]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
121 * According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
128 #define KVM_VMX_DEFAULT_PLE_GAP 128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
133 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160 u32 revision_id;
161 u32 abort;
162 char data[0];
163 };
164
165 /*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170 struct loaded_vmcs {
171 struct vmcs *vmcs;
172 int cpu;
173 int launched;
174 struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178 unsigned index;
179 u64 data;
180 u64 mask;
181 };
182
183 /*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198 /* According to the Intel spec, a VMCS region must start with the
199 * following two fields. Then follow implementation-specific data.
200 */
201 u32 revision_id;
202 u32 abort;
203
204 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205 u32 padding[7]; /* room for future expansion */
206
207 u64 io_bitmap_a;
208 u64 io_bitmap_b;
209 u64 msr_bitmap;
210 u64 vm_exit_msr_store_addr;
211 u64 vm_exit_msr_load_addr;
212 u64 vm_entry_msr_load_addr;
213 u64 tsc_offset;
214 u64 virtual_apic_page_addr;
215 u64 apic_access_addr;
216 u64 ept_pointer;
217 u64 guest_physical_address;
218 u64 vmcs_link_pointer;
219 u64 guest_ia32_debugctl;
220 u64 guest_ia32_pat;
221 u64 guest_ia32_efer;
222 u64 guest_ia32_perf_global_ctrl;
223 u64 guest_pdptr0;
224 u64 guest_pdptr1;
225 u64 guest_pdptr2;
226 u64 guest_pdptr3;
227 u64 guest_bndcfgs;
228 u64 host_ia32_pat;
229 u64 host_ia32_efer;
230 u64 host_ia32_perf_global_ctrl;
231 u64 padding64[8]; /* room for future expansion */
232 /*
233 * To allow migration of L1 (complete with its L2 guests) between
234 * machines of different natural widths (32 or 64 bit), we cannot have
235 * unsigned long fields with no explict size. We use u64 (aliased
236 * natural_width) instead. Luckily, x86 is little-endian.
237 */
238 natural_width cr0_guest_host_mask;
239 natural_width cr4_guest_host_mask;
240 natural_width cr0_read_shadow;
241 natural_width cr4_read_shadow;
242 natural_width cr3_target_value0;
243 natural_width cr3_target_value1;
244 natural_width cr3_target_value2;
245 natural_width cr3_target_value3;
246 natural_width exit_qualification;
247 natural_width guest_linear_address;
248 natural_width guest_cr0;
249 natural_width guest_cr3;
250 natural_width guest_cr4;
251 natural_width guest_es_base;
252 natural_width guest_cs_base;
253 natural_width guest_ss_base;
254 natural_width guest_ds_base;
255 natural_width guest_fs_base;
256 natural_width guest_gs_base;
257 natural_width guest_ldtr_base;
258 natural_width guest_tr_base;
259 natural_width guest_gdtr_base;
260 natural_width guest_idtr_base;
261 natural_width guest_dr7;
262 natural_width guest_rsp;
263 natural_width guest_rip;
264 natural_width guest_rflags;
265 natural_width guest_pending_dbg_exceptions;
266 natural_width guest_sysenter_esp;
267 natural_width guest_sysenter_eip;
268 natural_width host_cr0;
269 natural_width host_cr3;
270 natural_width host_cr4;
271 natural_width host_fs_base;
272 natural_width host_gs_base;
273 natural_width host_tr_base;
274 natural_width host_gdtr_base;
275 natural_width host_idtr_base;
276 natural_width host_ia32_sysenter_esp;
277 natural_width host_ia32_sysenter_eip;
278 natural_width host_rsp;
279 natural_width host_rip;
280 natural_width paddingl[8]; /* room for future expansion */
281 u32 pin_based_vm_exec_control;
282 u32 cpu_based_vm_exec_control;
283 u32 exception_bitmap;
284 u32 page_fault_error_code_mask;
285 u32 page_fault_error_code_match;
286 u32 cr3_target_count;
287 u32 vm_exit_controls;
288 u32 vm_exit_msr_store_count;
289 u32 vm_exit_msr_load_count;
290 u32 vm_entry_controls;
291 u32 vm_entry_msr_load_count;
292 u32 vm_entry_intr_info_field;
293 u32 vm_entry_exception_error_code;
294 u32 vm_entry_instruction_len;
295 u32 tpr_threshold;
296 u32 secondary_vm_exec_control;
297 u32 vm_instruction_error;
298 u32 vm_exit_reason;
299 u32 vm_exit_intr_info;
300 u32 vm_exit_intr_error_code;
301 u32 idt_vectoring_info_field;
302 u32 idt_vectoring_error_code;
303 u32 vm_exit_instruction_len;
304 u32 vmx_instruction_info;
305 u32 guest_es_limit;
306 u32 guest_cs_limit;
307 u32 guest_ss_limit;
308 u32 guest_ds_limit;
309 u32 guest_fs_limit;
310 u32 guest_gs_limit;
311 u32 guest_ldtr_limit;
312 u32 guest_tr_limit;
313 u32 guest_gdtr_limit;
314 u32 guest_idtr_limit;
315 u32 guest_es_ar_bytes;
316 u32 guest_cs_ar_bytes;
317 u32 guest_ss_ar_bytes;
318 u32 guest_ds_ar_bytes;
319 u32 guest_fs_ar_bytes;
320 u32 guest_gs_ar_bytes;
321 u32 guest_ldtr_ar_bytes;
322 u32 guest_tr_ar_bytes;
323 u32 guest_interruptibility_info;
324 u32 guest_activity_state;
325 u32 guest_sysenter_cs;
326 u32 host_ia32_sysenter_cs;
327 u32 vmx_preemption_timer_value;
328 u32 padding32[7]; /* room for future expansion */
329 u16 virtual_processor_id;
330 u16 guest_es_selector;
331 u16 guest_cs_selector;
332 u16 guest_ss_selector;
333 u16 guest_ds_selector;
334 u16 guest_fs_selector;
335 u16 guest_gs_selector;
336 u16 guest_ldtr_selector;
337 u16 guest_tr_selector;
338 u16 host_es_selector;
339 u16 host_cs_selector;
340 u16 host_ss_selector;
341 u16 host_ds_selector;
342 u16 host_fs_selector;
343 u16 host_gs_selector;
344 u16 host_tr_selector;
345 };
346
347 /*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363 struct list_head list;
364 gpa_t vmptr;
365 struct loaded_vmcs vmcs02;
366 };
367
368 /*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372 struct nested_vmx {
373 /* Has the level1 guest done vmxon? */
374 bool vmxon;
375 gpa_t vmxon_ptr;
376
377 /* The guest-physical address of the current VMCS L1 keeps for L2 */
378 gpa_t current_vmptr;
379 /* The host-usable pointer to the above */
380 struct page *current_vmcs12_page;
381 struct vmcs12 *current_vmcs12;
382 struct vmcs *current_shadow_vmcs;
383 /*
384 * Indicates if the shadow vmcs must be updated with the
385 * data hold by vmcs12
386 */
387 bool sync_shadow_vmcs;
388
389 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390 struct list_head vmcs02_pool;
391 int vmcs02_num;
392 u64 vmcs01_tsc_offset;
393 /* L2 must run next, and mustn't decide to exit to L1. */
394 bool nested_run_pending;
395 /*
396 * Guest pages referred to in vmcs02 with host-physical pointers, so
397 * we must keep them pinned while L2 runs.
398 */
399 struct page *apic_access_page;
400 struct page *virtual_apic_page;
401 u64 msr_ia32_feature_control;
402
403 struct hrtimer preemption_timer;
404 bool preemption_timer_expired;
405
406 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407 u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON 0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413 u32 pir[8]; /* Posted interrupt requested */
414 u32 control; /* bit 0 of control is outstanding notification bit */
415 u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420 return test_and_set_bit(POSTED_INTR_ON,
421 (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426 return test_and_clear_bit(POSTED_INTR_ON,
427 (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436 struct kvm_vcpu vcpu;
437 unsigned long host_rsp;
438 u8 fail;
439 bool nmi_known_unmasked;
440 u32 exit_intr_info;
441 u32 idt_vectoring_info;
442 ulong rflags;
443 struct shared_msr_entry *guest_msrs;
444 int nmsrs;
445 int save_nmsrs;
446 unsigned long host_idt_base;
447 #ifdef CONFIG_X86_64
448 u64 msr_host_kernel_gs_base;
449 u64 msr_guest_kernel_gs_base;
450 #endif
451 u32 vm_entry_controls_shadow;
452 u32 vm_exit_controls_shadow;
453 /*
454 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455 * non-nested (L1) guest, it always points to vmcs01. For a nested
456 * guest (L2), it points to a different VMCS.
457 */
458 struct loaded_vmcs vmcs01;
459 struct loaded_vmcs *loaded_vmcs;
460 bool __launched; /* temporary, used in vmx_vcpu_run */
461 struct msr_autoload {
462 unsigned nr;
463 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465 } msr_autoload;
466 struct {
467 int loaded;
468 u16 fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470 u16 ds_sel, es_sel;
471 #endif
472 int gs_ldt_reload_needed;
473 int fs_reload_needed;
474 u64 msr_host_bndcfgs;
475 } host_state;
476 struct {
477 int vm86_active;
478 ulong save_rflags;
479 struct kvm_segment segs[8];
480 } rmode;
481 struct {
482 u32 bitmask; /* 4 bits per segment (1 bit per field) */
483 struct kvm_save_segment {
484 u16 selector;
485 unsigned long base;
486 u32 limit;
487 u32 ar;
488 } seg[8];
489 } segment_cache;
490 int vpid;
491 bool emulation_required;
492
493 /* Support for vnmi-less CPUs */
494 int soft_vnmi_blocked;
495 ktime_t entry_time;
496 s64 vnmi_blocked_time;
497 u32 exit_reason;
498
499 bool rdtscp_enabled;
500
501 /* Posted interrupt descriptor */
502 struct pi_desc pi_desc;
503
504 /* Support for a guest hypervisor (nested VMX) */
505 struct nested_vmx nested;
506
507 /* Dynamic PLE window. */
508 int ple_window;
509 bool ple_window_dirty;
510 };
511
512 enum segment_cache_field {
513 SEG_FIELD_SEL = 0,
514 SEG_FIELD_BASE = 1,
515 SEG_FIELD_LIMIT = 2,
516 SEG_FIELD_AR = 3,
517
518 SEG_FIELD_NR = 4
519 };
520
521 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
522 {
523 return container_of(vcpu, struct vcpu_vmx, vcpu);
524 }
525
526 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
527 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
528 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
529 [number##_HIGH] = VMCS12_OFFSET(name)+4
530
531
532 static unsigned long shadow_read_only_fields[] = {
533 /*
534 * We do NOT shadow fields that are modified when L0
535 * traps and emulates any vmx instruction (e.g. VMPTRLD,
536 * VMXON...) executed by L1.
537 * For example, VM_INSTRUCTION_ERROR is read
538 * by L1 if a vmx instruction fails (part of the error path).
539 * Note the code assumes this logic. If for some reason
540 * we start shadowing these fields then we need to
541 * force a shadow sync when L0 emulates vmx instructions
542 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
543 * by nested_vmx_failValid)
544 */
545 VM_EXIT_REASON,
546 VM_EXIT_INTR_INFO,
547 VM_EXIT_INSTRUCTION_LEN,
548 IDT_VECTORING_INFO_FIELD,
549 IDT_VECTORING_ERROR_CODE,
550 VM_EXIT_INTR_ERROR_CODE,
551 EXIT_QUALIFICATION,
552 GUEST_LINEAR_ADDRESS,
553 GUEST_PHYSICAL_ADDRESS
554 };
555 static int max_shadow_read_only_fields =
556 ARRAY_SIZE(shadow_read_only_fields);
557
558 static unsigned long shadow_read_write_fields[] = {
559 TPR_THRESHOLD,
560 GUEST_RIP,
561 GUEST_RSP,
562 GUEST_CR0,
563 GUEST_CR3,
564 GUEST_CR4,
565 GUEST_INTERRUPTIBILITY_INFO,
566 GUEST_RFLAGS,
567 GUEST_CS_SELECTOR,
568 GUEST_CS_AR_BYTES,
569 GUEST_CS_LIMIT,
570 GUEST_CS_BASE,
571 GUEST_ES_BASE,
572 GUEST_BNDCFGS,
573 CR0_GUEST_HOST_MASK,
574 CR0_READ_SHADOW,
575 CR4_READ_SHADOW,
576 TSC_OFFSET,
577 EXCEPTION_BITMAP,
578 CPU_BASED_VM_EXEC_CONTROL,
579 VM_ENTRY_EXCEPTION_ERROR_CODE,
580 VM_ENTRY_INTR_INFO_FIELD,
581 VM_ENTRY_INSTRUCTION_LEN,
582 VM_ENTRY_EXCEPTION_ERROR_CODE,
583 HOST_FS_BASE,
584 HOST_GS_BASE,
585 HOST_FS_SELECTOR,
586 HOST_GS_SELECTOR
587 };
588 static int max_shadow_read_write_fields =
589 ARRAY_SIZE(shadow_read_write_fields);
590
591 static const unsigned short vmcs_field_to_offset_table[] = {
592 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
593 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
594 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
595 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
596 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
597 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
598 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
599 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
600 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
601 FIELD(HOST_ES_SELECTOR, host_es_selector),
602 FIELD(HOST_CS_SELECTOR, host_cs_selector),
603 FIELD(HOST_SS_SELECTOR, host_ss_selector),
604 FIELD(HOST_DS_SELECTOR, host_ds_selector),
605 FIELD(HOST_FS_SELECTOR, host_fs_selector),
606 FIELD(HOST_GS_SELECTOR, host_gs_selector),
607 FIELD(HOST_TR_SELECTOR, host_tr_selector),
608 FIELD64(IO_BITMAP_A, io_bitmap_a),
609 FIELD64(IO_BITMAP_B, io_bitmap_b),
610 FIELD64(MSR_BITMAP, msr_bitmap),
611 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
612 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
613 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
614 FIELD64(TSC_OFFSET, tsc_offset),
615 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
616 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
617 FIELD64(EPT_POINTER, ept_pointer),
618 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
619 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
620 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
621 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
622 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
623 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
624 FIELD64(GUEST_PDPTR0, guest_pdptr0),
625 FIELD64(GUEST_PDPTR1, guest_pdptr1),
626 FIELD64(GUEST_PDPTR2, guest_pdptr2),
627 FIELD64(GUEST_PDPTR3, guest_pdptr3),
628 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
629 FIELD64(HOST_IA32_PAT, host_ia32_pat),
630 FIELD64(HOST_IA32_EFER, host_ia32_efer),
631 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
632 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
633 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
634 FIELD(EXCEPTION_BITMAP, exception_bitmap),
635 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
636 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
637 FIELD(CR3_TARGET_COUNT, cr3_target_count),
638 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
639 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
640 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
641 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
642 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
643 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
644 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
645 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
646 FIELD(TPR_THRESHOLD, tpr_threshold),
647 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
648 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
649 FIELD(VM_EXIT_REASON, vm_exit_reason),
650 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
651 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
652 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
653 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
654 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
655 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
656 FIELD(GUEST_ES_LIMIT, guest_es_limit),
657 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
658 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
659 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
660 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
661 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
662 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
663 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
664 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
665 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
666 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
667 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
668 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
669 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
670 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
671 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
672 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
673 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
674 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
675 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
676 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
677 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
678 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
679 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
680 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
681 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
682 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
683 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
684 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
685 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
686 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
687 FIELD(EXIT_QUALIFICATION, exit_qualification),
688 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
689 FIELD(GUEST_CR0, guest_cr0),
690 FIELD(GUEST_CR3, guest_cr3),
691 FIELD(GUEST_CR4, guest_cr4),
692 FIELD(GUEST_ES_BASE, guest_es_base),
693 FIELD(GUEST_CS_BASE, guest_cs_base),
694 FIELD(GUEST_SS_BASE, guest_ss_base),
695 FIELD(GUEST_DS_BASE, guest_ds_base),
696 FIELD(GUEST_FS_BASE, guest_fs_base),
697 FIELD(GUEST_GS_BASE, guest_gs_base),
698 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
699 FIELD(GUEST_TR_BASE, guest_tr_base),
700 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
701 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
702 FIELD(GUEST_DR7, guest_dr7),
703 FIELD(GUEST_RSP, guest_rsp),
704 FIELD(GUEST_RIP, guest_rip),
705 FIELD(GUEST_RFLAGS, guest_rflags),
706 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
707 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
708 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
709 FIELD(HOST_CR0, host_cr0),
710 FIELD(HOST_CR3, host_cr3),
711 FIELD(HOST_CR4, host_cr4),
712 FIELD(HOST_FS_BASE, host_fs_base),
713 FIELD(HOST_GS_BASE, host_gs_base),
714 FIELD(HOST_TR_BASE, host_tr_base),
715 FIELD(HOST_GDTR_BASE, host_gdtr_base),
716 FIELD(HOST_IDTR_BASE, host_idtr_base),
717 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
718 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
719 FIELD(HOST_RSP, host_rsp),
720 FIELD(HOST_RIP, host_rip),
721 };
722 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
723
724 static inline short vmcs_field_to_offset(unsigned long field)
725 {
726 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
727 return -1;
728 return vmcs_field_to_offset_table[field];
729 }
730
731 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
732 {
733 return to_vmx(vcpu)->nested.current_vmcs12;
734 }
735
736 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
737 {
738 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
739 if (is_error_page(page))
740 return NULL;
741
742 return page;
743 }
744
745 static void nested_release_page(struct page *page)
746 {
747 kvm_release_page_dirty(page);
748 }
749
750 static void nested_release_page_clean(struct page *page)
751 {
752 kvm_release_page_clean(page);
753 }
754
755 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
756 static u64 construct_eptp(unsigned long root_hpa);
757 static void kvm_cpu_vmxon(u64 addr);
758 static void kvm_cpu_vmxoff(void);
759 static bool vmx_mpx_supported(void);
760 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
761 static void vmx_set_segment(struct kvm_vcpu *vcpu,
762 struct kvm_segment *var, int seg);
763 static void vmx_get_segment(struct kvm_vcpu *vcpu,
764 struct kvm_segment *var, int seg);
765 static bool guest_state_valid(struct kvm_vcpu *vcpu);
766 static u32 vmx_segment_access_rights(struct kvm_segment *var);
767 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
768 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
769 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
770 static int alloc_identity_pagetable(struct kvm *kvm);
771
772 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
773 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
774 /*
775 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
776 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
777 */
778 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
779 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
780
781 static unsigned long *vmx_io_bitmap_a;
782 static unsigned long *vmx_io_bitmap_b;
783 static unsigned long *vmx_msr_bitmap_legacy;
784 static unsigned long *vmx_msr_bitmap_longmode;
785 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
786 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
787 static unsigned long *vmx_vmread_bitmap;
788 static unsigned long *vmx_vmwrite_bitmap;
789
790 static bool cpu_has_load_ia32_efer;
791 static bool cpu_has_load_perf_global_ctrl;
792
793 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
794 static DEFINE_SPINLOCK(vmx_vpid_lock);
795
796 static struct vmcs_config {
797 int size;
798 int order;
799 u32 revision_id;
800 u32 pin_based_exec_ctrl;
801 u32 cpu_based_exec_ctrl;
802 u32 cpu_based_2nd_exec_ctrl;
803 u32 vmexit_ctrl;
804 u32 vmentry_ctrl;
805 } vmcs_config;
806
807 static struct vmx_capability {
808 u32 ept;
809 u32 vpid;
810 } vmx_capability;
811
812 #define VMX_SEGMENT_FIELD(seg) \
813 [VCPU_SREG_##seg] = { \
814 .selector = GUEST_##seg##_SELECTOR, \
815 .base = GUEST_##seg##_BASE, \
816 .limit = GUEST_##seg##_LIMIT, \
817 .ar_bytes = GUEST_##seg##_AR_BYTES, \
818 }
819
820 static const struct kvm_vmx_segment_field {
821 unsigned selector;
822 unsigned base;
823 unsigned limit;
824 unsigned ar_bytes;
825 } kvm_vmx_segment_fields[] = {
826 VMX_SEGMENT_FIELD(CS),
827 VMX_SEGMENT_FIELD(DS),
828 VMX_SEGMENT_FIELD(ES),
829 VMX_SEGMENT_FIELD(FS),
830 VMX_SEGMENT_FIELD(GS),
831 VMX_SEGMENT_FIELD(SS),
832 VMX_SEGMENT_FIELD(TR),
833 VMX_SEGMENT_FIELD(LDTR),
834 };
835
836 static u64 host_efer;
837
838 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
839
840 /*
841 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
842 * away by decrementing the array size.
843 */
844 static const u32 vmx_msr_index[] = {
845 #ifdef CONFIG_X86_64
846 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
847 #endif
848 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
849 };
850
851 static inline bool is_page_fault(u32 intr_info)
852 {
853 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
854 INTR_INFO_VALID_MASK)) ==
855 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
856 }
857
858 static inline bool is_no_device(u32 intr_info)
859 {
860 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
861 INTR_INFO_VALID_MASK)) ==
862 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
863 }
864
865 static inline bool is_invalid_opcode(u32 intr_info)
866 {
867 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
868 INTR_INFO_VALID_MASK)) ==
869 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
870 }
871
872 static inline bool is_external_interrupt(u32 intr_info)
873 {
874 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
875 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
876 }
877
878 static inline bool is_machine_check(u32 intr_info)
879 {
880 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
881 INTR_INFO_VALID_MASK)) ==
882 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
883 }
884
885 static inline bool cpu_has_vmx_msr_bitmap(void)
886 {
887 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
888 }
889
890 static inline bool cpu_has_vmx_tpr_shadow(void)
891 {
892 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
893 }
894
895 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
896 {
897 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
898 }
899
900 static inline bool cpu_has_secondary_exec_ctrls(void)
901 {
902 return vmcs_config.cpu_based_exec_ctrl &
903 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
904 }
905
906 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
907 {
908 return vmcs_config.cpu_based_2nd_exec_ctrl &
909 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
910 }
911
912 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
913 {
914 return vmcs_config.cpu_based_2nd_exec_ctrl &
915 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
916 }
917
918 static inline bool cpu_has_vmx_apic_register_virt(void)
919 {
920 return vmcs_config.cpu_based_2nd_exec_ctrl &
921 SECONDARY_EXEC_APIC_REGISTER_VIRT;
922 }
923
924 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
925 {
926 return vmcs_config.cpu_based_2nd_exec_ctrl &
927 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
928 }
929
930 static inline bool cpu_has_vmx_posted_intr(void)
931 {
932 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
933 }
934
935 static inline bool cpu_has_vmx_apicv(void)
936 {
937 return cpu_has_vmx_apic_register_virt() &&
938 cpu_has_vmx_virtual_intr_delivery() &&
939 cpu_has_vmx_posted_intr();
940 }
941
942 static inline bool cpu_has_vmx_flexpriority(void)
943 {
944 return cpu_has_vmx_tpr_shadow() &&
945 cpu_has_vmx_virtualize_apic_accesses();
946 }
947
948 static inline bool cpu_has_vmx_ept_execute_only(void)
949 {
950 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
951 }
952
953 static inline bool cpu_has_vmx_eptp_uncacheable(void)
954 {
955 return vmx_capability.ept & VMX_EPTP_UC_BIT;
956 }
957
958 static inline bool cpu_has_vmx_eptp_writeback(void)
959 {
960 return vmx_capability.ept & VMX_EPTP_WB_BIT;
961 }
962
963 static inline bool cpu_has_vmx_ept_2m_page(void)
964 {
965 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
966 }
967
968 static inline bool cpu_has_vmx_ept_1g_page(void)
969 {
970 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
971 }
972
973 static inline bool cpu_has_vmx_ept_4levels(void)
974 {
975 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
976 }
977
978 static inline bool cpu_has_vmx_ept_ad_bits(void)
979 {
980 return vmx_capability.ept & VMX_EPT_AD_BIT;
981 }
982
983 static inline bool cpu_has_vmx_invept_context(void)
984 {
985 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
986 }
987
988 static inline bool cpu_has_vmx_invept_global(void)
989 {
990 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
991 }
992
993 static inline bool cpu_has_vmx_invvpid_single(void)
994 {
995 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
996 }
997
998 static inline bool cpu_has_vmx_invvpid_global(void)
999 {
1000 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1001 }
1002
1003 static inline bool cpu_has_vmx_ept(void)
1004 {
1005 return vmcs_config.cpu_based_2nd_exec_ctrl &
1006 SECONDARY_EXEC_ENABLE_EPT;
1007 }
1008
1009 static inline bool cpu_has_vmx_unrestricted_guest(void)
1010 {
1011 return vmcs_config.cpu_based_2nd_exec_ctrl &
1012 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1013 }
1014
1015 static inline bool cpu_has_vmx_ple(void)
1016 {
1017 return vmcs_config.cpu_based_2nd_exec_ctrl &
1018 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1019 }
1020
1021 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1022 {
1023 return flexpriority_enabled && irqchip_in_kernel(kvm);
1024 }
1025
1026 static inline bool cpu_has_vmx_vpid(void)
1027 {
1028 return vmcs_config.cpu_based_2nd_exec_ctrl &
1029 SECONDARY_EXEC_ENABLE_VPID;
1030 }
1031
1032 static inline bool cpu_has_vmx_rdtscp(void)
1033 {
1034 return vmcs_config.cpu_based_2nd_exec_ctrl &
1035 SECONDARY_EXEC_RDTSCP;
1036 }
1037
1038 static inline bool cpu_has_vmx_invpcid(void)
1039 {
1040 return vmcs_config.cpu_based_2nd_exec_ctrl &
1041 SECONDARY_EXEC_ENABLE_INVPCID;
1042 }
1043
1044 static inline bool cpu_has_virtual_nmis(void)
1045 {
1046 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1047 }
1048
1049 static inline bool cpu_has_vmx_wbinvd_exit(void)
1050 {
1051 return vmcs_config.cpu_based_2nd_exec_ctrl &
1052 SECONDARY_EXEC_WBINVD_EXITING;
1053 }
1054
1055 static inline bool cpu_has_vmx_shadow_vmcs(void)
1056 {
1057 u64 vmx_msr;
1058 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1059 /* check if the cpu supports writing r/o exit information fields */
1060 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1061 return false;
1062
1063 return vmcs_config.cpu_based_2nd_exec_ctrl &
1064 SECONDARY_EXEC_SHADOW_VMCS;
1065 }
1066
1067 static inline bool report_flexpriority(void)
1068 {
1069 return flexpriority_enabled;
1070 }
1071
1072 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1073 {
1074 return vmcs12->cpu_based_vm_exec_control & bit;
1075 }
1076
1077 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1078 {
1079 return (vmcs12->cpu_based_vm_exec_control &
1080 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1081 (vmcs12->secondary_vm_exec_control & bit);
1082 }
1083
1084 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1085 {
1086 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1087 }
1088
1089 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1090 {
1091 return vmcs12->pin_based_vm_exec_control &
1092 PIN_BASED_VMX_PREEMPTION_TIMER;
1093 }
1094
1095 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1096 {
1097 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1098 }
1099
1100 static inline bool is_exception(u32 intr_info)
1101 {
1102 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1103 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1104 }
1105
1106 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1107 u32 exit_intr_info,
1108 unsigned long exit_qualification);
1109 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1110 struct vmcs12 *vmcs12,
1111 u32 reason, unsigned long qualification);
1112
1113 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1114 {
1115 int i;
1116
1117 for (i = 0; i < vmx->nmsrs; ++i)
1118 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1119 return i;
1120 return -1;
1121 }
1122
1123 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1124 {
1125 struct {
1126 u64 vpid : 16;
1127 u64 rsvd : 48;
1128 u64 gva;
1129 } operand = { vpid, 0, gva };
1130
1131 asm volatile (__ex(ASM_VMX_INVVPID)
1132 /* CF==1 or ZF==1 --> rc = -1 */
1133 "; ja 1f ; ud2 ; 1:"
1134 : : "a"(&operand), "c"(ext) : "cc", "memory");
1135 }
1136
1137 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1138 {
1139 struct {
1140 u64 eptp, gpa;
1141 } operand = {eptp, gpa};
1142
1143 asm volatile (__ex(ASM_VMX_INVEPT)
1144 /* CF==1 or ZF==1 --> rc = -1 */
1145 "; ja 1f ; ud2 ; 1:\n"
1146 : : "a" (&operand), "c" (ext) : "cc", "memory");
1147 }
1148
1149 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1150 {
1151 int i;
1152
1153 i = __find_msr_index(vmx, msr);
1154 if (i >= 0)
1155 return &vmx->guest_msrs[i];
1156 return NULL;
1157 }
1158
1159 static void vmcs_clear(struct vmcs *vmcs)
1160 {
1161 u64 phys_addr = __pa(vmcs);
1162 u8 error;
1163
1164 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1165 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1166 : "cc", "memory");
1167 if (error)
1168 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1169 vmcs, phys_addr);
1170 }
1171
1172 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1173 {
1174 vmcs_clear(loaded_vmcs->vmcs);
1175 loaded_vmcs->cpu = -1;
1176 loaded_vmcs->launched = 0;
1177 }
1178
1179 static void vmcs_load(struct vmcs *vmcs)
1180 {
1181 u64 phys_addr = __pa(vmcs);
1182 u8 error;
1183
1184 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1185 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1186 : "cc", "memory");
1187 if (error)
1188 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1189 vmcs, phys_addr);
1190 }
1191
1192 #ifdef CONFIG_KEXEC
1193 /*
1194 * This bitmap is used to indicate whether the vmclear
1195 * operation is enabled on all cpus. All disabled by
1196 * default.
1197 */
1198 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1199
1200 static inline void crash_enable_local_vmclear(int cpu)
1201 {
1202 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1203 }
1204
1205 static inline void crash_disable_local_vmclear(int cpu)
1206 {
1207 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1208 }
1209
1210 static inline int crash_local_vmclear_enabled(int cpu)
1211 {
1212 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1213 }
1214
1215 static void crash_vmclear_local_loaded_vmcss(void)
1216 {
1217 int cpu = raw_smp_processor_id();
1218 struct loaded_vmcs *v;
1219
1220 if (!crash_local_vmclear_enabled(cpu))
1221 return;
1222
1223 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1224 loaded_vmcss_on_cpu_link)
1225 vmcs_clear(v->vmcs);
1226 }
1227 #else
1228 static inline void crash_enable_local_vmclear(int cpu) { }
1229 static inline void crash_disable_local_vmclear(int cpu) { }
1230 #endif /* CONFIG_KEXEC */
1231
1232 static void __loaded_vmcs_clear(void *arg)
1233 {
1234 struct loaded_vmcs *loaded_vmcs = arg;
1235 int cpu = raw_smp_processor_id();
1236
1237 if (loaded_vmcs->cpu != cpu)
1238 return; /* vcpu migration can race with cpu offline */
1239 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1240 per_cpu(current_vmcs, cpu) = NULL;
1241 crash_disable_local_vmclear(cpu);
1242 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1243
1244 /*
1245 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1246 * is before setting loaded_vmcs->vcpu to -1 which is done in
1247 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1248 * then adds the vmcs into percpu list before it is deleted.
1249 */
1250 smp_wmb();
1251
1252 loaded_vmcs_init(loaded_vmcs);
1253 crash_enable_local_vmclear(cpu);
1254 }
1255
1256 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1257 {
1258 int cpu = loaded_vmcs->cpu;
1259
1260 if (cpu != -1)
1261 smp_call_function_single(cpu,
1262 __loaded_vmcs_clear, loaded_vmcs, 1);
1263 }
1264
1265 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1266 {
1267 if (vmx->vpid == 0)
1268 return;
1269
1270 if (cpu_has_vmx_invvpid_single())
1271 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1272 }
1273
1274 static inline void vpid_sync_vcpu_global(void)
1275 {
1276 if (cpu_has_vmx_invvpid_global())
1277 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1278 }
1279
1280 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1281 {
1282 if (cpu_has_vmx_invvpid_single())
1283 vpid_sync_vcpu_single(vmx);
1284 else
1285 vpid_sync_vcpu_global();
1286 }
1287
1288 static inline void ept_sync_global(void)
1289 {
1290 if (cpu_has_vmx_invept_global())
1291 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1292 }
1293
1294 static inline void ept_sync_context(u64 eptp)
1295 {
1296 if (enable_ept) {
1297 if (cpu_has_vmx_invept_context())
1298 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1299 else
1300 ept_sync_global();
1301 }
1302 }
1303
1304 static __always_inline unsigned long vmcs_readl(unsigned long field)
1305 {
1306 unsigned long value;
1307
1308 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1309 : "=a"(value) : "d"(field) : "cc");
1310 return value;
1311 }
1312
1313 static __always_inline u16 vmcs_read16(unsigned long field)
1314 {
1315 return vmcs_readl(field);
1316 }
1317
1318 static __always_inline u32 vmcs_read32(unsigned long field)
1319 {
1320 return vmcs_readl(field);
1321 }
1322
1323 static __always_inline u64 vmcs_read64(unsigned long field)
1324 {
1325 #ifdef CONFIG_X86_64
1326 return vmcs_readl(field);
1327 #else
1328 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1329 #endif
1330 }
1331
1332 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1333 {
1334 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1335 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1336 dump_stack();
1337 }
1338
1339 static void vmcs_writel(unsigned long field, unsigned long value)
1340 {
1341 u8 error;
1342
1343 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1344 : "=q"(error) : "a"(value), "d"(field) : "cc");
1345 if (unlikely(error))
1346 vmwrite_error(field, value);
1347 }
1348
1349 static void vmcs_write16(unsigned long field, u16 value)
1350 {
1351 vmcs_writel(field, value);
1352 }
1353
1354 static void vmcs_write32(unsigned long field, u32 value)
1355 {
1356 vmcs_writel(field, value);
1357 }
1358
1359 static void vmcs_write64(unsigned long field, u64 value)
1360 {
1361 vmcs_writel(field, value);
1362 #ifndef CONFIG_X86_64
1363 asm volatile ("");
1364 vmcs_writel(field+1, value >> 32);
1365 #endif
1366 }
1367
1368 static void vmcs_clear_bits(unsigned long field, u32 mask)
1369 {
1370 vmcs_writel(field, vmcs_readl(field) & ~mask);
1371 }
1372
1373 static void vmcs_set_bits(unsigned long field, u32 mask)
1374 {
1375 vmcs_writel(field, vmcs_readl(field) | mask);
1376 }
1377
1378 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1379 {
1380 vmcs_write32(VM_ENTRY_CONTROLS, val);
1381 vmx->vm_entry_controls_shadow = val;
1382 }
1383
1384 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1385 {
1386 if (vmx->vm_entry_controls_shadow != val)
1387 vm_entry_controls_init(vmx, val);
1388 }
1389
1390 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1391 {
1392 return vmx->vm_entry_controls_shadow;
1393 }
1394
1395
1396 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1397 {
1398 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1399 }
1400
1401 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1402 {
1403 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1404 }
1405
1406 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1407 {
1408 vmcs_write32(VM_EXIT_CONTROLS, val);
1409 vmx->vm_exit_controls_shadow = val;
1410 }
1411
1412 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1413 {
1414 if (vmx->vm_exit_controls_shadow != val)
1415 vm_exit_controls_init(vmx, val);
1416 }
1417
1418 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1419 {
1420 return vmx->vm_exit_controls_shadow;
1421 }
1422
1423
1424 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1425 {
1426 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1427 }
1428
1429 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1430 {
1431 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1432 }
1433
1434 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1435 {
1436 vmx->segment_cache.bitmask = 0;
1437 }
1438
1439 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1440 unsigned field)
1441 {
1442 bool ret;
1443 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1444
1445 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1446 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1447 vmx->segment_cache.bitmask = 0;
1448 }
1449 ret = vmx->segment_cache.bitmask & mask;
1450 vmx->segment_cache.bitmask |= mask;
1451 return ret;
1452 }
1453
1454 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1455 {
1456 u16 *p = &vmx->segment_cache.seg[seg].selector;
1457
1458 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1459 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1460 return *p;
1461 }
1462
1463 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1464 {
1465 ulong *p = &vmx->segment_cache.seg[seg].base;
1466
1467 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1468 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1469 return *p;
1470 }
1471
1472 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1473 {
1474 u32 *p = &vmx->segment_cache.seg[seg].limit;
1475
1476 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1477 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1478 return *p;
1479 }
1480
1481 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1482 {
1483 u32 *p = &vmx->segment_cache.seg[seg].ar;
1484
1485 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1486 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1487 return *p;
1488 }
1489
1490 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1491 {
1492 u32 eb;
1493
1494 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1495 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1496 if ((vcpu->guest_debug &
1497 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1498 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1499 eb |= 1u << BP_VECTOR;
1500 if (to_vmx(vcpu)->rmode.vm86_active)
1501 eb = ~0;
1502 if (enable_ept)
1503 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1504 if (vcpu->fpu_active)
1505 eb &= ~(1u << NM_VECTOR);
1506
1507 /* When we are running a nested L2 guest and L1 specified for it a
1508 * certain exception bitmap, we must trap the same exceptions and pass
1509 * them to L1. When running L2, we will only handle the exceptions
1510 * specified above if L1 did not want them.
1511 */
1512 if (is_guest_mode(vcpu))
1513 eb |= get_vmcs12(vcpu)->exception_bitmap;
1514
1515 vmcs_write32(EXCEPTION_BITMAP, eb);
1516 }
1517
1518 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1519 unsigned long entry, unsigned long exit)
1520 {
1521 vm_entry_controls_clearbit(vmx, entry);
1522 vm_exit_controls_clearbit(vmx, exit);
1523 }
1524
1525 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1526 {
1527 unsigned i;
1528 struct msr_autoload *m = &vmx->msr_autoload;
1529
1530 switch (msr) {
1531 case MSR_EFER:
1532 if (cpu_has_load_ia32_efer) {
1533 clear_atomic_switch_msr_special(vmx,
1534 VM_ENTRY_LOAD_IA32_EFER,
1535 VM_EXIT_LOAD_IA32_EFER);
1536 return;
1537 }
1538 break;
1539 case MSR_CORE_PERF_GLOBAL_CTRL:
1540 if (cpu_has_load_perf_global_ctrl) {
1541 clear_atomic_switch_msr_special(vmx,
1542 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1543 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1544 return;
1545 }
1546 break;
1547 }
1548
1549 for (i = 0; i < m->nr; ++i)
1550 if (m->guest[i].index == msr)
1551 break;
1552
1553 if (i == m->nr)
1554 return;
1555 --m->nr;
1556 m->guest[i] = m->guest[m->nr];
1557 m->host[i] = m->host[m->nr];
1558 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1559 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1560 }
1561
1562 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1563 unsigned long entry, unsigned long exit,
1564 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1565 u64 guest_val, u64 host_val)
1566 {
1567 vmcs_write64(guest_val_vmcs, guest_val);
1568 vmcs_write64(host_val_vmcs, host_val);
1569 vm_entry_controls_setbit(vmx, entry);
1570 vm_exit_controls_setbit(vmx, exit);
1571 }
1572
1573 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1574 u64 guest_val, u64 host_val)
1575 {
1576 unsigned i;
1577 struct msr_autoload *m = &vmx->msr_autoload;
1578
1579 switch (msr) {
1580 case MSR_EFER:
1581 if (cpu_has_load_ia32_efer) {
1582 add_atomic_switch_msr_special(vmx,
1583 VM_ENTRY_LOAD_IA32_EFER,
1584 VM_EXIT_LOAD_IA32_EFER,
1585 GUEST_IA32_EFER,
1586 HOST_IA32_EFER,
1587 guest_val, host_val);
1588 return;
1589 }
1590 break;
1591 case MSR_CORE_PERF_GLOBAL_CTRL:
1592 if (cpu_has_load_perf_global_ctrl) {
1593 add_atomic_switch_msr_special(vmx,
1594 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1595 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1596 GUEST_IA32_PERF_GLOBAL_CTRL,
1597 HOST_IA32_PERF_GLOBAL_CTRL,
1598 guest_val, host_val);
1599 return;
1600 }
1601 break;
1602 }
1603
1604 for (i = 0; i < m->nr; ++i)
1605 if (m->guest[i].index == msr)
1606 break;
1607
1608 if (i == NR_AUTOLOAD_MSRS) {
1609 printk_once(KERN_WARNING "Not enough msr switch entries. "
1610 "Can't add msr %x\n", msr);
1611 return;
1612 } else if (i == m->nr) {
1613 ++m->nr;
1614 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1615 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1616 }
1617
1618 m->guest[i].index = msr;
1619 m->guest[i].value = guest_val;
1620 m->host[i].index = msr;
1621 m->host[i].value = host_val;
1622 }
1623
1624 static void reload_tss(void)
1625 {
1626 /*
1627 * VT restores TR but not its size. Useless.
1628 */
1629 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1630 struct desc_struct *descs;
1631
1632 descs = (void *)gdt->address;
1633 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1634 load_TR_desc();
1635 }
1636
1637 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1638 {
1639 u64 guest_efer;
1640 u64 ignore_bits;
1641
1642 guest_efer = vmx->vcpu.arch.efer;
1643
1644 /*
1645 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1646 * outside long mode
1647 */
1648 ignore_bits = EFER_NX | EFER_SCE;
1649 #ifdef CONFIG_X86_64
1650 ignore_bits |= EFER_LMA | EFER_LME;
1651 /* SCE is meaningful only in long mode on Intel */
1652 if (guest_efer & EFER_LMA)
1653 ignore_bits &= ~(u64)EFER_SCE;
1654 #endif
1655 guest_efer &= ~ignore_bits;
1656 guest_efer |= host_efer & ignore_bits;
1657 vmx->guest_msrs[efer_offset].data = guest_efer;
1658 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1659
1660 clear_atomic_switch_msr(vmx, MSR_EFER);
1661 /* On ept, can't emulate nx, and must switch nx atomically */
1662 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1663 guest_efer = vmx->vcpu.arch.efer;
1664 if (!(guest_efer & EFER_LMA))
1665 guest_efer &= ~EFER_LME;
1666 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1667 return false;
1668 }
1669
1670 return true;
1671 }
1672
1673 static unsigned long segment_base(u16 selector)
1674 {
1675 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1676 struct desc_struct *d;
1677 unsigned long table_base;
1678 unsigned long v;
1679
1680 if (!(selector & ~3))
1681 return 0;
1682
1683 table_base = gdt->address;
1684
1685 if (selector & 4) { /* from ldt */
1686 u16 ldt_selector = kvm_read_ldt();
1687
1688 if (!(ldt_selector & ~3))
1689 return 0;
1690
1691 table_base = segment_base(ldt_selector);
1692 }
1693 d = (struct desc_struct *)(table_base + (selector & ~7));
1694 v = get_desc_base(d);
1695 #ifdef CONFIG_X86_64
1696 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1697 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1698 #endif
1699 return v;
1700 }
1701
1702 static inline unsigned long kvm_read_tr_base(void)
1703 {
1704 u16 tr;
1705 asm("str %0" : "=g"(tr));
1706 return segment_base(tr);
1707 }
1708
1709 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1710 {
1711 struct vcpu_vmx *vmx = to_vmx(vcpu);
1712 int i;
1713
1714 if (vmx->host_state.loaded)
1715 return;
1716
1717 vmx->host_state.loaded = 1;
1718 /*
1719 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1720 * allow segment selectors with cpl > 0 or ti == 1.
1721 */
1722 vmx->host_state.ldt_sel = kvm_read_ldt();
1723 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1724 savesegment(fs, vmx->host_state.fs_sel);
1725 if (!(vmx->host_state.fs_sel & 7)) {
1726 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1727 vmx->host_state.fs_reload_needed = 0;
1728 } else {
1729 vmcs_write16(HOST_FS_SELECTOR, 0);
1730 vmx->host_state.fs_reload_needed = 1;
1731 }
1732 savesegment(gs, vmx->host_state.gs_sel);
1733 if (!(vmx->host_state.gs_sel & 7))
1734 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1735 else {
1736 vmcs_write16(HOST_GS_SELECTOR, 0);
1737 vmx->host_state.gs_ldt_reload_needed = 1;
1738 }
1739
1740 #ifdef CONFIG_X86_64
1741 savesegment(ds, vmx->host_state.ds_sel);
1742 savesegment(es, vmx->host_state.es_sel);
1743 #endif
1744
1745 #ifdef CONFIG_X86_64
1746 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1747 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1748 #else
1749 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1750 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1751 #endif
1752
1753 #ifdef CONFIG_X86_64
1754 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1755 if (is_long_mode(&vmx->vcpu))
1756 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1757 #endif
1758 if (boot_cpu_has(X86_FEATURE_MPX))
1759 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1760 for (i = 0; i < vmx->save_nmsrs; ++i)
1761 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1762 vmx->guest_msrs[i].data,
1763 vmx->guest_msrs[i].mask);
1764 }
1765
1766 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1767 {
1768 if (!vmx->host_state.loaded)
1769 return;
1770
1771 ++vmx->vcpu.stat.host_state_reload;
1772 vmx->host_state.loaded = 0;
1773 #ifdef CONFIG_X86_64
1774 if (is_long_mode(&vmx->vcpu))
1775 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1776 #endif
1777 if (vmx->host_state.gs_ldt_reload_needed) {
1778 kvm_load_ldt(vmx->host_state.ldt_sel);
1779 #ifdef CONFIG_X86_64
1780 load_gs_index(vmx->host_state.gs_sel);
1781 #else
1782 loadsegment(gs, vmx->host_state.gs_sel);
1783 #endif
1784 }
1785 if (vmx->host_state.fs_reload_needed)
1786 loadsegment(fs, vmx->host_state.fs_sel);
1787 #ifdef CONFIG_X86_64
1788 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1789 loadsegment(ds, vmx->host_state.ds_sel);
1790 loadsegment(es, vmx->host_state.es_sel);
1791 }
1792 #endif
1793 reload_tss();
1794 #ifdef CONFIG_X86_64
1795 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1796 #endif
1797 if (vmx->host_state.msr_host_bndcfgs)
1798 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1799 /*
1800 * If the FPU is not active (through the host task or
1801 * the guest vcpu), then restore the cr0.TS bit.
1802 */
1803 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1804 stts();
1805 load_gdt(this_cpu_ptr(&host_gdt));
1806 }
1807
1808 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1809 {
1810 preempt_disable();
1811 __vmx_load_host_state(vmx);
1812 preempt_enable();
1813 }
1814
1815 /*
1816 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1817 * vcpu mutex is already taken.
1818 */
1819 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1820 {
1821 struct vcpu_vmx *vmx = to_vmx(vcpu);
1822 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1823
1824 if (!vmm_exclusive)
1825 kvm_cpu_vmxon(phys_addr);
1826 else if (vmx->loaded_vmcs->cpu != cpu)
1827 loaded_vmcs_clear(vmx->loaded_vmcs);
1828
1829 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1830 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1831 vmcs_load(vmx->loaded_vmcs->vmcs);
1832 }
1833
1834 if (vmx->loaded_vmcs->cpu != cpu) {
1835 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1836 unsigned long sysenter_esp;
1837
1838 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1839 local_irq_disable();
1840 crash_disable_local_vmclear(cpu);
1841
1842 /*
1843 * Read loaded_vmcs->cpu should be before fetching
1844 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1845 * See the comments in __loaded_vmcs_clear().
1846 */
1847 smp_rmb();
1848
1849 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1850 &per_cpu(loaded_vmcss_on_cpu, cpu));
1851 crash_enable_local_vmclear(cpu);
1852 local_irq_enable();
1853
1854 /*
1855 * Linux uses per-cpu TSS and GDT, so set these when switching
1856 * processors.
1857 */
1858 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1859 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1860
1861 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1862 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1863 vmx->loaded_vmcs->cpu = cpu;
1864 }
1865 }
1866
1867 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1868 {
1869 __vmx_load_host_state(to_vmx(vcpu));
1870 if (!vmm_exclusive) {
1871 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1872 vcpu->cpu = -1;
1873 kvm_cpu_vmxoff();
1874 }
1875 }
1876
1877 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1878 {
1879 ulong cr0;
1880
1881 if (vcpu->fpu_active)
1882 return;
1883 vcpu->fpu_active = 1;
1884 cr0 = vmcs_readl(GUEST_CR0);
1885 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1886 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1887 vmcs_writel(GUEST_CR0, cr0);
1888 update_exception_bitmap(vcpu);
1889 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1890 if (is_guest_mode(vcpu))
1891 vcpu->arch.cr0_guest_owned_bits &=
1892 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1893 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1894 }
1895
1896 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1897
1898 /*
1899 * Return the cr0 value that a nested guest would read. This is a combination
1900 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1901 * its hypervisor (cr0_read_shadow).
1902 */
1903 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1904 {
1905 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1906 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1907 }
1908 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1909 {
1910 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1911 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1912 }
1913
1914 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1915 {
1916 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1917 * set this *before* calling this function.
1918 */
1919 vmx_decache_cr0_guest_bits(vcpu);
1920 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1921 update_exception_bitmap(vcpu);
1922 vcpu->arch.cr0_guest_owned_bits = 0;
1923 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1924 if (is_guest_mode(vcpu)) {
1925 /*
1926 * L1's specified read shadow might not contain the TS bit,
1927 * so now that we turned on shadowing of this bit, we need to
1928 * set this bit of the shadow. Like in nested_vmx_run we need
1929 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1930 * up-to-date here because we just decached cr0.TS (and we'll
1931 * only update vmcs12->guest_cr0 on nested exit).
1932 */
1933 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1934 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1935 (vcpu->arch.cr0 & X86_CR0_TS);
1936 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1937 } else
1938 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1939 }
1940
1941 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1942 {
1943 unsigned long rflags, save_rflags;
1944
1945 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1946 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1947 rflags = vmcs_readl(GUEST_RFLAGS);
1948 if (to_vmx(vcpu)->rmode.vm86_active) {
1949 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1950 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1951 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1952 }
1953 to_vmx(vcpu)->rflags = rflags;
1954 }
1955 return to_vmx(vcpu)->rflags;
1956 }
1957
1958 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1959 {
1960 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1961 to_vmx(vcpu)->rflags = rflags;
1962 if (to_vmx(vcpu)->rmode.vm86_active) {
1963 to_vmx(vcpu)->rmode.save_rflags = rflags;
1964 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1965 }
1966 vmcs_writel(GUEST_RFLAGS, rflags);
1967 }
1968
1969 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1970 {
1971 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1972 int ret = 0;
1973
1974 if (interruptibility & GUEST_INTR_STATE_STI)
1975 ret |= KVM_X86_SHADOW_INT_STI;
1976 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1977 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1978
1979 return ret;
1980 }
1981
1982 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1983 {
1984 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1985 u32 interruptibility = interruptibility_old;
1986
1987 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1988
1989 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1990 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1991 else if (mask & KVM_X86_SHADOW_INT_STI)
1992 interruptibility |= GUEST_INTR_STATE_STI;
1993
1994 if ((interruptibility != interruptibility_old))
1995 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1996 }
1997
1998 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1999 {
2000 unsigned long rip;
2001
2002 rip = kvm_rip_read(vcpu);
2003 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2004 kvm_rip_write(vcpu, rip);
2005
2006 /* skipping an emulated instruction also counts */
2007 vmx_set_interrupt_shadow(vcpu, 0);
2008 }
2009
2010 /*
2011 * KVM wants to inject page-faults which it got to the guest. This function
2012 * checks whether in a nested guest, we need to inject them to L1 or L2.
2013 */
2014 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2015 {
2016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017
2018 if (!(vmcs12->exception_bitmap & (1u << nr)))
2019 return 0;
2020
2021 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2022 vmcs_read32(VM_EXIT_INTR_INFO),
2023 vmcs_readl(EXIT_QUALIFICATION));
2024 return 1;
2025 }
2026
2027 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2028 bool has_error_code, u32 error_code,
2029 bool reinject)
2030 {
2031 struct vcpu_vmx *vmx = to_vmx(vcpu);
2032 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2033
2034 if (!reinject && is_guest_mode(vcpu) &&
2035 nested_vmx_check_exception(vcpu, nr))
2036 return;
2037
2038 if (has_error_code) {
2039 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2040 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2041 }
2042
2043 if (vmx->rmode.vm86_active) {
2044 int inc_eip = 0;
2045 if (kvm_exception_is_soft(nr))
2046 inc_eip = vcpu->arch.event_exit_inst_len;
2047 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2048 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2049 return;
2050 }
2051
2052 if (kvm_exception_is_soft(nr)) {
2053 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2054 vmx->vcpu.arch.event_exit_inst_len);
2055 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2056 } else
2057 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2058
2059 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2060 }
2061
2062 static bool vmx_rdtscp_supported(void)
2063 {
2064 return cpu_has_vmx_rdtscp();
2065 }
2066
2067 static bool vmx_invpcid_supported(void)
2068 {
2069 return cpu_has_vmx_invpcid() && enable_ept;
2070 }
2071
2072 /*
2073 * Swap MSR entry in host/guest MSR entry array.
2074 */
2075 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2076 {
2077 struct shared_msr_entry tmp;
2078
2079 tmp = vmx->guest_msrs[to];
2080 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2081 vmx->guest_msrs[from] = tmp;
2082 }
2083
2084 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2085 {
2086 unsigned long *msr_bitmap;
2087
2088 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2089 if (is_long_mode(vcpu))
2090 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2091 else
2092 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2093 } else {
2094 if (is_long_mode(vcpu))
2095 msr_bitmap = vmx_msr_bitmap_longmode;
2096 else
2097 msr_bitmap = vmx_msr_bitmap_legacy;
2098 }
2099
2100 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2101 }
2102
2103 /*
2104 * Set up the vmcs to automatically save and restore system
2105 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2106 * mode, as fiddling with msrs is very expensive.
2107 */
2108 static void setup_msrs(struct vcpu_vmx *vmx)
2109 {
2110 int save_nmsrs, index;
2111
2112 save_nmsrs = 0;
2113 #ifdef CONFIG_X86_64
2114 if (is_long_mode(&vmx->vcpu)) {
2115 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2116 if (index >= 0)
2117 move_msr_up(vmx, index, save_nmsrs++);
2118 index = __find_msr_index(vmx, MSR_LSTAR);
2119 if (index >= 0)
2120 move_msr_up(vmx, index, save_nmsrs++);
2121 index = __find_msr_index(vmx, MSR_CSTAR);
2122 if (index >= 0)
2123 move_msr_up(vmx, index, save_nmsrs++);
2124 index = __find_msr_index(vmx, MSR_TSC_AUX);
2125 if (index >= 0 && vmx->rdtscp_enabled)
2126 move_msr_up(vmx, index, save_nmsrs++);
2127 /*
2128 * MSR_STAR is only needed on long mode guests, and only
2129 * if efer.sce is enabled.
2130 */
2131 index = __find_msr_index(vmx, MSR_STAR);
2132 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2133 move_msr_up(vmx, index, save_nmsrs++);
2134 }
2135 #endif
2136 index = __find_msr_index(vmx, MSR_EFER);
2137 if (index >= 0 && update_transition_efer(vmx, index))
2138 move_msr_up(vmx, index, save_nmsrs++);
2139
2140 vmx->save_nmsrs = save_nmsrs;
2141
2142 if (cpu_has_vmx_msr_bitmap())
2143 vmx_set_msr_bitmap(&vmx->vcpu);
2144 }
2145
2146 /*
2147 * reads and returns guest's timestamp counter "register"
2148 * guest_tsc = host_tsc + tsc_offset -- 21.3
2149 */
2150 static u64 guest_read_tsc(void)
2151 {
2152 u64 host_tsc, tsc_offset;
2153
2154 rdtscll(host_tsc);
2155 tsc_offset = vmcs_read64(TSC_OFFSET);
2156 return host_tsc + tsc_offset;
2157 }
2158
2159 /*
2160 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2161 * counter, even if a nested guest (L2) is currently running.
2162 */
2163 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2164 {
2165 u64 tsc_offset;
2166
2167 tsc_offset = is_guest_mode(vcpu) ?
2168 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2169 vmcs_read64(TSC_OFFSET);
2170 return host_tsc + tsc_offset;
2171 }
2172
2173 /*
2174 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2175 * software catchup for faster rates on slower CPUs.
2176 */
2177 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2178 {
2179 if (!scale)
2180 return;
2181
2182 if (user_tsc_khz > tsc_khz) {
2183 vcpu->arch.tsc_catchup = 1;
2184 vcpu->arch.tsc_always_catchup = 1;
2185 } else
2186 WARN(1, "user requested TSC rate below hardware speed\n");
2187 }
2188
2189 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2190 {
2191 return vmcs_read64(TSC_OFFSET);
2192 }
2193
2194 /*
2195 * writes 'offset' into guest's timestamp counter offset register
2196 */
2197 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2198 {
2199 if (is_guest_mode(vcpu)) {
2200 /*
2201 * We're here if L1 chose not to trap WRMSR to TSC. According
2202 * to the spec, this should set L1's TSC; The offset that L1
2203 * set for L2 remains unchanged, and still needs to be added
2204 * to the newly set TSC to get L2's TSC.
2205 */
2206 struct vmcs12 *vmcs12;
2207 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2208 /* recalculate vmcs02.TSC_OFFSET: */
2209 vmcs12 = get_vmcs12(vcpu);
2210 vmcs_write64(TSC_OFFSET, offset +
2211 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2212 vmcs12->tsc_offset : 0));
2213 } else {
2214 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2215 vmcs_read64(TSC_OFFSET), offset);
2216 vmcs_write64(TSC_OFFSET, offset);
2217 }
2218 }
2219
2220 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2221 {
2222 u64 offset = vmcs_read64(TSC_OFFSET);
2223
2224 vmcs_write64(TSC_OFFSET, offset + adjustment);
2225 if (is_guest_mode(vcpu)) {
2226 /* Even when running L2, the adjustment needs to apply to L1 */
2227 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2228 } else
2229 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2230 offset + adjustment);
2231 }
2232
2233 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2234 {
2235 return target_tsc - native_read_tsc();
2236 }
2237
2238 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2239 {
2240 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2241 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2242 }
2243
2244 /*
2245 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2246 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2247 * all guests if the "nested" module option is off, and can also be disabled
2248 * for a single guest by disabling its VMX cpuid bit.
2249 */
2250 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2251 {
2252 return nested && guest_cpuid_has_vmx(vcpu);
2253 }
2254
2255 /*
2256 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2257 * returned for the various VMX controls MSRs when nested VMX is enabled.
2258 * The same values should also be used to verify that vmcs12 control fields are
2259 * valid during nested entry from L1 to L2.
2260 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2261 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2262 * bit in the high half is on if the corresponding bit in the control field
2263 * may be on. See also vmx_control_verify().
2264 * TODO: allow these variables to be modified (downgraded) by module options
2265 * or other means.
2266 */
2267 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2268 static u32 nested_vmx_true_procbased_ctls_low;
2269 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2270 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2271 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2272 static u32 nested_vmx_true_exit_ctls_low;
2273 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2274 static u32 nested_vmx_true_entry_ctls_low;
2275 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2276 static u32 nested_vmx_ept_caps;
2277 static __init void nested_vmx_setup_ctls_msrs(void)
2278 {
2279 /*
2280 * Note that as a general rule, the high half of the MSRs (bits in
2281 * the control fields which may be 1) should be initialized by the
2282 * intersection of the underlying hardware's MSR (i.e., features which
2283 * can be supported) and the list of features we want to expose -
2284 * because they are known to be properly supported in our code.
2285 * Also, usually, the low half of the MSRs (bits which must be 1) can
2286 * be set to 0, meaning that L1 may turn off any of these bits. The
2287 * reason is that if one of these bits is necessary, it will appear
2288 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2289 * fields of vmcs01 and vmcs02, will turn these bits off - and
2290 * nested_vmx_exit_handled() will not pass related exits to L1.
2291 * These rules have exceptions below.
2292 */
2293
2294 /* pin-based controls */
2295 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2296 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2297 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2298 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2299 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2300 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2301 PIN_BASED_VMX_PREEMPTION_TIMER;
2302
2303 /* exit controls */
2304 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2305 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2306 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2307
2308 nested_vmx_exit_ctls_high &=
2309 #ifdef CONFIG_X86_64
2310 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2311 #endif
2312 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2313 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2314 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2315 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2316
2317 if (vmx_mpx_supported())
2318 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2319
2320 /* We support free control of debug control saving. */
2321 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2322 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2323
2324 /* entry controls */
2325 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2326 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2327 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2328 nested_vmx_entry_ctls_high &=
2329 #ifdef CONFIG_X86_64
2330 VM_ENTRY_IA32E_MODE |
2331 #endif
2332 VM_ENTRY_LOAD_IA32_PAT;
2333 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2334 VM_ENTRY_LOAD_IA32_EFER);
2335 if (vmx_mpx_supported())
2336 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2337
2338 /* We support free control of debug control loading. */
2339 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2340 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2341
2342 /* cpu-based controls */
2343 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2344 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2345 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2346 nested_vmx_procbased_ctls_high &=
2347 CPU_BASED_VIRTUAL_INTR_PENDING |
2348 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2349 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2350 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2351 CPU_BASED_CR3_STORE_EXITING |
2352 #ifdef CONFIG_X86_64
2353 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2354 #endif
2355 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2356 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2357 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2358 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2359 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2360 /*
2361 * We can allow some features even when not supported by the
2362 * hardware. For example, L1 can specify an MSR bitmap - and we
2363 * can use it to avoid exits to L1 - even when L0 runs L2
2364 * without MSR bitmaps.
2365 */
2366 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2367 CPU_BASED_USE_MSR_BITMAPS;
2368
2369 /* We support free control of CR3 access interception. */
2370 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2371 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2372
2373 /* secondary cpu-based controls */
2374 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2375 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2376 nested_vmx_secondary_ctls_low = 0;
2377 nested_vmx_secondary_ctls_high &=
2378 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2379 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2380 SECONDARY_EXEC_WBINVD_EXITING;
2381
2382 if (enable_ept) {
2383 /* nested EPT: emulate EPT also to L1 */
2384 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2385 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2386 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2387 VMX_EPT_INVEPT_BIT;
2388 nested_vmx_ept_caps &= vmx_capability.ept;
2389 /*
2390 * For nested guests, we don't do anything specific
2391 * for single context invalidation. Hence, only advertise
2392 * support for global context invalidation.
2393 */
2394 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2395 } else
2396 nested_vmx_ept_caps = 0;
2397
2398 /* miscellaneous data */
2399 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2400 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2401 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2402 VMX_MISC_ACTIVITY_HLT;
2403 nested_vmx_misc_high = 0;
2404 }
2405
2406 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2407 {
2408 /*
2409 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2410 */
2411 return ((control & high) | low) == control;
2412 }
2413
2414 static inline u64 vmx_control_msr(u32 low, u32 high)
2415 {
2416 return low | ((u64)high << 32);
2417 }
2418
2419 /* Returns 0 on success, non-0 otherwise. */
2420 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2421 {
2422 switch (msr_index) {
2423 case MSR_IA32_VMX_BASIC:
2424 /*
2425 * This MSR reports some information about VMX support. We
2426 * should return information about the VMX we emulate for the
2427 * guest, and the VMCS structure we give it - not about the
2428 * VMX support of the underlying hardware.
2429 */
2430 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2431 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2432 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2433 break;
2434 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2435 case MSR_IA32_VMX_PINBASED_CTLS:
2436 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2437 nested_vmx_pinbased_ctls_high);
2438 break;
2439 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2440 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2441 nested_vmx_procbased_ctls_high);
2442 break;
2443 case MSR_IA32_VMX_PROCBASED_CTLS:
2444 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2445 nested_vmx_procbased_ctls_high);
2446 break;
2447 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2448 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2449 nested_vmx_exit_ctls_high);
2450 break;
2451 case MSR_IA32_VMX_EXIT_CTLS:
2452 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2453 nested_vmx_exit_ctls_high);
2454 break;
2455 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2456 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2457 nested_vmx_entry_ctls_high);
2458 break;
2459 case MSR_IA32_VMX_ENTRY_CTLS:
2460 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2461 nested_vmx_entry_ctls_high);
2462 break;
2463 case MSR_IA32_VMX_MISC:
2464 *pdata = vmx_control_msr(nested_vmx_misc_low,
2465 nested_vmx_misc_high);
2466 break;
2467 /*
2468 * These MSRs specify bits which the guest must keep fixed (on or off)
2469 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2470 * We picked the standard core2 setting.
2471 */
2472 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2473 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2474 case MSR_IA32_VMX_CR0_FIXED0:
2475 *pdata = VMXON_CR0_ALWAYSON;
2476 break;
2477 case MSR_IA32_VMX_CR0_FIXED1:
2478 *pdata = -1ULL;
2479 break;
2480 case MSR_IA32_VMX_CR4_FIXED0:
2481 *pdata = VMXON_CR4_ALWAYSON;
2482 break;
2483 case MSR_IA32_VMX_CR4_FIXED1:
2484 *pdata = -1ULL;
2485 break;
2486 case MSR_IA32_VMX_VMCS_ENUM:
2487 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2488 break;
2489 case MSR_IA32_VMX_PROCBASED_CTLS2:
2490 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2491 nested_vmx_secondary_ctls_high);
2492 break;
2493 case MSR_IA32_VMX_EPT_VPID_CAP:
2494 /* Currently, no nested vpid support */
2495 *pdata = nested_vmx_ept_caps;
2496 break;
2497 default:
2498 return 1;
2499 }
2500
2501 return 0;
2502 }
2503
2504 /*
2505 * Reads an msr value (of 'msr_index') into 'pdata'.
2506 * Returns 0 on success, non-0 otherwise.
2507 * Assumes vcpu_load() was already called.
2508 */
2509 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2510 {
2511 u64 data;
2512 struct shared_msr_entry *msr;
2513
2514 if (!pdata) {
2515 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2516 return -EINVAL;
2517 }
2518
2519 switch (msr_index) {
2520 #ifdef CONFIG_X86_64
2521 case MSR_FS_BASE:
2522 data = vmcs_readl(GUEST_FS_BASE);
2523 break;
2524 case MSR_GS_BASE:
2525 data = vmcs_readl(GUEST_GS_BASE);
2526 break;
2527 case MSR_KERNEL_GS_BASE:
2528 vmx_load_host_state(to_vmx(vcpu));
2529 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2530 break;
2531 #endif
2532 case MSR_EFER:
2533 return kvm_get_msr_common(vcpu, msr_index, pdata);
2534 case MSR_IA32_TSC:
2535 data = guest_read_tsc();
2536 break;
2537 case MSR_IA32_SYSENTER_CS:
2538 data = vmcs_read32(GUEST_SYSENTER_CS);
2539 break;
2540 case MSR_IA32_SYSENTER_EIP:
2541 data = vmcs_readl(GUEST_SYSENTER_EIP);
2542 break;
2543 case MSR_IA32_SYSENTER_ESP:
2544 data = vmcs_readl(GUEST_SYSENTER_ESP);
2545 break;
2546 case MSR_IA32_BNDCFGS:
2547 if (!vmx_mpx_supported())
2548 return 1;
2549 data = vmcs_read64(GUEST_BNDCFGS);
2550 break;
2551 case MSR_IA32_FEATURE_CONTROL:
2552 if (!nested_vmx_allowed(vcpu))
2553 return 1;
2554 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2555 break;
2556 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2557 if (!nested_vmx_allowed(vcpu))
2558 return 1;
2559 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2560 case MSR_TSC_AUX:
2561 if (!to_vmx(vcpu)->rdtscp_enabled)
2562 return 1;
2563 /* Otherwise falls through */
2564 default:
2565 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2566 if (msr) {
2567 data = msr->data;
2568 break;
2569 }
2570 return kvm_get_msr_common(vcpu, msr_index, pdata);
2571 }
2572
2573 *pdata = data;
2574 return 0;
2575 }
2576
2577 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2578
2579 /*
2580 * Writes msr value into into the appropriate "register".
2581 * Returns 0 on success, non-0 otherwise.
2582 * Assumes vcpu_load() was already called.
2583 */
2584 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2585 {
2586 struct vcpu_vmx *vmx = to_vmx(vcpu);
2587 struct shared_msr_entry *msr;
2588 int ret = 0;
2589 u32 msr_index = msr_info->index;
2590 u64 data = msr_info->data;
2591
2592 switch (msr_index) {
2593 case MSR_EFER:
2594 ret = kvm_set_msr_common(vcpu, msr_info);
2595 break;
2596 #ifdef CONFIG_X86_64
2597 case MSR_FS_BASE:
2598 vmx_segment_cache_clear(vmx);
2599 vmcs_writel(GUEST_FS_BASE, data);
2600 break;
2601 case MSR_GS_BASE:
2602 vmx_segment_cache_clear(vmx);
2603 vmcs_writel(GUEST_GS_BASE, data);
2604 break;
2605 case MSR_KERNEL_GS_BASE:
2606 vmx_load_host_state(vmx);
2607 vmx->msr_guest_kernel_gs_base = data;
2608 break;
2609 #endif
2610 case MSR_IA32_SYSENTER_CS:
2611 vmcs_write32(GUEST_SYSENTER_CS, data);
2612 break;
2613 case MSR_IA32_SYSENTER_EIP:
2614 vmcs_writel(GUEST_SYSENTER_EIP, data);
2615 break;
2616 case MSR_IA32_SYSENTER_ESP:
2617 vmcs_writel(GUEST_SYSENTER_ESP, data);
2618 break;
2619 case MSR_IA32_BNDCFGS:
2620 if (!vmx_mpx_supported())
2621 return 1;
2622 vmcs_write64(GUEST_BNDCFGS, data);
2623 break;
2624 case MSR_IA32_TSC:
2625 kvm_write_tsc(vcpu, msr_info);
2626 break;
2627 case MSR_IA32_CR_PAT:
2628 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2629 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2630 return 1;
2631 vmcs_write64(GUEST_IA32_PAT, data);
2632 vcpu->arch.pat = data;
2633 break;
2634 }
2635 ret = kvm_set_msr_common(vcpu, msr_info);
2636 break;
2637 case MSR_IA32_TSC_ADJUST:
2638 ret = kvm_set_msr_common(vcpu, msr_info);
2639 break;
2640 case MSR_IA32_FEATURE_CONTROL:
2641 if (!nested_vmx_allowed(vcpu) ||
2642 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2643 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2644 return 1;
2645 vmx->nested.msr_ia32_feature_control = data;
2646 if (msr_info->host_initiated && data == 0)
2647 vmx_leave_nested(vcpu);
2648 break;
2649 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2650 return 1; /* they are read-only */
2651 case MSR_TSC_AUX:
2652 if (!vmx->rdtscp_enabled)
2653 return 1;
2654 /* Check reserved bit, higher 32 bits should be zero */
2655 if ((data >> 32) != 0)
2656 return 1;
2657 /* Otherwise falls through */
2658 default:
2659 msr = find_msr_entry(vmx, msr_index);
2660 if (msr) {
2661 msr->data = data;
2662 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2663 preempt_disable();
2664 kvm_set_shared_msr(msr->index, msr->data,
2665 msr->mask);
2666 preempt_enable();
2667 }
2668 break;
2669 }
2670 ret = kvm_set_msr_common(vcpu, msr_info);
2671 }
2672
2673 return ret;
2674 }
2675
2676 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2677 {
2678 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2679 switch (reg) {
2680 case VCPU_REGS_RSP:
2681 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2682 break;
2683 case VCPU_REGS_RIP:
2684 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2685 break;
2686 case VCPU_EXREG_PDPTR:
2687 if (enable_ept)
2688 ept_save_pdptrs(vcpu);
2689 break;
2690 default:
2691 break;
2692 }
2693 }
2694
2695 static __init int cpu_has_kvm_support(void)
2696 {
2697 return cpu_has_vmx();
2698 }
2699
2700 static __init int vmx_disabled_by_bios(void)
2701 {
2702 u64 msr;
2703
2704 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2705 if (msr & FEATURE_CONTROL_LOCKED) {
2706 /* launched w/ TXT and VMX disabled */
2707 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2708 && tboot_enabled())
2709 return 1;
2710 /* launched w/o TXT and VMX only enabled w/ TXT */
2711 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2712 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2713 && !tboot_enabled()) {
2714 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2715 "activate TXT before enabling KVM\n");
2716 return 1;
2717 }
2718 /* launched w/o TXT and VMX disabled */
2719 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2720 && !tboot_enabled())
2721 return 1;
2722 }
2723
2724 return 0;
2725 }
2726
2727 static void kvm_cpu_vmxon(u64 addr)
2728 {
2729 asm volatile (ASM_VMX_VMXON_RAX
2730 : : "a"(&addr), "m"(addr)
2731 : "memory", "cc");
2732 }
2733
2734 static int hardware_enable(void)
2735 {
2736 int cpu = raw_smp_processor_id();
2737 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2738 u64 old, test_bits;
2739
2740 if (read_cr4() & X86_CR4_VMXE)
2741 return -EBUSY;
2742
2743 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2744
2745 /*
2746 * Now we can enable the vmclear operation in kdump
2747 * since the loaded_vmcss_on_cpu list on this cpu
2748 * has been initialized.
2749 *
2750 * Though the cpu is not in VMX operation now, there
2751 * is no problem to enable the vmclear operation
2752 * for the loaded_vmcss_on_cpu list is empty!
2753 */
2754 crash_enable_local_vmclear(cpu);
2755
2756 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2757
2758 test_bits = FEATURE_CONTROL_LOCKED;
2759 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2760 if (tboot_enabled())
2761 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2762
2763 if ((old & test_bits) != test_bits) {
2764 /* enable and lock */
2765 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2766 }
2767 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2768
2769 if (vmm_exclusive) {
2770 kvm_cpu_vmxon(phys_addr);
2771 ept_sync_global();
2772 }
2773
2774 native_store_gdt(this_cpu_ptr(&host_gdt));
2775
2776 return 0;
2777 }
2778
2779 static void vmclear_local_loaded_vmcss(void)
2780 {
2781 int cpu = raw_smp_processor_id();
2782 struct loaded_vmcs *v, *n;
2783
2784 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2785 loaded_vmcss_on_cpu_link)
2786 __loaded_vmcs_clear(v);
2787 }
2788
2789
2790 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2791 * tricks.
2792 */
2793 static void kvm_cpu_vmxoff(void)
2794 {
2795 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2796 }
2797
2798 static void hardware_disable(void)
2799 {
2800 if (vmm_exclusive) {
2801 vmclear_local_loaded_vmcss();
2802 kvm_cpu_vmxoff();
2803 }
2804 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2805 }
2806
2807 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2808 u32 msr, u32 *result)
2809 {
2810 u32 vmx_msr_low, vmx_msr_high;
2811 u32 ctl = ctl_min | ctl_opt;
2812
2813 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2814
2815 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2816 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2817
2818 /* Ensure minimum (required) set of control bits are supported. */
2819 if (ctl_min & ~ctl)
2820 return -EIO;
2821
2822 *result = ctl;
2823 return 0;
2824 }
2825
2826 static __init bool allow_1_setting(u32 msr, u32 ctl)
2827 {
2828 u32 vmx_msr_low, vmx_msr_high;
2829
2830 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2831 return vmx_msr_high & ctl;
2832 }
2833
2834 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2835 {
2836 u32 vmx_msr_low, vmx_msr_high;
2837 u32 min, opt, min2, opt2;
2838 u32 _pin_based_exec_control = 0;
2839 u32 _cpu_based_exec_control = 0;
2840 u32 _cpu_based_2nd_exec_control = 0;
2841 u32 _vmexit_control = 0;
2842 u32 _vmentry_control = 0;
2843
2844 min = CPU_BASED_HLT_EXITING |
2845 #ifdef CONFIG_X86_64
2846 CPU_BASED_CR8_LOAD_EXITING |
2847 CPU_BASED_CR8_STORE_EXITING |
2848 #endif
2849 CPU_BASED_CR3_LOAD_EXITING |
2850 CPU_BASED_CR3_STORE_EXITING |
2851 CPU_BASED_USE_IO_BITMAPS |
2852 CPU_BASED_MOV_DR_EXITING |
2853 CPU_BASED_USE_TSC_OFFSETING |
2854 CPU_BASED_MWAIT_EXITING |
2855 CPU_BASED_MONITOR_EXITING |
2856 CPU_BASED_INVLPG_EXITING |
2857 CPU_BASED_RDPMC_EXITING;
2858
2859 opt = CPU_BASED_TPR_SHADOW |
2860 CPU_BASED_USE_MSR_BITMAPS |
2861 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2862 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2863 &_cpu_based_exec_control) < 0)
2864 return -EIO;
2865 #ifdef CONFIG_X86_64
2866 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2867 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2868 ~CPU_BASED_CR8_STORE_EXITING;
2869 #endif
2870 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2871 min2 = 0;
2872 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2873 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2874 SECONDARY_EXEC_WBINVD_EXITING |
2875 SECONDARY_EXEC_ENABLE_VPID |
2876 SECONDARY_EXEC_ENABLE_EPT |
2877 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2878 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2879 SECONDARY_EXEC_RDTSCP |
2880 SECONDARY_EXEC_ENABLE_INVPCID |
2881 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2882 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2883 SECONDARY_EXEC_SHADOW_VMCS;
2884 if (adjust_vmx_controls(min2, opt2,
2885 MSR_IA32_VMX_PROCBASED_CTLS2,
2886 &_cpu_based_2nd_exec_control) < 0)
2887 return -EIO;
2888 }
2889 #ifndef CONFIG_X86_64
2890 if (!(_cpu_based_2nd_exec_control &
2891 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2892 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2893 #endif
2894
2895 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2896 _cpu_based_2nd_exec_control &= ~(
2897 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2898 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2899 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2900
2901 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2902 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2903 enabled */
2904 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2905 CPU_BASED_CR3_STORE_EXITING |
2906 CPU_BASED_INVLPG_EXITING);
2907 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2908 vmx_capability.ept, vmx_capability.vpid);
2909 }
2910
2911 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2912 #ifdef CONFIG_X86_64
2913 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2914 #endif
2915 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2916 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2917 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2918 &_vmexit_control) < 0)
2919 return -EIO;
2920
2921 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2922 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2923 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2924 &_pin_based_exec_control) < 0)
2925 return -EIO;
2926
2927 if (!(_cpu_based_2nd_exec_control &
2928 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2929 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2930 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2931
2932 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2933 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2934 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2935 &_vmentry_control) < 0)
2936 return -EIO;
2937
2938 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2939
2940 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2941 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2942 return -EIO;
2943
2944 #ifdef CONFIG_X86_64
2945 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2946 if (vmx_msr_high & (1u<<16))
2947 return -EIO;
2948 #endif
2949
2950 /* Require Write-Back (WB) memory type for VMCS accesses. */
2951 if (((vmx_msr_high >> 18) & 15) != 6)
2952 return -EIO;
2953
2954 vmcs_conf->size = vmx_msr_high & 0x1fff;
2955 vmcs_conf->order = get_order(vmcs_config.size);
2956 vmcs_conf->revision_id = vmx_msr_low;
2957
2958 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2959 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2960 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2961 vmcs_conf->vmexit_ctrl = _vmexit_control;
2962 vmcs_conf->vmentry_ctrl = _vmentry_control;
2963
2964 cpu_has_load_ia32_efer =
2965 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2966 VM_ENTRY_LOAD_IA32_EFER)
2967 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2968 VM_EXIT_LOAD_IA32_EFER);
2969
2970 cpu_has_load_perf_global_ctrl =
2971 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2972 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2973 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2974 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2975
2976 /*
2977 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2978 * but due to arrata below it can't be used. Workaround is to use
2979 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2980 *
2981 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2982 *
2983 * AAK155 (model 26)
2984 * AAP115 (model 30)
2985 * AAT100 (model 37)
2986 * BC86,AAY89,BD102 (model 44)
2987 * BA97 (model 46)
2988 *
2989 */
2990 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2991 switch (boot_cpu_data.x86_model) {
2992 case 26:
2993 case 30:
2994 case 37:
2995 case 44:
2996 case 46:
2997 cpu_has_load_perf_global_ctrl = false;
2998 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2999 "does not work properly. Using workaround\n");
3000 break;
3001 default:
3002 break;
3003 }
3004 }
3005
3006 return 0;
3007 }
3008
3009 static struct vmcs *alloc_vmcs_cpu(int cpu)
3010 {
3011 int node = cpu_to_node(cpu);
3012 struct page *pages;
3013 struct vmcs *vmcs;
3014
3015 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3016 if (!pages)
3017 return NULL;
3018 vmcs = page_address(pages);
3019 memset(vmcs, 0, vmcs_config.size);
3020 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3021 return vmcs;
3022 }
3023
3024 static struct vmcs *alloc_vmcs(void)
3025 {
3026 return alloc_vmcs_cpu(raw_smp_processor_id());
3027 }
3028
3029 static void free_vmcs(struct vmcs *vmcs)
3030 {
3031 free_pages((unsigned long)vmcs, vmcs_config.order);
3032 }
3033
3034 /*
3035 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3036 */
3037 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3038 {
3039 if (!loaded_vmcs->vmcs)
3040 return;
3041 loaded_vmcs_clear(loaded_vmcs);
3042 free_vmcs(loaded_vmcs->vmcs);
3043 loaded_vmcs->vmcs = NULL;
3044 }
3045
3046 static void free_kvm_area(void)
3047 {
3048 int cpu;
3049
3050 for_each_possible_cpu(cpu) {
3051 free_vmcs(per_cpu(vmxarea, cpu));
3052 per_cpu(vmxarea, cpu) = NULL;
3053 }
3054 }
3055
3056 static void init_vmcs_shadow_fields(void)
3057 {
3058 int i, j;
3059
3060 /* No checks for read only fields yet */
3061
3062 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3063 switch (shadow_read_write_fields[i]) {
3064 case GUEST_BNDCFGS:
3065 if (!vmx_mpx_supported())
3066 continue;
3067 break;
3068 default:
3069 break;
3070 }
3071
3072 if (j < i)
3073 shadow_read_write_fields[j] =
3074 shadow_read_write_fields[i];
3075 j++;
3076 }
3077 max_shadow_read_write_fields = j;
3078
3079 /* shadowed fields guest access without vmexit */
3080 for (i = 0; i < max_shadow_read_write_fields; i++) {
3081 clear_bit(shadow_read_write_fields[i],
3082 vmx_vmwrite_bitmap);
3083 clear_bit(shadow_read_write_fields[i],
3084 vmx_vmread_bitmap);
3085 }
3086 for (i = 0; i < max_shadow_read_only_fields; i++)
3087 clear_bit(shadow_read_only_fields[i],
3088 vmx_vmread_bitmap);
3089 }
3090
3091 static __init int alloc_kvm_area(void)
3092 {
3093 int cpu;
3094
3095 for_each_possible_cpu(cpu) {
3096 struct vmcs *vmcs;
3097
3098 vmcs = alloc_vmcs_cpu(cpu);
3099 if (!vmcs) {
3100 free_kvm_area();
3101 return -ENOMEM;
3102 }
3103
3104 per_cpu(vmxarea, cpu) = vmcs;
3105 }
3106 return 0;
3107 }
3108
3109 static __init int hardware_setup(void)
3110 {
3111 if (setup_vmcs_config(&vmcs_config) < 0)
3112 return -EIO;
3113
3114 if (boot_cpu_has(X86_FEATURE_NX))
3115 kvm_enable_efer_bits(EFER_NX);
3116
3117 if (!cpu_has_vmx_vpid())
3118 enable_vpid = 0;
3119 if (!cpu_has_vmx_shadow_vmcs())
3120 enable_shadow_vmcs = 0;
3121 if (enable_shadow_vmcs)
3122 init_vmcs_shadow_fields();
3123
3124 if (!cpu_has_vmx_ept() ||
3125 !cpu_has_vmx_ept_4levels()) {
3126 enable_ept = 0;
3127 enable_unrestricted_guest = 0;
3128 enable_ept_ad_bits = 0;
3129 }
3130
3131 if (!cpu_has_vmx_ept_ad_bits())
3132 enable_ept_ad_bits = 0;
3133
3134 if (!cpu_has_vmx_unrestricted_guest())
3135 enable_unrestricted_guest = 0;
3136
3137 if (!cpu_has_vmx_flexpriority()) {
3138 flexpriority_enabled = 0;
3139
3140 /*
3141 * set_apic_access_page_addr() is used to reload apic access
3142 * page upon invalidation. No need to do anything if the
3143 * processor does not have the APIC_ACCESS_ADDR VMCS field.
3144 */
3145 kvm_x86_ops->set_apic_access_page_addr = NULL;
3146 }
3147
3148 if (!cpu_has_vmx_tpr_shadow())
3149 kvm_x86_ops->update_cr8_intercept = NULL;
3150
3151 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3152 kvm_disable_largepages();
3153
3154 if (!cpu_has_vmx_ple())
3155 ple_gap = 0;
3156
3157 if (!cpu_has_vmx_apicv())
3158 enable_apicv = 0;
3159
3160 if (enable_apicv)
3161 kvm_x86_ops->update_cr8_intercept = NULL;
3162 else {
3163 kvm_x86_ops->hwapic_irr_update = NULL;
3164 kvm_x86_ops->deliver_posted_interrupt = NULL;
3165 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3166 }
3167
3168 if (nested)
3169 nested_vmx_setup_ctls_msrs();
3170
3171 return alloc_kvm_area();
3172 }
3173
3174 static __exit void hardware_unsetup(void)
3175 {
3176 free_kvm_area();
3177 }
3178
3179 static bool emulation_required(struct kvm_vcpu *vcpu)
3180 {
3181 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3182 }
3183
3184 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3185 struct kvm_segment *save)
3186 {
3187 if (!emulate_invalid_guest_state) {
3188 /*
3189 * CS and SS RPL should be equal during guest entry according
3190 * to VMX spec, but in reality it is not always so. Since vcpu
3191 * is in the middle of the transition from real mode to
3192 * protected mode it is safe to assume that RPL 0 is a good
3193 * default value.
3194 */
3195 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3196 save->selector &= ~SELECTOR_RPL_MASK;
3197 save->dpl = save->selector & SELECTOR_RPL_MASK;
3198 save->s = 1;
3199 }
3200 vmx_set_segment(vcpu, save, seg);
3201 }
3202
3203 static void enter_pmode(struct kvm_vcpu *vcpu)
3204 {
3205 unsigned long flags;
3206 struct vcpu_vmx *vmx = to_vmx(vcpu);
3207
3208 /*
3209 * Update real mode segment cache. It may be not up-to-date if sement
3210 * register was written while vcpu was in a guest mode.
3211 */
3212 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3213 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3214 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3215 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3216 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3217 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3218
3219 vmx->rmode.vm86_active = 0;
3220
3221 vmx_segment_cache_clear(vmx);
3222
3223 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3224
3225 flags = vmcs_readl(GUEST_RFLAGS);
3226 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3227 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3228 vmcs_writel(GUEST_RFLAGS, flags);
3229
3230 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3231 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3232
3233 update_exception_bitmap(vcpu);
3234
3235 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3236 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3237 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3238 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3239 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3240 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3241 }
3242
3243 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3244 {
3245 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3246 struct kvm_segment var = *save;
3247
3248 var.dpl = 0x3;
3249 if (seg == VCPU_SREG_CS)
3250 var.type = 0x3;
3251
3252 if (!emulate_invalid_guest_state) {
3253 var.selector = var.base >> 4;
3254 var.base = var.base & 0xffff0;
3255 var.limit = 0xffff;
3256 var.g = 0;
3257 var.db = 0;
3258 var.present = 1;
3259 var.s = 1;
3260 var.l = 0;
3261 var.unusable = 0;
3262 var.type = 0x3;
3263 var.avl = 0;
3264 if (save->base & 0xf)
3265 printk_once(KERN_WARNING "kvm: segment base is not "
3266 "paragraph aligned when entering "
3267 "protected mode (seg=%d)", seg);
3268 }
3269
3270 vmcs_write16(sf->selector, var.selector);
3271 vmcs_write32(sf->base, var.base);
3272 vmcs_write32(sf->limit, var.limit);
3273 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3274 }
3275
3276 static void enter_rmode(struct kvm_vcpu *vcpu)
3277 {
3278 unsigned long flags;
3279 struct vcpu_vmx *vmx = to_vmx(vcpu);
3280
3281 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3282 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3283 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3284 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3287 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3288
3289 vmx->rmode.vm86_active = 1;
3290
3291 /*
3292 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3293 * vcpu. Warn the user that an update is overdue.
3294 */
3295 if (!vcpu->kvm->arch.tss_addr)
3296 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3297 "called before entering vcpu\n");
3298
3299 vmx_segment_cache_clear(vmx);
3300
3301 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3302 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3303 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3304
3305 flags = vmcs_readl(GUEST_RFLAGS);
3306 vmx->rmode.save_rflags = flags;
3307
3308 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3309
3310 vmcs_writel(GUEST_RFLAGS, flags);
3311 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3312 update_exception_bitmap(vcpu);
3313
3314 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3315 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3316 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3317 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3318 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3319 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3320
3321 kvm_mmu_reset_context(vcpu);
3322 }
3323
3324 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3325 {
3326 struct vcpu_vmx *vmx = to_vmx(vcpu);
3327 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3328
3329 if (!msr)
3330 return;
3331
3332 /*
3333 * Force kernel_gs_base reloading before EFER changes, as control
3334 * of this msr depends on is_long_mode().
3335 */
3336 vmx_load_host_state(to_vmx(vcpu));
3337 vcpu->arch.efer = efer;
3338 if (efer & EFER_LMA) {
3339 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3340 msr->data = efer;
3341 } else {
3342 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3343
3344 msr->data = efer & ~EFER_LME;
3345 }
3346 setup_msrs(vmx);
3347 }
3348
3349 #ifdef CONFIG_X86_64
3350
3351 static void enter_lmode(struct kvm_vcpu *vcpu)
3352 {
3353 u32 guest_tr_ar;
3354
3355 vmx_segment_cache_clear(to_vmx(vcpu));
3356
3357 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3358 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3359 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3360 __func__);
3361 vmcs_write32(GUEST_TR_AR_BYTES,
3362 (guest_tr_ar & ~AR_TYPE_MASK)
3363 | AR_TYPE_BUSY_64_TSS);
3364 }
3365 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3366 }
3367
3368 static void exit_lmode(struct kvm_vcpu *vcpu)
3369 {
3370 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3371 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3372 }
3373
3374 #endif
3375
3376 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3377 {
3378 vpid_sync_context(to_vmx(vcpu));
3379 if (enable_ept) {
3380 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3381 return;
3382 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3383 }
3384 }
3385
3386 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3387 {
3388 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3389
3390 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3391 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3392 }
3393
3394 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3395 {
3396 if (enable_ept && is_paging(vcpu))
3397 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3398 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3399 }
3400
3401 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3402 {
3403 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3404
3405 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3406 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3407 }
3408
3409 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3410 {
3411 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3412
3413 if (!test_bit(VCPU_EXREG_PDPTR,
3414 (unsigned long *)&vcpu->arch.regs_dirty))
3415 return;
3416
3417 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3418 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3419 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3420 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3421 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3422 }
3423 }
3424
3425 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3426 {
3427 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3428
3429 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3430 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3431 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3432 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3433 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3434 }
3435
3436 __set_bit(VCPU_EXREG_PDPTR,
3437 (unsigned long *)&vcpu->arch.regs_avail);
3438 __set_bit(VCPU_EXREG_PDPTR,
3439 (unsigned long *)&vcpu->arch.regs_dirty);
3440 }
3441
3442 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3443
3444 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3445 unsigned long cr0,
3446 struct kvm_vcpu *vcpu)
3447 {
3448 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3449 vmx_decache_cr3(vcpu);
3450 if (!(cr0 & X86_CR0_PG)) {
3451 /* From paging/starting to nonpaging */
3452 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3453 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3454 (CPU_BASED_CR3_LOAD_EXITING |
3455 CPU_BASED_CR3_STORE_EXITING));
3456 vcpu->arch.cr0 = cr0;
3457 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3458 } else if (!is_paging(vcpu)) {
3459 /* From nonpaging to paging */
3460 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3461 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3462 ~(CPU_BASED_CR3_LOAD_EXITING |
3463 CPU_BASED_CR3_STORE_EXITING));
3464 vcpu->arch.cr0 = cr0;
3465 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3466 }
3467
3468 if (!(cr0 & X86_CR0_WP))
3469 *hw_cr0 &= ~X86_CR0_WP;
3470 }
3471
3472 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3473 {
3474 struct vcpu_vmx *vmx = to_vmx(vcpu);
3475 unsigned long hw_cr0;
3476
3477 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3478 if (enable_unrestricted_guest)
3479 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3480 else {
3481 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3482
3483 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3484 enter_pmode(vcpu);
3485
3486 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3487 enter_rmode(vcpu);
3488 }
3489
3490 #ifdef CONFIG_X86_64
3491 if (vcpu->arch.efer & EFER_LME) {
3492 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3493 enter_lmode(vcpu);
3494 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3495 exit_lmode(vcpu);
3496 }
3497 #endif
3498
3499 if (enable_ept)
3500 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3501
3502 if (!vcpu->fpu_active)
3503 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3504
3505 vmcs_writel(CR0_READ_SHADOW, cr0);
3506 vmcs_writel(GUEST_CR0, hw_cr0);
3507 vcpu->arch.cr0 = cr0;
3508
3509 /* depends on vcpu->arch.cr0 to be set to a new value */
3510 vmx->emulation_required = emulation_required(vcpu);
3511 }
3512
3513 static u64 construct_eptp(unsigned long root_hpa)
3514 {
3515 u64 eptp;
3516
3517 /* TODO write the value reading from MSR */
3518 eptp = VMX_EPT_DEFAULT_MT |
3519 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3520 if (enable_ept_ad_bits)
3521 eptp |= VMX_EPT_AD_ENABLE_BIT;
3522 eptp |= (root_hpa & PAGE_MASK);
3523
3524 return eptp;
3525 }
3526
3527 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3528 {
3529 unsigned long guest_cr3;
3530 u64 eptp;
3531
3532 guest_cr3 = cr3;
3533 if (enable_ept) {
3534 eptp = construct_eptp(cr3);
3535 vmcs_write64(EPT_POINTER, eptp);
3536 if (is_paging(vcpu) || is_guest_mode(vcpu))
3537 guest_cr3 = kvm_read_cr3(vcpu);
3538 else
3539 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3540 ept_load_pdptrs(vcpu);
3541 }
3542
3543 vmx_flush_tlb(vcpu);
3544 vmcs_writel(GUEST_CR3, guest_cr3);
3545 }
3546
3547 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3548 {
3549 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3550 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3551
3552 if (cr4 & X86_CR4_VMXE) {
3553 /*
3554 * To use VMXON (and later other VMX instructions), a guest
3555 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3556 * So basically the check on whether to allow nested VMX
3557 * is here.
3558 */
3559 if (!nested_vmx_allowed(vcpu))
3560 return 1;
3561 }
3562 if (to_vmx(vcpu)->nested.vmxon &&
3563 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3564 return 1;
3565
3566 vcpu->arch.cr4 = cr4;
3567 if (enable_ept) {
3568 if (!is_paging(vcpu)) {
3569 hw_cr4 &= ~X86_CR4_PAE;
3570 hw_cr4 |= X86_CR4_PSE;
3571 /*
3572 * SMEP/SMAP is disabled if CPU is in non-paging mode
3573 * in hardware. However KVM always uses paging mode to
3574 * emulate guest non-paging mode with TDP.
3575 * To emulate this behavior, SMEP/SMAP needs to be
3576 * manually disabled when guest switches to non-paging
3577 * mode.
3578 */
3579 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3580 } else if (!(cr4 & X86_CR4_PAE)) {
3581 hw_cr4 &= ~X86_CR4_PAE;
3582 }
3583 }
3584
3585 vmcs_writel(CR4_READ_SHADOW, cr4);
3586 vmcs_writel(GUEST_CR4, hw_cr4);
3587 return 0;
3588 }
3589
3590 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3591 struct kvm_segment *var, int seg)
3592 {
3593 struct vcpu_vmx *vmx = to_vmx(vcpu);
3594 u32 ar;
3595
3596 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3597 *var = vmx->rmode.segs[seg];
3598 if (seg == VCPU_SREG_TR
3599 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3600 return;
3601 var->base = vmx_read_guest_seg_base(vmx, seg);
3602 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3603 return;
3604 }
3605 var->base = vmx_read_guest_seg_base(vmx, seg);
3606 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3607 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3608 ar = vmx_read_guest_seg_ar(vmx, seg);
3609 var->unusable = (ar >> 16) & 1;
3610 var->type = ar & 15;
3611 var->s = (ar >> 4) & 1;
3612 var->dpl = (ar >> 5) & 3;
3613 /*
3614 * Some userspaces do not preserve unusable property. Since usable
3615 * segment has to be present according to VMX spec we can use present
3616 * property to amend userspace bug by making unusable segment always
3617 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3618 * segment as unusable.
3619 */
3620 var->present = !var->unusable;
3621 var->avl = (ar >> 12) & 1;
3622 var->l = (ar >> 13) & 1;
3623 var->db = (ar >> 14) & 1;
3624 var->g = (ar >> 15) & 1;
3625 }
3626
3627 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3628 {
3629 struct kvm_segment s;
3630
3631 if (to_vmx(vcpu)->rmode.vm86_active) {
3632 vmx_get_segment(vcpu, &s, seg);
3633 return s.base;
3634 }
3635 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3636 }
3637
3638 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3639 {
3640 struct vcpu_vmx *vmx = to_vmx(vcpu);
3641
3642 if (unlikely(vmx->rmode.vm86_active))
3643 return 0;
3644 else {
3645 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3646 return AR_DPL(ar);
3647 }
3648 }
3649
3650 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3651 {
3652 u32 ar;
3653
3654 if (var->unusable || !var->present)
3655 ar = 1 << 16;
3656 else {
3657 ar = var->type & 15;
3658 ar |= (var->s & 1) << 4;
3659 ar |= (var->dpl & 3) << 5;
3660 ar |= (var->present & 1) << 7;
3661 ar |= (var->avl & 1) << 12;
3662 ar |= (var->l & 1) << 13;
3663 ar |= (var->db & 1) << 14;
3664 ar |= (var->g & 1) << 15;
3665 }
3666
3667 return ar;
3668 }
3669
3670 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3671 struct kvm_segment *var, int seg)
3672 {
3673 struct vcpu_vmx *vmx = to_vmx(vcpu);
3674 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3675
3676 vmx_segment_cache_clear(vmx);
3677
3678 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3679 vmx->rmode.segs[seg] = *var;
3680 if (seg == VCPU_SREG_TR)
3681 vmcs_write16(sf->selector, var->selector);
3682 else if (var->s)
3683 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3684 goto out;
3685 }
3686
3687 vmcs_writel(sf->base, var->base);
3688 vmcs_write32(sf->limit, var->limit);
3689 vmcs_write16(sf->selector, var->selector);
3690
3691 /*
3692 * Fix the "Accessed" bit in AR field of segment registers for older
3693 * qemu binaries.
3694 * IA32 arch specifies that at the time of processor reset the
3695 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3696 * is setting it to 0 in the userland code. This causes invalid guest
3697 * state vmexit when "unrestricted guest" mode is turned on.
3698 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3699 * tree. Newer qemu binaries with that qemu fix would not need this
3700 * kvm hack.
3701 */
3702 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3703 var->type |= 0x1; /* Accessed */
3704
3705 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3706
3707 out:
3708 vmx->emulation_required = emulation_required(vcpu);
3709 }
3710
3711 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3712 {
3713 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3714
3715 *db = (ar >> 14) & 1;
3716 *l = (ar >> 13) & 1;
3717 }
3718
3719 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3720 {
3721 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3722 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3723 }
3724
3725 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3726 {
3727 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3728 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3729 }
3730
3731 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3732 {
3733 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3734 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3735 }
3736
3737 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3738 {
3739 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3740 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3741 }
3742
3743 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3744 {
3745 struct kvm_segment var;
3746 u32 ar;
3747
3748 vmx_get_segment(vcpu, &var, seg);
3749 var.dpl = 0x3;
3750 if (seg == VCPU_SREG_CS)
3751 var.type = 0x3;
3752 ar = vmx_segment_access_rights(&var);
3753
3754 if (var.base != (var.selector << 4))
3755 return false;
3756 if (var.limit != 0xffff)
3757 return false;
3758 if (ar != 0xf3)
3759 return false;
3760
3761 return true;
3762 }
3763
3764 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3765 {
3766 struct kvm_segment cs;
3767 unsigned int cs_rpl;
3768
3769 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3770 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3771
3772 if (cs.unusable)
3773 return false;
3774 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3775 return false;
3776 if (!cs.s)
3777 return false;
3778 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3779 if (cs.dpl > cs_rpl)
3780 return false;
3781 } else {
3782 if (cs.dpl != cs_rpl)
3783 return false;
3784 }
3785 if (!cs.present)
3786 return false;
3787
3788 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3789 return true;
3790 }
3791
3792 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3793 {
3794 struct kvm_segment ss;
3795 unsigned int ss_rpl;
3796
3797 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3798 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3799
3800 if (ss.unusable)
3801 return true;
3802 if (ss.type != 3 && ss.type != 7)
3803 return false;
3804 if (!ss.s)
3805 return false;
3806 if (ss.dpl != ss_rpl) /* DPL != RPL */
3807 return false;
3808 if (!ss.present)
3809 return false;
3810
3811 return true;
3812 }
3813
3814 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3815 {
3816 struct kvm_segment var;
3817 unsigned int rpl;
3818
3819 vmx_get_segment(vcpu, &var, seg);
3820 rpl = var.selector & SELECTOR_RPL_MASK;
3821
3822 if (var.unusable)
3823 return true;
3824 if (!var.s)
3825 return false;
3826 if (!var.present)
3827 return false;
3828 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3829 if (var.dpl < rpl) /* DPL < RPL */
3830 return false;
3831 }
3832
3833 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3834 * rights flags
3835 */
3836 return true;
3837 }
3838
3839 static bool tr_valid(struct kvm_vcpu *vcpu)
3840 {
3841 struct kvm_segment tr;
3842
3843 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3844
3845 if (tr.unusable)
3846 return false;
3847 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3848 return false;
3849 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3850 return false;
3851 if (!tr.present)
3852 return false;
3853
3854 return true;
3855 }
3856
3857 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3858 {
3859 struct kvm_segment ldtr;
3860
3861 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3862
3863 if (ldtr.unusable)
3864 return true;
3865 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3866 return false;
3867 if (ldtr.type != 2)
3868 return false;
3869 if (!ldtr.present)
3870 return false;
3871
3872 return true;
3873 }
3874
3875 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3876 {
3877 struct kvm_segment cs, ss;
3878
3879 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3880 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3881
3882 return ((cs.selector & SELECTOR_RPL_MASK) ==
3883 (ss.selector & SELECTOR_RPL_MASK));
3884 }
3885
3886 /*
3887 * Check if guest state is valid. Returns true if valid, false if
3888 * not.
3889 * We assume that registers are always usable
3890 */
3891 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3892 {
3893 if (enable_unrestricted_guest)
3894 return true;
3895
3896 /* real mode guest state checks */
3897 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3898 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3899 return false;
3900 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3901 return false;
3902 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3903 return false;
3904 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3905 return false;
3906 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3907 return false;
3908 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3909 return false;
3910 } else {
3911 /* protected mode guest state checks */
3912 if (!cs_ss_rpl_check(vcpu))
3913 return false;
3914 if (!code_segment_valid(vcpu))
3915 return false;
3916 if (!stack_segment_valid(vcpu))
3917 return false;
3918 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3919 return false;
3920 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3921 return false;
3922 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3923 return false;
3924 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3925 return false;
3926 if (!tr_valid(vcpu))
3927 return false;
3928 if (!ldtr_valid(vcpu))
3929 return false;
3930 }
3931 /* TODO:
3932 * - Add checks on RIP
3933 * - Add checks on RFLAGS
3934 */
3935
3936 return true;
3937 }
3938
3939 static int init_rmode_tss(struct kvm *kvm)
3940 {
3941 gfn_t fn;
3942 u16 data = 0;
3943 int idx, r;
3944
3945 idx = srcu_read_lock(&kvm->srcu);
3946 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3947 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3948 if (r < 0)
3949 goto out;
3950 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3951 r = kvm_write_guest_page(kvm, fn++, &data,
3952 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3953 if (r < 0)
3954 goto out;
3955 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3956 if (r < 0)
3957 goto out;
3958 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3959 if (r < 0)
3960 goto out;
3961 data = ~0;
3962 r = kvm_write_guest_page(kvm, fn, &data,
3963 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3964 sizeof(u8));
3965 out:
3966 srcu_read_unlock(&kvm->srcu, idx);
3967 return r;
3968 }
3969
3970 static int init_rmode_identity_map(struct kvm *kvm)
3971 {
3972 int i, idx, r = 0;
3973 pfn_t identity_map_pfn;
3974 u32 tmp;
3975
3976 if (!enable_ept)
3977 return 0;
3978
3979 /* Protect kvm->arch.ept_identity_pagetable_done. */
3980 mutex_lock(&kvm->slots_lock);
3981
3982 if (likely(kvm->arch.ept_identity_pagetable_done))
3983 goto out2;
3984
3985 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3986
3987 r = alloc_identity_pagetable(kvm);
3988 if (r < 0)
3989 goto out2;
3990
3991 idx = srcu_read_lock(&kvm->srcu);
3992 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3993 if (r < 0)
3994 goto out;
3995 /* Set up identity-mapping pagetable for EPT in real mode */
3996 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3997 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3998 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3999 r = kvm_write_guest_page(kvm, identity_map_pfn,
4000 &tmp, i * sizeof(tmp), sizeof(tmp));
4001 if (r < 0)
4002 goto out;
4003 }
4004 kvm->arch.ept_identity_pagetable_done = true;
4005
4006 out:
4007 srcu_read_unlock(&kvm->srcu, idx);
4008
4009 out2:
4010 mutex_unlock(&kvm->slots_lock);
4011 return r;
4012 }
4013
4014 static void seg_setup(int seg)
4015 {
4016 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4017 unsigned int ar;
4018
4019 vmcs_write16(sf->selector, 0);
4020 vmcs_writel(sf->base, 0);
4021 vmcs_write32(sf->limit, 0xffff);
4022 ar = 0x93;
4023 if (seg == VCPU_SREG_CS)
4024 ar |= 0x08; /* code segment */
4025
4026 vmcs_write32(sf->ar_bytes, ar);
4027 }
4028
4029 static int alloc_apic_access_page(struct kvm *kvm)
4030 {
4031 struct page *page;
4032 struct kvm_userspace_memory_region kvm_userspace_mem;
4033 int r = 0;
4034
4035 mutex_lock(&kvm->slots_lock);
4036 if (kvm->arch.apic_access_page_done)
4037 goto out;
4038 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4039 kvm_userspace_mem.flags = 0;
4040 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4041 kvm_userspace_mem.memory_size = PAGE_SIZE;
4042 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4043 if (r)
4044 goto out;
4045
4046 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4047 if (is_error_page(page)) {
4048 r = -EFAULT;
4049 goto out;
4050 }
4051
4052 /*
4053 * Do not pin the page in memory, so that memory hot-unplug
4054 * is able to migrate it.
4055 */
4056 put_page(page);
4057 kvm->arch.apic_access_page_done = true;
4058 out:
4059 mutex_unlock(&kvm->slots_lock);
4060 return r;
4061 }
4062
4063 static int alloc_identity_pagetable(struct kvm *kvm)
4064 {
4065 /* Called with kvm->slots_lock held. */
4066
4067 struct kvm_userspace_memory_region kvm_userspace_mem;
4068 int r = 0;
4069
4070 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4071
4072 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4073 kvm_userspace_mem.flags = 0;
4074 kvm_userspace_mem.guest_phys_addr =
4075 kvm->arch.ept_identity_map_addr;
4076 kvm_userspace_mem.memory_size = PAGE_SIZE;
4077 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4078
4079 return r;
4080 }
4081
4082 static void allocate_vpid(struct vcpu_vmx *vmx)
4083 {
4084 int vpid;
4085
4086 vmx->vpid = 0;
4087 if (!enable_vpid)
4088 return;
4089 spin_lock(&vmx_vpid_lock);
4090 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4091 if (vpid < VMX_NR_VPIDS) {
4092 vmx->vpid = vpid;
4093 __set_bit(vpid, vmx_vpid_bitmap);
4094 }
4095 spin_unlock(&vmx_vpid_lock);
4096 }
4097
4098 static void free_vpid(struct vcpu_vmx *vmx)
4099 {
4100 if (!enable_vpid)
4101 return;
4102 spin_lock(&vmx_vpid_lock);
4103 if (vmx->vpid != 0)
4104 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4105 spin_unlock(&vmx_vpid_lock);
4106 }
4107
4108 #define MSR_TYPE_R 1
4109 #define MSR_TYPE_W 2
4110 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4111 u32 msr, int type)
4112 {
4113 int f = sizeof(unsigned long);
4114
4115 if (!cpu_has_vmx_msr_bitmap())
4116 return;
4117
4118 /*
4119 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4120 * have the write-low and read-high bitmap offsets the wrong way round.
4121 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4122 */
4123 if (msr <= 0x1fff) {
4124 if (type & MSR_TYPE_R)
4125 /* read-low */
4126 __clear_bit(msr, msr_bitmap + 0x000 / f);
4127
4128 if (type & MSR_TYPE_W)
4129 /* write-low */
4130 __clear_bit(msr, msr_bitmap + 0x800 / f);
4131
4132 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4133 msr &= 0x1fff;
4134 if (type & MSR_TYPE_R)
4135 /* read-high */
4136 __clear_bit(msr, msr_bitmap + 0x400 / f);
4137
4138 if (type & MSR_TYPE_W)
4139 /* write-high */
4140 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4141
4142 }
4143 }
4144
4145 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4146 u32 msr, int type)
4147 {
4148 int f = sizeof(unsigned long);
4149
4150 if (!cpu_has_vmx_msr_bitmap())
4151 return;
4152
4153 /*
4154 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4155 * have the write-low and read-high bitmap offsets the wrong way round.
4156 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4157 */
4158 if (msr <= 0x1fff) {
4159 if (type & MSR_TYPE_R)
4160 /* read-low */
4161 __set_bit(msr, msr_bitmap + 0x000 / f);
4162
4163 if (type & MSR_TYPE_W)
4164 /* write-low */
4165 __set_bit(msr, msr_bitmap + 0x800 / f);
4166
4167 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4168 msr &= 0x1fff;
4169 if (type & MSR_TYPE_R)
4170 /* read-high */
4171 __set_bit(msr, msr_bitmap + 0x400 / f);
4172
4173 if (type & MSR_TYPE_W)
4174 /* write-high */
4175 __set_bit(msr, msr_bitmap + 0xc00 / f);
4176
4177 }
4178 }
4179
4180 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4181 {
4182 if (!longmode_only)
4183 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4184 msr, MSR_TYPE_R | MSR_TYPE_W);
4185 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4186 msr, MSR_TYPE_R | MSR_TYPE_W);
4187 }
4188
4189 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4190 {
4191 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4192 msr, MSR_TYPE_R);
4193 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4194 msr, MSR_TYPE_R);
4195 }
4196
4197 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4198 {
4199 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4200 msr, MSR_TYPE_R);
4201 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4202 msr, MSR_TYPE_R);
4203 }
4204
4205 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4206 {
4207 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4208 msr, MSR_TYPE_W);
4209 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4210 msr, MSR_TYPE_W);
4211 }
4212
4213 static int vmx_vm_has_apicv(struct kvm *kvm)
4214 {
4215 return enable_apicv && irqchip_in_kernel(kvm);
4216 }
4217
4218 /*
4219 * Send interrupt to vcpu via posted interrupt way.
4220 * 1. If target vcpu is running(non-root mode), send posted interrupt
4221 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4222 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4223 * interrupt from PIR in next vmentry.
4224 */
4225 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4226 {
4227 struct vcpu_vmx *vmx = to_vmx(vcpu);
4228 int r;
4229
4230 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4231 return;
4232
4233 r = pi_test_and_set_on(&vmx->pi_desc);
4234 kvm_make_request(KVM_REQ_EVENT, vcpu);
4235 #ifdef CONFIG_SMP
4236 if (!r && (vcpu->mode == IN_GUEST_MODE))
4237 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4238 POSTED_INTR_VECTOR);
4239 else
4240 #endif
4241 kvm_vcpu_kick(vcpu);
4242 }
4243
4244 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4245 {
4246 struct vcpu_vmx *vmx = to_vmx(vcpu);
4247
4248 if (!pi_test_and_clear_on(&vmx->pi_desc))
4249 return;
4250
4251 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4252 }
4253
4254 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4255 {
4256 return;
4257 }
4258
4259 /*
4260 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4261 * will not change in the lifetime of the guest.
4262 * Note that host-state that does change is set elsewhere. E.g., host-state
4263 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4264 */
4265 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4266 {
4267 u32 low32, high32;
4268 unsigned long tmpl;
4269 struct desc_ptr dt;
4270
4271 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4272 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4273 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4274
4275 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4276 #ifdef CONFIG_X86_64
4277 /*
4278 * Load null selectors, so we can avoid reloading them in
4279 * __vmx_load_host_state(), in case userspace uses the null selectors
4280 * too (the expected case).
4281 */
4282 vmcs_write16(HOST_DS_SELECTOR, 0);
4283 vmcs_write16(HOST_ES_SELECTOR, 0);
4284 #else
4285 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4286 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4287 #endif
4288 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4289 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4290
4291 native_store_idt(&dt);
4292 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4293 vmx->host_idt_base = dt.address;
4294
4295 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4296
4297 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4298 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4299 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4300 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4301
4302 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4303 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4304 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4305 }
4306 }
4307
4308 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4309 {
4310 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4311 if (enable_ept)
4312 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4313 if (is_guest_mode(&vmx->vcpu))
4314 vmx->vcpu.arch.cr4_guest_owned_bits &=
4315 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4316 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4317 }
4318
4319 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4320 {
4321 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4322
4323 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4324 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4325 return pin_based_exec_ctrl;
4326 }
4327
4328 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4329 {
4330 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4331
4332 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4333 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4334
4335 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4336 exec_control &= ~CPU_BASED_TPR_SHADOW;
4337 #ifdef CONFIG_X86_64
4338 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4339 CPU_BASED_CR8_LOAD_EXITING;
4340 #endif
4341 }
4342 if (!enable_ept)
4343 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4344 CPU_BASED_CR3_LOAD_EXITING |
4345 CPU_BASED_INVLPG_EXITING;
4346 return exec_control;
4347 }
4348
4349 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4350 {
4351 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4352 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4353 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4354 if (vmx->vpid == 0)
4355 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4356 if (!enable_ept) {
4357 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4358 enable_unrestricted_guest = 0;
4359 /* Enable INVPCID for non-ept guests may cause performance regression. */
4360 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4361 }
4362 if (!enable_unrestricted_guest)
4363 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4364 if (!ple_gap)
4365 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4366 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4367 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4368 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4369 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4370 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4371 (handle_vmptrld).
4372 We can NOT enable shadow_vmcs here because we don't have yet
4373 a current VMCS12
4374 */
4375 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4376 return exec_control;
4377 }
4378
4379 static void ept_set_mmio_spte_mask(void)
4380 {
4381 /*
4382 * EPT Misconfigurations can be generated if the value of bits 2:0
4383 * of an EPT paging-structure entry is 110b (write/execute).
4384 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4385 * spte.
4386 */
4387 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4388 }
4389
4390 /*
4391 * Sets up the vmcs for emulated real mode.
4392 */
4393 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4394 {
4395 #ifdef CONFIG_X86_64
4396 unsigned long a;
4397 #endif
4398 int i;
4399
4400 /* I/O */
4401 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4402 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4403
4404 if (enable_shadow_vmcs) {
4405 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4406 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4407 }
4408 if (cpu_has_vmx_msr_bitmap())
4409 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4410
4411 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4412
4413 /* Control */
4414 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4415
4416 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4417
4418 if (cpu_has_secondary_exec_ctrls()) {
4419 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4420 vmx_secondary_exec_control(vmx));
4421 }
4422
4423 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4424 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4425 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4426 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4427 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4428
4429 vmcs_write16(GUEST_INTR_STATUS, 0);
4430
4431 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4432 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4433 }
4434
4435 if (ple_gap) {
4436 vmcs_write32(PLE_GAP, ple_gap);
4437 vmx->ple_window = ple_window;
4438 vmx->ple_window_dirty = true;
4439 }
4440
4441 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4442 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4443 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4444
4445 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4446 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4447 vmx_set_constant_host_state(vmx);
4448 #ifdef CONFIG_X86_64
4449 rdmsrl(MSR_FS_BASE, a);
4450 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4451 rdmsrl(MSR_GS_BASE, a);
4452 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4453 #else
4454 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4455 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4456 #endif
4457
4458 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4459 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4460 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4461 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4462 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4463
4464 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4465 u32 msr_low, msr_high;
4466 u64 host_pat;
4467 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4468 host_pat = msr_low | ((u64) msr_high << 32);
4469 /* Write the default value follow host pat */
4470 vmcs_write64(GUEST_IA32_PAT, host_pat);
4471 /* Keep arch.pat sync with GUEST_IA32_PAT */
4472 vmx->vcpu.arch.pat = host_pat;
4473 }
4474
4475 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4476 u32 index = vmx_msr_index[i];
4477 u32 data_low, data_high;
4478 int j = vmx->nmsrs;
4479
4480 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4481 continue;
4482 if (wrmsr_safe(index, data_low, data_high) < 0)
4483 continue;
4484 vmx->guest_msrs[j].index = i;
4485 vmx->guest_msrs[j].data = 0;
4486 vmx->guest_msrs[j].mask = -1ull;
4487 ++vmx->nmsrs;
4488 }
4489
4490
4491 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4492
4493 /* 22.2.1, 20.8.1 */
4494 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4495
4496 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4497 set_cr4_guest_host_mask(vmx);
4498
4499 return 0;
4500 }
4501
4502 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4503 {
4504 struct vcpu_vmx *vmx = to_vmx(vcpu);
4505 struct msr_data apic_base_msr;
4506
4507 vmx->rmode.vm86_active = 0;
4508
4509 vmx->soft_vnmi_blocked = 0;
4510
4511 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4512 kvm_set_cr8(&vmx->vcpu, 0);
4513 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4514 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4515 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4516 apic_base_msr.host_initiated = true;
4517 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4518
4519 vmx_segment_cache_clear(vmx);
4520
4521 seg_setup(VCPU_SREG_CS);
4522 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4523 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4524
4525 seg_setup(VCPU_SREG_DS);
4526 seg_setup(VCPU_SREG_ES);
4527 seg_setup(VCPU_SREG_FS);
4528 seg_setup(VCPU_SREG_GS);
4529 seg_setup(VCPU_SREG_SS);
4530
4531 vmcs_write16(GUEST_TR_SELECTOR, 0);
4532 vmcs_writel(GUEST_TR_BASE, 0);
4533 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4534 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4535
4536 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4537 vmcs_writel(GUEST_LDTR_BASE, 0);
4538 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4539 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4540
4541 vmcs_write32(GUEST_SYSENTER_CS, 0);
4542 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4543 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4544
4545 vmcs_writel(GUEST_RFLAGS, 0x02);
4546 kvm_rip_write(vcpu, 0xfff0);
4547
4548 vmcs_writel(GUEST_GDTR_BASE, 0);
4549 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4550
4551 vmcs_writel(GUEST_IDTR_BASE, 0);
4552 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4553
4554 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4555 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4556 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4557
4558 /* Special registers */
4559 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4560
4561 setup_msrs(vmx);
4562
4563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4564
4565 if (cpu_has_vmx_tpr_shadow()) {
4566 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4567 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4568 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4569 __pa(vmx->vcpu.arch.apic->regs));
4570 vmcs_write32(TPR_THRESHOLD, 0);
4571 }
4572
4573 kvm_vcpu_reload_apic_access_page(vcpu);
4574
4575 if (vmx_vm_has_apicv(vcpu->kvm))
4576 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4577
4578 if (vmx->vpid != 0)
4579 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4580
4581 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4582 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4583 vmx_set_cr4(&vmx->vcpu, 0);
4584 vmx_set_efer(&vmx->vcpu, 0);
4585 vmx_fpu_activate(&vmx->vcpu);
4586 update_exception_bitmap(&vmx->vcpu);
4587
4588 vpid_sync_context(vmx);
4589 }
4590
4591 /*
4592 * In nested virtualization, check if L1 asked to exit on external interrupts.
4593 * For most existing hypervisors, this will always return true.
4594 */
4595 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4596 {
4597 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4598 PIN_BASED_EXT_INTR_MASK;
4599 }
4600
4601 /*
4602 * In nested virtualization, check if L1 has set
4603 * VM_EXIT_ACK_INTR_ON_EXIT
4604 */
4605 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4606 {
4607 return get_vmcs12(vcpu)->vm_exit_controls &
4608 VM_EXIT_ACK_INTR_ON_EXIT;
4609 }
4610
4611 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4612 {
4613 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4614 PIN_BASED_NMI_EXITING;
4615 }
4616
4617 static void enable_irq_window(struct kvm_vcpu *vcpu)
4618 {
4619 u32 cpu_based_vm_exec_control;
4620
4621 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4622 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4623 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4624 }
4625
4626 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4627 {
4628 u32 cpu_based_vm_exec_control;
4629
4630 if (!cpu_has_virtual_nmis() ||
4631 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4632 enable_irq_window(vcpu);
4633 return;
4634 }
4635
4636 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4637 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4638 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4639 }
4640
4641 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4642 {
4643 struct vcpu_vmx *vmx = to_vmx(vcpu);
4644 uint32_t intr;
4645 int irq = vcpu->arch.interrupt.nr;
4646
4647 trace_kvm_inj_virq(irq);
4648
4649 ++vcpu->stat.irq_injections;
4650 if (vmx->rmode.vm86_active) {
4651 int inc_eip = 0;
4652 if (vcpu->arch.interrupt.soft)
4653 inc_eip = vcpu->arch.event_exit_inst_len;
4654 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4655 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4656 return;
4657 }
4658 intr = irq | INTR_INFO_VALID_MASK;
4659 if (vcpu->arch.interrupt.soft) {
4660 intr |= INTR_TYPE_SOFT_INTR;
4661 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4662 vmx->vcpu.arch.event_exit_inst_len);
4663 } else
4664 intr |= INTR_TYPE_EXT_INTR;
4665 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4666 }
4667
4668 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4669 {
4670 struct vcpu_vmx *vmx = to_vmx(vcpu);
4671
4672 if (is_guest_mode(vcpu))
4673 return;
4674
4675 if (!cpu_has_virtual_nmis()) {
4676 /*
4677 * Tracking the NMI-blocked state in software is built upon
4678 * finding the next open IRQ window. This, in turn, depends on
4679 * well-behaving guests: They have to keep IRQs disabled at
4680 * least as long as the NMI handler runs. Otherwise we may
4681 * cause NMI nesting, maybe breaking the guest. But as this is
4682 * highly unlikely, we can live with the residual risk.
4683 */
4684 vmx->soft_vnmi_blocked = 1;
4685 vmx->vnmi_blocked_time = 0;
4686 }
4687
4688 ++vcpu->stat.nmi_injections;
4689 vmx->nmi_known_unmasked = false;
4690 if (vmx->rmode.vm86_active) {
4691 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4692 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4693 return;
4694 }
4695 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4696 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4697 }
4698
4699 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4700 {
4701 if (!cpu_has_virtual_nmis())
4702 return to_vmx(vcpu)->soft_vnmi_blocked;
4703 if (to_vmx(vcpu)->nmi_known_unmasked)
4704 return false;
4705 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4706 }
4707
4708 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4709 {
4710 struct vcpu_vmx *vmx = to_vmx(vcpu);
4711
4712 if (!cpu_has_virtual_nmis()) {
4713 if (vmx->soft_vnmi_blocked != masked) {
4714 vmx->soft_vnmi_blocked = masked;
4715 vmx->vnmi_blocked_time = 0;
4716 }
4717 } else {
4718 vmx->nmi_known_unmasked = !masked;
4719 if (masked)
4720 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4721 GUEST_INTR_STATE_NMI);
4722 else
4723 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4724 GUEST_INTR_STATE_NMI);
4725 }
4726 }
4727
4728 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4729 {
4730 if (to_vmx(vcpu)->nested.nested_run_pending)
4731 return 0;
4732
4733 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4734 return 0;
4735
4736 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4737 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4738 | GUEST_INTR_STATE_NMI));
4739 }
4740
4741 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4742 {
4743 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4744 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4745 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4746 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4747 }
4748
4749 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4750 {
4751 int ret;
4752 struct kvm_userspace_memory_region tss_mem = {
4753 .slot = TSS_PRIVATE_MEMSLOT,
4754 .guest_phys_addr = addr,
4755 .memory_size = PAGE_SIZE * 3,
4756 .flags = 0,
4757 };
4758
4759 ret = kvm_set_memory_region(kvm, &tss_mem);
4760 if (ret)
4761 return ret;
4762 kvm->arch.tss_addr = addr;
4763 return init_rmode_tss(kvm);
4764 }
4765
4766 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4767 {
4768 switch (vec) {
4769 case BP_VECTOR:
4770 /*
4771 * Update instruction length as we may reinject the exception
4772 * from user space while in guest debugging mode.
4773 */
4774 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4775 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4776 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4777 return false;
4778 /* fall through */
4779 case DB_VECTOR:
4780 if (vcpu->guest_debug &
4781 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4782 return false;
4783 /* fall through */
4784 case DE_VECTOR:
4785 case OF_VECTOR:
4786 case BR_VECTOR:
4787 case UD_VECTOR:
4788 case DF_VECTOR:
4789 case SS_VECTOR:
4790 case GP_VECTOR:
4791 case MF_VECTOR:
4792 return true;
4793 break;
4794 }
4795 return false;
4796 }
4797
4798 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4799 int vec, u32 err_code)
4800 {
4801 /*
4802 * Instruction with address size override prefix opcode 0x67
4803 * Cause the #SS fault with 0 error code in VM86 mode.
4804 */
4805 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4806 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4807 if (vcpu->arch.halt_request) {
4808 vcpu->arch.halt_request = 0;
4809 return kvm_emulate_halt(vcpu);
4810 }
4811 return 1;
4812 }
4813 return 0;
4814 }
4815
4816 /*
4817 * Forward all other exceptions that are valid in real mode.
4818 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4819 * the required debugging infrastructure rework.
4820 */
4821 kvm_queue_exception(vcpu, vec);
4822 return 1;
4823 }
4824
4825 /*
4826 * Trigger machine check on the host. We assume all the MSRs are already set up
4827 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4828 * We pass a fake environment to the machine check handler because we want
4829 * the guest to be always treated like user space, no matter what context
4830 * it used internally.
4831 */
4832 static void kvm_machine_check(void)
4833 {
4834 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4835 struct pt_regs regs = {
4836 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4837 .flags = X86_EFLAGS_IF,
4838 };
4839
4840 do_machine_check(&regs, 0);
4841 #endif
4842 }
4843
4844 static int handle_machine_check(struct kvm_vcpu *vcpu)
4845 {
4846 /* already handled by vcpu_run */
4847 return 1;
4848 }
4849
4850 static int handle_exception(struct kvm_vcpu *vcpu)
4851 {
4852 struct vcpu_vmx *vmx = to_vmx(vcpu);
4853 struct kvm_run *kvm_run = vcpu->run;
4854 u32 intr_info, ex_no, error_code;
4855 unsigned long cr2, rip, dr6;
4856 u32 vect_info;
4857 enum emulation_result er;
4858
4859 vect_info = vmx->idt_vectoring_info;
4860 intr_info = vmx->exit_intr_info;
4861
4862 if (is_machine_check(intr_info))
4863 return handle_machine_check(vcpu);
4864
4865 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4866 return 1; /* already handled by vmx_vcpu_run() */
4867
4868 if (is_no_device(intr_info)) {
4869 vmx_fpu_activate(vcpu);
4870 return 1;
4871 }
4872
4873 if (is_invalid_opcode(intr_info)) {
4874 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4875 if (er != EMULATE_DONE)
4876 kvm_queue_exception(vcpu, UD_VECTOR);
4877 return 1;
4878 }
4879
4880 error_code = 0;
4881 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4882 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4883
4884 /*
4885 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4886 * MMIO, it is better to report an internal error.
4887 * See the comments in vmx_handle_exit.
4888 */
4889 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4890 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4891 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4892 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4893 vcpu->run->internal.ndata = 2;
4894 vcpu->run->internal.data[0] = vect_info;
4895 vcpu->run->internal.data[1] = intr_info;
4896 return 0;
4897 }
4898
4899 if (is_page_fault(intr_info)) {
4900 /* EPT won't cause page fault directly */
4901 BUG_ON(enable_ept);
4902 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4903 trace_kvm_page_fault(cr2, error_code);
4904
4905 if (kvm_event_needs_reinjection(vcpu))
4906 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4907 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4908 }
4909
4910 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4911
4912 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4913 return handle_rmode_exception(vcpu, ex_no, error_code);
4914
4915 switch (ex_no) {
4916 case DB_VECTOR:
4917 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4918 if (!(vcpu->guest_debug &
4919 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4920 vcpu->arch.dr6 &= ~15;
4921 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4922 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4923 skip_emulated_instruction(vcpu);
4924
4925 kvm_queue_exception(vcpu, DB_VECTOR);
4926 return 1;
4927 }
4928 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4929 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4930 /* fall through */
4931 case BP_VECTOR:
4932 /*
4933 * Update instruction length as we may reinject #BP from
4934 * user space while in guest debugging mode. Reading it for
4935 * #DB as well causes no harm, it is not used in that case.
4936 */
4937 vmx->vcpu.arch.event_exit_inst_len =
4938 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4939 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4940 rip = kvm_rip_read(vcpu);
4941 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4942 kvm_run->debug.arch.exception = ex_no;
4943 break;
4944 default:
4945 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4946 kvm_run->ex.exception = ex_no;
4947 kvm_run->ex.error_code = error_code;
4948 break;
4949 }
4950 return 0;
4951 }
4952
4953 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4954 {
4955 ++vcpu->stat.irq_exits;
4956 return 1;
4957 }
4958
4959 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4960 {
4961 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4962 return 0;
4963 }
4964
4965 static int handle_io(struct kvm_vcpu *vcpu)
4966 {
4967 unsigned long exit_qualification;
4968 int size, in, string;
4969 unsigned port;
4970
4971 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4972 string = (exit_qualification & 16) != 0;
4973 in = (exit_qualification & 8) != 0;
4974
4975 ++vcpu->stat.io_exits;
4976
4977 if (string || in)
4978 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4979
4980 port = exit_qualification >> 16;
4981 size = (exit_qualification & 7) + 1;
4982 skip_emulated_instruction(vcpu);
4983
4984 return kvm_fast_pio_out(vcpu, size, port);
4985 }
4986
4987 static void
4988 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4989 {
4990 /*
4991 * Patch in the VMCALL instruction:
4992 */
4993 hypercall[0] = 0x0f;
4994 hypercall[1] = 0x01;
4995 hypercall[2] = 0xc1;
4996 }
4997
4998 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4999 {
5000 unsigned long always_on = VMXON_CR0_ALWAYSON;
5001
5002 if (nested_vmx_secondary_ctls_high &
5003 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5004 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5005 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5006 return (val & always_on) == always_on;
5007 }
5008
5009 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5010 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5011 {
5012 if (is_guest_mode(vcpu)) {
5013 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5014 unsigned long orig_val = val;
5015
5016 /*
5017 * We get here when L2 changed cr0 in a way that did not change
5018 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5019 * but did change L0 shadowed bits. So we first calculate the
5020 * effective cr0 value that L1 would like to write into the
5021 * hardware. It consists of the L2-owned bits from the new
5022 * value combined with the L1-owned bits from L1's guest_cr0.
5023 */
5024 val = (val & ~vmcs12->cr0_guest_host_mask) |
5025 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5026
5027 if (!nested_cr0_valid(vmcs12, val))
5028 return 1;
5029
5030 if (kvm_set_cr0(vcpu, val))
5031 return 1;
5032 vmcs_writel(CR0_READ_SHADOW, orig_val);
5033 return 0;
5034 } else {
5035 if (to_vmx(vcpu)->nested.vmxon &&
5036 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5037 return 1;
5038 return kvm_set_cr0(vcpu, val);
5039 }
5040 }
5041
5042 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5043 {
5044 if (is_guest_mode(vcpu)) {
5045 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5046 unsigned long orig_val = val;
5047
5048 /* analogously to handle_set_cr0 */
5049 val = (val & ~vmcs12->cr4_guest_host_mask) |
5050 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5051 if (kvm_set_cr4(vcpu, val))
5052 return 1;
5053 vmcs_writel(CR4_READ_SHADOW, orig_val);
5054 return 0;
5055 } else
5056 return kvm_set_cr4(vcpu, val);
5057 }
5058
5059 /* called to set cr0 as approriate for clts instruction exit. */
5060 static void handle_clts(struct kvm_vcpu *vcpu)
5061 {
5062 if (is_guest_mode(vcpu)) {
5063 /*
5064 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5065 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5066 * just pretend it's off (also in arch.cr0 for fpu_activate).
5067 */
5068 vmcs_writel(CR0_READ_SHADOW,
5069 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5070 vcpu->arch.cr0 &= ~X86_CR0_TS;
5071 } else
5072 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5073 }
5074
5075 static int handle_cr(struct kvm_vcpu *vcpu)
5076 {
5077 unsigned long exit_qualification, val;
5078 int cr;
5079 int reg;
5080 int err;
5081
5082 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5083 cr = exit_qualification & 15;
5084 reg = (exit_qualification >> 8) & 15;
5085 switch ((exit_qualification >> 4) & 3) {
5086 case 0: /* mov to cr */
5087 val = kvm_register_readl(vcpu, reg);
5088 trace_kvm_cr_write(cr, val);
5089 switch (cr) {
5090 case 0:
5091 err = handle_set_cr0(vcpu, val);
5092 kvm_complete_insn_gp(vcpu, err);
5093 return 1;
5094 case 3:
5095 err = kvm_set_cr3(vcpu, val);
5096 kvm_complete_insn_gp(vcpu, err);
5097 return 1;
5098 case 4:
5099 err = handle_set_cr4(vcpu, val);
5100 kvm_complete_insn_gp(vcpu, err);
5101 return 1;
5102 case 8: {
5103 u8 cr8_prev = kvm_get_cr8(vcpu);
5104 u8 cr8 = (u8)val;
5105 err = kvm_set_cr8(vcpu, cr8);
5106 kvm_complete_insn_gp(vcpu, err);
5107 if (irqchip_in_kernel(vcpu->kvm))
5108 return 1;
5109 if (cr8_prev <= cr8)
5110 return 1;
5111 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5112 return 0;
5113 }
5114 }
5115 break;
5116 case 2: /* clts */
5117 handle_clts(vcpu);
5118 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5119 skip_emulated_instruction(vcpu);
5120 vmx_fpu_activate(vcpu);
5121 return 1;
5122 case 1: /*mov from cr*/
5123 switch (cr) {
5124 case 3:
5125 val = kvm_read_cr3(vcpu);
5126 kvm_register_write(vcpu, reg, val);
5127 trace_kvm_cr_read(cr, val);
5128 skip_emulated_instruction(vcpu);
5129 return 1;
5130 case 8:
5131 val = kvm_get_cr8(vcpu);
5132 kvm_register_write(vcpu, reg, val);
5133 trace_kvm_cr_read(cr, val);
5134 skip_emulated_instruction(vcpu);
5135 return 1;
5136 }
5137 break;
5138 case 3: /* lmsw */
5139 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5140 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5141 kvm_lmsw(vcpu, val);
5142
5143 skip_emulated_instruction(vcpu);
5144 return 1;
5145 default:
5146 break;
5147 }
5148 vcpu->run->exit_reason = 0;
5149 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5150 (int)(exit_qualification >> 4) & 3, cr);
5151 return 0;
5152 }
5153
5154 static int handle_dr(struct kvm_vcpu *vcpu)
5155 {
5156 unsigned long exit_qualification;
5157 int dr, reg;
5158
5159 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5160 if (!kvm_require_cpl(vcpu, 0))
5161 return 1;
5162 dr = vmcs_readl(GUEST_DR7);
5163 if (dr & DR7_GD) {
5164 /*
5165 * As the vm-exit takes precedence over the debug trap, we
5166 * need to emulate the latter, either for the host or the
5167 * guest debugging itself.
5168 */
5169 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5170 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5171 vcpu->run->debug.arch.dr7 = dr;
5172 vcpu->run->debug.arch.pc =
5173 vmcs_readl(GUEST_CS_BASE) +
5174 vmcs_readl(GUEST_RIP);
5175 vcpu->run->debug.arch.exception = DB_VECTOR;
5176 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5177 return 0;
5178 } else {
5179 vcpu->arch.dr7 &= ~DR7_GD;
5180 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5181 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5182 kvm_queue_exception(vcpu, DB_VECTOR);
5183 return 1;
5184 }
5185 }
5186
5187 if (vcpu->guest_debug == 0) {
5188 u32 cpu_based_vm_exec_control;
5189
5190 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5191 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5192 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5193
5194 /*
5195 * No more DR vmexits; force a reload of the debug registers
5196 * and reenter on this instruction. The next vmexit will
5197 * retrieve the full state of the debug registers.
5198 */
5199 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5200 return 1;
5201 }
5202
5203 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5204 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5205 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5206 if (exit_qualification & TYPE_MOV_FROM_DR) {
5207 unsigned long val;
5208
5209 if (kvm_get_dr(vcpu, dr, &val))
5210 return 1;
5211 kvm_register_write(vcpu, reg, val);
5212 } else
5213 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5214 return 1;
5215
5216 skip_emulated_instruction(vcpu);
5217 return 1;
5218 }
5219
5220 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5221 {
5222 return vcpu->arch.dr6;
5223 }
5224
5225 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5226 {
5227 }
5228
5229 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5230 {
5231 u32 cpu_based_vm_exec_control;
5232
5233 get_debugreg(vcpu->arch.db[0], 0);
5234 get_debugreg(vcpu->arch.db[1], 1);
5235 get_debugreg(vcpu->arch.db[2], 2);
5236 get_debugreg(vcpu->arch.db[3], 3);
5237 get_debugreg(vcpu->arch.dr6, 6);
5238 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5239
5240 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5241
5242 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5243 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5244 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5245 }
5246
5247 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5248 {
5249 vmcs_writel(GUEST_DR7, val);
5250 }
5251
5252 static int handle_cpuid(struct kvm_vcpu *vcpu)
5253 {
5254 kvm_emulate_cpuid(vcpu);
5255 return 1;
5256 }
5257
5258 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5259 {
5260 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5261 u64 data;
5262
5263 if (vmx_get_msr(vcpu, ecx, &data)) {
5264 trace_kvm_msr_read_ex(ecx);
5265 kvm_inject_gp(vcpu, 0);
5266 return 1;
5267 }
5268
5269 trace_kvm_msr_read(ecx, data);
5270
5271 /* FIXME: handling of bits 32:63 of rax, rdx */
5272 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5273 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5274 skip_emulated_instruction(vcpu);
5275 return 1;
5276 }
5277
5278 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5279 {
5280 struct msr_data msr;
5281 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5282 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5283 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5284
5285 msr.data = data;
5286 msr.index = ecx;
5287 msr.host_initiated = false;
5288 if (vmx_set_msr(vcpu, &msr) != 0) {
5289 trace_kvm_msr_write_ex(ecx, data);
5290 kvm_inject_gp(vcpu, 0);
5291 return 1;
5292 }
5293
5294 trace_kvm_msr_write(ecx, data);
5295 skip_emulated_instruction(vcpu);
5296 return 1;
5297 }
5298
5299 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5300 {
5301 kvm_make_request(KVM_REQ_EVENT, vcpu);
5302 return 1;
5303 }
5304
5305 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5306 {
5307 u32 cpu_based_vm_exec_control;
5308
5309 /* clear pending irq */
5310 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5311 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5312 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5313
5314 kvm_make_request(KVM_REQ_EVENT, vcpu);
5315
5316 ++vcpu->stat.irq_window_exits;
5317
5318 /*
5319 * If the user space waits to inject interrupts, exit as soon as
5320 * possible
5321 */
5322 if (!irqchip_in_kernel(vcpu->kvm) &&
5323 vcpu->run->request_interrupt_window &&
5324 !kvm_cpu_has_interrupt(vcpu)) {
5325 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5326 return 0;
5327 }
5328 return 1;
5329 }
5330
5331 static int handle_halt(struct kvm_vcpu *vcpu)
5332 {
5333 skip_emulated_instruction(vcpu);
5334 return kvm_emulate_halt(vcpu);
5335 }
5336
5337 static int handle_vmcall(struct kvm_vcpu *vcpu)
5338 {
5339 skip_emulated_instruction(vcpu);
5340 kvm_emulate_hypercall(vcpu);
5341 return 1;
5342 }
5343
5344 static int handle_invd(struct kvm_vcpu *vcpu)
5345 {
5346 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5347 }
5348
5349 static int handle_invlpg(struct kvm_vcpu *vcpu)
5350 {
5351 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5352
5353 kvm_mmu_invlpg(vcpu, exit_qualification);
5354 skip_emulated_instruction(vcpu);
5355 return 1;
5356 }
5357
5358 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5359 {
5360 int err;
5361
5362 err = kvm_rdpmc(vcpu);
5363 kvm_complete_insn_gp(vcpu, err);
5364
5365 return 1;
5366 }
5367
5368 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5369 {
5370 skip_emulated_instruction(vcpu);
5371 kvm_emulate_wbinvd(vcpu);
5372 return 1;
5373 }
5374
5375 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5376 {
5377 u64 new_bv = kvm_read_edx_eax(vcpu);
5378 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5379
5380 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5381 skip_emulated_instruction(vcpu);
5382 return 1;
5383 }
5384
5385 static int handle_apic_access(struct kvm_vcpu *vcpu)
5386 {
5387 if (likely(fasteoi)) {
5388 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5389 int access_type, offset;
5390
5391 access_type = exit_qualification & APIC_ACCESS_TYPE;
5392 offset = exit_qualification & APIC_ACCESS_OFFSET;
5393 /*
5394 * Sane guest uses MOV to write EOI, with written value
5395 * not cared. So make a short-circuit here by avoiding
5396 * heavy instruction emulation.
5397 */
5398 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5399 (offset == APIC_EOI)) {
5400 kvm_lapic_set_eoi(vcpu);
5401 skip_emulated_instruction(vcpu);
5402 return 1;
5403 }
5404 }
5405 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5406 }
5407
5408 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5409 {
5410 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5411 int vector = exit_qualification & 0xff;
5412
5413 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5414 kvm_apic_set_eoi_accelerated(vcpu, vector);
5415 return 1;
5416 }
5417
5418 static int handle_apic_write(struct kvm_vcpu *vcpu)
5419 {
5420 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5421 u32 offset = exit_qualification & 0xfff;
5422
5423 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5424 kvm_apic_write_nodecode(vcpu, offset);
5425 return 1;
5426 }
5427
5428 static int handle_task_switch(struct kvm_vcpu *vcpu)
5429 {
5430 struct vcpu_vmx *vmx = to_vmx(vcpu);
5431 unsigned long exit_qualification;
5432 bool has_error_code = false;
5433 u32 error_code = 0;
5434 u16 tss_selector;
5435 int reason, type, idt_v, idt_index;
5436
5437 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5438 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5439 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5440
5441 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5442
5443 reason = (u32)exit_qualification >> 30;
5444 if (reason == TASK_SWITCH_GATE && idt_v) {
5445 switch (type) {
5446 case INTR_TYPE_NMI_INTR:
5447 vcpu->arch.nmi_injected = false;
5448 vmx_set_nmi_mask(vcpu, true);
5449 break;
5450 case INTR_TYPE_EXT_INTR:
5451 case INTR_TYPE_SOFT_INTR:
5452 kvm_clear_interrupt_queue(vcpu);
5453 break;
5454 case INTR_TYPE_HARD_EXCEPTION:
5455 if (vmx->idt_vectoring_info &
5456 VECTORING_INFO_DELIVER_CODE_MASK) {
5457 has_error_code = true;
5458 error_code =
5459 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5460 }
5461 /* fall through */
5462 case INTR_TYPE_SOFT_EXCEPTION:
5463 kvm_clear_exception_queue(vcpu);
5464 break;
5465 default:
5466 break;
5467 }
5468 }
5469 tss_selector = exit_qualification;
5470
5471 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5472 type != INTR_TYPE_EXT_INTR &&
5473 type != INTR_TYPE_NMI_INTR))
5474 skip_emulated_instruction(vcpu);
5475
5476 if (kvm_task_switch(vcpu, tss_selector,
5477 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5478 has_error_code, error_code) == EMULATE_FAIL) {
5479 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5480 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5481 vcpu->run->internal.ndata = 0;
5482 return 0;
5483 }
5484
5485 /* clear all local breakpoint enable flags */
5486 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5487
5488 /*
5489 * TODO: What about debug traps on tss switch?
5490 * Are we supposed to inject them and update dr6?
5491 */
5492
5493 return 1;
5494 }
5495
5496 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5497 {
5498 unsigned long exit_qualification;
5499 gpa_t gpa;
5500 u32 error_code;
5501 int gla_validity;
5502
5503 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5504
5505 gla_validity = (exit_qualification >> 7) & 0x3;
5506 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5507 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5508 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5509 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5510 vmcs_readl(GUEST_LINEAR_ADDRESS));
5511 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5512 (long unsigned int)exit_qualification);
5513 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5514 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5515 return 0;
5516 }
5517
5518 /*
5519 * EPT violation happened while executing iret from NMI,
5520 * "blocked by NMI" bit has to be set before next VM entry.
5521 * There are errata that may cause this bit to not be set:
5522 * AAK134, BY25.
5523 */
5524 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5525 cpu_has_virtual_nmis() &&
5526 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5527 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5528
5529 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5530 trace_kvm_page_fault(gpa, exit_qualification);
5531
5532 /* It is a write fault? */
5533 error_code = exit_qualification & (1U << 1);
5534 /* It is a fetch fault? */
5535 error_code |= (exit_qualification & (1U << 2)) << 2;
5536 /* ept page table is present? */
5537 error_code |= (exit_qualification >> 3) & 0x1;
5538
5539 vcpu->arch.exit_qualification = exit_qualification;
5540
5541 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5542 }
5543
5544 static u64 ept_rsvd_mask(u64 spte, int level)
5545 {
5546 int i;
5547 u64 mask = 0;
5548
5549 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5550 mask |= (1ULL << i);
5551
5552 if (level == 4)
5553 /* bits 7:3 reserved */
5554 mask |= 0xf8;
5555 else if (spte & (1ULL << 7))
5556 /*
5557 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5558 * level == 1 if the hypervisor is using the ignored bit 7.
5559 */
5560 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5561 else if (level > 1)
5562 /* bits 6:3 reserved */
5563 mask |= 0x78;
5564
5565 return mask;
5566 }
5567
5568 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5569 int level)
5570 {
5571 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5572
5573 /* 010b (write-only) */
5574 WARN_ON((spte & 0x7) == 0x2);
5575
5576 /* 110b (write/execute) */
5577 WARN_ON((spte & 0x7) == 0x6);
5578
5579 /* 100b (execute-only) and value not supported by logical processor */
5580 if (!cpu_has_vmx_ept_execute_only())
5581 WARN_ON((spte & 0x7) == 0x4);
5582
5583 /* not 000b */
5584 if ((spte & 0x7)) {
5585 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5586
5587 if (rsvd_bits != 0) {
5588 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5589 __func__, rsvd_bits);
5590 WARN_ON(1);
5591 }
5592
5593 /* bits 5:3 are _not_ reserved for large page or leaf page */
5594 if ((rsvd_bits & 0x38) == 0) {
5595 u64 ept_mem_type = (spte & 0x38) >> 3;
5596
5597 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5598 ept_mem_type == 7) {
5599 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5600 __func__, ept_mem_type);
5601 WARN_ON(1);
5602 }
5603 }
5604 }
5605 }
5606
5607 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5608 {
5609 u64 sptes[4];
5610 int nr_sptes, i, ret;
5611 gpa_t gpa;
5612
5613 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5614 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5615 skip_emulated_instruction(vcpu);
5616 return 1;
5617 }
5618
5619 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5620 if (likely(ret == RET_MMIO_PF_EMULATE))
5621 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5622 EMULATE_DONE;
5623
5624 if (unlikely(ret == RET_MMIO_PF_INVALID))
5625 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5626
5627 if (unlikely(ret == RET_MMIO_PF_RETRY))
5628 return 1;
5629
5630 /* It is the real ept misconfig */
5631 printk(KERN_ERR "EPT: Misconfiguration.\n");
5632 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5633
5634 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5635
5636 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5637 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5638
5639 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5640 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5641
5642 return 0;
5643 }
5644
5645 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5646 {
5647 u32 cpu_based_vm_exec_control;
5648
5649 /* clear pending NMI */
5650 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5651 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5652 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5653 ++vcpu->stat.nmi_window_exits;
5654 kvm_make_request(KVM_REQ_EVENT, vcpu);
5655
5656 return 1;
5657 }
5658
5659 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5660 {
5661 struct vcpu_vmx *vmx = to_vmx(vcpu);
5662 enum emulation_result err = EMULATE_DONE;
5663 int ret = 1;
5664 u32 cpu_exec_ctrl;
5665 bool intr_window_requested;
5666 unsigned count = 130;
5667
5668 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5669 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5670
5671 while (vmx->emulation_required && count-- != 0) {
5672 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5673 return handle_interrupt_window(&vmx->vcpu);
5674
5675 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5676 return 1;
5677
5678 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5679
5680 if (err == EMULATE_USER_EXIT) {
5681 ++vcpu->stat.mmio_exits;
5682 ret = 0;
5683 goto out;
5684 }
5685
5686 if (err != EMULATE_DONE) {
5687 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5688 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5689 vcpu->run->internal.ndata = 0;
5690 return 0;
5691 }
5692
5693 if (vcpu->arch.halt_request) {
5694 vcpu->arch.halt_request = 0;
5695 ret = kvm_emulate_halt(vcpu);
5696 goto out;
5697 }
5698
5699 if (signal_pending(current))
5700 goto out;
5701 if (need_resched())
5702 schedule();
5703 }
5704
5705 out:
5706 return ret;
5707 }
5708
5709 static int __grow_ple_window(int val)
5710 {
5711 if (ple_window_grow < 1)
5712 return ple_window;
5713
5714 val = min(val, ple_window_actual_max);
5715
5716 if (ple_window_grow < ple_window)
5717 val *= ple_window_grow;
5718 else
5719 val += ple_window_grow;
5720
5721 return val;
5722 }
5723
5724 static int __shrink_ple_window(int val, int modifier, int minimum)
5725 {
5726 if (modifier < 1)
5727 return ple_window;
5728
5729 if (modifier < ple_window)
5730 val /= modifier;
5731 else
5732 val -= modifier;
5733
5734 return max(val, minimum);
5735 }
5736
5737 static void grow_ple_window(struct kvm_vcpu *vcpu)
5738 {
5739 struct vcpu_vmx *vmx = to_vmx(vcpu);
5740 int old = vmx->ple_window;
5741
5742 vmx->ple_window = __grow_ple_window(old);
5743
5744 if (vmx->ple_window != old)
5745 vmx->ple_window_dirty = true;
5746
5747 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5748 }
5749
5750 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5751 {
5752 struct vcpu_vmx *vmx = to_vmx(vcpu);
5753 int old = vmx->ple_window;
5754
5755 vmx->ple_window = __shrink_ple_window(old,
5756 ple_window_shrink, ple_window);
5757
5758 if (vmx->ple_window != old)
5759 vmx->ple_window_dirty = true;
5760
5761 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5762 }
5763
5764 /*
5765 * ple_window_actual_max is computed to be one grow_ple_window() below
5766 * ple_window_max. (See __grow_ple_window for the reason.)
5767 * This prevents overflows, because ple_window_max is int.
5768 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5769 * this process.
5770 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5771 */
5772 static void update_ple_window_actual_max(void)
5773 {
5774 ple_window_actual_max =
5775 __shrink_ple_window(max(ple_window_max, ple_window),
5776 ple_window_grow, INT_MIN);
5777 }
5778
5779 /*
5780 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5781 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5782 */
5783 static int handle_pause(struct kvm_vcpu *vcpu)
5784 {
5785 if (ple_gap)
5786 grow_ple_window(vcpu);
5787
5788 skip_emulated_instruction(vcpu);
5789 kvm_vcpu_on_spin(vcpu);
5790
5791 return 1;
5792 }
5793
5794 static int handle_nop(struct kvm_vcpu *vcpu)
5795 {
5796 skip_emulated_instruction(vcpu);
5797 return 1;
5798 }
5799
5800 static int handle_mwait(struct kvm_vcpu *vcpu)
5801 {
5802 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5803 return handle_nop(vcpu);
5804 }
5805
5806 static int handle_monitor(struct kvm_vcpu *vcpu)
5807 {
5808 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5809 return handle_nop(vcpu);
5810 }
5811
5812 /*
5813 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5814 * We could reuse a single VMCS for all the L2 guests, but we also want the
5815 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5816 * allows keeping them loaded on the processor, and in the future will allow
5817 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5818 * every entry if they never change.
5819 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5820 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5821 *
5822 * The following functions allocate and free a vmcs02 in this pool.
5823 */
5824
5825 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5826 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5827 {
5828 struct vmcs02_list *item;
5829 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5830 if (item->vmptr == vmx->nested.current_vmptr) {
5831 list_move(&item->list, &vmx->nested.vmcs02_pool);
5832 return &item->vmcs02;
5833 }
5834
5835 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5836 /* Recycle the least recently used VMCS. */
5837 item = list_entry(vmx->nested.vmcs02_pool.prev,
5838 struct vmcs02_list, list);
5839 item->vmptr = vmx->nested.current_vmptr;
5840 list_move(&item->list, &vmx->nested.vmcs02_pool);
5841 return &item->vmcs02;
5842 }
5843
5844 /* Create a new VMCS */
5845 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5846 if (!item)
5847 return NULL;
5848 item->vmcs02.vmcs = alloc_vmcs();
5849 if (!item->vmcs02.vmcs) {
5850 kfree(item);
5851 return NULL;
5852 }
5853 loaded_vmcs_init(&item->vmcs02);
5854 item->vmptr = vmx->nested.current_vmptr;
5855 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5856 vmx->nested.vmcs02_num++;
5857 return &item->vmcs02;
5858 }
5859
5860 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5861 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5862 {
5863 struct vmcs02_list *item;
5864 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5865 if (item->vmptr == vmptr) {
5866 free_loaded_vmcs(&item->vmcs02);
5867 list_del(&item->list);
5868 kfree(item);
5869 vmx->nested.vmcs02_num--;
5870 return;
5871 }
5872 }
5873
5874 /*
5875 * Free all VMCSs saved for this vcpu, except the one pointed by
5876 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5877 * must be &vmx->vmcs01.
5878 */
5879 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5880 {
5881 struct vmcs02_list *item, *n;
5882
5883 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5884 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5885 /*
5886 * Something will leak if the above WARN triggers. Better than
5887 * a use-after-free.
5888 */
5889 if (vmx->loaded_vmcs == &item->vmcs02)
5890 continue;
5891
5892 free_loaded_vmcs(&item->vmcs02);
5893 list_del(&item->list);
5894 kfree(item);
5895 vmx->nested.vmcs02_num--;
5896 }
5897 }
5898
5899 /*
5900 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5901 * set the success or error code of an emulated VMX instruction, as specified
5902 * by Vol 2B, VMX Instruction Reference, "Conventions".
5903 */
5904 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5905 {
5906 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5907 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5908 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5909 }
5910
5911 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5912 {
5913 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5914 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5915 X86_EFLAGS_SF | X86_EFLAGS_OF))
5916 | X86_EFLAGS_CF);
5917 }
5918
5919 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5920 u32 vm_instruction_error)
5921 {
5922 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5923 /*
5924 * failValid writes the error number to the current VMCS, which
5925 * can't be done there isn't a current VMCS.
5926 */
5927 nested_vmx_failInvalid(vcpu);
5928 return;
5929 }
5930 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5931 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5932 X86_EFLAGS_SF | X86_EFLAGS_OF))
5933 | X86_EFLAGS_ZF);
5934 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5935 /*
5936 * We don't need to force a shadow sync because
5937 * VM_INSTRUCTION_ERROR is not shadowed
5938 */
5939 }
5940
5941 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5942 {
5943 struct vcpu_vmx *vmx =
5944 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5945
5946 vmx->nested.preemption_timer_expired = true;
5947 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5948 kvm_vcpu_kick(&vmx->vcpu);
5949
5950 return HRTIMER_NORESTART;
5951 }
5952
5953 /*
5954 * Decode the memory-address operand of a vmx instruction, as recorded on an
5955 * exit caused by such an instruction (run by a guest hypervisor).
5956 * On success, returns 0. When the operand is invalid, returns 1 and throws
5957 * #UD or #GP.
5958 */
5959 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5960 unsigned long exit_qualification,
5961 u32 vmx_instruction_info, gva_t *ret)
5962 {
5963 /*
5964 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5965 * Execution", on an exit, vmx_instruction_info holds most of the
5966 * addressing components of the operand. Only the displacement part
5967 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5968 * For how an actual address is calculated from all these components,
5969 * refer to Vol. 1, "Operand Addressing".
5970 */
5971 int scaling = vmx_instruction_info & 3;
5972 int addr_size = (vmx_instruction_info >> 7) & 7;
5973 bool is_reg = vmx_instruction_info & (1u << 10);
5974 int seg_reg = (vmx_instruction_info >> 15) & 7;
5975 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5976 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5977 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5978 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5979
5980 if (is_reg) {
5981 kvm_queue_exception(vcpu, UD_VECTOR);
5982 return 1;
5983 }
5984
5985 /* Addr = segment_base + offset */
5986 /* offset = base + [index * scale] + displacement */
5987 *ret = vmx_get_segment_base(vcpu, seg_reg);
5988 if (base_is_valid)
5989 *ret += kvm_register_read(vcpu, base_reg);
5990 if (index_is_valid)
5991 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5992 *ret += exit_qualification; /* holds the displacement */
5993
5994 if (addr_size == 1) /* 32 bit */
5995 *ret &= 0xffffffff;
5996
5997 /*
5998 * TODO: throw #GP (and return 1) in various cases that the VM*
5999 * instructions require it - e.g., offset beyond segment limit,
6000 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6001 * address, and so on. Currently these are not checked.
6002 */
6003 return 0;
6004 }
6005
6006 /*
6007 * This function performs the various checks including
6008 * - if it's 4KB aligned
6009 * - No bits beyond the physical address width are set
6010 * - Returns 0 on success or else 1
6011 * (Intel SDM Section 30.3)
6012 */
6013 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6014 gpa_t *vmpointer)
6015 {
6016 gva_t gva;
6017 gpa_t vmptr;
6018 struct x86_exception e;
6019 struct page *page;
6020 struct vcpu_vmx *vmx = to_vmx(vcpu);
6021 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6022
6023 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6024 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6025 return 1;
6026
6027 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6028 sizeof(vmptr), &e)) {
6029 kvm_inject_page_fault(vcpu, &e);
6030 return 1;
6031 }
6032
6033 switch (exit_reason) {
6034 case EXIT_REASON_VMON:
6035 /*
6036 * SDM 3: 24.11.5
6037 * The first 4 bytes of VMXON region contain the supported
6038 * VMCS revision identifier
6039 *
6040 * Note - IA32_VMX_BASIC[48] will never be 1
6041 * for the nested case;
6042 * which replaces physical address width with 32
6043 *
6044 */
6045 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6046 nested_vmx_failInvalid(vcpu);
6047 skip_emulated_instruction(vcpu);
6048 return 1;
6049 }
6050
6051 page = nested_get_page(vcpu, vmptr);
6052 if (page == NULL ||
6053 *(u32 *)kmap(page) != VMCS12_REVISION) {
6054 nested_vmx_failInvalid(vcpu);
6055 kunmap(page);
6056 skip_emulated_instruction(vcpu);
6057 return 1;
6058 }
6059 kunmap(page);
6060 vmx->nested.vmxon_ptr = vmptr;
6061 break;
6062 case EXIT_REASON_VMCLEAR:
6063 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6064 nested_vmx_failValid(vcpu,
6065 VMXERR_VMCLEAR_INVALID_ADDRESS);
6066 skip_emulated_instruction(vcpu);
6067 return 1;
6068 }
6069
6070 if (vmptr == vmx->nested.vmxon_ptr) {
6071 nested_vmx_failValid(vcpu,
6072 VMXERR_VMCLEAR_VMXON_POINTER);
6073 skip_emulated_instruction(vcpu);
6074 return 1;
6075 }
6076 break;
6077 case EXIT_REASON_VMPTRLD:
6078 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6079 nested_vmx_failValid(vcpu,
6080 VMXERR_VMPTRLD_INVALID_ADDRESS);
6081 skip_emulated_instruction(vcpu);
6082 return 1;
6083 }
6084
6085 if (vmptr == vmx->nested.vmxon_ptr) {
6086 nested_vmx_failValid(vcpu,
6087 VMXERR_VMCLEAR_VMXON_POINTER);
6088 skip_emulated_instruction(vcpu);
6089 return 1;
6090 }
6091 break;
6092 default:
6093 return 1; /* shouldn't happen */
6094 }
6095
6096 if (vmpointer)
6097 *vmpointer = vmptr;
6098 return 0;
6099 }
6100
6101 /*
6102 * Emulate the VMXON instruction.
6103 * Currently, we just remember that VMX is active, and do not save or even
6104 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6105 * do not currently need to store anything in that guest-allocated memory
6106 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6107 * argument is different from the VMXON pointer (which the spec says they do).
6108 */
6109 static int handle_vmon(struct kvm_vcpu *vcpu)
6110 {
6111 struct kvm_segment cs;
6112 struct vcpu_vmx *vmx = to_vmx(vcpu);
6113 struct vmcs *shadow_vmcs;
6114 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6115 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6116
6117 /* The Intel VMX Instruction Reference lists a bunch of bits that
6118 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6119 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6120 * Otherwise, we should fail with #UD. We test these now:
6121 */
6122 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6123 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6124 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6125 kvm_queue_exception(vcpu, UD_VECTOR);
6126 return 1;
6127 }
6128
6129 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6130 if (is_long_mode(vcpu) && !cs.l) {
6131 kvm_queue_exception(vcpu, UD_VECTOR);
6132 return 1;
6133 }
6134
6135 if (vmx_get_cpl(vcpu)) {
6136 kvm_inject_gp(vcpu, 0);
6137 return 1;
6138 }
6139
6140 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6141 return 1;
6142
6143 if (vmx->nested.vmxon) {
6144 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6145 skip_emulated_instruction(vcpu);
6146 return 1;
6147 }
6148
6149 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6150 != VMXON_NEEDED_FEATURES) {
6151 kvm_inject_gp(vcpu, 0);
6152 return 1;
6153 }
6154
6155 if (enable_shadow_vmcs) {
6156 shadow_vmcs = alloc_vmcs();
6157 if (!shadow_vmcs)
6158 return -ENOMEM;
6159 /* mark vmcs as shadow */
6160 shadow_vmcs->revision_id |= (1u << 31);
6161 /* init shadow vmcs */
6162 vmcs_clear(shadow_vmcs);
6163 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6164 }
6165
6166 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6167 vmx->nested.vmcs02_num = 0;
6168
6169 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6170 HRTIMER_MODE_REL);
6171 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6172
6173 vmx->nested.vmxon = true;
6174
6175 skip_emulated_instruction(vcpu);
6176 nested_vmx_succeed(vcpu);
6177 return 1;
6178 }
6179
6180 /*
6181 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6182 * for running VMX instructions (except VMXON, whose prerequisites are
6183 * slightly different). It also specifies what exception to inject otherwise.
6184 */
6185 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6186 {
6187 struct kvm_segment cs;
6188 struct vcpu_vmx *vmx = to_vmx(vcpu);
6189
6190 if (!vmx->nested.vmxon) {
6191 kvm_queue_exception(vcpu, UD_VECTOR);
6192 return 0;
6193 }
6194
6195 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6196 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6197 (is_long_mode(vcpu) && !cs.l)) {
6198 kvm_queue_exception(vcpu, UD_VECTOR);
6199 return 0;
6200 }
6201
6202 if (vmx_get_cpl(vcpu)) {
6203 kvm_inject_gp(vcpu, 0);
6204 return 0;
6205 }
6206
6207 return 1;
6208 }
6209
6210 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6211 {
6212 u32 exec_control;
6213 if (vmx->nested.current_vmptr == -1ull)
6214 return;
6215
6216 /* current_vmptr and current_vmcs12 are always set/reset together */
6217 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6218 return;
6219
6220 if (enable_shadow_vmcs) {
6221 /* copy to memory all shadowed fields in case
6222 they were modified */
6223 copy_shadow_to_vmcs12(vmx);
6224 vmx->nested.sync_shadow_vmcs = false;
6225 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6226 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6227 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6228 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6229 }
6230 kunmap(vmx->nested.current_vmcs12_page);
6231 nested_release_page(vmx->nested.current_vmcs12_page);
6232 vmx->nested.current_vmptr = -1ull;
6233 vmx->nested.current_vmcs12 = NULL;
6234 }
6235
6236 /*
6237 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6238 * just stops using VMX.
6239 */
6240 static void free_nested(struct vcpu_vmx *vmx)
6241 {
6242 if (!vmx->nested.vmxon)
6243 return;
6244
6245 vmx->nested.vmxon = false;
6246 nested_release_vmcs12(vmx);
6247 if (enable_shadow_vmcs)
6248 free_vmcs(vmx->nested.current_shadow_vmcs);
6249 /* Unpin physical memory we referred to in current vmcs02 */
6250 if (vmx->nested.apic_access_page) {
6251 nested_release_page(vmx->nested.apic_access_page);
6252 vmx->nested.apic_access_page = NULL;
6253 }
6254 if (vmx->nested.virtual_apic_page) {
6255 nested_release_page(vmx->nested.virtual_apic_page);
6256 vmx->nested.virtual_apic_page = NULL;
6257 }
6258
6259 nested_free_all_saved_vmcss(vmx);
6260 }
6261
6262 /* Emulate the VMXOFF instruction */
6263 static int handle_vmoff(struct kvm_vcpu *vcpu)
6264 {
6265 if (!nested_vmx_check_permission(vcpu))
6266 return 1;
6267 free_nested(to_vmx(vcpu));
6268 skip_emulated_instruction(vcpu);
6269 nested_vmx_succeed(vcpu);
6270 return 1;
6271 }
6272
6273 /* Emulate the VMCLEAR instruction */
6274 static int handle_vmclear(struct kvm_vcpu *vcpu)
6275 {
6276 struct vcpu_vmx *vmx = to_vmx(vcpu);
6277 gpa_t vmptr;
6278 struct vmcs12 *vmcs12;
6279 struct page *page;
6280
6281 if (!nested_vmx_check_permission(vcpu))
6282 return 1;
6283
6284 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6285 return 1;
6286
6287 if (vmptr == vmx->nested.current_vmptr)
6288 nested_release_vmcs12(vmx);
6289
6290 page = nested_get_page(vcpu, vmptr);
6291 if (page == NULL) {
6292 /*
6293 * For accurate processor emulation, VMCLEAR beyond available
6294 * physical memory should do nothing at all. However, it is
6295 * possible that a nested vmx bug, not a guest hypervisor bug,
6296 * resulted in this case, so let's shut down before doing any
6297 * more damage:
6298 */
6299 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6300 return 1;
6301 }
6302 vmcs12 = kmap(page);
6303 vmcs12->launch_state = 0;
6304 kunmap(page);
6305 nested_release_page(page);
6306
6307 nested_free_vmcs02(vmx, vmptr);
6308
6309 skip_emulated_instruction(vcpu);
6310 nested_vmx_succeed(vcpu);
6311 return 1;
6312 }
6313
6314 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6315
6316 /* Emulate the VMLAUNCH instruction */
6317 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6318 {
6319 return nested_vmx_run(vcpu, true);
6320 }
6321
6322 /* Emulate the VMRESUME instruction */
6323 static int handle_vmresume(struct kvm_vcpu *vcpu)
6324 {
6325
6326 return nested_vmx_run(vcpu, false);
6327 }
6328
6329 enum vmcs_field_type {
6330 VMCS_FIELD_TYPE_U16 = 0,
6331 VMCS_FIELD_TYPE_U64 = 1,
6332 VMCS_FIELD_TYPE_U32 = 2,
6333 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6334 };
6335
6336 static inline int vmcs_field_type(unsigned long field)
6337 {
6338 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6339 return VMCS_FIELD_TYPE_U32;
6340 return (field >> 13) & 0x3 ;
6341 }
6342
6343 static inline int vmcs_field_readonly(unsigned long field)
6344 {
6345 return (((field >> 10) & 0x3) == 1);
6346 }
6347
6348 /*
6349 * Read a vmcs12 field. Since these can have varying lengths and we return
6350 * one type, we chose the biggest type (u64) and zero-extend the return value
6351 * to that size. Note that the caller, handle_vmread, might need to use only
6352 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6353 * 64-bit fields are to be returned).
6354 */
6355 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6356 unsigned long field, u64 *ret)
6357 {
6358 short offset = vmcs_field_to_offset(field);
6359 char *p;
6360
6361 if (offset < 0)
6362 return 0;
6363
6364 p = ((char *)(get_vmcs12(vcpu))) + offset;
6365
6366 switch (vmcs_field_type(field)) {
6367 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6368 *ret = *((natural_width *)p);
6369 return 1;
6370 case VMCS_FIELD_TYPE_U16:
6371 *ret = *((u16 *)p);
6372 return 1;
6373 case VMCS_FIELD_TYPE_U32:
6374 *ret = *((u32 *)p);
6375 return 1;
6376 case VMCS_FIELD_TYPE_U64:
6377 *ret = *((u64 *)p);
6378 return 1;
6379 default:
6380 return 0; /* can never happen. */
6381 }
6382 }
6383
6384
6385 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6386 unsigned long field, u64 field_value){
6387 short offset = vmcs_field_to_offset(field);
6388 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6389 if (offset < 0)
6390 return false;
6391
6392 switch (vmcs_field_type(field)) {
6393 case VMCS_FIELD_TYPE_U16:
6394 *(u16 *)p = field_value;
6395 return true;
6396 case VMCS_FIELD_TYPE_U32:
6397 *(u32 *)p = field_value;
6398 return true;
6399 case VMCS_FIELD_TYPE_U64:
6400 *(u64 *)p = field_value;
6401 return true;
6402 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6403 *(natural_width *)p = field_value;
6404 return true;
6405 default:
6406 return false; /* can never happen. */
6407 }
6408
6409 }
6410
6411 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6412 {
6413 int i;
6414 unsigned long field;
6415 u64 field_value;
6416 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6417 const unsigned long *fields = shadow_read_write_fields;
6418 const int num_fields = max_shadow_read_write_fields;
6419
6420 vmcs_load(shadow_vmcs);
6421
6422 for (i = 0; i < num_fields; i++) {
6423 field = fields[i];
6424 switch (vmcs_field_type(field)) {
6425 case VMCS_FIELD_TYPE_U16:
6426 field_value = vmcs_read16(field);
6427 break;
6428 case VMCS_FIELD_TYPE_U32:
6429 field_value = vmcs_read32(field);
6430 break;
6431 case VMCS_FIELD_TYPE_U64:
6432 field_value = vmcs_read64(field);
6433 break;
6434 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6435 field_value = vmcs_readl(field);
6436 break;
6437 }
6438 vmcs12_write_any(&vmx->vcpu, field, field_value);
6439 }
6440
6441 vmcs_clear(shadow_vmcs);
6442 vmcs_load(vmx->loaded_vmcs->vmcs);
6443 }
6444
6445 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6446 {
6447 const unsigned long *fields[] = {
6448 shadow_read_write_fields,
6449 shadow_read_only_fields
6450 };
6451 const int max_fields[] = {
6452 max_shadow_read_write_fields,
6453 max_shadow_read_only_fields
6454 };
6455 int i, q;
6456 unsigned long field;
6457 u64 field_value = 0;
6458 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6459
6460 vmcs_load(shadow_vmcs);
6461
6462 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6463 for (i = 0; i < max_fields[q]; i++) {
6464 field = fields[q][i];
6465 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6466
6467 switch (vmcs_field_type(field)) {
6468 case VMCS_FIELD_TYPE_U16:
6469 vmcs_write16(field, (u16)field_value);
6470 break;
6471 case VMCS_FIELD_TYPE_U32:
6472 vmcs_write32(field, (u32)field_value);
6473 break;
6474 case VMCS_FIELD_TYPE_U64:
6475 vmcs_write64(field, (u64)field_value);
6476 break;
6477 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6478 vmcs_writel(field, (long)field_value);
6479 break;
6480 }
6481 }
6482 }
6483
6484 vmcs_clear(shadow_vmcs);
6485 vmcs_load(vmx->loaded_vmcs->vmcs);
6486 }
6487
6488 /*
6489 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6490 * used before) all generate the same failure when it is missing.
6491 */
6492 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6493 {
6494 struct vcpu_vmx *vmx = to_vmx(vcpu);
6495 if (vmx->nested.current_vmptr == -1ull) {
6496 nested_vmx_failInvalid(vcpu);
6497 skip_emulated_instruction(vcpu);
6498 return 0;
6499 }
6500 return 1;
6501 }
6502
6503 static int handle_vmread(struct kvm_vcpu *vcpu)
6504 {
6505 unsigned long field;
6506 u64 field_value;
6507 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6508 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6509 gva_t gva = 0;
6510
6511 if (!nested_vmx_check_permission(vcpu) ||
6512 !nested_vmx_check_vmcs12(vcpu))
6513 return 1;
6514
6515 /* Decode instruction info and find the field to read */
6516 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6517 /* Read the field, zero-extended to a u64 field_value */
6518 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6519 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6520 skip_emulated_instruction(vcpu);
6521 return 1;
6522 }
6523 /*
6524 * Now copy part of this value to register or memory, as requested.
6525 * Note that the number of bits actually copied is 32 or 64 depending
6526 * on the guest's mode (32 or 64 bit), not on the given field's length.
6527 */
6528 if (vmx_instruction_info & (1u << 10)) {
6529 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6530 field_value);
6531 } else {
6532 if (get_vmx_mem_address(vcpu, exit_qualification,
6533 vmx_instruction_info, &gva))
6534 return 1;
6535 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6536 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6537 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6538 }
6539
6540 nested_vmx_succeed(vcpu);
6541 skip_emulated_instruction(vcpu);
6542 return 1;
6543 }
6544
6545
6546 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6547 {
6548 unsigned long field;
6549 gva_t gva;
6550 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6551 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6552 /* The value to write might be 32 or 64 bits, depending on L1's long
6553 * mode, and eventually we need to write that into a field of several
6554 * possible lengths. The code below first zero-extends the value to 64
6555 * bit (field_value), and then copies only the approriate number of
6556 * bits into the vmcs12 field.
6557 */
6558 u64 field_value = 0;
6559 struct x86_exception e;
6560
6561 if (!nested_vmx_check_permission(vcpu) ||
6562 !nested_vmx_check_vmcs12(vcpu))
6563 return 1;
6564
6565 if (vmx_instruction_info & (1u << 10))
6566 field_value = kvm_register_readl(vcpu,
6567 (((vmx_instruction_info) >> 3) & 0xf));
6568 else {
6569 if (get_vmx_mem_address(vcpu, exit_qualification,
6570 vmx_instruction_info, &gva))
6571 return 1;
6572 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6573 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6574 kvm_inject_page_fault(vcpu, &e);
6575 return 1;
6576 }
6577 }
6578
6579
6580 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6581 if (vmcs_field_readonly(field)) {
6582 nested_vmx_failValid(vcpu,
6583 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6584 skip_emulated_instruction(vcpu);
6585 return 1;
6586 }
6587
6588 if (!vmcs12_write_any(vcpu, field, field_value)) {
6589 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6590 skip_emulated_instruction(vcpu);
6591 return 1;
6592 }
6593
6594 nested_vmx_succeed(vcpu);
6595 skip_emulated_instruction(vcpu);
6596 return 1;
6597 }
6598
6599 /* Emulate the VMPTRLD instruction */
6600 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6601 {
6602 struct vcpu_vmx *vmx = to_vmx(vcpu);
6603 gpa_t vmptr;
6604 u32 exec_control;
6605
6606 if (!nested_vmx_check_permission(vcpu))
6607 return 1;
6608
6609 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6610 return 1;
6611
6612 if (vmx->nested.current_vmptr != vmptr) {
6613 struct vmcs12 *new_vmcs12;
6614 struct page *page;
6615 page = nested_get_page(vcpu, vmptr);
6616 if (page == NULL) {
6617 nested_vmx_failInvalid(vcpu);
6618 skip_emulated_instruction(vcpu);
6619 return 1;
6620 }
6621 new_vmcs12 = kmap(page);
6622 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6623 kunmap(page);
6624 nested_release_page_clean(page);
6625 nested_vmx_failValid(vcpu,
6626 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6627 skip_emulated_instruction(vcpu);
6628 return 1;
6629 }
6630
6631 nested_release_vmcs12(vmx);
6632 vmx->nested.current_vmptr = vmptr;
6633 vmx->nested.current_vmcs12 = new_vmcs12;
6634 vmx->nested.current_vmcs12_page = page;
6635 if (enable_shadow_vmcs) {
6636 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6637 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6638 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6639 vmcs_write64(VMCS_LINK_POINTER,
6640 __pa(vmx->nested.current_shadow_vmcs));
6641 vmx->nested.sync_shadow_vmcs = true;
6642 }
6643 }
6644
6645 nested_vmx_succeed(vcpu);
6646 skip_emulated_instruction(vcpu);
6647 return 1;
6648 }
6649
6650 /* Emulate the VMPTRST instruction */
6651 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6652 {
6653 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6654 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6655 gva_t vmcs_gva;
6656 struct x86_exception e;
6657
6658 if (!nested_vmx_check_permission(vcpu))
6659 return 1;
6660
6661 if (get_vmx_mem_address(vcpu, exit_qualification,
6662 vmx_instruction_info, &vmcs_gva))
6663 return 1;
6664 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6665 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6666 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6667 sizeof(u64), &e)) {
6668 kvm_inject_page_fault(vcpu, &e);
6669 return 1;
6670 }
6671 nested_vmx_succeed(vcpu);
6672 skip_emulated_instruction(vcpu);
6673 return 1;
6674 }
6675
6676 /* Emulate the INVEPT instruction */
6677 static int handle_invept(struct kvm_vcpu *vcpu)
6678 {
6679 u32 vmx_instruction_info, types;
6680 unsigned long type;
6681 gva_t gva;
6682 struct x86_exception e;
6683 struct {
6684 u64 eptp, gpa;
6685 } operand;
6686
6687 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6688 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6689 kvm_queue_exception(vcpu, UD_VECTOR);
6690 return 1;
6691 }
6692
6693 if (!nested_vmx_check_permission(vcpu))
6694 return 1;
6695
6696 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6697 kvm_queue_exception(vcpu, UD_VECTOR);
6698 return 1;
6699 }
6700
6701 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6702 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6703
6704 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6705
6706 if (!(types & (1UL << type))) {
6707 nested_vmx_failValid(vcpu,
6708 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6709 return 1;
6710 }
6711
6712 /* According to the Intel VMX instruction reference, the memory
6713 * operand is read even if it isn't needed (e.g., for type==global)
6714 */
6715 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6716 vmx_instruction_info, &gva))
6717 return 1;
6718 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6719 sizeof(operand), &e)) {
6720 kvm_inject_page_fault(vcpu, &e);
6721 return 1;
6722 }
6723
6724 switch (type) {
6725 case VMX_EPT_EXTENT_GLOBAL:
6726 kvm_mmu_sync_roots(vcpu);
6727 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6728 nested_vmx_succeed(vcpu);
6729 break;
6730 default:
6731 /* Trap single context invalidation invept calls */
6732 BUG_ON(1);
6733 break;
6734 }
6735
6736 skip_emulated_instruction(vcpu);
6737 return 1;
6738 }
6739
6740 /*
6741 * The exit handlers return 1 if the exit was handled fully and guest execution
6742 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6743 * to be done to userspace and return 0.
6744 */
6745 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6746 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6747 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6748 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6749 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6750 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6751 [EXIT_REASON_CR_ACCESS] = handle_cr,
6752 [EXIT_REASON_DR_ACCESS] = handle_dr,
6753 [EXIT_REASON_CPUID] = handle_cpuid,
6754 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6755 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6756 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6757 [EXIT_REASON_HLT] = handle_halt,
6758 [EXIT_REASON_INVD] = handle_invd,
6759 [EXIT_REASON_INVLPG] = handle_invlpg,
6760 [EXIT_REASON_RDPMC] = handle_rdpmc,
6761 [EXIT_REASON_VMCALL] = handle_vmcall,
6762 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6763 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6764 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6765 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6766 [EXIT_REASON_VMREAD] = handle_vmread,
6767 [EXIT_REASON_VMRESUME] = handle_vmresume,
6768 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6769 [EXIT_REASON_VMOFF] = handle_vmoff,
6770 [EXIT_REASON_VMON] = handle_vmon,
6771 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6772 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6773 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6774 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6775 [EXIT_REASON_WBINVD] = handle_wbinvd,
6776 [EXIT_REASON_XSETBV] = handle_xsetbv,
6777 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6778 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6779 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6780 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6781 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6782 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
6783 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
6784 [EXIT_REASON_INVEPT] = handle_invept,
6785 };
6786
6787 static const int kvm_vmx_max_exit_handlers =
6788 ARRAY_SIZE(kvm_vmx_exit_handlers);
6789
6790 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6791 struct vmcs12 *vmcs12)
6792 {
6793 unsigned long exit_qualification;
6794 gpa_t bitmap, last_bitmap;
6795 unsigned int port;
6796 int size;
6797 u8 b;
6798
6799 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6800 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6801
6802 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6803
6804 port = exit_qualification >> 16;
6805 size = (exit_qualification & 7) + 1;
6806
6807 last_bitmap = (gpa_t)-1;
6808 b = -1;
6809
6810 while (size > 0) {
6811 if (port < 0x8000)
6812 bitmap = vmcs12->io_bitmap_a;
6813 else if (port < 0x10000)
6814 bitmap = vmcs12->io_bitmap_b;
6815 else
6816 return 1;
6817 bitmap += (port & 0x7fff) / 8;
6818
6819 if (last_bitmap != bitmap)
6820 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6821 return 1;
6822 if (b & (1 << (port & 7)))
6823 return 1;
6824
6825 port++;
6826 size--;
6827 last_bitmap = bitmap;
6828 }
6829
6830 return 0;
6831 }
6832
6833 /*
6834 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6835 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6836 * disinterest in the current event (read or write a specific MSR) by using an
6837 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6838 */
6839 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6840 struct vmcs12 *vmcs12, u32 exit_reason)
6841 {
6842 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6843 gpa_t bitmap;
6844
6845 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6846 return 1;
6847
6848 /*
6849 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6850 * for the four combinations of read/write and low/high MSR numbers.
6851 * First we need to figure out which of the four to use:
6852 */
6853 bitmap = vmcs12->msr_bitmap;
6854 if (exit_reason == EXIT_REASON_MSR_WRITE)
6855 bitmap += 2048;
6856 if (msr_index >= 0xc0000000) {
6857 msr_index -= 0xc0000000;
6858 bitmap += 1024;
6859 }
6860
6861 /* Then read the msr_index'th bit from this bitmap: */
6862 if (msr_index < 1024*8) {
6863 unsigned char b;
6864 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6865 return 1;
6866 return 1 & (b >> (msr_index & 7));
6867 } else
6868 return 1; /* let L1 handle the wrong parameter */
6869 }
6870
6871 /*
6872 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6873 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6874 * intercept (via guest_host_mask etc.) the current event.
6875 */
6876 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6877 struct vmcs12 *vmcs12)
6878 {
6879 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6880 int cr = exit_qualification & 15;
6881 int reg = (exit_qualification >> 8) & 15;
6882 unsigned long val = kvm_register_readl(vcpu, reg);
6883
6884 switch ((exit_qualification >> 4) & 3) {
6885 case 0: /* mov to cr */
6886 switch (cr) {
6887 case 0:
6888 if (vmcs12->cr0_guest_host_mask &
6889 (val ^ vmcs12->cr0_read_shadow))
6890 return 1;
6891 break;
6892 case 3:
6893 if ((vmcs12->cr3_target_count >= 1 &&
6894 vmcs12->cr3_target_value0 == val) ||
6895 (vmcs12->cr3_target_count >= 2 &&
6896 vmcs12->cr3_target_value1 == val) ||
6897 (vmcs12->cr3_target_count >= 3 &&
6898 vmcs12->cr3_target_value2 == val) ||
6899 (vmcs12->cr3_target_count >= 4 &&
6900 vmcs12->cr3_target_value3 == val))
6901 return 0;
6902 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6903 return 1;
6904 break;
6905 case 4:
6906 if (vmcs12->cr4_guest_host_mask &
6907 (vmcs12->cr4_read_shadow ^ val))
6908 return 1;
6909 break;
6910 case 8:
6911 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6912 return 1;
6913 break;
6914 }
6915 break;
6916 case 2: /* clts */
6917 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6918 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6919 return 1;
6920 break;
6921 case 1: /* mov from cr */
6922 switch (cr) {
6923 case 3:
6924 if (vmcs12->cpu_based_vm_exec_control &
6925 CPU_BASED_CR3_STORE_EXITING)
6926 return 1;
6927 break;
6928 case 8:
6929 if (vmcs12->cpu_based_vm_exec_control &
6930 CPU_BASED_CR8_STORE_EXITING)
6931 return 1;
6932 break;
6933 }
6934 break;
6935 case 3: /* lmsw */
6936 /*
6937 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6938 * cr0. Other attempted changes are ignored, with no exit.
6939 */
6940 if (vmcs12->cr0_guest_host_mask & 0xe &
6941 (val ^ vmcs12->cr0_read_shadow))
6942 return 1;
6943 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6944 !(vmcs12->cr0_read_shadow & 0x1) &&
6945 (val & 0x1))
6946 return 1;
6947 break;
6948 }
6949 return 0;
6950 }
6951
6952 /*
6953 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6954 * should handle it ourselves in L0 (and then continue L2). Only call this
6955 * when in is_guest_mode (L2).
6956 */
6957 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6958 {
6959 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6960 struct vcpu_vmx *vmx = to_vmx(vcpu);
6961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6962 u32 exit_reason = vmx->exit_reason;
6963
6964 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6965 vmcs_readl(EXIT_QUALIFICATION),
6966 vmx->idt_vectoring_info,
6967 intr_info,
6968 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6969 KVM_ISA_VMX);
6970
6971 if (vmx->nested.nested_run_pending)
6972 return 0;
6973
6974 if (unlikely(vmx->fail)) {
6975 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6976 vmcs_read32(VM_INSTRUCTION_ERROR));
6977 return 1;
6978 }
6979
6980 switch (exit_reason) {
6981 case EXIT_REASON_EXCEPTION_NMI:
6982 if (!is_exception(intr_info))
6983 return 0;
6984 else if (is_page_fault(intr_info))
6985 return enable_ept;
6986 else if (is_no_device(intr_info) &&
6987 !(vmcs12->guest_cr0 & X86_CR0_TS))
6988 return 0;
6989 return vmcs12->exception_bitmap &
6990 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6991 case EXIT_REASON_EXTERNAL_INTERRUPT:
6992 return 0;
6993 case EXIT_REASON_TRIPLE_FAULT:
6994 return 1;
6995 case EXIT_REASON_PENDING_INTERRUPT:
6996 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6997 case EXIT_REASON_NMI_WINDOW:
6998 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6999 case EXIT_REASON_TASK_SWITCH:
7000 return 1;
7001 case EXIT_REASON_CPUID:
7002 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7003 return 0;
7004 return 1;
7005 case EXIT_REASON_HLT:
7006 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7007 case EXIT_REASON_INVD:
7008 return 1;
7009 case EXIT_REASON_INVLPG:
7010 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7011 case EXIT_REASON_RDPMC:
7012 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7013 case EXIT_REASON_RDTSC:
7014 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7015 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7016 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7017 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7018 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7019 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7020 case EXIT_REASON_INVEPT:
7021 /*
7022 * VMX instructions trap unconditionally. This allows L1 to
7023 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7024 */
7025 return 1;
7026 case EXIT_REASON_CR_ACCESS:
7027 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7028 case EXIT_REASON_DR_ACCESS:
7029 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7030 case EXIT_REASON_IO_INSTRUCTION:
7031 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7032 case EXIT_REASON_MSR_READ:
7033 case EXIT_REASON_MSR_WRITE:
7034 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7035 case EXIT_REASON_INVALID_STATE:
7036 return 1;
7037 case EXIT_REASON_MWAIT_INSTRUCTION:
7038 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7039 case EXIT_REASON_MONITOR_INSTRUCTION:
7040 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7041 case EXIT_REASON_PAUSE_INSTRUCTION:
7042 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7043 nested_cpu_has2(vmcs12,
7044 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7045 case EXIT_REASON_MCE_DURING_VMENTRY:
7046 return 0;
7047 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7048 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7049 case EXIT_REASON_APIC_ACCESS:
7050 return nested_cpu_has2(vmcs12,
7051 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7052 case EXIT_REASON_EPT_VIOLATION:
7053 /*
7054 * L0 always deals with the EPT violation. If nested EPT is
7055 * used, and the nested mmu code discovers that the address is
7056 * missing in the guest EPT table (EPT12), the EPT violation
7057 * will be injected with nested_ept_inject_page_fault()
7058 */
7059 return 0;
7060 case EXIT_REASON_EPT_MISCONFIG:
7061 /*
7062 * L2 never uses directly L1's EPT, but rather L0's own EPT
7063 * table (shadow on EPT) or a merged EPT table that L0 built
7064 * (EPT on EPT). So any problems with the structure of the
7065 * table is L0's fault.
7066 */
7067 return 0;
7068 case EXIT_REASON_WBINVD:
7069 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7070 case EXIT_REASON_XSETBV:
7071 return 1;
7072 default:
7073 return 1;
7074 }
7075 }
7076
7077 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7078 {
7079 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7080 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7081 }
7082
7083 /*
7084 * The guest has exited. See if we can fix it or if we need userspace
7085 * assistance.
7086 */
7087 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7088 {
7089 struct vcpu_vmx *vmx = to_vmx(vcpu);
7090 u32 exit_reason = vmx->exit_reason;
7091 u32 vectoring_info = vmx->idt_vectoring_info;
7092
7093 /* If guest state is invalid, start emulating */
7094 if (vmx->emulation_required)
7095 return handle_invalid_guest_state(vcpu);
7096
7097 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7098 nested_vmx_vmexit(vcpu, exit_reason,
7099 vmcs_read32(VM_EXIT_INTR_INFO),
7100 vmcs_readl(EXIT_QUALIFICATION));
7101 return 1;
7102 }
7103
7104 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7105 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7106 vcpu->run->fail_entry.hardware_entry_failure_reason
7107 = exit_reason;
7108 return 0;
7109 }
7110
7111 if (unlikely(vmx->fail)) {
7112 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7113 vcpu->run->fail_entry.hardware_entry_failure_reason
7114 = vmcs_read32(VM_INSTRUCTION_ERROR);
7115 return 0;
7116 }
7117
7118 /*
7119 * Note:
7120 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7121 * delivery event since it indicates guest is accessing MMIO.
7122 * The vm-exit can be triggered again after return to guest that
7123 * will cause infinite loop.
7124 */
7125 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7126 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7127 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7128 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7129 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7130 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7131 vcpu->run->internal.ndata = 2;
7132 vcpu->run->internal.data[0] = vectoring_info;
7133 vcpu->run->internal.data[1] = exit_reason;
7134 return 0;
7135 }
7136
7137 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7138 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7139 get_vmcs12(vcpu))))) {
7140 if (vmx_interrupt_allowed(vcpu)) {
7141 vmx->soft_vnmi_blocked = 0;
7142 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7143 vcpu->arch.nmi_pending) {
7144 /*
7145 * This CPU don't support us in finding the end of an
7146 * NMI-blocked window if the guest runs with IRQs
7147 * disabled. So we pull the trigger after 1 s of
7148 * futile waiting, but inform the user about this.
7149 */
7150 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7151 "state on VCPU %d after 1 s timeout\n",
7152 __func__, vcpu->vcpu_id);
7153 vmx->soft_vnmi_blocked = 0;
7154 }
7155 }
7156
7157 if (exit_reason < kvm_vmx_max_exit_handlers
7158 && kvm_vmx_exit_handlers[exit_reason])
7159 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7160 else {
7161 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7162 vcpu->run->hw.hardware_exit_reason = exit_reason;
7163 }
7164 return 0;
7165 }
7166
7167 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7168 {
7169 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7170
7171 if (is_guest_mode(vcpu) &&
7172 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7173 return;
7174
7175 if (irr == -1 || tpr < irr) {
7176 vmcs_write32(TPR_THRESHOLD, 0);
7177 return;
7178 }
7179
7180 vmcs_write32(TPR_THRESHOLD, irr);
7181 }
7182
7183 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7184 {
7185 u32 sec_exec_control;
7186
7187 /*
7188 * There is not point to enable virtualize x2apic without enable
7189 * apicv
7190 */
7191 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7192 !vmx_vm_has_apicv(vcpu->kvm))
7193 return;
7194
7195 if (!vm_need_tpr_shadow(vcpu->kvm))
7196 return;
7197
7198 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7199
7200 if (set) {
7201 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7202 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7203 } else {
7204 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7205 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7206 }
7207 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7208
7209 vmx_set_msr_bitmap(vcpu);
7210 }
7211
7212 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7213 {
7214 struct vcpu_vmx *vmx = to_vmx(vcpu);
7215
7216 /*
7217 * Currently we do not handle the nested case where L2 has an
7218 * APIC access page of its own; that page is still pinned.
7219 * Hence, we skip the case where the VCPU is in guest mode _and_
7220 * L1 prepared an APIC access page for L2.
7221 *
7222 * For the case where L1 and L2 share the same APIC access page
7223 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7224 * in the vmcs12), this function will only update either the vmcs01
7225 * or the vmcs02. If the former, the vmcs02 will be updated by
7226 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7227 * the next L2->L1 exit.
7228 */
7229 if (!is_guest_mode(vcpu) ||
7230 !nested_cpu_has2(vmx->nested.current_vmcs12,
7231 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7232 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7233 }
7234
7235 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7236 {
7237 u16 status;
7238 u8 old;
7239
7240 if (!vmx_vm_has_apicv(kvm))
7241 return;
7242
7243 if (isr == -1)
7244 isr = 0;
7245
7246 status = vmcs_read16(GUEST_INTR_STATUS);
7247 old = status >> 8;
7248 if (isr != old) {
7249 status &= 0xff;
7250 status |= isr << 8;
7251 vmcs_write16(GUEST_INTR_STATUS, status);
7252 }
7253 }
7254
7255 static void vmx_set_rvi(int vector)
7256 {
7257 u16 status;
7258 u8 old;
7259
7260 status = vmcs_read16(GUEST_INTR_STATUS);
7261 old = (u8)status & 0xff;
7262 if ((u8)vector != old) {
7263 status &= ~0xff;
7264 status |= (u8)vector;
7265 vmcs_write16(GUEST_INTR_STATUS, status);
7266 }
7267 }
7268
7269 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7270 {
7271 if (max_irr == -1)
7272 return;
7273
7274 /*
7275 * If a vmexit is needed, vmx_check_nested_events handles it.
7276 */
7277 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7278 return;
7279
7280 if (!is_guest_mode(vcpu)) {
7281 vmx_set_rvi(max_irr);
7282 return;
7283 }
7284
7285 /*
7286 * Fall back to pre-APICv interrupt injection since L2
7287 * is run without virtual interrupt delivery.
7288 */
7289 if (!kvm_event_needs_reinjection(vcpu) &&
7290 vmx_interrupt_allowed(vcpu)) {
7291 kvm_queue_interrupt(vcpu, max_irr, false);
7292 vmx_inject_irq(vcpu);
7293 }
7294 }
7295
7296 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7297 {
7298 if (!vmx_vm_has_apicv(vcpu->kvm))
7299 return;
7300
7301 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7302 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7303 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7304 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7305 }
7306
7307 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7308 {
7309 u32 exit_intr_info;
7310
7311 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7312 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7313 return;
7314
7315 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7316 exit_intr_info = vmx->exit_intr_info;
7317
7318 /* Handle machine checks before interrupts are enabled */
7319 if (is_machine_check(exit_intr_info))
7320 kvm_machine_check();
7321
7322 /* We need to handle NMIs before interrupts are enabled */
7323 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7324 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7325 kvm_before_handle_nmi(&vmx->vcpu);
7326 asm("int $2");
7327 kvm_after_handle_nmi(&vmx->vcpu);
7328 }
7329 }
7330
7331 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7332 {
7333 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7334
7335 /*
7336 * If external interrupt exists, IF bit is set in rflags/eflags on the
7337 * interrupt stack frame, and interrupt will be enabled on a return
7338 * from interrupt handler.
7339 */
7340 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7341 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7342 unsigned int vector;
7343 unsigned long entry;
7344 gate_desc *desc;
7345 struct vcpu_vmx *vmx = to_vmx(vcpu);
7346 #ifdef CONFIG_X86_64
7347 unsigned long tmp;
7348 #endif
7349
7350 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7351 desc = (gate_desc *)vmx->host_idt_base + vector;
7352 entry = gate_offset(*desc);
7353 asm volatile(
7354 #ifdef CONFIG_X86_64
7355 "mov %%" _ASM_SP ", %[sp]\n\t"
7356 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7357 "push $%c[ss]\n\t"
7358 "push %[sp]\n\t"
7359 #endif
7360 "pushf\n\t"
7361 "orl $0x200, (%%" _ASM_SP ")\n\t"
7362 __ASM_SIZE(push) " $%c[cs]\n\t"
7363 "call *%[entry]\n\t"
7364 :
7365 #ifdef CONFIG_X86_64
7366 [sp]"=&r"(tmp)
7367 #endif
7368 :
7369 [entry]"r"(entry),
7370 [ss]"i"(__KERNEL_DS),
7371 [cs]"i"(__KERNEL_CS)
7372 );
7373 } else
7374 local_irq_enable();
7375 }
7376
7377 static bool vmx_mpx_supported(void)
7378 {
7379 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7380 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7381 }
7382
7383 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7384 {
7385 u32 exit_intr_info;
7386 bool unblock_nmi;
7387 u8 vector;
7388 bool idtv_info_valid;
7389
7390 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7391
7392 if (cpu_has_virtual_nmis()) {
7393 if (vmx->nmi_known_unmasked)
7394 return;
7395 /*
7396 * Can't use vmx->exit_intr_info since we're not sure what
7397 * the exit reason is.
7398 */
7399 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7400 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7401 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7402 /*
7403 * SDM 3: 27.7.1.2 (September 2008)
7404 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7405 * a guest IRET fault.
7406 * SDM 3: 23.2.2 (September 2008)
7407 * Bit 12 is undefined in any of the following cases:
7408 * If the VM exit sets the valid bit in the IDT-vectoring
7409 * information field.
7410 * If the VM exit is due to a double fault.
7411 */
7412 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7413 vector != DF_VECTOR && !idtv_info_valid)
7414 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7415 GUEST_INTR_STATE_NMI);
7416 else
7417 vmx->nmi_known_unmasked =
7418 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7419 & GUEST_INTR_STATE_NMI);
7420 } else if (unlikely(vmx->soft_vnmi_blocked))
7421 vmx->vnmi_blocked_time +=
7422 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7423 }
7424
7425 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7426 u32 idt_vectoring_info,
7427 int instr_len_field,
7428 int error_code_field)
7429 {
7430 u8 vector;
7431 int type;
7432 bool idtv_info_valid;
7433
7434 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7435
7436 vcpu->arch.nmi_injected = false;
7437 kvm_clear_exception_queue(vcpu);
7438 kvm_clear_interrupt_queue(vcpu);
7439
7440 if (!idtv_info_valid)
7441 return;
7442
7443 kvm_make_request(KVM_REQ_EVENT, vcpu);
7444
7445 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7446 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7447
7448 switch (type) {
7449 case INTR_TYPE_NMI_INTR:
7450 vcpu->arch.nmi_injected = true;
7451 /*
7452 * SDM 3: 27.7.1.2 (September 2008)
7453 * Clear bit "block by NMI" before VM entry if a NMI
7454 * delivery faulted.
7455 */
7456 vmx_set_nmi_mask(vcpu, false);
7457 break;
7458 case INTR_TYPE_SOFT_EXCEPTION:
7459 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7460 /* fall through */
7461 case INTR_TYPE_HARD_EXCEPTION:
7462 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7463 u32 err = vmcs_read32(error_code_field);
7464 kvm_requeue_exception_e(vcpu, vector, err);
7465 } else
7466 kvm_requeue_exception(vcpu, vector);
7467 break;
7468 case INTR_TYPE_SOFT_INTR:
7469 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7470 /* fall through */
7471 case INTR_TYPE_EXT_INTR:
7472 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7473 break;
7474 default:
7475 break;
7476 }
7477 }
7478
7479 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7480 {
7481 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7482 VM_EXIT_INSTRUCTION_LEN,
7483 IDT_VECTORING_ERROR_CODE);
7484 }
7485
7486 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7487 {
7488 __vmx_complete_interrupts(vcpu,
7489 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7490 VM_ENTRY_INSTRUCTION_LEN,
7491 VM_ENTRY_EXCEPTION_ERROR_CODE);
7492
7493 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7494 }
7495
7496 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7497 {
7498 int i, nr_msrs;
7499 struct perf_guest_switch_msr *msrs;
7500
7501 msrs = perf_guest_get_msrs(&nr_msrs);
7502
7503 if (!msrs)
7504 return;
7505
7506 for (i = 0; i < nr_msrs; i++)
7507 if (msrs[i].host == msrs[i].guest)
7508 clear_atomic_switch_msr(vmx, msrs[i].msr);
7509 else
7510 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7511 msrs[i].host);
7512 }
7513
7514 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7515 {
7516 struct vcpu_vmx *vmx = to_vmx(vcpu);
7517 unsigned long debugctlmsr;
7518
7519 /* Record the guest's net vcpu time for enforced NMI injections. */
7520 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7521 vmx->entry_time = ktime_get();
7522
7523 /* Don't enter VMX if guest state is invalid, let the exit handler
7524 start emulation until we arrive back to a valid state */
7525 if (vmx->emulation_required)
7526 return;
7527
7528 if (vmx->ple_window_dirty) {
7529 vmx->ple_window_dirty = false;
7530 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7531 }
7532
7533 if (vmx->nested.sync_shadow_vmcs) {
7534 copy_vmcs12_to_shadow(vmx);
7535 vmx->nested.sync_shadow_vmcs = false;
7536 }
7537
7538 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7539 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7540 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7541 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7542
7543 /* When single-stepping over STI and MOV SS, we must clear the
7544 * corresponding interruptibility bits in the guest state. Otherwise
7545 * vmentry fails as it then expects bit 14 (BS) in pending debug
7546 * exceptions being set, but that's not correct for the guest debugging
7547 * case. */
7548 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7549 vmx_set_interrupt_shadow(vcpu, 0);
7550
7551 atomic_switch_perf_msrs(vmx);
7552 debugctlmsr = get_debugctlmsr();
7553
7554 vmx->__launched = vmx->loaded_vmcs->launched;
7555 asm(
7556 /* Store host registers */
7557 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7558 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7559 "push %%" _ASM_CX " \n\t"
7560 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7561 "je 1f \n\t"
7562 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7563 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7564 "1: \n\t"
7565 /* Reload cr2 if changed */
7566 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7567 "mov %%cr2, %%" _ASM_DX " \n\t"
7568 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7569 "je 2f \n\t"
7570 "mov %%" _ASM_AX", %%cr2 \n\t"
7571 "2: \n\t"
7572 /* Check if vmlaunch of vmresume is needed */
7573 "cmpl $0, %c[launched](%0) \n\t"
7574 /* Load guest registers. Don't clobber flags. */
7575 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7576 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7577 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7578 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7579 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7580 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7581 #ifdef CONFIG_X86_64
7582 "mov %c[r8](%0), %%r8 \n\t"
7583 "mov %c[r9](%0), %%r9 \n\t"
7584 "mov %c[r10](%0), %%r10 \n\t"
7585 "mov %c[r11](%0), %%r11 \n\t"
7586 "mov %c[r12](%0), %%r12 \n\t"
7587 "mov %c[r13](%0), %%r13 \n\t"
7588 "mov %c[r14](%0), %%r14 \n\t"
7589 "mov %c[r15](%0), %%r15 \n\t"
7590 #endif
7591 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7592
7593 /* Enter guest mode */
7594 "jne 1f \n\t"
7595 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7596 "jmp 2f \n\t"
7597 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7598 "2: "
7599 /* Save guest registers, load host registers, keep flags */
7600 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7601 "pop %0 \n\t"
7602 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7603 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7604 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7605 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7606 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7607 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7608 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7609 #ifdef CONFIG_X86_64
7610 "mov %%r8, %c[r8](%0) \n\t"
7611 "mov %%r9, %c[r9](%0) \n\t"
7612 "mov %%r10, %c[r10](%0) \n\t"
7613 "mov %%r11, %c[r11](%0) \n\t"
7614 "mov %%r12, %c[r12](%0) \n\t"
7615 "mov %%r13, %c[r13](%0) \n\t"
7616 "mov %%r14, %c[r14](%0) \n\t"
7617 "mov %%r15, %c[r15](%0) \n\t"
7618 #endif
7619 "mov %%cr2, %%" _ASM_AX " \n\t"
7620 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7621
7622 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7623 "setbe %c[fail](%0) \n\t"
7624 ".pushsection .rodata \n\t"
7625 ".global vmx_return \n\t"
7626 "vmx_return: " _ASM_PTR " 2b \n\t"
7627 ".popsection"
7628 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7629 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7630 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7631 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7632 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7633 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7634 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7635 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7636 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7637 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7638 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7639 #ifdef CONFIG_X86_64
7640 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7641 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7642 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7643 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7644 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7645 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7646 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7647 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7648 #endif
7649 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7650 [wordsize]"i"(sizeof(ulong))
7651 : "cc", "memory"
7652 #ifdef CONFIG_X86_64
7653 , "rax", "rbx", "rdi", "rsi"
7654 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7655 #else
7656 , "eax", "ebx", "edi", "esi"
7657 #endif
7658 );
7659
7660 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7661 if (debugctlmsr)
7662 update_debugctlmsr(debugctlmsr);
7663
7664 #ifndef CONFIG_X86_64
7665 /*
7666 * The sysexit path does not restore ds/es, so we must set them to
7667 * a reasonable value ourselves.
7668 *
7669 * We can't defer this to vmx_load_host_state() since that function
7670 * may be executed in interrupt context, which saves and restore segments
7671 * around it, nullifying its effect.
7672 */
7673 loadsegment(ds, __USER_DS);
7674 loadsegment(es, __USER_DS);
7675 #endif
7676
7677 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7678 | (1 << VCPU_EXREG_RFLAGS)
7679 | (1 << VCPU_EXREG_PDPTR)
7680 | (1 << VCPU_EXREG_SEGMENTS)
7681 | (1 << VCPU_EXREG_CR3));
7682 vcpu->arch.regs_dirty = 0;
7683
7684 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7685
7686 vmx->loaded_vmcs->launched = 1;
7687
7688 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7689 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7690
7691 /*
7692 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7693 * we did not inject a still-pending event to L1 now because of
7694 * nested_run_pending, we need to re-enable this bit.
7695 */
7696 if (vmx->nested.nested_run_pending)
7697 kvm_make_request(KVM_REQ_EVENT, vcpu);
7698
7699 vmx->nested.nested_run_pending = 0;
7700
7701 vmx_complete_atomic_exit(vmx);
7702 vmx_recover_nmi_blocking(vmx);
7703 vmx_complete_interrupts(vmx);
7704 }
7705
7706 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7707 {
7708 struct vcpu_vmx *vmx = to_vmx(vcpu);
7709 int cpu;
7710
7711 if (vmx->loaded_vmcs == &vmx->vmcs01)
7712 return;
7713
7714 cpu = get_cpu();
7715 vmx->loaded_vmcs = &vmx->vmcs01;
7716 vmx_vcpu_put(vcpu);
7717 vmx_vcpu_load(vcpu, cpu);
7718 vcpu->cpu = cpu;
7719 put_cpu();
7720 }
7721
7722 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7723 {
7724 struct vcpu_vmx *vmx = to_vmx(vcpu);
7725
7726 free_vpid(vmx);
7727 leave_guest_mode(vcpu);
7728 vmx_load_vmcs01(vcpu);
7729 free_nested(vmx);
7730 free_loaded_vmcs(vmx->loaded_vmcs);
7731 kfree(vmx->guest_msrs);
7732 kvm_vcpu_uninit(vcpu);
7733 kmem_cache_free(kvm_vcpu_cache, vmx);
7734 }
7735
7736 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7737 {
7738 int err;
7739 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7740 int cpu;
7741
7742 if (!vmx)
7743 return ERR_PTR(-ENOMEM);
7744
7745 allocate_vpid(vmx);
7746
7747 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7748 if (err)
7749 goto free_vcpu;
7750
7751 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7752 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7753 > PAGE_SIZE);
7754
7755 err = -ENOMEM;
7756 if (!vmx->guest_msrs) {
7757 goto uninit_vcpu;
7758 }
7759
7760 vmx->loaded_vmcs = &vmx->vmcs01;
7761 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7762 if (!vmx->loaded_vmcs->vmcs)
7763 goto free_msrs;
7764 if (!vmm_exclusive)
7765 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7766 loaded_vmcs_init(vmx->loaded_vmcs);
7767 if (!vmm_exclusive)
7768 kvm_cpu_vmxoff();
7769
7770 cpu = get_cpu();
7771 vmx_vcpu_load(&vmx->vcpu, cpu);
7772 vmx->vcpu.cpu = cpu;
7773 err = vmx_vcpu_setup(vmx);
7774 vmx_vcpu_put(&vmx->vcpu);
7775 put_cpu();
7776 if (err)
7777 goto free_vmcs;
7778 if (vm_need_virtualize_apic_accesses(kvm)) {
7779 err = alloc_apic_access_page(kvm);
7780 if (err)
7781 goto free_vmcs;
7782 }
7783
7784 if (enable_ept) {
7785 if (!kvm->arch.ept_identity_map_addr)
7786 kvm->arch.ept_identity_map_addr =
7787 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7788 err = init_rmode_identity_map(kvm);
7789 if (err)
7790 goto free_vmcs;
7791 }
7792
7793 vmx->nested.current_vmptr = -1ull;
7794 vmx->nested.current_vmcs12 = NULL;
7795
7796 return &vmx->vcpu;
7797
7798 free_vmcs:
7799 free_loaded_vmcs(vmx->loaded_vmcs);
7800 free_msrs:
7801 kfree(vmx->guest_msrs);
7802 uninit_vcpu:
7803 kvm_vcpu_uninit(&vmx->vcpu);
7804 free_vcpu:
7805 free_vpid(vmx);
7806 kmem_cache_free(kvm_vcpu_cache, vmx);
7807 return ERR_PTR(err);
7808 }
7809
7810 static void __init vmx_check_processor_compat(void *rtn)
7811 {
7812 struct vmcs_config vmcs_conf;
7813
7814 *(int *)rtn = 0;
7815 if (setup_vmcs_config(&vmcs_conf) < 0)
7816 *(int *)rtn = -EIO;
7817 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7818 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7819 smp_processor_id());
7820 *(int *)rtn = -EIO;
7821 }
7822 }
7823
7824 static int get_ept_level(void)
7825 {
7826 return VMX_EPT_DEFAULT_GAW + 1;
7827 }
7828
7829 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7830 {
7831 u64 ret;
7832
7833 /* For VT-d and EPT combination
7834 * 1. MMIO: always map as UC
7835 * 2. EPT with VT-d:
7836 * a. VT-d without snooping control feature: can't guarantee the
7837 * result, try to trust guest.
7838 * b. VT-d with snooping control feature: snooping control feature of
7839 * VT-d engine can guarantee the cache correctness. Just set it
7840 * to WB to keep consistent with host. So the same as item 3.
7841 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7842 * consistent with host MTRR
7843 */
7844 if (is_mmio)
7845 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7846 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7847 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7848 VMX_EPT_MT_EPTE_SHIFT;
7849 else
7850 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7851 | VMX_EPT_IPAT_BIT;
7852
7853 return ret;
7854 }
7855
7856 static int vmx_get_lpage_level(void)
7857 {
7858 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7859 return PT_DIRECTORY_LEVEL;
7860 else
7861 /* For shadow and EPT supported 1GB page */
7862 return PT_PDPE_LEVEL;
7863 }
7864
7865 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7866 {
7867 struct kvm_cpuid_entry2 *best;
7868 struct vcpu_vmx *vmx = to_vmx(vcpu);
7869 u32 exec_control;
7870
7871 vmx->rdtscp_enabled = false;
7872 if (vmx_rdtscp_supported()) {
7873 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7874 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7875 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7876 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7877 vmx->rdtscp_enabled = true;
7878 else {
7879 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7880 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7881 exec_control);
7882 }
7883 }
7884 }
7885
7886 /* Exposing INVPCID only when PCID is exposed */
7887 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7888 if (vmx_invpcid_supported() &&
7889 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7890 guest_cpuid_has_pcid(vcpu)) {
7891 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7892 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7893 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7894 exec_control);
7895 } else {
7896 if (cpu_has_secondary_exec_ctrls()) {
7897 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7898 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7899 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7900 exec_control);
7901 }
7902 if (best)
7903 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7904 }
7905 }
7906
7907 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7908 {
7909 if (func == 1 && nested)
7910 entry->ecx |= bit(X86_FEATURE_VMX);
7911 }
7912
7913 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7914 struct x86_exception *fault)
7915 {
7916 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7917 u32 exit_reason;
7918
7919 if (fault->error_code & PFERR_RSVD_MASK)
7920 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7921 else
7922 exit_reason = EXIT_REASON_EPT_VIOLATION;
7923 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7924 vmcs12->guest_physical_address = fault->address;
7925 }
7926
7927 /* Callbacks for nested_ept_init_mmu_context: */
7928
7929 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7930 {
7931 /* return the page table to be shadowed - in our case, EPT12 */
7932 return get_vmcs12(vcpu)->ept_pointer;
7933 }
7934
7935 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7936 {
7937 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7938 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7939
7940 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7941 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7942 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7943
7944 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
7945 }
7946
7947 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7948 {
7949 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7950 }
7951
7952 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7953 struct x86_exception *fault)
7954 {
7955 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7956
7957 WARN_ON(!is_guest_mode(vcpu));
7958
7959 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7960 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7961 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7962 vmcs_read32(VM_EXIT_INTR_INFO),
7963 vmcs_readl(EXIT_QUALIFICATION));
7964 else
7965 kvm_inject_page_fault(vcpu, fault);
7966 }
7967
7968 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7969 struct vmcs12 *vmcs12)
7970 {
7971 struct vcpu_vmx *vmx = to_vmx(vcpu);
7972
7973 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
7974 /* TODO: Also verify bits beyond physical address width are 0 */
7975 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
7976 return false;
7977
7978 /*
7979 * Translate L1 physical address to host physical
7980 * address for vmcs02. Keep the page pinned, so this
7981 * physical address remains valid. We keep a reference
7982 * to it so we can release it later.
7983 */
7984 if (vmx->nested.apic_access_page) /* shouldn't happen */
7985 nested_release_page(vmx->nested.apic_access_page);
7986 vmx->nested.apic_access_page =
7987 nested_get_page(vcpu, vmcs12->apic_access_addr);
7988 }
7989
7990 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
7991 /* TODO: Also verify bits beyond physical address width are 0 */
7992 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
7993 return false;
7994
7995 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
7996 nested_release_page(vmx->nested.virtual_apic_page);
7997 vmx->nested.virtual_apic_page =
7998 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
7999
8000 /*
8001 * Failing the vm entry is _not_ what the processor does
8002 * but it's basically the only possibility we have.
8003 * We could still enter the guest if CR8 load exits are
8004 * enabled, CR8 store exits are enabled, and virtualize APIC
8005 * access is disabled; in this case the processor would never
8006 * use the TPR shadow and we could simply clear the bit from
8007 * the execution control. But such a configuration is useless,
8008 * so let's keep the code simple.
8009 */
8010 if (!vmx->nested.virtual_apic_page)
8011 return false;
8012 }
8013
8014 return true;
8015 }
8016
8017 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8018 {
8019 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8020 struct vcpu_vmx *vmx = to_vmx(vcpu);
8021
8022 if (vcpu->arch.virtual_tsc_khz == 0)
8023 return;
8024
8025 /* Make sure short timeouts reliably trigger an immediate vmexit.
8026 * hrtimer_start does not guarantee this. */
8027 if (preemption_timeout <= 1) {
8028 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8029 return;
8030 }
8031
8032 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8033 preemption_timeout *= 1000000;
8034 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8035 hrtimer_start(&vmx->nested.preemption_timer,
8036 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8037 }
8038
8039 /*
8040 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8041 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8042 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8043 * guest in a way that will both be appropriate to L1's requests, and our
8044 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8045 * function also has additional necessary side-effects, like setting various
8046 * vcpu->arch fields.
8047 */
8048 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8049 {
8050 struct vcpu_vmx *vmx = to_vmx(vcpu);
8051 u32 exec_control;
8052
8053 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8054 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8055 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8056 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8057 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8058 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8059 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8060 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8061 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8062 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8063 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8064 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8065 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8066 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8067 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8068 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8069 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8070 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8071 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8072 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8073 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8074 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8075 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8076 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8077 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8078 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8079 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8080 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8081 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8082 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8083 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8084 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8085 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8086 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8087 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8088 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8089
8090 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8091 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8092 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8093 } else {
8094 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8095 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8096 }
8097 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8098 vmcs12->vm_entry_intr_info_field);
8099 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8100 vmcs12->vm_entry_exception_error_code);
8101 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8102 vmcs12->vm_entry_instruction_len);
8103 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8104 vmcs12->guest_interruptibility_info);
8105 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8106 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8107 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8108 vmcs12->guest_pending_dbg_exceptions);
8109 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8110 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8111
8112 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8113
8114 exec_control = vmcs12->pin_based_vm_exec_control;
8115 exec_control |= vmcs_config.pin_based_exec_ctrl;
8116 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8117 PIN_BASED_POSTED_INTR);
8118 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8119
8120 vmx->nested.preemption_timer_expired = false;
8121 if (nested_cpu_has_preemption_timer(vmcs12))
8122 vmx_start_preemption_timer(vcpu);
8123
8124 /*
8125 * Whether page-faults are trapped is determined by a combination of
8126 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8127 * If enable_ept, L0 doesn't care about page faults and we should
8128 * set all of these to L1's desires. However, if !enable_ept, L0 does
8129 * care about (at least some) page faults, and because it is not easy
8130 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8131 * to exit on each and every L2 page fault. This is done by setting
8132 * MASK=MATCH=0 and (see below) EB.PF=1.
8133 * Note that below we don't need special code to set EB.PF beyond the
8134 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8135 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8136 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8137 *
8138 * A problem with this approach (when !enable_ept) is that L1 may be
8139 * injected with more page faults than it asked for. This could have
8140 * caused problems, but in practice existing hypervisors don't care.
8141 * To fix this, we will need to emulate the PFEC checking (on the L1
8142 * page tables), using walk_addr(), when injecting PFs to L1.
8143 */
8144 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8145 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8146 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8147 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8148
8149 if (cpu_has_secondary_exec_ctrls()) {
8150 exec_control = vmx_secondary_exec_control(vmx);
8151 if (!vmx->rdtscp_enabled)
8152 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8153 /* Take the following fields only from vmcs12 */
8154 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8155 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8156 SECONDARY_EXEC_APIC_REGISTER_VIRT);
8157 if (nested_cpu_has(vmcs12,
8158 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8159 exec_control |= vmcs12->secondary_vm_exec_control;
8160
8161 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8162 /*
8163 * If translation failed, no matter: This feature asks
8164 * to exit when accessing the given address, and if it
8165 * can never be accessed, this feature won't do
8166 * anything anyway.
8167 */
8168 if (!vmx->nested.apic_access_page)
8169 exec_control &=
8170 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8171 else
8172 vmcs_write64(APIC_ACCESS_ADDR,
8173 page_to_phys(vmx->nested.apic_access_page));
8174 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8175 exec_control |=
8176 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8177 kvm_vcpu_reload_apic_access_page(vcpu);
8178 }
8179
8180 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8181 }
8182
8183
8184 /*
8185 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8186 * Some constant fields are set here by vmx_set_constant_host_state().
8187 * Other fields are different per CPU, and will be set later when
8188 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8189 */
8190 vmx_set_constant_host_state(vmx);
8191
8192 /*
8193 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8194 * entry, but only if the current (host) sp changed from the value
8195 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8196 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8197 * here we just force the write to happen on entry.
8198 */
8199 vmx->host_rsp = 0;
8200
8201 exec_control = vmx_exec_control(vmx); /* L0's desires */
8202 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8203 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8204 exec_control &= ~CPU_BASED_TPR_SHADOW;
8205 exec_control |= vmcs12->cpu_based_vm_exec_control;
8206
8207 if (exec_control & CPU_BASED_TPR_SHADOW) {
8208 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8209 page_to_phys(vmx->nested.virtual_apic_page));
8210 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8211 }
8212
8213 /*
8214 * Merging of IO and MSR bitmaps not currently supported.
8215 * Rather, exit every time.
8216 */
8217 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8218 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8219 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8220
8221 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8222
8223 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8224 * bitwise-or of what L1 wants to trap for L2, and what we want to
8225 * trap. Note that CR0.TS also needs updating - we do this later.
8226 */
8227 update_exception_bitmap(vcpu);
8228 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8229 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8230
8231 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8232 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8233 * bits are further modified by vmx_set_efer() below.
8234 */
8235 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8236
8237 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8238 * emulated by vmx_set_efer(), below.
8239 */
8240 vm_entry_controls_init(vmx,
8241 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8242 ~VM_ENTRY_IA32E_MODE) |
8243 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8244
8245 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8246 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8247 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8248 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8249 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8250
8251
8252 set_cr4_guest_host_mask(vmx);
8253
8254 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8255 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8256
8257 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8258 vmcs_write64(TSC_OFFSET,
8259 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8260 else
8261 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8262
8263 if (enable_vpid) {
8264 /*
8265 * Trivially support vpid by letting L2s share their parent
8266 * L1's vpid. TODO: move to a more elaborate solution, giving
8267 * each L2 its own vpid and exposing the vpid feature to L1.
8268 */
8269 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8270 vmx_flush_tlb(vcpu);
8271 }
8272
8273 if (nested_cpu_has_ept(vmcs12)) {
8274 kvm_mmu_unload(vcpu);
8275 nested_ept_init_mmu_context(vcpu);
8276 }
8277
8278 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8279 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8280 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8281 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8282 else
8283 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8284 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8285 vmx_set_efer(vcpu, vcpu->arch.efer);
8286
8287 /*
8288 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8289 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8290 * The CR0_READ_SHADOW is what L2 should have expected to read given
8291 * the specifications by L1; It's not enough to take
8292 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8293 * have more bits than L1 expected.
8294 */
8295 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8296 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8297
8298 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8299 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8300
8301 /* shadow page tables on either EPT or shadow page tables */
8302 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8303 kvm_mmu_reset_context(vcpu);
8304
8305 if (!enable_ept)
8306 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8307
8308 /*
8309 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8310 */
8311 if (enable_ept) {
8312 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8313 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8314 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8315 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8316 }
8317
8318 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8319 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8320 }
8321
8322 /*
8323 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8324 * for running an L2 nested guest.
8325 */
8326 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8327 {
8328 struct vmcs12 *vmcs12;
8329 struct vcpu_vmx *vmx = to_vmx(vcpu);
8330 int cpu;
8331 struct loaded_vmcs *vmcs02;
8332 bool ia32e;
8333
8334 if (!nested_vmx_check_permission(vcpu) ||
8335 !nested_vmx_check_vmcs12(vcpu))
8336 return 1;
8337
8338 skip_emulated_instruction(vcpu);
8339 vmcs12 = get_vmcs12(vcpu);
8340
8341 if (enable_shadow_vmcs)
8342 copy_shadow_to_vmcs12(vmx);
8343
8344 /*
8345 * The nested entry process starts with enforcing various prerequisites
8346 * on vmcs12 as required by the Intel SDM, and act appropriately when
8347 * they fail: As the SDM explains, some conditions should cause the
8348 * instruction to fail, while others will cause the instruction to seem
8349 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8350 * To speed up the normal (success) code path, we should avoid checking
8351 * for misconfigurations which will anyway be caught by the processor
8352 * when using the merged vmcs02.
8353 */
8354 if (vmcs12->launch_state == launch) {
8355 nested_vmx_failValid(vcpu,
8356 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8357 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8358 return 1;
8359 }
8360
8361 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8362 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8363 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8364 return 1;
8365 }
8366
8367 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8368 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8369 /*TODO: Also verify bits beyond physical address width are 0*/
8370 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8371 return 1;
8372 }
8373
8374 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8375 /*TODO: Also verify bits beyond physical address width are 0*/
8376 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8377 return 1;
8378 }
8379
8380 if (vmcs12->vm_entry_msr_load_count > 0 ||
8381 vmcs12->vm_exit_msr_load_count > 0 ||
8382 vmcs12->vm_exit_msr_store_count > 0) {
8383 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8384 __func__);
8385 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8386 return 1;
8387 }
8388
8389 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8390 nested_vmx_true_procbased_ctls_low,
8391 nested_vmx_procbased_ctls_high) ||
8392 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8393 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8394 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8395 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8396 !vmx_control_verify(vmcs12->vm_exit_controls,
8397 nested_vmx_true_exit_ctls_low,
8398 nested_vmx_exit_ctls_high) ||
8399 !vmx_control_verify(vmcs12->vm_entry_controls,
8400 nested_vmx_true_entry_ctls_low,
8401 nested_vmx_entry_ctls_high))
8402 {
8403 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8404 return 1;
8405 }
8406
8407 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8408 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8409 nested_vmx_failValid(vcpu,
8410 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8411 return 1;
8412 }
8413
8414 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8415 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8416 nested_vmx_entry_failure(vcpu, vmcs12,
8417 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8418 return 1;
8419 }
8420 if (vmcs12->vmcs_link_pointer != -1ull) {
8421 nested_vmx_entry_failure(vcpu, vmcs12,
8422 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8423 return 1;
8424 }
8425
8426 /*
8427 * If the load IA32_EFER VM-entry control is 1, the following checks
8428 * are performed on the field for the IA32_EFER MSR:
8429 * - Bits reserved in the IA32_EFER MSR must be 0.
8430 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8431 * the IA-32e mode guest VM-exit control. It must also be identical
8432 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8433 * CR0.PG) is 1.
8434 */
8435 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8436 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8437 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8438 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8439 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8440 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8441 nested_vmx_entry_failure(vcpu, vmcs12,
8442 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8443 return 1;
8444 }
8445 }
8446
8447 /*
8448 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8449 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8450 * the values of the LMA and LME bits in the field must each be that of
8451 * the host address-space size VM-exit control.
8452 */
8453 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8454 ia32e = (vmcs12->vm_exit_controls &
8455 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8456 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8457 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8458 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8459 nested_vmx_entry_failure(vcpu, vmcs12,
8460 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8461 return 1;
8462 }
8463 }
8464
8465 /*
8466 * We're finally done with prerequisite checking, and can start with
8467 * the nested entry.
8468 */
8469
8470 vmcs02 = nested_get_current_vmcs02(vmx);
8471 if (!vmcs02)
8472 return -ENOMEM;
8473
8474 enter_guest_mode(vcpu);
8475
8476 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8477
8478 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8479 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8480
8481 cpu = get_cpu();
8482 vmx->loaded_vmcs = vmcs02;
8483 vmx_vcpu_put(vcpu);
8484 vmx_vcpu_load(vcpu, cpu);
8485 vcpu->cpu = cpu;
8486 put_cpu();
8487
8488 vmx_segment_cache_clear(vmx);
8489
8490 vmcs12->launch_state = 1;
8491
8492 prepare_vmcs02(vcpu, vmcs12);
8493
8494 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8495 return kvm_emulate_halt(vcpu);
8496
8497 vmx->nested.nested_run_pending = 1;
8498
8499 /*
8500 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8501 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8502 * returned as far as L1 is concerned. It will only return (and set
8503 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8504 */
8505 return 1;
8506 }
8507
8508 /*
8509 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8510 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8511 * This function returns the new value we should put in vmcs12.guest_cr0.
8512 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8513 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8514 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8515 * didn't trap the bit, because if L1 did, so would L0).
8516 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8517 * been modified by L2, and L1 knows it. So just leave the old value of
8518 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8519 * isn't relevant, because if L0 traps this bit it can set it to anything.
8520 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8521 * changed these bits, and therefore they need to be updated, but L0
8522 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8523 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8524 */
8525 static inline unsigned long
8526 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8527 {
8528 return
8529 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8530 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8531 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8532 vcpu->arch.cr0_guest_owned_bits));
8533 }
8534
8535 static inline unsigned long
8536 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8537 {
8538 return
8539 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8540 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8541 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8542 vcpu->arch.cr4_guest_owned_bits));
8543 }
8544
8545 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8546 struct vmcs12 *vmcs12)
8547 {
8548 u32 idt_vectoring;
8549 unsigned int nr;
8550
8551 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8552 nr = vcpu->arch.exception.nr;
8553 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8554
8555 if (kvm_exception_is_soft(nr)) {
8556 vmcs12->vm_exit_instruction_len =
8557 vcpu->arch.event_exit_inst_len;
8558 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8559 } else
8560 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8561
8562 if (vcpu->arch.exception.has_error_code) {
8563 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8564 vmcs12->idt_vectoring_error_code =
8565 vcpu->arch.exception.error_code;
8566 }
8567
8568 vmcs12->idt_vectoring_info_field = idt_vectoring;
8569 } else if (vcpu->arch.nmi_injected) {
8570 vmcs12->idt_vectoring_info_field =
8571 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8572 } else if (vcpu->arch.interrupt.pending) {
8573 nr = vcpu->arch.interrupt.nr;
8574 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8575
8576 if (vcpu->arch.interrupt.soft) {
8577 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8578 vmcs12->vm_entry_instruction_len =
8579 vcpu->arch.event_exit_inst_len;
8580 } else
8581 idt_vectoring |= INTR_TYPE_EXT_INTR;
8582
8583 vmcs12->idt_vectoring_info_field = idt_vectoring;
8584 }
8585 }
8586
8587 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8588 {
8589 struct vcpu_vmx *vmx = to_vmx(vcpu);
8590
8591 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8592 vmx->nested.preemption_timer_expired) {
8593 if (vmx->nested.nested_run_pending)
8594 return -EBUSY;
8595 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8596 return 0;
8597 }
8598
8599 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8600 if (vmx->nested.nested_run_pending ||
8601 vcpu->arch.interrupt.pending)
8602 return -EBUSY;
8603 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8604 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8605 INTR_INFO_VALID_MASK, 0);
8606 /*
8607 * The NMI-triggered VM exit counts as injection:
8608 * clear this one and block further NMIs.
8609 */
8610 vcpu->arch.nmi_pending = 0;
8611 vmx_set_nmi_mask(vcpu, true);
8612 return 0;
8613 }
8614
8615 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8616 nested_exit_on_intr(vcpu)) {
8617 if (vmx->nested.nested_run_pending)
8618 return -EBUSY;
8619 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8620 }
8621
8622 return 0;
8623 }
8624
8625 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8626 {
8627 ktime_t remaining =
8628 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8629 u64 value;
8630
8631 if (ktime_to_ns(remaining) <= 0)
8632 return 0;
8633
8634 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8635 do_div(value, 1000000);
8636 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8637 }
8638
8639 /*
8640 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8641 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8642 * and this function updates it to reflect the changes to the guest state while
8643 * L2 was running (and perhaps made some exits which were handled directly by L0
8644 * without going back to L1), and to reflect the exit reason.
8645 * Note that we do not have to copy here all VMCS fields, just those that
8646 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8647 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8648 * which already writes to vmcs12 directly.
8649 */
8650 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8651 u32 exit_reason, u32 exit_intr_info,
8652 unsigned long exit_qualification)
8653 {
8654 /* update guest state fields: */
8655 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8656 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8657
8658 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8659 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8660 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8661
8662 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8663 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8664 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8665 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8666 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8667 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8668 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8669 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8670 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8671 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8672 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8673 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8674 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8675 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8676 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8677 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8678 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8679 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8680 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8681 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8682 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8683 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8684 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8685 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8686 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8687 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8688 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8689 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8690 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8691 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8692 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8693 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8694 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8695 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8696 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8697 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8698
8699 vmcs12->guest_interruptibility_info =
8700 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8701 vmcs12->guest_pending_dbg_exceptions =
8702 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8703 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8704 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8705 else
8706 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8707
8708 if (nested_cpu_has_preemption_timer(vmcs12)) {
8709 if (vmcs12->vm_exit_controls &
8710 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8711 vmcs12->vmx_preemption_timer_value =
8712 vmx_get_preemption_timer_value(vcpu);
8713 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8714 }
8715
8716 /*
8717 * In some cases (usually, nested EPT), L2 is allowed to change its
8718 * own CR3 without exiting. If it has changed it, we must keep it.
8719 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8720 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8721 *
8722 * Additionally, restore L2's PDPTR to vmcs12.
8723 */
8724 if (enable_ept) {
8725 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8726 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8727 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8728 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8729 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8730 }
8731
8732 vmcs12->vm_entry_controls =
8733 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8734 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8735
8736 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8737 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8738 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8739 }
8740
8741 /* TODO: These cannot have changed unless we have MSR bitmaps and
8742 * the relevant bit asks not to trap the change */
8743 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8744 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8745 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8746 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8747 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8748 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8749 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8750 if (vmx_mpx_supported())
8751 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8752
8753 /* update exit information fields: */
8754
8755 vmcs12->vm_exit_reason = exit_reason;
8756 vmcs12->exit_qualification = exit_qualification;
8757
8758 vmcs12->vm_exit_intr_info = exit_intr_info;
8759 if ((vmcs12->vm_exit_intr_info &
8760 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8761 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8762 vmcs12->vm_exit_intr_error_code =
8763 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8764 vmcs12->idt_vectoring_info_field = 0;
8765 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8766 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8767
8768 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8769 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8770 * instead of reading the real value. */
8771 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8772
8773 /*
8774 * Transfer the event that L0 or L1 may wanted to inject into
8775 * L2 to IDT_VECTORING_INFO_FIELD.
8776 */
8777 vmcs12_save_pending_event(vcpu, vmcs12);
8778 }
8779
8780 /*
8781 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8782 * preserved above and would only end up incorrectly in L1.
8783 */
8784 vcpu->arch.nmi_injected = false;
8785 kvm_clear_exception_queue(vcpu);
8786 kvm_clear_interrupt_queue(vcpu);
8787 }
8788
8789 /*
8790 * A part of what we need to when the nested L2 guest exits and we want to
8791 * run its L1 parent, is to reset L1's guest state to the host state specified
8792 * in vmcs12.
8793 * This function is to be called not only on normal nested exit, but also on
8794 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8795 * Failures During or After Loading Guest State").
8796 * This function should be called when the active VMCS is L1's (vmcs01).
8797 */
8798 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8799 struct vmcs12 *vmcs12)
8800 {
8801 struct kvm_segment seg;
8802
8803 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8804 vcpu->arch.efer = vmcs12->host_ia32_efer;
8805 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8806 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8807 else
8808 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8809 vmx_set_efer(vcpu, vcpu->arch.efer);
8810
8811 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8812 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8813 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8814 /*
8815 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8816 * actually changed, because it depends on the current state of
8817 * fpu_active (which may have changed).
8818 * Note that vmx_set_cr0 refers to efer set above.
8819 */
8820 vmx_set_cr0(vcpu, vmcs12->host_cr0);
8821 /*
8822 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8823 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8824 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8825 */
8826 update_exception_bitmap(vcpu);
8827 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8828 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8829
8830 /*
8831 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8832 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8833 */
8834 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8835 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8836
8837 nested_ept_uninit_mmu_context(vcpu);
8838
8839 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8840 kvm_mmu_reset_context(vcpu);
8841
8842 if (!enable_ept)
8843 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8844
8845 if (enable_vpid) {
8846 /*
8847 * Trivially support vpid by letting L2s share their parent
8848 * L1's vpid. TODO: move to a more elaborate solution, giving
8849 * each L2 its own vpid and exposing the vpid feature to L1.
8850 */
8851 vmx_flush_tlb(vcpu);
8852 }
8853
8854
8855 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8856 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8857 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8858 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8859 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8860
8861 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
8862 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8863 vmcs_write64(GUEST_BNDCFGS, 0);
8864
8865 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8866 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8867 vcpu->arch.pat = vmcs12->host_ia32_pat;
8868 }
8869 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8870 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8871 vmcs12->host_ia32_perf_global_ctrl);
8872
8873 /* Set L1 segment info according to Intel SDM
8874 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8875 seg = (struct kvm_segment) {
8876 .base = 0,
8877 .limit = 0xFFFFFFFF,
8878 .selector = vmcs12->host_cs_selector,
8879 .type = 11,
8880 .present = 1,
8881 .s = 1,
8882 .g = 1
8883 };
8884 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8885 seg.l = 1;
8886 else
8887 seg.db = 1;
8888 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8889 seg = (struct kvm_segment) {
8890 .base = 0,
8891 .limit = 0xFFFFFFFF,
8892 .type = 3,
8893 .present = 1,
8894 .s = 1,
8895 .db = 1,
8896 .g = 1
8897 };
8898 seg.selector = vmcs12->host_ds_selector;
8899 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8900 seg.selector = vmcs12->host_es_selector;
8901 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8902 seg.selector = vmcs12->host_ss_selector;
8903 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8904 seg.selector = vmcs12->host_fs_selector;
8905 seg.base = vmcs12->host_fs_base;
8906 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8907 seg.selector = vmcs12->host_gs_selector;
8908 seg.base = vmcs12->host_gs_base;
8909 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8910 seg = (struct kvm_segment) {
8911 .base = vmcs12->host_tr_base,
8912 .limit = 0x67,
8913 .selector = vmcs12->host_tr_selector,
8914 .type = 11,
8915 .present = 1
8916 };
8917 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8918
8919 kvm_set_dr(vcpu, 7, 0x400);
8920 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8921 }
8922
8923 /*
8924 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8925 * and modify vmcs12 to make it see what it would expect to see there if
8926 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8927 */
8928 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8929 u32 exit_intr_info,
8930 unsigned long exit_qualification)
8931 {
8932 struct vcpu_vmx *vmx = to_vmx(vcpu);
8933 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8934
8935 /* trying to cancel vmlaunch/vmresume is a bug */
8936 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8937
8938 leave_guest_mode(vcpu);
8939 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8940 exit_qualification);
8941
8942 vmx_load_vmcs01(vcpu);
8943
8944 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8945 && nested_exit_intr_ack_set(vcpu)) {
8946 int irq = kvm_cpu_get_interrupt(vcpu);
8947 WARN_ON(irq < 0);
8948 vmcs12->vm_exit_intr_info = irq |
8949 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8950 }
8951
8952 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8953 vmcs12->exit_qualification,
8954 vmcs12->idt_vectoring_info_field,
8955 vmcs12->vm_exit_intr_info,
8956 vmcs12->vm_exit_intr_error_code,
8957 KVM_ISA_VMX);
8958
8959 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8960 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8961 vmx_segment_cache_clear(vmx);
8962
8963 /* if no vmcs02 cache requested, remove the one we used */
8964 if (VMCS02_POOL_SIZE == 0)
8965 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8966
8967 load_vmcs12_host_state(vcpu, vmcs12);
8968
8969 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8970 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8971
8972 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8973 vmx->host_rsp = 0;
8974
8975 /* Unpin physical memory we referred to in vmcs02 */
8976 if (vmx->nested.apic_access_page) {
8977 nested_release_page(vmx->nested.apic_access_page);
8978 vmx->nested.apic_access_page = NULL;
8979 }
8980 if (vmx->nested.virtual_apic_page) {
8981 nested_release_page(vmx->nested.virtual_apic_page);
8982 vmx->nested.virtual_apic_page = NULL;
8983 }
8984
8985 /*
8986 * We are now running in L2, mmu_notifier will force to reload the
8987 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
8988 */
8989 kvm_vcpu_reload_apic_access_page(vcpu);
8990
8991 /*
8992 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8993 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8994 * success or failure flag accordingly.
8995 */
8996 if (unlikely(vmx->fail)) {
8997 vmx->fail = 0;
8998 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8999 } else
9000 nested_vmx_succeed(vcpu);
9001 if (enable_shadow_vmcs)
9002 vmx->nested.sync_shadow_vmcs = true;
9003
9004 /* in case we halted in L2 */
9005 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9006 }
9007
9008 /*
9009 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9010 */
9011 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9012 {
9013 if (is_guest_mode(vcpu))
9014 nested_vmx_vmexit(vcpu, -1, 0, 0);
9015 free_nested(to_vmx(vcpu));
9016 }
9017
9018 /*
9019 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9020 * 23.7 "VM-entry failures during or after loading guest state" (this also
9021 * lists the acceptable exit-reason and exit-qualification parameters).
9022 * It should only be called before L2 actually succeeded to run, and when
9023 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9024 */
9025 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9026 struct vmcs12 *vmcs12,
9027 u32 reason, unsigned long qualification)
9028 {
9029 load_vmcs12_host_state(vcpu, vmcs12);
9030 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9031 vmcs12->exit_qualification = qualification;
9032 nested_vmx_succeed(vcpu);
9033 if (enable_shadow_vmcs)
9034 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9035 }
9036
9037 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9038 struct x86_instruction_info *info,
9039 enum x86_intercept_stage stage)
9040 {
9041 return X86EMUL_CONTINUE;
9042 }
9043
9044 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9045 {
9046 if (ple_gap)
9047 shrink_ple_window(vcpu);
9048 }
9049
9050 static struct kvm_x86_ops vmx_x86_ops = {
9051 .cpu_has_kvm_support = cpu_has_kvm_support,
9052 .disabled_by_bios = vmx_disabled_by_bios,
9053 .hardware_setup = hardware_setup,
9054 .hardware_unsetup = hardware_unsetup,
9055 .check_processor_compatibility = vmx_check_processor_compat,
9056 .hardware_enable = hardware_enable,
9057 .hardware_disable = hardware_disable,
9058 .cpu_has_accelerated_tpr = report_flexpriority,
9059
9060 .vcpu_create = vmx_create_vcpu,
9061 .vcpu_free = vmx_free_vcpu,
9062 .vcpu_reset = vmx_vcpu_reset,
9063
9064 .prepare_guest_switch = vmx_save_host_state,
9065 .vcpu_load = vmx_vcpu_load,
9066 .vcpu_put = vmx_vcpu_put,
9067
9068 .update_db_bp_intercept = update_exception_bitmap,
9069 .get_msr = vmx_get_msr,
9070 .set_msr = vmx_set_msr,
9071 .get_segment_base = vmx_get_segment_base,
9072 .get_segment = vmx_get_segment,
9073 .set_segment = vmx_set_segment,
9074 .get_cpl = vmx_get_cpl,
9075 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9076 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9077 .decache_cr3 = vmx_decache_cr3,
9078 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9079 .set_cr0 = vmx_set_cr0,
9080 .set_cr3 = vmx_set_cr3,
9081 .set_cr4 = vmx_set_cr4,
9082 .set_efer = vmx_set_efer,
9083 .get_idt = vmx_get_idt,
9084 .set_idt = vmx_set_idt,
9085 .get_gdt = vmx_get_gdt,
9086 .set_gdt = vmx_set_gdt,
9087 .get_dr6 = vmx_get_dr6,
9088 .set_dr6 = vmx_set_dr6,
9089 .set_dr7 = vmx_set_dr7,
9090 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9091 .cache_reg = vmx_cache_reg,
9092 .get_rflags = vmx_get_rflags,
9093 .set_rflags = vmx_set_rflags,
9094 .fpu_deactivate = vmx_fpu_deactivate,
9095
9096 .tlb_flush = vmx_flush_tlb,
9097
9098 .run = vmx_vcpu_run,
9099 .handle_exit = vmx_handle_exit,
9100 .skip_emulated_instruction = skip_emulated_instruction,
9101 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9102 .get_interrupt_shadow = vmx_get_interrupt_shadow,
9103 .patch_hypercall = vmx_patch_hypercall,
9104 .set_irq = vmx_inject_irq,
9105 .set_nmi = vmx_inject_nmi,
9106 .queue_exception = vmx_queue_exception,
9107 .cancel_injection = vmx_cancel_injection,
9108 .interrupt_allowed = vmx_interrupt_allowed,
9109 .nmi_allowed = vmx_nmi_allowed,
9110 .get_nmi_mask = vmx_get_nmi_mask,
9111 .set_nmi_mask = vmx_set_nmi_mask,
9112 .enable_nmi_window = enable_nmi_window,
9113 .enable_irq_window = enable_irq_window,
9114 .update_cr8_intercept = update_cr8_intercept,
9115 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9116 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9117 .vm_has_apicv = vmx_vm_has_apicv,
9118 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9119 .hwapic_irr_update = vmx_hwapic_irr_update,
9120 .hwapic_isr_update = vmx_hwapic_isr_update,
9121 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9122 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9123
9124 .set_tss_addr = vmx_set_tss_addr,
9125 .get_tdp_level = get_ept_level,
9126 .get_mt_mask = vmx_get_mt_mask,
9127
9128 .get_exit_info = vmx_get_exit_info,
9129
9130 .get_lpage_level = vmx_get_lpage_level,
9131
9132 .cpuid_update = vmx_cpuid_update,
9133
9134 .rdtscp_supported = vmx_rdtscp_supported,
9135 .invpcid_supported = vmx_invpcid_supported,
9136
9137 .set_supported_cpuid = vmx_set_supported_cpuid,
9138
9139 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9140
9141 .set_tsc_khz = vmx_set_tsc_khz,
9142 .read_tsc_offset = vmx_read_tsc_offset,
9143 .write_tsc_offset = vmx_write_tsc_offset,
9144 .adjust_tsc_offset = vmx_adjust_tsc_offset,
9145 .compute_tsc_offset = vmx_compute_tsc_offset,
9146 .read_l1_tsc = vmx_read_l1_tsc,
9147
9148 .set_tdp_cr3 = vmx_set_cr3,
9149
9150 .check_intercept = vmx_check_intercept,
9151 .handle_external_intr = vmx_handle_external_intr,
9152 .mpx_supported = vmx_mpx_supported,
9153
9154 .check_nested_events = vmx_check_nested_events,
9155
9156 .sched_in = vmx_sched_in,
9157 };
9158
9159 static int __init vmx_init(void)
9160 {
9161 int r, i, msr;
9162
9163 rdmsrl_safe(MSR_EFER, &host_efer);
9164
9165 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
9166 kvm_define_shared_msr(i, vmx_msr_index[i]);
9167
9168 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
9169 if (!vmx_io_bitmap_a)
9170 return -ENOMEM;
9171
9172 r = -ENOMEM;
9173
9174 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
9175 if (!vmx_io_bitmap_b)
9176 goto out;
9177
9178 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
9179 if (!vmx_msr_bitmap_legacy)
9180 goto out1;
9181
9182 vmx_msr_bitmap_legacy_x2apic =
9183 (unsigned long *)__get_free_page(GFP_KERNEL);
9184 if (!vmx_msr_bitmap_legacy_x2apic)
9185 goto out2;
9186
9187 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
9188 if (!vmx_msr_bitmap_longmode)
9189 goto out3;
9190
9191 vmx_msr_bitmap_longmode_x2apic =
9192 (unsigned long *)__get_free_page(GFP_KERNEL);
9193 if (!vmx_msr_bitmap_longmode_x2apic)
9194 goto out4;
9195 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9196 if (!vmx_vmread_bitmap)
9197 goto out5;
9198
9199 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9200 if (!vmx_vmwrite_bitmap)
9201 goto out6;
9202
9203 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9204 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9205
9206 /*
9207 * Allow direct access to the PC debug port (it is often used for I/O
9208 * delays, but the vmexits simply slow things down).
9209 */
9210 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9211 clear_bit(0x80, vmx_io_bitmap_a);
9212
9213 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9214
9215 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9216 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9217
9218 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9219
9220 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9221 __alignof__(struct vcpu_vmx), THIS_MODULE);
9222 if (r)
9223 goto out7;
9224
9225 #ifdef CONFIG_KEXEC
9226 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9227 crash_vmclear_local_loaded_vmcss);
9228 #endif
9229
9230 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9231 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9232 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9233 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9234 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9235 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9236 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9237
9238 memcpy(vmx_msr_bitmap_legacy_x2apic,
9239 vmx_msr_bitmap_legacy, PAGE_SIZE);
9240 memcpy(vmx_msr_bitmap_longmode_x2apic,
9241 vmx_msr_bitmap_longmode, PAGE_SIZE);
9242
9243 if (enable_apicv) {
9244 for (msr = 0x800; msr <= 0x8ff; msr++)
9245 vmx_disable_intercept_msr_read_x2apic(msr);
9246
9247 /* According SDM, in x2apic mode, the whole id reg is used.
9248 * But in KVM, it only use the highest eight bits. Need to
9249 * intercept it */
9250 vmx_enable_intercept_msr_read_x2apic(0x802);
9251 /* TMCCT */
9252 vmx_enable_intercept_msr_read_x2apic(0x839);
9253 /* TPR */
9254 vmx_disable_intercept_msr_write_x2apic(0x808);
9255 /* EOI */
9256 vmx_disable_intercept_msr_write_x2apic(0x80b);
9257 /* SELF-IPI */
9258 vmx_disable_intercept_msr_write_x2apic(0x83f);
9259 }
9260
9261 if (enable_ept) {
9262 kvm_mmu_set_mask_ptes(0ull,
9263 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9264 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9265 0ull, VMX_EPT_EXECUTABLE_MASK);
9266 ept_set_mmio_spte_mask();
9267 kvm_enable_tdp();
9268 } else
9269 kvm_disable_tdp();
9270
9271 update_ple_window_actual_max();
9272
9273 return 0;
9274
9275 out7:
9276 free_page((unsigned long)vmx_vmwrite_bitmap);
9277 out6:
9278 free_page((unsigned long)vmx_vmread_bitmap);
9279 out5:
9280 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9281 out4:
9282 free_page((unsigned long)vmx_msr_bitmap_longmode);
9283 out3:
9284 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9285 out2:
9286 free_page((unsigned long)vmx_msr_bitmap_legacy);
9287 out1:
9288 free_page((unsigned long)vmx_io_bitmap_b);
9289 out:
9290 free_page((unsigned long)vmx_io_bitmap_a);
9291 return r;
9292 }
9293
9294 static void __exit vmx_exit(void)
9295 {
9296 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9297 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9298 free_page((unsigned long)vmx_msr_bitmap_legacy);
9299 free_page((unsigned long)vmx_msr_bitmap_longmode);
9300 free_page((unsigned long)vmx_io_bitmap_b);
9301 free_page((unsigned long)vmx_io_bitmap_a);
9302 free_page((unsigned long)vmx_vmwrite_bitmap);
9303 free_page((unsigned long)vmx_vmread_bitmap);
9304
9305 #ifdef CONFIG_KEXEC
9306 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9307 synchronize_rcu();
9308 #endif
9309
9310 kvm_exit();
9311 }
9312
9313 module_init(vmx_init)
9314 module_exit(vmx_exit)