]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
drivers/hv: Move VMBus hypercall codes into Hyper-V UAPI header
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
113 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
115 #define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
117 #define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
120
121 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
124 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
126 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
128 /*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
132 * According to test, this time is usually smaller than 128 cycles.
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
139 #define KVM_VMX_DEFAULT_PLE_GAP 128
140 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
146 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147 module_param(ple_gap, int, S_IRUGO);
148
149 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150 module_param(ple_window, int, S_IRUGO);
151
152 /* Default doubles per-vcpu window every exit. */
153 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154 module_param(ple_window_grow, int, S_IRUGO);
155
156 /* Default resets per-vcpu window every exit to ple_window. */
157 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158 module_param(ple_window_shrink, int, S_IRUGO);
159
160 /* Default is to compute the maximum so we can never overflow. */
161 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163 module_param(ple_window_max, int, S_IRUGO);
164
165 extern const ulong vmx_return;
166
167 #define NR_AUTOLOAD_MSRS 8
168 #define VMCS02_POOL_SIZE 1
169
170 struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174 };
175
176 /*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181 struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186 };
187
188 struct shared_msr_entry {
189 unsigned index;
190 u64 data;
191 u64 mask;
192 };
193
194 /*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
207 typedef u64 natural_width;
208 struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
214
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
227 u64 posted_intr_desc_addr;
228 u64 ept_pointer;
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
233 u64 xss_exit_bitmap;
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
244 u64 guest_bndcfgs;
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
346 u16 virtual_processor_id;
347 u16 posted_intr_nv;
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
356 u16 guest_intr_status;
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
364 };
365
366 /*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371 #define VMCS12_REVISION 0x11e57ed0
372
373 /*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378 #define VMCS12_SIZE 0x1000
379
380 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
381 struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385 };
386
387 /*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391 struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
394 gpa_t vmxon_ptr;
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
401 struct vmcs *current_shadow_vmcs;
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
411 u64 vmcs01_tsc_offset;
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
419 struct page *virtual_apic_page;
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
424 u64 msr_ia32_feature_control;
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
431
432 u16 vpid02;
433 u16 last_vpid;
434
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
451 u32 nested_vmx_vpid_caps;
452 };
453
454 #define POSTED_INTR_ON 0
455 #define POSTED_INTR_SN 1
456
457 /* Posted-Interrupt Descriptor */
458 struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
478 } __aligned(64);
479
480 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481 {
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484 }
485
486 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487 {
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490 }
491
492 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493 {
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495 }
496
497 static inline void pi_clear_sn(struct pi_desc *pi_desc)
498 {
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501 }
502
503 static inline void pi_set_sn(struct pi_desc *pi_desc)
504 {
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507 }
508
509 static inline int pi_test_on(struct pi_desc *pi_desc)
510 {
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_sn(struct pi_desc *pi_desc)
516 {
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 struct vcpu_vmx {
522 struct kvm_vcpu vcpu;
523 unsigned long host_rsp;
524 u8 fail;
525 bool nmi_known_unmasked;
526 u32 exit_intr_info;
527 u32 idt_vectoring_info;
528 ulong rflags;
529 struct shared_msr_entry *guest_msrs;
530 int nmsrs;
531 int save_nmsrs;
532 unsigned long host_idt_base;
533 #ifdef CONFIG_X86_64
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
536 #endif
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
555 #ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557 #endif
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
560 u64 msr_host_bndcfgs;
561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
562 } host_state;
563 struct {
564 int vm86_active;
565 ulong save_rflags;
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
575 } seg[8];
576 } segment_cache;
577 int vpid;
578 bool emulation_required;
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
584 u32 exit_reason;
585
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
595
596 /* Support for PML */
597 #define PML_ENTITY_NUM 512
598 struct page *pml_pg;
599 };
600
601 enum segment_cache_field {
602 SEG_FIELD_SEL = 0,
603 SEG_FIELD_BASE = 1,
604 SEG_FIELD_LIMIT = 2,
605 SEG_FIELD_AR = 3,
606
607 SEG_FIELD_NR = 4
608 };
609
610 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
611 {
612 return container_of(vcpu, struct vcpu_vmx, vcpu);
613 }
614
615 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
616 {
617 return &(to_vmx(vcpu)->pi_desc);
618 }
619
620 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
621 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
622 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
623 [number##_HIGH] = VMCS12_OFFSET(name)+4
624
625
626 static unsigned long shadow_read_only_fields[] = {
627 /*
628 * We do NOT shadow fields that are modified when L0
629 * traps and emulates any vmx instruction (e.g. VMPTRLD,
630 * VMXON...) executed by L1.
631 * For example, VM_INSTRUCTION_ERROR is read
632 * by L1 if a vmx instruction fails (part of the error path).
633 * Note the code assumes this logic. If for some reason
634 * we start shadowing these fields then we need to
635 * force a shadow sync when L0 emulates vmx instructions
636 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
637 * by nested_vmx_failValid)
638 */
639 VM_EXIT_REASON,
640 VM_EXIT_INTR_INFO,
641 VM_EXIT_INSTRUCTION_LEN,
642 IDT_VECTORING_INFO_FIELD,
643 IDT_VECTORING_ERROR_CODE,
644 VM_EXIT_INTR_ERROR_CODE,
645 EXIT_QUALIFICATION,
646 GUEST_LINEAR_ADDRESS,
647 GUEST_PHYSICAL_ADDRESS
648 };
649 static int max_shadow_read_only_fields =
650 ARRAY_SIZE(shadow_read_only_fields);
651
652 static unsigned long shadow_read_write_fields[] = {
653 TPR_THRESHOLD,
654 GUEST_RIP,
655 GUEST_RSP,
656 GUEST_CR0,
657 GUEST_CR3,
658 GUEST_CR4,
659 GUEST_INTERRUPTIBILITY_INFO,
660 GUEST_RFLAGS,
661 GUEST_CS_SELECTOR,
662 GUEST_CS_AR_BYTES,
663 GUEST_CS_LIMIT,
664 GUEST_CS_BASE,
665 GUEST_ES_BASE,
666 GUEST_BNDCFGS,
667 CR0_GUEST_HOST_MASK,
668 CR0_READ_SHADOW,
669 CR4_READ_SHADOW,
670 TSC_OFFSET,
671 EXCEPTION_BITMAP,
672 CPU_BASED_VM_EXEC_CONTROL,
673 VM_ENTRY_EXCEPTION_ERROR_CODE,
674 VM_ENTRY_INTR_INFO_FIELD,
675 VM_ENTRY_INSTRUCTION_LEN,
676 VM_ENTRY_EXCEPTION_ERROR_CODE,
677 HOST_FS_BASE,
678 HOST_GS_BASE,
679 HOST_FS_SELECTOR,
680 HOST_GS_SELECTOR
681 };
682 static int max_shadow_read_write_fields =
683 ARRAY_SIZE(shadow_read_write_fields);
684
685 static const unsigned short vmcs_field_to_offset_table[] = {
686 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
687 FIELD(POSTED_INTR_NV, posted_intr_nv),
688 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
689 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
690 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
691 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
692 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
693 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
694 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
695 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
696 FIELD(GUEST_INTR_STATUS, guest_intr_status),
697 FIELD(HOST_ES_SELECTOR, host_es_selector),
698 FIELD(HOST_CS_SELECTOR, host_cs_selector),
699 FIELD(HOST_SS_SELECTOR, host_ss_selector),
700 FIELD(HOST_DS_SELECTOR, host_ds_selector),
701 FIELD(HOST_FS_SELECTOR, host_fs_selector),
702 FIELD(HOST_GS_SELECTOR, host_gs_selector),
703 FIELD(HOST_TR_SELECTOR, host_tr_selector),
704 FIELD64(IO_BITMAP_A, io_bitmap_a),
705 FIELD64(IO_BITMAP_B, io_bitmap_b),
706 FIELD64(MSR_BITMAP, msr_bitmap),
707 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
708 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
709 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
710 FIELD64(TSC_OFFSET, tsc_offset),
711 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
712 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
713 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
714 FIELD64(EPT_POINTER, ept_pointer),
715 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
716 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
717 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
718 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
719 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
720 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
721 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
722 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
723 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
724 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
725 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
726 FIELD64(GUEST_PDPTR0, guest_pdptr0),
727 FIELD64(GUEST_PDPTR1, guest_pdptr1),
728 FIELD64(GUEST_PDPTR2, guest_pdptr2),
729 FIELD64(GUEST_PDPTR3, guest_pdptr3),
730 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
731 FIELD64(HOST_IA32_PAT, host_ia32_pat),
732 FIELD64(HOST_IA32_EFER, host_ia32_efer),
733 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
734 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
735 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
736 FIELD(EXCEPTION_BITMAP, exception_bitmap),
737 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
738 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
739 FIELD(CR3_TARGET_COUNT, cr3_target_count),
740 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
741 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
742 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
743 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
744 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
745 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
746 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
747 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
748 FIELD(TPR_THRESHOLD, tpr_threshold),
749 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
750 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
751 FIELD(VM_EXIT_REASON, vm_exit_reason),
752 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
753 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
754 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
755 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
756 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
757 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
758 FIELD(GUEST_ES_LIMIT, guest_es_limit),
759 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
760 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
761 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
762 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
763 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
764 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
765 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
766 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
767 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
768 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
769 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
770 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
771 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
772 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
773 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
774 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
775 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
776 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
777 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
778 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
779 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
780 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
781 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
782 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
783 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
784 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
785 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
786 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
787 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
788 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
789 FIELD(EXIT_QUALIFICATION, exit_qualification),
790 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
791 FIELD(GUEST_CR0, guest_cr0),
792 FIELD(GUEST_CR3, guest_cr3),
793 FIELD(GUEST_CR4, guest_cr4),
794 FIELD(GUEST_ES_BASE, guest_es_base),
795 FIELD(GUEST_CS_BASE, guest_cs_base),
796 FIELD(GUEST_SS_BASE, guest_ss_base),
797 FIELD(GUEST_DS_BASE, guest_ds_base),
798 FIELD(GUEST_FS_BASE, guest_fs_base),
799 FIELD(GUEST_GS_BASE, guest_gs_base),
800 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
801 FIELD(GUEST_TR_BASE, guest_tr_base),
802 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
803 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
804 FIELD(GUEST_DR7, guest_dr7),
805 FIELD(GUEST_RSP, guest_rsp),
806 FIELD(GUEST_RIP, guest_rip),
807 FIELD(GUEST_RFLAGS, guest_rflags),
808 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
809 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
810 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
811 FIELD(HOST_CR0, host_cr0),
812 FIELD(HOST_CR3, host_cr3),
813 FIELD(HOST_CR4, host_cr4),
814 FIELD(HOST_FS_BASE, host_fs_base),
815 FIELD(HOST_GS_BASE, host_gs_base),
816 FIELD(HOST_TR_BASE, host_tr_base),
817 FIELD(HOST_GDTR_BASE, host_gdtr_base),
818 FIELD(HOST_IDTR_BASE, host_idtr_base),
819 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
820 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
821 FIELD(HOST_RSP, host_rsp),
822 FIELD(HOST_RIP, host_rip),
823 };
824
825 static inline short vmcs_field_to_offset(unsigned long field)
826 {
827 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
828
829 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
830 vmcs_field_to_offset_table[field] == 0)
831 return -ENOENT;
832
833 return vmcs_field_to_offset_table[field];
834 }
835
836 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
837 {
838 return to_vmx(vcpu)->nested.current_vmcs12;
839 }
840
841 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
842 {
843 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
844 if (is_error_page(page))
845 return NULL;
846
847 return page;
848 }
849
850 static void nested_release_page(struct page *page)
851 {
852 kvm_release_page_dirty(page);
853 }
854
855 static void nested_release_page_clean(struct page *page)
856 {
857 kvm_release_page_clean(page);
858 }
859
860 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
861 static u64 construct_eptp(unsigned long root_hpa);
862 static void kvm_cpu_vmxon(u64 addr);
863 static void kvm_cpu_vmxoff(void);
864 static bool vmx_mpx_supported(void);
865 static bool vmx_xsaves_supported(void);
866 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
867 static void vmx_set_segment(struct kvm_vcpu *vcpu,
868 struct kvm_segment *var, int seg);
869 static void vmx_get_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg);
871 static bool guest_state_valid(struct kvm_vcpu *vcpu);
872 static u32 vmx_segment_access_rights(struct kvm_segment *var);
873 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
874 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
875 static int alloc_identity_pagetable(struct kvm *kvm);
876
877 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
878 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
879 /*
880 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
881 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
882 */
883 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
884 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
885
886 /*
887 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
888 * can find which vCPU should be waken up.
889 */
890 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
891 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
892
893 static unsigned long *vmx_io_bitmap_a;
894 static unsigned long *vmx_io_bitmap_b;
895 static unsigned long *vmx_msr_bitmap_legacy;
896 static unsigned long *vmx_msr_bitmap_longmode;
897 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
898 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
899 static unsigned long *vmx_msr_bitmap_nested;
900 static unsigned long *vmx_vmread_bitmap;
901 static unsigned long *vmx_vmwrite_bitmap;
902
903 static bool cpu_has_load_ia32_efer;
904 static bool cpu_has_load_perf_global_ctrl;
905
906 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
907 static DEFINE_SPINLOCK(vmx_vpid_lock);
908
909 static struct vmcs_config {
910 int size;
911 int order;
912 u32 revision_id;
913 u32 pin_based_exec_ctrl;
914 u32 cpu_based_exec_ctrl;
915 u32 cpu_based_2nd_exec_ctrl;
916 u32 vmexit_ctrl;
917 u32 vmentry_ctrl;
918 } vmcs_config;
919
920 static struct vmx_capability {
921 u32 ept;
922 u32 vpid;
923 } vmx_capability;
924
925 #define VMX_SEGMENT_FIELD(seg) \
926 [VCPU_SREG_##seg] = { \
927 .selector = GUEST_##seg##_SELECTOR, \
928 .base = GUEST_##seg##_BASE, \
929 .limit = GUEST_##seg##_LIMIT, \
930 .ar_bytes = GUEST_##seg##_AR_BYTES, \
931 }
932
933 static const struct kvm_vmx_segment_field {
934 unsigned selector;
935 unsigned base;
936 unsigned limit;
937 unsigned ar_bytes;
938 } kvm_vmx_segment_fields[] = {
939 VMX_SEGMENT_FIELD(CS),
940 VMX_SEGMENT_FIELD(DS),
941 VMX_SEGMENT_FIELD(ES),
942 VMX_SEGMENT_FIELD(FS),
943 VMX_SEGMENT_FIELD(GS),
944 VMX_SEGMENT_FIELD(SS),
945 VMX_SEGMENT_FIELD(TR),
946 VMX_SEGMENT_FIELD(LDTR),
947 };
948
949 static u64 host_efer;
950
951 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
952
953 /*
954 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
955 * away by decrementing the array size.
956 */
957 static const u32 vmx_msr_index[] = {
958 #ifdef CONFIG_X86_64
959 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
960 #endif
961 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
962 };
963
964 static inline bool is_exception_n(u32 intr_info, u8 vector)
965 {
966 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
967 INTR_INFO_VALID_MASK)) ==
968 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
969 }
970
971 static inline bool is_debug(u32 intr_info)
972 {
973 return is_exception_n(intr_info, DB_VECTOR);
974 }
975
976 static inline bool is_breakpoint(u32 intr_info)
977 {
978 return is_exception_n(intr_info, BP_VECTOR);
979 }
980
981 static inline bool is_page_fault(u32 intr_info)
982 {
983 return is_exception_n(intr_info, PF_VECTOR);
984 }
985
986 static inline bool is_no_device(u32 intr_info)
987 {
988 return is_exception_n(intr_info, NM_VECTOR);
989 }
990
991 static inline bool is_invalid_opcode(u32 intr_info)
992 {
993 return is_exception_n(intr_info, UD_VECTOR);
994 }
995
996 static inline bool is_external_interrupt(u32 intr_info)
997 {
998 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
999 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1000 }
1001
1002 static inline bool is_machine_check(u32 intr_info)
1003 {
1004 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1005 INTR_INFO_VALID_MASK)) ==
1006 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1007 }
1008
1009 static inline bool cpu_has_vmx_msr_bitmap(void)
1010 {
1011 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1012 }
1013
1014 static inline bool cpu_has_vmx_tpr_shadow(void)
1015 {
1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1017 }
1018
1019 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1020 {
1021 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1022 }
1023
1024 static inline bool cpu_has_secondary_exec_ctrls(void)
1025 {
1026 return vmcs_config.cpu_based_exec_ctrl &
1027 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1028 }
1029
1030 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1031 {
1032 return vmcs_config.cpu_based_2nd_exec_ctrl &
1033 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1034 }
1035
1036 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1037 {
1038 return vmcs_config.cpu_based_2nd_exec_ctrl &
1039 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1040 }
1041
1042 static inline bool cpu_has_vmx_apic_register_virt(void)
1043 {
1044 return vmcs_config.cpu_based_2nd_exec_ctrl &
1045 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1046 }
1047
1048 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1049 {
1050 return vmcs_config.cpu_based_2nd_exec_ctrl &
1051 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1052 }
1053
1054 static inline bool cpu_has_vmx_posted_intr(void)
1055 {
1056 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1057 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1058 }
1059
1060 static inline bool cpu_has_vmx_apicv(void)
1061 {
1062 return cpu_has_vmx_apic_register_virt() &&
1063 cpu_has_vmx_virtual_intr_delivery() &&
1064 cpu_has_vmx_posted_intr();
1065 }
1066
1067 static inline bool cpu_has_vmx_flexpriority(void)
1068 {
1069 return cpu_has_vmx_tpr_shadow() &&
1070 cpu_has_vmx_virtualize_apic_accesses();
1071 }
1072
1073 static inline bool cpu_has_vmx_ept_execute_only(void)
1074 {
1075 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1076 }
1077
1078 static inline bool cpu_has_vmx_ept_2m_page(void)
1079 {
1080 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1081 }
1082
1083 static inline bool cpu_has_vmx_ept_1g_page(void)
1084 {
1085 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1086 }
1087
1088 static inline bool cpu_has_vmx_ept_4levels(void)
1089 {
1090 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1091 }
1092
1093 static inline bool cpu_has_vmx_ept_ad_bits(void)
1094 {
1095 return vmx_capability.ept & VMX_EPT_AD_BIT;
1096 }
1097
1098 static inline bool cpu_has_vmx_invept_context(void)
1099 {
1100 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1101 }
1102
1103 static inline bool cpu_has_vmx_invept_global(void)
1104 {
1105 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1106 }
1107
1108 static inline bool cpu_has_vmx_invvpid_single(void)
1109 {
1110 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1111 }
1112
1113 static inline bool cpu_has_vmx_invvpid_global(void)
1114 {
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1116 }
1117
1118 static inline bool cpu_has_vmx_ept(void)
1119 {
1120 return vmcs_config.cpu_based_2nd_exec_ctrl &
1121 SECONDARY_EXEC_ENABLE_EPT;
1122 }
1123
1124 static inline bool cpu_has_vmx_unrestricted_guest(void)
1125 {
1126 return vmcs_config.cpu_based_2nd_exec_ctrl &
1127 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1128 }
1129
1130 static inline bool cpu_has_vmx_ple(void)
1131 {
1132 return vmcs_config.cpu_based_2nd_exec_ctrl &
1133 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1134 }
1135
1136 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1137 {
1138 return flexpriority_enabled && lapic_in_kernel(vcpu);
1139 }
1140
1141 static inline bool cpu_has_vmx_vpid(void)
1142 {
1143 return vmcs_config.cpu_based_2nd_exec_ctrl &
1144 SECONDARY_EXEC_ENABLE_VPID;
1145 }
1146
1147 static inline bool cpu_has_vmx_rdtscp(void)
1148 {
1149 return vmcs_config.cpu_based_2nd_exec_ctrl &
1150 SECONDARY_EXEC_RDTSCP;
1151 }
1152
1153 static inline bool cpu_has_vmx_invpcid(void)
1154 {
1155 return vmcs_config.cpu_based_2nd_exec_ctrl &
1156 SECONDARY_EXEC_ENABLE_INVPCID;
1157 }
1158
1159 static inline bool cpu_has_virtual_nmis(void)
1160 {
1161 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1162 }
1163
1164 static inline bool cpu_has_vmx_wbinvd_exit(void)
1165 {
1166 return vmcs_config.cpu_based_2nd_exec_ctrl &
1167 SECONDARY_EXEC_WBINVD_EXITING;
1168 }
1169
1170 static inline bool cpu_has_vmx_shadow_vmcs(void)
1171 {
1172 u64 vmx_msr;
1173 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1174 /* check if the cpu supports writing r/o exit information fields */
1175 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1176 return false;
1177
1178 return vmcs_config.cpu_based_2nd_exec_ctrl &
1179 SECONDARY_EXEC_SHADOW_VMCS;
1180 }
1181
1182 static inline bool cpu_has_vmx_pml(void)
1183 {
1184 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1185 }
1186
1187 static inline bool cpu_has_vmx_tsc_scaling(void)
1188 {
1189 return vmcs_config.cpu_based_2nd_exec_ctrl &
1190 SECONDARY_EXEC_TSC_SCALING;
1191 }
1192
1193 static inline bool report_flexpriority(void)
1194 {
1195 return flexpriority_enabled;
1196 }
1197
1198 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1199 {
1200 return vmcs12->cpu_based_vm_exec_control & bit;
1201 }
1202
1203 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1204 {
1205 return (vmcs12->cpu_based_vm_exec_control &
1206 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1207 (vmcs12->secondary_vm_exec_control & bit);
1208 }
1209
1210 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1211 {
1212 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1213 }
1214
1215 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1216 {
1217 return vmcs12->pin_based_vm_exec_control &
1218 PIN_BASED_VMX_PREEMPTION_TIMER;
1219 }
1220
1221 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1222 {
1223 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1224 }
1225
1226 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1227 {
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1229 vmx_xsaves_supported();
1230 }
1231
1232 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1233 {
1234 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1235 }
1236
1237 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1238 {
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1240 }
1241
1242 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1243 {
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1245 }
1246
1247 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1248 {
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1250 }
1251
1252 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1253 {
1254 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1255 }
1256
1257 static inline bool is_exception(u32 intr_info)
1258 {
1259 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1260 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1261 }
1262
1263 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1264 u32 exit_intr_info,
1265 unsigned long exit_qualification);
1266 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1267 struct vmcs12 *vmcs12,
1268 u32 reason, unsigned long qualification);
1269
1270 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1271 {
1272 int i;
1273
1274 for (i = 0; i < vmx->nmsrs; ++i)
1275 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1276 return i;
1277 return -1;
1278 }
1279
1280 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1281 {
1282 struct {
1283 u64 vpid : 16;
1284 u64 rsvd : 48;
1285 u64 gva;
1286 } operand = { vpid, 0, gva };
1287
1288 asm volatile (__ex(ASM_VMX_INVVPID)
1289 /* CF==1 or ZF==1 --> rc = -1 */
1290 "; ja 1f ; ud2 ; 1:"
1291 : : "a"(&operand), "c"(ext) : "cc", "memory");
1292 }
1293
1294 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1295 {
1296 struct {
1297 u64 eptp, gpa;
1298 } operand = {eptp, gpa};
1299
1300 asm volatile (__ex(ASM_VMX_INVEPT)
1301 /* CF==1 or ZF==1 --> rc = -1 */
1302 "; ja 1f ; ud2 ; 1:\n"
1303 : : "a" (&operand), "c" (ext) : "cc", "memory");
1304 }
1305
1306 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1307 {
1308 int i;
1309
1310 i = __find_msr_index(vmx, msr);
1311 if (i >= 0)
1312 return &vmx->guest_msrs[i];
1313 return NULL;
1314 }
1315
1316 static void vmcs_clear(struct vmcs *vmcs)
1317 {
1318 u64 phys_addr = __pa(vmcs);
1319 u8 error;
1320
1321 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1322 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1323 : "cc", "memory");
1324 if (error)
1325 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1326 vmcs, phys_addr);
1327 }
1328
1329 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1330 {
1331 vmcs_clear(loaded_vmcs->vmcs);
1332 loaded_vmcs->cpu = -1;
1333 loaded_vmcs->launched = 0;
1334 }
1335
1336 static void vmcs_load(struct vmcs *vmcs)
1337 {
1338 u64 phys_addr = __pa(vmcs);
1339 u8 error;
1340
1341 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1342 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1343 : "cc", "memory");
1344 if (error)
1345 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1346 vmcs, phys_addr);
1347 }
1348
1349 #ifdef CONFIG_KEXEC_CORE
1350 /*
1351 * This bitmap is used to indicate whether the vmclear
1352 * operation is enabled on all cpus. All disabled by
1353 * default.
1354 */
1355 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1356
1357 static inline void crash_enable_local_vmclear(int cpu)
1358 {
1359 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1360 }
1361
1362 static inline void crash_disable_local_vmclear(int cpu)
1363 {
1364 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365 }
1366
1367 static inline int crash_local_vmclear_enabled(int cpu)
1368 {
1369 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370 }
1371
1372 static void crash_vmclear_local_loaded_vmcss(void)
1373 {
1374 int cpu = raw_smp_processor_id();
1375 struct loaded_vmcs *v;
1376
1377 if (!crash_local_vmclear_enabled(cpu))
1378 return;
1379
1380 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1381 loaded_vmcss_on_cpu_link)
1382 vmcs_clear(v->vmcs);
1383 }
1384 #else
1385 static inline void crash_enable_local_vmclear(int cpu) { }
1386 static inline void crash_disable_local_vmclear(int cpu) { }
1387 #endif /* CONFIG_KEXEC_CORE */
1388
1389 static void __loaded_vmcs_clear(void *arg)
1390 {
1391 struct loaded_vmcs *loaded_vmcs = arg;
1392 int cpu = raw_smp_processor_id();
1393
1394 if (loaded_vmcs->cpu != cpu)
1395 return; /* vcpu migration can race with cpu offline */
1396 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1397 per_cpu(current_vmcs, cpu) = NULL;
1398 crash_disable_local_vmclear(cpu);
1399 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1400
1401 /*
1402 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1403 * is before setting loaded_vmcs->vcpu to -1 which is done in
1404 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1405 * then adds the vmcs into percpu list before it is deleted.
1406 */
1407 smp_wmb();
1408
1409 loaded_vmcs_init(loaded_vmcs);
1410 crash_enable_local_vmclear(cpu);
1411 }
1412
1413 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1414 {
1415 int cpu = loaded_vmcs->cpu;
1416
1417 if (cpu != -1)
1418 smp_call_function_single(cpu,
1419 __loaded_vmcs_clear, loaded_vmcs, 1);
1420 }
1421
1422 static inline void vpid_sync_vcpu_single(int vpid)
1423 {
1424 if (vpid == 0)
1425 return;
1426
1427 if (cpu_has_vmx_invvpid_single())
1428 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1429 }
1430
1431 static inline void vpid_sync_vcpu_global(void)
1432 {
1433 if (cpu_has_vmx_invvpid_global())
1434 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1435 }
1436
1437 static inline void vpid_sync_context(int vpid)
1438 {
1439 if (cpu_has_vmx_invvpid_single())
1440 vpid_sync_vcpu_single(vpid);
1441 else
1442 vpid_sync_vcpu_global();
1443 }
1444
1445 static inline void ept_sync_global(void)
1446 {
1447 if (cpu_has_vmx_invept_global())
1448 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1449 }
1450
1451 static inline void ept_sync_context(u64 eptp)
1452 {
1453 if (enable_ept) {
1454 if (cpu_has_vmx_invept_context())
1455 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1456 else
1457 ept_sync_global();
1458 }
1459 }
1460
1461 static __always_inline void vmcs_check16(unsigned long field)
1462 {
1463 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1464 "16-bit accessor invalid for 64-bit field");
1465 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1466 "16-bit accessor invalid for 64-bit high field");
1467 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1468 "16-bit accessor invalid for 32-bit high field");
1469 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1470 "16-bit accessor invalid for natural width field");
1471 }
1472
1473 static __always_inline void vmcs_check32(unsigned long field)
1474 {
1475 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1476 "32-bit accessor invalid for 16-bit field");
1477 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1478 "32-bit accessor invalid for natural width field");
1479 }
1480
1481 static __always_inline void vmcs_check64(unsigned long field)
1482 {
1483 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1484 "64-bit accessor invalid for 16-bit field");
1485 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1486 "64-bit accessor invalid for 64-bit high field");
1487 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1488 "64-bit accessor invalid for 32-bit field");
1489 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1490 "64-bit accessor invalid for natural width field");
1491 }
1492
1493 static __always_inline void vmcs_checkl(unsigned long field)
1494 {
1495 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1496 "Natural width accessor invalid for 16-bit field");
1497 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1498 "Natural width accessor invalid for 64-bit field");
1499 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1500 "Natural width accessor invalid for 64-bit high field");
1501 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1502 "Natural width accessor invalid for 32-bit field");
1503 }
1504
1505 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1506 {
1507 unsigned long value;
1508
1509 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1510 : "=a"(value) : "d"(field) : "cc");
1511 return value;
1512 }
1513
1514 static __always_inline u16 vmcs_read16(unsigned long field)
1515 {
1516 vmcs_check16(field);
1517 return __vmcs_readl(field);
1518 }
1519
1520 static __always_inline u32 vmcs_read32(unsigned long field)
1521 {
1522 vmcs_check32(field);
1523 return __vmcs_readl(field);
1524 }
1525
1526 static __always_inline u64 vmcs_read64(unsigned long field)
1527 {
1528 vmcs_check64(field);
1529 #ifdef CONFIG_X86_64
1530 return __vmcs_readl(field);
1531 #else
1532 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1533 #endif
1534 }
1535
1536 static __always_inline unsigned long vmcs_readl(unsigned long field)
1537 {
1538 vmcs_checkl(field);
1539 return __vmcs_readl(field);
1540 }
1541
1542 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1543 {
1544 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1545 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1546 dump_stack();
1547 }
1548
1549 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1550 {
1551 u8 error;
1552
1553 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1554 : "=q"(error) : "a"(value), "d"(field) : "cc");
1555 if (unlikely(error))
1556 vmwrite_error(field, value);
1557 }
1558
1559 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1560 {
1561 vmcs_check16(field);
1562 __vmcs_writel(field, value);
1563 }
1564
1565 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1566 {
1567 vmcs_check32(field);
1568 __vmcs_writel(field, value);
1569 }
1570
1571 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1572 {
1573 vmcs_check64(field);
1574 __vmcs_writel(field, value);
1575 #ifndef CONFIG_X86_64
1576 asm volatile ("");
1577 __vmcs_writel(field+1, value >> 32);
1578 #endif
1579 }
1580
1581 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1582 {
1583 vmcs_checkl(field);
1584 __vmcs_writel(field, value);
1585 }
1586
1587 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1588 {
1589 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1590 "vmcs_clear_bits does not support 64-bit fields");
1591 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1592 }
1593
1594 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1595 {
1596 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1597 "vmcs_set_bits does not support 64-bit fields");
1598 __vmcs_writel(field, __vmcs_readl(field) | mask);
1599 }
1600
1601 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1602 {
1603 vmcs_write32(VM_ENTRY_CONTROLS, val);
1604 vmx->vm_entry_controls_shadow = val;
1605 }
1606
1607 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1608 {
1609 if (vmx->vm_entry_controls_shadow != val)
1610 vm_entry_controls_init(vmx, val);
1611 }
1612
1613 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1614 {
1615 return vmx->vm_entry_controls_shadow;
1616 }
1617
1618
1619 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1620 {
1621 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1622 }
1623
1624 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1625 {
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1627 }
1628
1629 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1630 {
1631 vmcs_write32(VM_EXIT_CONTROLS, val);
1632 vmx->vm_exit_controls_shadow = val;
1633 }
1634
1635 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1636 {
1637 if (vmx->vm_exit_controls_shadow != val)
1638 vm_exit_controls_init(vmx, val);
1639 }
1640
1641 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1642 {
1643 return vmx->vm_exit_controls_shadow;
1644 }
1645
1646
1647 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1648 {
1649 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1650 }
1651
1652 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1653 {
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1655 }
1656
1657 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1658 {
1659 vmx->segment_cache.bitmask = 0;
1660 }
1661
1662 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1663 unsigned field)
1664 {
1665 bool ret;
1666 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1667
1668 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1669 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1670 vmx->segment_cache.bitmask = 0;
1671 }
1672 ret = vmx->segment_cache.bitmask & mask;
1673 vmx->segment_cache.bitmask |= mask;
1674 return ret;
1675 }
1676
1677 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1678 {
1679 u16 *p = &vmx->segment_cache.seg[seg].selector;
1680
1681 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1682 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1683 return *p;
1684 }
1685
1686 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1687 {
1688 ulong *p = &vmx->segment_cache.seg[seg].base;
1689
1690 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1691 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1692 return *p;
1693 }
1694
1695 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1696 {
1697 u32 *p = &vmx->segment_cache.seg[seg].limit;
1698
1699 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1700 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1701 return *p;
1702 }
1703
1704 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1705 {
1706 u32 *p = &vmx->segment_cache.seg[seg].ar;
1707
1708 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1709 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1710 return *p;
1711 }
1712
1713 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1714 {
1715 u32 eb;
1716
1717 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1718 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1719 if ((vcpu->guest_debug &
1720 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1721 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1722 eb |= 1u << BP_VECTOR;
1723 if (to_vmx(vcpu)->rmode.vm86_active)
1724 eb = ~0;
1725 if (enable_ept)
1726 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1727 if (vcpu->fpu_active)
1728 eb &= ~(1u << NM_VECTOR);
1729
1730 /* When we are running a nested L2 guest and L1 specified for it a
1731 * certain exception bitmap, we must trap the same exceptions and pass
1732 * them to L1. When running L2, we will only handle the exceptions
1733 * specified above if L1 did not want them.
1734 */
1735 if (is_guest_mode(vcpu))
1736 eb |= get_vmcs12(vcpu)->exception_bitmap;
1737
1738 vmcs_write32(EXCEPTION_BITMAP, eb);
1739 }
1740
1741 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1742 unsigned long entry, unsigned long exit)
1743 {
1744 vm_entry_controls_clearbit(vmx, entry);
1745 vm_exit_controls_clearbit(vmx, exit);
1746 }
1747
1748 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1749 {
1750 unsigned i;
1751 struct msr_autoload *m = &vmx->msr_autoload;
1752
1753 switch (msr) {
1754 case MSR_EFER:
1755 if (cpu_has_load_ia32_efer) {
1756 clear_atomic_switch_msr_special(vmx,
1757 VM_ENTRY_LOAD_IA32_EFER,
1758 VM_EXIT_LOAD_IA32_EFER);
1759 return;
1760 }
1761 break;
1762 case MSR_CORE_PERF_GLOBAL_CTRL:
1763 if (cpu_has_load_perf_global_ctrl) {
1764 clear_atomic_switch_msr_special(vmx,
1765 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1766 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1767 return;
1768 }
1769 break;
1770 }
1771
1772 for (i = 0; i < m->nr; ++i)
1773 if (m->guest[i].index == msr)
1774 break;
1775
1776 if (i == m->nr)
1777 return;
1778 --m->nr;
1779 m->guest[i] = m->guest[m->nr];
1780 m->host[i] = m->host[m->nr];
1781 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1782 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1783 }
1784
1785 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1786 unsigned long entry, unsigned long exit,
1787 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1788 u64 guest_val, u64 host_val)
1789 {
1790 vmcs_write64(guest_val_vmcs, guest_val);
1791 vmcs_write64(host_val_vmcs, host_val);
1792 vm_entry_controls_setbit(vmx, entry);
1793 vm_exit_controls_setbit(vmx, exit);
1794 }
1795
1796 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1797 u64 guest_val, u64 host_val)
1798 {
1799 unsigned i;
1800 struct msr_autoload *m = &vmx->msr_autoload;
1801
1802 switch (msr) {
1803 case MSR_EFER:
1804 if (cpu_has_load_ia32_efer) {
1805 add_atomic_switch_msr_special(vmx,
1806 VM_ENTRY_LOAD_IA32_EFER,
1807 VM_EXIT_LOAD_IA32_EFER,
1808 GUEST_IA32_EFER,
1809 HOST_IA32_EFER,
1810 guest_val, host_val);
1811 return;
1812 }
1813 break;
1814 case MSR_CORE_PERF_GLOBAL_CTRL:
1815 if (cpu_has_load_perf_global_ctrl) {
1816 add_atomic_switch_msr_special(vmx,
1817 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1818 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1819 GUEST_IA32_PERF_GLOBAL_CTRL,
1820 HOST_IA32_PERF_GLOBAL_CTRL,
1821 guest_val, host_val);
1822 return;
1823 }
1824 break;
1825 }
1826
1827 for (i = 0; i < m->nr; ++i)
1828 if (m->guest[i].index == msr)
1829 break;
1830
1831 if (i == NR_AUTOLOAD_MSRS) {
1832 printk_once(KERN_WARNING "Not enough msr switch entries. "
1833 "Can't add msr %x\n", msr);
1834 return;
1835 } else if (i == m->nr) {
1836 ++m->nr;
1837 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1838 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1839 }
1840
1841 m->guest[i].index = msr;
1842 m->guest[i].value = guest_val;
1843 m->host[i].index = msr;
1844 m->host[i].value = host_val;
1845 }
1846
1847 static void reload_tss(void)
1848 {
1849 /*
1850 * VT restores TR but not its size. Useless.
1851 */
1852 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1853 struct desc_struct *descs;
1854
1855 descs = (void *)gdt->address;
1856 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1857 load_TR_desc();
1858 }
1859
1860 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1861 {
1862 u64 guest_efer;
1863 u64 ignore_bits;
1864
1865 guest_efer = vmx->vcpu.arch.efer;
1866
1867 /*
1868 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1869 * outside long mode
1870 */
1871 ignore_bits = EFER_NX | EFER_SCE;
1872 #ifdef CONFIG_X86_64
1873 ignore_bits |= EFER_LMA | EFER_LME;
1874 /* SCE is meaningful only in long mode on Intel */
1875 if (guest_efer & EFER_LMA)
1876 ignore_bits &= ~(u64)EFER_SCE;
1877 #endif
1878 guest_efer &= ~ignore_bits;
1879 guest_efer |= host_efer & ignore_bits;
1880 vmx->guest_msrs[efer_offset].data = guest_efer;
1881 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1882
1883 clear_atomic_switch_msr(vmx, MSR_EFER);
1884
1885 /*
1886 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1887 * On CPUs that support "load IA32_EFER", always switch EFER
1888 * atomically, since it's faster than switching it manually.
1889 */
1890 if (cpu_has_load_ia32_efer ||
1891 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1892 guest_efer = vmx->vcpu.arch.efer;
1893 if (!(guest_efer & EFER_LMA))
1894 guest_efer &= ~EFER_LME;
1895 if (guest_efer != host_efer)
1896 add_atomic_switch_msr(vmx, MSR_EFER,
1897 guest_efer, host_efer);
1898 return false;
1899 }
1900
1901 return true;
1902 }
1903
1904 static unsigned long segment_base(u16 selector)
1905 {
1906 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1907 struct desc_struct *d;
1908 unsigned long table_base;
1909 unsigned long v;
1910
1911 if (!(selector & ~3))
1912 return 0;
1913
1914 table_base = gdt->address;
1915
1916 if (selector & 4) { /* from ldt */
1917 u16 ldt_selector = kvm_read_ldt();
1918
1919 if (!(ldt_selector & ~3))
1920 return 0;
1921
1922 table_base = segment_base(ldt_selector);
1923 }
1924 d = (struct desc_struct *)(table_base + (selector & ~7));
1925 v = get_desc_base(d);
1926 #ifdef CONFIG_X86_64
1927 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1928 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1929 #endif
1930 return v;
1931 }
1932
1933 static inline unsigned long kvm_read_tr_base(void)
1934 {
1935 u16 tr;
1936 asm("str %0" : "=g"(tr));
1937 return segment_base(tr);
1938 }
1939
1940 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1941 {
1942 struct vcpu_vmx *vmx = to_vmx(vcpu);
1943 int i;
1944
1945 if (vmx->host_state.loaded)
1946 return;
1947
1948 vmx->host_state.loaded = 1;
1949 /*
1950 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1951 * allow segment selectors with cpl > 0 or ti == 1.
1952 */
1953 vmx->host_state.ldt_sel = kvm_read_ldt();
1954 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1955 savesegment(fs, vmx->host_state.fs_sel);
1956 if (!(vmx->host_state.fs_sel & 7)) {
1957 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1958 vmx->host_state.fs_reload_needed = 0;
1959 } else {
1960 vmcs_write16(HOST_FS_SELECTOR, 0);
1961 vmx->host_state.fs_reload_needed = 1;
1962 }
1963 savesegment(gs, vmx->host_state.gs_sel);
1964 if (!(vmx->host_state.gs_sel & 7))
1965 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1966 else {
1967 vmcs_write16(HOST_GS_SELECTOR, 0);
1968 vmx->host_state.gs_ldt_reload_needed = 1;
1969 }
1970
1971 #ifdef CONFIG_X86_64
1972 savesegment(ds, vmx->host_state.ds_sel);
1973 savesegment(es, vmx->host_state.es_sel);
1974 #endif
1975
1976 #ifdef CONFIG_X86_64
1977 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1978 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1979 #else
1980 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1981 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1982 #endif
1983
1984 #ifdef CONFIG_X86_64
1985 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1986 if (is_long_mode(&vmx->vcpu))
1987 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1988 #endif
1989 if (boot_cpu_has(X86_FEATURE_MPX))
1990 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1991 for (i = 0; i < vmx->save_nmsrs; ++i)
1992 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1993 vmx->guest_msrs[i].data,
1994 vmx->guest_msrs[i].mask);
1995 }
1996
1997 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1998 {
1999 if (!vmx->host_state.loaded)
2000 return;
2001
2002 ++vmx->vcpu.stat.host_state_reload;
2003 vmx->host_state.loaded = 0;
2004 #ifdef CONFIG_X86_64
2005 if (is_long_mode(&vmx->vcpu))
2006 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2007 #endif
2008 if (vmx->host_state.gs_ldt_reload_needed) {
2009 kvm_load_ldt(vmx->host_state.ldt_sel);
2010 #ifdef CONFIG_X86_64
2011 load_gs_index(vmx->host_state.gs_sel);
2012 #else
2013 loadsegment(gs, vmx->host_state.gs_sel);
2014 #endif
2015 }
2016 if (vmx->host_state.fs_reload_needed)
2017 loadsegment(fs, vmx->host_state.fs_sel);
2018 #ifdef CONFIG_X86_64
2019 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2020 loadsegment(ds, vmx->host_state.ds_sel);
2021 loadsegment(es, vmx->host_state.es_sel);
2022 }
2023 #endif
2024 reload_tss();
2025 #ifdef CONFIG_X86_64
2026 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2027 #endif
2028 if (vmx->host_state.msr_host_bndcfgs)
2029 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2030 /*
2031 * If the FPU is not active (through the host task or
2032 * the guest vcpu), then restore the cr0.TS bit.
2033 */
2034 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2035 stts();
2036 load_gdt(this_cpu_ptr(&host_gdt));
2037 }
2038
2039 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2040 {
2041 preempt_disable();
2042 __vmx_load_host_state(vmx);
2043 preempt_enable();
2044 }
2045
2046 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2047 {
2048 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2049 struct pi_desc old, new;
2050 unsigned int dest;
2051
2052 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2053 !irq_remapping_cap(IRQ_POSTING_CAP))
2054 return;
2055
2056 do {
2057 old.control = new.control = pi_desc->control;
2058
2059 /*
2060 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2061 * are two possible cases:
2062 * 1. After running 'pre_block', context switch
2063 * happened. For this case, 'sn' was set in
2064 * vmx_vcpu_put(), so we need to clear it here.
2065 * 2. After running 'pre_block', we were blocked,
2066 * and woken up by some other guy. For this case,
2067 * we don't need to do anything, 'pi_post_block'
2068 * will do everything for us. However, we cannot
2069 * check whether it is case #1 or case #2 here
2070 * (maybe, not needed), so we also clear sn here,
2071 * I think it is not a big deal.
2072 */
2073 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2074 if (vcpu->cpu != cpu) {
2075 dest = cpu_physical_id(cpu);
2076
2077 if (x2apic_enabled())
2078 new.ndst = dest;
2079 else
2080 new.ndst = (dest << 8) & 0xFF00;
2081 }
2082
2083 /* set 'NV' to 'notification vector' */
2084 new.nv = POSTED_INTR_VECTOR;
2085 }
2086
2087 /* Allow posting non-urgent interrupts */
2088 new.sn = 0;
2089 } while (cmpxchg(&pi_desc->control, old.control,
2090 new.control) != old.control);
2091 }
2092 /*
2093 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2094 * vcpu mutex is already taken.
2095 */
2096 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2097 {
2098 struct vcpu_vmx *vmx = to_vmx(vcpu);
2099 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2100
2101 if (!vmm_exclusive)
2102 kvm_cpu_vmxon(phys_addr);
2103 else if (vmx->loaded_vmcs->cpu != cpu)
2104 loaded_vmcs_clear(vmx->loaded_vmcs);
2105
2106 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2107 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2108 vmcs_load(vmx->loaded_vmcs->vmcs);
2109 }
2110
2111 if (vmx->loaded_vmcs->cpu != cpu) {
2112 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2113 unsigned long sysenter_esp;
2114
2115 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2116 local_irq_disable();
2117 crash_disable_local_vmclear(cpu);
2118
2119 /*
2120 * Read loaded_vmcs->cpu should be before fetching
2121 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2122 * See the comments in __loaded_vmcs_clear().
2123 */
2124 smp_rmb();
2125
2126 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2127 &per_cpu(loaded_vmcss_on_cpu, cpu));
2128 crash_enable_local_vmclear(cpu);
2129 local_irq_enable();
2130
2131 /*
2132 * Linux uses per-cpu TSS and GDT, so set these when switching
2133 * processors.
2134 */
2135 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2136 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2137
2138 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2139 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2140
2141 /* Setup TSC multiplier */
2142 if (cpu_has_vmx_tsc_scaling())
2143 vmcs_write64(TSC_MULTIPLIER,
2144 vcpu->arch.tsc_scaling_ratio);
2145
2146 vmx->loaded_vmcs->cpu = cpu;
2147 }
2148
2149 vmx_vcpu_pi_load(vcpu, cpu);
2150 }
2151
2152 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2153 {
2154 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2155
2156 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2157 !irq_remapping_cap(IRQ_POSTING_CAP))
2158 return;
2159
2160 /* Set SN when the vCPU is preempted */
2161 if (vcpu->preempted)
2162 pi_set_sn(pi_desc);
2163 }
2164
2165 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2166 {
2167 vmx_vcpu_pi_put(vcpu);
2168
2169 __vmx_load_host_state(to_vmx(vcpu));
2170 if (!vmm_exclusive) {
2171 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2172 vcpu->cpu = -1;
2173 kvm_cpu_vmxoff();
2174 }
2175 }
2176
2177 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2178 {
2179 ulong cr0;
2180
2181 if (vcpu->fpu_active)
2182 return;
2183 vcpu->fpu_active = 1;
2184 cr0 = vmcs_readl(GUEST_CR0);
2185 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2186 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2187 vmcs_writel(GUEST_CR0, cr0);
2188 update_exception_bitmap(vcpu);
2189 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2190 if (is_guest_mode(vcpu))
2191 vcpu->arch.cr0_guest_owned_bits &=
2192 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2193 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2194 }
2195
2196 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2197
2198 /*
2199 * Return the cr0 value that a nested guest would read. This is a combination
2200 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2201 * its hypervisor (cr0_read_shadow).
2202 */
2203 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2204 {
2205 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2206 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2207 }
2208 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2209 {
2210 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2211 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2212 }
2213
2214 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2215 {
2216 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2217 * set this *before* calling this function.
2218 */
2219 vmx_decache_cr0_guest_bits(vcpu);
2220 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2221 update_exception_bitmap(vcpu);
2222 vcpu->arch.cr0_guest_owned_bits = 0;
2223 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2224 if (is_guest_mode(vcpu)) {
2225 /*
2226 * L1's specified read shadow might not contain the TS bit,
2227 * so now that we turned on shadowing of this bit, we need to
2228 * set this bit of the shadow. Like in nested_vmx_run we need
2229 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2230 * up-to-date here because we just decached cr0.TS (and we'll
2231 * only update vmcs12->guest_cr0 on nested exit).
2232 */
2233 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2234 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2235 (vcpu->arch.cr0 & X86_CR0_TS);
2236 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2237 } else
2238 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2239 }
2240
2241 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2242 {
2243 unsigned long rflags, save_rflags;
2244
2245 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2246 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2247 rflags = vmcs_readl(GUEST_RFLAGS);
2248 if (to_vmx(vcpu)->rmode.vm86_active) {
2249 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2250 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2251 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2252 }
2253 to_vmx(vcpu)->rflags = rflags;
2254 }
2255 return to_vmx(vcpu)->rflags;
2256 }
2257
2258 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2259 {
2260 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2261 to_vmx(vcpu)->rflags = rflags;
2262 if (to_vmx(vcpu)->rmode.vm86_active) {
2263 to_vmx(vcpu)->rmode.save_rflags = rflags;
2264 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2265 }
2266 vmcs_writel(GUEST_RFLAGS, rflags);
2267 }
2268
2269 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2270 {
2271 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2272 int ret = 0;
2273
2274 if (interruptibility & GUEST_INTR_STATE_STI)
2275 ret |= KVM_X86_SHADOW_INT_STI;
2276 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2277 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2278
2279 return ret;
2280 }
2281
2282 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2283 {
2284 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2285 u32 interruptibility = interruptibility_old;
2286
2287 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2288
2289 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2290 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2291 else if (mask & KVM_X86_SHADOW_INT_STI)
2292 interruptibility |= GUEST_INTR_STATE_STI;
2293
2294 if ((interruptibility != interruptibility_old))
2295 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2296 }
2297
2298 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2299 {
2300 unsigned long rip;
2301
2302 rip = kvm_rip_read(vcpu);
2303 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2304 kvm_rip_write(vcpu, rip);
2305
2306 /* skipping an emulated instruction also counts */
2307 vmx_set_interrupt_shadow(vcpu, 0);
2308 }
2309
2310 /*
2311 * KVM wants to inject page-faults which it got to the guest. This function
2312 * checks whether in a nested guest, we need to inject them to L1 or L2.
2313 */
2314 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2315 {
2316 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2317
2318 if (!(vmcs12->exception_bitmap & (1u << nr)))
2319 return 0;
2320
2321 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2322 vmcs_read32(VM_EXIT_INTR_INFO),
2323 vmcs_readl(EXIT_QUALIFICATION));
2324 return 1;
2325 }
2326
2327 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2328 bool has_error_code, u32 error_code,
2329 bool reinject)
2330 {
2331 struct vcpu_vmx *vmx = to_vmx(vcpu);
2332 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2333
2334 if (!reinject && is_guest_mode(vcpu) &&
2335 nested_vmx_check_exception(vcpu, nr))
2336 return;
2337
2338 if (has_error_code) {
2339 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2340 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2341 }
2342
2343 if (vmx->rmode.vm86_active) {
2344 int inc_eip = 0;
2345 if (kvm_exception_is_soft(nr))
2346 inc_eip = vcpu->arch.event_exit_inst_len;
2347 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2348 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2349 return;
2350 }
2351
2352 if (kvm_exception_is_soft(nr)) {
2353 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2354 vmx->vcpu.arch.event_exit_inst_len);
2355 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2356 } else
2357 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2358
2359 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2360 }
2361
2362 static bool vmx_rdtscp_supported(void)
2363 {
2364 return cpu_has_vmx_rdtscp();
2365 }
2366
2367 static bool vmx_invpcid_supported(void)
2368 {
2369 return cpu_has_vmx_invpcid() && enable_ept;
2370 }
2371
2372 /*
2373 * Swap MSR entry in host/guest MSR entry array.
2374 */
2375 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2376 {
2377 struct shared_msr_entry tmp;
2378
2379 tmp = vmx->guest_msrs[to];
2380 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2381 vmx->guest_msrs[from] = tmp;
2382 }
2383
2384 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2385 {
2386 unsigned long *msr_bitmap;
2387
2388 if (is_guest_mode(vcpu))
2389 msr_bitmap = vmx_msr_bitmap_nested;
2390 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2391 if (is_long_mode(vcpu))
2392 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2393 else
2394 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2395 } else {
2396 if (is_long_mode(vcpu))
2397 msr_bitmap = vmx_msr_bitmap_longmode;
2398 else
2399 msr_bitmap = vmx_msr_bitmap_legacy;
2400 }
2401
2402 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2403 }
2404
2405 /*
2406 * Set up the vmcs to automatically save and restore system
2407 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2408 * mode, as fiddling with msrs is very expensive.
2409 */
2410 static void setup_msrs(struct vcpu_vmx *vmx)
2411 {
2412 int save_nmsrs, index;
2413
2414 save_nmsrs = 0;
2415 #ifdef CONFIG_X86_64
2416 if (is_long_mode(&vmx->vcpu)) {
2417 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2418 if (index >= 0)
2419 move_msr_up(vmx, index, save_nmsrs++);
2420 index = __find_msr_index(vmx, MSR_LSTAR);
2421 if (index >= 0)
2422 move_msr_up(vmx, index, save_nmsrs++);
2423 index = __find_msr_index(vmx, MSR_CSTAR);
2424 if (index >= 0)
2425 move_msr_up(vmx, index, save_nmsrs++);
2426 index = __find_msr_index(vmx, MSR_TSC_AUX);
2427 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2428 move_msr_up(vmx, index, save_nmsrs++);
2429 /*
2430 * MSR_STAR is only needed on long mode guests, and only
2431 * if efer.sce is enabled.
2432 */
2433 index = __find_msr_index(vmx, MSR_STAR);
2434 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2435 move_msr_up(vmx, index, save_nmsrs++);
2436 }
2437 #endif
2438 index = __find_msr_index(vmx, MSR_EFER);
2439 if (index >= 0 && update_transition_efer(vmx, index))
2440 move_msr_up(vmx, index, save_nmsrs++);
2441
2442 vmx->save_nmsrs = save_nmsrs;
2443
2444 if (cpu_has_vmx_msr_bitmap())
2445 vmx_set_msr_bitmap(&vmx->vcpu);
2446 }
2447
2448 /*
2449 * reads and returns guest's timestamp counter "register"
2450 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2451 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2452 */
2453 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2454 {
2455 u64 host_tsc, tsc_offset;
2456
2457 host_tsc = rdtsc();
2458 tsc_offset = vmcs_read64(TSC_OFFSET);
2459 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2460 }
2461
2462 /*
2463 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2464 * counter, even if a nested guest (L2) is currently running.
2465 */
2466 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2467 {
2468 u64 tsc_offset;
2469
2470 tsc_offset = is_guest_mode(vcpu) ?
2471 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2472 vmcs_read64(TSC_OFFSET);
2473 return host_tsc + tsc_offset;
2474 }
2475
2476 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2477 {
2478 return vmcs_read64(TSC_OFFSET);
2479 }
2480
2481 /*
2482 * writes 'offset' into guest's timestamp counter offset register
2483 */
2484 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2485 {
2486 if (is_guest_mode(vcpu)) {
2487 /*
2488 * We're here if L1 chose not to trap WRMSR to TSC. According
2489 * to the spec, this should set L1's TSC; The offset that L1
2490 * set for L2 remains unchanged, and still needs to be added
2491 * to the newly set TSC to get L2's TSC.
2492 */
2493 struct vmcs12 *vmcs12;
2494 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2495 /* recalculate vmcs02.TSC_OFFSET: */
2496 vmcs12 = get_vmcs12(vcpu);
2497 vmcs_write64(TSC_OFFSET, offset +
2498 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2499 vmcs12->tsc_offset : 0));
2500 } else {
2501 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2502 vmcs_read64(TSC_OFFSET), offset);
2503 vmcs_write64(TSC_OFFSET, offset);
2504 }
2505 }
2506
2507 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2508 {
2509 u64 offset = vmcs_read64(TSC_OFFSET);
2510
2511 vmcs_write64(TSC_OFFSET, offset + adjustment);
2512 if (is_guest_mode(vcpu)) {
2513 /* Even when running L2, the adjustment needs to apply to L1 */
2514 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2515 } else
2516 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2517 offset + adjustment);
2518 }
2519
2520 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2521 {
2522 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2523 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2524 }
2525
2526 /*
2527 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2528 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2529 * all guests if the "nested" module option is off, and can also be disabled
2530 * for a single guest by disabling its VMX cpuid bit.
2531 */
2532 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2533 {
2534 return nested && guest_cpuid_has_vmx(vcpu);
2535 }
2536
2537 /*
2538 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2539 * returned for the various VMX controls MSRs when nested VMX is enabled.
2540 * The same values should also be used to verify that vmcs12 control fields are
2541 * valid during nested entry from L1 to L2.
2542 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2543 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2544 * bit in the high half is on if the corresponding bit in the control field
2545 * may be on. See also vmx_control_verify().
2546 */
2547 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2548 {
2549 /*
2550 * Note that as a general rule, the high half of the MSRs (bits in
2551 * the control fields which may be 1) should be initialized by the
2552 * intersection of the underlying hardware's MSR (i.e., features which
2553 * can be supported) and the list of features we want to expose -
2554 * because they are known to be properly supported in our code.
2555 * Also, usually, the low half of the MSRs (bits which must be 1) can
2556 * be set to 0, meaning that L1 may turn off any of these bits. The
2557 * reason is that if one of these bits is necessary, it will appear
2558 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2559 * fields of vmcs01 and vmcs02, will turn these bits off - and
2560 * nested_vmx_exit_handled() will not pass related exits to L1.
2561 * These rules have exceptions below.
2562 */
2563
2564 /* pin-based controls */
2565 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2566 vmx->nested.nested_vmx_pinbased_ctls_low,
2567 vmx->nested.nested_vmx_pinbased_ctls_high);
2568 vmx->nested.nested_vmx_pinbased_ctls_low |=
2569 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2570 vmx->nested.nested_vmx_pinbased_ctls_high &=
2571 PIN_BASED_EXT_INTR_MASK |
2572 PIN_BASED_NMI_EXITING |
2573 PIN_BASED_VIRTUAL_NMIS;
2574 vmx->nested.nested_vmx_pinbased_ctls_high |=
2575 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2576 PIN_BASED_VMX_PREEMPTION_TIMER;
2577 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2578 vmx->nested.nested_vmx_pinbased_ctls_high |=
2579 PIN_BASED_POSTED_INTR;
2580
2581 /* exit controls */
2582 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2583 vmx->nested.nested_vmx_exit_ctls_low,
2584 vmx->nested.nested_vmx_exit_ctls_high);
2585 vmx->nested.nested_vmx_exit_ctls_low =
2586 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2587
2588 vmx->nested.nested_vmx_exit_ctls_high &=
2589 #ifdef CONFIG_X86_64
2590 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2591 #endif
2592 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2593 vmx->nested.nested_vmx_exit_ctls_high |=
2594 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2595 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2596 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2597
2598 if (vmx_mpx_supported())
2599 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2600
2601 /* We support free control of debug control saving. */
2602 vmx->nested.nested_vmx_true_exit_ctls_low =
2603 vmx->nested.nested_vmx_exit_ctls_low &
2604 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2605
2606 /* entry controls */
2607 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2608 vmx->nested.nested_vmx_entry_ctls_low,
2609 vmx->nested.nested_vmx_entry_ctls_high);
2610 vmx->nested.nested_vmx_entry_ctls_low =
2611 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2612 vmx->nested.nested_vmx_entry_ctls_high &=
2613 #ifdef CONFIG_X86_64
2614 VM_ENTRY_IA32E_MODE |
2615 #endif
2616 VM_ENTRY_LOAD_IA32_PAT;
2617 vmx->nested.nested_vmx_entry_ctls_high |=
2618 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2619 if (vmx_mpx_supported())
2620 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2621
2622 /* We support free control of debug control loading. */
2623 vmx->nested.nested_vmx_true_entry_ctls_low =
2624 vmx->nested.nested_vmx_entry_ctls_low &
2625 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2626
2627 /* cpu-based controls */
2628 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2629 vmx->nested.nested_vmx_procbased_ctls_low,
2630 vmx->nested.nested_vmx_procbased_ctls_high);
2631 vmx->nested.nested_vmx_procbased_ctls_low =
2632 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2633 vmx->nested.nested_vmx_procbased_ctls_high &=
2634 CPU_BASED_VIRTUAL_INTR_PENDING |
2635 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2636 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2637 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2638 CPU_BASED_CR3_STORE_EXITING |
2639 #ifdef CONFIG_X86_64
2640 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2641 #endif
2642 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2643 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2644 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2645 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2646 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2647 /*
2648 * We can allow some features even when not supported by the
2649 * hardware. For example, L1 can specify an MSR bitmap - and we
2650 * can use it to avoid exits to L1 - even when L0 runs L2
2651 * without MSR bitmaps.
2652 */
2653 vmx->nested.nested_vmx_procbased_ctls_high |=
2654 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2655 CPU_BASED_USE_MSR_BITMAPS;
2656
2657 /* We support free control of CR3 access interception. */
2658 vmx->nested.nested_vmx_true_procbased_ctls_low =
2659 vmx->nested.nested_vmx_procbased_ctls_low &
2660 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2661
2662 /* secondary cpu-based controls */
2663 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2664 vmx->nested.nested_vmx_secondary_ctls_low,
2665 vmx->nested.nested_vmx_secondary_ctls_high);
2666 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2667 vmx->nested.nested_vmx_secondary_ctls_high &=
2668 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2669 SECONDARY_EXEC_RDTSCP |
2670 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2671 SECONDARY_EXEC_ENABLE_VPID |
2672 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2673 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2674 SECONDARY_EXEC_WBINVD_EXITING |
2675 SECONDARY_EXEC_XSAVES |
2676 SECONDARY_EXEC_PCOMMIT;
2677
2678 if (enable_ept) {
2679 /* nested EPT: emulate EPT also to L1 */
2680 vmx->nested.nested_vmx_secondary_ctls_high |=
2681 SECONDARY_EXEC_ENABLE_EPT;
2682 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2683 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2684 VMX_EPT_INVEPT_BIT;
2685 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2686 /*
2687 * For nested guests, we don't do anything specific
2688 * for single context invalidation. Hence, only advertise
2689 * support for global context invalidation.
2690 */
2691 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2692 } else
2693 vmx->nested.nested_vmx_ept_caps = 0;
2694
2695 if (enable_vpid)
2696 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2697 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2698 else
2699 vmx->nested.nested_vmx_vpid_caps = 0;
2700
2701 if (enable_unrestricted_guest)
2702 vmx->nested.nested_vmx_secondary_ctls_high |=
2703 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2704
2705 /* miscellaneous data */
2706 rdmsr(MSR_IA32_VMX_MISC,
2707 vmx->nested.nested_vmx_misc_low,
2708 vmx->nested.nested_vmx_misc_high);
2709 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2710 vmx->nested.nested_vmx_misc_low |=
2711 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2712 VMX_MISC_ACTIVITY_HLT;
2713 vmx->nested.nested_vmx_misc_high = 0;
2714 }
2715
2716 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2717 {
2718 /*
2719 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2720 */
2721 return ((control & high) | low) == control;
2722 }
2723
2724 static inline u64 vmx_control_msr(u32 low, u32 high)
2725 {
2726 return low | ((u64)high << 32);
2727 }
2728
2729 /* Returns 0 on success, non-0 otherwise. */
2730 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2731 {
2732 struct vcpu_vmx *vmx = to_vmx(vcpu);
2733
2734 switch (msr_index) {
2735 case MSR_IA32_VMX_BASIC:
2736 /*
2737 * This MSR reports some information about VMX support. We
2738 * should return information about the VMX we emulate for the
2739 * guest, and the VMCS structure we give it - not about the
2740 * VMX support of the underlying hardware.
2741 */
2742 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2743 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2744 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2745 break;
2746 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2747 case MSR_IA32_VMX_PINBASED_CTLS:
2748 *pdata = vmx_control_msr(
2749 vmx->nested.nested_vmx_pinbased_ctls_low,
2750 vmx->nested.nested_vmx_pinbased_ctls_high);
2751 break;
2752 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2753 *pdata = vmx_control_msr(
2754 vmx->nested.nested_vmx_true_procbased_ctls_low,
2755 vmx->nested.nested_vmx_procbased_ctls_high);
2756 break;
2757 case MSR_IA32_VMX_PROCBASED_CTLS:
2758 *pdata = vmx_control_msr(
2759 vmx->nested.nested_vmx_procbased_ctls_low,
2760 vmx->nested.nested_vmx_procbased_ctls_high);
2761 break;
2762 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2763 *pdata = vmx_control_msr(
2764 vmx->nested.nested_vmx_true_exit_ctls_low,
2765 vmx->nested.nested_vmx_exit_ctls_high);
2766 break;
2767 case MSR_IA32_VMX_EXIT_CTLS:
2768 *pdata = vmx_control_msr(
2769 vmx->nested.nested_vmx_exit_ctls_low,
2770 vmx->nested.nested_vmx_exit_ctls_high);
2771 break;
2772 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2773 *pdata = vmx_control_msr(
2774 vmx->nested.nested_vmx_true_entry_ctls_low,
2775 vmx->nested.nested_vmx_entry_ctls_high);
2776 break;
2777 case MSR_IA32_VMX_ENTRY_CTLS:
2778 *pdata = vmx_control_msr(
2779 vmx->nested.nested_vmx_entry_ctls_low,
2780 vmx->nested.nested_vmx_entry_ctls_high);
2781 break;
2782 case MSR_IA32_VMX_MISC:
2783 *pdata = vmx_control_msr(
2784 vmx->nested.nested_vmx_misc_low,
2785 vmx->nested.nested_vmx_misc_high);
2786 break;
2787 /*
2788 * These MSRs specify bits which the guest must keep fixed (on or off)
2789 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2790 * We picked the standard core2 setting.
2791 */
2792 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2793 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2794 case MSR_IA32_VMX_CR0_FIXED0:
2795 *pdata = VMXON_CR0_ALWAYSON;
2796 break;
2797 case MSR_IA32_VMX_CR0_FIXED1:
2798 *pdata = -1ULL;
2799 break;
2800 case MSR_IA32_VMX_CR4_FIXED0:
2801 *pdata = VMXON_CR4_ALWAYSON;
2802 break;
2803 case MSR_IA32_VMX_CR4_FIXED1:
2804 *pdata = -1ULL;
2805 break;
2806 case MSR_IA32_VMX_VMCS_ENUM:
2807 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2808 break;
2809 case MSR_IA32_VMX_PROCBASED_CTLS2:
2810 *pdata = vmx_control_msr(
2811 vmx->nested.nested_vmx_secondary_ctls_low,
2812 vmx->nested.nested_vmx_secondary_ctls_high);
2813 break;
2814 case MSR_IA32_VMX_EPT_VPID_CAP:
2815 /* Currently, no nested vpid support */
2816 *pdata = vmx->nested.nested_vmx_ept_caps |
2817 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2818 break;
2819 default:
2820 return 1;
2821 }
2822
2823 return 0;
2824 }
2825
2826 /*
2827 * Reads an msr value (of 'msr_index') into 'pdata'.
2828 * Returns 0 on success, non-0 otherwise.
2829 * Assumes vcpu_load() was already called.
2830 */
2831 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2832 {
2833 struct shared_msr_entry *msr;
2834
2835 switch (msr_info->index) {
2836 #ifdef CONFIG_X86_64
2837 case MSR_FS_BASE:
2838 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2839 break;
2840 case MSR_GS_BASE:
2841 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2842 break;
2843 case MSR_KERNEL_GS_BASE:
2844 vmx_load_host_state(to_vmx(vcpu));
2845 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2846 break;
2847 #endif
2848 case MSR_EFER:
2849 return kvm_get_msr_common(vcpu, msr_info);
2850 case MSR_IA32_TSC:
2851 msr_info->data = guest_read_tsc(vcpu);
2852 break;
2853 case MSR_IA32_SYSENTER_CS:
2854 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2855 break;
2856 case MSR_IA32_SYSENTER_EIP:
2857 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2858 break;
2859 case MSR_IA32_SYSENTER_ESP:
2860 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2861 break;
2862 case MSR_IA32_BNDCFGS:
2863 if (!vmx_mpx_supported())
2864 return 1;
2865 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2866 break;
2867 case MSR_IA32_FEATURE_CONTROL:
2868 if (!nested_vmx_allowed(vcpu))
2869 return 1;
2870 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2871 break;
2872 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2873 if (!nested_vmx_allowed(vcpu))
2874 return 1;
2875 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2876 case MSR_IA32_XSS:
2877 if (!vmx_xsaves_supported())
2878 return 1;
2879 msr_info->data = vcpu->arch.ia32_xss;
2880 break;
2881 case MSR_TSC_AUX:
2882 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2883 return 1;
2884 /* Otherwise falls through */
2885 default:
2886 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2887 if (msr) {
2888 msr_info->data = msr->data;
2889 break;
2890 }
2891 return kvm_get_msr_common(vcpu, msr_info);
2892 }
2893
2894 return 0;
2895 }
2896
2897 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2898
2899 /*
2900 * Writes msr value into into the appropriate "register".
2901 * Returns 0 on success, non-0 otherwise.
2902 * Assumes vcpu_load() was already called.
2903 */
2904 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2905 {
2906 struct vcpu_vmx *vmx = to_vmx(vcpu);
2907 struct shared_msr_entry *msr;
2908 int ret = 0;
2909 u32 msr_index = msr_info->index;
2910 u64 data = msr_info->data;
2911
2912 switch (msr_index) {
2913 case MSR_EFER:
2914 ret = kvm_set_msr_common(vcpu, msr_info);
2915 break;
2916 #ifdef CONFIG_X86_64
2917 case MSR_FS_BASE:
2918 vmx_segment_cache_clear(vmx);
2919 vmcs_writel(GUEST_FS_BASE, data);
2920 break;
2921 case MSR_GS_BASE:
2922 vmx_segment_cache_clear(vmx);
2923 vmcs_writel(GUEST_GS_BASE, data);
2924 break;
2925 case MSR_KERNEL_GS_BASE:
2926 vmx_load_host_state(vmx);
2927 vmx->msr_guest_kernel_gs_base = data;
2928 break;
2929 #endif
2930 case MSR_IA32_SYSENTER_CS:
2931 vmcs_write32(GUEST_SYSENTER_CS, data);
2932 break;
2933 case MSR_IA32_SYSENTER_EIP:
2934 vmcs_writel(GUEST_SYSENTER_EIP, data);
2935 break;
2936 case MSR_IA32_SYSENTER_ESP:
2937 vmcs_writel(GUEST_SYSENTER_ESP, data);
2938 break;
2939 case MSR_IA32_BNDCFGS:
2940 if (!vmx_mpx_supported())
2941 return 1;
2942 vmcs_write64(GUEST_BNDCFGS, data);
2943 break;
2944 case MSR_IA32_TSC:
2945 kvm_write_tsc(vcpu, msr_info);
2946 break;
2947 case MSR_IA32_CR_PAT:
2948 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2949 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2950 return 1;
2951 vmcs_write64(GUEST_IA32_PAT, data);
2952 vcpu->arch.pat = data;
2953 break;
2954 }
2955 ret = kvm_set_msr_common(vcpu, msr_info);
2956 break;
2957 case MSR_IA32_TSC_ADJUST:
2958 ret = kvm_set_msr_common(vcpu, msr_info);
2959 break;
2960 case MSR_IA32_FEATURE_CONTROL:
2961 if (!nested_vmx_allowed(vcpu) ||
2962 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2963 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2964 return 1;
2965 vmx->nested.msr_ia32_feature_control = data;
2966 if (msr_info->host_initiated && data == 0)
2967 vmx_leave_nested(vcpu);
2968 break;
2969 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2970 return 1; /* they are read-only */
2971 case MSR_IA32_XSS:
2972 if (!vmx_xsaves_supported())
2973 return 1;
2974 /*
2975 * The only supported bit as of Skylake is bit 8, but
2976 * it is not supported on KVM.
2977 */
2978 if (data != 0)
2979 return 1;
2980 vcpu->arch.ia32_xss = data;
2981 if (vcpu->arch.ia32_xss != host_xss)
2982 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2983 vcpu->arch.ia32_xss, host_xss);
2984 else
2985 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2986 break;
2987 case MSR_TSC_AUX:
2988 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2989 return 1;
2990 /* Check reserved bit, higher 32 bits should be zero */
2991 if ((data >> 32) != 0)
2992 return 1;
2993 /* Otherwise falls through */
2994 default:
2995 msr = find_msr_entry(vmx, msr_index);
2996 if (msr) {
2997 u64 old_msr_data = msr->data;
2998 msr->data = data;
2999 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3000 preempt_disable();
3001 ret = kvm_set_shared_msr(msr->index, msr->data,
3002 msr->mask);
3003 preempt_enable();
3004 if (ret)
3005 msr->data = old_msr_data;
3006 }
3007 break;
3008 }
3009 ret = kvm_set_msr_common(vcpu, msr_info);
3010 }
3011
3012 return ret;
3013 }
3014
3015 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3016 {
3017 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3018 switch (reg) {
3019 case VCPU_REGS_RSP:
3020 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3021 break;
3022 case VCPU_REGS_RIP:
3023 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3024 break;
3025 case VCPU_EXREG_PDPTR:
3026 if (enable_ept)
3027 ept_save_pdptrs(vcpu);
3028 break;
3029 default:
3030 break;
3031 }
3032 }
3033
3034 static __init int cpu_has_kvm_support(void)
3035 {
3036 return cpu_has_vmx();
3037 }
3038
3039 static __init int vmx_disabled_by_bios(void)
3040 {
3041 u64 msr;
3042
3043 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3044 if (msr & FEATURE_CONTROL_LOCKED) {
3045 /* launched w/ TXT and VMX disabled */
3046 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3047 && tboot_enabled())
3048 return 1;
3049 /* launched w/o TXT and VMX only enabled w/ TXT */
3050 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3051 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3052 && !tboot_enabled()) {
3053 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3054 "activate TXT before enabling KVM\n");
3055 return 1;
3056 }
3057 /* launched w/o TXT and VMX disabled */
3058 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3059 && !tboot_enabled())
3060 return 1;
3061 }
3062
3063 return 0;
3064 }
3065
3066 static void kvm_cpu_vmxon(u64 addr)
3067 {
3068 asm volatile (ASM_VMX_VMXON_RAX
3069 : : "a"(&addr), "m"(addr)
3070 : "memory", "cc");
3071 }
3072
3073 static int hardware_enable(void)
3074 {
3075 int cpu = raw_smp_processor_id();
3076 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3077 u64 old, test_bits;
3078
3079 if (cr4_read_shadow() & X86_CR4_VMXE)
3080 return -EBUSY;
3081
3082 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3083 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3084 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3085
3086 /*
3087 * Now we can enable the vmclear operation in kdump
3088 * since the loaded_vmcss_on_cpu list on this cpu
3089 * has been initialized.
3090 *
3091 * Though the cpu is not in VMX operation now, there
3092 * is no problem to enable the vmclear operation
3093 * for the loaded_vmcss_on_cpu list is empty!
3094 */
3095 crash_enable_local_vmclear(cpu);
3096
3097 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3098
3099 test_bits = FEATURE_CONTROL_LOCKED;
3100 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3101 if (tboot_enabled())
3102 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3103
3104 if ((old & test_bits) != test_bits) {
3105 /* enable and lock */
3106 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3107 }
3108 cr4_set_bits(X86_CR4_VMXE);
3109
3110 if (vmm_exclusive) {
3111 kvm_cpu_vmxon(phys_addr);
3112 ept_sync_global();
3113 }
3114
3115 native_store_gdt(this_cpu_ptr(&host_gdt));
3116
3117 return 0;
3118 }
3119
3120 static void vmclear_local_loaded_vmcss(void)
3121 {
3122 int cpu = raw_smp_processor_id();
3123 struct loaded_vmcs *v, *n;
3124
3125 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3126 loaded_vmcss_on_cpu_link)
3127 __loaded_vmcs_clear(v);
3128 }
3129
3130
3131 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3132 * tricks.
3133 */
3134 static void kvm_cpu_vmxoff(void)
3135 {
3136 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3137 }
3138
3139 static void hardware_disable(void)
3140 {
3141 if (vmm_exclusive) {
3142 vmclear_local_loaded_vmcss();
3143 kvm_cpu_vmxoff();
3144 }
3145 cr4_clear_bits(X86_CR4_VMXE);
3146 }
3147
3148 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3149 u32 msr, u32 *result)
3150 {
3151 u32 vmx_msr_low, vmx_msr_high;
3152 u32 ctl = ctl_min | ctl_opt;
3153
3154 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3155
3156 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3157 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3158
3159 /* Ensure minimum (required) set of control bits are supported. */
3160 if (ctl_min & ~ctl)
3161 return -EIO;
3162
3163 *result = ctl;
3164 return 0;
3165 }
3166
3167 static __init bool allow_1_setting(u32 msr, u32 ctl)
3168 {
3169 u32 vmx_msr_low, vmx_msr_high;
3170
3171 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3172 return vmx_msr_high & ctl;
3173 }
3174
3175 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3176 {
3177 u32 vmx_msr_low, vmx_msr_high;
3178 u32 min, opt, min2, opt2;
3179 u32 _pin_based_exec_control = 0;
3180 u32 _cpu_based_exec_control = 0;
3181 u32 _cpu_based_2nd_exec_control = 0;
3182 u32 _vmexit_control = 0;
3183 u32 _vmentry_control = 0;
3184
3185 min = CPU_BASED_HLT_EXITING |
3186 #ifdef CONFIG_X86_64
3187 CPU_BASED_CR8_LOAD_EXITING |
3188 CPU_BASED_CR8_STORE_EXITING |
3189 #endif
3190 CPU_BASED_CR3_LOAD_EXITING |
3191 CPU_BASED_CR3_STORE_EXITING |
3192 CPU_BASED_USE_IO_BITMAPS |
3193 CPU_BASED_MOV_DR_EXITING |
3194 CPU_BASED_USE_TSC_OFFSETING |
3195 CPU_BASED_MWAIT_EXITING |
3196 CPU_BASED_MONITOR_EXITING |
3197 CPU_BASED_INVLPG_EXITING |
3198 CPU_BASED_RDPMC_EXITING;
3199
3200 opt = CPU_BASED_TPR_SHADOW |
3201 CPU_BASED_USE_MSR_BITMAPS |
3202 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3203 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3204 &_cpu_based_exec_control) < 0)
3205 return -EIO;
3206 #ifdef CONFIG_X86_64
3207 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3208 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3209 ~CPU_BASED_CR8_STORE_EXITING;
3210 #endif
3211 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3212 min2 = 0;
3213 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3214 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3215 SECONDARY_EXEC_WBINVD_EXITING |
3216 SECONDARY_EXEC_ENABLE_VPID |
3217 SECONDARY_EXEC_ENABLE_EPT |
3218 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3219 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3220 SECONDARY_EXEC_RDTSCP |
3221 SECONDARY_EXEC_ENABLE_INVPCID |
3222 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3223 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3224 SECONDARY_EXEC_SHADOW_VMCS |
3225 SECONDARY_EXEC_XSAVES |
3226 SECONDARY_EXEC_ENABLE_PML |
3227 SECONDARY_EXEC_PCOMMIT |
3228 SECONDARY_EXEC_TSC_SCALING;
3229 if (adjust_vmx_controls(min2, opt2,
3230 MSR_IA32_VMX_PROCBASED_CTLS2,
3231 &_cpu_based_2nd_exec_control) < 0)
3232 return -EIO;
3233 }
3234 #ifndef CONFIG_X86_64
3235 if (!(_cpu_based_2nd_exec_control &
3236 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3237 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3238 #endif
3239
3240 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3241 _cpu_based_2nd_exec_control &= ~(
3242 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3243 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3244 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3245
3246 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3247 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3248 enabled */
3249 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3250 CPU_BASED_CR3_STORE_EXITING |
3251 CPU_BASED_INVLPG_EXITING);
3252 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3253 vmx_capability.ept, vmx_capability.vpid);
3254 }
3255
3256 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3257 #ifdef CONFIG_X86_64
3258 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3259 #endif
3260 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3261 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3262 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3263 &_vmexit_control) < 0)
3264 return -EIO;
3265
3266 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3267 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3268 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3269 &_pin_based_exec_control) < 0)
3270 return -EIO;
3271
3272 if (!(_cpu_based_2nd_exec_control &
3273 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3274 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3275 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3276
3277 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3278 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3279 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3280 &_vmentry_control) < 0)
3281 return -EIO;
3282
3283 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3284
3285 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3286 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3287 return -EIO;
3288
3289 #ifdef CONFIG_X86_64
3290 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3291 if (vmx_msr_high & (1u<<16))
3292 return -EIO;
3293 #endif
3294
3295 /* Require Write-Back (WB) memory type for VMCS accesses. */
3296 if (((vmx_msr_high >> 18) & 15) != 6)
3297 return -EIO;
3298
3299 vmcs_conf->size = vmx_msr_high & 0x1fff;
3300 vmcs_conf->order = get_order(vmcs_config.size);
3301 vmcs_conf->revision_id = vmx_msr_low;
3302
3303 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3304 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3305 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3306 vmcs_conf->vmexit_ctrl = _vmexit_control;
3307 vmcs_conf->vmentry_ctrl = _vmentry_control;
3308
3309 cpu_has_load_ia32_efer =
3310 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3311 VM_ENTRY_LOAD_IA32_EFER)
3312 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3313 VM_EXIT_LOAD_IA32_EFER);
3314
3315 cpu_has_load_perf_global_ctrl =
3316 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3317 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3318 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3319 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3320
3321 /*
3322 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3323 * but due to arrata below it can't be used. Workaround is to use
3324 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3325 *
3326 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3327 *
3328 * AAK155 (model 26)
3329 * AAP115 (model 30)
3330 * AAT100 (model 37)
3331 * BC86,AAY89,BD102 (model 44)
3332 * BA97 (model 46)
3333 *
3334 */
3335 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3336 switch (boot_cpu_data.x86_model) {
3337 case 26:
3338 case 30:
3339 case 37:
3340 case 44:
3341 case 46:
3342 cpu_has_load_perf_global_ctrl = false;
3343 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3344 "does not work properly. Using workaround\n");
3345 break;
3346 default:
3347 break;
3348 }
3349 }
3350
3351 if (cpu_has_xsaves)
3352 rdmsrl(MSR_IA32_XSS, host_xss);
3353
3354 return 0;
3355 }
3356
3357 static struct vmcs *alloc_vmcs_cpu(int cpu)
3358 {
3359 int node = cpu_to_node(cpu);
3360 struct page *pages;
3361 struct vmcs *vmcs;
3362
3363 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3364 if (!pages)
3365 return NULL;
3366 vmcs = page_address(pages);
3367 memset(vmcs, 0, vmcs_config.size);
3368 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3369 return vmcs;
3370 }
3371
3372 static struct vmcs *alloc_vmcs(void)
3373 {
3374 return alloc_vmcs_cpu(raw_smp_processor_id());
3375 }
3376
3377 static void free_vmcs(struct vmcs *vmcs)
3378 {
3379 free_pages((unsigned long)vmcs, vmcs_config.order);
3380 }
3381
3382 /*
3383 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3384 */
3385 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3386 {
3387 if (!loaded_vmcs->vmcs)
3388 return;
3389 loaded_vmcs_clear(loaded_vmcs);
3390 free_vmcs(loaded_vmcs->vmcs);
3391 loaded_vmcs->vmcs = NULL;
3392 }
3393
3394 static void free_kvm_area(void)
3395 {
3396 int cpu;
3397
3398 for_each_possible_cpu(cpu) {
3399 free_vmcs(per_cpu(vmxarea, cpu));
3400 per_cpu(vmxarea, cpu) = NULL;
3401 }
3402 }
3403
3404 static void init_vmcs_shadow_fields(void)
3405 {
3406 int i, j;
3407
3408 /* No checks for read only fields yet */
3409
3410 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3411 switch (shadow_read_write_fields[i]) {
3412 case GUEST_BNDCFGS:
3413 if (!vmx_mpx_supported())
3414 continue;
3415 break;
3416 default:
3417 break;
3418 }
3419
3420 if (j < i)
3421 shadow_read_write_fields[j] =
3422 shadow_read_write_fields[i];
3423 j++;
3424 }
3425 max_shadow_read_write_fields = j;
3426
3427 /* shadowed fields guest access without vmexit */
3428 for (i = 0; i < max_shadow_read_write_fields; i++) {
3429 clear_bit(shadow_read_write_fields[i],
3430 vmx_vmwrite_bitmap);
3431 clear_bit(shadow_read_write_fields[i],
3432 vmx_vmread_bitmap);
3433 }
3434 for (i = 0; i < max_shadow_read_only_fields; i++)
3435 clear_bit(shadow_read_only_fields[i],
3436 vmx_vmread_bitmap);
3437 }
3438
3439 static __init int alloc_kvm_area(void)
3440 {
3441 int cpu;
3442
3443 for_each_possible_cpu(cpu) {
3444 struct vmcs *vmcs;
3445
3446 vmcs = alloc_vmcs_cpu(cpu);
3447 if (!vmcs) {
3448 free_kvm_area();
3449 return -ENOMEM;
3450 }
3451
3452 per_cpu(vmxarea, cpu) = vmcs;
3453 }
3454 return 0;
3455 }
3456
3457 static bool emulation_required(struct kvm_vcpu *vcpu)
3458 {
3459 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3460 }
3461
3462 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3463 struct kvm_segment *save)
3464 {
3465 if (!emulate_invalid_guest_state) {
3466 /*
3467 * CS and SS RPL should be equal during guest entry according
3468 * to VMX spec, but in reality it is not always so. Since vcpu
3469 * is in the middle of the transition from real mode to
3470 * protected mode it is safe to assume that RPL 0 is a good
3471 * default value.
3472 */
3473 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3474 save->selector &= ~SEGMENT_RPL_MASK;
3475 save->dpl = save->selector & SEGMENT_RPL_MASK;
3476 save->s = 1;
3477 }
3478 vmx_set_segment(vcpu, save, seg);
3479 }
3480
3481 static void enter_pmode(struct kvm_vcpu *vcpu)
3482 {
3483 unsigned long flags;
3484 struct vcpu_vmx *vmx = to_vmx(vcpu);
3485
3486 /*
3487 * Update real mode segment cache. It may be not up-to-date if sement
3488 * register was written while vcpu was in a guest mode.
3489 */
3490 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3491 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3492 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3493 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3494 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3495 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3496
3497 vmx->rmode.vm86_active = 0;
3498
3499 vmx_segment_cache_clear(vmx);
3500
3501 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3502
3503 flags = vmcs_readl(GUEST_RFLAGS);
3504 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3505 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3506 vmcs_writel(GUEST_RFLAGS, flags);
3507
3508 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3509 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3510
3511 update_exception_bitmap(vcpu);
3512
3513 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3514 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3515 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3516 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3517 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3518 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3519 }
3520
3521 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3522 {
3523 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3524 struct kvm_segment var = *save;
3525
3526 var.dpl = 0x3;
3527 if (seg == VCPU_SREG_CS)
3528 var.type = 0x3;
3529
3530 if (!emulate_invalid_guest_state) {
3531 var.selector = var.base >> 4;
3532 var.base = var.base & 0xffff0;
3533 var.limit = 0xffff;
3534 var.g = 0;
3535 var.db = 0;
3536 var.present = 1;
3537 var.s = 1;
3538 var.l = 0;
3539 var.unusable = 0;
3540 var.type = 0x3;
3541 var.avl = 0;
3542 if (save->base & 0xf)
3543 printk_once(KERN_WARNING "kvm: segment base is not "
3544 "paragraph aligned when entering "
3545 "protected mode (seg=%d)", seg);
3546 }
3547
3548 vmcs_write16(sf->selector, var.selector);
3549 vmcs_write32(sf->base, var.base);
3550 vmcs_write32(sf->limit, var.limit);
3551 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3552 }
3553
3554 static void enter_rmode(struct kvm_vcpu *vcpu)
3555 {
3556 unsigned long flags;
3557 struct vcpu_vmx *vmx = to_vmx(vcpu);
3558
3559 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3560 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3561 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3562 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3563 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3564 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3565 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3566
3567 vmx->rmode.vm86_active = 1;
3568
3569 /*
3570 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3571 * vcpu. Warn the user that an update is overdue.
3572 */
3573 if (!vcpu->kvm->arch.tss_addr)
3574 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3575 "called before entering vcpu\n");
3576
3577 vmx_segment_cache_clear(vmx);
3578
3579 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3580 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3581 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3582
3583 flags = vmcs_readl(GUEST_RFLAGS);
3584 vmx->rmode.save_rflags = flags;
3585
3586 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3587
3588 vmcs_writel(GUEST_RFLAGS, flags);
3589 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3590 update_exception_bitmap(vcpu);
3591
3592 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3593 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3594 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3595 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3596 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3597 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3598
3599 kvm_mmu_reset_context(vcpu);
3600 }
3601
3602 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3603 {
3604 struct vcpu_vmx *vmx = to_vmx(vcpu);
3605 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3606
3607 if (!msr)
3608 return;
3609
3610 /*
3611 * Force kernel_gs_base reloading before EFER changes, as control
3612 * of this msr depends on is_long_mode().
3613 */
3614 vmx_load_host_state(to_vmx(vcpu));
3615 vcpu->arch.efer = efer;
3616 if (efer & EFER_LMA) {
3617 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3618 msr->data = efer;
3619 } else {
3620 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3621
3622 msr->data = efer & ~EFER_LME;
3623 }
3624 setup_msrs(vmx);
3625 }
3626
3627 #ifdef CONFIG_X86_64
3628
3629 static void enter_lmode(struct kvm_vcpu *vcpu)
3630 {
3631 u32 guest_tr_ar;
3632
3633 vmx_segment_cache_clear(to_vmx(vcpu));
3634
3635 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3636 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3637 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3638 __func__);
3639 vmcs_write32(GUEST_TR_AR_BYTES,
3640 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3641 | VMX_AR_TYPE_BUSY_64_TSS);
3642 }
3643 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3644 }
3645
3646 static void exit_lmode(struct kvm_vcpu *vcpu)
3647 {
3648 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3649 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3650 }
3651
3652 #endif
3653
3654 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3655 {
3656 vpid_sync_context(vpid);
3657 if (enable_ept) {
3658 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3659 return;
3660 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3661 }
3662 }
3663
3664 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3665 {
3666 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3667 }
3668
3669 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3670 {
3671 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3672
3673 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3674 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3675 }
3676
3677 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3678 {
3679 if (enable_ept && is_paging(vcpu))
3680 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3681 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3682 }
3683
3684 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3685 {
3686 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3687
3688 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3689 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3690 }
3691
3692 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3693 {
3694 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3695
3696 if (!test_bit(VCPU_EXREG_PDPTR,
3697 (unsigned long *)&vcpu->arch.regs_dirty))
3698 return;
3699
3700 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3701 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3702 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3703 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3704 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3705 }
3706 }
3707
3708 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3709 {
3710 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3711
3712 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3713 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3714 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3715 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3716 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3717 }
3718
3719 __set_bit(VCPU_EXREG_PDPTR,
3720 (unsigned long *)&vcpu->arch.regs_avail);
3721 __set_bit(VCPU_EXREG_PDPTR,
3722 (unsigned long *)&vcpu->arch.regs_dirty);
3723 }
3724
3725 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3726
3727 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3728 unsigned long cr0,
3729 struct kvm_vcpu *vcpu)
3730 {
3731 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3732 vmx_decache_cr3(vcpu);
3733 if (!(cr0 & X86_CR0_PG)) {
3734 /* From paging/starting to nonpaging */
3735 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3736 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3737 (CPU_BASED_CR3_LOAD_EXITING |
3738 CPU_BASED_CR3_STORE_EXITING));
3739 vcpu->arch.cr0 = cr0;
3740 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3741 } else if (!is_paging(vcpu)) {
3742 /* From nonpaging to paging */
3743 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3744 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3745 ~(CPU_BASED_CR3_LOAD_EXITING |
3746 CPU_BASED_CR3_STORE_EXITING));
3747 vcpu->arch.cr0 = cr0;
3748 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3749 }
3750
3751 if (!(cr0 & X86_CR0_WP))
3752 *hw_cr0 &= ~X86_CR0_WP;
3753 }
3754
3755 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3756 {
3757 struct vcpu_vmx *vmx = to_vmx(vcpu);
3758 unsigned long hw_cr0;
3759
3760 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3761 if (enable_unrestricted_guest)
3762 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3763 else {
3764 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3765
3766 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3767 enter_pmode(vcpu);
3768
3769 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3770 enter_rmode(vcpu);
3771 }
3772
3773 #ifdef CONFIG_X86_64
3774 if (vcpu->arch.efer & EFER_LME) {
3775 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3776 enter_lmode(vcpu);
3777 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3778 exit_lmode(vcpu);
3779 }
3780 #endif
3781
3782 if (enable_ept)
3783 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3784
3785 if (!vcpu->fpu_active)
3786 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3787
3788 vmcs_writel(CR0_READ_SHADOW, cr0);
3789 vmcs_writel(GUEST_CR0, hw_cr0);
3790 vcpu->arch.cr0 = cr0;
3791
3792 /* depends on vcpu->arch.cr0 to be set to a new value */
3793 vmx->emulation_required = emulation_required(vcpu);
3794 }
3795
3796 static u64 construct_eptp(unsigned long root_hpa)
3797 {
3798 u64 eptp;
3799
3800 /* TODO write the value reading from MSR */
3801 eptp = VMX_EPT_DEFAULT_MT |
3802 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3803 if (enable_ept_ad_bits)
3804 eptp |= VMX_EPT_AD_ENABLE_BIT;
3805 eptp |= (root_hpa & PAGE_MASK);
3806
3807 return eptp;
3808 }
3809
3810 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3811 {
3812 unsigned long guest_cr3;
3813 u64 eptp;
3814
3815 guest_cr3 = cr3;
3816 if (enable_ept) {
3817 eptp = construct_eptp(cr3);
3818 vmcs_write64(EPT_POINTER, eptp);
3819 if (is_paging(vcpu) || is_guest_mode(vcpu))
3820 guest_cr3 = kvm_read_cr3(vcpu);
3821 else
3822 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3823 ept_load_pdptrs(vcpu);
3824 }
3825
3826 vmx_flush_tlb(vcpu);
3827 vmcs_writel(GUEST_CR3, guest_cr3);
3828 }
3829
3830 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3831 {
3832 /*
3833 * Pass through host's Machine Check Enable value to hw_cr4, which
3834 * is in force while we are in guest mode. Do not let guests control
3835 * this bit, even if host CR4.MCE == 0.
3836 */
3837 unsigned long hw_cr4 =
3838 (cr4_read_shadow() & X86_CR4_MCE) |
3839 (cr4 & ~X86_CR4_MCE) |
3840 (to_vmx(vcpu)->rmode.vm86_active ?
3841 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3842
3843 if (cr4 & X86_CR4_VMXE) {
3844 /*
3845 * To use VMXON (and later other VMX instructions), a guest
3846 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3847 * So basically the check on whether to allow nested VMX
3848 * is here.
3849 */
3850 if (!nested_vmx_allowed(vcpu))
3851 return 1;
3852 }
3853 if (to_vmx(vcpu)->nested.vmxon &&
3854 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3855 return 1;
3856
3857 vcpu->arch.cr4 = cr4;
3858 if (enable_ept) {
3859 if (!is_paging(vcpu)) {
3860 hw_cr4 &= ~X86_CR4_PAE;
3861 hw_cr4 |= X86_CR4_PSE;
3862 } else if (!(cr4 & X86_CR4_PAE)) {
3863 hw_cr4 &= ~X86_CR4_PAE;
3864 }
3865 }
3866
3867 if (!enable_unrestricted_guest && !is_paging(vcpu))
3868 /*
3869 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3870 * hardware. However KVM always uses paging mode without
3871 * unrestricted guest.
3872 * To emulate this behavior, SMEP/SMAP needs to be manually
3873 * disabled when guest switches to non-paging mode.
3874 */
3875 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3876
3877 vmcs_writel(CR4_READ_SHADOW, cr4);
3878 vmcs_writel(GUEST_CR4, hw_cr4);
3879 return 0;
3880 }
3881
3882 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3883 struct kvm_segment *var, int seg)
3884 {
3885 struct vcpu_vmx *vmx = to_vmx(vcpu);
3886 u32 ar;
3887
3888 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3889 *var = vmx->rmode.segs[seg];
3890 if (seg == VCPU_SREG_TR
3891 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3892 return;
3893 var->base = vmx_read_guest_seg_base(vmx, seg);
3894 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3895 return;
3896 }
3897 var->base = vmx_read_guest_seg_base(vmx, seg);
3898 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3899 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3900 ar = vmx_read_guest_seg_ar(vmx, seg);
3901 var->unusable = (ar >> 16) & 1;
3902 var->type = ar & 15;
3903 var->s = (ar >> 4) & 1;
3904 var->dpl = (ar >> 5) & 3;
3905 /*
3906 * Some userspaces do not preserve unusable property. Since usable
3907 * segment has to be present according to VMX spec we can use present
3908 * property to amend userspace bug by making unusable segment always
3909 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3910 * segment as unusable.
3911 */
3912 var->present = !var->unusable;
3913 var->avl = (ar >> 12) & 1;
3914 var->l = (ar >> 13) & 1;
3915 var->db = (ar >> 14) & 1;
3916 var->g = (ar >> 15) & 1;
3917 }
3918
3919 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3920 {
3921 struct kvm_segment s;
3922
3923 if (to_vmx(vcpu)->rmode.vm86_active) {
3924 vmx_get_segment(vcpu, &s, seg);
3925 return s.base;
3926 }
3927 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3928 }
3929
3930 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3931 {
3932 struct vcpu_vmx *vmx = to_vmx(vcpu);
3933
3934 if (unlikely(vmx->rmode.vm86_active))
3935 return 0;
3936 else {
3937 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3938 return VMX_AR_DPL(ar);
3939 }
3940 }
3941
3942 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3943 {
3944 u32 ar;
3945
3946 if (var->unusable || !var->present)
3947 ar = 1 << 16;
3948 else {
3949 ar = var->type & 15;
3950 ar |= (var->s & 1) << 4;
3951 ar |= (var->dpl & 3) << 5;
3952 ar |= (var->present & 1) << 7;
3953 ar |= (var->avl & 1) << 12;
3954 ar |= (var->l & 1) << 13;
3955 ar |= (var->db & 1) << 14;
3956 ar |= (var->g & 1) << 15;
3957 }
3958
3959 return ar;
3960 }
3961
3962 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3963 struct kvm_segment *var, int seg)
3964 {
3965 struct vcpu_vmx *vmx = to_vmx(vcpu);
3966 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3967
3968 vmx_segment_cache_clear(vmx);
3969
3970 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3971 vmx->rmode.segs[seg] = *var;
3972 if (seg == VCPU_SREG_TR)
3973 vmcs_write16(sf->selector, var->selector);
3974 else if (var->s)
3975 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3976 goto out;
3977 }
3978
3979 vmcs_writel(sf->base, var->base);
3980 vmcs_write32(sf->limit, var->limit);
3981 vmcs_write16(sf->selector, var->selector);
3982
3983 /*
3984 * Fix the "Accessed" bit in AR field of segment registers for older
3985 * qemu binaries.
3986 * IA32 arch specifies that at the time of processor reset the
3987 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3988 * is setting it to 0 in the userland code. This causes invalid guest
3989 * state vmexit when "unrestricted guest" mode is turned on.
3990 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3991 * tree. Newer qemu binaries with that qemu fix would not need this
3992 * kvm hack.
3993 */
3994 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3995 var->type |= 0x1; /* Accessed */
3996
3997 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3998
3999 out:
4000 vmx->emulation_required = emulation_required(vcpu);
4001 }
4002
4003 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4004 {
4005 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4006
4007 *db = (ar >> 14) & 1;
4008 *l = (ar >> 13) & 1;
4009 }
4010
4011 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4012 {
4013 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4014 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4015 }
4016
4017 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4018 {
4019 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4020 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4021 }
4022
4023 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4024 {
4025 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4026 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4027 }
4028
4029 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4030 {
4031 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4032 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4033 }
4034
4035 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4036 {
4037 struct kvm_segment var;
4038 u32 ar;
4039
4040 vmx_get_segment(vcpu, &var, seg);
4041 var.dpl = 0x3;
4042 if (seg == VCPU_SREG_CS)
4043 var.type = 0x3;
4044 ar = vmx_segment_access_rights(&var);
4045
4046 if (var.base != (var.selector << 4))
4047 return false;
4048 if (var.limit != 0xffff)
4049 return false;
4050 if (ar != 0xf3)
4051 return false;
4052
4053 return true;
4054 }
4055
4056 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4057 {
4058 struct kvm_segment cs;
4059 unsigned int cs_rpl;
4060
4061 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4062 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4063
4064 if (cs.unusable)
4065 return false;
4066 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4067 return false;
4068 if (!cs.s)
4069 return false;
4070 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4071 if (cs.dpl > cs_rpl)
4072 return false;
4073 } else {
4074 if (cs.dpl != cs_rpl)
4075 return false;
4076 }
4077 if (!cs.present)
4078 return false;
4079
4080 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4081 return true;
4082 }
4083
4084 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4085 {
4086 struct kvm_segment ss;
4087 unsigned int ss_rpl;
4088
4089 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4090 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4091
4092 if (ss.unusable)
4093 return true;
4094 if (ss.type != 3 && ss.type != 7)
4095 return false;
4096 if (!ss.s)
4097 return false;
4098 if (ss.dpl != ss_rpl) /* DPL != RPL */
4099 return false;
4100 if (!ss.present)
4101 return false;
4102
4103 return true;
4104 }
4105
4106 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4107 {
4108 struct kvm_segment var;
4109 unsigned int rpl;
4110
4111 vmx_get_segment(vcpu, &var, seg);
4112 rpl = var.selector & SEGMENT_RPL_MASK;
4113
4114 if (var.unusable)
4115 return true;
4116 if (!var.s)
4117 return false;
4118 if (!var.present)
4119 return false;
4120 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4121 if (var.dpl < rpl) /* DPL < RPL */
4122 return false;
4123 }
4124
4125 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4126 * rights flags
4127 */
4128 return true;
4129 }
4130
4131 static bool tr_valid(struct kvm_vcpu *vcpu)
4132 {
4133 struct kvm_segment tr;
4134
4135 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4136
4137 if (tr.unusable)
4138 return false;
4139 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4140 return false;
4141 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4142 return false;
4143 if (!tr.present)
4144 return false;
4145
4146 return true;
4147 }
4148
4149 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4150 {
4151 struct kvm_segment ldtr;
4152
4153 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4154
4155 if (ldtr.unusable)
4156 return true;
4157 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4158 return false;
4159 if (ldtr.type != 2)
4160 return false;
4161 if (!ldtr.present)
4162 return false;
4163
4164 return true;
4165 }
4166
4167 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4168 {
4169 struct kvm_segment cs, ss;
4170
4171 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4172 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4173
4174 return ((cs.selector & SEGMENT_RPL_MASK) ==
4175 (ss.selector & SEGMENT_RPL_MASK));
4176 }
4177
4178 /*
4179 * Check if guest state is valid. Returns true if valid, false if
4180 * not.
4181 * We assume that registers are always usable
4182 */
4183 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4184 {
4185 if (enable_unrestricted_guest)
4186 return true;
4187
4188 /* real mode guest state checks */
4189 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4190 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4191 return false;
4192 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4193 return false;
4194 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4195 return false;
4196 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4197 return false;
4198 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4199 return false;
4200 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4201 return false;
4202 } else {
4203 /* protected mode guest state checks */
4204 if (!cs_ss_rpl_check(vcpu))
4205 return false;
4206 if (!code_segment_valid(vcpu))
4207 return false;
4208 if (!stack_segment_valid(vcpu))
4209 return false;
4210 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4211 return false;
4212 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4213 return false;
4214 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4215 return false;
4216 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4217 return false;
4218 if (!tr_valid(vcpu))
4219 return false;
4220 if (!ldtr_valid(vcpu))
4221 return false;
4222 }
4223 /* TODO:
4224 * - Add checks on RIP
4225 * - Add checks on RFLAGS
4226 */
4227
4228 return true;
4229 }
4230
4231 static int init_rmode_tss(struct kvm *kvm)
4232 {
4233 gfn_t fn;
4234 u16 data = 0;
4235 int idx, r;
4236
4237 idx = srcu_read_lock(&kvm->srcu);
4238 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4239 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4240 if (r < 0)
4241 goto out;
4242 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4243 r = kvm_write_guest_page(kvm, fn++, &data,
4244 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4245 if (r < 0)
4246 goto out;
4247 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4248 if (r < 0)
4249 goto out;
4250 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4251 if (r < 0)
4252 goto out;
4253 data = ~0;
4254 r = kvm_write_guest_page(kvm, fn, &data,
4255 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4256 sizeof(u8));
4257 out:
4258 srcu_read_unlock(&kvm->srcu, idx);
4259 return r;
4260 }
4261
4262 static int init_rmode_identity_map(struct kvm *kvm)
4263 {
4264 int i, idx, r = 0;
4265 kvm_pfn_t identity_map_pfn;
4266 u32 tmp;
4267
4268 if (!enable_ept)
4269 return 0;
4270
4271 /* Protect kvm->arch.ept_identity_pagetable_done. */
4272 mutex_lock(&kvm->slots_lock);
4273
4274 if (likely(kvm->arch.ept_identity_pagetable_done))
4275 goto out2;
4276
4277 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4278
4279 r = alloc_identity_pagetable(kvm);
4280 if (r < 0)
4281 goto out2;
4282
4283 idx = srcu_read_lock(&kvm->srcu);
4284 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4285 if (r < 0)
4286 goto out;
4287 /* Set up identity-mapping pagetable for EPT in real mode */
4288 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4289 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4290 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4291 r = kvm_write_guest_page(kvm, identity_map_pfn,
4292 &tmp, i * sizeof(tmp), sizeof(tmp));
4293 if (r < 0)
4294 goto out;
4295 }
4296 kvm->arch.ept_identity_pagetable_done = true;
4297
4298 out:
4299 srcu_read_unlock(&kvm->srcu, idx);
4300
4301 out2:
4302 mutex_unlock(&kvm->slots_lock);
4303 return r;
4304 }
4305
4306 static void seg_setup(int seg)
4307 {
4308 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4309 unsigned int ar;
4310
4311 vmcs_write16(sf->selector, 0);
4312 vmcs_writel(sf->base, 0);
4313 vmcs_write32(sf->limit, 0xffff);
4314 ar = 0x93;
4315 if (seg == VCPU_SREG_CS)
4316 ar |= 0x08; /* code segment */
4317
4318 vmcs_write32(sf->ar_bytes, ar);
4319 }
4320
4321 static int alloc_apic_access_page(struct kvm *kvm)
4322 {
4323 struct page *page;
4324 int r = 0;
4325
4326 mutex_lock(&kvm->slots_lock);
4327 if (kvm->arch.apic_access_page_done)
4328 goto out;
4329 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4330 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4331 if (r)
4332 goto out;
4333
4334 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4335 if (is_error_page(page)) {
4336 r = -EFAULT;
4337 goto out;
4338 }
4339
4340 /*
4341 * Do not pin the page in memory, so that memory hot-unplug
4342 * is able to migrate it.
4343 */
4344 put_page(page);
4345 kvm->arch.apic_access_page_done = true;
4346 out:
4347 mutex_unlock(&kvm->slots_lock);
4348 return r;
4349 }
4350
4351 static int alloc_identity_pagetable(struct kvm *kvm)
4352 {
4353 /* Called with kvm->slots_lock held. */
4354
4355 int r = 0;
4356
4357 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4358
4359 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4360 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4361
4362 return r;
4363 }
4364
4365 static int allocate_vpid(void)
4366 {
4367 int vpid;
4368
4369 if (!enable_vpid)
4370 return 0;
4371 spin_lock(&vmx_vpid_lock);
4372 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4373 if (vpid < VMX_NR_VPIDS)
4374 __set_bit(vpid, vmx_vpid_bitmap);
4375 else
4376 vpid = 0;
4377 spin_unlock(&vmx_vpid_lock);
4378 return vpid;
4379 }
4380
4381 static void free_vpid(int vpid)
4382 {
4383 if (!enable_vpid || vpid == 0)
4384 return;
4385 spin_lock(&vmx_vpid_lock);
4386 __clear_bit(vpid, vmx_vpid_bitmap);
4387 spin_unlock(&vmx_vpid_lock);
4388 }
4389
4390 #define MSR_TYPE_R 1
4391 #define MSR_TYPE_W 2
4392 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4393 u32 msr, int type)
4394 {
4395 int f = sizeof(unsigned long);
4396
4397 if (!cpu_has_vmx_msr_bitmap())
4398 return;
4399
4400 /*
4401 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4402 * have the write-low and read-high bitmap offsets the wrong way round.
4403 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4404 */
4405 if (msr <= 0x1fff) {
4406 if (type & MSR_TYPE_R)
4407 /* read-low */
4408 __clear_bit(msr, msr_bitmap + 0x000 / f);
4409
4410 if (type & MSR_TYPE_W)
4411 /* write-low */
4412 __clear_bit(msr, msr_bitmap + 0x800 / f);
4413
4414 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4415 msr &= 0x1fff;
4416 if (type & MSR_TYPE_R)
4417 /* read-high */
4418 __clear_bit(msr, msr_bitmap + 0x400 / f);
4419
4420 if (type & MSR_TYPE_W)
4421 /* write-high */
4422 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4423
4424 }
4425 }
4426
4427 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4428 u32 msr, int type)
4429 {
4430 int f = sizeof(unsigned long);
4431
4432 if (!cpu_has_vmx_msr_bitmap())
4433 return;
4434
4435 /*
4436 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4437 * have the write-low and read-high bitmap offsets the wrong way round.
4438 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4439 */
4440 if (msr <= 0x1fff) {
4441 if (type & MSR_TYPE_R)
4442 /* read-low */
4443 __set_bit(msr, msr_bitmap + 0x000 / f);
4444
4445 if (type & MSR_TYPE_W)
4446 /* write-low */
4447 __set_bit(msr, msr_bitmap + 0x800 / f);
4448
4449 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4450 msr &= 0x1fff;
4451 if (type & MSR_TYPE_R)
4452 /* read-high */
4453 __set_bit(msr, msr_bitmap + 0x400 / f);
4454
4455 if (type & MSR_TYPE_W)
4456 /* write-high */
4457 __set_bit(msr, msr_bitmap + 0xc00 / f);
4458
4459 }
4460 }
4461
4462 /*
4463 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4464 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4465 */
4466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4467 unsigned long *msr_bitmap_nested,
4468 u32 msr, int type)
4469 {
4470 int f = sizeof(unsigned long);
4471
4472 if (!cpu_has_vmx_msr_bitmap()) {
4473 WARN_ON(1);
4474 return;
4475 }
4476
4477 /*
4478 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4479 * have the write-low and read-high bitmap offsets the wrong way round.
4480 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4481 */
4482 if (msr <= 0x1fff) {
4483 if (type & MSR_TYPE_R &&
4484 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4485 /* read-low */
4486 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4487
4488 if (type & MSR_TYPE_W &&
4489 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4490 /* write-low */
4491 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4492
4493 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4494 msr &= 0x1fff;
4495 if (type & MSR_TYPE_R &&
4496 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4497 /* read-high */
4498 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4499
4500 if (type & MSR_TYPE_W &&
4501 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4502 /* write-high */
4503 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4504
4505 }
4506 }
4507
4508 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4509 {
4510 if (!longmode_only)
4511 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4512 msr, MSR_TYPE_R | MSR_TYPE_W);
4513 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4514 msr, MSR_TYPE_R | MSR_TYPE_W);
4515 }
4516
4517 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4518 {
4519 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4520 msr, MSR_TYPE_R);
4521 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4522 msr, MSR_TYPE_R);
4523 }
4524
4525 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4526 {
4527 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4528 msr, MSR_TYPE_R);
4529 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4530 msr, MSR_TYPE_R);
4531 }
4532
4533 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4534 {
4535 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4536 msr, MSR_TYPE_W);
4537 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4538 msr, MSR_TYPE_W);
4539 }
4540
4541 static bool vmx_get_enable_apicv(void)
4542 {
4543 return enable_apicv;
4544 }
4545
4546 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4547 {
4548 struct vcpu_vmx *vmx = to_vmx(vcpu);
4549 int max_irr;
4550 void *vapic_page;
4551 u16 status;
4552
4553 if (vmx->nested.pi_desc &&
4554 vmx->nested.pi_pending) {
4555 vmx->nested.pi_pending = false;
4556 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4557 return 0;
4558
4559 max_irr = find_last_bit(
4560 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4561
4562 if (max_irr == 256)
4563 return 0;
4564
4565 vapic_page = kmap(vmx->nested.virtual_apic_page);
4566 if (!vapic_page) {
4567 WARN_ON(1);
4568 return -ENOMEM;
4569 }
4570 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4571 kunmap(vmx->nested.virtual_apic_page);
4572
4573 status = vmcs_read16(GUEST_INTR_STATUS);
4574 if ((u8)max_irr > ((u8)status & 0xff)) {
4575 status &= ~0xff;
4576 status |= (u8)max_irr;
4577 vmcs_write16(GUEST_INTR_STATUS, status);
4578 }
4579 }
4580 return 0;
4581 }
4582
4583 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4584 {
4585 #ifdef CONFIG_SMP
4586 if (vcpu->mode == IN_GUEST_MODE) {
4587 struct vcpu_vmx *vmx = to_vmx(vcpu);
4588
4589 /*
4590 * Currently, we don't support urgent interrupt,
4591 * all interrupts are recognized as non-urgent
4592 * interrupt, so we cannot post interrupts when
4593 * 'SN' is set.
4594 *
4595 * If the vcpu is in guest mode, it means it is
4596 * running instead of being scheduled out and
4597 * waiting in the run queue, and that's the only
4598 * case when 'SN' is set currently, warning if
4599 * 'SN' is set.
4600 */
4601 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4602
4603 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4604 POSTED_INTR_VECTOR);
4605 return true;
4606 }
4607 #endif
4608 return false;
4609 }
4610
4611 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4612 int vector)
4613 {
4614 struct vcpu_vmx *vmx = to_vmx(vcpu);
4615
4616 if (is_guest_mode(vcpu) &&
4617 vector == vmx->nested.posted_intr_nv) {
4618 /* the PIR and ON have been set by L1. */
4619 kvm_vcpu_trigger_posted_interrupt(vcpu);
4620 /*
4621 * If a posted intr is not recognized by hardware,
4622 * we will accomplish it in the next vmentry.
4623 */
4624 vmx->nested.pi_pending = true;
4625 kvm_make_request(KVM_REQ_EVENT, vcpu);
4626 return 0;
4627 }
4628 return -1;
4629 }
4630 /*
4631 * Send interrupt to vcpu via posted interrupt way.
4632 * 1. If target vcpu is running(non-root mode), send posted interrupt
4633 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4634 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4635 * interrupt from PIR in next vmentry.
4636 */
4637 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4638 {
4639 struct vcpu_vmx *vmx = to_vmx(vcpu);
4640 int r;
4641
4642 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4643 if (!r)
4644 return;
4645
4646 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4647 return;
4648
4649 r = pi_test_and_set_on(&vmx->pi_desc);
4650 kvm_make_request(KVM_REQ_EVENT, vcpu);
4651 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4652 kvm_vcpu_kick(vcpu);
4653 }
4654
4655 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4656 {
4657 struct vcpu_vmx *vmx = to_vmx(vcpu);
4658
4659 if (!pi_test_and_clear_on(&vmx->pi_desc))
4660 return;
4661
4662 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4663 }
4664
4665 /*
4666 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4667 * will not change in the lifetime of the guest.
4668 * Note that host-state that does change is set elsewhere. E.g., host-state
4669 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4670 */
4671 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4672 {
4673 u32 low32, high32;
4674 unsigned long tmpl;
4675 struct desc_ptr dt;
4676 unsigned long cr4;
4677
4678 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4679 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4680
4681 /* Save the most likely value for this task's CR4 in the VMCS. */
4682 cr4 = cr4_read_shadow();
4683 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4684 vmx->host_state.vmcs_host_cr4 = cr4;
4685
4686 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4687 #ifdef CONFIG_X86_64
4688 /*
4689 * Load null selectors, so we can avoid reloading them in
4690 * __vmx_load_host_state(), in case userspace uses the null selectors
4691 * too (the expected case).
4692 */
4693 vmcs_write16(HOST_DS_SELECTOR, 0);
4694 vmcs_write16(HOST_ES_SELECTOR, 0);
4695 #else
4696 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4697 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4698 #endif
4699 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4700 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4701
4702 native_store_idt(&dt);
4703 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4704 vmx->host_idt_base = dt.address;
4705
4706 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4707
4708 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4709 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4710 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4711 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4712
4713 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4714 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4715 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4716 }
4717 }
4718
4719 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4720 {
4721 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4722 if (enable_ept)
4723 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4724 if (is_guest_mode(&vmx->vcpu))
4725 vmx->vcpu.arch.cr4_guest_owned_bits &=
4726 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4727 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4728 }
4729
4730 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4731 {
4732 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4733
4734 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4735 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4736 return pin_based_exec_ctrl;
4737 }
4738
4739 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4740 {
4741 struct vcpu_vmx *vmx = to_vmx(vcpu);
4742
4743 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4744 }
4745
4746 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4747 {
4748 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4749
4750 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4751 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4752
4753 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4754 exec_control &= ~CPU_BASED_TPR_SHADOW;
4755 #ifdef CONFIG_X86_64
4756 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4757 CPU_BASED_CR8_LOAD_EXITING;
4758 #endif
4759 }
4760 if (!enable_ept)
4761 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4762 CPU_BASED_CR3_LOAD_EXITING |
4763 CPU_BASED_INVLPG_EXITING;
4764 return exec_control;
4765 }
4766
4767 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4768 {
4769 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4770 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4771 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4772 if (vmx->vpid == 0)
4773 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4774 if (!enable_ept) {
4775 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4776 enable_unrestricted_guest = 0;
4777 /* Enable INVPCID for non-ept guests may cause performance regression. */
4778 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4779 }
4780 if (!enable_unrestricted_guest)
4781 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4782 if (!ple_gap)
4783 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4784 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4785 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4786 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4787 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4788 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4789 (handle_vmptrld).
4790 We can NOT enable shadow_vmcs here because we don't have yet
4791 a current VMCS12
4792 */
4793 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4794
4795 if (!enable_pml)
4796 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4797
4798 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4799 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4800
4801 return exec_control;
4802 }
4803
4804 static void ept_set_mmio_spte_mask(void)
4805 {
4806 /*
4807 * EPT Misconfigurations can be generated if the value of bits 2:0
4808 * of an EPT paging-structure entry is 110b (write/execute).
4809 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4810 * spte.
4811 */
4812 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4813 }
4814
4815 #define VMX_XSS_EXIT_BITMAP 0
4816 /*
4817 * Sets up the vmcs for emulated real mode.
4818 */
4819 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4820 {
4821 #ifdef CONFIG_X86_64
4822 unsigned long a;
4823 #endif
4824 int i;
4825
4826 /* I/O */
4827 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4828 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4829
4830 if (enable_shadow_vmcs) {
4831 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4832 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4833 }
4834 if (cpu_has_vmx_msr_bitmap())
4835 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4836
4837 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4838
4839 /* Control */
4840 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4841
4842 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4843
4844 if (cpu_has_secondary_exec_ctrls())
4845 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4846 vmx_secondary_exec_control(vmx));
4847
4848 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4849 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4850 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4851 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4852 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4853
4854 vmcs_write16(GUEST_INTR_STATUS, 0);
4855
4856 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4857 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4858 }
4859
4860 if (ple_gap) {
4861 vmcs_write32(PLE_GAP, ple_gap);
4862 vmx->ple_window = ple_window;
4863 vmx->ple_window_dirty = true;
4864 }
4865
4866 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4867 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4868 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4869
4870 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4871 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4872 vmx_set_constant_host_state(vmx);
4873 #ifdef CONFIG_X86_64
4874 rdmsrl(MSR_FS_BASE, a);
4875 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4876 rdmsrl(MSR_GS_BASE, a);
4877 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4878 #else
4879 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4880 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4881 #endif
4882
4883 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4884 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4885 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4886 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4887 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4888
4889 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4890 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4891
4892 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4893 u32 index = vmx_msr_index[i];
4894 u32 data_low, data_high;
4895 int j = vmx->nmsrs;
4896
4897 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4898 continue;
4899 if (wrmsr_safe(index, data_low, data_high) < 0)
4900 continue;
4901 vmx->guest_msrs[j].index = i;
4902 vmx->guest_msrs[j].data = 0;
4903 vmx->guest_msrs[j].mask = -1ull;
4904 ++vmx->nmsrs;
4905 }
4906
4907
4908 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4909
4910 /* 22.2.1, 20.8.1 */
4911 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4912
4913 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4914 set_cr4_guest_host_mask(vmx);
4915
4916 if (vmx_xsaves_supported())
4917 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4918
4919 return 0;
4920 }
4921
4922 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4923 {
4924 struct vcpu_vmx *vmx = to_vmx(vcpu);
4925 struct msr_data apic_base_msr;
4926 u64 cr0;
4927
4928 vmx->rmode.vm86_active = 0;
4929
4930 vmx->soft_vnmi_blocked = 0;
4931
4932 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4933 kvm_set_cr8(vcpu, 0);
4934
4935 if (!init_event) {
4936 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4937 MSR_IA32_APICBASE_ENABLE;
4938 if (kvm_vcpu_is_reset_bsp(vcpu))
4939 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4940 apic_base_msr.host_initiated = true;
4941 kvm_set_apic_base(vcpu, &apic_base_msr);
4942 }
4943
4944 vmx_segment_cache_clear(vmx);
4945
4946 seg_setup(VCPU_SREG_CS);
4947 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4948 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4949
4950 seg_setup(VCPU_SREG_DS);
4951 seg_setup(VCPU_SREG_ES);
4952 seg_setup(VCPU_SREG_FS);
4953 seg_setup(VCPU_SREG_GS);
4954 seg_setup(VCPU_SREG_SS);
4955
4956 vmcs_write16(GUEST_TR_SELECTOR, 0);
4957 vmcs_writel(GUEST_TR_BASE, 0);
4958 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4959 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4960
4961 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4962 vmcs_writel(GUEST_LDTR_BASE, 0);
4963 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4964 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4965
4966 if (!init_event) {
4967 vmcs_write32(GUEST_SYSENTER_CS, 0);
4968 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4969 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4970 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4971 }
4972
4973 vmcs_writel(GUEST_RFLAGS, 0x02);
4974 kvm_rip_write(vcpu, 0xfff0);
4975
4976 vmcs_writel(GUEST_GDTR_BASE, 0);
4977 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4978
4979 vmcs_writel(GUEST_IDTR_BASE, 0);
4980 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4981
4982 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4983 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4984 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4985
4986 setup_msrs(vmx);
4987
4988 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4989
4990 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4991 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4992 if (cpu_need_tpr_shadow(vcpu))
4993 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4994 __pa(vcpu->arch.apic->regs));
4995 vmcs_write32(TPR_THRESHOLD, 0);
4996 }
4997
4998 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4999
5000 if (kvm_vcpu_apicv_active(vcpu))
5001 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5002
5003 if (vmx->vpid != 0)
5004 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5005
5006 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5007 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5008 vmx->vcpu.arch.cr0 = cr0;
5009 vmx_set_cr4(vcpu, 0);
5010 vmx_set_efer(vcpu, 0);
5011 vmx_fpu_activate(vcpu);
5012 update_exception_bitmap(vcpu);
5013
5014 vpid_sync_context(vmx->vpid);
5015 }
5016
5017 /*
5018 * In nested virtualization, check if L1 asked to exit on external interrupts.
5019 * For most existing hypervisors, this will always return true.
5020 */
5021 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5022 {
5023 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5024 PIN_BASED_EXT_INTR_MASK;
5025 }
5026
5027 /*
5028 * In nested virtualization, check if L1 has set
5029 * VM_EXIT_ACK_INTR_ON_EXIT
5030 */
5031 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5032 {
5033 return get_vmcs12(vcpu)->vm_exit_controls &
5034 VM_EXIT_ACK_INTR_ON_EXIT;
5035 }
5036
5037 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5038 {
5039 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5040 PIN_BASED_NMI_EXITING;
5041 }
5042
5043 static void enable_irq_window(struct kvm_vcpu *vcpu)
5044 {
5045 u32 cpu_based_vm_exec_control;
5046
5047 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5048 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5049 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5050 }
5051
5052 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5053 {
5054 u32 cpu_based_vm_exec_control;
5055
5056 if (!cpu_has_virtual_nmis() ||
5057 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5058 enable_irq_window(vcpu);
5059 return;
5060 }
5061
5062 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5063 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5064 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5065 }
5066
5067 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5068 {
5069 struct vcpu_vmx *vmx = to_vmx(vcpu);
5070 uint32_t intr;
5071 int irq = vcpu->arch.interrupt.nr;
5072
5073 trace_kvm_inj_virq(irq);
5074
5075 ++vcpu->stat.irq_injections;
5076 if (vmx->rmode.vm86_active) {
5077 int inc_eip = 0;
5078 if (vcpu->arch.interrupt.soft)
5079 inc_eip = vcpu->arch.event_exit_inst_len;
5080 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5081 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5082 return;
5083 }
5084 intr = irq | INTR_INFO_VALID_MASK;
5085 if (vcpu->arch.interrupt.soft) {
5086 intr |= INTR_TYPE_SOFT_INTR;
5087 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5088 vmx->vcpu.arch.event_exit_inst_len);
5089 } else
5090 intr |= INTR_TYPE_EXT_INTR;
5091 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5092 }
5093
5094 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5095 {
5096 struct vcpu_vmx *vmx = to_vmx(vcpu);
5097
5098 if (is_guest_mode(vcpu))
5099 return;
5100
5101 if (!cpu_has_virtual_nmis()) {
5102 /*
5103 * Tracking the NMI-blocked state in software is built upon
5104 * finding the next open IRQ window. This, in turn, depends on
5105 * well-behaving guests: They have to keep IRQs disabled at
5106 * least as long as the NMI handler runs. Otherwise we may
5107 * cause NMI nesting, maybe breaking the guest. But as this is
5108 * highly unlikely, we can live with the residual risk.
5109 */
5110 vmx->soft_vnmi_blocked = 1;
5111 vmx->vnmi_blocked_time = 0;
5112 }
5113
5114 ++vcpu->stat.nmi_injections;
5115 vmx->nmi_known_unmasked = false;
5116 if (vmx->rmode.vm86_active) {
5117 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5118 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5119 return;
5120 }
5121 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5122 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5123 }
5124
5125 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5126 {
5127 if (!cpu_has_virtual_nmis())
5128 return to_vmx(vcpu)->soft_vnmi_blocked;
5129 if (to_vmx(vcpu)->nmi_known_unmasked)
5130 return false;
5131 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5132 }
5133
5134 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5135 {
5136 struct vcpu_vmx *vmx = to_vmx(vcpu);
5137
5138 if (!cpu_has_virtual_nmis()) {
5139 if (vmx->soft_vnmi_blocked != masked) {
5140 vmx->soft_vnmi_blocked = masked;
5141 vmx->vnmi_blocked_time = 0;
5142 }
5143 } else {
5144 vmx->nmi_known_unmasked = !masked;
5145 if (masked)
5146 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5147 GUEST_INTR_STATE_NMI);
5148 else
5149 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5150 GUEST_INTR_STATE_NMI);
5151 }
5152 }
5153
5154 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5155 {
5156 if (to_vmx(vcpu)->nested.nested_run_pending)
5157 return 0;
5158
5159 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5160 return 0;
5161
5162 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5163 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5164 | GUEST_INTR_STATE_NMI));
5165 }
5166
5167 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5168 {
5169 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5170 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5171 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5172 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5173 }
5174
5175 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5176 {
5177 int ret;
5178
5179 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5180 PAGE_SIZE * 3);
5181 if (ret)
5182 return ret;
5183 kvm->arch.tss_addr = addr;
5184 return init_rmode_tss(kvm);
5185 }
5186
5187 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5188 {
5189 switch (vec) {
5190 case BP_VECTOR:
5191 /*
5192 * Update instruction length as we may reinject the exception
5193 * from user space while in guest debugging mode.
5194 */
5195 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5196 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5197 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5198 return false;
5199 /* fall through */
5200 case DB_VECTOR:
5201 if (vcpu->guest_debug &
5202 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5203 return false;
5204 /* fall through */
5205 case DE_VECTOR:
5206 case OF_VECTOR:
5207 case BR_VECTOR:
5208 case UD_VECTOR:
5209 case DF_VECTOR:
5210 case SS_VECTOR:
5211 case GP_VECTOR:
5212 case MF_VECTOR:
5213 return true;
5214 break;
5215 }
5216 return false;
5217 }
5218
5219 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5220 int vec, u32 err_code)
5221 {
5222 /*
5223 * Instruction with address size override prefix opcode 0x67
5224 * Cause the #SS fault with 0 error code in VM86 mode.
5225 */
5226 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5227 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5228 if (vcpu->arch.halt_request) {
5229 vcpu->arch.halt_request = 0;
5230 return kvm_vcpu_halt(vcpu);
5231 }
5232 return 1;
5233 }
5234 return 0;
5235 }
5236
5237 /*
5238 * Forward all other exceptions that are valid in real mode.
5239 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5240 * the required debugging infrastructure rework.
5241 */
5242 kvm_queue_exception(vcpu, vec);
5243 return 1;
5244 }
5245
5246 /*
5247 * Trigger machine check on the host. We assume all the MSRs are already set up
5248 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5249 * We pass a fake environment to the machine check handler because we want
5250 * the guest to be always treated like user space, no matter what context
5251 * it used internally.
5252 */
5253 static void kvm_machine_check(void)
5254 {
5255 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5256 struct pt_regs regs = {
5257 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5258 .flags = X86_EFLAGS_IF,
5259 };
5260
5261 do_machine_check(&regs, 0);
5262 #endif
5263 }
5264
5265 static int handle_machine_check(struct kvm_vcpu *vcpu)
5266 {
5267 /* already handled by vcpu_run */
5268 return 1;
5269 }
5270
5271 static int handle_exception(struct kvm_vcpu *vcpu)
5272 {
5273 struct vcpu_vmx *vmx = to_vmx(vcpu);
5274 struct kvm_run *kvm_run = vcpu->run;
5275 u32 intr_info, ex_no, error_code;
5276 unsigned long cr2, rip, dr6;
5277 u32 vect_info;
5278 enum emulation_result er;
5279
5280 vect_info = vmx->idt_vectoring_info;
5281 intr_info = vmx->exit_intr_info;
5282
5283 if (is_machine_check(intr_info))
5284 return handle_machine_check(vcpu);
5285
5286 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5287 return 1; /* already handled by vmx_vcpu_run() */
5288
5289 if (is_no_device(intr_info)) {
5290 vmx_fpu_activate(vcpu);
5291 return 1;
5292 }
5293
5294 if (is_invalid_opcode(intr_info)) {
5295 if (is_guest_mode(vcpu)) {
5296 kvm_queue_exception(vcpu, UD_VECTOR);
5297 return 1;
5298 }
5299 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5300 if (er != EMULATE_DONE)
5301 kvm_queue_exception(vcpu, UD_VECTOR);
5302 return 1;
5303 }
5304
5305 error_code = 0;
5306 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5307 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5308
5309 /*
5310 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5311 * MMIO, it is better to report an internal error.
5312 * See the comments in vmx_handle_exit.
5313 */
5314 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5315 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5316 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5317 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5318 vcpu->run->internal.ndata = 3;
5319 vcpu->run->internal.data[0] = vect_info;
5320 vcpu->run->internal.data[1] = intr_info;
5321 vcpu->run->internal.data[2] = error_code;
5322 return 0;
5323 }
5324
5325 if (is_page_fault(intr_info)) {
5326 /* EPT won't cause page fault directly */
5327 BUG_ON(enable_ept);
5328 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5329 trace_kvm_page_fault(cr2, error_code);
5330
5331 if (kvm_event_needs_reinjection(vcpu))
5332 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5333 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5334 }
5335
5336 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5337
5338 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5339 return handle_rmode_exception(vcpu, ex_no, error_code);
5340
5341 switch (ex_no) {
5342 case AC_VECTOR:
5343 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5344 return 1;
5345 case DB_VECTOR:
5346 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5347 if (!(vcpu->guest_debug &
5348 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5349 vcpu->arch.dr6 &= ~15;
5350 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5351 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5352 skip_emulated_instruction(vcpu);
5353
5354 kvm_queue_exception(vcpu, DB_VECTOR);
5355 return 1;
5356 }
5357 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5358 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5359 /* fall through */
5360 case BP_VECTOR:
5361 /*
5362 * Update instruction length as we may reinject #BP from
5363 * user space while in guest debugging mode. Reading it for
5364 * #DB as well causes no harm, it is not used in that case.
5365 */
5366 vmx->vcpu.arch.event_exit_inst_len =
5367 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5368 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5369 rip = kvm_rip_read(vcpu);
5370 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5371 kvm_run->debug.arch.exception = ex_no;
5372 break;
5373 default:
5374 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5375 kvm_run->ex.exception = ex_no;
5376 kvm_run->ex.error_code = error_code;
5377 break;
5378 }
5379 return 0;
5380 }
5381
5382 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5383 {
5384 ++vcpu->stat.irq_exits;
5385 return 1;
5386 }
5387
5388 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5389 {
5390 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5391 return 0;
5392 }
5393
5394 static int handle_io(struct kvm_vcpu *vcpu)
5395 {
5396 unsigned long exit_qualification;
5397 int size, in, string;
5398 unsigned port;
5399
5400 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5401 string = (exit_qualification & 16) != 0;
5402 in = (exit_qualification & 8) != 0;
5403
5404 ++vcpu->stat.io_exits;
5405
5406 if (string || in)
5407 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5408
5409 port = exit_qualification >> 16;
5410 size = (exit_qualification & 7) + 1;
5411 skip_emulated_instruction(vcpu);
5412
5413 return kvm_fast_pio_out(vcpu, size, port);
5414 }
5415
5416 static void
5417 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5418 {
5419 /*
5420 * Patch in the VMCALL instruction:
5421 */
5422 hypercall[0] = 0x0f;
5423 hypercall[1] = 0x01;
5424 hypercall[2] = 0xc1;
5425 }
5426
5427 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5428 {
5429 unsigned long always_on = VMXON_CR0_ALWAYSON;
5430 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5431
5432 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5433 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5434 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5435 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5436 return (val & always_on) == always_on;
5437 }
5438
5439 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5440 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5441 {
5442 if (is_guest_mode(vcpu)) {
5443 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5444 unsigned long orig_val = val;
5445
5446 /*
5447 * We get here when L2 changed cr0 in a way that did not change
5448 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5449 * but did change L0 shadowed bits. So we first calculate the
5450 * effective cr0 value that L1 would like to write into the
5451 * hardware. It consists of the L2-owned bits from the new
5452 * value combined with the L1-owned bits from L1's guest_cr0.
5453 */
5454 val = (val & ~vmcs12->cr0_guest_host_mask) |
5455 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5456
5457 if (!nested_cr0_valid(vcpu, val))
5458 return 1;
5459
5460 if (kvm_set_cr0(vcpu, val))
5461 return 1;
5462 vmcs_writel(CR0_READ_SHADOW, orig_val);
5463 return 0;
5464 } else {
5465 if (to_vmx(vcpu)->nested.vmxon &&
5466 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5467 return 1;
5468 return kvm_set_cr0(vcpu, val);
5469 }
5470 }
5471
5472 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5473 {
5474 if (is_guest_mode(vcpu)) {
5475 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5476 unsigned long orig_val = val;
5477
5478 /* analogously to handle_set_cr0 */
5479 val = (val & ~vmcs12->cr4_guest_host_mask) |
5480 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5481 if (kvm_set_cr4(vcpu, val))
5482 return 1;
5483 vmcs_writel(CR4_READ_SHADOW, orig_val);
5484 return 0;
5485 } else
5486 return kvm_set_cr4(vcpu, val);
5487 }
5488
5489 /* called to set cr0 as approriate for clts instruction exit. */
5490 static void handle_clts(struct kvm_vcpu *vcpu)
5491 {
5492 if (is_guest_mode(vcpu)) {
5493 /*
5494 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5495 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5496 * just pretend it's off (also in arch.cr0 for fpu_activate).
5497 */
5498 vmcs_writel(CR0_READ_SHADOW,
5499 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5500 vcpu->arch.cr0 &= ~X86_CR0_TS;
5501 } else
5502 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5503 }
5504
5505 static int handle_cr(struct kvm_vcpu *vcpu)
5506 {
5507 unsigned long exit_qualification, val;
5508 int cr;
5509 int reg;
5510 int err;
5511
5512 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5513 cr = exit_qualification & 15;
5514 reg = (exit_qualification >> 8) & 15;
5515 switch ((exit_qualification >> 4) & 3) {
5516 case 0: /* mov to cr */
5517 val = kvm_register_readl(vcpu, reg);
5518 trace_kvm_cr_write(cr, val);
5519 switch (cr) {
5520 case 0:
5521 err = handle_set_cr0(vcpu, val);
5522 kvm_complete_insn_gp(vcpu, err);
5523 return 1;
5524 case 3:
5525 err = kvm_set_cr3(vcpu, val);
5526 kvm_complete_insn_gp(vcpu, err);
5527 return 1;
5528 case 4:
5529 err = handle_set_cr4(vcpu, val);
5530 kvm_complete_insn_gp(vcpu, err);
5531 return 1;
5532 case 8: {
5533 u8 cr8_prev = kvm_get_cr8(vcpu);
5534 u8 cr8 = (u8)val;
5535 err = kvm_set_cr8(vcpu, cr8);
5536 kvm_complete_insn_gp(vcpu, err);
5537 if (lapic_in_kernel(vcpu))
5538 return 1;
5539 if (cr8_prev <= cr8)
5540 return 1;
5541 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5542 return 0;
5543 }
5544 }
5545 break;
5546 case 2: /* clts */
5547 handle_clts(vcpu);
5548 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5549 skip_emulated_instruction(vcpu);
5550 vmx_fpu_activate(vcpu);
5551 return 1;
5552 case 1: /*mov from cr*/
5553 switch (cr) {
5554 case 3:
5555 val = kvm_read_cr3(vcpu);
5556 kvm_register_write(vcpu, reg, val);
5557 trace_kvm_cr_read(cr, val);
5558 skip_emulated_instruction(vcpu);
5559 return 1;
5560 case 8:
5561 val = kvm_get_cr8(vcpu);
5562 kvm_register_write(vcpu, reg, val);
5563 trace_kvm_cr_read(cr, val);
5564 skip_emulated_instruction(vcpu);
5565 return 1;
5566 }
5567 break;
5568 case 3: /* lmsw */
5569 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5570 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5571 kvm_lmsw(vcpu, val);
5572
5573 skip_emulated_instruction(vcpu);
5574 return 1;
5575 default:
5576 break;
5577 }
5578 vcpu->run->exit_reason = 0;
5579 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5580 (int)(exit_qualification >> 4) & 3, cr);
5581 return 0;
5582 }
5583
5584 static int handle_dr(struct kvm_vcpu *vcpu)
5585 {
5586 unsigned long exit_qualification;
5587 int dr, dr7, reg;
5588
5589 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5590 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5591
5592 /* First, if DR does not exist, trigger UD */
5593 if (!kvm_require_dr(vcpu, dr))
5594 return 1;
5595
5596 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5597 if (!kvm_require_cpl(vcpu, 0))
5598 return 1;
5599 dr7 = vmcs_readl(GUEST_DR7);
5600 if (dr7 & DR7_GD) {
5601 /*
5602 * As the vm-exit takes precedence over the debug trap, we
5603 * need to emulate the latter, either for the host or the
5604 * guest debugging itself.
5605 */
5606 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5607 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5608 vcpu->run->debug.arch.dr7 = dr7;
5609 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5610 vcpu->run->debug.arch.exception = DB_VECTOR;
5611 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5612 return 0;
5613 } else {
5614 vcpu->arch.dr6 &= ~15;
5615 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5616 kvm_queue_exception(vcpu, DB_VECTOR);
5617 return 1;
5618 }
5619 }
5620
5621 if (vcpu->guest_debug == 0) {
5622 u32 cpu_based_vm_exec_control;
5623
5624 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5625 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5626 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5627
5628 /*
5629 * No more DR vmexits; force a reload of the debug registers
5630 * and reenter on this instruction. The next vmexit will
5631 * retrieve the full state of the debug registers.
5632 */
5633 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5634 return 1;
5635 }
5636
5637 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5638 if (exit_qualification & TYPE_MOV_FROM_DR) {
5639 unsigned long val;
5640
5641 if (kvm_get_dr(vcpu, dr, &val))
5642 return 1;
5643 kvm_register_write(vcpu, reg, val);
5644 } else
5645 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5646 return 1;
5647
5648 skip_emulated_instruction(vcpu);
5649 return 1;
5650 }
5651
5652 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5653 {
5654 return vcpu->arch.dr6;
5655 }
5656
5657 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5658 {
5659 }
5660
5661 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5662 {
5663 u32 cpu_based_vm_exec_control;
5664
5665 get_debugreg(vcpu->arch.db[0], 0);
5666 get_debugreg(vcpu->arch.db[1], 1);
5667 get_debugreg(vcpu->arch.db[2], 2);
5668 get_debugreg(vcpu->arch.db[3], 3);
5669 get_debugreg(vcpu->arch.dr6, 6);
5670 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5671
5672 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5673
5674 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5675 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5676 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5677 }
5678
5679 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5680 {
5681 vmcs_writel(GUEST_DR7, val);
5682 }
5683
5684 static int handle_cpuid(struct kvm_vcpu *vcpu)
5685 {
5686 kvm_emulate_cpuid(vcpu);
5687 return 1;
5688 }
5689
5690 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5691 {
5692 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5693 struct msr_data msr_info;
5694
5695 msr_info.index = ecx;
5696 msr_info.host_initiated = false;
5697 if (vmx_get_msr(vcpu, &msr_info)) {
5698 trace_kvm_msr_read_ex(ecx);
5699 kvm_inject_gp(vcpu, 0);
5700 return 1;
5701 }
5702
5703 trace_kvm_msr_read(ecx, msr_info.data);
5704
5705 /* FIXME: handling of bits 32:63 of rax, rdx */
5706 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5707 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5708 skip_emulated_instruction(vcpu);
5709 return 1;
5710 }
5711
5712 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5713 {
5714 struct msr_data msr;
5715 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5716 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5717 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5718
5719 msr.data = data;
5720 msr.index = ecx;
5721 msr.host_initiated = false;
5722 if (kvm_set_msr(vcpu, &msr) != 0) {
5723 trace_kvm_msr_write_ex(ecx, data);
5724 kvm_inject_gp(vcpu, 0);
5725 return 1;
5726 }
5727
5728 trace_kvm_msr_write(ecx, data);
5729 skip_emulated_instruction(vcpu);
5730 return 1;
5731 }
5732
5733 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5734 {
5735 kvm_make_request(KVM_REQ_EVENT, vcpu);
5736 return 1;
5737 }
5738
5739 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5740 {
5741 u32 cpu_based_vm_exec_control;
5742
5743 /* clear pending irq */
5744 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5745 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5746 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5747
5748 kvm_make_request(KVM_REQ_EVENT, vcpu);
5749
5750 ++vcpu->stat.irq_window_exits;
5751 return 1;
5752 }
5753
5754 static int handle_halt(struct kvm_vcpu *vcpu)
5755 {
5756 return kvm_emulate_halt(vcpu);
5757 }
5758
5759 static int handle_vmcall(struct kvm_vcpu *vcpu)
5760 {
5761 kvm_emulate_hypercall(vcpu);
5762 return 1;
5763 }
5764
5765 static int handle_invd(struct kvm_vcpu *vcpu)
5766 {
5767 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5768 }
5769
5770 static int handle_invlpg(struct kvm_vcpu *vcpu)
5771 {
5772 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5773
5774 kvm_mmu_invlpg(vcpu, exit_qualification);
5775 skip_emulated_instruction(vcpu);
5776 return 1;
5777 }
5778
5779 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5780 {
5781 int err;
5782
5783 err = kvm_rdpmc(vcpu);
5784 kvm_complete_insn_gp(vcpu, err);
5785
5786 return 1;
5787 }
5788
5789 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5790 {
5791 kvm_emulate_wbinvd(vcpu);
5792 return 1;
5793 }
5794
5795 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5796 {
5797 u64 new_bv = kvm_read_edx_eax(vcpu);
5798 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5799
5800 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5801 skip_emulated_instruction(vcpu);
5802 return 1;
5803 }
5804
5805 static int handle_xsaves(struct kvm_vcpu *vcpu)
5806 {
5807 skip_emulated_instruction(vcpu);
5808 WARN(1, "this should never happen\n");
5809 return 1;
5810 }
5811
5812 static int handle_xrstors(struct kvm_vcpu *vcpu)
5813 {
5814 skip_emulated_instruction(vcpu);
5815 WARN(1, "this should never happen\n");
5816 return 1;
5817 }
5818
5819 static int handle_apic_access(struct kvm_vcpu *vcpu)
5820 {
5821 if (likely(fasteoi)) {
5822 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5823 int access_type, offset;
5824
5825 access_type = exit_qualification & APIC_ACCESS_TYPE;
5826 offset = exit_qualification & APIC_ACCESS_OFFSET;
5827 /*
5828 * Sane guest uses MOV to write EOI, with written value
5829 * not cared. So make a short-circuit here by avoiding
5830 * heavy instruction emulation.
5831 */
5832 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5833 (offset == APIC_EOI)) {
5834 kvm_lapic_set_eoi(vcpu);
5835 skip_emulated_instruction(vcpu);
5836 return 1;
5837 }
5838 }
5839 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5840 }
5841
5842 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5843 {
5844 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5845 int vector = exit_qualification & 0xff;
5846
5847 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5848 kvm_apic_set_eoi_accelerated(vcpu, vector);
5849 return 1;
5850 }
5851
5852 static int handle_apic_write(struct kvm_vcpu *vcpu)
5853 {
5854 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5855 u32 offset = exit_qualification & 0xfff;
5856
5857 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5858 kvm_apic_write_nodecode(vcpu, offset);
5859 return 1;
5860 }
5861
5862 static int handle_task_switch(struct kvm_vcpu *vcpu)
5863 {
5864 struct vcpu_vmx *vmx = to_vmx(vcpu);
5865 unsigned long exit_qualification;
5866 bool has_error_code = false;
5867 u32 error_code = 0;
5868 u16 tss_selector;
5869 int reason, type, idt_v, idt_index;
5870
5871 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5872 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5873 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5874
5875 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5876
5877 reason = (u32)exit_qualification >> 30;
5878 if (reason == TASK_SWITCH_GATE && idt_v) {
5879 switch (type) {
5880 case INTR_TYPE_NMI_INTR:
5881 vcpu->arch.nmi_injected = false;
5882 vmx_set_nmi_mask(vcpu, true);
5883 break;
5884 case INTR_TYPE_EXT_INTR:
5885 case INTR_TYPE_SOFT_INTR:
5886 kvm_clear_interrupt_queue(vcpu);
5887 break;
5888 case INTR_TYPE_HARD_EXCEPTION:
5889 if (vmx->idt_vectoring_info &
5890 VECTORING_INFO_DELIVER_CODE_MASK) {
5891 has_error_code = true;
5892 error_code =
5893 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5894 }
5895 /* fall through */
5896 case INTR_TYPE_SOFT_EXCEPTION:
5897 kvm_clear_exception_queue(vcpu);
5898 break;
5899 default:
5900 break;
5901 }
5902 }
5903 tss_selector = exit_qualification;
5904
5905 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5906 type != INTR_TYPE_EXT_INTR &&
5907 type != INTR_TYPE_NMI_INTR))
5908 skip_emulated_instruction(vcpu);
5909
5910 if (kvm_task_switch(vcpu, tss_selector,
5911 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5912 has_error_code, error_code) == EMULATE_FAIL) {
5913 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5914 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5915 vcpu->run->internal.ndata = 0;
5916 return 0;
5917 }
5918
5919 /*
5920 * TODO: What about debug traps on tss switch?
5921 * Are we supposed to inject them and update dr6?
5922 */
5923
5924 return 1;
5925 }
5926
5927 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5928 {
5929 unsigned long exit_qualification;
5930 gpa_t gpa;
5931 u32 error_code;
5932 int gla_validity;
5933
5934 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5935
5936 gla_validity = (exit_qualification >> 7) & 0x3;
5937 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5938 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5939 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5940 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5941 vmcs_readl(GUEST_LINEAR_ADDRESS));
5942 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5943 (long unsigned int)exit_qualification);
5944 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5945 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5946 return 0;
5947 }
5948
5949 /*
5950 * EPT violation happened while executing iret from NMI,
5951 * "blocked by NMI" bit has to be set before next VM entry.
5952 * There are errata that may cause this bit to not be set:
5953 * AAK134, BY25.
5954 */
5955 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5956 cpu_has_virtual_nmis() &&
5957 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5958 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5959
5960 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5961 trace_kvm_page_fault(gpa, exit_qualification);
5962
5963 /* It is a write fault? */
5964 error_code = exit_qualification & PFERR_WRITE_MASK;
5965 /* It is a fetch fault? */
5966 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5967 /* ept page table is present? */
5968 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5969
5970 vcpu->arch.exit_qualification = exit_qualification;
5971
5972 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5973 }
5974
5975 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5976 {
5977 int ret;
5978 gpa_t gpa;
5979
5980 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5981 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5982 skip_emulated_instruction(vcpu);
5983 trace_kvm_fast_mmio(gpa);
5984 return 1;
5985 }
5986
5987 ret = handle_mmio_page_fault(vcpu, gpa, true);
5988 if (likely(ret == RET_MMIO_PF_EMULATE))
5989 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5990 EMULATE_DONE;
5991
5992 if (unlikely(ret == RET_MMIO_PF_INVALID))
5993 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5994
5995 if (unlikely(ret == RET_MMIO_PF_RETRY))
5996 return 1;
5997
5998 /* It is the real ept misconfig */
5999 WARN_ON(1);
6000
6001 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6002 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6003
6004 return 0;
6005 }
6006
6007 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6008 {
6009 u32 cpu_based_vm_exec_control;
6010
6011 /* clear pending NMI */
6012 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6013 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6014 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6015 ++vcpu->stat.nmi_window_exits;
6016 kvm_make_request(KVM_REQ_EVENT, vcpu);
6017
6018 return 1;
6019 }
6020
6021 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6022 {
6023 struct vcpu_vmx *vmx = to_vmx(vcpu);
6024 enum emulation_result err = EMULATE_DONE;
6025 int ret = 1;
6026 u32 cpu_exec_ctrl;
6027 bool intr_window_requested;
6028 unsigned count = 130;
6029
6030 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6031 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6032
6033 while (vmx->emulation_required && count-- != 0) {
6034 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6035 return handle_interrupt_window(&vmx->vcpu);
6036
6037 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6038 return 1;
6039
6040 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6041
6042 if (err == EMULATE_USER_EXIT) {
6043 ++vcpu->stat.mmio_exits;
6044 ret = 0;
6045 goto out;
6046 }
6047
6048 if (err != EMULATE_DONE) {
6049 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6050 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6051 vcpu->run->internal.ndata = 0;
6052 return 0;
6053 }
6054
6055 if (vcpu->arch.halt_request) {
6056 vcpu->arch.halt_request = 0;
6057 ret = kvm_vcpu_halt(vcpu);
6058 goto out;
6059 }
6060
6061 if (signal_pending(current))
6062 goto out;
6063 if (need_resched())
6064 schedule();
6065 }
6066
6067 out:
6068 return ret;
6069 }
6070
6071 static int __grow_ple_window(int val)
6072 {
6073 if (ple_window_grow < 1)
6074 return ple_window;
6075
6076 val = min(val, ple_window_actual_max);
6077
6078 if (ple_window_grow < ple_window)
6079 val *= ple_window_grow;
6080 else
6081 val += ple_window_grow;
6082
6083 return val;
6084 }
6085
6086 static int __shrink_ple_window(int val, int modifier, int minimum)
6087 {
6088 if (modifier < 1)
6089 return ple_window;
6090
6091 if (modifier < ple_window)
6092 val /= modifier;
6093 else
6094 val -= modifier;
6095
6096 return max(val, minimum);
6097 }
6098
6099 static void grow_ple_window(struct kvm_vcpu *vcpu)
6100 {
6101 struct vcpu_vmx *vmx = to_vmx(vcpu);
6102 int old = vmx->ple_window;
6103
6104 vmx->ple_window = __grow_ple_window(old);
6105
6106 if (vmx->ple_window != old)
6107 vmx->ple_window_dirty = true;
6108
6109 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6110 }
6111
6112 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6113 {
6114 struct vcpu_vmx *vmx = to_vmx(vcpu);
6115 int old = vmx->ple_window;
6116
6117 vmx->ple_window = __shrink_ple_window(old,
6118 ple_window_shrink, ple_window);
6119
6120 if (vmx->ple_window != old)
6121 vmx->ple_window_dirty = true;
6122
6123 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6124 }
6125
6126 /*
6127 * ple_window_actual_max is computed to be one grow_ple_window() below
6128 * ple_window_max. (See __grow_ple_window for the reason.)
6129 * This prevents overflows, because ple_window_max is int.
6130 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6131 * this process.
6132 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6133 */
6134 static void update_ple_window_actual_max(void)
6135 {
6136 ple_window_actual_max =
6137 __shrink_ple_window(max(ple_window_max, ple_window),
6138 ple_window_grow, INT_MIN);
6139 }
6140
6141 /*
6142 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6143 */
6144 static void wakeup_handler(void)
6145 {
6146 struct kvm_vcpu *vcpu;
6147 int cpu = smp_processor_id();
6148
6149 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6150 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6151 blocked_vcpu_list) {
6152 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6153
6154 if (pi_test_on(pi_desc) == 1)
6155 kvm_vcpu_kick(vcpu);
6156 }
6157 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6158 }
6159
6160 static __init int hardware_setup(void)
6161 {
6162 int r = -ENOMEM, i, msr;
6163
6164 rdmsrl_safe(MSR_EFER, &host_efer);
6165
6166 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6167 kvm_define_shared_msr(i, vmx_msr_index[i]);
6168
6169 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6170 if (!vmx_io_bitmap_a)
6171 return r;
6172
6173 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6174 if (!vmx_io_bitmap_b)
6175 goto out;
6176
6177 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6178 if (!vmx_msr_bitmap_legacy)
6179 goto out1;
6180
6181 vmx_msr_bitmap_legacy_x2apic =
6182 (unsigned long *)__get_free_page(GFP_KERNEL);
6183 if (!vmx_msr_bitmap_legacy_x2apic)
6184 goto out2;
6185
6186 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6187 if (!vmx_msr_bitmap_longmode)
6188 goto out3;
6189
6190 vmx_msr_bitmap_longmode_x2apic =
6191 (unsigned long *)__get_free_page(GFP_KERNEL);
6192 if (!vmx_msr_bitmap_longmode_x2apic)
6193 goto out4;
6194
6195 if (nested) {
6196 vmx_msr_bitmap_nested =
6197 (unsigned long *)__get_free_page(GFP_KERNEL);
6198 if (!vmx_msr_bitmap_nested)
6199 goto out5;
6200 }
6201
6202 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6203 if (!vmx_vmread_bitmap)
6204 goto out6;
6205
6206 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6207 if (!vmx_vmwrite_bitmap)
6208 goto out7;
6209
6210 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6211 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6212
6213 /*
6214 * Allow direct access to the PC debug port (it is often used for I/O
6215 * delays, but the vmexits simply slow things down).
6216 */
6217 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6218 clear_bit(0x80, vmx_io_bitmap_a);
6219
6220 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6221
6222 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6223 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6224 if (nested)
6225 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6226
6227 if (setup_vmcs_config(&vmcs_config) < 0) {
6228 r = -EIO;
6229 goto out8;
6230 }
6231
6232 if (boot_cpu_has(X86_FEATURE_NX))
6233 kvm_enable_efer_bits(EFER_NX);
6234
6235 if (!cpu_has_vmx_vpid())
6236 enable_vpid = 0;
6237 if (!cpu_has_vmx_shadow_vmcs())
6238 enable_shadow_vmcs = 0;
6239 if (enable_shadow_vmcs)
6240 init_vmcs_shadow_fields();
6241
6242 if (!cpu_has_vmx_ept() ||
6243 !cpu_has_vmx_ept_4levels()) {
6244 enable_ept = 0;
6245 enable_unrestricted_guest = 0;
6246 enable_ept_ad_bits = 0;
6247 }
6248
6249 if (!cpu_has_vmx_ept_ad_bits())
6250 enable_ept_ad_bits = 0;
6251
6252 if (!cpu_has_vmx_unrestricted_guest())
6253 enable_unrestricted_guest = 0;
6254
6255 if (!cpu_has_vmx_flexpriority())
6256 flexpriority_enabled = 0;
6257
6258 /*
6259 * set_apic_access_page_addr() is used to reload apic access
6260 * page upon invalidation. No need to do anything if not
6261 * using the APIC_ACCESS_ADDR VMCS field.
6262 */
6263 if (!flexpriority_enabled)
6264 kvm_x86_ops->set_apic_access_page_addr = NULL;
6265
6266 if (!cpu_has_vmx_tpr_shadow())
6267 kvm_x86_ops->update_cr8_intercept = NULL;
6268
6269 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6270 kvm_disable_largepages();
6271
6272 if (!cpu_has_vmx_ple())
6273 ple_gap = 0;
6274
6275 if (!cpu_has_vmx_apicv())
6276 enable_apicv = 0;
6277
6278 if (cpu_has_vmx_tsc_scaling()) {
6279 kvm_has_tsc_control = true;
6280 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6281 kvm_tsc_scaling_ratio_frac_bits = 48;
6282 }
6283
6284 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6285 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6286 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6287 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6288 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6289 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6290 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6291
6292 memcpy(vmx_msr_bitmap_legacy_x2apic,
6293 vmx_msr_bitmap_legacy, PAGE_SIZE);
6294 memcpy(vmx_msr_bitmap_longmode_x2apic,
6295 vmx_msr_bitmap_longmode, PAGE_SIZE);
6296
6297 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6298
6299 if (enable_apicv) {
6300 for (msr = 0x800; msr <= 0x8ff; msr++)
6301 vmx_disable_intercept_msr_read_x2apic(msr);
6302
6303 /* According SDM, in x2apic mode, the whole id reg is used.
6304 * But in KVM, it only use the highest eight bits. Need to
6305 * intercept it */
6306 vmx_enable_intercept_msr_read_x2apic(0x802);
6307 /* TMCCT */
6308 vmx_enable_intercept_msr_read_x2apic(0x839);
6309 /* TPR */
6310 vmx_disable_intercept_msr_write_x2apic(0x808);
6311 /* EOI */
6312 vmx_disable_intercept_msr_write_x2apic(0x80b);
6313 /* SELF-IPI */
6314 vmx_disable_intercept_msr_write_x2apic(0x83f);
6315 }
6316
6317 if (enable_ept) {
6318 kvm_mmu_set_mask_ptes(0ull,
6319 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6320 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6321 0ull, VMX_EPT_EXECUTABLE_MASK);
6322 ept_set_mmio_spte_mask();
6323 kvm_enable_tdp();
6324 } else
6325 kvm_disable_tdp();
6326
6327 update_ple_window_actual_max();
6328
6329 /*
6330 * Only enable PML when hardware supports PML feature, and both EPT
6331 * and EPT A/D bit features are enabled -- PML depends on them to work.
6332 */
6333 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6334 enable_pml = 0;
6335
6336 if (!enable_pml) {
6337 kvm_x86_ops->slot_enable_log_dirty = NULL;
6338 kvm_x86_ops->slot_disable_log_dirty = NULL;
6339 kvm_x86_ops->flush_log_dirty = NULL;
6340 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6341 }
6342
6343 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6344
6345 return alloc_kvm_area();
6346
6347 out8:
6348 free_page((unsigned long)vmx_vmwrite_bitmap);
6349 out7:
6350 free_page((unsigned long)vmx_vmread_bitmap);
6351 out6:
6352 if (nested)
6353 free_page((unsigned long)vmx_msr_bitmap_nested);
6354 out5:
6355 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6356 out4:
6357 free_page((unsigned long)vmx_msr_bitmap_longmode);
6358 out3:
6359 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6360 out2:
6361 free_page((unsigned long)vmx_msr_bitmap_legacy);
6362 out1:
6363 free_page((unsigned long)vmx_io_bitmap_b);
6364 out:
6365 free_page((unsigned long)vmx_io_bitmap_a);
6366
6367 return r;
6368 }
6369
6370 static __exit void hardware_unsetup(void)
6371 {
6372 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6373 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6374 free_page((unsigned long)vmx_msr_bitmap_legacy);
6375 free_page((unsigned long)vmx_msr_bitmap_longmode);
6376 free_page((unsigned long)vmx_io_bitmap_b);
6377 free_page((unsigned long)vmx_io_bitmap_a);
6378 free_page((unsigned long)vmx_vmwrite_bitmap);
6379 free_page((unsigned long)vmx_vmread_bitmap);
6380 if (nested)
6381 free_page((unsigned long)vmx_msr_bitmap_nested);
6382
6383 free_kvm_area();
6384 }
6385
6386 /*
6387 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6388 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6389 */
6390 static int handle_pause(struct kvm_vcpu *vcpu)
6391 {
6392 if (ple_gap)
6393 grow_ple_window(vcpu);
6394
6395 skip_emulated_instruction(vcpu);
6396 kvm_vcpu_on_spin(vcpu);
6397
6398 return 1;
6399 }
6400
6401 static int handle_nop(struct kvm_vcpu *vcpu)
6402 {
6403 skip_emulated_instruction(vcpu);
6404 return 1;
6405 }
6406
6407 static int handle_mwait(struct kvm_vcpu *vcpu)
6408 {
6409 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6410 return handle_nop(vcpu);
6411 }
6412
6413 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6414 {
6415 return 1;
6416 }
6417
6418 static int handle_monitor(struct kvm_vcpu *vcpu)
6419 {
6420 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6421 return handle_nop(vcpu);
6422 }
6423
6424 /*
6425 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6426 * We could reuse a single VMCS for all the L2 guests, but we also want the
6427 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6428 * allows keeping them loaded on the processor, and in the future will allow
6429 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6430 * every entry if they never change.
6431 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6432 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6433 *
6434 * The following functions allocate and free a vmcs02 in this pool.
6435 */
6436
6437 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6438 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6439 {
6440 struct vmcs02_list *item;
6441 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6442 if (item->vmptr == vmx->nested.current_vmptr) {
6443 list_move(&item->list, &vmx->nested.vmcs02_pool);
6444 return &item->vmcs02;
6445 }
6446
6447 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6448 /* Recycle the least recently used VMCS. */
6449 item = list_entry(vmx->nested.vmcs02_pool.prev,
6450 struct vmcs02_list, list);
6451 item->vmptr = vmx->nested.current_vmptr;
6452 list_move(&item->list, &vmx->nested.vmcs02_pool);
6453 return &item->vmcs02;
6454 }
6455
6456 /* Create a new VMCS */
6457 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6458 if (!item)
6459 return NULL;
6460 item->vmcs02.vmcs = alloc_vmcs();
6461 if (!item->vmcs02.vmcs) {
6462 kfree(item);
6463 return NULL;
6464 }
6465 loaded_vmcs_init(&item->vmcs02);
6466 item->vmptr = vmx->nested.current_vmptr;
6467 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6468 vmx->nested.vmcs02_num++;
6469 return &item->vmcs02;
6470 }
6471
6472 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6473 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6474 {
6475 struct vmcs02_list *item;
6476 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6477 if (item->vmptr == vmptr) {
6478 free_loaded_vmcs(&item->vmcs02);
6479 list_del(&item->list);
6480 kfree(item);
6481 vmx->nested.vmcs02_num--;
6482 return;
6483 }
6484 }
6485
6486 /*
6487 * Free all VMCSs saved for this vcpu, except the one pointed by
6488 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6489 * must be &vmx->vmcs01.
6490 */
6491 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6492 {
6493 struct vmcs02_list *item, *n;
6494
6495 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6496 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6497 /*
6498 * Something will leak if the above WARN triggers. Better than
6499 * a use-after-free.
6500 */
6501 if (vmx->loaded_vmcs == &item->vmcs02)
6502 continue;
6503
6504 free_loaded_vmcs(&item->vmcs02);
6505 list_del(&item->list);
6506 kfree(item);
6507 vmx->nested.vmcs02_num--;
6508 }
6509 }
6510
6511 /*
6512 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6513 * set the success or error code of an emulated VMX instruction, as specified
6514 * by Vol 2B, VMX Instruction Reference, "Conventions".
6515 */
6516 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6517 {
6518 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6519 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6520 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6521 }
6522
6523 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6524 {
6525 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6526 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6527 X86_EFLAGS_SF | X86_EFLAGS_OF))
6528 | X86_EFLAGS_CF);
6529 }
6530
6531 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6532 u32 vm_instruction_error)
6533 {
6534 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6535 /*
6536 * failValid writes the error number to the current VMCS, which
6537 * can't be done there isn't a current VMCS.
6538 */
6539 nested_vmx_failInvalid(vcpu);
6540 return;
6541 }
6542 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6543 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6544 X86_EFLAGS_SF | X86_EFLAGS_OF))
6545 | X86_EFLAGS_ZF);
6546 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6547 /*
6548 * We don't need to force a shadow sync because
6549 * VM_INSTRUCTION_ERROR is not shadowed
6550 */
6551 }
6552
6553 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6554 {
6555 /* TODO: not to reset guest simply here. */
6556 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6557 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6558 }
6559
6560 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6561 {
6562 struct vcpu_vmx *vmx =
6563 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6564
6565 vmx->nested.preemption_timer_expired = true;
6566 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6567 kvm_vcpu_kick(&vmx->vcpu);
6568
6569 return HRTIMER_NORESTART;
6570 }
6571
6572 /*
6573 * Decode the memory-address operand of a vmx instruction, as recorded on an
6574 * exit caused by such an instruction (run by a guest hypervisor).
6575 * On success, returns 0. When the operand is invalid, returns 1 and throws
6576 * #UD or #GP.
6577 */
6578 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6579 unsigned long exit_qualification,
6580 u32 vmx_instruction_info, bool wr, gva_t *ret)
6581 {
6582 gva_t off;
6583 bool exn;
6584 struct kvm_segment s;
6585
6586 /*
6587 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6588 * Execution", on an exit, vmx_instruction_info holds most of the
6589 * addressing components of the operand. Only the displacement part
6590 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6591 * For how an actual address is calculated from all these components,
6592 * refer to Vol. 1, "Operand Addressing".
6593 */
6594 int scaling = vmx_instruction_info & 3;
6595 int addr_size = (vmx_instruction_info >> 7) & 7;
6596 bool is_reg = vmx_instruction_info & (1u << 10);
6597 int seg_reg = (vmx_instruction_info >> 15) & 7;
6598 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6599 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6600 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6601 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6602
6603 if (is_reg) {
6604 kvm_queue_exception(vcpu, UD_VECTOR);
6605 return 1;
6606 }
6607
6608 /* Addr = segment_base + offset */
6609 /* offset = base + [index * scale] + displacement */
6610 off = exit_qualification; /* holds the displacement */
6611 if (base_is_valid)
6612 off += kvm_register_read(vcpu, base_reg);
6613 if (index_is_valid)
6614 off += kvm_register_read(vcpu, index_reg)<<scaling;
6615 vmx_get_segment(vcpu, &s, seg_reg);
6616 *ret = s.base + off;
6617
6618 if (addr_size == 1) /* 32 bit */
6619 *ret &= 0xffffffff;
6620
6621 /* Checks for #GP/#SS exceptions. */
6622 exn = false;
6623 if (is_protmode(vcpu)) {
6624 /* Protected mode: apply checks for segment validity in the
6625 * following order:
6626 * - segment type check (#GP(0) may be thrown)
6627 * - usability check (#GP(0)/#SS(0))
6628 * - limit check (#GP(0)/#SS(0))
6629 */
6630 if (wr)
6631 /* #GP(0) if the destination operand is located in a
6632 * read-only data segment or any code segment.
6633 */
6634 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6635 else
6636 /* #GP(0) if the source operand is located in an
6637 * execute-only code segment
6638 */
6639 exn = ((s.type & 0xa) == 8);
6640 }
6641 if (exn) {
6642 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6643 return 1;
6644 }
6645 if (is_long_mode(vcpu)) {
6646 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6647 * non-canonical form. This is an only check for long mode.
6648 */
6649 exn = is_noncanonical_address(*ret);
6650 } else if (is_protmode(vcpu)) {
6651 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6652 */
6653 exn = (s.unusable != 0);
6654 /* Protected mode: #GP(0)/#SS(0) if the memory
6655 * operand is outside the segment limit.
6656 */
6657 exn = exn || (off + sizeof(u64) > s.limit);
6658 }
6659 if (exn) {
6660 kvm_queue_exception_e(vcpu,
6661 seg_reg == VCPU_SREG_SS ?
6662 SS_VECTOR : GP_VECTOR,
6663 0);
6664 return 1;
6665 }
6666
6667 return 0;
6668 }
6669
6670 /*
6671 * This function performs the various checks including
6672 * - if it's 4KB aligned
6673 * - No bits beyond the physical address width are set
6674 * - Returns 0 on success or else 1
6675 * (Intel SDM Section 30.3)
6676 */
6677 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6678 gpa_t *vmpointer)
6679 {
6680 gva_t gva;
6681 gpa_t vmptr;
6682 struct x86_exception e;
6683 struct page *page;
6684 struct vcpu_vmx *vmx = to_vmx(vcpu);
6685 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6686
6687 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6688 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6689 return 1;
6690
6691 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6692 sizeof(vmptr), &e)) {
6693 kvm_inject_page_fault(vcpu, &e);
6694 return 1;
6695 }
6696
6697 switch (exit_reason) {
6698 case EXIT_REASON_VMON:
6699 /*
6700 * SDM 3: 24.11.5
6701 * The first 4 bytes of VMXON region contain the supported
6702 * VMCS revision identifier
6703 *
6704 * Note - IA32_VMX_BASIC[48] will never be 1
6705 * for the nested case;
6706 * which replaces physical address width with 32
6707 *
6708 */
6709 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6710 nested_vmx_failInvalid(vcpu);
6711 skip_emulated_instruction(vcpu);
6712 return 1;
6713 }
6714
6715 page = nested_get_page(vcpu, vmptr);
6716 if (page == NULL ||
6717 *(u32 *)kmap(page) != VMCS12_REVISION) {
6718 nested_vmx_failInvalid(vcpu);
6719 kunmap(page);
6720 skip_emulated_instruction(vcpu);
6721 return 1;
6722 }
6723 kunmap(page);
6724 vmx->nested.vmxon_ptr = vmptr;
6725 break;
6726 case EXIT_REASON_VMCLEAR:
6727 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6728 nested_vmx_failValid(vcpu,
6729 VMXERR_VMCLEAR_INVALID_ADDRESS);
6730 skip_emulated_instruction(vcpu);
6731 return 1;
6732 }
6733
6734 if (vmptr == vmx->nested.vmxon_ptr) {
6735 nested_vmx_failValid(vcpu,
6736 VMXERR_VMCLEAR_VMXON_POINTER);
6737 skip_emulated_instruction(vcpu);
6738 return 1;
6739 }
6740 break;
6741 case EXIT_REASON_VMPTRLD:
6742 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6743 nested_vmx_failValid(vcpu,
6744 VMXERR_VMPTRLD_INVALID_ADDRESS);
6745 skip_emulated_instruction(vcpu);
6746 return 1;
6747 }
6748
6749 if (vmptr == vmx->nested.vmxon_ptr) {
6750 nested_vmx_failValid(vcpu,
6751 VMXERR_VMCLEAR_VMXON_POINTER);
6752 skip_emulated_instruction(vcpu);
6753 return 1;
6754 }
6755 break;
6756 default:
6757 return 1; /* shouldn't happen */
6758 }
6759
6760 if (vmpointer)
6761 *vmpointer = vmptr;
6762 return 0;
6763 }
6764
6765 /*
6766 * Emulate the VMXON instruction.
6767 * Currently, we just remember that VMX is active, and do not save or even
6768 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6769 * do not currently need to store anything in that guest-allocated memory
6770 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6771 * argument is different from the VMXON pointer (which the spec says they do).
6772 */
6773 static int handle_vmon(struct kvm_vcpu *vcpu)
6774 {
6775 struct kvm_segment cs;
6776 struct vcpu_vmx *vmx = to_vmx(vcpu);
6777 struct vmcs *shadow_vmcs;
6778 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6779 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6780
6781 /* The Intel VMX Instruction Reference lists a bunch of bits that
6782 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6783 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6784 * Otherwise, we should fail with #UD. We test these now:
6785 */
6786 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6787 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6788 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6789 kvm_queue_exception(vcpu, UD_VECTOR);
6790 return 1;
6791 }
6792
6793 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6794 if (is_long_mode(vcpu) && !cs.l) {
6795 kvm_queue_exception(vcpu, UD_VECTOR);
6796 return 1;
6797 }
6798
6799 if (vmx_get_cpl(vcpu)) {
6800 kvm_inject_gp(vcpu, 0);
6801 return 1;
6802 }
6803
6804 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6805 return 1;
6806
6807 if (vmx->nested.vmxon) {
6808 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6809 skip_emulated_instruction(vcpu);
6810 return 1;
6811 }
6812
6813 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6814 != VMXON_NEEDED_FEATURES) {
6815 kvm_inject_gp(vcpu, 0);
6816 return 1;
6817 }
6818
6819 if (enable_shadow_vmcs) {
6820 shadow_vmcs = alloc_vmcs();
6821 if (!shadow_vmcs)
6822 return -ENOMEM;
6823 /* mark vmcs as shadow */
6824 shadow_vmcs->revision_id |= (1u << 31);
6825 /* init shadow vmcs */
6826 vmcs_clear(shadow_vmcs);
6827 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6828 }
6829
6830 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6831 vmx->nested.vmcs02_num = 0;
6832
6833 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6834 HRTIMER_MODE_REL);
6835 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6836
6837 vmx->nested.vmxon = true;
6838
6839 skip_emulated_instruction(vcpu);
6840 nested_vmx_succeed(vcpu);
6841 return 1;
6842 }
6843
6844 /*
6845 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6846 * for running VMX instructions (except VMXON, whose prerequisites are
6847 * slightly different). It also specifies what exception to inject otherwise.
6848 */
6849 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6850 {
6851 struct kvm_segment cs;
6852 struct vcpu_vmx *vmx = to_vmx(vcpu);
6853
6854 if (!vmx->nested.vmxon) {
6855 kvm_queue_exception(vcpu, UD_VECTOR);
6856 return 0;
6857 }
6858
6859 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6860 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6861 (is_long_mode(vcpu) && !cs.l)) {
6862 kvm_queue_exception(vcpu, UD_VECTOR);
6863 return 0;
6864 }
6865
6866 if (vmx_get_cpl(vcpu)) {
6867 kvm_inject_gp(vcpu, 0);
6868 return 0;
6869 }
6870
6871 return 1;
6872 }
6873
6874 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6875 {
6876 if (vmx->nested.current_vmptr == -1ull)
6877 return;
6878
6879 /* current_vmptr and current_vmcs12 are always set/reset together */
6880 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6881 return;
6882
6883 if (enable_shadow_vmcs) {
6884 /* copy to memory all shadowed fields in case
6885 they were modified */
6886 copy_shadow_to_vmcs12(vmx);
6887 vmx->nested.sync_shadow_vmcs = false;
6888 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6889 SECONDARY_EXEC_SHADOW_VMCS);
6890 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6891 }
6892 vmx->nested.posted_intr_nv = -1;
6893 kunmap(vmx->nested.current_vmcs12_page);
6894 nested_release_page(vmx->nested.current_vmcs12_page);
6895 vmx->nested.current_vmptr = -1ull;
6896 vmx->nested.current_vmcs12 = NULL;
6897 }
6898
6899 /*
6900 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6901 * just stops using VMX.
6902 */
6903 static void free_nested(struct vcpu_vmx *vmx)
6904 {
6905 if (!vmx->nested.vmxon)
6906 return;
6907
6908 vmx->nested.vmxon = false;
6909 free_vpid(vmx->nested.vpid02);
6910 nested_release_vmcs12(vmx);
6911 if (enable_shadow_vmcs)
6912 free_vmcs(vmx->nested.current_shadow_vmcs);
6913 /* Unpin physical memory we referred to in current vmcs02 */
6914 if (vmx->nested.apic_access_page) {
6915 nested_release_page(vmx->nested.apic_access_page);
6916 vmx->nested.apic_access_page = NULL;
6917 }
6918 if (vmx->nested.virtual_apic_page) {
6919 nested_release_page(vmx->nested.virtual_apic_page);
6920 vmx->nested.virtual_apic_page = NULL;
6921 }
6922 if (vmx->nested.pi_desc_page) {
6923 kunmap(vmx->nested.pi_desc_page);
6924 nested_release_page(vmx->nested.pi_desc_page);
6925 vmx->nested.pi_desc_page = NULL;
6926 vmx->nested.pi_desc = NULL;
6927 }
6928
6929 nested_free_all_saved_vmcss(vmx);
6930 }
6931
6932 /* Emulate the VMXOFF instruction */
6933 static int handle_vmoff(struct kvm_vcpu *vcpu)
6934 {
6935 if (!nested_vmx_check_permission(vcpu))
6936 return 1;
6937 free_nested(to_vmx(vcpu));
6938 skip_emulated_instruction(vcpu);
6939 nested_vmx_succeed(vcpu);
6940 return 1;
6941 }
6942
6943 /* Emulate the VMCLEAR instruction */
6944 static int handle_vmclear(struct kvm_vcpu *vcpu)
6945 {
6946 struct vcpu_vmx *vmx = to_vmx(vcpu);
6947 gpa_t vmptr;
6948 struct vmcs12 *vmcs12;
6949 struct page *page;
6950
6951 if (!nested_vmx_check_permission(vcpu))
6952 return 1;
6953
6954 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6955 return 1;
6956
6957 if (vmptr == vmx->nested.current_vmptr)
6958 nested_release_vmcs12(vmx);
6959
6960 page = nested_get_page(vcpu, vmptr);
6961 if (page == NULL) {
6962 /*
6963 * For accurate processor emulation, VMCLEAR beyond available
6964 * physical memory should do nothing at all. However, it is
6965 * possible that a nested vmx bug, not a guest hypervisor bug,
6966 * resulted in this case, so let's shut down before doing any
6967 * more damage:
6968 */
6969 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6970 return 1;
6971 }
6972 vmcs12 = kmap(page);
6973 vmcs12->launch_state = 0;
6974 kunmap(page);
6975 nested_release_page(page);
6976
6977 nested_free_vmcs02(vmx, vmptr);
6978
6979 skip_emulated_instruction(vcpu);
6980 nested_vmx_succeed(vcpu);
6981 return 1;
6982 }
6983
6984 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6985
6986 /* Emulate the VMLAUNCH instruction */
6987 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6988 {
6989 return nested_vmx_run(vcpu, true);
6990 }
6991
6992 /* Emulate the VMRESUME instruction */
6993 static int handle_vmresume(struct kvm_vcpu *vcpu)
6994 {
6995
6996 return nested_vmx_run(vcpu, false);
6997 }
6998
6999 enum vmcs_field_type {
7000 VMCS_FIELD_TYPE_U16 = 0,
7001 VMCS_FIELD_TYPE_U64 = 1,
7002 VMCS_FIELD_TYPE_U32 = 2,
7003 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7004 };
7005
7006 static inline int vmcs_field_type(unsigned long field)
7007 {
7008 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7009 return VMCS_FIELD_TYPE_U32;
7010 return (field >> 13) & 0x3 ;
7011 }
7012
7013 static inline int vmcs_field_readonly(unsigned long field)
7014 {
7015 return (((field >> 10) & 0x3) == 1);
7016 }
7017
7018 /*
7019 * Read a vmcs12 field. Since these can have varying lengths and we return
7020 * one type, we chose the biggest type (u64) and zero-extend the return value
7021 * to that size. Note that the caller, handle_vmread, might need to use only
7022 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7023 * 64-bit fields are to be returned).
7024 */
7025 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7026 unsigned long field, u64 *ret)
7027 {
7028 short offset = vmcs_field_to_offset(field);
7029 char *p;
7030
7031 if (offset < 0)
7032 return offset;
7033
7034 p = ((char *)(get_vmcs12(vcpu))) + offset;
7035
7036 switch (vmcs_field_type(field)) {
7037 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7038 *ret = *((natural_width *)p);
7039 return 0;
7040 case VMCS_FIELD_TYPE_U16:
7041 *ret = *((u16 *)p);
7042 return 0;
7043 case VMCS_FIELD_TYPE_U32:
7044 *ret = *((u32 *)p);
7045 return 0;
7046 case VMCS_FIELD_TYPE_U64:
7047 *ret = *((u64 *)p);
7048 return 0;
7049 default:
7050 WARN_ON(1);
7051 return -ENOENT;
7052 }
7053 }
7054
7055
7056 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7057 unsigned long field, u64 field_value){
7058 short offset = vmcs_field_to_offset(field);
7059 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7060 if (offset < 0)
7061 return offset;
7062
7063 switch (vmcs_field_type(field)) {
7064 case VMCS_FIELD_TYPE_U16:
7065 *(u16 *)p = field_value;
7066 return 0;
7067 case VMCS_FIELD_TYPE_U32:
7068 *(u32 *)p = field_value;
7069 return 0;
7070 case VMCS_FIELD_TYPE_U64:
7071 *(u64 *)p = field_value;
7072 return 0;
7073 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7074 *(natural_width *)p = field_value;
7075 return 0;
7076 default:
7077 WARN_ON(1);
7078 return -ENOENT;
7079 }
7080
7081 }
7082
7083 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7084 {
7085 int i;
7086 unsigned long field;
7087 u64 field_value;
7088 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7089 const unsigned long *fields = shadow_read_write_fields;
7090 const int num_fields = max_shadow_read_write_fields;
7091
7092 preempt_disable();
7093
7094 vmcs_load(shadow_vmcs);
7095
7096 for (i = 0; i < num_fields; i++) {
7097 field = fields[i];
7098 switch (vmcs_field_type(field)) {
7099 case VMCS_FIELD_TYPE_U16:
7100 field_value = vmcs_read16(field);
7101 break;
7102 case VMCS_FIELD_TYPE_U32:
7103 field_value = vmcs_read32(field);
7104 break;
7105 case VMCS_FIELD_TYPE_U64:
7106 field_value = vmcs_read64(field);
7107 break;
7108 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7109 field_value = vmcs_readl(field);
7110 break;
7111 default:
7112 WARN_ON(1);
7113 continue;
7114 }
7115 vmcs12_write_any(&vmx->vcpu, field, field_value);
7116 }
7117
7118 vmcs_clear(shadow_vmcs);
7119 vmcs_load(vmx->loaded_vmcs->vmcs);
7120
7121 preempt_enable();
7122 }
7123
7124 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7125 {
7126 const unsigned long *fields[] = {
7127 shadow_read_write_fields,
7128 shadow_read_only_fields
7129 };
7130 const int max_fields[] = {
7131 max_shadow_read_write_fields,
7132 max_shadow_read_only_fields
7133 };
7134 int i, q;
7135 unsigned long field;
7136 u64 field_value = 0;
7137 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7138
7139 vmcs_load(shadow_vmcs);
7140
7141 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7142 for (i = 0; i < max_fields[q]; i++) {
7143 field = fields[q][i];
7144 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7145
7146 switch (vmcs_field_type(field)) {
7147 case VMCS_FIELD_TYPE_U16:
7148 vmcs_write16(field, (u16)field_value);
7149 break;
7150 case VMCS_FIELD_TYPE_U32:
7151 vmcs_write32(field, (u32)field_value);
7152 break;
7153 case VMCS_FIELD_TYPE_U64:
7154 vmcs_write64(field, (u64)field_value);
7155 break;
7156 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7157 vmcs_writel(field, (long)field_value);
7158 break;
7159 default:
7160 WARN_ON(1);
7161 break;
7162 }
7163 }
7164 }
7165
7166 vmcs_clear(shadow_vmcs);
7167 vmcs_load(vmx->loaded_vmcs->vmcs);
7168 }
7169
7170 /*
7171 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7172 * used before) all generate the same failure when it is missing.
7173 */
7174 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7175 {
7176 struct vcpu_vmx *vmx = to_vmx(vcpu);
7177 if (vmx->nested.current_vmptr == -1ull) {
7178 nested_vmx_failInvalid(vcpu);
7179 skip_emulated_instruction(vcpu);
7180 return 0;
7181 }
7182 return 1;
7183 }
7184
7185 static int handle_vmread(struct kvm_vcpu *vcpu)
7186 {
7187 unsigned long field;
7188 u64 field_value;
7189 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7190 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7191 gva_t gva = 0;
7192
7193 if (!nested_vmx_check_permission(vcpu) ||
7194 !nested_vmx_check_vmcs12(vcpu))
7195 return 1;
7196
7197 /* Decode instruction info and find the field to read */
7198 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7199 /* Read the field, zero-extended to a u64 field_value */
7200 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7201 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7202 skip_emulated_instruction(vcpu);
7203 return 1;
7204 }
7205 /*
7206 * Now copy part of this value to register or memory, as requested.
7207 * Note that the number of bits actually copied is 32 or 64 depending
7208 * on the guest's mode (32 or 64 bit), not on the given field's length.
7209 */
7210 if (vmx_instruction_info & (1u << 10)) {
7211 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7212 field_value);
7213 } else {
7214 if (get_vmx_mem_address(vcpu, exit_qualification,
7215 vmx_instruction_info, true, &gva))
7216 return 1;
7217 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7218 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7219 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7220 }
7221
7222 nested_vmx_succeed(vcpu);
7223 skip_emulated_instruction(vcpu);
7224 return 1;
7225 }
7226
7227
7228 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7229 {
7230 unsigned long field;
7231 gva_t gva;
7232 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7233 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7234 /* The value to write might be 32 or 64 bits, depending on L1's long
7235 * mode, and eventually we need to write that into a field of several
7236 * possible lengths. The code below first zero-extends the value to 64
7237 * bit (field_value), and then copies only the approriate number of
7238 * bits into the vmcs12 field.
7239 */
7240 u64 field_value = 0;
7241 struct x86_exception e;
7242
7243 if (!nested_vmx_check_permission(vcpu) ||
7244 !nested_vmx_check_vmcs12(vcpu))
7245 return 1;
7246
7247 if (vmx_instruction_info & (1u << 10))
7248 field_value = kvm_register_readl(vcpu,
7249 (((vmx_instruction_info) >> 3) & 0xf));
7250 else {
7251 if (get_vmx_mem_address(vcpu, exit_qualification,
7252 vmx_instruction_info, false, &gva))
7253 return 1;
7254 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7255 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7256 kvm_inject_page_fault(vcpu, &e);
7257 return 1;
7258 }
7259 }
7260
7261
7262 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7263 if (vmcs_field_readonly(field)) {
7264 nested_vmx_failValid(vcpu,
7265 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7266 skip_emulated_instruction(vcpu);
7267 return 1;
7268 }
7269
7270 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7271 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7272 skip_emulated_instruction(vcpu);
7273 return 1;
7274 }
7275
7276 nested_vmx_succeed(vcpu);
7277 skip_emulated_instruction(vcpu);
7278 return 1;
7279 }
7280
7281 /* Emulate the VMPTRLD instruction */
7282 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7283 {
7284 struct vcpu_vmx *vmx = to_vmx(vcpu);
7285 gpa_t vmptr;
7286
7287 if (!nested_vmx_check_permission(vcpu))
7288 return 1;
7289
7290 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7291 return 1;
7292
7293 if (vmx->nested.current_vmptr != vmptr) {
7294 struct vmcs12 *new_vmcs12;
7295 struct page *page;
7296 page = nested_get_page(vcpu, vmptr);
7297 if (page == NULL) {
7298 nested_vmx_failInvalid(vcpu);
7299 skip_emulated_instruction(vcpu);
7300 return 1;
7301 }
7302 new_vmcs12 = kmap(page);
7303 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7304 kunmap(page);
7305 nested_release_page_clean(page);
7306 nested_vmx_failValid(vcpu,
7307 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7308 skip_emulated_instruction(vcpu);
7309 return 1;
7310 }
7311
7312 nested_release_vmcs12(vmx);
7313 vmx->nested.current_vmptr = vmptr;
7314 vmx->nested.current_vmcs12 = new_vmcs12;
7315 vmx->nested.current_vmcs12_page = page;
7316 if (enable_shadow_vmcs) {
7317 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7318 SECONDARY_EXEC_SHADOW_VMCS);
7319 vmcs_write64(VMCS_LINK_POINTER,
7320 __pa(vmx->nested.current_shadow_vmcs));
7321 vmx->nested.sync_shadow_vmcs = true;
7322 }
7323 }
7324
7325 nested_vmx_succeed(vcpu);
7326 skip_emulated_instruction(vcpu);
7327 return 1;
7328 }
7329
7330 /* Emulate the VMPTRST instruction */
7331 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7332 {
7333 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7334 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7335 gva_t vmcs_gva;
7336 struct x86_exception e;
7337
7338 if (!nested_vmx_check_permission(vcpu))
7339 return 1;
7340
7341 if (get_vmx_mem_address(vcpu, exit_qualification,
7342 vmx_instruction_info, true, &vmcs_gva))
7343 return 1;
7344 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7345 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7346 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7347 sizeof(u64), &e)) {
7348 kvm_inject_page_fault(vcpu, &e);
7349 return 1;
7350 }
7351 nested_vmx_succeed(vcpu);
7352 skip_emulated_instruction(vcpu);
7353 return 1;
7354 }
7355
7356 /* Emulate the INVEPT instruction */
7357 static int handle_invept(struct kvm_vcpu *vcpu)
7358 {
7359 struct vcpu_vmx *vmx = to_vmx(vcpu);
7360 u32 vmx_instruction_info, types;
7361 unsigned long type;
7362 gva_t gva;
7363 struct x86_exception e;
7364 struct {
7365 u64 eptp, gpa;
7366 } operand;
7367
7368 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7369 SECONDARY_EXEC_ENABLE_EPT) ||
7370 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7371 kvm_queue_exception(vcpu, UD_VECTOR);
7372 return 1;
7373 }
7374
7375 if (!nested_vmx_check_permission(vcpu))
7376 return 1;
7377
7378 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7379 kvm_queue_exception(vcpu, UD_VECTOR);
7380 return 1;
7381 }
7382
7383 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7384 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7385
7386 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7387
7388 if (!(types & (1UL << type))) {
7389 nested_vmx_failValid(vcpu,
7390 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7391 return 1;
7392 }
7393
7394 /* According to the Intel VMX instruction reference, the memory
7395 * operand is read even if it isn't needed (e.g., for type==global)
7396 */
7397 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7398 vmx_instruction_info, false, &gva))
7399 return 1;
7400 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7401 sizeof(operand), &e)) {
7402 kvm_inject_page_fault(vcpu, &e);
7403 return 1;
7404 }
7405
7406 switch (type) {
7407 case VMX_EPT_EXTENT_GLOBAL:
7408 kvm_mmu_sync_roots(vcpu);
7409 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7410 nested_vmx_succeed(vcpu);
7411 break;
7412 default:
7413 /* Trap single context invalidation invept calls */
7414 BUG_ON(1);
7415 break;
7416 }
7417
7418 skip_emulated_instruction(vcpu);
7419 return 1;
7420 }
7421
7422 static int handle_invvpid(struct kvm_vcpu *vcpu)
7423 {
7424 struct vcpu_vmx *vmx = to_vmx(vcpu);
7425 u32 vmx_instruction_info;
7426 unsigned long type, types;
7427 gva_t gva;
7428 struct x86_exception e;
7429 int vpid;
7430
7431 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7432 SECONDARY_EXEC_ENABLE_VPID) ||
7433 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7434 kvm_queue_exception(vcpu, UD_VECTOR);
7435 return 1;
7436 }
7437
7438 if (!nested_vmx_check_permission(vcpu))
7439 return 1;
7440
7441 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7442 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7443
7444 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7445
7446 if (!(types & (1UL << type))) {
7447 nested_vmx_failValid(vcpu,
7448 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7449 return 1;
7450 }
7451
7452 /* according to the intel vmx instruction reference, the memory
7453 * operand is read even if it isn't needed (e.g., for type==global)
7454 */
7455 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7456 vmx_instruction_info, false, &gva))
7457 return 1;
7458 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7459 sizeof(u32), &e)) {
7460 kvm_inject_page_fault(vcpu, &e);
7461 return 1;
7462 }
7463
7464 switch (type) {
7465 case VMX_VPID_EXTENT_ALL_CONTEXT:
7466 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7467 nested_vmx_succeed(vcpu);
7468 break;
7469 default:
7470 /* Trap single context invalidation invvpid calls */
7471 BUG_ON(1);
7472 break;
7473 }
7474
7475 skip_emulated_instruction(vcpu);
7476 return 1;
7477 }
7478
7479 static int handle_pml_full(struct kvm_vcpu *vcpu)
7480 {
7481 unsigned long exit_qualification;
7482
7483 trace_kvm_pml_full(vcpu->vcpu_id);
7484
7485 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7486
7487 /*
7488 * PML buffer FULL happened while executing iret from NMI,
7489 * "blocked by NMI" bit has to be set before next VM entry.
7490 */
7491 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7492 cpu_has_virtual_nmis() &&
7493 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7494 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7495 GUEST_INTR_STATE_NMI);
7496
7497 /*
7498 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7499 * here.., and there's no userspace involvement needed for PML.
7500 */
7501 return 1;
7502 }
7503
7504 static int handle_pcommit(struct kvm_vcpu *vcpu)
7505 {
7506 /* we never catch pcommit instruct for L1 guest. */
7507 WARN_ON(1);
7508 return 1;
7509 }
7510
7511 /*
7512 * The exit handlers return 1 if the exit was handled fully and guest execution
7513 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7514 * to be done to userspace and return 0.
7515 */
7516 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7517 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7518 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7519 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7520 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7521 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7522 [EXIT_REASON_CR_ACCESS] = handle_cr,
7523 [EXIT_REASON_DR_ACCESS] = handle_dr,
7524 [EXIT_REASON_CPUID] = handle_cpuid,
7525 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7526 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7527 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7528 [EXIT_REASON_HLT] = handle_halt,
7529 [EXIT_REASON_INVD] = handle_invd,
7530 [EXIT_REASON_INVLPG] = handle_invlpg,
7531 [EXIT_REASON_RDPMC] = handle_rdpmc,
7532 [EXIT_REASON_VMCALL] = handle_vmcall,
7533 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7534 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7535 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7536 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7537 [EXIT_REASON_VMREAD] = handle_vmread,
7538 [EXIT_REASON_VMRESUME] = handle_vmresume,
7539 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7540 [EXIT_REASON_VMOFF] = handle_vmoff,
7541 [EXIT_REASON_VMON] = handle_vmon,
7542 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7543 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7544 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7545 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7546 [EXIT_REASON_WBINVD] = handle_wbinvd,
7547 [EXIT_REASON_XSETBV] = handle_xsetbv,
7548 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7549 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7550 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7551 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7552 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7553 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7554 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7555 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7556 [EXIT_REASON_INVEPT] = handle_invept,
7557 [EXIT_REASON_INVVPID] = handle_invvpid,
7558 [EXIT_REASON_XSAVES] = handle_xsaves,
7559 [EXIT_REASON_XRSTORS] = handle_xrstors,
7560 [EXIT_REASON_PML_FULL] = handle_pml_full,
7561 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7562 };
7563
7564 static const int kvm_vmx_max_exit_handlers =
7565 ARRAY_SIZE(kvm_vmx_exit_handlers);
7566
7567 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7568 struct vmcs12 *vmcs12)
7569 {
7570 unsigned long exit_qualification;
7571 gpa_t bitmap, last_bitmap;
7572 unsigned int port;
7573 int size;
7574 u8 b;
7575
7576 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7577 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7578
7579 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7580
7581 port = exit_qualification >> 16;
7582 size = (exit_qualification & 7) + 1;
7583
7584 last_bitmap = (gpa_t)-1;
7585 b = -1;
7586
7587 while (size > 0) {
7588 if (port < 0x8000)
7589 bitmap = vmcs12->io_bitmap_a;
7590 else if (port < 0x10000)
7591 bitmap = vmcs12->io_bitmap_b;
7592 else
7593 return true;
7594 bitmap += (port & 0x7fff) / 8;
7595
7596 if (last_bitmap != bitmap)
7597 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7598 return true;
7599 if (b & (1 << (port & 7)))
7600 return true;
7601
7602 port++;
7603 size--;
7604 last_bitmap = bitmap;
7605 }
7606
7607 return false;
7608 }
7609
7610 /*
7611 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7612 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7613 * disinterest in the current event (read or write a specific MSR) by using an
7614 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7615 */
7616 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7617 struct vmcs12 *vmcs12, u32 exit_reason)
7618 {
7619 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7620 gpa_t bitmap;
7621
7622 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7623 return true;
7624
7625 /*
7626 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7627 * for the four combinations of read/write and low/high MSR numbers.
7628 * First we need to figure out which of the four to use:
7629 */
7630 bitmap = vmcs12->msr_bitmap;
7631 if (exit_reason == EXIT_REASON_MSR_WRITE)
7632 bitmap += 2048;
7633 if (msr_index >= 0xc0000000) {
7634 msr_index -= 0xc0000000;
7635 bitmap += 1024;
7636 }
7637
7638 /* Then read the msr_index'th bit from this bitmap: */
7639 if (msr_index < 1024*8) {
7640 unsigned char b;
7641 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7642 return true;
7643 return 1 & (b >> (msr_index & 7));
7644 } else
7645 return true; /* let L1 handle the wrong parameter */
7646 }
7647
7648 /*
7649 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7650 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7651 * intercept (via guest_host_mask etc.) the current event.
7652 */
7653 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7654 struct vmcs12 *vmcs12)
7655 {
7656 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7657 int cr = exit_qualification & 15;
7658 int reg = (exit_qualification >> 8) & 15;
7659 unsigned long val = kvm_register_readl(vcpu, reg);
7660
7661 switch ((exit_qualification >> 4) & 3) {
7662 case 0: /* mov to cr */
7663 switch (cr) {
7664 case 0:
7665 if (vmcs12->cr0_guest_host_mask &
7666 (val ^ vmcs12->cr0_read_shadow))
7667 return true;
7668 break;
7669 case 3:
7670 if ((vmcs12->cr3_target_count >= 1 &&
7671 vmcs12->cr3_target_value0 == val) ||
7672 (vmcs12->cr3_target_count >= 2 &&
7673 vmcs12->cr3_target_value1 == val) ||
7674 (vmcs12->cr3_target_count >= 3 &&
7675 vmcs12->cr3_target_value2 == val) ||
7676 (vmcs12->cr3_target_count >= 4 &&
7677 vmcs12->cr3_target_value3 == val))
7678 return false;
7679 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7680 return true;
7681 break;
7682 case 4:
7683 if (vmcs12->cr4_guest_host_mask &
7684 (vmcs12->cr4_read_shadow ^ val))
7685 return true;
7686 break;
7687 case 8:
7688 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7689 return true;
7690 break;
7691 }
7692 break;
7693 case 2: /* clts */
7694 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7695 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7696 return true;
7697 break;
7698 case 1: /* mov from cr */
7699 switch (cr) {
7700 case 3:
7701 if (vmcs12->cpu_based_vm_exec_control &
7702 CPU_BASED_CR3_STORE_EXITING)
7703 return true;
7704 break;
7705 case 8:
7706 if (vmcs12->cpu_based_vm_exec_control &
7707 CPU_BASED_CR8_STORE_EXITING)
7708 return true;
7709 break;
7710 }
7711 break;
7712 case 3: /* lmsw */
7713 /*
7714 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7715 * cr0. Other attempted changes are ignored, with no exit.
7716 */
7717 if (vmcs12->cr0_guest_host_mask & 0xe &
7718 (val ^ vmcs12->cr0_read_shadow))
7719 return true;
7720 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7721 !(vmcs12->cr0_read_shadow & 0x1) &&
7722 (val & 0x1))
7723 return true;
7724 break;
7725 }
7726 return false;
7727 }
7728
7729 /*
7730 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7731 * should handle it ourselves in L0 (and then continue L2). Only call this
7732 * when in is_guest_mode (L2).
7733 */
7734 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7735 {
7736 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7737 struct vcpu_vmx *vmx = to_vmx(vcpu);
7738 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7739 u32 exit_reason = vmx->exit_reason;
7740
7741 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7742 vmcs_readl(EXIT_QUALIFICATION),
7743 vmx->idt_vectoring_info,
7744 intr_info,
7745 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7746 KVM_ISA_VMX);
7747
7748 if (vmx->nested.nested_run_pending)
7749 return false;
7750
7751 if (unlikely(vmx->fail)) {
7752 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7753 vmcs_read32(VM_INSTRUCTION_ERROR));
7754 return true;
7755 }
7756
7757 switch (exit_reason) {
7758 case EXIT_REASON_EXCEPTION_NMI:
7759 if (!is_exception(intr_info))
7760 return false;
7761 else if (is_page_fault(intr_info))
7762 return enable_ept;
7763 else if (is_no_device(intr_info) &&
7764 !(vmcs12->guest_cr0 & X86_CR0_TS))
7765 return false;
7766 else if (is_debug(intr_info) &&
7767 vcpu->guest_debug &
7768 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7769 return false;
7770 else if (is_breakpoint(intr_info) &&
7771 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7772 return false;
7773 return vmcs12->exception_bitmap &
7774 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7775 case EXIT_REASON_EXTERNAL_INTERRUPT:
7776 return false;
7777 case EXIT_REASON_TRIPLE_FAULT:
7778 return true;
7779 case EXIT_REASON_PENDING_INTERRUPT:
7780 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7781 case EXIT_REASON_NMI_WINDOW:
7782 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7783 case EXIT_REASON_TASK_SWITCH:
7784 return true;
7785 case EXIT_REASON_CPUID:
7786 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7787 return false;
7788 return true;
7789 case EXIT_REASON_HLT:
7790 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7791 case EXIT_REASON_INVD:
7792 return true;
7793 case EXIT_REASON_INVLPG:
7794 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7795 case EXIT_REASON_RDPMC:
7796 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7797 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7798 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7799 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7800 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7801 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7802 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7803 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7804 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7805 /*
7806 * VMX instructions trap unconditionally. This allows L1 to
7807 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7808 */
7809 return true;
7810 case EXIT_REASON_CR_ACCESS:
7811 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7812 case EXIT_REASON_DR_ACCESS:
7813 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7814 case EXIT_REASON_IO_INSTRUCTION:
7815 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7816 case EXIT_REASON_MSR_READ:
7817 case EXIT_REASON_MSR_WRITE:
7818 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7819 case EXIT_REASON_INVALID_STATE:
7820 return true;
7821 case EXIT_REASON_MWAIT_INSTRUCTION:
7822 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7823 case EXIT_REASON_MONITOR_TRAP_FLAG:
7824 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7825 case EXIT_REASON_MONITOR_INSTRUCTION:
7826 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7827 case EXIT_REASON_PAUSE_INSTRUCTION:
7828 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7829 nested_cpu_has2(vmcs12,
7830 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7831 case EXIT_REASON_MCE_DURING_VMENTRY:
7832 return false;
7833 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7834 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7835 case EXIT_REASON_APIC_ACCESS:
7836 return nested_cpu_has2(vmcs12,
7837 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7838 case EXIT_REASON_APIC_WRITE:
7839 case EXIT_REASON_EOI_INDUCED:
7840 /* apic_write and eoi_induced should exit unconditionally. */
7841 return true;
7842 case EXIT_REASON_EPT_VIOLATION:
7843 /*
7844 * L0 always deals with the EPT violation. If nested EPT is
7845 * used, and the nested mmu code discovers that the address is
7846 * missing in the guest EPT table (EPT12), the EPT violation
7847 * will be injected with nested_ept_inject_page_fault()
7848 */
7849 return false;
7850 case EXIT_REASON_EPT_MISCONFIG:
7851 /*
7852 * L2 never uses directly L1's EPT, but rather L0's own EPT
7853 * table (shadow on EPT) or a merged EPT table that L0 built
7854 * (EPT on EPT). So any problems with the structure of the
7855 * table is L0's fault.
7856 */
7857 return false;
7858 case EXIT_REASON_WBINVD:
7859 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7860 case EXIT_REASON_XSETBV:
7861 return true;
7862 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7863 /*
7864 * This should never happen, since it is not possible to
7865 * set XSS to a non-zero value---neither in L1 nor in L2.
7866 * If if it were, XSS would have to be checked against
7867 * the XSS exit bitmap in vmcs12.
7868 */
7869 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7870 case EXIT_REASON_PCOMMIT:
7871 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7872 default:
7873 return true;
7874 }
7875 }
7876
7877 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7878 {
7879 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7880 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7881 }
7882
7883 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
7884 {
7885 struct page *pml_pg;
7886
7887 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7888 if (!pml_pg)
7889 return -ENOMEM;
7890
7891 vmx->pml_pg = pml_pg;
7892
7893 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7894 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7895
7896 return 0;
7897 }
7898
7899 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7900 {
7901 if (vmx->pml_pg) {
7902 __free_page(vmx->pml_pg);
7903 vmx->pml_pg = NULL;
7904 }
7905 }
7906
7907 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7908 {
7909 struct vcpu_vmx *vmx = to_vmx(vcpu);
7910 u64 *pml_buf;
7911 u16 pml_idx;
7912
7913 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7914
7915 /* Do nothing if PML buffer is empty */
7916 if (pml_idx == (PML_ENTITY_NUM - 1))
7917 return;
7918
7919 /* PML index always points to next available PML buffer entity */
7920 if (pml_idx >= PML_ENTITY_NUM)
7921 pml_idx = 0;
7922 else
7923 pml_idx++;
7924
7925 pml_buf = page_address(vmx->pml_pg);
7926 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7927 u64 gpa;
7928
7929 gpa = pml_buf[pml_idx];
7930 WARN_ON(gpa & (PAGE_SIZE - 1));
7931 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7932 }
7933
7934 /* reset PML index */
7935 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7936 }
7937
7938 /*
7939 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7940 * Called before reporting dirty_bitmap to userspace.
7941 */
7942 static void kvm_flush_pml_buffers(struct kvm *kvm)
7943 {
7944 int i;
7945 struct kvm_vcpu *vcpu;
7946 /*
7947 * We only need to kick vcpu out of guest mode here, as PML buffer
7948 * is flushed at beginning of all VMEXITs, and it's obvious that only
7949 * vcpus running in guest are possible to have unflushed GPAs in PML
7950 * buffer.
7951 */
7952 kvm_for_each_vcpu(i, vcpu, kvm)
7953 kvm_vcpu_kick(vcpu);
7954 }
7955
7956 static void vmx_dump_sel(char *name, uint32_t sel)
7957 {
7958 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7959 name, vmcs_read32(sel),
7960 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7961 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7962 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7963 }
7964
7965 static void vmx_dump_dtsel(char *name, uint32_t limit)
7966 {
7967 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7968 name, vmcs_read32(limit),
7969 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7970 }
7971
7972 static void dump_vmcs(void)
7973 {
7974 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7975 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7976 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7977 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7978 u32 secondary_exec_control = 0;
7979 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7980 u64 efer = vmcs_read64(GUEST_IA32_EFER);
7981 int i, n;
7982
7983 if (cpu_has_secondary_exec_ctrls())
7984 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7985
7986 pr_err("*** Guest State ***\n");
7987 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7988 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7989 vmcs_readl(CR0_GUEST_HOST_MASK));
7990 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7991 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7992 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7993 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7994 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7995 {
7996 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
7997 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
7998 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
7999 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8000 }
8001 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8002 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8003 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8004 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8005 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8006 vmcs_readl(GUEST_SYSENTER_ESP),
8007 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8008 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8009 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8010 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8011 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8012 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8013 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8014 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8015 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8016 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8017 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8018 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8019 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8020 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8021 efer, vmcs_read64(GUEST_IA32_PAT));
8022 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8023 vmcs_read64(GUEST_IA32_DEBUGCTL),
8024 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8025 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8026 pr_err("PerfGlobCtl = 0x%016llx\n",
8027 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8028 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8029 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8030 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8031 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8032 vmcs_read32(GUEST_ACTIVITY_STATE));
8033 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8034 pr_err("InterruptStatus = %04x\n",
8035 vmcs_read16(GUEST_INTR_STATUS));
8036
8037 pr_err("*** Host State ***\n");
8038 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8039 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8040 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8041 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8042 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8043 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8044 vmcs_read16(HOST_TR_SELECTOR));
8045 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8046 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8047 vmcs_readl(HOST_TR_BASE));
8048 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8049 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8050 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8051 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8052 vmcs_readl(HOST_CR4));
8053 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8054 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8055 vmcs_read32(HOST_IA32_SYSENTER_CS),
8056 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8057 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8058 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8059 vmcs_read64(HOST_IA32_EFER),
8060 vmcs_read64(HOST_IA32_PAT));
8061 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8062 pr_err("PerfGlobCtl = 0x%016llx\n",
8063 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8064
8065 pr_err("*** Control State ***\n");
8066 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8067 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8068 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8069 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8070 vmcs_read32(EXCEPTION_BITMAP),
8071 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8072 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8073 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8074 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8075 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8076 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8077 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8078 vmcs_read32(VM_EXIT_INTR_INFO),
8079 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8080 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8081 pr_err(" reason=%08x qualification=%016lx\n",
8082 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8083 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8084 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8085 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8086 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8087 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8088 pr_err("TSC Multiplier = 0x%016llx\n",
8089 vmcs_read64(TSC_MULTIPLIER));
8090 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8091 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8092 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8093 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8094 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8095 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8096 n = vmcs_read32(CR3_TARGET_COUNT);
8097 for (i = 0; i + 1 < n; i += 4)
8098 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8099 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8100 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8101 if (i < n)
8102 pr_err("CR3 target%u=%016lx\n",
8103 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8104 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8105 pr_err("PLE Gap=%08x Window=%08x\n",
8106 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8107 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8108 pr_err("Virtual processor ID = 0x%04x\n",
8109 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8110 }
8111
8112 /*
8113 * The guest has exited. See if we can fix it or if we need userspace
8114 * assistance.
8115 */
8116 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8117 {
8118 struct vcpu_vmx *vmx = to_vmx(vcpu);
8119 u32 exit_reason = vmx->exit_reason;
8120 u32 vectoring_info = vmx->idt_vectoring_info;
8121
8122 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8123
8124 /*
8125 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8126 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8127 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8128 * mode as if vcpus is in root mode, the PML buffer must has been
8129 * flushed already.
8130 */
8131 if (enable_pml)
8132 vmx_flush_pml_buffer(vcpu);
8133
8134 /* If guest state is invalid, start emulating */
8135 if (vmx->emulation_required)
8136 return handle_invalid_guest_state(vcpu);
8137
8138 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8139 nested_vmx_vmexit(vcpu, exit_reason,
8140 vmcs_read32(VM_EXIT_INTR_INFO),
8141 vmcs_readl(EXIT_QUALIFICATION));
8142 return 1;
8143 }
8144
8145 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8146 dump_vmcs();
8147 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8148 vcpu->run->fail_entry.hardware_entry_failure_reason
8149 = exit_reason;
8150 return 0;
8151 }
8152
8153 if (unlikely(vmx->fail)) {
8154 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8155 vcpu->run->fail_entry.hardware_entry_failure_reason
8156 = vmcs_read32(VM_INSTRUCTION_ERROR);
8157 return 0;
8158 }
8159
8160 /*
8161 * Note:
8162 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8163 * delivery event since it indicates guest is accessing MMIO.
8164 * The vm-exit can be triggered again after return to guest that
8165 * will cause infinite loop.
8166 */
8167 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8168 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8169 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8170 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8171 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8172 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8173 vcpu->run->internal.ndata = 2;
8174 vcpu->run->internal.data[0] = vectoring_info;
8175 vcpu->run->internal.data[1] = exit_reason;
8176 return 0;
8177 }
8178
8179 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8180 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8181 get_vmcs12(vcpu))))) {
8182 if (vmx_interrupt_allowed(vcpu)) {
8183 vmx->soft_vnmi_blocked = 0;
8184 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8185 vcpu->arch.nmi_pending) {
8186 /*
8187 * This CPU don't support us in finding the end of an
8188 * NMI-blocked window if the guest runs with IRQs
8189 * disabled. So we pull the trigger after 1 s of
8190 * futile waiting, but inform the user about this.
8191 */
8192 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8193 "state on VCPU %d after 1 s timeout\n",
8194 __func__, vcpu->vcpu_id);
8195 vmx->soft_vnmi_blocked = 0;
8196 }
8197 }
8198
8199 if (exit_reason < kvm_vmx_max_exit_handlers
8200 && kvm_vmx_exit_handlers[exit_reason])
8201 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8202 else {
8203 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8204 kvm_queue_exception(vcpu, UD_VECTOR);
8205 return 1;
8206 }
8207 }
8208
8209 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8210 {
8211 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8212
8213 if (is_guest_mode(vcpu) &&
8214 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8215 return;
8216
8217 if (irr == -1 || tpr < irr) {
8218 vmcs_write32(TPR_THRESHOLD, 0);
8219 return;
8220 }
8221
8222 vmcs_write32(TPR_THRESHOLD, irr);
8223 }
8224
8225 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8226 {
8227 u32 sec_exec_control;
8228
8229 /*
8230 * There is not point to enable virtualize x2apic without enable
8231 * apicv
8232 */
8233 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8234 !kvm_vcpu_apicv_active(vcpu))
8235 return;
8236
8237 if (!cpu_need_tpr_shadow(vcpu))
8238 return;
8239
8240 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8241
8242 if (set) {
8243 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8244 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8245 } else {
8246 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8247 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8248 }
8249 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8250
8251 vmx_set_msr_bitmap(vcpu);
8252 }
8253
8254 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8255 {
8256 struct vcpu_vmx *vmx = to_vmx(vcpu);
8257
8258 /*
8259 * Currently we do not handle the nested case where L2 has an
8260 * APIC access page of its own; that page is still pinned.
8261 * Hence, we skip the case where the VCPU is in guest mode _and_
8262 * L1 prepared an APIC access page for L2.
8263 *
8264 * For the case where L1 and L2 share the same APIC access page
8265 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8266 * in the vmcs12), this function will only update either the vmcs01
8267 * or the vmcs02. If the former, the vmcs02 will be updated by
8268 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8269 * the next L2->L1 exit.
8270 */
8271 if (!is_guest_mode(vcpu) ||
8272 !nested_cpu_has2(vmx->nested.current_vmcs12,
8273 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8274 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8275 }
8276
8277 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8278 {
8279 u16 status;
8280 u8 old;
8281
8282 if (isr == -1)
8283 isr = 0;
8284
8285 status = vmcs_read16(GUEST_INTR_STATUS);
8286 old = status >> 8;
8287 if (isr != old) {
8288 status &= 0xff;
8289 status |= isr << 8;
8290 vmcs_write16(GUEST_INTR_STATUS, status);
8291 }
8292 }
8293
8294 static void vmx_set_rvi(int vector)
8295 {
8296 u16 status;
8297 u8 old;
8298
8299 if (vector == -1)
8300 vector = 0;
8301
8302 status = vmcs_read16(GUEST_INTR_STATUS);
8303 old = (u8)status & 0xff;
8304 if ((u8)vector != old) {
8305 status &= ~0xff;
8306 status |= (u8)vector;
8307 vmcs_write16(GUEST_INTR_STATUS, status);
8308 }
8309 }
8310
8311 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8312 {
8313 if (!is_guest_mode(vcpu)) {
8314 vmx_set_rvi(max_irr);
8315 return;
8316 }
8317
8318 if (max_irr == -1)
8319 return;
8320
8321 /*
8322 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8323 * handles it.
8324 */
8325 if (nested_exit_on_intr(vcpu))
8326 return;
8327
8328 /*
8329 * Else, fall back to pre-APICv interrupt injection since L2
8330 * is run without virtual interrupt delivery.
8331 */
8332 if (!kvm_event_needs_reinjection(vcpu) &&
8333 vmx_interrupt_allowed(vcpu)) {
8334 kvm_queue_interrupt(vcpu, max_irr, false);
8335 vmx_inject_irq(vcpu);
8336 }
8337 }
8338
8339 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8340 {
8341 if (!kvm_vcpu_apicv_active(vcpu))
8342 return;
8343
8344 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8345 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8346 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8347 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8348 }
8349
8350 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8351 {
8352 u32 exit_intr_info;
8353
8354 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8355 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8356 return;
8357
8358 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8359 exit_intr_info = vmx->exit_intr_info;
8360
8361 /* Handle machine checks before interrupts are enabled */
8362 if (is_machine_check(exit_intr_info))
8363 kvm_machine_check();
8364
8365 /* We need to handle NMIs before interrupts are enabled */
8366 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8367 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8368 kvm_before_handle_nmi(&vmx->vcpu);
8369 asm("int $2");
8370 kvm_after_handle_nmi(&vmx->vcpu);
8371 }
8372 }
8373
8374 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8375 {
8376 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8377
8378 /*
8379 * If external interrupt exists, IF bit is set in rflags/eflags on the
8380 * interrupt stack frame, and interrupt will be enabled on a return
8381 * from interrupt handler.
8382 */
8383 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8384 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8385 unsigned int vector;
8386 unsigned long entry;
8387 gate_desc *desc;
8388 struct vcpu_vmx *vmx = to_vmx(vcpu);
8389 #ifdef CONFIG_X86_64
8390 unsigned long tmp;
8391 #endif
8392
8393 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8394 desc = (gate_desc *)vmx->host_idt_base + vector;
8395 entry = gate_offset(*desc);
8396 asm volatile(
8397 #ifdef CONFIG_X86_64
8398 "mov %%" _ASM_SP ", %[sp]\n\t"
8399 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8400 "push $%c[ss]\n\t"
8401 "push %[sp]\n\t"
8402 #endif
8403 "pushf\n\t"
8404 "orl $0x200, (%%" _ASM_SP ")\n\t"
8405 __ASM_SIZE(push) " $%c[cs]\n\t"
8406 "call *%[entry]\n\t"
8407 :
8408 #ifdef CONFIG_X86_64
8409 [sp]"=&r"(tmp)
8410 #endif
8411 :
8412 [entry]"r"(entry),
8413 [ss]"i"(__KERNEL_DS),
8414 [cs]"i"(__KERNEL_CS)
8415 );
8416 } else
8417 local_irq_enable();
8418 }
8419
8420 static bool vmx_has_high_real_mode_segbase(void)
8421 {
8422 return enable_unrestricted_guest || emulate_invalid_guest_state;
8423 }
8424
8425 static bool vmx_mpx_supported(void)
8426 {
8427 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8428 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8429 }
8430
8431 static bool vmx_xsaves_supported(void)
8432 {
8433 return vmcs_config.cpu_based_2nd_exec_ctrl &
8434 SECONDARY_EXEC_XSAVES;
8435 }
8436
8437 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8438 {
8439 u32 exit_intr_info;
8440 bool unblock_nmi;
8441 u8 vector;
8442 bool idtv_info_valid;
8443
8444 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8445
8446 if (cpu_has_virtual_nmis()) {
8447 if (vmx->nmi_known_unmasked)
8448 return;
8449 /*
8450 * Can't use vmx->exit_intr_info since we're not sure what
8451 * the exit reason is.
8452 */
8453 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8454 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8455 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8456 /*
8457 * SDM 3: 27.7.1.2 (September 2008)
8458 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8459 * a guest IRET fault.
8460 * SDM 3: 23.2.2 (September 2008)
8461 * Bit 12 is undefined in any of the following cases:
8462 * If the VM exit sets the valid bit in the IDT-vectoring
8463 * information field.
8464 * If the VM exit is due to a double fault.
8465 */
8466 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8467 vector != DF_VECTOR && !idtv_info_valid)
8468 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8469 GUEST_INTR_STATE_NMI);
8470 else
8471 vmx->nmi_known_unmasked =
8472 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8473 & GUEST_INTR_STATE_NMI);
8474 } else if (unlikely(vmx->soft_vnmi_blocked))
8475 vmx->vnmi_blocked_time +=
8476 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8477 }
8478
8479 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8480 u32 idt_vectoring_info,
8481 int instr_len_field,
8482 int error_code_field)
8483 {
8484 u8 vector;
8485 int type;
8486 bool idtv_info_valid;
8487
8488 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8489
8490 vcpu->arch.nmi_injected = false;
8491 kvm_clear_exception_queue(vcpu);
8492 kvm_clear_interrupt_queue(vcpu);
8493
8494 if (!idtv_info_valid)
8495 return;
8496
8497 kvm_make_request(KVM_REQ_EVENT, vcpu);
8498
8499 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8500 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8501
8502 switch (type) {
8503 case INTR_TYPE_NMI_INTR:
8504 vcpu->arch.nmi_injected = true;
8505 /*
8506 * SDM 3: 27.7.1.2 (September 2008)
8507 * Clear bit "block by NMI" before VM entry if a NMI
8508 * delivery faulted.
8509 */
8510 vmx_set_nmi_mask(vcpu, false);
8511 break;
8512 case INTR_TYPE_SOFT_EXCEPTION:
8513 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8514 /* fall through */
8515 case INTR_TYPE_HARD_EXCEPTION:
8516 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8517 u32 err = vmcs_read32(error_code_field);
8518 kvm_requeue_exception_e(vcpu, vector, err);
8519 } else
8520 kvm_requeue_exception(vcpu, vector);
8521 break;
8522 case INTR_TYPE_SOFT_INTR:
8523 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8524 /* fall through */
8525 case INTR_TYPE_EXT_INTR:
8526 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8527 break;
8528 default:
8529 break;
8530 }
8531 }
8532
8533 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8534 {
8535 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8536 VM_EXIT_INSTRUCTION_LEN,
8537 IDT_VECTORING_ERROR_CODE);
8538 }
8539
8540 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8541 {
8542 __vmx_complete_interrupts(vcpu,
8543 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8544 VM_ENTRY_INSTRUCTION_LEN,
8545 VM_ENTRY_EXCEPTION_ERROR_CODE);
8546
8547 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8548 }
8549
8550 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8551 {
8552 int i, nr_msrs;
8553 struct perf_guest_switch_msr *msrs;
8554
8555 msrs = perf_guest_get_msrs(&nr_msrs);
8556
8557 if (!msrs)
8558 return;
8559
8560 for (i = 0; i < nr_msrs; i++)
8561 if (msrs[i].host == msrs[i].guest)
8562 clear_atomic_switch_msr(vmx, msrs[i].msr);
8563 else
8564 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8565 msrs[i].host);
8566 }
8567
8568 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8569 {
8570 struct vcpu_vmx *vmx = to_vmx(vcpu);
8571 unsigned long debugctlmsr, cr4;
8572
8573 /* Record the guest's net vcpu time for enforced NMI injections. */
8574 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8575 vmx->entry_time = ktime_get();
8576
8577 /* Don't enter VMX if guest state is invalid, let the exit handler
8578 start emulation until we arrive back to a valid state */
8579 if (vmx->emulation_required)
8580 return;
8581
8582 if (vmx->ple_window_dirty) {
8583 vmx->ple_window_dirty = false;
8584 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8585 }
8586
8587 if (vmx->nested.sync_shadow_vmcs) {
8588 copy_vmcs12_to_shadow(vmx);
8589 vmx->nested.sync_shadow_vmcs = false;
8590 }
8591
8592 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8593 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8594 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8595 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8596
8597 cr4 = cr4_read_shadow();
8598 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8599 vmcs_writel(HOST_CR4, cr4);
8600 vmx->host_state.vmcs_host_cr4 = cr4;
8601 }
8602
8603 /* When single-stepping over STI and MOV SS, we must clear the
8604 * corresponding interruptibility bits in the guest state. Otherwise
8605 * vmentry fails as it then expects bit 14 (BS) in pending debug
8606 * exceptions being set, but that's not correct for the guest debugging
8607 * case. */
8608 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8609 vmx_set_interrupt_shadow(vcpu, 0);
8610
8611 atomic_switch_perf_msrs(vmx);
8612 debugctlmsr = get_debugctlmsr();
8613
8614 vmx->__launched = vmx->loaded_vmcs->launched;
8615 asm(
8616 /* Store host registers */
8617 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8618 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8619 "push %%" _ASM_CX " \n\t"
8620 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8621 "je 1f \n\t"
8622 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8623 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8624 "1: \n\t"
8625 /* Reload cr2 if changed */
8626 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8627 "mov %%cr2, %%" _ASM_DX " \n\t"
8628 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8629 "je 2f \n\t"
8630 "mov %%" _ASM_AX", %%cr2 \n\t"
8631 "2: \n\t"
8632 /* Check if vmlaunch of vmresume is needed */
8633 "cmpl $0, %c[launched](%0) \n\t"
8634 /* Load guest registers. Don't clobber flags. */
8635 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8636 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8637 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8638 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8639 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8640 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8641 #ifdef CONFIG_X86_64
8642 "mov %c[r8](%0), %%r8 \n\t"
8643 "mov %c[r9](%0), %%r9 \n\t"
8644 "mov %c[r10](%0), %%r10 \n\t"
8645 "mov %c[r11](%0), %%r11 \n\t"
8646 "mov %c[r12](%0), %%r12 \n\t"
8647 "mov %c[r13](%0), %%r13 \n\t"
8648 "mov %c[r14](%0), %%r14 \n\t"
8649 "mov %c[r15](%0), %%r15 \n\t"
8650 #endif
8651 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8652
8653 /* Enter guest mode */
8654 "jne 1f \n\t"
8655 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8656 "jmp 2f \n\t"
8657 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8658 "2: "
8659 /* Save guest registers, load host registers, keep flags */
8660 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8661 "pop %0 \n\t"
8662 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8663 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8664 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8665 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8666 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8667 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8668 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8669 #ifdef CONFIG_X86_64
8670 "mov %%r8, %c[r8](%0) \n\t"
8671 "mov %%r9, %c[r9](%0) \n\t"
8672 "mov %%r10, %c[r10](%0) \n\t"
8673 "mov %%r11, %c[r11](%0) \n\t"
8674 "mov %%r12, %c[r12](%0) \n\t"
8675 "mov %%r13, %c[r13](%0) \n\t"
8676 "mov %%r14, %c[r14](%0) \n\t"
8677 "mov %%r15, %c[r15](%0) \n\t"
8678 #endif
8679 "mov %%cr2, %%" _ASM_AX " \n\t"
8680 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8681
8682 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8683 "setbe %c[fail](%0) \n\t"
8684 ".pushsection .rodata \n\t"
8685 ".global vmx_return \n\t"
8686 "vmx_return: " _ASM_PTR " 2b \n\t"
8687 ".popsection"
8688 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8689 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8690 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8691 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8692 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8693 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8694 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8695 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8696 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8697 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8698 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8699 #ifdef CONFIG_X86_64
8700 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8701 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8702 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8703 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8704 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8705 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8706 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8707 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8708 #endif
8709 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8710 [wordsize]"i"(sizeof(ulong))
8711 : "cc", "memory"
8712 #ifdef CONFIG_X86_64
8713 , "rax", "rbx", "rdi", "rsi"
8714 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8715 #else
8716 , "eax", "ebx", "edi", "esi"
8717 #endif
8718 );
8719
8720 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8721 if (debugctlmsr)
8722 update_debugctlmsr(debugctlmsr);
8723
8724 #ifndef CONFIG_X86_64
8725 /*
8726 * The sysexit path does not restore ds/es, so we must set them to
8727 * a reasonable value ourselves.
8728 *
8729 * We can't defer this to vmx_load_host_state() since that function
8730 * may be executed in interrupt context, which saves and restore segments
8731 * around it, nullifying its effect.
8732 */
8733 loadsegment(ds, __USER_DS);
8734 loadsegment(es, __USER_DS);
8735 #endif
8736
8737 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8738 | (1 << VCPU_EXREG_RFLAGS)
8739 | (1 << VCPU_EXREG_PDPTR)
8740 | (1 << VCPU_EXREG_SEGMENTS)
8741 | (1 << VCPU_EXREG_CR3));
8742 vcpu->arch.regs_dirty = 0;
8743
8744 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8745
8746 vmx->loaded_vmcs->launched = 1;
8747
8748 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8749
8750 /*
8751 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8752 * we did not inject a still-pending event to L1 now because of
8753 * nested_run_pending, we need to re-enable this bit.
8754 */
8755 if (vmx->nested.nested_run_pending)
8756 kvm_make_request(KVM_REQ_EVENT, vcpu);
8757
8758 vmx->nested.nested_run_pending = 0;
8759
8760 vmx_complete_atomic_exit(vmx);
8761 vmx_recover_nmi_blocking(vmx);
8762 vmx_complete_interrupts(vmx);
8763 }
8764
8765 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8766 {
8767 struct vcpu_vmx *vmx = to_vmx(vcpu);
8768 int cpu;
8769
8770 if (vmx->loaded_vmcs == &vmx->vmcs01)
8771 return;
8772
8773 cpu = get_cpu();
8774 vmx->loaded_vmcs = &vmx->vmcs01;
8775 vmx_vcpu_put(vcpu);
8776 vmx_vcpu_load(vcpu, cpu);
8777 vcpu->cpu = cpu;
8778 put_cpu();
8779 }
8780
8781 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8782 {
8783 struct vcpu_vmx *vmx = to_vmx(vcpu);
8784
8785 if (enable_pml)
8786 vmx_destroy_pml_buffer(vmx);
8787 free_vpid(vmx->vpid);
8788 leave_guest_mode(vcpu);
8789 vmx_load_vmcs01(vcpu);
8790 free_nested(vmx);
8791 free_loaded_vmcs(vmx->loaded_vmcs);
8792 kfree(vmx->guest_msrs);
8793 kvm_vcpu_uninit(vcpu);
8794 kmem_cache_free(kvm_vcpu_cache, vmx);
8795 }
8796
8797 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8798 {
8799 int err;
8800 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8801 int cpu;
8802
8803 if (!vmx)
8804 return ERR_PTR(-ENOMEM);
8805
8806 vmx->vpid = allocate_vpid();
8807
8808 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8809 if (err)
8810 goto free_vcpu;
8811
8812 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8813 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8814 > PAGE_SIZE);
8815
8816 err = -ENOMEM;
8817 if (!vmx->guest_msrs) {
8818 goto uninit_vcpu;
8819 }
8820
8821 vmx->loaded_vmcs = &vmx->vmcs01;
8822 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8823 if (!vmx->loaded_vmcs->vmcs)
8824 goto free_msrs;
8825 if (!vmm_exclusive)
8826 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8827 loaded_vmcs_init(vmx->loaded_vmcs);
8828 if (!vmm_exclusive)
8829 kvm_cpu_vmxoff();
8830
8831 cpu = get_cpu();
8832 vmx_vcpu_load(&vmx->vcpu, cpu);
8833 vmx->vcpu.cpu = cpu;
8834 err = vmx_vcpu_setup(vmx);
8835 vmx_vcpu_put(&vmx->vcpu);
8836 put_cpu();
8837 if (err)
8838 goto free_vmcs;
8839 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
8840 err = alloc_apic_access_page(kvm);
8841 if (err)
8842 goto free_vmcs;
8843 }
8844
8845 if (enable_ept) {
8846 if (!kvm->arch.ept_identity_map_addr)
8847 kvm->arch.ept_identity_map_addr =
8848 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8849 err = init_rmode_identity_map(kvm);
8850 if (err)
8851 goto free_vmcs;
8852 }
8853
8854 if (nested) {
8855 nested_vmx_setup_ctls_msrs(vmx);
8856 vmx->nested.vpid02 = allocate_vpid();
8857 }
8858
8859 vmx->nested.posted_intr_nv = -1;
8860 vmx->nested.current_vmptr = -1ull;
8861 vmx->nested.current_vmcs12 = NULL;
8862
8863 /*
8864 * If PML is turned on, failure on enabling PML just results in failure
8865 * of creating the vcpu, therefore we can simplify PML logic (by
8866 * avoiding dealing with cases, such as enabling PML partially on vcpus
8867 * for the guest, etc.
8868 */
8869 if (enable_pml) {
8870 err = vmx_create_pml_buffer(vmx);
8871 if (err)
8872 goto free_vmcs;
8873 }
8874
8875 return &vmx->vcpu;
8876
8877 free_vmcs:
8878 free_vpid(vmx->nested.vpid02);
8879 free_loaded_vmcs(vmx->loaded_vmcs);
8880 free_msrs:
8881 kfree(vmx->guest_msrs);
8882 uninit_vcpu:
8883 kvm_vcpu_uninit(&vmx->vcpu);
8884 free_vcpu:
8885 free_vpid(vmx->vpid);
8886 kmem_cache_free(kvm_vcpu_cache, vmx);
8887 return ERR_PTR(err);
8888 }
8889
8890 static void __init vmx_check_processor_compat(void *rtn)
8891 {
8892 struct vmcs_config vmcs_conf;
8893
8894 *(int *)rtn = 0;
8895 if (setup_vmcs_config(&vmcs_conf) < 0)
8896 *(int *)rtn = -EIO;
8897 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8898 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8899 smp_processor_id());
8900 *(int *)rtn = -EIO;
8901 }
8902 }
8903
8904 static int get_ept_level(void)
8905 {
8906 return VMX_EPT_DEFAULT_GAW + 1;
8907 }
8908
8909 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8910 {
8911 u8 cache;
8912 u64 ipat = 0;
8913
8914 /* For VT-d and EPT combination
8915 * 1. MMIO: always map as UC
8916 * 2. EPT with VT-d:
8917 * a. VT-d without snooping control feature: can't guarantee the
8918 * result, try to trust guest.
8919 * b. VT-d with snooping control feature: snooping control feature of
8920 * VT-d engine can guarantee the cache correctness. Just set it
8921 * to WB to keep consistent with host. So the same as item 3.
8922 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8923 * consistent with host MTRR
8924 */
8925 if (is_mmio) {
8926 cache = MTRR_TYPE_UNCACHABLE;
8927 goto exit;
8928 }
8929
8930 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8931 ipat = VMX_EPT_IPAT_BIT;
8932 cache = MTRR_TYPE_WRBACK;
8933 goto exit;
8934 }
8935
8936 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8937 ipat = VMX_EPT_IPAT_BIT;
8938 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8939 cache = MTRR_TYPE_WRBACK;
8940 else
8941 cache = MTRR_TYPE_UNCACHABLE;
8942 goto exit;
8943 }
8944
8945 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8946
8947 exit:
8948 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8949 }
8950
8951 static int vmx_get_lpage_level(void)
8952 {
8953 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8954 return PT_DIRECTORY_LEVEL;
8955 else
8956 /* For shadow and EPT supported 1GB page */
8957 return PT_PDPE_LEVEL;
8958 }
8959
8960 static void vmcs_set_secondary_exec_control(u32 new_ctl)
8961 {
8962 /*
8963 * These bits in the secondary execution controls field
8964 * are dynamic, the others are mostly based on the hypervisor
8965 * architecture and the guest's CPUID. Do not touch the
8966 * dynamic bits.
8967 */
8968 u32 mask =
8969 SECONDARY_EXEC_SHADOW_VMCS |
8970 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8971 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8972
8973 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8974
8975 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8976 (new_ctl & ~mask) | (cur_ctl & mask));
8977 }
8978
8979 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8980 {
8981 struct kvm_cpuid_entry2 *best;
8982 struct vcpu_vmx *vmx = to_vmx(vcpu);
8983 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
8984
8985 if (vmx_rdtscp_supported()) {
8986 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8987 if (!rdtscp_enabled)
8988 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
8989
8990 if (nested) {
8991 if (rdtscp_enabled)
8992 vmx->nested.nested_vmx_secondary_ctls_high |=
8993 SECONDARY_EXEC_RDTSCP;
8994 else
8995 vmx->nested.nested_vmx_secondary_ctls_high &=
8996 ~SECONDARY_EXEC_RDTSCP;
8997 }
8998 }
8999
9000 /* Exposing INVPCID only when PCID is exposed */
9001 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9002 if (vmx_invpcid_supported() &&
9003 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9004 !guest_cpuid_has_pcid(vcpu))) {
9005 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9006
9007 if (best)
9008 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9009 }
9010
9011 if (cpu_has_secondary_exec_ctrls())
9012 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9013
9014 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9015 if (guest_cpuid_has_pcommit(vcpu))
9016 vmx->nested.nested_vmx_secondary_ctls_high |=
9017 SECONDARY_EXEC_PCOMMIT;
9018 else
9019 vmx->nested.nested_vmx_secondary_ctls_high &=
9020 ~SECONDARY_EXEC_PCOMMIT;
9021 }
9022 }
9023
9024 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9025 {
9026 if (func == 1 && nested)
9027 entry->ecx |= bit(X86_FEATURE_VMX);
9028 }
9029
9030 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9031 struct x86_exception *fault)
9032 {
9033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9034 u32 exit_reason;
9035
9036 if (fault->error_code & PFERR_RSVD_MASK)
9037 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9038 else
9039 exit_reason = EXIT_REASON_EPT_VIOLATION;
9040 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9041 vmcs12->guest_physical_address = fault->address;
9042 }
9043
9044 /* Callbacks for nested_ept_init_mmu_context: */
9045
9046 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9047 {
9048 /* return the page table to be shadowed - in our case, EPT12 */
9049 return get_vmcs12(vcpu)->ept_pointer;
9050 }
9051
9052 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9053 {
9054 WARN_ON(mmu_is_nested(vcpu));
9055 kvm_init_shadow_ept_mmu(vcpu,
9056 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9057 VMX_EPT_EXECUTE_ONLY_BIT);
9058 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9059 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9060 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9061
9062 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9063 }
9064
9065 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9066 {
9067 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9068 }
9069
9070 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9071 u16 error_code)
9072 {
9073 bool inequality, bit;
9074
9075 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9076 inequality =
9077 (error_code & vmcs12->page_fault_error_code_mask) !=
9078 vmcs12->page_fault_error_code_match;
9079 return inequality ^ bit;
9080 }
9081
9082 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9083 struct x86_exception *fault)
9084 {
9085 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9086
9087 WARN_ON(!is_guest_mode(vcpu));
9088
9089 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9090 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9091 vmcs_read32(VM_EXIT_INTR_INFO),
9092 vmcs_readl(EXIT_QUALIFICATION));
9093 else
9094 kvm_inject_page_fault(vcpu, fault);
9095 }
9096
9097 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9098 struct vmcs12 *vmcs12)
9099 {
9100 struct vcpu_vmx *vmx = to_vmx(vcpu);
9101 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9102
9103 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9104 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9105 vmcs12->apic_access_addr >> maxphyaddr)
9106 return false;
9107
9108 /*
9109 * Translate L1 physical address to host physical
9110 * address for vmcs02. Keep the page pinned, so this
9111 * physical address remains valid. We keep a reference
9112 * to it so we can release it later.
9113 */
9114 if (vmx->nested.apic_access_page) /* shouldn't happen */
9115 nested_release_page(vmx->nested.apic_access_page);
9116 vmx->nested.apic_access_page =
9117 nested_get_page(vcpu, vmcs12->apic_access_addr);
9118 }
9119
9120 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9121 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9122 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9123 return false;
9124
9125 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9126 nested_release_page(vmx->nested.virtual_apic_page);
9127 vmx->nested.virtual_apic_page =
9128 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9129
9130 /*
9131 * Failing the vm entry is _not_ what the processor does
9132 * but it's basically the only possibility we have.
9133 * We could still enter the guest if CR8 load exits are
9134 * enabled, CR8 store exits are enabled, and virtualize APIC
9135 * access is disabled; in this case the processor would never
9136 * use the TPR shadow and we could simply clear the bit from
9137 * the execution control. But such a configuration is useless,
9138 * so let's keep the code simple.
9139 */
9140 if (!vmx->nested.virtual_apic_page)
9141 return false;
9142 }
9143
9144 if (nested_cpu_has_posted_intr(vmcs12)) {
9145 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9146 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9147 return false;
9148
9149 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9150 kunmap(vmx->nested.pi_desc_page);
9151 nested_release_page(vmx->nested.pi_desc_page);
9152 }
9153 vmx->nested.pi_desc_page =
9154 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9155 if (!vmx->nested.pi_desc_page)
9156 return false;
9157
9158 vmx->nested.pi_desc =
9159 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9160 if (!vmx->nested.pi_desc) {
9161 nested_release_page_clean(vmx->nested.pi_desc_page);
9162 return false;
9163 }
9164 vmx->nested.pi_desc =
9165 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9166 (unsigned long)(vmcs12->posted_intr_desc_addr &
9167 (PAGE_SIZE - 1)));
9168 }
9169
9170 return true;
9171 }
9172
9173 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9174 {
9175 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9176 struct vcpu_vmx *vmx = to_vmx(vcpu);
9177
9178 if (vcpu->arch.virtual_tsc_khz == 0)
9179 return;
9180
9181 /* Make sure short timeouts reliably trigger an immediate vmexit.
9182 * hrtimer_start does not guarantee this. */
9183 if (preemption_timeout <= 1) {
9184 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9185 return;
9186 }
9187
9188 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9189 preemption_timeout *= 1000000;
9190 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9191 hrtimer_start(&vmx->nested.preemption_timer,
9192 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9193 }
9194
9195 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9196 struct vmcs12 *vmcs12)
9197 {
9198 int maxphyaddr;
9199 u64 addr;
9200
9201 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9202 return 0;
9203
9204 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9205 WARN_ON(1);
9206 return -EINVAL;
9207 }
9208 maxphyaddr = cpuid_maxphyaddr(vcpu);
9209
9210 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9211 ((addr + PAGE_SIZE) >> maxphyaddr))
9212 return -EINVAL;
9213
9214 return 0;
9215 }
9216
9217 /*
9218 * Merge L0's and L1's MSR bitmap, return false to indicate that
9219 * we do not use the hardware.
9220 */
9221 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9222 struct vmcs12 *vmcs12)
9223 {
9224 int msr;
9225 struct page *page;
9226 unsigned long *msr_bitmap;
9227
9228 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9229 return false;
9230
9231 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9232 if (!page) {
9233 WARN_ON(1);
9234 return false;
9235 }
9236 msr_bitmap = (unsigned long *)kmap(page);
9237 if (!msr_bitmap) {
9238 nested_release_page_clean(page);
9239 WARN_ON(1);
9240 return false;
9241 }
9242
9243 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9244 if (nested_cpu_has_apic_reg_virt(vmcs12))
9245 for (msr = 0x800; msr <= 0x8ff; msr++)
9246 nested_vmx_disable_intercept_for_msr(
9247 msr_bitmap,
9248 vmx_msr_bitmap_nested,
9249 msr, MSR_TYPE_R);
9250 /* TPR is allowed */
9251 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9252 vmx_msr_bitmap_nested,
9253 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9254 MSR_TYPE_R | MSR_TYPE_W);
9255 if (nested_cpu_has_vid(vmcs12)) {
9256 /* EOI and self-IPI are allowed */
9257 nested_vmx_disable_intercept_for_msr(
9258 msr_bitmap,
9259 vmx_msr_bitmap_nested,
9260 APIC_BASE_MSR + (APIC_EOI >> 4),
9261 MSR_TYPE_W);
9262 nested_vmx_disable_intercept_for_msr(
9263 msr_bitmap,
9264 vmx_msr_bitmap_nested,
9265 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9266 MSR_TYPE_W);
9267 }
9268 } else {
9269 /*
9270 * Enable reading intercept of all the x2apic
9271 * MSRs. We should not rely on vmcs12 to do any
9272 * optimizations here, it may have been modified
9273 * by L1.
9274 */
9275 for (msr = 0x800; msr <= 0x8ff; msr++)
9276 __vmx_enable_intercept_for_msr(
9277 vmx_msr_bitmap_nested,
9278 msr,
9279 MSR_TYPE_R);
9280
9281 __vmx_enable_intercept_for_msr(
9282 vmx_msr_bitmap_nested,
9283 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9284 MSR_TYPE_W);
9285 __vmx_enable_intercept_for_msr(
9286 vmx_msr_bitmap_nested,
9287 APIC_BASE_MSR + (APIC_EOI >> 4),
9288 MSR_TYPE_W);
9289 __vmx_enable_intercept_for_msr(
9290 vmx_msr_bitmap_nested,
9291 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9292 MSR_TYPE_W);
9293 }
9294 kunmap(page);
9295 nested_release_page_clean(page);
9296
9297 return true;
9298 }
9299
9300 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9301 struct vmcs12 *vmcs12)
9302 {
9303 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9304 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9305 !nested_cpu_has_vid(vmcs12) &&
9306 !nested_cpu_has_posted_intr(vmcs12))
9307 return 0;
9308
9309 /*
9310 * If virtualize x2apic mode is enabled,
9311 * virtualize apic access must be disabled.
9312 */
9313 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9314 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9315 return -EINVAL;
9316
9317 /*
9318 * If virtual interrupt delivery is enabled,
9319 * we must exit on external interrupts.
9320 */
9321 if (nested_cpu_has_vid(vmcs12) &&
9322 !nested_exit_on_intr(vcpu))
9323 return -EINVAL;
9324
9325 /*
9326 * bits 15:8 should be zero in posted_intr_nv,
9327 * the descriptor address has been already checked
9328 * in nested_get_vmcs12_pages.
9329 */
9330 if (nested_cpu_has_posted_intr(vmcs12) &&
9331 (!nested_cpu_has_vid(vmcs12) ||
9332 !nested_exit_intr_ack_set(vcpu) ||
9333 vmcs12->posted_intr_nv & 0xff00))
9334 return -EINVAL;
9335
9336 /* tpr shadow is needed by all apicv features. */
9337 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9338 return -EINVAL;
9339
9340 return 0;
9341 }
9342
9343 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9344 unsigned long count_field,
9345 unsigned long addr_field)
9346 {
9347 int maxphyaddr;
9348 u64 count, addr;
9349
9350 if (vmcs12_read_any(vcpu, count_field, &count) ||
9351 vmcs12_read_any(vcpu, addr_field, &addr)) {
9352 WARN_ON(1);
9353 return -EINVAL;
9354 }
9355 if (count == 0)
9356 return 0;
9357 maxphyaddr = cpuid_maxphyaddr(vcpu);
9358 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9359 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9360 pr_warn_ratelimited(
9361 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9362 addr_field, maxphyaddr, count, addr);
9363 return -EINVAL;
9364 }
9365 return 0;
9366 }
9367
9368 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9369 struct vmcs12 *vmcs12)
9370 {
9371 if (vmcs12->vm_exit_msr_load_count == 0 &&
9372 vmcs12->vm_exit_msr_store_count == 0 &&
9373 vmcs12->vm_entry_msr_load_count == 0)
9374 return 0; /* Fast path */
9375 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9376 VM_EXIT_MSR_LOAD_ADDR) ||
9377 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9378 VM_EXIT_MSR_STORE_ADDR) ||
9379 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9380 VM_ENTRY_MSR_LOAD_ADDR))
9381 return -EINVAL;
9382 return 0;
9383 }
9384
9385 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9386 struct vmx_msr_entry *e)
9387 {
9388 /* x2APIC MSR accesses are not allowed */
9389 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9390 return -EINVAL;
9391 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9392 e->index == MSR_IA32_UCODE_REV)
9393 return -EINVAL;
9394 if (e->reserved != 0)
9395 return -EINVAL;
9396 return 0;
9397 }
9398
9399 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9400 struct vmx_msr_entry *e)
9401 {
9402 if (e->index == MSR_FS_BASE ||
9403 e->index == MSR_GS_BASE ||
9404 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9405 nested_vmx_msr_check_common(vcpu, e))
9406 return -EINVAL;
9407 return 0;
9408 }
9409
9410 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9411 struct vmx_msr_entry *e)
9412 {
9413 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9414 nested_vmx_msr_check_common(vcpu, e))
9415 return -EINVAL;
9416 return 0;
9417 }
9418
9419 /*
9420 * Load guest's/host's msr at nested entry/exit.
9421 * return 0 for success, entry index for failure.
9422 */
9423 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9424 {
9425 u32 i;
9426 struct vmx_msr_entry e;
9427 struct msr_data msr;
9428
9429 msr.host_initiated = false;
9430 for (i = 0; i < count; i++) {
9431 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9432 &e, sizeof(e))) {
9433 pr_warn_ratelimited(
9434 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9435 __func__, i, gpa + i * sizeof(e));
9436 goto fail;
9437 }
9438 if (nested_vmx_load_msr_check(vcpu, &e)) {
9439 pr_warn_ratelimited(
9440 "%s check failed (%u, 0x%x, 0x%x)\n",
9441 __func__, i, e.index, e.reserved);
9442 goto fail;
9443 }
9444 msr.index = e.index;
9445 msr.data = e.value;
9446 if (kvm_set_msr(vcpu, &msr)) {
9447 pr_warn_ratelimited(
9448 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9449 __func__, i, e.index, e.value);
9450 goto fail;
9451 }
9452 }
9453 return 0;
9454 fail:
9455 return i + 1;
9456 }
9457
9458 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9459 {
9460 u32 i;
9461 struct vmx_msr_entry e;
9462
9463 for (i = 0; i < count; i++) {
9464 struct msr_data msr_info;
9465 if (kvm_vcpu_read_guest(vcpu,
9466 gpa + i * sizeof(e),
9467 &e, 2 * sizeof(u32))) {
9468 pr_warn_ratelimited(
9469 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9470 __func__, i, gpa + i * sizeof(e));
9471 return -EINVAL;
9472 }
9473 if (nested_vmx_store_msr_check(vcpu, &e)) {
9474 pr_warn_ratelimited(
9475 "%s check failed (%u, 0x%x, 0x%x)\n",
9476 __func__, i, e.index, e.reserved);
9477 return -EINVAL;
9478 }
9479 msr_info.host_initiated = false;
9480 msr_info.index = e.index;
9481 if (kvm_get_msr(vcpu, &msr_info)) {
9482 pr_warn_ratelimited(
9483 "%s cannot read MSR (%u, 0x%x)\n",
9484 __func__, i, e.index);
9485 return -EINVAL;
9486 }
9487 if (kvm_vcpu_write_guest(vcpu,
9488 gpa + i * sizeof(e) +
9489 offsetof(struct vmx_msr_entry, value),
9490 &msr_info.data, sizeof(msr_info.data))) {
9491 pr_warn_ratelimited(
9492 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9493 __func__, i, e.index, msr_info.data);
9494 return -EINVAL;
9495 }
9496 }
9497 return 0;
9498 }
9499
9500 /*
9501 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9502 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9503 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9504 * guest in a way that will both be appropriate to L1's requests, and our
9505 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9506 * function also has additional necessary side-effects, like setting various
9507 * vcpu->arch fields.
9508 */
9509 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9510 {
9511 struct vcpu_vmx *vmx = to_vmx(vcpu);
9512 u32 exec_control;
9513
9514 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9515 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9516 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9517 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9518 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9519 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9520 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9521 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9522 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9523 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9524 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9525 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9526 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9527 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9528 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9529 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9530 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9531 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9532 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9533 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9534 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9535 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9536 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9537 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9538 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9539 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9540 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9541 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9542 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9543 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9544 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9545 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9546 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9547 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9548 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9549 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9550
9551 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9552 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9553 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9554 } else {
9555 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9556 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9557 }
9558 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9559 vmcs12->vm_entry_intr_info_field);
9560 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9561 vmcs12->vm_entry_exception_error_code);
9562 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9563 vmcs12->vm_entry_instruction_len);
9564 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9565 vmcs12->guest_interruptibility_info);
9566 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9567 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9568 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9569 vmcs12->guest_pending_dbg_exceptions);
9570 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9571 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9572
9573 if (nested_cpu_has_xsaves(vmcs12))
9574 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9575 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9576
9577 exec_control = vmcs12->pin_based_vm_exec_control;
9578 exec_control |= vmcs_config.pin_based_exec_ctrl;
9579 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9580
9581 if (nested_cpu_has_posted_intr(vmcs12)) {
9582 /*
9583 * Note that we use L0's vector here and in
9584 * vmx_deliver_nested_posted_interrupt.
9585 */
9586 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9587 vmx->nested.pi_pending = false;
9588 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9589 vmcs_write64(POSTED_INTR_DESC_ADDR,
9590 page_to_phys(vmx->nested.pi_desc_page) +
9591 (unsigned long)(vmcs12->posted_intr_desc_addr &
9592 (PAGE_SIZE - 1)));
9593 } else
9594 exec_control &= ~PIN_BASED_POSTED_INTR;
9595
9596 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9597
9598 vmx->nested.preemption_timer_expired = false;
9599 if (nested_cpu_has_preemption_timer(vmcs12))
9600 vmx_start_preemption_timer(vcpu);
9601
9602 /*
9603 * Whether page-faults are trapped is determined by a combination of
9604 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9605 * If enable_ept, L0 doesn't care about page faults and we should
9606 * set all of these to L1's desires. However, if !enable_ept, L0 does
9607 * care about (at least some) page faults, and because it is not easy
9608 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9609 * to exit on each and every L2 page fault. This is done by setting
9610 * MASK=MATCH=0 and (see below) EB.PF=1.
9611 * Note that below we don't need special code to set EB.PF beyond the
9612 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9613 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9614 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9615 *
9616 * A problem with this approach (when !enable_ept) is that L1 may be
9617 * injected with more page faults than it asked for. This could have
9618 * caused problems, but in practice existing hypervisors don't care.
9619 * To fix this, we will need to emulate the PFEC checking (on the L1
9620 * page tables), using walk_addr(), when injecting PFs to L1.
9621 */
9622 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9623 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9624 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9625 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9626
9627 if (cpu_has_secondary_exec_ctrls()) {
9628 exec_control = vmx_secondary_exec_control(vmx);
9629
9630 /* Take the following fields only from vmcs12 */
9631 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9632 SECONDARY_EXEC_RDTSCP |
9633 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9634 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9635 SECONDARY_EXEC_PCOMMIT);
9636 if (nested_cpu_has(vmcs12,
9637 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9638 exec_control |= vmcs12->secondary_vm_exec_control;
9639
9640 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9641 /*
9642 * If translation failed, no matter: This feature asks
9643 * to exit when accessing the given address, and if it
9644 * can never be accessed, this feature won't do
9645 * anything anyway.
9646 */
9647 if (!vmx->nested.apic_access_page)
9648 exec_control &=
9649 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9650 else
9651 vmcs_write64(APIC_ACCESS_ADDR,
9652 page_to_phys(vmx->nested.apic_access_page));
9653 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9654 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9655 exec_control |=
9656 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9657 kvm_vcpu_reload_apic_access_page(vcpu);
9658 }
9659
9660 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9661 vmcs_write64(EOI_EXIT_BITMAP0,
9662 vmcs12->eoi_exit_bitmap0);
9663 vmcs_write64(EOI_EXIT_BITMAP1,
9664 vmcs12->eoi_exit_bitmap1);
9665 vmcs_write64(EOI_EXIT_BITMAP2,
9666 vmcs12->eoi_exit_bitmap2);
9667 vmcs_write64(EOI_EXIT_BITMAP3,
9668 vmcs12->eoi_exit_bitmap3);
9669 vmcs_write16(GUEST_INTR_STATUS,
9670 vmcs12->guest_intr_status);
9671 }
9672
9673 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9674 }
9675
9676
9677 /*
9678 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9679 * Some constant fields are set here by vmx_set_constant_host_state().
9680 * Other fields are different per CPU, and will be set later when
9681 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9682 */
9683 vmx_set_constant_host_state(vmx);
9684
9685 /*
9686 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9687 * entry, but only if the current (host) sp changed from the value
9688 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9689 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9690 * here we just force the write to happen on entry.
9691 */
9692 vmx->host_rsp = 0;
9693
9694 exec_control = vmx_exec_control(vmx); /* L0's desires */
9695 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9696 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9697 exec_control &= ~CPU_BASED_TPR_SHADOW;
9698 exec_control |= vmcs12->cpu_based_vm_exec_control;
9699
9700 if (exec_control & CPU_BASED_TPR_SHADOW) {
9701 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9702 page_to_phys(vmx->nested.virtual_apic_page));
9703 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9704 }
9705
9706 if (cpu_has_vmx_msr_bitmap() &&
9707 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9708 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9709 /* MSR_BITMAP will be set by following vmx_set_efer. */
9710 } else
9711 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9712
9713 /*
9714 * Merging of IO bitmap not currently supported.
9715 * Rather, exit every time.
9716 */
9717 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9718 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9719
9720 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9721
9722 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9723 * bitwise-or of what L1 wants to trap for L2, and what we want to
9724 * trap. Note that CR0.TS also needs updating - we do this later.
9725 */
9726 update_exception_bitmap(vcpu);
9727 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9728 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9729
9730 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9731 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9732 * bits are further modified by vmx_set_efer() below.
9733 */
9734 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9735
9736 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9737 * emulated by vmx_set_efer(), below.
9738 */
9739 vm_entry_controls_init(vmx,
9740 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9741 ~VM_ENTRY_IA32E_MODE) |
9742 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9743
9744 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9745 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9746 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9747 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9748 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9749
9750
9751 set_cr4_guest_host_mask(vmx);
9752
9753 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9754 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9755
9756 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9757 vmcs_write64(TSC_OFFSET,
9758 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9759 else
9760 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9761
9762 if (enable_vpid) {
9763 /*
9764 * There is no direct mapping between vpid02 and vpid12, the
9765 * vpid02 is per-vCPU for L0 and reused while the value of
9766 * vpid12 is changed w/ one invvpid during nested vmentry.
9767 * The vpid12 is allocated by L1 for L2, so it will not
9768 * influence global bitmap(for vpid01 and vpid02 allocation)
9769 * even if spawn a lot of nested vCPUs.
9770 */
9771 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9772 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9773 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9774 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9775 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9776 }
9777 } else {
9778 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9779 vmx_flush_tlb(vcpu);
9780 }
9781
9782 }
9783
9784 if (nested_cpu_has_ept(vmcs12)) {
9785 kvm_mmu_unload(vcpu);
9786 nested_ept_init_mmu_context(vcpu);
9787 }
9788
9789 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9790 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9791 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9792 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9793 else
9794 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9795 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9796 vmx_set_efer(vcpu, vcpu->arch.efer);
9797
9798 /*
9799 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9800 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9801 * The CR0_READ_SHADOW is what L2 should have expected to read given
9802 * the specifications by L1; It's not enough to take
9803 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9804 * have more bits than L1 expected.
9805 */
9806 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9807 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9808
9809 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9810 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9811
9812 /* shadow page tables on either EPT or shadow page tables */
9813 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9814 kvm_mmu_reset_context(vcpu);
9815
9816 if (!enable_ept)
9817 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9818
9819 /*
9820 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9821 */
9822 if (enable_ept) {
9823 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9824 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9825 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9826 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9827 }
9828
9829 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9830 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9831 }
9832
9833 /*
9834 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9835 * for running an L2 nested guest.
9836 */
9837 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9838 {
9839 struct vmcs12 *vmcs12;
9840 struct vcpu_vmx *vmx = to_vmx(vcpu);
9841 int cpu;
9842 struct loaded_vmcs *vmcs02;
9843 bool ia32e;
9844 u32 msr_entry_idx;
9845
9846 if (!nested_vmx_check_permission(vcpu) ||
9847 !nested_vmx_check_vmcs12(vcpu))
9848 return 1;
9849
9850 skip_emulated_instruction(vcpu);
9851 vmcs12 = get_vmcs12(vcpu);
9852
9853 if (enable_shadow_vmcs)
9854 copy_shadow_to_vmcs12(vmx);
9855
9856 /*
9857 * The nested entry process starts with enforcing various prerequisites
9858 * on vmcs12 as required by the Intel SDM, and act appropriately when
9859 * they fail: As the SDM explains, some conditions should cause the
9860 * instruction to fail, while others will cause the instruction to seem
9861 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9862 * To speed up the normal (success) code path, we should avoid checking
9863 * for misconfigurations which will anyway be caught by the processor
9864 * when using the merged vmcs02.
9865 */
9866 if (vmcs12->launch_state == launch) {
9867 nested_vmx_failValid(vcpu,
9868 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9869 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9870 return 1;
9871 }
9872
9873 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9874 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9875 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9876 return 1;
9877 }
9878
9879 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9880 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9881 return 1;
9882 }
9883
9884 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9885 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9886 return 1;
9887 }
9888
9889 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9890 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9891 return 1;
9892 }
9893
9894 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9895 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9896 return 1;
9897 }
9898
9899 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9900 vmx->nested.nested_vmx_true_procbased_ctls_low,
9901 vmx->nested.nested_vmx_procbased_ctls_high) ||
9902 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9903 vmx->nested.nested_vmx_secondary_ctls_low,
9904 vmx->nested.nested_vmx_secondary_ctls_high) ||
9905 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9906 vmx->nested.nested_vmx_pinbased_ctls_low,
9907 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9908 !vmx_control_verify(vmcs12->vm_exit_controls,
9909 vmx->nested.nested_vmx_true_exit_ctls_low,
9910 vmx->nested.nested_vmx_exit_ctls_high) ||
9911 !vmx_control_verify(vmcs12->vm_entry_controls,
9912 vmx->nested.nested_vmx_true_entry_ctls_low,
9913 vmx->nested.nested_vmx_entry_ctls_high))
9914 {
9915 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9916 return 1;
9917 }
9918
9919 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9920 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9921 nested_vmx_failValid(vcpu,
9922 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9923 return 1;
9924 }
9925
9926 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9927 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9928 nested_vmx_entry_failure(vcpu, vmcs12,
9929 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9930 return 1;
9931 }
9932 if (vmcs12->vmcs_link_pointer != -1ull) {
9933 nested_vmx_entry_failure(vcpu, vmcs12,
9934 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9935 return 1;
9936 }
9937
9938 /*
9939 * If the load IA32_EFER VM-entry control is 1, the following checks
9940 * are performed on the field for the IA32_EFER MSR:
9941 * - Bits reserved in the IA32_EFER MSR must be 0.
9942 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9943 * the IA-32e mode guest VM-exit control. It must also be identical
9944 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9945 * CR0.PG) is 1.
9946 */
9947 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9948 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9949 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9950 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9951 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9952 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9953 nested_vmx_entry_failure(vcpu, vmcs12,
9954 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9955 return 1;
9956 }
9957 }
9958
9959 /*
9960 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9961 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9962 * the values of the LMA and LME bits in the field must each be that of
9963 * the host address-space size VM-exit control.
9964 */
9965 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9966 ia32e = (vmcs12->vm_exit_controls &
9967 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9968 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9969 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9970 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9971 nested_vmx_entry_failure(vcpu, vmcs12,
9972 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9973 return 1;
9974 }
9975 }
9976
9977 /*
9978 * We're finally done with prerequisite checking, and can start with
9979 * the nested entry.
9980 */
9981
9982 vmcs02 = nested_get_current_vmcs02(vmx);
9983 if (!vmcs02)
9984 return -ENOMEM;
9985
9986 enter_guest_mode(vcpu);
9987
9988 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9989
9990 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9991 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9992
9993 cpu = get_cpu();
9994 vmx->loaded_vmcs = vmcs02;
9995 vmx_vcpu_put(vcpu);
9996 vmx_vcpu_load(vcpu, cpu);
9997 vcpu->cpu = cpu;
9998 put_cpu();
9999
10000 vmx_segment_cache_clear(vmx);
10001
10002 prepare_vmcs02(vcpu, vmcs12);
10003
10004 msr_entry_idx = nested_vmx_load_msr(vcpu,
10005 vmcs12->vm_entry_msr_load_addr,
10006 vmcs12->vm_entry_msr_load_count);
10007 if (msr_entry_idx) {
10008 leave_guest_mode(vcpu);
10009 vmx_load_vmcs01(vcpu);
10010 nested_vmx_entry_failure(vcpu, vmcs12,
10011 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10012 return 1;
10013 }
10014
10015 vmcs12->launch_state = 1;
10016
10017 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10018 return kvm_vcpu_halt(vcpu);
10019
10020 vmx->nested.nested_run_pending = 1;
10021
10022 /*
10023 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10024 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10025 * returned as far as L1 is concerned. It will only return (and set
10026 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10027 */
10028 return 1;
10029 }
10030
10031 /*
10032 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10033 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10034 * This function returns the new value we should put in vmcs12.guest_cr0.
10035 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10036 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10037 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10038 * didn't trap the bit, because if L1 did, so would L0).
10039 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10040 * been modified by L2, and L1 knows it. So just leave the old value of
10041 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10042 * isn't relevant, because if L0 traps this bit it can set it to anything.
10043 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10044 * changed these bits, and therefore they need to be updated, but L0
10045 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10046 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10047 */
10048 static inline unsigned long
10049 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10050 {
10051 return
10052 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10053 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10054 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10055 vcpu->arch.cr0_guest_owned_bits));
10056 }
10057
10058 static inline unsigned long
10059 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10060 {
10061 return
10062 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10063 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10064 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10065 vcpu->arch.cr4_guest_owned_bits));
10066 }
10067
10068 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10069 struct vmcs12 *vmcs12)
10070 {
10071 u32 idt_vectoring;
10072 unsigned int nr;
10073
10074 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10075 nr = vcpu->arch.exception.nr;
10076 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10077
10078 if (kvm_exception_is_soft(nr)) {
10079 vmcs12->vm_exit_instruction_len =
10080 vcpu->arch.event_exit_inst_len;
10081 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10082 } else
10083 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10084
10085 if (vcpu->arch.exception.has_error_code) {
10086 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10087 vmcs12->idt_vectoring_error_code =
10088 vcpu->arch.exception.error_code;
10089 }
10090
10091 vmcs12->idt_vectoring_info_field = idt_vectoring;
10092 } else if (vcpu->arch.nmi_injected) {
10093 vmcs12->idt_vectoring_info_field =
10094 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10095 } else if (vcpu->arch.interrupt.pending) {
10096 nr = vcpu->arch.interrupt.nr;
10097 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10098
10099 if (vcpu->arch.interrupt.soft) {
10100 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10101 vmcs12->vm_entry_instruction_len =
10102 vcpu->arch.event_exit_inst_len;
10103 } else
10104 idt_vectoring |= INTR_TYPE_EXT_INTR;
10105
10106 vmcs12->idt_vectoring_info_field = idt_vectoring;
10107 }
10108 }
10109
10110 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10111 {
10112 struct vcpu_vmx *vmx = to_vmx(vcpu);
10113
10114 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10115 vmx->nested.preemption_timer_expired) {
10116 if (vmx->nested.nested_run_pending)
10117 return -EBUSY;
10118 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10119 return 0;
10120 }
10121
10122 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10123 if (vmx->nested.nested_run_pending ||
10124 vcpu->arch.interrupt.pending)
10125 return -EBUSY;
10126 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10127 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10128 INTR_INFO_VALID_MASK, 0);
10129 /*
10130 * The NMI-triggered VM exit counts as injection:
10131 * clear this one and block further NMIs.
10132 */
10133 vcpu->arch.nmi_pending = 0;
10134 vmx_set_nmi_mask(vcpu, true);
10135 return 0;
10136 }
10137
10138 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10139 nested_exit_on_intr(vcpu)) {
10140 if (vmx->nested.nested_run_pending)
10141 return -EBUSY;
10142 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10143 return 0;
10144 }
10145
10146 return vmx_complete_nested_posted_interrupt(vcpu);
10147 }
10148
10149 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10150 {
10151 ktime_t remaining =
10152 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10153 u64 value;
10154
10155 if (ktime_to_ns(remaining) <= 0)
10156 return 0;
10157
10158 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10159 do_div(value, 1000000);
10160 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10161 }
10162
10163 /*
10164 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10165 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10166 * and this function updates it to reflect the changes to the guest state while
10167 * L2 was running (and perhaps made some exits which were handled directly by L0
10168 * without going back to L1), and to reflect the exit reason.
10169 * Note that we do not have to copy here all VMCS fields, just those that
10170 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10171 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10172 * which already writes to vmcs12 directly.
10173 */
10174 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10175 u32 exit_reason, u32 exit_intr_info,
10176 unsigned long exit_qualification)
10177 {
10178 /* update guest state fields: */
10179 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10180 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10181
10182 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10183 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10184 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10185
10186 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10187 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10188 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10189 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10190 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10191 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10192 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10193 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10194 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10195 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10196 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10197 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10198 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10199 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10200 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10201 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10202 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10203 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10204 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10205 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10206 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10207 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10208 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10209 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10210 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10211 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10212 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10213 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10214 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10215 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10216 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10217 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10218 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10219 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10220 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10221 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10222
10223 vmcs12->guest_interruptibility_info =
10224 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10225 vmcs12->guest_pending_dbg_exceptions =
10226 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10227 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10228 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10229 else
10230 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10231
10232 if (nested_cpu_has_preemption_timer(vmcs12)) {
10233 if (vmcs12->vm_exit_controls &
10234 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10235 vmcs12->vmx_preemption_timer_value =
10236 vmx_get_preemption_timer_value(vcpu);
10237 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10238 }
10239
10240 /*
10241 * In some cases (usually, nested EPT), L2 is allowed to change its
10242 * own CR3 without exiting. If it has changed it, we must keep it.
10243 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10244 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10245 *
10246 * Additionally, restore L2's PDPTR to vmcs12.
10247 */
10248 if (enable_ept) {
10249 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10250 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10251 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10252 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10253 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10254 }
10255
10256 if (nested_cpu_has_vid(vmcs12))
10257 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10258
10259 vmcs12->vm_entry_controls =
10260 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10261 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10262
10263 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10264 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10265 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10266 }
10267
10268 /* TODO: These cannot have changed unless we have MSR bitmaps and
10269 * the relevant bit asks not to trap the change */
10270 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10271 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10272 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10273 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10274 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10275 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10276 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10277 if (vmx_mpx_supported())
10278 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10279 if (nested_cpu_has_xsaves(vmcs12))
10280 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10281
10282 /* update exit information fields: */
10283
10284 vmcs12->vm_exit_reason = exit_reason;
10285 vmcs12->exit_qualification = exit_qualification;
10286
10287 vmcs12->vm_exit_intr_info = exit_intr_info;
10288 if ((vmcs12->vm_exit_intr_info &
10289 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10290 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10291 vmcs12->vm_exit_intr_error_code =
10292 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10293 vmcs12->idt_vectoring_info_field = 0;
10294 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10295 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10296
10297 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10298 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10299 * instead of reading the real value. */
10300 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10301
10302 /*
10303 * Transfer the event that L0 or L1 may wanted to inject into
10304 * L2 to IDT_VECTORING_INFO_FIELD.
10305 */
10306 vmcs12_save_pending_event(vcpu, vmcs12);
10307 }
10308
10309 /*
10310 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10311 * preserved above and would only end up incorrectly in L1.
10312 */
10313 vcpu->arch.nmi_injected = false;
10314 kvm_clear_exception_queue(vcpu);
10315 kvm_clear_interrupt_queue(vcpu);
10316 }
10317
10318 /*
10319 * A part of what we need to when the nested L2 guest exits and we want to
10320 * run its L1 parent, is to reset L1's guest state to the host state specified
10321 * in vmcs12.
10322 * This function is to be called not only on normal nested exit, but also on
10323 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10324 * Failures During or After Loading Guest State").
10325 * This function should be called when the active VMCS is L1's (vmcs01).
10326 */
10327 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10328 struct vmcs12 *vmcs12)
10329 {
10330 struct kvm_segment seg;
10331
10332 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10333 vcpu->arch.efer = vmcs12->host_ia32_efer;
10334 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10335 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10336 else
10337 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10338 vmx_set_efer(vcpu, vcpu->arch.efer);
10339
10340 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10341 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10342 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10343 /*
10344 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10345 * actually changed, because it depends on the current state of
10346 * fpu_active (which may have changed).
10347 * Note that vmx_set_cr0 refers to efer set above.
10348 */
10349 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10350 /*
10351 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10352 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10353 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10354 */
10355 update_exception_bitmap(vcpu);
10356 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10357 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10358
10359 /*
10360 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10361 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10362 */
10363 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10364 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10365
10366 nested_ept_uninit_mmu_context(vcpu);
10367
10368 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10369 kvm_mmu_reset_context(vcpu);
10370
10371 if (!enable_ept)
10372 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10373
10374 if (enable_vpid) {
10375 /*
10376 * Trivially support vpid by letting L2s share their parent
10377 * L1's vpid. TODO: move to a more elaborate solution, giving
10378 * each L2 its own vpid and exposing the vpid feature to L1.
10379 */
10380 vmx_flush_tlb(vcpu);
10381 }
10382
10383
10384 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10385 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10386 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10387 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10388 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10389
10390 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10391 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10392 vmcs_write64(GUEST_BNDCFGS, 0);
10393
10394 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10395 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10396 vcpu->arch.pat = vmcs12->host_ia32_pat;
10397 }
10398 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10399 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10400 vmcs12->host_ia32_perf_global_ctrl);
10401
10402 /* Set L1 segment info according to Intel SDM
10403 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10404 seg = (struct kvm_segment) {
10405 .base = 0,
10406 .limit = 0xFFFFFFFF,
10407 .selector = vmcs12->host_cs_selector,
10408 .type = 11,
10409 .present = 1,
10410 .s = 1,
10411 .g = 1
10412 };
10413 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10414 seg.l = 1;
10415 else
10416 seg.db = 1;
10417 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10418 seg = (struct kvm_segment) {
10419 .base = 0,
10420 .limit = 0xFFFFFFFF,
10421 .type = 3,
10422 .present = 1,
10423 .s = 1,
10424 .db = 1,
10425 .g = 1
10426 };
10427 seg.selector = vmcs12->host_ds_selector;
10428 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10429 seg.selector = vmcs12->host_es_selector;
10430 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10431 seg.selector = vmcs12->host_ss_selector;
10432 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10433 seg.selector = vmcs12->host_fs_selector;
10434 seg.base = vmcs12->host_fs_base;
10435 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10436 seg.selector = vmcs12->host_gs_selector;
10437 seg.base = vmcs12->host_gs_base;
10438 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10439 seg = (struct kvm_segment) {
10440 .base = vmcs12->host_tr_base,
10441 .limit = 0x67,
10442 .selector = vmcs12->host_tr_selector,
10443 .type = 11,
10444 .present = 1
10445 };
10446 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10447
10448 kvm_set_dr(vcpu, 7, 0x400);
10449 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10450
10451 if (cpu_has_vmx_msr_bitmap())
10452 vmx_set_msr_bitmap(vcpu);
10453
10454 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10455 vmcs12->vm_exit_msr_load_count))
10456 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10457 }
10458
10459 /*
10460 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10461 * and modify vmcs12 to make it see what it would expect to see there if
10462 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10463 */
10464 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10465 u32 exit_intr_info,
10466 unsigned long exit_qualification)
10467 {
10468 struct vcpu_vmx *vmx = to_vmx(vcpu);
10469 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10470
10471 /* trying to cancel vmlaunch/vmresume is a bug */
10472 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10473
10474 leave_guest_mode(vcpu);
10475 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10476 exit_qualification);
10477
10478 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10479 vmcs12->vm_exit_msr_store_count))
10480 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10481
10482 vmx_load_vmcs01(vcpu);
10483
10484 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10485 && nested_exit_intr_ack_set(vcpu)) {
10486 int irq = kvm_cpu_get_interrupt(vcpu);
10487 WARN_ON(irq < 0);
10488 vmcs12->vm_exit_intr_info = irq |
10489 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10490 }
10491
10492 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10493 vmcs12->exit_qualification,
10494 vmcs12->idt_vectoring_info_field,
10495 vmcs12->vm_exit_intr_info,
10496 vmcs12->vm_exit_intr_error_code,
10497 KVM_ISA_VMX);
10498
10499 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10500 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10501 vmx_segment_cache_clear(vmx);
10502
10503 /* if no vmcs02 cache requested, remove the one we used */
10504 if (VMCS02_POOL_SIZE == 0)
10505 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10506
10507 load_vmcs12_host_state(vcpu, vmcs12);
10508
10509 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10510 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10511
10512 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10513 vmx->host_rsp = 0;
10514
10515 /* Unpin physical memory we referred to in vmcs02 */
10516 if (vmx->nested.apic_access_page) {
10517 nested_release_page(vmx->nested.apic_access_page);
10518 vmx->nested.apic_access_page = NULL;
10519 }
10520 if (vmx->nested.virtual_apic_page) {
10521 nested_release_page(vmx->nested.virtual_apic_page);
10522 vmx->nested.virtual_apic_page = NULL;
10523 }
10524 if (vmx->nested.pi_desc_page) {
10525 kunmap(vmx->nested.pi_desc_page);
10526 nested_release_page(vmx->nested.pi_desc_page);
10527 vmx->nested.pi_desc_page = NULL;
10528 vmx->nested.pi_desc = NULL;
10529 }
10530
10531 /*
10532 * We are now running in L2, mmu_notifier will force to reload the
10533 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10534 */
10535 kvm_vcpu_reload_apic_access_page(vcpu);
10536
10537 /*
10538 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10539 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10540 * success or failure flag accordingly.
10541 */
10542 if (unlikely(vmx->fail)) {
10543 vmx->fail = 0;
10544 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10545 } else
10546 nested_vmx_succeed(vcpu);
10547 if (enable_shadow_vmcs)
10548 vmx->nested.sync_shadow_vmcs = true;
10549
10550 /* in case we halted in L2 */
10551 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10552 }
10553
10554 /*
10555 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10556 */
10557 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10558 {
10559 if (is_guest_mode(vcpu))
10560 nested_vmx_vmexit(vcpu, -1, 0, 0);
10561 free_nested(to_vmx(vcpu));
10562 }
10563
10564 /*
10565 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10566 * 23.7 "VM-entry failures during or after loading guest state" (this also
10567 * lists the acceptable exit-reason and exit-qualification parameters).
10568 * It should only be called before L2 actually succeeded to run, and when
10569 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10570 */
10571 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10572 struct vmcs12 *vmcs12,
10573 u32 reason, unsigned long qualification)
10574 {
10575 load_vmcs12_host_state(vcpu, vmcs12);
10576 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10577 vmcs12->exit_qualification = qualification;
10578 nested_vmx_succeed(vcpu);
10579 if (enable_shadow_vmcs)
10580 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10581 }
10582
10583 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10584 struct x86_instruction_info *info,
10585 enum x86_intercept_stage stage)
10586 {
10587 return X86EMUL_CONTINUE;
10588 }
10589
10590 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10591 {
10592 if (ple_gap)
10593 shrink_ple_window(vcpu);
10594 }
10595
10596 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10597 struct kvm_memory_slot *slot)
10598 {
10599 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10600 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10601 }
10602
10603 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10604 struct kvm_memory_slot *slot)
10605 {
10606 kvm_mmu_slot_set_dirty(kvm, slot);
10607 }
10608
10609 static void vmx_flush_log_dirty(struct kvm *kvm)
10610 {
10611 kvm_flush_pml_buffers(kvm);
10612 }
10613
10614 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10615 struct kvm_memory_slot *memslot,
10616 gfn_t offset, unsigned long mask)
10617 {
10618 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10619 }
10620
10621 /*
10622 * This routine does the following things for vCPU which is going
10623 * to be blocked if VT-d PI is enabled.
10624 * - Store the vCPU to the wakeup list, so when interrupts happen
10625 * we can find the right vCPU to wake up.
10626 * - Change the Posted-interrupt descriptor as below:
10627 * 'NDST' <-- vcpu->pre_pcpu
10628 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10629 * - If 'ON' is set during this process, which means at least one
10630 * interrupt is posted for this vCPU, we cannot block it, in
10631 * this case, return 1, otherwise, return 0.
10632 *
10633 */
10634 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10635 {
10636 unsigned long flags;
10637 unsigned int dest;
10638 struct pi_desc old, new;
10639 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10640
10641 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10642 !irq_remapping_cap(IRQ_POSTING_CAP))
10643 return 0;
10644
10645 vcpu->pre_pcpu = vcpu->cpu;
10646 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10647 vcpu->pre_pcpu), flags);
10648 list_add_tail(&vcpu->blocked_vcpu_list,
10649 &per_cpu(blocked_vcpu_on_cpu,
10650 vcpu->pre_pcpu));
10651 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10652 vcpu->pre_pcpu), flags);
10653
10654 do {
10655 old.control = new.control = pi_desc->control;
10656
10657 /*
10658 * We should not block the vCPU if
10659 * an interrupt is posted for it.
10660 */
10661 if (pi_test_on(pi_desc) == 1) {
10662 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10663 vcpu->pre_pcpu), flags);
10664 list_del(&vcpu->blocked_vcpu_list);
10665 spin_unlock_irqrestore(
10666 &per_cpu(blocked_vcpu_on_cpu_lock,
10667 vcpu->pre_pcpu), flags);
10668 vcpu->pre_pcpu = -1;
10669
10670 return 1;
10671 }
10672
10673 WARN((pi_desc->sn == 1),
10674 "Warning: SN field of posted-interrupts "
10675 "is set before blocking\n");
10676
10677 /*
10678 * Since vCPU can be preempted during this process,
10679 * vcpu->cpu could be different with pre_pcpu, we
10680 * need to set pre_pcpu as the destination of wakeup
10681 * notification event, then we can find the right vCPU
10682 * to wakeup in wakeup handler if interrupts happen
10683 * when the vCPU is in blocked state.
10684 */
10685 dest = cpu_physical_id(vcpu->pre_pcpu);
10686
10687 if (x2apic_enabled())
10688 new.ndst = dest;
10689 else
10690 new.ndst = (dest << 8) & 0xFF00;
10691
10692 /* set 'NV' to 'wakeup vector' */
10693 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10694 } while (cmpxchg(&pi_desc->control, old.control,
10695 new.control) != old.control);
10696
10697 return 0;
10698 }
10699
10700 static void vmx_post_block(struct kvm_vcpu *vcpu)
10701 {
10702 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10703 struct pi_desc old, new;
10704 unsigned int dest;
10705 unsigned long flags;
10706
10707 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10708 !irq_remapping_cap(IRQ_POSTING_CAP))
10709 return;
10710
10711 do {
10712 old.control = new.control = pi_desc->control;
10713
10714 dest = cpu_physical_id(vcpu->cpu);
10715
10716 if (x2apic_enabled())
10717 new.ndst = dest;
10718 else
10719 new.ndst = (dest << 8) & 0xFF00;
10720
10721 /* Allow posting non-urgent interrupts */
10722 new.sn = 0;
10723
10724 /* set 'NV' to 'notification vector' */
10725 new.nv = POSTED_INTR_VECTOR;
10726 } while (cmpxchg(&pi_desc->control, old.control,
10727 new.control) != old.control);
10728
10729 if(vcpu->pre_pcpu != -1) {
10730 spin_lock_irqsave(
10731 &per_cpu(blocked_vcpu_on_cpu_lock,
10732 vcpu->pre_pcpu), flags);
10733 list_del(&vcpu->blocked_vcpu_list);
10734 spin_unlock_irqrestore(
10735 &per_cpu(blocked_vcpu_on_cpu_lock,
10736 vcpu->pre_pcpu), flags);
10737 vcpu->pre_pcpu = -1;
10738 }
10739 }
10740
10741 /*
10742 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10743 *
10744 * @kvm: kvm
10745 * @host_irq: host irq of the interrupt
10746 * @guest_irq: gsi of the interrupt
10747 * @set: set or unset PI
10748 * returns 0 on success, < 0 on failure
10749 */
10750 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10751 uint32_t guest_irq, bool set)
10752 {
10753 struct kvm_kernel_irq_routing_entry *e;
10754 struct kvm_irq_routing_table *irq_rt;
10755 struct kvm_lapic_irq irq;
10756 struct kvm_vcpu *vcpu;
10757 struct vcpu_data vcpu_info;
10758 int idx, ret = -EINVAL;
10759
10760 if (!kvm_arch_has_assigned_device(kvm) ||
10761 !irq_remapping_cap(IRQ_POSTING_CAP))
10762 return 0;
10763
10764 idx = srcu_read_lock(&kvm->irq_srcu);
10765 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10766 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10767
10768 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10769 if (e->type != KVM_IRQ_ROUTING_MSI)
10770 continue;
10771 /*
10772 * VT-d PI cannot support posting multicast/broadcast
10773 * interrupts to a vCPU, we still use interrupt remapping
10774 * for these kind of interrupts.
10775 *
10776 * For lowest-priority interrupts, we only support
10777 * those with single CPU as the destination, e.g. user
10778 * configures the interrupts via /proc/irq or uses
10779 * irqbalance to make the interrupts single-CPU.
10780 *
10781 * We will support full lowest-priority interrupt later.
10782 */
10783
10784 kvm_set_msi_irq(e, &irq);
10785 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10786 /*
10787 * Make sure the IRTE is in remapped mode if
10788 * we don't handle it in posted mode.
10789 */
10790 ret = irq_set_vcpu_affinity(host_irq, NULL);
10791 if (ret < 0) {
10792 printk(KERN_INFO
10793 "failed to back to remapped mode, irq: %u\n",
10794 host_irq);
10795 goto out;
10796 }
10797
10798 continue;
10799 }
10800
10801 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10802 vcpu_info.vector = irq.vector;
10803
10804 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
10805 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10806
10807 if (set)
10808 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10809 else {
10810 /* suppress notification event before unposting */
10811 pi_set_sn(vcpu_to_pi_desc(vcpu));
10812 ret = irq_set_vcpu_affinity(host_irq, NULL);
10813 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10814 }
10815
10816 if (ret < 0) {
10817 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10818 __func__);
10819 goto out;
10820 }
10821 }
10822
10823 ret = 0;
10824 out:
10825 srcu_read_unlock(&kvm->irq_srcu, idx);
10826 return ret;
10827 }
10828
10829 static struct kvm_x86_ops vmx_x86_ops = {
10830 .cpu_has_kvm_support = cpu_has_kvm_support,
10831 .disabled_by_bios = vmx_disabled_by_bios,
10832 .hardware_setup = hardware_setup,
10833 .hardware_unsetup = hardware_unsetup,
10834 .check_processor_compatibility = vmx_check_processor_compat,
10835 .hardware_enable = hardware_enable,
10836 .hardware_disable = hardware_disable,
10837 .cpu_has_accelerated_tpr = report_flexpriority,
10838 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10839
10840 .vcpu_create = vmx_create_vcpu,
10841 .vcpu_free = vmx_free_vcpu,
10842 .vcpu_reset = vmx_vcpu_reset,
10843
10844 .prepare_guest_switch = vmx_save_host_state,
10845 .vcpu_load = vmx_vcpu_load,
10846 .vcpu_put = vmx_vcpu_put,
10847
10848 .update_bp_intercept = update_exception_bitmap,
10849 .get_msr = vmx_get_msr,
10850 .set_msr = vmx_set_msr,
10851 .get_segment_base = vmx_get_segment_base,
10852 .get_segment = vmx_get_segment,
10853 .set_segment = vmx_set_segment,
10854 .get_cpl = vmx_get_cpl,
10855 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10856 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10857 .decache_cr3 = vmx_decache_cr3,
10858 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10859 .set_cr0 = vmx_set_cr0,
10860 .set_cr3 = vmx_set_cr3,
10861 .set_cr4 = vmx_set_cr4,
10862 .set_efer = vmx_set_efer,
10863 .get_idt = vmx_get_idt,
10864 .set_idt = vmx_set_idt,
10865 .get_gdt = vmx_get_gdt,
10866 .set_gdt = vmx_set_gdt,
10867 .get_dr6 = vmx_get_dr6,
10868 .set_dr6 = vmx_set_dr6,
10869 .set_dr7 = vmx_set_dr7,
10870 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10871 .cache_reg = vmx_cache_reg,
10872 .get_rflags = vmx_get_rflags,
10873 .set_rflags = vmx_set_rflags,
10874 .fpu_activate = vmx_fpu_activate,
10875 .fpu_deactivate = vmx_fpu_deactivate,
10876
10877 .tlb_flush = vmx_flush_tlb,
10878
10879 .run = vmx_vcpu_run,
10880 .handle_exit = vmx_handle_exit,
10881 .skip_emulated_instruction = skip_emulated_instruction,
10882 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10883 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10884 .patch_hypercall = vmx_patch_hypercall,
10885 .set_irq = vmx_inject_irq,
10886 .set_nmi = vmx_inject_nmi,
10887 .queue_exception = vmx_queue_exception,
10888 .cancel_injection = vmx_cancel_injection,
10889 .interrupt_allowed = vmx_interrupt_allowed,
10890 .nmi_allowed = vmx_nmi_allowed,
10891 .get_nmi_mask = vmx_get_nmi_mask,
10892 .set_nmi_mask = vmx_set_nmi_mask,
10893 .enable_nmi_window = enable_nmi_window,
10894 .enable_irq_window = enable_irq_window,
10895 .update_cr8_intercept = update_cr8_intercept,
10896 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10897 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10898 .get_enable_apicv = vmx_get_enable_apicv,
10899 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
10900 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10901 .hwapic_irr_update = vmx_hwapic_irr_update,
10902 .hwapic_isr_update = vmx_hwapic_isr_update,
10903 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10904 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10905
10906 .set_tss_addr = vmx_set_tss_addr,
10907 .get_tdp_level = get_ept_level,
10908 .get_mt_mask = vmx_get_mt_mask,
10909
10910 .get_exit_info = vmx_get_exit_info,
10911
10912 .get_lpage_level = vmx_get_lpage_level,
10913
10914 .cpuid_update = vmx_cpuid_update,
10915
10916 .rdtscp_supported = vmx_rdtscp_supported,
10917 .invpcid_supported = vmx_invpcid_supported,
10918
10919 .set_supported_cpuid = vmx_set_supported_cpuid,
10920
10921 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10922
10923 .read_tsc_offset = vmx_read_tsc_offset,
10924 .write_tsc_offset = vmx_write_tsc_offset,
10925 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
10926 .read_l1_tsc = vmx_read_l1_tsc,
10927
10928 .set_tdp_cr3 = vmx_set_cr3,
10929
10930 .check_intercept = vmx_check_intercept,
10931 .handle_external_intr = vmx_handle_external_intr,
10932 .mpx_supported = vmx_mpx_supported,
10933 .xsaves_supported = vmx_xsaves_supported,
10934
10935 .check_nested_events = vmx_check_nested_events,
10936
10937 .sched_in = vmx_sched_in,
10938
10939 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10940 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10941 .flush_log_dirty = vmx_flush_log_dirty,
10942 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10943
10944 .pre_block = vmx_pre_block,
10945 .post_block = vmx_post_block,
10946
10947 .pmu_ops = &intel_pmu_ops,
10948
10949 .update_pi_irte = vmx_update_pi_irte,
10950 };
10951
10952 static int __init vmx_init(void)
10953 {
10954 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10955 __alignof__(struct vcpu_vmx), THIS_MODULE);
10956 if (r)
10957 return r;
10958
10959 #ifdef CONFIG_KEXEC_CORE
10960 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10961 crash_vmclear_local_loaded_vmcss);
10962 #endif
10963
10964 return 0;
10965 }
10966
10967 static void __exit vmx_exit(void)
10968 {
10969 #ifdef CONFIG_KEXEC_CORE
10970 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10971 synchronize_rcu();
10972 #endif
10973
10974 kvm_exit();
10975 }
10976
10977 module_init(vmx_init)
10978 module_exit(vmx_exit)