]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
Merge tag 'powerpc-4.13-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190 };
191
192 /*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197 struct loaded_vmcs {
198 struct vmcs *vmcs;
199 struct vmcs *shadow_vmcs;
200 int cpu;
201 bool launched;
202 bool nmi_known_unmasked;
203 struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207 unsigned index;
208 u64 data;
209 u64 mask;
210 };
211
212 /*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
232
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
245 u64 posted_intr_desc_addr;
246 u64 ept_pointer;
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
251 u64 xss_exit_bitmap;
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 pml_address;
255 u64 guest_ia32_debugctl;
256 u64 guest_ia32_pat;
257 u64 guest_ia32_efer;
258 u64 guest_ia32_perf_global_ctrl;
259 u64 guest_pdptr0;
260 u64 guest_pdptr1;
261 u64 guest_pdptr2;
262 u64 guest_pdptr3;
263 u64 guest_bndcfgs;
264 u64 host_ia32_pat;
265 u64 host_ia32_efer;
266 u64 host_ia32_perf_global_ctrl;
267 u64 padding64[8]; /* room for future expansion */
268 /*
269 * To allow migration of L1 (complete with its L2 guests) between
270 * machines of different natural widths (32 or 64 bit), we cannot have
271 * unsigned long fields with no explict size. We use u64 (aliased
272 * natural_width) instead. Luckily, x86 is little-endian.
273 */
274 natural_width cr0_guest_host_mask;
275 natural_width cr4_guest_host_mask;
276 natural_width cr0_read_shadow;
277 natural_width cr4_read_shadow;
278 natural_width cr3_target_value0;
279 natural_width cr3_target_value1;
280 natural_width cr3_target_value2;
281 natural_width cr3_target_value3;
282 natural_width exit_qualification;
283 natural_width guest_linear_address;
284 natural_width guest_cr0;
285 natural_width guest_cr3;
286 natural_width guest_cr4;
287 natural_width guest_es_base;
288 natural_width guest_cs_base;
289 natural_width guest_ss_base;
290 natural_width guest_ds_base;
291 natural_width guest_fs_base;
292 natural_width guest_gs_base;
293 natural_width guest_ldtr_base;
294 natural_width guest_tr_base;
295 natural_width guest_gdtr_base;
296 natural_width guest_idtr_base;
297 natural_width guest_dr7;
298 natural_width guest_rsp;
299 natural_width guest_rip;
300 natural_width guest_rflags;
301 natural_width guest_pending_dbg_exceptions;
302 natural_width guest_sysenter_esp;
303 natural_width guest_sysenter_eip;
304 natural_width host_cr0;
305 natural_width host_cr3;
306 natural_width host_cr4;
307 natural_width host_fs_base;
308 natural_width host_gs_base;
309 natural_width host_tr_base;
310 natural_width host_gdtr_base;
311 natural_width host_idtr_base;
312 natural_width host_ia32_sysenter_esp;
313 natural_width host_ia32_sysenter_eip;
314 natural_width host_rsp;
315 natural_width host_rip;
316 natural_width paddingl[8]; /* room for future expansion */
317 u32 pin_based_vm_exec_control;
318 u32 cpu_based_vm_exec_control;
319 u32 exception_bitmap;
320 u32 page_fault_error_code_mask;
321 u32 page_fault_error_code_match;
322 u32 cr3_target_count;
323 u32 vm_exit_controls;
324 u32 vm_exit_msr_store_count;
325 u32 vm_exit_msr_load_count;
326 u32 vm_entry_controls;
327 u32 vm_entry_msr_load_count;
328 u32 vm_entry_intr_info_field;
329 u32 vm_entry_exception_error_code;
330 u32 vm_entry_instruction_len;
331 u32 tpr_threshold;
332 u32 secondary_vm_exec_control;
333 u32 vm_instruction_error;
334 u32 vm_exit_reason;
335 u32 vm_exit_intr_info;
336 u32 vm_exit_intr_error_code;
337 u32 idt_vectoring_info_field;
338 u32 idt_vectoring_error_code;
339 u32 vm_exit_instruction_len;
340 u32 vmx_instruction_info;
341 u32 guest_es_limit;
342 u32 guest_cs_limit;
343 u32 guest_ss_limit;
344 u32 guest_ds_limit;
345 u32 guest_fs_limit;
346 u32 guest_gs_limit;
347 u32 guest_ldtr_limit;
348 u32 guest_tr_limit;
349 u32 guest_gdtr_limit;
350 u32 guest_idtr_limit;
351 u32 guest_es_ar_bytes;
352 u32 guest_cs_ar_bytes;
353 u32 guest_ss_ar_bytes;
354 u32 guest_ds_ar_bytes;
355 u32 guest_fs_ar_bytes;
356 u32 guest_gs_ar_bytes;
357 u32 guest_ldtr_ar_bytes;
358 u32 guest_tr_ar_bytes;
359 u32 guest_interruptibility_info;
360 u32 guest_activity_state;
361 u32 guest_sysenter_cs;
362 u32 host_ia32_sysenter_cs;
363 u32 vmx_preemption_timer_value;
364 u32 padding32[7]; /* room for future expansion */
365 u16 virtual_processor_id;
366 u16 posted_intr_nv;
367 u16 guest_es_selector;
368 u16 guest_cs_selector;
369 u16 guest_ss_selector;
370 u16 guest_ds_selector;
371 u16 guest_fs_selector;
372 u16 guest_gs_selector;
373 u16 guest_ldtr_selector;
374 u16 guest_tr_selector;
375 u16 guest_intr_status;
376 u16 guest_pml_index;
377 u16 host_es_selector;
378 u16 host_cs_selector;
379 u16 host_ss_selector;
380 u16 host_ds_selector;
381 u16 host_fs_selector;
382 u16 host_gs_selector;
383 u16 host_tr_selector;
384 };
385
386 /*
387 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
388 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
389 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
390 */
391 #define VMCS12_REVISION 0x11e57ed0
392
393 /*
394 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
395 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
396 * current implementation, 4K are reserved to avoid future complications.
397 */
398 #define VMCS12_SIZE 0x1000
399
400 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
401 struct vmcs02_list {
402 struct list_head list;
403 gpa_t vmptr;
404 struct loaded_vmcs vmcs02;
405 };
406
407 /*
408 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
409 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
410 */
411 struct nested_vmx {
412 /* Has the level1 guest done vmxon? */
413 bool vmxon;
414 gpa_t vmxon_ptr;
415 bool pml_full;
416
417 /* The guest-physical address of the current VMCS L1 keeps for L2 */
418 gpa_t current_vmptr;
419 /* The host-usable pointer to the above */
420 struct page *current_vmcs12_page;
421 struct vmcs12 *current_vmcs12;
422 /*
423 * Cache of the guest's VMCS, existing outside of guest memory.
424 * Loaded from guest memory during VMPTRLD. Flushed to guest
425 * memory during VMXOFF, VMCLEAR, VMPTRLD.
426 */
427 struct vmcs12 *cached_vmcs12;
428 /*
429 * Indicates if the shadow vmcs must be updated with the
430 * data hold by vmcs12
431 */
432 bool sync_shadow_vmcs;
433
434 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
435 struct list_head vmcs02_pool;
436 int vmcs02_num;
437 bool change_vmcs01_virtual_x2apic_mode;
438 /* L2 must run next, and mustn't decide to exit to L1. */
439 bool nested_run_pending;
440 /*
441 * Guest pages referred to in vmcs02 with host-physical pointers, so
442 * we must keep them pinned while L2 runs.
443 */
444 struct page *apic_access_page;
445 struct page *virtual_apic_page;
446 struct page *pi_desc_page;
447 struct pi_desc *pi_desc;
448 bool pi_pending;
449 u16 posted_intr_nv;
450
451 unsigned long *msr_bitmap;
452
453 struct hrtimer preemption_timer;
454 bool preemption_timer_expired;
455
456 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
457 u64 vmcs01_debugctl;
458
459 u16 vpid02;
460 u16 last_vpid;
461
462 /*
463 * We only store the "true" versions of the VMX capability MSRs. We
464 * generate the "non-true" versions by setting the must-be-1 bits
465 * according to the SDM.
466 */
467 u32 nested_vmx_procbased_ctls_low;
468 u32 nested_vmx_procbased_ctls_high;
469 u32 nested_vmx_secondary_ctls_low;
470 u32 nested_vmx_secondary_ctls_high;
471 u32 nested_vmx_pinbased_ctls_low;
472 u32 nested_vmx_pinbased_ctls_high;
473 u32 nested_vmx_exit_ctls_low;
474 u32 nested_vmx_exit_ctls_high;
475 u32 nested_vmx_entry_ctls_low;
476 u32 nested_vmx_entry_ctls_high;
477 u32 nested_vmx_misc_low;
478 u32 nested_vmx_misc_high;
479 u32 nested_vmx_ept_caps;
480 u32 nested_vmx_vpid_caps;
481 u64 nested_vmx_basic;
482 u64 nested_vmx_cr0_fixed0;
483 u64 nested_vmx_cr0_fixed1;
484 u64 nested_vmx_cr4_fixed0;
485 u64 nested_vmx_cr4_fixed1;
486 u64 nested_vmx_vmcs_enum;
487 };
488
489 #define POSTED_INTR_ON 0
490 #define POSTED_INTR_SN 1
491
492 /* Posted-Interrupt Descriptor */
493 struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
513 } __aligned(64);
514
515 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516 {
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522 {
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525 }
526
527 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528 {
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530 }
531
532 static inline void pi_clear_sn(struct pi_desc *pi_desc)
533 {
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_set_sn(struct pi_desc *pi_desc)
539 {
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542 }
543
544 static inline void pi_clear_on(struct pi_desc *pi_desc)
545 {
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_on(struct pi_desc *pi_desc)
551 {
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554 }
555
556 static inline int pi_test_sn(struct pi_desc *pi_desc)
557 {
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560 }
561
562 struct vcpu_vmx {
563 struct kvm_vcpu vcpu;
564 unsigned long host_rsp;
565 u8 fail;
566 bool nmi_known_unmasked;
567 u32 exit_intr_info;
568 u32 idt_vectoring_info;
569 ulong rflags;
570 struct shared_msr_entry *guest_msrs;
571 int nmsrs;
572 int save_nmsrs;
573 unsigned long host_idt_base;
574 #ifdef CONFIG_X86_64
575 u64 msr_host_kernel_gs_base;
576 u64 msr_guest_kernel_gs_base;
577 #endif
578 u32 vm_entry_controls_shadow;
579 u32 vm_exit_controls_shadow;
580 /*
581 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
582 * non-nested (L1) guest, it always points to vmcs01. For a nested
583 * guest (L2), it points to a different VMCS.
584 */
585 struct loaded_vmcs vmcs01;
586 struct loaded_vmcs *loaded_vmcs;
587 bool __launched; /* temporary, used in vmx_vcpu_run */
588 struct msr_autoload {
589 unsigned nr;
590 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
591 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
592 } msr_autoload;
593 struct {
594 int loaded;
595 u16 fs_sel, gs_sel, ldt_sel;
596 #ifdef CONFIG_X86_64
597 u16 ds_sel, es_sel;
598 #endif
599 int gs_ldt_reload_needed;
600 int fs_reload_needed;
601 u64 msr_host_bndcfgs;
602 unsigned long vmcs_host_cr3; /* May not match real cr3 */
603 unsigned long vmcs_host_cr4; /* May not match real cr4 */
604 } host_state;
605 struct {
606 int vm86_active;
607 ulong save_rflags;
608 struct kvm_segment segs[8];
609 } rmode;
610 struct {
611 u32 bitmask; /* 4 bits per segment (1 bit per field) */
612 struct kvm_save_segment {
613 u16 selector;
614 unsigned long base;
615 u32 limit;
616 u32 ar;
617 } seg[8];
618 } segment_cache;
619 int vpid;
620 bool emulation_required;
621
622 u32 exit_reason;
623
624 /* Posted interrupt descriptor */
625 struct pi_desc pi_desc;
626
627 /* Support for a guest hypervisor (nested VMX) */
628 struct nested_vmx nested;
629
630 /* Dynamic PLE window. */
631 int ple_window;
632 bool ple_window_dirty;
633
634 /* Support for PML */
635 #define PML_ENTITY_NUM 512
636 struct page *pml_pg;
637
638 /* apic deadline value in host tsc */
639 u64 hv_deadline_tsc;
640
641 u64 current_tsc_ratio;
642
643 bool guest_pkru_valid;
644 u32 guest_pkru;
645 u32 host_pkru;
646
647 /*
648 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
649 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
650 * in msr_ia32_feature_control_valid_bits.
651 */
652 u64 msr_ia32_feature_control;
653 u64 msr_ia32_feature_control_valid_bits;
654 };
655
656 enum segment_cache_field {
657 SEG_FIELD_SEL = 0,
658 SEG_FIELD_BASE = 1,
659 SEG_FIELD_LIMIT = 2,
660 SEG_FIELD_AR = 3,
661
662 SEG_FIELD_NR = 4
663 };
664
665 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
666 {
667 return container_of(vcpu, struct vcpu_vmx, vcpu);
668 }
669
670 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
671 {
672 return &(to_vmx(vcpu)->pi_desc);
673 }
674
675 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
676 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
677 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
678 [number##_HIGH] = VMCS12_OFFSET(name)+4
679
680
681 static unsigned long shadow_read_only_fields[] = {
682 /*
683 * We do NOT shadow fields that are modified when L0
684 * traps and emulates any vmx instruction (e.g. VMPTRLD,
685 * VMXON...) executed by L1.
686 * For example, VM_INSTRUCTION_ERROR is read
687 * by L1 if a vmx instruction fails (part of the error path).
688 * Note the code assumes this logic. If for some reason
689 * we start shadowing these fields then we need to
690 * force a shadow sync when L0 emulates vmx instructions
691 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
692 * by nested_vmx_failValid)
693 */
694 VM_EXIT_REASON,
695 VM_EXIT_INTR_INFO,
696 VM_EXIT_INSTRUCTION_LEN,
697 IDT_VECTORING_INFO_FIELD,
698 IDT_VECTORING_ERROR_CODE,
699 VM_EXIT_INTR_ERROR_CODE,
700 EXIT_QUALIFICATION,
701 GUEST_LINEAR_ADDRESS,
702 GUEST_PHYSICAL_ADDRESS
703 };
704 static int max_shadow_read_only_fields =
705 ARRAY_SIZE(shadow_read_only_fields);
706
707 static unsigned long shadow_read_write_fields[] = {
708 TPR_THRESHOLD,
709 GUEST_RIP,
710 GUEST_RSP,
711 GUEST_CR0,
712 GUEST_CR3,
713 GUEST_CR4,
714 GUEST_INTERRUPTIBILITY_INFO,
715 GUEST_RFLAGS,
716 GUEST_CS_SELECTOR,
717 GUEST_CS_AR_BYTES,
718 GUEST_CS_LIMIT,
719 GUEST_CS_BASE,
720 GUEST_ES_BASE,
721 GUEST_BNDCFGS,
722 CR0_GUEST_HOST_MASK,
723 CR0_READ_SHADOW,
724 CR4_READ_SHADOW,
725 TSC_OFFSET,
726 EXCEPTION_BITMAP,
727 CPU_BASED_VM_EXEC_CONTROL,
728 VM_ENTRY_EXCEPTION_ERROR_CODE,
729 VM_ENTRY_INTR_INFO_FIELD,
730 VM_ENTRY_INSTRUCTION_LEN,
731 VM_ENTRY_EXCEPTION_ERROR_CODE,
732 HOST_FS_BASE,
733 HOST_GS_BASE,
734 HOST_FS_SELECTOR,
735 HOST_GS_SELECTOR
736 };
737 static int max_shadow_read_write_fields =
738 ARRAY_SIZE(shadow_read_write_fields);
739
740 static const unsigned short vmcs_field_to_offset_table[] = {
741 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
742 FIELD(POSTED_INTR_NV, posted_intr_nv),
743 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
744 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
745 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
746 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
747 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
748 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
749 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
750 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
751 FIELD(GUEST_INTR_STATUS, guest_intr_status),
752 FIELD(GUEST_PML_INDEX, guest_pml_index),
753 FIELD(HOST_ES_SELECTOR, host_es_selector),
754 FIELD(HOST_CS_SELECTOR, host_cs_selector),
755 FIELD(HOST_SS_SELECTOR, host_ss_selector),
756 FIELD(HOST_DS_SELECTOR, host_ds_selector),
757 FIELD(HOST_FS_SELECTOR, host_fs_selector),
758 FIELD(HOST_GS_SELECTOR, host_gs_selector),
759 FIELD(HOST_TR_SELECTOR, host_tr_selector),
760 FIELD64(IO_BITMAP_A, io_bitmap_a),
761 FIELD64(IO_BITMAP_B, io_bitmap_b),
762 FIELD64(MSR_BITMAP, msr_bitmap),
763 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
764 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
765 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
766 FIELD64(TSC_OFFSET, tsc_offset),
767 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
768 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
769 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
770 FIELD64(EPT_POINTER, ept_pointer),
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
775 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
776 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
777 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
778 FIELD64(PML_ADDRESS, pml_address),
779 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
780 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
781 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
782 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
783 FIELD64(GUEST_PDPTR0, guest_pdptr0),
784 FIELD64(GUEST_PDPTR1, guest_pdptr1),
785 FIELD64(GUEST_PDPTR2, guest_pdptr2),
786 FIELD64(GUEST_PDPTR3, guest_pdptr3),
787 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
788 FIELD64(HOST_IA32_PAT, host_ia32_pat),
789 FIELD64(HOST_IA32_EFER, host_ia32_efer),
790 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
791 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
792 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
793 FIELD(EXCEPTION_BITMAP, exception_bitmap),
794 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
795 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
796 FIELD(CR3_TARGET_COUNT, cr3_target_count),
797 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
798 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
799 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
800 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
801 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
802 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
803 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
804 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
805 FIELD(TPR_THRESHOLD, tpr_threshold),
806 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
807 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
808 FIELD(VM_EXIT_REASON, vm_exit_reason),
809 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
810 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
811 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
812 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
813 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
814 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
815 FIELD(GUEST_ES_LIMIT, guest_es_limit),
816 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
817 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
818 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
819 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
820 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
821 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
822 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
823 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
824 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
825 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
826 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
827 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
828 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
829 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
830 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
831 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
832 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
833 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
834 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
835 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
836 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
837 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
838 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
839 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
840 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
841 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
842 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
843 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
844 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
845 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
846 FIELD(EXIT_QUALIFICATION, exit_qualification),
847 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
848 FIELD(GUEST_CR0, guest_cr0),
849 FIELD(GUEST_CR3, guest_cr3),
850 FIELD(GUEST_CR4, guest_cr4),
851 FIELD(GUEST_ES_BASE, guest_es_base),
852 FIELD(GUEST_CS_BASE, guest_cs_base),
853 FIELD(GUEST_SS_BASE, guest_ss_base),
854 FIELD(GUEST_DS_BASE, guest_ds_base),
855 FIELD(GUEST_FS_BASE, guest_fs_base),
856 FIELD(GUEST_GS_BASE, guest_gs_base),
857 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
858 FIELD(GUEST_TR_BASE, guest_tr_base),
859 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
860 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
861 FIELD(GUEST_DR7, guest_dr7),
862 FIELD(GUEST_RSP, guest_rsp),
863 FIELD(GUEST_RIP, guest_rip),
864 FIELD(GUEST_RFLAGS, guest_rflags),
865 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
866 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
867 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
868 FIELD(HOST_CR0, host_cr0),
869 FIELD(HOST_CR3, host_cr3),
870 FIELD(HOST_CR4, host_cr4),
871 FIELD(HOST_FS_BASE, host_fs_base),
872 FIELD(HOST_GS_BASE, host_gs_base),
873 FIELD(HOST_TR_BASE, host_tr_base),
874 FIELD(HOST_GDTR_BASE, host_gdtr_base),
875 FIELD(HOST_IDTR_BASE, host_idtr_base),
876 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
877 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
878 FIELD(HOST_RSP, host_rsp),
879 FIELD(HOST_RIP, host_rip),
880 };
881
882 static inline short vmcs_field_to_offset(unsigned long field)
883 {
884 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
885
886 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
887 vmcs_field_to_offset_table[field] == 0)
888 return -ENOENT;
889
890 return vmcs_field_to_offset_table[field];
891 }
892
893 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
894 {
895 return to_vmx(vcpu)->nested.cached_vmcs12;
896 }
897
898 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
899 {
900 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
901 if (is_error_page(page))
902 return NULL;
903
904 return page;
905 }
906
907 static void nested_release_page(struct page *page)
908 {
909 kvm_release_page_dirty(page);
910 }
911
912 static void nested_release_page_clean(struct page *page)
913 {
914 kvm_release_page_clean(page);
915 }
916
917 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
918 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
919 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
920 static bool vmx_xsaves_supported(void);
921 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
922 static void vmx_set_segment(struct kvm_vcpu *vcpu,
923 struct kvm_segment *var, int seg);
924 static void vmx_get_segment(struct kvm_vcpu *vcpu,
925 struct kvm_segment *var, int seg);
926 static bool guest_state_valid(struct kvm_vcpu *vcpu);
927 static u32 vmx_segment_access_rights(struct kvm_segment *var);
928 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
929 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
930 static int alloc_identity_pagetable(struct kvm *kvm);
931
932 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
933 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
934 /*
935 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
936 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
937 */
938 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
939
940 /*
941 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
942 * can find which vCPU should be waken up.
943 */
944 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
945 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
946
947 enum {
948 VMX_IO_BITMAP_A,
949 VMX_IO_BITMAP_B,
950 VMX_MSR_BITMAP_LEGACY,
951 VMX_MSR_BITMAP_LONGMODE,
952 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
954 VMX_MSR_BITMAP_LEGACY_X2APIC,
955 VMX_MSR_BITMAP_LONGMODE_X2APIC,
956 VMX_VMREAD_BITMAP,
957 VMX_VMWRITE_BITMAP,
958 VMX_BITMAP_NR
959 };
960
961 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
962
963 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
964 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
965 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
966 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
967 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
968 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
969 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
970 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
971 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
972 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
973
974 static bool cpu_has_load_ia32_efer;
975 static bool cpu_has_load_perf_global_ctrl;
976
977 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
978 static DEFINE_SPINLOCK(vmx_vpid_lock);
979
980 static struct vmcs_config {
981 int size;
982 int order;
983 u32 basic_cap;
984 u32 revision_id;
985 u32 pin_based_exec_ctrl;
986 u32 cpu_based_exec_ctrl;
987 u32 cpu_based_2nd_exec_ctrl;
988 u32 vmexit_ctrl;
989 u32 vmentry_ctrl;
990 } vmcs_config;
991
992 static struct vmx_capability {
993 u32 ept;
994 u32 vpid;
995 } vmx_capability;
996
997 #define VMX_SEGMENT_FIELD(seg) \
998 [VCPU_SREG_##seg] = { \
999 .selector = GUEST_##seg##_SELECTOR, \
1000 .base = GUEST_##seg##_BASE, \
1001 .limit = GUEST_##seg##_LIMIT, \
1002 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1003 }
1004
1005 static const struct kvm_vmx_segment_field {
1006 unsigned selector;
1007 unsigned base;
1008 unsigned limit;
1009 unsigned ar_bytes;
1010 } kvm_vmx_segment_fields[] = {
1011 VMX_SEGMENT_FIELD(CS),
1012 VMX_SEGMENT_FIELD(DS),
1013 VMX_SEGMENT_FIELD(ES),
1014 VMX_SEGMENT_FIELD(FS),
1015 VMX_SEGMENT_FIELD(GS),
1016 VMX_SEGMENT_FIELD(SS),
1017 VMX_SEGMENT_FIELD(TR),
1018 VMX_SEGMENT_FIELD(LDTR),
1019 };
1020
1021 static u64 host_efer;
1022
1023 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1024
1025 /*
1026 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1027 * away by decrementing the array size.
1028 */
1029 static const u32 vmx_msr_index[] = {
1030 #ifdef CONFIG_X86_64
1031 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1032 #endif
1033 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1034 };
1035
1036 static inline bool is_exception_n(u32 intr_info, u8 vector)
1037 {
1038 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1039 INTR_INFO_VALID_MASK)) ==
1040 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1041 }
1042
1043 static inline bool is_debug(u32 intr_info)
1044 {
1045 return is_exception_n(intr_info, DB_VECTOR);
1046 }
1047
1048 static inline bool is_breakpoint(u32 intr_info)
1049 {
1050 return is_exception_n(intr_info, BP_VECTOR);
1051 }
1052
1053 static inline bool is_page_fault(u32 intr_info)
1054 {
1055 return is_exception_n(intr_info, PF_VECTOR);
1056 }
1057
1058 static inline bool is_no_device(u32 intr_info)
1059 {
1060 return is_exception_n(intr_info, NM_VECTOR);
1061 }
1062
1063 static inline bool is_invalid_opcode(u32 intr_info)
1064 {
1065 return is_exception_n(intr_info, UD_VECTOR);
1066 }
1067
1068 static inline bool is_external_interrupt(u32 intr_info)
1069 {
1070 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1071 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1072 }
1073
1074 static inline bool is_machine_check(u32 intr_info)
1075 {
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1077 INTR_INFO_VALID_MASK)) ==
1078 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1079 }
1080
1081 static inline bool cpu_has_vmx_msr_bitmap(void)
1082 {
1083 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1084 }
1085
1086 static inline bool cpu_has_vmx_tpr_shadow(void)
1087 {
1088 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1089 }
1090
1091 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1092 {
1093 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1094 }
1095
1096 static inline bool cpu_has_secondary_exec_ctrls(void)
1097 {
1098 return vmcs_config.cpu_based_exec_ctrl &
1099 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1100 }
1101
1102 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1103 {
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1106 }
1107
1108 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1109 {
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1112 }
1113
1114 static inline bool cpu_has_vmx_apic_register_virt(void)
1115 {
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1118 }
1119
1120 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1121 {
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1124 }
1125
1126 /*
1127 * Comment's format: document - errata name - stepping - processor name.
1128 * Refer from
1129 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1130 */
1131 static u32 vmx_preemption_cpu_tfms[] = {
1132 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1133 0x000206E6,
1134 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1135 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1136 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1137 0x00020652,
1138 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1139 0x00020655,
1140 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1141 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1142 /*
1143 * 320767.pdf - AAP86 - B1 -
1144 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1145 */
1146 0x000106E5,
1147 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1148 0x000106A0,
1149 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1150 0x000106A1,
1151 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1152 0x000106A4,
1153 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1154 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1155 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1156 0x000106A5,
1157 };
1158
1159 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1160 {
1161 u32 eax = cpuid_eax(0x00000001), i;
1162
1163 /* Clear the reserved bits */
1164 eax &= ~(0x3U << 14 | 0xfU << 28);
1165 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1166 if (eax == vmx_preemption_cpu_tfms[i])
1167 return true;
1168
1169 return false;
1170 }
1171
1172 static inline bool cpu_has_vmx_preemption_timer(void)
1173 {
1174 return vmcs_config.pin_based_exec_ctrl &
1175 PIN_BASED_VMX_PREEMPTION_TIMER;
1176 }
1177
1178 static inline bool cpu_has_vmx_posted_intr(void)
1179 {
1180 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1181 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1182 }
1183
1184 static inline bool cpu_has_vmx_apicv(void)
1185 {
1186 return cpu_has_vmx_apic_register_virt() &&
1187 cpu_has_vmx_virtual_intr_delivery() &&
1188 cpu_has_vmx_posted_intr();
1189 }
1190
1191 static inline bool cpu_has_vmx_flexpriority(void)
1192 {
1193 return cpu_has_vmx_tpr_shadow() &&
1194 cpu_has_vmx_virtualize_apic_accesses();
1195 }
1196
1197 static inline bool cpu_has_vmx_ept_execute_only(void)
1198 {
1199 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1200 }
1201
1202 static inline bool cpu_has_vmx_ept_2m_page(void)
1203 {
1204 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1205 }
1206
1207 static inline bool cpu_has_vmx_ept_1g_page(void)
1208 {
1209 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1210 }
1211
1212 static inline bool cpu_has_vmx_ept_4levels(void)
1213 {
1214 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1215 }
1216
1217 static inline bool cpu_has_vmx_ept_ad_bits(void)
1218 {
1219 return vmx_capability.ept & VMX_EPT_AD_BIT;
1220 }
1221
1222 static inline bool cpu_has_vmx_invept_context(void)
1223 {
1224 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1225 }
1226
1227 static inline bool cpu_has_vmx_invept_global(void)
1228 {
1229 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1230 }
1231
1232 static inline bool cpu_has_vmx_invvpid_single(void)
1233 {
1234 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1235 }
1236
1237 static inline bool cpu_has_vmx_invvpid_global(void)
1238 {
1239 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1240 }
1241
1242 static inline bool cpu_has_vmx_invvpid(void)
1243 {
1244 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1245 }
1246
1247 static inline bool cpu_has_vmx_ept(void)
1248 {
1249 return vmcs_config.cpu_based_2nd_exec_ctrl &
1250 SECONDARY_EXEC_ENABLE_EPT;
1251 }
1252
1253 static inline bool cpu_has_vmx_unrestricted_guest(void)
1254 {
1255 return vmcs_config.cpu_based_2nd_exec_ctrl &
1256 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1257 }
1258
1259 static inline bool cpu_has_vmx_ple(void)
1260 {
1261 return vmcs_config.cpu_based_2nd_exec_ctrl &
1262 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1263 }
1264
1265 static inline bool cpu_has_vmx_basic_inout(void)
1266 {
1267 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1268 }
1269
1270 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1271 {
1272 return flexpriority_enabled && lapic_in_kernel(vcpu);
1273 }
1274
1275 static inline bool cpu_has_vmx_vpid(void)
1276 {
1277 return vmcs_config.cpu_based_2nd_exec_ctrl &
1278 SECONDARY_EXEC_ENABLE_VPID;
1279 }
1280
1281 static inline bool cpu_has_vmx_rdtscp(void)
1282 {
1283 return vmcs_config.cpu_based_2nd_exec_ctrl &
1284 SECONDARY_EXEC_RDTSCP;
1285 }
1286
1287 static inline bool cpu_has_vmx_invpcid(void)
1288 {
1289 return vmcs_config.cpu_based_2nd_exec_ctrl &
1290 SECONDARY_EXEC_ENABLE_INVPCID;
1291 }
1292
1293 static inline bool cpu_has_vmx_wbinvd_exit(void)
1294 {
1295 return vmcs_config.cpu_based_2nd_exec_ctrl &
1296 SECONDARY_EXEC_WBINVD_EXITING;
1297 }
1298
1299 static inline bool cpu_has_vmx_shadow_vmcs(void)
1300 {
1301 u64 vmx_msr;
1302 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1303 /* check if the cpu supports writing r/o exit information fields */
1304 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1305 return false;
1306
1307 return vmcs_config.cpu_based_2nd_exec_ctrl &
1308 SECONDARY_EXEC_SHADOW_VMCS;
1309 }
1310
1311 static inline bool cpu_has_vmx_pml(void)
1312 {
1313 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1314 }
1315
1316 static inline bool cpu_has_vmx_tsc_scaling(void)
1317 {
1318 return vmcs_config.cpu_based_2nd_exec_ctrl &
1319 SECONDARY_EXEC_TSC_SCALING;
1320 }
1321
1322 static inline bool report_flexpriority(void)
1323 {
1324 return flexpriority_enabled;
1325 }
1326
1327 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1328 {
1329 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1330 }
1331
1332 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1333 {
1334 return vmcs12->cpu_based_vm_exec_control & bit;
1335 }
1336
1337 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1338 {
1339 return (vmcs12->cpu_based_vm_exec_control &
1340 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1341 (vmcs12->secondary_vm_exec_control & bit);
1342 }
1343
1344 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1345 {
1346 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1347 }
1348
1349 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1350 {
1351 return vmcs12->pin_based_vm_exec_control &
1352 PIN_BASED_VMX_PREEMPTION_TIMER;
1353 }
1354
1355 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1356 {
1357 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1358 }
1359
1360 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1361 {
1362 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1363 vmx_xsaves_supported();
1364 }
1365
1366 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1367 {
1368 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1369 }
1370
1371 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1372 {
1373 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1374 }
1375
1376 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1377 {
1378 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1379 }
1380
1381 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1382 {
1383 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1384 }
1385
1386 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1387 {
1388 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1389 }
1390
1391 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1392 {
1393 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1394 }
1395
1396 static inline bool is_nmi(u32 intr_info)
1397 {
1398 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1399 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1400 }
1401
1402 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1403 u32 exit_intr_info,
1404 unsigned long exit_qualification);
1405 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1406 struct vmcs12 *vmcs12,
1407 u32 reason, unsigned long qualification);
1408
1409 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1410 {
1411 int i;
1412
1413 for (i = 0; i < vmx->nmsrs; ++i)
1414 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1415 return i;
1416 return -1;
1417 }
1418
1419 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1420 {
1421 struct {
1422 u64 vpid : 16;
1423 u64 rsvd : 48;
1424 u64 gva;
1425 } operand = { vpid, 0, gva };
1426
1427 asm volatile (__ex(ASM_VMX_INVVPID)
1428 /* CF==1 or ZF==1 --> rc = -1 */
1429 "; ja 1f ; ud2 ; 1:"
1430 : : "a"(&operand), "c"(ext) : "cc", "memory");
1431 }
1432
1433 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1434 {
1435 struct {
1436 u64 eptp, gpa;
1437 } operand = {eptp, gpa};
1438
1439 asm volatile (__ex(ASM_VMX_INVEPT)
1440 /* CF==1 or ZF==1 --> rc = -1 */
1441 "; ja 1f ; ud2 ; 1:\n"
1442 : : "a" (&operand), "c" (ext) : "cc", "memory");
1443 }
1444
1445 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1446 {
1447 int i;
1448
1449 i = __find_msr_index(vmx, msr);
1450 if (i >= 0)
1451 return &vmx->guest_msrs[i];
1452 return NULL;
1453 }
1454
1455 static void vmcs_clear(struct vmcs *vmcs)
1456 {
1457 u64 phys_addr = __pa(vmcs);
1458 u8 error;
1459
1460 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1461 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1462 : "cc", "memory");
1463 if (error)
1464 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1465 vmcs, phys_addr);
1466 }
1467
1468 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1469 {
1470 vmcs_clear(loaded_vmcs->vmcs);
1471 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1472 vmcs_clear(loaded_vmcs->shadow_vmcs);
1473 loaded_vmcs->cpu = -1;
1474 loaded_vmcs->launched = 0;
1475 }
1476
1477 static void vmcs_load(struct vmcs *vmcs)
1478 {
1479 u64 phys_addr = __pa(vmcs);
1480 u8 error;
1481
1482 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1483 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1484 : "cc", "memory");
1485 if (error)
1486 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1487 vmcs, phys_addr);
1488 }
1489
1490 #ifdef CONFIG_KEXEC_CORE
1491 /*
1492 * This bitmap is used to indicate whether the vmclear
1493 * operation is enabled on all cpus. All disabled by
1494 * default.
1495 */
1496 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1497
1498 static inline void crash_enable_local_vmclear(int cpu)
1499 {
1500 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1501 }
1502
1503 static inline void crash_disable_local_vmclear(int cpu)
1504 {
1505 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1506 }
1507
1508 static inline int crash_local_vmclear_enabled(int cpu)
1509 {
1510 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1511 }
1512
1513 static void crash_vmclear_local_loaded_vmcss(void)
1514 {
1515 int cpu = raw_smp_processor_id();
1516 struct loaded_vmcs *v;
1517
1518 if (!crash_local_vmclear_enabled(cpu))
1519 return;
1520
1521 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1522 loaded_vmcss_on_cpu_link)
1523 vmcs_clear(v->vmcs);
1524 }
1525 #else
1526 static inline void crash_enable_local_vmclear(int cpu) { }
1527 static inline void crash_disable_local_vmclear(int cpu) { }
1528 #endif /* CONFIG_KEXEC_CORE */
1529
1530 static void __loaded_vmcs_clear(void *arg)
1531 {
1532 struct loaded_vmcs *loaded_vmcs = arg;
1533 int cpu = raw_smp_processor_id();
1534
1535 if (loaded_vmcs->cpu != cpu)
1536 return; /* vcpu migration can race with cpu offline */
1537 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1538 per_cpu(current_vmcs, cpu) = NULL;
1539 crash_disable_local_vmclear(cpu);
1540 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1541
1542 /*
1543 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1544 * is before setting loaded_vmcs->vcpu to -1 which is done in
1545 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1546 * then adds the vmcs into percpu list before it is deleted.
1547 */
1548 smp_wmb();
1549
1550 loaded_vmcs_init(loaded_vmcs);
1551 crash_enable_local_vmclear(cpu);
1552 }
1553
1554 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1555 {
1556 int cpu = loaded_vmcs->cpu;
1557
1558 if (cpu != -1)
1559 smp_call_function_single(cpu,
1560 __loaded_vmcs_clear, loaded_vmcs, 1);
1561 }
1562
1563 static inline void vpid_sync_vcpu_single(int vpid)
1564 {
1565 if (vpid == 0)
1566 return;
1567
1568 if (cpu_has_vmx_invvpid_single())
1569 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1570 }
1571
1572 static inline void vpid_sync_vcpu_global(void)
1573 {
1574 if (cpu_has_vmx_invvpid_global())
1575 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1576 }
1577
1578 static inline void vpid_sync_context(int vpid)
1579 {
1580 if (cpu_has_vmx_invvpid_single())
1581 vpid_sync_vcpu_single(vpid);
1582 else
1583 vpid_sync_vcpu_global();
1584 }
1585
1586 static inline void ept_sync_global(void)
1587 {
1588 if (cpu_has_vmx_invept_global())
1589 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1590 }
1591
1592 static inline void ept_sync_context(u64 eptp)
1593 {
1594 if (enable_ept) {
1595 if (cpu_has_vmx_invept_context())
1596 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1597 else
1598 ept_sync_global();
1599 }
1600 }
1601
1602 static __always_inline void vmcs_check16(unsigned long field)
1603 {
1604 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1605 "16-bit accessor invalid for 64-bit field");
1606 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1607 "16-bit accessor invalid for 64-bit high field");
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1609 "16-bit accessor invalid for 32-bit high field");
1610 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1611 "16-bit accessor invalid for natural width field");
1612 }
1613
1614 static __always_inline void vmcs_check32(unsigned long field)
1615 {
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1617 "32-bit accessor invalid for 16-bit field");
1618 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1619 "32-bit accessor invalid for natural width field");
1620 }
1621
1622 static __always_inline void vmcs_check64(unsigned long field)
1623 {
1624 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1625 "64-bit accessor invalid for 16-bit field");
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1627 "64-bit accessor invalid for 64-bit high field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1629 "64-bit accessor invalid for 32-bit field");
1630 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1631 "64-bit accessor invalid for natural width field");
1632 }
1633
1634 static __always_inline void vmcs_checkl(unsigned long field)
1635 {
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1637 "Natural width accessor invalid for 16-bit field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1639 "Natural width accessor invalid for 64-bit field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1641 "Natural width accessor invalid for 64-bit high field");
1642 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1643 "Natural width accessor invalid for 32-bit field");
1644 }
1645
1646 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1647 {
1648 unsigned long value;
1649
1650 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1651 : "=a"(value) : "d"(field) : "cc");
1652 return value;
1653 }
1654
1655 static __always_inline u16 vmcs_read16(unsigned long field)
1656 {
1657 vmcs_check16(field);
1658 return __vmcs_readl(field);
1659 }
1660
1661 static __always_inline u32 vmcs_read32(unsigned long field)
1662 {
1663 vmcs_check32(field);
1664 return __vmcs_readl(field);
1665 }
1666
1667 static __always_inline u64 vmcs_read64(unsigned long field)
1668 {
1669 vmcs_check64(field);
1670 #ifdef CONFIG_X86_64
1671 return __vmcs_readl(field);
1672 #else
1673 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1674 #endif
1675 }
1676
1677 static __always_inline unsigned long vmcs_readl(unsigned long field)
1678 {
1679 vmcs_checkl(field);
1680 return __vmcs_readl(field);
1681 }
1682
1683 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1684 {
1685 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1686 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1687 dump_stack();
1688 }
1689
1690 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1691 {
1692 u8 error;
1693
1694 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1695 : "=q"(error) : "a"(value), "d"(field) : "cc");
1696 if (unlikely(error))
1697 vmwrite_error(field, value);
1698 }
1699
1700 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1701 {
1702 vmcs_check16(field);
1703 __vmcs_writel(field, value);
1704 }
1705
1706 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1707 {
1708 vmcs_check32(field);
1709 __vmcs_writel(field, value);
1710 }
1711
1712 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1713 {
1714 vmcs_check64(field);
1715 __vmcs_writel(field, value);
1716 #ifndef CONFIG_X86_64
1717 asm volatile ("");
1718 __vmcs_writel(field+1, value >> 32);
1719 #endif
1720 }
1721
1722 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1723 {
1724 vmcs_checkl(field);
1725 __vmcs_writel(field, value);
1726 }
1727
1728 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1729 {
1730 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1731 "vmcs_clear_bits does not support 64-bit fields");
1732 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1733 }
1734
1735 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1736 {
1737 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1738 "vmcs_set_bits does not support 64-bit fields");
1739 __vmcs_writel(field, __vmcs_readl(field) | mask);
1740 }
1741
1742 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1743 {
1744 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1745 }
1746
1747 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1748 {
1749 vmcs_write32(VM_ENTRY_CONTROLS, val);
1750 vmx->vm_entry_controls_shadow = val;
1751 }
1752
1753 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1754 {
1755 if (vmx->vm_entry_controls_shadow != val)
1756 vm_entry_controls_init(vmx, val);
1757 }
1758
1759 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1760 {
1761 return vmx->vm_entry_controls_shadow;
1762 }
1763
1764
1765 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1766 {
1767 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1768 }
1769
1770 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1771 {
1772 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1773 }
1774
1775 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1776 {
1777 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1778 }
1779
1780 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1781 {
1782 vmcs_write32(VM_EXIT_CONTROLS, val);
1783 vmx->vm_exit_controls_shadow = val;
1784 }
1785
1786 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1787 {
1788 if (vmx->vm_exit_controls_shadow != val)
1789 vm_exit_controls_init(vmx, val);
1790 }
1791
1792 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1793 {
1794 return vmx->vm_exit_controls_shadow;
1795 }
1796
1797
1798 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1799 {
1800 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1801 }
1802
1803 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1804 {
1805 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1806 }
1807
1808 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1809 {
1810 vmx->segment_cache.bitmask = 0;
1811 }
1812
1813 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1814 unsigned field)
1815 {
1816 bool ret;
1817 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1818
1819 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1820 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1821 vmx->segment_cache.bitmask = 0;
1822 }
1823 ret = vmx->segment_cache.bitmask & mask;
1824 vmx->segment_cache.bitmask |= mask;
1825 return ret;
1826 }
1827
1828 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1829 {
1830 u16 *p = &vmx->segment_cache.seg[seg].selector;
1831
1832 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1833 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1834 return *p;
1835 }
1836
1837 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1838 {
1839 ulong *p = &vmx->segment_cache.seg[seg].base;
1840
1841 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1842 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1843 return *p;
1844 }
1845
1846 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1847 {
1848 u32 *p = &vmx->segment_cache.seg[seg].limit;
1849
1850 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1851 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1852 return *p;
1853 }
1854
1855 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1856 {
1857 u32 *p = &vmx->segment_cache.seg[seg].ar;
1858
1859 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1860 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1861 return *p;
1862 }
1863
1864 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1865 {
1866 u32 eb;
1867
1868 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1869 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1870 if ((vcpu->guest_debug &
1871 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1872 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1873 eb |= 1u << BP_VECTOR;
1874 if (to_vmx(vcpu)->rmode.vm86_active)
1875 eb = ~0;
1876 if (enable_ept)
1877 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1878
1879 /* When we are running a nested L2 guest and L1 specified for it a
1880 * certain exception bitmap, we must trap the same exceptions and pass
1881 * them to L1. When running L2, we will only handle the exceptions
1882 * specified above if L1 did not want them.
1883 */
1884 if (is_guest_mode(vcpu))
1885 eb |= get_vmcs12(vcpu)->exception_bitmap;
1886
1887 vmcs_write32(EXCEPTION_BITMAP, eb);
1888 }
1889
1890 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1891 unsigned long entry, unsigned long exit)
1892 {
1893 vm_entry_controls_clearbit(vmx, entry);
1894 vm_exit_controls_clearbit(vmx, exit);
1895 }
1896
1897 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1898 {
1899 unsigned i;
1900 struct msr_autoload *m = &vmx->msr_autoload;
1901
1902 switch (msr) {
1903 case MSR_EFER:
1904 if (cpu_has_load_ia32_efer) {
1905 clear_atomic_switch_msr_special(vmx,
1906 VM_ENTRY_LOAD_IA32_EFER,
1907 VM_EXIT_LOAD_IA32_EFER);
1908 return;
1909 }
1910 break;
1911 case MSR_CORE_PERF_GLOBAL_CTRL:
1912 if (cpu_has_load_perf_global_ctrl) {
1913 clear_atomic_switch_msr_special(vmx,
1914 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1915 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1916 return;
1917 }
1918 break;
1919 }
1920
1921 for (i = 0; i < m->nr; ++i)
1922 if (m->guest[i].index == msr)
1923 break;
1924
1925 if (i == m->nr)
1926 return;
1927 --m->nr;
1928 m->guest[i] = m->guest[m->nr];
1929 m->host[i] = m->host[m->nr];
1930 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1931 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1932 }
1933
1934 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1935 unsigned long entry, unsigned long exit,
1936 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1937 u64 guest_val, u64 host_val)
1938 {
1939 vmcs_write64(guest_val_vmcs, guest_val);
1940 vmcs_write64(host_val_vmcs, host_val);
1941 vm_entry_controls_setbit(vmx, entry);
1942 vm_exit_controls_setbit(vmx, exit);
1943 }
1944
1945 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1946 u64 guest_val, u64 host_val)
1947 {
1948 unsigned i;
1949 struct msr_autoload *m = &vmx->msr_autoload;
1950
1951 switch (msr) {
1952 case MSR_EFER:
1953 if (cpu_has_load_ia32_efer) {
1954 add_atomic_switch_msr_special(vmx,
1955 VM_ENTRY_LOAD_IA32_EFER,
1956 VM_EXIT_LOAD_IA32_EFER,
1957 GUEST_IA32_EFER,
1958 HOST_IA32_EFER,
1959 guest_val, host_val);
1960 return;
1961 }
1962 break;
1963 case MSR_CORE_PERF_GLOBAL_CTRL:
1964 if (cpu_has_load_perf_global_ctrl) {
1965 add_atomic_switch_msr_special(vmx,
1966 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1967 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1968 GUEST_IA32_PERF_GLOBAL_CTRL,
1969 HOST_IA32_PERF_GLOBAL_CTRL,
1970 guest_val, host_val);
1971 return;
1972 }
1973 break;
1974 case MSR_IA32_PEBS_ENABLE:
1975 /* PEBS needs a quiescent period after being disabled (to write
1976 * a record). Disabling PEBS through VMX MSR swapping doesn't
1977 * provide that period, so a CPU could write host's record into
1978 * guest's memory.
1979 */
1980 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1981 }
1982
1983 for (i = 0; i < m->nr; ++i)
1984 if (m->guest[i].index == msr)
1985 break;
1986
1987 if (i == NR_AUTOLOAD_MSRS) {
1988 printk_once(KERN_WARNING "Not enough msr switch entries. "
1989 "Can't add msr %x\n", msr);
1990 return;
1991 } else if (i == m->nr) {
1992 ++m->nr;
1993 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1994 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1995 }
1996
1997 m->guest[i].index = msr;
1998 m->guest[i].value = guest_val;
1999 m->host[i].index = msr;
2000 m->host[i].value = host_val;
2001 }
2002
2003 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2004 {
2005 u64 guest_efer = vmx->vcpu.arch.efer;
2006 u64 ignore_bits = 0;
2007
2008 if (!enable_ept) {
2009 /*
2010 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2011 * host CPUID is more efficient than testing guest CPUID
2012 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2013 */
2014 if (boot_cpu_has(X86_FEATURE_SMEP))
2015 guest_efer |= EFER_NX;
2016 else if (!(guest_efer & EFER_NX))
2017 ignore_bits |= EFER_NX;
2018 }
2019
2020 /*
2021 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2022 */
2023 ignore_bits |= EFER_SCE;
2024 #ifdef CONFIG_X86_64
2025 ignore_bits |= EFER_LMA | EFER_LME;
2026 /* SCE is meaningful only in long mode on Intel */
2027 if (guest_efer & EFER_LMA)
2028 ignore_bits &= ~(u64)EFER_SCE;
2029 #endif
2030
2031 clear_atomic_switch_msr(vmx, MSR_EFER);
2032
2033 /*
2034 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2035 * On CPUs that support "load IA32_EFER", always switch EFER
2036 * atomically, since it's faster than switching it manually.
2037 */
2038 if (cpu_has_load_ia32_efer ||
2039 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2040 if (!(guest_efer & EFER_LMA))
2041 guest_efer &= ~EFER_LME;
2042 if (guest_efer != host_efer)
2043 add_atomic_switch_msr(vmx, MSR_EFER,
2044 guest_efer, host_efer);
2045 return false;
2046 } else {
2047 guest_efer &= ~ignore_bits;
2048 guest_efer |= host_efer & ignore_bits;
2049
2050 vmx->guest_msrs[efer_offset].data = guest_efer;
2051 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2052
2053 return true;
2054 }
2055 }
2056
2057 #ifdef CONFIG_X86_32
2058 /*
2059 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2060 * VMCS rather than the segment table. KVM uses this helper to figure
2061 * out the current bases to poke them into the VMCS before entry.
2062 */
2063 static unsigned long segment_base(u16 selector)
2064 {
2065 struct desc_struct *table;
2066 unsigned long v;
2067
2068 if (!(selector & ~SEGMENT_RPL_MASK))
2069 return 0;
2070
2071 table = get_current_gdt_ro();
2072
2073 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2074 u16 ldt_selector = kvm_read_ldt();
2075
2076 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2077 return 0;
2078
2079 table = (struct desc_struct *)segment_base(ldt_selector);
2080 }
2081 v = get_desc_base(&table[selector >> 3]);
2082 return v;
2083 }
2084 #endif
2085
2086 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2087 {
2088 struct vcpu_vmx *vmx = to_vmx(vcpu);
2089 int i;
2090
2091 if (vmx->host_state.loaded)
2092 return;
2093
2094 vmx->host_state.loaded = 1;
2095 /*
2096 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2097 * allow segment selectors with cpl > 0 or ti == 1.
2098 */
2099 vmx->host_state.ldt_sel = kvm_read_ldt();
2100 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2101 savesegment(fs, vmx->host_state.fs_sel);
2102 if (!(vmx->host_state.fs_sel & 7)) {
2103 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2104 vmx->host_state.fs_reload_needed = 0;
2105 } else {
2106 vmcs_write16(HOST_FS_SELECTOR, 0);
2107 vmx->host_state.fs_reload_needed = 1;
2108 }
2109 savesegment(gs, vmx->host_state.gs_sel);
2110 if (!(vmx->host_state.gs_sel & 7))
2111 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2112 else {
2113 vmcs_write16(HOST_GS_SELECTOR, 0);
2114 vmx->host_state.gs_ldt_reload_needed = 1;
2115 }
2116
2117 #ifdef CONFIG_X86_64
2118 savesegment(ds, vmx->host_state.ds_sel);
2119 savesegment(es, vmx->host_state.es_sel);
2120 #endif
2121
2122 #ifdef CONFIG_X86_64
2123 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2124 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2125 #else
2126 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2127 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2128 #endif
2129
2130 #ifdef CONFIG_X86_64
2131 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2132 if (is_long_mode(&vmx->vcpu))
2133 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2134 #endif
2135 if (boot_cpu_has(X86_FEATURE_MPX))
2136 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2137 for (i = 0; i < vmx->save_nmsrs; ++i)
2138 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2139 vmx->guest_msrs[i].data,
2140 vmx->guest_msrs[i].mask);
2141 }
2142
2143 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2144 {
2145 if (!vmx->host_state.loaded)
2146 return;
2147
2148 ++vmx->vcpu.stat.host_state_reload;
2149 vmx->host_state.loaded = 0;
2150 #ifdef CONFIG_X86_64
2151 if (is_long_mode(&vmx->vcpu))
2152 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2153 #endif
2154 if (vmx->host_state.gs_ldt_reload_needed) {
2155 kvm_load_ldt(vmx->host_state.ldt_sel);
2156 #ifdef CONFIG_X86_64
2157 load_gs_index(vmx->host_state.gs_sel);
2158 #else
2159 loadsegment(gs, vmx->host_state.gs_sel);
2160 #endif
2161 }
2162 if (vmx->host_state.fs_reload_needed)
2163 loadsegment(fs, vmx->host_state.fs_sel);
2164 #ifdef CONFIG_X86_64
2165 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2166 loadsegment(ds, vmx->host_state.ds_sel);
2167 loadsegment(es, vmx->host_state.es_sel);
2168 }
2169 #endif
2170 invalidate_tss_limit();
2171 #ifdef CONFIG_X86_64
2172 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2173 #endif
2174 if (vmx->host_state.msr_host_bndcfgs)
2175 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2176 load_fixmap_gdt(raw_smp_processor_id());
2177 }
2178
2179 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2180 {
2181 preempt_disable();
2182 __vmx_load_host_state(vmx);
2183 preempt_enable();
2184 }
2185
2186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2187 {
2188 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2189 struct pi_desc old, new;
2190 unsigned int dest;
2191
2192 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2193 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2194 !kvm_vcpu_apicv_active(vcpu))
2195 return;
2196
2197 do {
2198 old.control = new.control = pi_desc->control;
2199
2200 /*
2201 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2202 * are two possible cases:
2203 * 1. After running 'pre_block', context switch
2204 * happened. For this case, 'sn' was set in
2205 * vmx_vcpu_put(), so we need to clear it here.
2206 * 2. After running 'pre_block', we were blocked,
2207 * and woken up by some other guy. For this case,
2208 * we don't need to do anything, 'pi_post_block'
2209 * will do everything for us. However, we cannot
2210 * check whether it is case #1 or case #2 here
2211 * (maybe, not needed), so we also clear sn here,
2212 * I think it is not a big deal.
2213 */
2214 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2215 if (vcpu->cpu != cpu) {
2216 dest = cpu_physical_id(cpu);
2217
2218 if (x2apic_enabled())
2219 new.ndst = dest;
2220 else
2221 new.ndst = (dest << 8) & 0xFF00;
2222 }
2223
2224 /* set 'NV' to 'notification vector' */
2225 new.nv = POSTED_INTR_VECTOR;
2226 }
2227
2228 /* Allow posting non-urgent interrupts */
2229 new.sn = 0;
2230 } while (cmpxchg(&pi_desc->control, old.control,
2231 new.control) != old.control);
2232 }
2233
2234 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2235 {
2236 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2237 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2238 }
2239
2240 /*
2241 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2242 * vcpu mutex is already taken.
2243 */
2244 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2245 {
2246 struct vcpu_vmx *vmx = to_vmx(vcpu);
2247 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2248
2249 if (!already_loaded) {
2250 loaded_vmcs_clear(vmx->loaded_vmcs);
2251 local_irq_disable();
2252 crash_disable_local_vmclear(cpu);
2253
2254 /*
2255 * Read loaded_vmcs->cpu should be before fetching
2256 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2257 * See the comments in __loaded_vmcs_clear().
2258 */
2259 smp_rmb();
2260
2261 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2262 &per_cpu(loaded_vmcss_on_cpu, cpu));
2263 crash_enable_local_vmclear(cpu);
2264 local_irq_enable();
2265 }
2266
2267 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2268 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2269 vmcs_load(vmx->loaded_vmcs->vmcs);
2270 }
2271
2272 if (!already_loaded) {
2273 void *gdt = get_current_gdt_ro();
2274 unsigned long sysenter_esp;
2275
2276 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2277
2278 /*
2279 * Linux uses per-cpu TSS and GDT, so set these when switching
2280 * processors. See 22.2.4.
2281 */
2282 vmcs_writel(HOST_TR_BASE,
2283 (unsigned long)this_cpu_ptr(&cpu_tss));
2284 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2285
2286 /*
2287 * VM exits change the host TR limit to 0x67 after a VM
2288 * exit. This is okay, since 0x67 covers everything except
2289 * the IO bitmap and have have code to handle the IO bitmap
2290 * being lost after a VM exit.
2291 */
2292 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2293
2294 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2295 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2296
2297 vmx->loaded_vmcs->cpu = cpu;
2298 }
2299
2300 /* Setup TSC multiplier */
2301 if (kvm_has_tsc_control &&
2302 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2303 decache_tsc_multiplier(vmx);
2304
2305 vmx_vcpu_pi_load(vcpu, cpu);
2306 vmx->host_pkru = read_pkru();
2307 }
2308
2309 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2310 {
2311 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2312
2313 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2314 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2315 !kvm_vcpu_apicv_active(vcpu))
2316 return;
2317
2318 /* Set SN when the vCPU is preempted */
2319 if (vcpu->preempted)
2320 pi_set_sn(pi_desc);
2321 }
2322
2323 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2324 {
2325 vmx_vcpu_pi_put(vcpu);
2326
2327 __vmx_load_host_state(to_vmx(vcpu));
2328 }
2329
2330 static bool emulation_required(struct kvm_vcpu *vcpu)
2331 {
2332 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2333 }
2334
2335 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2336
2337 /*
2338 * Return the cr0 value that a nested guest would read. This is a combination
2339 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2340 * its hypervisor (cr0_read_shadow).
2341 */
2342 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2343 {
2344 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2345 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2346 }
2347 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2348 {
2349 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2350 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2351 }
2352
2353 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2354 {
2355 unsigned long rflags, save_rflags;
2356
2357 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2358 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2359 rflags = vmcs_readl(GUEST_RFLAGS);
2360 if (to_vmx(vcpu)->rmode.vm86_active) {
2361 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2362 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2363 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2364 }
2365 to_vmx(vcpu)->rflags = rflags;
2366 }
2367 return to_vmx(vcpu)->rflags;
2368 }
2369
2370 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2371 {
2372 unsigned long old_rflags = vmx_get_rflags(vcpu);
2373
2374 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2375 to_vmx(vcpu)->rflags = rflags;
2376 if (to_vmx(vcpu)->rmode.vm86_active) {
2377 to_vmx(vcpu)->rmode.save_rflags = rflags;
2378 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2379 }
2380 vmcs_writel(GUEST_RFLAGS, rflags);
2381
2382 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2383 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2384 }
2385
2386 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2387 {
2388 return to_vmx(vcpu)->guest_pkru;
2389 }
2390
2391 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2392 {
2393 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2394 int ret = 0;
2395
2396 if (interruptibility & GUEST_INTR_STATE_STI)
2397 ret |= KVM_X86_SHADOW_INT_STI;
2398 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2399 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2400
2401 return ret;
2402 }
2403
2404 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2405 {
2406 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2407 u32 interruptibility = interruptibility_old;
2408
2409 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2410
2411 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2412 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2413 else if (mask & KVM_X86_SHADOW_INT_STI)
2414 interruptibility |= GUEST_INTR_STATE_STI;
2415
2416 if ((interruptibility != interruptibility_old))
2417 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2418 }
2419
2420 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2421 {
2422 unsigned long rip;
2423
2424 rip = kvm_rip_read(vcpu);
2425 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2426 kvm_rip_write(vcpu, rip);
2427
2428 /* skipping an emulated instruction also counts */
2429 vmx_set_interrupt_shadow(vcpu, 0);
2430 }
2431
2432 /*
2433 * KVM wants to inject page-faults which it got to the guest. This function
2434 * checks whether in a nested guest, we need to inject them to L1 or L2.
2435 */
2436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
2437 {
2438 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2439 unsigned int nr = vcpu->arch.exception.nr;
2440
2441 if (!((vmcs12->exception_bitmap & (1u << nr)) ||
2442 (nr == PF_VECTOR && vcpu->arch.exception.nested_apf)))
2443 return 0;
2444
2445 if (vcpu->arch.exception.nested_apf) {
2446 vmcs_write32(VM_EXIT_INTR_ERROR_CODE, vcpu->arch.exception.error_code);
2447 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2448 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
2449 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
2450 vcpu->arch.apf.nested_apf_token);
2451 return 1;
2452 }
2453
2454 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2455 vmcs_read32(VM_EXIT_INTR_INFO),
2456 vmcs_readl(EXIT_QUALIFICATION));
2457 return 1;
2458 }
2459
2460 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2461 {
2462 struct vcpu_vmx *vmx = to_vmx(vcpu);
2463 unsigned nr = vcpu->arch.exception.nr;
2464 bool has_error_code = vcpu->arch.exception.has_error_code;
2465 bool reinject = vcpu->arch.exception.reinject;
2466 u32 error_code = vcpu->arch.exception.error_code;
2467 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2468
2469 if (!reinject && is_guest_mode(vcpu) &&
2470 nested_vmx_check_exception(vcpu))
2471 return;
2472
2473 if (has_error_code) {
2474 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2475 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2476 }
2477
2478 if (vmx->rmode.vm86_active) {
2479 int inc_eip = 0;
2480 if (kvm_exception_is_soft(nr))
2481 inc_eip = vcpu->arch.event_exit_inst_len;
2482 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2483 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2484 return;
2485 }
2486
2487 if (kvm_exception_is_soft(nr)) {
2488 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2489 vmx->vcpu.arch.event_exit_inst_len);
2490 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2491 } else
2492 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2493
2494 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2495 }
2496
2497 static bool vmx_rdtscp_supported(void)
2498 {
2499 return cpu_has_vmx_rdtscp();
2500 }
2501
2502 static bool vmx_invpcid_supported(void)
2503 {
2504 return cpu_has_vmx_invpcid() && enable_ept;
2505 }
2506
2507 /*
2508 * Swap MSR entry in host/guest MSR entry array.
2509 */
2510 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2511 {
2512 struct shared_msr_entry tmp;
2513
2514 tmp = vmx->guest_msrs[to];
2515 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2516 vmx->guest_msrs[from] = tmp;
2517 }
2518
2519 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2520 {
2521 unsigned long *msr_bitmap;
2522
2523 if (is_guest_mode(vcpu))
2524 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2525 else if (cpu_has_secondary_exec_ctrls() &&
2526 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2527 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2528 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2529 if (is_long_mode(vcpu))
2530 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2531 else
2532 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2533 } else {
2534 if (is_long_mode(vcpu))
2535 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2536 else
2537 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2538 }
2539 } else {
2540 if (is_long_mode(vcpu))
2541 msr_bitmap = vmx_msr_bitmap_longmode;
2542 else
2543 msr_bitmap = vmx_msr_bitmap_legacy;
2544 }
2545
2546 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2547 }
2548
2549 /*
2550 * Set up the vmcs to automatically save and restore system
2551 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2552 * mode, as fiddling with msrs is very expensive.
2553 */
2554 static void setup_msrs(struct vcpu_vmx *vmx)
2555 {
2556 int save_nmsrs, index;
2557
2558 save_nmsrs = 0;
2559 #ifdef CONFIG_X86_64
2560 if (is_long_mode(&vmx->vcpu)) {
2561 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2562 if (index >= 0)
2563 move_msr_up(vmx, index, save_nmsrs++);
2564 index = __find_msr_index(vmx, MSR_LSTAR);
2565 if (index >= 0)
2566 move_msr_up(vmx, index, save_nmsrs++);
2567 index = __find_msr_index(vmx, MSR_CSTAR);
2568 if (index >= 0)
2569 move_msr_up(vmx, index, save_nmsrs++);
2570 index = __find_msr_index(vmx, MSR_TSC_AUX);
2571 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2572 move_msr_up(vmx, index, save_nmsrs++);
2573 /*
2574 * MSR_STAR is only needed on long mode guests, and only
2575 * if efer.sce is enabled.
2576 */
2577 index = __find_msr_index(vmx, MSR_STAR);
2578 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2579 move_msr_up(vmx, index, save_nmsrs++);
2580 }
2581 #endif
2582 index = __find_msr_index(vmx, MSR_EFER);
2583 if (index >= 0 && update_transition_efer(vmx, index))
2584 move_msr_up(vmx, index, save_nmsrs++);
2585
2586 vmx->save_nmsrs = save_nmsrs;
2587
2588 if (cpu_has_vmx_msr_bitmap())
2589 vmx_set_msr_bitmap(&vmx->vcpu);
2590 }
2591
2592 /*
2593 * reads and returns guest's timestamp counter "register"
2594 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2595 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2596 */
2597 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2598 {
2599 u64 host_tsc, tsc_offset;
2600
2601 host_tsc = rdtsc();
2602 tsc_offset = vmcs_read64(TSC_OFFSET);
2603 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2604 }
2605
2606 /*
2607 * writes 'offset' into guest's timestamp counter offset register
2608 */
2609 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2610 {
2611 if (is_guest_mode(vcpu)) {
2612 /*
2613 * We're here if L1 chose not to trap WRMSR to TSC. According
2614 * to the spec, this should set L1's TSC; The offset that L1
2615 * set for L2 remains unchanged, and still needs to be added
2616 * to the newly set TSC to get L2's TSC.
2617 */
2618 struct vmcs12 *vmcs12;
2619 /* recalculate vmcs02.TSC_OFFSET: */
2620 vmcs12 = get_vmcs12(vcpu);
2621 vmcs_write64(TSC_OFFSET, offset +
2622 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2623 vmcs12->tsc_offset : 0));
2624 } else {
2625 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2626 vmcs_read64(TSC_OFFSET), offset);
2627 vmcs_write64(TSC_OFFSET, offset);
2628 }
2629 }
2630
2631 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2632 {
2633 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2634 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2635 }
2636
2637 /*
2638 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2639 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2640 * all guests if the "nested" module option is off, and can also be disabled
2641 * for a single guest by disabling its VMX cpuid bit.
2642 */
2643 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2644 {
2645 return nested && guest_cpuid_has_vmx(vcpu);
2646 }
2647
2648 /*
2649 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2650 * returned for the various VMX controls MSRs when nested VMX is enabled.
2651 * The same values should also be used to verify that vmcs12 control fields are
2652 * valid during nested entry from L1 to L2.
2653 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2654 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2655 * bit in the high half is on if the corresponding bit in the control field
2656 * may be on. See also vmx_control_verify().
2657 */
2658 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2659 {
2660 /*
2661 * Note that as a general rule, the high half of the MSRs (bits in
2662 * the control fields which may be 1) should be initialized by the
2663 * intersection of the underlying hardware's MSR (i.e., features which
2664 * can be supported) and the list of features we want to expose -
2665 * because they are known to be properly supported in our code.
2666 * Also, usually, the low half of the MSRs (bits which must be 1) can
2667 * be set to 0, meaning that L1 may turn off any of these bits. The
2668 * reason is that if one of these bits is necessary, it will appear
2669 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2670 * fields of vmcs01 and vmcs02, will turn these bits off - and
2671 * nested_vmx_exit_handled() will not pass related exits to L1.
2672 * These rules have exceptions below.
2673 */
2674
2675 /* pin-based controls */
2676 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2677 vmx->nested.nested_vmx_pinbased_ctls_low,
2678 vmx->nested.nested_vmx_pinbased_ctls_high);
2679 vmx->nested.nested_vmx_pinbased_ctls_low |=
2680 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2681 vmx->nested.nested_vmx_pinbased_ctls_high &=
2682 PIN_BASED_EXT_INTR_MASK |
2683 PIN_BASED_NMI_EXITING |
2684 PIN_BASED_VIRTUAL_NMIS;
2685 vmx->nested.nested_vmx_pinbased_ctls_high |=
2686 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2687 PIN_BASED_VMX_PREEMPTION_TIMER;
2688 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2689 vmx->nested.nested_vmx_pinbased_ctls_high |=
2690 PIN_BASED_POSTED_INTR;
2691
2692 /* exit controls */
2693 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2694 vmx->nested.nested_vmx_exit_ctls_low,
2695 vmx->nested.nested_vmx_exit_ctls_high);
2696 vmx->nested.nested_vmx_exit_ctls_low =
2697 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2698
2699 vmx->nested.nested_vmx_exit_ctls_high &=
2700 #ifdef CONFIG_X86_64
2701 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2702 #endif
2703 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2704 vmx->nested.nested_vmx_exit_ctls_high |=
2705 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2706 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2707 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2708
2709 if (kvm_mpx_supported())
2710 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2711
2712 /* We support free control of debug control saving. */
2713 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2714
2715 /* entry controls */
2716 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2717 vmx->nested.nested_vmx_entry_ctls_low,
2718 vmx->nested.nested_vmx_entry_ctls_high);
2719 vmx->nested.nested_vmx_entry_ctls_low =
2720 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2721 vmx->nested.nested_vmx_entry_ctls_high &=
2722 #ifdef CONFIG_X86_64
2723 VM_ENTRY_IA32E_MODE |
2724 #endif
2725 VM_ENTRY_LOAD_IA32_PAT;
2726 vmx->nested.nested_vmx_entry_ctls_high |=
2727 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2728 if (kvm_mpx_supported())
2729 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2730
2731 /* We support free control of debug control loading. */
2732 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2733
2734 /* cpu-based controls */
2735 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2736 vmx->nested.nested_vmx_procbased_ctls_low,
2737 vmx->nested.nested_vmx_procbased_ctls_high);
2738 vmx->nested.nested_vmx_procbased_ctls_low =
2739 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2740 vmx->nested.nested_vmx_procbased_ctls_high &=
2741 CPU_BASED_VIRTUAL_INTR_PENDING |
2742 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2743 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2744 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2745 CPU_BASED_CR3_STORE_EXITING |
2746 #ifdef CONFIG_X86_64
2747 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2748 #endif
2749 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2750 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2751 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2752 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2753 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2754 /*
2755 * We can allow some features even when not supported by the
2756 * hardware. For example, L1 can specify an MSR bitmap - and we
2757 * can use it to avoid exits to L1 - even when L0 runs L2
2758 * without MSR bitmaps.
2759 */
2760 vmx->nested.nested_vmx_procbased_ctls_high |=
2761 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2762 CPU_BASED_USE_MSR_BITMAPS;
2763
2764 /* We support free control of CR3 access interception. */
2765 vmx->nested.nested_vmx_procbased_ctls_low &=
2766 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2767
2768 /* secondary cpu-based controls */
2769 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2770 vmx->nested.nested_vmx_secondary_ctls_low,
2771 vmx->nested.nested_vmx_secondary_ctls_high);
2772 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2773 vmx->nested.nested_vmx_secondary_ctls_high &=
2774 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2775 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2776 SECONDARY_EXEC_RDTSCP |
2777 SECONDARY_EXEC_DESC |
2778 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2779 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2780 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2781 SECONDARY_EXEC_WBINVD_EXITING |
2782 SECONDARY_EXEC_XSAVES;
2783
2784 if (enable_ept) {
2785 /* nested EPT: emulate EPT also to L1 */
2786 vmx->nested.nested_vmx_secondary_ctls_high |=
2787 SECONDARY_EXEC_ENABLE_EPT;
2788 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2789 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2790 if (cpu_has_vmx_ept_execute_only())
2791 vmx->nested.nested_vmx_ept_caps |=
2792 VMX_EPT_EXECUTE_ONLY_BIT;
2793 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2794 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2795 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2796 VMX_EPT_1GB_PAGE_BIT;
2797 if (enable_ept_ad_bits) {
2798 vmx->nested.nested_vmx_secondary_ctls_high |=
2799 SECONDARY_EXEC_ENABLE_PML;
2800 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2801 }
2802 } else
2803 vmx->nested.nested_vmx_ept_caps = 0;
2804
2805 /*
2806 * Old versions of KVM use the single-context version without
2807 * checking for support, so declare that it is supported even
2808 * though it is treated as global context. The alternative is
2809 * not failing the single-context invvpid, and it is worse.
2810 */
2811 if (enable_vpid) {
2812 vmx->nested.nested_vmx_secondary_ctls_high |=
2813 SECONDARY_EXEC_ENABLE_VPID;
2814 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2815 VMX_VPID_EXTENT_SUPPORTED_MASK;
2816 } else
2817 vmx->nested.nested_vmx_vpid_caps = 0;
2818
2819 if (enable_unrestricted_guest)
2820 vmx->nested.nested_vmx_secondary_ctls_high |=
2821 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2822
2823 /* miscellaneous data */
2824 rdmsr(MSR_IA32_VMX_MISC,
2825 vmx->nested.nested_vmx_misc_low,
2826 vmx->nested.nested_vmx_misc_high);
2827 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2828 vmx->nested.nested_vmx_misc_low |=
2829 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2830 VMX_MISC_ACTIVITY_HLT;
2831 vmx->nested.nested_vmx_misc_high = 0;
2832
2833 /*
2834 * This MSR reports some information about VMX support. We
2835 * should return information about the VMX we emulate for the
2836 * guest, and the VMCS structure we give it - not about the
2837 * VMX support of the underlying hardware.
2838 */
2839 vmx->nested.nested_vmx_basic =
2840 VMCS12_REVISION |
2841 VMX_BASIC_TRUE_CTLS |
2842 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2843 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2844
2845 if (cpu_has_vmx_basic_inout())
2846 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2847
2848 /*
2849 * These MSRs specify bits which the guest must keep fixed on
2850 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2851 * We picked the standard core2 setting.
2852 */
2853 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2854 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2855 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2856 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2857
2858 /* These MSRs specify bits which the guest must keep fixed off. */
2859 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2860 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2861
2862 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2863 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2864 }
2865
2866 /*
2867 * if fixed0[i] == 1: val[i] must be 1
2868 * if fixed1[i] == 0: val[i] must be 0
2869 */
2870 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2871 {
2872 return ((val & fixed1) | fixed0) == val;
2873 }
2874
2875 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2876 {
2877 return fixed_bits_valid(control, low, high);
2878 }
2879
2880 static inline u64 vmx_control_msr(u32 low, u32 high)
2881 {
2882 return low | ((u64)high << 32);
2883 }
2884
2885 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2886 {
2887 superset &= mask;
2888 subset &= mask;
2889
2890 return (superset | subset) == superset;
2891 }
2892
2893 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2894 {
2895 const u64 feature_and_reserved =
2896 /* feature (except bit 48; see below) */
2897 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2898 /* reserved */
2899 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2900 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2901
2902 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2903 return -EINVAL;
2904
2905 /*
2906 * KVM does not emulate a version of VMX that constrains physical
2907 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2908 */
2909 if (data & BIT_ULL(48))
2910 return -EINVAL;
2911
2912 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2913 vmx_basic_vmcs_revision_id(data))
2914 return -EINVAL;
2915
2916 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2917 return -EINVAL;
2918
2919 vmx->nested.nested_vmx_basic = data;
2920 return 0;
2921 }
2922
2923 static int
2924 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2925 {
2926 u64 supported;
2927 u32 *lowp, *highp;
2928
2929 switch (msr_index) {
2930 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2931 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2932 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2933 break;
2934 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2935 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2936 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2937 break;
2938 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2939 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2940 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2941 break;
2942 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2943 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2944 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2945 break;
2946 case MSR_IA32_VMX_PROCBASED_CTLS2:
2947 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2948 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2949 break;
2950 default:
2951 BUG();
2952 }
2953
2954 supported = vmx_control_msr(*lowp, *highp);
2955
2956 /* Check must-be-1 bits are still 1. */
2957 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2958 return -EINVAL;
2959
2960 /* Check must-be-0 bits are still 0. */
2961 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2962 return -EINVAL;
2963
2964 *lowp = data;
2965 *highp = data >> 32;
2966 return 0;
2967 }
2968
2969 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2970 {
2971 const u64 feature_and_reserved_bits =
2972 /* feature */
2973 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2974 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2975 /* reserved */
2976 GENMASK_ULL(13, 9) | BIT_ULL(31);
2977 u64 vmx_misc;
2978
2979 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2980 vmx->nested.nested_vmx_misc_high);
2981
2982 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2983 return -EINVAL;
2984
2985 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2986 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2987 vmx_misc_preemption_timer_rate(data) !=
2988 vmx_misc_preemption_timer_rate(vmx_misc))
2989 return -EINVAL;
2990
2991 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2992 return -EINVAL;
2993
2994 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2995 return -EINVAL;
2996
2997 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2998 return -EINVAL;
2999
3000 vmx->nested.nested_vmx_misc_low = data;
3001 vmx->nested.nested_vmx_misc_high = data >> 32;
3002 return 0;
3003 }
3004
3005 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3006 {
3007 u64 vmx_ept_vpid_cap;
3008
3009 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3010 vmx->nested.nested_vmx_vpid_caps);
3011
3012 /* Every bit is either reserved or a feature bit. */
3013 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3014 return -EINVAL;
3015
3016 vmx->nested.nested_vmx_ept_caps = data;
3017 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3018 return 0;
3019 }
3020
3021 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3022 {
3023 u64 *msr;
3024
3025 switch (msr_index) {
3026 case MSR_IA32_VMX_CR0_FIXED0:
3027 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3028 break;
3029 case MSR_IA32_VMX_CR4_FIXED0:
3030 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3031 break;
3032 default:
3033 BUG();
3034 }
3035
3036 /*
3037 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3038 * must be 1 in the restored value.
3039 */
3040 if (!is_bitwise_subset(data, *msr, -1ULL))
3041 return -EINVAL;
3042
3043 *msr = data;
3044 return 0;
3045 }
3046
3047 /*
3048 * Called when userspace is restoring VMX MSRs.
3049 *
3050 * Returns 0 on success, non-0 otherwise.
3051 */
3052 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3053 {
3054 struct vcpu_vmx *vmx = to_vmx(vcpu);
3055
3056 switch (msr_index) {
3057 case MSR_IA32_VMX_BASIC:
3058 return vmx_restore_vmx_basic(vmx, data);
3059 case MSR_IA32_VMX_PINBASED_CTLS:
3060 case MSR_IA32_VMX_PROCBASED_CTLS:
3061 case MSR_IA32_VMX_EXIT_CTLS:
3062 case MSR_IA32_VMX_ENTRY_CTLS:
3063 /*
3064 * The "non-true" VMX capability MSRs are generated from the
3065 * "true" MSRs, so we do not support restoring them directly.
3066 *
3067 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3068 * should restore the "true" MSRs with the must-be-1 bits
3069 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3070 * DEFAULT SETTINGS".
3071 */
3072 return -EINVAL;
3073 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3074 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3075 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3076 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3077 case MSR_IA32_VMX_PROCBASED_CTLS2:
3078 return vmx_restore_control_msr(vmx, msr_index, data);
3079 case MSR_IA32_VMX_MISC:
3080 return vmx_restore_vmx_misc(vmx, data);
3081 case MSR_IA32_VMX_CR0_FIXED0:
3082 case MSR_IA32_VMX_CR4_FIXED0:
3083 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3084 case MSR_IA32_VMX_CR0_FIXED1:
3085 case MSR_IA32_VMX_CR4_FIXED1:
3086 /*
3087 * These MSRs are generated based on the vCPU's CPUID, so we
3088 * do not support restoring them directly.
3089 */
3090 return -EINVAL;
3091 case MSR_IA32_VMX_EPT_VPID_CAP:
3092 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3093 case MSR_IA32_VMX_VMCS_ENUM:
3094 vmx->nested.nested_vmx_vmcs_enum = data;
3095 return 0;
3096 default:
3097 /*
3098 * The rest of the VMX capability MSRs do not support restore.
3099 */
3100 return -EINVAL;
3101 }
3102 }
3103
3104 /* Returns 0 on success, non-0 otherwise. */
3105 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3106 {
3107 struct vcpu_vmx *vmx = to_vmx(vcpu);
3108
3109 switch (msr_index) {
3110 case MSR_IA32_VMX_BASIC:
3111 *pdata = vmx->nested.nested_vmx_basic;
3112 break;
3113 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3114 case MSR_IA32_VMX_PINBASED_CTLS:
3115 *pdata = vmx_control_msr(
3116 vmx->nested.nested_vmx_pinbased_ctls_low,
3117 vmx->nested.nested_vmx_pinbased_ctls_high);
3118 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3119 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3120 break;
3121 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3122 case MSR_IA32_VMX_PROCBASED_CTLS:
3123 *pdata = vmx_control_msr(
3124 vmx->nested.nested_vmx_procbased_ctls_low,
3125 vmx->nested.nested_vmx_procbased_ctls_high);
3126 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3127 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3128 break;
3129 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3130 case MSR_IA32_VMX_EXIT_CTLS:
3131 *pdata = vmx_control_msr(
3132 vmx->nested.nested_vmx_exit_ctls_low,
3133 vmx->nested.nested_vmx_exit_ctls_high);
3134 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3135 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3136 break;
3137 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3138 case MSR_IA32_VMX_ENTRY_CTLS:
3139 *pdata = vmx_control_msr(
3140 vmx->nested.nested_vmx_entry_ctls_low,
3141 vmx->nested.nested_vmx_entry_ctls_high);
3142 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3143 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3144 break;
3145 case MSR_IA32_VMX_MISC:
3146 *pdata = vmx_control_msr(
3147 vmx->nested.nested_vmx_misc_low,
3148 vmx->nested.nested_vmx_misc_high);
3149 break;
3150 case MSR_IA32_VMX_CR0_FIXED0:
3151 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3152 break;
3153 case MSR_IA32_VMX_CR0_FIXED1:
3154 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3155 break;
3156 case MSR_IA32_VMX_CR4_FIXED0:
3157 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3158 break;
3159 case MSR_IA32_VMX_CR4_FIXED1:
3160 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3161 break;
3162 case MSR_IA32_VMX_VMCS_ENUM:
3163 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3164 break;
3165 case MSR_IA32_VMX_PROCBASED_CTLS2:
3166 *pdata = vmx_control_msr(
3167 vmx->nested.nested_vmx_secondary_ctls_low,
3168 vmx->nested.nested_vmx_secondary_ctls_high);
3169 break;
3170 case MSR_IA32_VMX_EPT_VPID_CAP:
3171 *pdata = vmx->nested.nested_vmx_ept_caps |
3172 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3173 break;
3174 default:
3175 return 1;
3176 }
3177
3178 return 0;
3179 }
3180
3181 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3182 uint64_t val)
3183 {
3184 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3185
3186 return !(val & ~valid_bits);
3187 }
3188
3189 /*
3190 * Reads an msr value (of 'msr_index') into 'pdata'.
3191 * Returns 0 on success, non-0 otherwise.
3192 * Assumes vcpu_load() was already called.
3193 */
3194 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3195 {
3196 struct shared_msr_entry *msr;
3197
3198 switch (msr_info->index) {
3199 #ifdef CONFIG_X86_64
3200 case MSR_FS_BASE:
3201 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3202 break;
3203 case MSR_GS_BASE:
3204 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3205 break;
3206 case MSR_KERNEL_GS_BASE:
3207 vmx_load_host_state(to_vmx(vcpu));
3208 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3209 break;
3210 #endif
3211 case MSR_EFER:
3212 return kvm_get_msr_common(vcpu, msr_info);
3213 case MSR_IA32_TSC:
3214 msr_info->data = guest_read_tsc(vcpu);
3215 break;
3216 case MSR_IA32_SYSENTER_CS:
3217 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3218 break;
3219 case MSR_IA32_SYSENTER_EIP:
3220 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3221 break;
3222 case MSR_IA32_SYSENTER_ESP:
3223 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3224 break;
3225 case MSR_IA32_BNDCFGS:
3226 if (!kvm_mpx_supported() ||
3227 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3228 return 1;
3229 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3230 break;
3231 case MSR_IA32_MCG_EXT_CTL:
3232 if (!msr_info->host_initiated &&
3233 !(to_vmx(vcpu)->msr_ia32_feature_control &
3234 FEATURE_CONTROL_LMCE))
3235 return 1;
3236 msr_info->data = vcpu->arch.mcg_ext_ctl;
3237 break;
3238 case MSR_IA32_FEATURE_CONTROL:
3239 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3240 break;
3241 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3242 if (!nested_vmx_allowed(vcpu))
3243 return 1;
3244 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3245 case MSR_IA32_XSS:
3246 if (!vmx_xsaves_supported())
3247 return 1;
3248 msr_info->data = vcpu->arch.ia32_xss;
3249 break;
3250 case MSR_TSC_AUX:
3251 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3252 return 1;
3253 /* Otherwise falls through */
3254 default:
3255 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3256 if (msr) {
3257 msr_info->data = msr->data;
3258 break;
3259 }
3260 return kvm_get_msr_common(vcpu, msr_info);
3261 }
3262
3263 return 0;
3264 }
3265
3266 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3267
3268 /*
3269 * Writes msr value into into the appropriate "register".
3270 * Returns 0 on success, non-0 otherwise.
3271 * Assumes vcpu_load() was already called.
3272 */
3273 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3274 {
3275 struct vcpu_vmx *vmx = to_vmx(vcpu);
3276 struct shared_msr_entry *msr;
3277 int ret = 0;
3278 u32 msr_index = msr_info->index;
3279 u64 data = msr_info->data;
3280
3281 switch (msr_index) {
3282 case MSR_EFER:
3283 ret = kvm_set_msr_common(vcpu, msr_info);
3284 break;
3285 #ifdef CONFIG_X86_64
3286 case MSR_FS_BASE:
3287 vmx_segment_cache_clear(vmx);
3288 vmcs_writel(GUEST_FS_BASE, data);
3289 break;
3290 case MSR_GS_BASE:
3291 vmx_segment_cache_clear(vmx);
3292 vmcs_writel(GUEST_GS_BASE, data);
3293 break;
3294 case MSR_KERNEL_GS_BASE:
3295 vmx_load_host_state(vmx);
3296 vmx->msr_guest_kernel_gs_base = data;
3297 break;
3298 #endif
3299 case MSR_IA32_SYSENTER_CS:
3300 vmcs_write32(GUEST_SYSENTER_CS, data);
3301 break;
3302 case MSR_IA32_SYSENTER_EIP:
3303 vmcs_writel(GUEST_SYSENTER_EIP, data);
3304 break;
3305 case MSR_IA32_SYSENTER_ESP:
3306 vmcs_writel(GUEST_SYSENTER_ESP, data);
3307 break;
3308 case MSR_IA32_BNDCFGS:
3309 if (!kvm_mpx_supported() ||
3310 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3311 return 1;
3312 if (is_noncanonical_address(data & PAGE_MASK) ||
3313 (data & MSR_IA32_BNDCFGS_RSVD))
3314 return 1;
3315 vmcs_write64(GUEST_BNDCFGS, data);
3316 break;
3317 case MSR_IA32_TSC:
3318 kvm_write_tsc(vcpu, msr_info);
3319 break;
3320 case MSR_IA32_CR_PAT:
3321 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3322 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3323 return 1;
3324 vmcs_write64(GUEST_IA32_PAT, data);
3325 vcpu->arch.pat = data;
3326 break;
3327 }
3328 ret = kvm_set_msr_common(vcpu, msr_info);
3329 break;
3330 case MSR_IA32_TSC_ADJUST:
3331 ret = kvm_set_msr_common(vcpu, msr_info);
3332 break;
3333 case MSR_IA32_MCG_EXT_CTL:
3334 if ((!msr_info->host_initiated &&
3335 !(to_vmx(vcpu)->msr_ia32_feature_control &
3336 FEATURE_CONTROL_LMCE)) ||
3337 (data & ~MCG_EXT_CTL_LMCE_EN))
3338 return 1;
3339 vcpu->arch.mcg_ext_ctl = data;
3340 break;
3341 case MSR_IA32_FEATURE_CONTROL:
3342 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3343 (to_vmx(vcpu)->msr_ia32_feature_control &
3344 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3345 return 1;
3346 vmx->msr_ia32_feature_control = data;
3347 if (msr_info->host_initiated && data == 0)
3348 vmx_leave_nested(vcpu);
3349 break;
3350 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3351 if (!msr_info->host_initiated)
3352 return 1; /* they are read-only */
3353 if (!nested_vmx_allowed(vcpu))
3354 return 1;
3355 return vmx_set_vmx_msr(vcpu, msr_index, data);
3356 case MSR_IA32_XSS:
3357 if (!vmx_xsaves_supported())
3358 return 1;
3359 /*
3360 * The only supported bit as of Skylake is bit 8, but
3361 * it is not supported on KVM.
3362 */
3363 if (data != 0)
3364 return 1;
3365 vcpu->arch.ia32_xss = data;
3366 if (vcpu->arch.ia32_xss != host_xss)
3367 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3368 vcpu->arch.ia32_xss, host_xss);
3369 else
3370 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3371 break;
3372 case MSR_TSC_AUX:
3373 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3374 return 1;
3375 /* Check reserved bit, higher 32 bits should be zero */
3376 if ((data >> 32) != 0)
3377 return 1;
3378 /* Otherwise falls through */
3379 default:
3380 msr = find_msr_entry(vmx, msr_index);
3381 if (msr) {
3382 u64 old_msr_data = msr->data;
3383 msr->data = data;
3384 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3385 preempt_disable();
3386 ret = kvm_set_shared_msr(msr->index, msr->data,
3387 msr->mask);
3388 preempt_enable();
3389 if (ret)
3390 msr->data = old_msr_data;
3391 }
3392 break;
3393 }
3394 ret = kvm_set_msr_common(vcpu, msr_info);
3395 }
3396
3397 return ret;
3398 }
3399
3400 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3401 {
3402 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3403 switch (reg) {
3404 case VCPU_REGS_RSP:
3405 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3406 break;
3407 case VCPU_REGS_RIP:
3408 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3409 break;
3410 case VCPU_EXREG_PDPTR:
3411 if (enable_ept)
3412 ept_save_pdptrs(vcpu);
3413 break;
3414 default:
3415 break;
3416 }
3417 }
3418
3419 static __init int cpu_has_kvm_support(void)
3420 {
3421 return cpu_has_vmx();
3422 }
3423
3424 static __init int vmx_disabled_by_bios(void)
3425 {
3426 u64 msr;
3427
3428 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3429 if (msr & FEATURE_CONTROL_LOCKED) {
3430 /* launched w/ TXT and VMX disabled */
3431 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3432 && tboot_enabled())
3433 return 1;
3434 /* launched w/o TXT and VMX only enabled w/ TXT */
3435 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3436 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3437 && !tboot_enabled()) {
3438 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3439 "activate TXT before enabling KVM\n");
3440 return 1;
3441 }
3442 /* launched w/o TXT and VMX disabled */
3443 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3444 && !tboot_enabled())
3445 return 1;
3446 }
3447
3448 return 0;
3449 }
3450
3451 static void kvm_cpu_vmxon(u64 addr)
3452 {
3453 cr4_set_bits(X86_CR4_VMXE);
3454 intel_pt_handle_vmx(1);
3455
3456 asm volatile (ASM_VMX_VMXON_RAX
3457 : : "a"(&addr), "m"(addr)
3458 : "memory", "cc");
3459 }
3460
3461 static int hardware_enable(void)
3462 {
3463 int cpu = raw_smp_processor_id();
3464 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3465 u64 old, test_bits;
3466
3467 if (cr4_read_shadow() & X86_CR4_VMXE)
3468 return -EBUSY;
3469
3470 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3471 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3472 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3473
3474 /*
3475 * Now we can enable the vmclear operation in kdump
3476 * since the loaded_vmcss_on_cpu list on this cpu
3477 * has been initialized.
3478 *
3479 * Though the cpu is not in VMX operation now, there
3480 * is no problem to enable the vmclear operation
3481 * for the loaded_vmcss_on_cpu list is empty!
3482 */
3483 crash_enable_local_vmclear(cpu);
3484
3485 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3486
3487 test_bits = FEATURE_CONTROL_LOCKED;
3488 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3489 if (tboot_enabled())
3490 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3491
3492 if ((old & test_bits) != test_bits) {
3493 /* enable and lock */
3494 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3495 }
3496 kvm_cpu_vmxon(phys_addr);
3497 ept_sync_global();
3498
3499 return 0;
3500 }
3501
3502 static void vmclear_local_loaded_vmcss(void)
3503 {
3504 int cpu = raw_smp_processor_id();
3505 struct loaded_vmcs *v, *n;
3506
3507 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3508 loaded_vmcss_on_cpu_link)
3509 __loaded_vmcs_clear(v);
3510 }
3511
3512
3513 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3514 * tricks.
3515 */
3516 static void kvm_cpu_vmxoff(void)
3517 {
3518 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3519
3520 intel_pt_handle_vmx(0);
3521 cr4_clear_bits(X86_CR4_VMXE);
3522 }
3523
3524 static void hardware_disable(void)
3525 {
3526 vmclear_local_loaded_vmcss();
3527 kvm_cpu_vmxoff();
3528 }
3529
3530 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3531 u32 msr, u32 *result)
3532 {
3533 u32 vmx_msr_low, vmx_msr_high;
3534 u32 ctl = ctl_min | ctl_opt;
3535
3536 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3537
3538 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3539 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3540
3541 /* Ensure minimum (required) set of control bits are supported. */
3542 if (ctl_min & ~ctl)
3543 return -EIO;
3544
3545 *result = ctl;
3546 return 0;
3547 }
3548
3549 static __init bool allow_1_setting(u32 msr, u32 ctl)
3550 {
3551 u32 vmx_msr_low, vmx_msr_high;
3552
3553 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3554 return vmx_msr_high & ctl;
3555 }
3556
3557 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3558 {
3559 u32 vmx_msr_low, vmx_msr_high;
3560 u32 min, opt, min2, opt2;
3561 u32 _pin_based_exec_control = 0;
3562 u32 _cpu_based_exec_control = 0;
3563 u32 _cpu_based_2nd_exec_control = 0;
3564 u32 _vmexit_control = 0;
3565 u32 _vmentry_control = 0;
3566
3567 min = CPU_BASED_HLT_EXITING |
3568 #ifdef CONFIG_X86_64
3569 CPU_BASED_CR8_LOAD_EXITING |
3570 CPU_BASED_CR8_STORE_EXITING |
3571 #endif
3572 CPU_BASED_CR3_LOAD_EXITING |
3573 CPU_BASED_CR3_STORE_EXITING |
3574 CPU_BASED_USE_IO_BITMAPS |
3575 CPU_BASED_MOV_DR_EXITING |
3576 CPU_BASED_USE_TSC_OFFSETING |
3577 CPU_BASED_INVLPG_EXITING |
3578 CPU_BASED_RDPMC_EXITING;
3579
3580 if (!kvm_mwait_in_guest())
3581 min |= CPU_BASED_MWAIT_EXITING |
3582 CPU_BASED_MONITOR_EXITING;
3583
3584 opt = CPU_BASED_TPR_SHADOW |
3585 CPU_BASED_USE_MSR_BITMAPS |
3586 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3587 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3588 &_cpu_based_exec_control) < 0)
3589 return -EIO;
3590 #ifdef CONFIG_X86_64
3591 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3592 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3593 ~CPU_BASED_CR8_STORE_EXITING;
3594 #endif
3595 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3596 min2 = 0;
3597 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3598 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3599 SECONDARY_EXEC_WBINVD_EXITING |
3600 SECONDARY_EXEC_ENABLE_VPID |
3601 SECONDARY_EXEC_ENABLE_EPT |
3602 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3603 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3604 SECONDARY_EXEC_RDTSCP |
3605 SECONDARY_EXEC_ENABLE_INVPCID |
3606 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3607 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3608 SECONDARY_EXEC_SHADOW_VMCS |
3609 SECONDARY_EXEC_XSAVES |
3610 SECONDARY_EXEC_ENABLE_PML |
3611 SECONDARY_EXEC_TSC_SCALING;
3612 if (adjust_vmx_controls(min2, opt2,
3613 MSR_IA32_VMX_PROCBASED_CTLS2,
3614 &_cpu_based_2nd_exec_control) < 0)
3615 return -EIO;
3616 }
3617 #ifndef CONFIG_X86_64
3618 if (!(_cpu_based_2nd_exec_control &
3619 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3620 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3621 #endif
3622
3623 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3624 _cpu_based_2nd_exec_control &= ~(
3625 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3626 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3628
3629 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3630 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3631 enabled */
3632 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3633 CPU_BASED_CR3_STORE_EXITING |
3634 CPU_BASED_INVLPG_EXITING);
3635 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3636 vmx_capability.ept, vmx_capability.vpid);
3637 }
3638
3639 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3640 #ifdef CONFIG_X86_64
3641 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3642 #endif
3643 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3644 VM_EXIT_CLEAR_BNDCFGS;
3645 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3646 &_vmexit_control) < 0)
3647 return -EIO;
3648
3649 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3650 PIN_BASED_VIRTUAL_NMIS;
3651 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3652 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3653 &_pin_based_exec_control) < 0)
3654 return -EIO;
3655
3656 if (cpu_has_broken_vmx_preemption_timer())
3657 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3658 if (!(_cpu_based_2nd_exec_control &
3659 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3660 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3661
3662 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3663 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3664 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3665 &_vmentry_control) < 0)
3666 return -EIO;
3667
3668 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3669
3670 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3671 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3672 return -EIO;
3673
3674 #ifdef CONFIG_X86_64
3675 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3676 if (vmx_msr_high & (1u<<16))
3677 return -EIO;
3678 #endif
3679
3680 /* Require Write-Back (WB) memory type for VMCS accesses. */
3681 if (((vmx_msr_high >> 18) & 15) != 6)
3682 return -EIO;
3683
3684 vmcs_conf->size = vmx_msr_high & 0x1fff;
3685 vmcs_conf->order = get_order(vmcs_conf->size);
3686 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3687 vmcs_conf->revision_id = vmx_msr_low;
3688
3689 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3690 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3691 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3692 vmcs_conf->vmexit_ctrl = _vmexit_control;
3693 vmcs_conf->vmentry_ctrl = _vmentry_control;
3694
3695 cpu_has_load_ia32_efer =
3696 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3697 VM_ENTRY_LOAD_IA32_EFER)
3698 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3699 VM_EXIT_LOAD_IA32_EFER);
3700
3701 cpu_has_load_perf_global_ctrl =
3702 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3703 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3704 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3705 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3706
3707 /*
3708 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3709 * but due to errata below it can't be used. Workaround is to use
3710 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3711 *
3712 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3713 *
3714 * AAK155 (model 26)
3715 * AAP115 (model 30)
3716 * AAT100 (model 37)
3717 * BC86,AAY89,BD102 (model 44)
3718 * BA97 (model 46)
3719 *
3720 */
3721 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3722 switch (boot_cpu_data.x86_model) {
3723 case 26:
3724 case 30:
3725 case 37:
3726 case 44:
3727 case 46:
3728 cpu_has_load_perf_global_ctrl = false;
3729 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3730 "does not work properly. Using workaround\n");
3731 break;
3732 default:
3733 break;
3734 }
3735 }
3736
3737 if (boot_cpu_has(X86_FEATURE_XSAVES))
3738 rdmsrl(MSR_IA32_XSS, host_xss);
3739
3740 return 0;
3741 }
3742
3743 static struct vmcs *alloc_vmcs_cpu(int cpu)
3744 {
3745 int node = cpu_to_node(cpu);
3746 struct page *pages;
3747 struct vmcs *vmcs;
3748
3749 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3750 if (!pages)
3751 return NULL;
3752 vmcs = page_address(pages);
3753 memset(vmcs, 0, vmcs_config.size);
3754 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3755 return vmcs;
3756 }
3757
3758 static struct vmcs *alloc_vmcs(void)
3759 {
3760 return alloc_vmcs_cpu(raw_smp_processor_id());
3761 }
3762
3763 static void free_vmcs(struct vmcs *vmcs)
3764 {
3765 free_pages((unsigned long)vmcs, vmcs_config.order);
3766 }
3767
3768 /*
3769 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3770 */
3771 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3772 {
3773 if (!loaded_vmcs->vmcs)
3774 return;
3775 loaded_vmcs_clear(loaded_vmcs);
3776 free_vmcs(loaded_vmcs->vmcs);
3777 loaded_vmcs->vmcs = NULL;
3778 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3779 }
3780
3781 static void free_kvm_area(void)
3782 {
3783 int cpu;
3784
3785 for_each_possible_cpu(cpu) {
3786 free_vmcs(per_cpu(vmxarea, cpu));
3787 per_cpu(vmxarea, cpu) = NULL;
3788 }
3789 }
3790
3791 enum vmcs_field_type {
3792 VMCS_FIELD_TYPE_U16 = 0,
3793 VMCS_FIELD_TYPE_U64 = 1,
3794 VMCS_FIELD_TYPE_U32 = 2,
3795 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3796 };
3797
3798 static inline int vmcs_field_type(unsigned long field)
3799 {
3800 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3801 return VMCS_FIELD_TYPE_U32;
3802 return (field >> 13) & 0x3 ;
3803 }
3804
3805 static inline int vmcs_field_readonly(unsigned long field)
3806 {
3807 return (((field >> 10) & 0x3) == 1);
3808 }
3809
3810 static void init_vmcs_shadow_fields(void)
3811 {
3812 int i, j;
3813
3814 /* No checks for read only fields yet */
3815
3816 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3817 switch (shadow_read_write_fields[i]) {
3818 case GUEST_BNDCFGS:
3819 if (!kvm_mpx_supported())
3820 continue;
3821 break;
3822 default:
3823 break;
3824 }
3825
3826 if (j < i)
3827 shadow_read_write_fields[j] =
3828 shadow_read_write_fields[i];
3829 j++;
3830 }
3831 max_shadow_read_write_fields = j;
3832
3833 /* shadowed fields guest access without vmexit */
3834 for (i = 0; i < max_shadow_read_write_fields; i++) {
3835 unsigned long field = shadow_read_write_fields[i];
3836
3837 clear_bit(field, vmx_vmwrite_bitmap);
3838 clear_bit(field, vmx_vmread_bitmap);
3839 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3840 clear_bit(field + 1, vmx_vmwrite_bitmap);
3841 clear_bit(field + 1, vmx_vmread_bitmap);
3842 }
3843 }
3844 for (i = 0; i < max_shadow_read_only_fields; i++) {
3845 unsigned long field = shadow_read_only_fields[i];
3846
3847 clear_bit(field, vmx_vmread_bitmap);
3848 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3849 clear_bit(field + 1, vmx_vmread_bitmap);
3850 }
3851 }
3852
3853 static __init int alloc_kvm_area(void)
3854 {
3855 int cpu;
3856
3857 for_each_possible_cpu(cpu) {
3858 struct vmcs *vmcs;
3859
3860 vmcs = alloc_vmcs_cpu(cpu);
3861 if (!vmcs) {
3862 free_kvm_area();
3863 return -ENOMEM;
3864 }
3865
3866 per_cpu(vmxarea, cpu) = vmcs;
3867 }
3868 return 0;
3869 }
3870
3871 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3872 struct kvm_segment *save)
3873 {
3874 if (!emulate_invalid_guest_state) {
3875 /*
3876 * CS and SS RPL should be equal during guest entry according
3877 * to VMX spec, but in reality it is not always so. Since vcpu
3878 * is in the middle of the transition from real mode to
3879 * protected mode it is safe to assume that RPL 0 is a good
3880 * default value.
3881 */
3882 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3883 save->selector &= ~SEGMENT_RPL_MASK;
3884 save->dpl = save->selector & SEGMENT_RPL_MASK;
3885 save->s = 1;
3886 }
3887 vmx_set_segment(vcpu, save, seg);
3888 }
3889
3890 static void enter_pmode(struct kvm_vcpu *vcpu)
3891 {
3892 unsigned long flags;
3893 struct vcpu_vmx *vmx = to_vmx(vcpu);
3894
3895 /*
3896 * Update real mode segment cache. It may be not up-to-date if sement
3897 * register was written while vcpu was in a guest mode.
3898 */
3899 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3900 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3901 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3902 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3903 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3904 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3905
3906 vmx->rmode.vm86_active = 0;
3907
3908 vmx_segment_cache_clear(vmx);
3909
3910 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3911
3912 flags = vmcs_readl(GUEST_RFLAGS);
3913 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3914 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3915 vmcs_writel(GUEST_RFLAGS, flags);
3916
3917 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3918 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3919
3920 update_exception_bitmap(vcpu);
3921
3922 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3923 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3924 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3925 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3926 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3927 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3928 }
3929
3930 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3931 {
3932 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3933 struct kvm_segment var = *save;
3934
3935 var.dpl = 0x3;
3936 if (seg == VCPU_SREG_CS)
3937 var.type = 0x3;
3938
3939 if (!emulate_invalid_guest_state) {
3940 var.selector = var.base >> 4;
3941 var.base = var.base & 0xffff0;
3942 var.limit = 0xffff;
3943 var.g = 0;
3944 var.db = 0;
3945 var.present = 1;
3946 var.s = 1;
3947 var.l = 0;
3948 var.unusable = 0;
3949 var.type = 0x3;
3950 var.avl = 0;
3951 if (save->base & 0xf)
3952 printk_once(KERN_WARNING "kvm: segment base is not "
3953 "paragraph aligned when entering "
3954 "protected mode (seg=%d)", seg);
3955 }
3956
3957 vmcs_write16(sf->selector, var.selector);
3958 vmcs_writel(sf->base, var.base);
3959 vmcs_write32(sf->limit, var.limit);
3960 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3961 }
3962
3963 static void enter_rmode(struct kvm_vcpu *vcpu)
3964 {
3965 unsigned long flags;
3966 struct vcpu_vmx *vmx = to_vmx(vcpu);
3967
3968 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3969 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3970 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3971 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3972 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3973 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3974 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3975
3976 vmx->rmode.vm86_active = 1;
3977
3978 /*
3979 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3980 * vcpu. Warn the user that an update is overdue.
3981 */
3982 if (!vcpu->kvm->arch.tss_addr)
3983 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3984 "called before entering vcpu\n");
3985
3986 vmx_segment_cache_clear(vmx);
3987
3988 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3989 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3990 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3991
3992 flags = vmcs_readl(GUEST_RFLAGS);
3993 vmx->rmode.save_rflags = flags;
3994
3995 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3996
3997 vmcs_writel(GUEST_RFLAGS, flags);
3998 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3999 update_exception_bitmap(vcpu);
4000
4001 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4002 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4003 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4004 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4005 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4006 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4007
4008 kvm_mmu_reset_context(vcpu);
4009 }
4010
4011 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4012 {
4013 struct vcpu_vmx *vmx = to_vmx(vcpu);
4014 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4015
4016 if (!msr)
4017 return;
4018
4019 /*
4020 * Force kernel_gs_base reloading before EFER changes, as control
4021 * of this msr depends on is_long_mode().
4022 */
4023 vmx_load_host_state(to_vmx(vcpu));
4024 vcpu->arch.efer = efer;
4025 if (efer & EFER_LMA) {
4026 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4027 msr->data = efer;
4028 } else {
4029 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4030
4031 msr->data = efer & ~EFER_LME;
4032 }
4033 setup_msrs(vmx);
4034 }
4035
4036 #ifdef CONFIG_X86_64
4037
4038 static void enter_lmode(struct kvm_vcpu *vcpu)
4039 {
4040 u32 guest_tr_ar;
4041
4042 vmx_segment_cache_clear(to_vmx(vcpu));
4043
4044 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4045 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4046 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4047 __func__);
4048 vmcs_write32(GUEST_TR_AR_BYTES,
4049 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4050 | VMX_AR_TYPE_BUSY_64_TSS);
4051 }
4052 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4053 }
4054
4055 static void exit_lmode(struct kvm_vcpu *vcpu)
4056 {
4057 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4058 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4059 }
4060
4061 #endif
4062
4063 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4064 {
4065 if (enable_ept) {
4066 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4067 return;
4068 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4069 } else {
4070 vpid_sync_context(vpid);
4071 }
4072 }
4073
4074 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4075 {
4076 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4077 }
4078
4079 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4080 {
4081 if (enable_ept)
4082 vmx_flush_tlb(vcpu);
4083 }
4084
4085 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4086 {
4087 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4088
4089 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4090 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4091 }
4092
4093 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4094 {
4095 if (enable_ept && is_paging(vcpu))
4096 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4097 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4098 }
4099
4100 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4101 {
4102 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4103
4104 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4105 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4106 }
4107
4108 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4109 {
4110 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4111
4112 if (!test_bit(VCPU_EXREG_PDPTR,
4113 (unsigned long *)&vcpu->arch.regs_dirty))
4114 return;
4115
4116 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4117 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4118 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4119 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4120 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4121 }
4122 }
4123
4124 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4125 {
4126 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4127
4128 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4129 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4130 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4131 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4132 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4133 }
4134
4135 __set_bit(VCPU_EXREG_PDPTR,
4136 (unsigned long *)&vcpu->arch.regs_avail);
4137 __set_bit(VCPU_EXREG_PDPTR,
4138 (unsigned long *)&vcpu->arch.regs_dirty);
4139 }
4140
4141 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4142 {
4143 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4144 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4145 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4146
4147 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4148 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4149 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4150 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4151
4152 return fixed_bits_valid(val, fixed0, fixed1);
4153 }
4154
4155 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4156 {
4157 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4158 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4159
4160 return fixed_bits_valid(val, fixed0, fixed1);
4161 }
4162
4163 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4164 {
4165 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4166 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4167
4168 return fixed_bits_valid(val, fixed0, fixed1);
4169 }
4170
4171 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4172 #define nested_guest_cr4_valid nested_cr4_valid
4173 #define nested_host_cr4_valid nested_cr4_valid
4174
4175 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4176
4177 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4178 unsigned long cr0,
4179 struct kvm_vcpu *vcpu)
4180 {
4181 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4182 vmx_decache_cr3(vcpu);
4183 if (!(cr0 & X86_CR0_PG)) {
4184 /* From paging/starting to nonpaging */
4185 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4186 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4187 (CPU_BASED_CR3_LOAD_EXITING |
4188 CPU_BASED_CR3_STORE_EXITING));
4189 vcpu->arch.cr0 = cr0;
4190 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4191 } else if (!is_paging(vcpu)) {
4192 /* From nonpaging to paging */
4193 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4194 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4195 ~(CPU_BASED_CR3_LOAD_EXITING |
4196 CPU_BASED_CR3_STORE_EXITING));
4197 vcpu->arch.cr0 = cr0;
4198 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4199 }
4200
4201 if (!(cr0 & X86_CR0_WP))
4202 *hw_cr0 &= ~X86_CR0_WP;
4203 }
4204
4205 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4206 {
4207 struct vcpu_vmx *vmx = to_vmx(vcpu);
4208 unsigned long hw_cr0;
4209
4210 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4211 if (enable_unrestricted_guest)
4212 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4213 else {
4214 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4215
4216 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4217 enter_pmode(vcpu);
4218
4219 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4220 enter_rmode(vcpu);
4221 }
4222
4223 #ifdef CONFIG_X86_64
4224 if (vcpu->arch.efer & EFER_LME) {
4225 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4226 enter_lmode(vcpu);
4227 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4228 exit_lmode(vcpu);
4229 }
4230 #endif
4231
4232 if (enable_ept)
4233 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4234
4235 vmcs_writel(CR0_READ_SHADOW, cr0);
4236 vmcs_writel(GUEST_CR0, hw_cr0);
4237 vcpu->arch.cr0 = cr0;
4238
4239 /* depends on vcpu->arch.cr0 to be set to a new value */
4240 vmx->emulation_required = emulation_required(vcpu);
4241 }
4242
4243 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4244 {
4245 u64 eptp;
4246
4247 /* TODO write the value reading from MSR */
4248 eptp = VMX_EPT_DEFAULT_MT |
4249 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4250 if (enable_ept_ad_bits &&
4251 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4252 eptp |= VMX_EPT_AD_ENABLE_BIT;
4253 eptp |= (root_hpa & PAGE_MASK);
4254
4255 return eptp;
4256 }
4257
4258 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4259 {
4260 unsigned long guest_cr3;
4261 u64 eptp;
4262
4263 guest_cr3 = cr3;
4264 if (enable_ept) {
4265 eptp = construct_eptp(vcpu, cr3);
4266 vmcs_write64(EPT_POINTER, eptp);
4267 if (is_paging(vcpu) || is_guest_mode(vcpu))
4268 guest_cr3 = kvm_read_cr3(vcpu);
4269 else
4270 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4271 ept_load_pdptrs(vcpu);
4272 }
4273
4274 vmx_flush_tlb(vcpu);
4275 vmcs_writel(GUEST_CR3, guest_cr3);
4276 }
4277
4278 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4279 {
4280 /*
4281 * Pass through host's Machine Check Enable value to hw_cr4, which
4282 * is in force while we are in guest mode. Do not let guests control
4283 * this bit, even if host CR4.MCE == 0.
4284 */
4285 unsigned long hw_cr4 =
4286 (cr4_read_shadow() & X86_CR4_MCE) |
4287 (cr4 & ~X86_CR4_MCE) |
4288 (to_vmx(vcpu)->rmode.vm86_active ?
4289 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4290
4291 if (cr4 & X86_CR4_VMXE) {
4292 /*
4293 * To use VMXON (and later other VMX instructions), a guest
4294 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4295 * So basically the check on whether to allow nested VMX
4296 * is here.
4297 */
4298 if (!nested_vmx_allowed(vcpu))
4299 return 1;
4300 }
4301
4302 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4303 return 1;
4304
4305 vcpu->arch.cr4 = cr4;
4306 if (enable_ept) {
4307 if (!is_paging(vcpu)) {
4308 hw_cr4 &= ~X86_CR4_PAE;
4309 hw_cr4 |= X86_CR4_PSE;
4310 } else if (!(cr4 & X86_CR4_PAE)) {
4311 hw_cr4 &= ~X86_CR4_PAE;
4312 }
4313 }
4314
4315 if (!enable_unrestricted_guest && !is_paging(vcpu))
4316 /*
4317 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4318 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4319 * to be manually disabled when guest switches to non-paging
4320 * mode.
4321 *
4322 * If !enable_unrestricted_guest, the CPU is always running
4323 * with CR0.PG=1 and CR4 needs to be modified.
4324 * If enable_unrestricted_guest, the CPU automatically
4325 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4326 */
4327 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4328
4329 vmcs_writel(CR4_READ_SHADOW, cr4);
4330 vmcs_writel(GUEST_CR4, hw_cr4);
4331 return 0;
4332 }
4333
4334 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4335 struct kvm_segment *var, int seg)
4336 {
4337 struct vcpu_vmx *vmx = to_vmx(vcpu);
4338 u32 ar;
4339
4340 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4341 *var = vmx->rmode.segs[seg];
4342 if (seg == VCPU_SREG_TR
4343 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4344 return;
4345 var->base = vmx_read_guest_seg_base(vmx, seg);
4346 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4347 return;
4348 }
4349 var->base = vmx_read_guest_seg_base(vmx, seg);
4350 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4351 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4352 ar = vmx_read_guest_seg_ar(vmx, seg);
4353 var->unusable = (ar >> 16) & 1;
4354 var->type = ar & 15;
4355 var->s = (ar >> 4) & 1;
4356 var->dpl = (ar >> 5) & 3;
4357 /*
4358 * Some userspaces do not preserve unusable property. Since usable
4359 * segment has to be present according to VMX spec we can use present
4360 * property to amend userspace bug by making unusable segment always
4361 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4362 * segment as unusable.
4363 */
4364 var->present = !var->unusable;
4365 var->avl = (ar >> 12) & 1;
4366 var->l = (ar >> 13) & 1;
4367 var->db = (ar >> 14) & 1;
4368 var->g = (ar >> 15) & 1;
4369 }
4370
4371 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4372 {
4373 struct kvm_segment s;
4374
4375 if (to_vmx(vcpu)->rmode.vm86_active) {
4376 vmx_get_segment(vcpu, &s, seg);
4377 return s.base;
4378 }
4379 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4380 }
4381
4382 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4383 {
4384 struct vcpu_vmx *vmx = to_vmx(vcpu);
4385
4386 if (unlikely(vmx->rmode.vm86_active))
4387 return 0;
4388 else {
4389 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4390 return VMX_AR_DPL(ar);
4391 }
4392 }
4393
4394 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4395 {
4396 u32 ar;
4397
4398 if (var->unusable || !var->present)
4399 ar = 1 << 16;
4400 else {
4401 ar = var->type & 15;
4402 ar |= (var->s & 1) << 4;
4403 ar |= (var->dpl & 3) << 5;
4404 ar |= (var->present & 1) << 7;
4405 ar |= (var->avl & 1) << 12;
4406 ar |= (var->l & 1) << 13;
4407 ar |= (var->db & 1) << 14;
4408 ar |= (var->g & 1) << 15;
4409 }
4410
4411 return ar;
4412 }
4413
4414 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4415 struct kvm_segment *var, int seg)
4416 {
4417 struct vcpu_vmx *vmx = to_vmx(vcpu);
4418 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4419
4420 vmx_segment_cache_clear(vmx);
4421
4422 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4423 vmx->rmode.segs[seg] = *var;
4424 if (seg == VCPU_SREG_TR)
4425 vmcs_write16(sf->selector, var->selector);
4426 else if (var->s)
4427 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4428 goto out;
4429 }
4430
4431 vmcs_writel(sf->base, var->base);
4432 vmcs_write32(sf->limit, var->limit);
4433 vmcs_write16(sf->selector, var->selector);
4434
4435 /*
4436 * Fix the "Accessed" bit in AR field of segment registers for older
4437 * qemu binaries.
4438 * IA32 arch specifies that at the time of processor reset the
4439 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4440 * is setting it to 0 in the userland code. This causes invalid guest
4441 * state vmexit when "unrestricted guest" mode is turned on.
4442 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4443 * tree. Newer qemu binaries with that qemu fix would not need this
4444 * kvm hack.
4445 */
4446 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4447 var->type |= 0x1; /* Accessed */
4448
4449 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4450
4451 out:
4452 vmx->emulation_required = emulation_required(vcpu);
4453 }
4454
4455 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4456 {
4457 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4458
4459 *db = (ar >> 14) & 1;
4460 *l = (ar >> 13) & 1;
4461 }
4462
4463 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4464 {
4465 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4466 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4467 }
4468
4469 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4470 {
4471 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4472 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4473 }
4474
4475 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4476 {
4477 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4478 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4479 }
4480
4481 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4482 {
4483 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4484 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4485 }
4486
4487 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4488 {
4489 struct kvm_segment var;
4490 u32 ar;
4491
4492 vmx_get_segment(vcpu, &var, seg);
4493 var.dpl = 0x3;
4494 if (seg == VCPU_SREG_CS)
4495 var.type = 0x3;
4496 ar = vmx_segment_access_rights(&var);
4497
4498 if (var.base != (var.selector << 4))
4499 return false;
4500 if (var.limit != 0xffff)
4501 return false;
4502 if (ar != 0xf3)
4503 return false;
4504
4505 return true;
4506 }
4507
4508 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4509 {
4510 struct kvm_segment cs;
4511 unsigned int cs_rpl;
4512
4513 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4514 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4515
4516 if (cs.unusable)
4517 return false;
4518 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4519 return false;
4520 if (!cs.s)
4521 return false;
4522 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4523 if (cs.dpl > cs_rpl)
4524 return false;
4525 } else {
4526 if (cs.dpl != cs_rpl)
4527 return false;
4528 }
4529 if (!cs.present)
4530 return false;
4531
4532 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4533 return true;
4534 }
4535
4536 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4537 {
4538 struct kvm_segment ss;
4539 unsigned int ss_rpl;
4540
4541 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4542 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4543
4544 if (ss.unusable)
4545 return true;
4546 if (ss.type != 3 && ss.type != 7)
4547 return false;
4548 if (!ss.s)
4549 return false;
4550 if (ss.dpl != ss_rpl) /* DPL != RPL */
4551 return false;
4552 if (!ss.present)
4553 return false;
4554
4555 return true;
4556 }
4557
4558 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4559 {
4560 struct kvm_segment var;
4561 unsigned int rpl;
4562
4563 vmx_get_segment(vcpu, &var, seg);
4564 rpl = var.selector & SEGMENT_RPL_MASK;
4565
4566 if (var.unusable)
4567 return true;
4568 if (!var.s)
4569 return false;
4570 if (!var.present)
4571 return false;
4572 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4573 if (var.dpl < rpl) /* DPL < RPL */
4574 return false;
4575 }
4576
4577 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4578 * rights flags
4579 */
4580 return true;
4581 }
4582
4583 static bool tr_valid(struct kvm_vcpu *vcpu)
4584 {
4585 struct kvm_segment tr;
4586
4587 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4588
4589 if (tr.unusable)
4590 return false;
4591 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4592 return false;
4593 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4594 return false;
4595 if (!tr.present)
4596 return false;
4597
4598 return true;
4599 }
4600
4601 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4602 {
4603 struct kvm_segment ldtr;
4604
4605 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4606
4607 if (ldtr.unusable)
4608 return true;
4609 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4610 return false;
4611 if (ldtr.type != 2)
4612 return false;
4613 if (!ldtr.present)
4614 return false;
4615
4616 return true;
4617 }
4618
4619 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4620 {
4621 struct kvm_segment cs, ss;
4622
4623 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4624 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4625
4626 return ((cs.selector & SEGMENT_RPL_MASK) ==
4627 (ss.selector & SEGMENT_RPL_MASK));
4628 }
4629
4630 /*
4631 * Check if guest state is valid. Returns true if valid, false if
4632 * not.
4633 * We assume that registers are always usable
4634 */
4635 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4636 {
4637 if (enable_unrestricted_guest)
4638 return true;
4639
4640 /* real mode guest state checks */
4641 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4642 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4643 return false;
4644 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4645 return false;
4646 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4647 return false;
4648 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4649 return false;
4650 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4651 return false;
4652 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4653 return false;
4654 } else {
4655 /* protected mode guest state checks */
4656 if (!cs_ss_rpl_check(vcpu))
4657 return false;
4658 if (!code_segment_valid(vcpu))
4659 return false;
4660 if (!stack_segment_valid(vcpu))
4661 return false;
4662 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4663 return false;
4664 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4665 return false;
4666 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4667 return false;
4668 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4669 return false;
4670 if (!tr_valid(vcpu))
4671 return false;
4672 if (!ldtr_valid(vcpu))
4673 return false;
4674 }
4675 /* TODO:
4676 * - Add checks on RIP
4677 * - Add checks on RFLAGS
4678 */
4679
4680 return true;
4681 }
4682
4683 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4684 {
4685 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4686 }
4687
4688 static int init_rmode_tss(struct kvm *kvm)
4689 {
4690 gfn_t fn;
4691 u16 data = 0;
4692 int idx, r;
4693
4694 idx = srcu_read_lock(&kvm->srcu);
4695 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4696 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4697 if (r < 0)
4698 goto out;
4699 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4700 r = kvm_write_guest_page(kvm, fn++, &data,
4701 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4702 if (r < 0)
4703 goto out;
4704 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4705 if (r < 0)
4706 goto out;
4707 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4708 if (r < 0)
4709 goto out;
4710 data = ~0;
4711 r = kvm_write_guest_page(kvm, fn, &data,
4712 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4713 sizeof(u8));
4714 out:
4715 srcu_read_unlock(&kvm->srcu, idx);
4716 return r;
4717 }
4718
4719 static int init_rmode_identity_map(struct kvm *kvm)
4720 {
4721 int i, idx, r = 0;
4722 kvm_pfn_t identity_map_pfn;
4723 u32 tmp;
4724
4725 if (!enable_ept)
4726 return 0;
4727
4728 /* Protect kvm->arch.ept_identity_pagetable_done. */
4729 mutex_lock(&kvm->slots_lock);
4730
4731 if (likely(kvm->arch.ept_identity_pagetable_done))
4732 goto out2;
4733
4734 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4735
4736 r = alloc_identity_pagetable(kvm);
4737 if (r < 0)
4738 goto out2;
4739
4740 idx = srcu_read_lock(&kvm->srcu);
4741 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4742 if (r < 0)
4743 goto out;
4744 /* Set up identity-mapping pagetable for EPT in real mode */
4745 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4746 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4747 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4748 r = kvm_write_guest_page(kvm, identity_map_pfn,
4749 &tmp, i * sizeof(tmp), sizeof(tmp));
4750 if (r < 0)
4751 goto out;
4752 }
4753 kvm->arch.ept_identity_pagetable_done = true;
4754
4755 out:
4756 srcu_read_unlock(&kvm->srcu, idx);
4757
4758 out2:
4759 mutex_unlock(&kvm->slots_lock);
4760 return r;
4761 }
4762
4763 static void seg_setup(int seg)
4764 {
4765 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4766 unsigned int ar;
4767
4768 vmcs_write16(sf->selector, 0);
4769 vmcs_writel(sf->base, 0);
4770 vmcs_write32(sf->limit, 0xffff);
4771 ar = 0x93;
4772 if (seg == VCPU_SREG_CS)
4773 ar |= 0x08; /* code segment */
4774
4775 vmcs_write32(sf->ar_bytes, ar);
4776 }
4777
4778 static int alloc_apic_access_page(struct kvm *kvm)
4779 {
4780 struct page *page;
4781 int r = 0;
4782
4783 mutex_lock(&kvm->slots_lock);
4784 if (kvm->arch.apic_access_page_done)
4785 goto out;
4786 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4787 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4788 if (r)
4789 goto out;
4790
4791 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4792 if (is_error_page(page)) {
4793 r = -EFAULT;
4794 goto out;
4795 }
4796
4797 /*
4798 * Do not pin the page in memory, so that memory hot-unplug
4799 * is able to migrate it.
4800 */
4801 put_page(page);
4802 kvm->arch.apic_access_page_done = true;
4803 out:
4804 mutex_unlock(&kvm->slots_lock);
4805 return r;
4806 }
4807
4808 static int alloc_identity_pagetable(struct kvm *kvm)
4809 {
4810 /* Called with kvm->slots_lock held. */
4811
4812 int r = 0;
4813
4814 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4815
4816 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4817 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4818
4819 return r;
4820 }
4821
4822 static int allocate_vpid(void)
4823 {
4824 int vpid;
4825
4826 if (!enable_vpid)
4827 return 0;
4828 spin_lock(&vmx_vpid_lock);
4829 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4830 if (vpid < VMX_NR_VPIDS)
4831 __set_bit(vpid, vmx_vpid_bitmap);
4832 else
4833 vpid = 0;
4834 spin_unlock(&vmx_vpid_lock);
4835 return vpid;
4836 }
4837
4838 static void free_vpid(int vpid)
4839 {
4840 if (!enable_vpid || vpid == 0)
4841 return;
4842 spin_lock(&vmx_vpid_lock);
4843 __clear_bit(vpid, vmx_vpid_bitmap);
4844 spin_unlock(&vmx_vpid_lock);
4845 }
4846
4847 #define MSR_TYPE_R 1
4848 #define MSR_TYPE_W 2
4849 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4850 u32 msr, int type)
4851 {
4852 int f = sizeof(unsigned long);
4853
4854 if (!cpu_has_vmx_msr_bitmap())
4855 return;
4856
4857 /*
4858 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4859 * have the write-low and read-high bitmap offsets the wrong way round.
4860 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4861 */
4862 if (msr <= 0x1fff) {
4863 if (type & MSR_TYPE_R)
4864 /* read-low */
4865 __clear_bit(msr, msr_bitmap + 0x000 / f);
4866
4867 if (type & MSR_TYPE_W)
4868 /* write-low */
4869 __clear_bit(msr, msr_bitmap + 0x800 / f);
4870
4871 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4872 msr &= 0x1fff;
4873 if (type & MSR_TYPE_R)
4874 /* read-high */
4875 __clear_bit(msr, msr_bitmap + 0x400 / f);
4876
4877 if (type & MSR_TYPE_W)
4878 /* write-high */
4879 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4880
4881 }
4882 }
4883
4884 /*
4885 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4886 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4887 */
4888 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4889 unsigned long *msr_bitmap_nested,
4890 u32 msr, int type)
4891 {
4892 int f = sizeof(unsigned long);
4893
4894 if (!cpu_has_vmx_msr_bitmap()) {
4895 WARN_ON(1);
4896 return;
4897 }
4898
4899 /*
4900 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4901 * have the write-low and read-high bitmap offsets the wrong way round.
4902 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4903 */
4904 if (msr <= 0x1fff) {
4905 if (type & MSR_TYPE_R &&
4906 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4907 /* read-low */
4908 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4909
4910 if (type & MSR_TYPE_W &&
4911 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4912 /* write-low */
4913 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4914
4915 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4916 msr &= 0x1fff;
4917 if (type & MSR_TYPE_R &&
4918 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4919 /* read-high */
4920 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4921
4922 if (type & MSR_TYPE_W &&
4923 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4924 /* write-high */
4925 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4926
4927 }
4928 }
4929
4930 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4931 {
4932 if (!longmode_only)
4933 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4934 msr, MSR_TYPE_R | MSR_TYPE_W);
4935 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4936 msr, MSR_TYPE_R | MSR_TYPE_W);
4937 }
4938
4939 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4940 {
4941 if (apicv_active) {
4942 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4943 msr, type);
4944 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4945 msr, type);
4946 } else {
4947 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4948 msr, type);
4949 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4950 msr, type);
4951 }
4952 }
4953
4954 static bool vmx_get_enable_apicv(void)
4955 {
4956 return enable_apicv;
4957 }
4958
4959 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4960 {
4961 struct vcpu_vmx *vmx = to_vmx(vcpu);
4962 int max_irr;
4963 void *vapic_page;
4964 u16 status;
4965
4966 if (vmx->nested.pi_desc &&
4967 vmx->nested.pi_pending) {
4968 vmx->nested.pi_pending = false;
4969 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4970 return;
4971
4972 max_irr = find_last_bit(
4973 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4974
4975 if (max_irr == 256)
4976 return;
4977
4978 vapic_page = kmap(vmx->nested.virtual_apic_page);
4979 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4980 kunmap(vmx->nested.virtual_apic_page);
4981
4982 status = vmcs_read16(GUEST_INTR_STATUS);
4983 if ((u8)max_irr > ((u8)status & 0xff)) {
4984 status &= ~0xff;
4985 status |= (u8)max_irr;
4986 vmcs_write16(GUEST_INTR_STATUS, status);
4987 }
4988 }
4989 }
4990
4991 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4992 {
4993 #ifdef CONFIG_SMP
4994 if (vcpu->mode == IN_GUEST_MODE) {
4995 struct vcpu_vmx *vmx = to_vmx(vcpu);
4996
4997 /*
4998 * Currently, we don't support urgent interrupt,
4999 * all interrupts are recognized as non-urgent
5000 * interrupt, so we cannot post interrupts when
5001 * 'SN' is set.
5002 *
5003 * If the vcpu is in guest mode, it means it is
5004 * running instead of being scheduled out and
5005 * waiting in the run queue, and that's the only
5006 * case when 'SN' is set currently, warning if
5007 * 'SN' is set.
5008 */
5009 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5010
5011 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
5012 POSTED_INTR_VECTOR);
5013 return true;
5014 }
5015 #endif
5016 return false;
5017 }
5018
5019 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5020 int vector)
5021 {
5022 struct vcpu_vmx *vmx = to_vmx(vcpu);
5023
5024 if (is_guest_mode(vcpu) &&
5025 vector == vmx->nested.posted_intr_nv) {
5026 /* the PIR and ON have been set by L1. */
5027 kvm_vcpu_trigger_posted_interrupt(vcpu);
5028 /*
5029 * If a posted intr is not recognized by hardware,
5030 * we will accomplish it in the next vmentry.
5031 */
5032 vmx->nested.pi_pending = true;
5033 kvm_make_request(KVM_REQ_EVENT, vcpu);
5034 return 0;
5035 }
5036 return -1;
5037 }
5038 /*
5039 * Send interrupt to vcpu via posted interrupt way.
5040 * 1. If target vcpu is running(non-root mode), send posted interrupt
5041 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5042 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5043 * interrupt from PIR in next vmentry.
5044 */
5045 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5046 {
5047 struct vcpu_vmx *vmx = to_vmx(vcpu);
5048 int r;
5049
5050 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5051 if (!r)
5052 return;
5053
5054 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5055 return;
5056
5057 /* If a previous notification has sent the IPI, nothing to do. */
5058 if (pi_test_and_set_on(&vmx->pi_desc))
5059 return;
5060
5061 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5062 kvm_vcpu_kick(vcpu);
5063 }
5064
5065 /*
5066 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5067 * will not change in the lifetime of the guest.
5068 * Note that host-state that does change is set elsewhere. E.g., host-state
5069 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5070 */
5071 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5072 {
5073 u32 low32, high32;
5074 unsigned long tmpl;
5075 struct desc_ptr dt;
5076 unsigned long cr0, cr3, cr4;
5077
5078 cr0 = read_cr0();
5079 WARN_ON(cr0 & X86_CR0_TS);
5080 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5081
5082 /*
5083 * Save the most likely value for this task's CR3 in the VMCS.
5084 * We can't use __get_current_cr3_fast() because we're not atomic.
5085 */
5086 cr3 = __read_cr3();
5087 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5088 vmx->host_state.vmcs_host_cr3 = cr3;
5089
5090 /* Save the most likely value for this task's CR4 in the VMCS. */
5091 cr4 = cr4_read_shadow();
5092 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5093 vmx->host_state.vmcs_host_cr4 = cr4;
5094
5095 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5096 #ifdef CONFIG_X86_64
5097 /*
5098 * Load null selectors, so we can avoid reloading them in
5099 * __vmx_load_host_state(), in case userspace uses the null selectors
5100 * too (the expected case).
5101 */
5102 vmcs_write16(HOST_DS_SELECTOR, 0);
5103 vmcs_write16(HOST_ES_SELECTOR, 0);
5104 #else
5105 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5106 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5107 #endif
5108 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5109 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5110
5111 native_store_idt(&dt);
5112 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5113 vmx->host_idt_base = dt.address;
5114
5115 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5116
5117 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5118 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5119 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5120 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5121
5122 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5123 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5124 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5125 }
5126 }
5127
5128 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5129 {
5130 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5131 if (enable_ept)
5132 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5133 if (is_guest_mode(&vmx->vcpu))
5134 vmx->vcpu.arch.cr4_guest_owned_bits &=
5135 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5136 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5137 }
5138
5139 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5140 {
5141 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5142
5143 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5144 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5145 /* Enable the preemption timer dynamically */
5146 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5147 return pin_based_exec_ctrl;
5148 }
5149
5150 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5151 {
5152 struct vcpu_vmx *vmx = to_vmx(vcpu);
5153
5154 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5155 if (cpu_has_secondary_exec_ctrls()) {
5156 if (kvm_vcpu_apicv_active(vcpu))
5157 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5158 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5159 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5160 else
5161 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5162 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5163 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5164 }
5165
5166 if (cpu_has_vmx_msr_bitmap())
5167 vmx_set_msr_bitmap(vcpu);
5168 }
5169
5170 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5171 {
5172 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5173
5174 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5175 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5176
5177 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5178 exec_control &= ~CPU_BASED_TPR_SHADOW;
5179 #ifdef CONFIG_X86_64
5180 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5181 CPU_BASED_CR8_LOAD_EXITING;
5182 #endif
5183 }
5184 if (!enable_ept)
5185 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5186 CPU_BASED_CR3_LOAD_EXITING |
5187 CPU_BASED_INVLPG_EXITING;
5188 return exec_control;
5189 }
5190
5191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5192 {
5193 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5194 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5195 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5196 if (vmx->vpid == 0)
5197 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5198 if (!enable_ept) {
5199 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5200 enable_unrestricted_guest = 0;
5201 /* Enable INVPCID for non-ept guests may cause performance regression. */
5202 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5203 }
5204 if (!enable_unrestricted_guest)
5205 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5206 if (!ple_gap)
5207 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5208 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5209 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5210 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5211 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5212 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5213 (handle_vmptrld).
5214 We can NOT enable shadow_vmcs here because we don't have yet
5215 a current VMCS12
5216 */
5217 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5218
5219 if (!enable_pml)
5220 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5221
5222 return exec_control;
5223 }
5224
5225 static void ept_set_mmio_spte_mask(void)
5226 {
5227 /*
5228 * EPT Misconfigurations can be generated if the value of bits 2:0
5229 * of an EPT paging-structure entry is 110b (write/execute).
5230 */
5231 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5232 VMX_EPT_MISCONFIG_WX_VALUE);
5233 }
5234
5235 #define VMX_XSS_EXIT_BITMAP 0
5236 /*
5237 * Sets up the vmcs for emulated real mode.
5238 */
5239 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5240 {
5241 #ifdef CONFIG_X86_64
5242 unsigned long a;
5243 #endif
5244 int i;
5245
5246 /* I/O */
5247 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5248 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5249
5250 if (enable_shadow_vmcs) {
5251 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5252 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5253 }
5254 if (cpu_has_vmx_msr_bitmap())
5255 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5256
5257 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5258
5259 /* Control */
5260 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5261 vmx->hv_deadline_tsc = -1;
5262
5263 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5264
5265 if (cpu_has_secondary_exec_ctrls()) {
5266 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5267 vmx_secondary_exec_control(vmx));
5268 }
5269
5270 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5271 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5272 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5273 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5274 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5275
5276 vmcs_write16(GUEST_INTR_STATUS, 0);
5277
5278 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5279 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5280 }
5281
5282 if (ple_gap) {
5283 vmcs_write32(PLE_GAP, ple_gap);
5284 vmx->ple_window = ple_window;
5285 vmx->ple_window_dirty = true;
5286 }
5287
5288 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5289 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5290 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5291
5292 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5293 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5294 vmx_set_constant_host_state(vmx);
5295 #ifdef CONFIG_X86_64
5296 rdmsrl(MSR_FS_BASE, a);
5297 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5298 rdmsrl(MSR_GS_BASE, a);
5299 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5300 #else
5301 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5302 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5303 #endif
5304
5305 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5306 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5307 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5308 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5309 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5310
5311 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5312 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5313
5314 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5315 u32 index = vmx_msr_index[i];
5316 u32 data_low, data_high;
5317 int j = vmx->nmsrs;
5318
5319 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5320 continue;
5321 if (wrmsr_safe(index, data_low, data_high) < 0)
5322 continue;
5323 vmx->guest_msrs[j].index = i;
5324 vmx->guest_msrs[j].data = 0;
5325 vmx->guest_msrs[j].mask = -1ull;
5326 ++vmx->nmsrs;
5327 }
5328
5329
5330 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5331
5332 /* 22.2.1, 20.8.1 */
5333 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5334
5335 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5336 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5337
5338 set_cr4_guest_host_mask(vmx);
5339
5340 if (vmx_xsaves_supported())
5341 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5342
5343 if (enable_pml) {
5344 ASSERT(vmx->pml_pg);
5345 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5346 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5347 }
5348
5349 return 0;
5350 }
5351
5352 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5353 {
5354 struct vcpu_vmx *vmx = to_vmx(vcpu);
5355 struct msr_data apic_base_msr;
5356 u64 cr0;
5357
5358 vmx->rmode.vm86_active = 0;
5359
5360 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5361 kvm_set_cr8(vcpu, 0);
5362
5363 if (!init_event) {
5364 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5365 MSR_IA32_APICBASE_ENABLE;
5366 if (kvm_vcpu_is_reset_bsp(vcpu))
5367 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5368 apic_base_msr.host_initiated = true;
5369 kvm_set_apic_base(vcpu, &apic_base_msr);
5370 }
5371
5372 vmx_segment_cache_clear(vmx);
5373
5374 seg_setup(VCPU_SREG_CS);
5375 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5376 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5377
5378 seg_setup(VCPU_SREG_DS);
5379 seg_setup(VCPU_SREG_ES);
5380 seg_setup(VCPU_SREG_FS);
5381 seg_setup(VCPU_SREG_GS);
5382 seg_setup(VCPU_SREG_SS);
5383
5384 vmcs_write16(GUEST_TR_SELECTOR, 0);
5385 vmcs_writel(GUEST_TR_BASE, 0);
5386 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5387 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5388
5389 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5390 vmcs_writel(GUEST_LDTR_BASE, 0);
5391 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5392 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5393
5394 if (!init_event) {
5395 vmcs_write32(GUEST_SYSENTER_CS, 0);
5396 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5397 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5398 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5399 }
5400
5401 vmcs_writel(GUEST_RFLAGS, 0x02);
5402 kvm_rip_write(vcpu, 0xfff0);
5403
5404 vmcs_writel(GUEST_GDTR_BASE, 0);
5405 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5406
5407 vmcs_writel(GUEST_IDTR_BASE, 0);
5408 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5409
5410 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5411 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5412 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5413
5414 setup_msrs(vmx);
5415
5416 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5417
5418 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5419 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5420 if (cpu_need_tpr_shadow(vcpu))
5421 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5422 __pa(vcpu->arch.apic->regs));
5423 vmcs_write32(TPR_THRESHOLD, 0);
5424 }
5425
5426 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5427
5428 if (kvm_vcpu_apicv_active(vcpu))
5429 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5430
5431 if (vmx->vpid != 0)
5432 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5433
5434 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5435 vmx->vcpu.arch.cr0 = cr0;
5436 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5437 vmx_set_cr4(vcpu, 0);
5438 vmx_set_efer(vcpu, 0);
5439
5440 update_exception_bitmap(vcpu);
5441
5442 vpid_sync_context(vmx->vpid);
5443 }
5444
5445 /*
5446 * In nested virtualization, check if L1 asked to exit on external interrupts.
5447 * For most existing hypervisors, this will always return true.
5448 */
5449 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5450 {
5451 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5452 PIN_BASED_EXT_INTR_MASK;
5453 }
5454
5455 /*
5456 * In nested virtualization, check if L1 has set
5457 * VM_EXIT_ACK_INTR_ON_EXIT
5458 */
5459 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5460 {
5461 return get_vmcs12(vcpu)->vm_exit_controls &
5462 VM_EXIT_ACK_INTR_ON_EXIT;
5463 }
5464
5465 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5466 {
5467 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5468 PIN_BASED_NMI_EXITING;
5469 }
5470
5471 static void enable_irq_window(struct kvm_vcpu *vcpu)
5472 {
5473 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5474 CPU_BASED_VIRTUAL_INTR_PENDING);
5475 }
5476
5477 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5478 {
5479 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5480 enable_irq_window(vcpu);
5481 return;
5482 }
5483
5484 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5485 CPU_BASED_VIRTUAL_NMI_PENDING);
5486 }
5487
5488 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5489 {
5490 struct vcpu_vmx *vmx = to_vmx(vcpu);
5491 uint32_t intr;
5492 int irq = vcpu->arch.interrupt.nr;
5493
5494 trace_kvm_inj_virq(irq);
5495
5496 ++vcpu->stat.irq_injections;
5497 if (vmx->rmode.vm86_active) {
5498 int inc_eip = 0;
5499 if (vcpu->arch.interrupt.soft)
5500 inc_eip = vcpu->arch.event_exit_inst_len;
5501 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5502 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5503 return;
5504 }
5505 intr = irq | INTR_INFO_VALID_MASK;
5506 if (vcpu->arch.interrupt.soft) {
5507 intr |= INTR_TYPE_SOFT_INTR;
5508 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5509 vmx->vcpu.arch.event_exit_inst_len);
5510 } else
5511 intr |= INTR_TYPE_EXT_INTR;
5512 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5513 }
5514
5515 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5516 {
5517 struct vcpu_vmx *vmx = to_vmx(vcpu);
5518
5519 ++vcpu->stat.nmi_injections;
5520 vmx->loaded_vmcs->nmi_known_unmasked = false;
5521
5522 if (vmx->rmode.vm86_active) {
5523 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5524 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5525 return;
5526 }
5527
5528 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5529 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5530 }
5531
5532 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5533 {
5534 struct vcpu_vmx *vmx = to_vmx(vcpu);
5535 bool masked;
5536
5537 if (vmx->loaded_vmcs->nmi_known_unmasked)
5538 return false;
5539 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5540 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5541 return masked;
5542 }
5543
5544 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5545 {
5546 struct vcpu_vmx *vmx = to_vmx(vcpu);
5547
5548 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5549 if (masked)
5550 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5551 GUEST_INTR_STATE_NMI);
5552 else
5553 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5554 GUEST_INTR_STATE_NMI);
5555 }
5556
5557 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5558 {
5559 if (to_vmx(vcpu)->nested.nested_run_pending)
5560 return 0;
5561
5562 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5563 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5564 | GUEST_INTR_STATE_NMI));
5565 }
5566
5567 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5568 {
5569 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5570 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5571 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5572 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5573 }
5574
5575 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5576 {
5577 int ret;
5578
5579 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5580 PAGE_SIZE * 3);
5581 if (ret)
5582 return ret;
5583 kvm->arch.tss_addr = addr;
5584 return init_rmode_tss(kvm);
5585 }
5586
5587 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5588 {
5589 switch (vec) {
5590 case BP_VECTOR:
5591 /*
5592 * Update instruction length as we may reinject the exception
5593 * from user space while in guest debugging mode.
5594 */
5595 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5596 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5597 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5598 return false;
5599 /* fall through */
5600 case DB_VECTOR:
5601 if (vcpu->guest_debug &
5602 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5603 return false;
5604 /* fall through */
5605 case DE_VECTOR:
5606 case OF_VECTOR:
5607 case BR_VECTOR:
5608 case UD_VECTOR:
5609 case DF_VECTOR:
5610 case SS_VECTOR:
5611 case GP_VECTOR:
5612 case MF_VECTOR:
5613 return true;
5614 break;
5615 }
5616 return false;
5617 }
5618
5619 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5620 int vec, u32 err_code)
5621 {
5622 /*
5623 * Instruction with address size override prefix opcode 0x67
5624 * Cause the #SS fault with 0 error code in VM86 mode.
5625 */
5626 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5627 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5628 if (vcpu->arch.halt_request) {
5629 vcpu->arch.halt_request = 0;
5630 return kvm_vcpu_halt(vcpu);
5631 }
5632 return 1;
5633 }
5634 return 0;
5635 }
5636
5637 /*
5638 * Forward all other exceptions that are valid in real mode.
5639 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5640 * the required debugging infrastructure rework.
5641 */
5642 kvm_queue_exception(vcpu, vec);
5643 return 1;
5644 }
5645
5646 /*
5647 * Trigger machine check on the host. We assume all the MSRs are already set up
5648 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5649 * We pass a fake environment to the machine check handler because we want
5650 * the guest to be always treated like user space, no matter what context
5651 * it used internally.
5652 */
5653 static void kvm_machine_check(void)
5654 {
5655 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5656 struct pt_regs regs = {
5657 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5658 .flags = X86_EFLAGS_IF,
5659 };
5660
5661 do_machine_check(&regs, 0);
5662 #endif
5663 }
5664
5665 static int handle_machine_check(struct kvm_vcpu *vcpu)
5666 {
5667 /* already handled by vcpu_run */
5668 return 1;
5669 }
5670
5671 static int handle_exception(struct kvm_vcpu *vcpu)
5672 {
5673 struct vcpu_vmx *vmx = to_vmx(vcpu);
5674 struct kvm_run *kvm_run = vcpu->run;
5675 u32 intr_info, ex_no, error_code;
5676 unsigned long cr2, rip, dr6;
5677 u32 vect_info;
5678 enum emulation_result er;
5679
5680 vect_info = vmx->idt_vectoring_info;
5681 intr_info = vmx->exit_intr_info;
5682
5683 if (is_machine_check(intr_info))
5684 return handle_machine_check(vcpu);
5685
5686 if (is_nmi(intr_info))
5687 return 1; /* already handled by vmx_vcpu_run() */
5688
5689 if (is_invalid_opcode(intr_info)) {
5690 if (is_guest_mode(vcpu)) {
5691 kvm_queue_exception(vcpu, UD_VECTOR);
5692 return 1;
5693 }
5694 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5695 if (er != EMULATE_DONE)
5696 kvm_queue_exception(vcpu, UD_VECTOR);
5697 return 1;
5698 }
5699
5700 error_code = 0;
5701 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5702 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5703
5704 /*
5705 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5706 * MMIO, it is better to report an internal error.
5707 * See the comments in vmx_handle_exit.
5708 */
5709 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5710 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5711 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5712 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5713 vcpu->run->internal.ndata = 3;
5714 vcpu->run->internal.data[0] = vect_info;
5715 vcpu->run->internal.data[1] = intr_info;
5716 vcpu->run->internal.data[2] = error_code;
5717 return 0;
5718 }
5719
5720 if (is_page_fault(intr_info)) {
5721 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5722 /* EPT won't cause page fault directly */
5723 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5724 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5725 true);
5726 }
5727
5728 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5729
5730 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5731 return handle_rmode_exception(vcpu, ex_no, error_code);
5732
5733 switch (ex_no) {
5734 case AC_VECTOR:
5735 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5736 return 1;
5737 case DB_VECTOR:
5738 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5739 if (!(vcpu->guest_debug &
5740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5741 vcpu->arch.dr6 &= ~15;
5742 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5743 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5744 skip_emulated_instruction(vcpu);
5745
5746 kvm_queue_exception(vcpu, DB_VECTOR);
5747 return 1;
5748 }
5749 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5750 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5751 /* fall through */
5752 case BP_VECTOR:
5753 /*
5754 * Update instruction length as we may reinject #BP from
5755 * user space while in guest debugging mode. Reading it for
5756 * #DB as well causes no harm, it is not used in that case.
5757 */
5758 vmx->vcpu.arch.event_exit_inst_len =
5759 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5760 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5761 rip = kvm_rip_read(vcpu);
5762 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5763 kvm_run->debug.arch.exception = ex_no;
5764 break;
5765 default:
5766 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5767 kvm_run->ex.exception = ex_no;
5768 kvm_run->ex.error_code = error_code;
5769 break;
5770 }
5771 return 0;
5772 }
5773
5774 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5775 {
5776 ++vcpu->stat.irq_exits;
5777 return 1;
5778 }
5779
5780 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5781 {
5782 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5783 return 0;
5784 }
5785
5786 static int handle_io(struct kvm_vcpu *vcpu)
5787 {
5788 unsigned long exit_qualification;
5789 int size, in, string, ret;
5790 unsigned port;
5791
5792 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5793 string = (exit_qualification & 16) != 0;
5794 in = (exit_qualification & 8) != 0;
5795
5796 ++vcpu->stat.io_exits;
5797
5798 if (string || in)
5799 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5800
5801 port = exit_qualification >> 16;
5802 size = (exit_qualification & 7) + 1;
5803
5804 ret = kvm_skip_emulated_instruction(vcpu);
5805
5806 /*
5807 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5808 * KVM_EXIT_DEBUG here.
5809 */
5810 return kvm_fast_pio_out(vcpu, size, port) && ret;
5811 }
5812
5813 static void
5814 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5815 {
5816 /*
5817 * Patch in the VMCALL instruction:
5818 */
5819 hypercall[0] = 0x0f;
5820 hypercall[1] = 0x01;
5821 hypercall[2] = 0xc1;
5822 }
5823
5824 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5825 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5826 {
5827 if (is_guest_mode(vcpu)) {
5828 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5829 unsigned long orig_val = val;
5830
5831 /*
5832 * We get here when L2 changed cr0 in a way that did not change
5833 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5834 * but did change L0 shadowed bits. So we first calculate the
5835 * effective cr0 value that L1 would like to write into the
5836 * hardware. It consists of the L2-owned bits from the new
5837 * value combined with the L1-owned bits from L1's guest_cr0.
5838 */
5839 val = (val & ~vmcs12->cr0_guest_host_mask) |
5840 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5841
5842 if (!nested_guest_cr0_valid(vcpu, val))
5843 return 1;
5844
5845 if (kvm_set_cr0(vcpu, val))
5846 return 1;
5847 vmcs_writel(CR0_READ_SHADOW, orig_val);
5848 return 0;
5849 } else {
5850 if (to_vmx(vcpu)->nested.vmxon &&
5851 !nested_host_cr0_valid(vcpu, val))
5852 return 1;
5853
5854 return kvm_set_cr0(vcpu, val);
5855 }
5856 }
5857
5858 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5859 {
5860 if (is_guest_mode(vcpu)) {
5861 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5862 unsigned long orig_val = val;
5863
5864 /* analogously to handle_set_cr0 */
5865 val = (val & ~vmcs12->cr4_guest_host_mask) |
5866 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5867 if (kvm_set_cr4(vcpu, val))
5868 return 1;
5869 vmcs_writel(CR4_READ_SHADOW, orig_val);
5870 return 0;
5871 } else
5872 return kvm_set_cr4(vcpu, val);
5873 }
5874
5875 static int handle_cr(struct kvm_vcpu *vcpu)
5876 {
5877 unsigned long exit_qualification, val;
5878 int cr;
5879 int reg;
5880 int err;
5881 int ret;
5882
5883 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5884 cr = exit_qualification & 15;
5885 reg = (exit_qualification >> 8) & 15;
5886 switch ((exit_qualification >> 4) & 3) {
5887 case 0: /* mov to cr */
5888 val = kvm_register_readl(vcpu, reg);
5889 trace_kvm_cr_write(cr, val);
5890 switch (cr) {
5891 case 0:
5892 err = handle_set_cr0(vcpu, val);
5893 return kvm_complete_insn_gp(vcpu, err);
5894 case 3:
5895 err = kvm_set_cr3(vcpu, val);
5896 return kvm_complete_insn_gp(vcpu, err);
5897 case 4:
5898 err = handle_set_cr4(vcpu, val);
5899 return kvm_complete_insn_gp(vcpu, err);
5900 case 8: {
5901 u8 cr8_prev = kvm_get_cr8(vcpu);
5902 u8 cr8 = (u8)val;
5903 err = kvm_set_cr8(vcpu, cr8);
5904 ret = kvm_complete_insn_gp(vcpu, err);
5905 if (lapic_in_kernel(vcpu))
5906 return ret;
5907 if (cr8_prev <= cr8)
5908 return ret;
5909 /*
5910 * TODO: we might be squashing a
5911 * KVM_GUESTDBG_SINGLESTEP-triggered
5912 * KVM_EXIT_DEBUG here.
5913 */
5914 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5915 return 0;
5916 }
5917 }
5918 break;
5919 case 2: /* clts */
5920 WARN_ONCE(1, "Guest should always own CR0.TS");
5921 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5922 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5923 return kvm_skip_emulated_instruction(vcpu);
5924 case 1: /*mov from cr*/
5925 switch (cr) {
5926 case 3:
5927 val = kvm_read_cr3(vcpu);
5928 kvm_register_write(vcpu, reg, val);
5929 trace_kvm_cr_read(cr, val);
5930 return kvm_skip_emulated_instruction(vcpu);
5931 case 8:
5932 val = kvm_get_cr8(vcpu);
5933 kvm_register_write(vcpu, reg, val);
5934 trace_kvm_cr_read(cr, val);
5935 return kvm_skip_emulated_instruction(vcpu);
5936 }
5937 break;
5938 case 3: /* lmsw */
5939 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5940 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5941 kvm_lmsw(vcpu, val);
5942
5943 return kvm_skip_emulated_instruction(vcpu);
5944 default:
5945 break;
5946 }
5947 vcpu->run->exit_reason = 0;
5948 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5949 (int)(exit_qualification >> 4) & 3, cr);
5950 return 0;
5951 }
5952
5953 static int handle_dr(struct kvm_vcpu *vcpu)
5954 {
5955 unsigned long exit_qualification;
5956 int dr, dr7, reg;
5957
5958 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5959 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5960
5961 /* First, if DR does not exist, trigger UD */
5962 if (!kvm_require_dr(vcpu, dr))
5963 return 1;
5964
5965 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5966 if (!kvm_require_cpl(vcpu, 0))
5967 return 1;
5968 dr7 = vmcs_readl(GUEST_DR7);
5969 if (dr7 & DR7_GD) {
5970 /*
5971 * As the vm-exit takes precedence over the debug trap, we
5972 * need to emulate the latter, either for the host or the
5973 * guest debugging itself.
5974 */
5975 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5976 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5977 vcpu->run->debug.arch.dr7 = dr7;
5978 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5979 vcpu->run->debug.arch.exception = DB_VECTOR;
5980 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5981 return 0;
5982 } else {
5983 vcpu->arch.dr6 &= ~15;
5984 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5985 kvm_queue_exception(vcpu, DB_VECTOR);
5986 return 1;
5987 }
5988 }
5989
5990 if (vcpu->guest_debug == 0) {
5991 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5992 CPU_BASED_MOV_DR_EXITING);
5993
5994 /*
5995 * No more DR vmexits; force a reload of the debug registers
5996 * and reenter on this instruction. The next vmexit will
5997 * retrieve the full state of the debug registers.
5998 */
5999 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6000 return 1;
6001 }
6002
6003 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6004 if (exit_qualification & TYPE_MOV_FROM_DR) {
6005 unsigned long val;
6006
6007 if (kvm_get_dr(vcpu, dr, &val))
6008 return 1;
6009 kvm_register_write(vcpu, reg, val);
6010 } else
6011 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6012 return 1;
6013
6014 return kvm_skip_emulated_instruction(vcpu);
6015 }
6016
6017 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6018 {
6019 return vcpu->arch.dr6;
6020 }
6021
6022 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6023 {
6024 }
6025
6026 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6027 {
6028 get_debugreg(vcpu->arch.db[0], 0);
6029 get_debugreg(vcpu->arch.db[1], 1);
6030 get_debugreg(vcpu->arch.db[2], 2);
6031 get_debugreg(vcpu->arch.db[3], 3);
6032 get_debugreg(vcpu->arch.dr6, 6);
6033 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6034
6035 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6036 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6037 }
6038
6039 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6040 {
6041 vmcs_writel(GUEST_DR7, val);
6042 }
6043
6044 static int handle_cpuid(struct kvm_vcpu *vcpu)
6045 {
6046 return kvm_emulate_cpuid(vcpu);
6047 }
6048
6049 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6050 {
6051 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6052 struct msr_data msr_info;
6053
6054 msr_info.index = ecx;
6055 msr_info.host_initiated = false;
6056 if (vmx_get_msr(vcpu, &msr_info)) {
6057 trace_kvm_msr_read_ex(ecx);
6058 kvm_inject_gp(vcpu, 0);
6059 return 1;
6060 }
6061
6062 trace_kvm_msr_read(ecx, msr_info.data);
6063
6064 /* FIXME: handling of bits 32:63 of rax, rdx */
6065 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6066 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6067 return kvm_skip_emulated_instruction(vcpu);
6068 }
6069
6070 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6071 {
6072 struct msr_data msr;
6073 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6074 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6075 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6076
6077 msr.data = data;
6078 msr.index = ecx;
6079 msr.host_initiated = false;
6080 if (kvm_set_msr(vcpu, &msr) != 0) {
6081 trace_kvm_msr_write_ex(ecx, data);
6082 kvm_inject_gp(vcpu, 0);
6083 return 1;
6084 }
6085
6086 trace_kvm_msr_write(ecx, data);
6087 return kvm_skip_emulated_instruction(vcpu);
6088 }
6089
6090 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6091 {
6092 kvm_apic_update_ppr(vcpu);
6093 return 1;
6094 }
6095
6096 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6097 {
6098 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6099 CPU_BASED_VIRTUAL_INTR_PENDING);
6100
6101 kvm_make_request(KVM_REQ_EVENT, vcpu);
6102
6103 ++vcpu->stat.irq_window_exits;
6104 return 1;
6105 }
6106
6107 static int handle_halt(struct kvm_vcpu *vcpu)
6108 {
6109 return kvm_emulate_halt(vcpu);
6110 }
6111
6112 static int handle_vmcall(struct kvm_vcpu *vcpu)
6113 {
6114 return kvm_emulate_hypercall(vcpu);
6115 }
6116
6117 static int handle_invd(struct kvm_vcpu *vcpu)
6118 {
6119 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6120 }
6121
6122 static int handle_invlpg(struct kvm_vcpu *vcpu)
6123 {
6124 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6125
6126 kvm_mmu_invlpg(vcpu, exit_qualification);
6127 return kvm_skip_emulated_instruction(vcpu);
6128 }
6129
6130 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6131 {
6132 int err;
6133
6134 err = kvm_rdpmc(vcpu);
6135 return kvm_complete_insn_gp(vcpu, err);
6136 }
6137
6138 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6139 {
6140 return kvm_emulate_wbinvd(vcpu);
6141 }
6142
6143 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6144 {
6145 u64 new_bv = kvm_read_edx_eax(vcpu);
6146 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6147
6148 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6149 return kvm_skip_emulated_instruction(vcpu);
6150 return 1;
6151 }
6152
6153 static int handle_xsaves(struct kvm_vcpu *vcpu)
6154 {
6155 kvm_skip_emulated_instruction(vcpu);
6156 WARN(1, "this should never happen\n");
6157 return 1;
6158 }
6159
6160 static int handle_xrstors(struct kvm_vcpu *vcpu)
6161 {
6162 kvm_skip_emulated_instruction(vcpu);
6163 WARN(1, "this should never happen\n");
6164 return 1;
6165 }
6166
6167 static int handle_apic_access(struct kvm_vcpu *vcpu)
6168 {
6169 if (likely(fasteoi)) {
6170 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6171 int access_type, offset;
6172
6173 access_type = exit_qualification & APIC_ACCESS_TYPE;
6174 offset = exit_qualification & APIC_ACCESS_OFFSET;
6175 /*
6176 * Sane guest uses MOV to write EOI, with written value
6177 * not cared. So make a short-circuit here by avoiding
6178 * heavy instruction emulation.
6179 */
6180 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6181 (offset == APIC_EOI)) {
6182 kvm_lapic_set_eoi(vcpu);
6183 return kvm_skip_emulated_instruction(vcpu);
6184 }
6185 }
6186 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6187 }
6188
6189 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6190 {
6191 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6192 int vector = exit_qualification & 0xff;
6193
6194 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6195 kvm_apic_set_eoi_accelerated(vcpu, vector);
6196 return 1;
6197 }
6198
6199 static int handle_apic_write(struct kvm_vcpu *vcpu)
6200 {
6201 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6202 u32 offset = exit_qualification & 0xfff;
6203
6204 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6205 kvm_apic_write_nodecode(vcpu, offset);
6206 return 1;
6207 }
6208
6209 static int handle_task_switch(struct kvm_vcpu *vcpu)
6210 {
6211 struct vcpu_vmx *vmx = to_vmx(vcpu);
6212 unsigned long exit_qualification;
6213 bool has_error_code = false;
6214 u32 error_code = 0;
6215 u16 tss_selector;
6216 int reason, type, idt_v, idt_index;
6217
6218 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6219 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6220 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6221
6222 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6223
6224 reason = (u32)exit_qualification >> 30;
6225 if (reason == TASK_SWITCH_GATE && idt_v) {
6226 switch (type) {
6227 case INTR_TYPE_NMI_INTR:
6228 vcpu->arch.nmi_injected = false;
6229 vmx_set_nmi_mask(vcpu, true);
6230 break;
6231 case INTR_TYPE_EXT_INTR:
6232 case INTR_TYPE_SOFT_INTR:
6233 kvm_clear_interrupt_queue(vcpu);
6234 break;
6235 case INTR_TYPE_HARD_EXCEPTION:
6236 if (vmx->idt_vectoring_info &
6237 VECTORING_INFO_DELIVER_CODE_MASK) {
6238 has_error_code = true;
6239 error_code =
6240 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6241 }
6242 /* fall through */
6243 case INTR_TYPE_SOFT_EXCEPTION:
6244 kvm_clear_exception_queue(vcpu);
6245 break;
6246 default:
6247 break;
6248 }
6249 }
6250 tss_selector = exit_qualification;
6251
6252 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6253 type != INTR_TYPE_EXT_INTR &&
6254 type != INTR_TYPE_NMI_INTR))
6255 skip_emulated_instruction(vcpu);
6256
6257 if (kvm_task_switch(vcpu, tss_selector,
6258 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6259 has_error_code, error_code) == EMULATE_FAIL) {
6260 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6261 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6262 vcpu->run->internal.ndata = 0;
6263 return 0;
6264 }
6265
6266 /*
6267 * TODO: What about debug traps on tss switch?
6268 * Are we supposed to inject them and update dr6?
6269 */
6270
6271 return 1;
6272 }
6273
6274 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6275 {
6276 unsigned long exit_qualification;
6277 gpa_t gpa;
6278 u32 error_code;
6279
6280 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6281
6282 /*
6283 * EPT violation happened while executing iret from NMI,
6284 * "blocked by NMI" bit has to be set before next VM entry.
6285 * There are errata that may cause this bit to not be set:
6286 * AAK134, BY25.
6287 */
6288 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6289 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6290 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6291
6292 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6293 trace_kvm_page_fault(gpa, exit_qualification);
6294
6295 /* Is it a read fault? */
6296 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6297 ? PFERR_USER_MASK : 0;
6298 /* Is it a write fault? */
6299 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6300 ? PFERR_WRITE_MASK : 0;
6301 /* Is it a fetch fault? */
6302 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6303 ? PFERR_FETCH_MASK : 0;
6304 /* ept page table entry is present? */
6305 error_code |= (exit_qualification &
6306 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6307 EPT_VIOLATION_EXECUTABLE))
6308 ? PFERR_PRESENT_MASK : 0;
6309
6310 vcpu->arch.gpa_available = true;
6311 vcpu->arch.exit_qualification = exit_qualification;
6312
6313 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6314 }
6315
6316 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6317 {
6318 int ret;
6319 gpa_t gpa;
6320
6321 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6322 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6323 trace_kvm_fast_mmio(gpa);
6324 return kvm_skip_emulated_instruction(vcpu);
6325 }
6326
6327 ret = handle_mmio_page_fault(vcpu, gpa, true);
6328 vcpu->arch.gpa_available = true;
6329 if (likely(ret == RET_MMIO_PF_EMULATE))
6330 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6331 EMULATE_DONE;
6332
6333 if (unlikely(ret == RET_MMIO_PF_INVALID))
6334 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6335
6336 if (unlikely(ret == RET_MMIO_PF_RETRY))
6337 return 1;
6338
6339 /* It is the real ept misconfig */
6340 WARN_ON(1);
6341
6342 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6343 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6344
6345 return 0;
6346 }
6347
6348 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6349 {
6350 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6351 CPU_BASED_VIRTUAL_NMI_PENDING);
6352 ++vcpu->stat.nmi_window_exits;
6353 kvm_make_request(KVM_REQ_EVENT, vcpu);
6354
6355 return 1;
6356 }
6357
6358 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6359 {
6360 struct vcpu_vmx *vmx = to_vmx(vcpu);
6361 enum emulation_result err = EMULATE_DONE;
6362 int ret = 1;
6363 u32 cpu_exec_ctrl;
6364 bool intr_window_requested;
6365 unsigned count = 130;
6366
6367 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6368 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6369
6370 while (vmx->emulation_required && count-- != 0) {
6371 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6372 return handle_interrupt_window(&vmx->vcpu);
6373
6374 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6375 return 1;
6376
6377 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6378
6379 if (err == EMULATE_USER_EXIT) {
6380 ++vcpu->stat.mmio_exits;
6381 ret = 0;
6382 goto out;
6383 }
6384
6385 if (err != EMULATE_DONE) {
6386 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6387 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6388 vcpu->run->internal.ndata = 0;
6389 return 0;
6390 }
6391
6392 if (vcpu->arch.halt_request) {
6393 vcpu->arch.halt_request = 0;
6394 ret = kvm_vcpu_halt(vcpu);
6395 goto out;
6396 }
6397
6398 if (signal_pending(current))
6399 goto out;
6400 if (need_resched())
6401 schedule();
6402 }
6403
6404 out:
6405 return ret;
6406 }
6407
6408 static int __grow_ple_window(int val)
6409 {
6410 if (ple_window_grow < 1)
6411 return ple_window;
6412
6413 val = min(val, ple_window_actual_max);
6414
6415 if (ple_window_grow < ple_window)
6416 val *= ple_window_grow;
6417 else
6418 val += ple_window_grow;
6419
6420 return val;
6421 }
6422
6423 static int __shrink_ple_window(int val, int modifier, int minimum)
6424 {
6425 if (modifier < 1)
6426 return ple_window;
6427
6428 if (modifier < ple_window)
6429 val /= modifier;
6430 else
6431 val -= modifier;
6432
6433 return max(val, minimum);
6434 }
6435
6436 static void grow_ple_window(struct kvm_vcpu *vcpu)
6437 {
6438 struct vcpu_vmx *vmx = to_vmx(vcpu);
6439 int old = vmx->ple_window;
6440
6441 vmx->ple_window = __grow_ple_window(old);
6442
6443 if (vmx->ple_window != old)
6444 vmx->ple_window_dirty = true;
6445
6446 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6447 }
6448
6449 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6450 {
6451 struct vcpu_vmx *vmx = to_vmx(vcpu);
6452 int old = vmx->ple_window;
6453
6454 vmx->ple_window = __shrink_ple_window(old,
6455 ple_window_shrink, ple_window);
6456
6457 if (vmx->ple_window != old)
6458 vmx->ple_window_dirty = true;
6459
6460 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6461 }
6462
6463 /*
6464 * ple_window_actual_max is computed to be one grow_ple_window() below
6465 * ple_window_max. (See __grow_ple_window for the reason.)
6466 * This prevents overflows, because ple_window_max is int.
6467 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6468 * this process.
6469 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6470 */
6471 static void update_ple_window_actual_max(void)
6472 {
6473 ple_window_actual_max =
6474 __shrink_ple_window(max(ple_window_max, ple_window),
6475 ple_window_grow, INT_MIN);
6476 }
6477
6478 /*
6479 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6480 */
6481 static void wakeup_handler(void)
6482 {
6483 struct kvm_vcpu *vcpu;
6484 int cpu = smp_processor_id();
6485
6486 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6487 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6488 blocked_vcpu_list) {
6489 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6490
6491 if (pi_test_on(pi_desc) == 1)
6492 kvm_vcpu_kick(vcpu);
6493 }
6494 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6495 }
6496
6497 void vmx_enable_tdp(void)
6498 {
6499 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6500 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6501 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6502 0ull, VMX_EPT_EXECUTABLE_MASK,
6503 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6504 VMX_EPT_RWX_MASK);
6505
6506 ept_set_mmio_spte_mask();
6507 kvm_enable_tdp();
6508 }
6509
6510 static __init int hardware_setup(void)
6511 {
6512 int r = -ENOMEM, i, msr;
6513
6514 rdmsrl_safe(MSR_EFER, &host_efer);
6515
6516 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6517 kvm_define_shared_msr(i, vmx_msr_index[i]);
6518
6519 for (i = 0; i < VMX_BITMAP_NR; i++) {
6520 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6521 if (!vmx_bitmap[i])
6522 goto out;
6523 }
6524
6525 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6526 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6527 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6528
6529 /*
6530 * Allow direct access to the PC debug port (it is often used for I/O
6531 * delays, but the vmexits simply slow things down).
6532 */
6533 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6534 clear_bit(0x80, vmx_io_bitmap_a);
6535
6536 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6537
6538 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6539 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6540
6541 if (setup_vmcs_config(&vmcs_config) < 0) {
6542 r = -EIO;
6543 goto out;
6544 }
6545
6546 if (boot_cpu_has(X86_FEATURE_NX))
6547 kvm_enable_efer_bits(EFER_NX);
6548
6549 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6550 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6551 enable_vpid = 0;
6552
6553 if (!cpu_has_vmx_shadow_vmcs())
6554 enable_shadow_vmcs = 0;
6555 if (enable_shadow_vmcs)
6556 init_vmcs_shadow_fields();
6557
6558 if (!cpu_has_vmx_ept() ||
6559 !cpu_has_vmx_ept_4levels()) {
6560 enable_ept = 0;
6561 enable_unrestricted_guest = 0;
6562 enable_ept_ad_bits = 0;
6563 }
6564
6565 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6566 enable_ept_ad_bits = 0;
6567
6568 if (!cpu_has_vmx_unrestricted_guest())
6569 enable_unrestricted_guest = 0;
6570
6571 if (!cpu_has_vmx_flexpriority())
6572 flexpriority_enabled = 0;
6573
6574 /*
6575 * set_apic_access_page_addr() is used to reload apic access
6576 * page upon invalidation. No need to do anything if not
6577 * using the APIC_ACCESS_ADDR VMCS field.
6578 */
6579 if (!flexpriority_enabled)
6580 kvm_x86_ops->set_apic_access_page_addr = NULL;
6581
6582 if (!cpu_has_vmx_tpr_shadow())
6583 kvm_x86_ops->update_cr8_intercept = NULL;
6584
6585 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6586 kvm_disable_largepages();
6587
6588 if (!cpu_has_vmx_ple())
6589 ple_gap = 0;
6590
6591 if (!cpu_has_vmx_apicv()) {
6592 enable_apicv = 0;
6593 kvm_x86_ops->sync_pir_to_irr = NULL;
6594 }
6595
6596 if (cpu_has_vmx_tsc_scaling()) {
6597 kvm_has_tsc_control = true;
6598 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6599 kvm_tsc_scaling_ratio_frac_bits = 48;
6600 }
6601
6602 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6603 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6604 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6605 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6606 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6607 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6608
6609 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6610 vmx_msr_bitmap_legacy, PAGE_SIZE);
6611 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6612 vmx_msr_bitmap_longmode, PAGE_SIZE);
6613 memcpy(vmx_msr_bitmap_legacy_x2apic,
6614 vmx_msr_bitmap_legacy, PAGE_SIZE);
6615 memcpy(vmx_msr_bitmap_longmode_x2apic,
6616 vmx_msr_bitmap_longmode, PAGE_SIZE);
6617
6618 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6619
6620 for (msr = 0x800; msr <= 0x8ff; msr++) {
6621 if (msr == 0x839 /* TMCCT */)
6622 continue;
6623 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6624 }
6625
6626 /*
6627 * TPR reads and writes can be virtualized even if virtual interrupt
6628 * delivery is not in use.
6629 */
6630 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6631 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6632
6633 /* EOI */
6634 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6635 /* SELF-IPI */
6636 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6637
6638 if (enable_ept)
6639 vmx_enable_tdp();
6640 else
6641 kvm_disable_tdp();
6642
6643 update_ple_window_actual_max();
6644
6645 /*
6646 * Only enable PML when hardware supports PML feature, and both EPT
6647 * and EPT A/D bit features are enabled -- PML depends on them to work.
6648 */
6649 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6650 enable_pml = 0;
6651
6652 if (!enable_pml) {
6653 kvm_x86_ops->slot_enable_log_dirty = NULL;
6654 kvm_x86_ops->slot_disable_log_dirty = NULL;
6655 kvm_x86_ops->flush_log_dirty = NULL;
6656 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6657 }
6658
6659 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6660 u64 vmx_msr;
6661
6662 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6663 cpu_preemption_timer_multi =
6664 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6665 } else {
6666 kvm_x86_ops->set_hv_timer = NULL;
6667 kvm_x86_ops->cancel_hv_timer = NULL;
6668 }
6669
6670 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6671
6672 kvm_mce_cap_supported |= MCG_LMCE_P;
6673
6674 return alloc_kvm_area();
6675
6676 out:
6677 for (i = 0; i < VMX_BITMAP_NR; i++)
6678 free_page((unsigned long)vmx_bitmap[i]);
6679
6680 return r;
6681 }
6682
6683 static __exit void hardware_unsetup(void)
6684 {
6685 int i;
6686
6687 for (i = 0; i < VMX_BITMAP_NR; i++)
6688 free_page((unsigned long)vmx_bitmap[i]);
6689
6690 free_kvm_area();
6691 }
6692
6693 /*
6694 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6695 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6696 */
6697 static int handle_pause(struct kvm_vcpu *vcpu)
6698 {
6699 if (ple_gap)
6700 grow_ple_window(vcpu);
6701
6702 kvm_vcpu_on_spin(vcpu);
6703 return kvm_skip_emulated_instruction(vcpu);
6704 }
6705
6706 static int handle_nop(struct kvm_vcpu *vcpu)
6707 {
6708 return kvm_skip_emulated_instruction(vcpu);
6709 }
6710
6711 static int handle_mwait(struct kvm_vcpu *vcpu)
6712 {
6713 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6714 return handle_nop(vcpu);
6715 }
6716
6717 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6718 {
6719 return 1;
6720 }
6721
6722 static int handle_monitor(struct kvm_vcpu *vcpu)
6723 {
6724 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6725 return handle_nop(vcpu);
6726 }
6727
6728 /*
6729 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6730 * We could reuse a single VMCS for all the L2 guests, but we also want the
6731 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6732 * allows keeping them loaded on the processor, and in the future will allow
6733 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6734 * every entry if they never change.
6735 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6736 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6737 *
6738 * The following functions allocate and free a vmcs02 in this pool.
6739 */
6740
6741 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6742 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6743 {
6744 struct vmcs02_list *item;
6745 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6746 if (item->vmptr == vmx->nested.current_vmptr) {
6747 list_move(&item->list, &vmx->nested.vmcs02_pool);
6748 return &item->vmcs02;
6749 }
6750
6751 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6752 /* Recycle the least recently used VMCS. */
6753 item = list_last_entry(&vmx->nested.vmcs02_pool,
6754 struct vmcs02_list, list);
6755 item->vmptr = vmx->nested.current_vmptr;
6756 list_move(&item->list, &vmx->nested.vmcs02_pool);
6757 return &item->vmcs02;
6758 }
6759
6760 /* Create a new VMCS */
6761 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6762 if (!item)
6763 return NULL;
6764 item->vmcs02.vmcs = alloc_vmcs();
6765 item->vmcs02.shadow_vmcs = NULL;
6766 if (!item->vmcs02.vmcs) {
6767 kfree(item);
6768 return NULL;
6769 }
6770 loaded_vmcs_init(&item->vmcs02);
6771 item->vmptr = vmx->nested.current_vmptr;
6772 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6773 vmx->nested.vmcs02_num++;
6774 return &item->vmcs02;
6775 }
6776
6777 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6778 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6779 {
6780 struct vmcs02_list *item;
6781 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6782 if (item->vmptr == vmptr) {
6783 free_loaded_vmcs(&item->vmcs02);
6784 list_del(&item->list);
6785 kfree(item);
6786 vmx->nested.vmcs02_num--;
6787 return;
6788 }
6789 }
6790
6791 /*
6792 * Free all VMCSs saved for this vcpu, except the one pointed by
6793 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6794 * must be &vmx->vmcs01.
6795 */
6796 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6797 {
6798 struct vmcs02_list *item, *n;
6799
6800 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6801 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6802 /*
6803 * Something will leak if the above WARN triggers. Better than
6804 * a use-after-free.
6805 */
6806 if (vmx->loaded_vmcs == &item->vmcs02)
6807 continue;
6808
6809 free_loaded_vmcs(&item->vmcs02);
6810 list_del(&item->list);
6811 kfree(item);
6812 vmx->nested.vmcs02_num--;
6813 }
6814 }
6815
6816 /*
6817 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6818 * set the success or error code of an emulated VMX instruction, as specified
6819 * by Vol 2B, VMX Instruction Reference, "Conventions".
6820 */
6821 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6822 {
6823 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6824 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6825 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6826 }
6827
6828 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6829 {
6830 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6831 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6832 X86_EFLAGS_SF | X86_EFLAGS_OF))
6833 | X86_EFLAGS_CF);
6834 }
6835
6836 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6837 u32 vm_instruction_error)
6838 {
6839 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6840 /*
6841 * failValid writes the error number to the current VMCS, which
6842 * can't be done there isn't a current VMCS.
6843 */
6844 nested_vmx_failInvalid(vcpu);
6845 return;
6846 }
6847 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6848 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6849 X86_EFLAGS_SF | X86_EFLAGS_OF))
6850 | X86_EFLAGS_ZF);
6851 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6852 /*
6853 * We don't need to force a shadow sync because
6854 * VM_INSTRUCTION_ERROR is not shadowed
6855 */
6856 }
6857
6858 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6859 {
6860 /* TODO: not to reset guest simply here. */
6861 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6862 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6863 }
6864
6865 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6866 {
6867 struct vcpu_vmx *vmx =
6868 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6869
6870 vmx->nested.preemption_timer_expired = true;
6871 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6872 kvm_vcpu_kick(&vmx->vcpu);
6873
6874 return HRTIMER_NORESTART;
6875 }
6876
6877 /*
6878 * Decode the memory-address operand of a vmx instruction, as recorded on an
6879 * exit caused by such an instruction (run by a guest hypervisor).
6880 * On success, returns 0. When the operand is invalid, returns 1 and throws
6881 * #UD or #GP.
6882 */
6883 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6884 unsigned long exit_qualification,
6885 u32 vmx_instruction_info, bool wr, gva_t *ret)
6886 {
6887 gva_t off;
6888 bool exn;
6889 struct kvm_segment s;
6890
6891 /*
6892 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6893 * Execution", on an exit, vmx_instruction_info holds most of the
6894 * addressing components of the operand. Only the displacement part
6895 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6896 * For how an actual address is calculated from all these components,
6897 * refer to Vol. 1, "Operand Addressing".
6898 */
6899 int scaling = vmx_instruction_info & 3;
6900 int addr_size = (vmx_instruction_info >> 7) & 7;
6901 bool is_reg = vmx_instruction_info & (1u << 10);
6902 int seg_reg = (vmx_instruction_info >> 15) & 7;
6903 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6904 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6905 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6906 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6907
6908 if (is_reg) {
6909 kvm_queue_exception(vcpu, UD_VECTOR);
6910 return 1;
6911 }
6912
6913 /* Addr = segment_base + offset */
6914 /* offset = base + [index * scale] + displacement */
6915 off = exit_qualification; /* holds the displacement */
6916 if (base_is_valid)
6917 off += kvm_register_read(vcpu, base_reg);
6918 if (index_is_valid)
6919 off += kvm_register_read(vcpu, index_reg)<<scaling;
6920 vmx_get_segment(vcpu, &s, seg_reg);
6921 *ret = s.base + off;
6922
6923 if (addr_size == 1) /* 32 bit */
6924 *ret &= 0xffffffff;
6925
6926 /* Checks for #GP/#SS exceptions. */
6927 exn = false;
6928 if (is_long_mode(vcpu)) {
6929 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6930 * non-canonical form. This is the only check on the memory
6931 * destination for long mode!
6932 */
6933 exn = is_noncanonical_address(*ret);
6934 } else if (is_protmode(vcpu)) {
6935 /* Protected mode: apply checks for segment validity in the
6936 * following order:
6937 * - segment type check (#GP(0) may be thrown)
6938 * - usability check (#GP(0)/#SS(0))
6939 * - limit check (#GP(0)/#SS(0))
6940 */
6941 if (wr)
6942 /* #GP(0) if the destination operand is located in a
6943 * read-only data segment or any code segment.
6944 */
6945 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6946 else
6947 /* #GP(0) if the source operand is located in an
6948 * execute-only code segment
6949 */
6950 exn = ((s.type & 0xa) == 8);
6951 if (exn) {
6952 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6953 return 1;
6954 }
6955 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6956 */
6957 exn = (s.unusable != 0);
6958 /* Protected mode: #GP(0)/#SS(0) if the memory
6959 * operand is outside the segment limit.
6960 */
6961 exn = exn || (off + sizeof(u64) > s.limit);
6962 }
6963 if (exn) {
6964 kvm_queue_exception_e(vcpu,
6965 seg_reg == VCPU_SREG_SS ?
6966 SS_VECTOR : GP_VECTOR,
6967 0);
6968 return 1;
6969 }
6970
6971 return 0;
6972 }
6973
6974 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6975 {
6976 gva_t gva;
6977 struct x86_exception e;
6978
6979 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6980 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6981 return 1;
6982
6983 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6984 sizeof(*vmpointer), &e)) {
6985 kvm_inject_page_fault(vcpu, &e);
6986 return 1;
6987 }
6988
6989 return 0;
6990 }
6991
6992 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6993 {
6994 struct vcpu_vmx *vmx = to_vmx(vcpu);
6995 struct vmcs *shadow_vmcs;
6996
6997 if (cpu_has_vmx_msr_bitmap()) {
6998 vmx->nested.msr_bitmap =
6999 (unsigned long *)__get_free_page(GFP_KERNEL);
7000 if (!vmx->nested.msr_bitmap)
7001 goto out_msr_bitmap;
7002 }
7003
7004 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7005 if (!vmx->nested.cached_vmcs12)
7006 goto out_cached_vmcs12;
7007
7008 if (enable_shadow_vmcs) {
7009 shadow_vmcs = alloc_vmcs();
7010 if (!shadow_vmcs)
7011 goto out_shadow_vmcs;
7012 /* mark vmcs as shadow */
7013 shadow_vmcs->revision_id |= (1u << 31);
7014 /* init shadow vmcs */
7015 vmcs_clear(shadow_vmcs);
7016 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7017 }
7018
7019 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7020 vmx->nested.vmcs02_num = 0;
7021
7022 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7023 HRTIMER_MODE_REL_PINNED);
7024 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7025
7026 vmx->nested.vmxon = true;
7027 return 0;
7028
7029 out_shadow_vmcs:
7030 kfree(vmx->nested.cached_vmcs12);
7031
7032 out_cached_vmcs12:
7033 free_page((unsigned long)vmx->nested.msr_bitmap);
7034
7035 out_msr_bitmap:
7036 return -ENOMEM;
7037 }
7038
7039 /*
7040 * Emulate the VMXON instruction.
7041 * Currently, we just remember that VMX is active, and do not save or even
7042 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7043 * do not currently need to store anything in that guest-allocated memory
7044 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7045 * argument is different from the VMXON pointer (which the spec says they do).
7046 */
7047 static int handle_vmon(struct kvm_vcpu *vcpu)
7048 {
7049 int ret;
7050 gpa_t vmptr;
7051 struct page *page;
7052 struct vcpu_vmx *vmx = to_vmx(vcpu);
7053 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7054 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7055
7056 /*
7057 * The Intel VMX Instruction Reference lists a bunch of bits that are
7058 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7059 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7060 * Otherwise, we should fail with #UD. But most faulting conditions
7061 * have already been checked by hardware, prior to the VM-exit for
7062 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7063 * that bit set to 1 in non-root mode.
7064 */
7065 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7066 kvm_queue_exception(vcpu, UD_VECTOR);
7067 return 1;
7068 }
7069
7070 if (vmx->nested.vmxon) {
7071 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7072 return kvm_skip_emulated_instruction(vcpu);
7073 }
7074
7075 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7076 != VMXON_NEEDED_FEATURES) {
7077 kvm_inject_gp(vcpu, 0);
7078 return 1;
7079 }
7080
7081 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7082 return 1;
7083
7084 /*
7085 * SDM 3: 24.11.5
7086 * The first 4 bytes of VMXON region contain the supported
7087 * VMCS revision identifier
7088 *
7089 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7090 * which replaces physical address width with 32
7091 */
7092 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7093 nested_vmx_failInvalid(vcpu);
7094 return kvm_skip_emulated_instruction(vcpu);
7095 }
7096
7097 page = nested_get_page(vcpu, vmptr);
7098 if (page == NULL) {
7099 nested_vmx_failInvalid(vcpu);
7100 return kvm_skip_emulated_instruction(vcpu);
7101 }
7102 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7103 kunmap(page);
7104 nested_release_page_clean(page);
7105 nested_vmx_failInvalid(vcpu);
7106 return kvm_skip_emulated_instruction(vcpu);
7107 }
7108 kunmap(page);
7109 nested_release_page_clean(page);
7110
7111 vmx->nested.vmxon_ptr = vmptr;
7112 ret = enter_vmx_operation(vcpu);
7113 if (ret)
7114 return ret;
7115
7116 nested_vmx_succeed(vcpu);
7117 return kvm_skip_emulated_instruction(vcpu);
7118 }
7119
7120 /*
7121 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7122 * for running VMX instructions (except VMXON, whose prerequisites are
7123 * slightly different). It also specifies what exception to inject otherwise.
7124 * Note that many of these exceptions have priority over VM exits, so they
7125 * don't have to be checked again here.
7126 */
7127 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7128 {
7129 if (!to_vmx(vcpu)->nested.vmxon) {
7130 kvm_queue_exception(vcpu, UD_VECTOR);
7131 return 0;
7132 }
7133 return 1;
7134 }
7135
7136 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7137 {
7138 if (vmx->nested.current_vmptr == -1ull)
7139 return;
7140
7141 /* current_vmptr and current_vmcs12 are always set/reset together */
7142 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7143 return;
7144
7145 if (enable_shadow_vmcs) {
7146 /* copy to memory all shadowed fields in case
7147 they were modified */
7148 copy_shadow_to_vmcs12(vmx);
7149 vmx->nested.sync_shadow_vmcs = false;
7150 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7151 SECONDARY_EXEC_SHADOW_VMCS);
7152 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7153 }
7154 vmx->nested.posted_intr_nv = -1;
7155
7156 /* Flush VMCS12 to guest memory */
7157 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7158 VMCS12_SIZE);
7159
7160 kunmap(vmx->nested.current_vmcs12_page);
7161 nested_release_page(vmx->nested.current_vmcs12_page);
7162 vmx->nested.current_vmptr = -1ull;
7163 vmx->nested.current_vmcs12 = NULL;
7164 }
7165
7166 /*
7167 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7168 * just stops using VMX.
7169 */
7170 static void free_nested(struct vcpu_vmx *vmx)
7171 {
7172 if (!vmx->nested.vmxon)
7173 return;
7174
7175 vmx->nested.vmxon = false;
7176 free_vpid(vmx->nested.vpid02);
7177 nested_release_vmcs12(vmx);
7178 if (vmx->nested.msr_bitmap) {
7179 free_page((unsigned long)vmx->nested.msr_bitmap);
7180 vmx->nested.msr_bitmap = NULL;
7181 }
7182 if (enable_shadow_vmcs) {
7183 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7184 free_vmcs(vmx->vmcs01.shadow_vmcs);
7185 vmx->vmcs01.shadow_vmcs = NULL;
7186 }
7187 kfree(vmx->nested.cached_vmcs12);
7188 /* Unpin physical memory we referred to in current vmcs02 */
7189 if (vmx->nested.apic_access_page) {
7190 nested_release_page(vmx->nested.apic_access_page);
7191 vmx->nested.apic_access_page = NULL;
7192 }
7193 if (vmx->nested.virtual_apic_page) {
7194 nested_release_page(vmx->nested.virtual_apic_page);
7195 vmx->nested.virtual_apic_page = NULL;
7196 }
7197 if (vmx->nested.pi_desc_page) {
7198 kunmap(vmx->nested.pi_desc_page);
7199 nested_release_page(vmx->nested.pi_desc_page);
7200 vmx->nested.pi_desc_page = NULL;
7201 vmx->nested.pi_desc = NULL;
7202 }
7203
7204 nested_free_all_saved_vmcss(vmx);
7205 }
7206
7207 /* Emulate the VMXOFF instruction */
7208 static int handle_vmoff(struct kvm_vcpu *vcpu)
7209 {
7210 if (!nested_vmx_check_permission(vcpu))
7211 return 1;
7212 free_nested(to_vmx(vcpu));
7213 nested_vmx_succeed(vcpu);
7214 return kvm_skip_emulated_instruction(vcpu);
7215 }
7216
7217 /* Emulate the VMCLEAR instruction */
7218 static int handle_vmclear(struct kvm_vcpu *vcpu)
7219 {
7220 struct vcpu_vmx *vmx = to_vmx(vcpu);
7221 u32 zero = 0;
7222 gpa_t vmptr;
7223
7224 if (!nested_vmx_check_permission(vcpu))
7225 return 1;
7226
7227 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7228 return 1;
7229
7230 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7231 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7232 return kvm_skip_emulated_instruction(vcpu);
7233 }
7234
7235 if (vmptr == vmx->nested.vmxon_ptr) {
7236 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7237 return kvm_skip_emulated_instruction(vcpu);
7238 }
7239
7240 if (vmptr == vmx->nested.current_vmptr)
7241 nested_release_vmcs12(vmx);
7242
7243 kvm_vcpu_write_guest(vcpu,
7244 vmptr + offsetof(struct vmcs12, launch_state),
7245 &zero, sizeof(zero));
7246
7247 nested_free_vmcs02(vmx, vmptr);
7248
7249 nested_vmx_succeed(vcpu);
7250 return kvm_skip_emulated_instruction(vcpu);
7251 }
7252
7253 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7254
7255 /* Emulate the VMLAUNCH instruction */
7256 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7257 {
7258 return nested_vmx_run(vcpu, true);
7259 }
7260
7261 /* Emulate the VMRESUME instruction */
7262 static int handle_vmresume(struct kvm_vcpu *vcpu)
7263 {
7264
7265 return nested_vmx_run(vcpu, false);
7266 }
7267
7268 /*
7269 * Read a vmcs12 field. Since these can have varying lengths and we return
7270 * one type, we chose the biggest type (u64) and zero-extend the return value
7271 * to that size. Note that the caller, handle_vmread, might need to use only
7272 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7273 * 64-bit fields are to be returned).
7274 */
7275 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7276 unsigned long field, u64 *ret)
7277 {
7278 short offset = vmcs_field_to_offset(field);
7279 char *p;
7280
7281 if (offset < 0)
7282 return offset;
7283
7284 p = ((char *)(get_vmcs12(vcpu))) + offset;
7285
7286 switch (vmcs_field_type(field)) {
7287 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7288 *ret = *((natural_width *)p);
7289 return 0;
7290 case VMCS_FIELD_TYPE_U16:
7291 *ret = *((u16 *)p);
7292 return 0;
7293 case VMCS_FIELD_TYPE_U32:
7294 *ret = *((u32 *)p);
7295 return 0;
7296 case VMCS_FIELD_TYPE_U64:
7297 *ret = *((u64 *)p);
7298 return 0;
7299 default:
7300 WARN_ON(1);
7301 return -ENOENT;
7302 }
7303 }
7304
7305
7306 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7307 unsigned long field, u64 field_value){
7308 short offset = vmcs_field_to_offset(field);
7309 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7310 if (offset < 0)
7311 return offset;
7312
7313 switch (vmcs_field_type(field)) {
7314 case VMCS_FIELD_TYPE_U16:
7315 *(u16 *)p = field_value;
7316 return 0;
7317 case VMCS_FIELD_TYPE_U32:
7318 *(u32 *)p = field_value;
7319 return 0;
7320 case VMCS_FIELD_TYPE_U64:
7321 *(u64 *)p = field_value;
7322 return 0;
7323 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7324 *(natural_width *)p = field_value;
7325 return 0;
7326 default:
7327 WARN_ON(1);
7328 return -ENOENT;
7329 }
7330
7331 }
7332
7333 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7334 {
7335 int i;
7336 unsigned long field;
7337 u64 field_value;
7338 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7339 const unsigned long *fields = shadow_read_write_fields;
7340 const int num_fields = max_shadow_read_write_fields;
7341
7342 preempt_disable();
7343
7344 vmcs_load(shadow_vmcs);
7345
7346 for (i = 0; i < num_fields; i++) {
7347 field = fields[i];
7348 switch (vmcs_field_type(field)) {
7349 case VMCS_FIELD_TYPE_U16:
7350 field_value = vmcs_read16(field);
7351 break;
7352 case VMCS_FIELD_TYPE_U32:
7353 field_value = vmcs_read32(field);
7354 break;
7355 case VMCS_FIELD_TYPE_U64:
7356 field_value = vmcs_read64(field);
7357 break;
7358 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7359 field_value = vmcs_readl(field);
7360 break;
7361 default:
7362 WARN_ON(1);
7363 continue;
7364 }
7365 vmcs12_write_any(&vmx->vcpu, field, field_value);
7366 }
7367
7368 vmcs_clear(shadow_vmcs);
7369 vmcs_load(vmx->loaded_vmcs->vmcs);
7370
7371 preempt_enable();
7372 }
7373
7374 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7375 {
7376 const unsigned long *fields[] = {
7377 shadow_read_write_fields,
7378 shadow_read_only_fields
7379 };
7380 const int max_fields[] = {
7381 max_shadow_read_write_fields,
7382 max_shadow_read_only_fields
7383 };
7384 int i, q;
7385 unsigned long field;
7386 u64 field_value = 0;
7387 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7388
7389 vmcs_load(shadow_vmcs);
7390
7391 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7392 for (i = 0; i < max_fields[q]; i++) {
7393 field = fields[q][i];
7394 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7395
7396 switch (vmcs_field_type(field)) {
7397 case VMCS_FIELD_TYPE_U16:
7398 vmcs_write16(field, (u16)field_value);
7399 break;
7400 case VMCS_FIELD_TYPE_U32:
7401 vmcs_write32(field, (u32)field_value);
7402 break;
7403 case VMCS_FIELD_TYPE_U64:
7404 vmcs_write64(field, (u64)field_value);
7405 break;
7406 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7407 vmcs_writel(field, (long)field_value);
7408 break;
7409 default:
7410 WARN_ON(1);
7411 break;
7412 }
7413 }
7414 }
7415
7416 vmcs_clear(shadow_vmcs);
7417 vmcs_load(vmx->loaded_vmcs->vmcs);
7418 }
7419
7420 /*
7421 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7422 * used before) all generate the same failure when it is missing.
7423 */
7424 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7425 {
7426 struct vcpu_vmx *vmx = to_vmx(vcpu);
7427 if (vmx->nested.current_vmptr == -1ull) {
7428 nested_vmx_failInvalid(vcpu);
7429 return 0;
7430 }
7431 return 1;
7432 }
7433
7434 static int handle_vmread(struct kvm_vcpu *vcpu)
7435 {
7436 unsigned long field;
7437 u64 field_value;
7438 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7439 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7440 gva_t gva = 0;
7441
7442 if (!nested_vmx_check_permission(vcpu))
7443 return 1;
7444
7445 if (!nested_vmx_check_vmcs12(vcpu))
7446 return kvm_skip_emulated_instruction(vcpu);
7447
7448 /* Decode instruction info and find the field to read */
7449 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7450 /* Read the field, zero-extended to a u64 field_value */
7451 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7452 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7453 return kvm_skip_emulated_instruction(vcpu);
7454 }
7455 /*
7456 * Now copy part of this value to register or memory, as requested.
7457 * Note that the number of bits actually copied is 32 or 64 depending
7458 * on the guest's mode (32 or 64 bit), not on the given field's length.
7459 */
7460 if (vmx_instruction_info & (1u << 10)) {
7461 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7462 field_value);
7463 } else {
7464 if (get_vmx_mem_address(vcpu, exit_qualification,
7465 vmx_instruction_info, true, &gva))
7466 return 1;
7467 /* _system ok, as hardware has verified cpl=0 */
7468 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7469 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7470 }
7471
7472 nested_vmx_succeed(vcpu);
7473 return kvm_skip_emulated_instruction(vcpu);
7474 }
7475
7476
7477 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7478 {
7479 unsigned long field;
7480 gva_t gva;
7481 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7482 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7483 /* The value to write might be 32 or 64 bits, depending on L1's long
7484 * mode, and eventually we need to write that into a field of several
7485 * possible lengths. The code below first zero-extends the value to 64
7486 * bit (field_value), and then copies only the appropriate number of
7487 * bits into the vmcs12 field.
7488 */
7489 u64 field_value = 0;
7490 struct x86_exception e;
7491
7492 if (!nested_vmx_check_permission(vcpu))
7493 return 1;
7494
7495 if (!nested_vmx_check_vmcs12(vcpu))
7496 return kvm_skip_emulated_instruction(vcpu);
7497
7498 if (vmx_instruction_info & (1u << 10))
7499 field_value = kvm_register_readl(vcpu,
7500 (((vmx_instruction_info) >> 3) & 0xf));
7501 else {
7502 if (get_vmx_mem_address(vcpu, exit_qualification,
7503 vmx_instruction_info, false, &gva))
7504 return 1;
7505 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7506 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7507 kvm_inject_page_fault(vcpu, &e);
7508 return 1;
7509 }
7510 }
7511
7512
7513 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7514 if (vmcs_field_readonly(field)) {
7515 nested_vmx_failValid(vcpu,
7516 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7517 return kvm_skip_emulated_instruction(vcpu);
7518 }
7519
7520 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7521 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7522 return kvm_skip_emulated_instruction(vcpu);
7523 }
7524
7525 nested_vmx_succeed(vcpu);
7526 return kvm_skip_emulated_instruction(vcpu);
7527 }
7528
7529 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7530 {
7531 vmx->nested.current_vmptr = vmptr;
7532 if (enable_shadow_vmcs) {
7533 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7534 SECONDARY_EXEC_SHADOW_VMCS);
7535 vmcs_write64(VMCS_LINK_POINTER,
7536 __pa(vmx->vmcs01.shadow_vmcs));
7537 vmx->nested.sync_shadow_vmcs = true;
7538 }
7539 }
7540
7541 /* Emulate the VMPTRLD instruction */
7542 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7543 {
7544 struct vcpu_vmx *vmx = to_vmx(vcpu);
7545 gpa_t vmptr;
7546
7547 if (!nested_vmx_check_permission(vcpu))
7548 return 1;
7549
7550 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7551 return 1;
7552
7553 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7554 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7555 return kvm_skip_emulated_instruction(vcpu);
7556 }
7557
7558 if (vmptr == vmx->nested.vmxon_ptr) {
7559 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7560 return kvm_skip_emulated_instruction(vcpu);
7561 }
7562
7563 if (vmx->nested.current_vmptr != vmptr) {
7564 struct vmcs12 *new_vmcs12;
7565 struct page *page;
7566 page = nested_get_page(vcpu, vmptr);
7567 if (page == NULL) {
7568 nested_vmx_failInvalid(vcpu);
7569 return kvm_skip_emulated_instruction(vcpu);
7570 }
7571 new_vmcs12 = kmap(page);
7572 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7573 kunmap(page);
7574 nested_release_page_clean(page);
7575 nested_vmx_failValid(vcpu,
7576 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7577 return kvm_skip_emulated_instruction(vcpu);
7578 }
7579
7580 nested_release_vmcs12(vmx);
7581 vmx->nested.current_vmcs12 = new_vmcs12;
7582 vmx->nested.current_vmcs12_page = page;
7583 /*
7584 * Load VMCS12 from guest memory since it is not already
7585 * cached.
7586 */
7587 memcpy(vmx->nested.cached_vmcs12,
7588 vmx->nested.current_vmcs12, VMCS12_SIZE);
7589 set_current_vmptr(vmx, vmptr);
7590 }
7591
7592 nested_vmx_succeed(vcpu);
7593 return kvm_skip_emulated_instruction(vcpu);
7594 }
7595
7596 /* Emulate the VMPTRST instruction */
7597 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7598 {
7599 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7600 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7601 gva_t vmcs_gva;
7602 struct x86_exception e;
7603
7604 if (!nested_vmx_check_permission(vcpu))
7605 return 1;
7606
7607 if (get_vmx_mem_address(vcpu, exit_qualification,
7608 vmx_instruction_info, true, &vmcs_gva))
7609 return 1;
7610 /* ok to use *_system, as hardware has verified cpl=0 */
7611 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7612 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7613 sizeof(u64), &e)) {
7614 kvm_inject_page_fault(vcpu, &e);
7615 return 1;
7616 }
7617 nested_vmx_succeed(vcpu);
7618 return kvm_skip_emulated_instruction(vcpu);
7619 }
7620
7621 /* Emulate the INVEPT instruction */
7622 static int handle_invept(struct kvm_vcpu *vcpu)
7623 {
7624 struct vcpu_vmx *vmx = to_vmx(vcpu);
7625 u32 vmx_instruction_info, types;
7626 unsigned long type;
7627 gva_t gva;
7628 struct x86_exception e;
7629 struct {
7630 u64 eptp, gpa;
7631 } operand;
7632
7633 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7634 SECONDARY_EXEC_ENABLE_EPT) ||
7635 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7636 kvm_queue_exception(vcpu, UD_VECTOR);
7637 return 1;
7638 }
7639
7640 if (!nested_vmx_check_permission(vcpu))
7641 return 1;
7642
7643 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7644 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7645
7646 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7647
7648 if (type >= 32 || !(types & (1 << type))) {
7649 nested_vmx_failValid(vcpu,
7650 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7651 return kvm_skip_emulated_instruction(vcpu);
7652 }
7653
7654 /* According to the Intel VMX instruction reference, the memory
7655 * operand is read even if it isn't needed (e.g., for type==global)
7656 */
7657 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7658 vmx_instruction_info, false, &gva))
7659 return 1;
7660 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7661 sizeof(operand), &e)) {
7662 kvm_inject_page_fault(vcpu, &e);
7663 return 1;
7664 }
7665
7666 switch (type) {
7667 case VMX_EPT_EXTENT_GLOBAL:
7668 /*
7669 * TODO: track mappings and invalidate
7670 * single context requests appropriately
7671 */
7672 case VMX_EPT_EXTENT_CONTEXT:
7673 kvm_mmu_sync_roots(vcpu);
7674 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7675 nested_vmx_succeed(vcpu);
7676 break;
7677 default:
7678 BUG_ON(1);
7679 break;
7680 }
7681
7682 return kvm_skip_emulated_instruction(vcpu);
7683 }
7684
7685 static int handle_invvpid(struct kvm_vcpu *vcpu)
7686 {
7687 struct vcpu_vmx *vmx = to_vmx(vcpu);
7688 u32 vmx_instruction_info;
7689 unsigned long type, types;
7690 gva_t gva;
7691 struct x86_exception e;
7692 struct {
7693 u64 vpid;
7694 u64 gla;
7695 } operand;
7696
7697 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7698 SECONDARY_EXEC_ENABLE_VPID) ||
7699 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7700 kvm_queue_exception(vcpu, UD_VECTOR);
7701 return 1;
7702 }
7703
7704 if (!nested_vmx_check_permission(vcpu))
7705 return 1;
7706
7707 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7708 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7709
7710 types = (vmx->nested.nested_vmx_vpid_caps &
7711 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7712
7713 if (type >= 32 || !(types & (1 << type))) {
7714 nested_vmx_failValid(vcpu,
7715 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7716 return kvm_skip_emulated_instruction(vcpu);
7717 }
7718
7719 /* according to the intel vmx instruction reference, the memory
7720 * operand is read even if it isn't needed (e.g., for type==global)
7721 */
7722 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7723 vmx_instruction_info, false, &gva))
7724 return 1;
7725 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7726 sizeof(operand), &e)) {
7727 kvm_inject_page_fault(vcpu, &e);
7728 return 1;
7729 }
7730 if (operand.vpid >> 16) {
7731 nested_vmx_failValid(vcpu,
7732 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7733 return kvm_skip_emulated_instruction(vcpu);
7734 }
7735
7736 switch (type) {
7737 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7738 if (is_noncanonical_address(operand.gla)) {
7739 nested_vmx_failValid(vcpu,
7740 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7741 return kvm_skip_emulated_instruction(vcpu);
7742 }
7743 /* fall through */
7744 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7745 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7746 if (!operand.vpid) {
7747 nested_vmx_failValid(vcpu,
7748 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7749 return kvm_skip_emulated_instruction(vcpu);
7750 }
7751 break;
7752 case VMX_VPID_EXTENT_ALL_CONTEXT:
7753 break;
7754 default:
7755 WARN_ON_ONCE(1);
7756 return kvm_skip_emulated_instruction(vcpu);
7757 }
7758
7759 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7760 nested_vmx_succeed(vcpu);
7761
7762 return kvm_skip_emulated_instruction(vcpu);
7763 }
7764
7765 static int handle_pml_full(struct kvm_vcpu *vcpu)
7766 {
7767 unsigned long exit_qualification;
7768
7769 trace_kvm_pml_full(vcpu->vcpu_id);
7770
7771 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7772
7773 /*
7774 * PML buffer FULL happened while executing iret from NMI,
7775 * "blocked by NMI" bit has to be set before next VM entry.
7776 */
7777 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7778 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7779 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7780 GUEST_INTR_STATE_NMI);
7781
7782 /*
7783 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7784 * here.., and there's no userspace involvement needed for PML.
7785 */
7786 return 1;
7787 }
7788
7789 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7790 {
7791 kvm_lapic_expired_hv_timer(vcpu);
7792 return 1;
7793 }
7794
7795 /*
7796 * The exit handlers return 1 if the exit was handled fully and guest execution
7797 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7798 * to be done to userspace and return 0.
7799 */
7800 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7801 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7802 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7803 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7804 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7805 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7806 [EXIT_REASON_CR_ACCESS] = handle_cr,
7807 [EXIT_REASON_DR_ACCESS] = handle_dr,
7808 [EXIT_REASON_CPUID] = handle_cpuid,
7809 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7810 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7811 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7812 [EXIT_REASON_HLT] = handle_halt,
7813 [EXIT_REASON_INVD] = handle_invd,
7814 [EXIT_REASON_INVLPG] = handle_invlpg,
7815 [EXIT_REASON_RDPMC] = handle_rdpmc,
7816 [EXIT_REASON_VMCALL] = handle_vmcall,
7817 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7818 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7819 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7820 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7821 [EXIT_REASON_VMREAD] = handle_vmread,
7822 [EXIT_REASON_VMRESUME] = handle_vmresume,
7823 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7824 [EXIT_REASON_VMOFF] = handle_vmoff,
7825 [EXIT_REASON_VMON] = handle_vmon,
7826 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7827 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7828 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7829 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7830 [EXIT_REASON_WBINVD] = handle_wbinvd,
7831 [EXIT_REASON_XSETBV] = handle_xsetbv,
7832 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7833 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7834 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7835 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7836 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7837 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7838 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7839 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7840 [EXIT_REASON_INVEPT] = handle_invept,
7841 [EXIT_REASON_INVVPID] = handle_invvpid,
7842 [EXIT_REASON_XSAVES] = handle_xsaves,
7843 [EXIT_REASON_XRSTORS] = handle_xrstors,
7844 [EXIT_REASON_PML_FULL] = handle_pml_full,
7845 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7846 };
7847
7848 static const int kvm_vmx_max_exit_handlers =
7849 ARRAY_SIZE(kvm_vmx_exit_handlers);
7850
7851 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7852 struct vmcs12 *vmcs12)
7853 {
7854 unsigned long exit_qualification;
7855 gpa_t bitmap, last_bitmap;
7856 unsigned int port;
7857 int size;
7858 u8 b;
7859
7860 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7861 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7862
7863 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7864
7865 port = exit_qualification >> 16;
7866 size = (exit_qualification & 7) + 1;
7867
7868 last_bitmap = (gpa_t)-1;
7869 b = -1;
7870
7871 while (size > 0) {
7872 if (port < 0x8000)
7873 bitmap = vmcs12->io_bitmap_a;
7874 else if (port < 0x10000)
7875 bitmap = vmcs12->io_bitmap_b;
7876 else
7877 return true;
7878 bitmap += (port & 0x7fff) / 8;
7879
7880 if (last_bitmap != bitmap)
7881 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7882 return true;
7883 if (b & (1 << (port & 7)))
7884 return true;
7885
7886 port++;
7887 size--;
7888 last_bitmap = bitmap;
7889 }
7890
7891 return false;
7892 }
7893
7894 /*
7895 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7896 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7897 * disinterest in the current event (read or write a specific MSR) by using an
7898 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7899 */
7900 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7901 struct vmcs12 *vmcs12, u32 exit_reason)
7902 {
7903 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7904 gpa_t bitmap;
7905
7906 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7907 return true;
7908
7909 /*
7910 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7911 * for the four combinations of read/write and low/high MSR numbers.
7912 * First we need to figure out which of the four to use:
7913 */
7914 bitmap = vmcs12->msr_bitmap;
7915 if (exit_reason == EXIT_REASON_MSR_WRITE)
7916 bitmap += 2048;
7917 if (msr_index >= 0xc0000000) {
7918 msr_index -= 0xc0000000;
7919 bitmap += 1024;
7920 }
7921
7922 /* Then read the msr_index'th bit from this bitmap: */
7923 if (msr_index < 1024*8) {
7924 unsigned char b;
7925 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7926 return true;
7927 return 1 & (b >> (msr_index & 7));
7928 } else
7929 return true; /* let L1 handle the wrong parameter */
7930 }
7931
7932 /*
7933 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7934 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7935 * intercept (via guest_host_mask etc.) the current event.
7936 */
7937 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7938 struct vmcs12 *vmcs12)
7939 {
7940 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7941 int cr = exit_qualification & 15;
7942 int reg;
7943 unsigned long val;
7944
7945 switch ((exit_qualification >> 4) & 3) {
7946 case 0: /* mov to cr */
7947 reg = (exit_qualification >> 8) & 15;
7948 val = kvm_register_readl(vcpu, reg);
7949 switch (cr) {
7950 case 0:
7951 if (vmcs12->cr0_guest_host_mask &
7952 (val ^ vmcs12->cr0_read_shadow))
7953 return true;
7954 break;
7955 case 3:
7956 if ((vmcs12->cr3_target_count >= 1 &&
7957 vmcs12->cr3_target_value0 == val) ||
7958 (vmcs12->cr3_target_count >= 2 &&
7959 vmcs12->cr3_target_value1 == val) ||
7960 (vmcs12->cr3_target_count >= 3 &&
7961 vmcs12->cr3_target_value2 == val) ||
7962 (vmcs12->cr3_target_count >= 4 &&
7963 vmcs12->cr3_target_value3 == val))
7964 return false;
7965 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7966 return true;
7967 break;
7968 case 4:
7969 if (vmcs12->cr4_guest_host_mask &
7970 (vmcs12->cr4_read_shadow ^ val))
7971 return true;
7972 break;
7973 case 8:
7974 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7975 return true;
7976 break;
7977 }
7978 break;
7979 case 2: /* clts */
7980 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7981 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7982 return true;
7983 break;
7984 case 1: /* mov from cr */
7985 switch (cr) {
7986 case 3:
7987 if (vmcs12->cpu_based_vm_exec_control &
7988 CPU_BASED_CR3_STORE_EXITING)
7989 return true;
7990 break;
7991 case 8:
7992 if (vmcs12->cpu_based_vm_exec_control &
7993 CPU_BASED_CR8_STORE_EXITING)
7994 return true;
7995 break;
7996 }
7997 break;
7998 case 3: /* lmsw */
7999 /*
8000 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8001 * cr0. Other attempted changes are ignored, with no exit.
8002 */
8003 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8004 if (vmcs12->cr0_guest_host_mask & 0xe &
8005 (val ^ vmcs12->cr0_read_shadow))
8006 return true;
8007 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8008 !(vmcs12->cr0_read_shadow & 0x1) &&
8009 (val & 0x1))
8010 return true;
8011 break;
8012 }
8013 return false;
8014 }
8015
8016 /*
8017 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8018 * should handle it ourselves in L0 (and then continue L2). Only call this
8019 * when in is_guest_mode (L2).
8020 */
8021 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8022 {
8023 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8024 struct vcpu_vmx *vmx = to_vmx(vcpu);
8025 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8026 u32 exit_reason = vmx->exit_reason;
8027
8028 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8029 vmcs_readl(EXIT_QUALIFICATION),
8030 vmx->idt_vectoring_info,
8031 intr_info,
8032 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8033 KVM_ISA_VMX);
8034
8035 if (vmx->nested.nested_run_pending)
8036 return false;
8037
8038 if (unlikely(vmx->fail)) {
8039 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8040 vmcs_read32(VM_INSTRUCTION_ERROR));
8041 return true;
8042 }
8043
8044 switch (exit_reason) {
8045 case EXIT_REASON_EXCEPTION_NMI:
8046 if (is_nmi(intr_info))
8047 return false;
8048 else if (is_page_fault(intr_info))
8049 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8050 else if (is_no_device(intr_info) &&
8051 !(vmcs12->guest_cr0 & X86_CR0_TS))
8052 return false;
8053 else if (is_debug(intr_info) &&
8054 vcpu->guest_debug &
8055 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8056 return false;
8057 else if (is_breakpoint(intr_info) &&
8058 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8059 return false;
8060 return vmcs12->exception_bitmap &
8061 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8062 case EXIT_REASON_EXTERNAL_INTERRUPT:
8063 return false;
8064 case EXIT_REASON_TRIPLE_FAULT:
8065 return true;
8066 case EXIT_REASON_PENDING_INTERRUPT:
8067 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8068 case EXIT_REASON_NMI_WINDOW:
8069 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8070 case EXIT_REASON_TASK_SWITCH:
8071 return true;
8072 case EXIT_REASON_CPUID:
8073 return true;
8074 case EXIT_REASON_HLT:
8075 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8076 case EXIT_REASON_INVD:
8077 return true;
8078 case EXIT_REASON_INVLPG:
8079 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8080 case EXIT_REASON_RDPMC:
8081 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8082 case EXIT_REASON_RDRAND:
8083 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8084 case EXIT_REASON_RDSEED:
8085 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8086 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8087 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8088 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8089 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8090 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8091 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8092 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8093 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8094 /*
8095 * VMX instructions trap unconditionally. This allows L1 to
8096 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8097 */
8098 return true;
8099 case EXIT_REASON_CR_ACCESS:
8100 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8101 case EXIT_REASON_DR_ACCESS:
8102 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8103 case EXIT_REASON_IO_INSTRUCTION:
8104 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8105 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8106 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8107 case EXIT_REASON_MSR_READ:
8108 case EXIT_REASON_MSR_WRITE:
8109 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8110 case EXIT_REASON_INVALID_STATE:
8111 return true;
8112 case EXIT_REASON_MWAIT_INSTRUCTION:
8113 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8114 case EXIT_REASON_MONITOR_TRAP_FLAG:
8115 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8116 case EXIT_REASON_MONITOR_INSTRUCTION:
8117 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8118 case EXIT_REASON_PAUSE_INSTRUCTION:
8119 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8120 nested_cpu_has2(vmcs12,
8121 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8122 case EXIT_REASON_MCE_DURING_VMENTRY:
8123 return false;
8124 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8125 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8126 case EXIT_REASON_APIC_ACCESS:
8127 return nested_cpu_has2(vmcs12,
8128 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8129 case EXIT_REASON_APIC_WRITE:
8130 case EXIT_REASON_EOI_INDUCED:
8131 /* apic_write and eoi_induced should exit unconditionally. */
8132 return true;
8133 case EXIT_REASON_EPT_VIOLATION:
8134 /*
8135 * L0 always deals with the EPT violation. If nested EPT is
8136 * used, and the nested mmu code discovers that the address is
8137 * missing in the guest EPT table (EPT12), the EPT violation
8138 * will be injected with nested_ept_inject_page_fault()
8139 */
8140 return false;
8141 case EXIT_REASON_EPT_MISCONFIG:
8142 /*
8143 * L2 never uses directly L1's EPT, but rather L0's own EPT
8144 * table (shadow on EPT) or a merged EPT table that L0 built
8145 * (EPT on EPT). So any problems with the structure of the
8146 * table is L0's fault.
8147 */
8148 return false;
8149 case EXIT_REASON_WBINVD:
8150 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8151 case EXIT_REASON_XSETBV:
8152 return true;
8153 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8154 /*
8155 * This should never happen, since it is not possible to
8156 * set XSS to a non-zero value---neither in L1 nor in L2.
8157 * If if it were, XSS would have to be checked against
8158 * the XSS exit bitmap in vmcs12.
8159 */
8160 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8161 case EXIT_REASON_PREEMPTION_TIMER:
8162 return false;
8163 case EXIT_REASON_PML_FULL:
8164 /* We emulate PML support to L1. */
8165 return false;
8166 default:
8167 return true;
8168 }
8169 }
8170
8171 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8172 {
8173 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8174 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8175 }
8176
8177 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8178 {
8179 if (vmx->pml_pg) {
8180 __free_page(vmx->pml_pg);
8181 vmx->pml_pg = NULL;
8182 }
8183 }
8184
8185 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8186 {
8187 struct vcpu_vmx *vmx = to_vmx(vcpu);
8188 u64 *pml_buf;
8189 u16 pml_idx;
8190
8191 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8192
8193 /* Do nothing if PML buffer is empty */
8194 if (pml_idx == (PML_ENTITY_NUM - 1))
8195 return;
8196
8197 /* PML index always points to next available PML buffer entity */
8198 if (pml_idx >= PML_ENTITY_NUM)
8199 pml_idx = 0;
8200 else
8201 pml_idx++;
8202
8203 pml_buf = page_address(vmx->pml_pg);
8204 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8205 u64 gpa;
8206
8207 gpa = pml_buf[pml_idx];
8208 WARN_ON(gpa & (PAGE_SIZE - 1));
8209 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8210 }
8211
8212 /* reset PML index */
8213 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8214 }
8215
8216 /*
8217 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8218 * Called before reporting dirty_bitmap to userspace.
8219 */
8220 static void kvm_flush_pml_buffers(struct kvm *kvm)
8221 {
8222 int i;
8223 struct kvm_vcpu *vcpu;
8224 /*
8225 * We only need to kick vcpu out of guest mode here, as PML buffer
8226 * is flushed at beginning of all VMEXITs, and it's obvious that only
8227 * vcpus running in guest are possible to have unflushed GPAs in PML
8228 * buffer.
8229 */
8230 kvm_for_each_vcpu(i, vcpu, kvm)
8231 kvm_vcpu_kick(vcpu);
8232 }
8233
8234 static void vmx_dump_sel(char *name, uint32_t sel)
8235 {
8236 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8237 name, vmcs_read16(sel),
8238 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8239 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8240 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8241 }
8242
8243 static void vmx_dump_dtsel(char *name, uint32_t limit)
8244 {
8245 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8246 name, vmcs_read32(limit),
8247 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8248 }
8249
8250 static void dump_vmcs(void)
8251 {
8252 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8253 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8254 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8255 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8256 u32 secondary_exec_control = 0;
8257 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8258 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8259 int i, n;
8260
8261 if (cpu_has_secondary_exec_ctrls())
8262 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8263
8264 pr_err("*** Guest State ***\n");
8265 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8266 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8267 vmcs_readl(CR0_GUEST_HOST_MASK));
8268 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8269 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8270 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8271 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8272 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8273 {
8274 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8275 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8276 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8277 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8278 }
8279 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8280 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8281 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8282 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8283 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8284 vmcs_readl(GUEST_SYSENTER_ESP),
8285 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8286 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8287 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8288 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8289 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8290 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8291 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8292 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8293 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8294 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8295 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8296 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8297 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8298 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8299 efer, vmcs_read64(GUEST_IA32_PAT));
8300 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8301 vmcs_read64(GUEST_IA32_DEBUGCTL),
8302 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8303 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8304 pr_err("PerfGlobCtl = 0x%016llx\n",
8305 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8306 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8307 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8308 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8309 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8310 vmcs_read32(GUEST_ACTIVITY_STATE));
8311 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8312 pr_err("InterruptStatus = %04x\n",
8313 vmcs_read16(GUEST_INTR_STATUS));
8314
8315 pr_err("*** Host State ***\n");
8316 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8317 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8318 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8319 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8320 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8321 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8322 vmcs_read16(HOST_TR_SELECTOR));
8323 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8324 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8325 vmcs_readl(HOST_TR_BASE));
8326 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8327 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8328 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8329 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8330 vmcs_readl(HOST_CR4));
8331 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8332 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8333 vmcs_read32(HOST_IA32_SYSENTER_CS),
8334 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8335 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8336 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8337 vmcs_read64(HOST_IA32_EFER),
8338 vmcs_read64(HOST_IA32_PAT));
8339 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8340 pr_err("PerfGlobCtl = 0x%016llx\n",
8341 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8342
8343 pr_err("*** Control State ***\n");
8344 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8345 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8346 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8347 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8348 vmcs_read32(EXCEPTION_BITMAP),
8349 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8350 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8351 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8352 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8353 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8354 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8355 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8356 vmcs_read32(VM_EXIT_INTR_INFO),
8357 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8358 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8359 pr_err(" reason=%08x qualification=%016lx\n",
8360 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8361 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8362 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8363 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8364 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8365 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8366 pr_err("TSC Multiplier = 0x%016llx\n",
8367 vmcs_read64(TSC_MULTIPLIER));
8368 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8369 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8370 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8371 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8372 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8373 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8374 n = vmcs_read32(CR3_TARGET_COUNT);
8375 for (i = 0; i + 1 < n; i += 4)
8376 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8377 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8378 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8379 if (i < n)
8380 pr_err("CR3 target%u=%016lx\n",
8381 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8382 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8383 pr_err("PLE Gap=%08x Window=%08x\n",
8384 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8385 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8386 pr_err("Virtual processor ID = 0x%04x\n",
8387 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8388 }
8389
8390 /*
8391 * The guest has exited. See if we can fix it or if we need userspace
8392 * assistance.
8393 */
8394 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8395 {
8396 struct vcpu_vmx *vmx = to_vmx(vcpu);
8397 u32 exit_reason = vmx->exit_reason;
8398 u32 vectoring_info = vmx->idt_vectoring_info;
8399
8400 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8401 vcpu->arch.gpa_available = false;
8402
8403 /*
8404 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8405 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8406 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8407 * mode as if vcpus is in root mode, the PML buffer must has been
8408 * flushed already.
8409 */
8410 if (enable_pml)
8411 vmx_flush_pml_buffer(vcpu);
8412
8413 /* If guest state is invalid, start emulating */
8414 if (vmx->emulation_required)
8415 return handle_invalid_guest_state(vcpu);
8416
8417 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8418 nested_vmx_vmexit(vcpu, exit_reason,
8419 vmcs_read32(VM_EXIT_INTR_INFO),
8420 vmcs_readl(EXIT_QUALIFICATION));
8421 return 1;
8422 }
8423
8424 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8425 dump_vmcs();
8426 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8427 vcpu->run->fail_entry.hardware_entry_failure_reason
8428 = exit_reason;
8429 return 0;
8430 }
8431
8432 if (unlikely(vmx->fail)) {
8433 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8434 vcpu->run->fail_entry.hardware_entry_failure_reason
8435 = vmcs_read32(VM_INSTRUCTION_ERROR);
8436 return 0;
8437 }
8438
8439 /*
8440 * Note:
8441 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8442 * delivery event since it indicates guest is accessing MMIO.
8443 * The vm-exit can be triggered again after return to guest that
8444 * will cause infinite loop.
8445 */
8446 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8447 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8448 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8449 exit_reason != EXIT_REASON_PML_FULL &&
8450 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8451 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8452 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8453 vcpu->run->internal.ndata = 3;
8454 vcpu->run->internal.data[0] = vectoring_info;
8455 vcpu->run->internal.data[1] = exit_reason;
8456 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8457 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8458 vcpu->run->internal.ndata++;
8459 vcpu->run->internal.data[3] =
8460 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8461 }
8462 return 0;
8463 }
8464
8465 if (exit_reason < kvm_vmx_max_exit_handlers
8466 && kvm_vmx_exit_handlers[exit_reason])
8467 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8468 else {
8469 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8470 exit_reason);
8471 kvm_queue_exception(vcpu, UD_VECTOR);
8472 return 1;
8473 }
8474 }
8475
8476 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8477 {
8478 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8479
8480 if (is_guest_mode(vcpu) &&
8481 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8482 return;
8483
8484 if (irr == -1 || tpr < irr) {
8485 vmcs_write32(TPR_THRESHOLD, 0);
8486 return;
8487 }
8488
8489 vmcs_write32(TPR_THRESHOLD, irr);
8490 }
8491
8492 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8493 {
8494 u32 sec_exec_control;
8495
8496 /* Postpone execution until vmcs01 is the current VMCS. */
8497 if (is_guest_mode(vcpu)) {
8498 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8499 return;
8500 }
8501
8502 if (!cpu_has_vmx_virtualize_x2apic_mode())
8503 return;
8504
8505 if (!cpu_need_tpr_shadow(vcpu))
8506 return;
8507
8508 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8509
8510 if (set) {
8511 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8512 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8513 } else {
8514 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8515 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8516 vmx_flush_tlb_ept_only(vcpu);
8517 }
8518 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8519
8520 vmx_set_msr_bitmap(vcpu);
8521 }
8522
8523 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8524 {
8525 struct vcpu_vmx *vmx = to_vmx(vcpu);
8526
8527 /*
8528 * Currently we do not handle the nested case where L2 has an
8529 * APIC access page of its own; that page is still pinned.
8530 * Hence, we skip the case where the VCPU is in guest mode _and_
8531 * L1 prepared an APIC access page for L2.
8532 *
8533 * For the case where L1 and L2 share the same APIC access page
8534 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8535 * in the vmcs12), this function will only update either the vmcs01
8536 * or the vmcs02. If the former, the vmcs02 will be updated by
8537 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8538 * the next L2->L1 exit.
8539 */
8540 if (!is_guest_mode(vcpu) ||
8541 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8542 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8543 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8544 vmx_flush_tlb_ept_only(vcpu);
8545 }
8546 }
8547
8548 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8549 {
8550 u16 status;
8551 u8 old;
8552
8553 if (max_isr == -1)
8554 max_isr = 0;
8555
8556 status = vmcs_read16(GUEST_INTR_STATUS);
8557 old = status >> 8;
8558 if (max_isr != old) {
8559 status &= 0xff;
8560 status |= max_isr << 8;
8561 vmcs_write16(GUEST_INTR_STATUS, status);
8562 }
8563 }
8564
8565 static void vmx_set_rvi(int vector)
8566 {
8567 u16 status;
8568 u8 old;
8569
8570 if (vector == -1)
8571 vector = 0;
8572
8573 status = vmcs_read16(GUEST_INTR_STATUS);
8574 old = (u8)status & 0xff;
8575 if ((u8)vector != old) {
8576 status &= ~0xff;
8577 status |= (u8)vector;
8578 vmcs_write16(GUEST_INTR_STATUS, status);
8579 }
8580 }
8581
8582 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8583 {
8584 if (!is_guest_mode(vcpu)) {
8585 vmx_set_rvi(max_irr);
8586 return;
8587 }
8588
8589 if (max_irr == -1)
8590 return;
8591
8592 /*
8593 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8594 * handles it.
8595 */
8596 if (nested_exit_on_intr(vcpu))
8597 return;
8598
8599 /*
8600 * Else, fall back to pre-APICv interrupt injection since L2
8601 * is run without virtual interrupt delivery.
8602 */
8603 if (!kvm_event_needs_reinjection(vcpu) &&
8604 vmx_interrupt_allowed(vcpu)) {
8605 kvm_queue_interrupt(vcpu, max_irr, false);
8606 vmx_inject_irq(vcpu);
8607 }
8608 }
8609
8610 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8611 {
8612 struct vcpu_vmx *vmx = to_vmx(vcpu);
8613 int max_irr;
8614
8615 WARN_ON(!vcpu->arch.apicv_active);
8616 if (pi_test_on(&vmx->pi_desc)) {
8617 pi_clear_on(&vmx->pi_desc);
8618 /*
8619 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8620 * But on x86 this is just a compiler barrier anyway.
8621 */
8622 smp_mb__after_atomic();
8623 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8624 } else {
8625 max_irr = kvm_lapic_find_highest_irr(vcpu);
8626 }
8627 vmx_hwapic_irr_update(vcpu, max_irr);
8628 return max_irr;
8629 }
8630
8631 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8632 {
8633 if (!kvm_vcpu_apicv_active(vcpu))
8634 return;
8635
8636 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8637 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8638 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8639 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8640 }
8641
8642 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8643 {
8644 struct vcpu_vmx *vmx = to_vmx(vcpu);
8645
8646 pi_clear_on(&vmx->pi_desc);
8647 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8648 }
8649
8650 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8651 {
8652 u32 exit_intr_info = 0;
8653 u16 basic_exit_reason = (u16)vmx->exit_reason;
8654
8655 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8656 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8657 return;
8658
8659 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8660 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8661 vmx->exit_intr_info = exit_intr_info;
8662
8663 /* if exit due to PF check for async PF */
8664 if (is_page_fault(exit_intr_info))
8665 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8666
8667 /* Handle machine checks before interrupts are enabled */
8668 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8669 is_machine_check(exit_intr_info))
8670 kvm_machine_check();
8671
8672 /* We need to handle NMIs before interrupts are enabled */
8673 if (is_nmi(exit_intr_info)) {
8674 kvm_before_handle_nmi(&vmx->vcpu);
8675 asm("int $2");
8676 kvm_after_handle_nmi(&vmx->vcpu);
8677 }
8678 }
8679
8680 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8681 {
8682 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8683 register void *__sp asm(_ASM_SP);
8684
8685 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8686 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8687 unsigned int vector;
8688 unsigned long entry;
8689 gate_desc *desc;
8690 struct vcpu_vmx *vmx = to_vmx(vcpu);
8691 #ifdef CONFIG_X86_64
8692 unsigned long tmp;
8693 #endif
8694
8695 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8696 desc = (gate_desc *)vmx->host_idt_base + vector;
8697 entry = gate_offset(*desc);
8698 asm volatile(
8699 #ifdef CONFIG_X86_64
8700 "mov %%" _ASM_SP ", %[sp]\n\t"
8701 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8702 "push $%c[ss]\n\t"
8703 "push %[sp]\n\t"
8704 #endif
8705 "pushf\n\t"
8706 __ASM_SIZE(push) " $%c[cs]\n\t"
8707 "call *%[entry]\n\t"
8708 :
8709 #ifdef CONFIG_X86_64
8710 [sp]"=&r"(tmp),
8711 #endif
8712 "+r"(__sp)
8713 :
8714 [entry]"r"(entry),
8715 [ss]"i"(__KERNEL_DS),
8716 [cs]"i"(__KERNEL_CS)
8717 );
8718 }
8719 }
8720 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8721
8722 static bool vmx_has_high_real_mode_segbase(void)
8723 {
8724 return enable_unrestricted_guest || emulate_invalid_guest_state;
8725 }
8726
8727 static bool vmx_mpx_supported(void)
8728 {
8729 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8730 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8731 }
8732
8733 static bool vmx_xsaves_supported(void)
8734 {
8735 return vmcs_config.cpu_based_2nd_exec_ctrl &
8736 SECONDARY_EXEC_XSAVES;
8737 }
8738
8739 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8740 {
8741 u32 exit_intr_info;
8742 bool unblock_nmi;
8743 u8 vector;
8744 bool idtv_info_valid;
8745
8746 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8747
8748 if (vmx->loaded_vmcs->nmi_known_unmasked)
8749 return;
8750 /*
8751 * Can't use vmx->exit_intr_info since we're not sure what
8752 * the exit reason is.
8753 */
8754 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8755 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8756 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8757 /*
8758 * SDM 3: 27.7.1.2 (September 2008)
8759 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8760 * a guest IRET fault.
8761 * SDM 3: 23.2.2 (September 2008)
8762 * Bit 12 is undefined in any of the following cases:
8763 * If the VM exit sets the valid bit in the IDT-vectoring
8764 * information field.
8765 * If the VM exit is due to a double fault.
8766 */
8767 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8768 vector != DF_VECTOR && !idtv_info_valid)
8769 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8770 GUEST_INTR_STATE_NMI);
8771 else
8772 vmx->loaded_vmcs->nmi_known_unmasked =
8773 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8774 & GUEST_INTR_STATE_NMI);
8775 }
8776
8777 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8778 u32 idt_vectoring_info,
8779 int instr_len_field,
8780 int error_code_field)
8781 {
8782 u8 vector;
8783 int type;
8784 bool idtv_info_valid;
8785
8786 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8787
8788 vcpu->arch.nmi_injected = false;
8789 kvm_clear_exception_queue(vcpu);
8790 kvm_clear_interrupt_queue(vcpu);
8791
8792 if (!idtv_info_valid)
8793 return;
8794
8795 kvm_make_request(KVM_REQ_EVENT, vcpu);
8796
8797 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8798 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8799
8800 switch (type) {
8801 case INTR_TYPE_NMI_INTR:
8802 vcpu->arch.nmi_injected = true;
8803 /*
8804 * SDM 3: 27.7.1.2 (September 2008)
8805 * Clear bit "block by NMI" before VM entry if a NMI
8806 * delivery faulted.
8807 */
8808 vmx_set_nmi_mask(vcpu, false);
8809 break;
8810 case INTR_TYPE_SOFT_EXCEPTION:
8811 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8812 /* fall through */
8813 case INTR_TYPE_HARD_EXCEPTION:
8814 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8815 u32 err = vmcs_read32(error_code_field);
8816 kvm_requeue_exception_e(vcpu, vector, err);
8817 } else
8818 kvm_requeue_exception(vcpu, vector);
8819 break;
8820 case INTR_TYPE_SOFT_INTR:
8821 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8822 /* fall through */
8823 case INTR_TYPE_EXT_INTR:
8824 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8825 break;
8826 default:
8827 break;
8828 }
8829 }
8830
8831 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8832 {
8833 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8834 VM_EXIT_INSTRUCTION_LEN,
8835 IDT_VECTORING_ERROR_CODE);
8836 }
8837
8838 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8839 {
8840 __vmx_complete_interrupts(vcpu,
8841 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8842 VM_ENTRY_INSTRUCTION_LEN,
8843 VM_ENTRY_EXCEPTION_ERROR_CODE);
8844
8845 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8846 }
8847
8848 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8849 {
8850 int i, nr_msrs;
8851 struct perf_guest_switch_msr *msrs;
8852
8853 msrs = perf_guest_get_msrs(&nr_msrs);
8854
8855 if (!msrs)
8856 return;
8857
8858 for (i = 0; i < nr_msrs; i++)
8859 if (msrs[i].host == msrs[i].guest)
8860 clear_atomic_switch_msr(vmx, msrs[i].msr);
8861 else
8862 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8863 msrs[i].host);
8864 }
8865
8866 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8867 {
8868 struct vcpu_vmx *vmx = to_vmx(vcpu);
8869 u64 tscl;
8870 u32 delta_tsc;
8871
8872 if (vmx->hv_deadline_tsc == -1)
8873 return;
8874
8875 tscl = rdtsc();
8876 if (vmx->hv_deadline_tsc > tscl)
8877 /* sure to be 32 bit only because checked on set_hv_timer */
8878 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8879 cpu_preemption_timer_multi);
8880 else
8881 delta_tsc = 0;
8882
8883 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8884 }
8885
8886 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8887 {
8888 struct vcpu_vmx *vmx = to_vmx(vcpu);
8889 unsigned long debugctlmsr, cr3, cr4;
8890
8891 /* Don't enter VMX if guest state is invalid, let the exit handler
8892 start emulation until we arrive back to a valid state */
8893 if (vmx->emulation_required)
8894 return;
8895
8896 if (vmx->ple_window_dirty) {
8897 vmx->ple_window_dirty = false;
8898 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8899 }
8900
8901 if (vmx->nested.sync_shadow_vmcs) {
8902 copy_vmcs12_to_shadow(vmx);
8903 vmx->nested.sync_shadow_vmcs = false;
8904 }
8905
8906 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8907 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8908 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8909 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8910
8911 cr3 = __get_current_cr3_fast();
8912 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8913 vmcs_writel(HOST_CR3, cr3);
8914 vmx->host_state.vmcs_host_cr3 = cr3;
8915 }
8916
8917 cr4 = cr4_read_shadow();
8918 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8919 vmcs_writel(HOST_CR4, cr4);
8920 vmx->host_state.vmcs_host_cr4 = cr4;
8921 }
8922
8923 /* When single-stepping over STI and MOV SS, we must clear the
8924 * corresponding interruptibility bits in the guest state. Otherwise
8925 * vmentry fails as it then expects bit 14 (BS) in pending debug
8926 * exceptions being set, but that's not correct for the guest debugging
8927 * case. */
8928 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8929 vmx_set_interrupt_shadow(vcpu, 0);
8930
8931 if (vmx->guest_pkru_valid)
8932 __write_pkru(vmx->guest_pkru);
8933
8934 atomic_switch_perf_msrs(vmx);
8935 debugctlmsr = get_debugctlmsr();
8936
8937 vmx_arm_hv_timer(vcpu);
8938
8939 vmx->__launched = vmx->loaded_vmcs->launched;
8940 asm(
8941 /* Store host registers */
8942 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8943 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8944 "push %%" _ASM_CX " \n\t"
8945 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8946 "je 1f \n\t"
8947 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8948 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8949 "1: \n\t"
8950 /* Reload cr2 if changed */
8951 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8952 "mov %%cr2, %%" _ASM_DX " \n\t"
8953 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8954 "je 2f \n\t"
8955 "mov %%" _ASM_AX", %%cr2 \n\t"
8956 "2: \n\t"
8957 /* Check if vmlaunch of vmresume is needed */
8958 "cmpl $0, %c[launched](%0) \n\t"
8959 /* Load guest registers. Don't clobber flags. */
8960 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8961 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8962 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8963 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8964 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8965 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8966 #ifdef CONFIG_X86_64
8967 "mov %c[r8](%0), %%r8 \n\t"
8968 "mov %c[r9](%0), %%r9 \n\t"
8969 "mov %c[r10](%0), %%r10 \n\t"
8970 "mov %c[r11](%0), %%r11 \n\t"
8971 "mov %c[r12](%0), %%r12 \n\t"
8972 "mov %c[r13](%0), %%r13 \n\t"
8973 "mov %c[r14](%0), %%r14 \n\t"
8974 "mov %c[r15](%0), %%r15 \n\t"
8975 #endif
8976 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8977
8978 /* Enter guest mode */
8979 "jne 1f \n\t"
8980 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8981 "jmp 2f \n\t"
8982 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8983 "2: "
8984 /* Save guest registers, load host registers, keep flags */
8985 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8986 "pop %0 \n\t"
8987 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8988 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8989 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8990 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8991 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8992 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8993 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8994 #ifdef CONFIG_X86_64
8995 "mov %%r8, %c[r8](%0) \n\t"
8996 "mov %%r9, %c[r9](%0) \n\t"
8997 "mov %%r10, %c[r10](%0) \n\t"
8998 "mov %%r11, %c[r11](%0) \n\t"
8999 "mov %%r12, %c[r12](%0) \n\t"
9000 "mov %%r13, %c[r13](%0) \n\t"
9001 "mov %%r14, %c[r14](%0) \n\t"
9002 "mov %%r15, %c[r15](%0) \n\t"
9003 #endif
9004 "mov %%cr2, %%" _ASM_AX " \n\t"
9005 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9006
9007 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9008 "setbe %c[fail](%0) \n\t"
9009 ".pushsection .rodata \n\t"
9010 ".global vmx_return \n\t"
9011 "vmx_return: " _ASM_PTR " 2b \n\t"
9012 ".popsection"
9013 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9014 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9015 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9016 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9017 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9018 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9019 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9020 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9021 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9022 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9023 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9024 #ifdef CONFIG_X86_64
9025 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9026 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9027 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9028 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9029 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9030 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9031 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9032 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9033 #endif
9034 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9035 [wordsize]"i"(sizeof(ulong))
9036 : "cc", "memory"
9037 #ifdef CONFIG_X86_64
9038 , "rax", "rbx", "rdi", "rsi"
9039 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9040 #else
9041 , "eax", "ebx", "edi", "esi"
9042 #endif
9043 );
9044
9045 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9046 if (debugctlmsr)
9047 update_debugctlmsr(debugctlmsr);
9048
9049 #ifndef CONFIG_X86_64
9050 /*
9051 * The sysexit path does not restore ds/es, so we must set them to
9052 * a reasonable value ourselves.
9053 *
9054 * We can't defer this to vmx_load_host_state() since that function
9055 * may be executed in interrupt context, which saves and restore segments
9056 * around it, nullifying its effect.
9057 */
9058 loadsegment(ds, __USER_DS);
9059 loadsegment(es, __USER_DS);
9060 #endif
9061
9062 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9063 | (1 << VCPU_EXREG_RFLAGS)
9064 | (1 << VCPU_EXREG_PDPTR)
9065 | (1 << VCPU_EXREG_SEGMENTS)
9066 | (1 << VCPU_EXREG_CR3));
9067 vcpu->arch.regs_dirty = 0;
9068
9069 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9070
9071 vmx->loaded_vmcs->launched = 1;
9072
9073 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9074
9075 /*
9076 * eager fpu is enabled if PKEY is supported and CR4 is switched
9077 * back on host, so it is safe to read guest PKRU from current
9078 * XSAVE.
9079 */
9080 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9081 vmx->guest_pkru = __read_pkru();
9082 if (vmx->guest_pkru != vmx->host_pkru) {
9083 vmx->guest_pkru_valid = true;
9084 __write_pkru(vmx->host_pkru);
9085 } else
9086 vmx->guest_pkru_valid = false;
9087 }
9088
9089 /*
9090 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9091 * we did not inject a still-pending event to L1 now because of
9092 * nested_run_pending, we need to re-enable this bit.
9093 */
9094 if (vmx->nested.nested_run_pending)
9095 kvm_make_request(KVM_REQ_EVENT, vcpu);
9096
9097 vmx->nested.nested_run_pending = 0;
9098
9099 vmx_complete_atomic_exit(vmx);
9100 vmx_recover_nmi_blocking(vmx);
9101 vmx_complete_interrupts(vmx);
9102 }
9103 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9104
9105 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9106 {
9107 struct vcpu_vmx *vmx = to_vmx(vcpu);
9108 int cpu;
9109
9110 if (vmx->loaded_vmcs == vmcs)
9111 return;
9112
9113 cpu = get_cpu();
9114 vmx->loaded_vmcs = vmcs;
9115 vmx_vcpu_put(vcpu);
9116 vmx_vcpu_load(vcpu, cpu);
9117 vcpu->cpu = cpu;
9118 put_cpu();
9119 }
9120
9121 /*
9122 * Ensure that the current vmcs of the logical processor is the
9123 * vmcs01 of the vcpu before calling free_nested().
9124 */
9125 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9126 {
9127 struct vcpu_vmx *vmx = to_vmx(vcpu);
9128 int r;
9129
9130 r = vcpu_load(vcpu);
9131 BUG_ON(r);
9132 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9133 free_nested(vmx);
9134 vcpu_put(vcpu);
9135 }
9136
9137 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9138 {
9139 struct vcpu_vmx *vmx = to_vmx(vcpu);
9140
9141 if (enable_pml)
9142 vmx_destroy_pml_buffer(vmx);
9143 free_vpid(vmx->vpid);
9144 leave_guest_mode(vcpu);
9145 vmx_free_vcpu_nested(vcpu);
9146 free_loaded_vmcs(vmx->loaded_vmcs);
9147 kfree(vmx->guest_msrs);
9148 kvm_vcpu_uninit(vcpu);
9149 kmem_cache_free(kvm_vcpu_cache, vmx);
9150 }
9151
9152 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9153 {
9154 int err;
9155 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9156 int cpu;
9157
9158 if (!vmx)
9159 return ERR_PTR(-ENOMEM);
9160
9161 vmx->vpid = allocate_vpid();
9162
9163 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9164 if (err)
9165 goto free_vcpu;
9166
9167 err = -ENOMEM;
9168
9169 /*
9170 * If PML is turned on, failure on enabling PML just results in failure
9171 * of creating the vcpu, therefore we can simplify PML logic (by
9172 * avoiding dealing with cases, such as enabling PML partially on vcpus
9173 * for the guest, etc.
9174 */
9175 if (enable_pml) {
9176 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9177 if (!vmx->pml_pg)
9178 goto uninit_vcpu;
9179 }
9180
9181 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9182 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9183 > PAGE_SIZE);
9184
9185 if (!vmx->guest_msrs)
9186 goto free_pml;
9187
9188 vmx->loaded_vmcs = &vmx->vmcs01;
9189 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9190 vmx->loaded_vmcs->shadow_vmcs = NULL;
9191 if (!vmx->loaded_vmcs->vmcs)
9192 goto free_msrs;
9193 loaded_vmcs_init(vmx->loaded_vmcs);
9194
9195 cpu = get_cpu();
9196 vmx_vcpu_load(&vmx->vcpu, cpu);
9197 vmx->vcpu.cpu = cpu;
9198 err = vmx_vcpu_setup(vmx);
9199 vmx_vcpu_put(&vmx->vcpu);
9200 put_cpu();
9201 if (err)
9202 goto free_vmcs;
9203 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9204 err = alloc_apic_access_page(kvm);
9205 if (err)
9206 goto free_vmcs;
9207 }
9208
9209 if (enable_ept) {
9210 if (!kvm->arch.ept_identity_map_addr)
9211 kvm->arch.ept_identity_map_addr =
9212 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9213 err = init_rmode_identity_map(kvm);
9214 if (err)
9215 goto free_vmcs;
9216 }
9217
9218 if (nested) {
9219 nested_vmx_setup_ctls_msrs(vmx);
9220 vmx->nested.vpid02 = allocate_vpid();
9221 }
9222
9223 vmx->nested.posted_intr_nv = -1;
9224 vmx->nested.current_vmptr = -1ull;
9225 vmx->nested.current_vmcs12 = NULL;
9226
9227 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9228
9229 return &vmx->vcpu;
9230
9231 free_vmcs:
9232 free_vpid(vmx->nested.vpid02);
9233 free_loaded_vmcs(vmx->loaded_vmcs);
9234 free_msrs:
9235 kfree(vmx->guest_msrs);
9236 free_pml:
9237 vmx_destroy_pml_buffer(vmx);
9238 uninit_vcpu:
9239 kvm_vcpu_uninit(&vmx->vcpu);
9240 free_vcpu:
9241 free_vpid(vmx->vpid);
9242 kmem_cache_free(kvm_vcpu_cache, vmx);
9243 return ERR_PTR(err);
9244 }
9245
9246 static void __init vmx_check_processor_compat(void *rtn)
9247 {
9248 struct vmcs_config vmcs_conf;
9249
9250 *(int *)rtn = 0;
9251 if (setup_vmcs_config(&vmcs_conf) < 0)
9252 *(int *)rtn = -EIO;
9253 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9254 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9255 smp_processor_id());
9256 *(int *)rtn = -EIO;
9257 }
9258 }
9259
9260 static int get_ept_level(void)
9261 {
9262 return VMX_EPT_DEFAULT_GAW + 1;
9263 }
9264
9265 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9266 {
9267 u8 cache;
9268 u64 ipat = 0;
9269
9270 /* For VT-d and EPT combination
9271 * 1. MMIO: always map as UC
9272 * 2. EPT with VT-d:
9273 * a. VT-d without snooping control feature: can't guarantee the
9274 * result, try to trust guest.
9275 * b. VT-d with snooping control feature: snooping control feature of
9276 * VT-d engine can guarantee the cache correctness. Just set it
9277 * to WB to keep consistent with host. So the same as item 3.
9278 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9279 * consistent with host MTRR
9280 */
9281 if (is_mmio) {
9282 cache = MTRR_TYPE_UNCACHABLE;
9283 goto exit;
9284 }
9285
9286 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9287 ipat = VMX_EPT_IPAT_BIT;
9288 cache = MTRR_TYPE_WRBACK;
9289 goto exit;
9290 }
9291
9292 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9293 ipat = VMX_EPT_IPAT_BIT;
9294 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9295 cache = MTRR_TYPE_WRBACK;
9296 else
9297 cache = MTRR_TYPE_UNCACHABLE;
9298 goto exit;
9299 }
9300
9301 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9302
9303 exit:
9304 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9305 }
9306
9307 static int vmx_get_lpage_level(void)
9308 {
9309 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9310 return PT_DIRECTORY_LEVEL;
9311 else
9312 /* For shadow and EPT supported 1GB page */
9313 return PT_PDPE_LEVEL;
9314 }
9315
9316 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9317 {
9318 /*
9319 * These bits in the secondary execution controls field
9320 * are dynamic, the others are mostly based on the hypervisor
9321 * architecture and the guest's CPUID. Do not touch the
9322 * dynamic bits.
9323 */
9324 u32 mask =
9325 SECONDARY_EXEC_SHADOW_VMCS |
9326 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9327 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9328
9329 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9330
9331 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9332 (new_ctl & ~mask) | (cur_ctl & mask));
9333 }
9334
9335 /*
9336 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9337 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9338 */
9339 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9340 {
9341 struct vcpu_vmx *vmx = to_vmx(vcpu);
9342 struct kvm_cpuid_entry2 *entry;
9343
9344 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9345 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9346
9347 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9348 if (entry && (entry->_reg & (_cpuid_mask))) \
9349 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9350 } while (0)
9351
9352 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9353 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9354 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9355 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9356 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9357 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9358 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9359 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9360 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9361 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9362 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9363 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9364 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9365 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9366 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9367
9368 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9369 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9370 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9371 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9372 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9373 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9374 cr4_fixed1_update(bit(11), ecx, bit(2));
9375
9376 #undef cr4_fixed1_update
9377 }
9378
9379 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9380 {
9381 struct kvm_cpuid_entry2 *best;
9382 struct vcpu_vmx *vmx = to_vmx(vcpu);
9383 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9384
9385 if (vmx_rdtscp_supported()) {
9386 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9387 if (!rdtscp_enabled)
9388 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9389
9390 if (nested) {
9391 if (rdtscp_enabled)
9392 vmx->nested.nested_vmx_secondary_ctls_high |=
9393 SECONDARY_EXEC_RDTSCP;
9394 else
9395 vmx->nested.nested_vmx_secondary_ctls_high &=
9396 ~SECONDARY_EXEC_RDTSCP;
9397 }
9398 }
9399
9400 /* Exposing INVPCID only when PCID is exposed */
9401 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9402 if (vmx_invpcid_supported() &&
9403 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9404 !guest_cpuid_has_pcid(vcpu))) {
9405 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9406
9407 if (best)
9408 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9409 }
9410
9411 if (cpu_has_secondary_exec_ctrls())
9412 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9413
9414 if (nested_vmx_allowed(vcpu))
9415 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9416 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9417 else
9418 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9419 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9420
9421 if (nested_vmx_allowed(vcpu))
9422 nested_vmx_cr_fixed1_bits_update(vcpu);
9423 }
9424
9425 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9426 {
9427 if (func == 1 && nested)
9428 entry->ecx |= bit(X86_FEATURE_VMX);
9429 }
9430
9431 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9432 struct x86_exception *fault)
9433 {
9434 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9435 struct vcpu_vmx *vmx = to_vmx(vcpu);
9436 u32 exit_reason;
9437 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9438
9439 if (vmx->nested.pml_full) {
9440 exit_reason = EXIT_REASON_PML_FULL;
9441 vmx->nested.pml_full = false;
9442 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9443 } else if (fault->error_code & PFERR_RSVD_MASK)
9444 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9445 else
9446 exit_reason = EXIT_REASON_EPT_VIOLATION;
9447
9448 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9449 vmcs12->guest_physical_address = fault->address;
9450 }
9451
9452 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9453 {
9454 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9455 }
9456
9457 /* Callbacks for nested_ept_init_mmu_context: */
9458
9459 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9460 {
9461 /* return the page table to be shadowed - in our case, EPT12 */
9462 return get_vmcs12(vcpu)->ept_pointer;
9463 }
9464
9465 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9466 {
9467 bool wants_ad;
9468
9469 WARN_ON(mmu_is_nested(vcpu));
9470 wants_ad = nested_ept_ad_enabled(vcpu);
9471 if (wants_ad && !enable_ept_ad_bits)
9472 return 1;
9473
9474 kvm_mmu_unload(vcpu);
9475 kvm_init_shadow_ept_mmu(vcpu,
9476 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9477 VMX_EPT_EXECUTE_ONLY_BIT,
9478 wants_ad);
9479 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9480 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9481 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9482
9483 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9484 return 0;
9485 }
9486
9487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9488 {
9489 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9490 }
9491
9492 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9493 u16 error_code)
9494 {
9495 bool inequality, bit;
9496
9497 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9498 inequality =
9499 (error_code & vmcs12->page_fault_error_code_mask) !=
9500 vmcs12->page_fault_error_code_match;
9501 return inequality ^ bit;
9502 }
9503
9504 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9505 struct x86_exception *fault)
9506 {
9507 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9508
9509 WARN_ON(!is_guest_mode(vcpu));
9510
9511 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9512 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9513 vmcs_read32(VM_EXIT_INTR_INFO),
9514 vmcs_readl(EXIT_QUALIFICATION));
9515 else
9516 kvm_inject_page_fault(vcpu, fault);
9517 }
9518
9519 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9520 struct vmcs12 *vmcs12);
9521
9522 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9523 struct vmcs12 *vmcs12)
9524 {
9525 struct vcpu_vmx *vmx = to_vmx(vcpu);
9526 u64 hpa;
9527
9528 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9529 /*
9530 * Translate L1 physical address to host physical
9531 * address for vmcs02. Keep the page pinned, so this
9532 * physical address remains valid. We keep a reference
9533 * to it so we can release it later.
9534 */
9535 if (vmx->nested.apic_access_page) /* shouldn't happen */
9536 nested_release_page(vmx->nested.apic_access_page);
9537 vmx->nested.apic_access_page =
9538 nested_get_page(vcpu, vmcs12->apic_access_addr);
9539 /*
9540 * If translation failed, no matter: This feature asks
9541 * to exit when accessing the given address, and if it
9542 * can never be accessed, this feature won't do
9543 * anything anyway.
9544 */
9545 if (vmx->nested.apic_access_page) {
9546 hpa = page_to_phys(vmx->nested.apic_access_page);
9547 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9548 } else {
9549 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9550 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9551 }
9552 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9553 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9554 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9555 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9556 kvm_vcpu_reload_apic_access_page(vcpu);
9557 }
9558
9559 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9560 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9561 nested_release_page(vmx->nested.virtual_apic_page);
9562 vmx->nested.virtual_apic_page =
9563 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9564
9565 /*
9566 * If translation failed, VM entry will fail because
9567 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9568 * Failing the vm entry is _not_ what the processor
9569 * does but it's basically the only possibility we
9570 * have. We could still enter the guest if CR8 load
9571 * exits are enabled, CR8 store exits are enabled, and
9572 * virtualize APIC access is disabled; in this case
9573 * the processor would never use the TPR shadow and we
9574 * could simply clear the bit from the execution
9575 * control. But such a configuration is useless, so
9576 * let's keep the code simple.
9577 */
9578 if (vmx->nested.virtual_apic_page) {
9579 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9580 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9581 }
9582 }
9583
9584 if (nested_cpu_has_posted_intr(vmcs12)) {
9585 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9586 kunmap(vmx->nested.pi_desc_page);
9587 nested_release_page(vmx->nested.pi_desc_page);
9588 }
9589 vmx->nested.pi_desc_page =
9590 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9591 vmx->nested.pi_desc =
9592 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9593 if (!vmx->nested.pi_desc) {
9594 nested_release_page_clean(vmx->nested.pi_desc_page);
9595 return;
9596 }
9597 vmx->nested.pi_desc =
9598 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9599 (unsigned long)(vmcs12->posted_intr_desc_addr &
9600 (PAGE_SIZE - 1)));
9601 vmcs_write64(POSTED_INTR_DESC_ADDR,
9602 page_to_phys(vmx->nested.pi_desc_page) +
9603 (unsigned long)(vmcs12->posted_intr_desc_addr &
9604 (PAGE_SIZE - 1)));
9605 }
9606 if (cpu_has_vmx_msr_bitmap() &&
9607 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9608 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9609 ;
9610 else
9611 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9612 CPU_BASED_USE_MSR_BITMAPS);
9613 }
9614
9615 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9616 {
9617 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9618 struct vcpu_vmx *vmx = to_vmx(vcpu);
9619
9620 if (vcpu->arch.virtual_tsc_khz == 0)
9621 return;
9622
9623 /* Make sure short timeouts reliably trigger an immediate vmexit.
9624 * hrtimer_start does not guarantee this. */
9625 if (preemption_timeout <= 1) {
9626 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9627 return;
9628 }
9629
9630 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9631 preemption_timeout *= 1000000;
9632 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9633 hrtimer_start(&vmx->nested.preemption_timer,
9634 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9635 }
9636
9637 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9638 struct vmcs12 *vmcs12)
9639 {
9640 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9641 return 0;
9642
9643 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9644 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9645 return -EINVAL;
9646
9647 return 0;
9648 }
9649
9650 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9651 struct vmcs12 *vmcs12)
9652 {
9653 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9654 return 0;
9655
9656 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9657 return -EINVAL;
9658
9659 return 0;
9660 }
9661
9662 /*
9663 * Merge L0's and L1's MSR bitmap, return false to indicate that
9664 * we do not use the hardware.
9665 */
9666 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9667 struct vmcs12 *vmcs12)
9668 {
9669 int msr;
9670 struct page *page;
9671 unsigned long *msr_bitmap_l1;
9672 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9673
9674 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9675 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9676 return false;
9677
9678 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9679 if (!page)
9680 return false;
9681 msr_bitmap_l1 = (unsigned long *)kmap(page);
9682
9683 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9684
9685 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9686 if (nested_cpu_has_apic_reg_virt(vmcs12))
9687 for (msr = 0x800; msr <= 0x8ff; msr++)
9688 nested_vmx_disable_intercept_for_msr(
9689 msr_bitmap_l1, msr_bitmap_l0,
9690 msr, MSR_TYPE_R);
9691
9692 nested_vmx_disable_intercept_for_msr(
9693 msr_bitmap_l1, msr_bitmap_l0,
9694 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9695 MSR_TYPE_R | MSR_TYPE_W);
9696
9697 if (nested_cpu_has_vid(vmcs12)) {
9698 nested_vmx_disable_intercept_for_msr(
9699 msr_bitmap_l1, msr_bitmap_l0,
9700 APIC_BASE_MSR + (APIC_EOI >> 4),
9701 MSR_TYPE_W);
9702 nested_vmx_disable_intercept_for_msr(
9703 msr_bitmap_l1, msr_bitmap_l0,
9704 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9705 MSR_TYPE_W);
9706 }
9707 }
9708 kunmap(page);
9709 nested_release_page_clean(page);
9710
9711 return true;
9712 }
9713
9714 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9715 struct vmcs12 *vmcs12)
9716 {
9717 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9718 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9719 !nested_cpu_has_vid(vmcs12) &&
9720 !nested_cpu_has_posted_intr(vmcs12))
9721 return 0;
9722
9723 /*
9724 * If virtualize x2apic mode is enabled,
9725 * virtualize apic access must be disabled.
9726 */
9727 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9728 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9729 return -EINVAL;
9730
9731 /*
9732 * If virtual interrupt delivery is enabled,
9733 * we must exit on external interrupts.
9734 */
9735 if (nested_cpu_has_vid(vmcs12) &&
9736 !nested_exit_on_intr(vcpu))
9737 return -EINVAL;
9738
9739 /*
9740 * bits 15:8 should be zero in posted_intr_nv,
9741 * the descriptor address has been already checked
9742 * in nested_get_vmcs12_pages.
9743 */
9744 if (nested_cpu_has_posted_intr(vmcs12) &&
9745 (!nested_cpu_has_vid(vmcs12) ||
9746 !nested_exit_intr_ack_set(vcpu) ||
9747 vmcs12->posted_intr_nv & 0xff00))
9748 return -EINVAL;
9749
9750 /* tpr shadow is needed by all apicv features. */
9751 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9752 return -EINVAL;
9753
9754 return 0;
9755 }
9756
9757 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9758 unsigned long count_field,
9759 unsigned long addr_field)
9760 {
9761 int maxphyaddr;
9762 u64 count, addr;
9763
9764 if (vmcs12_read_any(vcpu, count_field, &count) ||
9765 vmcs12_read_any(vcpu, addr_field, &addr)) {
9766 WARN_ON(1);
9767 return -EINVAL;
9768 }
9769 if (count == 0)
9770 return 0;
9771 maxphyaddr = cpuid_maxphyaddr(vcpu);
9772 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9773 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9774 pr_debug_ratelimited(
9775 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9776 addr_field, maxphyaddr, count, addr);
9777 return -EINVAL;
9778 }
9779 return 0;
9780 }
9781
9782 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9783 struct vmcs12 *vmcs12)
9784 {
9785 if (vmcs12->vm_exit_msr_load_count == 0 &&
9786 vmcs12->vm_exit_msr_store_count == 0 &&
9787 vmcs12->vm_entry_msr_load_count == 0)
9788 return 0; /* Fast path */
9789 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9790 VM_EXIT_MSR_LOAD_ADDR) ||
9791 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9792 VM_EXIT_MSR_STORE_ADDR) ||
9793 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9794 VM_ENTRY_MSR_LOAD_ADDR))
9795 return -EINVAL;
9796 return 0;
9797 }
9798
9799 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9800 struct vmcs12 *vmcs12)
9801 {
9802 u64 address = vmcs12->pml_address;
9803 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9804
9805 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9806 if (!nested_cpu_has_ept(vmcs12) ||
9807 !IS_ALIGNED(address, 4096) ||
9808 address >> maxphyaddr)
9809 return -EINVAL;
9810 }
9811
9812 return 0;
9813 }
9814
9815 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9816 struct vmx_msr_entry *e)
9817 {
9818 /* x2APIC MSR accesses are not allowed */
9819 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9820 return -EINVAL;
9821 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9822 e->index == MSR_IA32_UCODE_REV)
9823 return -EINVAL;
9824 if (e->reserved != 0)
9825 return -EINVAL;
9826 return 0;
9827 }
9828
9829 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9830 struct vmx_msr_entry *e)
9831 {
9832 if (e->index == MSR_FS_BASE ||
9833 e->index == MSR_GS_BASE ||
9834 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9835 nested_vmx_msr_check_common(vcpu, e))
9836 return -EINVAL;
9837 return 0;
9838 }
9839
9840 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9841 struct vmx_msr_entry *e)
9842 {
9843 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9844 nested_vmx_msr_check_common(vcpu, e))
9845 return -EINVAL;
9846 return 0;
9847 }
9848
9849 /*
9850 * Load guest's/host's msr at nested entry/exit.
9851 * return 0 for success, entry index for failure.
9852 */
9853 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9854 {
9855 u32 i;
9856 struct vmx_msr_entry e;
9857 struct msr_data msr;
9858
9859 msr.host_initiated = false;
9860 for (i = 0; i < count; i++) {
9861 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9862 &e, sizeof(e))) {
9863 pr_debug_ratelimited(
9864 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9865 __func__, i, gpa + i * sizeof(e));
9866 goto fail;
9867 }
9868 if (nested_vmx_load_msr_check(vcpu, &e)) {
9869 pr_debug_ratelimited(
9870 "%s check failed (%u, 0x%x, 0x%x)\n",
9871 __func__, i, e.index, e.reserved);
9872 goto fail;
9873 }
9874 msr.index = e.index;
9875 msr.data = e.value;
9876 if (kvm_set_msr(vcpu, &msr)) {
9877 pr_debug_ratelimited(
9878 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9879 __func__, i, e.index, e.value);
9880 goto fail;
9881 }
9882 }
9883 return 0;
9884 fail:
9885 return i + 1;
9886 }
9887
9888 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9889 {
9890 u32 i;
9891 struct vmx_msr_entry e;
9892
9893 for (i = 0; i < count; i++) {
9894 struct msr_data msr_info;
9895 if (kvm_vcpu_read_guest(vcpu,
9896 gpa + i * sizeof(e),
9897 &e, 2 * sizeof(u32))) {
9898 pr_debug_ratelimited(
9899 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9900 __func__, i, gpa + i * sizeof(e));
9901 return -EINVAL;
9902 }
9903 if (nested_vmx_store_msr_check(vcpu, &e)) {
9904 pr_debug_ratelimited(
9905 "%s check failed (%u, 0x%x, 0x%x)\n",
9906 __func__, i, e.index, e.reserved);
9907 return -EINVAL;
9908 }
9909 msr_info.host_initiated = false;
9910 msr_info.index = e.index;
9911 if (kvm_get_msr(vcpu, &msr_info)) {
9912 pr_debug_ratelimited(
9913 "%s cannot read MSR (%u, 0x%x)\n",
9914 __func__, i, e.index);
9915 return -EINVAL;
9916 }
9917 if (kvm_vcpu_write_guest(vcpu,
9918 gpa + i * sizeof(e) +
9919 offsetof(struct vmx_msr_entry, value),
9920 &msr_info.data, sizeof(msr_info.data))) {
9921 pr_debug_ratelimited(
9922 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9923 __func__, i, e.index, msr_info.data);
9924 return -EINVAL;
9925 }
9926 }
9927 return 0;
9928 }
9929
9930 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9931 {
9932 unsigned long invalid_mask;
9933
9934 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9935 return (val & invalid_mask) == 0;
9936 }
9937
9938 /*
9939 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9940 * emulating VM entry into a guest with EPT enabled.
9941 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9942 * is assigned to entry_failure_code on failure.
9943 */
9944 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9945 u32 *entry_failure_code)
9946 {
9947 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9948 if (!nested_cr3_valid(vcpu, cr3)) {
9949 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9950 return 1;
9951 }
9952
9953 /*
9954 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9955 * must not be dereferenced.
9956 */
9957 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9958 !nested_ept) {
9959 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9960 *entry_failure_code = ENTRY_FAIL_PDPTE;
9961 return 1;
9962 }
9963 }
9964
9965 vcpu->arch.cr3 = cr3;
9966 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9967 }
9968
9969 kvm_mmu_reset_context(vcpu);
9970 return 0;
9971 }
9972
9973 /*
9974 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9975 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9976 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9977 * guest in a way that will both be appropriate to L1's requests, and our
9978 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9979 * function also has additional necessary side-effects, like setting various
9980 * vcpu->arch fields.
9981 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9982 * is assigned to entry_failure_code on failure.
9983 */
9984 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9985 bool from_vmentry, u32 *entry_failure_code)
9986 {
9987 struct vcpu_vmx *vmx = to_vmx(vcpu);
9988 u32 exec_control, vmcs12_exec_ctrl;
9989
9990 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9991 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9992 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9993 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9994 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9995 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9996 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9997 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9998 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9999 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10000 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10001 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10002 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10003 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10004 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10005 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10006 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10007 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10008 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10009 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10010 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10011 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10012 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10013 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10014 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10015 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10016 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10017 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10018 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10019 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10020 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10021 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10022 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10023 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10024 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10025 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10026
10027 if (from_vmentry &&
10028 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10029 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10030 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10031 } else {
10032 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10033 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10034 }
10035 if (from_vmentry) {
10036 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10037 vmcs12->vm_entry_intr_info_field);
10038 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10039 vmcs12->vm_entry_exception_error_code);
10040 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10041 vmcs12->vm_entry_instruction_len);
10042 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10043 vmcs12->guest_interruptibility_info);
10044 } else {
10045 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10046 }
10047 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10048 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10049 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10050 vmcs12->guest_pending_dbg_exceptions);
10051 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10052 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10053
10054 if (nested_cpu_has_xsaves(vmcs12))
10055 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10056 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10057
10058 exec_control = vmcs12->pin_based_vm_exec_control;
10059
10060 /* Preemption timer setting is only taken from vmcs01. */
10061 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10062 exec_control |= vmcs_config.pin_based_exec_ctrl;
10063 if (vmx->hv_deadline_tsc == -1)
10064 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10065
10066 /* Posted interrupts setting is only taken from vmcs12. */
10067 if (nested_cpu_has_posted_intr(vmcs12)) {
10068 /*
10069 * Note that we use L0's vector here and in
10070 * vmx_deliver_nested_posted_interrupt.
10071 */
10072 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10073 vmx->nested.pi_pending = false;
10074 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10075 } else {
10076 exec_control &= ~PIN_BASED_POSTED_INTR;
10077 }
10078
10079 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10080
10081 vmx->nested.preemption_timer_expired = false;
10082 if (nested_cpu_has_preemption_timer(vmcs12))
10083 vmx_start_preemption_timer(vcpu);
10084
10085 /*
10086 * Whether page-faults are trapped is determined by a combination of
10087 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10088 * If enable_ept, L0 doesn't care about page faults and we should
10089 * set all of these to L1's desires. However, if !enable_ept, L0 does
10090 * care about (at least some) page faults, and because it is not easy
10091 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10092 * to exit on each and every L2 page fault. This is done by setting
10093 * MASK=MATCH=0 and (see below) EB.PF=1.
10094 * Note that below we don't need special code to set EB.PF beyond the
10095 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10096 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10097 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10098 *
10099 * A problem with this approach (when !enable_ept) is that L1 may be
10100 * injected with more page faults than it asked for. This could have
10101 * caused problems, but in practice existing hypervisors don't care.
10102 * To fix this, we will need to emulate the PFEC checking (on the L1
10103 * page tables), using walk_addr(), when injecting PFs to L1.
10104 */
10105 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10106 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10107 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10108 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10109
10110 if (cpu_has_secondary_exec_ctrls()) {
10111 exec_control = vmx_secondary_exec_control(vmx);
10112
10113 /* Take the following fields only from vmcs12 */
10114 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10115 SECONDARY_EXEC_RDTSCP |
10116 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10117 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10118 if (nested_cpu_has(vmcs12,
10119 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10120 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10121 ~SECONDARY_EXEC_ENABLE_PML;
10122 exec_control |= vmcs12_exec_ctrl;
10123 }
10124
10125 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10126 vmcs_write64(EOI_EXIT_BITMAP0,
10127 vmcs12->eoi_exit_bitmap0);
10128 vmcs_write64(EOI_EXIT_BITMAP1,
10129 vmcs12->eoi_exit_bitmap1);
10130 vmcs_write64(EOI_EXIT_BITMAP2,
10131 vmcs12->eoi_exit_bitmap2);
10132 vmcs_write64(EOI_EXIT_BITMAP3,
10133 vmcs12->eoi_exit_bitmap3);
10134 vmcs_write16(GUEST_INTR_STATUS,
10135 vmcs12->guest_intr_status);
10136 }
10137
10138 /*
10139 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10140 * nested_get_vmcs12_pages will either fix it up or
10141 * remove the VM execution control.
10142 */
10143 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10144 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10145
10146 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10147 }
10148
10149
10150 /*
10151 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10152 * Some constant fields are set here by vmx_set_constant_host_state().
10153 * Other fields are different per CPU, and will be set later when
10154 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10155 */
10156 vmx_set_constant_host_state(vmx);
10157
10158 /*
10159 * Set the MSR load/store lists to match L0's settings.
10160 */
10161 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10162 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10163 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10164 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10165 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10166
10167 /*
10168 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10169 * entry, but only if the current (host) sp changed from the value
10170 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10171 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10172 * here we just force the write to happen on entry.
10173 */
10174 vmx->host_rsp = 0;
10175
10176 exec_control = vmx_exec_control(vmx); /* L0's desires */
10177 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10178 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10179 exec_control &= ~CPU_BASED_TPR_SHADOW;
10180 exec_control |= vmcs12->cpu_based_vm_exec_control;
10181
10182 /*
10183 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10184 * nested_get_vmcs12_pages can't fix it up, the illegal value
10185 * will result in a VM entry failure.
10186 */
10187 if (exec_control & CPU_BASED_TPR_SHADOW) {
10188 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10189 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10190 }
10191
10192 /*
10193 * Merging of IO bitmap not currently supported.
10194 * Rather, exit every time.
10195 */
10196 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10197 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10198
10199 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10200
10201 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10202 * bitwise-or of what L1 wants to trap for L2, and what we want to
10203 * trap. Note that CR0.TS also needs updating - we do this later.
10204 */
10205 update_exception_bitmap(vcpu);
10206 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10207 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10208
10209 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10210 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10211 * bits are further modified by vmx_set_efer() below.
10212 */
10213 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10214
10215 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10216 * emulated by vmx_set_efer(), below.
10217 */
10218 vm_entry_controls_init(vmx,
10219 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10220 ~VM_ENTRY_IA32E_MODE) |
10221 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10222
10223 if (from_vmentry &&
10224 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10225 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10226 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10227 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10228 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10229 }
10230
10231 set_cr4_guest_host_mask(vmx);
10232
10233 if (from_vmentry &&
10234 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10235 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10236
10237 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10238 vmcs_write64(TSC_OFFSET,
10239 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10240 else
10241 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10242 if (kvm_has_tsc_control)
10243 decache_tsc_multiplier(vmx);
10244
10245 if (enable_vpid) {
10246 /*
10247 * There is no direct mapping between vpid02 and vpid12, the
10248 * vpid02 is per-vCPU for L0 and reused while the value of
10249 * vpid12 is changed w/ one invvpid during nested vmentry.
10250 * The vpid12 is allocated by L1 for L2, so it will not
10251 * influence global bitmap(for vpid01 and vpid02 allocation)
10252 * even if spawn a lot of nested vCPUs.
10253 */
10254 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10255 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10256 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10257 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10258 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10259 }
10260 } else {
10261 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10262 vmx_flush_tlb(vcpu);
10263 }
10264
10265 }
10266
10267 if (enable_pml) {
10268 /*
10269 * Conceptually we want to copy the PML address and index from
10270 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10271 * since we always flush the log on each vmexit, this happens
10272 * to be equivalent to simply resetting the fields in vmcs02.
10273 */
10274 ASSERT(vmx->pml_pg);
10275 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10276 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10277 }
10278
10279 if (nested_cpu_has_ept(vmcs12)) {
10280 if (nested_ept_init_mmu_context(vcpu)) {
10281 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10282 return 1;
10283 }
10284 } else if (nested_cpu_has2(vmcs12,
10285 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10286 vmx_flush_tlb_ept_only(vcpu);
10287 }
10288
10289 /*
10290 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10291 * bits which we consider mandatory enabled.
10292 * The CR0_READ_SHADOW is what L2 should have expected to read given
10293 * the specifications by L1; It's not enough to take
10294 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10295 * have more bits than L1 expected.
10296 */
10297 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10298 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10299
10300 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10301 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10302
10303 if (from_vmentry &&
10304 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10305 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10306 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10307 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10308 else
10309 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10310 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10311 vmx_set_efer(vcpu, vcpu->arch.efer);
10312
10313 /* Shadow page tables on either EPT or shadow page tables. */
10314 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10315 entry_failure_code))
10316 return 1;
10317
10318 if (!enable_ept)
10319 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10320
10321 /*
10322 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10323 */
10324 if (enable_ept) {
10325 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10326 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10327 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10328 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10329 }
10330
10331 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10332 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10333 return 0;
10334 }
10335
10336 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10337 {
10338 struct vcpu_vmx *vmx = to_vmx(vcpu);
10339
10340 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10341 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10342 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10343
10344 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10345 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10346
10347 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10348 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10349
10350 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10351 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10352
10353 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10354 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10355
10356 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10357 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10358
10359 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10360 vmx->nested.nested_vmx_procbased_ctls_low,
10361 vmx->nested.nested_vmx_procbased_ctls_high) ||
10362 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10363 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10364 vmx->nested.nested_vmx_secondary_ctls_low,
10365 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10366 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10367 vmx->nested.nested_vmx_pinbased_ctls_low,
10368 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10369 !vmx_control_verify(vmcs12->vm_exit_controls,
10370 vmx->nested.nested_vmx_exit_ctls_low,
10371 vmx->nested.nested_vmx_exit_ctls_high) ||
10372 !vmx_control_verify(vmcs12->vm_entry_controls,
10373 vmx->nested.nested_vmx_entry_ctls_low,
10374 vmx->nested.nested_vmx_entry_ctls_high))
10375 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10376
10377 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10378 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10379
10380 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10381 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10382 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10383 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10384
10385 return 0;
10386 }
10387
10388 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10389 u32 *exit_qual)
10390 {
10391 bool ia32e;
10392
10393 *exit_qual = ENTRY_FAIL_DEFAULT;
10394
10395 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10396 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10397 return 1;
10398
10399 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10400 vmcs12->vmcs_link_pointer != -1ull) {
10401 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10402 return 1;
10403 }
10404
10405 /*
10406 * If the load IA32_EFER VM-entry control is 1, the following checks
10407 * are performed on the field for the IA32_EFER MSR:
10408 * - Bits reserved in the IA32_EFER MSR must be 0.
10409 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10410 * the IA-32e mode guest VM-exit control. It must also be identical
10411 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10412 * CR0.PG) is 1.
10413 */
10414 if (to_vmx(vcpu)->nested.nested_run_pending &&
10415 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10416 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10417 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10418 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10419 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10420 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10421 return 1;
10422 }
10423
10424 /*
10425 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10426 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10427 * the values of the LMA and LME bits in the field must each be that of
10428 * the host address-space size VM-exit control.
10429 */
10430 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10431 ia32e = (vmcs12->vm_exit_controls &
10432 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10433 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10434 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10435 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10436 return 1;
10437 }
10438
10439 return 0;
10440 }
10441
10442 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10443 {
10444 struct vcpu_vmx *vmx = to_vmx(vcpu);
10445 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10446 struct loaded_vmcs *vmcs02;
10447 u32 msr_entry_idx;
10448 u32 exit_qual;
10449
10450 vmcs02 = nested_get_current_vmcs02(vmx);
10451 if (!vmcs02)
10452 return -ENOMEM;
10453
10454 enter_guest_mode(vcpu);
10455
10456 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10457 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10458
10459 vmx_switch_vmcs(vcpu, vmcs02);
10460 vmx_segment_cache_clear(vmx);
10461
10462 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10463 leave_guest_mode(vcpu);
10464 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10465 nested_vmx_entry_failure(vcpu, vmcs12,
10466 EXIT_REASON_INVALID_STATE, exit_qual);
10467 return 1;
10468 }
10469
10470 nested_get_vmcs12_pages(vcpu, vmcs12);
10471
10472 msr_entry_idx = nested_vmx_load_msr(vcpu,
10473 vmcs12->vm_entry_msr_load_addr,
10474 vmcs12->vm_entry_msr_load_count);
10475 if (msr_entry_idx) {
10476 leave_guest_mode(vcpu);
10477 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10478 nested_vmx_entry_failure(vcpu, vmcs12,
10479 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10480 return 1;
10481 }
10482
10483 /*
10484 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10485 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10486 * returned as far as L1 is concerned. It will only return (and set
10487 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10488 */
10489 return 0;
10490 }
10491
10492 /*
10493 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10494 * for running an L2 nested guest.
10495 */
10496 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10497 {
10498 struct vmcs12 *vmcs12;
10499 struct vcpu_vmx *vmx = to_vmx(vcpu);
10500 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10501 u32 exit_qual;
10502 int ret;
10503
10504 if (!nested_vmx_check_permission(vcpu))
10505 return 1;
10506
10507 if (!nested_vmx_check_vmcs12(vcpu))
10508 goto out;
10509
10510 vmcs12 = get_vmcs12(vcpu);
10511
10512 if (enable_shadow_vmcs)
10513 copy_shadow_to_vmcs12(vmx);
10514
10515 /*
10516 * The nested entry process starts with enforcing various prerequisites
10517 * on vmcs12 as required by the Intel SDM, and act appropriately when
10518 * they fail: As the SDM explains, some conditions should cause the
10519 * instruction to fail, while others will cause the instruction to seem
10520 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10521 * To speed up the normal (success) code path, we should avoid checking
10522 * for misconfigurations which will anyway be caught by the processor
10523 * when using the merged vmcs02.
10524 */
10525 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10526 nested_vmx_failValid(vcpu,
10527 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10528 goto out;
10529 }
10530
10531 if (vmcs12->launch_state == launch) {
10532 nested_vmx_failValid(vcpu,
10533 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10534 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10535 goto out;
10536 }
10537
10538 ret = check_vmentry_prereqs(vcpu, vmcs12);
10539 if (ret) {
10540 nested_vmx_failValid(vcpu, ret);
10541 goto out;
10542 }
10543
10544 /*
10545 * After this point, the trap flag no longer triggers a singlestep trap
10546 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10547 * This is not 100% correct; for performance reasons, we delegate most
10548 * of the checks on host state to the processor. If those fail,
10549 * the singlestep trap is missed.
10550 */
10551 skip_emulated_instruction(vcpu);
10552
10553 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10554 if (ret) {
10555 nested_vmx_entry_failure(vcpu, vmcs12,
10556 EXIT_REASON_INVALID_STATE, exit_qual);
10557 return 1;
10558 }
10559
10560 /*
10561 * We're finally done with prerequisite checking, and can start with
10562 * the nested entry.
10563 */
10564
10565 ret = enter_vmx_non_root_mode(vcpu, true);
10566 if (ret)
10567 return ret;
10568
10569 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10570 return kvm_vcpu_halt(vcpu);
10571
10572 vmx->nested.nested_run_pending = 1;
10573
10574 return 1;
10575
10576 out:
10577 return kvm_skip_emulated_instruction(vcpu);
10578 }
10579
10580 /*
10581 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10582 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10583 * This function returns the new value we should put in vmcs12.guest_cr0.
10584 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10585 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10586 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10587 * didn't trap the bit, because if L1 did, so would L0).
10588 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10589 * been modified by L2, and L1 knows it. So just leave the old value of
10590 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10591 * isn't relevant, because if L0 traps this bit it can set it to anything.
10592 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10593 * changed these bits, and therefore they need to be updated, but L0
10594 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10595 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10596 */
10597 static inline unsigned long
10598 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10599 {
10600 return
10601 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10602 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10603 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10604 vcpu->arch.cr0_guest_owned_bits));
10605 }
10606
10607 static inline unsigned long
10608 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10609 {
10610 return
10611 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10612 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10613 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10614 vcpu->arch.cr4_guest_owned_bits));
10615 }
10616
10617 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10618 struct vmcs12 *vmcs12)
10619 {
10620 u32 idt_vectoring;
10621 unsigned int nr;
10622
10623 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10624 nr = vcpu->arch.exception.nr;
10625 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10626
10627 if (kvm_exception_is_soft(nr)) {
10628 vmcs12->vm_exit_instruction_len =
10629 vcpu->arch.event_exit_inst_len;
10630 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10631 } else
10632 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10633
10634 if (vcpu->arch.exception.has_error_code) {
10635 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10636 vmcs12->idt_vectoring_error_code =
10637 vcpu->arch.exception.error_code;
10638 }
10639
10640 vmcs12->idt_vectoring_info_field = idt_vectoring;
10641 } else if (vcpu->arch.nmi_injected) {
10642 vmcs12->idt_vectoring_info_field =
10643 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10644 } else if (vcpu->arch.interrupt.pending) {
10645 nr = vcpu->arch.interrupt.nr;
10646 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10647
10648 if (vcpu->arch.interrupt.soft) {
10649 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10650 vmcs12->vm_entry_instruction_len =
10651 vcpu->arch.event_exit_inst_len;
10652 } else
10653 idt_vectoring |= INTR_TYPE_EXT_INTR;
10654
10655 vmcs12->idt_vectoring_info_field = idt_vectoring;
10656 }
10657 }
10658
10659 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10660 {
10661 struct vcpu_vmx *vmx = to_vmx(vcpu);
10662
10663 if (vcpu->arch.exception.pending ||
10664 vcpu->arch.nmi_injected ||
10665 vcpu->arch.interrupt.pending)
10666 return -EBUSY;
10667
10668 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10669 vmx->nested.preemption_timer_expired) {
10670 if (vmx->nested.nested_run_pending)
10671 return -EBUSY;
10672 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10673 return 0;
10674 }
10675
10676 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10677 if (vmx->nested.nested_run_pending)
10678 return -EBUSY;
10679 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10680 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10681 INTR_INFO_VALID_MASK, 0);
10682 /*
10683 * The NMI-triggered VM exit counts as injection:
10684 * clear this one and block further NMIs.
10685 */
10686 vcpu->arch.nmi_pending = 0;
10687 vmx_set_nmi_mask(vcpu, true);
10688 return 0;
10689 }
10690
10691 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10692 nested_exit_on_intr(vcpu)) {
10693 if (vmx->nested.nested_run_pending)
10694 return -EBUSY;
10695 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10696 return 0;
10697 }
10698
10699 vmx_complete_nested_posted_interrupt(vcpu);
10700 return 0;
10701 }
10702
10703 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10704 {
10705 ktime_t remaining =
10706 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10707 u64 value;
10708
10709 if (ktime_to_ns(remaining) <= 0)
10710 return 0;
10711
10712 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10713 do_div(value, 1000000);
10714 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10715 }
10716
10717 /*
10718 * Update the guest state fields of vmcs12 to reflect changes that
10719 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10720 * VM-entry controls is also updated, since this is really a guest
10721 * state bit.)
10722 */
10723 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10724 {
10725 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10726 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10727
10728 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10729 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10730 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10731
10732 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10733 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10734 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10735 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10736 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10737 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10738 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10739 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10740 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10741 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10742 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10743 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10744 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10745 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10746 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10747 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10748 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10749 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10750 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10751 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10752 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10753 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10754 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10755 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10756 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10757 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10758 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10759 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10760 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10761 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10762 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10763 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10764 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10765 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10766 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10767 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10768
10769 vmcs12->guest_interruptibility_info =
10770 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10771 vmcs12->guest_pending_dbg_exceptions =
10772 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10773 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10774 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10775 else
10776 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10777
10778 if (nested_cpu_has_preemption_timer(vmcs12)) {
10779 if (vmcs12->vm_exit_controls &
10780 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10781 vmcs12->vmx_preemption_timer_value =
10782 vmx_get_preemption_timer_value(vcpu);
10783 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10784 }
10785
10786 /*
10787 * In some cases (usually, nested EPT), L2 is allowed to change its
10788 * own CR3 without exiting. If it has changed it, we must keep it.
10789 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10790 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10791 *
10792 * Additionally, restore L2's PDPTR to vmcs12.
10793 */
10794 if (enable_ept) {
10795 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10796 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10797 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10798 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10799 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10800 }
10801
10802 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10803
10804 if (nested_cpu_has_vid(vmcs12))
10805 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10806
10807 vmcs12->vm_entry_controls =
10808 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10809 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10810
10811 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10812 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10813 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10814 }
10815
10816 /* TODO: These cannot have changed unless we have MSR bitmaps and
10817 * the relevant bit asks not to trap the change */
10818 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10819 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10820 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10821 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10822 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10823 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10824 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10825 if (kvm_mpx_supported())
10826 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10827 }
10828
10829 /*
10830 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10831 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10832 * and this function updates it to reflect the changes to the guest state while
10833 * L2 was running (and perhaps made some exits which were handled directly by L0
10834 * without going back to L1), and to reflect the exit reason.
10835 * Note that we do not have to copy here all VMCS fields, just those that
10836 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10837 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10838 * which already writes to vmcs12 directly.
10839 */
10840 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10841 u32 exit_reason, u32 exit_intr_info,
10842 unsigned long exit_qualification)
10843 {
10844 /* update guest state fields: */
10845 sync_vmcs12(vcpu, vmcs12);
10846
10847 /* update exit information fields: */
10848
10849 vmcs12->vm_exit_reason = exit_reason;
10850 vmcs12->exit_qualification = exit_qualification;
10851
10852 vmcs12->vm_exit_intr_info = exit_intr_info;
10853 if ((vmcs12->vm_exit_intr_info &
10854 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10855 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10856 vmcs12->vm_exit_intr_error_code =
10857 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10858 vmcs12->idt_vectoring_info_field = 0;
10859 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10860 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10861
10862 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10863 vmcs12->launch_state = 1;
10864
10865 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10866 * instead of reading the real value. */
10867 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10868
10869 /*
10870 * Transfer the event that L0 or L1 may wanted to inject into
10871 * L2 to IDT_VECTORING_INFO_FIELD.
10872 */
10873 vmcs12_save_pending_event(vcpu, vmcs12);
10874 }
10875
10876 /*
10877 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10878 * preserved above and would only end up incorrectly in L1.
10879 */
10880 vcpu->arch.nmi_injected = false;
10881 kvm_clear_exception_queue(vcpu);
10882 kvm_clear_interrupt_queue(vcpu);
10883 }
10884
10885 /*
10886 * A part of what we need to when the nested L2 guest exits and we want to
10887 * run its L1 parent, is to reset L1's guest state to the host state specified
10888 * in vmcs12.
10889 * This function is to be called not only on normal nested exit, but also on
10890 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10891 * Failures During or After Loading Guest State").
10892 * This function should be called when the active VMCS is L1's (vmcs01).
10893 */
10894 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10895 struct vmcs12 *vmcs12)
10896 {
10897 struct kvm_segment seg;
10898 u32 entry_failure_code;
10899
10900 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10901 vcpu->arch.efer = vmcs12->host_ia32_efer;
10902 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10903 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10904 else
10905 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10906 vmx_set_efer(vcpu, vcpu->arch.efer);
10907
10908 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10909 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10910 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10911 /*
10912 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10913 * actually changed, because vmx_set_cr0 refers to efer set above.
10914 *
10915 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10916 * (KVM doesn't change it);
10917 */
10918 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10919 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10920
10921 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
10922 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10923 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10924
10925 nested_ept_uninit_mmu_context(vcpu);
10926
10927 /*
10928 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10929 * couldn't have changed.
10930 */
10931 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10932 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10933
10934 if (!enable_ept)
10935 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10936
10937 if (enable_vpid) {
10938 /*
10939 * Trivially support vpid by letting L2s share their parent
10940 * L1's vpid. TODO: move to a more elaborate solution, giving
10941 * each L2 its own vpid and exposing the vpid feature to L1.
10942 */
10943 vmx_flush_tlb(vcpu);
10944 }
10945
10946
10947 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10948 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10949 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10950 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10951 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10952
10953 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10954 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10955 vmcs_write64(GUEST_BNDCFGS, 0);
10956
10957 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10958 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10959 vcpu->arch.pat = vmcs12->host_ia32_pat;
10960 }
10961 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10962 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10963 vmcs12->host_ia32_perf_global_ctrl);
10964
10965 /* Set L1 segment info according to Intel SDM
10966 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10967 seg = (struct kvm_segment) {
10968 .base = 0,
10969 .limit = 0xFFFFFFFF,
10970 .selector = vmcs12->host_cs_selector,
10971 .type = 11,
10972 .present = 1,
10973 .s = 1,
10974 .g = 1
10975 };
10976 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10977 seg.l = 1;
10978 else
10979 seg.db = 1;
10980 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10981 seg = (struct kvm_segment) {
10982 .base = 0,
10983 .limit = 0xFFFFFFFF,
10984 .type = 3,
10985 .present = 1,
10986 .s = 1,
10987 .db = 1,
10988 .g = 1
10989 };
10990 seg.selector = vmcs12->host_ds_selector;
10991 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10992 seg.selector = vmcs12->host_es_selector;
10993 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10994 seg.selector = vmcs12->host_ss_selector;
10995 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10996 seg.selector = vmcs12->host_fs_selector;
10997 seg.base = vmcs12->host_fs_base;
10998 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10999 seg.selector = vmcs12->host_gs_selector;
11000 seg.base = vmcs12->host_gs_base;
11001 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11002 seg = (struct kvm_segment) {
11003 .base = vmcs12->host_tr_base,
11004 .limit = 0x67,
11005 .selector = vmcs12->host_tr_selector,
11006 .type = 11,
11007 .present = 1
11008 };
11009 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11010
11011 kvm_set_dr(vcpu, 7, 0x400);
11012 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11013
11014 if (cpu_has_vmx_msr_bitmap())
11015 vmx_set_msr_bitmap(vcpu);
11016
11017 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11018 vmcs12->vm_exit_msr_load_count))
11019 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11020 }
11021
11022 /*
11023 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11024 * and modify vmcs12 to make it see what it would expect to see there if
11025 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11026 */
11027 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11028 u32 exit_intr_info,
11029 unsigned long exit_qualification)
11030 {
11031 struct vcpu_vmx *vmx = to_vmx(vcpu);
11032 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11033 u32 vm_inst_error = 0;
11034
11035 /* trying to cancel vmlaunch/vmresume is a bug */
11036 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11037
11038 leave_guest_mode(vcpu);
11039 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11040 exit_qualification);
11041
11042 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11043 vmcs12->vm_exit_msr_store_count))
11044 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11045
11046 if (unlikely(vmx->fail))
11047 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11048
11049 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11050
11051 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11052 && nested_exit_intr_ack_set(vcpu)) {
11053 int irq = kvm_cpu_get_interrupt(vcpu);
11054 WARN_ON(irq < 0);
11055 vmcs12->vm_exit_intr_info = irq |
11056 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11057 }
11058
11059 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11060 vmcs12->exit_qualification,
11061 vmcs12->idt_vectoring_info_field,
11062 vmcs12->vm_exit_intr_info,
11063 vmcs12->vm_exit_intr_error_code,
11064 KVM_ISA_VMX);
11065
11066 vm_entry_controls_reset_shadow(vmx);
11067 vm_exit_controls_reset_shadow(vmx);
11068 vmx_segment_cache_clear(vmx);
11069
11070 /* if no vmcs02 cache requested, remove the one we used */
11071 if (VMCS02_POOL_SIZE == 0)
11072 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11073
11074 load_vmcs12_host_state(vcpu, vmcs12);
11075
11076 /* Update any VMCS fields that might have changed while L2 ran */
11077 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11078 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11079 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11080 if (vmx->hv_deadline_tsc == -1)
11081 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11082 PIN_BASED_VMX_PREEMPTION_TIMER);
11083 else
11084 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11085 PIN_BASED_VMX_PREEMPTION_TIMER);
11086 if (kvm_has_tsc_control)
11087 decache_tsc_multiplier(vmx);
11088
11089 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11090 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11091 vmx_set_virtual_x2apic_mode(vcpu,
11092 vcpu->arch.apic_base & X2APIC_ENABLE);
11093 } else if (!nested_cpu_has_ept(vmcs12) &&
11094 nested_cpu_has2(vmcs12,
11095 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11096 vmx_flush_tlb_ept_only(vcpu);
11097 }
11098
11099 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11100 vmx->host_rsp = 0;
11101
11102 /* Unpin physical memory we referred to in vmcs02 */
11103 if (vmx->nested.apic_access_page) {
11104 nested_release_page(vmx->nested.apic_access_page);
11105 vmx->nested.apic_access_page = NULL;
11106 }
11107 if (vmx->nested.virtual_apic_page) {
11108 nested_release_page(vmx->nested.virtual_apic_page);
11109 vmx->nested.virtual_apic_page = NULL;
11110 }
11111 if (vmx->nested.pi_desc_page) {
11112 kunmap(vmx->nested.pi_desc_page);
11113 nested_release_page(vmx->nested.pi_desc_page);
11114 vmx->nested.pi_desc_page = NULL;
11115 vmx->nested.pi_desc = NULL;
11116 }
11117
11118 /*
11119 * We are now running in L2, mmu_notifier will force to reload the
11120 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11121 */
11122 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11123
11124 /*
11125 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11126 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11127 * success or failure flag accordingly.
11128 */
11129 if (unlikely(vmx->fail)) {
11130 vmx->fail = 0;
11131 nested_vmx_failValid(vcpu, vm_inst_error);
11132 } else
11133 nested_vmx_succeed(vcpu);
11134 if (enable_shadow_vmcs)
11135 vmx->nested.sync_shadow_vmcs = true;
11136
11137 /* in case we halted in L2 */
11138 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11139 }
11140
11141 /*
11142 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11143 */
11144 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11145 {
11146 if (is_guest_mode(vcpu)) {
11147 to_vmx(vcpu)->nested.nested_run_pending = 0;
11148 nested_vmx_vmexit(vcpu, -1, 0, 0);
11149 }
11150 free_nested(to_vmx(vcpu));
11151 }
11152
11153 /*
11154 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11155 * 23.7 "VM-entry failures during or after loading guest state" (this also
11156 * lists the acceptable exit-reason and exit-qualification parameters).
11157 * It should only be called before L2 actually succeeded to run, and when
11158 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11159 */
11160 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11161 struct vmcs12 *vmcs12,
11162 u32 reason, unsigned long qualification)
11163 {
11164 load_vmcs12_host_state(vcpu, vmcs12);
11165 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11166 vmcs12->exit_qualification = qualification;
11167 nested_vmx_succeed(vcpu);
11168 if (enable_shadow_vmcs)
11169 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11170 }
11171
11172 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11173 struct x86_instruction_info *info,
11174 enum x86_intercept_stage stage)
11175 {
11176 return X86EMUL_CONTINUE;
11177 }
11178
11179 #ifdef CONFIG_X86_64
11180 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11181 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11182 u64 divisor, u64 *result)
11183 {
11184 u64 low = a << shift, high = a >> (64 - shift);
11185
11186 /* To avoid the overflow on divq */
11187 if (high >= divisor)
11188 return 1;
11189
11190 /* Low hold the result, high hold rem which is discarded */
11191 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11192 "rm" (divisor), "0" (low), "1" (high));
11193 *result = low;
11194
11195 return 0;
11196 }
11197
11198 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11199 {
11200 struct vcpu_vmx *vmx = to_vmx(vcpu);
11201 u64 tscl = rdtsc();
11202 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11203 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11204
11205 /* Convert to host delta tsc if tsc scaling is enabled */
11206 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11207 u64_shl_div_u64(delta_tsc,
11208 kvm_tsc_scaling_ratio_frac_bits,
11209 vcpu->arch.tsc_scaling_ratio,
11210 &delta_tsc))
11211 return -ERANGE;
11212
11213 /*
11214 * If the delta tsc can't fit in the 32 bit after the multi shift,
11215 * we can't use the preemption timer.
11216 * It's possible that it fits on later vmentries, but checking
11217 * on every vmentry is costly so we just use an hrtimer.
11218 */
11219 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11220 return -ERANGE;
11221
11222 vmx->hv_deadline_tsc = tscl + delta_tsc;
11223 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11224 PIN_BASED_VMX_PREEMPTION_TIMER);
11225
11226 return delta_tsc == 0;
11227 }
11228
11229 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11230 {
11231 struct vcpu_vmx *vmx = to_vmx(vcpu);
11232 vmx->hv_deadline_tsc = -1;
11233 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11234 PIN_BASED_VMX_PREEMPTION_TIMER);
11235 }
11236 #endif
11237
11238 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11239 {
11240 if (ple_gap)
11241 shrink_ple_window(vcpu);
11242 }
11243
11244 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11245 struct kvm_memory_slot *slot)
11246 {
11247 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11248 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11249 }
11250
11251 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11252 struct kvm_memory_slot *slot)
11253 {
11254 kvm_mmu_slot_set_dirty(kvm, slot);
11255 }
11256
11257 static void vmx_flush_log_dirty(struct kvm *kvm)
11258 {
11259 kvm_flush_pml_buffers(kvm);
11260 }
11261
11262 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11263 {
11264 struct vmcs12 *vmcs12;
11265 struct vcpu_vmx *vmx = to_vmx(vcpu);
11266 gpa_t gpa;
11267 struct page *page = NULL;
11268 u64 *pml_address;
11269
11270 if (is_guest_mode(vcpu)) {
11271 WARN_ON_ONCE(vmx->nested.pml_full);
11272
11273 /*
11274 * Check if PML is enabled for the nested guest.
11275 * Whether eptp bit 6 is set is already checked
11276 * as part of A/D emulation.
11277 */
11278 vmcs12 = get_vmcs12(vcpu);
11279 if (!nested_cpu_has_pml(vmcs12))
11280 return 0;
11281
11282 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11283 vmx->nested.pml_full = true;
11284 return 1;
11285 }
11286
11287 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11288
11289 page = nested_get_page(vcpu, vmcs12->pml_address);
11290 if (!page)
11291 return 0;
11292
11293 pml_address = kmap(page);
11294 pml_address[vmcs12->guest_pml_index--] = gpa;
11295 kunmap(page);
11296 nested_release_page_clean(page);
11297 }
11298
11299 return 0;
11300 }
11301
11302 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11303 struct kvm_memory_slot *memslot,
11304 gfn_t offset, unsigned long mask)
11305 {
11306 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11307 }
11308
11309 /*
11310 * This routine does the following things for vCPU which is going
11311 * to be blocked if VT-d PI is enabled.
11312 * - Store the vCPU to the wakeup list, so when interrupts happen
11313 * we can find the right vCPU to wake up.
11314 * - Change the Posted-interrupt descriptor as below:
11315 * 'NDST' <-- vcpu->pre_pcpu
11316 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11317 * - If 'ON' is set during this process, which means at least one
11318 * interrupt is posted for this vCPU, we cannot block it, in
11319 * this case, return 1, otherwise, return 0.
11320 *
11321 */
11322 static int pi_pre_block(struct kvm_vcpu *vcpu)
11323 {
11324 unsigned long flags;
11325 unsigned int dest;
11326 struct pi_desc old, new;
11327 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11328
11329 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11330 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11331 !kvm_vcpu_apicv_active(vcpu))
11332 return 0;
11333
11334 vcpu->pre_pcpu = vcpu->cpu;
11335 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11336 vcpu->pre_pcpu), flags);
11337 list_add_tail(&vcpu->blocked_vcpu_list,
11338 &per_cpu(blocked_vcpu_on_cpu,
11339 vcpu->pre_pcpu));
11340 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11341 vcpu->pre_pcpu), flags);
11342
11343 do {
11344 old.control = new.control = pi_desc->control;
11345
11346 /*
11347 * We should not block the vCPU if
11348 * an interrupt is posted for it.
11349 */
11350 if (pi_test_on(pi_desc) == 1) {
11351 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11352 vcpu->pre_pcpu), flags);
11353 list_del(&vcpu->blocked_vcpu_list);
11354 spin_unlock_irqrestore(
11355 &per_cpu(blocked_vcpu_on_cpu_lock,
11356 vcpu->pre_pcpu), flags);
11357 vcpu->pre_pcpu = -1;
11358
11359 return 1;
11360 }
11361
11362 WARN((pi_desc->sn == 1),
11363 "Warning: SN field of posted-interrupts "
11364 "is set before blocking\n");
11365
11366 /*
11367 * Since vCPU can be preempted during this process,
11368 * vcpu->cpu could be different with pre_pcpu, we
11369 * need to set pre_pcpu as the destination of wakeup
11370 * notification event, then we can find the right vCPU
11371 * to wakeup in wakeup handler if interrupts happen
11372 * when the vCPU is in blocked state.
11373 */
11374 dest = cpu_physical_id(vcpu->pre_pcpu);
11375
11376 if (x2apic_enabled())
11377 new.ndst = dest;
11378 else
11379 new.ndst = (dest << 8) & 0xFF00;
11380
11381 /* set 'NV' to 'wakeup vector' */
11382 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11383 } while (cmpxchg(&pi_desc->control, old.control,
11384 new.control) != old.control);
11385
11386 return 0;
11387 }
11388
11389 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11390 {
11391 if (pi_pre_block(vcpu))
11392 return 1;
11393
11394 if (kvm_lapic_hv_timer_in_use(vcpu))
11395 kvm_lapic_switch_to_sw_timer(vcpu);
11396
11397 return 0;
11398 }
11399
11400 static void pi_post_block(struct kvm_vcpu *vcpu)
11401 {
11402 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11403 struct pi_desc old, new;
11404 unsigned int dest;
11405 unsigned long flags;
11406
11407 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11408 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11409 !kvm_vcpu_apicv_active(vcpu))
11410 return;
11411
11412 do {
11413 old.control = new.control = pi_desc->control;
11414
11415 dest = cpu_physical_id(vcpu->cpu);
11416
11417 if (x2apic_enabled())
11418 new.ndst = dest;
11419 else
11420 new.ndst = (dest << 8) & 0xFF00;
11421
11422 /* Allow posting non-urgent interrupts */
11423 new.sn = 0;
11424
11425 /* set 'NV' to 'notification vector' */
11426 new.nv = POSTED_INTR_VECTOR;
11427 } while (cmpxchg(&pi_desc->control, old.control,
11428 new.control) != old.control);
11429
11430 if(vcpu->pre_pcpu != -1) {
11431 spin_lock_irqsave(
11432 &per_cpu(blocked_vcpu_on_cpu_lock,
11433 vcpu->pre_pcpu), flags);
11434 list_del(&vcpu->blocked_vcpu_list);
11435 spin_unlock_irqrestore(
11436 &per_cpu(blocked_vcpu_on_cpu_lock,
11437 vcpu->pre_pcpu), flags);
11438 vcpu->pre_pcpu = -1;
11439 }
11440 }
11441
11442 static void vmx_post_block(struct kvm_vcpu *vcpu)
11443 {
11444 if (kvm_x86_ops->set_hv_timer)
11445 kvm_lapic_switch_to_hv_timer(vcpu);
11446
11447 pi_post_block(vcpu);
11448 }
11449
11450 /*
11451 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11452 *
11453 * @kvm: kvm
11454 * @host_irq: host irq of the interrupt
11455 * @guest_irq: gsi of the interrupt
11456 * @set: set or unset PI
11457 * returns 0 on success, < 0 on failure
11458 */
11459 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11460 uint32_t guest_irq, bool set)
11461 {
11462 struct kvm_kernel_irq_routing_entry *e;
11463 struct kvm_irq_routing_table *irq_rt;
11464 struct kvm_lapic_irq irq;
11465 struct kvm_vcpu *vcpu;
11466 struct vcpu_data vcpu_info;
11467 int idx, ret = -EINVAL;
11468
11469 if (!kvm_arch_has_assigned_device(kvm) ||
11470 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11471 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11472 return 0;
11473
11474 idx = srcu_read_lock(&kvm->irq_srcu);
11475 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11476 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11477
11478 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11479 if (e->type != KVM_IRQ_ROUTING_MSI)
11480 continue;
11481 /*
11482 * VT-d PI cannot support posting multicast/broadcast
11483 * interrupts to a vCPU, we still use interrupt remapping
11484 * for these kind of interrupts.
11485 *
11486 * For lowest-priority interrupts, we only support
11487 * those with single CPU as the destination, e.g. user
11488 * configures the interrupts via /proc/irq or uses
11489 * irqbalance to make the interrupts single-CPU.
11490 *
11491 * We will support full lowest-priority interrupt later.
11492 */
11493
11494 kvm_set_msi_irq(kvm, e, &irq);
11495 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11496 /*
11497 * Make sure the IRTE is in remapped mode if
11498 * we don't handle it in posted mode.
11499 */
11500 ret = irq_set_vcpu_affinity(host_irq, NULL);
11501 if (ret < 0) {
11502 printk(KERN_INFO
11503 "failed to back to remapped mode, irq: %u\n",
11504 host_irq);
11505 goto out;
11506 }
11507
11508 continue;
11509 }
11510
11511 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11512 vcpu_info.vector = irq.vector;
11513
11514 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11515 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11516
11517 if (set)
11518 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11519 else {
11520 /* suppress notification event before unposting */
11521 pi_set_sn(vcpu_to_pi_desc(vcpu));
11522 ret = irq_set_vcpu_affinity(host_irq, NULL);
11523 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11524 }
11525
11526 if (ret < 0) {
11527 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11528 __func__);
11529 goto out;
11530 }
11531 }
11532
11533 ret = 0;
11534 out:
11535 srcu_read_unlock(&kvm->irq_srcu, idx);
11536 return ret;
11537 }
11538
11539 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11540 {
11541 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11542 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11543 FEATURE_CONTROL_LMCE;
11544 else
11545 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11546 ~FEATURE_CONTROL_LMCE;
11547 }
11548
11549 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11550 .cpu_has_kvm_support = cpu_has_kvm_support,
11551 .disabled_by_bios = vmx_disabled_by_bios,
11552 .hardware_setup = hardware_setup,
11553 .hardware_unsetup = hardware_unsetup,
11554 .check_processor_compatibility = vmx_check_processor_compat,
11555 .hardware_enable = hardware_enable,
11556 .hardware_disable = hardware_disable,
11557 .cpu_has_accelerated_tpr = report_flexpriority,
11558 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11559
11560 .vcpu_create = vmx_create_vcpu,
11561 .vcpu_free = vmx_free_vcpu,
11562 .vcpu_reset = vmx_vcpu_reset,
11563
11564 .prepare_guest_switch = vmx_save_host_state,
11565 .vcpu_load = vmx_vcpu_load,
11566 .vcpu_put = vmx_vcpu_put,
11567
11568 .update_bp_intercept = update_exception_bitmap,
11569 .get_msr = vmx_get_msr,
11570 .set_msr = vmx_set_msr,
11571 .get_segment_base = vmx_get_segment_base,
11572 .get_segment = vmx_get_segment,
11573 .set_segment = vmx_set_segment,
11574 .get_cpl = vmx_get_cpl,
11575 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11576 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11577 .decache_cr3 = vmx_decache_cr3,
11578 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11579 .set_cr0 = vmx_set_cr0,
11580 .set_cr3 = vmx_set_cr3,
11581 .set_cr4 = vmx_set_cr4,
11582 .set_efer = vmx_set_efer,
11583 .get_idt = vmx_get_idt,
11584 .set_idt = vmx_set_idt,
11585 .get_gdt = vmx_get_gdt,
11586 .set_gdt = vmx_set_gdt,
11587 .get_dr6 = vmx_get_dr6,
11588 .set_dr6 = vmx_set_dr6,
11589 .set_dr7 = vmx_set_dr7,
11590 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11591 .cache_reg = vmx_cache_reg,
11592 .get_rflags = vmx_get_rflags,
11593 .set_rflags = vmx_set_rflags,
11594
11595 .get_pkru = vmx_get_pkru,
11596
11597 .tlb_flush = vmx_flush_tlb,
11598
11599 .run = vmx_vcpu_run,
11600 .handle_exit = vmx_handle_exit,
11601 .skip_emulated_instruction = skip_emulated_instruction,
11602 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11603 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11604 .patch_hypercall = vmx_patch_hypercall,
11605 .set_irq = vmx_inject_irq,
11606 .set_nmi = vmx_inject_nmi,
11607 .queue_exception = vmx_queue_exception,
11608 .cancel_injection = vmx_cancel_injection,
11609 .interrupt_allowed = vmx_interrupt_allowed,
11610 .nmi_allowed = vmx_nmi_allowed,
11611 .get_nmi_mask = vmx_get_nmi_mask,
11612 .set_nmi_mask = vmx_set_nmi_mask,
11613 .enable_nmi_window = enable_nmi_window,
11614 .enable_irq_window = enable_irq_window,
11615 .update_cr8_intercept = update_cr8_intercept,
11616 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11617 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11618 .get_enable_apicv = vmx_get_enable_apicv,
11619 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11620 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11621 .apicv_post_state_restore = vmx_apicv_post_state_restore,
11622 .hwapic_irr_update = vmx_hwapic_irr_update,
11623 .hwapic_isr_update = vmx_hwapic_isr_update,
11624 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11625 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11626
11627 .set_tss_addr = vmx_set_tss_addr,
11628 .get_tdp_level = get_ept_level,
11629 .get_mt_mask = vmx_get_mt_mask,
11630
11631 .get_exit_info = vmx_get_exit_info,
11632
11633 .get_lpage_level = vmx_get_lpage_level,
11634
11635 .cpuid_update = vmx_cpuid_update,
11636
11637 .rdtscp_supported = vmx_rdtscp_supported,
11638 .invpcid_supported = vmx_invpcid_supported,
11639
11640 .set_supported_cpuid = vmx_set_supported_cpuid,
11641
11642 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11643
11644 .write_tsc_offset = vmx_write_tsc_offset,
11645
11646 .set_tdp_cr3 = vmx_set_cr3,
11647
11648 .check_intercept = vmx_check_intercept,
11649 .handle_external_intr = vmx_handle_external_intr,
11650 .mpx_supported = vmx_mpx_supported,
11651 .xsaves_supported = vmx_xsaves_supported,
11652
11653 .check_nested_events = vmx_check_nested_events,
11654
11655 .sched_in = vmx_sched_in,
11656
11657 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11658 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11659 .flush_log_dirty = vmx_flush_log_dirty,
11660 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11661 .write_log_dirty = vmx_write_pml_buffer,
11662
11663 .pre_block = vmx_pre_block,
11664 .post_block = vmx_post_block,
11665
11666 .pmu_ops = &intel_pmu_ops,
11667
11668 .update_pi_irte = vmx_update_pi_irte,
11669
11670 #ifdef CONFIG_X86_64
11671 .set_hv_timer = vmx_set_hv_timer,
11672 .cancel_hv_timer = vmx_cancel_hv_timer,
11673 #endif
11674
11675 .setup_mce = vmx_setup_mce,
11676 };
11677
11678 static int __init vmx_init(void)
11679 {
11680 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11681 __alignof__(struct vcpu_vmx), THIS_MODULE);
11682 if (r)
11683 return r;
11684
11685 #ifdef CONFIG_KEXEC_CORE
11686 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11687 crash_vmclear_local_loaded_vmcss);
11688 #endif
11689
11690 return 0;
11691 }
11692
11693 static void __exit vmx_exit(void)
11694 {
11695 #ifdef CONFIG_KEXEC_CORE
11696 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11697 synchronize_rcu();
11698 #endif
11699
11700 kvm_exit();
11701 }
11702
11703 module_init(vmx_init)
11704 module_exit(vmx_exit)