]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: nVMX: do not fill vm_exit_intr_error_code in prepare_vmcs12
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190 };
191
192 /*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197 struct loaded_vmcs {
198 struct vmcs *vmcs;
199 struct vmcs *shadow_vmcs;
200 int cpu;
201 bool launched;
202 bool nmi_known_unmasked;
203 struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207 unsigned index;
208 u64 data;
209 u64 mask;
210 };
211
212 /*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
232
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
245 u64 posted_intr_desc_addr;
246 u64 ept_pointer;
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
251 u64 xss_exit_bitmap;
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 pml_address;
255 u64 guest_ia32_debugctl;
256 u64 guest_ia32_pat;
257 u64 guest_ia32_efer;
258 u64 guest_ia32_perf_global_ctrl;
259 u64 guest_pdptr0;
260 u64 guest_pdptr1;
261 u64 guest_pdptr2;
262 u64 guest_pdptr3;
263 u64 guest_bndcfgs;
264 u64 host_ia32_pat;
265 u64 host_ia32_efer;
266 u64 host_ia32_perf_global_ctrl;
267 u64 padding64[8]; /* room for future expansion */
268 /*
269 * To allow migration of L1 (complete with its L2 guests) between
270 * machines of different natural widths (32 or 64 bit), we cannot have
271 * unsigned long fields with no explict size. We use u64 (aliased
272 * natural_width) instead. Luckily, x86 is little-endian.
273 */
274 natural_width cr0_guest_host_mask;
275 natural_width cr4_guest_host_mask;
276 natural_width cr0_read_shadow;
277 natural_width cr4_read_shadow;
278 natural_width cr3_target_value0;
279 natural_width cr3_target_value1;
280 natural_width cr3_target_value2;
281 natural_width cr3_target_value3;
282 natural_width exit_qualification;
283 natural_width guest_linear_address;
284 natural_width guest_cr0;
285 natural_width guest_cr3;
286 natural_width guest_cr4;
287 natural_width guest_es_base;
288 natural_width guest_cs_base;
289 natural_width guest_ss_base;
290 natural_width guest_ds_base;
291 natural_width guest_fs_base;
292 natural_width guest_gs_base;
293 natural_width guest_ldtr_base;
294 natural_width guest_tr_base;
295 natural_width guest_gdtr_base;
296 natural_width guest_idtr_base;
297 natural_width guest_dr7;
298 natural_width guest_rsp;
299 natural_width guest_rip;
300 natural_width guest_rflags;
301 natural_width guest_pending_dbg_exceptions;
302 natural_width guest_sysenter_esp;
303 natural_width guest_sysenter_eip;
304 natural_width host_cr0;
305 natural_width host_cr3;
306 natural_width host_cr4;
307 natural_width host_fs_base;
308 natural_width host_gs_base;
309 natural_width host_tr_base;
310 natural_width host_gdtr_base;
311 natural_width host_idtr_base;
312 natural_width host_ia32_sysenter_esp;
313 natural_width host_ia32_sysenter_eip;
314 natural_width host_rsp;
315 natural_width host_rip;
316 natural_width paddingl[8]; /* room for future expansion */
317 u32 pin_based_vm_exec_control;
318 u32 cpu_based_vm_exec_control;
319 u32 exception_bitmap;
320 u32 page_fault_error_code_mask;
321 u32 page_fault_error_code_match;
322 u32 cr3_target_count;
323 u32 vm_exit_controls;
324 u32 vm_exit_msr_store_count;
325 u32 vm_exit_msr_load_count;
326 u32 vm_entry_controls;
327 u32 vm_entry_msr_load_count;
328 u32 vm_entry_intr_info_field;
329 u32 vm_entry_exception_error_code;
330 u32 vm_entry_instruction_len;
331 u32 tpr_threshold;
332 u32 secondary_vm_exec_control;
333 u32 vm_instruction_error;
334 u32 vm_exit_reason;
335 u32 vm_exit_intr_info;
336 u32 vm_exit_intr_error_code;
337 u32 idt_vectoring_info_field;
338 u32 idt_vectoring_error_code;
339 u32 vm_exit_instruction_len;
340 u32 vmx_instruction_info;
341 u32 guest_es_limit;
342 u32 guest_cs_limit;
343 u32 guest_ss_limit;
344 u32 guest_ds_limit;
345 u32 guest_fs_limit;
346 u32 guest_gs_limit;
347 u32 guest_ldtr_limit;
348 u32 guest_tr_limit;
349 u32 guest_gdtr_limit;
350 u32 guest_idtr_limit;
351 u32 guest_es_ar_bytes;
352 u32 guest_cs_ar_bytes;
353 u32 guest_ss_ar_bytes;
354 u32 guest_ds_ar_bytes;
355 u32 guest_fs_ar_bytes;
356 u32 guest_gs_ar_bytes;
357 u32 guest_ldtr_ar_bytes;
358 u32 guest_tr_ar_bytes;
359 u32 guest_interruptibility_info;
360 u32 guest_activity_state;
361 u32 guest_sysenter_cs;
362 u32 host_ia32_sysenter_cs;
363 u32 vmx_preemption_timer_value;
364 u32 padding32[7]; /* room for future expansion */
365 u16 virtual_processor_id;
366 u16 posted_intr_nv;
367 u16 guest_es_selector;
368 u16 guest_cs_selector;
369 u16 guest_ss_selector;
370 u16 guest_ds_selector;
371 u16 guest_fs_selector;
372 u16 guest_gs_selector;
373 u16 guest_ldtr_selector;
374 u16 guest_tr_selector;
375 u16 guest_intr_status;
376 u16 guest_pml_index;
377 u16 host_es_selector;
378 u16 host_cs_selector;
379 u16 host_ss_selector;
380 u16 host_ds_selector;
381 u16 host_fs_selector;
382 u16 host_gs_selector;
383 u16 host_tr_selector;
384 };
385
386 /*
387 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
388 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
389 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
390 */
391 #define VMCS12_REVISION 0x11e57ed0
392
393 /*
394 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
395 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
396 * current implementation, 4K are reserved to avoid future complications.
397 */
398 #define VMCS12_SIZE 0x1000
399
400 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
401 struct vmcs02_list {
402 struct list_head list;
403 gpa_t vmptr;
404 struct loaded_vmcs vmcs02;
405 };
406
407 /*
408 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
409 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
410 */
411 struct nested_vmx {
412 /* Has the level1 guest done vmxon? */
413 bool vmxon;
414 gpa_t vmxon_ptr;
415 bool pml_full;
416
417 /* The guest-physical address of the current VMCS L1 keeps for L2 */
418 gpa_t current_vmptr;
419 /* The host-usable pointer to the above */
420 struct page *current_vmcs12_page;
421 struct vmcs12 *current_vmcs12;
422 /*
423 * Cache of the guest's VMCS, existing outside of guest memory.
424 * Loaded from guest memory during VMPTRLD. Flushed to guest
425 * memory during VMXOFF, VMCLEAR, VMPTRLD.
426 */
427 struct vmcs12 *cached_vmcs12;
428 /*
429 * Indicates if the shadow vmcs must be updated with the
430 * data hold by vmcs12
431 */
432 bool sync_shadow_vmcs;
433
434 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
435 struct list_head vmcs02_pool;
436 int vmcs02_num;
437 bool change_vmcs01_virtual_x2apic_mode;
438 /* L2 must run next, and mustn't decide to exit to L1. */
439 bool nested_run_pending;
440 /*
441 * Guest pages referred to in vmcs02 with host-physical pointers, so
442 * we must keep them pinned while L2 runs.
443 */
444 struct page *apic_access_page;
445 struct page *virtual_apic_page;
446 struct page *pi_desc_page;
447 struct pi_desc *pi_desc;
448 bool pi_pending;
449 u16 posted_intr_nv;
450
451 unsigned long *msr_bitmap;
452
453 struct hrtimer preemption_timer;
454 bool preemption_timer_expired;
455
456 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
457 u64 vmcs01_debugctl;
458
459 u16 vpid02;
460 u16 last_vpid;
461
462 /*
463 * We only store the "true" versions of the VMX capability MSRs. We
464 * generate the "non-true" versions by setting the must-be-1 bits
465 * according to the SDM.
466 */
467 u32 nested_vmx_procbased_ctls_low;
468 u32 nested_vmx_procbased_ctls_high;
469 u32 nested_vmx_secondary_ctls_low;
470 u32 nested_vmx_secondary_ctls_high;
471 u32 nested_vmx_pinbased_ctls_low;
472 u32 nested_vmx_pinbased_ctls_high;
473 u32 nested_vmx_exit_ctls_low;
474 u32 nested_vmx_exit_ctls_high;
475 u32 nested_vmx_entry_ctls_low;
476 u32 nested_vmx_entry_ctls_high;
477 u32 nested_vmx_misc_low;
478 u32 nested_vmx_misc_high;
479 u32 nested_vmx_ept_caps;
480 u32 nested_vmx_vpid_caps;
481 u64 nested_vmx_basic;
482 u64 nested_vmx_cr0_fixed0;
483 u64 nested_vmx_cr0_fixed1;
484 u64 nested_vmx_cr4_fixed0;
485 u64 nested_vmx_cr4_fixed1;
486 u64 nested_vmx_vmcs_enum;
487 };
488
489 #define POSTED_INTR_ON 0
490 #define POSTED_INTR_SN 1
491
492 /* Posted-Interrupt Descriptor */
493 struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
513 } __aligned(64);
514
515 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516 {
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522 {
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525 }
526
527 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528 {
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530 }
531
532 static inline void pi_clear_sn(struct pi_desc *pi_desc)
533 {
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_set_sn(struct pi_desc *pi_desc)
539 {
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542 }
543
544 static inline void pi_clear_on(struct pi_desc *pi_desc)
545 {
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_on(struct pi_desc *pi_desc)
551 {
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554 }
555
556 static inline int pi_test_sn(struct pi_desc *pi_desc)
557 {
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560 }
561
562 struct vcpu_vmx {
563 struct kvm_vcpu vcpu;
564 unsigned long host_rsp;
565 u8 fail;
566 u32 exit_intr_info;
567 u32 idt_vectoring_info;
568 ulong rflags;
569 struct shared_msr_entry *guest_msrs;
570 int nmsrs;
571 int save_nmsrs;
572 unsigned long host_idt_base;
573 #ifdef CONFIG_X86_64
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
576 #endif
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
579 /*
580 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581 * non-nested (L1) guest, it always points to vmcs01. For a nested
582 * guest (L2), it points to a different VMCS.
583 */
584 struct loaded_vmcs vmcs01;
585 struct loaded_vmcs *loaded_vmcs;
586 bool __launched; /* temporary, used in vmx_vcpu_run */
587 struct msr_autoload {
588 unsigned nr;
589 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591 } msr_autoload;
592 struct {
593 int loaded;
594 u16 fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596 u16 ds_sel, es_sel;
597 #endif
598 int gs_ldt_reload_needed;
599 int fs_reload_needed;
600 u64 msr_host_bndcfgs;
601 unsigned long vmcs_host_cr3; /* May not match real cr3 */
602 unsigned long vmcs_host_cr4; /* May not match real cr4 */
603 } host_state;
604 struct {
605 int vm86_active;
606 ulong save_rflags;
607 struct kvm_segment segs[8];
608 } rmode;
609 struct {
610 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611 struct kvm_save_segment {
612 u16 selector;
613 unsigned long base;
614 u32 limit;
615 u32 ar;
616 } seg[8];
617 } segment_cache;
618 int vpid;
619 bool emulation_required;
620
621 u32 exit_reason;
622
623 /* Posted interrupt descriptor */
624 struct pi_desc pi_desc;
625
626 /* Support for a guest hypervisor (nested VMX) */
627 struct nested_vmx nested;
628
629 /* Dynamic PLE window. */
630 int ple_window;
631 bool ple_window_dirty;
632
633 /* Support for PML */
634 #define PML_ENTITY_NUM 512
635 struct page *pml_pg;
636
637 /* apic deadline value in host tsc */
638 u64 hv_deadline_tsc;
639
640 u64 current_tsc_ratio;
641
642 bool guest_pkru_valid;
643 u32 guest_pkru;
644 u32 host_pkru;
645
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
651 u64 msr_ia32_feature_control;
652 u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666 return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671 return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704 ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707 TPR_THRESHOLD,
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
720 GUEST_BNDCFGS,
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737 ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741 FIELD(POSTED_INTR_NV, posted_intr_nv),
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
751 FIELD(GUEST_PML_INDEX, guest_pml_index),
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769 FIELD64(EPT_POINTER, ept_pointer),
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(PML_ADDRESS, pml_address),
778 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782 FIELD64(GUEST_PDPTR0, guest_pdptr0),
783 FIELD64(GUEST_PDPTR1, guest_pdptr1),
784 FIELD64(GUEST_PDPTR2, guest_pdptr2),
785 FIELD64(GUEST_PDPTR3, guest_pdptr3),
786 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787 FIELD64(HOST_IA32_PAT, host_ia32_pat),
788 FIELD64(HOST_IA32_EFER, host_ia32_efer),
789 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792 FIELD(EXCEPTION_BITMAP, exception_bitmap),
793 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795 FIELD(CR3_TARGET_COUNT, cr3_target_count),
796 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804 FIELD(TPR_THRESHOLD, tpr_threshold),
805 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807 FIELD(VM_EXIT_REASON, vm_exit_reason),
808 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814 FIELD(GUEST_ES_LIMIT, guest_es_limit),
815 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845 FIELD(EXIT_QUALIFICATION, exit_qualification),
846 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847 FIELD(GUEST_CR0, guest_cr0),
848 FIELD(GUEST_CR3, guest_cr3),
849 FIELD(GUEST_CR4, guest_cr4),
850 FIELD(GUEST_ES_BASE, guest_es_base),
851 FIELD(GUEST_CS_BASE, guest_cs_base),
852 FIELD(GUEST_SS_BASE, guest_ss_base),
853 FIELD(GUEST_DS_BASE, guest_ds_base),
854 FIELD(GUEST_FS_BASE, guest_fs_base),
855 FIELD(GUEST_GS_BASE, guest_gs_base),
856 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857 FIELD(GUEST_TR_BASE, guest_tr_base),
858 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860 FIELD(GUEST_DR7, guest_dr7),
861 FIELD(GUEST_RSP, guest_rsp),
862 FIELD(GUEST_RIP, guest_rip),
863 FIELD(GUEST_RFLAGS, guest_rflags),
864 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867 FIELD(HOST_CR0, host_cr0),
868 FIELD(HOST_CR3, host_cr3),
869 FIELD(HOST_CR4, host_cr4),
870 FIELD(HOST_FS_BASE, host_fs_base),
871 FIELD(HOST_GS_BASE, host_gs_base),
872 FIELD(HOST_TR_BASE, host_tr_base),
873 FIELD(HOST_GDTR_BASE, host_gdtr_base),
874 FIELD(HOST_IDTR_BASE, host_idtr_base),
875 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877 FIELD(HOST_RSP, host_rsp),
878 FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886 vmcs_field_to_offset_table[field] == 0)
887 return -ENOENT;
888
889 return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894 return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900 if (is_error_page(page))
901 return NULL;
902
903 return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908 kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913 kvm_release_page_clean(page);
914 }
915
916 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
917 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
918 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938
939 /*
940 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
941 * can find which vCPU should be waken up.
942 */
943 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
944 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
945
946 enum {
947 VMX_IO_BITMAP_A,
948 VMX_IO_BITMAP_B,
949 VMX_MSR_BITMAP_LEGACY,
950 VMX_MSR_BITMAP_LONGMODE,
951 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
952 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
953 VMX_MSR_BITMAP_LEGACY_X2APIC,
954 VMX_MSR_BITMAP_LONGMODE_X2APIC,
955 VMX_VMREAD_BITMAP,
956 VMX_VMWRITE_BITMAP,
957 VMX_BITMAP_NR
958 };
959
960 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
961
962 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
963 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
964 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
965 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
966 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
967 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
968 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
969 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
970 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
971 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
972
973 static bool cpu_has_load_ia32_efer;
974 static bool cpu_has_load_perf_global_ctrl;
975
976 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
977 static DEFINE_SPINLOCK(vmx_vpid_lock);
978
979 static struct vmcs_config {
980 int size;
981 int order;
982 u32 basic_cap;
983 u32 revision_id;
984 u32 pin_based_exec_ctrl;
985 u32 cpu_based_exec_ctrl;
986 u32 cpu_based_2nd_exec_ctrl;
987 u32 vmexit_ctrl;
988 u32 vmentry_ctrl;
989 } vmcs_config;
990
991 static struct vmx_capability {
992 u32 ept;
993 u32 vpid;
994 } vmx_capability;
995
996 #define VMX_SEGMENT_FIELD(seg) \
997 [VCPU_SREG_##seg] = { \
998 .selector = GUEST_##seg##_SELECTOR, \
999 .base = GUEST_##seg##_BASE, \
1000 .limit = GUEST_##seg##_LIMIT, \
1001 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1002 }
1003
1004 static const struct kvm_vmx_segment_field {
1005 unsigned selector;
1006 unsigned base;
1007 unsigned limit;
1008 unsigned ar_bytes;
1009 } kvm_vmx_segment_fields[] = {
1010 VMX_SEGMENT_FIELD(CS),
1011 VMX_SEGMENT_FIELD(DS),
1012 VMX_SEGMENT_FIELD(ES),
1013 VMX_SEGMENT_FIELD(FS),
1014 VMX_SEGMENT_FIELD(GS),
1015 VMX_SEGMENT_FIELD(SS),
1016 VMX_SEGMENT_FIELD(TR),
1017 VMX_SEGMENT_FIELD(LDTR),
1018 };
1019
1020 static u64 host_efer;
1021
1022 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1023
1024 /*
1025 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1026 * away by decrementing the array size.
1027 */
1028 static const u32 vmx_msr_index[] = {
1029 #ifdef CONFIG_X86_64
1030 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1031 #endif
1032 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1033 };
1034
1035 static inline bool is_exception_n(u32 intr_info, u8 vector)
1036 {
1037 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038 INTR_INFO_VALID_MASK)) ==
1039 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool is_debug(u32 intr_info)
1043 {
1044 return is_exception_n(intr_info, DB_VECTOR);
1045 }
1046
1047 static inline bool is_breakpoint(u32 intr_info)
1048 {
1049 return is_exception_n(intr_info, BP_VECTOR);
1050 }
1051
1052 static inline bool is_page_fault(u32 intr_info)
1053 {
1054 return is_exception_n(intr_info, PF_VECTOR);
1055 }
1056
1057 static inline bool is_no_device(u32 intr_info)
1058 {
1059 return is_exception_n(intr_info, NM_VECTOR);
1060 }
1061
1062 static inline bool is_invalid_opcode(u32 intr_info)
1063 {
1064 return is_exception_n(intr_info, UD_VECTOR);
1065 }
1066
1067 static inline bool is_external_interrupt(u32 intr_info)
1068 {
1069 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1070 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1071 }
1072
1073 static inline bool is_machine_check(u32 intr_info)
1074 {
1075 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1076 INTR_INFO_VALID_MASK)) ==
1077 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 {
1082 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1083 }
1084
1085 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 {
1087 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1088 }
1089
1090 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1091 {
1092 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1093 }
1094
1095 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 {
1097 return vmcs_config.cpu_based_exec_ctrl &
1098 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1099 }
1100
1101 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 {
1103 return vmcs_config.cpu_based_2nd_exec_ctrl &
1104 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1105 }
1106
1107 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 {
1109 return vmcs_config.cpu_based_2nd_exec_ctrl &
1110 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1111 }
1112
1113 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 {
1115 return vmcs_config.cpu_based_2nd_exec_ctrl &
1116 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1117 }
1118
1119 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 {
1121 return vmcs_config.cpu_based_2nd_exec_ctrl &
1122 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1123 }
1124
1125 /*
1126 * Comment's format: document - errata name - stepping - processor name.
1127 * Refer from
1128 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129 */
1130 static u32 vmx_preemption_cpu_tfms[] = {
1131 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1132 0x000206E6,
1133 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1134 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1135 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 0x00020652,
1137 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 0x00020655,
1139 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1140 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1141 /*
1142 * 320767.pdf - AAP86 - B1 -
1143 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1144 */
1145 0x000106E5,
1146 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 0x000106A0,
1148 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 0x000106A1,
1150 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 0x000106A4,
1152 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1153 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1154 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1155 0x000106A5,
1156 };
1157
1158 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 {
1160 u32 eax = cpuid_eax(0x00000001), i;
1161
1162 /* Clear the reserved bits */
1163 eax &= ~(0x3U << 14 | 0xfU << 28);
1164 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1165 if (eax == vmx_preemption_cpu_tfms[i])
1166 return true;
1167
1168 return false;
1169 }
1170
1171 static inline bool cpu_has_vmx_preemption_timer(void)
1172 {
1173 return vmcs_config.pin_based_exec_ctrl &
1174 PIN_BASED_VMX_PREEMPTION_TIMER;
1175 }
1176
1177 static inline bool cpu_has_vmx_posted_intr(void)
1178 {
1179 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1180 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1181 }
1182
1183 static inline bool cpu_has_vmx_apicv(void)
1184 {
1185 return cpu_has_vmx_apic_register_virt() &&
1186 cpu_has_vmx_virtual_intr_delivery() &&
1187 cpu_has_vmx_posted_intr();
1188 }
1189
1190 static inline bool cpu_has_vmx_flexpriority(void)
1191 {
1192 return cpu_has_vmx_tpr_shadow() &&
1193 cpu_has_vmx_virtualize_apic_accesses();
1194 }
1195
1196 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 {
1198 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1199 }
1200
1201 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 {
1203 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1204 }
1205
1206 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 {
1208 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1209 }
1210
1211 static inline bool cpu_has_vmx_ept_4levels(void)
1212 {
1213 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1214 }
1215
1216 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 {
1218 return vmx_capability.ept & VMX_EPT_AD_BIT;
1219 }
1220
1221 static inline bool cpu_has_vmx_invept_context(void)
1222 {
1223 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1224 }
1225
1226 static inline bool cpu_has_vmx_invept_global(void)
1227 {
1228 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1229 }
1230
1231 static inline bool cpu_has_vmx_invvpid_single(void)
1232 {
1233 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1234 }
1235
1236 static inline bool cpu_has_vmx_invvpid_global(void)
1237 {
1238 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1239 }
1240
1241 static inline bool cpu_has_vmx_invvpid(void)
1242 {
1243 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1244 }
1245
1246 static inline bool cpu_has_vmx_ept(void)
1247 {
1248 return vmcs_config.cpu_based_2nd_exec_ctrl &
1249 SECONDARY_EXEC_ENABLE_EPT;
1250 }
1251
1252 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 {
1254 return vmcs_config.cpu_based_2nd_exec_ctrl &
1255 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1256 }
1257
1258 static inline bool cpu_has_vmx_ple(void)
1259 {
1260 return vmcs_config.cpu_based_2nd_exec_ctrl &
1261 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1262 }
1263
1264 static inline bool cpu_has_vmx_basic_inout(void)
1265 {
1266 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1267 }
1268
1269 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1270 {
1271 return flexpriority_enabled && lapic_in_kernel(vcpu);
1272 }
1273
1274 static inline bool cpu_has_vmx_vpid(void)
1275 {
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_ENABLE_VPID;
1278 }
1279
1280 static inline bool cpu_has_vmx_rdtscp(void)
1281 {
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_RDTSCP;
1284 }
1285
1286 static inline bool cpu_has_vmx_invpcid(void)
1287 {
1288 return vmcs_config.cpu_based_2nd_exec_ctrl &
1289 SECONDARY_EXEC_ENABLE_INVPCID;
1290 }
1291
1292 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 {
1294 return vmcs_config.cpu_based_2nd_exec_ctrl &
1295 SECONDARY_EXEC_WBINVD_EXITING;
1296 }
1297
1298 static inline bool cpu_has_vmx_shadow_vmcs(void)
1299 {
1300 u64 vmx_msr;
1301 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1302 /* check if the cpu supports writing r/o exit information fields */
1303 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1304 return false;
1305
1306 return vmcs_config.cpu_based_2nd_exec_ctrl &
1307 SECONDARY_EXEC_SHADOW_VMCS;
1308 }
1309
1310 static inline bool cpu_has_vmx_pml(void)
1311 {
1312 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1313 }
1314
1315 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 {
1317 return vmcs_config.cpu_based_2nd_exec_ctrl &
1318 SECONDARY_EXEC_TSC_SCALING;
1319 }
1320
1321 static inline bool report_flexpriority(void)
1322 {
1323 return flexpriority_enabled;
1324 }
1325
1326 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327 {
1328 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329 }
1330
1331 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332 {
1333 return vmcs12->cpu_based_vm_exec_control & bit;
1334 }
1335
1336 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337 {
1338 return (vmcs12->cpu_based_vm_exec_control &
1339 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340 (vmcs12->secondary_vm_exec_control & bit);
1341 }
1342
1343 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1344 {
1345 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346 }
1347
1348 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349 {
1350 return vmcs12->pin_based_vm_exec_control &
1351 PIN_BASED_VMX_PREEMPTION_TIMER;
1352 }
1353
1354 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355 {
1356 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357 }
1358
1359 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360 {
1361 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1362 vmx_xsaves_supported();
1363 }
1364
1365 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1366 {
1367 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1368 }
1369
1370 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1371 {
1372 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1373 }
1374
1375 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1376 {
1377 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1378 }
1379
1380 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1381 {
1382 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1383 }
1384
1385 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1386 {
1387 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1388 }
1389
1390 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1391 {
1392 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1393 }
1394
1395 static inline bool is_nmi(u32 intr_info)
1396 {
1397 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1398 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1399 }
1400
1401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1402 u32 exit_intr_info,
1403 unsigned long exit_qualification);
1404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1405 struct vmcs12 *vmcs12,
1406 u32 reason, unsigned long qualification);
1407
1408 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1409 {
1410 int i;
1411
1412 for (i = 0; i < vmx->nmsrs; ++i)
1413 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1414 return i;
1415 return -1;
1416 }
1417
1418 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1419 {
1420 struct {
1421 u64 vpid : 16;
1422 u64 rsvd : 48;
1423 u64 gva;
1424 } operand = { vpid, 0, gva };
1425
1426 asm volatile (__ex(ASM_VMX_INVVPID)
1427 /* CF==1 or ZF==1 --> rc = -1 */
1428 "; ja 1f ; ud2 ; 1:"
1429 : : "a"(&operand), "c"(ext) : "cc", "memory");
1430 }
1431
1432 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1433 {
1434 struct {
1435 u64 eptp, gpa;
1436 } operand = {eptp, gpa};
1437
1438 asm volatile (__ex(ASM_VMX_INVEPT)
1439 /* CF==1 or ZF==1 --> rc = -1 */
1440 "; ja 1f ; ud2 ; 1:\n"
1441 : : "a" (&operand), "c" (ext) : "cc", "memory");
1442 }
1443
1444 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1445 {
1446 int i;
1447
1448 i = __find_msr_index(vmx, msr);
1449 if (i >= 0)
1450 return &vmx->guest_msrs[i];
1451 return NULL;
1452 }
1453
1454 static void vmcs_clear(struct vmcs *vmcs)
1455 {
1456 u64 phys_addr = __pa(vmcs);
1457 u8 error;
1458
1459 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1460 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461 : "cc", "memory");
1462 if (error)
1463 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1464 vmcs, phys_addr);
1465 }
1466
1467 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1468 {
1469 vmcs_clear(loaded_vmcs->vmcs);
1470 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1471 vmcs_clear(loaded_vmcs->shadow_vmcs);
1472 loaded_vmcs->cpu = -1;
1473 loaded_vmcs->launched = 0;
1474 }
1475
1476 static void vmcs_load(struct vmcs *vmcs)
1477 {
1478 u64 phys_addr = __pa(vmcs);
1479 u8 error;
1480
1481 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1482 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1483 : "cc", "memory");
1484 if (error)
1485 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1486 vmcs, phys_addr);
1487 }
1488
1489 #ifdef CONFIG_KEXEC_CORE
1490 /*
1491 * This bitmap is used to indicate whether the vmclear
1492 * operation is enabled on all cpus. All disabled by
1493 * default.
1494 */
1495 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1496
1497 static inline void crash_enable_local_vmclear(int cpu)
1498 {
1499 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1500 }
1501
1502 static inline void crash_disable_local_vmclear(int cpu)
1503 {
1504 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505 }
1506
1507 static inline int crash_local_vmclear_enabled(int cpu)
1508 {
1509 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510 }
1511
1512 static void crash_vmclear_local_loaded_vmcss(void)
1513 {
1514 int cpu = raw_smp_processor_id();
1515 struct loaded_vmcs *v;
1516
1517 if (!crash_local_vmclear_enabled(cpu))
1518 return;
1519
1520 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1521 loaded_vmcss_on_cpu_link)
1522 vmcs_clear(v->vmcs);
1523 }
1524 #else
1525 static inline void crash_enable_local_vmclear(int cpu) { }
1526 static inline void crash_disable_local_vmclear(int cpu) { }
1527 #endif /* CONFIG_KEXEC_CORE */
1528
1529 static void __loaded_vmcs_clear(void *arg)
1530 {
1531 struct loaded_vmcs *loaded_vmcs = arg;
1532 int cpu = raw_smp_processor_id();
1533
1534 if (loaded_vmcs->cpu != cpu)
1535 return; /* vcpu migration can race with cpu offline */
1536 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1537 per_cpu(current_vmcs, cpu) = NULL;
1538 crash_disable_local_vmclear(cpu);
1539 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1540
1541 /*
1542 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1543 * is before setting loaded_vmcs->vcpu to -1 which is done in
1544 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1545 * then adds the vmcs into percpu list before it is deleted.
1546 */
1547 smp_wmb();
1548
1549 loaded_vmcs_init(loaded_vmcs);
1550 crash_enable_local_vmclear(cpu);
1551 }
1552
1553 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1554 {
1555 int cpu = loaded_vmcs->cpu;
1556
1557 if (cpu != -1)
1558 smp_call_function_single(cpu,
1559 __loaded_vmcs_clear, loaded_vmcs, 1);
1560 }
1561
1562 static inline void vpid_sync_vcpu_single(int vpid)
1563 {
1564 if (vpid == 0)
1565 return;
1566
1567 if (cpu_has_vmx_invvpid_single())
1568 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1569 }
1570
1571 static inline void vpid_sync_vcpu_global(void)
1572 {
1573 if (cpu_has_vmx_invvpid_global())
1574 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1575 }
1576
1577 static inline void vpid_sync_context(int vpid)
1578 {
1579 if (cpu_has_vmx_invvpid_single())
1580 vpid_sync_vcpu_single(vpid);
1581 else
1582 vpid_sync_vcpu_global();
1583 }
1584
1585 static inline void ept_sync_global(void)
1586 {
1587 if (cpu_has_vmx_invept_global())
1588 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1589 }
1590
1591 static inline void ept_sync_context(u64 eptp)
1592 {
1593 if (enable_ept) {
1594 if (cpu_has_vmx_invept_context())
1595 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1596 else
1597 ept_sync_global();
1598 }
1599 }
1600
1601 static __always_inline void vmcs_check16(unsigned long field)
1602 {
1603 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1604 "16-bit accessor invalid for 64-bit field");
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1606 "16-bit accessor invalid for 64-bit high field");
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1608 "16-bit accessor invalid for 32-bit high field");
1609 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1610 "16-bit accessor invalid for natural width field");
1611 }
1612
1613 static __always_inline void vmcs_check32(unsigned long field)
1614 {
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1616 "32-bit accessor invalid for 16-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618 "32-bit accessor invalid for natural width field");
1619 }
1620
1621 static __always_inline void vmcs_check64(unsigned long field)
1622 {
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624 "64-bit accessor invalid for 16-bit field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1626 "64-bit accessor invalid for 64-bit high field");
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1628 "64-bit accessor invalid for 32-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630 "64-bit accessor invalid for natural width field");
1631 }
1632
1633 static __always_inline void vmcs_checkl(unsigned long field)
1634 {
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636 "Natural width accessor invalid for 16-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1638 "Natural width accessor invalid for 64-bit field");
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640 "Natural width accessor invalid for 64-bit high field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642 "Natural width accessor invalid for 32-bit field");
1643 }
1644
1645 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1646 {
1647 unsigned long value;
1648
1649 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1650 : "=a"(value) : "d"(field) : "cc");
1651 return value;
1652 }
1653
1654 static __always_inline u16 vmcs_read16(unsigned long field)
1655 {
1656 vmcs_check16(field);
1657 return __vmcs_readl(field);
1658 }
1659
1660 static __always_inline u32 vmcs_read32(unsigned long field)
1661 {
1662 vmcs_check32(field);
1663 return __vmcs_readl(field);
1664 }
1665
1666 static __always_inline u64 vmcs_read64(unsigned long field)
1667 {
1668 vmcs_check64(field);
1669 #ifdef CONFIG_X86_64
1670 return __vmcs_readl(field);
1671 #else
1672 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1673 #endif
1674 }
1675
1676 static __always_inline unsigned long vmcs_readl(unsigned long field)
1677 {
1678 vmcs_checkl(field);
1679 return __vmcs_readl(field);
1680 }
1681
1682 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1683 {
1684 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1685 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1686 dump_stack();
1687 }
1688
1689 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1690 {
1691 u8 error;
1692
1693 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1694 : "=q"(error) : "a"(value), "d"(field) : "cc");
1695 if (unlikely(error))
1696 vmwrite_error(field, value);
1697 }
1698
1699 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1700 {
1701 vmcs_check16(field);
1702 __vmcs_writel(field, value);
1703 }
1704
1705 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1706 {
1707 vmcs_check32(field);
1708 __vmcs_writel(field, value);
1709 }
1710
1711 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1712 {
1713 vmcs_check64(field);
1714 __vmcs_writel(field, value);
1715 #ifndef CONFIG_X86_64
1716 asm volatile ("");
1717 __vmcs_writel(field+1, value >> 32);
1718 #endif
1719 }
1720
1721 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723 vmcs_checkl(field);
1724 __vmcs_writel(field, value);
1725 }
1726
1727 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1728 {
1729 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1730 "vmcs_clear_bits does not support 64-bit fields");
1731 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1732 }
1733
1734 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1735 {
1736 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1737 "vmcs_set_bits does not support 64-bit fields");
1738 __vmcs_writel(field, __vmcs_readl(field) | mask);
1739 }
1740
1741 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1742 {
1743 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1744 }
1745
1746 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1747 {
1748 vmcs_write32(VM_ENTRY_CONTROLS, val);
1749 vmx->vm_entry_controls_shadow = val;
1750 }
1751
1752 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1753 {
1754 if (vmx->vm_entry_controls_shadow != val)
1755 vm_entry_controls_init(vmx, val);
1756 }
1757
1758 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1759 {
1760 return vmx->vm_entry_controls_shadow;
1761 }
1762
1763
1764 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1765 {
1766 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1767 }
1768
1769 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1770 {
1771 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1772 }
1773
1774 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1775 {
1776 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1777 }
1778
1779 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1780 {
1781 vmcs_write32(VM_EXIT_CONTROLS, val);
1782 vmx->vm_exit_controls_shadow = val;
1783 }
1784
1785 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1786 {
1787 if (vmx->vm_exit_controls_shadow != val)
1788 vm_exit_controls_init(vmx, val);
1789 }
1790
1791 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1792 {
1793 return vmx->vm_exit_controls_shadow;
1794 }
1795
1796
1797 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798 {
1799 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1800 }
1801
1802 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803 {
1804 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1805 }
1806
1807 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1808 {
1809 vmx->segment_cache.bitmask = 0;
1810 }
1811
1812 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1813 unsigned field)
1814 {
1815 bool ret;
1816 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1817
1818 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1819 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1820 vmx->segment_cache.bitmask = 0;
1821 }
1822 ret = vmx->segment_cache.bitmask & mask;
1823 vmx->segment_cache.bitmask |= mask;
1824 return ret;
1825 }
1826
1827 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829 u16 *p = &vmx->segment_cache.seg[seg].selector;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1832 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1833 return *p;
1834 }
1835
1836 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838 ulong *p = &vmx->segment_cache.seg[seg].base;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1841 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1842 return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847 u32 *p = &vmx->segment_cache.seg[seg].limit;
1848
1849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1850 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1851 return *p;
1852 }
1853
1854 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1855 {
1856 u32 *p = &vmx->segment_cache.seg[seg].ar;
1857
1858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1859 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1860 return *p;
1861 }
1862
1863 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1864 {
1865 u32 eb;
1866
1867 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1868 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1869 if ((vcpu->guest_debug &
1870 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1871 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1872 eb |= 1u << BP_VECTOR;
1873 if (to_vmx(vcpu)->rmode.vm86_active)
1874 eb = ~0;
1875 if (enable_ept)
1876 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1877
1878 /* When we are running a nested L2 guest and L1 specified for it a
1879 * certain exception bitmap, we must trap the same exceptions and pass
1880 * them to L1. When running L2, we will only handle the exceptions
1881 * specified above if L1 did not want them.
1882 */
1883 if (is_guest_mode(vcpu))
1884 eb |= get_vmcs12(vcpu)->exception_bitmap;
1885
1886 vmcs_write32(EXCEPTION_BITMAP, eb);
1887 }
1888
1889 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1890 unsigned long entry, unsigned long exit)
1891 {
1892 vm_entry_controls_clearbit(vmx, entry);
1893 vm_exit_controls_clearbit(vmx, exit);
1894 }
1895
1896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1897 {
1898 unsigned i;
1899 struct msr_autoload *m = &vmx->msr_autoload;
1900
1901 switch (msr) {
1902 case MSR_EFER:
1903 if (cpu_has_load_ia32_efer) {
1904 clear_atomic_switch_msr_special(vmx,
1905 VM_ENTRY_LOAD_IA32_EFER,
1906 VM_EXIT_LOAD_IA32_EFER);
1907 return;
1908 }
1909 break;
1910 case MSR_CORE_PERF_GLOBAL_CTRL:
1911 if (cpu_has_load_perf_global_ctrl) {
1912 clear_atomic_switch_msr_special(vmx,
1913 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1914 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1915 return;
1916 }
1917 break;
1918 }
1919
1920 for (i = 0; i < m->nr; ++i)
1921 if (m->guest[i].index == msr)
1922 break;
1923
1924 if (i == m->nr)
1925 return;
1926 --m->nr;
1927 m->guest[i] = m->guest[m->nr];
1928 m->host[i] = m->host[m->nr];
1929 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1930 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1931 }
1932
1933 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1934 unsigned long entry, unsigned long exit,
1935 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1936 u64 guest_val, u64 host_val)
1937 {
1938 vmcs_write64(guest_val_vmcs, guest_val);
1939 vmcs_write64(host_val_vmcs, host_val);
1940 vm_entry_controls_setbit(vmx, entry);
1941 vm_exit_controls_setbit(vmx, exit);
1942 }
1943
1944 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1945 u64 guest_val, u64 host_val)
1946 {
1947 unsigned i;
1948 struct msr_autoload *m = &vmx->msr_autoload;
1949
1950 switch (msr) {
1951 case MSR_EFER:
1952 if (cpu_has_load_ia32_efer) {
1953 add_atomic_switch_msr_special(vmx,
1954 VM_ENTRY_LOAD_IA32_EFER,
1955 VM_EXIT_LOAD_IA32_EFER,
1956 GUEST_IA32_EFER,
1957 HOST_IA32_EFER,
1958 guest_val, host_val);
1959 return;
1960 }
1961 break;
1962 case MSR_CORE_PERF_GLOBAL_CTRL:
1963 if (cpu_has_load_perf_global_ctrl) {
1964 add_atomic_switch_msr_special(vmx,
1965 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1966 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1967 GUEST_IA32_PERF_GLOBAL_CTRL,
1968 HOST_IA32_PERF_GLOBAL_CTRL,
1969 guest_val, host_val);
1970 return;
1971 }
1972 break;
1973 case MSR_IA32_PEBS_ENABLE:
1974 /* PEBS needs a quiescent period after being disabled (to write
1975 * a record). Disabling PEBS through VMX MSR swapping doesn't
1976 * provide that period, so a CPU could write host's record into
1977 * guest's memory.
1978 */
1979 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1980 }
1981
1982 for (i = 0; i < m->nr; ++i)
1983 if (m->guest[i].index == msr)
1984 break;
1985
1986 if (i == NR_AUTOLOAD_MSRS) {
1987 printk_once(KERN_WARNING "Not enough msr switch entries. "
1988 "Can't add msr %x\n", msr);
1989 return;
1990 } else if (i == m->nr) {
1991 ++m->nr;
1992 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1993 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1994 }
1995
1996 m->guest[i].index = msr;
1997 m->guest[i].value = guest_val;
1998 m->host[i].index = msr;
1999 m->host[i].value = host_val;
2000 }
2001
2002 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2003 {
2004 u64 guest_efer = vmx->vcpu.arch.efer;
2005 u64 ignore_bits = 0;
2006
2007 if (!enable_ept) {
2008 /*
2009 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2010 * host CPUID is more efficient than testing guest CPUID
2011 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2012 */
2013 if (boot_cpu_has(X86_FEATURE_SMEP))
2014 guest_efer |= EFER_NX;
2015 else if (!(guest_efer & EFER_NX))
2016 ignore_bits |= EFER_NX;
2017 }
2018
2019 /*
2020 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021 */
2022 ignore_bits |= EFER_SCE;
2023 #ifdef CONFIG_X86_64
2024 ignore_bits |= EFER_LMA | EFER_LME;
2025 /* SCE is meaningful only in long mode on Intel */
2026 if (guest_efer & EFER_LMA)
2027 ignore_bits &= ~(u64)EFER_SCE;
2028 #endif
2029
2030 clear_atomic_switch_msr(vmx, MSR_EFER);
2031
2032 /*
2033 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2034 * On CPUs that support "load IA32_EFER", always switch EFER
2035 * atomically, since it's faster than switching it manually.
2036 */
2037 if (cpu_has_load_ia32_efer ||
2038 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2039 if (!(guest_efer & EFER_LMA))
2040 guest_efer &= ~EFER_LME;
2041 if (guest_efer != host_efer)
2042 add_atomic_switch_msr(vmx, MSR_EFER,
2043 guest_efer, host_efer);
2044 return false;
2045 } else {
2046 guest_efer &= ~ignore_bits;
2047 guest_efer |= host_efer & ignore_bits;
2048
2049 vmx->guest_msrs[efer_offset].data = guest_efer;
2050 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2051
2052 return true;
2053 }
2054 }
2055
2056 #ifdef CONFIG_X86_32
2057 /*
2058 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2059 * VMCS rather than the segment table. KVM uses this helper to figure
2060 * out the current bases to poke them into the VMCS before entry.
2061 */
2062 static unsigned long segment_base(u16 selector)
2063 {
2064 struct desc_struct *table;
2065 unsigned long v;
2066
2067 if (!(selector & ~SEGMENT_RPL_MASK))
2068 return 0;
2069
2070 table = get_current_gdt_ro();
2071
2072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2073 u16 ldt_selector = kvm_read_ldt();
2074
2075 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2076 return 0;
2077
2078 table = (struct desc_struct *)segment_base(ldt_selector);
2079 }
2080 v = get_desc_base(&table[selector >> 3]);
2081 return v;
2082 }
2083 #endif
2084
2085 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2086 {
2087 struct vcpu_vmx *vmx = to_vmx(vcpu);
2088 int i;
2089
2090 if (vmx->host_state.loaded)
2091 return;
2092
2093 vmx->host_state.loaded = 1;
2094 /*
2095 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2096 * allow segment selectors with cpl > 0 or ti == 1.
2097 */
2098 vmx->host_state.ldt_sel = kvm_read_ldt();
2099 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2100 savesegment(fs, vmx->host_state.fs_sel);
2101 if (!(vmx->host_state.fs_sel & 7)) {
2102 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2103 vmx->host_state.fs_reload_needed = 0;
2104 } else {
2105 vmcs_write16(HOST_FS_SELECTOR, 0);
2106 vmx->host_state.fs_reload_needed = 1;
2107 }
2108 savesegment(gs, vmx->host_state.gs_sel);
2109 if (!(vmx->host_state.gs_sel & 7))
2110 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2111 else {
2112 vmcs_write16(HOST_GS_SELECTOR, 0);
2113 vmx->host_state.gs_ldt_reload_needed = 1;
2114 }
2115
2116 #ifdef CONFIG_X86_64
2117 savesegment(ds, vmx->host_state.ds_sel);
2118 savesegment(es, vmx->host_state.es_sel);
2119 #endif
2120
2121 #ifdef CONFIG_X86_64
2122 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2123 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2124 #else
2125 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2126 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2127 #endif
2128
2129 #ifdef CONFIG_X86_64
2130 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2131 if (is_long_mode(&vmx->vcpu))
2132 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2133 #endif
2134 if (boot_cpu_has(X86_FEATURE_MPX))
2135 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2136 for (i = 0; i < vmx->save_nmsrs; ++i)
2137 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2138 vmx->guest_msrs[i].data,
2139 vmx->guest_msrs[i].mask);
2140 }
2141
2142 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2143 {
2144 if (!vmx->host_state.loaded)
2145 return;
2146
2147 ++vmx->vcpu.stat.host_state_reload;
2148 vmx->host_state.loaded = 0;
2149 #ifdef CONFIG_X86_64
2150 if (is_long_mode(&vmx->vcpu))
2151 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2152 #endif
2153 if (vmx->host_state.gs_ldt_reload_needed) {
2154 kvm_load_ldt(vmx->host_state.ldt_sel);
2155 #ifdef CONFIG_X86_64
2156 load_gs_index(vmx->host_state.gs_sel);
2157 #else
2158 loadsegment(gs, vmx->host_state.gs_sel);
2159 #endif
2160 }
2161 if (vmx->host_state.fs_reload_needed)
2162 loadsegment(fs, vmx->host_state.fs_sel);
2163 #ifdef CONFIG_X86_64
2164 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2165 loadsegment(ds, vmx->host_state.ds_sel);
2166 loadsegment(es, vmx->host_state.es_sel);
2167 }
2168 #endif
2169 invalidate_tss_limit();
2170 #ifdef CONFIG_X86_64
2171 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2172 #endif
2173 if (vmx->host_state.msr_host_bndcfgs)
2174 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2175 load_fixmap_gdt(raw_smp_processor_id());
2176 }
2177
2178 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2179 {
2180 preempt_disable();
2181 __vmx_load_host_state(vmx);
2182 preempt_enable();
2183 }
2184
2185 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2188 struct pi_desc old, new;
2189 unsigned int dest;
2190
2191 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2192 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2193 !kvm_vcpu_apicv_active(vcpu))
2194 return;
2195
2196 do {
2197 old.control = new.control = pi_desc->control;
2198
2199 /*
2200 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2201 * are two possible cases:
2202 * 1. After running 'pre_block', context switch
2203 * happened. For this case, 'sn' was set in
2204 * vmx_vcpu_put(), so we need to clear it here.
2205 * 2. After running 'pre_block', we were blocked,
2206 * and woken up by some other guy. For this case,
2207 * we don't need to do anything, 'pi_post_block'
2208 * will do everything for us. However, we cannot
2209 * check whether it is case #1 or case #2 here
2210 * (maybe, not needed), so we also clear sn here,
2211 * I think it is not a big deal.
2212 */
2213 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2214 if (vcpu->cpu != cpu) {
2215 dest = cpu_physical_id(cpu);
2216
2217 if (x2apic_enabled())
2218 new.ndst = dest;
2219 else
2220 new.ndst = (dest << 8) & 0xFF00;
2221 }
2222
2223 /* set 'NV' to 'notification vector' */
2224 new.nv = POSTED_INTR_VECTOR;
2225 }
2226
2227 /* Allow posting non-urgent interrupts */
2228 new.sn = 0;
2229 } while (cmpxchg(&pi_desc->control, old.control,
2230 new.control) != old.control);
2231 }
2232
2233 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2234 {
2235 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2236 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2237 }
2238
2239 /*
2240 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2241 * vcpu mutex is already taken.
2242 */
2243 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245 struct vcpu_vmx *vmx = to_vmx(vcpu);
2246 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2247
2248 if (!already_loaded) {
2249 loaded_vmcs_clear(vmx->loaded_vmcs);
2250 local_irq_disable();
2251 crash_disable_local_vmclear(cpu);
2252
2253 /*
2254 * Read loaded_vmcs->cpu should be before fetching
2255 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2256 * See the comments in __loaded_vmcs_clear().
2257 */
2258 smp_rmb();
2259
2260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2261 &per_cpu(loaded_vmcss_on_cpu, cpu));
2262 crash_enable_local_vmclear(cpu);
2263 local_irq_enable();
2264 }
2265
2266 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2268 vmcs_load(vmx->loaded_vmcs->vmcs);
2269 }
2270
2271 if (!already_loaded) {
2272 void *gdt = get_current_gdt_ro();
2273 unsigned long sysenter_esp;
2274
2275 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2276
2277 /*
2278 * Linux uses per-cpu TSS and GDT, so set these when switching
2279 * processors. See 22.2.4.
2280 */
2281 vmcs_writel(HOST_TR_BASE,
2282 (unsigned long)this_cpu_ptr(&cpu_tss));
2283 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2284
2285 /*
2286 * VM exits change the host TR limit to 0x67 after a VM
2287 * exit. This is okay, since 0x67 covers everything except
2288 * the IO bitmap and have have code to handle the IO bitmap
2289 * being lost after a VM exit.
2290 */
2291 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2292
2293 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2294 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2295
2296 vmx->loaded_vmcs->cpu = cpu;
2297 }
2298
2299 /* Setup TSC multiplier */
2300 if (kvm_has_tsc_control &&
2301 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2302 decache_tsc_multiplier(vmx);
2303
2304 vmx_vcpu_pi_load(vcpu, cpu);
2305 vmx->host_pkru = read_pkru();
2306 }
2307
2308 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2309 {
2310 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2311
2312 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2313 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2314 !kvm_vcpu_apicv_active(vcpu))
2315 return;
2316
2317 /* Set SN when the vCPU is preempted */
2318 if (vcpu->preempted)
2319 pi_set_sn(pi_desc);
2320 }
2321
2322 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2323 {
2324 vmx_vcpu_pi_put(vcpu);
2325
2326 __vmx_load_host_state(to_vmx(vcpu));
2327 }
2328
2329 static bool emulation_required(struct kvm_vcpu *vcpu)
2330 {
2331 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2332 }
2333
2334 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2335
2336 /*
2337 * Return the cr0 value that a nested guest would read. This is a combination
2338 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2339 * its hypervisor (cr0_read_shadow).
2340 */
2341 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2342 {
2343 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2344 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2345 }
2346 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2347 {
2348 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2349 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2350 }
2351
2352 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2353 {
2354 unsigned long rflags, save_rflags;
2355
2356 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2357 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2358 rflags = vmcs_readl(GUEST_RFLAGS);
2359 if (to_vmx(vcpu)->rmode.vm86_active) {
2360 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2361 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2362 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2363 }
2364 to_vmx(vcpu)->rflags = rflags;
2365 }
2366 return to_vmx(vcpu)->rflags;
2367 }
2368
2369 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2370 {
2371 unsigned long old_rflags = vmx_get_rflags(vcpu);
2372
2373 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2374 to_vmx(vcpu)->rflags = rflags;
2375 if (to_vmx(vcpu)->rmode.vm86_active) {
2376 to_vmx(vcpu)->rmode.save_rflags = rflags;
2377 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2378 }
2379 vmcs_writel(GUEST_RFLAGS, rflags);
2380
2381 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2382 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2383 }
2384
2385 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2386 {
2387 return to_vmx(vcpu)->guest_pkru;
2388 }
2389
2390 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2391 {
2392 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2393 int ret = 0;
2394
2395 if (interruptibility & GUEST_INTR_STATE_STI)
2396 ret |= KVM_X86_SHADOW_INT_STI;
2397 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2398 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2399
2400 return ret;
2401 }
2402
2403 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2404 {
2405 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2406 u32 interruptibility = interruptibility_old;
2407
2408 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2409
2410 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2411 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2412 else if (mask & KVM_X86_SHADOW_INT_STI)
2413 interruptibility |= GUEST_INTR_STATE_STI;
2414
2415 if ((interruptibility != interruptibility_old))
2416 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2417 }
2418
2419 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2420 {
2421 unsigned long rip;
2422
2423 rip = kvm_rip_read(vcpu);
2424 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2425 kvm_rip_write(vcpu, rip);
2426
2427 /* skipping an emulated instruction also counts */
2428 vmx_set_interrupt_shadow(vcpu, 0);
2429 }
2430
2431 /*
2432 * KVM wants to inject page-faults which it got to the guest. This function
2433 * checks whether in a nested guest, we need to inject them to L1 or L2.
2434 */
2435 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
2436 {
2437 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2438 unsigned int nr = vcpu->arch.exception.nr;
2439
2440 if (!((vmcs12->exception_bitmap & (1u << nr)) ||
2441 (nr == PF_VECTOR && vcpu->arch.exception.nested_apf)))
2442 return 0;
2443
2444 if (vcpu->arch.exception.nested_apf) {
2445 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2446 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2447 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
2448 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
2449 vcpu->arch.apf.nested_apf_token);
2450 return 1;
2451 }
2452
2453 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2454 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2455 vmcs_read32(VM_EXIT_INTR_INFO),
2456 vmcs_readl(EXIT_QUALIFICATION));
2457 return 1;
2458 }
2459
2460 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2461 {
2462 struct vcpu_vmx *vmx = to_vmx(vcpu);
2463 unsigned nr = vcpu->arch.exception.nr;
2464 bool has_error_code = vcpu->arch.exception.has_error_code;
2465 bool reinject = vcpu->arch.exception.reinject;
2466 u32 error_code = vcpu->arch.exception.error_code;
2467 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2468
2469 if (!reinject && is_guest_mode(vcpu) &&
2470 nested_vmx_check_exception(vcpu))
2471 return;
2472
2473 if (has_error_code) {
2474 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2475 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2476 }
2477
2478 if (vmx->rmode.vm86_active) {
2479 int inc_eip = 0;
2480 if (kvm_exception_is_soft(nr))
2481 inc_eip = vcpu->arch.event_exit_inst_len;
2482 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2483 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2484 return;
2485 }
2486
2487 if (kvm_exception_is_soft(nr)) {
2488 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2489 vmx->vcpu.arch.event_exit_inst_len);
2490 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2491 } else
2492 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2493
2494 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2495 }
2496
2497 static bool vmx_rdtscp_supported(void)
2498 {
2499 return cpu_has_vmx_rdtscp();
2500 }
2501
2502 static bool vmx_invpcid_supported(void)
2503 {
2504 return cpu_has_vmx_invpcid() && enable_ept;
2505 }
2506
2507 /*
2508 * Swap MSR entry in host/guest MSR entry array.
2509 */
2510 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2511 {
2512 struct shared_msr_entry tmp;
2513
2514 tmp = vmx->guest_msrs[to];
2515 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2516 vmx->guest_msrs[from] = tmp;
2517 }
2518
2519 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2520 {
2521 unsigned long *msr_bitmap;
2522
2523 if (is_guest_mode(vcpu))
2524 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2525 else if (cpu_has_secondary_exec_ctrls() &&
2526 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2527 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2528 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2529 if (is_long_mode(vcpu))
2530 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2531 else
2532 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2533 } else {
2534 if (is_long_mode(vcpu))
2535 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2536 else
2537 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2538 }
2539 } else {
2540 if (is_long_mode(vcpu))
2541 msr_bitmap = vmx_msr_bitmap_longmode;
2542 else
2543 msr_bitmap = vmx_msr_bitmap_legacy;
2544 }
2545
2546 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2547 }
2548
2549 /*
2550 * Set up the vmcs to automatically save and restore system
2551 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2552 * mode, as fiddling with msrs is very expensive.
2553 */
2554 static void setup_msrs(struct vcpu_vmx *vmx)
2555 {
2556 int save_nmsrs, index;
2557
2558 save_nmsrs = 0;
2559 #ifdef CONFIG_X86_64
2560 if (is_long_mode(&vmx->vcpu)) {
2561 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2562 if (index >= 0)
2563 move_msr_up(vmx, index, save_nmsrs++);
2564 index = __find_msr_index(vmx, MSR_LSTAR);
2565 if (index >= 0)
2566 move_msr_up(vmx, index, save_nmsrs++);
2567 index = __find_msr_index(vmx, MSR_CSTAR);
2568 if (index >= 0)
2569 move_msr_up(vmx, index, save_nmsrs++);
2570 index = __find_msr_index(vmx, MSR_TSC_AUX);
2571 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2572 move_msr_up(vmx, index, save_nmsrs++);
2573 /*
2574 * MSR_STAR is only needed on long mode guests, and only
2575 * if efer.sce is enabled.
2576 */
2577 index = __find_msr_index(vmx, MSR_STAR);
2578 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2579 move_msr_up(vmx, index, save_nmsrs++);
2580 }
2581 #endif
2582 index = __find_msr_index(vmx, MSR_EFER);
2583 if (index >= 0 && update_transition_efer(vmx, index))
2584 move_msr_up(vmx, index, save_nmsrs++);
2585
2586 vmx->save_nmsrs = save_nmsrs;
2587
2588 if (cpu_has_vmx_msr_bitmap())
2589 vmx_set_msr_bitmap(&vmx->vcpu);
2590 }
2591
2592 /*
2593 * reads and returns guest's timestamp counter "register"
2594 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2595 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2596 */
2597 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2598 {
2599 u64 host_tsc, tsc_offset;
2600
2601 host_tsc = rdtsc();
2602 tsc_offset = vmcs_read64(TSC_OFFSET);
2603 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2604 }
2605
2606 /*
2607 * writes 'offset' into guest's timestamp counter offset register
2608 */
2609 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2610 {
2611 if (is_guest_mode(vcpu)) {
2612 /*
2613 * We're here if L1 chose not to trap WRMSR to TSC. According
2614 * to the spec, this should set L1's TSC; The offset that L1
2615 * set for L2 remains unchanged, and still needs to be added
2616 * to the newly set TSC to get L2's TSC.
2617 */
2618 struct vmcs12 *vmcs12;
2619 /* recalculate vmcs02.TSC_OFFSET: */
2620 vmcs12 = get_vmcs12(vcpu);
2621 vmcs_write64(TSC_OFFSET, offset +
2622 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2623 vmcs12->tsc_offset : 0));
2624 } else {
2625 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2626 vmcs_read64(TSC_OFFSET), offset);
2627 vmcs_write64(TSC_OFFSET, offset);
2628 }
2629 }
2630
2631 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2632 {
2633 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2634 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2635 }
2636
2637 /*
2638 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2639 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2640 * all guests if the "nested" module option is off, and can also be disabled
2641 * for a single guest by disabling its VMX cpuid bit.
2642 */
2643 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2644 {
2645 return nested && guest_cpuid_has_vmx(vcpu);
2646 }
2647
2648 /*
2649 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2650 * returned for the various VMX controls MSRs when nested VMX is enabled.
2651 * The same values should also be used to verify that vmcs12 control fields are
2652 * valid during nested entry from L1 to L2.
2653 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2654 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2655 * bit in the high half is on if the corresponding bit in the control field
2656 * may be on. See also vmx_control_verify().
2657 */
2658 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2659 {
2660 /*
2661 * Note that as a general rule, the high half of the MSRs (bits in
2662 * the control fields which may be 1) should be initialized by the
2663 * intersection of the underlying hardware's MSR (i.e., features which
2664 * can be supported) and the list of features we want to expose -
2665 * because they are known to be properly supported in our code.
2666 * Also, usually, the low half of the MSRs (bits which must be 1) can
2667 * be set to 0, meaning that L1 may turn off any of these bits. The
2668 * reason is that if one of these bits is necessary, it will appear
2669 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2670 * fields of vmcs01 and vmcs02, will turn these bits off - and
2671 * nested_vmx_exit_reflected() will not pass related exits to L1.
2672 * These rules have exceptions below.
2673 */
2674
2675 /* pin-based controls */
2676 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2677 vmx->nested.nested_vmx_pinbased_ctls_low,
2678 vmx->nested.nested_vmx_pinbased_ctls_high);
2679 vmx->nested.nested_vmx_pinbased_ctls_low |=
2680 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2681 vmx->nested.nested_vmx_pinbased_ctls_high &=
2682 PIN_BASED_EXT_INTR_MASK |
2683 PIN_BASED_NMI_EXITING |
2684 PIN_BASED_VIRTUAL_NMIS;
2685 vmx->nested.nested_vmx_pinbased_ctls_high |=
2686 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2687 PIN_BASED_VMX_PREEMPTION_TIMER;
2688 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2689 vmx->nested.nested_vmx_pinbased_ctls_high |=
2690 PIN_BASED_POSTED_INTR;
2691
2692 /* exit controls */
2693 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2694 vmx->nested.nested_vmx_exit_ctls_low,
2695 vmx->nested.nested_vmx_exit_ctls_high);
2696 vmx->nested.nested_vmx_exit_ctls_low =
2697 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2698
2699 vmx->nested.nested_vmx_exit_ctls_high &=
2700 #ifdef CONFIG_X86_64
2701 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2702 #endif
2703 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2704 vmx->nested.nested_vmx_exit_ctls_high |=
2705 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2706 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2707 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2708
2709 if (kvm_mpx_supported())
2710 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2711
2712 /* We support free control of debug control saving. */
2713 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2714
2715 /* entry controls */
2716 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2717 vmx->nested.nested_vmx_entry_ctls_low,
2718 vmx->nested.nested_vmx_entry_ctls_high);
2719 vmx->nested.nested_vmx_entry_ctls_low =
2720 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2721 vmx->nested.nested_vmx_entry_ctls_high &=
2722 #ifdef CONFIG_X86_64
2723 VM_ENTRY_IA32E_MODE |
2724 #endif
2725 VM_ENTRY_LOAD_IA32_PAT;
2726 vmx->nested.nested_vmx_entry_ctls_high |=
2727 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2728 if (kvm_mpx_supported())
2729 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2730
2731 /* We support free control of debug control loading. */
2732 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2733
2734 /* cpu-based controls */
2735 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2736 vmx->nested.nested_vmx_procbased_ctls_low,
2737 vmx->nested.nested_vmx_procbased_ctls_high);
2738 vmx->nested.nested_vmx_procbased_ctls_low =
2739 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2740 vmx->nested.nested_vmx_procbased_ctls_high &=
2741 CPU_BASED_VIRTUAL_INTR_PENDING |
2742 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2743 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2744 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2745 CPU_BASED_CR3_STORE_EXITING |
2746 #ifdef CONFIG_X86_64
2747 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2748 #endif
2749 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2750 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2751 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2752 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2753 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2754 /*
2755 * We can allow some features even when not supported by the
2756 * hardware. For example, L1 can specify an MSR bitmap - and we
2757 * can use it to avoid exits to L1 - even when L0 runs L2
2758 * without MSR bitmaps.
2759 */
2760 vmx->nested.nested_vmx_procbased_ctls_high |=
2761 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2762 CPU_BASED_USE_MSR_BITMAPS;
2763
2764 /* We support free control of CR3 access interception. */
2765 vmx->nested.nested_vmx_procbased_ctls_low &=
2766 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2767
2768 /* secondary cpu-based controls */
2769 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2770 vmx->nested.nested_vmx_secondary_ctls_low,
2771 vmx->nested.nested_vmx_secondary_ctls_high);
2772 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2773 vmx->nested.nested_vmx_secondary_ctls_high &=
2774 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2775 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2776 SECONDARY_EXEC_RDTSCP |
2777 SECONDARY_EXEC_DESC |
2778 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2779 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2780 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2781 SECONDARY_EXEC_WBINVD_EXITING |
2782 SECONDARY_EXEC_XSAVES;
2783
2784 if (enable_ept) {
2785 /* nested EPT: emulate EPT also to L1 */
2786 vmx->nested.nested_vmx_secondary_ctls_high |=
2787 SECONDARY_EXEC_ENABLE_EPT;
2788 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2789 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2790 if (cpu_has_vmx_ept_execute_only())
2791 vmx->nested.nested_vmx_ept_caps |=
2792 VMX_EPT_EXECUTE_ONLY_BIT;
2793 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2794 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2795 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2796 VMX_EPT_1GB_PAGE_BIT;
2797 if (enable_ept_ad_bits) {
2798 vmx->nested.nested_vmx_secondary_ctls_high |=
2799 SECONDARY_EXEC_ENABLE_PML;
2800 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2801 }
2802 } else
2803 vmx->nested.nested_vmx_ept_caps = 0;
2804
2805 /*
2806 * Old versions of KVM use the single-context version without
2807 * checking for support, so declare that it is supported even
2808 * though it is treated as global context. The alternative is
2809 * not failing the single-context invvpid, and it is worse.
2810 */
2811 if (enable_vpid) {
2812 vmx->nested.nested_vmx_secondary_ctls_high |=
2813 SECONDARY_EXEC_ENABLE_VPID;
2814 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2815 VMX_VPID_EXTENT_SUPPORTED_MASK;
2816 } else
2817 vmx->nested.nested_vmx_vpid_caps = 0;
2818
2819 if (enable_unrestricted_guest)
2820 vmx->nested.nested_vmx_secondary_ctls_high |=
2821 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2822
2823 /* miscellaneous data */
2824 rdmsr(MSR_IA32_VMX_MISC,
2825 vmx->nested.nested_vmx_misc_low,
2826 vmx->nested.nested_vmx_misc_high);
2827 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2828 vmx->nested.nested_vmx_misc_low |=
2829 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2830 VMX_MISC_ACTIVITY_HLT;
2831 vmx->nested.nested_vmx_misc_high = 0;
2832
2833 /*
2834 * This MSR reports some information about VMX support. We
2835 * should return information about the VMX we emulate for the
2836 * guest, and the VMCS structure we give it - not about the
2837 * VMX support of the underlying hardware.
2838 */
2839 vmx->nested.nested_vmx_basic =
2840 VMCS12_REVISION |
2841 VMX_BASIC_TRUE_CTLS |
2842 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2843 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2844
2845 if (cpu_has_vmx_basic_inout())
2846 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2847
2848 /*
2849 * These MSRs specify bits which the guest must keep fixed on
2850 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2851 * We picked the standard core2 setting.
2852 */
2853 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2854 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2855 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2856 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2857
2858 /* These MSRs specify bits which the guest must keep fixed off. */
2859 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2860 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2861
2862 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2863 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2864 }
2865
2866 /*
2867 * if fixed0[i] == 1: val[i] must be 1
2868 * if fixed1[i] == 0: val[i] must be 0
2869 */
2870 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2871 {
2872 return ((val & fixed1) | fixed0) == val;
2873 }
2874
2875 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2876 {
2877 return fixed_bits_valid(control, low, high);
2878 }
2879
2880 static inline u64 vmx_control_msr(u32 low, u32 high)
2881 {
2882 return low | ((u64)high << 32);
2883 }
2884
2885 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2886 {
2887 superset &= mask;
2888 subset &= mask;
2889
2890 return (superset | subset) == superset;
2891 }
2892
2893 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2894 {
2895 const u64 feature_and_reserved =
2896 /* feature (except bit 48; see below) */
2897 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2898 /* reserved */
2899 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2900 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2901
2902 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2903 return -EINVAL;
2904
2905 /*
2906 * KVM does not emulate a version of VMX that constrains physical
2907 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2908 */
2909 if (data & BIT_ULL(48))
2910 return -EINVAL;
2911
2912 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2913 vmx_basic_vmcs_revision_id(data))
2914 return -EINVAL;
2915
2916 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2917 return -EINVAL;
2918
2919 vmx->nested.nested_vmx_basic = data;
2920 return 0;
2921 }
2922
2923 static int
2924 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2925 {
2926 u64 supported;
2927 u32 *lowp, *highp;
2928
2929 switch (msr_index) {
2930 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2931 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2932 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2933 break;
2934 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2935 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2936 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2937 break;
2938 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2939 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2940 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2941 break;
2942 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2943 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2944 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2945 break;
2946 case MSR_IA32_VMX_PROCBASED_CTLS2:
2947 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2948 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2949 break;
2950 default:
2951 BUG();
2952 }
2953
2954 supported = vmx_control_msr(*lowp, *highp);
2955
2956 /* Check must-be-1 bits are still 1. */
2957 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2958 return -EINVAL;
2959
2960 /* Check must-be-0 bits are still 0. */
2961 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2962 return -EINVAL;
2963
2964 *lowp = data;
2965 *highp = data >> 32;
2966 return 0;
2967 }
2968
2969 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2970 {
2971 const u64 feature_and_reserved_bits =
2972 /* feature */
2973 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2974 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2975 /* reserved */
2976 GENMASK_ULL(13, 9) | BIT_ULL(31);
2977 u64 vmx_misc;
2978
2979 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2980 vmx->nested.nested_vmx_misc_high);
2981
2982 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2983 return -EINVAL;
2984
2985 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2986 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2987 vmx_misc_preemption_timer_rate(data) !=
2988 vmx_misc_preemption_timer_rate(vmx_misc))
2989 return -EINVAL;
2990
2991 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2992 return -EINVAL;
2993
2994 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2995 return -EINVAL;
2996
2997 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2998 return -EINVAL;
2999
3000 vmx->nested.nested_vmx_misc_low = data;
3001 vmx->nested.nested_vmx_misc_high = data >> 32;
3002 return 0;
3003 }
3004
3005 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3006 {
3007 u64 vmx_ept_vpid_cap;
3008
3009 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3010 vmx->nested.nested_vmx_vpid_caps);
3011
3012 /* Every bit is either reserved or a feature bit. */
3013 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3014 return -EINVAL;
3015
3016 vmx->nested.nested_vmx_ept_caps = data;
3017 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3018 return 0;
3019 }
3020
3021 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3022 {
3023 u64 *msr;
3024
3025 switch (msr_index) {
3026 case MSR_IA32_VMX_CR0_FIXED0:
3027 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3028 break;
3029 case MSR_IA32_VMX_CR4_FIXED0:
3030 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3031 break;
3032 default:
3033 BUG();
3034 }
3035
3036 /*
3037 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3038 * must be 1 in the restored value.
3039 */
3040 if (!is_bitwise_subset(data, *msr, -1ULL))
3041 return -EINVAL;
3042
3043 *msr = data;
3044 return 0;
3045 }
3046
3047 /*
3048 * Called when userspace is restoring VMX MSRs.
3049 *
3050 * Returns 0 on success, non-0 otherwise.
3051 */
3052 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3053 {
3054 struct vcpu_vmx *vmx = to_vmx(vcpu);
3055
3056 switch (msr_index) {
3057 case MSR_IA32_VMX_BASIC:
3058 return vmx_restore_vmx_basic(vmx, data);
3059 case MSR_IA32_VMX_PINBASED_CTLS:
3060 case MSR_IA32_VMX_PROCBASED_CTLS:
3061 case MSR_IA32_VMX_EXIT_CTLS:
3062 case MSR_IA32_VMX_ENTRY_CTLS:
3063 /*
3064 * The "non-true" VMX capability MSRs are generated from the
3065 * "true" MSRs, so we do not support restoring them directly.
3066 *
3067 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3068 * should restore the "true" MSRs with the must-be-1 bits
3069 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3070 * DEFAULT SETTINGS".
3071 */
3072 return -EINVAL;
3073 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3074 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3075 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3076 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3077 case MSR_IA32_VMX_PROCBASED_CTLS2:
3078 return vmx_restore_control_msr(vmx, msr_index, data);
3079 case MSR_IA32_VMX_MISC:
3080 return vmx_restore_vmx_misc(vmx, data);
3081 case MSR_IA32_VMX_CR0_FIXED0:
3082 case MSR_IA32_VMX_CR4_FIXED0:
3083 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3084 case MSR_IA32_VMX_CR0_FIXED1:
3085 case MSR_IA32_VMX_CR4_FIXED1:
3086 /*
3087 * These MSRs are generated based on the vCPU's CPUID, so we
3088 * do not support restoring them directly.
3089 */
3090 return -EINVAL;
3091 case MSR_IA32_VMX_EPT_VPID_CAP:
3092 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3093 case MSR_IA32_VMX_VMCS_ENUM:
3094 vmx->nested.nested_vmx_vmcs_enum = data;
3095 return 0;
3096 default:
3097 /*
3098 * The rest of the VMX capability MSRs do not support restore.
3099 */
3100 return -EINVAL;
3101 }
3102 }
3103
3104 /* Returns 0 on success, non-0 otherwise. */
3105 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3106 {
3107 struct vcpu_vmx *vmx = to_vmx(vcpu);
3108
3109 switch (msr_index) {
3110 case MSR_IA32_VMX_BASIC:
3111 *pdata = vmx->nested.nested_vmx_basic;
3112 break;
3113 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3114 case MSR_IA32_VMX_PINBASED_CTLS:
3115 *pdata = vmx_control_msr(
3116 vmx->nested.nested_vmx_pinbased_ctls_low,
3117 vmx->nested.nested_vmx_pinbased_ctls_high);
3118 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3119 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3120 break;
3121 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3122 case MSR_IA32_VMX_PROCBASED_CTLS:
3123 *pdata = vmx_control_msr(
3124 vmx->nested.nested_vmx_procbased_ctls_low,
3125 vmx->nested.nested_vmx_procbased_ctls_high);
3126 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3127 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3128 break;
3129 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3130 case MSR_IA32_VMX_EXIT_CTLS:
3131 *pdata = vmx_control_msr(
3132 vmx->nested.nested_vmx_exit_ctls_low,
3133 vmx->nested.nested_vmx_exit_ctls_high);
3134 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3135 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3136 break;
3137 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3138 case MSR_IA32_VMX_ENTRY_CTLS:
3139 *pdata = vmx_control_msr(
3140 vmx->nested.nested_vmx_entry_ctls_low,
3141 vmx->nested.nested_vmx_entry_ctls_high);
3142 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3143 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3144 break;
3145 case MSR_IA32_VMX_MISC:
3146 *pdata = vmx_control_msr(
3147 vmx->nested.nested_vmx_misc_low,
3148 vmx->nested.nested_vmx_misc_high);
3149 break;
3150 case MSR_IA32_VMX_CR0_FIXED0:
3151 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3152 break;
3153 case MSR_IA32_VMX_CR0_FIXED1:
3154 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3155 break;
3156 case MSR_IA32_VMX_CR4_FIXED0:
3157 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3158 break;
3159 case MSR_IA32_VMX_CR4_FIXED1:
3160 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3161 break;
3162 case MSR_IA32_VMX_VMCS_ENUM:
3163 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3164 break;
3165 case MSR_IA32_VMX_PROCBASED_CTLS2:
3166 *pdata = vmx_control_msr(
3167 vmx->nested.nested_vmx_secondary_ctls_low,
3168 vmx->nested.nested_vmx_secondary_ctls_high);
3169 break;
3170 case MSR_IA32_VMX_EPT_VPID_CAP:
3171 *pdata = vmx->nested.nested_vmx_ept_caps |
3172 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3173 break;
3174 default:
3175 return 1;
3176 }
3177
3178 return 0;
3179 }
3180
3181 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3182 uint64_t val)
3183 {
3184 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3185
3186 return !(val & ~valid_bits);
3187 }
3188
3189 /*
3190 * Reads an msr value (of 'msr_index') into 'pdata'.
3191 * Returns 0 on success, non-0 otherwise.
3192 * Assumes vcpu_load() was already called.
3193 */
3194 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3195 {
3196 struct shared_msr_entry *msr;
3197
3198 switch (msr_info->index) {
3199 #ifdef CONFIG_X86_64
3200 case MSR_FS_BASE:
3201 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3202 break;
3203 case MSR_GS_BASE:
3204 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3205 break;
3206 case MSR_KERNEL_GS_BASE:
3207 vmx_load_host_state(to_vmx(vcpu));
3208 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3209 break;
3210 #endif
3211 case MSR_EFER:
3212 return kvm_get_msr_common(vcpu, msr_info);
3213 case MSR_IA32_TSC:
3214 msr_info->data = guest_read_tsc(vcpu);
3215 break;
3216 case MSR_IA32_SYSENTER_CS:
3217 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3218 break;
3219 case MSR_IA32_SYSENTER_EIP:
3220 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3221 break;
3222 case MSR_IA32_SYSENTER_ESP:
3223 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3224 break;
3225 case MSR_IA32_BNDCFGS:
3226 if (!kvm_mpx_supported() ||
3227 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3228 return 1;
3229 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3230 break;
3231 case MSR_IA32_MCG_EXT_CTL:
3232 if (!msr_info->host_initiated &&
3233 !(to_vmx(vcpu)->msr_ia32_feature_control &
3234 FEATURE_CONTROL_LMCE))
3235 return 1;
3236 msr_info->data = vcpu->arch.mcg_ext_ctl;
3237 break;
3238 case MSR_IA32_FEATURE_CONTROL:
3239 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3240 break;
3241 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3242 if (!nested_vmx_allowed(vcpu))
3243 return 1;
3244 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3245 case MSR_IA32_XSS:
3246 if (!vmx_xsaves_supported())
3247 return 1;
3248 msr_info->data = vcpu->arch.ia32_xss;
3249 break;
3250 case MSR_TSC_AUX:
3251 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3252 return 1;
3253 /* Otherwise falls through */
3254 default:
3255 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3256 if (msr) {
3257 msr_info->data = msr->data;
3258 break;
3259 }
3260 return kvm_get_msr_common(vcpu, msr_info);
3261 }
3262
3263 return 0;
3264 }
3265
3266 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3267
3268 /*
3269 * Writes msr value into into the appropriate "register".
3270 * Returns 0 on success, non-0 otherwise.
3271 * Assumes vcpu_load() was already called.
3272 */
3273 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3274 {
3275 struct vcpu_vmx *vmx = to_vmx(vcpu);
3276 struct shared_msr_entry *msr;
3277 int ret = 0;
3278 u32 msr_index = msr_info->index;
3279 u64 data = msr_info->data;
3280
3281 switch (msr_index) {
3282 case MSR_EFER:
3283 ret = kvm_set_msr_common(vcpu, msr_info);
3284 break;
3285 #ifdef CONFIG_X86_64
3286 case MSR_FS_BASE:
3287 vmx_segment_cache_clear(vmx);
3288 vmcs_writel(GUEST_FS_BASE, data);
3289 break;
3290 case MSR_GS_BASE:
3291 vmx_segment_cache_clear(vmx);
3292 vmcs_writel(GUEST_GS_BASE, data);
3293 break;
3294 case MSR_KERNEL_GS_BASE:
3295 vmx_load_host_state(vmx);
3296 vmx->msr_guest_kernel_gs_base = data;
3297 break;
3298 #endif
3299 case MSR_IA32_SYSENTER_CS:
3300 vmcs_write32(GUEST_SYSENTER_CS, data);
3301 break;
3302 case MSR_IA32_SYSENTER_EIP:
3303 vmcs_writel(GUEST_SYSENTER_EIP, data);
3304 break;
3305 case MSR_IA32_SYSENTER_ESP:
3306 vmcs_writel(GUEST_SYSENTER_ESP, data);
3307 break;
3308 case MSR_IA32_BNDCFGS:
3309 if (!kvm_mpx_supported() ||
3310 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3311 return 1;
3312 if (is_noncanonical_address(data & PAGE_MASK) ||
3313 (data & MSR_IA32_BNDCFGS_RSVD))
3314 return 1;
3315 vmcs_write64(GUEST_BNDCFGS, data);
3316 break;
3317 case MSR_IA32_TSC:
3318 kvm_write_tsc(vcpu, msr_info);
3319 break;
3320 case MSR_IA32_CR_PAT:
3321 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3322 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3323 return 1;
3324 vmcs_write64(GUEST_IA32_PAT, data);
3325 vcpu->arch.pat = data;
3326 break;
3327 }
3328 ret = kvm_set_msr_common(vcpu, msr_info);
3329 break;
3330 case MSR_IA32_TSC_ADJUST:
3331 ret = kvm_set_msr_common(vcpu, msr_info);
3332 break;
3333 case MSR_IA32_MCG_EXT_CTL:
3334 if ((!msr_info->host_initiated &&
3335 !(to_vmx(vcpu)->msr_ia32_feature_control &
3336 FEATURE_CONTROL_LMCE)) ||
3337 (data & ~MCG_EXT_CTL_LMCE_EN))
3338 return 1;
3339 vcpu->arch.mcg_ext_ctl = data;
3340 break;
3341 case MSR_IA32_FEATURE_CONTROL:
3342 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3343 (to_vmx(vcpu)->msr_ia32_feature_control &
3344 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3345 return 1;
3346 vmx->msr_ia32_feature_control = data;
3347 if (msr_info->host_initiated && data == 0)
3348 vmx_leave_nested(vcpu);
3349 break;
3350 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3351 if (!msr_info->host_initiated)
3352 return 1; /* they are read-only */
3353 if (!nested_vmx_allowed(vcpu))
3354 return 1;
3355 return vmx_set_vmx_msr(vcpu, msr_index, data);
3356 case MSR_IA32_XSS:
3357 if (!vmx_xsaves_supported())
3358 return 1;
3359 /*
3360 * The only supported bit as of Skylake is bit 8, but
3361 * it is not supported on KVM.
3362 */
3363 if (data != 0)
3364 return 1;
3365 vcpu->arch.ia32_xss = data;
3366 if (vcpu->arch.ia32_xss != host_xss)
3367 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3368 vcpu->arch.ia32_xss, host_xss);
3369 else
3370 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3371 break;
3372 case MSR_TSC_AUX:
3373 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3374 return 1;
3375 /* Check reserved bit, higher 32 bits should be zero */
3376 if ((data >> 32) != 0)
3377 return 1;
3378 /* Otherwise falls through */
3379 default:
3380 msr = find_msr_entry(vmx, msr_index);
3381 if (msr) {
3382 u64 old_msr_data = msr->data;
3383 msr->data = data;
3384 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3385 preempt_disable();
3386 ret = kvm_set_shared_msr(msr->index, msr->data,
3387 msr->mask);
3388 preempt_enable();
3389 if (ret)
3390 msr->data = old_msr_data;
3391 }
3392 break;
3393 }
3394 ret = kvm_set_msr_common(vcpu, msr_info);
3395 }
3396
3397 return ret;
3398 }
3399
3400 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3401 {
3402 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3403 switch (reg) {
3404 case VCPU_REGS_RSP:
3405 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3406 break;
3407 case VCPU_REGS_RIP:
3408 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3409 break;
3410 case VCPU_EXREG_PDPTR:
3411 if (enable_ept)
3412 ept_save_pdptrs(vcpu);
3413 break;
3414 default:
3415 break;
3416 }
3417 }
3418
3419 static __init int cpu_has_kvm_support(void)
3420 {
3421 return cpu_has_vmx();
3422 }
3423
3424 static __init int vmx_disabled_by_bios(void)
3425 {
3426 u64 msr;
3427
3428 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3429 if (msr & FEATURE_CONTROL_LOCKED) {
3430 /* launched w/ TXT and VMX disabled */
3431 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3432 && tboot_enabled())
3433 return 1;
3434 /* launched w/o TXT and VMX only enabled w/ TXT */
3435 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3436 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3437 && !tboot_enabled()) {
3438 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3439 "activate TXT before enabling KVM\n");
3440 return 1;
3441 }
3442 /* launched w/o TXT and VMX disabled */
3443 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3444 && !tboot_enabled())
3445 return 1;
3446 }
3447
3448 return 0;
3449 }
3450
3451 static void kvm_cpu_vmxon(u64 addr)
3452 {
3453 cr4_set_bits(X86_CR4_VMXE);
3454 intel_pt_handle_vmx(1);
3455
3456 asm volatile (ASM_VMX_VMXON_RAX
3457 : : "a"(&addr), "m"(addr)
3458 : "memory", "cc");
3459 }
3460
3461 static int hardware_enable(void)
3462 {
3463 int cpu = raw_smp_processor_id();
3464 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3465 u64 old, test_bits;
3466
3467 if (cr4_read_shadow() & X86_CR4_VMXE)
3468 return -EBUSY;
3469
3470 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3471 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3472 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3473
3474 /*
3475 * Now we can enable the vmclear operation in kdump
3476 * since the loaded_vmcss_on_cpu list on this cpu
3477 * has been initialized.
3478 *
3479 * Though the cpu is not in VMX operation now, there
3480 * is no problem to enable the vmclear operation
3481 * for the loaded_vmcss_on_cpu list is empty!
3482 */
3483 crash_enable_local_vmclear(cpu);
3484
3485 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3486
3487 test_bits = FEATURE_CONTROL_LOCKED;
3488 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3489 if (tboot_enabled())
3490 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3491
3492 if ((old & test_bits) != test_bits) {
3493 /* enable and lock */
3494 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3495 }
3496 kvm_cpu_vmxon(phys_addr);
3497 ept_sync_global();
3498
3499 return 0;
3500 }
3501
3502 static void vmclear_local_loaded_vmcss(void)
3503 {
3504 int cpu = raw_smp_processor_id();
3505 struct loaded_vmcs *v, *n;
3506
3507 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3508 loaded_vmcss_on_cpu_link)
3509 __loaded_vmcs_clear(v);
3510 }
3511
3512
3513 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3514 * tricks.
3515 */
3516 static void kvm_cpu_vmxoff(void)
3517 {
3518 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3519
3520 intel_pt_handle_vmx(0);
3521 cr4_clear_bits(X86_CR4_VMXE);
3522 }
3523
3524 static void hardware_disable(void)
3525 {
3526 vmclear_local_loaded_vmcss();
3527 kvm_cpu_vmxoff();
3528 }
3529
3530 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3531 u32 msr, u32 *result)
3532 {
3533 u32 vmx_msr_low, vmx_msr_high;
3534 u32 ctl = ctl_min | ctl_opt;
3535
3536 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3537
3538 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3539 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3540
3541 /* Ensure minimum (required) set of control bits are supported. */
3542 if (ctl_min & ~ctl)
3543 return -EIO;
3544
3545 *result = ctl;
3546 return 0;
3547 }
3548
3549 static __init bool allow_1_setting(u32 msr, u32 ctl)
3550 {
3551 u32 vmx_msr_low, vmx_msr_high;
3552
3553 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3554 return vmx_msr_high & ctl;
3555 }
3556
3557 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3558 {
3559 u32 vmx_msr_low, vmx_msr_high;
3560 u32 min, opt, min2, opt2;
3561 u32 _pin_based_exec_control = 0;
3562 u32 _cpu_based_exec_control = 0;
3563 u32 _cpu_based_2nd_exec_control = 0;
3564 u32 _vmexit_control = 0;
3565 u32 _vmentry_control = 0;
3566
3567 min = CPU_BASED_HLT_EXITING |
3568 #ifdef CONFIG_X86_64
3569 CPU_BASED_CR8_LOAD_EXITING |
3570 CPU_BASED_CR8_STORE_EXITING |
3571 #endif
3572 CPU_BASED_CR3_LOAD_EXITING |
3573 CPU_BASED_CR3_STORE_EXITING |
3574 CPU_BASED_USE_IO_BITMAPS |
3575 CPU_BASED_MOV_DR_EXITING |
3576 CPU_BASED_USE_TSC_OFFSETING |
3577 CPU_BASED_INVLPG_EXITING |
3578 CPU_BASED_RDPMC_EXITING;
3579
3580 if (!kvm_mwait_in_guest())
3581 min |= CPU_BASED_MWAIT_EXITING |
3582 CPU_BASED_MONITOR_EXITING;
3583
3584 opt = CPU_BASED_TPR_SHADOW |
3585 CPU_BASED_USE_MSR_BITMAPS |
3586 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3587 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3588 &_cpu_based_exec_control) < 0)
3589 return -EIO;
3590 #ifdef CONFIG_X86_64
3591 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3592 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3593 ~CPU_BASED_CR8_STORE_EXITING;
3594 #endif
3595 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3596 min2 = 0;
3597 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3598 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3599 SECONDARY_EXEC_WBINVD_EXITING |
3600 SECONDARY_EXEC_ENABLE_VPID |
3601 SECONDARY_EXEC_ENABLE_EPT |
3602 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3603 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3604 SECONDARY_EXEC_RDTSCP |
3605 SECONDARY_EXEC_ENABLE_INVPCID |
3606 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3607 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3608 SECONDARY_EXEC_SHADOW_VMCS |
3609 SECONDARY_EXEC_XSAVES |
3610 SECONDARY_EXEC_ENABLE_PML |
3611 SECONDARY_EXEC_TSC_SCALING;
3612 if (adjust_vmx_controls(min2, opt2,
3613 MSR_IA32_VMX_PROCBASED_CTLS2,
3614 &_cpu_based_2nd_exec_control) < 0)
3615 return -EIO;
3616 }
3617 #ifndef CONFIG_X86_64
3618 if (!(_cpu_based_2nd_exec_control &
3619 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3620 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3621 #endif
3622
3623 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3624 _cpu_based_2nd_exec_control &= ~(
3625 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3626 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3628
3629 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3630 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3631 enabled */
3632 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3633 CPU_BASED_CR3_STORE_EXITING |
3634 CPU_BASED_INVLPG_EXITING);
3635 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3636 vmx_capability.ept, vmx_capability.vpid);
3637 }
3638
3639 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3640 #ifdef CONFIG_X86_64
3641 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3642 #endif
3643 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3644 VM_EXIT_CLEAR_BNDCFGS;
3645 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3646 &_vmexit_control) < 0)
3647 return -EIO;
3648
3649 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3650 PIN_BASED_VIRTUAL_NMIS;
3651 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3652 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3653 &_pin_based_exec_control) < 0)
3654 return -EIO;
3655
3656 if (cpu_has_broken_vmx_preemption_timer())
3657 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3658 if (!(_cpu_based_2nd_exec_control &
3659 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3660 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3661
3662 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3663 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3664 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3665 &_vmentry_control) < 0)
3666 return -EIO;
3667
3668 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3669
3670 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3671 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3672 return -EIO;
3673
3674 #ifdef CONFIG_X86_64
3675 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3676 if (vmx_msr_high & (1u<<16))
3677 return -EIO;
3678 #endif
3679
3680 /* Require Write-Back (WB) memory type for VMCS accesses. */
3681 if (((vmx_msr_high >> 18) & 15) != 6)
3682 return -EIO;
3683
3684 vmcs_conf->size = vmx_msr_high & 0x1fff;
3685 vmcs_conf->order = get_order(vmcs_conf->size);
3686 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3687 vmcs_conf->revision_id = vmx_msr_low;
3688
3689 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3690 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3691 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3692 vmcs_conf->vmexit_ctrl = _vmexit_control;
3693 vmcs_conf->vmentry_ctrl = _vmentry_control;
3694
3695 cpu_has_load_ia32_efer =
3696 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3697 VM_ENTRY_LOAD_IA32_EFER)
3698 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3699 VM_EXIT_LOAD_IA32_EFER);
3700
3701 cpu_has_load_perf_global_ctrl =
3702 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3703 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3704 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3705 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3706
3707 /*
3708 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3709 * but due to errata below it can't be used. Workaround is to use
3710 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3711 *
3712 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3713 *
3714 * AAK155 (model 26)
3715 * AAP115 (model 30)
3716 * AAT100 (model 37)
3717 * BC86,AAY89,BD102 (model 44)
3718 * BA97 (model 46)
3719 *
3720 */
3721 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3722 switch (boot_cpu_data.x86_model) {
3723 case 26:
3724 case 30:
3725 case 37:
3726 case 44:
3727 case 46:
3728 cpu_has_load_perf_global_ctrl = false;
3729 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3730 "does not work properly. Using workaround\n");
3731 break;
3732 default:
3733 break;
3734 }
3735 }
3736
3737 if (boot_cpu_has(X86_FEATURE_XSAVES))
3738 rdmsrl(MSR_IA32_XSS, host_xss);
3739
3740 return 0;
3741 }
3742
3743 static struct vmcs *alloc_vmcs_cpu(int cpu)
3744 {
3745 int node = cpu_to_node(cpu);
3746 struct page *pages;
3747 struct vmcs *vmcs;
3748
3749 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3750 if (!pages)
3751 return NULL;
3752 vmcs = page_address(pages);
3753 memset(vmcs, 0, vmcs_config.size);
3754 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3755 return vmcs;
3756 }
3757
3758 static struct vmcs *alloc_vmcs(void)
3759 {
3760 return alloc_vmcs_cpu(raw_smp_processor_id());
3761 }
3762
3763 static void free_vmcs(struct vmcs *vmcs)
3764 {
3765 free_pages((unsigned long)vmcs, vmcs_config.order);
3766 }
3767
3768 /*
3769 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3770 */
3771 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3772 {
3773 if (!loaded_vmcs->vmcs)
3774 return;
3775 loaded_vmcs_clear(loaded_vmcs);
3776 free_vmcs(loaded_vmcs->vmcs);
3777 loaded_vmcs->vmcs = NULL;
3778 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3779 }
3780
3781 static void free_kvm_area(void)
3782 {
3783 int cpu;
3784
3785 for_each_possible_cpu(cpu) {
3786 free_vmcs(per_cpu(vmxarea, cpu));
3787 per_cpu(vmxarea, cpu) = NULL;
3788 }
3789 }
3790
3791 enum vmcs_field_type {
3792 VMCS_FIELD_TYPE_U16 = 0,
3793 VMCS_FIELD_TYPE_U64 = 1,
3794 VMCS_FIELD_TYPE_U32 = 2,
3795 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3796 };
3797
3798 static inline int vmcs_field_type(unsigned long field)
3799 {
3800 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3801 return VMCS_FIELD_TYPE_U32;
3802 return (field >> 13) & 0x3 ;
3803 }
3804
3805 static inline int vmcs_field_readonly(unsigned long field)
3806 {
3807 return (((field >> 10) & 0x3) == 1);
3808 }
3809
3810 static void init_vmcs_shadow_fields(void)
3811 {
3812 int i, j;
3813
3814 /* No checks for read only fields yet */
3815
3816 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3817 switch (shadow_read_write_fields[i]) {
3818 case GUEST_BNDCFGS:
3819 if (!kvm_mpx_supported())
3820 continue;
3821 break;
3822 default:
3823 break;
3824 }
3825
3826 if (j < i)
3827 shadow_read_write_fields[j] =
3828 shadow_read_write_fields[i];
3829 j++;
3830 }
3831 max_shadow_read_write_fields = j;
3832
3833 /* shadowed fields guest access without vmexit */
3834 for (i = 0; i < max_shadow_read_write_fields; i++) {
3835 unsigned long field = shadow_read_write_fields[i];
3836
3837 clear_bit(field, vmx_vmwrite_bitmap);
3838 clear_bit(field, vmx_vmread_bitmap);
3839 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3840 clear_bit(field + 1, vmx_vmwrite_bitmap);
3841 clear_bit(field + 1, vmx_vmread_bitmap);
3842 }
3843 }
3844 for (i = 0; i < max_shadow_read_only_fields; i++) {
3845 unsigned long field = shadow_read_only_fields[i];
3846
3847 clear_bit(field, vmx_vmread_bitmap);
3848 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3849 clear_bit(field + 1, vmx_vmread_bitmap);
3850 }
3851 }
3852
3853 static __init int alloc_kvm_area(void)
3854 {
3855 int cpu;
3856
3857 for_each_possible_cpu(cpu) {
3858 struct vmcs *vmcs;
3859
3860 vmcs = alloc_vmcs_cpu(cpu);
3861 if (!vmcs) {
3862 free_kvm_area();
3863 return -ENOMEM;
3864 }
3865
3866 per_cpu(vmxarea, cpu) = vmcs;
3867 }
3868 return 0;
3869 }
3870
3871 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3872 struct kvm_segment *save)
3873 {
3874 if (!emulate_invalid_guest_state) {
3875 /*
3876 * CS and SS RPL should be equal during guest entry according
3877 * to VMX spec, but in reality it is not always so. Since vcpu
3878 * is in the middle of the transition from real mode to
3879 * protected mode it is safe to assume that RPL 0 is a good
3880 * default value.
3881 */
3882 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3883 save->selector &= ~SEGMENT_RPL_MASK;
3884 save->dpl = save->selector & SEGMENT_RPL_MASK;
3885 save->s = 1;
3886 }
3887 vmx_set_segment(vcpu, save, seg);
3888 }
3889
3890 static void enter_pmode(struct kvm_vcpu *vcpu)
3891 {
3892 unsigned long flags;
3893 struct vcpu_vmx *vmx = to_vmx(vcpu);
3894
3895 /*
3896 * Update real mode segment cache. It may be not up-to-date if sement
3897 * register was written while vcpu was in a guest mode.
3898 */
3899 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3900 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3901 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3902 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3903 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3904 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3905
3906 vmx->rmode.vm86_active = 0;
3907
3908 vmx_segment_cache_clear(vmx);
3909
3910 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3911
3912 flags = vmcs_readl(GUEST_RFLAGS);
3913 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3914 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3915 vmcs_writel(GUEST_RFLAGS, flags);
3916
3917 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3918 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3919
3920 update_exception_bitmap(vcpu);
3921
3922 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3923 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3924 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3925 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3926 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3927 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3928 }
3929
3930 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3931 {
3932 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3933 struct kvm_segment var = *save;
3934
3935 var.dpl = 0x3;
3936 if (seg == VCPU_SREG_CS)
3937 var.type = 0x3;
3938
3939 if (!emulate_invalid_guest_state) {
3940 var.selector = var.base >> 4;
3941 var.base = var.base & 0xffff0;
3942 var.limit = 0xffff;
3943 var.g = 0;
3944 var.db = 0;
3945 var.present = 1;
3946 var.s = 1;
3947 var.l = 0;
3948 var.unusable = 0;
3949 var.type = 0x3;
3950 var.avl = 0;
3951 if (save->base & 0xf)
3952 printk_once(KERN_WARNING "kvm: segment base is not "
3953 "paragraph aligned when entering "
3954 "protected mode (seg=%d)", seg);
3955 }
3956
3957 vmcs_write16(sf->selector, var.selector);
3958 vmcs_writel(sf->base, var.base);
3959 vmcs_write32(sf->limit, var.limit);
3960 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3961 }
3962
3963 static void enter_rmode(struct kvm_vcpu *vcpu)
3964 {
3965 unsigned long flags;
3966 struct vcpu_vmx *vmx = to_vmx(vcpu);
3967
3968 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3969 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3970 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3971 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3972 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3973 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3974 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3975
3976 vmx->rmode.vm86_active = 1;
3977
3978 /*
3979 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3980 * vcpu. Warn the user that an update is overdue.
3981 */
3982 if (!vcpu->kvm->arch.tss_addr)
3983 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3984 "called before entering vcpu\n");
3985
3986 vmx_segment_cache_clear(vmx);
3987
3988 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3989 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3990 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3991
3992 flags = vmcs_readl(GUEST_RFLAGS);
3993 vmx->rmode.save_rflags = flags;
3994
3995 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3996
3997 vmcs_writel(GUEST_RFLAGS, flags);
3998 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3999 update_exception_bitmap(vcpu);
4000
4001 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4002 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4003 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4004 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4005 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4006 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4007
4008 kvm_mmu_reset_context(vcpu);
4009 }
4010
4011 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4012 {
4013 struct vcpu_vmx *vmx = to_vmx(vcpu);
4014 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4015
4016 if (!msr)
4017 return;
4018
4019 /*
4020 * Force kernel_gs_base reloading before EFER changes, as control
4021 * of this msr depends on is_long_mode().
4022 */
4023 vmx_load_host_state(to_vmx(vcpu));
4024 vcpu->arch.efer = efer;
4025 if (efer & EFER_LMA) {
4026 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4027 msr->data = efer;
4028 } else {
4029 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4030
4031 msr->data = efer & ~EFER_LME;
4032 }
4033 setup_msrs(vmx);
4034 }
4035
4036 #ifdef CONFIG_X86_64
4037
4038 static void enter_lmode(struct kvm_vcpu *vcpu)
4039 {
4040 u32 guest_tr_ar;
4041
4042 vmx_segment_cache_clear(to_vmx(vcpu));
4043
4044 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4045 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4046 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4047 __func__);
4048 vmcs_write32(GUEST_TR_AR_BYTES,
4049 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4050 | VMX_AR_TYPE_BUSY_64_TSS);
4051 }
4052 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4053 }
4054
4055 static void exit_lmode(struct kvm_vcpu *vcpu)
4056 {
4057 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4058 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4059 }
4060
4061 #endif
4062
4063 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4064 {
4065 if (enable_ept) {
4066 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4067 return;
4068 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4069 } else {
4070 vpid_sync_context(vpid);
4071 }
4072 }
4073
4074 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4075 {
4076 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4077 }
4078
4079 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4080 {
4081 if (enable_ept)
4082 vmx_flush_tlb(vcpu);
4083 }
4084
4085 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4086 {
4087 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4088
4089 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4090 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4091 }
4092
4093 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4094 {
4095 if (enable_ept && is_paging(vcpu))
4096 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4097 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4098 }
4099
4100 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4101 {
4102 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4103
4104 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4105 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4106 }
4107
4108 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4109 {
4110 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4111
4112 if (!test_bit(VCPU_EXREG_PDPTR,
4113 (unsigned long *)&vcpu->arch.regs_dirty))
4114 return;
4115
4116 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4117 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4118 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4119 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4120 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4121 }
4122 }
4123
4124 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4125 {
4126 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4127
4128 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4129 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4130 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4131 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4132 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4133 }
4134
4135 __set_bit(VCPU_EXREG_PDPTR,
4136 (unsigned long *)&vcpu->arch.regs_avail);
4137 __set_bit(VCPU_EXREG_PDPTR,
4138 (unsigned long *)&vcpu->arch.regs_dirty);
4139 }
4140
4141 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4142 {
4143 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4144 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4145 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4146
4147 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4148 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4149 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4150 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4151
4152 return fixed_bits_valid(val, fixed0, fixed1);
4153 }
4154
4155 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4156 {
4157 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4158 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4159
4160 return fixed_bits_valid(val, fixed0, fixed1);
4161 }
4162
4163 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4164 {
4165 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4166 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4167
4168 return fixed_bits_valid(val, fixed0, fixed1);
4169 }
4170
4171 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4172 #define nested_guest_cr4_valid nested_cr4_valid
4173 #define nested_host_cr4_valid nested_cr4_valid
4174
4175 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4176
4177 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4178 unsigned long cr0,
4179 struct kvm_vcpu *vcpu)
4180 {
4181 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4182 vmx_decache_cr3(vcpu);
4183 if (!(cr0 & X86_CR0_PG)) {
4184 /* From paging/starting to nonpaging */
4185 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4186 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4187 (CPU_BASED_CR3_LOAD_EXITING |
4188 CPU_BASED_CR3_STORE_EXITING));
4189 vcpu->arch.cr0 = cr0;
4190 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4191 } else if (!is_paging(vcpu)) {
4192 /* From nonpaging to paging */
4193 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4194 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4195 ~(CPU_BASED_CR3_LOAD_EXITING |
4196 CPU_BASED_CR3_STORE_EXITING));
4197 vcpu->arch.cr0 = cr0;
4198 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4199 }
4200
4201 if (!(cr0 & X86_CR0_WP))
4202 *hw_cr0 &= ~X86_CR0_WP;
4203 }
4204
4205 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4206 {
4207 struct vcpu_vmx *vmx = to_vmx(vcpu);
4208 unsigned long hw_cr0;
4209
4210 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4211 if (enable_unrestricted_guest)
4212 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4213 else {
4214 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4215
4216 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4217 enter_pmode(vcpu);
4218
4219 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4220 enter_rmode(vcpu);
4221 }
4222
4223 #ifdef CONFIG_X86_64
4224 if (vcpu->arch.efer & EFER_LME) {
4225 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4226 enter_lmode(vcpu);
4227 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4228 exit_lmode(vcpu);
4229 }
4230 #endif
4231
4232 if (enable_ept)
4233 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4234
4235 vmcs_writel(CR0_READ_SHADOW, cr0);
4236 vmcs_writel(GUEST_CR0, hw_cr0);
4237 vcpu->arch.cr0 = cr0;
4238
4239 /* depends on vcpu->arch.cr0 to be set to a new value */
4240 vmx->emulation_required = emulation_required(vcpu);
4241 }
4242
4243 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4244 {
4245 u64 eptp;
4246
4247 /* TODO write the value reading from MSR */
4248 eptp = VMX_EPT_DEFAULT_MT |
4249 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4250 if (enable_ept_ad_bits &&
4251 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4252 eptp |= VMX_EPT_AD_ENABLE_BIT;
4253 eptp |= (root_hpa & PAGE_MASK);
4254
4255 return eptp;
4256 }
4257
4258 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4259 {
4260 unsigned long guest_cr3;
4261 u64 eptp;
4262
4263 guest_cr3 = cr3;
4264 if (enable_ept) {
4265 eptp = construct_eptp(vcpu, cr3);
4266 vmcs_write64(EPT_POINTER, eptp);
4267 if (is_paging(vcpu) || is_guest_mode(vcpu))
4268 guest_cr3 = kvm_read_cr3(vcpu);
4269 else
4270 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4271 ept_load_pdptrs(vcpu);
4272 }
4273
4274 vmx_flush_tlb(vcpu);
4275 vmcs_writel(GUEST_CR3, guest_cr3);
4276 }
4277
4278 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4279 {
4280 /*
4281 * Pass through host's Machine Check Enable value to hw_cr4, which
4282 * is in force while we are in guest mode. Do not let guests control
4283 * this bit, even if host CR4.MCE == 0.
4284 */
4285 unsigned long hw_cr4 =
4286 (cr4_read_shadow() & X86_CR4_MCE) |
4287 (cr4 & ~X86_CR4_MCE) |
4288 (to_vmx(vcpu)->rmode.vm86_active ?
4289 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4290
4291 if (cr4 & X86_CR4_VMXE) {
4292 /*
4293 * To use VMXON (and later other VMX instructions), a guest
4294 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4295 * So basically the check on whether to allow nested VMX
4296 * is here.
4297 */
4298 if (!nested_vmx_allowed(vcpu))
4299 return 1;
4300 }
4301
4302 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4303 return 1;
4304
4305 vcpu->arch.cr4 = cr4;
4306 if (enable_ept) {
4307 if (!is_paging(vcpu)) {
4308 hw_cr4 &= ~X86_CR4_PAE;
4309 hw_cr4 |= X86_CR4_PSE;
4310 } else if (!(cr4 & X86_CR4_PAE)) {
4311 hw_cr4 &= ~X86_CR4_PAE;
4312 }
4313 }
4314
4315 if (!enable_unrestricted_guest && !is_paging(vcpu))
4316 /*
4317 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4318 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4319 * to be manually disabled when guest switches to non-paging
4320 * mode.
4321 *
4322 * If !enable_unrestricted_guest, the CPU is always running
4323 * with CR0.PG=1 and CR4 needs to be modified.
4324 * If enable_unrestricted_guest, the CPU automatically
4325 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4326 */
4327 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4328
4329 vmcs_writel(CR4_READ_SHADOW, cr4);
4330 vmcs_writel(GUEST_CR4, hw_cr4);
4331 return 0;
4332 }
4333
4334 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4335 struct kvm_segment *var, int seg)
4336 {
4337 struct vcpu_vmx *vmx = to_vmx(vcpu);
4338 u32 ar;
4339
4340 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4341 *var = vmx->rmode.segs[seg];
4342 if (seg == VCPU_SREG_TR
4343 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4344 return;
4345 var->base = vmx_read_guest_seg_base(vmx, seg);
4346 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4347 return;
4348 }
4349 var->base = vmx_read_guest_seg_base(vmx, seg);
4350 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4351 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4352 ar = vmx_read_guest_seg_ar(vmx, seg);
4353 var->unusable = (ar >> 16) & 1;
4354 var->type = ar & 15;
4355 var->s = (ar >> 4) & 1;
4356 var->dpl = (ar >> 5) & 3;
4357 /*
4358 * Some userspaces do not preserve unusable property. Since usable
4359 * segment has to be present according to VMX spec we can use present
4360 * property to amend userspace bug by making unusable segment always
4361 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4362 * segment as unusable.
4363 */
4364 var->present = !var->unusable;
4365 var->avl = (ar >> 12) & 1;
4366 var->l = (ar >> 13) & 1;
4367 var->db = (ar >> 14) & 1;
4368 var->g = (ar >> 15) & 1;
4369 }
4370
4371 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4372 {
4373 struct kvm_segment s;
4374
4375 if (to_vmx(vcpu)->rmode.vm86_active) {
4376 vmx_get_segment(vcpu, &s, seg);
4377 return s.base;
4378 }
4379 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4380 }
4381
4382 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4383 {
4384 struct vcpu_vmx *vmx = to_vmx(vcpu);
4385
4386 if (unlikely(vmx->rmode.vm86_active))
4387 return 0;
4388 else {
4389 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4390 return VMX_AR_DPL(ar);
4391 }
4392 }
4393
4394 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4395 {
4396 u32 ar;
4397
4398 if (var->unusable || !var->present)
4399 ar = 1 << 16;
4400 else {
4401 ar = var->type & 15;
4402 ar |= (var->s & 1) << 4;
4403 ar |= (var->dpl & 3) << 5;
4404 ar |= (var->present & 1) << 7;
4405 ar |= (var->avl & 1) << 12;
4406 ar |= (var->l & 1) << 13;
4407 ar |= (var->db & 1) << 14;
4408 ar |= (var->g & 1) << 15;
4409 }
4410
4411 return ar;
4412 }
4413
4414 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4415 struct kvm_segment *var, int seg)
4416 {
4417 struct vcpu_vmx *vmx = to_vmx(vcpu);
4418 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4419
4420 vmx_segment_cache_clear(vmx);
4421
4422 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4423 vmx->rmode.segs[seg] = *var;
4424 if (seg == VCPU_SREG_TR)
4425 vmcs_write16(sf->selector, var->selector);
4426 else if (var->s)
4427 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4428 goto out;
4429 }
4430
4431 vmcs_writel(sf->base, var->base);
4432 vmcs_write32(sf->limit, var->limit);
4433 vmcs_write16(sf->selector, var->selector);
4434
4435 /*
4436 * Fix the "Accessed" bit in AR field of segment registers for older
4437 * qemu binaries.
4438 * IA32 arch specifies that at the time of processor reset the
4439 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4440 * is setting it to 0 in the userland code. This causes invalid guest
4441 * state vmexit when "unrestricted guest" mode is turned on.
4442 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4443 * tree. Newer qemu binaries with that qemu fix would not need this
4444 * kvm hack.
4445 */
4446 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4447 var->type |= 0x1; /* Accessed */
4448
4449 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4450
4451 out:
4452 vmx->emulation_required = emulation_required(vcpu);
4453 }
4454
4455 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4456 {
4457 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4458
4459 *db = (ar >> 14) & 1;
4460 *l = (ar >> 13) & 1;
4461 }
4462
4463 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4464 {
4465 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4466 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4467 }
4468
4469 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4470 {
4471 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4472 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4473 }
4474
4475 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4476 {
4477 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4478 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4479 }
4480
4481 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4482 {
4483 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4484 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4485 }
4486
4487 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4488 {
4489 struct kvm_segment var;
4490 u32 ar;
4491
4492 vmx_get_segment(vcpu, &var, seg);
4493 var.dpl = 0x3;
4494 if (seg == VCPU_SREG_CS)
4495 var.type = 0x3;
4496 ar = vmx_segment_access_rights(&var);
4497
4498 if (var.base != (var.selector << 4))
4499 return false;
4500 if (var.limit != 0xffff)
4501 return false;
4502 if (ar != 0xf3)
4503 return false;
4504
4505 return true;
4506 }
4507
4508 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4509 {
4510 struct kvm_segment cs;
4511 unsigned int cs_rpl;
4512
4513 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4514 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4515
4516 if (cs.unusable)
4517 return false;
4518 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4519 return false;
4520 if (!cs.s)
4521 return false;
4522 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4523 if (cs.dpl > cs_rpl)
4524 return false;
4525 } else {
4526 if (cs.dpl != cs_rpl)
4527 return false;
4528 }
4529 if (!cs.present)
4530 return false;
4531
4532 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4533 return true;
4534 }
4535
4536 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4537 {
4538 struct kvm_segment ss;
4539 unsigned int ss_rpl;
4540
4541 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4542 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4543
4544 if (ss.unusable)
4545 return true;
4546 if (ss.type != 3 && ss.type != 7)
4547 return false;
4548 if (!ss.s)
4549 return false;
4550 if (ss.dpl != ss_rpl) /* DPL != RPL */
4551 return false;
4552 if (!ss.present)
4553 return false;
4554
4555 return true;
4556 }
4557
4558 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4559 {
4560 struct kvm_segment var;
4561 unsigned int rpl;
4562
4563 vmx_get_segment(vcpu, &var, seg);
4564 rpl = var.selector & SEGMENT_RPL_MASK;
4565
4566 if (var.unusable)
4567 return true;
4568 if (!var.s)
4569 return false;
4570 if (!var.present)
4571 return false;
4572 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4573 if (var.dpl < rpl) /* DPL < RPL */
4574 return false;
4575 }
4576
4577 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4578 * rights flags
4579 */
4580 return true;
4581 }
4582
4583 static bool tr_valid(struct kvm_vcpu *vcpu)
4584 {
4585 struct kvm_segment tr;
4586
4587 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4588
4589 if (tr.unusable)
4590 return false;
4591 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4592 return false;
4593 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4594 return false;
4595 if (!tr.present)
4596 return false;
4597
4598 return true;
4599 }
4600
4601 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4602 {
4603 struct kvm_segment ldtr;
4604
4605 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4606
4607 if (ldtr.unusable)
4608 return true;
4609 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4610 return false;
4611 if (ldtr.type != 2)
4612 return false;
4613 if (!ldtr.present)
4614 return false;
4615
4616 return true;
4617 }
4618
4619 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4620 {
4621 struct kvm_segment cs, ss;
4622
4623 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4624 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4625
4626 return ((cs.selector & SEGMENT_RPL_MASK) ==
4627 (ss.selector & SEGMENT_RPL_MASK));
4628 }
4629
4630 /*
4631 * Check if guest state is valid. Returns true if valid, false if
4632 * not.
4633 * We assume that registers are always usable
4634 */
4635 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4636 {
4637 if (enable_unrestricted_guest)
4638 return true;
4639
4640 /* real mode guest state checks */
4641 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4642 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4643 return false;
4644 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4645 return false;
4646 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4647 return false;
4648 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4649 return false;
4650 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4651 return false;
4652 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4653 return false;
4654 } else {
4655 /* protected mode guest state checks */
4656 if (!cs_ss_rpl_check(vcpu))
4657 return false;
4658 if (!code_segment_valid(vcpu))
4659 return false;
4660 if (!stack_segment_valid(vcpu))
4661 return false;
4662 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4663 return false;
4664 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4665 return false;
4666 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4667 return false;
4668 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4669 return false;
4670 if (!tr_valid(vcpu))
4671 return false;
4672 if (!ldtr_valid(vcpu))
4673 return false;
4674 }
4675 /* TODO:
4676 * - Add checks on RIP
4677 * - Add checks on RFLAGS
4678 */
4679
4680 return true;
4681 }
4682
4683 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4684 {
4685 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4686 }
4687
4688 static int init_rmode_tss(struct kvm *kvm)
4689 {
4690 gfn_t fn;
4691 u16 data = 0;
4692 int idx, r;
4693
4694 idx = srcu_read_lock(&kvm->srcu);
4695 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4696 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4697 if (r < 0)
4698 goto out;
4699 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4700 r = kvm_write_guest_page(kvm, fn++, &data,
4701 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4702 if (r < 0)
4703 goto out;
4704 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4705 if (r < 0)
4706 goto out;
4707 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4708 if (r < 0)
4709 goto out;
4710 data = ~0;
4711 r = kvm_write_guest_page(kvm, fn, &data,
4712 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4713 sizeof(u8));
4714 out:
4715 srcu_read_unlock(&kvm->srcu, idx);
4716 return r;
4717 }
4718
4719 static int init_rmode_identity_map(struct kvm *kvm)
4720 {
4721 int i, idx, r = 0;
4722 kvm_pfn_t identity_map_pfn;
4723 u32 tmp;
4724
4725 if (!enable_ept)
4726 return 0;
4727
4728 /* Protect kvm->arch.ept_identity_pagetable_done. */
4729 mutex_lock(&kvm->slots_lock);
4730
4731 if (likely(kvm->arch.ept_identity_pagetable_done))
4732 goto out2;
4733
4734 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4735
4736 r = alloc_identity_pagetable(kvm);
4737 if (r < 0)
4738 goto out2;
4739
4740 idx = srcu_read_lock(&kvm->srcu);
4741 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4742 if (r < 0)
4743 goto out;
4744 /* Set up identity-mapping pagetable for EPT in real mode */
4745 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4746 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4747 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4748 r = kvm_write_guest_page(kvm, identity_map_pfn,
4749 &tmp, i * sizeof(tmp), sizeof(tmp));
4750 if (r < 0)
4751 goto out;
4752 }
4753 kvm->arch.ept_identity_pagetable_done = true;
4754
4755 out:
4756 srcu_read_unlock(&kvm->srcu, idx);
4757
4758 out2:
4759 mutex_unlock(&kvm->slots_lock);
4760 return r;
4761 }
4762
4763 static void seg_setup(int seg)
4764 {
4765 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4766 unsigned int ar;
4767
4768 vmcs_write16(sf->selector, 0);
4769 vmcs_writel(sf->base, 0);
4770 vmcs_write32(sf->limit, 0xffff);
4771 ar = 0x93;
4772 if (seg == VCPU_SREG_CS)
4773 ar |= 0x08; /* code segment */
4774
4775 vmcs_write32(sf->ar_bytes, ar);
4776 }
4777
4778 static int alloc_apic_access_page(struct kvm *kvm)
4779 {
4780 struct page *page;
4781 int r = 0;
4782
4783 mutex_lock(&kvm->slots_lock);
4784 if (kvm->arch.apic_access_page_done)
4785 goto out;
4786 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4787 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4788 if (r)
4789 goto out;
4790
4791 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4792 if (is_error_page(page)) {
4793 r = -EFAULT;
4794 goto out;
4795 }
4796
4797 /*
4798 * Do not pin the page in memory, so that memory hot-unplug
4799 * is able to migrate it.
4800 */
4801 put_page(page);
4802 kvm->arch.apic_access_page_done = true;
4803 out:
4804 mutex_unlock(&kvm->slots_lock);
4805 return r;
4806 }
4807
4808 static int alloc_identity_pagetable(struct kvm *kvm)
4809 {
4810 /* Called with kvm->slots_lock held. */
4811
4812 int r = 0;
4813
4814 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4815
4816 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4817 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4818
4819 return r;
4820 }
4821
4822 static int allocate_vpid(void)
4823 {
4824 int vpid;
4825
4826 if (!enable_vpid)
4827 return 0;
4828 spin_lock(&vmx_vpid_lock);
4829 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4830 if (vpid < VMX_NR_VPIDS)
4831 __set_bit(vpid, vmx_vpid_bitmap);
4832 else
4833 vpid = 0;
4834 spin_unlock(&vmx_vpid_lock);
4835 return vpid;
4836 }
4837
4838 static void free_vpid(int vpid)
4839 {
4840 if (!enable_vpid || vpid == 0)
4841 return;
4842 spin_lock(&vmx_vpid_lock);
4843 __clear_bit(vpid, vmx_vpid_bitmap);
4844 spin_unlock(&vmx_vpid_lock);
4845 }
4846
4847 #define MSR_TYPE_R 1
4848 #define MSR_TYPE_W 2
4849 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4850 u32 msr, int type)
4851 {
4852 int f = sizeof(unsigned long);
4853
4854 if (!cpu_has_vmx_msr_bitmap())
4855 return;
4856
4857 /*
4858 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4859 * have the write-low and read-high bitmap offsets the wrong way round.
4860 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4861 */
4862 if (msr <= 0x1fff) {
4863 if (type & MSR_TYPE_R)
4864 /* read-low */
4865 __clear_bit(msr, msr_bitmap + 0x000 / f);
4866
4867 if (type & MSR_TYPE_W)
4868 /* write-low */
4869 __clear_bit(msr, msr_bitmap + 0x800 / f);
4870
4871 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4872 msr &= 0x1fff;
4873 if (type & MSR_TYPE_R)
4874 /* read-high */
4875 __clear_bit(msr, msr_bitmap + 0x400 / f);
4876
4877 if (type & MSR_TYPE_W)
4878 /* write-high */
4879 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4880
4881 }
4882 }
4883
4884 /*
4885 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4886 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4887 */
4888 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4889 unsigned long *msr_bitmap_nested,
4890 u32 msr, int type)
4891 {
4892 int f = sizeof(unsigned long);
4893
4894 if (!cpu_has_vmx_msr_bitmap()) {
4895 WARN_ON(1);
4896 return;
4897 }
4898
4899 /*
4900 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4901 * have the write-low and read-high bitmap offsets the wrong way round.
4902 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4903 */
4904 if (msr <= 0x1fff) {
4905 if (type & MSR_TYPE_R &&
4906 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4907 /* read-low */
4908 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4909
4910 if (type & MSR_TYPE_W &&
4911 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4912 /* write-low */
4913 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4914
4915 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4916 msr &= 0x1fff;
4917 if (type & MSR_TYPE_R &&
4918 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4919 /* read-high */
4920 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4921
4922 if (type & MSR_TYPE_W &&
4923 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4924 /* write-high */
4925 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4926
4927 }
4928 }
4929
4930 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4931 {
4932 if (!longmode_only)
4933 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4934 msr, MSR_TYPE_R | MSR_TYPE_W);
4935 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4936 msr, MSR_TYPE_R | MSR_TYPE_W);
4937 }
4938
4939 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4940 {
4941 if (apicv_active) {
4942 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4943 msr, type);
4944 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4945 msr, type);
4946 } else {
4947 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4948 msr, type);
4949 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4950 msr, type);
4951 }
4952 }
4953
4954 static bool vmx_get_enable_apicv(void)
4955 {
4956 return enable_apicv;
4957 }
4958
4959 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4960 {
4961 struct vcpu_vmx *vmx = to_vmx(vcpu);
4962 int max_irr;
4963 void *vapic_page;
4964 u16 status;
4965
4966 if (vmx->nested.pi_desc &&
4967 vmx->nested.pi_pending) {
4968 vmx->nested.pi_pending = false;
4969 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4970 return;
4971
4972 max_irr = find_last_bit(
4973 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4974
4975 if (max_irr == 256)
4976 return;
4977
4978 vapic_page = kmap(vmx->nested.virtual_apic_page);
4979 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4980 kunmap(vmx->nested.virtual_apic_page);
4981
4982 status = vmcs_read16(GUEST_INTR_STATUS);
4983 if ((u8)max_irr > ((u8)status & 0xff)) {
4984 status &= ~0xff;
4985 status |= (u8)max_irr;
4986 vmcs_write16(GUEST_INTR_STATUS, status);
4987 }
4988 }
4989 }
4990
4991 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4992 bool nested)
4993 {
4994 #ifdef CONFIG_SMP
4995 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4996
4997 if (vcpu->mode == IN_GUEST_MODE) {
4998 struct vcpu_vmx *vmx = to_vmx(vcpu);
4999
5000 /*
5001 * Currently, we don't support urgent interrupt,
5002 * all interrupts are recognized as non-urgent
5003 * interrupt, so we cannot post interrupts when
5004 * 'SN' is set.
5005 *
5006 * If the vcpu is in guest mode, it means it is
5007 * running instead of being scheduled out and
5008 * waiting in the run queue, and that's the only
5009 * case when 'SN' is set currently, warning if
5010 * 'SN' is set.
5011 */
5012 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5013
5014 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5015 return true;
5016 }
5017 #endif
5018 return false;
5019 }
5020
5021 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5022 int vector)
5023 {
5024 struct vcpu_vmx *vmx = to_vmx(vcpu);
5025
5026 if (is_guest_mode(vcpu) &&
5027 vector == vmx->nested.posted_intr_nv) {
5028 /* the PIR and ON have been set by L1. */
5029 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5030 /*
5031 * If a posted intr is not recognized by hardware,
5032 * we will accomplish it in the next vmentry.
5033 */
5034 vmx->nested.pi_pending = true;
5035 kvm_make_request(KVM_REQ_EVENT, vcpu);
5036 return 0;
5037 }
5038 return -1;
5039 }
5040 /*
5041 * Send interrupt to vcpu via posted interrupt way.
5042 * 1. If target vcpu is running(non-root mode), send posted interrupt
5043 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5044 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5045 * interrupt from PIR in next vmentry.
5046 */
5047 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5048 {
5049 struct vcpu_vmx *vmx = to_vmx(vcpu);
5050 int r;
5051
5052 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5053 if (!r)
5054 return;
5055
5056 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5057 return;
5058
5059 /* If a previous notification has sent the IPI, nothing to do. */
5060 if (pi_test_and_set_on(&vmx->pi_desc))
5061 return;
5062
5063 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5064 kvm_vcpu_kick(vcpu);
5065 }
5066
5067 /*
5068 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5069 * will not change in the lifetime of the guest.
5070 * Note that host-state that does change is set elsewhere. E.g., host-state
5071 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5072 */
5073 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5074 {
5075 u32 low32, high32;
5076 unsigned long tmpl;
5077 struct desc_ptr dt;
5078 unsigned long cr0, cr3, cr4;
5079
5080 cr0 = read_cr0();
5081 WARN_ON(cr0 & X86_CR0_TS);
5082 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5083
5084 /*
5085 * Save the most likely value for this task's CR3 in the VMCS.
5086 * We can't use __get_current_cr3_fast() because we're not atomic.
5087 */
5088 cr3 = __read_cr3();
5089 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5090 vmx->host_state.vmcs_host_cr3 = cr3;
5091
5092 /* Save the most likely value for this task's CR4 in the VMCS. */
5093 cr4 = cr4_read_shadow();
5094 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5095 vmx->host_state.vmcs_host_cr4 = cr4;
5096
5097 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5098 #ifdef CONFIG_X86_64
5099 /*
5100 * Load null selectors, so we can avoid reloading them in
5101 * __vmx_load_host_state(), in case userspace uses the null selectors
5102 * too (the expected case).
5103 */
5104 vmcs_write16(HOST_DS_SELECTOR, 0);
5105 vmcs_write16(HOST_ES_SELECTOR, 0);
5106 #else
5107 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5108 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5109 #endif
5110 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5111 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5112
5113 native_store_idt(&dt);
5114 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5115 vmx->host_idt_base = dt.address;
5116
5117 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5118
5119 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5120 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5121 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5122 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5123
5124 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5125 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5126 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5127 }
5128 }
5129
5130 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5131 {
5132 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5133 if (enable_ept)
5134 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5135 if (is_guest_mode(&vmx->vcpu))
5136 vmx->vcpu.arch.cr4_guest_owned_bits &=
5137 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5138 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5139 }
5140
5141 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5142 {
5143 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5144
5145 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5146 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5147 /* Enable the preemption timer dynamically */
5148 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5149 return pin_based_exec_ctrl;
5150 }
5151
5152 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5153 {
5154 struct vcpu_vmx *vmx = to_vmx(vcpu);
5155
5156 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5157 if (cpu_has_secondary_exec_ctrls()) {
5158 if (kvm_vcpu_apicv_active(vcpu))
5159 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5160 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5161 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5162 else
5163 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5164 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5165 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5166 }
5167
5168 if (cpu_has_vmx_msr_bitmap())
5169 vmx_set_msr_bitmap(vcpu);
5170 }
5171
5172 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5173 {
5174 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5175
5176 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5177 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5178
5179 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5180 exec_control &= ~CPU_BASED_TPR_SHADOW;
5181 #ifdef CONFIG_X86_64
5182 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5183 CPU_BASED_CR8_LOAD_EXITING;
5184 #endif
5185 }
5186 if (!enable_ept)
5187 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5188 CPU_BASED_CR3_LOAD_EXITING |
5189 CPU_BASED_INVLPG_EXITING;
5190 return exec_control;
5191 }
5192
5193 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5194 {
5195 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5196 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5197 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5198 if (vmx->vpid == 0)
5199 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5200 if (!enable_ept) {
5201 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5202 enable_unrestricted_guest = 0;
5203 /* Enable INVPCID for non-ept guests may cause performance regression. */
5204 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5205 }
5206 if (!enable_unrestricted_guest)
5207 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5208 if (!ple_gap)
5209 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5210 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5211 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5212 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5213 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5214 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5215 (handle_vmptrld).
5216 We can NOT enable shadow_vmcs here because we don't have yet
5217 a current VMCS12
5218 */
5219 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5220
5221 if (!enable_pml)
5222 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5223
5224 return exec_control;
5225 }
5226
5227 static void ept_set_mmio_spte_mask(void)
5228 {
5229 /*
5230 * EPT Misconfigurations can be generated if the value of bits 2:0
5231 * of an EPT paging-structure entry is 110b (write/execute).
5232 */
5233 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5234 VMX_EPT_MISCONFIG_WX_VALUE);
5235 }
5236
5237 #define VMX_XSS_EXIT_BITMAP 0
5238 /*
5239 * Sets up the vmcs for emulated real mode.
5240 */
5241 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5242 {
5243 #ifdef CONFIG_X86_64
5244 unsigned long a;
5245 #endif
5246 int i;
5247
5248 /* I/O */
5249 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5250 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5251
5252 if (enable_shadow_vmcs) {
5253 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5254 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5255 }
5256 if (cpu_has_vmx_msr_bitmap())
5257 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5258
5259 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5260
5261 /* Control */
5262 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5263 vmx->hv_deadline_tsc = -1;
5264
5265 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5266
5267 if (cpu_has_secondary_exec_ctrls()) {
5268 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5269 vmx_secondary_exec_control(vmx));
5270 }
5271
5272 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5273 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5274 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5275 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5276 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5277
5278 vmcs_write16(GUEST_INTR_STATUS, 0);
5279
5280 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5281 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5282 }
5283
5284 if (ple_gap) {
5285 vmcs_write32(PLE_GAP, ple_gap);
5286 vmx->ple_window = ple_window;
5287 vmx->ple_window_dirty = true;
5288 }
5289
5290 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5291 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5292 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5293
5294 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5295 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5296 vmx_set_constant_host_state(vmx);
5297 #ifdef CONFIG_X86_64
5298 rdmsrl(MSR_FS_BASE, a);
5299 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5300 rdmsrl(MSR_GS_BASE, a);
5301 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5302 #else
5303 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5304 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5305 #endif
5306
5307 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5308 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5309 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5310 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5311 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5312
5313 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5314 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5315
5316 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5317 u32 index = vmx_msr_index[i];
5318 u32 data_low, data_high;
5319 int j = vmx->nmsrs;
5320
5321 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5322 continue;
5323 if (wrmsr_safe(index, data_low, data_high) < 0)
5324 continue;
5325 vmx->guest_msrs[j].index = i;
5326 vmx->guest_msrs[j].data = 0;
5327 vmx->guest_msrs[j].mask = -1ull;
5328 ++vmx->nmsrs;
5329 }
5330
5331
5332 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5333
5334 /* 22.2.1, 20.8.1 */
5335 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5336
5337 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5338 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5339
5340 set_cr4_guest_host_mask(vmx);
5341
5342 if (vmx_xsaves_supported())
5343 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5344
5345 if (enable_pml) {
5346 ASSERT(vmx->pml_pg);
5347 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5348 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5349 }
5350
5351 return 0;
5352 }
5353
5354 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5355 {
5356 struct vcpu_vmx *vmx = to_vmx(vcpu);
5357 struct msr_data apic_base_msr;
5358 u64 cr0;
5359
5360 vmx->rmode.vm86_active = 0;
5361
5362 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5363 kvm_set_cr8(vcpu, 0);
5364
5365 if (!init_event) {
5366 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5367 MSR_IA32_APICBASE_ENABLE;
5368 if (kvm_vcpu_is_reset_bsp(vcpu))
5369 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5370 apic_base_msr.host_initiated = true;
5371 kvm_set_apic_base(vcpu, &apic_base_msr);
5372 }
5373
5374 vmx_segment_cache_clear(vmx);
5375
5376 seg_setup(VCPU_SREG_CS);
5377 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5378 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5379
5380 seg_setup(VCPU_SREG_DS);
5381 seg_setup(VCPU_SREG_ES);
5382 seg_setup(VCPU_SREG_FS);
5383 seg_setup(VCPU_SREG_GS);
5384 seg_setup(VCPU_SREG_SS);
5385
5386 vmcs_write16(GUEST_TR_SELECTOR, 0);
5387 vmcs_writel(GUEST_TR_BASE, 0);
5388 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5389 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5390
5391 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5392 vmcs_writel(GUEST_LDTR_BASE, 0);
5393 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5394 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5395
5396 if (!init_event) {
5397 vmcs_write32(GUEST_SYSENTER_CS, 0);
5398 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5399 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5400 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5401 }
5402
5403 vmcs_writel(GUEST_RFLAGS, 0x02);
5404 kvm_rip_write(vcpu, 0xfff0);
5405
5406 vmcs_writel(GUEST_GDTR_BASE, 0);
5407 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5408
5409 vmcs_writel(GUEST_IDTR_BASE, 0);
5410 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5411
5412 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5413 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5414 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5415
5416 setup_msrs(vmx);
5417
5418 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5419
5420 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5421 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5422 if (cpu_need_tpr_shadow(vcpu))
5423 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5424 __pa(vcpu->arch.apic->regs));
5425 vmcs_write32(TPR_THRESHOLD, 0);
5426 }
5427
5428 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5429
5430 if (kvm_vcpu_apicv_active(vcpu))
5431 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5432
5433 if (vmx->vpid != 0)
5434 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5435
5436 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5437 vmx->vcpu.arch.cr0 = cr0;
5438 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5439 vmx_set_cr4(vcpu, 0);
5440 vmx_set_efer(vcpu, 0);
5441
5442 update_exception_bitmap(vcpu);
5443
5444 vpid_sync_context(vmx->vpid);
5445 }
5446
5447 /*
5448 * In nested virtualization, check if L1 asked to exit on external interrupts.
5449 * For most existing hypervisors, this will always return true.
5450 */
5451 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5452 {
5453 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5454 PIN_BASED_EXT_INTR_MASK;
5455 }
5456
5457 /*
5458 * In nested virtualization, check if L1 has set
5459 * VM_EXIT_ACK_INTR_ON_EXIT
5460 */
5461 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5462 {
5463 return get_vmcs12(vcpu)->vm_exit_controls &
5464 VM_EXIT_ACK_INTR_ON_EXIT;
5465 }
5466
5467 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5468 {
5469 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5470 PIN_BASED_NMI_EXITING;
5471 }
5472
5473 static void enable_irq_window(struct kvm_vcpu *vcpu)
5474 {
5475 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5476 CPU_BASED_VIRTUAL_INTR_PENDING);
5477 }
5478
5479 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5480 {
5481 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5482 enable_irq_window(vcpu);
5483 return;
5484 }
5485
5486 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5487 CPU_BASED_VIRTUAL_NMI_PENDING);
5488 }
5489
5490 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5491 {
5492 struct vcpu_vmx *vmx = to_vmx(vcpu);
5493 uint32_t intr;
5494 int irq = vcpu->arch.interrupt.nr;
5495
5496 trace_kvm_inj_virq(irq);
5497
5498 ++vcpu->stat.irq_injections;
5499 if (vmx->rmode.vm86_active) {
5500 int inc_eip = 0;
5501 if (vcpu->arch.interrupt.soft)
5502 inc_eip = vcpu->arch.event_exit_inst_len;
5503 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5504 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5505 return;
5506 }
5507 intr = irq | INTR_INFO_VALID_MASK;
5508 if (vcpu->arch.interrupt.soft) {
5509 intr |= INTR_TYPE_SOFT_INTR;
5510 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5511 vmx->vcpu.arch.event_exit_inst_len);
5512 } else
5513 intr |= INTR_TYPE_EXT_INTR;
5514 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5515 }
5516
5517 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5518 {
5519 struct vcpu_vmx *vmx = to_vmx(vcpu);
5520
5521 ++vcpu->stat.nmi_injections;
5522 vmx->loaded_vmcs->nmi_known_unmasked = false;
5523
5524 if (vmx->rmode.vm86_active) {
5525 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5526 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5527 return;
5528 }
5529
5530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5531 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5532 }
5533
5534 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5535 {
5536 struct vcpu_vmx *vmx = to_vmx(vcpu);
5537 bool masked;
5538
5539 if (vmx->loaded_vmcs->nmi_known_unmasked)
5540 return false;
5541 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5542 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5543 return masked;
5544 }
5545
5546 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5547 {
5548 struct vcpu_vmx *vmx = to_vmx(vcpu);
5549
5550 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5551 if (masked)
5552 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5553 GUEST_INTR_STATE_NMI);
5554 else
5555 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5556 GUEST_INTR_STATE_NMI);
5557 }
5558
5559 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5560 {
5561 if (to_vmx(vcpu)->nested.nested_run_pending)
5562 return 0;
5563
5564 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5565 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5566 | GUEST_INTR_STATE_NMI));
5567 }
5568
5569 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5570 {
5571 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5572 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5573 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5574 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5575 }
5576
5577 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5578 {
5579 int ret;
5580
5581 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5582 PAGE_SIZE * 3);
5583 if (ret)
5584 return ret;
5585 kvm->arch.tss_addr = addr;
5586 return init_rmode_tss(kvm);
5587 }
5588
5589 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5590 {
5591 switch (vec) {
5592 case BP_VECTOR:
5593 /*
5594 * Update instruction length as we may reinject the exception
5595 * from user space while in guest debugging mode.
5596 */
5597 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5598 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5599 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5600 return false;
5601 /* fall through */
5602 case DB_VECTOR:
5603 if (vcpu->guest_debug &
5604 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5605 return false;
5606 /* fall through */
5607 case DE_VECTOR:
5608 case OF_VECTOR:
5609 case BR_VECTOR:
5610 case UD_VECTOR:
5611 case DF_VECTOR:
5612 case SS_VECTOR:
5613 case GP_VECTOR:
5614 case MF_VECTOR:
5615 return true;
5616 break;
5617 }
5618 return false;
5619 }
5620
5621 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5622 int vec, u32 err_code)
5623 {
5624 /*
5625 * Instruction with address size override prefix opcode 0x67
5626 * Cause the #SS fault with 0 error code in VM86 mode.
5627 */
5628 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5629 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5630 if (vcpu->arch.halt_request) {
5631 vcpu->arch.halt_request = 0;
5632 return kvm_vcpu_halt(vcpu);
5633 }
5634 return 1;
5635 }
5636 return 0;
5637 }
5638
5639 /*
5640 * Forward all other exceptions that are valid in real mode.
5641 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5642 * the required debugging infrastructure rework.
5643 */
5644 kvm_queue_exception(vcpu, vec);
5645 return 1;
5646 }
5647
5648 /*
5649 * Trigger machine check on the host. We assume all the MSRs are already set up
5650 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5651 * We pass a fake environment to the machine check handler because we want
5652 * the guest to be always treated like user space, no matter what context
5653 * it used internally.
5654 */
5655 static void kvm_machine_check(void)
5656 {
5657 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5658 struct pt_regs regs = {
5659 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5660 .flags = X86_EFLAGS_IF,
5661 };
5662
5663 do_machine_check(&regs, 0);
5664 #endif
5665 }
5666
5667 static int handle_machine_check(struct kvm_vcpu *vcpu)
5668 {
5669 /* already handled by vcpu_run */
5670 return 1;
5671 }
5672
5673 static int handle_exception(struct kvm_vcpu *vcpu)
5674 {
5675 struct vcpu_vmx *vmx = to_vmx(vcpu);
5676 struct kvm_run *kvm_run = vcpu->run;
5677 u32 intr_info, ex_no, error_code;
5678 unsigned long cr2, rip, dr6;
5679 u32 vect_info;
5680 enum emulation_result er;
5681
5682 vect_info = vmx->idt_vectoring_info;
5683 intr_info = vmx->exit_intr_info;
5684
5685 if (is_machine_check(intr_info))
5686 return handle_machine_check(vcpu);
5687
5688 if (is_nmi(intr_info))
5689 return 1; /* already handled by vmx_vcpu_run() */
5690
5691 if (is_invalid_opcode(intr_info)) {
5692 if (is_guest_mode(vcpu)) {
5693 kvm_queue_exception(vcpu, UD_VECTOR);
5694 return 1;
5695 }
5696 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5697 if (er != EMULATE_DONE)
5698 kvm_queue_exception(vcpu, UD_VECTOR);
5699 return 1;
5700 }
5701
5702 error_code = 0;
5703 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5704 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5705
5706 /*
5707 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5708 * MMIO, it is better to report an internal error.
5709 * See the comments in vmx_handle_exit.
5710 */
5711 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5712 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5713 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5714 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5715 vcpu->run->internal.ndata = 3;
5716 vcpu->run->internal.data[0] = vect_info;
5717 vcpu->run->internal.data[1] = intr_info;
5718 vcpu->run->internal.data[2] = error_code;
5719 return 0;
5720 }
5721
5722 if (is_page_fault(intr_info)) {
5723 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5724 /* EPT won't cause page fault directly */
5725 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5726 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5727 true);
5728 }
5729
5730 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5731
5732 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5733 return handle_rmode_exception(vcpu, ex_no, error_code);
5734
5735 switch (ex_no) {
5736 case AC_VECTOR:
5737 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5738 return 1;
5739 case DB_VECTOR:
5740 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5741 if (!(vcpu->guest_debug &
5742 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5743 vcpu->arch.dr6 &= ~15;
5744 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5745 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5746 skip_emulated_instruction(vcpu);
5747
5748 kvm_queue_exception(vcpu, DB_VECTOR);
5749 return 1;
5750 }
5751 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5752 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5753 /* fall through */
5754 case BP_VECTOR:
5755 /*
5756 * Update instruction length as we may reinject #BP from
5757 * user space while in guest debugging mode. Reading it for
5758 * #DB as well causes no harm, it is not used in that case.
5759 */
5760 vmx->vcpu.arch.event_exit_inst_len =
5761 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5762 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5763 rip = kvm_rip_read(vcpu);
5764 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5765 kvm_run->debug.arch.exception = ex_no;
5766 break;
5767 default:
5768 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5769 kvm_run->ex.exception = ex_no;
5770 kvm_run->ex.error_code = error_code;
5771 break;
5772 }
5773 return 0;
5774 }
5775
5776 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5777 {
5778 ++vcpu->stat.irq_exits;
5779 return 1;
5780 }
5781
5782 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5783 {
5784 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5785 return 0;
5786 }
5787
5788 static int handle_io(struct kvm_vcpu *vcpu)
5789 {
5790 unsigned long exit_qualification;
5791 int size, in, string, ret;
5792 unsigned port;
5793
5794 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5795 string = (exit_qualification & 16) != 0;
5796 in = (exit_qualification & 8) != 0;
5797
5798 ++vcpu->stat.io_exits;
5799
5800 if (string || in)
5801 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5802
5803 port = exit_qualification >> 16;
5804 size = (exit_qualification & 7) + 1;
5805
5806 ret = kvm_skip_emulated_instruction(vcpu);
5807
5808 /*
5809 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5810 * KVM_EXIT_DEBUG here.
5811 */
5812 return kvm_fast_pio_out(vcpu, size, port) && ret;
5813 }
5814
5815 static void
5816 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5817 {
5818 /*
5819 * Patch in the VMCALL instruction:
5820 */
5821 hypercall[0] = 0x0f;
5822 hypercall[1] = 0x01;
5823 hypercall[2] = 0xc1;
5824 }
5825
5826 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5827 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5828 {
5829 if (is_guest_mode(vcpu)) {
5830 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5831 unsigned long orig_val = val;
5832
5833 /*
5834 * We get here when L2 changed cr0 in a way that did not change
5835 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5836 * but did change L0 shadowed bits. So we first calculate the
5837 * effective cr0 value that L1 would like to write into the
5838 * hardware. It consists of the L2-owned bits from the new
5839 * value combined with the L1-owned bits from L1's guest_cr0.
5840 */
5841 val = (val & ~vmcs12->cr0_guest_host_mask) |
5842 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5843
5844 if (!nested_guest_cr0_valid(vcpu, val))
5845 return 1;
5846
5847 if (kvm_set_cr0(vcpu, val))
5848 return 1;
5849 vmcs_writel(CR0_READ_SHADOW, orig_val);
5850 return 0;
5851 } else {
5852 if (to_vmx(vcpu)->nested.vmxon &&
5853 !nested_host_cr0_valid(vcpu, val))
5854 return 1;
5855
5856 return kvm_set_cr0(vcpu, val);
5857 }
5858 }
5859
5860 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5861 {
5862 if (is_guest_mode(vcpu)) {
5863 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5864 unsigned long orig_val = val;
5865
5866 /* analogously to handle_set_cr0 */
5867 val = (val & ~vmcs12->cr4_guest_host_mask) |
5868 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5869 if (kvm_set_cr4(vcpu, val))
5870 return 1;
5871 vmcs_writel(CR4_READ_SHADOW, orig_val);
5872 return 0;
5873 } else
5874 return kvm_set_cr4(vcpu, val);
5875 }
5876
5877 static int handle_cr(struct kvm_vcpu *vcpu)
5878 {
5879 unsigned long exit_qualification, val;
5880 int cr;
5881 int reg;
5882 int err;
5883 int ret;
5884
5885 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5886 cr = exit_qualification & 15;
5887 reg = (exit_qualification >> 8) & 15;
5888 switch ((exit_qualification >> 4) & 3) {
5889 case 0: /* mov to cr */
5890 val = kvm_register_readl(vcpu, reg);
5891 trace_kvm_cr_write(cr, val);
5892 switch (cr) {
5893 case 0:
5894 err = handle_set_cr0(vcpu, val);
5895 return kvm_complete_insn_gp(vcpu, err);
5896 case 3:
5897 err = kvm_set_cr3(vcpu, val);
5898 return kvm_complete_insn_gp(vcpu, err);
5899 case 4:
5900 err = handle_set_cr4(vcpu, val);
5901 return kvm_complete_insn_gp(vcpu, err);
5902 case 8: {
5903 u8 cr8_prev = kvm_get_cr8(vcpu);
5904 u8 cr8 = (u8)val;
5905 err = kvm_set_cr8(vcpu, cr8);
5906 ret = kvm_complete_insn_gp(vcpu, err);
5907 if (lapic_in_kernel(vcpu))
5908 return ret;
5909 if (cr8_prev <= cr8)
5910 return ret;
5911 /*
5912 * TODO: we might be squashing a
5913 * KVM_GUESTDBG_SINGLESTEP-triggered
5914 * KVM_EXIT_DEBUG here.
5915 */
5916 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5917 return 0;
5918 }
5919 }
5920 break;
5921 case 2: /* clts */
5922 WARN_ONCE(1, "Guest should always own CR0.TS");
5923 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5924 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5925 return kvm_skip_emulated_instruction(vcpu);
5926 case 1: /*mov from cr*/
5927 switch (cr) {
5928 case 3:
5929 val = kvm_read_cr3(vcpu);
5930 kvm_register_write(vcpu, reg, val);
5931 trace_kvm_cr_read(cr, val);
5932 return kvm_skip_emulated_instruction(vcpu);
5933 case 8:
5934 val = kvm_get_cr8(vcpu);
5935 kvm_register_write(vcpu, reg, val);
5936 trace_kvm_cr_read(cr, val);
5937 return kvm_skip_emulated_instruction(vcpu);
5938 }
5939 break;
5940 case 3: /* lmsw */
5941 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5942 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5943 kvm_lmsw(vcpu, val);
5944
5945 return kvm_skip_emulated_instruction(vcpu);
5946 default:
5947 break;
5948 }
5949 vcpu->run->exit_reason = 0;
5950 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5951 (int)(exit_qualification >> 4) & 3, cr);
5952 return 0;
5953 }
5954
5955 static int handle_dr(struct kvm_vcpu *vcpu)
5956 {
5957 unsigned long exit_qualification;
5958 int dr, dr7, reg;
5959
5960 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5961 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5962
5963 /* First, if DR does not exist, trigger UD */
5964 if (!kvm_require_dr(vcpu, dr))
5965 return 1;
5966
5967 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5968 if (!kvm_require_cpl(vcpu, 0))
5969 return 1;
5970 dr7 = vmcs_readl(GUEST_DR7);
5971 if (dr7 & DR7_GD) {
5972 /*
5973 * As the vm-exit takes precedence over the debug trap, we
5974 * need to emulate the latter, either for the host or the
5975 * guest debugging itself.
5976 */
5977 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5978 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5979 vcpu->run->debug.arch.dr7 = dr7;
5980 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5981 vcpu->run->debug.arch.exception = DB_VECTOR;
5982 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5983 return 0;
5984 } else {
5985 vcpu->arch.dr6 &= ~15;
5986 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5987 kvm_queue_exception(vcpu, DB_VECTOR);
5988 return 1;
5989 }
5990 }
5991
5992 if (vcpu->guest_debug == 0) {
5993 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5994 CPU_BASED_MOV_DR_EXITING);
5995
5996 /*
5997 * No more DR vmexits; force a reload of the debug registers
5998 * and reenter on this instruction. The next vmexit will
5999 * retrieve the full state of the debug registers.
6000 */
6001 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6002 return 1;
6003 }
6004
6005 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6006 if (exit_qualification & TYPE_MOV_FROM_DR) {
6007 unsigned long val;
6008
6009 if (kvm_get_dr(vcpu, dr, &val))
6010 return 1;
6011 kvm_register_write(vcpu, reg, val);
6012 } else
6013 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6014 return 1;
6015
6016 return kvm_skip_emulated_instruction(vcpu);
6017 }
6018
6019 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6020 {
6021 return vcpu->arch.dr6;
6022 }
6023
6024 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6025 {
6026 }
6027
6028 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6029 {
6030 get_debugreg(vcpu->arch.db[0], 0);
6031 get_debugreg(vcpu->arch.db[1], 1);
6032 get_debugreg(vcpu->arch.db[2], 2);
6033 get_debugreg(vcpu->arch.db[3], 3);
6034 get_debugreg(vcpu->arch.dr6, 6);
6035 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6036
6037 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6038 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6039 }
6040
6041 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6042 {
6043 vmcs_writel(GUEST_DR7, val);
6044 }
6045
6046 static int handle_cpuid(struct kvm_vcpu *vcpu)
6047 {
6048 return kvm_emulate_cpuid(vcpu);
6049 }
6050
6051 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6052 {
6053 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6054 struct msr_data msr_info;
6055
6056 msr_info.index = ecx;
6057 msr_info.host_initiated = false;
6058 if (vmx_get_msr(vcpu, &msr_info)) {
6059 trace_kvm_msr_read_ex(ecx);
6060 kvm_inject_gp(vcpu, 0);
6061 return 1;
6062 }
6063
6064 trace_kvm_msr_read(ecx, msr_info.data);
6065
6066 /* FIXME: handling of bits 32:63 of rax, rdx */
6067 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6068 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6069 return kvm_skip_emulated_instruction(vcpu);
6070 }
6071
6072 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6073 {
6074 struct msr_data msr;
6075 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6076 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6077 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6078
6079 msr.data = data;
6080 msr.index = ecx;
6081 msr.host_initiated = false;
6082 if (kvm_set_msr(vcpu, &msr) != 0) {
6083 trace_kvm_msr_write_ex(ecx, data);
6084 kvm_inject_gp(vcpu, 0);
6085 return 1;
6086 }
6087
6088 trace_kvm_msr_write(ecx, data);
6089 return kvm_skip_emulated_instruction(vcpu);
6090 }
6091
6092 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6093 {
6094 kvm_apic_update_ppr(vcpu);
6095 return 1;
6096 }
6097
6098 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6099 {
6100 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6101 CPU_BASED_VIRTUAL_INTR_PENDING);
6102
6103 kvm_make_request(KVM_REQ_EVENT, vcpu);
6104
6105 ++vcpu->stat.irq_window_exits;
6106 return 1;
6107 }
6108
6109 static int handle_halt(struct kvm_vcpu *vcpu)
6110 {
6111 return kvm_emulate_halt(vcpu);
6112 }
6113
6114 static int handle_vmcall(struct kvm_vcpu *vcpu)
6115 {
6116 return kvm_emulate_hypercall(vcpu);
6117 }
6118
6119 static int handle_invd(struct kvm_vcpu *vcpu)
6120 {
6121 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6122 }
6123
6124 static int handle_invlpg(struct kvm_vcpu *vcpu)
6125 {
6126 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6127
6128 kvm_mmu_invlpg(vcpu, exit_qualification);
6129 return kvm_skip_emulated_instruction(vcpu);
6130 }
6131
6132 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6133 {
6134 int err;
6135
6136 err = kvm_rdpmc(vcpu);
6137 return kvm_complete_insn_gp(vcpu, err);
6138 }
6139
6140 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6141 {
6142 return kvm_emulate_wbinvd(vcpu);
6143 }
6144
6145 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6146 {
6147 u64 new_bv = kvm_read_edx_eax(vcpu);
6148 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6149
6150 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6151 return kvm_skip_emulated_instruction(vcpu);
6152 return 1;
6153 }
6154
6155 static int handle_xsaves(struct kvm_vcpu *vcpu)
6156 {
6157 kvm_skip_emulated_instruction(vcpu);
6158 WARN(1, "this should never happen\n");
6159 return 1;
6160 }
6161
6162 static int handle_xrstors(struct kvm_vcpu *vcpu)
6163 {
6164 kvm_skip_emulated_instruction(vcpu);
6165 WARN(1, "this should never happen\n");
6166 return 1;
6167 }
6168
6169 static int handle_apic_access(struct kvm_vcpu *vcpu)
6170 {
6171 if (likely(fasteoi)) {
6172 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6173 int access_type, offset;
6174
6175 access_type = exit_qualification & APIC_ACCESS_TYPE;
6176 offset = exit_qualification & APIC_ACCESS_OFFSET;
6177 /*
6178 * Sane guest uses MOV to write EOI, with written value
6179 * not cared. So make a short-circuit here by avoiding
6180 * heavy instruction emulation.
6181 */
6182 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6183 (offset == APIC_EOI)) {
6184 kvm_lapic_set_eoi(vcpu);
6185 return kvm_skip_emulated_instruction(vcpu);
6186 }
6187 }
6188 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6189 }
6190
6191 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6192 {
6193 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6194 int vector = exit_qualification & 0xff;
6195
6196 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6197 kvm_apic_set_eoi_accelerated(vcpu, vector);
6198 return 1;
6199 }
6200
6201 static int handle_apic_write(struct kvm_vcpu *vcpu)
6202 {
6203 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6204 u32 offset = exit_qualification & 0xfff;
6205
6206 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6207 kvm_apic_write_nodecode(vcpu, offset);
6208 return 1;
6209 }
6210
6211 static int handle_task_switch(struct kvm_vcpu *vcpu)
6212 {
6213 struct vcpu_vmx *vmx = to_vmx(vcpu);
6214 unsigned long exit_qualification;
6215 bool has_error_code = false;
6216 u32 error_code = 0;
6217 u16 tss_selector;
6218 int reason, type, idt_v, idt_index;
6219
6220 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6221 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6222 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6223
6224 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6225
6226 reason = (u32)exit_qualification >> 30;
6227 if (reason == TASK_SWITCH_GATE && idt_v) {
6228 switch (type) {
6229 case INTR_TYPE_NMI_INTR:
6230 vcpu->arch.nmi_injected = false;
6231 vmx_set_nmi_mask(vcpu, true);
6232 break;
6233 case INTR_TYPE_EXT_INTR:
6234 case INTR_TYPE_SOFT_INTR:
6235 kvm_clear_interrupt_queue(vcpu);
6236 break;
6237 case INTR_TYPE_HARD_EXCEPTION:
6238 if (vmx->idt_vectoring_info &
6239 VECTORING_INFO_DELIVER_CODE_MASK) {
6240 has_error_code = true;
6241 error_code =
6242 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6243 }
6244 /* fall through */
6245 case INTR_TYPE_SOFT_EXCEPTION:
6246 kvm_clear_exception_queue(vcpu);
6247 break;
6248 default:
6249 break;
6250 }
6251 }
6252 tss_selector = exit_qualification;
6253
6254 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6255 type != INTR_TYPE_EXT_INTR &&
6256 type != INTR_TYPE_NMI_INTR))
6257 skip_emulated_instruction(vcpu);
6258
6259 if (kvm_task_switch(vcpu, tss_selector,
6260 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6261 has_error_code, error_code) == EMULATE_FAIL) {
6262 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6263 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6264 vcpu->run->internal.ndata = 0;
6265 return 0;
6266 }
6267
6268 /*
6269 * TODO: What about debug traps on tss switch?
6270 * Are we supposed to inject them and update dr6?
6271 */
6272
6273 return 1;
6274 }
6275
6276 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6277 {
6278 unsigned long exit_qualification;
6279 gpa_t gpa;
6280 u32 error_code;
6281
6282 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6283
6284 /*
6285 * EPT violation happened while executing iret from NMI,
6286 * "blocked by NMI" bit has to be set before next VM entry.
6287 * There are errata that may cause this bit to not be set:
6288 * AAK134, BY25.
6289 */
6290 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6291 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6292 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6293
6294 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6295 trace_kvm_page_fault(gpa, exit_qualification);
6296
6297 /* Is it a read fault? */
6298 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6299 ? PFERR_USER_MASK : 0;
6300 /* Is it a write fault? */
6301 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6302 ? PFERR_WRITE_MASK : 0;
6303 /* Is it a fetch fault? */
6304 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6305 ? PFERR_FETCH_MASK : 0;
6306 /* ept page table entry is present? */
6307 error_code |= (exit_qualification &
6308 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6309 EPT_VIOLATION_EXECUTABLE))
6310 ? PFERR_PRESENT_MASK : 0;
6311
6312 vcpu->arch.gpa_available = true;
6313 vcpu->arch.exit_qualification = exit_qualification;
6314
6315 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6316 }
6317
6318 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6319 {
6320 int ret;
6321 gpa_t gpa;
6322
6323 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6324 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6325 trace_kvm_fast_mmio(gpa);
6326 return kvm_skip_emulated_instruction(vcpu);
6327 }
6328
6329 ret = handle_mmio_page_fault(vcpu, gpa, true);
6330 vcpu->arch.gpa_available = true;
6331 if (likely(ret == RET_MMIO_PF_EMULATE))
6332 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6333 EMULATE_DONE;
6334
6335 if (unlikely(ret == RET_MMIO_PF_INVALID))
6336 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6337
6338 if (unlikely(ret == RET_MMIO_PF_RETRY))
6339 return 1;
6340
6341 /* It is the real ept misconfig */
6342 WARN_ON(1);
6343
6344 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6345 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6346
6347 return 0;
6348 }
6349
6350 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6351 {
6352 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6353 CPU_BASED_VIRTUAL_NMI_PENDING);
6354 ++vcpu->stat.nmi_window_exits;
6355 kvm_make_request(KVM_REQ_EVENT, vcpu);
6356
6357 return 1;
6358 }
6359
6360 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6361 {
6362 struct vcpu_vmx *vmx = to_vmx(vcpu);
6363 enum emulation_result err = EMULATE_DONE;
6364 int ret = 1;
6365 u32 cpu_exec_ctrl;
6366 bool intr_window_requested;
6367 unsigned count = 130;
6368
6369 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6370 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6371
6372 while (vmx->emulation_required && count-- != 0) {
6373 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6374 return handle_interrupt_window(&vmx->vcpu);
6375
6376 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6377 return 1;
6378
6379 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6380
6381 if (err == EMULATE_USER_EXIT) {
6382 ++vcpu->stat.mmio_exits;
6383 ret = 0;
6384 goto out;
6385 }
6386
6387 if (err != EMULATE_DONE) {
6388 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6389 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6390 vcpu->run->internal.ndata = 0;
6391 return 0;
6392 }
6393
6394 if (vcpu->arch.halt_request) {
6395 vcpu->arch.halt_request = 0;
6396 ret = kvm_vcpu_halt(vcpu);
6397 goto out;
6398 }
6399
6400 if (signal_pending(current))
6401 goto out;
6402 if (need_resched())
6403 schedule();
6404 }
6405
6406 out:
6407 return ret;
6408 }
6409
6410 static int __grow_ple_window(int val)
6411 {
6412 if (ple_window_grow < 1)
6413 return ple_window;
6414
6415 val = min(val, ple_window_actual_max);
6416
6417 if (ple_window_grow < ple_window)
6418 val *= ple_window_grow;
6419 else
6420 val += ple_window_grow;
6421
6422 return val;
6423 }
6424
6425 static int __shrink_ple_window(int val, int modifier, int minimum)
6426 {
6427 if (modifier < 1)
6428 return ple_window;
6429
6430 if (modifier < ple_window)
6431 val /= modifier;
6432 else
6433 val -= modifier;
6434
6435 return max(val, minimum);
6436 }
6437
6438 static void grow_ple_window(struct kvm_vcpu *vcpu)
6439 {
6440 struct vcpu_vmx *vmx = to_vmx(vcpu);
6441 int old = vmx->ple_window;
6442
6443 vmx->ple_window = __grow_ple_window(old);
6444
6445 if (vmx->ple_window != old)
6446 vmx->ple_window_dirty = true;
6447
6448 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6449 }
6450
6451 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6452 {
6453 struct vcpu_vmx *vmx = to_vmx(vcpu);
6454 int old = vmx->ple_window;
6455
6456 vmx->ple_window = __shrink_ple_window(old,
6457 ple_window_shrink, ple_window);
6458
6459 if (vmx->ple_window != old)
6460 vmx->ple_window_dirty = true;
6461
6462 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6463 }
6464
6465 /*
6466 * ple_window_actual_max is computed to be one grow_ple_window() below
6467 * ple_window_max. (See __grow_ple_window for the reason.)
6468 * This prevents overflows, because ple_window_max is int.
6469 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6470 * this process.
6471 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6472 */
6473 static void update_ple_window_actual_max(void)
6474 {
6475 ple_window_actual_max =
6476 __shrink_ple_window(max(ple_window_max, ple_window),
6477 ple_window_grow, INT_MIN);
6478 }
6479
6480 /*
6481 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6482 */
6483 static void wakeup_handler(void)
6484 {
6485 struct kvm_vcpu *vcpu;
6486 int cpu = smp_processor_id();
6487
6488 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6489 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6490 blocked_vcpu_list) {
6491 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6492
6493 if (pi_test_on(pi_desc) == 1)
6494 kvm_vcpu_kick(vcpu);
6495 }
6496 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6497 }
6498
6499 void vmx_enable_tdp(void)
6500 {
6501 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6502 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6503 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6504 0ull, VMX_EPT_EXECUTABLE_MASK,
6505 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6506 VMX_EPT_RWX_MASK);
6507
6508 ept_set_mmio_spte_mask();
6509 kvm_enable_tdp();
6510 }
6511
6512 static __init int hardware_setup(void)
6513 {
6514 int r = -ENOMEM, i, msr;
6515
6516 rdmsrl_safe(MSR_EFER, &host_efer);
6517
6518 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6519 kvm_define_shared_msr(i, vmx_msr_index[i]);
6520
6521 for (i = 0; i < VMX_BITMAP_NR; i++) {
6522 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6523 if (!vmx_bitmap[i])
6524 goto out;
6525 }
6526
6527 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6528 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6529 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6530
6531 /*
6532 * Allow direct access to the PC debug port (it is often used for I/O
6533 * delays, but the vmexits simply slow things down).
6534 */
6535 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6536 clear_bit(0x80, vmx_io_bitmap_a);
6537
6538 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6539
6540 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6541 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6542
6543 if (setup_vmcs_config(&vmcs_config) < 0) {
6544 r = -EIO;
6545 goto out;
6546 }
6547
6548 if (boot_cpu_has(X86_FEATURE_NX))
6549 kvm_enable_efer_bits(EFER_NX);
6550
6551 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6552 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6553 enable_vpid = 0;
6554
6555 if (!cpu_has_vmx_shadow_vmcs())
6556 enable_shadow_vmcs = 0;
6557 if (enable_shadow_vmcs)
6558 init_vmcs_shadow_fields();
6559
6560 if (!cpu_has_vmx_ept() ||
6561 !cpu_has_vmx_ept_4levels()) {
6562 enable_ept = 0;
6563 enable_unrestricted_guest = 0;
6564 enable_ept_ad_bits = 0;
6565 }
6566
6567 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6568 enable_ept_ad_bits = 0;
6569
6570 if (!cpu_has_vmx_unrestricted_guest())
6571 enable_unrestricted_guest = 0;
6572
6573 if (!cpu_has_vmx_flexpriority())
6574 flexpriority_enabled = 0;
6575
6576 /*
6577 * set_apic_access_page_addr() is used to reload apic access
6578 * page upon invalidation. No need to do anything if not
6579 * using the APIC_ACCESS_ADDR VMCS field.
6580 */
6581 if (!flexpriority_enabled)
6582 kvm_x86_ops->set_apic_access_page_addr = NULL;
6583
6584 if (!cpu_has_vmx_tpr_shadow())
6585 kvm_x86_ops->update_cr8_intercept = NULL;
6586
6587 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6588 kvm_disable_largepages();
6589
6590 if (!cpu_has_vmx_ple())
6591 ple_gap = 0;
6592
6593 if (!cpu_has_vmx_apicv()) {
6594 enable_apicv = 0;
6595 kvm_x86_ops->sync_pir_to_irr = NULL;
6596 }
6597
6598 if (cpu_has_vmx_tsc_scaling()) {
6599 kvm_has_tsc_control = true;
6600 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6601 kvm_tsc_scaling_ratio_frac_bits = 48;
6602 }
6603
6604 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6605 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6606 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6607 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6608 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6609 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6610
6611 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6612 vmx_msr_bitmap_legacy, PAGE_SIZE);
6613 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6614 vmx_msr_bitmap_longmode, PAGE_SIZE);
6615 memcpy(vmx_msr_bitmap_legacy_x2apic,
6616 vmx_msr_bitmap_legacy, PAGE_SIZE);
6617 memcpy(vmx_msr_bitmap_longmode_x2apic,
6618 vmx_msr_bitmap_longmode, PAGE_SIZE);
6619
6620 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6621
6622 for (msr = 0x800; msr <= 0x8ff; msr++) {
6623 if (msr == 0x839 /* TMCCT */)
6624 continue;
6625 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6626 }
6627
6628 /*
6629 * TPR reads and writes can be virtualized even if virtual interrupt
6630 * delivery is not in use.
6631 */
6632 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6633 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6634
6635 /* EOI */
6636 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6637 /* SELF-IPI */
6638 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6639
6640 if (enable_ept)
6641 vmx_enable_tdp();
6642 else
6643 kvm_disable_tdp();
6644
6645 update_ple_window_actual_max();
6646
6647 /*
6648 * Only enable PML when hardware supports PML feature, and both EPT
6649 * and EPT A/D bit features are enabled -- PML depends on them to work.
6650 */
6651 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6652 enable_pml = 0;
6653
6654 if (!enable_pml) {
6655 kvm_x86_ops->slot_enable_log_dirty = NULL;
6656 kvm_x86_ops->slot_disable_log_dirty = NULL;
6657 kvm_x86_ops->flush_log_dirty = NULL;
6658 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6659 }
6660
6661 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6662 u64 vmx_msr;
6663
6664 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6665 cpu_preemption_timer_multi =
6666 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6667 } else {
6668 kvm_x86_ops->set_hv_timer = NULL;
6669 kvm_x86_ops->cancel_hv_timer = NULL;
6670 }
6671
6672 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6673
6674 kvm_mce_cap_supported |= MCG_LMCE_P;
6675
6676 return alloc_kvm_area();
6677
6678 out:
6679 for (i = 0; i < VMX_BITMAP_NR; i++)
6680 free_page((unsigned long)vmx_bitmap[i]);
6681
6682 return r;
6683 }
6684
6685 static __exit void hardware_unsetup(void)
6686 {
6687 int i;
6688
6689 for (i = 0; i < VMX_BITMAP_NR; i++)
6690 free_page((unsigned long)vmx_bitmap[i]);
6691
6692 free_kvm_area();
6693 }
6694
6695 /*
6696 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6697 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6698 */
6699 static int handle_pause(struct kvm_vcpu *vcpu)
6700 {
6701 if (ple_gap)
6702 grow_ple_window(vcpu);
6703
6704 kvm_vcpu_on_spin(vcpu);
6705 return kvm_skip_emulated_instruction(vcpu);
6706 }
6707
6708 static int handle_nop(struct kvm_vcpu *vcpu)
6709 {
6710 return kvm_skip_emulated_instruction(vcpu);
6711 }
6712
6713 static int handle_mwait(struct kvm_vcpu *vcpu)
6714 {
6715 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6716 return handle_nop(vcpu);
6717 }
6718
6719 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6720 {
6721 return 1;
6722 }
6723
6724 static int handle_monitor(struct kvm_vcpu *vcpu)
6725 {
6726 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6727 return handle_nop(vcpu);
6728 }
6729
6730 /*
6731 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6732 * We could reuse a single VMCS for all the L2 guests, but we also want the
6733 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6734 * allows keeping them loaded on the processor, and in the future will allow
6735 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6736 * every entry if they never change.
6737 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6738 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6739 *
6740 * The following functions allocate and free a vmcs02 in this pool.
6741 */
6742
6743 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6744 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6745 {
6746 struct vmcs02_list *item;
6747 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6748 if (item->vmptr == vmx->nested.current_vmptr) {
6749 list_move(&item->list, &vmx->nested.vmcs02_pool);
6750 return &item->vmcs02;
6751 }
6752
6753 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6754 /* Recycle the least recently used VMCS. */
6755 item = list_last_entry(&vmx->nested.vmcs02_pool,
6756 struct vmcs02_list, list);
6757 item->vmptr = vmx->nested.current_vmptr;
6758 list_move(&item->list, &vmx->nested.vmcs02_pool);
6759 return &item->vmcs02;
6760 }
6761
6762 /* Create a new VMCS */
6763 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6764 if (!item)
6765 return NULL;
6766 item->vmcs02.vmcs = alloc_vmcs();
6767 item->vmcs02.shadow_vmcs = NULL;
6768 if (!item->vmcs02.vmcs) {
6769 kfree(item);
6770 return NULL;
6771 }
6772 loaded_vmcs_init(&item->vmcs02);
6773 item->vmptr = vmx->nested.current_vmptr;
6774 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6775 vmx->nested.vmcs02_num++;
6776 return &item->vmcs02;
6777 }
6778
6779 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6780 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6781 {
6782 struct vmcs02_list *item;
6783 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6784 if (item->vmptr == vmptr) {
6785 free_loaded_vmcs(&item->vmcs02);
6786 list_del(&item->list);
6787 kfree(item);
6788 vmx->nested.vmcs02_num--;
6789 return;
6790 }
6791 }
6792
6793 /*
6794 * Free all VMCSs saved for this vcpu, except the one pointed by
6795 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6796 * must be &vmx->vmcs01.
6797 */
6798 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6799 {
6800 struct vmcs02_list *item, *n;
6801
6802 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6803 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6804 /*
6805 * Something will leak if the above WARN triggers. Better than
6806 * a use-after-free.
6807 */
6808 if (vmx->loaded_vmcs == &item->vmcs02)
6809 continue;
6810
6811 free_loaded_vmcs(&item->vmcs02);
6812 list_del(&item->list);
6813 kfree(item);
6814 vmx->nested.vmcs02_num--;
6815 }
6816 }
6817
6818 /*
6819 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6820 * set the success or error code of an emulated VMX instruction, as specified
6821 * by Vol 2B, VMX Instruction Reference, "Conventions".
6822 */
6823 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6824 {
6825 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6826 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6827 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6828 }
6829
6830 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6831 {
6832 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6833 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6834 X86_EFLAGS_SF | X86_EFLAGS_OF))
6835 | X86_EFLAGS_CF);
6836 }
6837
6838 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6839 u32 vm_instruction_error)
6840 {
6841 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6842 /*
6843 * failValid writes the error number to the current VMCS, which
6844 * can't be done there isn't a current VMCS.
6845 */
6846 nested_vmx_failInvalid(vcpu);
6847 return;
6848 }
6849 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6850 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6851 X86_EFLAGS_SF | X86_EFLAGS_OF))
6852 | X86_EFLAGS_ZF);
6853 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6854 /*
6855 * We don't need to force a shadow sync because
6856 * VM_INSTRUCTION_ERROR is not shadowed
6857 */
6858 }
6859
6860 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6861 {
6862 /* TODO: not to reset guest simply here. */
6863 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6864 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6865 }
6866
6867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6868 {
6869 struct vcpu_vmx *vmx =
6870 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6871
6872 vmx->nested.preemption_timer_expired = true;
6873 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6874 kvm_vcpu_kick(&vmx->vcpu);
6875
6876 return HRTIMER_NORESTART;
6877 }
6878
6879 /*
6880 * Decode the memory-address operand of a vmx instruction, as recorded on an
6881 * exit caused by such an instruction (run by a guest hypervisor).
6882 * On success, returns 0. When the operand is invalid, returns 1 and throws
6883 * #UD or #GP.
6884 */
6885 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6886 unsigned long exit_qualification,
6887 u32 vmx_instruction_info, bool wr, gva_t *ret)
6888 {
6889 gva_t off;
6890 bool exn;
6891 struct kvm_segment s;
6892
6893 /*
6894 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6895 * Execution", on an exit, vmx_instruction_info holds most of the
6896 * addressing components of the operand. Only the displacement part
6897 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6898 * For how an actual address is calculated from all these components,
6899 * refer to Vol. 1, "Operand Addressing".
6900 */
6901 int scaling = vmx_instruction_info & 3;
6902 int addr_size = (vmx_instruction_info >> 7) & 7;
6903 bool is_reg = vmx_instruction_info & (1u << 10);
6904 int seg_reg = (vmx_instruction_info >> 15) & 7;
6905 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6906 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6907 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6908 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6909
6910 if (is_reg) {
6911 kvm_queue_exception(vcpu, UD_VECTOR);
6912 return 1;
6913 }
6914
6915 /* Addr = segment_base + offset */
6916 /* offset = base + [index * scale] + displacement */
6917 off = exit_qualification; /* holds the displacement */
6918 if (base_is_valid)
6919 off += kvm_register_read(vcpu, base_reg);
6920 if (index_is_valid)
6921 off += kvm_register_read(vcpu, index_reg)<<scaling;
6922 vmx_get_segment(vcpu, &s, seg_reg);
6923 *ret = s.base + off;
6924
6925 if (addr_size == 1) /* 32 bit */
6926 *ret &= 0xffffffff;
6927
6928 /* Checks for #GP/#SS exceptions. */
6929 exn = false;
6930 if (is_long_mode(vcpu)) {
6931 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6932 * non-canonical form. This is the only check on the memory
6933 * destination for long mode!
6934 */
6935 exn = is_noncanonical_address(*ret);
6936 } else if (is_protmode(vcpu)) {
6937 /* Protected mode: apply checks for segment validity in the
6938 * following order:
6939 * - segment type check (#GP(0) may be thrown)
6940 * - usability check (#GP(0)/#SS(0))
6941 * - limit check (#GP(0)/#SS(0))
6942 */
6943 if (wr)
6944 /* #GP(0) if the destination operand is located in a
6945 * read-only data segment or any code segment.
6946 */
6947 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6948 else
6949 /* #GP(0) if the source operand is located in an
6950 * execute-only code segment
6951 */
6952 exn = ((s.type & 0xa) == 8);
6953 if (exn) {
6954 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6955 return 1;
6956 }
6957 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6958 */
6959 exn = (s.unusable != 0);
6960 /* Protected mode: #GP(0)/#SS(0) if the memory
6961 * operand is outside the segment limit.
6962 */
6963 exn = exn || (off + sizeof(u64) > s.limit);
6964 }
6965 if (exn) {
6966 kvm_queue_exception_e(vcpu,
6967 seg_reg == VCPU_SREG_SS ?
6968 SS_VECTOR : GP_VECTOR,
6969 0);
6970 return 1;
6971 }
6972
6973 return 0;
6974 }
6975
6976 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6977 {
6978 gva_t gva;
6979 struct x86_exception e;
6980
6981 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6982 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6983 return 1;
6984
6985 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6986 sizeof(*vmpointer), &e)) {
6987 kvm_inject_page_fault(vcpu, &e);
6988 return 1;
6989 }
6990
6991 return 0;
6992 }
6993
6994 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6995 {
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 struct vmcs *shadow_vmcs;
6998
6999 if (cpu_has_vmx_msr_bitmap()) {
7000 vmx->nested.msr_bitmap =
7001 (unsigned long *)__get_free_page(GFP_KERNEL);
7002 if (!vmx->nested.msr_bitmap)
7003 goto out_msr_bitmap;
7004 }
7005
7006 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7007 if (!vmx->nested.cached_vmcs12)
7008 goto out_cached_vmcs12;
7009
7010 if (enable_shadow_vmcs) {
7011 shadow_vmcs = alloc_vmcs();
7012 if (!shadow_vmcs)
7013 goto out_shadow_vmcs;
7014 /* mark vmcs as shadow */
7015 shadow_vmcs->revision_id |= (1u << 31);
7016 /* init shadow vmcs */
7017 vmcs_clear(shadow_vmcs);
7018 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7019 }
7020
7021 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7022 vmx->nested.vmcs02_num = 0;
7023
7024 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7025 HRTIMER_MODE_REL_PINNED);
7026 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7027
7028 vmx->nested.vmxon = true;
7029 return 0;
7030
7031 out_shadow_vmcs:
7032 kfree(vmx->nested.cached_vmcs12);
7033
7034 out_cached_vmcs12:
7035 free_page((unsigned long)vmx->nested.msr_bitmap);
7036
7037 out_msr_bitmap:
7038 return -ENOMEM;
7039 }
7040
7041 /*
7042 * Emulate the VMXON instruction.
7043 * Currently, we just remember that VMX is active, and do not save or even
7044 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7045 * do not currently need to store anything in that guest-allocated memory
7046 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7047 * argument is different from the VMXON pointer (which the spec says they do).
7048 */
7049 static int handle_vmon(struct kvm_vcpu *vcpu)
7050 {
7051 int ret;
7052 gpa_t vmptr;
7053 struct page *page;
7054 struct vcpu_vmx *vmx = to_vmx(vcpu);
7055 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7056 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7057
7058 /*
7059 * The Intel VMX Instruction Reference lists a bunch of bits that are
7060 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7061 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7062 * Otherwise, we should fail with #UD. But most faulting conditions
7063 * have already been checked by hardware, prior to the VM-exit for
7064 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7065 * that bit set to 1 in non-root mode.
7066 */
7067 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7068 kvm_queue_exception(vcpu, UD_VECTOR);
7069 return 1;
7070 }
7071
7072 if (vmx->nested.vmxon) {
7073 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7074 return kvm_skip_emulated_instruction(vcpu);
7075 }
7076
7077 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7078 != VMXON_NEEDED_FEATURES) {
7079 kvm_inject_gp(vcpu, 0);
7080 return 1;
7081 }
7082
7083 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7084 return 1;
7085
7086 /*
7087 * SDM 3: 24.11.5
7088 * The first 4 bytes of VMXON region contain the supported
7089 * VMCS revision identifier
7090 *
7091 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7092 * which replaces physical address width with 32
7093 */
7094 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7095 nested_vmx_failInvalid(vcpu);
7096 return kvm_skip_emulated_instruction(vcpu);
7097 }
7098
7099 page = nested_get_page(vcpu, vmptr);
7100 if (page == NULL) {
7101 nested_vmx_failInvalid(vcpu);
7102 return kvm_skip_emulated_instruction(vcpu);
7103 }
7104 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7105 kunmap(page);
7106 nested_release_page_clean(page);
7107 nested_vmx_failInvalid(vcpu);
7108 return kvm_skip_emulated_instruction(vcpu);
7109 }
7110 kunmap(page);
7111 nested_release_page_clean(page);
7112
7113 vmx->nested.vmxon_ptr = vmptr;
7114 ret = enter_vmx_operation(vcpu);
7115 if (ret)
7116 return ret;
7117
7118 nested_vmx_succeed(vcpu);
7119 return kvm_skip_emulated_instruction(vcpu);
7120 }
7121
7122 /*
7123 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7124 * for running VMX instructions (except VMXON, whose prerequisites are
7125 * slightly different). It also specifies what exception to inject otherwise.
7126 * Note that many of these exceptions have priority over VM exits, so they
7127 * don't have to be checked again here.
7128 */
7129 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7130 {
7131 if (!to_vmx(vcpu)->nested.vmxon) {
7132 kvm_queue_exception(vcpu, UD_VECTOR);
7133 return 0;
7134 }
7135 return 1;
7136 }
7137
7138 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7139 {
7140 if (vmx->nested.current_vmptr == -1ull)
7141 return;
7142
7143 /* current_vmptr and current_vmcs12 are always set/reset together */
7144 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7145 return;
7146
7147 if (enable_shadow_vmcs) {
7148 /* copy to memory all shadowed fields in case
7149 they were modified */
7150 copy_shadow_to_vmcs12(vmx);
7151 vmx->nested.sync_shadow_vmcs = false;
7152 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7153 SECONDARY_EXEC_SHADOW_VMCS);
7154 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7155 }
7156 vmx->nested.posted_intr_nv = -1;
7157
7158 /* Flush VMCS12 to guest memory */
7159 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7160 VMCS12_SIZE);
7161
7162 kunmap(vmx->nested.current_vmcs12_page);
7163 nested_release_page(vmx->nested.current_vmcs12_page);
7164 vmx->nested.current_vmptr = -1ull;
7165 vmx->nested.current_vmcs12 = NULL;
7166 }
7167
7168 /*
7169 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7170 * just stops using VMX.
7171 */
7172 static void free_nested(struct vcpu_vmx *vmx)
7173 {
7174 if (!vmx->nested.vmxon)
7175 return;
7176
7177 vmx->nested.vmxon = false;
7178 free_vpid(vmx->nested.vpid02);
7179 nested_release_vmcs12(vmx);
7180 if (vmx->nested.msr_bitmap) {
7181 free_page((unsigned long)vmx->nested.msr_bitmap);
7182 vmx->nested.msr_bitmap = NULL;
7183 }
7184 if (enable_shadow_vmcs) {
7185 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7186 free_vmcs(vmx->vmcs01.shadow_vmcs);
7187 vmx->vmcs01.shadow_vmcs = NULL;
7188 }
7189 kfree(vmx->nested.cached_vmcs12);
7190 /* Unpin physical memory we referred to in current vmcs02 */
7191 if (vmx->nested.apic_access_page) {
7192 nested_release_page(vmx->nested.apic_access_page);
7193 vmx->nested.apic_access_page = NULL;
7194 }
7195 if (vmx->nested.virtual_apic_page) {
7196 nested_release_page(vmx->nested.virtual_apic_page);
7197 vmx->nested.virtual_apic_page = NULL;
7198 }
7199 if (vmx->nested.pi_desc_page) {
7200 kunmap(vmx->nested.pi_desc_page);
7201 nested_release_page(vmx->nested.pi_desc_page);
7202 vmx->nested.pi_desc_page = NULL;
7203 vmx->nested.pi_desc = NULL;
7204 }
7205
7206 nested_free_all_saved_vmcss(vmx);
7207 }
7208
7209 /* Emulate the VMXOFF instruction */
7210 static int handle_vmoff(struct kvm_vcpu *vcpu)
7211 {
7212 if (!nested_vmx_check_permission(vcpu))
7213 return 1;
7214 free_nested(to_vmx(vcpu));
7215 nested_vmx_succeed(vcpu);
7216 return kvm_skip_emulated_instruction(vcpu);
7217 }
7218
7219 /* Emulate the VMCLEAR instruction */
7220 static int handle_vmclear(struct kvm_vcpu *vcpu)
7221 {
7222 struct vcpu_vmx *vmx = to_vmx(vcpu);
7223 u32 zero = 0;
7224 gpa_t vmptr;
7225
7226 if (!nested_vmx_check_permission(vcpu))
7227 return 1;
7228
7229 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7230 return 1;
7231
7232 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7233 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7234 return kvm_skip_emulated_instruction(vcpu);
7235 }
7236
7237 if (vmptr == vmx->nested.vmxon_ptr) {
7238 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7239 return kvm_skip_emulated_instruction(vcpu);
7240 }
7241
7242 if (vmptr == vmx->nested.current_vmptr)
7243 nested_release_vmcs12(vmx);
7244
7245 kvm_vcpu_write_guest(vcpu,
7246 vmptr + offsetof(struct vmcs12, launch_state),
7247 &zero, sizeof(zero));
7248
7249 nested_free_vmcs02(vmx, vmptr);
7250
7251 nested_vmx_succeed(vcpu);
7252 return kvm_skip_emulated_instruction(vcpu);
7253 }
7254
7255 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7256
7257 /* Emulate the VMLAUNCH instruction */
7258 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7259 {
7260 return nested_vmx_run(vcpu, true);
7261 }
7262
7263 /* Emulate the VMRESUME instruction */
7264 static int handle_vmresume(struct kvm_vcpu *vcpu)
7265 {
7266
7267 return nested_vmx_run(vcpu, false);
7268 }
7269
7270 /*
7271 * Read a vmcs12 field. Since these can have varying lengths and we return
7272 * one type, we chose the biggest type (u64) and zero-extend the return value
7273 * to that size. Note that the caller, handle_vmread, might need to use only
7274 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7275 * 64-bit fields are to be returned).
7276 */
7277 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7278 unsigned long field, u64 *ret)
7279 {
7280 short offset = vmcs_field_to_offset(field);
7281 char *p;
7282
7283 if (offset < 0)
7284 return offset;
7285
7286 p = ((char *)(get_vmcs12(vcpu))) + offset;
7287
7288 switch (vmcs_field_type(field)) {
7289 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7290 *ret = *((natural_width *)p);
7291 return 0;
7292 case VMCS_FIELD_TYPE_U16:
7293 *ret = *((u16 *)p);
7294 return 0;
7295 case VMCS_FIELD_TYPE_U32:
7296 *ret = *((u32 *)p);
7297 return 0;
7298 case VMCS_FIELD_TYPE_U64:
7299 *ret = *((u64 *)p);
7300 return 0;
7301 default:
7302 WARN_ON(1);
7303 return -ENOENT;
7304 }
7305 }
7306
7307
7308 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7309 unsigned long field, u64 field_value){
7310 short offset = vmcs_field_to_offset(field);
7311 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7312 if (offset < 0)
7313 return offset;
7314
7315 switch (vmcs_field_type(field)) {
7316 case VMCS_FIELD_TYPE_U16:
7317 *(u16 *)p = field_value;
7318 return 0;
7319 case VMCS_FIELD_TYPE_U32:
7320 *(u32 *)p = field_value;
7321 return 0;
7322 case VMCS_FIELD_TYPE_U64:
7323 *(u64 *)p = field_value;
7324 return 0;
7325 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7326 *(natural_width *)p = field_value;
7327 return 0;
7328 default:
7329 WARN_ON(1);
7330 return -ENOENT;
7331 }
7332
7333 }
7334
7335 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7336 {
7337 int i;
7338 unsigned long field;
7339 u64 field_value;
7340 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7341 const unsigned long *fields = shadow_read_write_fields;
7342 const int num_fields = max_shadow_read_write_fields;
7343
7344 preempt_disable();
7345
7346 vmcs_load(shadow_vmcs);
7347
7348 for (i = 0; i < num_fields; i++) {
7349 field = fields[i];
7350 switch (vmcs_field_type(field)) {
7351 case VMCS_FIELD_TYPE_U16:
7352 field_value = vmcs_read16(field);
7353 break;
7354 case VMCS_FIELD_TYPE_U32:
7355 field_value = vmcs_read32(field);
7356 break;
7357 case VMCS_FIELD_TYPE_U64:
7358 field_value = vmcs_read64(field);
7359 break;
7360 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7361 field_value = vmcs_readl(field);
7362 break;
7363 default:
7364 WARN_ON(1);
7365 continue;
7366 }
7367 vmcs12_write_any(&vmx->vcpu, field, field_value);
7368 }
7369
7370 vmcs_clear(shadow_vmcs);
7371 vmcs_load(vmx->loaded_vmcs->vmcs);
7372
7373 preempt_enable();
7374 }
7375
7376 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7377 {
7378 const unsigned long *fields[] = {
7379 shadow_read_write_fields,
7380 shadow_read_only_fields
7381 };
7382 const int max_fields[] = {
7383 max_shadow_read_write_fields,
7384 max_shadow_read_only_fields
7385 };
7386 int i, q;
7387 unsigned long field;
7388 u64 field_value = 0;
7389 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7390
7391 vmcs_load(shadow_vmcs);
7392
7393 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7394 for (i = 0; i < max_fields[q]; i++) {
7395 field = fields[q][i];
7396 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7397
7398 switch (vmcs_field_type(field)) {
7399 case VMCS_FIELD_TYPE_U16:
7400 vmcs_write16(field, (u16)field_value);
7401 break;
7402 case VMCS_FIELD_TYPE_U32:
7403 vmcs_write32(field, (u32)field_value);
7404 break;
7405 case VMCS_FIELD_TYPE_U64:
7406 vmcs_write64(field, (u64)field_value);
7407 break;
7408 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7409 vmcs_writel(field, (long)field_value);
7410 break;
7411 default:
7412 WARN_ON(1);
7413 break;
7414 }
7415 }
7416 }
7417
7418 vmcs_clear(shadow_vmcs);
7419 vmcs_load(vmx->loaded_vmcs->vmcs);
7420 }
7421
7422 /*
7423 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7424 * used before) all generate the same failure when it is missing.
7425 */
7426 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7427 {
7428 struct vcpu_vmx *vmx = to_vmx(vcpu);
7429 if (vmx->nested.current_vmptr == -1ull) {
7430 nested_vmx_failInvalid(vcpu);
7431 return 0;
7432 }
7433 return 1;
7434 }
7435
7436 static int handle_vmread(struct kvm_vcpu *vcpu)
7437 {
7438 unsigned long field;
7439 u64 field_value;
7440 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7441 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7442 gva_t gva = 0;
7443
7444 if (!nested_vmx_check_permission(vcpu))
7445 return 1;
7446
7447 if (!nested_vmx_check_vmcs12(vcpu))
7448 return kvm_skip_emulated_instruction(vcpu);
7449
7450 /* Decode instruction info and find the field to read */
7451 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7452 /* Read the field, zero-extended to a u64 field_value */
7453 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7454 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7455 return kvm_skip_emulated_instruction(vcpu);
7456 }
7457 /*
7458 * Now copy part of this value to register or memory, as requested.
7459 * Note that the number of bits actually copied is 32 or 64 depending
7460 * on the guest's mode (32 or 64 bit), not on the given field's length.
7461 */
7462 if (vmx_instruction_info & (1u << 10)) {
7463 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7464 field_value);
7465 } else {
7466 if (get_vmx_mem_address(vcpu, exit_qualification,
7467 vmx_instruction_info, true, &gva))
7468 return 1;
7469 /* _system ok, as hardware has verified cpl=0 */
7470 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7471 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7472 }
7473
7474 nested_vmx_succeed(vcpu);
7475 return kvm_skip_emulated_instruction(vcpu);
7476 }
7477
7478
7479 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7480 {
7481 unsigned long field;
7482 gva_t gva;
7483 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7484 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7485 /* The value to write might be 32 or 64 bits, depending on L1's long
7486 * mode, and eventually we need to write that into a field of several
7487 * possible lengths. The code below first zero-extends the value to 64
7488 * bit (field_value), and then copies only the appropriate number of
7489 * bits into the vmcs12 field.
7490 */
7491 u64 field_value = 0;
7492 struct x86_exception e;
7493
7494 if (!nested_vmx_check_permission(vcpu))
7495 return 1;
7496
7497 if (!nested_vmx_check_vmcs12(vcpu))
7498 return kvm_skip_emulated_instruction(vcpu);
7499
7500 if (vmx_instruction_info & (1u << 10))
7501 field_value = kvm_register_readl(vcpu,
7502 (((vmx_instruction_info) >> 3) & 0xf));
7503 else {
7504 if (get_vmx_mem_address(vcpu, exit_qualification,
7505 vmx_instruction_info, false, &gva))
7506 return 1;
7507 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7508 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7509 kvm_inject_page_fault(vcpu, &e);
7510 return 1;
7511 }
7512 }
7513
7514
7515 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7516 if (vmcs_field_readonly(field)) {
7517 nested_vmx_failValid(vcpu,
7518 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7519 return kvm_skip_emulated_instruction(vcpu);
7520 }
7521
7522 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7523 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7524 return kvm_skip_emulated_instruction(vcpu);
7525 }
7526
7527 nested_vmx_succeed(vcpu);
7528 return kvm_skip_emulated_instruction(vcpu);
7529 }
7530
7531 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7532 {
7533 vmx->nested.current_vmptr = vmptr;
7534 if (enable_shadow_vmcs) {
7535 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7536 SECONDARY_EXEC_SHADOW_VMCS);
7537 vmcs_write64(VMCS_LINK_POINTER,
7538 __pa(vmx->vmcs01.shadow_vmcs));
7539 vmx->nested.sync_shadow_vmcs = true;
7540 }
7541 }
7542
7543 /* Emulate the VMPTRLD instruction */
7544 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7545 {
7546 struct vcpu_vmx *vmx = to_vmx(vcpu);
7547 gpa_t vmptr;
7548
7549 if (!nested_vmx_check_permission(vcpu))
7550 return 1;
7551
7552 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7553 return 1;
7554
7555 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7556 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7557 return kvm_skip_emulated_instruction(vcpu);
7558 }
7559
7560 if (vmptr == vmx->nested.vmxon_ptr) {
7561 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7562 return kvm_skip_emulated_instruction(vcpu);
7563 }
7564
7565 if (vmx->nested.current_vmptr != vmptr) {
7566 struct vmcs12 *new_vmcs12;
7567 struct page *page;
7568 page = nested_get_page(vcpu, vmptr);
7569 if (page == NULL) {
7570 nested_vmx_failInvalid(vcpu);
7571 return kvm_skip_emulated_instruction(vcpu);
7572 }
7573 new_vmcs12 = kmap(page);
7574 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7575 kunmap(page);
7576 nested_release_page_clean(page);
7577 nested_vmx_failValid(vcpu,
7578 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7579 return kvm_skip_emulated_instruction(vcpu);
7580 }
7581
7582 nested_release_vmcs12(vmx);
7583 vmx->nested.current_vmcs12 = new_vmcs12;
7584 vmx->nested.current_vmcs12_page = page;
7585 /*
7586 * Load VMCS12 from guest memory since it is not already
7587 * cached.
7588 */
7589 memcpy(vmx->nested.cached_vmcs12,
7590 vmx->nested.current_vmcs12, VMCS12_SIZE);
7591 set_current_vmptr(vmx, vmptr);
7592 }
7593
7594 nested_vmx_succeed(vcpu);
7595 return kvm_skip_emulated_instruction(vcpu);
7596 }
7597
7598 /* Emulate the VMPTRST instruction */
7599 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7600 {
7601 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7602 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7603 gva_t vmcs_gva;
7604 struct x86_exception e;
7605
7606 if (!nested_vmx_check_permission(vcpu))
7607 return 1;
7608
7609 if (get_vmx_mem_address(vcpu, exit_qualification,
7610 vmx_instruction_info, true, &vmcs_gva))
7611 return 1;
7612 /* ok to use *_system, as hardware has verified cpl=0 */
7613 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7614 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7615 sizeof(u64), &e)) {
7616 kvm_inject_page_fault(vcpu, &e);
7617 return 1;
7618 }
7619 nested_vmx_succeed(vcpu);
7620 return kvm_skip_emulated_instruction(vcpu);
7621 }
7622
7623 /* Emulate the INVEPT instruction */
7624 static int handle_invept(struct kvm_vcpu *vcpu)
7625 {
7626 struct vcpu_vmx *vmx = to_vmx(vcpu);
7627 u32 vmx_instruction_info, types;
7628 unsigned long type;
7629 gva_t gva;
7630 struct x86_exception e;
7631 struct {
7632 u64 eptp, gpa;
7633 } operand;
7634
7635 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7636 SECONDARY_EXEC_ENABLE_EPT) ||
7637 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7638 kvm_queue_exception(vcpu, UD_VECTOR);
7639 return 1;
7640 }
7641
7642 if (!nested_vmx_check_permission(vcpu))
7643 return 1;
7644
7645 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7646 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7647
7648 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7649
7650 if (type >= 32 || !(types & (1 << type))) {
7651 nested_vmx_failValid(vcpu,
7652 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7653 return kvm_skip_emulated_instruction(vcpu);
7654 }
7655
7656 /* According to the Intel VMX instruction reference, the memory
7657 * operand is read even if it isn't needed (e.g., for type==global)
7658 */
7659 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7660 vmx_instruction_info, false, &gva))
7661 return 1;
7662 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7663 sizeof(operand), &e)) {
7664 kvm_inject_page_fault(vcpu, &e);
7665 return 1;
7666 }
7667
7668 switch (type) {
7669 case VMX_EPT_EXTENT_GLOBAL:
7670 /*
7671 * TODO: track mappings and invalidate
7672 * single context requests appropriately
7673 */
7674 case VMX_EPT_EXTENT_CONTEXT:
7675 kvm_mmu_sync_roots(vcpu);
7676 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7677 nested_vmx_succeed(vcpu);
7678 break;
7679 default:
7680 BUG_ON(1);
7681 break;
7682 }
7683
7684 return kvm_skip_emulated_instruction(vcpu);
7685 }
7686
7687 static int handle_invvpid(struct kvm_vcpu *vcpu)
7688 {
7689 struct vcpu_vmx *vmx = to_vmx(vcpu);
7690 u32 vmx_instruction_info;
7691 unsigned long type, types;
7692 gva_t gva;
7693 struct x86_exception e;
7694 struct {
7695 u64 vpid;
7696 u64 gla;
7697 } operand;
7698
7699 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7700 SECONDARY_EXEC_ENABLE_VPID) ||
7701 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7702 kvm_queue_exception(vcpu, UD_VECTOR);
7703 return 1;
7704 }
7705
7706 if (!nested_vmx_check_permission(vcpu))
7707 return 1;
7708
7709 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7710 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7711
7712 types = (vmx->nested.nested_vmx_vpid_caps &
7713 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7714
7715 if (type >= 32 || !(types & (1 << type))) {
7716 nested_vmx_failValid(vcpu,
7717 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7718 return kvm_skip_emulated_instruction(vcpu);
7719 }
7720
7721 /* according to the intel vmx instruction reference, the memory
7722 * operand is read even if it isn't needed (e.g., for type==global)
7723 */
7724 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7725 vmx_instruction_info, false, &gva))
7726 return 1;
7727 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7728 sizeof(operand), &e)) {
7729 kvm_inject_page_fault(vcpu, &e);
7730 return 1;
7731 }
7732 if (operand.vpid >> 16) {
7733 nested_vmx_failValid(vcpu,
7734 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7735 return kvm_skip_emulated_instruction(vcpu);
7736 }
7737
7738 switch (type) {
7739 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7740 if (is_noncanonical_address(operand.gla)) {
7741 nested_vmx_failValid(vcpu,
7742 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7743 return kvm_skip_emulated_instruction(vcpu);
7744 }
7745 /* fall through */
7746 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7747 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7748 if (!operand.vpid) {
7749 nested_vmx_failValid(vcpu,
7750 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7751 return kvm_skip_emulated_instruction(vcpu);
7752 }
7753 break;
7754 case VMX_VPID_EXTENT_ALL_CONTEXT:
7755 break;
7756 default:
7757 WARN_ON_ONCE(1);
7758 return kvm_skip_emulated_instruction(vcpu);
7759 }
7760
7761 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7762 nested_vmx_succeed(vcpu);
7763
7764 return kvm_skip_emulated_instruction(vcpu);
7765 }
7766
7767 static int handle_pml_full(struct kvm_vcpu *vcpu)
7768 {
7769 unsigned long exit_qualification;
7770
7771 trace_kvm_pml_full(vcpu->vcpu_id);
7772
7773 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7774
7775 /*
7776 * PML buffer FULL happened while executing iret from NMI,
7777 * "blocked by NMI" bit has to be set before next VM entry.
7778 */
7779 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7780 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7781 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7782 GUEST_INTR_STATE_NMI);
7783
7784 /*
7785 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7786 * here.., and there's no userspace involvement needed for PML.
7787 */
7788 return 1;
7789 }
7790
7791 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7792 {
7793 kvm_lapic_expired_hv_timer(vcpu);
7794 return 1;
7795 }
7796
7797 /*
7798 * The exit handlers return 1 if the exit was handled fully and guest execution
7799 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7800 * to be done to userspace and return 0.
7801 */
7802 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7803 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7804 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7805 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7806 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7807 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7808 [EXIT_REASON_CR_ACCESS] = handle_cr,
7809 [EXIT_REASON_DR_ACCESS] = handle_dr,
7810 [EXIT_REASON_CPUID] = handle_cpuid,
7811 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7812 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7813 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7814 [EXIT_REASON_HLT] = handle_halt,
7815 [EXIT_REASON_INVD] = handle_invd,
7816 [EXIT_REASON_INVLPG] = handle_invlpg,
7817 [EXIT_REASON_RDPMC] = handle_rdpmc,
7818 [EXIT_REASON_VMCALL] = handle_vmcall,
7819 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7820 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7821 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7822 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7823 [EXIT_REASON_VMREAD] = handle_vmread,
7824 [EXIT_REASON_VMRESUME] = handle_vmresume,
7825 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7826 [EXIT_REASON_VMOFF] = handle_vmoff,
7827 [EXIT_REASON_VMON] = handle_vmon,
7828 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7829 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7830 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7831 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7832 [EXIT_REASON_WBINVD] = handle_wbinvd,
7833 [EXIT_REASON_XSETBV] = handle_xsetbv,
7834 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7835 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7836 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7837 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7838 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7839 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7840 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7841 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7842 [EXIT_REASON_INVEPT] = handle_invept,
7843 [EXIT_REASON_INVVPID] = handle_invvpid,
7844 [EXIT_REASON_XSAVES] = handle_xsaves,
7845 [EXIT_REASON_XRSTORS] = handle_xrstors,
7846 [EXIT_REASON_PML_FULL] = handle_pml_full,
7847 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7848 };
7849
7850 static const int kvm_vmx_max_exit_handlers =
7851 ARRAY_SIZE(kvm_vmx_exit_handlers);
7852
7853 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7854 struct vmcs12 *vmcs12)
7855 {
7856 unsigned long exit_qualification;
7857 gpa_t bitmap, last_bitmap;
7858 unsigned int port;
7859 int size;
7860 u8 b;
7861
7862 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7863 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7864
7865 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7866
7867 port = exit_qualification >> 16;
7868 size = (exit_qualification & 7) + 1;
7869
7870 last_bitmap = (gpa_t)-1;
7871 b = -1;
7872
7873 while (size > 0) {
7874 if (port < 0x8000)
7875 bitmap = vmcs12->io_bitmap_a;
7876 else if (port < 0x10000)
7877 bitmap = vmcs12->io_bitmap_b;
7878 else
7879 return true;
7880 bitmap += (port & 0x7fff) / 8;
7881
7882 if (last_bitmap != bitmap)
7883 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7884 return true;
7885 if (b & (1 << (port & 7)))
7886 return true;
7887
7888 port++;
7889 size--;
7890 last_bitmap = bitmap;
7891 }
7892
7893 return false;
7894 }
7895
7896 /*
7897 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7898 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7899 * disinterest in the current event (read or write a specific MSR) by using an
7900 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7901 */
7902 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7903 struct vmcs12 *vmcs12, u32 exit_reason)
7904 {
7905 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7906 gpa_t bitmap;
7907
7908 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7909 return true;
7910
7911 /*
7912 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7913 * for the four combinations of read/write and low/high MSR numbers.
7914 * First we need to figure out which of the four to use:
7915 */
7916 bitmap = vmcs12->msr_bitmap;
7917 if (exit_reason == EXIT_REASON_MSR_WRITE)
7918 bitmap += 2048;
7919 if (msr_index >= 0xc0000000) {
7920 msr_index -= 0xc0000000;
7921 bitmap += 1024;
7922 }
7923
7924 /* Then read the msr_index'th bit from this bitmap: */
7925 if (msr_index < 1024*8) {
7926 unsigned char b;
7927 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7928 return true;
7929 return 1 & (b >> (msr_index & 7));
7930 } else
7931 return true; /* let L1 handle the wrong parameter */
7932 }
7933
7934 /*
7935 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7936 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7937 * intercept (via guest_host_mask etc.) the current event.
7938 */
7939 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7940 struct vmcs12 *vmcs12)
7941 {
7942 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7943 int cr = exit_qualification & 15;
7944 int reg;
7945 unsigned long val;
7946
7947 switch ((exit_qualification >> 4) & 3) {
7948 case 0: /* mov to cr */
7949 reg = (exit_qualification >> 8) & 15;
7950 val = kvm_register_readl(vcpu, reg);
7951 switch (cr) {
7952 case 0:
7953 if (vmcs12->cr0_guest_host_mask &
7954 (val ^ vmcs12->cr0_read_shadow))
7955 return true;
7956 break;
7957 case 3:
7958 if ((vmcs12->cr3_target_count >= 1 &&
7959 vmcs12->cr3_target_value0 == val) ||
7960 (vmcs12->cr3_target_count >= 2 &&
7961 vmcs12->cr3_target_value1 == val) ||
7962 (vmcs12->cr3_target_count >= 3 &&
7963 vmcs12->cr3_target_value2 == val) ||
7964 (vmcs12->cr3_target_count >= 4 &&
7965 vmcs12->cr3_target_value3 == val))
7966 return false;
7967 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7968 return true;
7969 break;
7970 case 4:
7971 if (vmcs12->cr4_guest_host_mask &
7972 (vmcs12->cr4_read_shadow ^ val))
7973 return true;
7974 break;
7975 case 8:
7976 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7977 return true;
7978 break;
7979 }
7980 break;
7981 case 2: /* clts */
7982 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7983 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7984 return true;
7985 break;
7986 case 1: /* mov from cr */
7987 switch (cr) {
7988 case 3:
7989 if (vmcs12->cpu_based_vm_exec_control &
7990 CPU_BASED_CR3_STORE_EXITING)
7991 return true;
7992 break;
7993 case 8:
7994 if (vmcs12->cpu_based_vm_exec_control &
7995 CPU_BASED_CR8_STORE_EXITING)
7996 return true;
7997 break;
7998 }
7999 break;
8000 case 3: /* lmsw */
8001 /*
8002 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8003 * cr0. Other attempted changes are ignored, with no exit.
8004 */
8005 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8006 if (vmcs12->cr0_guest_host_mask & 0xe &
8007 (val ^ vmcs12->cr0_read_shadow))
8008 return true;
8009 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8010 !(vmcs12->cr0_read_shadow & 0x1) &&
8011 (val & 0x1))
8012 return true;
8013 break;
8014 }
8015 return false;
8016 }
8017
8018 /*
8019 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8020 * should handle it ourselves in L0 (and then continue L2). Only call this
8021 * when in is_guest_mode (L2).
8022 */
8023 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8024 {
8025 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8026 struct vcpu_vmx *vmx = to_vmx(vcpu);
8027 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8028
8029 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8030 vmcs_readl(EXIT_QUALIFICATION),
8031 vmx->idt_vectoring_info,
8032 intr_info,
8033 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8034 KVM_ISA_VMX);
8035
8036 if (vmx->nested.nested_run_pending)
8037 return false;
8038
8039 if (unlikely(vmx->fail)) {
8040 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8041 vmcs_read32(VM_INSTRUCTION_ERROR));
8042 return true;
8043 }
8044
8045 switch (exit_reason) {
8046 case EXIT_REASON_EXCEPTION_NMI:
8047 if (is_nmi(intr_info))
8048 return false;
8049 else if (is_page_fault(intr_info))
8050 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8051 else if (is_no_device(intr_info) &&
8052 !(vmcs12->guest_cr0 & X86_CR0_TS))
8053 return false;
8054 else if (is_debug(intr_info) &&
8055 vcpu->guest_debug &
8056 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8057 return false;
8058 else if (is_breakpoint(intr_info) &&
8059 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8060 return false;
8061 return vmcs12->exception_bitmap &
8062 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8063 case EXIT_REASON_EXTERNAL_INTERRUPT:
8064 return false;
8065 case EXIT_REASON_TRIPLE_FAULT:
8066 return true;
8067 case EXIT_REASON_PENDING_INTERRUPT:
8068 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8069 case EXIT_REASON_NMI_WINDOW:
8070 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8071 case EXIT_REASON_TASK_SWITCH:
8072 return true;
8073 case EXIT_REASON_CPUID:
8074 return true;
8075 case EXIT_REASON_HLT:
8076 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8077 case EXIT_REASON_INVD:
8078 return true;
8079 case EXIT_REASON_INVLPG:
8080 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8081 case EXIT_REASON_RDPMC:
8082 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8083 case EXIT_REASON_RDRAND:
8084 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8085 case EXIT_REASON_RDSEED:
8086 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8087 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8088 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8089 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8090 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8091 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8092 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8093 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8094 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8095 /*
8096 * VMX instructions trap unconditionally. This allows L1 to
8097 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8098 */
8099 return true;
8100 case EXIT_REASON_CR_ACCESS:
8101 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8102 case EXIT_REASON_DR_ACCESS:
8103 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8104 case EXIT_REASON_IO_INSTRUCTION:
8105 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8106 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8107 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8108 case EXIT_REASON_MSR_READ:
8109 case EXIT_REASON_MSR_WRITE:
8110 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8111 case EXIT_REASON_INVALID_STATE:
8112 return true;
8113 case EXIT_REASON_MWAIT_INSTRUCTION:
8114 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8115 case EXIT_REASON_MONITOR_TRAP_FLAG:
8116 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8117 case EXIT_REASON_MONITOR_INSTRUCTION:
8118 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8119 case EXIT_REASON_PAUSE_INSTRUCTION:
8120 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8121 nested_cpu_has2(vmcs12,
8122 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8123 case EXIT_REASON_MCE_DURING_VMENTRY:
8124 return false;
8125 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8126 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8127 case EXIT_REASON_APIC_ACCESS:
8128 return nested_cpu_has2(vmcs12,
8129 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8130 case EXIT_REASON_APIC_WRITE:
8131 case EXIT_REASON_EOI_INDUCED:
8132 /* apic_write and eoi_induced should exit unconditionally. */
8133 return true;
8134 case EXIT_REASON_EPT_VIOLATION:
8135 /*
8136 * L0 always deals with the EPT violation. If nested EPT is
8137 * used, and the nested mmu code discovers that the address is
8138 * missing in the guest EPT table (EPT12), the EPT violation
8139 * will be injected with nested_ept_inject_page_fault()
8140 */
8141 return false;
8142 case EXIT_REASON_EPT_MISCONFIG:
8143 /*
8144 * L2 never uses directly L1's EPT, but rather L0's own EPT
8145 * table (shadow on EPT) or a merged EPT table that L0 built
8146 * (EPT on EPT). So any problems with the structure of the
8147 * table is L0's fault.
8148 */
8149 return false;
8150 case EXIT_REASON_WBINVD:
8151 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8152 case EXIT_REASON_XSETBV:
8153 return true;
8154 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8155 /*
8156 * This should never happen, since it is not possible to
8157 * set XSS to a non-zero value---neither in L1 nor in L2.
8158 * If if it were, XSS would have to be checked against
8159 * the XSS exit bitmap in vmcs12.
8160 */
8161 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8162 case EXIT_REASON_PREEMPTION_TIMER:
8163 return false;
8164 case EXIT_REASON_PML_FULL:
8165 /* We emulate PML support to L1. */
8166 return false;
8167 default:
8168 return true;
8169 }
8170 }
8171
8172 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8173 {
8174 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8175
8176 /*
8177 * At this point, the exit interruption info in exit_intr_info
8178 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8179 * we need to query the in-kernel LAPIC.
8180 */
8181 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8182 if ((exit_intr_info &
8183 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8184 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8185 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8186 vmcs12->vm_exit_intr_error_code =
8187 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8188 }
8189
8190 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8191 vmcs_readl(EXIT_QUALIFICATION));
8192 return 1;
8193 }
8194
8195 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8196 {
8197 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8198 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8199 }
8200
8201 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8202 {
8203 if (vmx->pml_pg) {
8204 __free_page(vmx->pml_pg);
8205 vmx->pml_pg = NULL;
8206 }
8207 }
8208
8209 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8210 {
8211 struct vcpu_vmx *vmx = to_vmx(vcpu);
8212 u64 *pml_buf;
8213 u16 pml_idx;
8214
8215 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8216
8217 /* Do nothing if PML buffer is empty */
8218 if (pml_idx == (PML_ENTITY_NUM - 1))
8219 return;
8220
8221 /* PML index always points to next available PML buffer entity */
8222 if (pml_idx >= PML_ENTITY_NUM)
8223 pml_idx = 0;
8224 else
8225 pml_idx++;
8226
8227 pml_buf = page_address(vmx->pml_pg);
8228 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8229 u64 gpa;
8230
8231 gpa = pml_buf[pml_idx];
8232 WARN_ON(gpa & (PAGE_SIZE - 1));
8233 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8234 }
8235
8236 /* reset PML index */
8237 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8238 }
8239
8240 /*
8241 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8242 * Called before reporting dirty_bitmap to userspace.
8243 */
8244 static void kvm_flush_pml_buffers(struct kvm *kvm)
8245 {
8246 int i;
8247 struct kvm_vcpu *vcpu;
8248 /*
8249 * We only need to kick vcpu out of guest mode here, as PML buffer
8250 * is flushed at beginning of all VMEXITs, and it's obvious that only
8251 * vcpus running in guest are possible to have unflushed GPAs in PML
8252 * buffer.
8253 */
8254 kvm_for_each_vcpu(i, vcpu, kvm)
8255 kvm_vcpu_kick(vcpu);
8256 }
8257
8258 static void vmx_dump_sel(char *name, uint32_t sel)
8259 {
8260 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8261 name, vmcs_read16(sel),
8262 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8263 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8264 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8265 }
8266
8267 static void vmx_dump_dtsel(char *name, uint32_t limit)
8268 {
8269 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8270 name, vmcs_read32(limit),
8271 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8272 }
8273
8274 static void dump_vmcs(void)
8275 {
8276 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8277 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8278 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8279 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8280 u32 secondary_exec_control = 0;
8281 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8282 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8283 int i, n;
8284
8285 if (cpu_has_secondary_exec_ctrls())
8286 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8287
8288 pr_err("*** Guest State ***\n");
8289 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8290 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8291 vmcs_readl(CR0_GUEST_HOST_MASK));
8292 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8293 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8294 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8295 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8296 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8297 {
8298 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8299 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8300 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8301 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8302 }
8303 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8304 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8305 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8306 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8307 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8308 vmcs_readl(GUEST_SYSENTER_ESP),
8309 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8310 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8311 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8312 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8313 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8314 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8315 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8316 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8317 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8318 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8319 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8320 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8321 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8322 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8323 efer, vmcs_read64(GUEST_IA32_PAT));
8324 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8325 vmcs_read64(GUEST_IA32_DEBUGCTL),
8326 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8327 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8328 pr_err("PerfGlobCtl = 0x%016llx\n",
8329 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8330 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8331 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8332 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8333 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8334 vmcs_read32(GUEST_ACTIVITY_STATE));
8335 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8336 pr_err("InterruptStatus = %04x\n",
8337 vmcs_read16(GUEST_INTR_STATUS));
8338
8339 pr_err("*** Host State ***\n");
8340 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8341 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8342 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8343 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8344 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8345 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8346 vmcs_read16(HOST_TR_SELECTOR));
8347 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8348 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8349 vmcs_readl(HOST_TR_BASE));
8350 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8351 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8352 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8353 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8354 vmcs_readl(HOST_CR4));
8355 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8356 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8357 vmcs_read32(HOST_IA32_SYSENTER_CS),
8358 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8359 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8360 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8361 vmcs_read64(HOST_IA32_EFER),
8362 vmcs_read64(HOST_IA32_PAT));
8363 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8364 pr_err("PerfGlobCtl = 0x%016llx\n",
8365 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8366
8367 pr_err("*** Control State ***\n");
8368 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8369 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8370 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8371 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8372 vmcs_read32(EXCEPTION_BITMAP),
8373 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8374 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8375 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8376 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8377 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8378 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8379 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8380 vmcs_read32(VM_EXIT_INTR_INFO),
8381 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8382 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8383 pr_err(" reason=%08x qualification=%016lx\n",
8384 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8385 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8386 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8387 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8388 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8389 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8390 pr_err("TSC Multiplier = 0x%016llx\n",
8391 vmcs_read64(TSC_MULTIPLIER));
8392 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8393 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8394 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8395 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8396 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8397 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8398 n = vmcs_read32(CR3_TARGET_COUNT);
8399 for (i = 0; i + 1 < n; i += 4)
8400 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8401 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8402 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8403 if (i < n)
8404 pr_err("CR3 target%u=%016lx\n",
8405 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8406 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8407 pr_err("PLE Gap=%08x Window=%08x\n",
8408 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8409 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8410 pr_err("Virtual processor ID = 0x%04x\n",
8411 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8412 }
8413
8414 /*
8415 * The guest has exited. See if we can fix it or if we need userspace
8416 * assistance.
8417 */
8418 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8419 {
8420 struct vcpu_vmx *vmx = to_vmx(vcpu);
8421 u32 exit_reason = vmx->exit_reason;
8422 u32 vectoring_info = vmx->idt_vectoring_info;
8423
8424 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8425 vcpu->arch.gpa_available = false;
8426
8427 /*
8428 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8429 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8430 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8431 * mode as if vcpus is in root mode, the PML buffer must has been
8432 * flushed already.
8433 */
8434 if (enable_pml)
8435 vmx_flush_pml_buffer(vcpu);
8436
8437 /* If guest state is invalid, start emulating */
8438 if (vmx->emulation_required)
8439 return handle_invalid_guest_state(vcpu);
8440
8441 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8442 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8443
8444 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8445 dump_vmcs();
8446 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8447 vcpu->run->fail_entry.hardware_entry_failure_reason
8448 = exit_reason;
8449 return 0;
8450 }
8451
8452 if (unlikely(vmx->fail)) {
8453 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8454 vcpu->run->fail_entry.hardware_entry_failure_reason
8455 = vmcs_read32(VM_INSTRUCTION_ERROR);
8456 return 0;
8457 }
8458
8459 /*
8460 * Note:
8461 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8462 * delivery event since it indicates guest is accessing MMIO.
8463 * The vm-exit can be triggered again after return to guest that
8464 * will cause infinite loop.
8465 */
8466 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8467 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8468 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8469 exit_reason != EXIT_REASON_PML_FULL &&
8470 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8471 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8472 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8473 vcpu->run->internal.ndata = 3;
8474 vcpu->run->internal.data[0] = vectoring_info;
8475 vcpu->run->internal.data[1] = exit_reason;
8476 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8477 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8478 vcpu->run->internal.ndata++;
8479 vcpu->run->internal.data[3] =
8480 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8481 }
8482 return 0;
8483 }
8484
8485 if (exit_reason < kvm_vmx_max_exit_handlers
8486 && kvm_vmx_exit_handlers[exit_reason])
8487 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8488 else {
8489 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8490 exit_reason);
8491 kvm_queue_exception(vcpu, UD_VECTOR);
8492 return 1;
8493 }
8494 }
8495
8496 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8497 {
8498 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8499
8500 if (is_guest_mode(vcpu) &&
8501 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8502 return;
8503
8504 if (irr == -1 || tpr < irr) {
8505 vmcs_write32(TPR_THRESHOLD, 0);
8506 return;
8507 }
8508
8509 vmcs_write32(TPR_THRESHOLD, irr);
8510 }
8511
8512 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8513 {
8514 u32 sec_exec_control;
8515
8516 /* Postpone execution until vmcs01 is the current VMCS. */
8517 if (is_guest_mode(vcpu)) {
8518 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8519 return;
8520 }
8521
8522 if (!cpu_has_vmx_virtualize_x2apic_mode())
8523 return;
8524
8525 if (!cpu_need_tpr_shadow(vcpu))
8526 return;
8527
8528 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8529
8530 if (set) {
8531 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8532 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8533 } else {
8534 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8535 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8536 vmx_flush_tlb_ept_only(vcpu);
8537 }
8538 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8539
8540 vmx_set_msr_bitmap(vcpu);
8541 }
8542
8543 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8544 {
8545 struct vcpu_vmx *vmx = to_vmx(vcpu);
8546
8547 /*
8548 * Currently we do not handle the nested case where L2 has an
8549 * APIC access page of its own; that page is still pinned.
8550 * Hence, we skip the case where the VCPU is in guest mode _and_
8551 * L1 prepared an APIC access page for L2.
8552 *
8553 * For the case where L1 and L2 share the same APIC access page
8554 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8555 * in the vmcs12), this function will only update either the vmcs01
8556 * or the vmcs02. If the former, the vmcs02 will be updated by
8557 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8558 * the next L2->L1 exit.
8559 */
8560 if (!is_guest_mode(vcpu) ||
8561 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8562 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8563 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8564 vmx_flush_tlb_ept_only(vcpu);
8565 }
8566 }
8567
8568 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8569 {
8570 u16 status;
8571 u8 old;
8572
8573 if (max_isr == -1)
8574 max_isr = 0;
8575
8576 status = vmcs_read16(GUEST_INTR_STATUS);
8577 old = status >> 8;
8578 if (max_isr != old) {
8579 status &= 0xff;
8580 status |= max_isr << 8;
8581 vmcs_write16(GUEST_INTR_STATUS, status);
8582 }
8583 }
8584
8585 static void vmx_set_rvi(int vector)
8586 {
8587 u16 status;
8588 u8 old;
8589
8590 if (vector == -1)
8591 vector = 0;
8592
8593 status = vmcs_read16(GUEST_INTR_STATUS);
8594 old = (u8)status & 0xff;
8595 if ((u8)vector != old) {
8596 status &= ~0xff;
8597 status |= (u8)vector;
8598 vmcs_write16(GUEST_INTR_STATUS, status);
8599 }
8600 }
8601
8602 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8603 {
8604 if (!is_guest_mode(vcpu)) {
8605 vmx_set_rvi(max_irr);
8606 return;
8607 }
8608
8609 if (max_irr == -1)
8610 return;
8611
8612 /*
8613 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8614 * handles it.
8615 */
8616 if (nested_exit_on_intr(vcpu))
8617 return;
8618
8619 /*
8620 * Else, fall back to pre-APICv interrupt injection since L2
8621 * is run without virtual interrupt delivery.
8622 */
8623 if (!kvm_event_needs_reinjection(vcpu) &&
8624 vmx_interrupt_allowed(vcpu)) {
8625 kvm_queue_interrupt(vcpu, max_irr, false);
8626 vmx_inject_irq(vcpu);
8627 }
8628 }
8629
8630 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8631 {
8632 struct vcpu_vmx *vmx = to_vmx(vcpu);
8633 int max_irr;
8634
8635 WARN_ON(!vcpu->arch.apicv_active);
8636 if (pi_test_on(&vmx->pi_desc)) {
8637 pi_clear_on(&vmx->pi_desc);
8638 /*
8639 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8640 * But on x86 this is just a compiler barrier anyway.
8641 */
8642 smp_mb__after_atomic();
8643 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8644 } else {
8645 max_irr = kvm_lapic_find_highest_irr(vcpu);
8646 }
8647 vmx_hwapic_irr_update(vcpu, max_irr);
8648 return max_irr;
8649 }
8650
8651 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8652 {
8653 if (!kvm_vcpu_apicv_active(vcpu))
8654 return;
8655
8656 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8657 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8658 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8659 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8660 }
8661
8662 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8663 {
8664 struct vcpu_vmx *vmx = to_vmx(vcpu);
8665
8666 pi_clear_on(&vmx->pi_desc);
8667 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8668 }
8669
8670 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8671 {
8672 u32 exit_intr_info = 0;
8673 u16 basic_exit_reason = (u16)vmx->exit_reason;
8674
8675 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8676 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8677 return;
8678
8679 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8680 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8681 vmx->exit_intr_info = exit_intr_info;
8682
8683 /* if exit due to PF check for async PF */
8684 if (is_page_fault(exit_intr_info))
8685 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8686
8687 /* Handle machine checks before interrupts are enabled */
8688 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8689 is_machine_check(exit_intr_info))
8690 kvm_machine_check();
8691
8692 /* We need to handle NMIs before interrupts are enabled */
8693 if (is_nmi(exit_intr_info)) {
8694 kvm_before_handle_nmi(&vmx->vcpu);
8695 asm("int $2");
8696 kvm_after_handle_nmi(&vmx->vcpu);
8697 }
8698 }
8699
8700 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8701 {
8702 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8703 register void *__sp asm(_ASM_SP);
8704
8705 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8706 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8707 unsigned int vector;
8708 unsigned long entry;
8709 gate_desc *desc;
8710 struct vcpu_vmx *vmx = to_vmx(vcpu);
8711 #ifdef CONFIG_X86_64
8712 unsigned long tmp;
8713 #endif
8714
8715 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8716 desc = (gate_desc *)vmx->host_idt_base + vector;
8717 entry = gate_offset(*desc);
8718 asm volatile(
8719 #ifdef CONFIG_X86_64
8720 "mov %%" _ASM_SP ", %[sp]\n\t"
8721 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8722 "push $%c[ss]\n\t"
8723 "push %[sp]\n\t"
8724 #endif
8725 "pushf\n\t"
8726 __ASM_SIZE(push) " $%c[cs]\n\t"
8727 "call *%[entry]\n\t"
8728 :
8729 #ifdef CONFIG_X86_64
8730 [sp]"=&r"(tmp),
8731 #endif
8732 "+r"(__sp)
8733 :
8734 [entry]"r"(entry),
8735 [ss]"i"(__KERNEL_DS),
8736 [cs]"i"(__KERNEL_CS)
8737 );
8738 }
8739 }
8740 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8741
8742 static bool vmx_has_high_real_mode_segbase(void)
8743 {
8744 return enable_unrestricted_guest || emulate_invalid_guest_state;
8745 }
8746
8747 static bool vmx_mpx_supported(void)
8748 {
8749 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8750 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8751 }
8752
8753 static bool vmx_xsaves_supported(void)
8754 {
8755 return vmcs_config.cpu_based_2nd_exec_ctrl &
8756 SECONDARY_EXEC_XSAVES;
8757 }
8758
8759 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8760 {
8761 u32 exit_intr_info;
8762 bool unblock_nmi;
8763 u8 vector;
8764 bool idtv_info_valid;
8765
8766 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8767
8768 if (vmx->loaded_vmcs->nmi_known_unmasked)
8769 return;
8770 /*
8771 * Can't use vmx->exit_intr_info since we're not sure what
8772 * the exit reason is.
8773 */
8774 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8775 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8776 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8777 /*
8778 * SDM 3: 27.7.1.2 (September 2008)
8779 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8780 * a guest IRET fault.
8781 * SDM 3: 23.2.2 (September 2008)
8782 * Bit 12 is undefined in any of the following cases:
8783 * If the VM exit sets the valid bit in the IDT-vectoring
8784 * information field.
8785 * If the VM exit is due to a double fault.
8786 */
8787 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8788 vector != DF_VECTOR && !idtv_info_valid)
8789 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8790 GUEST_INTR_STATE_NMI);
8791 else
8792 vmx->loaded_vmcs->nmi_known_unmasked =
8793 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8794 & GUEST_INTR_STATE_NMI);
8795 }
8796
8797 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8798 u32 idt_vectoring_info,
8799 int instr_len_field,
8800 int error_code_field)
8801 {
8802 u8 vector;
8803 int type;
8804 bool idtv_info_valid;
8805
8806 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8807
8808 vcpu->arch.nmi_injected = false;
8809 kvm_clear_exception_queue(vcpu);
8810 kvm_clear_interrupt_queue(vcpu);
8811
8812 if (!idtv_info_valid)
8813 return;
8814
8815 kvm_make_request(KVM_REQ_EVENT, vcpu);
8816
8817 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8818 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8819
8820 switch (type) {
8821 case INTR_TYPE_NMI_INTR:
8822 vcpu->arch.nmi_injected = true;
8823 /*
8824 * SDM 3: 27.7.1.2 (September 2008)
8825 * Clear bit "block by NMI" before VM entry if a NMI
8826 * delivery faulted.
8827 */
8828 vmx_set_nmi_mask(vcpu, false);
8829 break;
8830 case INTR_TYPE_SOFT_EXCEPTION:
8831 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8832 /* fall through */
8833 case INTR_TYPE_HARD_EXCEPTION:
8834 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8835 u32 err = vmcs_read32(error_code_field);
8836 kvm_requeue_exception_e(vcpu, vector, err);
8837 } else
8838 kvm_requeue_exception(vcpu, vector);
8839 break;
8840 case INTR_TYPE_SOFT_INTR:
8841 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8842 /* fall through */
8843 case INTR_TYPE_EXT_INTR:
8844 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8845 break;
8846 default:
8847 break;
8848 }
8849 }
8850
8851 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8852 {
8853 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8854 VM_EXIT_INSTRUCTION_LEN,
8855 IDT_VECTORING_ERROR_CODE);
8856 }
8857
8858 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8859 {
8860 __vmx_complete_interrupts(vcpu,
8861 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8862 VM_ENTRY_INSTRUCTION_LEN,
8863 VM_ENTRY_EXCEPTION_ERROR_CODE);
8864
8865 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8866 }
8867
8868 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8869 {
8870 int i, nr_msrs;
8871 struct perf_guest_switch_msr *msrs;
8872
8873 msrs = perf_guest_get_msrs(&nr_msrs);
8874
8875 if (!msrs)
8876 return;
8877
8878 for (i = 0; i < nr_msrs; i++)
8879 if (msrs[i].host == msrs[i].guest)
8880 clear_atomic_switch_msr(vmx, msrs[i].msr);
8881 else
8882 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8883 msrs[i].host);
8884 }
8885
8886 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8887 {
8888 struct vcpu_vmx *vmx = to_vmx(vcpu);
8889 u64 tscl;
8890 u32 delta_tsc;
8891
8892 if (vmx->hv_deadline_tsc == -1)
8893 return;
8894
8895 tscl = rdtsc();
8896 if (vmx->hv_deadline_tsc > tscl)
8897 /* sure to be 32 bit only because checked on set_hv_timer */
8898 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8899 cpu_preemption_timer_multi);
8900 else
8901 delta_tsc = 0;
8902
8903 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8904 }
8905
8906 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8907 {
8908 struct vcpu_vmx *vmx = to_vmx(vcpu);
8909 unsigned long debugctlmsr, cr3, cr4;
8910
8911 /* Don't enter VMX if guest state is invalid, let the exit handler
8912 start emulation until we arrive back to a valid state */
8913 if (vmx->emulation_required)
8914 return;
8915
8916 if (vmx->ple_window_dirty) {
8917 vmx->ple_window_dirty = false;
8918 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8919 }
8920
8921 if (vmx->nested.sync_shadow_vmcs) {
8922 copy_vmcs12_to_shadow(vmx);
8923 vmx->nested.sync_shadow_vmcs = false;
8924 }
8925
8926 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8927 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8928 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8929 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8930
8931 cr3 = __get_current_cr3_fast();
8932 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8933 vmcs_writel(HOST_CR3, cr3);
8934 vmx->host_state.vmcs_host_cr3 = cr3;
8935 }
8936
8937 cr4 = cr4_read_shadow();
8938 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8939 vmcs_writel(HOST_CR4, cr4);
8940 vmx->host_state.vmcs_host_cr4 = cr4;
8941 }
8942
8943 /* When single-stepping over STI and MOV SS, we must clear the
8944 * corresponding interruptibility bits in the guest state. Otherwise
8945 * vmentry fails as it then expects bit 14 (BS) in pending debug
8946 * exceptions being set, but that's not correct for the guest debugging
8947 * case. */
8948 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8949 vmx_set_interrupt_shadow(vcpu, 0);
8950
8951 if (vmx->guest_pkru_valid)
8952 __write_pkru(vmx->guest_pkru);
8953
8954 atomic_switch_perf_msrs(vmx);
8955 debugctlmsr = get_debugctlmsr();
8956
8957 vmx_arm_hv_timer(vcpu);
8958
8959 vmx->__launched = vmx->loaded_vmcs->launched;
8960 asm(
8961 /* Store host registers */
8962 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8963 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8964 "push %%" _ASM_CX " \n\t"
8965 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8966 "je 1f \n\t"
8967 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8968 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8969 "1: \n\t"
8970 /* Reload cr2 if changed */
8971 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8972 "mov %%cr2, %%" _ASM_DX " \n\t"
8973 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8974 "je 2f \n\t"
8975 "mov %%" _ASM_AX", %%cr2 \n\t"
8976 "2: \n\t"
8977 /* Check if vmlaunch of vmresume is needed */
8978 "cmpl $0, %c[launched](%0) \n\t"
8979 /* Load guest registers. Don't clobber flags. */
8980 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8981 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8982 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8983 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8984 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8985 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8986 #ifdef CONFIG_X86_64
8987 "mov %c[r8](%0), %%r8 \n\t"
8988 "mov %c[r9](%0), %%r9 \n\t"
8989 "mov %c[r10](%0), %%r10 \n\t"
8990 "mov %c[r11](%0), %%r11 \n\t"
8991 "mov %c[r12](%0), %%r12 \n\t"
8992 "mov %c[r13](%0), %%r13 \n\t"
8993 "mov %c[r14](%0), %%r14 \n\t"
8994 "mov %c[r15](%0), %%r15 \n\t"
8995 #endif
8996 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8997
8998 /* Enter guest mode */
8999 "jne 1f \n\t"
9000 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9001 "jmp 2f \n\t"
9002 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9003 "2: "
9004 /* Save guest registers, load host registers, keep flags */
9005 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9006 "pop %0 \n\t"
9007 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9008 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9009 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9010 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9011 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9012 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9013 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9014 #ifdef CONFIG_X86_64
9015 "mov %%r8, %c[r8](%0) \n\t"
9016 "mov %%r9, %c[r9](%0) \n\t"
9017 "mov %%r10, %c[r10](%0) \n\t"
9018 "mov %%r11, %c[r11](%0) \n\t"
9019 "mov %%r12, %c[r12](%0) \n\t"
9020 "mov %%r13, %c[r13](%0) \n\t"
9021 "mov %%r14, %c[r14](%0) \n\t"
9022 "mov %%r15, %c[r15](%0) \n\t"
9023 #endif
9024 "mov %%cr2, %%" _ASM_AX " \n\t"
9025 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9026
9027 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9028 "setbe %c[fail](%0) \n\t"
9029 ".pushsection .rodata \n\t"
9030 ".global vmx_return \n\t"
9031 "vmx_return: " _ASM_PTR " 2b \n\t"
9032 ".popsection"
9033 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9034 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9035 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9036 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9037 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9038 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9039 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9040 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9041 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9042 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9043 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9044 #ifdef CONFIG_X86_64
9045 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9046 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9047 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9048 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9049 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9050 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9051 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9052 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9053 #endif
9054 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9055 [wordsize]"i"(sizeof(ulong))
9056 : "cc", "memory"
9057 #ifdef CONFIG_X86_64
9058 , "rax", "rbx", "rdi", "rsi"
9059 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9060 #else
9061 , "eax", "ebx", "edi", "esi"
9062 #endif
9063 );
9064
9065 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9066 if (debugctlmsr)
9067 update_debugctlmsr(debugctlmsr);
9068
9069 #ifndef CONFIG_X86_64
9070 /*
9071 * The sysexit path does not restore ds/es, so we must set them to
9072 * a reasonable value ourselves.
9073 *
9074 * We can't defer this to vmx_load_host_state() since that function
9075 * may be executed in interrupt context, which saves and restore segments
9076 * around it, nullifying its effect.
9077 */
9078 loadsegment(ds, __USER_DS);
9079 loadsegment(es, __USER_DS);
9080 #endif
9081
9082 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9083 | (1 << VCPU_EXREG_RFLAGS)
9084 | (1 << VCPU_EXREG_PDPTR)
9085 | (1 << VCPU_EXREG_SEGMENTS)
9086 | (1 << VCPU_EXREG_CR3));
9087 vcpu->arch.regs_dirty = 0;
9088
9089 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9090
9091 vmx->loaded_vmcs->launched = 1;
9092
9093 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9094
9095 /*
9096 * eager fpu is enabled if PKEY is supported and CR4 is switched
9097 * back on host, so it is safe to read guest PKRU from current
9098 * XSAVE.
9099 */
9100 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9101 vmx->guest_pkru = __read_pkru();
9102 if (vmx->guest_pkru != vmx->host_pkru) {
9103 vmx->guest_pkru_valid = true;
9104 __write_pkru(vmx->host_pkru);
9105 } else
9106 vmx->guest_pkru_valid = false;
9107 }
9108
9109 /*
9110 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9111 * we did not inject a still-pending event to L1 now because of
9112 * nested_run_pending, we need to re-enable this bit.
9113 */
9114 if (vmx->nested.nested_run_pending)
9115 kvm_make_request(KVM_REQ_EVENT, vcpu);
9116
9117 vmx->nested.nested_run_pending = 0;
9118
9119 vmx_complete_atomic_exit(vmx);
9120 vmx_recover_nmi_blocking(vmx);
9121 vmx_complete_interrupts(vmx);
9122 }
9123 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9124
9125 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9126 {
9127 struct vcpu_vmx *vmx = to_vmx(vcpu);
9128 int cpu;
9129
9130 if (vmx->loaded_vmcs == vmcs)
9131 return;
9132
9133 cpu = get_cpu();
9134 vmx->loaded_vmcs = vmcs;
9135 vmx_vcpu_put(vcpu);
9136 vmx_vcpu_load(vcpu, cpu);
9137 vcpu->cpu = cpu;
9138 put_cpu();
9139 }
9140
9141 /*
9142 * Ensure that the current vmcs of the logical processor is the
9143 * vmcs01 of the vcpu before calling free_nested().
9144 */
9145 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9146 {
9147 struct vcpu_vmx *vmx = to_vmx(vcpu);
9148 int r;
9149
9150 r = vcpu_load(vcpu);
9151 BUG_ON(r);
9152 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9153 free_nested(vmx);
9154 vcpu_put(vcpu);
9155 }
9156
9157 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9158 {
9159 struct vcpu_vmx *vmx = to_vmx(vcpu);
9160
9161 if (enable_pml)
9162 vmx_destroy_pml_buffer(vmx);
9163 free_vpid(vmx->vpid);
9164 leave_guest_mode(vcpu);
9165 vmx_free_vcpu_nested(vcpu);
9166 free_loaded_vmcs(vmx->loaded_vmcs);
9167 kfree(vmx->guest_msrs);
9168 kvm_vcpu_uninit(vcpu);
9169 kmem_cache_free(kvm_vcpu_cache, vmx);
9170 }
9171
9172 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9173 {
9174 int err;
9175 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9176 int cpu;
9177
9178 if (!vmx)
9179 return ERR_PTR(-ENOMEM);
9180
9181 vmx->vpid = allocate_vpid();
9182
9183 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9184 if (err)
9185 goto free_vcpu;
9186
9187 err = -ENOMEM;
9188
9189 /*
9190 * If PML is turned on, failure on enabling PML just results in failure
9191 * of creating the vcpu, therefore we can simplify PML logic (by
9192 * avoiding dealing with cases, such as enabling PML partially on vcpus
9193 * for the guest, etc.
9194 */
9195 if (enable_pml) {
9196 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9197 if (!vmx->pml_pg)
9198 goto uninit_vcpu;
9199 }
9200
9201 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9202 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9203 > PAGE_SIZE);
9204
9205 if (!vmx->guest_msrs)
9206 goto free_pml;
9207
9208 vmx->loaded_vmcs = &vmx->vmcs01;
9209 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9210 vmx->loaded_vmcs->shadow_vmcs = NULL;
9211 if (!vmx->loaded_vmcs->vmcs)
9212 goto free_msrs;
9213 loaded_vmcs_init(vmx->loaded_vmcs);
9214
9215 cpu = get_cpu();
9216 vmx_vcpu_load(&vmx->vcpu, cpu);
9217 vmx->vcpu.cpu = cpu;
9218 err = vmx_vcpu_setup(vmx);
9219 vmx_vcpu_put(&vmx->vcpu);
9220 put_cpu();
9221 if (err)
9222 goto free_vmcs;
9223 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9224 err = alloc_apic_access_page(kvm);
9225 if (err)
9226 goto free_vmcs;
9227 }
9228
9229 if (enable_ept) {
9230 if (!kvm->arch.ept_identity_map_addr)
9231 kvm->arch.ept_identity_map_addr =
9232 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9233 err = init_rmode_identity_map(kvm);
9234 if (err)
9235 goto free_vmcs;
9236 }
9237
9238 if (nested) {
9239 nested_vmx_setup_ctls_msrs(vmx);
9240 vmx->nested.vpid02 = allocate_vpid();
9241 }
9242
9243 vmx->nested.posted_intr_nv = -1;
9244 vmx->nested.current_vmptr = -1ull;
9245 vmx->nested.current_vmcs12 = NULL;
9246
9247 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9248
9249 return &vmx->vcpu;
9250
9251 free_vmcs:
9252 free_vpid(vmx->nested.vpid02);
9253 free_loaded_vmcs(vmx->loaded_vmcs);
9254 free_msrs:
9255 kfree(vmx->guest_msrs);
9256 free_pml:
9257 vmx_destroy_pml_buffer(vmx);
9258 uninit_vcpu:
9259 kvm_vcpu_uninit(&vmx->vcpu);
9260 free_vcpu:
9261 free_vpid(vmx->vpid);
9262 kmem_cache_free(kvm_vcpu_cache, vmx);
9263 return ERR_PTR(err);
9264 }
9265
9266 static void __init vmx_check_processor_compat(void *rtn)
9267 {
9268 struct vmcs_config vmcs_conf;
9269
9270 *(int *)rtn = 0;
9271 if (setup_vmcs_config(&vmcs_conf) < 0)
9272 *(int *)rtn = -EIO;
9273 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9274 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9275 smp_processor_id());
9276 *(int *)rtn = -EIO;
9277 }
9278 }
9279
9280 static int get_ept_level(void)
9281 {
9282 return VMX_EPT_DEFAULT_GAW + 1;
9283 }
9284
9285 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9286 {
9287 u8 cache;
9288 u64 ipat = 0;
9289
9290 /* For VT-d and EPT combination
9291 * 1. MMIO: always map as UC
9292 * 2. EPT with VT-d:
9293 * a. VT-d without snooping control feature: can't guarantee the
9294 * result, try to trust guest.
9295 * b. VT-d with snooping control feature: snooping control feature of
9296 * VT-d engine can guarantee the cache correctness. Just set it
9297 * to WB to keep consistent with host. So the same as item 3.
9298 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9299 * consistent with host MTRR
9300 */
9301 if (is_mmio) {
9302 cache = MTRR_TYPE_UNCACHABLE;
9303 goto exit;
9304 }
9305
9306 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9307 ipat = VMX_EPT_IPAT_BIT;
9308 cache = MTRR_TYPE_WRBACK;
9309 goto exit;
9310 }
9311
9312 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9313 ipat = VMX_EPT_IPAT_BIT;
9314 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9315 cache = MTRR_TYPE_WRBACK;
9316 else
9317 cache = MTRR_TYPE_UNCACHABLE;
9318 goto exit;
9319 }
9320
9321 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9322
9323 exit:
9324 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9325 }
9326
9327 static int vmx_get_lpage_level(void)
9328 {
9329 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9330 return PT_DIRECTORY_LEVEL;
9331 else
9332 /* For shadow and EPT supported 1GB page */
9333 return PT_PDPE_LEVEL;
9334 }
9335
9336 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9337 {
9338 /*
9339 * These bits in the secondary execution controls field
9340 * are dynamic, the others are mostly based on the hypervisor
9341 * architecture and the guest's CPUID. Do not touch the
9342 * dynamic bits.
9343 */
9344 u32 mask =
9345 SECONDARY_EXEC_SHADOW_VMCS |
9346 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9347 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9348
9349 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9350
9351 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9352 (new_ctl & ~mask) | (cur_ctl & mask));
9353 }
9354
9355 /*
9356 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9357 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9358 */
9359 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9360 {
9361 struct vcpu_vmx *vmx = to_vmx(vcpu);
9362 struct kvm_cpuid_entry2 *entry;
9363
9364 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9365 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9366
9367 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9368 if (entry && (entry->_reg & (_cpuid_mask))) \
9369 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9370 } while (0)
9371
9372 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9373 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9374 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9375 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9376 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9377 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9378 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9379 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9380 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9381 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9382 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9383 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9384 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9385 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9386 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9387
9388 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9389 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9390 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9391 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9392 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9393 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9394 cr4_fixed1_update(bit(11), ecx, bit(2));
9395
9396 #undef cr4_fixed1_update
9397 }
9398
9399 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9400 {
9401 struct kvm_cpuid_entry2 *best;
9402 struct vcpu_vmx *vmx = to_vmx(vcpu);
9403 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9404
9405 if (vmx_rdtscp_supported()) {
9406 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9407 if (!rdtscp_enabled)
9408 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9409
9410 if (nested) {
9411 if (rdtscp_enabled)
9412 vmx->nested.nested_vmx_secondary_ctls_high |=
9413 SECONDARY_EXEC_RDTSCP;
9414 else
9415 vmx->nested.nested_vmx_secondary_ctls_high &=
9416 ~SECONDARY_EXEC_RDTSCP;
9417 }
9418 }
9419
9420 /* Exposing INVPCID only when PCID is exposed */
9421 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9422 if (vmx_invpcid_supported() &&
9423 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9424 !guest_cpuid_has_pcid(vcpu))) {
9425 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9426
9427 if (best)
9428 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9429 }
9430
9431 if (cpu_has_secondary_exec_ctrls())
9432 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9433
9434 if (nested_vmx_allowed(vcpu))
9435 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9436 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9437 else
9438 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9439 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9440
9441 if (nested_vmx_allowed(vcpu))
9442 nested_vmx_cr_fixed1_bits_update(vcpu);
9443 }
9444
9445 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9446 {
9447 if (func == 1 && nested)
9448 entry->ecx |= bit(X86_FEATURE_VMX);
9449 }
9450
9451 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9452 struct x86_exception *fault)
9453 {
9454 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9455 struct vcpu_vmx *vmx = to_vmx(vcpu);
9456 u32 exit_reason;
9457 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9458
9459 if (vmx->nested.pml_full) {
9460 exit_reason = EXIT_REASON_PML_FULL;
9461 vmx->nested.pml_full = false;
9462 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9463 } else if (fault->error_code & PFERR_RSVD_MASK)
9464 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9465 else
9466 exit_reason = EXIT_REASON_EPT_VIOLATION;
9467
9468 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9469 vmcs12->guest_physical_address = fault->address;
9470 }
9471
9472 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9473 {
9474 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9475 }
9476
9477 /* Callbacks for nested_ept_init_mmu_context: */
9478
9479 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9480 {
9481 /* return the page table to be shadowed - in our case, EPT12 */
9482 return get_vmcs12(vcpu)->ept_pointer;
9483 }
9484
9485 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9486 {
9487 bool wants_ad;
9488
9489 WARN_ON(mmu_is_nested(vcpu));
9490 wants_ad = nested_ept_ad_enabled(vcpu);
9491 if (wants_ad && !enable_ept_ad_bits)
9492 return 1;
9493
9494 kvm_mmu_unload(vcpu);
9495 kvm_init_shadow_ept_mmu(vcpu,
9496 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9497 VMX_EPT_EXECUTE_ONLY_BIT,
9498 wants_ad);
9499 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9500 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9501 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9502
9503 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9504 return 0;
9505 }
9506
9507 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9508 {
9509 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9510 }
9511
9512 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9513 u16 error_code)
9514 {
9515 bool inequality, bit;
9516
9517 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9518 inequality =
9519 (error_code & vmcs12->page_fault_error_code_mask) !=
9520 vmcs12->page_fault_error_code_match;
9521 return inequality ^ bit;
9522 }
9523
9524 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9525 struct x86_exception *fault)
9526 {
9527 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9528
9529 WARN_ON(!is_guest_mode(vcpu));
9530
9531 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
9532 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9533 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9534 vmcs_read32(VM_EXIT_INTR_INFO),
9535 vmcs_readl(EXIT_QUALIFICATION));
9536 } else {
9537 kvm_inject_page_fault(vcpu, fault);
9538 }
9539 }
9540
9541 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9542 struct vmcs12 *vmcs12);
9543
9544 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9545 struct vmcs12 *vmcs12)
9546 {
9547 struct vcpu_vmx *vmx = to_vmx(vcpu);
9548 u64 hpa;
9549
9550 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9551 /*
9552 * Translate L1 physical address to host physical
9553 * address for vmcs02. Keep the page pinned, so this
9554 * physical address remains valid. We keep a reference
9555 * to it so we can release it later.
9556 */
9557 if (vmx->nested.apic_access_page) /* shouldn't happen */
9558 nested_release_page(vmx->nested.apic_access_page);
9559 vmx->nested.apic_access_page =
9560 nested_get_page(vcpu, vmcs12->apic_access_addr);
9561 /*
9562 * If translation failed, no matter: This feature asks
9563 * to exit when accessing the given address, and if it
9564 * can never be accessed, this feature won't do
9565 * anything anyway.
9566 */
9567 if (vmx->nested.apic_access_page) {
9568 hpa = page_to_phys(vmx->nested.apic_access_page);
9569 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9570 } else {
9571 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9572 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9573 }
9574 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9575 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9576 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9577 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9578 kvm_vcpu_reload_apic_access_page(vcpu);
9579 }
9580
9581 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9582 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9583 nested_release_page(vmx->nested.virtual_apic_page);
9584 vmx->nested.virtual_apic_page =
9585 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9586
9587 /*
9588 * If translation failed, VM entry will fail because
9589 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9590 * Failing the vm entry is _not_ what the processor
9591 * does but it's basically the only possibility we
9592 * have. We could still enter the guest if CR8 load
9593 * exits are enabled, CR8 store exits are enabled, and
9594 * virtualize APIC access is disabled; in this case
9595 * the processor would never use the TPR shadow and we
9596 * could simply clear the bit from the execution
9597 * control. But such a configuration is useless, so
9598 * let's keep the code simple.
9599 */
9600 if (vmx->nested.virtual_apic_page) {
9601 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9602 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9603 }
9604 }
9605
9606 if (nested_cpu_has_posted_intr(vmcs12)) {
9607 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9608 kunmap(vmx->nested.pi_desc_page);
9609 nested_release_page(vmx->nested.pi_desc_page);
9610 }
9611 vmx->nested.pi_desc_page =
9612 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9613 vmx->nested.pi_desc =
9614 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9615 if (!vmx->nested.pi_desc) {
9616 nested_release_page_clean(vmx->nested.pi_desc_page);
9617 return;
9618 }
9619 vmx->nested.pi_desc =
9620 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9621 (unsigned long)(vmcs12->posted_intr_desc_addr &
9622 (PAGE_SIZE - 1)));
9623 vmcs_write64(POSTED_INTR_DESC_ADDR,
9624 page_to_phys(vmx->nested.pi_desc_page) +
9625 (unsigned long)(vmcs12->posted_intr_desc_addr &
9626 (PAGE_SIZE - 1)));
9627 }
9628 if (cpu_has_vmx_msr_bitmap() &&
9629 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9630 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9631 ;
9632 else
9633 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9634 CPU_BASED_USE_MSR_BITMAPS);
9635 }
9636
9637 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9638 {
9639 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9640 struct vcpu_vmx *vmx = to_vmx(vcpu);
9641
9642 if (vcpu->arch.virtual_tsc_khz == 0)
9643 return;
9644
9645 /* Make sure short timeouts reliably trigger an immediate vmexit.
9646 * hrtimer_start does not guarantee this. */
9647 if (preemption_timeout <= 1) {
9648 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9649 return;
9650 }
9651
9652 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9653 preemption_timeout *= 1000000;
9654 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9655 hrtimer_start(&vmx->nested.preemption_timer,
9656 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9657 }
9658
9659 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9660 struct vmcs12 *vmcs12)
9661 {
9662 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9663 return 0;
9664
9665 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9666 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9667 return -EINVAL;
9668
9669 return 0;
9670 }
9671
9672 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9673 struct vmcs12 *vmcs12)
9674 {
9675 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9676 return 0;
9677
9678 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9679 return -EINVAL;
9680
9681 return 0;
9682 }
9683
9684 /*
9685 * Merge L0's and L1's MSR bitmap, return false to indicate that
9686 * we do not use the hardware.
9687 */
9688 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9689 struct vmcs12 *vmcs12)
9690 {
9691 int msr;
9692 struct page *page;
9693 unsigned long *msr_bitmap_l1;
9694 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9695
9696 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9697 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9698 return false;
9699
9700 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9701 if (!page)
9702 return false;
9703 msr_bitmap_l1 = (unsigned long *)kmap(page);
9704
9705 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9706
9707 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9708 if (nested_cpu_has_apic_reg_virt(vmcs12))
9709 for (msr = 0x800; msr <= 0x8ff; msr++)
9710 nested_vmx_disable_intercept_for_msr(
9711 msr_bitmap_l1, msr_bitmap_l0,
9712 msr, MSR_TYPE_R);
9713
9714 nested_vmx_disable_intercept_for_msr(
9715 msr_bitmap_l1, msr_bitmap_l0,
9716 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9717 MSR_TYPE_R | MSR_TYPE_W);
9718
9719 if (nested_cpu_has_vid(vmcs12)) {
9720 nested_vmx_disable_intercept_for_msr(
9721 msr_bitmap_l1, msr_bitmap_l0,
9722 APIC_BASE_MSR + (APIC_EOI >> 4),
9723 MSR_TYPE_W);
9724 nested_vmx_disable_intercept_for_msr(
9725 msr_bitmap_l1, msr_bitmap_l0,
9726 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9727 MSR_TYPE_W);
9728 }
9729 }
9730 kunmap(page);
9731 nested_release_page_clean(page);
9732
9733 return true;
9734 }
9735
9736 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9737 struct vmcs12 *vmcs12)
9738 {
9739 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9740 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9741 !nested_cpu_has_vid(vmcs12) &&
9742 !nested_cpu_has_posted_intr(vmcs12))
9743 return 0;
9744
9745 /*
9746 * If virtualize x2apic mode is enabled,
9747 * virtualize apic access must be disabled.
9748 */
9749 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9750 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9751 return -EINVAL;
9752
9753 /*
9754 * If virtual interrupt delivery is enabled,
9755 * we must exit on external interrupts.
9756 */
9757 if (nested_cpu_has_vid(vmcs12) &&
9758 !nested_exit_on_intr(vcpu))
9759 return -EINVAL;
9760
9761 /*
9762 * bits 15:8 should be zero in posted_intr_nv,
9763 * the descriptor address has been already checked
9764 * in nested_get_vmcs12_pages.
9765 */
9766 if (nested_cpu_has_posted_intr(vmcs12) &&
9767 (!nested_cpu_has_vid(vmcs12) ||
9768 !nested_exit_intr_ack_set(vcpu) ||
9769 vmcs12->posted_intr_nv & 0xff00))
9770 return -EINVAL;
9771
9772 /* tpr shadow is needed by all apicv features. */
9773 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9774 return -EINVAL;
9775
9776 return 0;
9777 }
9778
9779 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9780 unsigned long count_field,
9781 unsigned long addr_field)
9782 {
9783 int maxphyaddr;
9784 u64 count, addr;
9785
9786 if (vmcs12_read_any(vcpu, count_field, &count) ||
9787 vmcs12_read_any(vcpu, addr_field, &addr)) {
9788 WARN_ON(1);
9789 return -EINVAL;
9790 }
9791 if (count == 0)
9792 return 0;
9793 maxphyaddr = cpuid_maxphyaddr(vcpu);
9794 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9795 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9796 pr_debug_ratelimited(
9797 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9798 addr_field, maxphyaddr, count, addr);
9799 return -EINVAL;
9800 }
9801 return 0;
9802 }
9803
9804 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9805 struct vmcs12 *vmcs12)
9806 {
9807 if (vmcs12->vm_exit_msr_load_count == 0 &&
9808 vmcs12->vm_exit_msr_store_count == 0 &&
9809 vmcs12->vm_entry_msr_load_count == 0)
9810 return 0; /* Fast path */
9811 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9812 VM_EXIT_MSR_LOAD_ADDR) ||
9813 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9814 VM_EXIT_MSR_STORE_ADDR) ||
9815 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9816 VM_ENTRY_MSR_LOAD_ADDR))
9817 return -EINVAL;
9818 return 0;
9819 }
9820
9821 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9822 struct vmcs12 *vmcs12)
9823 {
9824 u64 address = vmcs12->pml_address;
9825 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9826
9827 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9828 if (!nested_cpu_has_ept(vmcs12) ||
9829 !IS_ALIGNED(address, 4096) ||
9830 address >> maxphyaddr)
9831 return -EINVAL;
9832 }
9833
9834 return 0;
9835 }
9836
9837 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9838 struct vmx_msr_entry *e)
9839 {
9840 /* x2APIC MSR accesses are not allowed */
9841 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9842 return -EINVAL;
9843 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9844 e->index == MSR_IA32_UCODE_REV)
9845 return -EINVAL;
9846 if (e->reserved != 0)
9847 return -EINVAL;
9848 return 0;
9849 }
9850
9851 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9852 struct vmx_msr_entry *e)
9853 {
9854 if (e->index == MSR_FS_BASE ||
9855 e->index == MSR_GS_BASE ||
9856 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9857 nested_vmx_msr_check_common(vcpu, e))
9858 return -EINVAL;
9859 return 0;
9860 }
9861
9862 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9863 struct vmx_msr_entry *e)
9864 {
9865 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9866 nested_vmx_msr_check_common(vcpu, e))
9867 return -EINVAL;
9868 return 0;
9869 }
9870
9871 /*
9872 * Load guest's/host's msr at nested entry/exit.
9873 * return 0 for success, entry index for failure.
9874 */
9875 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9876 {
9877 u32 i;
9878 struct vmx_msr_entry e;
9879 struct msr_data msr;
9880
9881 msr.host_initiated = false;
9882 for (i = 0; i < count; i++) {
9883 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9884 &e, sizeof(e))) {
9885 pr_debug_ratelimited(
9886 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9887 __func__, i, gpa + i * sizeof(e));
9888 goto fail;
9889 }
9890 if (nested_vmx_load_msr_check(vcpu, &e)) {
9891 pr_debug_ratelimited(
9892 "%s check failed (%u, 0x%x, 0x%x)\n",
9893 __func__, i, e.index, e.reserved);
9894 goto fail;
9895 }
9896 msr.index = e.index;
9897 msr.data = e.value;
9898 if (kvm_set_msr(vcpu, &msr)) {
9899 pr_debug_ratelimited(
9900 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9901 __func__, i, e.index, e.value);
9902 goto fail;
9903 }
9904 }
9905 return 0;
9906 fail:
9907 return i + 1;
9908 }
9909
9910 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9911 {
9912 u32 i;
9913 struct vmx_msr_entry e;
9914
9915 for (i = 0; i < count; i++) {
9916 struct msr_data msr_info;
9917 if (kvm_vcpu_read_guest(vcpu,
9918 gpa + i * sizeof(e),
9919 &e, 2 * sizeof(u32))) {
9920 pr_debug_ratelimited(
9921 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9922 __func__, i, gpa + i * sizeof(e));
9923 return -EINVAL;
9924 }
9925 if (nested_vmx_store_msr_check(vcpu, &e)) {
9926 pr_debug_ratelimited(
9927 "%s check failed (%u, 0x%x, 0x%x)\n",
9928 __func__, i, e.index, e.reserved);
9929 return -EINVAL;
9930 }
9931 msr_info.host_initiated = false;
9932 msr_info.index = e.index;
9933 if (kvm_get_msr(vcpu, &msr_info)) {
9934 pr_debug_ratelimited(
9935 "%s cannot read MSR (%u, 0x%x)\n",
9936 __func__, i, e.index);
9937 return -EINVAL;
9938 }
9939 if (kvm_vcpu_write_guest(vcpu,
9940 gpa + i * sizeof(e) +
9941 offsetof(struct vmx_msr_entry, value),
9942 &msr_info.data, sizeof(msr_info.data))) {
9943 pr_debug_ratelimited(
9944 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9945 __func__, i, e.index, msr_info.data);
9946 return -EINVAL;
9947 }
9948 }
9949 return 0;
9950 }
9951
9952 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9953 {
9954 unsigned long invalid_mask;
9955
9956 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9957 return (val & invalid_mask) == 0;
9958 }
9959
9960 /*
9961 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9962 * emulating VM entry into a guest with EPT enabled.
9963 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9964 * is assigned to entry_failure_code on failure.
9965 */
9966 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9967 u32 *entry_failure_code)
9968 {
9969 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9970 if (!nested_cr3_valid(vcpu, cr3)) {
9971 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9972 return 1;
9973 }
9974
9975 /*
9976 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9977 * must not be dereferenced.
9978 */
9979 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9980 !nested_ept) {
9981 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9982 *entry_failure_code = ENTRY_FAIL_PDPTE;
9983 return 1;
9984 }
9985 }
9986
9987 vcpu->arch.cr3 = cr3;
9988 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9989 }
9990
9991 kvm_mmu_reset_context(vcpu);
9992 return 0;
9993 }
9994
9995 /*
9996 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9997 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9998 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9999 * guest in a way that will both be appropriate to L1's requests, and our
10000 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10001 * function also has additional necessary side-effects, like setting various
10002 * vcpu->arch fields.
10003 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10004 * is assigned to entry_failure_code on failure.
10005 */
10006 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10007 bool from_vmentry, u32 *entry_failure_code)
10008 {
10009 struct vcpu_vmx *vmx = to_vmx(vcpu);
10010 u32 exec_control, vmcs12_exec_ctrl;
10011
10012 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10013 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10014 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10015 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10016 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10017 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10018 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10019 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10020 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10021 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10022 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10023 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10024 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10025 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10026 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10027 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10028 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10029 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10030 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10031 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10032 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10033 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10034 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10035 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10036 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10037 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10038 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10039 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10040 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10041 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10042 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10043 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10044 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10045 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10046 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10047 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10048
10049 if (from_vmentry &&
10050 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10051 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10052 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10053 } else {
10054 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10055 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10056 }
10057 if (from_vmentry) {
10058 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10059 vmcs12->vm_entry_intr_info_field);
10060 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10061 vmcs12->vm_entry_exception_error_code);
10062 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10063 vmcs12->vm_entry_instruction_len);
10064 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10065 vmcs12->guest_interruptibility_info);
10066 vmx->loaded_vmcs->nmi_known_unmasked =
10067 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10068 } else {
10069 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10070 }
10071 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10072 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10073 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10074 vmcs12->guest_pending_dbg_exceptions);
10075 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10076 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10077
10078 if (nested_cpu_has_xsaves(vmcs12))
10079 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10080 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10081
10082 exec_control = vmcs12->pin_based_vm_exec_control;
10083
10084 /* Preemption timer setting is only taken from vmcs01. */
10085 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10086 exec_control |= vmcs_config.pin_based_exec_ctrl;
10087 if (vmx->hv_deadline_tsc == -1)
10088 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10089
10090 /* Posted interrupts setting is only taken from vmcs12. */
10091 if (nested_cpu_has_posted_intr(vmcs12)) {
10092 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10093 vmx->nested.pi_pending = false;
10094 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10095 } else {
10096 exec_control &= ~PIN_BASED_POSTED_INTR;
10097 }
10098
10099 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10100
10101 vmx->nested.preemption_timer_expired = false;
10102 if (nested_cpu_has_preemption_timer(vmcs12))
10103 vmx_start_preemption_timer(vcpu);
10104
10105 /*
10106 * Whether page-faults are trapped is determined by a combination of
10107 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10108 * If enable_ept, L0 doesn't care about page faults and we should
10109 * set all of these to L1's desires. However, if !enable_ept, L0 does
10110 * care about (at least some) page faults, and because it is not easy
10111 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10112 * to exit on each and every L2 page fault. This is done by setting
10113 * MASK=MATCH=0 and (see below) EB.PF=1.
10114 * Note that below we don't need special code to set EB.PF beyond the
10115 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10116 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10117 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10118 *
10119 * A problem with this approach (when !enable_ept) is that L1 may be
10120 * injected with more page faults than it asked for. This could have
10121 * caused problems, but in practice existing hypervisors don't care.
10122 * To fix this, we will need to emulate the PFEC checking (on the L1
10123 * page tables), using walk_addr(), when injecting PFs to L1.
10124 */
10125 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10126 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10127 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10128 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10129
10130 if (cpu_has_secondary_exec_ctrls()) {
10131 exec_control = vmx_secondary_exec_control(vmx);
10132
10133 /* Take the following fields only from vmcs12 */
10134 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10135 SECONDARY_EXEC_RDTSCP |
10136 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10137 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10138 if (nested_cpu_has(vmcs12,
10139 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10140 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10141 ~SECONDARY_EXEC_ENABLE_PML;
10142 exec_control |= vmcs12_exec_ctrl;
10143 }
10144
10145 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10146 vmcs_write64(EOI_EXIT_BITMAP0,
10147 vmcs12->eoi_exit_bitmap0);
10148 vmcs_write64(EOI_EXIT_BITMAP1,
10149 vmcs12->eoi_exit_bitmap1);
10150 vmcs_write64(EOI_EXIT_BITMAP2,
10151 vmcs12->eoi_exit_bitmap2);
10152 vmcs_write64(EOI_EXIT_BITMAP3,
10153 vmcs12->eoi_exit_bitmap3);
10154 vmcs_write16(GUEST_INTR_STATUS,
10155 vmcs12->guest_intr_status);
10156 }
10157
10158 /*
10159 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10160 * nested_get_vmcs12_pages will either fix it up or
10161 * remove the VM execution control.
10162 */
10163 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10164 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10165
10166 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10167 }
10168
10169
10170 /*
10171 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10172 * Some constant fields are set here by vmx_set_constant_host_state().
10173 * Other fields are different per CPU, and will be set later when
10174 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10175 */
10176 vmx_set_constant_host_state(vmx);
10177
10178 /*
10179 * Set the MSR load/store lists to match L0's settings.
10180 */
10181 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10182 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10183 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10184 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10185 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10186
10187 /*
10188 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10189 * entry, but only if the current (host) sp changed from the value
10190 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10191 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10192 * here we just force the write to happen on entry.
10193 */
10194 vmx->host_rsp = 0;
10195
10196 exec_control = vmx_exec_control(vmx); /* L0's desires */
10197 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10198 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10199 exec_control &= ~CPU_BASED_TPR_SHADOW;
10200 exec_control |= vmcs12->cpu_based_vm_exec_control;
10201
10202 /*
10203 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10204 * nested_get_vmcs12_pages can't fix it up, the illegal value
10205 * will result in a VM entry failure.
10206 */
10207 if (exec_control & CPU_BASED_TPR_SHADOW) {
10208 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10209 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10210 }
10211
10212 /*
10213 * Merging of IO bitmap not currently supported.
10214 * Rather, exit every time.
10215 */
10216 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10217 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10218
10219 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10220
10221 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10222 * bitwise-or of what L1 wants to trap for L2, and what we want to
10223 * trap. Note that CR0.TS also needs updating - we do this later.
10224 */
10225 update_exception_bitmap(vcpu);
10226 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10227 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10228
10229 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10230 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10231 * bits are further modified by vmx_set_efer() below.
10232 */
10233 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10234
10235 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10236 * emulated by vmx_set_efer(), below.
10237 */
10238 vm_entry_controls_init(vmx,
10239 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10240 ~VM_ENTRY_IA32E_MODE) |
10241 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10242
10243 if (from_vmentry &&
10244 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10245 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10246 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10247 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10248 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10249 }
10250
10251 set_cr4_guest_host_mask(vmx);
10252
10253 if (from_vmentry &&
10254 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10255 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10256
10257 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10258 vmcs_write64(TSC_OFFSET,
10259 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10260 else
10261 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10262 if (kvm_has_tsc_control)
10263 decache_tsc_multiplier(vmx);
10264
10265 if (enable_vpid) {
10266 /*
10267 * There is no direct mapping between vpid02 and vpid12, the
10268 * vpid02 is per-vCPU for L0 and reused while the value of
10269 * vpid12 is changed w/ one invvpid during nested vmentry.
10270 * The vpid12 is allocated by L1 for L2, so it will not
10271 * influence global bitmap(for vpid01 and vpid02 allocation)
10272 * even if spawn a lot of nested vCPUs.
10273 */
10274 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10275 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10276 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10277 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10278 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10279 }
10280 } else {
10281 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10282 vmx_flush_tlb(vcpu);
10283 }
10284
10285 }
10286
10287 if (enable_pml) {
10288 /*
10289 * Conceptually we want to copy the PML address and index from
10290 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10291 * since we always flush the log on each vmexit, this happens
10292 * to be equivalent to simply resetting the fields in vmcs02.
10293 */
10294 ASSERT(vmx->pml_pg);
10295 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10296 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10297 }
10298
10299 if (nested_cpu_has_ept(vmcs12)) {
10300 if (nested_ept_init_mmu_context(vcpu)) {
10301 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10302 return 1;
10303 }
10304 } else if (nested_cpu_has2(vmcs12,
10305 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10306 vmx_flush_tlb_ept_only(vcpu);
10307 }
10308
10309 /*
10310 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10311 * bits which we consider mandatory enabled.
10312 * The CR0_READ_SHADOW is what L2 should have expected to read given
10313 * the specifications by L1; It's not enough to take
10314 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10315 * have more bits than L1 expected.
10316 */
10317 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10318 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10319
10320 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10321 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10322
10323 if (from_vmentry &&
10324 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10325 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10326 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10327 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10328 else
10329 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10330 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10331 vmx_set_efer(vcpu, vcpu->arch.efer);
10332
10333 /* Shadow page tables on either EPT or shadow page tables. */
10334 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10335 entry_failure_code))
10336 return 1;
10337
10338 if (!enable_ept)
10339 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10340
10341 /*
10342 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10343 */
10344 if (enable_ept) {
10345 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10346 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10347 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10348 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10349 }
10350
10351 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10352 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10353 return 0;
10354 }
10355
10356 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10357 {
10358 struct vcpu_vmx *vmx = to_vmx(vcpu);
10359
10360 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10361 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10362 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10363
10364 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10365 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10366
10367 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10368 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10369
10370 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10371 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10372
10373 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10374 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10375
10376 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10377 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10378
10379 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10380 vmx->nested.nested_vmx_procbased_ctls_low,
10381 vmx->nested.nested_vmx_procbased_ctls_high) ||
10382 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10383 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10384 vmx->nested.nested_vmx_secondary_ctls_low,
10385 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10386 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10387 vmx->nested.nested_vmx_pinbased_ctls_low,
10388 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10389 !vmx_control_verify(vmcs12->vm_exit_controls,
10390 vmx->nested.nested_vmx_exit_ctls_low,
10391 vmx->nested.nested_vmx_exit_ctls_high) ||
10392 !vmx_control_verify(vmcs12->vm_entry_controls,
10393 vmx->nested.nested_vmx_entry_ctls_low,
10394 vmx->nested.nested_vmx_entry_ctls_high))
10395 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10396
10397 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10398 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10399
10400 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10401 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10402 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10403 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10404
10405 return 0;
10406 }
10407
10408 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10409 u32 *exit_qual)
10410 {
10411 bool ia32e;
10412
10413 *exit_qual = ENTRY_FAIL_DEFAULT;
10414
10415 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10416 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10417 return 1;
10418
10419 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10420 vmcs12->vmcs_link_pointer != -1ull) {
10421 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10422 return 1;
10423 }
10424
10425 /*
10426 * If the load IA32_EFER VM-entry control is 1, the following checks
10427 * are performed on the field for the IA32_EFER MSR:
10428 * - Bits reserved in the IA32_EFER MSR must be 0.
10429 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10430 * the IA-32e mode guest VM-exit control. It must also be identical
10431 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10432 * CR0.PG) is 1.
10433 */
10434 if (to_vmx(vcpu)->nested.nested_run_pending &&
10435 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10436 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10437 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10438 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10439 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10440 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10441 return 1;
10442 }
10443
10444 /*
10445 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10446 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10447 * the values of the LMA and LME bits in the field must each be that of
10448 * the host address-space size VM-exit control.
10449 */
10450 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10451 ia32e = (vmcs12->vm_exit_controls &
10452 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10453 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10454 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10455 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10456 return 1;
10457 }
10458
10459 return 0;
10460 }
10461
10462 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10463 {
10464 struct vcpu_vmx *vmx = to_vmx(vcpu);
10465 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10466 struct loaded_vmcs *vmcs02;
10467 u32 msr_entry_idx;
10468 u32 exit_qual;
10469
10470 vmcs02 = nested_get_current_vmcs02(vmx);
10471 if (!vmcs02)
10472 return -ENOMEM;
10473
10474 enter_guest_mode(vcpu);
10475
10476 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10477 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10478
10479 vmx_switch_vmcs(vcpu, vmcs02);
10480 vmx_segment_cache_clear(vmx);
10481
10482 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10483 leave_guest_mode(vcpu);
10484 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10485 nested_vmx_entry_failure(vcpu, vmcs12,
10486 EXIT_REASON_INVALID_STATE, exit_qual);
10487 return 1;
10488 }
10489
10490 nested_get_vmcs12_pages(vcpu, vmcs12);
10491
10492 msr_entry_idx = nested_vmx_load_msr(vcpu,
10493 vmcs12->vm_entry_msr_load_addr,
10494 vmcs12->vm_entry_msr_load_count);
10495 if (msr_entry_idx) {
10496 leave_guest_mode(vcpu);
10497 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10498 nested_vmx_entry_failure(vcpu, vmcs12,
10499 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10500 return 1;
10501 }
10502
10503 /*
10504 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10505 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10506 * returned as far as L1 is concerned. It will only return (and set
10507 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10508 */
10509 return 0;
10510 }
10511
10512 /*
10513 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10514 * for running an L2 nested guest.
10515 */
10516 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10517 {
10518 struct vmcs12 *vmcs12;
10519 struct vcpu_vmx *vmx = to_vmx(vcpu);
10520 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10521 u32 exit_qual;
10522 int ret;
10523
10524 if (!nested_vmx_check_permission(vcpu))
10525 return 1;
10526
10527 if (!nested_vmx_check_vmcs12(vcpu))
10528 goto out;
10529
10530 vmcs12 = get_vmcs12(vcpu);
10531
10532 if (enable_shadow_vmcs)
10533 copy_shadow_to_vmcs12(vmx);
10534
10535 /*
10536 * The nested entry process starts with enforcing various prerequisites
10537 * on vmcs12 as required by the Intel SDM, and act appropriately when
10538 * they fail: As the SDM explains, some conditions should cause the
10539 * instruction to fail, while others will cause the instruction to seem
10540 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10541 * To speed up the normal (success) code path, we should avoid checking
10542 * for misconfigurations which will anyway be caught by the processor
10543 * when using the merged vmcs02.
10544 */
10545 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10546 nested_vmx_failValid(vcpu,
10547 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10548 goto out;
10549 }
10550
10551 if (vmcs12->launch_state == launch) {
10552 nested_vmx_failValid(vcpu,
10553 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10554 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10555 goto out;
10556 }
10557
10558 ret = check_vmentry_prereqs(vcpu, vmcs12);
10559 if (ret) {
10560 nested_vmx_failValid(vcpu, ret);
10561 goto out;
10562 }
10563
10564 /*
10565 * After this point, the trap flag no longer triggers a singlestep trap
10566 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10567 * This is not 100% correct; for performance reasons, we delegate most
10568 * of the checks on host state to the processor. If those fail,
10569 * the singlestep trap is missed.
10570 */
10571 skip_emulated_instruction(vcpu);
10572
10573 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10574 if (ret) {
10575 nested_vmx_entry_failure(vcpu, vmcs12,
10576 EXIT_REASON_INVALID_STATE, exit_qual);
10577 return 1;
10578 }
10579
10580 /*
10581 * We're finally done with prerequisite checking, and can start with
10582 * the nested entry.
10583 */
10584
10585 ret = enter_vmx_non_root_mode(vcpu, true);
10586 if (ret)
10587 return ret;
10588
10589 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10590 return kvm_vcpu_halt(vcpu);
10591
10592 vmx->nested.nested_run_pending = 1;
10593
10594 return 1;
10595
10596 out:
10597 return kvm_skip_emulated_instruction(vcpu);
10598 }
10599
10600 /*
10601 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10602 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10603 * This function returns the new value we should put in vmcs12.guest_cr0.
10604 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10605 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10606 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10607 * didn't trap the bit, because if L1 did, so would L0).
10608 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10609 * been modified by L2, and L1 knows it. So just leave the old value of
10610 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10611 * isn't relevant, because if L0 traps this bit it can set it to anything.
10612 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10613 * changed these bits, and therefore they need to be updated, but L0
10614 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10615 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10616 */
10617 static inline unsigned long
10618 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10619 {
10620 return
10621 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10622 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10623 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10624 vcpu->arch.cr0_guest_owned_bits));
10625 }
10626
10627 static inline unsigned long
10628 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10629 {
10630 return
10631 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10632 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10633 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10634 vcpu->arch.cr4_guest_owned_bits));
10635 }
10636
10637 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10638 struct vmcs12 *vmcs12)
10639 {
10640 u32 idt_vectoring;
10641 unsigned int nr;
10642
10643 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10644 nr = vcpu->arch.exception.nr;
10645 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10646
10647 if (kvm_exception_is_soft(nr)) {
10648 vmcs12->vm_exit_instruction_len =
10649 vcpu->arch.event_exit_inst_len;
10650 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10651 } else
10652 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10653
10654 if (vcpu->arch.exception.has_error_code) {
10655 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10656 vmcs12->idt_vectoring_error_code =
10657 vcpu->arch.exception.error_code;
10658 }
10659
10660 vmcs12->idt_vectoring_info_field = idt_vectoring;
10661 } else if (vcpu->arch.nmi_injected) {
10662 vmcs12->idt_vectoring_info_field =
10663 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10664 } else if (vcpu->arch.interrupt.pending) {
10665 nr = vcpu->arch.interrupt.nr;
10666 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10667
10668 if (vcpu->arch.interrupt.soft) {
10669 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10670 vmcs12->vm_entry_instruction_len =
10671 vcpu->arch.event_exit_inst_len;
10672 } else
10673 idt_vectoring |= INTR_TYPE_EXT_INTR;
10674
10675 vmcs12->idt_vectoring_info_field = idt_vectoring;
10676 }
10677 }
10678
10679 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10680 {
10681 struct vcpu_vmx *vmx = to_vmx(vcpu);
10682
10683 if (vcpu->arch.exception.pending ||
10684 vcpu->arch.nmi_injected ||
10685 vcpu->arch.interrupt.pending)
10686 return -EBUSY;
10687
10688 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10689 vmx->nested.preemption_timer_expired) {
10690 if (vmx->nested.nested_run_pending)
10691 return -EBUSY;
10692 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10693 return 0;
10694 }
10695
10696 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10697 if (vmx->nested.nested_run_pending)
10698 return -EBUSY;
10699 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10700 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10701 INTR_INFO_VALID_MASK, 0);
10702 /*
10703 * The NMI-triggered VM exit counts as injection:
10704 * clear this one and block further NMIs.
10705 */
10706 vcpu->arch.nmi_pending = 0;
10707 vmx_set_nmi_mask(vcpu, true);
10708 return 0;
10709 }
10710
10711 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10712 nested_exit_on_intr(vcpu)) {
10713 if (vmx->nested.nested_run_pending)
10714 return -EBUSY;
10715 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10716 return 0;
10717 }
10718
10719 vmx_complete_nested_posted_interrupt(vcpu);
10720 return 0;
10721 }
10722
10723 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10724 {
10725 ktime_t remaining =
10726 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10727 u64 value;
10728
10729 if (ktime_to_ns(remaining) <= 0)
10730 return 0;
10731
10732 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10733 do_div(value, 1000000);
10734 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10735 }
10736
10737 /*
10738 * Update the guest state fields of vmcs12 to reflect changes that
10739 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10740 * VM-entry controls is also updated, since this is really a guest
10741 * state bit.)
10742 */
10743 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10744 {
10745 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10746 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10747
10748 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10749 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10750 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10751
10752 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10753 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10754 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10755 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10756 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10757 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10758 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10759 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10760 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10761 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10762 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10763 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10764 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10765 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10766 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10767 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10768 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10769 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10770 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10771 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10772 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10773 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10774 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10775 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10776 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10777 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10778 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10779 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10780 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10781 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10782 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10783 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10784 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10785 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10786 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10787 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10788
10789 vmcs12->guest_interruptibility_info =
10790 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10791 vmcs12->guest_pending_dbg_exceptions =
10792 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10793 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10794 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10795 else
10796 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10797
10798 if (nested_cpu_has_preemption_timer(vmcs12)) {
10799 if (vmcs12->vm_exit_controls &
10800 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10801 vmcs12->vmx_preemption_timer_value =
10802 vmx_get_preemption_timer_value(vcpu);
10803 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10804 }
10805
10806 /*
10807 * In some cases (usually, nested EPT), L2 is allowed to change its
10808 * own CR3 without exiting. If it has changed it, we must keep it.
10809 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10810 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10811 *
10812 * Additionally, restore L2's PDPTR to vmcs12.
10813 */
10814 if (enable_ept) {
10815 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10816 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10817 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10818 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10819 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10820 }
10821
10822 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10823
10824 if (nested_cpu_has_vid(vmcs12))
10825 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10826
10827 vmcs12->vm_entry_controls =
10828 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10829 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10830
10831 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10832 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10833 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10834 }
10835
10836 /* TODO: These cannot have changed unless we have MSR bitmaps and
10837 * the relevant bit asks not to trap the change */
10838 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10839 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10840 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10841 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10842 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10843 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10844 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10845 if (kvm_mpx_supported())
10846 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10847 }
10848
10849 /*
10850 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10851 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10852 * and this function updates it to reflect the changes to the guest state while
10853 * L2 was running (and perhaps made some exits which were handled directly by L0
10854 * without going back to L1), and to reflect the exit reason.
10855 * Note that we do not have to copy here all VMCS fields, just those that
10856 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10857 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10858 * which already writes to vmcs12 directly.
10859 */
10860 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10861 u32 exit_reason, u32 exit_intr_info,
10862 unsigned long exit_qualification)
10863 {
10864 /* update guest state fields: */
10865 sync_vmcs12(vcpu, vmcs12);
10866
10867 /* update exit information fields: */
10868
10869 vmcs12->vm_exit_reason = exit_reason;
10870 vmcs12->exit_qualification = exit_qualification;
10871 vmcs12->vm_exit_intr_info = exit_intr_info;
10872
10873 vmcs12->idt_vectoring_info_field = 0;
10874 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10875 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10876
10877 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10878 vmcs12->launch_state = 1;
10879
10880 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10881 * instead of reading the real value. */
10882 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10883
10884 /*
10885 * Transfer the event that L0 or L1 may wanted to inject into
10886 * L2 to IDT_VECTORING_INFO_FIELD.
10887 */
10888 vmcs12_save_pending_event(vcpu, vmcs12);
10889 }
10890
10891 /*
10892 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10893 * preserved above and would only end up incorrectly in L1.
10894 */
10895 vcpu->arch.nmi_injected = false;
10896 kvm_clear_exception_queue(vcpu);
10897 kvm_clear_interrupt_queue(vcpu);
10898 }
10899
10900 /*
10901 * A part of what we need to when the nested L2 guest exits and we want to
10902 * run its L1 parent, is to reset L1's guest state to the host state specified
10903 * in vmcs12.
10904 * This function is to be called not only on normal nested exit, but also on
10905 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10906 * Failures During or After Loading Guest State").
10907 * This function should be called when the active VMCS is L1's (vmcs01).
10908 */
10909 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10910 struct vmcs12 *vmcs12)
10911 {
10912 struct kvm_segment seg;
10913 u32 entry_failure_code;
10914
10915 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10916 vcpu->arch.efer = vmcs12->host_ia32_efer;
10917 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10918 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10919 else
10920 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10921 vmx_set_efer(vcpu, vcpu->arch.efer);
10922
10923 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10924 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10925 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10926 /*
10927 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10928 * actually changed, because vmx_set_cr0 refers to efer set above.
10929 *
10930 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10931 * (KVM doesn't change it);
10932 */
10933 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10934 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10935
10936 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
10937 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10938 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10939
10940 nested_ept_uninit_mmu_context(vcpu);
10941
10942 /*
10943 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10944 * couldn't have changed.
10945 */
10946 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10947 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10948
10949 if (!enable_ept)
10950 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10951
10952 if (enable_vpid) {
10953 /*
10954 * Trivially support vpid by letting L2s share their parent
10955 * L1's vpid. TODO: move to a more elaborate solution, giving
10956 * each L2 its own vpid and exposing the vpid feature to L1.
10957 */
10958 vmx_flush_tlb(vcpu);
10959 }
10960 /* Restore posted intr vector. */
10961 if (nested_cpu_has_posted_intr(vmcs12))
10962 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10963
10964 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10965 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10966 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10967 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10968 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10969
10970 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10971 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10972 vmcs_write64(GUEST_BNDCFGS, 0);
10973
10974 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10975 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10976 vcpu->arch.pat = vmcs12->host_ia32_pat;
10977 }
10978 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10979 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10980 vmcs12->host_ia32_perf_global_ctrl);
10981
10982 /* Set L1 segment info according to Intel SDM
10983 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10984 seg = (struct kvm_segment) {
10985 .base = 0,
10986 .limit = 0xFFFFFFFF,
10987 .selector = vmcs12->host_cs_selector,
10988 .type = 11,
10989 .present = 1,
10990 .s = 1,
10991 .g = 1
10992 };
10993 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10994 seg.l = 1;
10995 else
10996 seg.db = 1;
10997 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10998 seg = (struct kvm_segment) {
10999 .base = 0,
11000 .limit = 0xFFFFFFFF,
11001 .type = 3,
11002 .present = 1,
11003 .s = 1,
11004 .db = 1,
11005 .g = 1
11006 };
11007 seg.selector = vmcs12->host_ds_selector;
11008 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11009 seg.selector = vmcs12->host_es_selector;
11010 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11011 seg.selector = vmcs12->host_ss_selector;
11012 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11013 seg.selector = vmcs12->host_fs_selector;
11014 seg.base = vmcs12->host_fs_base;
11015 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11016 seg.selector = vmcs12->host_gs_selector;
11017 seg.base = vmcs12->host_gs_base;
11018 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11019 seg = (struct kvm_segment) {
11020 .base = vmcs12->host_tr_base,
11021 .limit = 0x67,
11022 .selector = vmcs12->host_tr_selector,
11023 .type = 11,
11024 .present = 1
11025 };
11026 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11027
11028 kvm_set_dr(vcpu, 7, 0x400);
11029 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11030
11031 if (cpu_has_vmx_msr_bitmap())
11032 vmx_set_msr_bitmap(vcpu);
11033
11034 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11035 vmcs12->vm_exit_msr_load_count))
11036 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11037 }
11038
11039 /*
11040 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11041 * and modify vmcs12 to make it see what it would expect to see there if
11042 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11043 */
11044 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11045 u32 exit_intr_info,
11046 unsigned long exit_qualification)
11047 {
11048 struct vcpu_vmx *vmx = to_vmx(vcpu);
11049 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11050 u32 vm_inst_error = 0;
11051
11052 /* trying to cancel vmlaunch/vmresume is a bug */
11053 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11054
11055 leave_guest_mode(vcpu);
11056 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11057 exit_qualification);
11058
11059 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11060 vmcs12->vm_exit_msr_store_count))
11061 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11062
11063 if (unlikely(vmx->fail))
11064 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11065
11066 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11067
11068 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11069 && nested_exit_intr_ack_set(vcpu)) {
11070 int irq = kvm_cpu_get_interrupt(vcpu);
11071 WARN_ON(irq < 0);
11072 vmcs12->vm_exit_intr_info = irq |
11073 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11074 }
11075
11076 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11077 vmcs12->exit_qualification,
11078 vmcs12->idt_vectoring_info_field,
11079 vmcs12->vm_exit_intr_info,
11080 vmcs12->vm_exit_intr_error_code,
11081 KVM_ISA_VMX);
11082
11083 vm_entry_controls_reset_shadow(vmx);
11084 vm_exit_controls_reset_shadow(vmx);
11085 vmx_segment_cache_clear(vmx);
11086
11087 /* if no vmcs02 cache requested, remove the one we used */
11088 if (VMCS02_POOL_SIZE == 0)
11089 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11090
11091 load_vmcs12_host_state(vcpu, vmcs12);
11092
11093 /* Update any VMCS fields that might have changed while L2 ran */
11094 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11095 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11096 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11097 if (vmx->hv_deadline_tsc == -1)
11098 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11099 PIN_BASED_VMX_PREEMPTION_TIMER);
11100 else
11101 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11102 PIN_BASED_VMX_PREEMPTION_TIMER);
11103 if (kvm_has_tsc_control)
11104 decache_tsc_multiplier(vmx);
11105
11106 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11107 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11108 vmx_set_virtual_x2apic_mode(vcpu,
11109 vcpu->arch.apic_base & X2APIC_ENABLE);
11110 } else if (!nested_cpu_has_ept(vmcs12) &&
11111 nested_cpu_has2(vmcs12,
11112 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11113 vmx_flush_tlb_ept_only(vcpu);
11114 }
11115
11116 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11117 vmx->host_rsp = 0;
11118
11119 /* Unpin physical memory we referred to in vmcs02 */
11120 if (vmx->nested.apic_access_page) {
11121 nested_release_page(vmx->nested.apic_access_page);
11122 vmx->nested.apic_access_page = NULL;
11123 }
11124 if (vmx->nested.virtual_apic_page) {
11125 nested_release_page(vmx->nested.virtual_apic_page);
11126 vmx->nested.virtual_apic_page = NULL;
11127 }
11128 if (vmx->nested.pi_desc_page) {
11129 kunmap(vmx->nested.pi_desc_page);
11130 nested_release_page(vmx->nested.pi_desc_page);
11131 vmx->nested.pi_desc_page = NULL;
11132 vmx->nested.pi_desc = NULL;
11133 }
11134
11135 /*
11136 * We are now running in L2, mmu_notifier will force to reload the
11137 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11138 */
11139 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11140
11141 /*
11142 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11143 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11144 * success or failure flag accordingly.
11145 */
11146 if (unlikely(vmx->fail)) {
11147 vmx->fail = 0;
11148 nested_vmx_failValid(vcpu, vm_inst_error);
11149 } else
11150 nested_vmx_succeed(vcpu);
11151 if (enable_shadow_vmcs)
11152 vmx->nested.sync_shadow_vmcs = true;
11153
11154 /* in case we halted in L2 */
11155 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11156 }
11157
11158 /*
11159 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11160 */
11161 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11162 {
11163 if (is_guest_mode(vcpu)) {
11164 to_vmx(vcpu)->nested.nested_run_pending = 0;
11165 nested_vmx_vmexit(vcpu, -1, 0, 0);
11166 }
11167 free_nested(to_vmx(vcpu));
11168 }
11169
11170 /*
11171 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11172 * 23.7 "VM-entry failures during or after loading guest state" (this also
11173 * lists the acceptable exit-reason and exit-qualification parameters).
11174 * It should only be called before L2 actually succeeded to run, and when
11175 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11176 */
11177 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11178 struct vmcs12 *vmcs12,
11179 u32 reason, unsigned long qualification)
11180 {
11181 load_vmcs12_host_state(vcpu, vmcs12);
11182 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11183 vmcs12->exit_qualification = qualification;
11184 nested_vmx_succeed(vcpu);
11185 if (enable_shadow_vmcs)
11186 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11187 }
11188
11189 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11190 struct x86_instruction_info *info,
11191 enum x86_intercept_stage stage)
11192 {
11193 return X86EMUL_CONTINUE;
11194 }
11195
11196 #ifdef CONFIG_X86_64
11197 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11198 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11199 u64 divisor, u64 *result)
11200 {
11201 u64 low = a << shift, high = a >> (64 - shift);
11202
11203 /* To avoid the overflow on divq */
11204 if (high >= divisor)
11205 return 1;
11206
11207 /* Low hold the result, high hold rem which is discarded */
11208 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11209 "rm" (divisor), "0" (low), "1" (high));
11210 *result = low;
11211
11212 return 0;
11213 }
11214
11215 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11216 {
11217 struct vcpu_vmx *vmx = to_vmx(vcpu);
11218 u64 tscl = rdtsc();
11219 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11220 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11221
11222 /* Convert to host delta tsc if tsc scaling is enabled */
11223 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11224 u64_shl_div_u64(delta_tsc,
11225 kvm_tsc_scaling_ratio_frac_bits,
11226 vcpu->arch.tsc_scaling_ratio,
11227 &delta_tsc))
11228 return -ERANGE;
11229
11230 /*
11231 * If the delta tsc can't fit in the 32 bit after the multi shift,
11232 * we can't use the preemption timer.
11233 * It's possible that it fits on later vmentries, but checking
11234 * on every vmentry is costly so we just use an hrtimer.
11235 */
11236 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11237 return -ERANGE;
11238
11239 vmx->hv_deadline_tsc = tscl + delta_tsc;
11240 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11241 PIN_BASED_VMX_PREEMPTION_TIMER);
11242
11243 return delta_tsc == 0;
11244 }
11245
11246 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11247 {
11248 struct vcpu_vmx *vmx = to_vmx(vcpu);
11249 vmx->hv_deadline_tsc = -1;
11250 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11251 PIN_BASED_VMX_PREEMPTION_TIMER);
11252 }
11253 #endif
11254
11255 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11256 {
11257 if (ple_gap)
11258 shrink_ple_window(vcpu);
11259 }
11260
11261 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11262 struct kvm_memory_slot *slot)
11263 {
11264 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11265 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11266 }
11267
11268 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11269 struct kvm_memory_slot *slot)
11270 {
11271 kvm_mmu_slot_set_dirty(kvm, slot);
11272 }
11273
11274 static void vmx_flush_log_dirty(struct kvm *kvm)
11275 {
11276 kvm_flush_pml_buffers(kvm);
11277 }
11278
11279 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11280 {
11281 struct vmcs12 *vmcs12;
11282 struct vcpu_vmx *vmx = to_vmx(vcpu);
11283 gpa_t gpa;
11284 struct page *page = NULL;
11285 u64 *pml_address;
11286
11287 if (is_guest_mode(vcpu)) {
11288 WARN_ON_ONCE(vmx->nested.pml_full);
11289
11290 /*
11291 * Check if PML is enabled for the nested guest.
11292 * Whether eptp bit 6 is set is already checked
11293 * as part of A/D emulation.
11294 */
11295 vmcs12 = get_vmcs12(vcpu);
11296 if (!nested_cpu_has_pml(vmcs12))
11297 return 0;
11298
11299 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11300 vmx->nested.pml_full = true;
11301 return 1;
11302 }
11303
11304 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11305
11306 page = nested_get_page(vcpu, vmcs12->pml_address);
11307 if (!page)
11308 return 0;
11309
11310 pml_address = kmap(page);
11311 pml_address[vmcs12->guest_pml_index--] = gpa;
11312 kunmap(page);
11313 nested_release_page_clean(page);
11314 }
11315
11316 return 0;
11317 }
11318
11319 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11320 struct kvm_memory_slot *memslot,
11321 gfn_t offset, unsigned long mask)
11322 {
11323 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11324 }
11325
11326 /*
11327 * This routine does the following things for vCPU which is going
11328 * to be blocked if VT-d PI is enabled.
11329 * - Store the vCPU to the wakeup list, so when interrupts happen
11330 * we can find the right vCPU to wake up.
11331 * - Change the Posted-interrupt descriptor as below:
11332 * 'NDST' <-- vcpu->pre_pcpu
11333 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11334 * - If 'ON' is set during this process, which means at least one
11335 * interrupt is posted for this vCPU, we cannot block it, in
11336 * this case, return 1, otherwise, return 0.
11337 *
11338 */
11339 static int pi_pre_block(struct kvm_vcpu *vcpu)
11340 {
11341 unsigned long flags;
11342 unsigned int dest;
11343 struct pi_desc old, new;
11344 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11345
11346 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11347 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11348 !kvm_vcpu_apicv_active(vcpu))
11349 return 0;
11350
11351 vcpu->pre_pcpu = vcpu->cpu;
11352 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11353 vcpu->pre_pcpu), flags);
11354 list_add_tail(&vcpu->blocked_vcpu_list,
11355 &per_cpu(blocked_vcpu_on_cpu,
11356 vcpu->pre_pcpu));
11357 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11358 vcpu->pre_pcpu), flags);
11359
11360 do {
11361 old.control = new.control = pi_desc->control;
11362
11363 /*
11364 * We should not block the vCPU if
11365 * an interrupt is posted for it.
11366 */
11367 if (pi_test_on(pi_desc) == 1) {
11368 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11369 vcpu->pre_pcpu), flags);
11370 list_del(&vcpu->blocked_vcpu_list);
11371 spin_unlock_irqrestore(
11372 &per_cpu(blocked_vcpu_on_cpu_lock,
11373 vcpu->pre_pcpu), flags);
11374 vcpu->pre_pcpu = -1;
11375
11376 return 1;
11377 }
11378
11379 WARN((pi_desc->sn == 1),
11380 "Warning: SN field of posted-interrupts "
11381 "is set before blocking\n");
11382
11383 /*
11384 * Since vCPU can be preempted during this process,
11385 * vcpu->cpu could be different with pre_pcpu, we
11386 * need to set pre_pcpu as the destination of wakeup
11387 * notification event, then we can find the right vCPU
11388 * to wakeup in wakeup handler if interrupts happen
11389 * when the vCPU is in blocked state.
11390 */
11391 dest = cpu_physical_id(vcpu->pre_pcpu);
11392
11393 if (x2apic_enabled())
11394 new.ndst = dest;
11395 else
11396 new.ndst = (dest << 8) & 0xFF00;
11397
11398 /* set 'NV' to 'wakeup vector' */
11399 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11400 } while (cmpxchg(&pi_desc->control, old.control,
11401 new.control) != old.control);
11402
11403 return 0;
11404 }
11405
11406 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11407 {
11408 if (pi_pre_block(vcpu))
11409 return 1;
11410
11411 if (kvm_lapic_hv_timer_in_use(vcpu))
11412 kvm_lapic_switch_to_sw_timer(vcpu);
11413
11414 return 0;
11415 }
11416
11417 static void pi_post_block(struct kvm_vcpu *vcpu)
11418 {
11419 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11420 struct pi_desc old, new;
11421 unsigned int dest;
11422 unsigned long flags;
11423
11424 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11425 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11426 !kvm_vcpu_apicv_active(vcpu))
11427 return;
11428
11429 do {
11430 old.control = new.control = pi_desc->control;
11431
11432 dest = cpu_physical_id(vcpu->cpu);
11433
11434 if (x2apic_enabled())
11435 new.ndst = dest;
11436 else
11437 new.ndst = (dest << 8) & 0xFF00;
11438
11439 /* Allow posting non-urgent interrupts */
11440 new.sn = 0;
11441
11442 /* set 'NV' to 'notification vector' */
11443 new.nv = POSTED_INTR_VECTOR;
11444 } while (cmpxchg(&pi_desc->control, old.control,
11445 new.control) != old.control);
11446
11447 if(vcpu->pre_pcpu != -1) {
11448 spin_lock_irqsave(
11449 &per_cpu(blocked_vcpu_on_cpu_lock,
11450 vcpu->pre_pcpu), flags);
11451 list_del(&vcpu->blocked_vcpu_list);
11452 spin_unlock_irqrestore(
11453 &per_cpu(blocked_vcpu_on_cpu_lock,
11454 vcpu->pre_pcpu), flags);
11455 vcpu->pre_pcpu = -1;
11456 }
11457 }
11458
11459 static void vmx_post_block(struct kvm_vcpu *vcpu)
11460 {
11461 if (kvm_x86_ops->set_hv_timer)
11462 kvm_lapic_switch_to_hv_timer(vcpu);
11463
11464 pi_post_block(vcpu);
11465 }
11466
11467 /*
11468 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11469 *
11470 * @kvm: kvm
11471 * @host_irq: host irq of the interrupt
11472 * @guest_irq: gsi of the interrupt
11473 * @set: set or unset PI
11474 * returns 0 on success, < 0 on failure
11475 */
11476 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11477 uint32_t guest_irq, bool set)
11478 {
11479 struct kvm_kernel_irq_routing_entry *e;
11480 struct kvm_irq_routing_table *irq_rt;
11481 struct kvm_lapic_irq irq;
11482 struct kvm_vcpu *vcpu;
11483 struct vcpu_data vcpu_info;
11484 int idx, ret = -EINVAL;
11485
11486 if (!kvm_arch_has_assigned_device(kvm) ||
11487 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11488 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11489 return 0;
11490
11491 idx = srcu_read_lock(&kvm->irq_srcu);
11492 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11493 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11494
11495 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11496 if (e->type != KVM_IRQ_ROUTING_MSI)
11497 continue;
11498 /*
11499 * VT-d PI cannot support posting multicast/broadcast
11500 * interrupts to a vCPU, we still use interrupt remapping
11501 * for these kind of interrupts.
11502 *
11503 * For lowest-priority interrupts, we only support
11504 * those with single CPU as the destination, e.g. user
11505 * configures the interrupts via /proc/irq or uses
11506 * irqbalance to make the interrupts single-CPU.
11507 *
11508 * We will support full lowest-priority interrupt later.
11509 */
11510
11511 kvm_set_msi_irq(kvm, e, &irq);
11512 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11513 /*
11514 * Make sure the IRTE is in remapped mode if
11515 * we don't handle it in posted mode.
11516 */
11517 ret = irq_set_vcpu_affinity(host_irq, NULL);
11518 if (ret < 0) {
11519 printk(KERN_INFO
11520 "failed to back to remapped mode, irq: %u\n",
11521 host_irq);
11522 goto out;
11523 }
11524
11525 continue;
11526 }
11527
11528 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11529 vcpu_info.vector = irq.vector;
11530
11531 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11532 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11533
11534 if (set)
11535 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11536 else {
11537 /* suppress notification event before unposting */
11538 pi_set_sn(vcpu_to_pi_desc(vcpu));
11539 ret = irq_set_vcpu_affinity(host_irq, NULL);
11540 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11541 }
11542
11543 if (ret < 0) {
11544 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11545 __func__);
11546 goto out;
11547 }
11548 }
11549
11550 ret = 0;
11551 out:
11552 srcu_read_unlock(&kvm->irq_srcu, idx);
11553 return ret;
11554 }
11555
11556 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11557 {
11558 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11559 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11560 FEATURE_CONTROL_LMCE;
11561 else
11562 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11563 ~FEATURE_CONTROL_LMCE;
11564 }
11565
11566 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11567 .cpu_has_kvm_support = cpu_has_kvm_support,
11568 .disabled_by_bios = vmx_disabled_by_bios,
11569 .hardware_setup = hardware_setup,
11570 .hardware_unsetup = hardware_unsetup,
11571 .check_processor_compatibility = vmx_check_processor_compat,
11572 .hardware_enable = hardware_enable,
11573 .hardware_disable = hardware_disable,
11574 .cpu_has_accelerated_tpr = report_flexpriority,
11575 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11576
11577 .vcpu_create = vmx_create_vcpu,
11578 .vcpu_free = vmx_free_vcpu,
11579 .vcpu_reset = vmx_vcpu_reset,
11580
11581 .prepare_guest_switch = vmx_save_host_state,
11582 .vcpu_load = vmx_vcpu_load,
11583 .vcpu_put = vmx_vcpu_put,
11584
11585 .update_bp_intercept = update_exception_bitmap,
11586 .get_msr = vmx_get_msr,
11587 .set_msr = vmx_set_msr,
11588 .get_segment_base = vmx_get_segment_base,
11589 .get_segment = vmx_get_segment,
11590 .set_segment = vmx_set_segment,
11591 .get_cpl = vmx_get_cpl,
11592 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11593 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11594 .decache_cr3 = vmx_decache_cr3,
11595 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11596 .set_cr0 = vmx_set_cr0,
11597 .set_cr3 = vmx_set_cr3,
11598 .set_cr4 = vmx_set_cr4,
11599 .set_efer = vmx_set_efer,
11600 .get_idt = vmx_get_idt,
11601 .set_idt = vmx_set_idt,
11602 .get_gdt = vmx_get_gdt,
11603 .set_gdt = vmx_set_gdt,
11604 .get_dr6 = vmx_get_dr6,
11605 .set_dr6 = vmx_set_dr6,
11606 .set_dr7 = vmx_set_dr7,
11607 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11608 .cache_reg = vmx_cache_reg,
11609 .get_rflags = vmx_get_rflags,
11610 .set_rflags = vmx_set_rflags,
11611
11612 .get_pkru = vmx_get_pkru,
11613
11614 .tlb_flush = vmx_flush_tlb,
11615
11616 .run = vmx_vcpu_run,
11617 .handle_exit = vmx_handle_exit,
11618 .skip_emulated_instruction = skip_emulated_instruction,
11619 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11620 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11621 .patch_hypercall = vmx_patch_hypercall,
11622 .set_irq = vmx_inject_irq,
11623 .set_nmi = vmx_inject_nmi,
11624 .queue_exception = vmx_queue_exception,
11625 .cancel_injection = vmx_cancel_injection,
11626 .interrupt_allowed = vmx_interrupt_allowed,
11627 .nmi_allowed = vmx_nmi_allowed,
11628 .get_nmi_mask = vmx_get_nmi_mask,
11629 .set_nmi_mask = vmx_set_nmi_mask,
11630 .enable_nmi_window = enable_nmi_window,
11631 .enable_irq_window = enable_irq_window,
11632 .update_cr8_intercept = update_cr8_intercept,
11633 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11634 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11635 .get_enable_apicv = vmx_get_enable_apicv,
11636 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11637 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11638 .apicv_post_state_restore = vmx_apicv_post_state_restore,
11639 .hwapic_irr_update = vmx_hwapic_irr_update,
11640 .hwapic_isr_update = vmx_hwapic_isr_update,
11641 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11642 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11643
11644 .set_tss_addr = vmx_set_tss_addr,
11645 .get_tdp_level = get_ept_level,
11646 .get_mt_mask = vmx_get_mt_mask,
11647
11648 .get_exit_info = vmx_get_exit_info,
11649
11650 .get_lpage_level = vmx_get_lpage_level,
11651
11652 .cpuid_update = vmx_cpuid_update,
11653
11654 .rdtscp_supported = vmx_rdtscp_supported,
11655 .invpcid_supported = vmx_invpcid_supported,
11656
11657 .set_supported_cpuid = vmx_set_supported_cpuid,
11658
11659 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11660
11661 .write_tsc_offset = vmx_write_tsc_offset,
11662
11663 .set_tdp_cr3 = vmx_set_cr3,
11664
11665 .check_intercept = vmx_check_intercept,
11666 .handle_external_intr = vmx_handle_external_intr,
11667 .mpx_supported = vmx_mpx_supported,
11668 .xsaves_supported = vmx_xsaves_supported,
11669
11670 .check_nested_events = vmx_check_nested_events,
11671
11672 .sched_in = vmx_sched_in,
11673
11674 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11675 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11676 .flush_log_dirty = vmx_flush_log_dirty,
11677 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11678 .write_log_dirty = vmx_write_pml_buffer,
11679
11680 .pre_block = vmx_pre_block,
11681 .post_block = vmx_post_block,
11682
11683 .pmu_ops = &intel_pmu_ops,
11684
11685 .update_pi_irte = vmx_update_pi_irte,
11686
11687 #ifdef CONFIG_X86_64
11688 .set_hv_timer = vmx_set_hv_timer,
11689 .cancel_hv_timer = vmx_cancel_hv_timer,
11690 #endif
11691
11692 .setup_mce = vmx_setup_mce,
11693 };
11694
11695 static int __init vmx_init(void)
11696 {
11697 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11698 __alignof__(struct vcpu_vmx), THIS_MODULE);
11699 if (r)
11700 return r;
11701
11702 #ifdef CONFIG_KEXEC_CORE
11703 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11704 crash_vmclear_local_loaded_vmcss);
11705 #endif
11706
11707 return 0;
11708 }
11709
11710 static void __exit vmx_exit(void)
11711 {
11712 #ifdef CONFIG_KEXEC_CORE
11713 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11714 synchronize_rcu();
11715 #endif
11716
11717 kvm_exit();
11718 }
11719
11720 module_init(vmx_init)
11721 module_exit(vmx_exit)