]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
Merge branches 'pm-cpufreq-x86', 'pm-cpufreq-docs' and 'intel_pstate'
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190 };
191
192 /*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197 struct loaded_vmcs {
198 struct vmcs *vmcs;
199 struct vmcs *shadow_vmcs;
200 int cpu;
201 bool launched;
202 bool nmi_known_unmasked;
203 struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207 unsigned index;
208 u64 data;
209 u64 mask;
210 };
211
212 /*
213 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218 * More than one of these structures may exist, if L1 runs multiple L2 guests.
219 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220 * underlying hardware which will be used to run L2.
221 * This structure is packed to ensure that its layout is identical across
222 * machines (necessary for live migration).
223 * If there are changes in this struct, VMCS12_REVISION must be changed.
224 */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227 /* According to the Intel spec, a VMCS region must start with the
228 * following two fields. Then follow implementation-specific data.
229 */
230 u32 revision_id;
231 u32 abort;
232
233 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234 u32 padding[7]; /* room for future expansion */
235
236 u64 io_bitmap_a;
237 u64 io_bitmap_b;
238 u64 msr_bitmap;
239 u64 vm_exit_msr_store_addr;
240 u64 vm_exit_msr_load_addr;
241 u64 vm_entry_msr_load_addr;
242 u64 tsc_offset;
243 u64 virtual_apic_page_addr;
244 u64 apic_access_addr;
245 u64 posted_intr_desc_addr;
246 u64 ept_pointer;
247 u64 eoi_exit_bitmap0;
248 u64 eoi_exit_bitmap1;
249 u64 eoi_exit_bitmap2;
250 u64 eoi_exit_bitmap3;
251 u64 xss_exit_bitmap;
252 u64 guest_physical_address;
253 u64 vmcs_link_pointer;
254 u64 pml_address;
255 u64 guest_ia32_debugctl;
256 u64 guest_ia32_pat;
257 u64 guest_ia32_efer;
258 u64 guest_ia32_perf_global_ctrl;
259 u64 guest_pdptr0;
260 u64 guest_pdptr1;
261 u64 guest_pdptr2;
262 u64 guest_pdptr3;
263 u64 guest_bndcfgs;
264 u64 host_ia32_pat;
265 u64 host_ia32_efer;
266 u64 host_ia32_perf_global_ctrl;
267 u64 padding64[8]; /* room for future expansion */
268 /*
269 * To allow migration of L1 (complete with its L2 guests) between
270 * machines of different natural widths (32 or 64 bit), we cannot have
271 * unsigned long fields with no explict size. We use u64 (aliased
272 * natural_width) instead. Luckily, x86 is little-endian.
273 */
274 natural_width cr0_guest_host_mask;
275 natural_width cr4_guest_host_mask;
276 natural_width cr0_read_shadow;
277 natural_width cr4_read_shadow;
278 natural_width cr3_target_value0;
279 natural_width cr3_target_value1;
280 natural_width cr3_target_value2;
281 natural_width cr3_target_value3;
282 natural_width exit_qualification;
283 natural_width guest_linear_address;
284 natural_width guest_cr0;
285 natural_width guest_cr3;
286 natural_width guest_cr4;
287 natural_width guest_es_base;
288 natural_width guest_cs_base;
289 natural_width guest_ss_base;
290 natural_width guest_ds_base;
291 natural_width guest_fs_base;
292 natural_width guest_gs_base;
293 natural_width guest_ldtr_base;
294 natural_width guest_tr_base;
295 natural_width guest_gdtr_base;
296 natural_width guest_idtr_base;
297 natural_width guest_dr7;
298 natural_width guest_rsp;
299 natural_width guest_rip;
300 natural_width guest_rflags;
301 natural_width guest_pending_dbg_exceptions;
302 natural_width guest_sysenter_esp;
303 natural_width guest_sysenter_eip;
304 natural_width host_cr0;
305 natural_width host_cr3;
306 natural_width host_cr4;
307 natural_width host_fs_base;
308 natural_width host_gs_base;
309 natural_width host_tr_base;
310 natural_width host_gdtr_base;
311 natural_width host_idtr_base;
312 natural_width host_ia32_sysenter_esp;
313 natural_width host_ia32_sysenter_eip;
314 natural_width host_rsp;
315 natural_width host_rip;
316 natural_width paddingl[8]; /* room for future expansion */
317 u32 pin_based_vm_exec_control;
318 u32 cpu_based_vm_exec_control;
319 u32 exception_bitmap;
320 u32 page_fault_error_code_mask;
321 u32 page_fault_error_code_match;
322 u32 cr3_target_count;
323 u32 vm_exit_controls;
324 u32 vm_exit_msr_store_count;
325 u32 vm_exit_msr_load_count;
326 u32 vm_entry_controls;
327 u32 vm_entry_msr_load_count;
328 u32 vm_entry_intr_info_field;
329 u32 vm_entry_exception_error_code;
330 u32 vm_entry_instruction_len;
331 u32 tpr_threshold;
332 u32 secondary_vm_exec_control;
333 u32 vm_instruction_error;
334 u32 vm_exit_reason;
335 u32 vm_exit_intr_info;
336 u32 vm_exit_intr_error_code;
337 u32 idt_vectoring_info_field;
338 u32 idt_vectoring_error_code;
339 u32 vm_exit_instruction_len;
340 u32 vmx_instruction_info;
341 u32 guest_es_limit;
342 u32 guest_cs_limit;
343 u32 guest_ss_limit;
344 u32 guest_ds_limit;
345 u32 guest_fs_limit;
346 u32 guest_gs_limit;
347 u32 guest_ldtr_limit;
348 u32 guest_tr_limit;
349 u32 guest_gdtr_limit;
350 u32 guest_idtr_limit;
351 u32 guest_es_ar_bytes;
352 u32 guest_cs_ar_bytes;
353 u32 guest_ss_ar_bytes;
354 u32 guest_ds_ar_bytes;
355 u32 guest_fs_ar_bytes;
356 u32 guest_gs_ar_bytes;
357 u32 guest_ldtr_ar_bytes;
358 u32 guest_tr_ar_bytes;
359 u32 guest_interruptibility_info;
360 u32 guest_activity_state;
361 u32 guest_sysenter_cs;
362 u32 host_ia32_sysenter_cs;
363 u32 vmx_preemption_timer_value;
364 u32 padding32[7]; /* room for future expansion */
365 u16 virtual_processor_id;
366 u16 posted_intr_nv;
367 u16 guest_es_selector;
368 u16 guest_cs_selector;
369 u16 guest_ss_selector;
370 u16 guest_ds_selector;
371 u16 guest_fs_selector;
372 u16 guest_gs_selector;
373 u16 guest_ldtr_selector;
374 u16 guest_tr_selector;
375 u16 guest_intr_status;
376 u16 guest_pml_index;
377 u16 host_es_selector;
378 u16 host_cs_selector;
379 u16 host_ss_selector;
380 u16 host_ds_selector;
381 u16 host_fs_selector;
382 u16 host_gs_selector;
383 u16 host_tr_selector;
384 };
385
386 /*
387 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
388 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
389 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
390 */
391 #define VMCS12_REVISION 0x11e57ed0
392
393 /*
394 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
395 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
396 * current implementation, 4K are reserved to avoid future complications.
397 */
398 #define VMCS12_SIZE 0x1000
399
400 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
401 struct vmcs02_list {
402 struct list_head list;
403 gpa_t vmptr;
404 struct loaded_vmcs vmcs02;
405 };
406
407 /*
408 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
409 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
410 */
411 struct nested_vmx {
412 /* Has the level1 guest done vmxon? */
413 bool vmxon;
414 gpa_t vmxon_ptr;
415 bool pml_full;
416
417 /* The guest-physical address of the current VMCS L1 keeps for L2 */
418 gpa_t current_vmptr;
419 /* The host-usable pointer to the above */
420 struct page *current_vmcs12_page;
421 struct vmcs12 *current_vmcs12;
422 /*
423 * Cache of the guest's VMCS, existing outside of guest memory.
424 * Loaded from guest memory during VMPTRLD. Flushed to guest
425 * memory during VMXOFF, VMCLEAR, VMPTRLD.
426 */
427 struct vmcs12 *cached_vmcs12;
428 /*
429 * Indicates if the shadow vmcs must be updated with the
430 * data hold by vmcs12
431 */
432 bool sync_shadow_vmcs;
433
434 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
435 struct list_head vmcs02_pool;
436 int vmcs02_num;
437 bool change_vmcs01_virtual_x2apic_mode;
438 /* L2 must run next, and mustn't decide to exit to L1. */
439 bool nested_run_pending;
440 /*
441 * Guest pages referred to in vmcs02 with host-physical pointers, so
442 * we must keep them pinned while L2 runs.
443 */
444 struct page *apic_access_page;
445 struct page *virtual_apic_page;
446 struct page *pi_desc_page;
447 struct pi_desc *pi_desc;
448 bool pi_pending;
449 u16 posted_intr_nv;
450
451 unsigned long *msr_bitmap;
452
453 struct hrtimer preemption_timer;
454 bool preemption_timer_expired;
455
456 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
457 u64 vmcs01_debugctl;
458
459 u16 vpid02;
460 u16 last_vpid;
461
462 /*
463 * We only store the "true" versions of the VMX capability MSRs. We
464 * generate the "non-true" versions by setting the must-be-1 bits
465 * according to the SDM.
466 */
467 u32 nested_vmx_procbased_ctls_low;
468 u32 nested_vmx_procbased_ctls_high;
469 u32 nested_vmx_secondary_ctls_low;
470 u32 nested_vmx_secondary_ctls_high;
471 u32 nested_vmx_pinbased_ctls_low;
472 u32 nested_vmx_pinbased_ctls_high;
473 u32 nested_vmx_exit_ctls_low;
474 u32 nested_vmx_exit_ctls_high;
475 u32 nested_vmx_entry_ctls_low;
476 u32 nested_vmx_entry_ctls_high;
477 u32 nested_vmx_misc_low;
478 u32 nested_vmx_misc_high;
479 u32 nested_vmx_ept_caps;
480 u32 nested_vmx_vpid_caps;
481 u64 nested_vmx_basic;
482 u64 nested_vmx_cr0_fixed0;
483 u64 nested_vmx_cr0_fixed1;
484 u64 nested_vmx_cr4_fixed0;
485 u64 nested_vmx_cr4_fixed1;
486 u64 nested_vmx_vmcs_enum;
487 };
488
489 #define POSTED_INTR_ON 0
490 #define POSTED_INTR_SN 1
491
492 /* Posted-Interrupt Descriptor */
493 struct pi_desc {
494 u32 pir[8]; /* Posted interrupt requested */
495 union {
496 struct {
497 /* bit 256 - Outstanding Notification */
498 u16 on : 1,
499 /* bit 257 - Suppress Notification */
500 sn : 1,
501 /* bit 271:258 - Reserved */
502 rsvd_1 : 14;
503 /* bit 279:272 - Notification Vector */
504 u8 nv;
505 /* bit 287:280 - Reserved */
506 u8 rsvd_2;
507 /* bit 319:288 - Notification Destination */
508 u32 ndst;
509 };
510 u64 control;
511 };
512 u32 rsvd[6];
513 } __aligned(64);
514
515 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516 {
517 return test_and_set_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519 }
520
521 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522 {
523 return test_and_clear_bit(POSTED_INTR_ON,
524 (unsigned long *)&pi_desc->control);
525 }
526
527 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528 {
529 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530 }
531
532 static inline void pi_clear_sn(struct pi_desc *pi_desc)
533 {
534 return clear_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_set_sn(struct pi_desc *pi_desc)
539 {
540 return set_bit(POSTED_INTR_SN,
541 (unsigned long *)&pi_desc->control);
542 }
543
544 static inline void pi_clear_on(struct pi_desc *pi_desc)
545 {
546 clear_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_on(struct pi_desc *pi_desc)
551 {
552 return test_bit(POSTED_INTR_ON,
553 (unsigned long *)&pi_desc->control);
554 }
555
556 static inline int pi_test_sn(struct pi_desc *pi_desc)
557 {
558 return test_bit(POSTED_INTR_SN,
559 (unsigned long *)&pi_desc->control);
560 }
561
562 struct vcpu_vmx {
563 struct kvm_vcpu vcpu;
564 unsigned long host_rsp;
565 u8 fail;
566 u32 exit_intr_info;
567 u32 idt_vectoring_info;
568 ulong rflags;
569 struct shared_msr_entry *guest_msrs;
570 int nmsrs;
571 int save_nmsrs;
572 unsigned long host_idt_base;
573 #ifdef CONFIG_X86_64
574 u64 msr_host_kernel_gs_base;
575 u64 msr_guest_kernel_gs_base;
576 #endif
577 u32 vm_entry_controls_shadow;
578 u32 vm_exit_controls_shadow;
579 /*
580 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581 * non-nested (L1) guest, it always points to vmcs01. For a nested
582 * guest (L2), it points to a different VMCS.
583 */
584 struct loaded_vmcs vmcs01;
585 struct loaded_vmcs *loaded_vmcs;
586 bool __launched; /* temporary, used in vmx_vcpu_run */
587 struct msr_autoload {
588 unsigned nr;
589 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591 } msr_autoload;
592 struct {
593 int loaded;
594 u16 fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596 u16 ds_sel, es_sel;
597 #endif
598 int gs_ldt_reload_needed;
599 int fs_reload_needed;
600 u64 msr_host_bndcfgs;
601 unsigned long vmcs_host_cr3; /* May not match real cr3 */
602 unsigned long vmcs_host_cr4; /* May not match real cr4 */
603 } host_state;
604 struct {
605 int vm86_active;
606 ulong save_rflags;
607 struct kvm_segment segs[8];
608 } rmode;
609 struct {
610 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611 struct kvm_save_segment {
612 u16 selector;
613 unsigned long base;
614 u32 limit;
615 u32 ar;
616 } seg[8];
617 } segment_cache;
618 int vpid;
619 bool emulation_required;
620
621 u32 exit_reason;
622
623 /* Posted interrupt descriptor */
624 struct pi_desc pi_desc;
625
626 /* Support for a guest hypervisor (nested VMX) */
627 struct nested_vmx nested;
628
629 /* Dynamic PLE window. */
630 int ple_window;
631 bool ple_window_dirty;
632
633 /* Support for PML */
634 #define PML_ENTITY_NUM 512
635 struct page *pml_pg;
636
637 /* apic deadline value in host tsc */
638 u64 hv_deadline_tsc;
639
640 u64 current_tsc_ratio;
641
642 bool guest_pkru_valid;
643 u32 guest_pkru;
644 u32 host_pkru;
645
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
651 u64 msr_ia32_feature_control;
652 u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666 return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671 return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704 ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707 TPR_THRESHOLD,
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
720 GUEST_BNDCFGS,
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737 ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741 FIELD(POSTED_INTR_NV, posted_intr_nv),
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
751 FIELD(GUEST_PML_INDEX, guest_pml_index),
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769 FIELD64(EPT_POINTER, ept_pointer),
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777 FIELD64(PML_ADDRESS, pml_address),
778 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782 FIELD64(GUEST_PDPTR0, guest_pdptr0),
783 FIELD64(GUEST_PDPTR1, guest_pdptr1),
784 FIELD64(GUEST_PDPTR2, guest_pdptr2),
785 FIELD64(GUEST_PDPTR3, guest_pdptr3),
786 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787 FIELD64(HOST_IA32_PAT, host_ia32_pat),
788 FIELD64(HOST_IA32_EFER, host_ia32_efer),
789 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792 FIELD(EXCEPTION_BITMAP, exception_bitmap),
793 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795 FIELD(CR3_TARGET_COUNT, cr3_target_count),
796 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804 FIELD(TPR_THRESHOLD, tpr_threshold),
805 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807 FIELD(VM_EXIT_REASON, vm_exit_reason),
808 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814 FIELD(GUEST_ES_LIMIT, guest_es_limit),
815 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845 FIELD(EXIT_QUALIFICATION, exit_qualification),
846 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847 FIELD(GUEST_CR0, guest_cr0),
848 FIELD(GUEST_CR3, guest_cr3),
849 FIELD(GUEST_CR4, guest_cr4),
850 FIELD(GUEST_ES_BASE, guest_es_base),
851 FIELD(GUEST_CS_BASE, guest_cs_base),
852 FIELD(GUEST_SS_BASE, guest_ss_base),
853 FIELD(GUEST_DS_BASE, guest_ds_base),
854 FIELD(GUEST_FS_BASE, guest_fs_base),
855 FIELD(GUEST_GS_BASE, guest_gs_base),
856 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857 FIELD(GUEST_TR_BASE, guest_tr_base),
858 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860 FIELD(GUEST_DR7, guest_dr7),
861 FIELD(GUEST_RSP, guest_rsp),
862 FIELD(GUEST_RIP, guest_rip),
863 FIELD(GUEST_RFLAGS, guest_rflags),
864 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867 FIELD(HOST_CR0, host_cr0),
868 FIELD(HOST_CR3, host_cr3),
869 FIELD(HOST_CR4, host_cr4),
870 FIELD(HOST_FS_BASE, host_fs_base),
871 FIELD(HOST_GS_BASE, host_gs_base),
872 FIELD(HOST_TR_BASE, host_tr_base),
873 FIELD(HOST_GDTR_BASE, host_gdtr_base),
874 FIELD(HOST_IDTR_BASE, host_idtr_base),
875 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877 FIELD(HOST_RSP, host_rsp),
878 FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886 vmcs_field_to_offset_table[field] == 0)
887 return -ENOENT;
888
889 return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894 return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900 if (is_error_page(page))
901 return NULL;
902
903 return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908 kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913 kvm_release_page_clean(page);
914 }
915
916 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
917 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
918 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922 struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924 struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938
939 /*
940 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
941 * can find which vCPU should be waken up.
942 */
943 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
944 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
945
946 enum {
947 VMX_IO_BITMAP_A,
948 VMX_IO_BITMAP_B,
949 VMX_MSR_BITMAP_LEGACY,
950 VMX_MSR_BITMAP_LONGMODE,
951 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
952 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
953 VMX_MSR_BITMAP_LEGACY_X2APIC,
954 VMX_MSR_BITMAP_LONGMODE_X2APIC,
955 VMX_VMREAD_BITMAP,
956 VMX_VMWRITE_BITMAP,
957 VMX_BITMAP_NR
958 };
959
960 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
961
962 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
963 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
964 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
965 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
966 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
967 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
968 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
969 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
970 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
971 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
972
973 static bool cpu_has_load_ia32_efer;
974 static bool cpu_has_load_perf_global_ctrl;
975
976 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
977 static DEFINE_SPINLOCK(vmx_vpid_lock);
978
979 static struct vmcs_config {
980 int size;
981 int order;
982 u32 basic_cap;
983 u32 revision_id;
984 u32 pin_based_exec_ctrl;
985 u32 cpu_based_exec_ctrl;
986 u32 cpu_based_2nd_exec_ctrl;
987 u32 vmexit_ctrl;
988 u32 vmentry_ctrl;
989 } vmcs_config;
990
991 static struct vmx_capability {
992 u32 ept;
993 u32 vpid;
994 } vmx_capability;
995
996 #define VMX_SEGMENT_FIELD(seg) \
997 [VCPU_SREG_##seg] = { \
998 .selector = GUEST_##seg##_SELECTOR, \
999 .base = GUEST_##seg##_BASE, \
1000 .limit = GUEST_##seg##_LIMIT, \
1001 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1002 }
1003
1004 static const struct kvm_vmx_segment_field {
1005 unsigned selector;
1006 unsigned base;
1007 unsigned limit;
1008 unsigned ar_bytes;
1009 } kvm_vmx_segment_fields[] = {
1010 VMX_SEGMENT_FIELD(CS),
1011 VMX_SEGMENT_FIELD(DS),
1012 VMX_SEGMENT_FIELD(ES),
1013 VMX_SEGMENT_FIELD(FS),
1014 VMX_SEGMENT_FIELD(GS),
1015 VMX_SEGMENT_FIELD(SS),
1016 VMX_SEGMENT_FIELD(TR),
1017 VMX_SEGMENT_FIELD(LDTR),
1018 };
1019
1020 static u64 host_efer;
1021
1022 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1023
1024 /*
1025 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1026 * away by decrementing the array size.
1027 */
1028 static const u32 vmx_msr_index[] = {
1029 #ifdef CONFIG_X86_64
1030 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1031 #endif
1032 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1033 };
1034
1035 static inline bool is_exception_n(u32 intr_info, u8 vector)
1036 {
1037 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038 INTR_INFO_VALID_MASK)) ==
1039 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool is_debug(u32 intr_info)
1043 {
1044 return is_exception_n(intr_info, DB_VECTOR);
1045 }
1046
1047 static inline bool is_breakpoint(u32 intr_info)
1048 {
1049 return is_exception_n(intr_info, BP_VECTOR);
1050 }
1051
1052 static inline bool is_page_fault(u32 intr_info)
1053 {
1054 return is_exception_n(intr_info, PF_VECTOR);
1055 }
1056
1057 static inline bool is_no_device(u32 intr_info)
1058 {
1059 return is_exception_n(intr_info, NM_VECTOR);
1060 }
1061
1062 static inline bool is_invalid_opcode(u32 intr_info)
1063 {
1064 return is_exception_n(intr_info, UD_VECTOR);
1065 }
1066
1067 static inline bool is_external_interrupt(u32 intr_info)
1068 {
1069 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1070 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1071 }
1072
1073 static inline bool is_machine_check(u32 intr_info)
1074 {
1075 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1076 INTR_INFO_VALID_MASK)) ==
1077 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 {
1082 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1083 }
1084
1085 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 {
1087 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1088 }
1089
1090 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1091 {
1092 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1093 }
1094
1095 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 {
1097 return vmcs_config.cpu_based_exec_ctrl &
1098 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1099 }
1100
1101 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 {
1103 return vmcs_config.cpu_based_2nd_exec_ctrl &
1104 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1105 }
1106
1107 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 {
1109 return vmcs_config.cpu_based_2nd_exec_ctrl &
1110 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1111 }
1112
1113 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 {
1115 return vmcs_config.cpu_based_2nd_exec_ctrl &
1116 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1117 }
1118
1119 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 {
1121 return vmcs_config.cpu_based_2nd_exec_ctrl &
1122 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1123 }
1124
1125 /*
1126 * Comment's format: document - errata name - stepping - processor name.
1127 * Refer from
1128 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129 */
1130 static u32 vmx_preemption_cpu_tfms[] = {
1131 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1132 0x000206E6,
1133 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1134 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1135 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 0x00020652,
1137 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 0x00020655,
1139 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1140 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1141 /*
1142 * 320767.pdf - AAP86 - B1 -
1143 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1144 */
1145 0x000106E5,
1146 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 0x000106A0,
1148 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 0x000106A1,
1150 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 0x000106A4,
1152 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1153 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1154 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1155 0x000106A5,
1156 };
1157
1158 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 {
1160 u32 eax = cpuid_eax(0x00000001), i;
1161
1162 /* Clear the reserved bits */
1163 eax &= ~(0x3U << 14 | 0xfU << 28);
1164 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1165 if (eax == vmx_preemption_cpu_tfms[i])
1166 return true;
1167
1168 return false;
1169 }
1170
1171 static inline bool cpu_has_vmx_preemption_timer(void)
1172 {
1173 return vmcs_config.pin_based_exec_ctrl &
1174 PIN_BASED_VMX_PREEMPTION_TIMER;
1175 }
1176
1177 static inline bool cpu_has_vmx_posted_intr(void)
1178 {
1179 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1180 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1181 }
1182
1183 static inline bool cpu_has_vmx_apicv(void)
1184 {
1185 return cpu_has_vmx_apic_register_virt() &&
1186 cpu_has_vmx_virtual_intr_delivery() &&
1187 cpu_has_vmx_posted_intr();
1188 }
1189
1190 static inline bool cpu_has_vmx_flexpriority(void)
1191 {
1192 return cpu_has_vmx_tpr_shadow() &&
1193 cpu_has_vmx_virtualize_apic_accesses();
1194 }
1195
1196 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 {
1198 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1199 }
1200
1201 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 {
1203 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1204 }
1205
1206 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 {
1208 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1209 }
1210
1211 static inline bool cpu_has_vmx_ept_4levels(void)
1212 {
1213 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1214 }
1215
1216 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 {
1218 return vmx_capability.ept & VMX_EPT_AD_BIT;
1219 }
1220
1221 static inline bool cpu_has_vmx_invept_context(void)
1222 {
1223 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1224 }
1225
1226 static inline bool cpu_has_vmx_invept_global(void)
1227 {
1228 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1229 }
1230
1231 static inline bool cpu_has_vmx_invvpid_single(void)
1232 {
1233 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1234 }
1235
1236 static inline bool cpu_has_vmx_invvpid_global(void)
1237 {
1238 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1239 }
1240
1241 static inline bool cpu_has_vmx_invvpid(void)
1242 {
1243 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1244 }
1245
1246 static inline bool cpu_has_vmx_ept(void)
1247 {
1248 return vmcs_config.cpu_based_2nd_exec_ctrl &
1249 SECONDARY_EXEC_ENABLE_EPT;
1250 }
1251
1252 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 {
1254 return vmcs_config.cpu_based_2nd_exec_ctrl &
1255 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1256 }
1257
1258 static inline bool cpu_has_vmx_ple(void)
1259 {
1260 return vmcs_config.cpu_based_2nd_exec_ctrl &
1261 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1262 }
1263
1264 static inline bool cpu_has_vmx_basic_inout(void)
1265 {
1266 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1267 }
1268
1269 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1270 {
1271 return flexpriority_enabled && lapic_in_kernel(vcpu);
1272 }
1273
1274 static inline bool cpu_has_vmx_vpid(void)
1275 {
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_ENABLE_VPID;
1278 }
1279
1280 static inline bool cpu_has_vmx_rdtscp(void)
1281 {
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_RDTSCP;
1284 }
1285
1286 static inline bool cpu_has_vmx_invpcid(void)
1287 {
1288 return vmcs_config.cpu_based_2nd_exec_ctrl &
1289 SECONDARY_EXEC_ENABLE_INVPCID;
1290 }
1291
1292 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 {
1294 return vmcs_config.cpu_based_2nd_exec_ctrl &
1295 SECONDARY_EXEC_WBINVD_EXITING;
1296 }
1297
1298 static inline bool cpu_has_vmx_shadow_vmcs(void)
1299 {
1300 u64 vmx_msr;
1301 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1302 /* check if the cpu supports writing r/o exit information fields */
1303 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1304 return false;
1305
1306 return vmcs_config.cpu_based_2nd_exec_ctrl &
1307 SECONDARY_EXEC_SHADOW_VMCS;
1308 }
1309
1310 static inline bool cpu_has_vmx_pml(void)
1311 {
1312 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1313 }
1314
1315 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 {
1317 return vmcs_config.cpu_based_2nd_exec_ctrl &
1318 SECONDARY_EXEC_TSC_SCALING;
1319 }
1320
1321 static inline bool report_flexpriority(void)
1322 {
1323 return flexpriority_enabled;
1324 }
1325
1326 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327 {
1328 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329 }
1330
1331 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332 {
1333 return vmcs12->cpu_based_vm_exec_control & bit;
1334 }
1335
1336 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337 {
1338 return (vmcs12->cpu_based_vm_exec_control &
1339 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340 (vmcs12->secondary_vm_exec_control & bit);
1341 }
1342
1343 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1344 {
1345 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346 }
1347
1348 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349 {
1350 return vmcs12->pin_based_vm_exec_control &
1351 PIN_BASED_VMX_PREEMPTION_TIMER;
1352 }
1353
1354 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355 {
1356 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357 }
1358
1359 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360 {
1361 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1362 vmx_xsaves_supported();
1363 }
1364
1365 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1366 {
1367 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1368 }
1369
1370 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1371 {
1372 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1373 }
1374
1375 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1376 {
1377 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1378 }
1379
1380 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1381 {
1382 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1383 }
1384
1385 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1386 {
1387 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1388 }
1389
1390 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1391 {
1392 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1393 }
1394
1395 static inline bool is_nmi(u32 intr_info)
1396 {
1397 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1398 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1399 }
1400
1401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1402 u32 exit_intr_info,
1403 unsigned long exit_qualification);
1404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1405 struct vmcs12 *vmcs12,
1406 u32 reason, unsigned long qualification);
1407
1408 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1409 {
1410 int i;
1411
1412 for (i = 0; i < vmx->nmsrs; ++i)
1413 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1414 return i;
1415 return -1;
1416 }
1417
1418 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1419 {
1420 struct {
1421 u64 vpid : 16;
1422 u64 rsvd : 48;
1423 u64 gva;
1424 } operand = { vpid, 0, gva };
1425
1426 asm volatile (__ex(ASM_VMX_INVVPID)
1427 /* CF==1 or ZF==1 --> rc = -1 */
1428 "; ja 1f ; ud2 ; 1:"
1429 : : "a"(&operand), "c"(ext) : "cc", "memory");
1430 }
1431
1432 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1433 {
1434 struct {
1435 u64 eptp, gpa;
1436 } operand = {eptp, gpa};
1437
1438 asm volatile (__ex(ASM_VMX_INVEPT)
1439 /* CF==1 or ZF==1 --> rc = -1 */
1440 "; ja 1f ; ud2 ; 1:\n"
1441 : : "a" (&operand), "c" (ext) : "cc", "memory");
1442 }
1443
1444 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1445 {
1446 int i;
1447
1448 i = __find_msr_index(vmx, msr);
1449 if (i >= 0)
1450 return &vmx->guest_msrs[i];
1451 return NULL;
1452 }
1453
1454 static void vmcs_clear(struct vmcs *vmcs)
1455 {
1456 u64 phys_addr = __pa(vmcs);
1457 u8 error;
1458
1459 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1460 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461 : "cc", "memory");
1462 if (error)
1463 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1464 vmcs, phys_addr);
1465 }
1466
1467 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1468 {
1469 vmcs_clear(loaded_vmcs->vmcs);
1470 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1471 vmcs_clear(loaded_vmcs->shadow_vmcs);
1472 loaded_vmcs->cpu = -1;
1473 loaded_vmcs->launched = 0;
1474 }
1475
1476 static void vmcs_load(struct vmcs *vmcs)
1477 {
1478 u64 phys_addr = __pa(vmcs);
1479 u8 error;
1480
1481 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1482 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1483 : "cc", "memory");
1484 if (error)
1485 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1486 vmcs, phys_addr);
1487 }
1488
1489 #ifdef CONFIG_KEXEC_CORE
1490 /*
1491 * This bitmap is used to indicate whether the vmclear
1492 * operation is enabled on all cpus. All disabled by
1493 * default.
1494 */
1495 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1496
1497 static inline void crash_enable_local_vmclear(int cpu)
1498 {
1499 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1500 }
1501
1502 static inline void crash_disable_local_vmclear(int cpu)
1503 {
1504 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505 }
1506
1507 static inline int crash_local_vmclear_enabled(int cpu)
1508 {
1509 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510 }
1511
1512 static void crash_vmclear_local_loaded_vmcss(void)
1513 {
1514 int cpu = raw_smp_processor_id();
1515 struct loaded_vmcs *v;
1516
1517 if (!crash_local_vmclear_enabled(cpu))
1518 return;
1519
1520 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1521 loaded_vmcss_on_cpu_link)
1522 vmcs_clear(v->vmcs);
1523 }
1524 #else
1525 static inline void crash_enable_local_vmclear(int cpu) { }
1526 static inline void crash_disable_local_vmclear(int cpu) { }
1527 #endif /* CONFIG_KEXEC_CORE */
1528
1529 static void __loaded_vmcs_clear(void *arg)
1530 {
1531 struct loaded_vmcs *loaded_vmcs = arg;
1532 int cpu = raw_smp_processor_id();
1533
1534 if (loaded_vmcs->cpu != cpu)
1535 return; /* vcpu migration can race with cpu offline */
1536 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1537 per_cpu(current_vmcs, cpu) = NULL;
1538 crash_disable_local_vmclear(cpu);
1539 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1540
1541 /*
1542 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1543 * is before setting loaded_vmcs->vcpu to -1 which is done in
1544 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1545 * then adds the vmcs into percpu list before it is deleted.
1546 */
1547 smp_wmb();
1548
1549 loaded_vmcs_init(loaded_vmcs);
1550 crash_enable_local_vmclear(cpu);
1551 }
1552
1553 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1554 {
1555 int cpu = loaded_vmcs->cpu;
1556
1557 if (cpu != -1)
1558 smp_call_function_single(cpu,
1559 __loaded_vmcs_clear, loaded_vmcs, 1);
1560 }
1561
1562 static inline void vpid_sync_vcpu_single(int vpid)
1563 {
1564 if (vpid == 0)
1565 return;
1566
1567 if (cpu_has_vmx_invvpid_single())
1568 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1569 }
1570
1571 static inline void vpid_sync_vcpu_global(void)
1572 {
1573 if (cpu_has_vmx_invvpid_global())
1574 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1575 }
1576
1577 static inline void vpid_sync_context(int vpid)
1578 {
1579 if (cpu_has_vmx_invvpid_single())
1580 vpid_sync_vcpu_single(vpid);
1581 else
1582 vpid_sync_vcpu_global();
1583 }
1584
1585 static inline void ept_sync_global(void)
1586 {
1587 if (cpu_has_vmx_invept_global())
1588 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1589 }
1590
1591 static inline void ept_sync_context(u64 eptp)
1592 {
1593 if (enable_ept) {
1594 if (cpu_has_vmx_invept_context())
1595 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1596 else
1597 ept_sync_global();
1598 }
1599 }
1600
1601 static __always_inline void vmcs_check16(unsigned long field)
1602 {
1603 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1604 "16-bit accessor invalid for 64-bit field");
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1606 "16-bit accessor invalid for 64-bit high field");
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1608 "16-bit accessor invalid for 32-bit high field");
1609 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1610 "16-bit accessor invalid for natural width field");
1611 }
1612
1613 static __always_inline void vmcs_check32(unsigned long field)
1614 {
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1616 "32-bit accessor invalid for 16-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618 "32-bit accessor invalid for natural width field");
1619 }
1620
1621 static __always_inline void vmcs_check64(unsigned long field)
1622 {
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624 "64-bit accessor invalid for 16-bit field");
1625 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1626 "64-bit accessor invalid for 64-bit high field");
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1628 "64-bit accessor invalid for 32-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630 "64-bit accessor invalid for natural width field");
1631 }
1632
1633 static __always_inline void vmcs_checkl(unsigned long field)
1634 {
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636 "Natural width accessor invalid for 16-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1638 "Natural width accessor invalid for 64-bit field");
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640 "Natural width accessor invalid for 64-bit high field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642 "Natural width accessor invalid for 32-bit field");
1643 }
1644
1645 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1646 {
1647 unsigned long value;
1648
1649 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1650 : "=a"(value) : "d"(field) : "cc");
1651 return value;
1652 }
1653
1654 static __always_inline u16 vmcs_read16(unsigned long field)
1655 {
1656 vmcs_check16(field);
1657 return __vmcs_readl(field);
1658 }
1659
1660 static __always_inline u32 vmcs_read32(unsigned long field)
1661 {
1662 vmcs_check32(field);
1663 return __vmcs_readl(field);
1664 }
1665
1666 static __always_inline u64 vmcs_read64(unsigned long field)
1667 {
1668 vmcs_check64(field);
1669 #ifdef CONFIG_X86_64
1670 return __vmcs_readl(field);
1671 #else
1672 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1673 #endif
1674 }
1675
1676 static __always_inline unsigned long vmcs_readl(unsigned long field)
1677 {
1678 vmcs_checkl(field);
1679 return __vmcs_readl(field);
1680 }
1681
1682 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1683 {
1684 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1685 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1686 dump_stack();
1687 }
1688
1689 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1690 {
1691 u8 error;
1692
1693 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1694 : "=q"(error) : "a"(value), "d"(field) : "cc");
1695 if (unlikely(error))
1696 vmwrite_error(field, value);
1697 }
1698
1699 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1700 {
1701 vmcs_check16(field);
1702 __vmcs_writel(field, value);
1703 }
1704
1705 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1706 {
1707 vmcs_check32(field);
1708 __vmcs_writel(field, value);
1709 }
1710
1711 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1712 {
1713 vmcs_check64(field);
1714 __vmcs_writel(field, value);
1715 #ifndef CONFIG_X86_64
1716 asm volatile ("");
1717 __vmcs_writel(field+1, value >> 32);
1718 #endif
1719 }
1720
1721 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723 vmcs_checkl(field);
1724 __vmcs_writel(field, value);
1725 }
1726
1727 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1728 {
1729 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1730 "vmcs_clear_bits does not support 64-bit fields");
1731 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1732 }
1733
1734 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1735 {
1736 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1737 "vmcs_set_bits does not support 64-bit fields");
1738 __vmcs_writel(field, __vmcs_readl(field) | mask);
1739 }
1740
1741 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1742 {
1743 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1744 }
1745
1746 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1747 {
1748 vmcs_write32(VM_ENTRY_CONTROLS, val);
1749 vmx->vm_entry_controls_shadow = val;
1750 }
1751
1752 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1753 {
1754 if (vmx->vm_entry_controls_shadow != val)
1755 vm_entry_controls_init(vmx, val);
1756 }
1757
1758 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1759 {
1760 return vmx->vm_entry_controls_shadow;
1761 }
1762
1763
1764 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1765 {
1766 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1767 }
1768
1769 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1770 {
1771 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1772 }
1773
1774 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1775 {
1776 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1777 }
1778
1779 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1780 {
1781 vmcs_write32(VM_EXIT_CONTROLS, val);
1782 vmx->vm_exit_controls_shadow = val;
1783 }
1784
1785 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1786 {
1787 if (vmx->vm_exit_controls_shadow != val)
1788 vm_exit_controls_init(vmx, val);
1789 }
1790
1791 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1792 {
1793 return vmx->vm_exit_controls_shadow;
1794 }
1795
1796
1797 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798 {
1799 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1800 }
1801
1802 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803 {
1804 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1805 }
1806
1807 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1808 {
1809 vmx->segment_cache.bitmask = 0;
1810 }
1811
1812 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1813 unsigned field)
1814 {
1815 bool ret;
1816 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1817
1818 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1819 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1820 vmx->segment_cache.bitmask = 0;
1821 }
1822 ret = vmx->segment_cache.bitmask & mask;
1823 vmx->segment_cache.bitmask |= mask;
1824 return ret;
1825 }
1826
1827 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829 u16 *p = &vmx->segment_cache.seg[seg].selector;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1832 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1833 return *p;
1834 }
1835
1836 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838 ulong *p = &vmx->segment_cache.seg[seg].base;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1841 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1842 return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847 u32 *p = &vmx->segment_cache.seg[seg].limit;
1848
1849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1850 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1851 return *p;
1852 }
1853
1854 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1855 {
1856 u32 *p = &vmx->segment_cache.seg[seg].ar;
1857
1858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1859 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1860 return *p;
1861 }
1862
1863 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1864 {
1865 u32 eb;
1866
1867 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1868 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1869 if ((vcpu->guest_debug &
1870 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1871 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1872 eb |= 1u << BP_VECTOR;
1873 if (to_vmx(vcpu)->rmode.vm86_active)
1874 eb = ~0;
1875 if (enable_ept)
1876 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1877
1878 /* When we are running a nested L2 guest and L1 specified for it a
1879 * certain exception bitmap, we must trap the same exceptions and pass
1880 * them to L1. When running L2, we will only handle the exceptions
1881 * specified above if L1 did not want them.
1882 */
1883 if (is_guest_mode(vcpu))
1884 eb |= get_vmcs12(vcpu)->exception_bitmap;
1885
1886 vmcs_write32(EXCEPTION_BITMAP, eb);
1887 }
1888
1889 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1890 unsigned long entry, unsigned long exit)
1891 {
1892 vm_entry_controls_clearbit(vmx, entry);
1893 vm_exit_controls_clearbit(vmx, exit);
1894 }
1895
1896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1897 {
1898 unsigned i;
1899 struct msr_autoload *m = &vmx->msr_autoload;
1900
1901 switch (msr) {
1902 case MSR_EFER:
1903 if (cpu_has_load_ia32_efer) {
1904 clear_atomic_switch_msr_special(vmx,
1905 VM_ENTRY_LOAD_IA32_EFER,
1906 VM_EXIT_LOAD_IA32_EFER);
1907 return;
1908 }
1909 break;
1910 case MSR_CORE_PERF_GLOBAL_CTRL:
1911 if (cpu_has_load_perf_global_ctrl) {
1912 clear_atomic_switch_msr_special(vmx,
1913 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1914 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1915 return;
1916 }
1917 break;
1918 }
1919
1920 for (i = 0; i < m->nr; ++i)
1921 if (m->guest[i].index == msr)
1922 break;
1923
1924 if (i == m->nr)
1925 return;
1926 --m->nr;
1927 m->guest[i] = m->guest[m->nr];
1928 m->host[i] = m->host[m->nr];
1929 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1930 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1931 }
1932
1933 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1934 unsigned long entry, unsigned long exit,
1935 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1936 u64 guest_val, u64 host_val)
1937 {
1938 vmcs_write64(guest_val_vmcs, guest_val);
1939 vmcs_write64(host_val_vmcs, host_val);
1940 vm_entry_controls_setbit(vmx, entry);
1941 vm_exit_controls_setbit(vmx, exit);
1942 }
1943
1944 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1945 u64 guest_val, u64 host_val)
1946 {
1947 unsigned i;
1948 struct msr_autoload *m = &vmx->msr_autoload;
1949
1950 switch (msr) {
1951 case MSR_EFER:
1952 if (cpu_has_load_ia32_efer) {
1953 add_atomic_switch_msr_special(vmx,
1954 VM_ENTRY_LOAD_IA32_EFER,
1955 VM_EXIT_LOAD_IA32_EFER,
1956 GUEST_IA32_EFER,
1957 HOST_IA32_EFER,
1958 guest_val, host_val);
1959 return;
1960 }
1961 break;
1962 case MSR_CORE_PERF_GLOBAL_CTRL:
1963 if (cpu_has_load_perf_global_ctrl) {
1964 add_atomic_switch_msr_special(vmx,
1965 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1966 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1967 GUEST_IA32_PERF_GLOBAL_CTRL,
1968 HOST_IA32_PERF_GLOBAL_CTRL,
1969 guest_val, host_val);
1970 return;
1971 }
1972 break;
1973 case MSR_IA32_PEBS_ENABLE:
1974 /* PEBS needs a quiescent period after being disabled (to write
1975 * a record). Disabling PEBS through VMX MSR swapping doesn't
1976 * provide that period, so a CPU could write host's record into
1977 * guest's memory.
1978 */
1979 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1980 }
1981
1982 for (i = 0; i < m->nr; ++i)
1983 if (m->guest[i].index == msr)
1984 break;
1985
1986 if (i == NR_AUTOLOAD_MSRS) {
1987 printk_once(KERN_WARNING "Not enough msr switch entries. "
1988 "Can't add msr %x\n", msr);
1989 return;
1990 } else if (i == m->nr) {
1991 ++m->nr;
1992 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1993 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1994 }
1995
1996 m->guest[i].index = msr;
1997 m->guest[i].value = guest_val;
1998 m->host[i].index = msr;
1999 m->host[i].value = host_val;
2000 }
2001
2002 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2003 {
2004 u64 guest_efer = vmx->vcpu.arch.efer;
2005 u64 ignore_bits = 0;
2006
2007 if (!enable_ept) {
2008 /*
2009 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2010 * host CPUID is more efficient than testing guest CPUID
2011 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2012 */
2013 if (boot_cpu_has(X86_FEATURE_SMEP))
2014 guest_efer |= EFER_NX;
2015 else if (!(guest_efer & EFER_NX))
2016 ignore_bits |= EFER_NX;
2017 }
2018
2019 /*
2020 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021 */
2022 ignore_bits |= EFER_SCE;
2023 #ifdef CONFIG_X86_64
2024 ignore_bits |= EFER_LMA | EFER_LME;
2025 /* SCE is meaningful only in long mode on Intel */
2026 if (guest_efer & EFER_LMA)
2027 ignore_bits &= ~(u64)EFER_SCE;
2028 #endif
2029
2030 clear_atomic_switch_msr(vmx, MSR_EFER);
2031
2032 /*
2033 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2034 * On CPUs that support "load IA32_EFER", always switch EFER
2035 * atomically, since it's faster than switching it manually.
2036 */
2037 if (cpu_has_load_ia32_efer ||
2038 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2039 if (!(guest_efer & EFER_LMA))
2040 guest_efer &= ~EFER_LME;
2041 if (guest_efer != host_efer)
2042 add_atomic_switch_msr(vmx, MSR_EFER,
2043 guest_efer, host_efer);
2044 return false;
2045 } else {
2046 guest_efer &= ~ignore_bits;
2047 guest_efer |= host_efer & ignore_bits;
2048
2049 vmx->guest_msrs[efer_offset].data = guest_efer;
2050 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2051
2052 return true;
2053 }
2054 }
2055
2056 #ifdef CONFIG_X86_32
2057 /*
2058 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2059 * VMCS rather than the segment table. KVM uses this helper to figure
2060 * out the current bases to poke them into the VMCS before entry.
2061 */
2062 static unsigned long segment_base(u16 selector)
2063 {
2064 struct desc_struct *table;
2065 unsigned long v;
2066
2067 if (!(selector & ~SEGMENT_RPL_MASK))
2068 return 0;
2069
2070 table = get_current_gdt_ro();
2071
2072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2073 u16 ldt_selector = kvm_read_ldt();
2074
2075 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2076 return 0;
2077
2078 table = (struct desc_struct *)segment_base(ldt_selector);
2079 }
2080 v = get_desc_base(&table[selector >> 3]);
2081 return v;
2082 }
2083 #endif
2084
2085 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2086 {
2087 struct vcpu_vmx *vmx = to_vmx(vcpu);
2088 int i;
2089
2090 if (vmx->host_state.loaded)
2091 return;
2092
2093 vmx->host_state.loaded = 1;
2094 /*
2095 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2096 * allow segment selectors with cpl > 0 or ti == 1.
2097 */
2098 vmx->host_state.ldt_sel = kvm_read_ldt();
2099 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2100 savesegment(fs, vmx->host_state.fs_sel);
2101 if (!(vmx->host_state.fs_sel & 7)) {
2102 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2103 vmx->host_state.fs_reload_needed = 0;
2104 } else {
2105 vmcs_write16(HOST_FS_SELECTOR, 0);
2106 vmx->host_state.fs_reload_needed = 1;
2107 }
2108 savesegment(gs, vmx->host_state.gs_sel);
2109 if (!(vmx->host_state.gs_sel & 7))
2110 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2111 else {
2112 vmcs_write16(HOST_GS_SELECTOR, 0);
2113 vmx->host_state.gs_ldt_reload_needed = 1;
2114 }
2115
2116 #ifdef CONFIG_X86_64
2117 savesegment(ds, vmx->host_state.ds_sel);
2118 savesegment(es, vmx->host_state.es_sel);
2119 #endif
2120
2121 #ifdef CONFIG_X86_64
2122 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2123 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2124 #else
2125 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2126 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2127 #endif
2128
2129 #ifdef CONFIG_X86_64
2130 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2131 if (is_long_mode(&vmx->vcpu))
2132 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2133 #endif
2134 if (boot_cpu_has(X86_FEATURE_MPX))
2135 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2136 for (i = 0; i < vmx->save_nmsrs; ++i)
2137 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2138 vmx->guest_msrs[i].data,
2139 vmx->guest_msrs[i].mask);
2140 }
2141
2142 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2143 {
2144 if (!vmx->host_state.loaded)
2145 return;
2146
2147 ++vmx->vcpu.stat.host_state_reload;
2148 vmx->host_state.loaded = 0;
2149 #ifdef CONFIG_X86_64
2150 if (is_long_mode(&vmx->vcpu))
2151 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2152 #endif
2153 if (vmx->host_state.gs_ldt_reload_needed) {
2154 kvm_load_ldt(vmx->host_state.ldt_sel);
2155 #ifdef CONFIG_X86_64
2156 load_gs_index(vmx->host_state.gs_sel);
2157 #else
2158 loadsegment(gs, vmx->host_state.gs_sel);
2159 #endif
2160 }
2161 if (vmx->host_state.fs_reload_needed)
2162 loadsegment(fs, vmx->host_state.fs_sel);
2163 #ifdef CONFIG_X86_64
2164 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2165 loadsegment(ds, vmx->host_state.ds_sel);
2166 loadsegment(es, vmx->host_state.es_sel);
2167 }
2168 #endif
2169 invalidate_tss_limit();
2170 #ifdef CONFIG_X86_64
2171 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2172 #endif
2173 if (vmx->host_state.msr_host_bndcfgs)
2174 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2175 load_fixmap_gdt(raw_smp_processor_id());
2176 }
2177
2178 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2179 {
2180 preempt_disable();
2181 __vmx_load_host_state(vmx);
2182 preempt_enable();
2183 }
2184
2185 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2188 struct pi_desc old, new;
2189 unsigned int dest;
2190
2191 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2192 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2193 !kvm_vcpu_apicv_active(vcpu))
2194 return;
2195
2196 do {
2197 old.control = new.control = pi_desc->control;
2198
2199 /*
2200 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2201 * are two possible cases:
2202 * 1. After running 'pre_block', context switch
2203 * happened. For this case, 'sn' was set in
2204 * vmx_vcpu_put(), so we need to clear it here.
2205 * 2. After running 'pre_block', we were blocked,
2206 * and woken up by some other guy. For this case,
2207 * we don't need to do anything, 'pi_post_block'
2208 * will do everything for us. However, we cannot
2209 * check whether it is case #1 or case #2 here
2210 * (maybe, not needed), so we also clear sn here,
2211 * I think it is not a big deal.
2212 */
2213 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2214 if (vcpu->cpu != cpu) {
2215 dest = cpu_physical_id(cpu);
2216
2217 if (x2apic_enabled())
2218 new.ndst = dest;
2219 else
2220 new.ndst = (dest << 8) & 0xFF00;
2221 }
2222
2223 /* set 'NV' to 'notification vector' */
2224 new.nv = POSTED_INTR_VECTOR;
2225 }
2226
2227 /* Allow posting non-urgent interrupts */
2228 new.sn = 0;
2229 } while (cmpxchg(&pi_desc->control, old.control,
2230 new.control) != old.control);
2231 }
2232
2233 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2234 {
2235 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2236 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2237 }
2238
2239 /*
2240 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2241 * vcpu mutex is already taken.
2242 */
2243 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245 struct vcpu_vmx *vmx = to_vmx(vcpu);
2246 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2247
2248 if (!already_loaded) {
2249 loaded_vmcs_clear(vmx->loaded_vmcs);
2250 local_irq_disable();
2251 crash_disable_local_vmclear(cpu);
2252
2253 /*
2254 * Read loaded_vmcs->cpu should be before fetching
2255 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2256 * See the comments in __loaded_vmcs_clear().
2257 */
2258 smp_rmb();
2259
2260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2261 &per_cpu(loaded_vmcss_on_cpu, cpu));
2262 crash_enable_local_vmclear(cpu);
2263 local_irq_enable();
2264 }
2265
2266 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2268 vmcs_load(vmx->loaded_vmcs->vmcs);
2269 }
2270
2271 if (!already_loaded) {
2272 void *gdt = get_current_gdt_ro();
2273 unsigned long sysenter_esp;
2274
2275 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2276
2277 /*
2278 * Linux uses per-cpu TSS and GDT, so set these when switching
2279 * processors. See 22.2.4.
2280 */
2281 vmcs_writel(HOST_TR_BASE,
2282 (unsigned long)this_cpu_ptr(&cpu_tss));
2283 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2284
2285 /*
2286 * VM exits change the host TR limit to 0x67 after a VM
2287 * exit. This is okay, since 0x67 covers everything except
2288 * the IO bitmap and have have code to handle the IO bitmap
2289 * being lost after a VM exit.
2290 */
2291 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2292
2293 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2294 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2295
2296 vmx->loaded_vmcs->cpu = cpu;
2297 }
2298
2299 /* Setup TSC multiplier */
2300 if (kvm_has_tsc_control &&
2301 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2302 decache_tsc_multiplier(vmx);
2303
2304 vmx_vcpu_pi_load(vcpu, cpu);
2305 vmx->host_pkru = read_pkru();
2306 }
2307
2308 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2309 {
2310 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2311
2312 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2313 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2314 !kvm_vcpu_apicv_active(vcpu))
2315 return;
2316
2317 /* Set SN when the vCPU is preempted */
2318 if (vcpu->preempted)
2319 pi_set_sn(pi_desc);
2320 }
2321
2322 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2323 {
2324 vmx_vcpu_pi_put(vcpu);
2325
2326 __vmx_load_host_state(to_vmx(vcpu));
2327 }
2328
2329 static bool emulation_required(struct kvm_vcpu *vcpu)
2330 {
2331 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2332 }
2333
2334 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2335
2336 /*
2337 * Return the cr0 value that a nested guest would read. This is a combination
2338 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2339 * its hypervisor (cr0_read_shadow).
2340 */
2341 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2342 {
2343 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2344 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2345 }
2346 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2347 {
2348 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2349 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2350 }
2351
2352 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2353 {
2354 unsigned long rflags, save_rflags;
2355
2356 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2357 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2358 rflags = vmcs_readl(GUEST_RFLAGS);
2359 if (to_vmx(vcpu)->rmode.vm86_active) {
2360 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2361 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2362 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2363 }
2364 to_vmx(vcpu)->rflags = rflags;
2365 }
2366 return to_vmx(vcpu)->rflags;
2367 }
2368
2369 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2370 {
2371 unsigned long old_rflags = vmx_get_rflags(vcpu);
2372
2373 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2374 to_vmx(vcpu)->rflags = rflags;
2375 if (to_vmx(vcpu)->rmode.vm86_active) {
2376 to_vmx(vcpu)->rmode.save_rflags = rflags;
2377 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2378 }
2379 vmcs_writel(GUEST_RFLAGS, rflags);
2380
2381 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2382 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2383 }
2384
2385 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2386 {
2387 return to_vmx(vcpu)->guest_pkru;
2388 }
2389
2390 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2391 {
2392 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2393 int ret = 0;
2394
2395 if (interruptibility & GUEST_INTR_STATE_STI)
2396 ret |= KVM_X86_SHADOW_INT_STI;
2397 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2398 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2399
2400 return ret;
2401 }
2402
2403 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2404 {
2405 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2406 u32 interruptibility = interruptibility_old;
2407
2408 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2409
2410 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2411 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2412 else if (mask & KVM_X86_SHADOW_INT_STI)
2413 interruptibility |= GUEST_INTR_STATE_STI;
2414
2415 if ((interruptibility != interruptibility_old))
2416 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2417 }
2418
2419 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2420 {
2421 unsigned long rip;
2422
2423 rip = kvm_rip_read(vcpu);
2424 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2425 kvm_rip_write(vcpu, rip);
2426
2427 /* skipping an emulated instruction also counts */
2428 vmx_set_interrupt_shadow(vcpu, 0);
2429 }
2430
2431 /*
2432 * KVM wants to inject page-faults which it got to the guest. This function
2433 * checks whether in a nested guest, we need to inject them to L1 or L2.
2434 */
2435 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu)
2436 {
2437 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2438 unsigned int nr = vcpu->arch.exception.nr;
2439
2440 if (!((vmcs12->exception_bitmap & (1u << nr)) ||
2441 (nr == PF_VECTOR && vcpu->arch.exception.nested_apf)))
2442 return 0;
2443
2444 if (vcpu->arch.exception.nested_apf) {
2445 vmcs_write32(VM_EXIT_INTR_ERROR_CODE, vcpu->arch.exception.error_code);
2446 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2447 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
2448 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
2449 vcpu->arch.apf.nested_apf_token);
2450 return 1;
2451 }
2452
2453 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2454 vmcs_read32(VM_EXIT_INTR_INFO),
2455 vmcs_readl(EXIT_QUALIFICATION));
2456 return 1;
2457 }
2458
2459 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2460 {
2461 struct vcpu_vmx *vmx = to_vmx(vcpu);
2462 unsigned nr = vcpu->arch.exception.nr;
2463 bool has_error_code = vcpu->arch.exception.has_error_code;
2464 bool reinject = vcpu->arch.exception.reinject;
2465 u32 error_code = vcpu->arch.exception.error_code;
2466 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2467
2468 if (!reinject && is_guest_mode(vcpu) &&
2469 nested_vmx_check_exception(vcpu))
2470 return;
2471
2472 if (has_error_code) {
2473 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2474 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2475 }
2476
2477 if (vmx->rmode.vm86_active) {
2478 int inc_eip = 0;
2479 if (kvm_exception_is_soft(nr))
2480 inc_eip = vcpu->arch.event_exit_inst_len;
2481 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2482 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2483 return;
2484 }
2485
2486 if (kvm_exception_is_soft(nr)) {
2487 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2488 vmx->vcpu.arch.event_exit_inst_len);
2489 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2490 } else
2491 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2492
2493 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2494 }
2495
2496 static bool vmx_rdtscp_supported(void)
2497 {
2498 return cpu_has_vmx_rdtscp();
2499 }
2500
2501 static bool vmx_invpcid_supported(void)
2502 {
2503 return cpu_has_vmx_invpcid() && enable_ept;
2504 }
2505
2506 /*
2507 * Swap MSR entry in host/guest MSR entry array.
2508 */
2509 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2510 {
2511 struct shared_msr_entry tmp;
2512
2513 tmp = vmx->guest_msrs[to];
2514 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2515 vmx->guest_msrs[from] = tmp;
2516 }
2517
2518 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2519 {
2520 unsigned long *msr_bitmap;
2521
2522 if (is_guest_mode(vcpu))
2523 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2524 else if (cpu_has_secondary_exec_ctrls() &&
2525 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2526 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2527 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2528 if (is_long_mode(vcpu))
2529 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2530 else
2531 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2532 } else {
2533 if (is_long_mode(vcpu))
2534 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2535 else
2536 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2537 }
2538 } else {
2539 if (is_long_mode(vcpu))
2540 msr_bitmap = vmx_msr_bitmap_longmode;
2541 else
2542 msr_bitmap = vmx_msr_bitmap_legacy;
2543 }
2544
2545 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2546 }
2547
2548 /*
2549 * Set up the vmcs to automatically save and restore system
2550 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2551 * mode, as fiddling with msrs is very expensive.
2552 */
2553 static void setup_msrs(struct vcpu_vmx *vmx)
2554 {
2555 int save_nmsrs, index;
2556
2557 save_nmsrs = 0;
2558 #ifdef CONFIG_X86_64
2559 if (is_long_mode(&vmx->vcpu)) {
2560 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2561 if (index >= 0)
2562 move_msr_up(vmx, index, save_nmsrs++);
2563 index = __find_msr_index(vmx, MSR_LSTAR);
2564 if (index >= 0)
2565 move_msr_up(vmx, index, save_nmsrs++);
2566 index = __find_msr_index(vmx, MSR_CSTAR);
2567 if (index >= 0)
2568 move_msr_up(vmx, index, save_nmsrs++);
2569 index = __find_msr_index(vmx, MSR_TSC_AUX);
2570 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2571 move_msr_up(vmx, index, save_nmsrs++);
2572 /*
2573 * MSR_STAR is only needed on long mode guests, and only
2574 * if efer.sce is enabled.
2575 */
2576 index = __find_msr_index(vmx, MSR_STAR);
2577 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2578 move_msr_up(vmx, index, save_nmsrs++);
2579 }
2580 #endif
2581 index = __find_msr_index(vmx, MSR_EFER);
2582 if (index >= 0 && update_transition_efer(vmx, index))
2583 move_msr_up(vmx, index, save_nmsrs++);
2584
2585 vmx->save_nmsrs = save_nmsrs;
2586
2587 if (cpu_has_vmx_msr_bitmap())
2588 vmx_set_msr_bitmap(&vmx->vcpu);
2589 }
2590
2591 /*
2592 * reads and returns guest's timestamp counter "register"
2593 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2594 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2595 */
2596 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2597 {
2598 u64 host_tsc, tsc_offset;
2599
2600 host_tsc = rdtsc();
2601 tsc_offset = vmcs_read64(TSC_OFFSET);
2602 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2603 }
2604
2605 /*
2606 * writes 'offset' into guest's timestamp counter offset register
2607 */
2608 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2609 {
2610 if (is_guest_mode(vcpu)) {
2611 /*
2612 * We're here if L1 chose not to trap WRMSR to TSC. According
2613 * to the spec, this should set L1's TSC; The offset that L1
2614 * set for L2 remains unchanged, and still needs to be added
2615 * to the newly set TSC to get L2's TSC.
2616 */
2617 struct vmcs12 *vmcs12;
2618 /* recalculate vmcs02.TSC_OFFSET: */
2619 vmcs12 = get_vmcs12(vcpu);
2620 vmcs_write64(TSC_OFFSET, offset +
2621 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2622 vmcs12->tsc_offset : 0));
2623 } else {
2624 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2625 vmcs_read64(TSC_OFFSET), offset);
2626 vmcs_write64(TSC_OFFSET, offset);
2627 }
2628 }
2629
2630 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2631 {
2632 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2633 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2634 }
2635
2636 /*
2637 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2638 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2639 * all guests if the "nested" module option is off, and can also be disabled
2640 * for a single guest by disabling its VMX cpuid bit.
2641 */
2642 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2643 {
2644 return nested && guest_cpuid_has_vmx(vcpu);
2645 }
2646
2647 /*
2648 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2649 * returned for the various VMX controls MSRs when nested VMX is enabled.
2650 * The same values should also be used to verify that vmcs12 control fields are
2651 * valid during nested entry from L1 to L2.
2652 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2653 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2654 * bit in the high half is on if the corresponding bit in the control field
2655 * may be on. See also vmx_control_verify().
2656 */
2657 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2658 {
2659 /*
2660 * Note that as a general rule, the high half of the MSRs (bits in
2661 * the control fields which may be 1) should be initialized by the
2662 * intersection of the underlying hardware's MSR (i.e., features which
2663 * can be supported) and the list of features we want to expose -
2664 * because they are known to be properly supported in our code.
2665 * Also, usually, the low half of the MSRs (bits which must be 1) can
2666 * be set to 0, meaning that L1 may turn off any of these bits. The
2667 * reason is that if one of these bits is necessary, it will appear
2668 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2669 * fields of vmcs01 and vmcs02, will turn these bits off - and
2670 * nested_vmx_exit_handled() will not pass related exits to L1.
2671 * These rules have exceptions below.
2672 */
2673
2674 /* pin-based controls */
2675 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2676 vmx->nested.nested_vmx_pinbased_ctls_low,
2677 vmx->nested.nested_vmx_pinbased_ctls_high);
2678 vmx->nested.nested_vmx_pinbased_ctls_low |=
2679 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2680 vmx->nested.nested_vmx_pinbased_ctls_high &=
2681 PIN_BASED_EXT_INTR_MASK |
2682 PIN_BASED_NMI_EXITING |
2683 PIN_BASED_VIRTUAL_NMIS;
2684 vmx->nested.nested_vmx_pinbased_ctls_high |=
2685 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2686 PIN_BASED_VMX_PREEMPTION_TIMER;
2687 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2688 vmx->nested.nested_vmx_pinbased_ctls_high |=
2689 PIN_BASED_POSTED_INTR;
2690
2691 /* exit controls */
2692 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2693 vmx->nested.nested_vmx_exit_ctls_low,
2694 vmx->nested.nested_vmx_exit_ctls_high);
2695 vmx->nested.nested_vmx_exit_ctls_low =
2696 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2697
2698 vmx->nested.nested_vmx_exit_ctls_high &=
2699 #ifdef CONFIG_X86_64
2700 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2701 #endif
2702 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2703 vmx->nested.nested_vmx_exit_ctls_high |=
2704 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2705 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2706 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2707
2708 if (kvm_mpx_supported())
2709 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2710
2711 /* We support free control of debug control saving. */
2712 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2713
2714 /* entry controls */
2715 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2716 vmx->nested.nested_vmx_entry_ctls_low,
2717 vmx->nested.nested_vmx_entry_ctls_high);
2718 vmx->nested.nested_vmx_entry_ctls_low =
2719 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2720 vmx->nested.nested_vmx_entry_ctls_high &=
2721 #ifdef CONFIG_X86_64
2722 VM_ENTRY_IA32E_MODE |
2723 #endif
2724 VM_ENTRY_LOAD_IA32_PAT;
2725 vmx->nested.nested_vmx_entry_ctls_high |=
2726 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2727 if (kvm_mpx_supported())
2728 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2729
2730 /* We support free control of debug control loading. */
2731 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2732
2733 /* cpu-based controls */
2734 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2735 vmx->nested.nested_vmx_procbased_ctls_low,
2736 vmx->nested.nested_vmx_procbased_ctls_high);
2737 vmx->nested.nested_vmx_procbased_ctls_low =
2738 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2739 vmx->nested.nested_vmx_procbased_ctls_high &=
2740 CPU_BASED_VIRTUAL_INTR_PENDING |
2741 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2742 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2743 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2744 CPU_BASED_CR3_STORE_EXITING |
2745 #ifdef CONFIG_X86_64
2746 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2747 #endif
2748 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2749 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2750 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2751 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2752 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2753 /*
2754 * We can allow some features even when not supported by the
2755 * hardware. For example, L1 can specify an MSR bitmap - and we
2756 * can use it to avoid exits to L1 - even when L0 runs L2
2757 * without MSR bitmaps.
2758 */
2759 vmx->nested.nested_vmx_procbased_ctls_high |=
2760 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2761 CPU_BASED_USE_MSR_BITMAPS;
2762
2763 /* We support free control of CR3 access interception. */
2764 vmx->nested.nested_vmx_procbased_ctls_low &=
2765 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2766
2767 /* secondary cpu-based controls */
2768 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2769 vmx->nested.nested_vmx_secondary_ctls_low,
2770 vmx->nested.nested_vmx_secondary_ctls_high);
2771 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2772 vmx->nested.nested_vmx_secondary_ctls_high &=
2773 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2774 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2775 SECONDARY_EXEC_RDTSCP |
2776 SECONDARY_EXEC_DESC |
2777 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2778 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2779 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2780 SECONDARY_EXEC_WBINVD_EXITING |
2781 SECONDARY_EXEC_XSAVES;
2782
2783 if (enable_ept) {
2784 /* nested EPT: emulate EPT also to L1 */
2785 vmx->nested.nested_vmx_secondary_ctls_high |=
2786 SECONDARY_EXEC_ENABLE_EPT;
2787 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2788 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2789 if (cpu_has_vmx_ept_execute_only())
2790 vmx->nested.nested_vmx_ept_caps |=
2791 VMX_EPT_EXECUTE_ONLY_BIT;
2792 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2793 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2794 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2795 VMX_EPT_1GB_PAGE_BIT;
2796 if (enable_ept_ad_bits) {
2797 vmx->nested.nested_vmx_secondary_ctls_high |=
2798 SECONDARY_EXEC_ENABLE_PML;
2799 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2800 }
2801 } else
2802 vmx->nested.nested_vmx_ept_caps = 0;
2803
2804 /*
2805 * Old versions of KVM use the single-context version without
2806 * checking for support, so declare that it is supported even
2807 * though it is treated as global context. The alternative is
2808 * not failing the single-context invvpid, and it is worse.
2809 */
2810 if (enable_vpid) {
2811 vmx->nested.nested_vmx_secondary_ctls_high |=
2812 SECONDARY_EXEC_ENABLE_VPID;
2813 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2814 VMX_VPID_EXTENT_SUPPORTED_MASK;
2815 } else
2816 vmx->nested.nested_vmx_vpid_caps = 0;
2817
2818 if (enable_unrestricted_guest)
2819 vmx->nested.nested_vmx_secondary_ctls_high |=
2820 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2821
2822 /* miscellaneous data */
2823 rdmsr(MSR_IA32_VMX_MISC,
2824 vmx->nested.nested_vmx_misc_low,
2825 vmx->nested.nested_vmx_misc_high);
2826 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2827 vmx->nested.nested_vmx_misc_low |=
2828 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2829 VMX_MISC_ACTIVITY_HLT;
2830 vmx->nested.nested_vmx_misc_high = 0;
2831
2832 /*
2833 * This MSR reports some information about VMX support. We
2834 * should return information about the VMX we emulate for the
2835 * guest, and the VMCS structure we give it - not about the
2836 * VMX support of the underlying hardware.
2837 */
2838 vmx->nested.nested_vmx_basic =
2839 VMCS12_REVISION |
2840 VMX_BASIC_TRUE_CTLS |
2841 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2842 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2843
2844 if (cpu_has_vmx_basic_inout())
2845 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2846
2847 /*
2848 * These MSRs specify bits which the guest must keep fixed on
2849 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2850 * We picked the standard core2 setting.
2851 */
2852 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2853 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2854 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2855 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2856
2857 /* These MSRs specify bits which the guest must keep fixed off. */
2858 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2859 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2860
2861 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2862 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2863 }
2864
2865 /*
2866 * if fixed0[i] == 1: val[i] must be 1
2867 * if fixed1[i] == 0: val[i] must be 0
2868 */
2869 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2870 {
2871 return ((val & fixed1) | fixed0) == val;
2872 }
2873
2874 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2875 {
2876 return fixed_bits_valid(control, low, high);
2877 }
2878
2879 static inline u64 vmx_control_msr(u32 low, u32 high)
2880 {
2881 return low | ((u64)high << 32);
2882 }
2883
2884 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2885 {
2886 superset &= mask;
2887 subset &= mask;
2888
2889 return (superset | subset) == superset;
2890 }
2891
2892 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2893 {
2894 const u64 feature_and_reserved =
2895 /* feature (except bit 48; see below) */
2896 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2897 /* reserved */
2898 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2899 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2900
2901 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2902 return -EINVAL;
2903
2904 /*
2905 * KVM does not emulate a version of VMX that constrains physical
2906 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2907 */
2908 if (data & BIT_ULL(48))
2909 return -EINVAL;
2910
2911 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2912 vmx_basic_vmcs_revision_id(data))
2913 return -EINVAL;
2914
2915 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2916 return -EINVAL;
2917
2918 vmx->nested.nested_vmx_basic = data;
2919 return 0;
2920 }
2921
2922 static int
2923 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2924 {
2925 u64 supported;
2926 u32 *lowp, *highp;
2927
2928 switch (msr_index) {
2929 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2930 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2931 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2932 break;
2933 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2934 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2935 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2936 break;
2937 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2938 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2939 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2940 break;
2941 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2942 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2943 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2944 break;
2945 case MSR_IA32_VMX_PROCBASED_CTLS2:
2946 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2947 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2948 break;
2949 default:
2950 BUG();
2951 }
2952
2953 supported = vmx_control_msr(*lowp, *highp);
2954
2955 /* Check must-be-1 bits are still 1. */
2956 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2957 return -EINVAL;
2958
2959 /* Check must-be-0 bits are still 0. */
2960 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2961 return -EINVAL;
2962
2963 *lowp = data;
2964 *highp = data >> 32;
2965 return 0;
2966 }
2967
2968 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2969 {
2970 const u64 feature_and_reserved_bits =
2971 /* feature */
2972 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2973 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2974 /* reserved */
2975 GENMASK_ULL(13, 9) | BIT_ULL(31);
2976 u64 vmx_misc;
2977
2978 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2979 vmx->nested.nested_vmx_misc_high);
2980
2981 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2982 return -EINVAL;
2983
2984 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2985 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2986 vmx_misc_preemption_timer_rate(data) !=
2987 vmx_misc_preemption_timer_rate(vmx_misc))
2988 return -EINVAL;
2989
2990 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2991 return -EINVAL;
2992
2993 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2994 return -EINVAL;
2995
2996 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2997 return -EINVAL;
2998
2999 vmx->nested.nested_vmx_misc_low = data;
3000 vmx->nested.nested_vmx_misc_high = data >> 32;
3001 return 0;
3002 }
3003
3004 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3005 {
3006 u64 vmx_ept_vpid_cap;
3007
3008 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3009 vmx->nested.nested_vmx_vpid_caps);
3010
3011 /* Every bit is either reserved or a feature bit. */
3012 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3013 return -EINVAL;
3014
3015 vmx->nested.nested_vmx_ept_caps = data;
3016 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3017 return 0;
3018 }
3019
3020 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3021 {
3022 u64 *msr;
3023
3024 switch (msr_index) {
3025 case MSR_IA32_VMX_CR0_FIXED0:
3026 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3027 break;
3028 case MSR_IA32_VMX_CR4_FIXED0:
3029 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3030 break;
3031 default:
3032 BUG();
3033 }
3034
3035 /*
3036 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3037 * must be 1 in the restored value.
3038 */
3039 if (!is_bitwise_subset(data, *msr, -1ULL))
3040 return -EINVAL;
3041
3042 *msr = data;
3043 return 0;
3044 }
3045
3046 /*
3047 * Called when userspace is restoring VMX MSRs.
3048 *
3049 * Returns 0 on success, non-0 otherwise.
3050 */
3051 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3052 {
3053 struct vcpu_vmx *vmx = to_vmx(vcpu);
3054
3055 switch (msr_index) {
3056 case MSR_IA32_VMX_BASIC:
3057 return vmx_restore_vmx_basic(vmx, data);
3058 case MSR_IA32_VMX_PINBASED_CTLS:
3059 case MSR_IA32_VMX_PROCBASED_CTLS:
3060 case MSR_IA32_VMX_EXIT_CTLS:
3061 case MSR_IA32_VMX_ENTRY_CTLS:
3062 /*
3063 * The "non-true" VMX capability MSRs are generated from the
3064 * "true" MSRs, so we do not support restoring them directly.
3065 *
3066 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3067 * should restore the "true" MSRs with the must-be-1 bits
3068 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3069 * DEFAULT SETTINGS".
3070 */
3071 return -EINVAL;
3072 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3073 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3074 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3075 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3076 case MSR_IA32_VMX_PROCBASED_CTLS2:
3077 return vmx_restore_control_msr(vmx, msr_index, data);
3078 case MSR_IA32_VMX_MISC:
3079 return vmx_restore_vmx_misc(vmx, data);
3080 case MSR_IA32_VMX_CR0_FIXED0:
3081 case MSR_IA32_VMX_CR4_FIXED0:
3082 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3083 case MSR_IA32_VMX_CR0_FIXED1:
3084 case MSR_IA32_VMX_CR4_FIXED1:
3085 /*
3086 * These MSRs are generated based on the vCPU's CPUID, so we
3087 * do not support restoring them directly.
3088 */
3089 return -EINVAL;
3090 case MSR_IA32_VMX_EPT_VPID_CAP:
3091 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3092 case MSR_IA32_VMX_VMCS_ENUM:
3093 vmx->nested.nested_vmx_vmcs_enum = data;
3094 return 0;
3095 default:
3096 /*
3097 * The rest of the VMX capability MSRs do not support restore.
3098 */
3099 return -EINVAL;
3100 }
3101 }
3102
3103 /* Returns 0 on success, non-0 otherwise. */
3104 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3105 {
3106 struct vcpu_vmx *vmx = to_vmx(vcpu);
3107
3108 switch (msr_index) {
3109 case MSR_IA32_VMX_BASIC:
3110 *pdata = vmx->nested.nested_vmx_basic;
3111 break;
3112 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3113 case MSR_IA32_VMX_PINBASED_CTLS:
3114 *pdata = vmx_control_msr(
3115 vmx->nested.nested_vmx_pinbased_ctls_low,
3116 vmx->nested.nested_vmx_pinbased_ctls_high);
3117 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3118 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3119 break;
3120 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3121 case MSR_IA32_VMX_PROCBASED_CTLS:
3122 *pdata = vmx_control_msr(
3123 vmx->nested.nested_vmx_procbased_ctls_low,
3124 vmx->nested.nested_vmx_procbased_ctls_high);
3125 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3126 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3127 break;
3128 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3129 case MSR_IA32_VMX_EXIT_CTLS:
3130 *pdata = vmx_control_msr(
3131 vmx->nested.nested_vmx_exit_ctls_low,
3132 vmx->nested.nested_vmx_exit_ctls_high);
3133 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3134 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3135 break;
3136 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3137 case MSR_IA32_VMX_ENTRY_CTLS:
3138 *pdata = vmx_control_msr(
3139 vmx->nested.nested_vmx_entry_ctls_low,
3140 vmx->nested.nested_vmx_entry_ctls_high);
3141 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3142 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3143 break;
3144 case MSR_IA32_VMX_MISC:
3145 *pdata = vmx_control_msr(
3146 vmx->nested.nested_vmx_misc_low,
3147 vmx->nested.nested_vmx_misc_high);
3148 break;
3149 case MSR_IA32_VMX_CR0_FIXED0:
3150 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3151 break;
3152 case MSR_IA32_VMX_CR0_FIXED1:
3153 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3154 break;
3155 case MSR_IA32_VMX_CR4_FIXED0:
3156 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3157 break;
3158 case MSR_IA32_VMX_CR4_FIXED1:
3159 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3160 break;
3161 case MSR_IA32_VMX_VMCS_ENUM:
3162 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3163 break;
3164 case MSR_IA32_VMX_PROCBASED_CTLS2:
3165 *pdata = vmx_control_msr(
3166 vmx->nested.nested_vmx_secondary_ctls_low,
3167 vmx->nested.nested_vmx_secondary_ctls_high);
3168 break;
3169 case MSR_IA32_VMX_EPT_VPID_CAP:
3170 *pdata = vmx->nested.nested_vmx_ept_caps |
3171 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3172 break;
3173 default:
3174 return 1;
3175 }
3176
3177 return 0;
3178 }
3179
3180 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3181 uint64_t val)
3182 {
3183 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3184
3185 return !(val & ~valid_bits);
3186 }
3187
3188 /*
3189 * Reads an msr value (of 'msr_index') into 'pdata'.
3190 * Returns 0 on success, non-0 otherwise.
3191 * Assumes vcpu_load() was already called.
3192 */
3193 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3194 {
3195 struct shared_msr_entry *msr;
3196
3197 switch (msr_info->index) {
3198 #ifdef CONFIG_X86_64
3199 case MSR_FS_BASE:
3200 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3201 break;
3202 case MSR_GS_BASE:
3203 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3204 break;
3205 case MSR_KERNEL_GS_BASE:
3206 vmx_load_host_state(to_vmx(vcpu));
3207 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3208 break;
3209 #endif
3210 case MSR_EFER:
3211 return kvm_get_msr_common(vcpu, msr_info);
3212 case MSR_IA32_TSC:
3213 msr_info->data = guest_read_tsc(vcpu);
3214 break;
3215 case MSR_IA32_SYSENTER_CS:
3216 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3217 break;
3218 case MSR_IA32_SYSENTER_EIP:
3219 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3220 break;
3221 case MSR_IA32_SYSENTER_ESP:
3222 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3223 break;
3224 case MSR_IA32_BNDCFGS:
3225 if (!kvm_mpx_supported() ||
3226 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3227 return 1;
3228 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3229 break;
3230 case MSR_IA32_MCG_EXT_CTL:
3231 if (!msr_info->host_initiated &&
3232 !(to_vmx(vcpu)->msr_ia32_feature_control &
3233 FEATURE_CONTROL_LMCE))
3234 return 1;
3235 msr_info->data = vcpu->arch.mcg_ext_ctl;
3236 break;
3237 case MSR_IA32_FEATURE_CONTROL:
3238 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3239 break;
3240 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3241 if (!nested_vmx_allowed(vcpu))
3242 return 1;
3243 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3244 case MSR_IA32_XSS:
3245 if (!vmx_xsaves_supported())
3246 return 1;
3247 msr_info->data = vcpu->arch.ia32_xss;
3248 break;
3249 case MSR_TSC_AUX:
3250 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3251 return 1;
3252 /* Otherwise falls through */
3253 default:
3254 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3255 if (msr) {
3256 msr_info->data = msr->data;
3257 break;
3258 }
3259 return kvm_get_msr_common(vcpu, msr_info);
3260 }
3261
3262 return 0;
3263 }
3264
3265 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3266
3267 /*
3268 * Writes msr value into into the appropriate "register".
3269 * Returns 0 on success, non-0 otherwise.
3270 * Assumes vcpu_load() was already called.
3271 */
3272 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 struct shared_msr_entry *msr;
3276 int ret = 0;
3277 u32 msr_index = msr_info->index;
3278 u64 data = msr_info->data;
3279
3280 switch (msr_index) {
3281 case MSR_EFER:
3282 ret = kvm_set_msr_common(vcpu, msr_info);
3283 break;
3284 #ifdef CONFIG_X86_64
3285 case MSR_FS_BASE:
3286 vmx_segment_cache_clear(vmx);
3287 vmcs_writel(GUEST_FS_BASE, data);
3288 break;
3289 case MSR_GS_BASE:
3290 vmx_segment_cache_clear(vmx);
3291 vmcs_writel(GUEST_GS_BASE, data);
3292 break;
3293 case MSR_KERNEL_GS_BASE:
3294 vmx_load_host_state(vmx);
3295 vmx->msr_guest_kernel_gs_base = data;
3296 break;
3297 #endif
3298 case MSR_IA32_SYSENTER_CS:
3299 vmcs_write32(GUEST_SYSENTER_CS, data);
3300 break;
3301 case MSR_IA32_SYSENTER_EIP:
3302 vmcs_writel(GUEST_SYSENTER_EIP, data);
3303 break;
3304 case MSR_IA32_SYSENTER_ESP:
3305 vmcs_writel(GUEST_SYSENTER_ESP, data);
3306 break;
3307 case MSR_IA32_BNDCFGS:
3308 if (!kvm_mpx_supported() ||
3309 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3310 return 1;
3311 if (is_noncanonical_address(data & PAGE_MASK) ||
3312 (data & MSR_IA32_BNDCFGS_RSVD))
3313 return 1;
3314 vmcs_write64(GUEST_BNDCFGS, data);
3315 break;
3316 case MSR_IA32_TSC:
3317 kvm_write_tsc(vcpu, msr_info);
3318 break;
3319 case MSR_IA32_CR_PAT:
3320 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3321 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3322 return 1;
3323 vmcs_write64(GUEST_IA32_PAT, data);
3324 vcpu->arch.pat = data;
3325 break;
3326 }
3327 ret = kvm_set_msr_common(vcpu, msr_info);
3328 break;
3329 case MSR_IA32_TSC_ADJUST:
3330 ret = kvm_set_msr_common(vcpu, msr_info);
3331 break;
3332 case MSR_IA32_MCG_EXT_CTL:
3333 if ((!msr_info->host_initiated &&
3334 !(to_vmx(vcpu)->msr_ia32_feature_control &
3335 FEATURE_CONTROL_LMCE)) ||
3336 (data & ~MCG_EXT_CTL_LMCE_EN))
3337 return 1;
3338 vcpu->arch.mcg_ext_ctl = data;
3339 break;
3340 case MSR_IA32_FEATURE_CONTROL:
3341 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3342 (to_vmx(vcpu)->msr_ia32_feature_control &
3343 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3344 return 1;
3345 vmx->msr_ia32_feature_control = data;
3346 if (msr_info->host_initiated && data == 0)
3347 vmx_leave_nested(vcpu);
3348 break;
3349 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3350 if (!msr_info->host_initiated)
3351 return 1; /* they are read-only */
3352 if (!nested_vmx_allowed(vcpu))
3353 return 1;
3354 return vmx_set_vmx_msr(vcpu, msr_index, data);
3355 case MSR_IA32_XSS:
3356 if (!vmx_xsaves_supported())
3357 return 1;
3358 /*
3359 * The only supported bit as of Skylake is bit 8, but
3360 * it is not supported on KVM.
3361 */
3362 if (data != 0)
3363 return 1;
3364 vcpu->arch.ia32_xss = data;
3365 if (vcpu->arch.ia32_xss != host_xss)
3366 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3367 vcpu->arch.ia32_xss, host_xss);
3368 else
3369 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3370 break;
3371 case MSR_TSC_AUX:
3372 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3373 return 1;
3374 /* Check reserved bit, higher 32 bits should be zero */
3375 if ((data >> 32) != 0)
3376 return 1;
3377 /* Otherwise falls through */
3378 default:
3379 msr = find_msr_entry(vmx, msr_index);
3380 if (msr) {
3381 u64 old_msr_data = msr->data;
3382 msr->data = data;
3383 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3384 preempt_disable();
3385 ret = kvm_set_shared_msr(msr->index, msr->data,
3386 msr->mask);
3387 preempt_enable();
3388 if (ret)
3389 msr->data = old_msr_data;
3390 }
3391 break;
3392 }
3393 ret = kvm_set_msr_common(vcpu, msr_info);
3394 }
3395
3396 return ret;
3397 }
3398
3399 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3400 {
3401 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3402 switch (reg) {
3403 case VCPU_REGS_RSP:
3404 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3405 break;
3406 case VCPU_REGS_RIP:
3407 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3408 break;
3409 case VCPU_EXREG_PDPTR:
3410 if (enable_ept)
3411 ept_save_pdptrs(vcpu);
3412 break;
3413 default:
3414 break;
3415 }
3416 }
3417
3418 static __init int cpu_has_kvm_support(void)
3419 {
3420 return cpu_has_vmx();
3421 }
3422
3423 static __init int vmx_disabled_by_bios(void)
3424 {
3425 u64 msr;
3426
3427 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3428 if (msr & FEATURE_CONTROL_LOCKED) {
3429 /* launched w/ TXT and VMX disabled */
3430 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3431 && tboot_enabled())
3432 return 1;
3433 /* launched w/o TXT and VMX only enabled w/ TXT */
3434 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3435 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3436 && !tboot_enabled()) {
3437 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3438 "activate TXT before enabling KVM\n");
3439 return 1;
3440 }
3441 /* launched w/o TXT and VMX disabled */
3442 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3443 && !tboot_enabled())
3444 return 1;
3445 }
3446
3447 return 0;
3448 }
3449
3450 static void kvm_cpu_vmxon(u64 addr)
3451 {
3452 cr4_set_bits(X86_CR4_VMXE);
3453 intel_pt_handle_vmx(1);
3454
3455 asm volatile (ASM_VMX_VMXON_RAX
3456 : : "a"(&addr), "m"(addr)
3457 : "memory", "cc");
3458 }
3459
3460 static int hardware_enable(void)
3461 {
3462 int cpu = raw_smp_processor_id();
3463 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3464 u64 old, test_bits;
3465
3466 if (cr4_read_shadow() & X86_CR4_VMXE)
3467 return -EBUSY;
3468
3469 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3470 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3471 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3472
3473 /*
3474 * Now we can enable the vmclear operation in kdump
3475 * since the loaded_vmcss_on_cpu list on this cpu
3476 * has been initialized.
3477 *
3478 * Though the cpu is not in VMX operation now, there
3479 * is no problem to enable the vmclear operation
3480 * for the loaded_vmcss_on_cpu list is empty!
3481 */
3482 crash_enable_local_vmclear(cpu);
3483
3484 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3485
3486 test_bits = FEATURE_CONTROL_LOCKED;
3487 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3488 if (tboot_enabled())
3489 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3490
3491 if ((old & test_bits) != test_bits) {
3492 /* enable and lock */
3493 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3494 }
3495 kvm_cpu_vmxon(phys_addr);
3496 ept_sync_global();
3497
3498 return 0;
3499 }
3500
3501 static void vmclear_local_loaded_vmcss(void)
3502 {
3503 int cpu = raw_smp_processor_id();
3504 struct loaded_vmcs *v, *n;
3505
3506 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3507 loaded_vmcss_on_cpu_link)
3508 __loaded_vmcs_clear(v);
3509 }
3510
3511
3512 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3513 * tricks.
3514 */
3515 static void kvm_cpu_vmxoff(void)
3516 {
3517 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3518
3519 intel_pt_handle_vmx(0);
3520 cr4_clear_bits(X86_CR4_VMXE);
3521 }
3522
3523 static void hardware_disable(void)
3524 {
3525 vmclear_local_loaded_vmcss();
3526 kvm_cpu_vmxoff();
3527 }
3528
3529 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3530 u32 msr, u32 *result)
3531 {
3532 u32 vmx_msr_low, vmx_msr_high;
3533 u32 ctl = ctl_min | ctl_opt;
3534
3535 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3536
3537 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3538 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3539
3540 /* Ensure minimum (required) set of control bits are supported. */
3541 if (ctl_min & ~ctl)
3542 return -EIO;
3543
3544 *result = ctl;
3545 return 0;
3546 }
3547
3548 static __init bool allow_1_setting(u32 msr, u32 ctl)
3549 {
3550 u32 vmx_msr_low, vmx_msr_high;
3551
3552 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3553 return vmx_msr_high & ctl;
3554 }
3555
3556 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3557 {
3558 u32 vmx_msr_low, vmx_msr_high;
3559 u32 min, opt, min2, opt2;
3560 u32 _pin_based_exec_control = 0;
3561 u32 _cpu_based_exec_control = 0;
3562 u32 _cpu_based_2nd_exec_control = 0;
3563 u32 _vmexit_control = 0;
3564 u32 _vmentry_control = 0;
3565
3566 min = CPU_BASED_HLT_EXITING |
3567 #ifdef CONFIG_X86_64
3568 CPU_BASED_CR8_LOAD_EXITING |
3569 CPU_BASED_CR8_STORE_EXITING |
3570 #endif
3571 CPU_BASED_CR3_LOAD_EXITING |
3572 CPU_BASED_CR3_STORE_EXITING |
3573 CPU_BASED_USE_IO_BITMAPS |
3574 CPU_BASED_MOV_DR_EXITING |
3575 CPU_BASED_USE_TSC_OFFSETING |
3576 CPU_BASED_INVLPG_EXITING |
3577 CPU_BASED_RDPMC_EXITING;
3578
3579 if (!kvm_mwait_in_guest())
3580 min |= CPU_BASED_MWAIT_EXITING |
3581 CPU_BASED_MONITOR_EXITING;
3582
3583 opt = CPU_BASED_TPR_SHADOW |
3584 CPU_BASED_USE_MSR_BITMAPS |
3585 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3586 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3587 &_cpu_based_exec_control) < 0)
3588 return -EIO;
3589 #ifdef CONFIG_X86_64
3590 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3591 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3592 ~CPU_BASED_CR8_STORE_EXITING;
3593 #endif
3594 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3595 min2 = 0;
3596 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3597 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3598 SECONDARY_EXEC_WBINVD_EXITING |
3599 SECONDARY_EXEC_ENABLE_VPID |
3600 SECONDARY_EXEC_ENABLE_EPT |
3601 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3602 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3603 SECONDARY_EXEC_RDTSCP |
3604 SECONDARY_EXEC_ENABLE_INVPCID |
3605 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3606 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3607 SECONDARY_EXEC_SHADOW_VMCS |
3608 SECONDARY_EXEC_XSAVES |
3609 SECONDARY_EXEC_ENABLE_PML |
3610 SECONDARY_EXEC_TSC_SCALING;
3611 if (adjust_vmx_controls(min2, opt2,
3612 MSR_IA32_VMX_PROCBASED_CTLS2,
3613 &_cpu_based_2nd_exec_control) < 0)
3614 return -EIO;
3615 }
3616 #ifndef CONFIG_X86_64
3617 if (!(_cpu_based_2nd_exec_control &
3618 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3619 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3620 #endif
3621
3622 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3623 _cpu_based_2nd_exec_control &= ~(
3624 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3625 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3626 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3627
3628 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3629 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3630 enabled */
3631 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3632 CPU_BASED_CR3_STORE_EXITING |
3633 CPU_BASED_INVLPG_EXITING);
3634 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3635 vmx_capability.ept, vmx_capability.vpid);
3636 }
3637
3638 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3639 #ifdef CONFIG_X86_64
3640 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3641 #endif
3642 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3643 VM_EXIT_CLEAR_BNDCFGS;
3644 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3645 &_vmexit_control) < 0)
3646 return -EIO;
3647
3648 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3649 PIN_BASED_VIRTUAL_NMIS;
3650 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3651 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3652 &_pin_based_exec_control) < 0)
3653 return -EIO;
3654
3655 if (cpu_has_broken_vmx_preemption_timer())
3656 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3657 if (!(_cpu_based_2nd_exec_control &
3658 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3659 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3660
3661 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3662 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3663 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3664 &_vmentry_control) < 0)
3665 return -EIO;
3666
3667 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3668
3669 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3670 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3671 return -EIO;
3672
3673 #ifdef CONFIG_X86_64
3674 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3675 if (vmx_msr_high & (1u<<16))
3676 return -EIO;
3677 #endif
3678
3679 /* Require Write-Back (WB) memory type for VMCS accesses. */
3680 if (((vmx_msr_high >> 18) & 15) != 6)
3681 return -EIO;
3682
3683 vmcs_conf->size = vmx_msr_high & 0x1fff;
3684 vmcs_conf->order = get_order(vmcs_conf->size);
3685 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3686 vmcs_conf->revision_id = vmx_msr_low;
3687
3688 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3689 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3690 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3691 vmcs_conf->vmexit_ctrl = _vmexit_control;
3692 vmcs_conf->vmentry_ctrl = _vmentry_control;
3693
3694 cpu_has_load_ia32_efer =
3695 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3696 VM_ENTRY_LOAD_IA32_EFER)
3697 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3698 VM_EXIT_LOAD_IA32_EFER);
3699
3700 cpu_has_load_perf_global_ctrl =
3701 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3702 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3703 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3704 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3705
3706 /*
3707 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3708 * but due to errata below it can't be used. Workaround is to use
3709 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3710 *
3711 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3712 *
3713 * AAK155 (model 26)
3714 * AAP115 (model 30)
3715 * AAT100 (model 37)
3716 * BC86,AAY89,BD102 (model 44)
3717 * BA97 (model 46)
3718 *
3719 */
3720 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3721 switch (boot_cpu_data.x86_model) {
3722 case 26:
3723 case 30:
3724 case 37:
3725 case 44:
3726 case 46:
3727 cpu_has_load_perf_global_ctrl = false;
3728 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3729 "does not work properly. Using workaround\n");
3730 break;
3731 default:
3732 break;
3733 }
3734 }
3735
3736 if (boot_cpu_has(X86_FEATURE_XSAVES))
3737 rdmsrl(MSR_IA32_XSS, host_xss);
3738
3739 return 0;
3740 }
3741
3742 static struct vmcs *alloc_vmcs_cpu(int cpu)
3743 {
3744 int node = cpu_to_node(cpu);
3745 struct page *pages;
3746 struct vmcs *vmcs;
3747
3748 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3749 if (!pages)
3750 return NULL;
3751 vmcs = page_address(pages);
3752 memset(vmcs, 0, vmcs_config.size);
3753 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3754 return vmcs;
3755 }
3756
3757 static struct vmcs *alloc_vmcs(void)
3758 {
3759 return alloc_vmcs_cpu(raw_smp_processor_id());
3760 }
3761
3762 static void free_vmcs(struct vmcs *vmcs)
3763 {
3764 free_pages((unsigned long)vmcs, vmcs_config.order);
3765 }
3766
3767 /*
3768 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3769 */
3770 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3771 {
3772 if (!loaded_vmcs->vmcs)
3773 return;
3774 loaded_vmcs_clear(loaded_vmcs);
3775 free_vmcs(loaded_vmcs->vmcs);
3776 loaded_vmcs->vmcs = NULL;
3777 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3778 }
3779
3780 static void free_kvm_area(void)
3781 {
3782 int cpu;
3783
3784 for_each_possible_cpu(cpu) {
3785 free_vmcs(per_cpu(vmxarea, cpu));
3786 per_cpu(vmxarea, cpu) = NULL;
3787 }
3788 }
3789
3790 enum vmcs_field_type {
3791 VMCS_FIELD_TYPE_U16 = 0,
3792 VMCS_FIELD_TYPE_U64 = 1,
3793 VMCS_FIELD_TYPE_U32 = 2,
3794 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3795 };
3796
3797 static inline int vmcs_field_type(unsigned long field)
3798 {
3799 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3800 return VMCS_FIELD_TYPE_U32;
3801 return (field >> 13) & 0x3 ;
3802 }
3803
3804 static inline int vmcs_field_readonly(unsigned long field)
3805 {
3806 return (((field >> 10) & 0x3) == 1);
3807 }
3808
3809 static void init_vmcs_shadow_fields(void)
3810 {
3811 int i, j;
3812
3813 /* No checks for read only fields yet */
3814
3815 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3816 switch (shadow_read_write_fields[i]) {
3817 case GUEST_BNDCFGS:
3818 if (!kvm_mpx_supported())
3819 continue;
3820 break;
3821 default:
3822 break;
3823 }
3824
3825 if (j < i)
3826 shadow_read_write_fields[j] =
3827 shadow_read_write_fields[i];
3828 j++;
3829 }
3830 max_shadow_read_write_fields = j;
3831
3832 /* shadowed fields guest access without vmexit */
3833 for (i = 0; i < max_shadow_read_write_fields; i++) {
3834 unsigned long field = shadow_read_write_fields[i];
3835
3836 clear_bit(field, vmx_vmwrite_bitmap);
3837 clear_bit(field, vmx_vmread_bitmap);
3838 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3839 clear_bit(field + 1, vmx_vmwrite_bitmap);
3840 clear_bit(field + 1, vmx_vmread_bitmap);
3841 }
3842 }
3843 for (i = 0; i < max_shadow_read_only_fields; i++) {
3844 unsigned long field = shadow_read_only_fields[i];
3845
3846 clear_bit(field, vmx_vmread_bitmap);
3847 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3848 clear_bit(field + 1, vmx_vmread_bitmap);
3849 }
3850 }
3851
3852 static __init int alloc_kvm_area(void)
3853 {
3854 int cpu;
3855
3856 for_each_possible_cpu(cpu) {
3857 struct vmcs *vmcs;
3858
3859 vmcs = alloc_vmcs_cpu(cpu);
3860 if (!vmcs) {
3861 free_kvm_area();
3862 return -ENOMEM;
3863 }
3864
3865 per_cpu(vmxarea, cpu) = vmcs;
3866 }
3867 return 0;
3868 }
3869
3870 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3871 struct kvm_segment *save)
3872 {
3873 if (!emulate_invalid_guest_state) {
3874 /*
3875 * CS and SS RPL should be equal during guest entry according
3876 * to VMX spec, but in reality it is not always so. Since vcpu
3877 * is in the middle of the transition from real mode to
3878 * protected mode it is safe to assume that RPL 0 is a good
3879 * default value.
3880 */
3881 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3882 save->selector &= ~SEGMENT_RPL_MASK;
3883 save->dpl = save->selector & SEGMENT_RPL_MASK;
3884 save->s = 1;
3885 }
3886 vmx_set_segment(vcpu, save, seg);
3887 }
3888
3889 static void enter_pmode(struct kvm_vcpu *vcpu)
3890 {
3891 unsigned long flags;
3892 struct vcpu_vmx *vmx = to_vmx(vcpu);
3893
3894 /*
3895 * Update real mode segment cache. It may be not up-to-date if sement
3896 * register was written while vcpu was in a guest mode.
3897 */
3898 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3899 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3900 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3901 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3902 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3903 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3904
3905 vmx->rmode.vm86_active = 0;
3906
3907 vmx_segment_cache_clear(vmx);
3908
3909 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3910
3911 flags = vmcs_readl(GUEST_RFLAGS);
3912 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3913 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3914 vmcs_writel(GUEST_RFLAGS, flags);
3915
3916 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3917 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3918
3919 update_exception_bitmap(vcpu);
3920
3921 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3922 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3923 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3924 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3925 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3926 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3927 }
3928
3929 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3930 {
3931 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3932 struct kvm_segment var = *save;
3933
3934 var.dpl = 0x3;
3935 if (seg == VCPU_SREG_CS)
3936 var.type = 0x3;
3937
3938 if (!emulate_invalid_guest_state) {
3939 var.selector = var.base >> 4;
3940 var.base = var.base & 0xffff0;
3941 var.limit = 0xffff;
3942 var.g = 0;
3943 var.db = 0;
3944 var.present = 1;
3945 var.s = 1;
3946 var.l = 0;
3947 var.unusable = 0;
3948 var.type = 0x3;
3949 var.avl = 0;
3950 if (save->base & 0xf)
3951 printk_once(KERN_WARNING "kvm: segment base is not "
3952 "paragraph aligned when entering "
3953 "protected mode (seg=%d)", seg);
3954 }
3955
3956 vmcs_write16(sf->selector, var.selector);
3957 vmcs_writel(sf->base, var.base);
3958 vmcs_write32(sf->limit, var.limit);
3959 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3960 }
3961
3962 static void enter_rmode(struct kvm_vcpu *vcpu)
3963 {
3964 unsigned long flags;
3965 struct vcpu_vmx *vmx = to_vmx(vcpu);
3966
3967 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3968 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3969 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3970 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3971 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3972 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3973 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3974
3975 vmx->rmode.vm86_active = 1;
3976
3977 /*
3978 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3979 * vcpu. Warn the user that an update is overdue.
3980 */
3981 if (!vcpu->kvm->arch.tss_addr)
3982 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3983 "called before entering vcpu\n");
3984
3985 vmx_segment_cache_clear(vmx);
3986
3987 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3988 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3989 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3990
3991 flags = vmcs_readl(GUEST_RFLAGS);
3992 vmx->rmode.save_rflags = flags;
3993
3994 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3995
3996 vmcs_writel(GUEST_RFLAGS, flags);
3997 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3998 update_exception_bitmap(vcpu);
3999
4000 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4001 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4002 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4003 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4004 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4005 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4006
4007 kvm_mmu_reset_context(vcpu);
4008 }
4009
4010 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4011 {
4012 struct vcpu_vmx *vmx = to_vmx(vcpu);
4013 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4014
4015 if (!msr)
4016 return;
4017
4018 /*
4019 * Force kernel_gs_base reloading before EFER changes, as control
4020 * of this msr depends on is_long_mode().
4021 */
4022 vmx_load_host_state(to_vmx(vcpu));
4023 vcpu->arch.efer = efer;
4024 if (efer & EFER_LMA) {
4025 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4026 msr->data = efer;
4027 } else {
4028 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4029
4030 msr->data = efer & ~EFER_LME;
4031 }
4032 setup_msrs(vmx);
4033 }
4034
4035 #ifdef CONFIG_X86_64
4036
4037 static void enter_lmode(struct kvm_vcpu *vcpu)
4038 {
4039 u32 guest_tr_ar;
4040
4041 vmx_segment_cache_clear(to_vmx(vcpu));
4042
4043 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4044 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4045 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4046 __func__);
4047 vmcs_write32(GUEST_TR_AR_BYTES,
4048 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4049 | VMX_AR_TYPE_BUSY_64_TSS);
4050 }
4051 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4052 }
4053
4054 static void exit_lmode(struct kvm_vcpu *vcpu)
4055 {
4056 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4057 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4058 }
4059
4060 #endif
4061
4062 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4063 {
4064 if (enable_ept) {
4065 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4066 return;
4067 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4068 } else {
4069 vpid_sync_context(vpid);
4070 }
4071 }
4072
4073 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4074 {
4075 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4076 }
4077
4078 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4079 {
4080 if (enable_ept)
4081 vmx_flush_tlb(vcpu);
4082 }
4083
4084 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4085 {
4086 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4087
4088 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4089 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4090 }
4091
4092 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4093 {
4094 if (enable_ept && is_paging(vcpu))
4095 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4096 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4097 }
4098
4099 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4100 {
4101 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4102
4103 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4104 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4105 }
4106
4107 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4108 {
4109 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4110
4111 if (!test_bit(VCPU_EXREG_PDPTR,
4112 (unsigned long *)&vcpu->arch.regs_dirty))
4113 return;
4114
4115 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4116 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4117 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4118 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4119 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4120 }
4121 }
4122
4123 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4124 {
4125 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4126
4127 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4128 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4129 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4130 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4131 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4132 }
4133
4134 __set_bit(VCPU_EXREG_PDPTR,
4135 (unsigned long *)&vcpu->arch.regs_avail);
4136 __set_bit(VCPU_EXREG_PDPTR,
4137 (unsigned long *)&vcpu->arch.regs_dirty);
4138 }
4139
4140 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4141 {
4142 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4143 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4144 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4145
4146 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4147 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4148 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4149 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4150
4151 return fixed_bits_valid(val, fixed0, fixed1);
4152 }
4153
4154 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4155 {
4156 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4157 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4158
4159 return fixed_bits_valid(val, fixed0, fixed1);
4160 }
4161
4162 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4163 {
4164 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4165 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4166
4167 return fixed_bits_valid(val, fixed0, fixed1);
4168 }
4169
4170 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4171 #define nested_guest_cr4_valid nested_cr4_valid
4172 #define nested_host_cr4_valid nested_cr4_valid
4173
4174 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4175
4176 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4177 unsigned long cr0,
4178 struct kvm_vcpu *vcpu)
4179 {
4180 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4181 vmx_decache_cr3(vcpu);
4182 if (!(cr0 & X86_CR0_PG)) {
4183 /* From paging/starting to nonpaging */
4184 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4185 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4186 (CPU_BASED_CR3_LOAD_EXITING |
4187 CPU_BASED_CR3_STORE_EXITING));
4188 vcpu->arch.cr0 = cr0;
4189 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4190 } else if (!is_paging(vcpu)) {
4191 /* From nonpaging to paging */
4192 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4193 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4194 ~(CPU_BASED_CR3_LOAD_EXITING |
4195 CPU_BASED_CR3_STORE_EXITING));
4196 vcpu->arch.cr0 = cr0;
4197 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4198 }
4199
4200 if (!(cr0 & X86_CR0_WP))
4201 *hw_cr0 &= ~X86_CR0_WP;
4202 }
4203
4204 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4205 {
4206 struct vcpu_vmx *vmx = to_vmx(vcpu);
4207 unsigned long hw_cr0;
4208
4209 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4210 if (enable_unrestricted_guest)
4211 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4212 else {
4213 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4214
4215 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4216 enter_pmode(vcpu);
4217
4218 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4219 enter_rmode(vcpu);
4220 }
4221
4222 #ifdef CONFIG_X86_64
4223 if (vcpu->arch.efer & EFER_LME) {
4224 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4225 enter_lmode(vcpu);
4226 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4227 exit_lmode(vcpu);
4228 }
4229 #endif
4230
4231 if (enable_ept)
4232 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4233
4234 vmcs_writel(CR0_READ_SHADOW, cr0);
4235 vmcs_writel(GUEST_CR0, hw_cr0);
4236 vcpu->arch.cr0 = cr0;
4237
4238 /* depends on vcpu->arch.cr0 to be set to a new value */
4239 vmx->emulation_required = emulation_required(vcpu);
4240 }
4241
4242 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4243 {
4244 u64 eptp;
4245
4246 /* TODO write the value reading from MSR */
4247 eptp = VMX_EPT_DEFAULT_MT |
4248 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4249 if (enable_ept_ad_bits &&
4250 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4251 eptp |= VMX_EPT_AD_ENABLE_BIT;
4252 eptp |= (root_hpa & PAGE_MASK);
4253
4254 return eptp;
4255 }
4256
4257 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4258 {
4259 unsigned long guest_cr3;
4260 u64 eptp;
4261
4262 guest_cr3 = cr3;
4263 if (enable_ept) {
4264 eptp = construct_eptp(vcpu, cr3);
4265 vmcs_write64(EPT_POINTER, eptp);
4266 if (is_paging(vcpu) || is_guest_mode(vcpu))
4267 guest_cr3 = kvm_read_cr3(vcpu);
4268 else
4269 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4270 ept_load_pdptrs(vcpu);
4271 }
4272
4273 vmx_flush_tlb(vcpu);
4274 vmcs_writel(GUEST_CR3, guest_cr3);
4275 }
4276
4277 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4278 {
4279 /*
4280 * Pass through host's Machine Check Enable value to hw_cr4, which
4281 * is in force while we are in guest mode. Do not let guests control
4282 * this bit, even if host CR4.MCE == 0.
4283 */
4284 unsigned long hw_cr4 =
4285 (cr4_read_shadow() & X86_CR4_MCE) |
4286 (cr4 & ~X86_CR4_MCE) |
4287 (to_vmx(vcpu)->rmode.vm86_active ?
4288 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4289
4290 if (cr4 & X86_CR4_VMXE) {
4291 /*
4292 * To use VMXON (and later other VMX instructions), a guest
4293 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4294 * So basically the check on whether to allow nested VMX
4295 * is here.
4296 */
4297 if (!nested_vmx_allowed(vcpu))
4298 return 1;
4299 }
4300
4301 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4302 return 1;
4303
4304 vcpu->arch.cr4 = cr4;
4305 if (enable_ept) {
4306 if (!is_paging(vcpu)) {
4307 hw_cr4 &= ~X86_CR4_PAE;
4308 hw_cr4 |= X86_CR4_PSE;
4309 } else if (!(cr4 & X86_CR4_PAE)) {
4310 hw_cr4 &= ~X86_CR4_PAE;
4311 }
4312 }
4313
4314 if (!enable_unrestricted_guest && !is_paging(vcpu))
4315 /*
4316 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4317 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4318 * to be manually disabled when guest switches to non-paging
4319 * mode.
4320 *
4321 * If !enable_unrestricted_guest, the CPU is always running
4322 * with CR0.PG=1 and CR4 needs to be modified.
4323 * If enable_unrestricted_guest, the CPU automatically
4324 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4325 */
4326 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4327
4328 vmcs_writel(CR4_READ_SHADOW, cr4);
4329 vmcs_writel(GUEST_CR4, hw_cr4);
4330 return 0;
4331 }
4332
4333 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4334 struct kvm_segment *var, int seg)
4335 {
4336 struct vcpu_vmx *vmx = to_vmx(vcpu);
4337 u32 ar;
4338
4339 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4340 *var = vmx->rmode.segs[seg];
4341 if (seg == VCPU_SREG_TR
4342 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4343 return;
4344 var->base = vmx_read_guest_seg_base(vmx, seg);
4345 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4346 return;
4347 }
4348 var->base = vmx_read_guest_seg_base(vmx, seg);
4349 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4350 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4351 ar = vmx_read_guest_seg_ar(vmx, seg);
4352 var->unusable = (ar >> 16) & 1;
4353 var->type = ar & 15;
4354 var->s = (ar >> 4) & 1;
4355 var->dpl = (ar >> 5) & 3;
4356 /*
4357 * Some userspaces do not preserve unusable property. Since usable
4358 * segment has to be present according to VMX spec we can use present
4359 * property to amend userspace bug by making unusable segment always
4360 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4361 * segment as unusable.
4362 */
4363 var->present = !var->unusable;
4364 var->avl = (ar >> 12) & 1;
4365 var->l = (ar >> 13) & 1;
4366 var->db = (ar >> 14) & 1;
4367 var->g = (ar >> 15) & 1;
4368 }
4369
4370 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4371 {
4372 struct kvm_segment s;
4373
4374 if (to_vmx(vcpu)->rmode.vm86_active) {
4375 vmx_get_segment(vcpu, &s, seg);
4376 return s.base;
4377 }
4378 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4379 }
4380
4381 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4382 {
4383 struct vcpu_vmx *vmx = to_vmx(vcpu);
4384
4385 if (unlikely(vmx->rmode.vm86_active))
4386 return 0;
4387 else {
4388 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4389 return VMX_AR_DPL(ar);
4390 }
4391 }
4392
4393 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4394 {
4395 u32 ar;
4396
4397 if (var->unusable || !var->present)
4398 ar = 1 << 16;
4399 else {
4400 ar = var->type & 15;
4401 ar |= (var->s & 1) << 4;
4402 ar |= (var->dpl & 3) << 5;
4403 ar |= (var->present & 1) << 7;
4404 ar |= (var->avl & 1) << 12;
4405 ar |= (var->l & 1) << 13;
4406 ar |= (var->db & 1) << 14;
4407 ar |= (var->g & 1) << 15;
4408 }
4409
4410 return ar;
4411 }
4412
4413 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4414 struct kvm_segment *var, int seg)
4415 {
4416 struct vcpu_vmx *vmx = to_vmx(vcpu);
4417 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4418
4419 vmx_segment_cache_clear(vmx);
4420
4421 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4422 vmx->rmode.segs[seg] = *var;
4423 if (seg == VCPU_SREG_TR)
4424 vmcs_write16(sf->selector, var->selector);
4425 else if (var->s)
4426 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4427 goto out;
4428 }
4429
4430 vmcs_writel(sf->base, var->base);
4431 vmcs_write32(sf->limit, var->limit);
4432 vmcs_write16(sf->selector, var->selector);
4433
4434 /*
4435 * Fix the "Accessed" bit in AR field of segment registers for older
4436 * qemu binaries.
4437 * IA32 arch specifies that at the time of processor reset the
4438 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4439 * is setting it to 0 in the userland code. This causes invalid guest
4440 * state vmexit when "unrestricted guest" mode is turned on.
4441 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4442 * tree. Newer qemu binaries with that qemu fix would not need this
4443 * kvm hack.
4444 */
4445 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4446 var->type |= 0x1; /* Accessed */
4447
4448 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4449
4450 out:
4451 vmx->emulation_required = emulation_required(vcpu);
4452 }
4453
4454 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4455 {
4456 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4457
4458 *db = (ar >> 14) & 1;
4459 *l = (ar >> 13) & 1;
4460 }
4461
4462 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4463 {
4464 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4465 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4466 }
4467
4468 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4469 {
4470 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4471 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4472 }
4473
4474 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4475 {
4476 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4477 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4478 }
4479
4480 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4481 {
4482 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4483 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4484 }
4485
4486 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4487 {
4488 struct kvm_segment var;
4489 u32 ar;
4490
4491 vmx_get_segment(vcpu, &var, seg);
4492 var.dpl = 0x3;
4493 if (seg == VCPU_SREG_CS)
4494 var.type = 0x3;
4495 ar = vmx_segment_access_rights(&var);
4496
4497 if (var.base != (var.selector << 4))
4498 return false;
4499 if (var.limit != 0xffff)
4500 return false;
4501 if (ar != 0xf3)
4502 return false;
4503
4504 return true;
4505 }
4506
4507 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4508 {
4509 struct kvm_segment cs;
4510 unsigned int cs_rpl;
4511
4512 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4513 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4514
4515 if (cs.unusable)
4516 return false;
4517 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4518 return false;
4519 if (!cs.s)
4520 return false;
4521 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4522 if (cs.dpl > cs_rpl)
4523 return false;
4524 } else {
4525 if (cs.dpl != cs_rpl)
4526 return false;
4527 }
4528 if (!cs.present)
4529 return false;
4530
4531 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4532 return true;
4533 }
4534
4535 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4536 {
4537 struct kvm_segment ss;
4538 unsigned int ss_rpl;
4539
4540 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4541 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4542
4543 if (ss.unusable)
4544 return true;
4545 if (ss.type != 3 && ss.type != 7)
4546 return false;
4547 if (!ss.s)
4548 return false;
4549 if (ss.dpl != ss_rpl) /* DPL != RPL */
4550 return false;
4551 if (!ss.present)
4552 return false;
4553
4554 return true;
4555 }
4556
4557 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4558 {
4559 struct kvm_segment var;
4560 unsigned int rpl;
4561
4562 vmx_get_segment(vcpu, &var, seg);
4563 rpl = var.selector & SEGMENT_RPL_MASK;
4564
4565 if (var.unusable)
4566 return true;
4567 if (!var.s)
4568 return false;
4569 if (!var.present)
4570 return false;
4571 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4572 if (var.dpl < rpl) /* DPL < RPL */
4573 return false;
4574 }
4575
4576 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4577 * rights flags
4578 */
4579 return true;
4580 }
4581
4582 static bool tr_valid(struct kvm_vcpu *vcpu)
4583 {
4584 struct kvm_segment tr;
4585
4586 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4587
4588 if (tr.unusable)
4589 return false;
4590 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4591 return false;
4592 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4593 return false;
4594 if (!tr.present)
4595 return false;
4596
4597 return true;
4598 }
4599
4600 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4601 {
4602 struct kvm_segment ldtr;
4603
4604 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4605
4606 if (ldtr.unusable)
4607 return true;
4608 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4609 return false;
4610 if (ldtr.type != 2)
4611 return false;
4612 if (!ldtr.present)
4613 return false;
4614
4615 return true;
4616 }
4617
4618 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4619 {
4620 struct kvm_segment cs, ss;
4621
4622 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4623 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4624
4625 return ((cs.selector & SEGMENT_RPL_MASK) ==
4626 (ss.selector & SEGMENT_RPL_MASK));
4627 }
4628
4629 /*
4630 * Check if guest state is valid. Returns true if valid, false if
4631 * not.
4632 * We assume that registers are always usable
4633 */
4634 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4635 {
4636 if (enable_unrestricted_guest)
4637 return true;
4638
4639 /* real mode guest state checks */
4640 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4641 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4642 return false;
4643 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4644 return false;
4645 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4646 return false;
4647 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4648 return false;
4649 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4650 return false;
4651 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4652 return false;
4653 } else {
4654 /* protected mode guest state checks */
4655 if (!cs_ss_rpl_check(vcpu))
4656 return false;
4657 if (!code_segment_valid(vcpu))
4658 return false;
4659 if (!stack_segment_valid(vcpu))
4660 return false;
4661 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4662 return false;
4663 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4664 return false;
4665 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4666 return false;
4667 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4668 return false;
4669 if (!tr_valid(vcpu))
4670 return false;
4671 if (!ldtr_valid(vcpu))
4672 return false;
4673 }
4674 /* TODO:
4675 * - Add checks on RIP
4676 * - Add checks on RFLAGS
4677 */
4678
4679 return true;
4680 }
4681
4682 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4683 {
4684 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4685 }
4686
4687 static int init_rmode_tss(struct kvm *kvm)
4688 {
4689 gfn_t fn;
4690 u16 data = 0;
4691 int idx, r;
4692
4693 idx = srcu_read_lock(&kvm->srcu);
4694 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4695 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4696 if (r < 0)
4697 goto out;
4698 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4699 r = kvm_write_guest_page(kvm, fn++, &data,
4700 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4701 if (r < 0)
4702 goto out;
4703 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4704 if (r < 0)
4705 goto out;
4706 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4707 if (r < 0)
4708 goto out;
4709 data = ~0;
4710 r = kvm_write_guest_page(kvm, fn, &data,
4711 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4712 sizeof(u8));
4713 out:
4714 srcu_read_unlock(&kvm->srcu, idx);
4715 return r;
4716 }
4717
4718 static int init_rmode_identity_map(struct kvm *kvm)
4719 {
4720 int i, idx, r = 0;
4721 kvm_pfn_t identity_map_pfn;
4722 u32 tmp;
4723
4724 if (!enable_ept)
4725 return 0;
4726
4727 /* Protect kvm->arch.ept_identity_pagetable_done. */
4728 mutex_lock(&kvm->slots_lock);
4729
4730 if (likely(kvm->arch.ept_identity_pagetable_done))
4731 goto out2;
4732
4733 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4734
4735 r = alloc_identity_pagetable(kvm);
4736 if (r < 0)
4737 goto out2;
4738
4739 idx = srcu_read_lock(&kvm->srcu);
4740 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4741 if (r < 0)
4742 goto out;
4743 /* Set up identity-mapping pagetable for EPT in real mode */
4744 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4745 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4746 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4747 r = kvm_write_guest_page(kvm, identity_map_pfn,
4748 &tmp, i * sizeof(tmp), sizeof(tmp));
4749 if (r < 0)
4750 goto out;
4751 }
4752 kvm->arch.ept_identity_pagetable_done = true;
4753
4754 out:
4755 srcu_read_unlock(&kvm->srcu, idx);
4756
4757 out2:
4758 mutex_unlock(&kvm->slots_lock);
4759 return r;
4760 }
4761
4762 static void seg_setup(int seg)
4763 {
4764 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4765 unsigned int ar;
4766
4767 vmcs_write16(sf->selector, 0);
4768 vmcs_writel(sf->base, 0);
4769 vmcs_write32(sf->limit, 0xffff);
4770 ar = 0x93;
4771 if (seg == VCPU_SREG_CS)
4772 ar |= 0x08; /* code segment */
4773
4774 vmcs_write32(sf->ar_bytes, ar);
4775 }
4776
4777 static int alloc_apic_access_page(struct kvm *kvm)
4778 {
4779 struct page *page;
4780 int r = 0;
4781
4782 mutex_lock(&kvm->slots_lock);
4783 if (kvm->arch.apic_access_page_done)
4784 goto out;
4785 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4786 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4787 if (r)
4788 goto out;
4789
4790 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4791 if (is_error_page(page)) {
4792 r = -EFAULT;
4793 goto out;
4794 }
4795
4796 /*
4797 * Do not pin the page in memory, so that memory hot-unplug
4798 * is able to migrate it.
4799 */
4800 put_page(page);
4801 kvm->arch.apic_access_page_done = true;
4802 out:
4803 mutex_unlock(&kvm->slots_lock);
4804 return r;
4805 }
4806
4807 static int alloc_identity_pagetable(struct kvm *kvm)
4808 {
4809 /* Called with kvm->slots_lock held. */
4810
4811 int r = 0;
4812
4813 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4814
4815 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4816 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4817
4818 return r;
4819 }
4820
4821 static int allocate_vpid(void)
4822 {
4823 int vpid;
4824
4825 if (!enable_vpid)
4826 return 0;
4827 spin_lock(&vmx_vpid_lock);
4828 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4829 if (vpid < VMX_NR_VPIDS)
4830 __set_bit(vpid, vmx_vpid_bitmap);
4831 else
4832 vpid = 0;
4833 spin_unlock(&vmx_vpid_lock);
4834 return vpid;
4835 }
4836
4837 static void free_vpid(int vpid)
4838 {
4839 if (!enable_vpid || vpid == 0)
4840 return;
4841 spin_lock(&vmx_vpid_lock);
4842 __clear_bit(vpid, vmx_vpid_bitmap);
4843 spin_unlock(&vmx_vpid_lock);
4844 }
4845
4846 #define MSR_TYPE_R 1
4847 #define MSR_TYPE_W 2
4848 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4849 u32 msr, int type)
4850 {
4851 int f = sizeof(unsigned long);
4852
4853 if (!cpu_has_vmx_msr_bitmap())
4854 return;
4855
4856 /*
4857 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4858 * have the write-low and read-high bitmap offsets the wrong way round.
4859 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4860 */
4861 if (msr <= 0x1fff) {
4862 if (type & MSR_TYPE_R)
4863 /* read-low */
4864 __clear_bit(msr, msr_bitmap + 0x000 / f);
4865
4866 if (type & MSR_TYPE_W)
4867 /* write-low */
4868 __clear_bit(msr, msr_bitmap + 0x800 / f);
4869
4870 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4871 msr &= 0x1fff;
4872 if (type & MSR_TYPE_R)
4873 /* read-high */
4874 __clear_bit(msr, msr_bitmap + 0x400 / f);
4875
4876 if (type & MSR_TYPE_W)
4877 /* write-high */
4878 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4879
4880 }
4881 }
4882
4883 /*
4884 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4885 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4886 */
4887 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4888 unsigned long *msr_bitmap_nested,
4889 u32 msr, int type)
4890 {
4891 int f = sizeof(unsigned long);
4892
4893 if (!cpu_has_vmx_msr_bitmap()) {
4894 WARN_ON(1);
4895 return;
4896 }
4897
4898 /*
4899 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4900 * have the write-low and read-high bitmap offsets the wrong way round.
4901 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4902 */
4903 if (msr <= 0x1fff) {
4904 if (type & MSR_TYPE_R &&
4905 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4906 /* read-low */
4907 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4908
4909 if (type & MSR_TYPE_W &&
4910 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4911 /* write-low */
4912 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4913
4914 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4915 msr &= 0x1fff;
4916 if (type & MSR_TYPE_R &&
4917 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4918 /* read-high */
4919 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4920
4921 if (type & MSR_TYPE_W &&
4922 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4923 /* write-high */
4924 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4925
4926 }
4927 }
4928
4929 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4930 {
4931 if (!longmode_only)
4932 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4933 msr, MSR_TYPE_R | MSR_TYPE_W);
4934 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4935 msr, MSR_TYPE_R | MSR_TYPE_W);
4936 }
4937
4938 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4939 {
4940 if (apicv_active) {
4941 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4942 msr, type);
4943 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4944 msr, type);
4945 } else {
4946 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4947 msr, type);
4948 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4949 msr, type);
4950 }
4951 }
4952
4953 static bool vmx_get_enable_apicv(void)
4954 {
4955 return enable_apicv;
4956 }
4957
4958 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4959 {
4960 struct vcpu_vmx *vmx = to_vmx(vcpu);
4961 int max_irr;
4962 void *vapic_page;
4963 u16 status;
4964
4965 if (vmx->nested.pi_desc &&
4966 vmx->nested.pi_pending) {
4967 vmx->nested.pi_pending = false;
4968 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4969 return;
4970
4971 max_irr = find_last_bit(
4972 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4973
4974 if (max_irr == 256)
4975 return;
4976
4977 vapic_page = kmap(vmx->nested.virtual_apic_page);
4978 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4979 kunmap(vmx->nested.virtual_apic_page);
4980
4981 status = vmcs_read16(GUEST_INTR_STATUS);
4982 if ((u8)max_irr > ((u8)status & 0xff)) {
4983 status &= ~0xff;
4984 status |= (u8)max_irr;
4985 vmcs_write16(GUEST_INTR_STATUS, status);
4986 }
4987 }
4988 }
4989
4990 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4991 bool nested)
4992 {
4993 #ifdef CONFIG_SMP
4994 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4995
4996 if (vcpu->mode == IN_GUEST_MODE) {
4997 struct vcpu_vmx *vmx = to_vmx(vcpu);
4998
4999 /*
5000 * Currently, we don't support urgent interrupt,
5001 * all interrupts are recognized as non-urgent
5002 * interrupt, so we cannot post interrupts when
5003 * 'SN' is set.
5004 *
5005 * If the vcpu is in guest mode, it means it is
5006 * running instead of being scheduled out and
5007 * waiting in the run queue, and that's the only
5008 * case when 'SN' is set currently, warning if
5009 * 'SN' is set.
5010 */
5011 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
5012
5013 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5014 return true;
5015 }
5016 #endif
5017 return false;
5018 }
5019
5020 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5021 int vector)
5022 {
5023 struct vcpu_vmx *vmx = to_vmx(vcpu);
5024
5025 if (is_guest_mode(vcpu) &&
5026 vector == vmx->nested.posted_intr_nv) {
5027 /* the PIR and ON have been set by L1. */
5028 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5029 /*
5030 * If a posted intr is not recognized by hardware,
5031 * we will accomplish it in the next vmentry.
5032 */
5033 vmx->nested.pi_pending = true;
5034 kvm_make_request(KVM_REQ_EVENT, vcpu);
5035 return 0;
5036 }
5037 return -1;
5038 }
5039 /*
5040 * Send interrupt to vcpu via posted interrupt way.
5041 * 1. If target vcpu is running(non-root mode), send posted interrupt
5042 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5043 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5044 * interrupt from PIR in next vmentry.
5045 */
5046 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5047 {
5048 struct vcpu_vmx *vmx = to_vmx(vcpu);
5049 int r;
5050
5051 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5052 if (!r)
5053 return;
5054
5055 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5056 return;
5057
5058 /* If a previous notification has sent the IPI, nothing to do. */
5059 if (pi_test_and_set_on(&vmx->pi_desc))
5060 return;
5061
5062 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5063 kvm_vcpu_kick(vcpu);
5064 }
5065
5066 /*
5067 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5068 * will not change in the lifetime of the guest.
5069 * Note that host-state that does change is set elsewhere. E.g., host-state
5070 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5071 */
5072 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5073 {
5074 u32 low32, high32;
5075 unsigned long tmpl;
5076 struct desc_ptr dt;
5077 unsigned long cr0, cr3, cr4;
5078
5079 cr0 = read_cr0();
5080 WARN_ON(cr0 & X86_CR0_TS);
5081 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5082
5083 /*
5084 * Save the most likely value for this task's CR3 in the VMCS.
5085 * We can't use __get_current_cr3_fast() because we're not atomic.
5086 */
5087 cr3 = __read_cr3();
5088 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5089 vmx->host_state.vmcs_host_cr3 = cr3;
5090
5091 /* Save the most likely value for this task's CR4 in the VMCS. */
5092 cr4 = cr4_read_shadow();
5093 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5094 vmx->host_state.vmcs_host_cr4 = cr4;
5095
5096 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5097 #ifdef CONFIG_X86_64
5098 /*
5099 * Load null selectors, so we can avoid reloading them in
5100 * __vmx_load_host_state(), in case userspace uses the null selectors
5101 * too (the expected case).
5102 */
5103 vmcs_write16(HOST_DS_SELECTOR, 0);
5104 vmcs_write16(HOST_ES_SELECTOR, 0);
5105 #else
5106 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5107 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5108 #endif
5109 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5110 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5111
5112 native_store_idt(&dt);
5113 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5114 vmx->host_idt_base = dt.address;
5115
5116 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5117
5118 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5119 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5120 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5121 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5122
5123 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5124 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5125 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5126 }
5127 }
5128
5129 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5130 {
5131 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5132 if (enable_ept)
5133 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5134 if (is_guest_mode(&vmx->vcpu))
5135 vmx->vcpu.arch.cr4_guest_owned_bits &=
5136 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5137 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5138 }
5139
5140 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5141 {
5142 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5143
5144 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5145 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5146 /* Enable the preemption timer dynamically */
5147 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5148 return pin_based_exec_ctrl;
5149 }
5150
5151 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5152 {
5153 struct vcpu_vmx *vmx = to_vmx(vcpu);
5154
5155 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5156 if (cpu_has_secondary_exec_ctrls()) {
5157 if (kvm_vcpu_apicv_active(vcpu))
5158 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5159 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5160 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5161 else
5162 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5163 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5164 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5165 }
5166
5167 if (cpu_has_vmx_msr_bitmap())
5168 vmx_set_msr_bitmap(vcpu);
5169 }
5170
5171 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5172 {
5173 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5174
5175 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5176 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5177
5178 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5179 exec_control &= ~CPU_BASED_TPR_SHADOW;
5180 #ifdef CONFIG_X86_64
5181 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5182 CPU_BASED_CR8_LOAD_EXITING;
5183 #endif
5184 }
5185 if (!enable_ept)
5186 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5187 CPU_BASED_CR3_LOAD_EXITING |
5188 CPU_BASED_INVLPG_EXITING;
5189 return exec_control;
5190 }
5191
5192 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5193 {
5194 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5195 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5196 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5197 if (vmx->vpid == 0)
5198 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5199 if (!enable_ept) {
5200 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5201 enable_unrestricted_guest = 0;
5202 /* Enable INVPCID for non-ept guests may cause performance regression. */
5203 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5204 }
5205 if (!enable_unrestricted_guest)
5206 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5207 if (!ple_gap)
5208 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5209 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5210 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5211 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5212 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5213 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5214 (handle_vmptrld).
5215 We can NOT enable shadow_vmcs here because we don't have yet
5216 a current VMCS12
5217 */
5218 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5219
5220 if (!enable_pml)
5221 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5222
5223 return exec_control;
5224 }
5225
5226 static void ept_set_mmio_spte_mask(void)
5227 {
5228 /*
5229 * EPT Misconfigurations can be generated if the value of bits 2:0
5230 * of an EPT paging-structure entry is 110b (write/execute).
5231 */
5232 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5233 VMX_EPT_MISCONFIG_WX_VALUE);
5234 }
5235
5236 #define VMX_XSS_EXIT_BITMAP 0
5237 /*
5238 * Sets up the vmcs for emulated real mode.
5239 */
5240 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5241 {
5242 #ifdef CONFIG_X86_64
5243 unsigned long a;
5244 #endif
5245 int i;
5246
5247 /* I/O */
5248 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5249 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5250
5251 if (enable_shadow_vmcs) {
5252 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5253 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5254 }
5255 if (cpu_has_vmx_msr_bitmap())
5256 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5257
5258 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5259
5260 /* Control */
5261 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5262 vmx->hv_deadline_tsc = -1;
5263
5264 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5265
5266 if (cpu_has_secondary_exec_ctrls()) {
5267 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5268 vmx_secondary_exec_control(vmx));
5269 }
5270
5271 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5272 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5273 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5274 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5275 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5276
5277 vmcs_write16(GUEST_INTR_STATUS, 0);
5278
5279 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5280 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5281 }
5282
5283 if (ple_gap) {
5284 vmcs_write32(PLE_GAP, ple_gap);
5285 vmx->ple_window = ple_window;
5286 vmx->ple_window_dirty = true;
5287 }
5288
5289 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5290 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5291 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5292
5293 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5294 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5295 vmx_set_constant_host_state(vmx);
5296 #ifdef CONFIG_X86_64
5297 rdmsrl(MSR_FS_BASE, a);
5298 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5299 rdmsrl(MSR_GS_BASE, a);
5300 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5301 #else
5302 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5303 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5304 #endif
5305
5306 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5307 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5308 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5309 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5310 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5311
5312 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5313 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5314
5315 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5316 u32 index = vmx_msr_index[i];
5317 u32 data_low, data_high;
5318 int j = vmx->nmsrs;
5319
5320 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5321 continue;
5322 if (wrmsr_safe(index, data_low, data_high) < 0)
5323 continue;
5324 vmx->guest_msrs[j].index = i;
5325 vmx->guest_msrs[j].data = 0;
5326 vmx->guest_msrs[j].mask = -1ull;
5327 ++vmx->nmsrs;
5328 }
5329
5330
5331 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5332
5333 /* 22.2.1, 20.8.1 */
5334 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5335
5336 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5337 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5338
5339 set_cr4_guest_host_mask(vmx);
5340
5341 if (vmx_xsaves_supported())
5342 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5343
5344 if (enable_pml) {
5345 ASSERT(vmx->pml_pg);
5346 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5347 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5348 }
5349
5350 return 0;
5351 }
5352
5353 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5354 {
5355 struct vcpu_vmx *vmx = to_vmx(vcpu);
5356 struct msr_data apic_base_msr;
5357 u64 cr0;
5358
5359 vmx->rmode.vm86_active = 0;
5360
5361 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5362 kvm_set_cr8(vcpu, 0);
5363
5364 if (!init_event) {
5365 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5366 MSR_IA32_APICBASE_ENABLE;
5367 if (kvm_vcpu_is_reset_bsp(vcpu))
5368 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5369 apic_base_msr.host_initiated = true;
5370 kvm_set_apic_base(vcpu, &apic_base_msr);
5371 }
5372
5373 vmx_segment_cache_clear(vmx);
5374
5375 seg_setup(VCPU_SREG_CS);
5376 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5377 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5378
5379 seg_setup(VCPU_SREG_DS);
5380 seg_setup(VCPU_SREG_ES);
5381 seg_setup(VCPU_SREG_FS);
5382 seg_setup(VCPU_SREG_GS);
5383 seg_setup(VCPU_SREG_SS);
5384
5385 vmcs_write16(GUEST_TR_SELECTOR, 0);
5386 vmcs_writel(GUEST_TR_BASE, 0);
5387 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5388 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5389
5390 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5391 vmcs_writel(GUEST_LDTR_BASE, 0);
5392 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5393 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5394
5395 if (!init_event) {
5396 vmcs_write32(GUEST_SYSENTER_CS, 0);
5397 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5398 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5399 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5400 }
5401
5402 vmcs_writel(GUEST_RFLAGS, 0x02);
5403 kvm_rip_write(vcpu, 0xfff0);
5404
5405 vmcs_writel(GUEST_GDTR_BASE, 0);
5406 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5407
5408 vmcs_writel(GUEST_IDTR_BASE, 0);
5409 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5410
5411 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5412 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5413 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5414
5415 setup_msrs(vmx);
5416
5417 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5418
5419 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5420 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5421 if (cpu_need_tpr_shadow(vcpu))
5422 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5423 __pa(vcpu->arch.apic->regs));
5424 vmcs_write32(TPR_THRESHOLD, 0);
5425 }
5426
5427 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5428
5429 if (kvm_vcpu_apicv_active(vcpu))
5430 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5431
5432 if (vmx->vpid != 0)
5433 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5434
5435 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5436 vmx->vcpu.arch.cr0 = cr0;
5437 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5438 vmx_set_cr4(vcpu, 0);
5439 vmx_set_efer(vcpu, 0);
5440
5441 update_exception_bitmap(vcpu);
5442
5443 vpid_sync_context(vmx->vpid);
5444 }
5445
5446 /*
5447 * In nested virtualization, check if L1 asked to exit on external interrupts.
5448 * For most existing hypervisors, this will always return true.
5449 */
5450 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5451 {
5452 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5453 PIN_BASED_EXT_INTR_MASK;
5454 }
5455
5456 /*
5457 * In nested virtualization, check if L1 has set
5458 * VM_EXIT_ACK_INTR_ON_EXIT
5459 */
5460 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5461 {
5462 return get_vmcs12(vcpu)->vm_exit_controls &
5463 VM_EXIT_ACK_INTR_ON_EXIT;
5464 }
5465
5466 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5467 {
5468 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5469 PIN_BASED_NMI_EXITING;
5470 }
5471
5472 static void enable_irq_window(struct kvm_vcpu *vcpu)
5473 {
5474 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5475 CPU_BASED_VIRTUAL_INTR_PENDING);
5476 }
5477
5478 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5479 {
5480 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5481 enable_irq_window(vcpu);
5482 return;
5483 }
5484
5485 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5486 CPU_BASED_VIRTUAL_NMI_PENDING);
5487 }
5488
5489 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5490 {
5491 struct vcpu_vmx *vmx = to_vmx(vcpu);
5492 uint32_t intr;
5493 int irq = vcpu->arch.interrupt.nr;
5494
5495 trace_kvm_inj_virq(irq);
5496
5497 ++vcpu->stat.irq_injections;
5498 if (vmx->rmode.vm86_active) {
5499 int inc_eip = 0;
5500 if (vcpu->arch.interrupt.soft)
5501 inc_eip = vcpu->arch.event_exit_inst_len;
5502 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5503 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5504 return;
5505 }
5506 intr = irq | INTR_INFO_VALID_MASK;
5507 if (vcpu->arch.interrupt.soft) {
5508 intr |= INTR_TYPE_SOFT_INTR;
5509 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5510 vmx->vcpu.arch.event_exit_inst_len);
5511 } else
5512 intr |= INTR_TYPE_EXT_INTR;
5513 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5514 }
5515
5516 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5517 {
5518 struct vcpu_vmx *vmx = to_vmx(vcpu);
5519
5520 ++vcpu->stat.nmi_injections;
5521 vmx->loaded_vmcs->nmi_known_unmasked = false;
5522
5523 if (vmx->rmode.vm86_active) {
5524 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5525 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5526 return;
5527 }
5528
5529 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5530 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5531 }
5532
5533 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5534 {
5535 struct vcpu_vmx *vmx = to_vmx(vcpu);
5536 bool masked;
5537
5538 if (vmx->loaded_vmcs->nmi_known_unmasked)
5539 return false;
5540 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5541 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5542 return masked;
5543 }
5544
5545 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5546 {
5547 struct vcpu_vmx *vmx = to_vmx(vcpu);
5548
5549 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5550 if (masked)
5551 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5552 GUEST_INTR_STATE_NMI);
5553 else
5554 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5555 GUEST_INTR_STATE_NMI);
5556 }
5557
5558 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5559 {
5560 if (to_vmx(vcpu)->nested.nested_run_pending)
5561 return 0;
5562
5563 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5564 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5565 | GUEST_INTR_STATE_NMI));
5566 }
5567
5568 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5569 {
5570 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5571 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5572 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5573 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5574 }
5575
5576 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5577 {
5578 int ret;
5579
5580 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5581 PAGE_SIZE * 3);
5582 if (ret)
5583 return ret;
5584 kvm->arch.tss_addr = addr;
5585 return init_rmode_tss(kvm);
5586 }
5587
5588 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5589 {
5590 switch (vec) {
5591 case BP_VECTOR:
5592 /*
5593 * Update instruction length as we may reinject the exception
5594 * from user space while in guest debugging mode.
5595 */
5596 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5597 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5598 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5599 return false;
5600 /* fall through */
5601 case DB_VECTOR:
5602 if (vcpu->guest_debug &
5603 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5604 return false;
5605 /* fall through */
5606 case DE_VECTOR:
5607 case OF_VECTOR:
5608 case BR_VECTOR:
5609 case UD_VECTOR:
5610 case DF_VECTOR:
5611 case SS_VECTOR:
5612 case GP_VECTOR:
5613 case MF_VECTOR:
5614 return true;
5615 break;
5616 }
5617 return false;
5618 }
5619
5620 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5621 int vec, u32 err_code)
5622 {
5623 /*
5624 * Instruction with address size override prefix opcode 0x67
5625 * Cause the #SS fault with 0 error code in VM86 mode.
5626 */
5627 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5628 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5629 if (vcpu->arch.halt_request) {
5630 vcpu->arch.halt_request = 0;
5631 return kvm_vcpu_halt(vcpu);
5632 }
5633 return 1;
5634 }
5635 return 0;
5636 }
5637
5638 /*
5639 * Forward all other exceptions that are valid in real mode.
5640 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5641 * the required debugging infrastructure rework.
5642 */
5643 kvm_queue_exception(vcpu, vec);
5644 return 1;
5645 }
5646
5647 /*
5648 * Trigger machine check on the host. We assume all the MSRs are already set up
5649 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5650 * We pass a fake environment to the machine check handler because we want
5651 * the guest to be always treated like user space, no matter what context
5652 * it used internally.
5653 */
5654 static void kvm_machine_check(void)
5655 {
5656 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5657 struct pt_regs regs = {
5658 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5659 .flags = X86_EFLAGS_IF,
5660 };
5661
5662 do_machine_check(&regs, 0);
5663 #endif
5664 }
5665
5666 static int handle_machine_check(struct kvm_vcpu *vcpu)
5667 {
5668 /* already handled by vcpu_run */
5669 return 1;
5670 }
5671
5672 static int handle_exception(struct kvm_vcpu *vcpu)
5673 {
5674 struct vcpu_vmx *vmx = to_vmx(vcpu);
5675 struct kvm_run *kvm_run = vcpu->run;
5676 u32 intr_info, ex_no, error_code;
5677 unsigned long cr2, rip, dr6;
5678 u32 vect_info;
5679 enum emulation_result er;
5680
5681 vect_info = vmx->idt_vectoring_info;
5682 intr_info = vmx->exit_intr_info;
5683
5684 if (is_machine_check(intr_info))
5685 return handle_machine_check(vcpu);
5686
5687 if (is_nmi(intr_info))
5688 return 1; /* already handled by vmx_vcpu_run() */
5689
5690 if (is_invalid_opcode(intr_info)) {
5691 if (is_guest_mode(vcpu)) {
5692 kvm_queue_exception(vcpu, UD_VECTOR);
5693 return 1;
5694 }
5695 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5696 if (er != EMULATE_DONE)
5697 kvm_queue_exception(vcpu, UD_VECTOR);
5698 return 1;
5699 }
5700
5701 error_code = 0;
5702 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5703 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5704
5705 /*
5706 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5707 * MMIO, it is better to report an internal error.
5708 * See the comments in vmx_handle_exit.
5709 */
5710 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5711 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5712 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5713 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5714 vcpu->run->internal.ndata = 3;
5715 vcpu->run->internal.data[0] = vect_info;
5716 vcpu->run->internal.data[1] = intr_info;
5717 vcpu->run->internal.data[2] = error_code;
5718 return 0;
5719 }
5720
5721 if (is_page_fault(intr_info)) {
5722 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5723 /* EPT won't cause page fault directly */
5724 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5725 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5726 true);
5727 }
5728
5729 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5730
5731 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5732 return handle_rmode_exception(vcpu, ex_no, error_code);
5733
5734 switch (ex_no) {
5735 case AC_VECTOR:
5736 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5737 return 1;
5738 case DB_VECTOR:
5739 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5740 if (!(vcpu->guest_debug &
5741 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5742 vcpu->arch.dr6 &= ~15;
5743 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5744 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5745 skip_emulated_instruction(vcpu);
5746
5747 kvm_queue_exception(vcpu, DB_VECTOR);
5748 return 1;
5749 }
5750 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5751 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5752 /* fall through */
5753 case BP_VECTOR:
5754 /*
5755 * Update instruction length as we may reinject #BP from
5756 * user space while in guest debugging mode. Reading it for
5757 * #DB as well causes no harm, it is not used in that case.
5758 */
5759 vmx->vcpu.arch.event_exit_inst_len =
5760 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5761 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5762 rip = kvm_rip_read(vcpu);
5763 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5764 kvm_run->debug.arch.exception = ex_no;
5765 break;
5766 default:
5767 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5768 kvm_run->ex.exception = ex_no;
5769 kvm_run->ex.error_code = error_code;
5770 break;
5771 }
5772 return 0;
5773 }
5774
5775 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5776 {
5777 ++vcpu->stat.irq_exits;
5778 return 1;
5779 }
5780
5781 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5782 {
5783 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5784 return 0;
5785 }
5786
5787 static int handle_io(struct kvm_vcpu *vcpu)
5788 {
5789 unsigned long exit_qualification;
5790 int size, in, string, ret;
5791 unsigned port;
5792
5793 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5794 string = (exit_qualification & 16) != 0;
5795 in = (exit_qualification & 8) != 0;
5796
5797 ++vcpu->stat.io_exits;
5798
5799 if (string || in)
5800 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5801
5802 port = exit_qualification >> 16;
5803 size = (exit_qualification & 7) + 1;
5804
5805 ret = kvm_skip_emulated_instruction(vcpu);
5806
5807 /*
5808 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5809 * KVM_EXIT_DEBUG here.
5810 */
5811 return kvm_fast_pio_out(vcpu, size, port) && ret;
5812 }
5813
5814 static void
5815 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5816 {
5817 /*
5818 * Patch in the VMCALL instruction:
5819 */
5820 hypercall[0] = 0x0f;
5821 hypercall[1] = 0x01;
5822 hypercall[2] = 0xc1;
5823 }
5824
5825 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5826 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5827 {
5828 if (is_guest_mode(vcpu)) {
5829 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5830 unsigned long orig_val = val;
5831
5832 /*
5833 * We get here when L2 changed cr0 in a way that did not change
5834 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5835 * but did change L0 shadowed bits. So we first calculate the
5836 * effective cr0 value that L1 would like to write into the
5837 * hardware. It consists of the L2-owned bits from the new
5838 * value combined with the L1-owned bits from L1's guest_cr0.
5839 */
5840 val = (val & ~vmcs12->cr0_guest_host_mask) |
5841 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5842
5843 if (!nested_guest_cr0_valid(vcpu, val))
5844 return 1;
5845
5846 if (kvm_set_cr0(vcpu, val))
5847 return 1;
5848 vmcs_writel(CR0_READ_SHADOW, orig_val);
5849 return 0;
5850 } else {
5851 if (to_vmx(vcpu)->nested.vmxon &&
5852 !nested_host_cr0_valid(vcpu, val))
5853 return 1;
5854
5855 return kvm_set_cr0(vcpu, val);
5856 }
5857 }
5858
5859 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5860 {
5861 if (is_guest_mode(vcpu)) {
5862 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5863 unsigned long orig_val = val;
5864
5865 /* analogously to handle_set_cr0 */
5866 val = (val & ~vmcs12->cr4_guest_host_mask) |
5867 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5868 if (kvm_set_cr4(vcpu, val))
5869 return 1;
5870 vmcs_writel(CR4_READ_SHADOW, orig_val);
5871 return 0;
5872 } else
5873 return kvm_set_cr4(vcpu, val);
5874 }
5875
5876 static int handle_cr(struct kvm_vcpu *vcpu)
5877 {
5878 unsigned long exit_qualification, val;
5879 int cr;
5880 int reg;
5881 int err;
5882 int ret;
5883
5884 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5885 cr = exit_qualification & 15;
5886 reg = (exit_qualification >> 8) & 15;
5887 switch ((exit_qualification >> 4) & 3) {
5888 case 0: /* mov to cr */
5889 val = kvm_register_readl(vcpu, reg);
5890 trace_kvm_cr_write(cr, val);
5891 switch (cr) {
5892 case 0:
5893 err = handle_set_cr0(vcpu, val);
5894 return kvm_complete_insn_gp(vcpu, err);
5895 case 3:
5896 err = kvm_set_cr3(vcpu, val);
5897 return kvm_complete_insn_gp(vcpu, err);
5898 case 4:
5899 err = handle_set_cr4(vcpu, val);
5900 return kvm_complete_insn_gp(vcpu, err);
5901 case 8: {
5902 u8 cr8_prev = kvm_get_cr8(vcpu);
5903 u8 cr8 = (u8)val;
5904 err = kvm_set_cr8(vcpu, cr8);
5905 ret = kvm_complete_insn_gp(vcpu, err);
5906 if (lapic_in_kernel(vcpu))
5907 return ret;
5908 if (cr8_prev <= cr8)
5909 return ret;
5910 /*
5911 * TODO: we might be squashing a
5912 * KVM_GUESTDBG_SINGLESTEP-triggered
5913 * KVM_EXIT_DEBUG here.
5914 */
5915 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5916 return 0;
5917 }
5918 }
5919 break;
5920 case 2: /* clts */
5921 WARN_ONCE(1, "Guest should always own CR0.TS");
5922 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5923 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5924 return kvm_skip_emulated_instruction(vcpu);
5925 case 1: /*mov from cr*/
5926 switch (cr) {
5927 case 3:
5928 val = kvm_read_cr3(vcpu);
5929 kvm_register_write(vcpu, reg, val);
5930 trace_kvm_cr_read(cr, val);
5931 return kvm_skip_emulated_instruction(vcpu);
5932 case 8:
5933 val = kvm_get_cr8(vcpu);
5934 kvm_register_write(vcpu, reg, val);
5935 trace_kvm_cr_read(cr, val);
5936 return kvm_skip_emulated_instruction(vcpu);
5937 }
5938 break;
5939 case 3: /* lmsw */
5940 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5941 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5942 kvm_lmsw(vcpu, val);
5943
5944 return kvm_skip_emulated_instruction(vcpu);
5945 default:
5946 break;
5947 }
5948 vcpu->run->exit_reason = 0;
5949 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5950 (int)(exit_qualification >> 4) & 3, cr);
5951 return 0;
5952 }
5953
5954 static int handle_dr(struct kvm_vcpu *vcpu)
5955 {
5956 unsigned long exit_qualification;
5957 int dr, dr7, reg;
5958
5959 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5960 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5961
5962 /* First, if DR does not exist, trigger UD */
5963 if (!kvm_require_dr(vcpu, dr))
5964 return 1;
5965
5966 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5967 if (!kvm_require_cpl(vcpu, 0))
5968 return 1;
5969 dr7 = vmcs_readl(GUEST_DR7);
5970 if (dr7 & DR7_GD) {
5971 /*
5972 * As the vm-exit takes precedence over the debug trap, we
5973 * need to emulate the latter, either for the host or the
5974 * guest debugging itself.
5975 */
5976 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5977 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5978 vcpu->run->debug.arch.dr7 = dr7;
5979 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5980 vcpu->run->debug.arch.exception = DB_VECTOR;
5981 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5982 return 0;
5983 } else {
5984 vcpu->arch.dr6 &= ~15;
5985 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5986 kvm_queue_exception(vcpu, DB_VECTOR);
5987 return 1;
5988 }
5989 }
5990
5991 if (vcpu->guest_debug == 0) {
5992 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5993 CPU_BASED_MOV_DR_EXITING);
5994
5995 /*
5996 * No more DR vmexits; force a reload of the debug registers
5997 * and reenter on this instruction. The next vmexit will
5998 * retrieve the full state of the debug registers.
5999 */
6000 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6001 return 1;
6002 }
6003
6004 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6005 if (exit_qualification & TYPE_MOV_FROM_DR) {
6006 unsigned long val;
6007
6008 if (kvm_get_dr(vcpu, dr, &val))
6009 return 1;
6010 kvm_register_write(vcpu, reg, val);
6011 } else
6012 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6013 return 1;
6014
6015 return kvm_skip_emulated_instruction(vcpu);
6016 }
6017
6018 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6019 {
6020 return vcpu->arch.dr6;
6021 }
6022
6023 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6024 {
6025 }
6026
6027 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6028 {
6029 get_debugreg(vcpu->arch.db[0], 0);
6030 get_debugreg(vcpu->arch.db[1], 1);
6031 get_debugreg(vcpu->arch.db[2], 2);
6032 get_debugreg(vcpu->arch.db[3], 3);
6033 get_debugreg(vcpu->arch.dr6, 6);
6034 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6035
6036 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6037 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6038 }
6039
6040 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6041 {
6042 vmcs_writel(GUEST_DR7, val);
6043 }
6044
6045 static int handle_cpuid(struct kvm_vcpu *vcpu)
6046 {
6047 return kvm_emulate_cpuid(vcpu);
6048 }
6049
6050 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6051 {
6052 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6053 struct msr_data msr_info;
6054
6055 msr_info.index = ecx;
6056 msr_info.host_initiated = false;
6057 if (vmx_get_msr(vcpu, &msr_info)) {
6058 trace_kvm_msr_read_ex(ecx);
6059 kvm_inject_gp(vcpu, 0);
6060 return 1;
6061 }
6062
6063 trace_kvm_msr_read(ecx, msr_info.data);
6064
6065 /* FIXME: handling of bits 32:63 of rax, rdx */
6066 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6067 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6068 return kvm_skip_emulated_instruction(vcpu);
6069 }
6070
6071 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6072 {
6073 struct msr_data msr;
6074 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6075 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6076 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6077
6078 msr.data = data;
6079 msr.index = ecx;
6080 msr.host_initiated = false;
6081 if (kvm_set_msr(vcpu, &msr) != 0) {
6082 trace_kvm_msr_write_ex(ecx, data);
6083 kvm_inject_gp(vcpu, 0);
6084 return 1;
6085 }
6086
6087 trace_kvm_msr_write(ecx, data);
6088 return kvm_skip_emulated_instruction(vcpu);
6089 }
6090
6091 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6092 {
6093 kvm_apic_update_ppr(vcpu);
6094 return 1;
6095 }
6096
6097 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6098 {
6099 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6100 CPU_BASED_VIRTUAL_INTR_PENDING);
6101
6102 kvm_make_request(KVM_REQ_EVENT, vcpu);
6103
6104 ++vcpu->stat.irq_window_exits;
6105 return 1;
6106 }
6107
6108 static int handle_halt(struct kvm_vcpu *vcpu)
6109 {
6110 return kvm_emulate_halt(vcpu);
6111 }
6112
6113 static int handle_vmcall(struct kvm_vcpu *vcpu)
6114 {
6115 return kvm_emulate_hypercall(vcpu);
6116 }
6117
6118 static int handle_invd(struct kvm_vcpu *vcpu)
6119 {
6120 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6121 }
6122
6123 static int handle_invlpg(struct kvm_vcpu *vcpu)
6124 {
6125 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6126
6127 kvm_mmu_invlpg(vcpu, exit_qualification);
6128 return kvm_skip_emulated_instruction(vcpu);
6129 }
6130
6131 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6132 {
6133 int err;
6134
6135 err = kvm_rdpmc(vcpu);
6136 return kvm_complete_insn_gp(vcpu, err);
6137 }
6138
6139 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6140 {
6141 return kvm_emulate_wbinvd(vcpu);
6142 }
6143
6144 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6145 {
6146 u64 new_bv = kvm_read_edx_eax(vcpu);
6147 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6148
6149 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6150 return kvm_skip_emulated_instruction(vcpu);
6151 return 1;
6152 }
6153
6154 static int handle_xsaves(struct kvm_vcpu *vcpu)
6155 {
6156 kvm_skip_emulated_instruction(vcpu);
6157 WARN(1, "this should never happen\n");
6158 return 1;
6159 }
6160
6161 static int handle_xrstors(struct kvm_vcpu *vcpu)
6162 {
6163 kvm_skip_emulated_instruction(vcpu);
6164 WARN(1, "this should never happen\n");
6165 return 1;
6166 }
6167
6168 static int handle_apic_access(struct kvm_vcpu *vcpu)
6169 {
6170 if (likely(fasteoi)) {
6171 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6172 int access_type, offset;
6173
6174 access_type = exit_qualification & APIC_ACCESS_TYPE;
6175 offset = exit_qualification & APIC_ACCESS_OFFSET;
6176 /*
6177 * Sane guest uses MOV to write EOI, with written value
6178 * not cared. So make a short-circuit here by avoiding
6179 * heavy instruction emulation.
6180 */
6181 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6182 (offset == APIC_EOI)) {
6183 kvm_lapic_set_eoi(vcpu);
6184 return kvm_skip_emulated_instruction(vcpu);
6185 }
6186 }
6187 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6188 }
6189
6190 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6191 {
6192 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6193 int vector = exit_qualification & 0xff;
6194
6195 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6196 kvm_apic_set_eoi_accelerated(vcpu, vector);
6197 return 1;
6198 }
6199
6200 static int handle_apic_write(struct kvm_vcpu *vcpu)
6201 {
6202 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6203 u32 offset = exit_qualification & 0xfff;
6204
6205 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6206 kvm_apic_write_nodecode(vcpu, offset);
6207 return 1;
6208 }
6209
6210 static int handle_task_switch(struct kvm_vcpu *vcpu)
6211 {
6212 struct vcpu_vmx *vmx = to_vmx(vcpu);
6213 unsigned long exit_qualification;
6214 bool has_error_code = false;
6215 u32 error_code = 0;
6216 u16 tss_selector;
6217 int reason, type, idt_v, idt_index;
6218
6219 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6220 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6221 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6222
6223 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6224
6225 reason = (u32)exit_qualification >> 30;
6226 if (reason == TASK_SWITCH_GATE && idt_v) {
6227 switch (type) {
6228 case INTR_TYPE_NMI_INTR:
6229 vcpu->arch.nmi_injected = false;
6230 vmx_set_nmi_mask(vcpu, true);
6231 break;
6232 case INTR_TYPE_EXT_INTR:
6233 case INTR_TYPE_SOFT_INTR:
6234 kvm_clear_interrupt_queue(vcpu);
6235 break;
6236 case INTR_TYPE_HARD_EXCEPTION:
6237 if (vmx->idt_vectoring_info &
6238 VECTORING_INFO_DELIVER_CODE_MASK) {
6239 has_error_code = true;
6240 error_code =
6241 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6242 }
6243 /* fall through */
6244 case INTR_TYPE_SOFT_EXCEPTION:
6245 kvm_clear_exception_queue(vcpu);
6246 break;
6247 default:
6248 break;
6249 }
6250 }
6251 tss_selector = exit_qualification;
6252
6253 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6254 type != INTR_TYPE_EXT_INTR &&
6255 type != INTR_TYPE_NMI_INTR))
6256 skip_emulated_instruction(vcpu);
6257
6258 if (kvm_task_switch(vcpu, tss_selector,
6259 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6260 has_error_code, error_code) == EMULATE_FAIL) {
6261 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6262 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6263 vcpu->run->internal.ndata = 0;
6264 return 0;
6265 }
6266
6267 /*
6268 * TODO: What about debug traps on tss switch?
6269 * Are we supposed to inject them and update dr6?
6270 */
6271
6272 return 1;
6273 }
6274
6275 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6276 {
6277 unsigned long exit_qualification;
6278 gpa_t gpa;
6279 u32 error_code;
6280
6281 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6282
6283 /*
6284 * EPT violation happened while executing iret from NMI,
6285 * "blocked by NMI" bit has to be set before next VM entry.
6286 * There are errata that may cause this bit to not be set:
6287 * AAK134, BY25.
6288 */
6289 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6290 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6291 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6292
6293 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6294 trace_kvm_page_fault(gpa, exit_qualification);
6295
6296 /* Is it a read fault? */
6297 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6298 ? PFERR_USER_MASK : 0;
6299 /* Is it a write fault? */
6300 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6301 ? PFERR_WRITE_MASK : 0;
6302 /* Is it a fetch fault? */
6303 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6304 ? PFERR_FETCH_MASK : 0;
6305 /* ept page table entry is present? */
6306 error_code |= (exit_qualification &
6307 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6308 EPT_VIOLATION_EXECUTABLE))
6309 ? PFERR_PRESENT_MASK : 0;
6310
6311 vcpu->arch.gpa_available = true;
6312 vcpu->arch.exit_qualification = exit_qualification;
6313
6314 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6315 }
6316
6317 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6318 {
6319 int ret;
6320 gpa_t gpa;
6321
6322 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6323 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6324 trace_kvm_fast_mmio(gpa);
6325 return kvm_skip_emulated_instruction(vcpu);
6326 }
6327
6328 ret = handle_mmio_page_fault(vcpu, gpa, true);
6329 vcpu->arch.gpa_available = true;
6330 if (likely(ret == RET_MMIO_PF_EMULATE))
6331 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6332 EMULATE_DONE;
6333
6334 if (unlikely(ret == RET_MMIO_PF_INVALID))
6335 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6336
6337 if (unlikely(ret == RET_MMIO_PF_RETRY))
6338 return 1;
6339
6340 /* It is the real ept misconfig */
6341 WARN_ON(1);
6342
6343 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6344 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6345
6346 return 0;
6347 }
6348
6349 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6350 {
6351 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6352 CPU_BASED_VIRTUAL_NMI_PENDING);
6353 ++vcpu->stat.nmi_window_exits;
6354 kvm_make_request(KVM_REQ_EVENT, vcpu);
6355
6356 return 1;
6357 }
6358
6359 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6360 {
6361 struct vcpu_vmx *vmx = to_vmx(vcpu);
6362 enum emulation_result err = EMULATE_DONE;
6363 int ret = 1;
6364 u32 cpu_exec_ctrl;
6365 bool intr_window_requested;
6366 unsigned count = 130;
6367
6368 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6369 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6370
6371 while (vmx->emulation_required && count-- != 0) {
6372 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6373 return handle_interrupt_window(&vmx->vcpu);
6374
6375 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6376 return 1;
6377
6378 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6379
6380 if (err == EMULATE_USER_EXIT) {
6381 ++vcpu->stat.mmio_exits;
6382 ret = 0;
6383 goto out;
6384 }
6385
6386 if (err != EMULATE_DONE) {
6387 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6388 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6389 vcpu->run->internal.ndata = 0;
6390 return 0;
6391 }
6392
6393 if (vcpu->arch.halt_request) {
6394 vcpu->arch.halt_request = 0;
6395 ret = kvm_vcpu_halt(vcpu);
6396 goto out;
6397 }
6398
6399 if (signal_pending(current))
6400 goto out;
6401 if (need_resched())
6402 schedule();
6403 }
6404
6405 out:
6406 return ret;
6407 }
6408
6409 static int __grow_ple_window(int val)
6410 {
6411 if (ple_window_grow < 1)
6412 return ple_window;
6413
6414 val = min(val, ple_window_actual_max);
6415
6416 if (ple_window_grow < ple_window)
6417 val *= ple_window_grow;
6418 else
6419 val += ple_window_grow;
6420
6421 return val;
6422 }
6423
6424 static int __shrink_ple_window(int val, int modifier, int minimum)
6425 {
6426 if (modifier < 1)
6427 return ple_window;
6428
6429 if (modifier < ple_window)
6430 val /= modifier;
6431 else
6432 val -= modifier;
6433
6434 return max(val, minimum);
6435 }
6436
6437 static void grow_ple_window(struct kvm_vcpu *vcpu)
6438 {
6439 struct vcpu_vmx *vmx = to_vmx(vcpu);
6440 int old = vmx->ple_window;
6441
6442 vmx->ple_window = __grow_ple_window(old);
6443
6444 if (vmx->ple_window != old)
6445 vmx->ple_window_dirty = true;
6446
6447 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6448 }
6449
6450 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6451 {
6452 struct vcpu_vmx *vmx = to_vmx(vcpu);
6453 int old = vmx->ple_window;
6454
6455 vmx->ple_window = __shrink_ple_window(old,
6456 ple_window_shrink, ple_window);
6457
6458 if (vmx->ple_window != old)
6459 vmx->ple_window_dirty = true;
6460
6461 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6462 }
6463
6464 /*
6465 * ple_window_actual_max is computed to be one grow_ple_window() below
6466 * ple_window_max. (See __grow_ple_window for the reason.)
6467 * This prevents overflows, because ple_window_max is int.
6468 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6469 * this process.
6470 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6471 */
6472 static void update_ple_window_actual_max(void)
6473 {
6474 ple_window_actual_max =
6475 __shrink_ple_window(max(ple_window_max, ple_window),
6476 ple_window_grow, INT_MIN);
6477 }
6478
6479 /*
6480 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6481 */
6482 static void wakeup_handler(void)
6483 {
6484 struct kvm_vcpu *vcpu;
6485 int cpu = smp_processor_id();
6486
6487 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6488 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6489 blocked_vcpu_list) {
6490 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6491
6492 if (pi_test_on(pi_desc) == 1)
6493 kvm_vcpu_kick(vcpu);
6494 }
6495 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6496 }
6497
6498 void vmx_enable_tdp(void)
6499 {
6500 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6501 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6502 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6503 0ull, VMX_EPT_EXECUTABLE_MASK,
6504 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6505 VMX_EPT_RWX_MASK);
6506
6507 ept_set_mmio_spte_mask();
6508 kvm_enable_tdp();
6509 }
6510
6511 static __init int hardware_setup(void)
6512 {
6513 int r = -ENOMEM, i, msr;
6514
6515 rdmsrl_safe(MSR_EFER, &host_efer);
6516
6517 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6518 kvm_define_shared_msr(i, vmx_msr_index[i]);
6519
6520 for (i = 0; i < VMX_BITMAP_NR; i++) {
6521 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6522 if (!vmx_bitmap[i])
6523 goto out;
6524 }
6525
6526 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6527 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6528 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6529
6530 /*
6531 * Allow direct access to the PC debug port (it is often used for I/O
6532 * delays, but the vmexits simply slow things down).
6533 */
6534 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6535 clear_bit(0x80, vmx_io_bitmap_a);
6536
6537 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6538
6539 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6540 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6541
6542 if (setup_vmcs_config(&vmcs_config) < 0) {
6543 r = -EIO;
6544 goto out;
6545 }
6546
6547 if (boot_cpu_has(X86_FEATURE_NX))
6548 kvm_enable_efer_bits(EFER_NX);
6549
6550 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6551 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6552 enable_vpid = 0;
6553
6554 if (!cpu_has_vmx_shadow_vmcs())
6555 enable_shadow_vmcs = 0;
6556 if (enable_shadow_vmcs)
6557 init_vmcs_shadow_fields();
6558
6559 if (!cpu_has_vmx_ept() ||
6560 !cpu_has_vmx_ept_4levels()) {
6561 enable_ept = 0;
6562 enable_unrestricted_guest = 0;
6563 enable_ept_ad_bits = 0;
6564 }
6565
6566 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6567 enable_ept_ad_bits = 0;
6568
6569 if (!cpu_has_vmx_unrestricted_guest())
6570 enable_unrestricted_guest = 0;
6571
6572 if (!cpu_has_vmx_flexpriority())
6573 flexpriority_enabled = 0;
6574
6575 /*
6576 * set_apic_access_page_addr() is used to reload apic access
6577 * page upon invalidation. No need to do anything if not
6578 * using the APIC_ACCESS_ADDR VMCS field.
6579 */
6580 if (!flexpriority_enabled)
6581 kvm_x86_ops->set_apic_access_page_addr = NULL;
6582
6583 if (!cpu_has_vmx_tpr_shadow())
6584 kvm_x86_ops->update_cr8_intercept = NULL;
6585
6586 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6587 kvm_disable_largepages();
6588
6589 if (!cpu_has_vmx_ple())
6590 ple_gap = 0;
6591
6592 if (!cpu_has_vmx_apicv()) {
6593 enable_apicv = 0;
6594 kvm_x86_ops->sync_pir_to_irr = NULL;
6595 }
6596
6597 if (cpu_has_vmx_tsc_scaling()) {
6598 kvm_has_tsc_control = true;
6599 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6600 kvm_tsc_scaling_ratio_frac_bits = 48;
6601 }
6602
6603 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6604 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6605 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6606 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6607 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6608 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6609
6610 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6611 vmx_msr_bitmap_legacy, PAGE_SIZE);
6612 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6613 vmx_msr_bitmap_longmode, PAGE_SIZE);
6614 memcpy(vmx_msr_bitmap_legacy_x2apic,
6615 vmx_msr_bitmap_legacy, PAGE_SIZE);
6616 memcpy(vmx_msr_bitmap_longmode_x2apic,
6617 vmx_msr_bitmap_longmode, PAGE_SIZE);
6618
6619 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6620
6621 for (msr = 0x800; msr <= 0x8ff; msr++) {
6622 if (msr == 0x839 /* TMCCT */)
6623 continue;
6624 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6625 }
6626
6627 /*
6628 * TPR reads and writes can be virtualized even if virtual interrupt
6629 * delivery is not in use.
6630 */
6631 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6632 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6633
6634 /* EOI */
6635 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6636 /* SELF-IPI */
6637 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6638
6639 if (enable_ept)
6640 vmx_enable_tdp();
6641 else
6642 kvm_disable_tdp();
6643
6644 update_ple_window_actual_max();
6645
6646 /*
6647 * Only enable PML when hardware supports PML feature, and both EPT
6648 * and EPT A/D bit features are enabled -- PML depends on them to work.
6649 */
6650 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6651 enable_pml = 0;
6652
6653 if (!enable_pml) {
6654 kvm_x86_ops->slot_enable_log_dirty = NULL;
6655 kvm_x86_ops->slot_disable_log_dirty = NULL;
6656 kvm_x86_ops->flush_log_dirty = NULL;
6657 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6658 }
6659
6660 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6661 u64 vmx_msr;
6662
6663 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6664 cpu_preemption_timer_multi =
6665 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6666 } else {
6667 kvm_x86_ops->set_hv_timer = NULL;
6668 kvm_x86_ops->cancel_hv_timer = NULL;
6669 }
6670
6671 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6672
6673 kvm_mce_cap_supported |= MCG_LMCE_P;
6674
6675 return alloc_kvm_area();
6676
6677 out:
6678 for (i = 0; i < VMX_BITMAP_NR; i++)
6679 free_page((unsigned long)vmx_bitmap[i]);
6680
6681 return r;
6682 }
6683
6684 static __exit void hardware_unsetup(void)
6685 {
6686 int i;
6687
6688 for (i = 0; i < VMX_BITMAP_NR; i++)
6689 free_page((unsigned long)vmx_bitmap[i]);
6690
6691 free_kvm_area();
6692 }
6693
6694 /*
6695 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6696 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6697 */
6698 static int handle_pause(struct kvm_vcpu *vcpu)
6699 {
6700 if (ple_gap)
6701 grow_ple_window(vcpu);
6702
6703 kvm_vcpu_on_spin(vcpu);
6704 return kvm_skip_emulated_instruction(vcpu);
6705 }
6706
6707 static int handle_nop(struct kvm_vcpu *vcpu)
6708 {
6709 return kvm_skip_emulated_instruction(vcpu);
6710 }
6711
6712 static int handle_mwait(struct kvm_vcpu *vcpu)
6713 {
6714 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6715 return handle_nop(vcpu);
6716 }
6717
6718 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6719 {
6720 return 1;
6721 }
6722
6723 static int handle_monitor(struct kvm_vcpu *vcpu)
6724 {
6725 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6726 return handle_nop(vcpu);
6727 }
6728
6729 /*
6730 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6731 * We could reuse a single VMCS for all the L2 guests, but we also want the
6732 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6733 * allows keeping them loaded on the processor, and in the future will allow
6734 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6735 * every entry if they never change.
6736 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6737 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6738 *
6739 * The following functions allocate and free a vmcs02 in this pool.
6740 */
6741
6742 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6743 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6744 {
6745 struct vmcs02_list *item;
6746 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6747 if (item->vmptr == vmx->nested.current_vmptr) {
6748 list_move(&item->list, &vmx->nested.vmcs02_pool);
6749 return &item->vmcs02;
6750 }
6751
6752 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6753 /* Recycle the least recently used VMCS. */
6754 item = list_last_entry(&vmx->nested.vmcs02_pool,
6755 struct vmcs02_list, list);
6756 item->vmptr = vmx->nested.current_vmptr;
6757 list_move(&item->list, &vmx->nested.vmcs02_pool);
6758 return &item->vmcs02;
6759 }
6760
6761 /* Create a new VMCS */
6762 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6763 if (!item)
6764 return NULL;
6765 item->vmcs02.vmcs = alloc_vmcs();
6766 item->vmcs02.shadow_vmcs = NULL;
6767 if (!item->vmcs02.vmcs) {
6768 kfree(item);
6769 return NULL;
6770 }
6771 loaded_vmcs_init(&item->vmcs02);
6772 item->vmptr = vmx->nested.current_vmptr;
6773 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6774 vmx->nested.vmcs02_num++;
6775 return &item->vmcs02;
6776 }
6777
6778 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6779 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6780 {
6781 struct vmcs02_list *item;
6782 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6783 if (item->vmptr == vmptr) {
6784 free_loaded_vmcs(&item->vmcs02);
6785 list_del(&item->list);
6786 kfree(item);
6787 vmx->nested.vmcs02_num--;
6788 return;
6789 }
6790 }
6791
6792 /*
6793 * Free all VMCSs saved for this vcpu, except the one pointed by
6794 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6795 * must be &vmx->vmcs01.
6796 */
6797 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6798 {
6799 struct vmcs02_list *item, *n;
6800
6801 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6802 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6803 /*
6804 * Something will leak if the above WARN triggers. Better than
6805 * a use-after-free.
6806 */
6807 if (vmx->loaded_vmcs == &item->vmcs02)
6808 continue;
6809
6810 free_loaded_vmcs(&item->vmcs02);
6811 list_del(&item->list);
6812 kfree(item);
6813 vmx->nested.vmcs02_num--;
6814 }
6815 }
6816
6817 /*
6818 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6819 * set the success or error code of an emulated VMX instruction, as specified
6820 * by Vol 2B, VMX Instruction Reference, "Conventions".
6821 */
6822 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6823 {
6824 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6825 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6826 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6827 }
6828
6829 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6830 {
6831 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6832 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6833 X86_EFLAGS_SF | X86_EFLAGS_OF))
6834 | X86_EFLAGS_CF);
6835 }
6836
6837 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6838 u32 vm_instruction_error)
6839 {
6840 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6841 /*
6842 * failValid writes the error number to the current VMCS, which
6843 * can't be done there isn't a current VMCS.
6844 */
6845 nested_vmx_failInvalid(vcpu);
6846 return;
6847 }
6848 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6849 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6850 X86_EFLAGS_SF | X86_EFLAGS_OF))
6851 | X86_EFLAGS_ZF);
6852 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6853 /*
6854 * We don't need to force a shadow sync because
6855 * VM_INSTRUCTION_ERROR is not shadowed
6856 */
6857 }
6858
6859 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6860 {
6861 /* TODO: not to reset guest simply here. */
6862 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6863 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6864 }
6865
6866 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6867 {
6868 struct vcpu_vmx *vmx =
6869 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6870
6871 vmx->nested.preemption_timer_expired = true;
6872 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6873 kvm_vcpu_kick(&vmx->vcpu);
6874
6875 return HRTIMER_NORESTART;
6876 }
6877
6878 /*
6879 * Decode the memory-address operand of a vmx instruction, as recorded on an
6880 * exit caused by such an instruction (run by a guest hypervisor).
6881 * On success, returns 0. When the operand is invalid, returns 1 and throws
6882 * #UD or #GP.
6883 */
6884 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6885 unsigned long exit_qualification,
6886 u32 vmx_instruction_info, bool wr, gva_t *ret)
6887 {
6888 gva_t off;
6889 bool exn;
6890 struct kvm_segment s;
6891
6892 /*
6893 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6894 * Execution", on an exit, vmx_instruction_info holds most of the
6895 * addressing components of the operand. Only the displacement part
6896 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6897 * For how an actual address is calculated from all these components,
6898 * refer to Vol. 1, "Operand Addressing".
6899 */
6900 int scaling = vmx_instruction_info & 3;
6901 int addr_size = (vmx_instruction_info >> 7) & 7;
6902 bool is_reg = vmx_instruction_info & (1u << 10);
6903 int seg_reg = (vmx_instruction_info >> 15) & 7;
6904 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6905 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6906 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6907 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6908
6909 if (is_reg) {
6910 kvm_queue_exception(vcpu, UD_VECTOR);
6911 return 1;
6912 }
6913
6914 /* Addr = segment_base + offset */
6915 /* offset = base + [index * scale] + displacement */
6916 off = exit_qualification; /* holds the displacement */
6917 if (base_is_valid)
6918 off += kvm_register_read(vcpu, base_reg);
6919 if (index_is_valid)
6920 off += kvm_register_read(vcpu, index_reg)<<scaling;
6921 vmx_get_segment(vcpu, &s, seg_reg);
6922 *ret = s.base + off;
6923
6924 if (addr_size == 1) /* 32 bit */
6925 *ret &= 0xffffffff;
6926
6927 /* Checks for #GP/#SS exceptions. */
6928 exn = false;
6929 if (is_long_mode(vcpu)) {
6930 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6931 * non-canonical form. This is the only check on the memory
6932 * destination for long mode!
6933 */
6934 exn = is_noncanonical_address(*ret);
6935 } else if (is_protmode(vcpu)) {
6936 /* Protected mode: apply checks for segment validity in the
6937 * following order:
6938 * - segment type check (#GP(0) may be thrown)
6939 * - usability check (#GP(0)/#SS(0))
6940 * - limit check (#GP(0)/#SS(0))
6941 */
6942 if (wr)
6943 /* #GP(0) if the destination operand is located in a
6944 * read-only data segment or any code segment.
6945 */
6946 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6947 else
6948 /* #GP(0) if the source operand is located in an
6949 * execute-only code segment
6950 */
6951 exn = ((s.type & 0xa) == 8);
6952 if (exn) {
6953 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6954 return 1;
6955 }
6956 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6957 */
6958 exn = (s.unusable != 0);
6959 /* Protected mode: #GP(0)/#SS(0) if the memory
6960 * operand is outside the segment limit.
6961 */
6962 exn = exn || (off + sizeof(u64) > s.limit);
6963 }
6964 if (exn) {
6965 kvm_queue_exception_e(vcpu,
6966 seg_reg == VCPU_SREG_SS ?
6967 SS_VECTOR : GP_VECTOR,
6968 0);
6969 return 1;
6970 }
6971
6972 return 0;
6973 }
6974
6975 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6976 {
6977 gva_t gva;
6978 struct x86_exception e;
6979
6980 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6981 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6982 return 1;
6983
6984 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6985 sizeof(*vmpointer), &e)) {
6986 kvm_inject_page_fault(vcpu, &e);
6987 return 1;
6988 }
6989
6990 return 0;
6991 }
6992
6993 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6994 {
6995 struct vcpu_vmx *vmx = to_vmx(vcpu);
6996 struct vmcs *shadow_vmcs;
6997
6998 if (cpu_has_vmx_msr_bitmap()) {
6999 vmx->nested.msr_bitmap =
7000 (unsigned long *)__get_free_page(GFP_KERNEL);
7001 if (!vmx->nested.msr_bitmap)
7002 goto out_msr_bitmap;
7003 }
7004
7005 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7006 if (!vmx->nested.cached_vmcs12)
7007 goto out_cached_vmcs12;
7008
7009 if (enable_shadow_vmcs) {
7010 shadow_vmcs = alloc_vmcs();
7011 if (!shadow_vmcs)
7012 goto out_shadow_vmcs;
7013 /* mark vmcs as shadow */
7014 shadow_vmcs->revision_id |= (1u << 31);
7015 /* init shadow vmcs */
7016 vmcs_clear(shadow_vmcs);
7017 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7018 }
7019
7020 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7021 vmx->nested.vmcs02_num = 0;
7022
7023 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7024 HRTIMER_MODE_REL_PINNED);
7025 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7026
7027 vmx->nested.vmxon = true;
7028 return 0;
7029
7030 out_shadow_vmcs:
7031 kfree(vmx->nested.cached_vmcs12);
7032
7033 out_cached_vmcs12:
7034 free_page((unsigned long)vmx->nested.msr_bitmap);
7035
7036 out_msr_bitmap:
7037 return -ENOMEM;
7038 }
7039
7040 /*
7041 * Emulate the VMXON instruction.
7042 * Currently, we just remember that VMX is active, and do not save or even
7043 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7044 * do not currently need to store anything in that guest-allocated memory
7045 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7046 * argument is different from the VMXON pointer (which the spec says they do).
7047 */
7048 static int handle_vmon(struct kvm_vcpu *vcpu)
7049 {
7050 int ret;
7051 gpa_t vmptr;
7052 struct page *page;
7053 struct vcpu_vmx *vmx = to_vmx(vcpu);
7054 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7055 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7056
7057 /*
7058 * The Intel VMX Instruction Reference lists a bunch of bits that are
7059 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7060 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7061 * Otherwise, we should fail with #UD. But most faulting conditions
7062 * have already been checked by hardware, prior to the VM-exit for
7063 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7064 * that bit set to 1 in non-root mode.
7065 */
7066 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7067 kvm_queue_exception(vcpu, UD_VECTOR);
7068 return 1;
7069 }
7070
7071 if (vmx->nested.vmxon) {
7072 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7073 return kvm_skip_emulated_instruction(vcpu);
7074 }
7075
7076 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7077 != VMXON_NEEDED_FEATURES) {
7078 kvm_inject_gp(vcpu, 0);
7079 return 1;
7080 }
7081
7082 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7083 return 1;
7084
7085 /*
7086 * SDM 3: 24.11.5
7087 * The first 4 bytes of VMXON region contain the supported
7088 * VMCS revision identifier
7089 *
7090 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7091 * which replaces physical address width with 32
7092 */
7093 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7094 nested_vmx_failInvalid(vcpu);
7095 return kvm_skip_emulated_instruction(vcpu);
7096 }
7097
7098 page = nested_get_page(vcpu, vmptr);
7099 if (page == NULL) {
7100 nested_vmx_failInvalid(vcpu);
7101 return kvm_skip_emulated_instruction(vcpu);
7102 }
7103 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7104 kunmap(page);
7105 nested_release_page_clean(page);
7106 nested_vmx_failInvalid(vcpu);
7107 return kvm_skip_emulated_instruction(vcpu);
7108 }
7109 kunmap(page);
7110 nested_release_page_clean(page);
7111
7112 vmx->nested.vmxon_ptr = vmptr;
7113 ret = enter_vmx_operation(vcpu);
7114 if (ret)
7115 return ret;
7116
7117 nested_vmx_succeed(vcpu);
7118 return kvm_skip_emulated_instruction(vcpu);
7119 }
7120
7121 /*
7122 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7123 * for running VMX instructions (except VMXON, whose prerequisites are
7124 * slightly different). It also specifies what exception to inject otherwise.
7125 * Note that many of these exceptions have priority over VM exits, so they
7126 * don't have to be checked again here.
7127 */
7128 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7129 {
7130 if (!to_vmx(vcpu)->nested.vmxon) {
7131 kvm_queue_exception(vcpu, UD_VECTOR);
7132 return 0;
7133 }
7134 return 1;
7135 }
7136
7137 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7138 {
7139 if (vmx->nested.current_vmptr == -1ull)
7140 return;
7141
7142 /* current_vmptr and current_vmcs12 are always set/reset together */
7143 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7144 return;
7145
7146 if (enable_shadow_vmcs) {
7147 /* copy to memory all shadowed fields in case
7148 they were modified */
7149 copy_shadow_to_vmcs12(vmx);
7150 vmx->nested.sync_shadow_vmcs = false;
7151 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7152 SECONDARY_EXEC_SHADOW_VMCS);
7153 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7154 }
7155 vmx->nested.posted_intr_nv = -1;
7156
7157 /* Flush VMCS12 to guest memory */
7158 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7159 VMCS12_SIZE);
7160
7161 kunmap(vmx->nested.current_vmcs12_page);
7162 nested_release_page(vmx->nested.current_vmcs12_page);
7163 vmx->nested.current_vmptr = -1ull;
7164 vmx->nested.current_vmcs12 = NULL;
7165 }
7166
7167 /*
7168 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7169 * just stops using VMX.
7170 */
7171 static void free_nested(struct vcpu_vmx *vmx)
7172 {
7173 if (!vmx->nested.vmxon)
7174 return;
7175
7176 vmx->nested.vmxon = false;
7177 free_vpid(vmx->nested.vpid02);
7178 nested_release_vmcs12(vmx);
7179 if (vmx->nested.msr_bitmap) {
7180 free_page((unsigned long)vmx->nested.msr_bitmap);
7181 vmx->nested.msr_bitmap = NULL;
7182 }
7183 if (enable_shadow_vmcs) {
7184 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7185 free_vmcs(vmx->vmcs01.shadow_vmcs);
7186 vmx->vmcs01.shadow_vmcs = NULL;
7187 }
7188 kfree(vmx->nested.cached_vmcs12);
7189 /* Unpin physical memory we referred to in current vmcs02 */
7190 if (vmx->nested.apic_access_page) {
7191 nested_release_page(vmx->nested.apic_access_page);
7192 vmx->nested.apic_access_page = NULL;
7193 }
7194 if (vmx->nested.virtual_apic_page) {
7195 nested_release_page(vmx->nested.virtual_apic_page);
7196 vmx->nested.virtual_apic_page = NULL;
7197 }
7198 if (vmx->nested.pi_desc_page) {
7199 kunmap(vmx->nested.pi_desc_page);
7200 nested_release_page(vmx->nested.pi_desc_page);
7201 vmx->nested.pi_desc_page = NULL;
7202 vmx->nested.pi_desc = NULL;
7203 }
7204
7205 nested_free_all_saved_vmcss(vmx);
7206 }
7207
7208 /* Emulate the VMXOFF instruction */
7209 static int handle_vmoff(struct kvm_vcpu *vcpu)
7210 {
7211 if (!nested_vmx_check_permission(vcpu))
7212 return 1;
7213 free_nested(to_vmx(vcpu));
7214 nested_vmx_succeed(vcpu);
7215 return kvm_skip_emulated_instruction(vcpu);
7216 }
7217
7218 /* Emulate the VMCLEAR instruction */
7219 static int handle_vmclear(struct kvm_vcpu *vcpu)
7220 {
7221 struct vcpu_vmx *vmx = to_vmx(vcpu);
7222 u32 zero = 0;
7223 gpa_t vmptr;
7224
7225 if (!nested_vmx_check_permission(vcpu))
7226 return 1;
7227
7228 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7229 return 1;
7230
7231 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7232 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7233 return kvm_skip_emulated_instruction(vcpu);
7234 }
7235
7236 if (vmptr == vmx->nested.vmxon_ptr) {
7237 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7238 return kvm_skip_emulated_instruction(vcpu);
7239 }
7240
7241 if (vmptr == vmx->nested.current_vmptr)
7242 nested_release_vmcs12(vmx);
7243
7244 kvm_vcpu_write_guest(vcpu,
7245 vmptr + offsetof(struct vmcs12, launch_state),
7246 &zero, sizeof(zero));
7247
7248 nested_free_vmcs02(vmx, vmptr);
7249
7250 nested_vmx_succeed(vcpu);
7251 return kvm_skip_emulated_instruction(vcpu);
7252 }
7253
7254 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7255
7256 /* Emulate the VMLAUNCH instruction */
7257 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7258 {
7259 return nested_vmx_run(vcpu, true);
7260 }
7261
7262 /* Emulate the VMRESUME instruction */
7263 static int handle_vmresume(struct kvm_vcpu *vcpu)
7264 {
7265
7266 return nested_vmx_run(vcpu, false);
7267 }
7268
7269 /*
7270 * Read a vmcs12 field. Since these can have varying lengths and we return
7271 * one type, we chose the biggest type (u64) and zero-extend the return value
7272 * to that size. Note that the caller, handle_vmread, might need to use only
7273 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7274 * 64-bit fields are to be returned).
7275 */
7276 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7277 unsigned long field, u64 *ret)
7278 {
7279 short offset = vmcs_field_to_offset(field);
7280 char *p;
7281
7282 if (offset < 0)
7283 return offset;
7284
7285 p = ((char *)(get_vmcs12(vcpu))) + offset;
7286
7287 switch (vmcs_field_type(field)) {
7288 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7289 *ret = *((natural_width *)p);
7290 return 0;
7291 case VMCS_FIELD_TYPE_U16:
7292 *ret = *((u16 *)p);
7293 return 0;
7294 case VMCS_FIELD_TYPE_U32:
7295 *ret = *((u32 *)p);
7296 return 0;
7297 case VMCS_FIELD_TYPE_U64:
7298 *ret = *((u64 *)p);
7299 return 0;
7300 default:
7301 WARN_ON(1);
7302 return -ENOENT;
7303 }
7304 }
7305
7306
7307 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7308 unsigned long field, u64 field_value){
7309 short offset = vmcs_field_to_offset(field);
7310 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7311 if (offset < 0)
7312 return offset;
7313
7314 switch (vmcs_field_type(field)) {
7315 case VMCS_FIELD_TYPE_U16:
7316 *(u16 *)p = field_value;
7317 return 0;
7318 case VMCS_FIELD_TYPE_U32:
7319 *(u32 *)p = field_value;
7320 return 0;
7321 case VMCS_FIELD_TYPE_U64:
7322 *(u64 *)p = field_value;
7323 return 0;
7324 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7325 *(natural_width *)p = field_value;
7326 return 0;
7327 default:
7328 WARN_ON(1);
7329 return -ENOENT;
7330 }
7331
7332 }
7333
7334 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7335 {
7336 int i;
7337 unsigned long field;
7338 u64 field_value;
7339 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7340 const unsigned long *fields = shadow_read_write_fields;
7341 const int num_fields = max_shadow_read_write_fields;
7342
7343 preempt_disable();
7344
7345 vmcs_load(shadow_vmcs);
7346
7347 for (i = 0; i < num_fields; i++) {
7348 field = fields[i];
7349 switch (vmcs_field_type(field)) {
7350 case VMCS_FIELD_TYPE_U16:
7351 field_value = vmcs_read16(field);
7352 break;
7353 case VMCS_FIELD_TYPE_U32:
7354 field_value = vmcs_read32(field);
7355 break;
7356 case VMCS_FIELD_TYPE_U64:
7357 field_value = vmcs_read64(field);
7358 break;
7359 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7360 field_value = vmcs_readl(field);
7361 break;
7362 default:
7363 WARN_ON(1);
7364 continue;
7365 }
7366 vmcs12_write_any(&vmx->vcpu, field, field_value);
7367 }
7368
7369 vmcs_clear(shadow_vmcs);
7370 vmcs_load(vmx->loaded_vmcs->vmcs);
7371
7372 preempt_enable();
7373 }
7374
7375 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7376 {
7377 const unsigned long *fields[] = {
7378 shadow_read_write_fields,
7379 shadow_read_only_fields
7380 };
7381 const int max_fields[] = {
7382 max_shadow_read_write_fields,
7383 max_shadow_read_only_fields
7384 };
7385 int i, q;
7386 unsigned long field;
7387 u64 field_value = 0;
7388 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7389
7390 vmcs_load(shadow_vmcs);
7391
7392 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7393 for (i = 0; i < max_fields[q]; i++) {
7394 field = fields[q][i];
7395 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7396
7397 switch (vmcs_field_type(field)) {
7398 case VMCS_FIELD_TYPE_U16:
7399 vmcs_write16(field, (u16)field_value);
7400 break;
7401 case VMCS_FIELD_TYPE_U32:
7402 vmcs_write32(field, (u32)field_value);
7403 break;
7404 case VMCS_FIELD_TYPE_U64:
7405 vmcs_write64(field, (u64)field_value);
7406 break;
7407 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7408 vmcs_writel(field, (long)field_value);
7409 break;
7410 default:
7411 WARN_ON(1);
7412 break;
7413 }
7414 }
7415 }
7416
7417 vmcs_clear(shadow_vmcs);
7418 vmcs_load(vmx->loaded_vmcs->vmcs);
7419 }
7420
7421 /*
7422 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7423 * used before) all generate the same failure when it is missing.
7424 */
7425 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7426 {
7427 struct vcpu_vmx *vmx = to_vmx(vcpu);
7428 if (vmx->nested.current_vmptr == -1ull) {
7429 nested_vmx_failInvalid(vcpu);
7430 return 0;
7431 }
7432 return 1;
7433 }
7434
7435 static int handle_vmread(struct kvm_vcpu *vcpu)
7436 {
7437 unsigned long field;
7438 u64 field_value;
7439 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7440 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7441 gva_t gva = 0;
7442
7443 if (!nested_vmx_check_permission(vcpu))
7444 return 1;
7445
7446 if (!nested_vmx_check_vmcs12(vcpu))
7447 return kvm_skip_emulated_instruction(vcpu);
7448
7449 /* Decode instruction info and find the field to read */
7450 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7451 /* Read the field, zero-extended to a u64 field_value */
7452 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7453 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7454 return kvm_skip_emulated_instruction(vcpu);
7455 }
7456 /*
7457 * Now copy part of this value to register or memory, as requested.
7458 * Note that the number of bits actually copied is 32 or 64 depending
7459 * on the guest's mode (32 or 64 bit), not on the given field's length.
7460 */
7461 if (vmx_instruction_info & (1u << 10)) {
7462 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7463 field_value);
7464 } else {
7465 if (get_vmx_mem_address(vcpu, exit_qualification,
7466 vmx_instruction_info, true, &gva))
7467 return 1;
7468 /* _system ok, as hardware has verified cpl=0 */
7469 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7470 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7471 }
7472
7473 nested_vmx_succeed(vcpu);
7474 return kvm_skip_emulated_instruction(vcpu);
7475 }
7476
7477
7478 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7479 {
7480 unsigned long field;
7481 gva_t gva;
7482 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7483 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7484 /* The value to write might be 32 or 64 bits, depending on L1's long
7485 * mode, and eventually we need to write that into a field of several
7486 * possible lengths. The code below first zero-extends the value to 64
7487 * bit (field_value), and then copies only the appropriate number of
7488 * bits into the vmcs12 field.
7489 */
7490 u64 field_value = 0;
7491 struct x86_exception e;
7492
7493 if (!nested_vmx_check_permission(vcpu))
7494 return 1;
7495
7496 if (!nested_vmx_check_vmcs12(vcpu))
7497 return kvm_skip_emulated_instruction(vcpu);
7498
7499 if (vmx_instruction_info & (1u << 10))
7500 field_value = kvm_register_readl(vcpu,
7501 (((vmx_instruction_info) >> 3) & 0xf));
7502 else {
7503 if (get_vmx_mem_address(vcpu, exit_qualification,
7504 vmx_instruction_info, false, &gva))
7505 return 1;
7506 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7507 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7508 kvm_inject_page_fault(vcpu, &e);
7509 return 1;
7510 }
7511 }
7512
7513
7514 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7515 if (vmcs_field_readonly(field)) {
7516 nested_vmx_failValid(vcpu,
7517 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7518 return kvm_skip_emulated_instruction(vcpu);
7519 }
7520
7521 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7522 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7523 return kvm_skip_emulated_instruction(vcpu);
7524 }
7525
7526 nested_vmx_succeed(vcpu);
7527 return kvm_skip_emulated_instruction(vcpu);
7528 }
7529
7530 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7531 {
7532 vmx->nested.current_vmptr = vmptr;
7533 if (enable_shadow_vmcs) {
7534 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7535 SECONDARY_EXEC_SHADOW_VMCS);
7536 vmcs_write64(VMCS_LINK_POINTER,
7537 __pa(vmx->vmcs01.shadow_vmcs));
7538 vmx->nested.sync_shadow_vmcs = true;
7539 }
7540 }
7541
7542 /* Emulate the VMPTRLD instruction */
7543 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7544 {
7545 struct vcpu_vmx *vmx = to_vmx(vcpu);
7546 gpa_t vmptr;
7547
7548 if (!nested_vmx_check_permission(vcpu))
7549 return 1;
7550
7551 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7552 return 1;
7553
7554 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7555 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7556 return kvm_skip_emulated_instruction(vcpu);
7557 }
7558
7559 if (vmptr == vmx->nested.vmxon_ptr) {
7560 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7561 return kvm_skip_emulated_instruction(vcpu);
7562 }
7563
7564 if (vmx->nested.current_vmptr != vmptr) {
7565 struct vmcs12 *new_vmcs12;
7566 struct page *page;
7567 page = nested_get_page(vcpu, vmptr);
7568 if (page == NULL) {
7569 nested_vmx_failInvalid(vcpu);
7570 return kvm_skip_emulated_instruction(vcpu);
7571 }
7572 new_vmcs12 = kmap(page);
7573 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7574 kunmap(page);
7575 nested_release_page_clean(page);
7576 nested_vmx_failValid(vcpu,
7577 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7578 return kvm_skip_emulated_instruction(vcpu);
7579 }
7580
7581 nested_release_vmcs12(vmx);
7582 vmx->nested.current_vmcs12 = new_vmcs12;
7583 vmx->nested.current_vmcs12_page = page;
7584 /*
7585 * Load VMCS12 from guest memory since it is not already
7586 * cached.
7587 */
7588 memcpy(vmx->nested.cached_vmcs12,
7589 vmx->nested.current_vmcs12, VMCS12_SIZE);
7590 set_current_vmptr(vmx, vmptr);
7591 }
7592
7593 nested_vmx_succeed(vcpu);
7594 return kvm_skip_emulated_instruction(vcpu);
7595 }
7596
7597 /* Emulate the VMPTRST instruction */
7598 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7599 {
7600 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7601 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7602 gva_t vmcs_gva;
7603 struct x86_exception e;
7604
7605 if (!nested_vmx_check_permission(vcpu))
7606 return 1;
7607
7608 if (get_vmx_mem_address(vcpu, exit_qualification,
7609 vmx_instruction_info, true, &vmcs_gva))
7610 return 1;
7611 /* ok to use *_system, as hardware has verified cpl=0 */
7612 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7613 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7614 sizeof(u64), &e)) {
7615 kvm_inject_page_fault(vcpu, &e);
7616 return 1;
7617 }
7618 nested_vmx_succeed(vcpu);
7619 return kvm_skip_emulated_instruction(vcpu);
7620 }
7621
7622 /* Emulate the INVEPT instruction */
7623 static int handle_invept(struct kvm_vcpu *vcpu)
7624 {
7625 struct vcpu_vmx *vmx = to_vmx(vcpu);
7626 u32 vmx_instruction_info, types;
7627 unsigned long type;
7628 gva_t gva;
7629 struct x86_exception e;
7630 struct {
7631 u64 eptp, gpa;
7632 } operand;
7633
7634 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7635 SECONDARY_EXEC_ENABLE_EPT) ||
7636 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7637 kvm_queue_exception(vcpu, UD_VECTOR);
7638 return 1;
7639 }
7640
7641 if (!nested_vmx_check_permission(vcpu))
7642 return 1;
7643
7644 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7645 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7646
7647 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7648
7649 if (type >= 32 || !(types & (1 << type))) {
7650 nested_vmx_failValid(vcpu,
7651 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7652 return kvm_skip_emulated_instruction(vcpu);
7653 }
7654
7655 /* According to the Intel VMX instruction reference, the memory
7656 * operand is read even if it isn't needed (e.g., for type==global)
7657 */
7658 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7659 vmx_instruction_info, false, &gva))
7660 return 1;
7661 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7662 sizeof(operand), &e)) {
7663 kvm_inject_page_fault(vcpu, &e);
7664 return 1;
7665 }
7666
7667 switch (type) {
7668 case VMX_EPT_EXTENT_GLOBAL:
7669 /*
7670 * TODO: track mappings and invalidate
7671 * single context requests appropriately
7672 */
7673 case VMX_EPT_EXTENT_CONTEXT:
7674 kvm_mmu_sync_roots(vcpu);
7675 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7676 nested_vmx_succeed(vcpu);
7677 break;
7678 default:
7679 BUG_ON(1);
7680 break;
7681 }
7682
7683 return kvm_skip_emulated_instruction(vcpu);
7684 }
7685
7686 static int handle_invvpid(struct kvm_vcpu *vcpu)
7687 {
7688 struct vcpu_vmx *vmx = to_vmx(vcpu);
7689 u32 vmx_instruction_info;
7690 unsigned long type, types;
7691 gva_t gva;
7692 struct x86_exception e;
7693 struct {
7694 u64 vpid;
7695 u64 gla;
7696 } operand;
7697
7698 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7699 SECONDARY_EXEC_ENABLE_VPID) ||
7700 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7701 kvm_queue_exception(vcpu, UD_VECTOR);
7702 return 1;
7703 }
7704
7705 if (!nested_vmx_check_permission(vcpu))
7706 return 1;
7707
7708 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7709 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7710
7711 types = (vmx->nested.nested_vmx_vpid_caps &
7712 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7713
7714 if (type >= 32 || !(types & (1 << type))) {
7715 nested_vmx_failValid(vcpu,
7716 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7717 return kvm_skip_emulated_instruction(vcpu);
7718 }
7719
7720 /* according to the intel vmx instruction reference, the memory
7721 * operand is read even if it isn't needed (e.g., for type==global)
7722 */
7723 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7724 vmx_instruction_info, false, &gva))
7725 return 1;
7726 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7727 sizeof(operand), &e)) {
7728 kvm_inject_page_fault(vcpu, &e);
7729 return 1;
7730 }
7731 if (operand.vpid >> 16) {
7732 nested_vmx_failValid(vcpu,
7733 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7734 return kvm_skip_emulated_instruction(vcpu);
7735 }
7736
7737 switch (type) {
7738 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7739 if (is_noncanonical_address(operand.gla)) {
7740 nested_vmx_failValid(vcpu,
7741 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7742 return kvm_skip_emulated_instruction(vcpu);
7743 }
7744 /* fall through */
7745 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7746 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7747 if (!operand.vpid) {
7748 nested_vmx_failValid(vcpu,
7749 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7750 return kvm_skip_emulated_instruction(vcpu);
7751 }
7752 break;
7753 case VMX_VPID_EXTENT_ALL_CONTEXT:
7754 break;
7755 default:
7756 WARN_ON_ONCE(1);
7757 return kvm_skip_emulated_instruction(vcpu);
7758 }
7759
7760 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7761 nested_vmx_succeed(vcpu);
7762
7763 return kvm_skip_emulated_instruction(vcpu);
7764 }
7765
7766 static int handle_pml_full(struct kvm_vcpu *vcpu)
7767 {
7768 unsigned long exit_qualification;
7769
7770 trace_kvm_pml_full(vcpu->vcpu_id);
7771
7772 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7773
7774 /*
7775 * PML buffer FULL happened while executing iret from NMI,
7776 * "blocked by NMI" bit has to be set before next VM entry.
7777 */
7778 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7779 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7780 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7781 GUEST_INTR_STATE_NMI);
7782
7783 /*
7784 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7785 * here.., and there's no userspace involvement needed for PML.
7786 */
7787 return 1;
7788 }
7789
7790 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7791 {
7792 kvm_lapic_expired_hv_timer(vcpu);
7793 return 1;
7794 }
7795
7796 /*
7797 * The exit handlers return 1 if the exit was handled fully and guest execution
7798 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7799 * to be done to userspace and return 0.
7800 */
7801 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7802 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7803 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7804 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7805 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7806 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7807 [EXIT_REASON_CR_ACCESS] = handle_cr,
7808 [EXIT_REASON_DR_ACCESS] = handle_dr,
7809 [EXIT_REASON_CPUID] = handle_cpuid,
7810 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7811 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7812 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7813 [EXIT_REASON_HLT] = handle_halt,
7814 [EXIT_REASON_INVD] = handle_invd,
7815 [EXIT_REASON_INVLPG] = handle_invlpg,
7816 [EXIT_REASON_RDPMC] = handle_rdpmc,
7817 [EXIT_REASON_VMCALL] = handle_vmcall,
7818 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7819 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7820 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7821 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7822 [EXIT_REASON_VMREAD] = handle_vmread,
7823 [EXIT_REASON_VMRESUME] = handle_vmresume,
7824 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7825 [EXIT_REASON_VMOFF] = handle_vmoff,
7826 [EXIT_REASON_VMON] = handle_vmon,
7827 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7828 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7829 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7830 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7831 [EXIT_REASON_WBINVD] = handle_wbinvd,
7832 [EXIT_REASON_XSETBV] = handle_xsetbv,
7833 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7834 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7835 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7836 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7837 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7838 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7839 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7840 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7841 [EXIT_REASON_INVEPT] = handle_invept,
7842 [EXIT_REASON_INVVPID] = handle_invvpid,
7843 [EXIT_REASON_XSAVES] = handle_xsaves,
7844 [EXIT_REASON_XRSTORS] = handle_xrstors,
7845 [EXIT_REASON_PML_FULL] = handle_pml_full,
7846 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7847 };
7848
7849 static const int kvm_vmx_max_exit_handlers =
7850 ARRAY_SIZE(kvm_vmx_exit_handlers);
7851
7852 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7853 struct vmcs12 *vmcs12)
7854 {
7855 unsigned long exit_qualification;
7856 gpa_t bitmap, last_bitmap;
7857 unsigned int port;
7858 int size;
7859 u8 b;
7860
7861 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7862 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7863
7864 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7865
7866 port = exit_qualification >> 16;
7867 size = (exit_qualification & 7) + 1;
7868
7869 last_bitmap = (gpa_t)-1;
7870 b = -1;
7871
7872 while (size > 0) {
7873 if (port < 0x8000)
7874 bitmap = vmcs12->io_bitmap_a;
7875 else if (port < 0x10000)
7876 bitmap = vmcs12->io_bitmap_b;
7877 else
7878 return true;
7879 bitmap += (port & 0x7fff) / 8;
7880
7881 if (last_bitmap != bitmap)
7882 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7883 return true;
7884 if (b & (1 << (port & 7)))
7885 return true;
7886
7887 port++;
7888 size--;
7889 last_bitmap = bitmap;
7890 }
7891
7892 return false;
7893 }
7894
7895 /*
7896 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7897 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7898 * disinterest in the current event (read or write a specific MSR) by using an
7899 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7900 */
7901 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7902 struct vmcs12 *vmcs12, u32 exit_reason)
7903 {
7904 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7905 gpa_t bitmap;
7906
7907 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7908 return true;
7909
7910 /*
7911 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7912 * for the four combinations of read/write and low/high MSR numbers.
7913 * First we need to figure out which of the four to use:
7914 */
7915 bitmap = vmcs12->msr_bitmap;
7916 if (exit_reason == EXIT_REASON_MSR_WRITE)
7917 bitmap += 2048;
7918 if (msr_index >= 0xc0000000) {
7919 msr_index -= 0xc0000000;
7920 bitmap += 1024;
7921 }
7922
7923 /* Then read the msr_index'th bit from this bitmap: */
7924 if (msr_index < 1024*8) {
7925 unsigned char b;
7926 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7927 return true;
7928 return 1 & (b >> (msr_index & 7));
7929 } else
7930 return true; /* let L1 handle the wrong parameter */
7931 }
7932
7933 /*
7934 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7935 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7936 * intercept (via guest_host_mask etc.) the current event.
7937 */
7938 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7939 struct vmcs12 *vmcs12)
7940 {
7941 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7942 int cr = exit_qualification & 15;
7943 int reg;
7944 unsigned long val;
7945
7946 switch ((exit_qualification >> 4) & 3) {
7947 case 0: /* mov to cr */
7948 reg = (exit_qualification >> 8) & 15;
7949 val = kvm_register_readl(vcpu, reg);
7950 switch (cr) {
7951 case 0:
7952 if (vmcs12->cr0_guest_host_mask &
7953 (val ^ vmcs12->cr0_read_shadow))
7954 return true;
7955 break;
7956 case 3:
7957 if ((vmcs12->cr3_target_count >= 1 &&
7958 vmcs12->cr3_target_value0 == val) ||
7959 (vmcs12->cr3_target_count >= 2 &&
7960 vmcs12->cr3_target_value1 == val) ||
7961 (vmcs12->cr3_target_count >= 3 &&
7962 vmcs12->cr3_target_value2 == val) ||
7963 (vmcs12->cr3_target_count >= 4 &&
7964 vmcs12->cr3_target_value3 == val))
7965 return false;
7966 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7967 return true;
7968 break;
7969 case 4:
7970 if (vmcs12->cr4_guest_host_mask &
7971 (vmcs12->cr4_read_shadow ^ val))
7972 return true;
7973 break;
7974 case 8:
7975 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7976 return true;
7977 break;
7978 }
7979 break;
7980 case 2: /* clts */
7981 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7982 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7983 return true;
7984 break;
7985 case 1: /* mov from cr */
7986 switch (cr) {
7987 case 3:
7988 if (vmcs12->cpu_based_vm_exec_control &
7989 CPU_BASED_CR3_STORE_EXITING)
7990 return true;
7991 break;
7992 case 8:
7993 if (vmcs12->cpu_based_vm_exec_control &
7994 CPU_BASED_CR8_STORE_EXITING)
7995 return true;
7996 break;
7997 }
7998 break;
7999 case 3: /* lmsw */
8000 /*
8001 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8002 * cr0. Other attempted changes are ignored, with no exit.
8003 */
8004 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8005 if (vmcs12->cr0_guest_host_mask & 0xe &
8006 (val ^ vmcs12->cr0_read_shadow))
8007 return true;
8008 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8009 !(vmcs12->cr0_read_shadow & 0x1) &&
8010 (val & 0x1))
8011 return true;
8012 break;
8013 }
8014 return false;
8015 }
8016
8017 /*
8018 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8019 * should handle it ourselves in L0 (and then continue L2). Only call this
8020 * when in is_guest_mode (L2).
8021 */
8022 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8023 {
8024 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8025 struct vcpu_vmx *vmx = to_vmx(vcpu);
8026 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8027 u32 exit_reason = vmx->exit_reason;
8028
8029 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8030 vmcs_readl(EXIT_QUALIFICATION),
8031 vmx->idt_vectoring_info,
8032 intr_info,
8033 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8034 KVM_ISA_VMX);
8035
8036 if (vmx->nested.nested_run_pending)
8037 return false;
8038
8039 if (unlikely(vmx->fail)) {
8040 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8041 vmcs_read32(VM_INSTRUCTION_ERROR));
8042 return true;
8043 }
8044
8045 switch (exit_reason) {
8046 case EXIT_REASON_EXCEPTION_NMI:
8047 if (is_nmi(intr_info))
8048 return false;
8049 else if (is_page_fault(intr_info))
8050 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8051 else if (is_no_device(intr_info) &&
8052 !(vmcs12->guest_cr0 & X86_CR0_TS))
8053 return false;
8054 else if (is_debug(intr_info) &&
8055 vcpu->guest_debug &
8056 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8057 return false;
8058 else if (is_breakpoint(intr_info) &&
8059 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8060 return false;
8061 return vmcs12->exception_bitmap &
8062 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8063 case EXIT_REASON_EXTERNAL_INTERRUPT:
8064 return false;
8065 case EXIT_REASON_TRIPLE_FAULT:
8066 return true;
8067 case EXIT_REASON_PENDING_INTERRUPT:
8068 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8069 case EXIT_REASON_NMI_WINDOW:
8070 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8071 case EXIT_REASON_TASK_SWITCH:
8072 return true;
8073 case EXIT_REASON_CPUID:
8074 return true;
8075 case EXIT_REASON_HLT:
8076 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8077 case EXIT_REASON_INVD:
8078 return true;
8079 case EXIT_REASON_INVLPG:
8080 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8081 case EXIT_REASON_RDPMC:
8082 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8083 case EXIT_REASON_RDRAND:
8084 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8085 case EXIT_REASON_RDSEED:
8086 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8087 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8088 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8089 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8090 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8091 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8092 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8093 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8094 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8095 /*
8096 * VMX instructions trap unconditionally. This allows L1 to
8097 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8098 */
8099 return true;
8100 case EXIT_REASON_CR_ACCESS:
8101 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8102 case EXIT_REASON_DR_ACCESS:
8103 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8104 case EXIT_REASON_IO_INSTRUCTION:
8105 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8106 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8107 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8108 case EXIT_REASON_MSR_READ:
8109 case EXIT_REASON_MSR_WRITE:
8110 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8111 case EXIT_REASON_INVALID_STATE:
8112 return true;
8113 case EXIT_REASON_MWAIT_INSTRUCTION:
8114 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8115 case EXIT_REASON_MONITOR_TRAP_FLAG:
8116 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8117 case EXIT_REASON_MONITOR_INSTRUCTION:
8118 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8119 case EXIT_REASON_PAUSE_INSTRUCTION:
8120 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8121 nested_cpu_has2(vmcs12,
8122 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8123 case EXIT_REASON_MCE_DURING_VMENTRY:
8124 return false;
8125 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8126 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8127 case EXIT_REASON_APIC_ACCESS:
8128 return nested_cpu_has2(vmcs12,
8129 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8130 case EXIT_REASON_APIC_WRITE:
8131 case EXIT_REASON_EOI_INDUCED:
8132 /* apic_write and eoi_induced should exit unconditionally. */
8133 return true;
8134 case EXIT_REASON_EPT_VIOLATION:
8135 /*
8136 * L0 always deals with the EPT violation. If nested EPT is
8137 * used, and the nested mmu code discovers that the address is
8138 * missing in the guest EPT table (EPT12), the EPT violation
8139 * will be injected with nested_ept_inject_page_fault()
8140 */
8141 return false;
8142 case EXIT_REASON_EPT_MISCONFIG:
8143 /*
8144 * L2 never uses directly L1's EPT, but rather L0's own EPT
8145 * table (shadow on EPT) or a merged EPT table that L0 built
8146 * (EPT on EPT). So any problems with the structure of the
8147 * table is L0's fault.
8148 */
8149 return false;
8150 case EXIT_REASON_WBINVD:
8151 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8152 case EXIT_REASON_XSETBV:
8153 return true;
8154 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8155 /*
8156 * This should never happen, since it is not possible to
8157 * set XSS to a non-zero value---neither in L1 nor in L2.
8158 * If if it were, XSS would have to be checked against
8159 * the XSS exit bitmap in vmcs12.
8160 */
8161 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8162 case EXIT_REASON_PREEMPTION_TIMER:
8163 return false;
8164 case EXIT_REASON_PML_FULL:
8165 /* We emulate PML support to L1. */
8166 return false;
8167 default:
8168 return true;
8169 }
8170 }
8171
8172 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8173 {
8174 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8175 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8176 }
8177
8178 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8179 {
8180 if (vmx->pml_pg) {
8181 __free_page(vmx->pml_pg);
8182 vmx->pml_pg = NULL;
8183 }
8184 }
8185
8186 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8187 {
8188 struct vcpu_vmx *vmx = to_vmx(vcpu);
8189 u64 *pml_buf;
8190 u16 pml_idx;
8191
8192 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8193
8194 /* Do nothing if PML buffer is empty */
8195 if (pml_idx == (PML_ENTITY_NUM - 1))
8196 return;
8197
8198 /* PML index always points to next available PML buffer entity */
8199 if (pml_idx >= PML_ENTITY_NUM)
8200 pml_idx = 0;
8201 else
8202 pml_idx++;
8203
8204 pml_buf = page_address(vmx->pml_pg);
8205 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8206 u64 gpa;
8207
8208 gpa = pml_buf[pml_idx];
8209 WARN_ON(gpa & (PAGE_SIZE - 1));
8210 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8211 }
8212
8213 /* reset PML index */
8214 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8215 }
8216
8217 /*
8218 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8219 * Called before reporting dirty_bitmap to userspace.
8220 */
8221 static void kvm_flush_pml_buffers(struct kvm *kvm)
8222 {
8223 int i;
8224 struct kvm_vcpu *vcpu;
8225 /*
8226 * We only need to kick vcpu out of guest mode here, as PML buffer
8227 * is flushed at beginning of all VMEXITs, and it's obvious that only
8228 * vcpus running in guest are possible to have unflushed GPAs in PML
8229 * buffer.
8230 */
8231 kvm_for_each_vcpu(i, vcpu, kvm)
8232 kvm_vcpu_kick(vcpu);
8233 }
8234
8235 static void vmx_dump_sel(char *name, uint32_t sel)
8236 {
8237 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8238 name, vmcs_read16(sel),
8239 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8240 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8241 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8242 }
8243
8244 static void vmx_dump_dtsel(char *name, uint32_t limit)
8245 {
8246 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8247 name, vmcs_read32(limit),
8248 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8249 }
8250
8251 static void dump_vmcs(void)
8252 {
8253 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8254 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8255 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8256 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8257 u32 secondary_exec_control = 0;
8258 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8259 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8260 int i, n;
8261
8262 if (cpu_has_secondary_exec_ctrls())
8263 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8264
8265 pr_err("*** Guest State ***\n");
8266 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8267 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8268 vmcs_readl(CR0_GUEST_HOST_MASK));
8269 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8270 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8271 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8272 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8273 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8274 {
8275 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8276 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8277 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8278 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8279 }
8280 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8281 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8282 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8283 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8284 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8285 vmcs_readl(GUEST_SYSENTER_ESP),
8286 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8287 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8288 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8289 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8290 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8291 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8292 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8293 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8294 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8295 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8296 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8297 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8298 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8299 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8300 efer, vmcs_read64(GUEST_IA32_PAT));
8301 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8302 vmcs_read64(GUEST_IA32_DEBUGCTL),
8303 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8304 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8305 pr_err("PerfGlobCtl = 0x%016llx\n",
8306 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8307 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8308 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8309 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8310 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8311 vmcs_read32(GUEST_ACTIVITY_STATE));
8312 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8313 pr_err("InterruptStatus = %04x\n",
8314 vmcs_read16(GUEST_INTR_STATUS));
8315
8316 pr_err("*** Host State ***\n");
8317 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8318 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8319 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8320 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8321 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8322 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8323 vmcs_read16(HOST_TR_SELECTOR));
8324 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8325 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8326 vmcs_readl(HOST_TR_BASE));
8327 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8328 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8329 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8330 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8331 vmcs_readl(HOST_CR4));
8332 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8333 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8334 vmcs_read32(HOST_IA32_SYSENTER_CS),
8335 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8336 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8337 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8338 vmcs_read64(HOST_IA32_EFER),
8339 vmcs_read64(HOST_IA32_PAT));
8340 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8341 pr_err("PerfGlobCtl = 0x%016llx\n",
8342 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8343
8344 pr_err("*** Control State ***\n");
8345 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8346 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8347 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8348 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8349 vmcs_read32(EXCEPTION_BITMAP),
8350 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8351 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8352 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8353 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8354 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8355 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8356 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8357 vmcs_read32(VM_EXIT_INTR_INFO),
8358 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8359 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8360 pr_err(" reason=%08x qualification=%016lx\n",
8361 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8362 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8363 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8364 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8365 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8366 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8367 pr_err("TSC Multiplier = 0x%016llx\n",
8368 vmcs_read64(TSC_MULTIPLIER));
8369 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8370 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8371 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8372 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8373 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8374 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8375 n = vmcs_read32(CR3_TARGET_COUNT);
8376 for (i = 0; i + 1 < n; i += 4)
8377 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8378 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8379 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8380 if (i < n)
8381 pr_err("CR3 target%u=%016lx\n",
8382 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8383 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8384 pr_err("PLE Gap=%08x Window=%08x\n",
8385 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8386 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8387 pr_err("Virtual processor ID = 0x%04x\n",
8388 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8389 }
8390
8391 /*
8392 * The guest has exited. See if we can fix it or if we need userspace
8393 * assistance.
8394 */
8395 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8396 {
8397 struct vcpu_vmx *vmx = to_vmx(vcpu);
8398 u32 exit_reason = vmx->exit_reason;
8399 u32 vectoring_info = vmx->idt_vectoring_info;
8400
8401 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8402 vcpu->arch.gpa_available = false;
8403
8404 /*
8405 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8406 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8407 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8408 * mode as if vcpus is in root mode, the PML buffer must has been
8409 * flushed already.
8410 */
8411 if (enable_pml)
8412 vmx_flush_pml_buffer(vcpu);
8413
8414 /* If guest state is invalid, start emulating */
8415 if (vmx->emulation_required)
8416 return handle_invalid_guest_state(vcpu);
8417
8418 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8419 nested_vmx_vmexit(vcpu, exit_reason,
8420 vmcs_read32(VM_EXIT_INTR_INFO),
8421 vmcs_readl(EXIT_QUALIFICATION));
8422 return 1;
8423 }
8424
8425 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8426 dump_vmcs();
8427 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8428 vcpu->run->fail_entry.hardware_entry_failure_reason
8429 = exit_reason;
8430 return 0;
8431 }
8432
8433 if (unlikely(vmx->fail)) {
8434 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8435 vcpu->run->fail_entry.hardware_entry_failure_reason
8436 = vmcs_read32(VM_INSTRUCTION_ERROR);
8437 return 0;
8438 }
8439
8440 /*
8441 * Note:
8442 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8443 * delivery event since it indicates guest is accessing MMIO.
8444 * The vm-exit can be triggered again after return to guest that
8445 * will cause infinite loop.
8446 */
8447 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8448 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8449 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8450 exit_reason != EXIT_REASON_PML_FULL &&
8451 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8452 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8453 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8454 vcpu->run->internal.ndata = 3;
8455 vcpu->run->internal.data[0] = vectoring_info;
8456 vcpu->run->internal.data[1] = exit_reason;
8457 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8458 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8459 vcpu->run->internal.ndata++;
8460 vcpu->run->internal.data[3] =
8461 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8462 }
8463 return 0;
8464 }
8465
8466 if (exit_reason < kvm_vmx_max_exit_handlers
8467 && kvm_vmx_exit_handlers[exit_reason])
8468 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8469 else {
8470 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8471 exit_reason);
8472 kvm_queue_exception(vcpu, UD_VECTOR);
8473 return 1;
8474 }
8475 }
8476
8477 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8478 {
8479 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8480
8481 if (is_guest_mode(vcpu) &&
8482 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8483 return;
8484
8485 if (irr == -1 || tpr < irr) {
8486 vmcs_write32(TPR_THRESHOLD, 0);
8487 return;
8488 }
8489
8490 vmcs_write32(TPR_THRESHOLD, irr);
8491 }
8492
8493 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8494 {
8495 u32 sec_exec_control;
8496
8497 /* Postpone execution until vmcs01 is the current VMCS. */
8498 if (is_guest_mode(vcpu)) {
8499 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8500 return;
8501 }
8502
8503 if (!cpu_has_vmx_virtualize_x2apic_mode())
8504 return;
8505
8506 if (!cpu_need_tpr_shadow(vcpu))
8507 return;
8508
8509 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8510
8511 if (set) {
8512 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8513 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8514 } else {
8515 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8516 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8517 vmx_flush_tlb_ept_only(vcpu);
8518 }
8519 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8520
8521 vmx_set_msr_bitmap(vcpu);
8522 }
8523
8524 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8525 {
8526 struct vcpu_vmx *vmx = to_vmx(vcpu);
8527
8528 /*
8529 * Currently we do not handle the nested case where L2 has an
8530 * APIC access page of its own; that page is still pinned.
8531 * Hence, we skip the case where the VCPU is in guest mode _and_
8532 * L1 prepared an APIC access page for L2.
8533 *
8534 * For the case where L1 and L2 share the same APIC access page
8535 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8536 * in the vmcs12), this function will only update either the vmcs01
8537 * or the vmcs02. If the former, the vmcs02 will be updated by
8538 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8539 * the next L2->L1 exit.
8540 */
8541 if (!is_guest_mode(vcpu) ||
8542 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8543 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8544 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8545 vmx_flush_tlb_ept_only(vcpu);
8546 }
8547 }
8548
8549 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8550 {
8551 u16 status;
8552 u8 old;
8553
8554 if (max_isr == -1)
8555 max_isr = 0;
8556
8557 status = vmcs_read16(GUEST_INTR_STATUS);
8558 old = status >> 8;
8559 if (max_isr != old) {
8560 status &= 0xff;
8561 status |= max_isr << 8;
8562 vmcs_write16(GUEST_INTR_STATUS, status);
8563 }
8564 }
8565
8566 static void vmx_set_rvi(int vector)
8567 {
8568 u16 status;
8569 u8 old;
8570
8571 if (vector == -1)
8572 vector = 0;
8573
8574 status = vmcs_read16(GUEST_INTR_STATUS);
8575 old = (u8)status & 0xff;
8576 if ((u8)vector != old) {
8577 status &= ~0xff;
8578 status |= (u8)vector;
8579 vmcs_write16(GUEST_INTR_STATUS, status);
8580 }
8581 }
8582
8583 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8584 {
8585 if (!is_guest_mode(vcpu)) {
8586 vmx_set_rvi(max_irr);
8587 return;
8588 }
8589
8590 if (max_irr == -1)
8591 return;
8592
8593 /*
8594 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8595 * handles it.
8596 */
8597 if (nested_exit_on_intr(vcpu))
8598 return;
8599
8600 /*
8601 * Else, fall back to pre-APICv interrupt injection since L2
8602 * is run without virtual interrupt delivery.
8603 */
8604 if (!kvm_event_needs_reinjection(vcpu) &&
8605 vmx_interrupt_allowed(vcpu)) {
8606 kvm_queue_interrupt(vcpu, max_irr, false);
8607 vmx_inject_irq(vcpu);
8608 }
8609 }
8610
8611 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8612 {
8613 struct vcpu_vmx *vmx = to_vmx(vcpu);
8614 int max_irr;
8615
8616 WARN_ON(!vcpu->arch.apicv_active);
8617 if (pi_test_on(&vmx->pi_desc)) {
8618 pi_clear_on(&vmx->pi_desc);
8619 /*
8620 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8621 * But on x86 this is just a compiler barrier anyway.
8622 */
8623 smp_mb__after_atomic();
8624 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8625 } else {
8626 max_irr = kvm_lapic_find_highest_irr(vcpu);
8627 }
8628 vmx_hwapic_irr_update(vcpu, max_irr);
8629 return max_irr;
8630 }
8631
8632 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8633 {
8634 if (!kvm_vcpu_apicv_active(vcpu))
8635 return;
8636
8637 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8638 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8639 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8640 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8641 }
8642
8643 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8644 {
8645 struct vcpu_vmx *vmx = to_vmx(vcpu);
8646
8647 pi_clear_on(&vmx->pi_desc);
8648 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8649 }
8650
8651 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8652 {
8653 u32 exit_intr_info = 0;
8654 u16 basic_exit_reason = (u16)vmx->exit_reason;
8655
8656 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8657 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8658 return;
8659
8660 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8661 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8662 vmx->exit_intr_info = exit_intr_info;
8663
8664 /* if exit due to PF check for async PF */
8665 if (is_page_fault(exit_intr_info))
8666 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8667
8668 /* Handle machine checks before interrupts are enabled */
8669 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8670 is_machine_check(exit_intr_info))
8671 kvm_machine_check();
8672
8673 /* We need to handle NMIs before interrupts are enabled */
8674 if (is_nmi(exit_intr_info)) {
8675 kvm_before_handle_nmi(&vmx->vcpu);
8676 asm("int $2");
8677 kvm_after_handle_nmi(&vmx->vcpu);
8678 }
8679 }
8680
8681 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8682 {
8683 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8684 register void *__sp asm(_ASM_SP);
8685
8686 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8687 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8688 unsigned int vector;
8689 unsigned long entry;
8690 gate_desc *desc;
8691 struct vcpu_vmx *vmx = to_vmx(vcpu);
8692 #ifdef CONFIG_X86_64
8693 unsigned long tmp;
8694 #endif
8695
8696 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8697 desc = (gate_desc *)vmx->host_idt_base + vector;
8698 entry = gate_offset(*desc);
8699 asm volatile(
8700 #ifdef CONFIG_X86_64
8701 "mov %%" _ASM_SP ", %[sp]\n\t"
8702 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8703 "push $%c[ss]\n\t"
8704 "push %[sp]\n\t"
8705 #endif
8706 "pushf\n\t"
8707 __ASM_SIZE(push) " $%c[cs]\n\t"
8708 "call *%[entry]\n\t"
8709 :
8710 #ifdef CONFIG_X86_64
8711 [sp]"=&r"(tmp),
8712 #endif
8713 "+r"(__sp)
8714 :
8715 [entry]"r"(entry),
8716 [ss]"i"(__KERNEL_DS),
8717 [cs]"i"(__KERNEL_CS)
8718 );
8719 }
8720 }
8721 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8722
8723 static bool vmx_has_high_real_mode_segbase(void)
8724 {
8725 return enable_unrestricted_guest || emulate_invalid_guest_state;
8726 }
8727
8728 static bool vmx_mpx_supported(void)
8729 {
8730 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8731 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8732 }
8733
8734 static bool vmx_xsaves_supported(void)
8735 {
8736 return vmcs_config.cpu_based_2nd_exec_ctrl &
8737 SECONDARY_EXEC_XSAVES;
8738 }
8739
8740 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8741 {
8742 u32 exit_intr_info;
8743 bool unblock_nmi;
8744 u8 vector;
8745 bool idtv_info_valid;
8746
8747 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8748
8749 if (vmx->loaded_vmcs->nmi_known_unmasked)
8750 return;
8751 /*
8752 * Can't use vmx->exit_intr_info since we're not sure what
8753 * the exit reason is.
8754 */
8755 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8756 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8757 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8758 /*
8759 * SDM 3: 27.7.1.2 (September 2008)
8760 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8761 * a guest IRET fault.
8762 * SDM 3: 23.2.2 (September 2008)
8763 * Bit 12 is undefined in any of the following cases:
8764 * If the VM exit sets the valid bit in the IDT-vectoring
8765 * information field.
8766 * If the VM exit is due to a double fault.
8767 */
8768 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8769 vector != DF_VECTOR && !idtv_info_valid)
8770 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8771 GUEST_INTR_STATE_NMI);
8772 else
8773 vmx->loaded_vmcs->nmi_known_unmasked =
8774 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8775 & GUEST_INTR_STATE_NMI);
8776 }
8777
8778 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8779 u32 idt_vectoring_info,
8780 int instr_len_field,
8781 int error_code_field)
8782 {
8783 u8 vector;
8784 int type;
8785 bool idtv_info_valid;
8786
8787 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8788
8789 vcpu->arch.nmi_injected = false;
8790 kvm_clear_exception_queue(vcpu);
8791 kvm_clear_interrupt_queue(vcpu);
8792
8793 if (!idtv_info_valid)
8794 return;
8795
8796 kvm_make_request(KVM_REQ_EVENT, vcpu);
8797
8798 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8799 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8800
8801 switch (type) {
8802 case INTR_TYPE_NMI_INTR:
8803 vcpu->arch.nmi_injected = true;
8804 /*
8805 * SDM 3: 27.7.1.2 (September 2008)
8806 * Clear bit "block by NMI" before VM entry if a NMI
8807 * delivery faulted.
8808 */
8809 vmx_set_nmi_mask(vcpu, false);
8810 break;
8811 case INTR_TYPE_SOFT_EXCEPTION:
8812 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8813 /* fall through */
8814 case INTR_TYPE_HARD_EXCEPTION:
8815 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8816 u32 err = vmcs_read32(error_code_field);
8817 kvm_requeue_exception_e(vcpu, vector, err);
8818 } else
8819 kvm_requeue_exception(vcpu, vector);
8820 break;
8821 case INTR_TYPE_SOFT_INTR:
8822 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8823 /* fall through */
8824 case INTR_TYPE_EXT_INTR:
8825 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8826 break;
8827 default:
8828 break;
8829 }
8830 }
8831
8832 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8833 {
8834 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8835 VM_EXIT_INSTRUCTION_LEN,
8836 IDT_VECTORING_ERROR_CODE);
8837 }
8838
8839 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8840 {
8841 __vmx_complete_interrupts(vcpu,
8842 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8843 VM_ENTRY_INSTRUCTION_LEN,
8844 VM_ENTRY_EXCEPTION_ERROR_CODE);
8845
8846 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8847 }
8848
8849 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8850 {
8851 int i, nr_msrs;
8852 struct perf_guest_switch_msr *msrs;
8853
8854 msrs = perf_guest_get_msrs(&nr_msrs);
8855
8856 if (!msrs)
8857 return;
8858
8859 for (i = 0; i < nr_msrs; i++)
8860 if (msrs[i].host == msrs[i].guest)
8861 clear_atomic_switch_msr(vmx, msrs[i].msr);
8862 else
8863 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8864 msrs[i].host);
8865 }
8866
8867 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8868 {
8869 struct vcpu_vmx *vmx = to_vmx(vcpu);
8870 u64 tscl;
8871 u32 delta_tsc;
8872
8873 if (vmx->hv_deadline_tsc == -1)
8874 return;
8875
8876 tscl = rdtsc();
8877 if (vmx->hv_deadline_tsc > tscl)
8878 /* sure to be 32 bit only because checked on set_hv_timer */
8879 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8880 cpu_preemption_timer_multi);
8881 else
8882 delta_tsc = 0;
8883
8884 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8885 }
8886
8887 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8888 {
8889 struct vcpu_vmx *vmx = to_vmx(vcpu);
8890 unsigned long debugctlmsr, cr3, cr4;
8891
8892 /* Don't enter VMX if guest state is invalid, let the exit handler
8893 start emulation until we arrive back to a valid state */
8894 if (vmx->emulation_required)
8895 return;
8896
8897 if (vmx->ple_window_dirty) {
8898 vmx->ple_window_dirty = false;
8899 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8900 }
8901
8902 if (vmx->nested.sync_shadow_vmcs) {
8903 copy_vmcs12_to_shadow(vmx);
8904 vmx->nested.sync_shadow_vmcs = false;
8905 }
8906
8907 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8908 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8909 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8910 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8911
8912 cr3 = __get_current_cr3_fast();
8913 if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8914 vmcs_writel(HOST_CR3, cr3);
8915 vmx->host_state.vmcs_host_cr3 = cr3;
8916 }
8917
8918 cr4 = cr4_read_shadow();
8919 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8920 vmcs_writel(HOST_CR4, cr4);
8921 vmx->host_state.vmcs_host_cr4 = cr4;
8922 }
8923
8924 /* When single-stepping over STI and MOV SS, we must clear the
8925 * corresponding interruptibility bits in the guest state. Otherwise
8926 * vmentry fails as it then expects bit 14 (BS) in pending debug
8927 * exceptions being set, but that's not correct for the guest debugging
8928 * case. */
8929 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8930 vmx_set_interrupt_shadow(vcpu, 0);
8931
8932 if (vmx->guest_pkru_valid)
8933 __write_pkru(vmx->guest_pkru);
8934
8935 atomic_switch_perf_msrs(vmx);
8936 debugctlmsr = get_debugctlmsr();
8937
8938 vmx_arm_hv_timer(vcpu);
8939
8940 vmx->__launched = vmx->loaded_vmcs->launched;
8941 asm(
8942 /* Store host registers */
8943 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8944 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8945 "push %%" _ASM_CX " \n\t"
8946 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8947 "je 1f \n\t"
8948 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8949 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8950 "1: \n\t"
8951 /* Reload cr2 if changed */
8952 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8953 "mov %%cr2, %%" _ASM_DX " \n\t"
8954 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8955 "je 2f \n\t"
8956 "mov %%" _ASM_AX", %%cr2 \n\t"
8957 "2: \n\t"
8958 /* Check if vmlaunch of vmresume is needed */
8959 "cmpl $0, %c[launched](%0) \n\t"
8960 /* Load guest registers. Don't clobber flags. */
8961 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8962 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8963 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8964 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8965 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8966 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8967 #ifdef CONFIG_X86_64
8968 "mov %c[r8](%0), %%r8 \n\t"
8969 "mov %c[r9](%0), %%r9 \n\t"
8970 "mov %c[r10](%0), %%r10 \n\t"
8971 "mov %c[r11](%0), %%r11 \n\t"
8972 "mov %c[r12](%0), %%r12 \n\t"
8973 "mov %c[r13](%0), %%r13 \n\t"
8974 "mov %c[r14](%0), %%r14 \n\t"
8975 "mov %c[r15](%0), %%r15 \n\t"
8976 #endif
8977 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8978
8979 /* Enter guest mode */
8980 "jne 1f \n\t"
8981 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8982 "jmp 2f \n\t"
8983 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8984 "2: "
8985 /* Save guest registers, load host registers, keep flags */
8986 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8987 "pop %0 \n\t"
8988 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8989 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8990 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8991 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8992 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8993 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8994 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8995 #ifdef CONFIG_X86_64
8996 "mov %%r8, %c[r8](%0) \n\t"
8997 "mov %%r9, %c[r9](%0) \n\t"
8998 "mov %%r10, %c[r10](%0) \n\t"
8999 "mov %%r11, %c[r11](%0) \n\t"
9000 "mov %%r12, %c[r12](%0) \n\t"
9001 "mov %%r13, %c[r13](%0) \n\t"
9002 "mov %%r14, %c[r14](%0) \n\t"
9003 "mov %%r15, %c[r15](%0) \n\t"
9004 #endif
9005 "mov %%cr2, %%" _ASM_AX " \n\t"
9006 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9007
9008 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9009 "setbe %c[fail](%0) \n\t"
9010 ".pushsection .rodata \n\t"
9011 ".global vmx_return \n\t"
9012 "vmx_return: " _ASM_PTR " 2b \n\t"
9013 ".popsection"
9014 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9015 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9016 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9017 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9018 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9019 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9020 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9021 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9022 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9023 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9024 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9025 #ifdef CONFIG_X86_64
9026 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9027 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9028 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9029 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9030 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9031 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9032 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9033 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9034 #endif
9035 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9036 [wordsize]"i"(sizeof(ulong))
9037 : "cc", "memory"
9038 #ifdef CONFIG_X86_64
9039 , "rax", "rbx", "rdi", "rsi"
9040 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9041 #else
9042 , "eax", "ebx", "edi", "esi"
9043 #endif
9044 );
9045
9046 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9047 if (debugctlmsr)
9048 update_debugctlmsr(debugctlmsr);
9049
9050 #ifndef CONFIG_X86_64
9051 /*
9052 * The sysexit path does not restore ds/es, so we must set them to
9053 * a reasonable value ourselves.
9054 *
9055 * We can't defer this to vmx_load_host_state() since that function
9056 * may be executed in interrupt context, which saves and restore segments
9057 * around it, nullifying its effect.
9058 */
9059 loadsegment(ds, __USER_DS);
9060 loadsegment(es, __USER_DS);
9061 #endif
9062
9063 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9064 | (1 << VCPU_EXREG_RFLAGS)
9065 | (1 << VCPU_EXREG_PDPTR)
9066 | (1 << VCPU_EXREG_SEGMENTS)
9067 | (1 << VCPU_EXREG_CR3));
9068 vcpu->arch.regs_dirty = 0;
9069
9070 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9071
9072 vmx->loaded_vmcs->launched = 1;
9073
9074 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9075
9076 /*
9077 * eager fpu is enabled if PKEY is supported and CR4 is switched
9078 * back on host, so it is safe to read guest PKRU from current
9079 * XSAVE.
9080 */
9081 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9082 vmx->guest_pkru = __read_pkru();
9083 if (vmx->guest_pkru != vmx->host_pkru) {
9084 vmx->guest_pkru_valid = true;
9085 __write_pkru(vmx->host_pkru);
9086 } else
9087 vmx->guest_pkru_valid = false;
9088 }
9089
9090 /*
9091 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9092 * we did not inject a still-pending event to L1 now because of
9093 * nested_run_pending, we need to re-enable this bit.
9094 */
9095 if (vmx->nested.nested_run_pending)
9096 kvm_make_request(KVM_REQ_EVENT, vcpu);
9097
9098 vmx->nested.nested_run_pending = 0;
9099
9100 vmx_complete_atomic_exit(vmx);
9101 vmx_recover_nmi_blocking(vmx);
9102 vmx_complete_interrupts(vmx);
9103 }
9104 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9105
9106 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9107 {
9108 struct vcpu_vmx *vmx = to_vmx(vcpu);
9109 int cpu;
9110
9111 if (vmx->loaded_vmcs == vmcs)
9112 return;
9113
9114 cpu = get_cpu();
9115 vmx->loaded_vmcs = vmcs;
9116 vmx_vcpu_put(vcpu);
9117 vmx_vcpu_load(vcpu, cpu);
9118 vcpu->cpu = cpu;
9119 put_cpu();
9120 }
9121
9122 /*
9123 * Ensure that the current vmcs of the logical processor is the
9124 * vmcs01 of the vcpu before calling free_nested().
9125 */
9126 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9127 {
9128 struct vcpu_vmx *vmx = to_vmx(vcpu);
9129 int r;
9130
9131 r = vcpu_load(vcpu);
9132 BUG_ON(r);
9133 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9134 free_nested(vmx);
9135 vcpu_put(vcpu);
9136 }
9137
9138 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9139 {
9140 struct vcpu_vmx *vmx = to_vmx(vcpu);
9141
9142 if (enable_pml)
9143 vmx_destroy_pml_buffer(vmx);
9144 free_vpid(vmx->vpid);
9145 leave_guest_mode(vcpu);
9146 vmx_free_vcpu_nested(vcpu);
9147 free_loaded_vmcs(vmx->loaded_vmcs);
9148 kfree(vmx->guest_msrs);
9149 kvm_vcpu_uninit(vcpu);
9150 kmem_cache_free(kvm_vcpu_cache, vmx);
9151 }
9152
9153 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9154 {
9155 int err;
9156 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9157 int cpu;
9158
9159 if (!vmx)
9160 return ERR_PTR(-ENOMEM);
9161
9162 vmx->vpid = allocate_vpid();
9163
9164 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9165 if (err)
9166 goto free_vcpu;
9167
9168 err = -ENOMEM;
9169
9170 /*
9171 * If PML is turned on, failure on enabling PML just results in failure
9172 * of creating the vcpu, therefore we can simplify PML logic (by
9173 * avoiding dealing with cases, such as enabling PML partially on vcpus
9174 * for the guest, etc.
9175 */
9176 if (enable_pml) {
9177 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9178 if (!vmx->pml_pg)
9179 goto uninit_vcpu;
9180 }
9181
9182 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9183 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9184 > PAGE_SIZE);
9185
9186 if (!vmx->guest_msrs)
9187 goto free_pml;
9188
9189 vmx->loaded_vmcs = &vmx->vmcs01;
9190 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9191 vmx->loaded_vmcs->shadow_vmcs = NULL;
9192 if (!vmx->loaded_vmcs->vmcs)
9193 goto free_msrs;
9194 loaded_vmcs_init(vmx->loaded_vmcs);
9195
9196 cpu = get_cpu();
9197 vmx_vcpu_load(&vmx->vcpu, cpu);
9198 vmx->vcpu.cpu = cpu;
9199 err = vmx_vcpu_setup(vmx);
9200 vmx_vcpu_put(&vmx->vcpu);
9201 put_cpu();
9202 if (err)
9203 goto free_vmcs;
9204 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9205 err = alloc_apic_access_page(kvm);
9206 if (err)
9207 goto free_vmcs;
9208 }
9209
9210 if (enable_ept) {
9211 if (!kvm->arch.ept_identity_map_addr)
9212 kvm->arch.ept_identity_map_addr =
9213 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9214 err = init_rmode_identity_map(kvm);
9215 if (err)
9216 goto free_vmcs;
9217 }
9218
9219 if (nested) {
9220 nested_vmx_setup_ctls_msrs(vmx);
9221 vmx->nested.vpid02 = allocate_vpid();
9222 }
9223
9224 vmx->nested.posted_intr_nv = -1;
9225 vmx->nested.current_vmptr = -1ull;
9226 vmx->nested.current_vmcs12 = NULL;
9227
9228 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9229
9230 return &vmx->vcpu;
9231
9232 free_vmcs:
9233 free_vpid(vmx->nested.vpid02);
9234 free_loaded_vmcs(vmx->loaded_vmcs);
9235 free_msrs:
9236 kfree(vmx->guest_msrs);
9237 free_pml:
9238 vmx_destroy_pml_buffer(vmx);
9239 uninit_vcpu:
9240 kvm_vcpu_uninit(&vmx->vcpu);
9241 free_vcpu:
9242 free_vpid(vmx->vpid);
9243 kmem_cache_free(kvm_vcpu_cache, vmx);
9244 return ERR_PTR(err);
9245 }
9246
9247 static void __init vmx_check_processor_compat(void *rtn)
9248 {
9249 struct vmcs_config vmcs_conf;
9250
9251 *(int *)rtn = 0;
9252 if (setup_vmcs_config(&vmcs_conf) < 0)
9253 *(int *)rtn = -EIO;
9254 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9255 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9256 smp_processor_id());
9257 *(int *)rtn = -EIO;
9258 }
9259 }
9260
9261 static int get_ept_level(void)
9262 {
9263 return VMX_EPT_DEFAULT_GAW + 1;
9264 }
9265
9266 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9267 {
9268 u8 cache;
9269 u64 ipat = 0;
9270
9271 /* For VT-d and EPT combination
9272 * 1. MMIO: always map as UC
9273 * 2. EPT with VT-d:
9274 * a. VT-d without snooping control feature: can't guarantee the
9275 * result, try to trust guest.
9276 * b. VT-d with snooping control feature: snooping control feature of
9277 * VT-d engine can guarantee the cache correctness. Just set it
9278 * to WB to keep consistent with host. So the same as item 3.
9279 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9280 * consistent with host MTRR
9281 */
9282 if (is_mmio) {
9283 cache = MTRR_TYPE_UNCACHABLE;
9284 goto exit;
9285 }
9286
9287 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9288 ipat = VMX_EPT_IPAT_BIT;
9289 cache = MTRR_TYPE_WRBACK;
9290 goto exit;
9291 }
9292
9293 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9294 ipat = VMX_EPT_IPAT_BIT;
9295 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9296 cache = MTRR_TYPE_WRBACK;
9297 else
9298 cache = MTRR_TYPE_UNCACHABLE;
9299 goto exit;
9300 }
9301
9302 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9303
9304 exit:
9305 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9306 }
9307
9308 static int vmx_get_lpage_level(void)
9309 {
9310 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9311 return PT_DIRECTORY_LEVEL;
9312 else
9313 /* For shadow and EPT supported 1GB page */
9314 return PT_PDPE_LEVEL;
9315 }
9316
9317 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9318 {
9319 /*
9320 * These bits in the secondary execution controls field
9321 * are dynamic, the others are mostly based on the hypervisor
9322 * architecture and the guest's CPUID. Do not touch the
9323 * dynamic bits.
9324 */
9325 u32 mask =
9326 SECONDARY_EXEC_SHADOW_VMCS |
9327 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9328 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9329
9330 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9331
9332 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9333 (new_ctl & ~mask) | (cur_ctl & mask));
9334 }
9335
9336 /*
9337 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9338 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9339 */
9340 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9341 {
9342 struct vcpu_vmx *vmx = to_vmx(vcpu);
9343 struct kvm_cpuid_entry2 *entry;
9344
9345 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9346 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9347
9348 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9349 if (entry && (entry->_reg & (_cpuid_mask))) \
9350 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9351 } while (0)
9352
9353 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9354 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9355 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9356 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9357 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9358 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9359 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9360 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9361 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9362 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9363 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9364 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9365 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9366 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9367 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9368
9369 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9370 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9371 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9372 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9373 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9374 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9375 cr4_fixed1_update(bit(11), ecx, bit(2));
9376
9377 #undef cr4_fixed1_update
9378 }
9379
9380 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9381 {
9382 struct kvm_cpuid_entry2 *best;
9383 struct vcpu_vmx *vmx = to_vmx(vcpu);
9384 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9385
9386 if (vmx_rdtscp_supported()) {
9387 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9388 if (!rdtscp_enabled)
9389 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9390
9391 if (nested) {
9392 if (rdtscp_enabled)
9393 vmx->nested.nested_vmx_secondary_ctls_high |=
9394 SECONDARY_EXEC_RDTSCP;
9395 else
9396 vmx->nested.nested_vmx_secondary_ctls_high &=
9397 ~SECONDARY_EXEC_RDTSCP;
9398 }
9399 }
9400
9401 /* Exposing INVPCID only when PCID is exposed */
9402 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9403 if (vmx_invpcid_supported() &&
9404 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9405 !guest_cpuid_has_pcid(vcpu))) {
9406 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9407
9408 if (best)
9409 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9410 }
9411
9412 if (cpu_has_secondary_exec_ctrls())
9413 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9414
9415 if (nested_vmx_allowed(vcpu))
9416 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9417 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9418 else
9419 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9420 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9421
9422 if (nested_vmx_allowed(vcpu))
9423 nested_vmx_cr_fixed1_bits_update(vcpu);
9424 }
9425
9426 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9427 {
9428 if (func == 1 && nested)
9429 entry->ecx |= bit(X86_FEATURE_VMX);
9430 }
9431
9432 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9433 struct x86_exception *fault)
9434 {
9435 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9436 struct vcpu_vmx *vmx = to_vmx(vcpu);
9437 u32 exit_reason;
9438 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9439
9440 if (vmx->nested.pml_full) {
9441 exit_reason = EXIT_REASON_PML_FULL;
9442 vmx->nested.pml_full = false;
9443 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9444 } else if (fault->error_code & PFERR_RSVD_MASK)
9445 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9446 else
9447 exit_reason = EXIT_REASON_EPT_VIOLATION;
9448
9449 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9450 vmcs12->guest_physical_address = fault->address;
9451 }
9452
9453 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9454 {
9455 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9456 }
9457
9458 /* Callbacks for nested_ept_init_mmu_context: */
9459
9460 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9461 {
9462 /* return the page table to be shadowed - in our case, EPT12 */
9463 return get_vmcs12(vcpu)->ept_pointer;
9464 }
9465
9466 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9467 {
9468 bool wants_ad;
9469
9470 WARN_ON(mmu_is_nested(vcpu));
9471 wants_ad = nested_ept_ad_enabled(vcpu);
9472 if (wants_ad && !enable_ept_ad_bits)
9473 return 1;
9474
9475 kvm_mmu_unload(vcpu);
9476 kvm_init_shadow_ept_mmu(vcpu,
9477 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9478 VMX_EPT_EXECUTE_ONLY_BIT,
9479 wants_ad);
9480 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9481 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9482 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9483
9484 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9485 return 0;
9486 }
9487
9488 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9489 {
9490 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9491 }
9492
9493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9494 u16 error_code)
9495 {
9496 bool inequality, bit;
9497
9498 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9499 inequality =
9500 (error_code & vmcs12->page_fault_error_code_mask) !=
9501 vmcs12->page_fault_error_code_match;
9502 return inequality ^ bit;
9503 }
9504
9505 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9506 struct x86_exception *fault)
9507 {
9508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9509
9510 WARN_ON(!is_guest_mode(vcpu));
9511
9512 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9513 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9514 vmcs_read32(VM_EXIT_INTR_INFO),
9515 vmcs_readl(EXIT_QUALIFICATION));
9516 else
9517 kvm_inject_page_fault(vcpu, fault);
9518 }
9519
9520 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9521 struct vmcs12 *vmcs12);
9522
9523 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9524 struct vmcs12 *vmcs12)
9525 {
9526 struct vcpu_vmx *vmx = to_vmx(vcpu);
9527 u64 hpa;
9528
9529 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9530 /*
9531 * Translate L1 physical address to host physical
9532 * address for vmcs02. Keep the page pinned, so this
9533 * physical address remains valid. We keep a reference
9534 * to it so we can release it later.
9535 */
9536 if (vmx->nested.apic_access_page) /* shouldn't happen */
9537 nested_release_page(vmx->nested.apic_access_page);
9538 vmx->nested.apic_access_page =
9539 nested_get_page(vcpu, vmcs12->apic_access_addr);
9540 /*
9541 * If translation failed, no matter: This feature asks
9542 * to exit when accessing the given address, and if it
9543 * can never be accessed, this feature won't do
9544 * anything anyway.
9545 */
9546 if (vmx->nested.apic_access_page) {
9547 hpa = page_to_phys(vmx->nested.apic_access_page);
9548 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9549 } else {
9550 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9551 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9552 }
9553 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9554 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9555 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9556 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9557 kvm_vcpu_reload_apic_access_page(vcpu);
9558 }
9559
9560 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9561 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9562 nested_release_page(vmx->nested.virtual_apic_page);
9563 vmx->nested.virtual_apic_page =
9564 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9565
9566 /*
9567 * If translation failed, VM entry will fail because
9568 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9569 * Failing the vm entry is _not_ what the processor
9570 * does but it's basically the only possibility we
9571 * have. We could still enter the guest if CR8 load
9572 * exits are enabled, CR8 store exits are enabled, and
9573 * virtualize APIC access is disabled; in this case
9574 * the processor would never use the TPR shadow and we
9575 * could simply clear the bit from the execution
9576 * control. But such a configuration is useless, so
9577 * let's keep the code simple.
9578 */
9579 if (vmx->nested.virtual_apic_page) {
9580 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9581 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9582 }
9583 }
9584
9585 if (nested_cpu_has_posted_intr(vmcs12)) {
9586 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9587 kunmap(vmx->nested.pi_desc_page);
9588 nested_release_page(vmx->nested.pi_desc_page);
9589 }
9590 vmx->nested.pi_desc_page =
9591 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9592 vmx->nested.pi_desc =
9593 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9594 if (!vmx->nested.pi_desc) {
9595 nested_release_page_clean(vmx->nested.pi_desc_page);
9596 return;
9597 }
9598 vmx->nested.pi_desc =
9599 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9600 (unsigned long)(vmcs12->posted_intr_desc_addr &
9601 (PAGE_SIZE - 1)));
9602 vmcs_write64(POSTED_INTR_DESC_ADDR,
9603 page_to_phys(vmx->nested.pi_desc_page) +
9604 (unsigned long)(vmcs12->posted_intr_desc_addr &
9605 (PAGE_SIZE - 1)));
9606 }
9607 if (cpu_has_vmx_msr_bitmap() &&
9608 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9609 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9610 ;
9611 else
9612 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9613 CPU_BASED_USE_MSR_BITMAPS);
9614 }
9615
9616 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9617 {
9618 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9619 struct vcpu_vmx *vmx = to_vmx(vcpu);
9620
9621 if (vcpu->arch.virtual_tsc_khz == 0)
9622 return;
9623
9624 /* Make sure short timeouts reliably trigger an immediate vmexit.
9625 * hrtimer_start does not guarantee this. */
9626 if (preemption_timeout <= 1) {
9627 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9628 return;
9629 }
9630
9631 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9632 preemption_timeout *= 1000000;
9633 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9634 hrtimer_start(&vmx->nested.preemption_timer,
9635 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9636 }
9637
9638 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9639 struct vmcs12 *vmcs12)
9640 {
9641 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9642 return 0;
9643
9644 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9645 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9646 return -EINVAL;
9647
9648 return 0;
9649 }
9650
9651 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9652 struct vmcs12 *vmcs12)
9653 {
9654 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9655 return 0;
9656
9657 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9658 return -EINVAL;
9659
9660 return 0;
9661 }
9662
9663 /*
9664 * Merge L0's and L1's MSR bitmap, return false to indicate that
9665 * we do not use the hardware.
9666 */
9667 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9668 struct vmcs12 *vmcs12)
9669 {
9670 int msr;
9671 struct page *page;
9672 unsigned long *msr_bitmap_l1;
9673 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9674
9675 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9676 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9677 return false;
9678
9679 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9680 if (!page)
9681 return false;
9682 msr_bitmap_l1 = (unsigned long *)kmap(page);
9683
9684 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9685
9686 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9687 if (nested_cpu_has_apic_reg_virt(vmcs12))
9688 for (msr = 0x800; msr <= 0x8ff; msr++)
9689 nested_vmx_disable_intercept_for_msr(
9690 msr_bitmap_l1, msr_bitmap_l0,
9691 msr, MSR_TYPE_R);
9692
9693 nested_vmx_disable_intercept_for_msr(
9694 msr_bitmap_l1, msr_bitmap_l0,
9695 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9696 MSR_TYPE_R | MSR_TYPE_W);
9697
9698 if (nested_cpu_has_vid(vmcs12)) {
9699 nested_vmx_disable_intercept_for_msr(
9700 msr_bitmap_l1, msr_bitmap_l0,
9701 APIC_BASE_MSR + (APIC_EOI >> 4),
9702 MSR_TYPE_W);
9703 nested_vmx_disable_intercept_for_msr(
9704 msr_bitmap_l1, msr_bitmap_l0,
9705 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9706 MSR_TYPE_W);
9707 }
9708 }
9709 kunmap(page);
9710 nested_release_page_clean(page);
9711
9712 return true;
9713 }
9714
9715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9716 struct vmcs12 *vmcs12)
9717 {
9718 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9719 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9720 !nested_cpu_has_vid(vmcs12) &&
9721 !nested_cpu_has_posted_intr(vmcs12))
9722 return 0;
9723
9724 /*
9725 * If virtualize x2apic mode is enabled,
9726 * virtualize apic access must be disabled.
9727 */
9728 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9729 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9730 return -EINVAL;
9731
9732 /*
9733 * If virtual interrupt delivery is enabled,
9734 * we must exit on external interrupts.
9735 */
9736 if (nested_cpu_has_vid(vmcs12) &&
9737 !nested_exit_on_intr(vcpu))
9738 return -EINVAL;
9739
9740 /*
9741 * bits 15:8 should be zero in posted_intr_nv,
9742 * the descriptor address has been already checked
9743 * in nested_get_vmcs12_pages.
9744 */
9745 if (nested_cpu_has_posted_intr(vmcs12) &&
9746 (!nested_cpu_has_vid(vmcs12) ||
9747 !nested_exit_intr_ack_set(vcpu) ||
9748 vmcs12->posted_intr_nv & 0xff00))
9749 return -EINVAL;
9750
9751 /* tpr shadow is needed by all apicv features. */
9752 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9753 return -EINVAL;
9754
9755 return 0;
9756 }
9757
9758 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9759 unsigned long count_field,
9760 unsigned long addr_field)
9761 {
9762 int maxphyaddr;
9763 u64 count, addr;
9764
9765 if (vmcs12_read_any(vcpu, count_field, &count) ||
9766 vmcs12_read_any(vcpu, addr_field, &addr)) {
9767 WARN_ON(1);
9768 return -EINVAL;
9769 }
9770 if (count == 0)
9771 return 0;
9772 maxphyaddr = cpuid_maxphyaddr(vcpu);
9773 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9774 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9775 pr_debug_ratelimited(
9776 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9777 addr_field, maxphyaddr, count, addr);
9778 return -EINVAL;
9779 }
9780 return 0;
9781 }
9782
9783 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9784 struct vmcs12 *vmcs12)
9785 {
9786 if (vmcs12->vm_exit_msr_load_count == 0 &&
9787 vmcs12->vm_exit_msr_store_count == 0 &&
9788 vmcs12->vm_entry_msr_load_count == 0)
9789 return 0; /* Fast path */
9790 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9791 VM_EXIT_MSR_LOAD_ADDR) ||
9792 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9793 VM_EXIT_MSR_STORE_ADDR) ||
9794 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9795 VM_ENTRY_MSR_LOAD_ADDR))
9796 return -EINVAL;
9797 return 0;
9798 }
9799
9800 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9801 struct vmcs12 *vmcs12)
9802 {
9803 u64 address = vmcs12->pml_address;
9804 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9805
9806 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9807 if (!nested_cpu_has_ept(vmcs12) ||
9808 !IS_ALIGNED(address, 4096) ||
9809 address >> maxphyaddr)
9810 return -EINVAL;
9811 }
9812
9813 return 0;
9814 }
9815
9816 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9817 struct vmx_msr_entry *e)
9818 {
9819 /* x2APIC MSR accesses are not allowed */
9820 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9821 return -EINVAL;
9822 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9823 e->index == MSR_IA32_UCODE_REV)
9824 return -EINVAL;
9825 if (e->reserved != 0)
9826 return -EINVAL;
9827 return 0;
9828 }
9829
9830 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9831 struct vmx_msr_entry *e)
9832 {
9833 if (e->index == MSR_FS_BASE ||
9834 e->index == MSR_GS_BASE ||
9835 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9836 nested_vmx_msr_check_common(vcpu, e))
9837 return -EINVAL;
9838 return 0;
9839 }
9840
9841 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9842 struct vmx_msr_entry *e)
9843 {
9844 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9845 nested_vmx_msr_check_common(vcpu, e))
9846 return -EINVAL;
9847 return 0;
9848 }
9849
9850 /*
9851 * Load guest's/host's msr at nested entry/exit.
9852 * return 0 for success, entry index for failure.
9853 */
9854 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9855 {
9856 u32 i;
9857 struct vmx_msr_entry e;
9858 struct msr_data msr;
9859
9860 msr.host_initiated = false;
9861 for (i = 0; i < count; i++) {
9862 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9863 &e, sizeof(e))) {
9864 pr_debug_ratelimited(
9865 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9866 __func__, i, gpa + i * sizeof(e));
9867 goto fail;
9868 }
9869 if (nested_vmx_load_msr_check(vcpu, &e)) {
9870 pr_debug_ratelimited(
9871 "%s check failed (%u, 0x%x, 0x%x)\n",
9872 __func__, i, e.index, e.reserved);
9873 goto fail;
9874 }
9875 msr.index = e.index;
9876 msr.data = e.value;
9877 if (kvm_set_msr(vcpu, &msr)) {
9878 pr_debug_ratelimited(
9879 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9880 __func__, i, e.index, e.value);
9881 goto fail;
9882 }
9883 }
9884 return 0;
9885 fail:
9886 return i + 1;
9887 }
9888
9889 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9890 {
9891 u32 i;
9892 struct vmx_msr_entry e;
9893
9894 for (i = 0; i < count; i++) {
9895 struct msr_data msr_info;
9896 if (kvm_vcpu_read_guest(vcpu,
9897 gpa + i * sizeof(e),
9898 &e, 2 * sizeof(u32))) {
9899 pr_debug_ratelimited(
9900 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9901 __func__, i, gpa + i * sizeof(e));
9902 return -EINVAL;
9903 }
9904 if (nested_vmx_store_msr_check(vcpu, &e)) {
9905 pr_debug_ratelimited(
9906 "%s check failed (%u, 0x%x, 0x%x)\n",
9907 __func__, i, e.index, e.reserved);
9908 return -EINVAL;
9909 }
9910 msr_info.host_initiated = false;
9911 msr_info.index = e.index;
9912 if (kvm_get_msr(vcpu, &msr_info)) {
9913 pr_debug_ratelimited(
9914 "%s cannot read MSR (%u, 0x%x)\n",
9915 __func__, i, e.index);
9916 return -EINVAL;
9917 }
9918 if (kvm_vcpu_write_guest(vcpu,
9919 gpa + i * sizeof(e) +
9920 offsetof(struct vmx_msr_entry, value),
9921 &msr_info.data, sizeof(msr_info.data))) {
9922 pr_debug_ratelimited(
9923 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9924 __func__, i, e.index, msr_info.data);
9925 return -EINVAL;
9926 }
9927 }
9928 return 0;
9929 }
9930
9931 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9932 {
9933 unsigned long invalid_mask;
9934
9935 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9936 return (val & invalid_mask) == 0;
9937 }
9938
9939 /*
9940 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9941 * emulating VM entry into a guest with EPT enabled.
9942 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9943 * is assigned to entry_failure_code on failure.
9944 */
9945 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9946 u32 *entry_failure_code)
9947 {
9948 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9949 if (!nested_cr3_valid(vcpu, cr3)) {
9950 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9951 return 1;
9952 }
9953
9954 /*
9955 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9956 * must not be dereferenced.
9957 */
9958 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9959 !nested_ept) {
9960 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9961 *entry_failure_code = ENTRY_FAIL_PDPTE;
9962 return 1;
9963 }
9964 }
9965
9966 vcpu->arch.cr3 = cr3;
9967 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9968 }
9969
9970 kvm_mmu_reset_context(vcpu);
9971 return 0;
9972 }
9973
9974 /*
9975 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9976 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9977 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9978 * guest in a way that will both be appropriate to L1's requests, and our
9979 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9980 * function also has additional necessary side-effects, like setting various
9981 * vcpu->arch fields.
9982 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9983 * is assigned to entry_failure_code on failure.
9984 */
9985 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9986 bool from_vmentry, u32 *entry_failure_code)
9987 {
9988 struct vcpu_vmx *vmx = to_vmx(vcpu);
9989 u32 exec_control, vmcs12_exec_ctrl;
9990
9991 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9992 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9993 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9994 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9995 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9996 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9997 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9998 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9999 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10000 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10001 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10002 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10003 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10004 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10005 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10006 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10007 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10008 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10009 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10010 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10011 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10012 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10013 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10014 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10015 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10016 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10017 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10018 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10019 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10020 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10021 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10022 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10023 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10024 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10025 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10026 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10027
10028 if (from_vmentry &&
10029 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10030 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10031 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10032 } else {
10033 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10034 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10035 }
10036 if (from_vmentry) {
10037 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10038 vmcs12->vm_entry_intr_info_field);
10039 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10040 vmcs12->vm_entry_exception_error_code);
10041 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10042 vmcs12->vm_entry_instruction_len);
10043 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10044 vmcs12->guest_interruptibility_info);
10045 vmx->loaded_vmcs->nmi_known_unmasked =
10046 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10047 } else {
10048 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10049 }
10050 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10051 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10052 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10053 vmcs12->guest_pending_dbg_exceptions);
10054 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10055 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10056
10057 if (nested_cpu_has_xsaves(vmcs12))
10058 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10059 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10060
10061 exec_control = vmcs12->pin_based_vm_exec_control;
10062
10063 /* Preemption timer setting is only taken from vmcs01. */
10064 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10065 exec_control |= vmcs_config.pin_based_exec_ctrl;
10066 if (vmx->hv_deadline_tsc == -1)
10067 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10068
10069 /* Posted interrupts setting is only taken from vmcs12. */
10070 if (nested_cpu_has_posted_intr(vmcs12)) {
10071 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10072 vmx->nested.pi_pending = false;
10073 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10074 } else {
10075 exec_control &= ~PIN_BASED_POSTED_INTR;
10076 }
10077
10078 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10079
10080 vmx->nested.preemption_timer_expired = false;
10081 if (nested_cpu_has_preemption_timer(vmcs12))
10082 vmx_start_preemption_timer(vcpu);
10083
10084 /*
10085 * Whether page-faults are trapped is determined by a combination of
10086 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10087 * If enable_ept, L0 doesn't care about page faults and we should
10088 * set all of these to L1's desires. However, if !enable_ept, L0 does
10089 * care about (at least some) page faults, and because it is not easy
10090 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10091 * to exit on each and every L2 page fault. This is done by setting
10092 * MASK=MATCH=0 and (see below) EB.PF=1.
10093 * Note that below we don't need special code to set EB.PF beyond the
10094 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10095 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10096 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10097 *
10098 * A problem with this approach (when !enable_ept) is that L1 may be
10099 * injected with more page faults than it asked for. This could have
10100 * caused problems, but in practice existing hypervisors don't care.
10101 * To fix this, we will need to emulate the PFEC checking (on the L1
10102 * page tables), using walk_addr(), when injecting PFs to L1.
10103 */
10104 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10105 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10106 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10107 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10108
10109 if (cpu_has_secondary_exec_ctrls()) {
10110 exec_control = vmx_secondary_exec_control(vmx);
10111
10112 /* Take the following fields only from vmcs12 */
10113 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10114 SECONDARY_EXEC_RDTSCP |
10115 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10116 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10117 if (nested_cpu_has(vmcs12,
10118 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10119 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10120 ~SECONDARY_EXEC_ENABLE_PML;
10121 exec_control |= vmcs12_exec_ctrl;
10122 }
10123
10124 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10125 vmcs_write64(EOI_EXIT_BITMAP0,
10126 vmcs12->eoi_exit_bitmap0);
10127 vmcs_write64(EOI_EXIT_BITMAP1,
10128 vmcs12->eoi_exit_bitmap1);
10129 vmcs_write64(EOI_EXIT_BITMAP2,
10130 vmcs12->eoi_exit_bitmap2);
10131 vmcs_write64(EOI_EXIT_BITMAP3,
10132 vmcs12->eoi_exit_bitmap3);
10133 vmcs_write16(GUEST_INTR_STATUS,
10134 vmcs12->guest_intr_status);
10135 }
10136
10137 /*
10138 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10139 * nested_get_vmcs12_pages will either fix it up or
10140 * remove the VM execution control.
10141 */
10142 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10143 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10144
10145 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10146 }
10147
10148
10149 /*
10150 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10151 * Some constant fields are set here by vmx_set_constant_host_state().
10152 * Other fields are different per CPU, and will be set later when
10153 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10154 */
10155 vmx_set_constant_host_state(vmx);
10156
10157 /*
10158 * Set the MSR load/store lists to match L0's settings.
10159 */
10160 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10161 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10162 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10163 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10164 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10165
10166 /*
10167 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10168 * entry, but only if the current (host) sp changed from the value
10169 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10170 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10171 * here we just force the write to happen on entry.
10172 */
10173 vmx->host_rsp = 0;
10174
10175 exec_control = vmx_exec_control(vmx); /* L0's desires */
10176 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10177 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10178 exec_control &= ~CPU_BASED_TPR_SHADOW;
10179 exec_control |= vmcs12->cpu_based_vm_exec_control;
10180
10181 /*
10182 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10183 * nested_get_vmcs12_pages can't fix it up, the illegal value
10184 * will result in a VM entry failure.
10185 */
10186 if (exec_control & CPU_BASED_TPR_SHADOW) {
10187 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10188 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10189 }
10190
10191 /*
10192 * Merging of IO bitmap not currently supported.
10193 * Rather, exit every time.
10194 */
10195 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10196 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10197
10198 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10199
10200 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10201 * bitwise-or of what L1 wants to trap for L2, and what we want to
10202 * trap. Note that CR0.TS also needs updating - we do this later.
10203 */
10204 update_exception_bitmap(vcpu);
10205 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10206 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10207
10208 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10209 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10210 * bits are further modified by vmx_set_efer() below.
10211 */
10212 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10213
10214 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10215 * emulated by vmx_set_efer(), below.
10216 */
10217 vm_entry_controls_init(vmx,
10218 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10219 ~VM_ENTRY_IA32E_MODE) |
10220 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10221
10222 if (from_vmentry &&
10223 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10224 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10225 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10226 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10227 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10228 }
10229
10230 set_cr4_guest_host_mask(vmx);
10231
10232 if (from_vmentry &&
10233 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10234 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10235
10236 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10237 vmcs_write64(TSC_OFFSET,
10238 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10239 else
10240 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10241 if (kvm_has_tsc_control)
10242 decache_tsc_multiplier(vmx);
10243
10244 if (enable_vpid) {
10245 /*
10246 * There is no direct mapping between vpid02 and vpid12, the
10247 * vpid02 is per-vCPU for L0 and reused while the value of
10248 * vpid12 is changed w/ one invvpid during nested vmentry.
10249 * The vpid12 is allocated by L1 for L2, so it will not
10250 * influence global bitmap(for vpid01 and vpid02 allocation)
10251 * even if spawn a lot of nested vCPUs.
10252 */
10253 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10254 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10255 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10256 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10257 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10258 }
10259 } else {
10260 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10261 vmx_flush_tlb(vcpu);
10262 }
10263
10264 }
10265
10266 if (enable_pml) {
10267 /*
10268 * Conceptually we want to copy the PML address and index from
10269 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10270 * since we always flush the log on each vmexit, this happens
10271 * to be equivalent to simply resetting the fields in vmcs02.
10272 */
10273 ASSERT(vmx->pml_pg);
10274 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10275 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10276 }
10277
10278 if (nested_cpu_has_ept(vmcs12)) {
10279 if (nested_ept_init_mmu_context(vcpu)) {
10280 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10281 return 1;
10282 }
10283 } else if (nested_cpu_has2(vmcs12,
10284 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10285 vmx_flush_tlb_ept_only(vcpu);
10286 }
10287
10288 /*
10289 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10290 * bits which we consider mandatory enabled.
10291 * The CR0_READ_SHADOW is what L2 should have expected to read given
10292 * the specifications by L1; It's not enough to take
10293 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10294 * have more bits than L1 expected.
10295 */
10296 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10297 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10298
10299 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10300 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10301
10302 if (from_vmentry &&
10303 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10304 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10305 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10306 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10307 else
10308 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10309 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10310 vmx_set_efer(vcpu, vcpu->arch.efer);
10311
10312 /* Shadow page tables on either EPT or shadow page tables. */
10313 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10314 entry_failure_code))
10315 return 1;
10316
10317 if (!enable_ept)
10318 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10319
10320 /*
10321 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10322 */
10323 if (enable_ept) {
10324 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10325 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10326 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10327 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10328 }
10329
10330 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10331 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10332 return 0;
10333 }
10334
10335 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10336 {
10337 struct vcpu_vmx *vmx = to_vmx(vcpu);
10338
10339 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10340 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10341 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10342
10343 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10344 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10345
10346 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10347 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10348
10349 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10350 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10351
10352 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10353 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10354
10355 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10356 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10357
10358 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10359 vmx->nested.nested_vmx_procbased_ctls_low,
10360 vmx->nested.nested_vmx_procbased_ctls_high) ||
10361 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10362 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10363 vmx->nested.nested_vmx_secondary_ctls_low,
10364 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10365 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10366 vmx->nested.nested_vmx_pinbased_ctls_low,
10367 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10368 !vmx_control_verify(vmcs12->vm_exit_controls,
10369 vmx->nested.nested_vmx_exit_ctls_low,
10370 vmx->nested.nested_vmx_exit_ctls_high) ||
10371 !vmx_control_verify(vmcs12->vm_entry_controls,
10372 vmx->nested.nested_vmx_entry_ctls_low,
10373 vmx->nested.nested_vmx_entry_ctls_high))
10374 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10375
10376 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10377 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10378
10379 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10380 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10381 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10382 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10383
10384 return 0;
10385 }
10386
10387 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10388 u32 *exit_qual)
10389 {
10390 bool ia32e;
10391
10392 *exit_qual = ENTRY_FAIL_DEFAULT;
10393
10394 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10395 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10396 return 1;
10397
10398 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10399 vmcs12->vmcs_link_pointer != -1ull) {
10400 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10401 return 1;
10402 }
10403
10404 /*
10405 * If the load IA32_EFER VM-entry control is 1, the following checks
10406 * are performed on the field for the IA32_EFER MSR:
10407 * - Bits reserved in the IA32_EFER MSR must be 0.
10408 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10409 * the IA-32e mode guest VM-exit control. It must also be identical
10410 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10411 * CR0.PG) is 1.
10412 */
10413 if (to_vmx(vcpu)->nested.nested_run_pending &&
10414 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10415 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10416 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10417 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10418 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10419 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10420 return 1;
10421 }
10422
10423 /*
10424 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10425 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10426 * the values of the LMA and LME bits in the field must each be that of
10427 * the host address-space size VM-exit control.
10428 */
10429 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10430 ia32e = (vmcs12->vm_exit_controls &
10431 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10432 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10433 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10434 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10435 return 1;
10436 }
10437
10438 return 0;
10439 }
10440
10441 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10442 {
10443 struct vcpu_vmx *vmx = to_vmx(vcpu);
10444 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10445 struct loaded_vmcs *vmcs02;
10446 u32 msr_entry_idx;
10447 u32 exit_qual;
10448
10449 vmcs02 = nested_get_current_vmcs02(vmx);
10450 if (!vmcs02)
10451 return -ENOMEM;
10452
10453 enter_guest_mode(vcpu);
10454
10455 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10456 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10457
10458 vmx_switch_vmcs(vcpu, vmcs02);
10459 vmx_segment_cache_clear(vmx);
10460
10461 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10462 leave_guest_mode(vcpu);
10463 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10464 nested_vmx_entry_failure(vcpu, vmcs12,
10465 EXIT_REASON_INVALID_STATE, exit_qual);
10466 return 1;
10467 }
10468
10469 nested_get_vmcs12_pages(vcpu, vmcs12);
10470
10471 msr_entry_idx = nested_vmx_load_msr(vcpu,
10472 vmcs12->vm_entry_msr_load_addr,
10473 vmcs12->vm_entry_msr_load_count);
10474 if (msr_entry_idx) {
10475 leave_guest_mode(vcpu);
10476 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10477 nested_vmx_entry_failure(vcpu, vmcs12,
10478 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10479 return 1;
10480 }
10481
10482 /*
10483 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10484 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10485 * returned as far as L1 is concerned. It will only return (and set
10486 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10487 */
10488 return 0;
10489 }
10490
10491 /*
10492 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10493 * for running an L2 nested guest.
10494 */
10495 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10496 {
10497 struct vmcs12 *vmcs12;
10498 struct vcpu_vmx *vmx = to_vmx(vcpu);
10499 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10500 u32 exit_qual;
10501 int ret;
10502
10503 if (!nested_vmx_check_permission(vcpu))
10504 return 1;
10505
10506 if (!nested_vmx_check_vmcs12(vcpu))
10507 goto out;
10508
10509 vmcs12 = get_vmcs12(vcpu);
10510
10511 if (enable_shadow_vmcs)
10512 copy_shadow_to_vmcs12(vmx);
10513
10514 /*
10515 * The nested entry process starts with enforcing various prerequisites
10516 * on vmcs12 as required by the Intel SDM, and act appropriately when
10517 * they fail: As the SDM explains, some conditions should cause the
10518 * instruction to fail, while others will cause the instruction to seem
10519 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10520 * To speed up the normal (success) code path, we should avoid checking
10521 * for misconfigurations which will anyway be caught by the processor
10522 * when using the merged vmcs02.
10523 */
10524 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10525 nested_vmx_failValid(vcpu,
10526 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10527 goto out;
10528 }
10529
10530 if (vmcs12->launch_state == launch) {
10531 nested_vmx_failValid(vcpu,
10532 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10533 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10534 goto out;
10535 }
10536
10537 ret = check_vmentry_prereqs(vcpu, vmcs12);
10538 if (ret) {
10539 nested_vmx_failValid(vcpu, ret);
10540 goto out;
10541 }
10542
10543 /*
10544 * After this point, the trap flag no longer triggers a singlestep trap
10545 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10546 * This is not 100% correct; for performance reasons, we delegate most
10547 * of the checks on host state to the processor. If those fail,
10548 * the singlestep trap is missed.
10549 */
10550 skip_emulated_instruction(vcpu);
10551
10552 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10553 if (ret) {
10554 nested_vmx_entry_failure(vcpu, vmcs12,
10555 EXIT_REASON_INVALID_STATE, exit_qual);
10556 return 1;
10557 }
10558
10559 /*
10560 * We're finally done with prerequisite checking, and can start with
10561 * the nested entry.
10562 */
10563
10564 ret = enter_vmx_non_root_mode(vcpu, true);
10565 if (ret)
10566 return ret;
10567
10568 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10569 return kvm_vcpu_halt(vcpu);
10570
10571 vmx->nested.nested_run_pending = 1;
10572
10573 return 1;
10574
10575 out:
10576 return kvm_skip_emulated_instruction(vcpu);
10577 }
10578
10579 /*
10580 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10581 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10582 * This function returns the new value we should put in vmcs12.guest_cr0.
10583 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10584 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10585 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10586 * didn't trap the bit, because if L1 did, so would L0).
10587 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10588 * been modified by L2, and L1 knows it. So just leave the old value of
10589 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10590 * isn't relevant, because if L0 traps this bit it can set it to anything.
10591 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10592 * changed these bits, and therefore they need to be updated, but L0
10593 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10594 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10595 */
10596 static inline unsigned long
10597 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10598 {
10599 return
10600 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10601 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10602 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10603 vcpu->arch.cr0_guest_owned_bits));
10604 }
10605
10606 static inline unsigned long
10607 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10608 {
10609 return
10610 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10611 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10612 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10613 vcpu->arch.cr4_guest_owned_bits));
10614 }
10615
10616 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10617 struct vmcs12 *vmcs12)
10618 {
10619 u32 idt_vectoring;
10620 unsigned int nr;
10621
10622 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10623 nr = vcpu->arch.exception.nr;
10624 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10625
10626 if (kvm_exception_is_soft(nr)) {
10627 vmcs12->vm_exit_instruction_len =
10628 vcpu->arch.event_exit_inst_len;
10629 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10630 } else
10631 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10632
10633 if (vcpu->arch.exception.has_error_code) {
10634 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10635 vmcs12->idt_vectoring_error_code =
10636 vcpu->arch.exception.error_code;
10637 }
10638
10639 vmcs12->idt_vectoring_info_field = idt_vectoring;
10640 } else if (vcpu->arch.nmi_injected) {
10641 vmcs12->idt_vectoring_info_field =
10642 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10643 } else if (vcpu->arch.interrupt.pending) {
10644 nr = vcpu->arch.interrupt.nr;
10645 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10646
10647 if (vcpu->arch.interrupt.soft) {
10648 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10649 vmcs12->vm_entry_instruction_len =
10650 vcpu->arch.event_exit_inst_len;
10651 } else
10652 idt_vectoring |= INTR_TYPE_EXT_INTR;
10653
10654 vmcs12->idt_vectoring_info_field = idt_vectoring;
10655 }
10656 }
10657
10658 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10659 {
10660 struct vcpu_vmx *vmx = to_vmx(vcpu);
10661
10662 if (vcpu->arch.exception.pending ||
10663 vcpu->arch.nmi_injected ||
10664 vcpu->arch.interrupt.pending)
10665 return -EBUSY;
10666
10667 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10668 vmx->nested.preemption_timer_expired) {
10669 if (vmx->nested.nested_run_pending)
10670 return -EBUSY;
10671 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10672 return 0;
10673 }
10674
10675 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10676 if (vmx->nested.nested_run_pending)
10677 return -EBUSY;
10678 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10679 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10680 INTR_INFO_VALID_MASK, 0);
10681 /*
10682 * The NMI-triggered VM exit counts as injection:
10683 * clear this one and block further NMIs.
10684 */
10685 vcpu->arch.nmi_pending = 0;
10686 vmx_set_nmi_mask(vcpu, true);
10687 return 0;
10688 }
10689
10690 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10691 nested_exit_on_intr(vcpu)) {
10692 if (vmx->nested.nested_run_pending)
10693 return -EBUSY;
10694 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10695 return 0;
10696 }
10697
10698 vmx_complete_nested_posted_interrupt(vcpu);
10699 return 0;
10700 }
10701
10702 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10703 {
10704 ktime_t remaining =
10705 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10706 u64 value;
10707
10708 if (ktime_to_ns(remaining) <= 0)
10709 return 0;
10710
10711 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10712 do_div(value, 1000000);
10713 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10714 }
10715
10716 /*
10717 * Update the guest state fields of vmcs12 to reflect changes that
10718 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10719 * VM-entry controls is also updated, since this is really a guest
10720 * state bit.)
10721 */
10722 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10723 {
10724 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10725 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10726
10727 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10728 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10729 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10730
10731 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10732 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10733 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10734 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10735 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10736 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10737 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10738 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10739 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10740 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10741 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10742 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10743 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10744 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10745 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10746 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10747 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10748 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10749 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10750 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10751 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10752 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10753 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10754 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10755 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10756 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10757 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10758 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10759 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10760 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10761 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10762 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10763 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10764 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10765 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10766 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10767
10768 vmcs12->guest_interruptibility_info =
10769 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10770 vmcs12->guest_pending_dbg_exceptions =
10771 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10772 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10773 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10774 else
10775 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10776
10777 if (nested_cpu_has_preemption_timer(vmcs12)) {
10778 if (vmcs12->vm_exit_controls &
10779 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10780 vmcs12->vmx_preemption_timer_value =
10781 vmx_get_preemption_timer_value(vcpu);
10782 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10783 }
10784
10785 /*
10786 * In some cases (usually, nested EPT), L2 is allowed to change its
10787 * own CR3 without exiting. If it has changed it, we must keep it.
10788 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10789 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10790 *
10791 * Additionally, restore L2's PDPTR to vmcs12.
10792 */
10793 if (enable_ept) {
10794 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10795 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10796 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10797 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10798 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10799 }
10800
10801 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10802
10803 if (nested_cpu_has_vid(vmcs12))
10804 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10805
10806 vmcs12->vm_entry_controls =
10807 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10808 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10809
10810 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10811 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10812 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10813 }
10814
10815 /* TODO: These cannot have changed unless we have MSR bitmaps and
10816 * the relevant bit asks not to trap the change */
10817 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10818 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10819 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10820 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10821 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10822 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10823 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10824 if (kvm_mpx_supported())
10825 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10826 }
10827
10828 /*
10829 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10830 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10831 * and this function updates it to reflect the changes to the guest state while
10832 * L2 was running (and perhaps made some exits which were handled directly by L0
10833 * without going back to L1), and to reflect the exit reason.
10834 * Note that we do not have to copy here all VMCS fields, just those that
10835 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10836 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10837 * which already writes to vmcs12 directly.
10838 */
10839 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10840 u32 exit_reason, u32 exit_intr_info,
10841 unsigned long exit_qualification)
10842 {
10843 /* update guest state fields: */
10844 sync_vmcs12(vcpu, vmcs12);
10845
10846 /* update exit information fields: */
10847
10848 vmcs12->vm_exit_reason = exit_reason;
10849 vmcs12->exit_qualification = exit_qualification;
10850
10851 vmcs12->vm_exit_intr_info = exit_intr_info;
10852 if ((vmcs12->vm_exit_intr_info &
10853 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10854 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10855 vmcs12->vm_exit_intr_error_code =
10856 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10857 vmcs12->idt_vectoring_info_field = 0;
10858 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10859 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10860
10861 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10862 vmcs12->launch_state = 1;
10863
10864 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10865 * instead of reading the real value. */
10866 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10867
10868 /*
10869 * Transfer the event that L0 or L1 may wanted to inject into
10870 * L2 to IDT_VECTORING_INFO_FIELD.
10871 */
10872 vmcs12_save_pending_event(vcpu, vmcs12);
10873 }
10874
10875 /*
10876 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10877 * preserved above and would only end up incorrectly in L1.
10878 */
10879 vcpu->arch.nmi_injected = false;
10880 kvm_clear_exception_queue(vcpu);
10881 kvm_clear_interrupt_queue(vcpu);
10882 }
10883
10884 /*
10885 * A part of what we need to when the nested L2 guest exits and we want to
10886 * run its L1 parent, is to reset L1's guest state to the host state specified
10887 * in vmcs12.
10888 * This function is to be called not only on normal nested exit, but also on
10889 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10890 * Failures During or After Loading Guest State").
10891 * This function should be called when the active VMCS is L1's (vmcs01).
10892 */
10893 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10894 struct vmcs12 *vmcs12)
10895 {
10896 struct kvm_segment seg;
10897 u32 entry_failure_code;
10898
10899 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10900 vcpu->arch.efer = vmcs12->host_ia32_efer;
10901 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10902 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10903 else
10904 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10905 vmx_set_efer(vcpu, vcpu->arch.efer);
10906
10907 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10908 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10909 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10910 /*
10911 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10912 * actually changed, because vmx_set_cr0 refers to efer set above.
10913 *
10914 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10915 * (KVM doesn't change it);
10916 */
10917 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10918 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10919
10920 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
10921 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10922 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10923
10924 nested_ept_uninit_mmu_context(vcpu);
10925
10926 /*
10927 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10928 * couldn't have changed.
10929 */
10930 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10931 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10932
10933 if (!enable_ept)
10934 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10935
10936 if (enable_vpid) {
10937 /*
10938 * Trivially support vpid by letting L2s share their parent
10939 * L1's vpid. TODO: move to a more elaborate solution, giving
10940 * each L2 its own vpid and exposing the vpid feature to L1.
10941 */
10942 vmx_flush_tlb(vcpu);
10943 }
10944 /* Restore posted intr vector. */
10945 if (nested_cpu_has_posted_intr(vmcs12))
10946 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10947
10948 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10949 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10950 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10951 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10952 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10953
10954 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10955 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10956 vmcs_write64(GUEST_BNDCFGS, 0);
10957
10958 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10959 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10960 vcpu->arch.pat = vmcs12->host_ia32_pat;
10961 }
10962 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10963 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10964 vmcs12->host_ia32_perf_global_ctrl);
10965
10966 /* Set L1 segment info according to Intel SDM
10967 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10968 seg = (struct kvm_segment) {
10969 .base = 0,
10970 .limit = 0xFFFFFFFF,
10971 .selector = vmcs12->host_cs_selector,
10972 .type = 11,
10973 .present = 1,
10974 .s = 1,
10975 .g = 1
10976 };
10977 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10978 seg.l = 1;
10979 else
10980 seg.db = 1;
10981 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10982 seg = (struct kvm_segment) {
10983 .base = 0,
10984 .limit = 0xFFFFFFFF,
10985 .type = 3,
10986 .present = 1,
10987 .s = 1,
10988 .db = 1,
10989 .g = 1
10990 };
10991 seg.selector = vmcs12->host_ds_selector;
10992 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10993 seg.selector = vmcs12->host_es_selector;
10994 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10995 seg.selector = vmcs12->host_ss_selector;
10996 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10997 seg.selector = vmcs12->host_fs_selector;
10998 seg.base = vmcs12->host_fs_base;
10999 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11000 seg.selector = vmcs12->host_gs_selector;
11001 seg.base = vmcs12->host_gs_base;
11002 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11003 seg = (struct kvm_segment) {
11004 .base = vmcs12->host_tr_base,
11005 .limit = 0x67,
11006 .selector = vmcs12->host_tr_selector,
11007 .type = 11,
11008 .present = 1
11009 };
11010 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11011
11012 kvm_set_dr(vcpu, 7, 0x400);
11013 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11014
11015 if (cpu_has_vmx_msr_bitmap())
11016 vmx_set_msr_bitmap(vcpu);
11017
11018 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11019 vmcs12->vm_exit_msr_load_count))
11020 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11021 }
11022
11023 /*
11024 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11025 * and modify vmcs12 to make it see what it would expect to see there if
11026 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11027 */
11028 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11029 u32 exit_intr_info,
11030 unsigned long exit_qualification)
11031 {
11032 struct vcpu_vmx *vmx = to_vmx(vcpu);
11033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11034 u32 vm_inst_error = 0;
11035
11036 /* trying to cancel vmlaunch/vmresume is a bug */
11037 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11038
11039 leave_guest_mode(vcpu);
11040 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11041 exit_qualification);
11042
11043 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11044 vmcs12->vm_exit_msr_store_count))
11045 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11046
11047 if (unlikely(vmx->fail))
11048 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11049
11050 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11051
11052 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11053 && nested_exit_intr_ack_set(vcpu)) {
11054 int irq = kvm_cpu_get_interrupt(vcpu);
11055 WARN_ON(irq < 0);
11056 vmcs12->vm_exit_intr_info = irq |
11057 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11058 }
11059
11060 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11061 vmcs12->exit_qualification,
11062 vmcs12->idt_vectoring_info_field,
11063 vmcs12->vm_exit_intr_info,
11064 vmcs12->vm_exit_intr_error_code,
11065 KVM_ISA_VMX);
11066
11067 vm_entry_controls_reset_shadow(vmx);
11068 vm_exit_controls_reset_shadow(vmx);
11069 vmx_segment_cache_clear(vmx);
11070
11071 /* if no vmcs02 cache requested, remove the one we used */
11072 if (VMCS02_POOL_SIZE == 0)
11073 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11074
11075 load_vmcs12_host_state(vcpu, vmcs12);
11076
11077 /* Update any VMCS fields that might have changed while L2 ran */
11078 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11079 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11080 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11081 if (vmx->hv_deadline_tsc == -1)
11082 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11083 PIN_BASED_VMX_PREEMPTION_TIMER);
11084 else
11085 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11086 PIN_BASED_VMX_PREEMPTION_TIMER);
11087 if (kvm_has_tsc_control)
11088 decache_tsc_multiplier(vmx);
11089
11090 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11091 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11092 vmx_set_virtual_x2apic_mode(vcpu,
11093 vcpu->arch.apic_base & X2APIC_ENABLE);
11094 } else if (!nested_cpu_has_ept(vmcs12) &&
11095 nested_cpu_has2(vmcs12,
11096 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11097 vmx_flush_tlb_ept_only(vcpu);
11098 }
11099
11100 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11101 vmx->host_rsp = 0;
11102
11103 /* Unpin physical memory we referred to in vmcs02 */
11104 if (vmx->nested.apic_access_page) {
11105 nested_release_page(vmx->nested.apic_access_page);
11106 vmx->nested.apic_access_page = NULL;
11107 }
11108 if (vmx->nested.virtual_apic_page) {
11109 nested_release_page(vmx->nested.virtual_apic_page);
11110 vmx->nested.virtual_apic_page = NULL;
11111 }
11112 if (vmx->nested.pi_desc_page) {
11113 kunmap(vmx->nested.pi_desc_page);
11114 nested_release_page(vmx->nested.pi_desc_page);
11115 vmx->nested.pi_desc_page = NULL;
11116 vmx->nested.pi_desc = NULL;
11117 }
11118
11119 /*
11120 * We are now running in L2, mmu_notifier will force to reload the
11121 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11122 */
11123 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11124
11125 /*
11126 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11127 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11128 * success or failure flag accordingly.
11129 */
11130 if (unlikely(vmx->fail)) {
11131 vmx->fail = 0;
11132 nested_vmx_failValid(vcpu, vm_inst_error);
11133 } else
11134 nested_vmx_succeed(vcpu);
11135 if (enable_shadow_vmcs)
11136 vmx->nested.sync_shadow_vmcs = true;
11137
11138 /* in case we halted in L2 */
11139 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11140 }
11141
11142 /*
11143 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11144 */
11145 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11146 {
11147 if (is_guest_mode(vcpu)) {
11148 to_vmx(vcpu)->nested.nested_run_pending = 0;
11149 nested_vmx_vmexit(vcpu, -1, 0, 0);
11150 }
11151 free_nested(to_vmx(vcpu));
11152 }
11153
11154 /*
11155 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11156 * 23.7 "VM-entry failures during or after loading guest state" (this also
11157 * lists the acceptable exit-reason and exit-qualification parameters).
11158 * It should only be called before L2 actually succeeded to run, and when
11159 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11160 */
11161 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11162 struct vmcs12 *vmcs12,
11163 u32 reason, unsigned long qualification)
11164 {
11165 load_vmcs12_host_state(vcpu, vmcs12);
11166 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11167 vmcs12->exit_qualification = qualification;
11168 nested_vmx_succeed(vcpu);
11169 if (enable_shadow_vmcs)
11170 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11171 }
11172
11173 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11174 struct x86_instruction_info *info,
11175 enum x86_intercept_stage stage)
11176 {
11177 return X86EMUL_CONTINUE;
11178 }
11179
11180 #ifdef CONFIG_X86_64
11181 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11182 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11183 u64 divisor, u64 *result)
11184 {
11185 u64 low = a << shift, high = a >> (64 - shift);
11186
11187 /* To avoid the overflow on divq */
11188 if (high >= divisor)
11189 return 1;
11190
11191 /* Low hold the result, high hold rem which is discarded */
11192 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11193 "rm" (divisor), "0" (low), "1" (high));
11194 *result = low;
11195
11196 return 0;
11197 }
11198
11199 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11200 {
11201 struct vcpu_vmx *vmx = to_vmx(vcpu);
11202 u64 tscl = rdtsc();
11203 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11204 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11205
11206 /* Convert to host delta tsc if tsc scaling is enabled */
11207 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11208 u64_shl_div_u64(delta_tsc,
11209 kvm_tsc_scaling_ratio_frac_bits,
11210 vcpu->arch.tsc_scaling_ratio,
11211 &delta_tsc))
11212 return -ERANGE;
11213
11214 /*
11215 * If the delta tsc can't fit in the 32 bit after the multi shift,
11216 * we can't use the preemption timer.
11217 * It's possible that it fits on later vmentries, but checking
11218 * on every vmentry is costly so we just use an hrtimer.
11219 */
11220 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11221 return -ERANGE;
11222
11223 vmx->hv_deadline_tsc = tscl + delta_tsc;
11224 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11225 PIN_BASED_VMX_PREEMPTION_TIMER);
11226
11227 return delta_tsc == 0;
11228 }
11229
11230 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11231 {
11232 struct vcpu_vmx *vmx = to_vmx(vcpu);
11233 vmx->hv_deadline_tsc = -1;
11234 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11235 PIN_BASED_VMX_PREEMPTION_TIMER);
11236 }
11237 #endif
11238
11239 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11240 {
11241 if (ple_gap)
11242 shrink_ple_window(vcpu);
11243 }
11244
11245 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11246 struct kvm_memory_slot *slot)
11247 {
11248 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11249 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11250 }
11251
11252 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11253 struct kvm_memory_slot *slot)
11254 {
11255 kvm_mmu_slot_set_dirty(kvm, slot);
11256 }
11257
11258 static void vmx_flush_log_dirty(struct kvm *kvm)
11259 {
11260 kvm_flush_pml_buffers(kvm);
11261 }
11262
11263 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11264 {
11265 struct vmcs12 *vmcs12;
11266 struct vcpu_vmx *vmx = to_vmx(vcpu);
11267 gpa_t gpa;
11268 struct page *page = NULL;
11269 u64 *pml_address;
11270
11271 if (is_guest_mode(vcpu)) {
11272 WARN_ON_ONCE(vmx->nested.pml_full);
11273
11274 /*
11275 * Check if PML is enabled for the nested guest.
11276 * Whether eptp bit 6 is set is already checked
11277 * as part of A/D emulation.
11278 */
11279 vmcs12 = get_vmcs12(vcpu);
11280 if (!nested_cpu_has_pml(vmcs12))
11281 return 0;
11282
11283 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11284 vmx->nested.pml_full = true;
11285 return 1;
11286 }
11287
11288 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11289
11290 page = nested_get_page(vcpu, vmcs12->pml_address);
11291 if (!page)
11292 return 0;
11293
11294 pml_address = kmap(page);
11295 pml_address[vmcs12->guest_pml_index--] = gpa;
11296 kunmap(page);
11297 nested_release_page_clean(page);
11298 }
11299
11300 return 0;
11301 }
11302
11303 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11304 struct kvm_memory_slot *memslot,
11305 gfn_t offset, unsigned long mask)
11306 {
11307 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11308 }
11309
11310 /*
11311 * This routine does the following things for vCPU which is going
11312 * to be blocked if VT-d PI is enabled.
11313 * - Store the vCPU to the wakeup list, so when interrupts happen
11314 * we can find the right vCPU to wake up.
11315 * - Change the Posted-interrupt descriptor as below:
11316 * 'NDST' <-- vcpu->pre_pcpu
11317 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11318 * - If 'ON' is set during this process, which means at least one
11319 * interrupt is posted for this vCPU, we cannot block it, in
11320 * this case, return 1, otherwise, return 0.
11321 *
11322 */
11323 static int pi_pre_block(struct kvm_vcpu *vcpu)
11324 {
11325 unsigned long flags;
11326 unsigned int dest;
11327 struct pi_desc old, new;
11328 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11329
11330 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11331 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11332 !kvm_vcpu_apicv_active(vcpu))
11333 return 0;
11334
11335 vcpu->pre_pcpu = vcpu->cpu;
11336 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11337 vcpu->pre_pcpu), flags);
11338 list_add_tail(&vcpu->blocked_vcpu_list,
11339 &per_cpu(blocked_vcpu_on_cpu,
11340 vcpu->pre_pcpu));
11341 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11342 vcpu->pre_pcpu), flags);
11343
11344 do {
11345 old.control = new.control = pi_desc->control;
11346
11347 /*
11348 * We should not block the vCPU if
11349 * an interrupt is posted for it.
11350 */
11351 if (pi_test_on(pi_desc) == 1) {
11352 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11353 vcpu->pre_pcpu), flags);
11354 list_del(&vcpu->blocked_vcpu_list);
11355 spin_unlock_irqrestore(
11356 &per_cpu(blocked_vcpu_on_cpu_lock,
11357 vcpu->pre_pcpu), flags);
11358 vcpu->pre_pcpu = -1;
11359
11360 return 1;
11361 }
11362
11363 WARN((pi_desc->sn == 1),
11364 "Warning: SN field of posted-interrupts "
11365 "is set before blocking\n");
11366
11367 /*
11368 * Since vCPU can be preempted during this process,
11369 * vcpu->cpu could be different with pre_pcpu, we
11370 * need to set pre_pcpu as the destination of wakeup
11371 * notification event, then we can find the right vCPU
11372 * to wakeup in wakeup handler if interrupts happen
11373 * when the vCPU is in blocked state.
11374 */
11375 dest = cpu_physical_id(vcpu->pre_pcpu);
11376
11377 if (x2apic_enabled())
11378 new.ndst = dest;
11379 else
11380 new.ndst = (dest << 8) & 0xFF00;
11381
11382 /* set 'NV' to 'wakeup vector' */
11383 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11384 } while (cmpxchg(&pi_desc->control, old.control,
11385 new.control) != old.control);
11386
11387 return 0;
11388 }
11389
11390 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11391 {
11392 if (pi_pre_block(vcpu))
11393 return 1;
11394
11395 if (kvm_lapic_hv_timer_in_use(vcpu))
11396 kvm_lapic_switch_to_sw_timer(vcpu);
11397
11398 return 0;
11399 }
11400
11401 static void pi_post_block(struct kvm_vcpu *vcpu)
11402 {
11403 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11404 struct pi_desc old, new;
11405 unsigned int dest;
11406 unsigned long flags;
11407
11408 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11409 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11410 !kvm_vcpu_apicv_active(vcpu))
11411 return;
11412
11413 do {
11414 old.control = new.control = pi_desc->control;
11415
11416 dest = cpu_physical_id(vcpu->cpu);
11417
11418 if (x2apic_enabled())
11419 new.ndst = dest;
11420 else
11421 new.ndst = (dest << 8) & 0xFF00;
11422
11423 /* Allow posting non-urgent interrupts */
11424 new.sn = 0;
11425
11426 /* set 'NV' to 'notification vector' */
11427 new.nv = POSTED_INTR_VECTOR;
11428 } while (cmpxchg(&pi_desc->control, old.control,
11429 new.control) != old.control);
11430
11431 if(vcpu->pre_pcpu != -1) {
11432 spin_lock_irqsave(
11433 &per_cpu(blocked_vcpu_on_cpu_lock,
11434 vcpu->pre_pcpu), flags);
11435 list_del(&vcpu->blocked_vcpu_list);
11436 spin_unlock_irqrestore(
11437 &per_cpu(blocked_vcpu_on_cpu_lock,
11438 vcpu->pre_pcpu), flags);
11439 vcpu->pre_pcpu = -1;
11440 }
11441 }
11442
11443 static void vmx_post_block(struct kvm_vcpu *vcpu)
11444 {
11445 if (kvm_x86_ops->set_hv_timer)
11446 kvm_lapic_switch_to_hv_timer(vcpu);
11447
11448 pi_post_block(vcpu);
11449 }
11450
11451 /*
11452 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11453 *
11454 * @kvm: kvm
11455 * @host_irq: host irq of the interrupt
11456 * @guest_irq: gsi of the interrupt
11457 * @set: set or unset PI
11458 * returns 0 on success, < 0 on failure
11459 */
11460 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11461 uint32_t guest_irq, bool set)
11462 {
11463 struct kvm_kernel_irq_routing_entry *e;
11464 struct kvm_irq_routing_table *irq_rt;
11465 struct kvm_lapic_irq irq;
11466 struct kvm_vcpu *vcpu;
11467 struct vcpu_data vcpu_info;
11468 int idx, ret = -EINVAL;
11469
11470 if (!kvm_arch_has_assigned_device(kvm) ||
11471 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11472 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11473 return 0;
11474
11475 idx = srcu_read_lock(&kvm->irq_srcu);
11476 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11477 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11478
11479 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11480 if (e->type != KVM_IRQ_ROUTING_MSI)
11481 continue;
11482 /*
11483 * VT-d PI cannot support posting multicast/broadcast
11484 * interrupts to a vCPU, we still use interrupt remapping
11485 * for these kind of interrupts.
11486 *
11487 * For lowest-priority interrupts, we only support
11488 * those with single CPU as the destination, e.g. user
11489 * configures the interrupts via /proc/irq or uses
11490 * irqbalance to make the interrupts single-CPU.
11491 *
11492 * We will support full lowest-priority interrupt later.
11493 */
11494
11495 kvm_set_msi_irq(kvm, e, &irq);
11496 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11497 /*
11498 * Make sure the IRTE is in remapped mode if
11499 * we don't handle it in posted mode.
11500 */
11501 ret = irq_set_vcpu_affinity(host_irq, NULL);
11502 if (ret < 0) {
11503 printk(KERN_INFO
11504 "failed to back to remapped mode, irq: %u\n",
11505 host_irq);
11506 goto out;
11507 }
11508
11509 continue;
11510 }
11511
11512 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11513 vcpu_info.vector = irq.vector;
11514
11515 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11516 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11517
11518 if (set)
11519 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11520 else {
11521 /* suppress notification event before unposting */
11522 pi_set_sn(vcpu_to_pi_desc(vcpu));
11523 ret = irq_set_vcpu_affinity(host_irq, NULL);
11524 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11525 }
11526
11527 if (ret < 0) {
11528 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11529 __func__);
11530 goto out;
11531 }
11532 }
11533
11534 ret = 0;
11535 out:
11536 srcu_read_unlock(&kvm->irq_srcu, idx);
11537 return ret;
11538 }
11539
11540 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11541 {
11542 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11543 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11544 FEATURE_CONTROL_LMCE;
11545 else
11546 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11547 ~FEATURE_CONTROL_LMCE;
11548 }
11549
11550 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11551 .cpu_has_kvm_support = cpu_has_kvm_support,
11552 .disabled_by_bios = vmx_disabled_by_bios,
11553 .hardware_setup = hardware_setup,
11554 .hardware_unsetup = hardware_unsetup,
11555 .check_processor_compatibility = vmx_check_processor_compat,
11556 .hardware_enable = hardware_enable,
11557 .hardware_disable = hardware_disable,
11558 .cpu_has_accelerated_tpr = report_flexpriority,
11559 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11560
11561 .vcpu_create = vmx_create_vcpu,
11562 .vcpu_free = vmx_free_vcpu,
11563 .vcpu_reset = vmx_vcpu_reset,
11564
11565 .prepare_guest_switch = vmx_save_host_state,
11566 .vcpu_load = vmx_vcpu_load,
11567 .vcpu_put = vmx_vcpu_put,
11568
11569 .update_bp_intercept = update_exception_bitmap,
11570 .get_msr = vmx_get_msr,
11571 .set_msr = vmx_set_msr,
11572 .get_segment_base = vmx_get_segment_base,
11573 .get_segment = vmx_get_segment,
11574 .set_segment = vmx_set_segment,
11575 .get_cpl = vmx_get_cpl,
11576 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11577 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11578 .decache_cr3 = vmx_decache_cr3,
11579 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11580 .set_cr0 = vmx_set_cr0,
11581 .set_cr3 = vmx_set_cr3,
11582 .set_cr4 = vmx_set_cr4,
11583 .set_efer = vmx_set_efer,
11584 .get_idt = vmx_get_idt,
11585 .set_idt = vmx_set_idt,
11586 .get_gdt = vmx_get_gdt,
11587 .set_gdt = vmx_set_gdt,
11588 .get_dr6 = vmx_get_dr6,
11589 .set_dr6 = vmx_set_dr6,
11590 .set_dr7 = vmx_set_dr7,
11591 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11592 .cache_reg = vmx_cache_reg,
11593 .get_rflags = vmx_get_rflags,
11594 .set_rflags = vmx_set_rflags,
11595
11596 .get_pkru = vmx_get_pkru,
11597
11598 .tlb_flush = vmx_flush_tlb,
11599
11600 .run = vmx_vcpu_run,
11601 .handle_exit = vmx_handle_exit,
11602 .skip_emulated_instruction = skip_emulated_instruction,
11603 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11604 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11605 .patch_hypercall = vmx_patch_hypercall,
11606 .set_irq = vmx_inject_irq,
11607 .set_nmi = vmx_inject_nmi,
11608 .queue_exception = vmx_queue_exception,
11609 .cancel_injection = vmx_cancel_injection,
11610 .interrupt_allowed = vmx_interrupt_allowed,
11611 .nmi_allowed = vmx_nmi_allowed,
11612 .get_nmi_mask = vmx_get_nmi_mask,
11613 .set_nmi_mask = vmx_set_nmi_mask,
11614 .enable_nmi_window = enable_nmi_window,
11615 .enable_irq_window = enable_irq_window,
11616 .update_cr8_intercept = update_cr8_intercept,
11617 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11618 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11619 .get_enable_apicv = vmx_get_enable_apicv,
11620 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11621 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11622 .apicv_post_state_restore = vmx_apicv_post_state_restore,
11623 .hwapic_irr_update = vmx_hwapic_irr_update,
11624 .hwapic_isr_update = vmx_hwapic_isr_update,
11625 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11626 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11627
11628 .set_tss_addr = vmx_set_tss_addr,
11629 .get_tdp_level = get_ept_level,
11630 .get_mt_mask = vmx_get_mt_mask,
11631
11632 .get_exit_info = vmx_get_exit_info,
11633
11634 .get_lpage_level = vmx_get_lpage_level,
11635
11636 .cpuid_update = vmx_cpuid_update,
11637
11638 .rdtscp_supported = vmx_rdtscp_supported,
11639 .invpcid_supported = vmx_invpcid_supported,
11640
11641 .set_supported_cpuid = vmx_set_supported_cpuid,
11642
11643 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11644
11645 .write_tsc_offset = vmx_write_tsc_offset,
11646
11647 .set_tdp_cr3 = vmx_set_cr3,
11648
11649 .check_intercept = vmx_check_intercept,
11650 .handle_external_intr = vmx_handle_external_intr,
11651 .mpx_supported = vmx_mpx_supported,
11652 .xsaves_supported = vmx_xsaves_supported,
11653
11654 .check_nested_events = vmx_check_nested_events,
11655
11656 .sched_in = vmx_sched_in,
11657
11658 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11659 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11660 .flush_log_dirty = vmx_flush_log_dirty,
11661 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11662 .write_log_dirty = vmx_write_pml_buffer,
11663
11664 .pre_block = vmx_pre_block,
11665 .post_block = vmx_post_block,
11666
11667 .pmu_ops = &intel_pmu_ops,
11668
11669 .update_pi_irte = vmx_update_pi_irte,
11670
11671 #ifdef CONFIG_X86_64
11672 .set_hv_timer = vmx_set_hv_timer,
11673 .cancel_hv_timer = vmx_cancel_hv_timer,
11674 #endif
11675
11676 .setup_mce = vmx_setup_mce,
11677 };
11678
11679 static int __init vmx_init(void)
11680 {
11681 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11682 __alignof__(struct vcpu_vmx), THIS_MODULE);
11683 if (r)
11684 return r;
11685
11686 #ifdef CONFIG_KEXEC_CORE
11687 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11688 crash_vmclear_local_loaded_vmcss);
11689 #endif
11690
11691 return 0;
11692 }
11693
11694 static void __exit vmx_exit(void)
11695 {
11696 #ifdef CONFIG_KEXEC_CORE
11697 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11698 synchronize_rcu();
11699 #endif
11700
11701 kvm_exit();
11702 }
11703
11704 module_init(vmx_init)
11705 module_exit(vmx_exit)