & 1;
2581 var->g = (ar >> 15) & 1;
2582 var->unusable = (ar >> 16) & 1;
2583 }
2584
2585 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2586 {
2587 struct kvm_segment s;
2588
2589 if (to_vmx(vcpu)->rmode.vm86_active) {
2590 vmx_get_segment(vcpu, &s, seg);
2591 return s.base;
2592 }
2593 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2594 }
2595
2596 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2597 {
2598 if (!is_protmode(vcpu))
2599 return 0;
2600
2601 if (!is_long_mode(vcpu)
2602 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2603 return 3;
2604
2605 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2606 }
2607
2608 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2609 {
2610 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2611 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2612 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2613 }
2614 return to_vmx(vcpu)->cpl;
2615 }
2616
2617
2618 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2619 {
2620 u32 ar;
2621
2622 if (var->unusable)
2623 ar = 1 << 16;
2624 else {
2625 ar = var->type & 15;
2626 ar |= (var->s & 1) << 4;
2627 ar |= (var->dpl & 3) << 5;
2628 ar |= (var->present & 1) << 7;
2629 ar |= (var->avl & 1) << 12;
2630 ar |= (var->l & 1) << 13;
2631 ar |= (var->db & 1) << 14;
2632 ar |= (var->g & 1) << 15;
2633 }
2634 if (ar == 0) /* a 0 value means unusable */
2635 ar = AR_UNUSABLE_MASK;
2636
2637 return ar;
2638 }
2639
2640 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2641 struct kvm_segment *var, int seg)
2642 {
2643 struct vcpu_vmx *vmx = to_vmx(vcpu);
2644 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2645 u32 ar;
2646
2647 vmx_segment_cache_clear(vmx);
2648
2649 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2650 vmcs_write16(sf->selector, var->selector);
2651 vmx->rmode.tr.selector = var->selector;
2652 vmx->rmode.tr.base = var->base;
2653 vmx->rmode.tr.limit = var->limit;
2654 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2655 return;
2656 }
2657 vmcs_writel(sf->base, var->base);
2658 vmcs_write32(sf->limit, var->limit);
2659 vmcs_write16(sf->selector, var->selector);
2660 if (vmx->rmode.vm86_active && var->s) {
2661 /*
2662 * Hack real-mode segments into vm86 compatibility.
2663 */
2664 if (var->base == 0xffff0000 && var->selector == 0xf000)
2665 vmcs_writel(sf->base, 0xf0000);
2666 ar = 0xf3;
2667 } else
2668 ar = vmx_segment_access_rights(var);
2669
2670 /*
2671 * Fix the "Accessed" bit in AR field of segment registers for older
2672 * qemu binaries.
2673 * IA32 arch specifies that at the time of processor reset the
2674 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2675 * is setting it to 0 in the usedland code. This causes invalid guest
2676 * state vmexit when "unrestricted guest" mode is turned on.
2677 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2678 * tree. Newer qemu binaries with that qemu fix would not need this
2679 * kvm hack.
2680 */
2681 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2682 ar |= 0x1; /* Accessed */
2683
2684 vmcs_write32(sf->ar_bytes, ar);
2685 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2686 }
2687
2688 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2689 {
2690 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2691
2692 *db = (ar >> 14) & 1;
2693 *l = (ar >> 13) & 1;
2694 }
2695
2696 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2697 {
2698 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2699 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2700 }
2701
2702 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2703 {
2704 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2705 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2706 }
2707
2708 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2709 {
2710 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2711 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2712 }
2713
2714 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2715 {
2716 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2717 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2718 }
2719
2720 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2721 {
2722 struct kvm_segment var;
2723 u32 ar;
2724
2725 vmx_get_segment(vcpu, &var, seg);
2726 ar = vmx_segment_access_rights(&var);
2727
2728 if (var.base != (var.selector << 4))
2729 return false;
2730 if (var.limit != 0xffff)
2731 return false;
2732 if (ar != 0xf3)
2733 return false;
2734
2735 return true;
2736 }
2737
2738 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2739 {
2740 struct kvm_segment cs;
2741 unsigned int cs_rpl;
2742
2743 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2744 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2745
2746 if (cs.unusable)
2747 return false;
2748 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2749 return false;
2750 if (!cs.s)
2751 return false;
2752 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2753 if (cs.dpl > cs_rpl)
2754 return false;
2755 } else {
2756 if (cs.dpl != cs_rpl)
2757 return false;
2758 }
2759 if (!cs.present)
2760 return false;
2761
2762 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2763 return true;
2764 }
2765
2766 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2767 {
2768 struct kvm_segment ss;
2769 unsigned int ss_rpl;
2770
2771 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2772 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2773
2774 if (ss.unusable)
2775 return true;
2776 if (ss.type != 3 && ss.type != 7)
2777 return false;
2778 if (!ss.s)
2779 return false;
2780 if (ss.dpl != ss_rpl) /* DPL != RPL */
2781 return false;
2782 if (!ss.present)
2783 return false;
2784
2785 return true;
2786 }
2787
2788 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2789 {
2790 struct kvm_segment var;
2791 unsigned int rpl;
2792
2793 vmx_get_segment(vcpu, &var, seg);
2794 rpl = var.selector & SELECTOR_RPL_MASK;
2795
2796 if (var.unusable)
2797 return true;
2798 if (!var.s)
2799 return false;
2800 if (!var.present)
2801 return false;
2802 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2803 if (var.dpl < rpl) /* DPL < RPL */
2804 return false;
2805 }
2806
2807 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2808 * rights flags
2809 */
2810 return true;
2811 }
2812
2813 static bool tr_valid(struct kvm_vcpu *vcpu)
2814 {
2815 struct kvm_segment tr;
2816
2817 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2818
2819 if (tr.unusable)
2820 return false;
2821 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2822 return false;
2823 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2824 return false;
2825 if (!tr.present)
2826 return false;
2827
2828 return true;
2829 }
2830
2831 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2832 {
2833 struct kvm_segment ldtr;
2834
2835 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2836
2837 if (ldtr.unusable)
2838 return true;
2839 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2840 return false;
2841 if (ldtr.type != 2)
2842 return false;
2843 if (!ldtr.present)
2844 return false;
2845
2846 return true;
2847 }
2848
2849 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2850 {
2851 struct kvm_segment cs, ss;
2852
2853 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2854 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2855
2856 return ((cs.selector & SELECTOR_RPL_MASK) ==
2857 (ss.selector & SELECTOR_RPL_MASK));
2858 }
2859
2860 /*
2861 * Check if guest state is valid. Returns true if valid, false if
2862 * not.
2863 * We assume that registers are always usable
2864 */
2865 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2866 {
2867 /* real mode guest state checks */
2868 if (!is_protmode(vcpu)) {
2869 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2870 return false;
2871 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2872 return false;
2873 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2874 return false;
2875 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2876 return false;
2877 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2878 return false;
2879 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2880 return false;
2881 } else {
2882 /* protected mode guest state checks */
2883 if (!cs_ss_rpl_check(vcpu))
2884 return false;
2885 if (!code_segment_valid(vcpu))
2886 return false;
2887 if (!stack_segment_valid(vcpu))
2888 return false;
2889 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2890 return false;
2891 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2892 return false;
2893 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2894 return false;
2895 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2896 return false;
2897 if (!tr_valid(vcpu))
2898 return false;
2899 if (!ldtr_valid(vcpu))
2900 return false;
2901 }
2902 /* TODO:
2903 * - Add checks on RIP
2904 * - Add checks on RFLAGS
2905 */
2906
2907 return true;
2908 }
2909
2910 static int init_rmode_tss(struct kvm *kvm)
2911 {
2912 gfn_t fn;
2913 u16 data = 0;
2914 int r, idx, ret = 0;
2915
2916 idx = srcu_read_lock(&kvm->srcu);
2917 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2918 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2919 if (r < 0)
2920 goto out;
2921 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2922 r = kvm_write_guest_page(kvm, fn++, &data,
2923 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2924 if (r < 0)
2925 goto out;
2926 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2927 if (r < 0)
2928 goto out;
2929 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2930 if (r < 0)
2931 goto out;
2932 data = ~0;
2933 r = kvm_write_guest_page(kvm, fn, &data,
2934 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2935 sizeof(u8));
2936 if (r < 0)
2937 goto out;
2938
2939 ret = 1;
2940 out:
2941 srcu_read_unlock(&kvm->srcu, idx);
2942 return ret;
2943 }
2944
2945 static int init_rmode_identity_map(struct kvm *kvm)
2946 {
2947 int i, idx, r, ret;
2948 pfn_t identity_map_pfn;
2949 u32 tmp;
2950
2951 if (!enable_ept)
2952 return 1;
2953 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2954 printk(KERN_ERR "EPT: identity-mapping pagetable "
2955 "haven't been allocated!\n");
2956 return 0;
2957 }
2958 if (likely(kvm->arch.ept_identity_pagetable_done))
2959 return 1;
2960 ret = 0;
2961 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2962 idx = srcu_read_lock(&kvm->srcu);
2963 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2964 if (r < 0)
2965 goto out;
2966 /* Set up identity-mapping pagetable for EPT in real mode */
2967 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2968 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2969 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2970 r = kvm_write_guest_page(kvm, identity_map_pfn,
2971 &tmp, i * sizeof(tmp), sizeof(tmp));
2972 if (r < 0)
2973 goto out;
2974 }
2975 kvm->arch.ept_identity_pagetable_done = true;
2976 ret = 1;
2977 out:
2978 srcu_read_unlock(&kvm->srcu, idx);
2979 return ret;
2980 }
2981
2982 static void seg_setup(int seg)
2983 {
2984 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2985 unsigned int ar;
2986
2987 vmcs_write16(sf->selector, 0);
2988 vmcs_writel(sf->base, 0);
2989 vmcs_write32(sf->limit, 0xffff);
2990 if (enable_unrestricted_guest) {
2991 ar = 0x93;
2992 if (seg == VCPU_SREG_CS)
2993 ar |= 0x08; /* code segment */
2994 } else
2995 ar = 0xf3;
2996
2997 vmcs_write32(sf->ar_bytes, ar);
2998 }
2999
3000 static int alloc_apic_access_page(struct kvm *kvm)
3001 {
3002 struct kvm_userspace_memory_region kvm_userspace_mem;
3003 int r = 0;
3004
3005 mutex_lock(&kvm->slots_lock);
3006 if (kvm->arch.apic_access_page)
3007 goto out;
3008 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3009 kvm_userspace_mem.flags = 0;
3010 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3011 kvm_userspace_mem.memory_size = PAGE_SIZE;
3012 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3013 if (r)
3014 goto out;
3015
3016 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3017 out:
3018 mutex_unlock(&kvm->slots_lock);
3019 return r;
3020 }
3021
3022 static int alloc_identity_pagetable(struct kvm *kvm)
3023 {
3024 struct kvm_userspace_memory_region kvm_userspace_mem;
3025 int r = 0;
3026
3027 mutex_lock(&kvm->slots_lock);
3028 if (kvm->arch.ept_identity_pagetable)
3029 goto out;
3030 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3031 kvm_userspace_mem.flags = 0;
3032 kvm_userspace_mem.guest_phys_addr =
3033 kvm->arch.ept_identity_map_addr;
3034 kvm_userspace_mem.memory_size = PAGE_SIZE;
3035 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3036 if (r)
3037 goto out;
3038
3039 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3040 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3041 out:
3042 mutex_unlock(&kvm->slots_lock);
3043 return r;
3044 }
3045
3046 static void allocate_vpid(struct vcpu_vmx *vmx)
3047 {
3048 int vpid;
3049
3050 vmx->vpid = 0;
3051 if (!enable_vpid)
3052 return;
3053 spin_lock(&vmx_vpid_lock);
3054 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3055 if (vpid < VMX_NR_VPIDS) {
3056 vmx->vpid = vpid;
3057 __set_bit(vpid, vmx_vpid_bitmap);
3058 }
3059 spin_unlock(&vmx_vpid_lock);
3060 }
3061
3062 static void free_vpid(struct vcpu_vmx *vmx)
3063 {
3064 if (!enable_vpid)
3065 return;
3066 spin_lock(&vmx_vpid_lock);
3067 if (vmx->vpid != 0)
3068 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3069 spin_unlock(&vmx_vpid_lock);
3070 }
3071
3072 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3073 {
3074 int f = sizeof(unsigned long);
3075
3076 if (!cpu_has_vmx_msr_bitmap())
3077 return;
3078
3079 /*
3080 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3081 * have the write-low and read-high bitmap offsets the wrong way round.
3082 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3083 */
3084 if (msr <= 0x1fff) {
3085 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3086 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3087 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3088 msr &= 0x1fff;
3089 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3090 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3091 }
3092 }
3093
3094 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3095 {
3096 if (!longmode_only)
3097 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3098 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3099 }
3100
3101 /*
3102 * Sets up the vmcs for emulated real mode.
3103 */
3104 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3105 {
3106 u32 host_sysenter_cs, msr_low, msr_high;
3107 u32 junk;
3108 u64 host_pat;
3109 unsigned long a;
3110 struct desc_ptr dt;
3111 int i;
3112 unsigned long kvm_vmx_return;
3113 u32 exec_control;
3114
3115 /* I/O */
3116 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3117 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3118
3119 if (cpu_has_vmx_msr_bitmap())
3120 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3121
3122 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3123
3124 /* Control */
3125 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3126 vmcs_config.pin_based_exec_ctrl);
3127
3128 exec_control = vmcs_config.cpu_based_exec_ctrl;
3129 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3130 exec_control &= ~CPU_BASED_TPR_SHADOW;
3131 #ifdef CONFIG_X86_64
3132 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3133 CPU_BASED_CR8_LOAD_EXITING;
3134 #endif
3135 }
3136 if (!enable_ept)
3137 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3138 CPU_BASED_CR3_LOAD_EXITING |
3139 CPU_BASED_INVLPG_EXITING;
3140 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
3141
3142 if (cpu_has_secondary_exec_ctrls()) {
3143 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3144 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3145 exec_control &=
3146 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3147 if (vmx->vpid == 0)
3148 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3149 if (!enable_ept) {
3150 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3151 enable_unrestricted_guest = 0;
3152 }
3153 if (!enable_unrestricted_guest)
3154 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3155 if (!ple_gap)
3156 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3157 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
3158 }
3159
3160 if (ple_gap) {
3161 vmcs_write32(PLE_GAP, ple_gap);
3162 vmcs_write32(PLE_WINDOW, ple_window);
3163 }
3164
3165 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
3166 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
3167 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3168
3169 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3170 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3171 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3172
3173 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3174 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3175 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3176 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3177 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3178 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3179 #ifdef CONFIG_X86_64
3180 rdmsrl(MSR_FS_BASE, a);
3181 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3182 rdmsrl(MSR_GS_BASE, a);
3183 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3184 #else
3185 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3186 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3187 #endif
3188
3189 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3190
3191 native_store_idt(&dt);
3192 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3193
3194 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
3195 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
3196 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3197 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3198 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3199 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3200 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3201
3202 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
3203 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
3204 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
3205 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
3206 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
3207 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
3208
3209 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3210 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3211 host_pat = msr_low | ((u64) msr_high << 32);
3212 vmcs_write64(HOST_IA32_PAT, host_pat);
3213 }
3214 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3215 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3216 host_pat = msr_low | ((u64) msr_high << 32);
3217 /* Write the default value follow host pat */
3218 vmcs_write64(GUEST_IA32_PAT, host_pat);
3219 /* Keep arch.pat sync with GUEST_IA32_PAT */
3220 vmx->vcpu.arch.pat = host_pat;
3221 }
3222
3223 for (i = 0; i < NR_VMX_MSR; ++i) {
3224 u32 index = vmx_msr_index[i];
3225 u32 data_low, data_high;
3226 int j = vmx->nmsrs;
3227
3228 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3229 continue;
3230 if (wrmsr_safe(index, data_low, data_high) < 0)
3231 continue;
3232 vmx->guest_msrs[j].index = i;
3233 vmx->guest_msrs[j].data = 0;
3234 vmx->guest_msrs[j].mask = -1ull;
3235 ++vmx->nmsrs;
3236 }
3237
3238 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3239
3240 /* 22.2.1, 20.8.1 */
3241 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3242
3243 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3244 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3245 if (enable_ept)
3246 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3247 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3248
3249 kvm_write_tsc(&vmx->vcpu, 0);
3250
3251 return 0;
3252 }
3253
3254 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3255 {
3256 struct vcpu_vmx *vmx = to_vmx(vcpu);
3257 u64 msr;
3258 int ret;
3259
3260 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3261
3262 vmx->rmode.vm86_active = 0;
3263
3264 vmx->soft_vnmi_blocked = 0;
3265
3266 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3267 kvm_set_cr8(&vmx->vcpu, 0);
3268 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3269 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3270 msr |= MSR_IA32_APICBASE_BSP;
3271 kvm_set_apic_base(&vmx->vcpu, msr);
3272
3273 ret = fx_init(&vmx->vcpu);
3274 if (ret != 0)
3275 goto out;
3276
3277 vmx_segment_cache_clear(vmx);
3278
3279 seg_setup(VCPU_SREG_CS);
3280 /*
3281 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3282 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3283 */
3284 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3285 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3286 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3287 } else {
3288 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3289 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3290 }
3291
3292 seg_setup(VCPU_SREG_DS);
3293 seg_setup(VCPU_SREG_ES);
3294 seg_setup(VCPU_SREG_FS);
3295 seg_setup(VCPU_SREG_GS);
3296 seg_setup(VCPU_SREG_SS);
3297
3298 vmcs_write16(GUEST_TR_SELECTOR, 0);
3299 vmcs_writel(GUEST_TR_BASE, 0);
3300 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3301 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3302
3303 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3304 vmcs_writel(GUEST_LDTR_BASE, 0);
3305 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3306 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3307
3308 vmcs_write32(GUEST_SYSENTER_CS, 0);
3309 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3310 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3311
3312 vmcs_writel(GUEST_RFLAGS, 0x02);
3313 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3314 kvm_rip_write(vcpu, 0xfff0);
3315 else
3316 kvm_rip_write(vcpu, 0);
3317 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3318
3319 vmcs_writel(GUEST_DR7, 0x400);
3320
3321 vmcs_writel(GUEST_GDTR_BASE, 0);
3322 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3323
3324 vmcs_writel(GUEST_IDTR_BASE, 0);
3325 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3326
3327 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3328 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3329 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3330
3331 /* Special registers */
3332 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3333
3334 setup_msrs(vmx);
3335
3336 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3337
3338 if (cpu_has_vmx_tpr_shadow()) {
3339 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3340 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3341 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3342 __pa(vmx->vcpu.arch.apic->regs));
3343 vmcs_write32(TPR_THRESHOLD, 0);
3344 }
3345
3346 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3347 vmcs_write64(APIC_ACCESS_ADDR,
3348 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3349
3350 if (vmx->vpid != 0)
3351 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3352
3353 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3354 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3355 vmx_set_cr4(&vmx->vcpu, 0);
3356 vmx_set_efer(&vmx->vcpu, 0);
3357 vmx_fpu_activate(&vmx->vcpu);
3358 update_exception_bitmap(&vmx->vcpu);
3359
3360 vpid_sync_context(vmx);
3361
3362 ret = 0;
3363
3364 /* HACK: Don't enable emulation on guest boot/reset */
3365 vmx->emulation_required = 0;
3366
3367 out:
3368 return ret;
3369 }
3370
3371 static void enable_irq_window(struct kvm_vcpu *vcpu)
3372 {
3373 u32 cpu_based_vm_exec_control;
3374
3375 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3376 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3377 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3378 }
3379
3380 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3381 {
3382 u32 cpu_based_vm_exec_control;
3383
3384 if (!cpu_has_virtual_nmis()) {
3385 enable_irq_window(vcpu);
3386 return;
3387 }
3388
3389 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3390 enable_irq_window(vcpu);
3391 return;
3392 }
3393 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3394 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3395 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3396 }
3397
3398 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3399 {
3400 struct vcpu_vmx *vmx = to_vmx(vcpu);
3401 uint32_t intr;
3402 int irq = vcpu->arch.interrupt.nr;
3403
3404 trace_kvm_inj_virq(irq);
3405
3406 ++vcpu->stat.irq_injections;
3407 if (vmx->rmode.vm86_active) {
3408 int inc_eip = 0;
3409 if (vcpu->arch.interrupt.soft)
3410 inc_eip = vcpu->arch.event_exit_inst_len;
3411 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3412 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3413 return;
3414 }
3415 intr = irq | INTR_INFO_VALID_MASK;
3416 if (vcpu->arch.interrupt.soft) {
3417 intr |= INTR_TYPE_SOFT_INTR;
3418 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3419 vmx->vcpu.arch.event_exit_inst_len);
3420 } else
3421 intr |= INTR_TYPE_EXT_INTR;
3422 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3423 vmx_clear_hlt(vcpu);
3424 }
3425
3426 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3427 {
3428 struct vcpu_vmx *vmx = to_vmx(vcpu);
3429
3430 if (!cpu_has_virtual_nmis()) {
3431 /*
3432 * Tracking the NMI-blocked state in software is built upon
3433 * finding the next open IRQ window. This, in turn, depends on
3434 * well-behaving guests: They have to keep IRQs disabled at
3435 * least as long as the NMI handler runs. Otherwise we may
3436 * cause NMI nesting, maybe breaking the guest. But as this is
3437 * highly unlikely, we can live with the residual risk.
3438 */
3439 vmx->soft_vnmi_blocked = 1;
3440 vmx->vnmi_blocked_time = 0;
3441 }
3442
3443 ++vcpu->stat.nmi_injections;
3444 vmx->nmi_known_unmasked = false;
3445 if (vmx->rmode.vm86_active) {
3446 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3447 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3448 return;
3449 }
3450 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3451 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3452 vmx_clear_hlt(vcpu);
3453 }
3454
3455 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3456 {
3457 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3458 return 0;
3459
3460 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3461 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3462 | GUEST_INTR_STATE_NMI));
3463 }
3464
3465 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3466 {
3467 if (!cpu_has_virtual_nmis())
3468 return to_vmx(vcpu)->soft_vnmi_blocked;
3469 if (to_vmx(vcpu)->nmi_known_unmasked)
3470 return false;
3471 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3472 }
3473
3474 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3475 {
3476 struct vcpu_vmx *vmx = to_vmx(vcpu);
3477
3478 if (!cpu_has_virtual_nmis()) {
3479 if (vmx->soft_vnmi_blocked != masked) {
3480 vmx->soft_vnmi_blocked = masked;
3481 vmx->vnmi_blocked_time = 0;
3482 }
3483 } else {
3484 vmx->nmi_known_unmasked = !masked;
3485 if (masked)
3486 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3487 GUEST_INTR_STATE_NMI);
3488 else
3489 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3490 GUEST_INTR_STATE_NMI);
3491 }
3492 }
3493
3494 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3495 {
3496 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3497 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3498 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3499 }
3500
3501 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3502 {
3503 int ret;
3504 struct kvm_userspace_memory_region tss_mem = {
3505 .slot = TSS_PRIVATE_MEMSLOT,
3506 .guest_phys_addr = addr,
3507 .memory_size = PAGE_SIZE * 3,
3508 .flags = 0,
3509 };
3510
3511 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3512 if (ret)
3513 return ret;
3514 kvm->arch.tss_addr = addr;
3515 if (!init_rmode_tss(kvm))
3516 return -ENOMEM;
3517
3518 return 0;
3519 }
3520
3521 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3522 int vec, u32 err_code)
3523 {
3524 /*
3525 * Instruction with address size override prefix opcode 0x67
3526 * Cause the #SS fault with 0 error code in VM86 mode.
3527 */
3528 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3529 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3530 return 1;
3531 /*
3532 * Forward all other exceptions that are valid in real mode.
3533 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3534 * the required debugging infrastructure rework.
3535 */
3536 switch (vec) {
3537 case DB_VECTOR:
3538 if (vcpu->guest_debug &
3539 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3540 return 0;
3541 kvm_queue_exception(vcpu, vec);
3542 return 1;
3543 case BP_VECTOR:
3544 /*
3545 * Update instruction length as we may reinject the exception
3546 * from user space while in guest debugging mode.
3547 */
3548 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3549 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3550 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3551 return 0;
3552 /* fall through */
3553 case DE_VECTOR:
3554 case OF_VECTOR:
3555 case BR_VECTOR:
3556 case UD_VECTOR:
3557 case DF_VECTOR:
3558 case SS_VECTOR:
3559 case GP_VECTOR:
3560 case MF_VECTOR:
3561 kvm_queue_exception(vcpu, vec);
3562 return 1;
3563 }
3564 return 0;
3565 }
3566
3567 /*
3568 * Trigger machine check on the host. We assume all the MSRs are already set up
3569 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3570 * We pass a fake environment to the machine check handler because we want
3571 * the guest to be always treated like user space, no matter what context
3572 * it used internally.
3573 */
3574 static void kvm_machine_check(void)
3575 {
3576 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3577 struct pt_regs regs = {
3578 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3579 .flags = X86_EFLAGS_IF,
3580 };
3581
3582 do_machine_check(&regs, 0);
3583 #endif
3584 }
3585
3586 static int handle_machine_check(struct kvm_vcpu *vcpu)
3587 {
3588 /* already handled by vcpu_run */
3589 return 1;
3590 }
3591
3592 static int handle_exception(struct kvm_vcpu *vcpu)
3593 {
3594 struct vcpu_vmx *vmx = to_vmx(vcpu);
3595 struct kvm_run *kvm_run = vcpu->run;
3596 u32 intr_info, ex_no, error_code;
3597 unsigned long cr2, rip, dr6;
3598 u32 vect_info;
3599 enum emulation_result er;
3600
3601 vect_info = vmx->idt_vectoring_info;
3602 intr_info = vmx->exit_intr_info;
3603
3604 if (is_machine_check(intr_info))
3605 return handle_machine_check(vcpu);
3606
3607 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3608 !is_page_fault(intr_info)) {
3609 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3610 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3611 vcpu->run->internal.ndata = 2;
3612 vcpu->run->internal.data[0] = vect_info;
3613 vcpu->run->internal.data[1] = intr_info;
3614 return 0;
3615 }
3616
3617 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3618 return 1; /* already handled by vmx_vcpu_run() */
3619
3620 if (is_no_device(intr_info)) {
3621 vmx_fpu_activate(vcpu);
3622 return 1;
3623 }
3624
3625 if (is_invalid_opcode(intr_info)) {
3626 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3627 if (er != EMULATE_DONE)
3628 kvm_queue_exception(vcpu, UD_VECTOR);
3629 return 1;
3630 }
3631
3632 error_code = 0;
3633 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3634 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3635 if (is_page_fault(intr_info)) {
3636 /* EPT won't cause page fault directly */
3637 if (enable_ept)
3638 BUG();
3639 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3640 trace_kvm_page_fault(cr2, error_code);
3641
3642 if (kvm_event_needs_reinjection(vcpu))
3643 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3644 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3645 }
3646
3647 if (vmx->rmode.vm86_active &&
3648 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3649 error_code)) {
3650 if (vcpu->arch.halt_request) {
3651 vcpu->arch.halt_request = 0;
3652 return kvm_emulate_halt(vcpu);
3653 }
3654 return 1;
3655 }
3656
3657 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3658 switch (ex_no) {
3659 case DB_VECTOR:
3660 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3661 if (!(vcpu->guest_debug &
3662 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3663 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3664 kvm_queue_exception(vcpu, DB_VECTOR);
3665 return 1;
3666 }
3667 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3668 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3669 /* fall through */
3670 case BP_VECTOR:
3671 /*
3672 * Update instruction length as we may reinject #BP from
3673 * user space while in guest debugging mode. Reading it for
3674 * #DB as well causes no harm, it is not used in that case.
3675 */
3676 vmx->vcpu.arch.event_exit_inst_len =
3677 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3678 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3679 rip = kvm_rip_read(vcpu);
3680 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3681 kvm_run->debug.arch.exception = ex_no;
3682 break;
3683 default:
3684 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3685 kvm_run->ex.exception = ex_no;
3686 kvm_run->ex.error_code = error_code;
3687 break;
3688 }
3689 return 0;
3690 }
3691
3692 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3693 {
3694 ++vcpu->stat.irq_exits;
3695 return 1;
3696 }
3697
3698 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3699 {
3700 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3701 return 0;
3702 }
3703
3704 static int handle_io(struct kvm_vcpu *vcpu)
3705 {
3706 unsigned long exit_qualification;
3707 int size, in, string;
3708 unsigned port;
3709
3710 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3711 string = (exit_qualification & 16) != 0;
3712 in = (exit_qualification & 8) != 0;
3713
3714 ++vcpu->stat.io_exits;
3715
3716 if (string || in)
3717 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3718
3719 port = exit_qualification >> 16;
3720 size = (exit_qualification & 7) + 1;
3721 skip_emulated_instruction(vcpu);
3722
3723 return kvm_fast_pio_out(vcpu, size, port);
3724 }
3725
3726 static void
3727 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3728 {
3729 /*
3730 * Patch in the VMCALL instruction:
3731 */
3732 hypercall[0] = 0x0f;
3733 hypercall[1] = 0x01;
3734 hypercall[2] = 0xc1;
3735 }
3736
3737 static int handle_cr(struct kvm_vcpu *vcpu)
3738 {
3739 unsigned long exit_qualification, val;
3740 int cr;
3741 int reg;
3742 int err;
3743
3744 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3745 cr = exit_qualification & 15;
3746 reg = (exit_qualification >> 8) & 15;
3747 switch ((exit_qualification >> 4) & 3) {
3748 case 0: /* mov to cr */
3749 val = kvm_register_read(vcpu, reg);
3750 trace_kvm_cr_write(cr, val);
3751 switch (cr) {
3752 case 0:
3753 err = kvm_set_cr0(vcpu, val);
3754 kvm_complete_insn_gp(vcpu, err);
3755 return 1;
3756 case 3:
3757 err = kvm_set_cr3(vcpu, val);
3758 kvm_complete_insn_gp(vcpu, err);
3759 return 1;
3760 case 4:
3761 err = kvm_set_cr4(vcpu, val);
3762 kvm_complete_insn_gp(vcpu, err);
3763 return 1;
3764 case 8: {
3765 u8 cr8_prev = kvm_get_cr8(vcpu);
3766 u8 cr8 = kvm_register_read(vcpu, reg);
3767 err = kvm_set_cr8(vcpu, cr8);
3768 kvm_complete_insn_gp(vcpu, err);
3769 if (irqchip_in_kernel(vcpu->kvm))
3770 return 1;
3771 if (cr8_prev <= cr8)
3772 return 1;
3773 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3774 return 0;
3775 }
3776 };
3777 break;
3778 case 2: /* clts */
3779 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3780 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3781 skip_emulated_instruction(vcpu);
3782 vmx_fpu_activate(vcpu);
3783 return 1;
3784 case 1: /*mov from cr*/
3785 switch (cr) {
3786 case 3:
3787 val = kvm_read_cr3(vcpu);
3788 kvm_register_write(vcpu, reg, val);
3789 trace_kvm_cr_read(cr, val);
3790 skip_emulated_instruction(vcpu);
3791 return 1;
3792 case 8:
3793 val = kvm_get_cr8(vcpu);
3794 kvm_register_write(vcpu, reg, val);
3795 trace_kvm_cr_read(cr, val);
3796 skip_emulated_instruction(vcpu);
3797 return 1;
3798 }
3799 break;
3800 case 3: /* lmsw */
3801 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3802 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3803 kvm_lmsw(vcpu, val);
3804
3805 skip_emulated_instruction(vcpu);
3806 return 1;
3807 default:
3808 break;
3809 }
3810 vcpu->run->exit_reason = 0;
3811 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3812 (int)(exit_qualification >> 4) & 3, cr);
3813 return 0;
3814 }
3815
3816 static int handle_dr(struct kvm_vcpu *vcpu)
3817 {
3818 unsigned long exit_qualification;
3819 int dr, reg;
3820
3821 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3822 if (!kvm_require_cpl(vcpu, 0))
3823 return 1;
3824 dr = vmcs_readl(GUEST_DR7);
3825 if (dr & DR7_GD) {
3826 /*
3827 * As the vm-exit takes precedence over the debug trap, we
3828 * need to emulate the latter, either for the host or the
3829 * guest debugging itself.
3830 */
3831 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3832 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3833 vcpu->run->debug.arch.dr7 = dr;
3834 vcpu->run->debug.arch.pc =
3835 vmcs_readl(GUEST_CS_BASE) +
3836 vmcs_readl(GUEST_RIP);
3837 vcpu->run->debug.arch.exception = DB_VECTOR;
3838 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3839 return 0;
3840 } else {
3841 vcpu->arch.dr7 &= ~DR7_GD;
3842 vcpu->arch.dr6 |= DR6_BD;
3843 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3844 kvm_queue_exception(vcpu, DB_VECTOR);
3845 return 1;
3846 }
3847 }
3848
3849 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3850 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3851 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3852 if (exit_qualification & TYPE_MOV_FROM_DR) {
3853 unsigned long val;
3854 if (!kvm_get_dr(vcpu, dr, &val))
3855 kvm_register_write(vcpu, reg, val);
3856 } else
3857 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3858 skip_emulated_instruction(vcpu);
3859 return 1;
3860 }
3861
3862 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3863 {
3864 vmcs_writel(GUEST_DR7, val);
3865 }
3866
3867 static int handle_cpuid(struct kvm_vcpu *vcpu)
3868 {
3869 kvm_emulate_cpuid(vcpu);
3870 return 1;
3871 }
3872
3873 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3874 {
3875 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3876 u64 data;
3877
3878 if (vmx_get_msr(vcpu, ecx, &data)) {
3879 trace_kvm_msr_read_ex(ecx);
3880 kvm_inject_gp(vcpu, 0);
3881 return 1;
3882 }
3883
3884 trace_kvm_msr_read(ecx, data);
3885
3886 /* FIXME: handling of bits 32:63 of rax, rdx */
3887 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3888 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3889 skip_emulated_instruction(vcpu);
3890 return 1;
3891 }
3892
3893 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3894 {
3895 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3896 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3897 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3898
3899 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3900 trace_kvm_msr_write_ex(ecx, data);
3901 kvm_inject_gp(vcpu, 0);
3902 return 1;
3903 }
3904
3905 trace_kvm_msr_write(ecx, data);
3906 skip_emulated_instruction(vcpu);
3907 return 1;
3908 }
3909
3910 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3911 {
3912 kvm_make_request(KVM_REQ_EVENT, vcpu);
3913 return 1;
3914 }
3915
3916 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3917 {
3918 u32 cpu_based_vm_exec_control;
3919
3920 /* clear pending irq */
3921 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3922 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3923 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3924
3925 kvm_make_request(KVM_REQ_EVENT, vcpu);
3926
3927 ++vcpu->stat.irq_window_exits;
3928
3929 /*
3930 * If the user space waits to inject interrupts, exit as soon as
3931 * possible
3932 */
3933 if (!irqchip_in_kernel(vcpu->kvm) &&
3934 vcpu->run->request_interrupt_window &&
3935 !kvm_cpu_has_interrupt(vcpu)) {
3936 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3937 return 0;
3938 }
3939 return 1;
3940 }
3941
3942 static int handle_halt(struct kvm_vcpu *vcpu)
3943 {
3944 skip_emulated_instruction(vcpu);
3945 return kvm_emulate_halt(vcpu);
3946 }
3947
3948 static int handle_vmcall(struct kvm_vcpu *vcpu)
3949 {
3950 skip_emulated_instruction(vcpu);
3951 kvm_emulate_hypercall(vcpu);
3952 return 1;
3953 }
3954
3955 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3956 {
3957 kvm_queue_exception(vcpu, UD_VECTOR);
3958 return 1;
3959 }
3960
3961 static int handle_invd(struct kvm_vcpu *vcpu)
3962 {
3963 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3964 }
3965
3966 static int handle_invlpg(struct kvm_vcpu *vcpu)
3967 {
3968 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3969
3970 kvm_mmu_invlpg(vcpu, exit_qualification);
3971 skip_emulated_instruction(vcpu);
3972 return 1;
3973 }
3974
3975 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3976 {
3977 skip_emulated_instruction(vcpu);
3978 kvm_emulate_wbinvd(vcpu);
3979 return 1;
3980 }
3981
3982 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3983 {
3984 u64 new_bv = kvm_read_edx_eax(vcpu);
3985 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3986
3987 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3988 skip_emulated_instruction(vcpu);
3989 return 1;
3990 }
3991
3992 static int handle_apic_access(struct kvm_vcpu *vcpu)
3993 {
3994 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3995 }
3996
3997 static int handle_task_switch(struct kvm_vcpu *vcpu)
3998 {
3999 struct vcpu_vmx *vmx = to_vmx(vcpu);
4000 unsigned long exit_qualification;
4001 bool has_error_code = false;
4002 u32 error_code = 0;
4003 u16 tss_selector;
4004 int reason, type, idt_v;
4005
4006 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4007 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4008
4009 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4010
4011 reason = (u32)exit_qualification >> 30;
4012 if (reason == TASK_SWITCH_GATE && idt_v) {
4013 switch (type) {
4014 case INTR_TYPE_NMI_INTR:
4015 vcpu->arch.nmi_injected = false;
4016 vmx_set_nmi_mask(vcpu, true);
4017 break;
4018 case INTR_TYPE_EXT_INTR:
4019 case INTR_TYPE_SOFT_INTR:
4020 kvm_clear_interrupt_queue(vcpu);
4021 break;
4022 case INTR_TYPE_HARD_EXCEPTION:
4023 if (vmx->idt_vectoring_info &
4024 VECTORING_INFO_DELIVER_CODE_MASK) {
4025 has_error_code = true;
4026 error_code =
4027 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4028 }
4029 /* fall through */
4030 case INTR_TYPE_SOFT_EXCEPTION:
4031 kvm_clear_exception_queue(vcpu);
4032 break;
4033 default:
4034 break;
4035 }
4036 }
4037 tss_selector = exit_qualification;
4038
4039 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4040 type != INTR_TYPE_EXT_INTR &&
4041 type != INTR_TYPE_NMI_INTR))
4042 skip_emulated_instruction(vcpu);
4043
4044 if (kvm_task_switch(vcpu, tss_selector, reason,
4045 has_error_code, error_code) == EMULATE_FAIL) {
4046 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4047 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4048 vcpu->run->internal.ndata = 0;
4049 return 0;
4050 }
4051
4052 /* clear all local breakpoint enable flags */
4053 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4054
4055 /*
4056 * TODO: What about debug traps on tss switch?
4057 * Are we supposed to inject them and update dr6?
4058 */
4059
4060 return 1;
4061 }
4062
4063 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4064 {
4065 unsigned long exit_qualification;
4066 gpa_t gpa;
4067 int gla_validity;
4068
4069 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4070
4071 if (exit_qualification & (1 << 6)) {
4072 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4073 return -EINVAL;
4074 }
4075
4076 gla_validity = (exit_qualification >> 7) & 0x3;
4077 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4078 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4079 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4080 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4081 vmcs_readl(GUEST_LINEAR_ADDRESS));
4082 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4083 (long unsigned int)exit_qualification);
4084 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4085 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4086 return 0;
4087 }
4088
4089 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4090 trace_kvm_page_fault(gpa, exit_qualification);
4091 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4092 }
4093
4094 static u64 ept_rsvd_mask(u64 spte, int level)
4095 {
4096 int i;
4097 u64 mask = 0;
4098
4099 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4100 mask |= (1ULL << i);
4101
4102 if (level > 2)
4103 /* bits 7:3 reserved */
4104 mask |= 0xf8;
4105 else if (level == 2) {
4106 if (spte & (1ULL << 7))
4107 /* 2MB ref, bits 20:12 reserved */
4108 mask |= 0x1ff000;
4109 else
4110 /* bits 6:3 reserved */
4111 mask |= 0x78;
4112 }
4113
4114 return mask;
4115 }
4116
4117 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4118 int level)
4119 {
4120 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4121
4122 /* 010b (write-only) */
4123 WARN_ON((spte & 0x7) == 0x2);
4124
4125 /* 110b (write/execute) */
4126 WARN_ON((spte & 0x7) == 0x6);
4127
4128 /* 100b (execute-only) and value not supported by logical processor */
4129 if (!cpu_has_vmx_ept_execute_only())
4130 WARN_ON((spte & 0x7) == 0x4);
4131
4132 /* not 000b */
4133 if ((spte & 0x7)) {
4134 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4135
4136 if (rsvd_bits != 0) {
4137 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4138 __func__, rsvd_bits);
4139 WARN_ON(1);
4140 }
4141
4142 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4143 u64 ept_mem_type = (spte & 0x38) >> 3;
4144
4145 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4146 ept_mem_type == 7) {
4147 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4148 __func__, ept_mem_type);
4149 WARN_ON(1);
4150 }
4151 }
4152 }
4153 }
4154
4155 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4156 {
4157 u64 sptes[4];
4158 int nr_sptes, i;
4159 gpa_t gpa;
4160
4161 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4162
4163 printk(KERN_ERR "EPT: Misconfiguration.\n");
4164 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4165
4166 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4167
4168 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4169 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4170
4171 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4172 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4173
4174 return 0;
4175 }
4176
4177 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4178 {
4179 u32 cpu_based_vm_exec_control;
4180
4181 /* clear pending NMI */
4182 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4183 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4184 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4185 ++vcpu->stat.nmi_window_exits;
4186 kvm_make_request(KVM_REQ_EVENT, vcpu);
4187
4188 return 1;
4189 }
4190
4191 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4192 {
4193 struct vcpu_vmx *vmx = to_vmx(vcpu);
4194 enum emulation_result err = EMULATE_DONE;
4195 int ret = 1;
4196 u32 cpu_exec_ctrl;
4197 bool intr_window_requested;
4198
4199 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4200 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4201
4202 while (!guest_state_valid(vcpu)) {
4203 if (intr_window_requested
4204 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4205 return handle_interrupt_window(&vmx->vcpu);
4206
4207 err = emulate_instruction(vcpu, 0);
4208
4209 if (err == EMULATE_DO_MMIO) {
4210 ret = 0;
4211 goto out;
4212 }
4213
4214 if (err != EMULATE_DONE)
4215 return 0;
4216
4217 if (signal_pending(current))
4218 goto out;
4219 if (need_resched())
4220 schedule();
4221 }
4222
4223 vmx->emulation_required = 0;
4224 out:
4225 return ret;
4226 }
4227
4228 /*
4229 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4230 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4231 */
4232 static int handle_pause(struct kvm_vcpu *vcpu)
4233 {
4234 skip_emulated_instruction(vcpu);
4235 kvm_vcpu_on_spin(vcpu);
4236
4237 return 1;
4238 }
4239
4240 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4241 {
4242 kvm_queue_exception(vcpu, UD_VECTOR);
4243 return 1;
4244 }
4245
4246 /*
4247 * Emulate the VMXON instruction.
4248 * Currently, we just remember that VMX is active, and do not save or even
4249 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4250 * do not currently need to store anything in that guest-allocated memory
4251 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4252 * argument is different from the VMXON pointer (which the spec says they do).
4253 */
4254 static int handle_vmon(struct kvm_vcpu *vcpu)
4255 {
4256 struct kvm_segment cs;
4257 struct vcpu_vmx *vmx = to_vmx(vcpu);
4258
4259 /* The Intel VMX Instruction Reference lists a bunch of bits that
4260 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4261 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4262 * Otherwise, we should fail with #UD. We test these now:
4263 */
4264 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4265 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4266 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4267 kvm_queue_exception(vcpu, UD_VECTOR);
4268 return 1;
4269 }
4270
4271 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4272 if (is_long_mode(vcpu) && !cs.l) {
4273 kvm_queue_exception(vcpu, UD_VECTOR);
4274 return 1;
4275 }
4276
4277 if (vmx_get_cpl(vcpu)) {
4278 kvm_inject_gp(vcpu, 0);
4279 return 1;
4280 }
4281
4282 vmx->nested.vmxon = true;
4283
4284 skip_emulated_instruction(vcpu);
4285 return 1;
4286 }
4287
4288 /*
4289 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4290 * for running VMX instructions (except VMXON, whose prerequisites are
4291 * slightly different). It also specifies what exception to inject otherwise.
4292 */
4293 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4294 {
4295 struct kvm_segment cs;
4296 struct vcpu_vmx *vmx = to_vmx(vcpu);
4297
4298 if (!vmx->nested.vmxon) {
4299 kvm_queue_exception(vcpu, UD_VECTOR);
4300 return 0;
4301 }
4302
4303 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4304 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4305 (is_long_mode(vcpu) && !cs.l)) {
4306 kvm_queue_exception(vcpu, UD_VECTOR);
4307 return 0;
4308 }
4309
4310 if (vmx_get_cpl(vcpu)) {
4311 kvm_inject_gp(vcpu, 0);
4312 return 0;
4313 }
4314
4315 return 1;
4316 }
4317
4318 /*
4319 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4320 * just stops using VMX.
4321 */
4322 static void free_nested(struct vcpu_vmx *vmx)
4323 {
4324 if (!vmx->nested.vmxon)
4325 return;
4326 vmx->nested.vmxon = false;
4327 if (vmx->nested.current_vmptr != -1ull) {
4328 kunmap(vmx->nested.current_vmcs12_page);
4329 nested_release_page(vmx->nested.current_vmcs12_page);
4330 vmx->nested.current_vmptr = -1ull;
4331 vmx->nested.current_vmcs12 = NULL;
4332 }
4333 }
4334
4335 /* Emulate the VMXOFF instruction */
4336 static int handle_vmoff(struct kvm_vcpu *vcpu)
4337 {
4338 if (!nested_vmx_check_permission(vcpu))
4339 return 1;
4340 free_nested(to_vmx(vcpu));
4341 skip_emulated_instruction(vcpu);
4342 return 1;
4343 }
4344
4345 /*
4346 * Decode the memory-address operand of a vmx instruction, as recorded on an
4347 * exit caused by such an instruction (run by a guest hypervisor).
4348 * On success, returns 0. When the operand is invalid, returns 1 and throws
4349 * #UD or #GP.
4350 */
4351 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4352 unsigned long exit_qualification,
4353 u32 vmx_instruction_info, gva_t *ret)
4354 {
4355 /*
4356 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4357 * Execution", on an exit, vmx_instruction_info holds most of the
4358 * addressing components of the operand. Only the displacement part
4359 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4360 * For how an actual address is calculated from all these components,
4361 * refer to Vol. 1, "Operand Addressing".
4362 */
4363 int scaling = vmx_instruction_info & 3;
4364 int addr_size = (vmx_instruction_info >> 7) & 7;
4365 bool is_reg = vmx_instruction_info & (1u << 10);
4366 int seg_reg = (vmx_instruction_info >> 15) & 7;
4367 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4368 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4369 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4370 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4371
4372 if (is_reg) {
4373 kvm_queue_exception(vcpu, UD_VECTOR);
4374 return 1;
4375 }
4376
4377 /* Addr = segment_base + offset */
4378 /* offset = base + [index * scale] + displacement */
4379 *ret = vmx_get_segment_base(vcpu, seg_reg);
4380 if (base_is_valid)
4381 *ret += kvm_register_read(vcpu, base_reg);
4382 if (index_is_valid)
4383 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
4384 *ret += exit_qualification; /* holds the displacement */
4385
4386 if (addr_size == 1) /* 32 bit */
4387 *ret &= 0xffffffff;
4388
4389 /*
4390 * TODO: throw #GP (and return 1) in various cases that the VM*
4391 * instructions require it - e.g., offset beyond segment limit,
4392 * unusable or unreadable/unwritable segment, non-canonical 64-bit
4393 * address, and so on. Currently these are not checked.
4394 */
4395 return 0;
4396 }
4397
4398 /*
4399 * The exit handlers return 1 if the exit was handled fully and guest execution
4400 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
4401 * to be done to userspace and return 0.
4402 */
4403 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
4404 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
4405 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
4406 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
4407 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
4408 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
4409 [EXIT_REASON_CR_ACCESS] = handle_cr,
4410 [EXIT_REASON_DR_ACCESS] = handle_dr,
4411 [EXIT_REASON_CPUID] = handle_cpuid,
4412 [EXIT_REASON_MSR_READ] = handle_rdmsr,
4413 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
4414 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
4415 [EXIT_REASON_HLT] = handle_halt,
4416 [EXIT_REASON_INVD] = handle_invd,
4417 [EXIT_REASON_INVLPG] = handle_invlpg,
4418 [EXIT_REASON_VMCALL] = handle_vmcall,
4419 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
4420 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
4421 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
4422 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
4423 [EXIT_REASON_VMREAD] = handle_vmx_insn,
4424 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
4425 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
4426 [EXIT_REASON_VMOFF] = handle_vmoff,
4427 [EXIT_REASON_VMON] = handle_vmon,
4428 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
4429 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
4430 [EXIT_REASON_WBINVD] = handle_wbinvd,
4431 [EXIT_REASON_XSETBV] = handle_xsetbv,
4432 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
4433 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
4434 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
4435 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4436 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
4437 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
4438 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
4439 };
4440
4441 static const int kvm_vmx_max_exit_handlers =
4442 ARRAY_SIZE(kvm_vmx_exit_handlers);
4443
4444 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4445 {
4446 *info1 = vmcs_readl(EXIT_QUALIFICATION);
4447 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
4448 }
4449
4450 /*
4451 * The guest has exited. See if we can fix it or if we need userspace
4452 * assistance.
4453 */
4454 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
4455 {
4456 struct vcpu_vmx *vmx = to_vmx(vcpu);
4457 u32 exit_reason = vmx->exit_reason;
4458 u32 vectoring_info = vmx->idt_vectoring_info;
4459
4460 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
4461
4462 /* If guest state is invalid, start emulating */
4463 if (vmx->emulation_required && emulate_invalid_guest_state)
4464 return handle_invalid_guest_state(vcpu);
4465
4466 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4467 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4468 vcpu->run->fail_entry.hardware_entry_failure_reason
4469 = exit_reason;
4470 return 0;
4471 }
4472
4473 if (unlikely(vmx->fail)) {
4474 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4475 vcpu->run->fail_entry.hardware_entry_failure_reason
4476 = vmcs_read32(VM_INSTRUCTION_ERROR);
4477 return 0;
4478 }
4479
4480 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
4481 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
4482 exit_reason != EXIT_REASON_EPT_VIOLATION &&
4483 exit_reason != EXIT_REASON_TASK_SWITCH))
4484 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
4485 "(0x%x) and exit reason is 0x%x\n",
4486 __func__, vectoring_info, exit_reason);
4487
4488 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
4489 if (vmx_interrupt_allowed(vcpu)) {
4490 vmx->soft_vnmi_blocked = 0;
4491 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4492 vcpu->arch.nmi_pending) {
4493 /*
4494 * This CPU don't support us in finding the end of an
4495 * NMI-blocked window if the guest runs with IRQs
4496 * disabled. So we pull the trigger after 1 s of
4497 * futile waiting, but inform the user about this.
4498 */
4499 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
4500 "state on VCPU %d after 1 s timeout\n",
4501 __func__, vcpu->vcpu_id);
4502 vmx->soft_vnmi_blocked = 0;
4503 }
4504 }
4505
4506 if (exit_reason < kvm_vmx_max_exit_handlers
4507 && kvm_vmx_exit_handlers[exit_reason])
4508 return kvm_vmx_exit_handlers[exit_reason](vcpu);
4509 else {
4510 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4511 vcpu->run->hw.hardware_exit_reason = exit_reason;
4512 }
4513 return 0;
4514 }
4515
4516 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4517 {
4518 if (irr == -1 || tpr < irr) {
4519 vmcs_write32(TPR_THRESHOLD, 0);
4520 return;
4521 }
4522
4523 vmcs_write32(TPR_THRESHOLD, irr);
4524 }
4525
4526 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
4527 {
4528 u32 exit_intr_info;
4529
4530 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
4531 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
4532 return;
4533
4534 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4535 exit_intr_info = vmx->exit_intr_info;
4536
4537 /* Handle machine checks before interrupts are enabled */
4538 if (is_machine_check(exit_intr_info))
4539 kvm_machine_check();
4540
4541 /* We need to handle NMIs before interrupts are enabled */
4542 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
4543 (exit_intr_info & INTR_INFO_VALID_MASK)) {
4544 kvm_before_handle_nmi(&vmx->vcpu);
4545 asm("int $2");
4546 kvm_after_handle_nmi(&vmx->vcpu);
4547 }
4548 }
4549
4550 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
4551 {
4552 u32 exit_intr_info;
4553 bool unblock_nmi;
4554 u8 vector;
4555 bool idtv_info_valid;
4556
4557 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4558
4559 if (cpu_has_virtual_nmis()) {
4560 if (vmx->nmi_known_unmasked)
4561 return;
4562 /*
4563 * Can't use vmx->exit_intr_info since we're not sure what
4564 * the exit reason is.
4565 */
4566 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4567 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
4568 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
4569 /*
4570 * SDM 3: 27.7.1.2 (September 2008)
4571 * Re-set bit "block by NMI" before VM entry if vmexit caused by
4572 * a guest IRET fault.
4573 * SDM 3: 23.2.2 (September 2008)
4574 * Bit 12 is undefined in any of the following cases:
4575 * If the VM exit sets the valid bit in the IDT-vectoring
4576 * information field.
4577 * If the VM exit is due to a double fault.
4578 */
4579 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
4580 vector != DF_VECTOR && !idtv_info_valid)
4581 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4582 GUEST_INTR_STATE_NMI);
4583 else
4584 vmx->nmi_known_unmasked =
4585 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
4586 & GUEST_INTR_STATE_NMI);
4587 } else if (unlikely(vmx->soft_vnmi_blocked))
4588 vmx->vnmi_blocked_time +=
4589 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
4590 }
4591
4592 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
4593 u32 idt_vectoring_info,
4594 int instr_len_field,
4595 int error_code_field)
4596 {
4597 u8 vector;
4598 int type;
4599 bool idtv_info_valid;
4600
4601 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4602
4603 vmx->vcpu.arch.nmi_injected = false;
4604 kvm_clear_exception_queue(&vmx->vcpu);
4605 kvm_clear_interrupt_queue(&vmx->vcpu);
4606
4607 if (!idtv_info_valid)
4608 return;
4609
4610 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
4611
4612 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
4613 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
4614
4615 switch (type) {
4616 case INTR_TYPE_NMI_INTR:
4617 vmx->vcpu.arch.nmi_injected = true;
4618 /*
4619 * SDM 3: 27.7.1.2 (September 2008)
4620 * Clear bit "block by NMI" before VM entry if a NMI
4621 * delivery faulted.
4622 */
4623 vmx_set_nmi_mask(&vmx->vcpu, false);
4624 break;
4625 case INTR_TYPE_SOFT_EXCEPTION:
4626 vmx->vcpu.arch.event_exit_inst_len =
4627 vmcs_read32(instr_len_field);
4628 /* fall through */
4629 case INTR_TYPE_HARD_EXCEPTION:
4630 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4631 u32 err = vmcs_read32(error_code_field);
4632 kvm_queue_exception_e(&vmx->vcpu, vector, err);
4633 } else
4634 kvm_queue_exception(&vmx->vcpu, vector);
4635 break;
4636 case INTR_TYPE_SOFT_INTR:
4637 vmx->vcpu.arch.event_exit_inst_len =
4638 vmcs_read32(instr_len_field);
4639 /* fall through */
4640 case INTR_TYPE_EXT_INTR:
4641 kvm_queue_interrupt(&vmx->vcpu, vector,
4642 type == INTR_TYPE_SOFT_INTR);
4643 break;
4644 default:
4645 break;
4646 }
4647 }
4648
4649 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4650 {
4651 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4652 VM_EXIT_INSTRUCTION_LEN,
4653 IDT_VECTORING_ERROR_CODE);
4654 }
4655
4656 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4657 {
4658 __vmx_complete_interrupts(to_vmx(vcpu),
4659 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4660 VM_ENTRY_INSTRUCTION_LEN,
4661 VM_ENTRY_EXCEPTION_ERROR_CODE);
4662
4663 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4664 }
4665
4666 #ifdef CONFIG_X86_64
4667 #define R "r"
4668 #define Q "q"
4669 #else
4670 #define R "e"
4671 #define Q "l"
4672 #endif
4673
4674 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4675 {
4676 struct vcpu_vmx *vmx = to_vmx(vcpu);
4677
4678 /* Record the guest's net vcpu time for enforced NMI injections. */
4679 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4680 vmx->entry_time = ktime_get();
4681
4682 /* Don't enter VMX if guest state is invalid, let the exit handler
4683 start emulation until we arrive back to a valid state */
4684 if (vmx->emulation_required && emulate_invalid_guest_state)
4685 return;
4686
4687 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4688 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4689 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4690 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4691
4692 /* When single-stepping over STI and MOV SS, we must clear the
4693 * corresponding interruptibility bits in the guest state. Otherwise
4694 * vmentry fails as it then expects bit 14 (BS) in pending debug
4695 * exceptions being set, but that's not correct for the guest debugging
4696 * case. */
4697 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4698 vmx_set_interrupt_shadow(vcpu, 0);
4699
4700 vmx->__launched = vmx->loaded_vmcs->launched;
4701 asm(
4702 /* Store host registers */
4703 "push %%"R"dx; push %%"R"bp;"
4704 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4705 "push %%"R"cx \n\t"
4706 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4707 "je 1f \n\t"
4708 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4709 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4710 "1: \n\t"
4711 /* Reload cr2 if changed */
4712 "mov %c[cr2](%0), %%"R"ax \n\t"
4713 "mov %%cr2, %%"R"dx \n\t"
4714 "cmp %%"R"ax, %%"R"dx \n\t"
4715 "je 2f \n\t"
4716 "mov %%"R"ax, %%cr2 \n\t"
4717 "2: \n\t"
4718 /* Check if vmlaunch of vmresume is needed */
4719 "cmpl $0, %c[launched](%0) \n\t"
4720 /* Load guest registers. Don't clobber flags. */
4721 "mov %c[rax](%0), %%"R"ax \n\t"
4722 "mov %c[rbx](%0), %%"R"bx \n\t"
4723 "mov %c[rdx](%0), %%"R"dx \n\t"
4724 "mov %c[rsi](%0), %%"R"si \n\t"
4725 "mov %c[rdi](%0), %%"R"di \n\t"
4726 "mov %c[rbp](%0), %%"R"bp \n\t"
4727 #ifdef CONFIG_X86_64
4728 "mov %c[r8](%0), %%r8 \n\t"
4729 "mov %c[r9](%0), %%r9 \n\t"
4730 "mov %c[r10](%0), %%r10 \n\t"
4731 "mov %c[r11](%0), %%r11 \n\t"
4732 "mov %c[r12](%0), %%r12 \n\t"
4733 "mov %c[r13](%0), %%r13 \n\t"
4734 "mov %c[r14](%0), %%r14 \n\t"
4735 "mov %c[r15](%0), %%r15 \n\t"
4736 #endif
4737 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4738
4739 /* Enter guest mode */
4740 "jne .Llaunched \n\t"
4741 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4742 "jmp .Lkvm_vmx_return \n\t"
4743 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4744 ".Lkvm_vmx_return: "
4745 /* Save guest registers, load host registers, keep flags */
4746 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4747 "pop %0 \n\t"
4748 "mov %%"R"ax, %c[rax](%0) \n\t"
4749 "mov %%"R"bx, %c[rbx](%0) \n\t"
4750 "pop"Q" %c[rcx](%0) \n\t"
4751 "mov %%"R"dx, %c[rdx](%0) \n\t"
4752 "mov %%"R"si, %c[rsi](%0) \n\t"
4753 "mov %%"R"di, %c[rdi](%0) \n\t"
4754 "mov %%"R"bp, %c[rbp](%0) \n\t"
4755 #ifdef CONFIG_X86_64
4756 "mov %%r8, %c[r8](%0) \n\t"
4757 "mov %%r9, %c[r9](%0) \n\t"
4758 "mov %%r10, %c[r10](%0) \n\t"
4759 "mov %%r11, %c[r11](%0) \n\t"
4760 "mov %%r12, %c[r12](%0) \n\t"
4761 "mov %%r13, %c[r13](%0) \n\t"
4762 "mov %%r14, %c[r14](%0) \n\t"
4763 "mov %%r15, %c[r15](%0) \n\t"
4764 #endif
4765 "mov %%cr2, %%"R"ax \n\t"
4766 "mov %%"R"ax, %c[cr2](%0) \n\t"
4767
4768 "pop %%"R"bp; pop %%"R"dx \n\t"
4769 "setbe %c[fail](%0) \n\t"
4770 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4771 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
4772 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4773 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4774 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4775 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4776 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4777 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4778 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4779 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4780 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4781 #ifdef CONFIG_X86_64
4782 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4783 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4784 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4785 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4786 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4787 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4788 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4789 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4790 #endif
4791 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4792 [wordsize]"i"(sizeof(ulong))
4793 : "cc", "memory"
4794 , R"ax", R"bx", R"di", R"si"
4795 #ifdef CONFIG_X86_64
4796 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4797 #endif
4798 );
4799
4800 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4801 | (1 << VCPU_EXREG_RFLAGS)
4802 | (1 << VCPU_EXREG_CPL)
4803 | (1 << VCPU_EXREG_PDPTR)
4804 | (1 << VCPU_EXREG_SEGMENTS)
4805 | (1 << VCPU_EXREG_CR3));
4806 vcpu->arch.regs_dirty = 0;
4807
4808 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4809
4810 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4811 vmx->loaded_vmcs->launched = 1;
4812
4813 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4814
4815 vmx_complete_atomic_exit(vmx);
4816 vmx_recover_nmi_blocking(vmx);
4817 vmx_complete_interrupts(vmx);
4818 }
4819
4820 #undef R
4821 #undef Q
4822
4823 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4824 {
4825 struct vcpu_vmx *vmx = to_vmx(vcpu);
4826
4827 free_vpid(vmx);
4828 free_nested(vmx);
4829 free_loaded_vmcs(vmx->loaded_vmcs);
4830 kfree(vmx->guest_msrs);
4831 kvm_vcpu_uninit(vcpu);
4832 kmem_cache_free(kvm_vcpu_cache, vmx);
4833 }
4834
4835 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4836 {
4837 int err;
4838 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4839 int cpu;
4840
4841 if (!vmx)
4842 return ERR_PTR(-ENOMEM);
4843
4844 allocate_vpid(vmx);
4845
4846 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4847 if (err)
4848 goto free_vcpu;
4849
4850 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4851 err = -ENOMEM;
4852 if (!vmx->guest_msrs) {
4853 goto uninit_vcpu;
4854 }
4855
4856 vmx->loaded_vmcs = &vmx->vmcs01;
4857 vmx->loaded_vmcs->vmcs = alloc_vmcs();
4858 if (!vmx->loaded_vmcs->vmcs)
4859 goto free_msrs;
4860 if (!vmm_exclusive)
4861 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
4862 loaded_vmcs_init(vmx->loaded_vmcs);
4863 if (!vmm_exclusive)
4864 kvm_cpu_vmxoff();
4865
4866 cpu = get_cpu();
4867 vmx_vcpu_load(&vmx->vcpu, cpu);
4868 vmx->vcpu.cpu = cpu;
4869 err = vmx_vcpu_setup(vmx);
4870 vmx_vcpu_put(&vmx->vcpu);
4871 put_cpu();
4872 if (err)
4873 goto free_vmcs;
4874 if (vm_need_virtualize_apic_accesses(kvm))
4875 err = alloc_apic_access_page(kvm);
4876 if (err)
4877 goto free_vmcs;
4878
4879 if (enable_ept) {
4880 if (!kvm->arch.ept_identity_map_addr)
4881 kvm->arch.ept_identity_map_addr =
4882 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4883 err = -ENOMEM;
4884 if (alloc_identity_pagetable(kvm) != 0)
4885 goto free_vmcs;
4886 if (!init_rmode_identity_map(kvm))
4887 goto free_vmcs;
4888 }
4889
4890 vmx->nested.current_vmptr = -1ull;
4891 vmx->nested.current_vmcs12 = NULL;
4892
4893 return &vmx->vcpu;
4894
4895 free_vmcs:
4896 free_vmcs(vmx->loaded_vmcs->vmcs);
4897 free_msrs:
4898 kfree(vmx->guest_msrs);
4899 uninit_vcpu:
4900 kvm_vcpu_uninit(&vmx->vcpu);
4901 free_vcpu:
4902 free_vpid(vmx);
4903 kmem_cache_free(kvm_vcpu_cache, vmx);
4904 return ERR_PTR(err);
4905 }
4906
4907 static void __init vmx_check_processor_compat(void *rtn)
4908 {
4909 struct vmcs_config vmcs_conf;
4910
4911 *(int *)rtn = 0;
4912 if (setup_vmcs_config(&vmcs_conf) < 0)
4913 *(int *)rtn = -EIO;
4914 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4915 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4916 smp_processor_id());
4917 *(int *)rtn = -EIO;
4918 }
4919 }
4920
4921 static int get_ept_level(void)
4922 {
4923 return VMX_EPT_DEFAULT_GAW + 1;
4924 }
4925
4926 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4927 {
4928 u64 ret;
4929
4930 /* For VT-d and EPT combination
4931 * 1. MMIO: always map as UC
4932 * 2. EPT with VT-d:
4933 * a. VT-d without snooping control feature: can't guarantee the
4934 * result, try to trust guest.
4935 * b. VT-d with snooping control feature: snooping control feature of
4936 * VT-d engine can guarantee the cache correctness. Just set it
4937 * to WB to keep consistent with host. So the same as item 3.
4938 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4939 * consistent with host MTRR
4940 */
4941 if (is_mmio)
4942 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4943 else if (vcpu->kvm->arch.iommu_domain &&
4944 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4945 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4946 VMX_EPT_MT_EPTE_SHIFT;
4947 else
4948 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4949 | VMX_EPT_IPAT_BIT;
4950
4951 return ret;
4952 }
4953
4954 #define _ER(x) { EXIT_REASON_##x, #x }
4955
4956 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4957 _ER(EXCEPTION_NMI),
4958 _ER(EXTERNAL_INTERRUPT),
4959 _ER(TRIPLE_FAULT),
4960 _ER(PENDING_INTERRUPT),
4961 _ER(NMI_WINDOW),
4962 _ER(TASK_SWITCH),
4963 _ER(CPUID),
4964 _ER(HLT),
4965 _ER(INVLPG),
4966 _ER(RDPMC),
4967 _ER(RDTSC),
4968 _ER(VMCALL),
4969 _ER(VMCLEAR),
4970 _ER(VMLAUNCH),
4971 _ER(VMPTRLD),
4972 _ER(VMPTRST),
4973 _ER(VMREAD),
4974 _ER(VMRESUME),
4975 _ER(VMWRITE),
4976 _ER(VMOFF),
4977 _ER(VMON),
4978 _ER(CR_ACCESS),
4979 _ER(DR_ACCESS),
4980 _ER(IO_INSTRUCTION),
4981 _ER(MSR_READ),
4982 _ER(MSR_WRITE),
4983 _ER(MWAIT_INSTRUCTION),
4984 _ER(MONITOR_INSTRUCTION),
4985 _ER(PAUSE_INSTRUCTION),
4986 _ER(MCE_DURING_VMENTRY),
4987 _ER(TPR_BELOW_THRESHOLD),
4988 _ER(APIC_ACCESS),
4989 _ER(EPT_VIOLATION),
4990 _ER(EPT_MISCONFIG),
4991 _ER(WBINVD),
4992 { -1, NULL }
4993 };
4994
4995 #undef _ER
4996
4997 static int vmx_get_lpage_level(void)
4998 {
4999 if (enable_ept && !cpu_has_vmx_ept_1g_page())
5000 return PT_DIRECTORY_LEVEL;
5001 else
5002 /* For shadow and EPT supported 1GB page */
5003 return PT_PDPE_LEVEL;
5004 }
5005
5006 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
5007 {
5008 struct kvm_cpuid_entry2 *best;
5009 struct vcpu_vmx *vmx = to_vmx(vcpu);
5010 u32 exec_control;
5011
5012 vmx->rdtscp_enabled = false;
5013 if (vmx_rdtscp_supported()) {
5014 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5015 if (exec_control & SECONDARY_EXEC_RDTSCP) {
5016 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
5017 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
5018 vmx->rdtscp_enabled = true;
5019 else {
5020 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5021 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5022 exec_control);
5023 }
5024 }
5025 }
5026 }
5027
5028 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5029 {
5030 }
5031
5032 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
5033 struct x86_instruction_info *info,
5034 enum x86_intercept_stage stage)
5035 {
5036 return X86EMUL_CONTINUE;
5037 }
5038
5039 static struct kvm_x86_ops vmx_x86_ops = {
5040 .cpu_has_kvm_support = cpu_has_kvm_support,
5041 .disabled_by_bios = vmx_disabled_by_bios,
5042 .hardware_setup = hardware_setup,
5043 .hardware_unsetup = hardware_unsetup,
5044 .check_processor_compatibility = vmx_check_processor_compat,
5045 .hardware_enable = hardware_enable,
5046 .hardware_disable = hardware_disable,
5047 .cpu_has_accelerated_tpr = report_flexpriority,
5048
5049 .vcpu_create = vmx_create_vcpu,
5050 .vcpu_free = vmx_free_vcpu,
5051 .vcpu_reset = vmx_vcpu_reset,
5052
5053 .prepare_guest_switch = vmx_save_host_state,
5054 .vcpu_load = vmx_vcpu_load,
5055 .vcpu_put = vmx_vcpu_put,
5056
5057 .set_guest_debug = set_guest_debug,
5058 .get_msr = vmx_get_msr,
5059 .set_msr = vmx_set_msr,
5060 .get_segment_base = vmx_get_segment_base,
5061 .get_segment = vmx_get_segment,
5062 .set_segment = vmx_set_segment,
5063 .get_cpl = vmx_get_cpl,
5064 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
5065 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
5066 .decache_cr3 = vmx_decache_cr3,
5067 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
5068 .set_cr0 = vmx_set_cr0,
5069 .set_cr3 = vmx_set_cr3,
5070 .set_cr4 = vmx_set_cr4,
5071 .set_efer = vmx_set_efer,
5072 .get_idt = vmx_get_idt,
5073 .set_idt = vmx_set_idt,
5074 .get_gdt = vmx_get_gdt,
5075 .set_gdt = vmx_set_gdt,
5076 .set_dr7 = vmx_set_dr7,
5077 .cache_reg = vmx_cache_reg,
5078 .get_rflags = vmx_get_rflags,
5079 .set_rflags = vmx_set_rflags,
5080 .fpu_activate = vmx_fpu_activate,
5081 .fpu_deactivate = vmx_fpu_deactivate,
5082
5083 .tlb_flush = vmx_flush_tlb,
5084
5085 .run = vmx_vcpu_run,
5086 .handle_exit = vmx_handle_exit,
5087 .skip_emulated_instruction = skip_emulated_instruction,
5088 .set_interrupt_shadow = vmx_set_interrupt_shadow,
5089 .get_interrupt_shadow = vmx_get_interrupt_shadow,
5090 .patch_hypercall = vmx_patch_hypercall,
5091 .set_irq = vmx_inject_irq,
5092 .set_nmi = vmx_inject_nmi,
5093 .queue_exception = vmx_queue_exception,
5094 .cancel_injection = vmx_cancel_injection,
5095 .interrupt_allowed = vmx_interrupt_allowed,
5096 .nmi_allowed = vmx_nmi_allowed,
5097 .get_nmi_mask = vmx_get_nmi_mask,
5098 .set_nmi_mask = vmx_set_nmi_mask,
5099 .enable_nmi_window = enable_nmi_window,
5100 .enable_irq_window = enable_irq_window,
5101 .update_cr8_intercept = update_cr8_intercept,
5102
5103 .set_tss_addr = vmx_set_tss_addr,
5104 .get_tdp_level = get_ept_level,
5105 .get_mt_mask = vmx_get_mt_mask,
5106
5107 .get_exit_info = vmx_get_exit_info,
5108 .exit_reasons_str = vmx_exit_reasons_str,
5109
5110 .get_lpage_level = vmx_get_lpage_level,
5111
5112 .cpuid_update = vmx_cpuid_update,
5113
5114 .rdtscp_supported = vmx_rdtscp_supported,
5115
5116 .set_supported_cpuid = vmx_set_supported_cpuid,
5117
5118 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
5119
5120 .set_tsc_khz = vmx_set_tsc_khz,
5121 .write_tsc_offset = vmx_write_tsc_offset,
5122 .adjust_tsc_offset = vmx_adjust_tsc_offset,
5123 .compute_tsc_offset = vmx_compute_tsc_offset,
5124
5125 .set_tdp_cr3 = vmx_set_cr3,
5126
5127 .check_intercept = vmx_check_intercept,
5128 };
5129
5130 static int __init vmx_init(void)
5131 {
5132 int r, i;
5133
5134 rdmsrl_safe(MSR_EFER, &host_efer);
5135
5136 for (i = 0; i < NR_VMX_MSR; ++i)
5137 kvm_define_shared_msr(i, vmx_msr_index[i]);
5138
5139 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5140 if (!vmx_io_bitmap_a)
5141 return -ENOMEM;
5142
5143 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5144 if (!vmx_io_bitmap_b) {
5145 r = -ENOMEM;
5146 goto out;
5147 }
5148
5149 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5150 if (!vmx_msr_bitmap_legacy) {
5151 r = -ENOMEM;
5152 goto out1;
5153 }
5154
5155 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5156 if (!vmx_msr_bitmap_longmode) {
5157 r = -ENOMEM;
5158 goto out2;
5159 }
5160
5161 /*
5162 * Allow direct access to the PC debug port (it is often used for I/O
5163 * delays, but the vmexits simply slow things down).
5164 */
5165 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5166 clear_bit(0x80, vmx_io_bitmap_a);
5167
5168 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5169
5170 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5171 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5172
5173 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
5174
5175 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
5176 __alignof__(struct vcpu_vmx), THIS_MODULE);
5177 if (r)
5178 goto out3;
5179
5180 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5181 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5182 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5183 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5184 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5185 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5186
5187 if (enable_ept) {
5188 bypass_guest_pf = 0;
5189 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
5190 VMX_EPT_EXECUTABLE_MASK);
5191 kvm_enable_tdp();
5192 } else
5193 kvm_disable_tdp();
5194
5195 if (bypass_guest_pf)
5196 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
5197
5198 return 0;
5199
5200 out3:
5201 free_page((unsigned long)vmx_msr_bitmap_longmode);
5202 out2:
5203 free_page((unsigned long)vmx_msr_bitmap_legacy);
5204 out1:
5205 free_page((unsigned long)vmx_io_bitmap_b);
5206 out:
5207 free_page((unsigned long)vmx_io_bitmap_a);
5208 return r;
5209 }
5210
5211 static void __exit vmx_exit(void)
5212 {
5213 free_page((unsigned long)vmx_msr_bitmap_legacy);
5214 free_page((unsigned long)vmx_msr_bitmap_longmode);
5215 free_page((unsigned long)vmx_io_bitmap_b);
5216 free_page((unsigned long)vmx_io_bitmap_a);
5217
5218 kvm_exit();
5219 }
5220
5221 module_init(vmx_init)
5222 module_exit(vmx_exit)