]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/vmx.c
Merge tag 'pci-v4.15-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly enable_vnmi = 1;
74 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
75
76 static bool __read_mostly flexpriority_enabled = 1;
77 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
78
79 static bool __read_mostly enable_ept = 1;
80 module_param_named(ept, enable_ept, bool, S_IRUGO);
81
82 static bool __read_mostly enable_unrestricted_guest = 1;
83 module_param_named(unrestricted_guest,
84 enable_unrestricted_guest, bool, S_IRUGO);
85
86 static bool __read_mostly enable_ept_ad_bits = 1;
87 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
88
89 static bool __read_mostly emulate_invalid_guest_state = true;
90 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
91
92 static bool __read_mostly fasteoi = 1;
93 module_param(fasteoi, bool, S_IRUGO);
94
95 static bool __read_mostly enable_apicv = 1;
96 module_param(enable_apicv, bool, S_IRUGO);
97
98 static bool __read_mostly enable_shadow_vmcs = 1;
99 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
100 /*
101 * If nested=1, nested virtualization is supported, i.e., guests may use
102 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
103 * use VMX instructions.
104 */
105 static bool __read_mostly nested = 0;
106 module_param(nested, bool, S_IRUGO);
107
108 static u64 __read_mostly host_xss;
109
110 static bool __read_mostly enable_pml = 1;
111 module_param_named(pml, enable_pml, bool, S_IRUGO);
112
113 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
114
115 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
116 static int __read_mostly cpu_preemption_timer_multi;
117 static bool __read_mostly enable_preemption_timer = 1;
118 #ifdef CONFIG_X86_64
119 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
120 #endif
121
122 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
123 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
124 #define KVM_VM_CR0_ALWAYS_ON \
125 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
126 #define KVM_CR4_GUEST_OWNED_BITS \
127 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
128 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
129
130 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
131 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
132
133 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
134
135 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
136
137 /*
138 * Hyper-V requires all of these, so mark them as supported even though
139 * they are just treated the same as all-context.
140 */
141 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
142 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
143 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
144 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
145 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
146
147 /*
148 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
149 * ple_gap: upper bound on the amount of time between two successive
150 * executions of PAUSE in a loop. Also indicate if ple enabled.
151 * According to test, this time is usually smaller than 128 cycles.
152 * ple_window: upper bound on the amount of time a guest is allowed to execute
153 * in a PAUSE loop. Tests indicate that most spinlocks are held for
154 * less than 2^12 cycles
155 * Time is measured based on a counter that runs at the same rate as the TSC,
156 * refer SDM volume 3b section 21.6.13 & 22.1.3.
157 */
158 #define KVM_VMX_DEFAULT_PLE_GAP 128
159 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
160 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
161 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
162 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
163 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
164
165 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
166 module_param(ple_gap, int, S_IRUGO);
167
168 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, int, S_IRUGO);
170
171 /* Default doubles per-vcpu window every exit. */
172 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, int, S_IRUGO);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, int, S_IRUGO);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
182 module_param(ple_window_max, int, S_IRUGO);
183
184 extern const ulong vmx_return;
185
186 #define NR_AUTOLOAD_MSRS 8
187 #define VMCS02_POOL_SIZE 1
188
189 struct vmcs {
190 u32 revision_id;
191 u32 abort;
192 char data[0];
193 };
194
195 /*
196 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
197 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
198 * loaded on this CPU (so we can clear them if the CPU goes down).
199 */
200 struct loaded_vmcs {
201 struct vmcs *vmcs;
202 struct vmcs *shadow_vmcs;
203 int cpu;
204 bool launched;
205 bool nmi_known_unmasked;
206 unsigned long vmcs_host_cr3; /* May not match real cr3 */
207 unsigned long vmcs_host_cr4; /* May not match real cr4 */
208 /* Support for vnmi-less CPUs */
209 int soft_vnmi_blocked;
210 ktime_t entry_time;
211 s64 vnmi_blocked_time;
212 struct list_head loaded_vmcss_on_cpu_link;
213 };
214
215 struct shared_msr_entry {
216 unsigned index;
217 u64 data;
218 u64 mask;
219 };
220
221 /*
222 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
223 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
224 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
225 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
226 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
227 * More than one of these structures may exist, if L1 runs multiple L2 guests.
228 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
229 * underlying hardware which will be used to run L2.
230 * This structure is packed to ensure that its layout is identical across
231 * machines (necessary for live migration).
232 * If there are changes in this struct, VMCS12_REVISION must be changed.
233 */
234 typedef u64 natural_width;
235 struct __packed vmcs12 {
236 /* According to the Intel spec, a VMCS region must start with the
237 * following two fields. Then follow implementation-specific data.
238 */
239 u32 revision_id;
240 u32 abort;
241
242 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
243 u32 padding[7]; /* room for future expansion */
244
245 u64 io_bitmap_a;
246 u64 io_bitmap_b;
247 u64 msr_bitmap;
248 u64 vm_exit_msr_store_addr;
249 u64 vm_exit_msr_load_addr;
250 u64 vm_entry_msr_load_addr;
251 u64 tsc_offset;
252 u64 virtual_apic_page_addr;
253 u64 apic_access_addr;
254 u64 posted_intr_desc_addr;
255 u64 vm_function_control;
256 u64 ept_pointer;
257 u64 eoi_exit_bitmap0;
258 u64 eoi_exit_bitmap1;
259 u64 eoi_exit_bitmap2;
260 u64 eoi_exit_bitmap3;
261 u64 eptp_list_address;
262 u64 xss_exit_bitmap;
263 u64 guest_physical_address;
264 u64 vmcs_link_pointer;
265 u64 pml_address;
266 u64 guest_ia32_debugctl;
267 u64 guest_ia32_pat;
268 u64 guest_ia32_efer;
269 u64 guest_ia32_perf_global_ctrl;
270 u64 guest_pdptr0;
271 u64 guest_pdptr1;
272 u64 guest_pdptr2;
273 u64 guest_pdptr3;
274 u64 guest_bndcfgs;
275 u64 host_ia32_pat;
276 u64 host_ia32_efer;
277 u64 host_ia32_perf_global_ctrl;
278 u64 padding64[8]; /* room for future expansion */
279 /*
280 * To allow migration of L1 (complete with its L2 guests) between
281 * machines of different natural widths (32 or 64 bit), we cannot have
282 * unsigned long fields with no explict size. We use u64 (aliased
283 * natural_width) instead. Luckily, x86 is little-endian.
284 */
285 natural_width cr0_guest_host_mask;
286 natural_width cr4_guest_host_mask;
287 natural_width cr0_read_shadow;
288 natural_width cr4_read_shadow;
289 natural_width cr3_target_value0;
290 natural_width cr3_target_value1;
291 natural_width cr3_target_value2;
292 natural_width cr3_target_value3;
293 natural_width exit_qualification;
294 natural_width guest_linear_address;
295 natural_width guest_cr0;
296 natural_width guest_cr3;
297 natural_width guest_cr4;
298 natural_width guest_es_base;
299 natural_width guest_cs_base;
300 natural_width guest_ss_base;
301 natural_width guest_ds_base;
302 natural_width guest_fs_base;
303 natural_width guest_gs_base;
304 natural_width guest_ldtr_base;
305 natural_width guest_tr_base;
306 natural_width guest_gdtr_base;
307 natural_width guest_idtr_base;
308 natural_width guest_dr7;
309 natural_width guest_rsp;
310 natural_width guest_rip;
311 natural_width guest_rflags;
312 natural_width guest_pending_dbg_exceptions;
313 natural_width guest_sysenter_esp;
314 natural_width guest_sysenter_eip;
315 natural_width host_cr0;
316 natural_width host_cr3;
317 natural_width host_cr4;
318 natural_width host_fs_base;
319 natural_width host_gs_base;
320 natural_width host_tr_base;
321 natural_width host_gdtr_base;
322 natural_width host_idtr_base;
323 natural_width host_ia32_sysenter_esp;
324 natural_width host_ia32_sysenter_eip;
325 natural_width host_rsp;
326 natural_width host_rip;
327 natural_width paddingl[8]; /* room for future expansion */
328 u32 pin_based_vm_exec_control;
329 u32 cpu_based_vm_exec_control;
330 u32 exception_bitmap;
331 u32 page_fault_error_code_mask;
332 u32 page_fault_error_code_match;
333 u32 cr3_target_count;
334 u32 vm_exit_controls;
335 u32 vm_exit_msr_store_count;
336 u32 vm_exit_msr_load_count;
337 u32 vm_entry_controls;
338 u32 vm_entry_msr_load_count;
339 u32 vm_entry_intr_info_field;
340 u32 vm_entry_exception_error_code;
341 u32 vm_entry_instruction_len;
342 u32 tpr_threshold;
343 u32 secondary_vm_exec_control;
344 u32 vm_instruction_error;
345 u32 vm_exit_reason;
346 u32 vm_exit_intr_info;
347 u32 vm_exit_intr_error_code;
348 u32 idt_vectoring_info_field;
349 u32 idt_vectoring_error_code;
350 u32 vm_exit_instruction_len;
351 u32 vmx_instruction_info;
352 u32 guest_es_limit;
353 u32 guest_cs_limit;
354 u32 guest_ss_limit;
355 u32 guest_ds_limit;
356 u32 guest_fs_limit;
357 u32 guest_gs_limit;
358 u32 guest_ldtr_limit;
359 u32 guest_tr_limit;
360 u32 guest_gdtr_limit;
361 u32 guest_idtr_limit;
362 u32 guest_es_ar_bytes;
363 u32 guest_cs_ar_bytes;
364 u32 guest_ss_ar_bytes;
365 u32 guest_ds_ar_bytes;
366 u32 guest_fs_ar_bytes;
367 u32 guest_gs_ar_bytes;
368 u32 guest_ldtr_ar_bytes;
369 u32 guest_tr_ar_bytes;
370 u32 guest_interruptibility_info;
371 u32 guest_activity_state;
372 u32 guest_sysenter_cs;
373 u32 host_ia32_sysenter_cs;
374 u32 vmx_preemption_timer_value;
375 u32 padding32[7]; /* room for future expansion */
376 u16 virtual_processor_id;
377 u16 posted_intr_nv;
378 u16 guest_es_selector;
379 u16 guest_cs_selector;
380 u16 guest_ss_selector;
381 u16 guest_ds_selector;
382 u16 guest_fs_selector;
383 u16 guest_gs_selector;
384 u16 guest_ldtr_selector;
385 u16 guest_tr_selector;
386 u16 guest_intr_status;
387 u16 guest_pml_index;
388 u16 host_es_selector;
389 u16 host_cs_selector;
390 u16 host_ss_selector;
391 u16 host_ds_selector;
392 u16 host_fs_selector;
393 u16 host_gs_selector;
394 u16 host_tr_selector;
395 };
396
397 /*
398 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
399 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
400 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
401 */
402 #define VMCS12_REVISION 0x11e57ed0
403
404 /*
405 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
406 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
407 * current implementation, 4K are reserved to avoid future complications.
408 */
409 #define VMCS12_SIZE 0x1000
410
411 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
412 struct vmcs02_list {
413 struct list_head list;
414 gpa_t vmptr;
415 struct loaded_vmcs vmcs02;
416 };
417
418 /*
419 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
420 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
421 */
422 struct nested_vmx {
423 /* Has the level1 guest done vmxon? */
424 bool vmxon;
425 gpa_t vmxon_ptr;
426 bool pml_full;
427
428 /* The guest-physical address of the current VMCS L1 keeps for L2 */
429 gpa_t current_vmptr;
430 /*
431 * Cache of the guest's VMCS, existing outside of guest memory.
432 * Loaded from guest memory during VMPTRLD. Flushed to guest
433 * memory during VMCLEAR and VMPTRLD.
434 */
435 struct vmcs12 *cached_vmcs12;
436 /*
437 * Indicates if the shadow vmcs must be updated with the
438 * data hold by vmcs12
439 */
440 bool sync_shadow_vmcs;
441
442 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
443 struct list_head vmcs02_pool;
444 int vmcs02_num;
445 bool change_vmcs01_virtual_x2apic_mode;
446 /* L2 must run next, and mustn't decide to exit to L1. */
447 bool nested_run_pending;
448 /*
449 * Guest pages referred to in vmcs02 with host-physical pointers, so
450 * we must keep them pinned while L2 runs.
451 */
452 struct page *apic_access_page;
453 struct page *virtual_apic_page;
454 struct page *pi_desc_page;
455 struct pi_desc *pi_desc;
456 bool pi_pending;
457 u16 posted_intr_nv;
458
459 unsigned long *msr_bitmap;
460
461 struct hrtimer preemption_timer;
462 bool preemption_timer_expired;
463
464 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
465 u64 vmcs01_debugctl;
466
467 u16 vpid02;
468 u16 last_vpid;
469
470 /*
471 * We only store the "true" versions of the VMX capability MSRs. We
472 * generate the "non-true" versions by setting the must-be-1 bits
473 * according to the SDM.
474 */
475 u32 nested_vmx_procbased_ctls_low;
476 u32 nested_vmx_procbased_ctls_high;
477 u32 nested_vmx_secondary_ctls_low;
478 u32 nested_vmx_secondary_ctls_high;
479 u32 nested_vmx_pinbased_ctls_low;
480 u32 nested_vmx_pinbased_ctls_high;
481 u32 nested_vmx_exit_ctls_low;
482 u32 nested_vmx_exit_ctls_high;
483 u32 nested_vmx_entry_ctls_low;
484 u32 nested_vmx_entry_ctls_high;
485 u32 nested_vmx_misc_low;
486 u32 nested_vmx_misc_high;
487 u32 nested_vmx_ept_caps;
488 u32 nested_vmx_vpid_caps;
489 u64 nested_vmx_basic;
490 u64 nested_vmx_cr0_fixed0;
491 u64 nested_vmx_cr0_fixed1;
492 u64 nested_vmx_cr4_fixed0;
493 u64 nested_vmx_cr4_fixed1;
494 u64 nested_vmx_vmcs_enum;
495 u64 nested_vmx_vmfunc_controls;
496
497 /* SMM related state */
498 struct {
499 /* in VMX operation on SMM entry? */
500 bool vmxon;
501 /* in guest mode on SMM entry? */
502 bool guest_mode;
503 } smm;
504 };
505
506 #define POSTED_INTR_ON 0
507 #define POSTED_INTR_SN 1
508
509 /* Posted-Interrupt Descriptor */
510 struct pi_desc {
511 u32 pir[8]; /* Posted interrupt requested */
512 union {
513 struct {
514 /* bit 256 - Outstanding Notification */
515 u16 on : 1,
516 /* bit 257 - Suppress Notification */
517 sn : 1,
518 /* bit 271:258 - Reserved */
519 rsvd_1 : 14;
520 /* bit 279:272 - Notification Vector */
521 u8 nv;
522 /* bit 287:280 - Reserved */
523 u8 rsvd_2;
524 /* bit 319:288 - Notification Destination */
525 u32 ndst;
526 };
527 u64 control;
528 };
529 u32 rsvd[6];
530 } __aligned(64);
531
532 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
533 {
534 return test_and_set_bit(POSTED_INTR_ON,
535 (unsigned long *)&pi_desc->control);
536 }
537
538 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
539 {
540 return test_and_clear_bit(POSTED_INTR_ON,
541 (unsigned long *)&pi_desc->control);
542 }
543
544 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
545 {
546 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
547 }
548
549 static inline void pi_clear_sn(struct pi_desc *pi_desc)
550 {
551 return clear_bit(POSTED_INTR_SN,
552 (unsigned long *)&pi_desc->control);
553 }
554
555 static inline void pi_set_sn(struct pi_desc *pi_desc)
556 {
557 return set_bit(POSTED_INTR_SN,
558 (unsigned long *)&pi_desc->control);
559 }
560
561 static inline void pi_clear_on(struct pi_desc *pi_desc)
562 {
563 clear_bit(POSTED_INTR_ON,
564 (unsigned long *)&pi_desc->control);
565 }
566
567 static inline int pi_test_on(struct pi_desc *pi_desc)
568 {
569 return test_bit(POSTED_INTR_ON,
570 (unsigned long *)&pi_desc->control);
571 }
572
573 static inline int pi_test_sn(struct pi_desc *pi_desc)
574 {
575 return test_bit(POSTED_INTR_SN,
576 (unsigned long *)&pi_desc->control);
577 }
578
579 struct vcpu_vmx {
580 struct kvm_vcpu vcpu;
581 unsigned long host_rsp;
582 u8 fail;
583 u32 exit_intr_info;
584 u32 idt_vectoring_info;
585 ulong rflags;
586 struct shared_msr_entry *guest_msrs;
587 int nmsrs;
588 int save_nmsrs;
589 unsigned long host_idt_base;
590 #ifdef CONFIG_X86_64
591 u64 msr_host_kernel_gs_base;
592 u64 msr_guest_kernel_gs_base;
593 #endif
594 u32 vm_entry_controls_shadow;
595 u32 vm_exit_controls_shadow;
596 u32 secondary_exec_control;
597
598 /*
599 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
600 * non-nested (L1) guest, it always points to vmcs01. For a nested
601 * guest (L2), it points to a different VMCS.
602 */
603 struct loaded_vmcs vmcs01;
604 struct loaded_vmcs *loaded_vmcs;
605 bool __launched; /* temporary, used in vmx_vcpu_run */
606 struct msr_autoload {
607 unsigned nr;
608 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
609 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
610 } msr_autoload;
611 struct {
612 int loaded;
613 u16 fs_sel, gs_sel, ldt_sel;
614 #ifdef CONFIG_X86_64
615 u16 ds_sel, es_sel;
616 #endif
617 int gs_ldt_reload_needed;
618 int fs_reload_needed;
619 u64 msr_host_bndcfgs;
620 } host_state;
621 struct {
622 int vm86_active;
623 ulong save_rflags;
624 struct kvm_segment segs[8];
625 } rmode;
626 struct {
627 u32 bitmask; /* 4 bits per segment (1 bit per field) */
628 struct kvm_save_segment {
629 u16 selector;
630 unsigned long base;
631 u32 limit;
632 u32 ar;
633 } seg[8];
634 } segment_cache;
635 int vpid;
636 bool emulation_required;
637
638 u32 exit_reason;
639
640 /* Posted interrupt descriptor */
641 struct pi_desc pi_desc;
642
643 /* Support for a guest hypervisor (nested VMX) */
644 struct nested_vmx nested;
645
646 /* Dynamic PLE window. */
647 int ple_window;
648 bool ple_window_dirty;
649
650 /* Support for PML */
651 #define PML_ENTITY_NUM 512
652 struct page *pml_pg;
653
654 /* apic deadline value in host tsc */
655 u64 hv_deadline_tsc;
656
657 u64 current_tsc_ratio;
658
659 u32 host_pkru;
660
661 /*
662 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
663 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
664 * in msr_ia32_feature_control_valid_bits.
665 */
666 u64 msr_ia32_feature_control;
667 u64 msr_ia32_feature_control_valid_bits;
668 };
669
670 enum segment_cache_field {
671 SEG_FIELD_SEL = 0,
672 SEG_FIELD_BASE = 1,
673 SEG_FIELD_LIMIT = 2,
674 SEG_FIELD_AR = 3,
675
676 SEG_FIELD_NR = 4
677 };
678
679 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
680 {
681 return container_of(vcpu, struct vcpu_vmx, vcpu);
682 }
683
684 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
685 {
686 return &(to_vmx(vcpu)->pi_desc);
687 }
688
689 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
690 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
691 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
692 [number##_HIGH] = VMCS12_OFFSET(name)+4
693
694
695 static unsigned long shadow_read_only_fields[] = {
696 /*
697 * We do NOT shadow fields that are modified when L0
698 * traps and emulates any vmx instruction (e.g. VMPTRLD,
699 * VMXON...) executed by L1.
700 * For example, VM_INSTRUCTION_ERROR is read
701 * by L1 if a vmx instruction fails (part of the error path).
702 * Note the code assumes this logic. If for some reason
703 * we start shadowing these fields then we need to
704 * force a shadow sync when L0 emulates vmx instructions
705 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
706 * by nested_vmx_failValid)
707 */
708 VM_EXIT_REASON,
709 VM_EXIT_INTR_INFO,
710 VM_EXIT_INSTRUCTION_LEN,
711 IDT_VECTORING_INFO_FIELD,
712 IDT_VECTORING_ERROR_CODE,
713 VM_EXIT_INTR_ERROR_CODE,
714 EXIT_QUALIFICATION,
715 GUEST_LINEAR_ADDRESS,
716 GUEST_PHYSICAL_ADDRESS
717 };
718 static int max_shadow_read_only_fields =
719 ARRAY_SIZE(shadow_read_only_fields);
720
721 static unsigned long shadow_read_write_fields[] = {
722 TPR_THRESHOLD,
723 GUEST_RIP,
724 GUEST_RSP,
725 GUEST_CR0,
726 GUEST_CR3,
727 GUEST_CR4,
728 GUEST_INTERRUPTIBILITY_INFO,
729 GUEST_RFLAGS,
730 GUEST_CS_SELECTOR,
731 GUEST_CS_AR_BYTES,
732 GUEST_CS_LIMIT,
733 GUEST_CS_BASE,
734 GUEST_ES_BASE,
735 GUEST_BNDCFGS,
736 CR0_GUEST_HOST_MASK,
737 CR0_READ_SHADOW,
738 CR4_READ_SHADOW,
739 TSC_OFFSET,
740 EXCEPTION_BITMAP,
741 CPU_BASED_VM_EXEC_CONTROL,
742 VM_ENTRY_EXCEPTION_ERROR_CODE,
743 VM_ENTRY_INTR_INFO_FIELD,
744 VM_ENTRY_INSTRUCTION_LEN,
745 VM_ENTRY_EXCEPTION_ERROR_CODE,
746 HOST_FS_BASE,
747 HOST_GS_BASE,
748 HOST_FS_SELECTOR,
749 HOST_GS_SELECTOR
750 };
751 static int max_shadow_read_write_fields =
752 ARRAY_SIZE(shadow_read_write_fields);
753
754 static const unsigned short vmcs_field_to_offset_table[] = {
755 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
756 FIELD(POSTED_INTR_NV, posted_intr_nv),
757 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
758 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
759 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
760 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
761 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
762 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
763 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
764 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
765 FIELD(GUEST_INTR_STATUS, guest_intr_status),
766 FIELD(GUEST_PML_INDEX, guest_pml_index),
767 FIELD(HOST_ES_SELECTOR, host_es_selector),
768 FIELD(HOST_CS_SELECTOR, host_cs_selector),
769 FIELD(HOST_SS_SELECTOR, host_ss_selector),
770 FIELD(HOST_DS_SELECTOR, host_ds_selector),
771 FIELD(HOST_FS_SELECTOR, host_fs_selector),
772 FIELD(HOST_GS_SELECTOR, host_gs_selector),
773 FIELD(HOST_TR_SELECTOR, host_tr_selector),
774 FIELD64(IO_BITMAP_A, io_bitmap_a),
775 FIELD64(IO_BITMAP_B, io_bitmap_b),
776 FIELD64(MSR_BITMAP, msr_bitmap),
777 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
778 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
779 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
780 FIELD64(TSC_OFFSET, tsc_offset),
781 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
782 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
783 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
784 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
785 FIELD64(EPT_POINTER, ept_pointer),
786 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
787 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
788 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
789 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
790 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
791 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
792 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
793 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
794 FIELD64(PML_ADDRESS, pml_address),
795 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
796 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
797 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
798 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
799 FIELD64(GUEST_PDPTR0, guest_pdptr0),
800 FIELD64(GUEST_PDPTR1, guest_pdptr1),
801 FIELD64(GUEST_PDPTR2, guest_pdptr2),
802 FIELD64(GUEST_PDPTR3, guest_pdptr3),
803 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
804 FIELD64(HOST_IA32_PAT, host_ia32_pat),
805 FIELD64(HOST_IA32_EFER, host_ia32_efer),
806 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
807 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
808 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
809 FIELD(EXCEPTION_BITMAP, exception_bitmap),
810 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
811 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
812 FIELD(CR3_TARGET_COUNT, cr3_target_count),
813 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
814 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
815 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
816 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
817 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
818 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
819 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
820 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
821 FIELD(TPR_THRESHOLD, tpr_threshold),
822 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
823 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
824 FIELD(VM_EXIT_REASON, vm_exit_reason),
825 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
826 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
827 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
828 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
829 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
830 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
831 FIELD(GUEST_ES_LIMIT, guest_es_limit),
832 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
833 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
834 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
835 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
836 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
837 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
838 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
839 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
840 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
841 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
842 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
843 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
844 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
845 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
846 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
847 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
848 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
849 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
850 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
851 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
852 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
853 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
854 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
855 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
856 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
857 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
858 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
859 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
860 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
861 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
862 FIELD(EXIT_QUALIFICATION, exit_qualification),
863 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
864 FIELD(GUEST_CR0, guest_cr0),
865 FIELD(GUEST_CR3, guest_cr3),
866 FIELD(GUEST_CR4, guest_cr4),
867 FIELD(GUEST_ES_BASE, guest_es_base),
868 FIELD(GUEST_CS_BASE, guest_cs_base),
869 FIELD(GUEST_SS_BASE, guest_ss_base),
870 FIELD(GUEST_DS_BASE, guest_ds_base),
871 FIELD(GUEST_FS_BASE, guest_fs_base),
872 FIELD(GUEST_GS_BASE, guest_gs_base),
873 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
874 FIELD(GUEST_TR_BASE, guest_tr_base),
875 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
876 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
877 FIELD(GUEST_DR7, guest_dr7),
878 FIELD(GUEST_RSP, guest_rsp),
879 FIELD(GUEST_RIP, guest_rip),
880 FIELD(GUEST_RFLAGS, guest_rflags),
881 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
882 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
883 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
884 FIELD(HOST_CR0, host_cr0),
885 FIELD(HOST_CR3, host_cr3),
886 FIELD(HOST_CR4, host_cr4),
887 FIELD(HOST_FS_BASE, host_fs_base),
888 FIELD(HOST_GS_BASE, host_gs_base),
889 FIELD(HOST_TR_BASE, host_tr_base),
890 FIELD(HOST_GDTR_BASE, host_gdtr_base),
891 FIELD(HOST_IDTR_BASE, host_idtr_base),
892 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
893 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
894 FIELD(HOST_RSP, host_rsp),
895 FIELD(HOST_RIP, host_rip),
896 };
897
898 static inline short vmcs_field_to_offset(unsigned long field)
899 {
900 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
901
902 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table))
903 return -ENOENT;
904
905 /*
906 * FIXME: Mitigation for CVE-2017-5753. To be replaced with a
907 * generic mechanism.
908 */
909 asm("lfence");
910
911 if (vmcs_field_to_offset_table[field] == 0)
912 return -ENOENT;
913
914 return vmcs_field_to_offset_table[field];
915 }
916
917 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
918 {
919 return to_vmx(vcpu)->nested.cached_vmcs12;
920 }
921
922 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
923 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
924 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
925 static bool vmx_xsaves_supported(void);
926 static void vmx_set_segment(struct kvm_vcpu *vcpu,
927 struct kvm_segment *var, int seg);
928 static void vmx_get_segment(struct kvm_vcpu *vcpu,
929 struct kvm_segment *var, int seg);
930 static bool guest_state_valid(struct kvm_vcpu *vcpu);
931 static u32 vmx_segment_access_rights(struct kvm_segment *var);
932 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
933 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
934 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
935 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
936 u16 error_code);
937
938 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
939 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
940 /*
941 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
942 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
943 */
944 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
945
946 /*
947 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
948 * can find which vCPU should be waken up.
949 */
950 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
951 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
952
953 enum {
954 VMX_IO_BITMAP_A,
955 VMX_IO_BITMAP_B,
956 VMX_MSR_BITMAP_LEGACY,
957 VMX_MSR_BITMAP_LONGMODE,
958 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
959 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
960 VMX_MSR_BITMAP_LEGACY_X2APIC,
961 VMX_MSR_BITMAP_LONGMODE_X2APIC,
962 VMX_VMREAD_BITMAP,
963 VMX_VMWRITE_BITMAP,
964 VMX_BITMAP_NR
965 };
966
967 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
968
969 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
970 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
971 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
972 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
973 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
974 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
975 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
976 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
977 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
978 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
979
980 static bool cpu_has_load_ia32_efer;
981 static bool cpu_has_load_perf_global_ctrl;
982
983 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
984 static DEFINE_SPINLOCK(vmx_vpid_lock);
985
986 static struct vmcs_config {
987 int size;
988 int order;
989 u32 basic_cap;
990 u32 revision_id;
991 u32 pin_based_exec_ctrl;
992 u32 cpu_based_exec_ctrl;
993 u32 cpu_based_2nd_exec_ctrl;
994 u32 vmexit_ctrl;
995 u32 vmentry_ctrl;
996 } vmcs_config;
997
998 static struct vmx_capability {
999 u32 ept;
1000 u32 vpid;
1001 } vmx_capability;
1002
1003 #define VMX_SEGMENT_FIELD(seg) \
1004 [VCPU_SREG_##seg] = { \
1005 .selector = GUEST_##seg##_SELECTOR, \
1006 .base = GUEST_##seg##_BASE, \
1007 .limit = GUEST_##seg##_LIMIT, \
1008 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1009 }
1010
1011 static const struct kvm_vmx_segment_field {
1012 unsigned selector;
1013 unsigned base;
1014 unsigned limit;
1015 unsigned ar_bytes;
1016 } kvm_vmx_segment_fields[] = {
1017 VMX_SEGMENT_FIELD(CS),
1018 VMX_SEGMENT_FIELD(DS),
1019 VMX_SEGMENT_FIELD(ES),
1020 VMX_SEGMENT_FIELD(FS),
1021 VMX_SEGMENT_FIELD(GS),
1022 VMX_SEGMENT_FIELD(SS),
1023 VMX_SEGMENT_FIELD(TR),
1024 VMX_SEGMENT_FIELD(LDTR),
1025 };
1026
1027 static u64 host_efer;
1028
1029 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1030
1031 /*
1032 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1033 * away by decrementing the array size.
1034 */
1035 static const u32 vmx_msr_index[] = {
1036 #ifdef CONFIG_X86_64
1037 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1038 #endif
1039 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1040 };
1041
1042 static inline bool is_exception_n(u32 intr_info, u8 vector)
1043 {
1044 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1045 INTR_INFO_VALID_MASK)) ==
1046 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1047 }
1048
1049 static inline bool is_debug(u32 intr_info)
1050 {
1051 return is_exception_n(intr_info, DB_VECTOR);
1052 }
1053
1054 static inline bool is_breakpoint(u32 intr_info)
1055 {
1056 return is_exception_n(intr_info, BP_VECTOR);
1057 }
1058
1059 static inline bool is_page_fault(u32 intr_info)
1060 {
1061 return is_exception_n(intr_info, PF_VECTOR);
1062 }
1063
1064 static inline bool is_no_device(u32 intr_info)
1065 {
1066 return is_exception_n(intr_info, NM_VECTOR);
1067 }
1068
1069 static inline bool is_invalid_opcode(u32 intr_info)
1070 {
1071 return is_exception_n(intr_info, UD_VECTOR);
1072 }
1073
1074 static inline bool is_external_interrupt(u32 intr_info)
1075 {
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1077 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool is_machine_check(u32 intr_info)
1081 {
1082 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1083 INTR_INFO_VALID_MASK)) ==
1084 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1085 }
1086
1087 static inline bool cpu_has_vmx_msr_bitmap(void)
1088 {
1089 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1090 }
1091
1092 static inline bool cpu_has_vmx_tpr_shadow(void)
1093 {
1094 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1095 }
1096
1097 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1098 {
1099 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1100 }
1101
1102 static inline bool cpu_has_secondary_exec_ctrls(void)
1103 {
1104 return vmcs_config.cpu_based_exec_ctrl &
1105 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1106 }
1107
1108 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1109 {
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1112 }
1113
1114 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1115 {
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1118 }
1119
1120 static inline bool cpu_has_vmx_apic_register_virt(void)
1121 {
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1124 }
1125
1126 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1127 {
1128 return vmcs_config.cpu_based_2nd_exec_ctrl &
1129 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1130 }
1131
1132 /*
1133 * Comment's format: document - errata name - stepping - processor name.
1134 * Refer from
1135 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1136 */
1137 static u32 vmx_preemption_cpu_tfms[] = {
1138 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1139 0x000206E6,
1140 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1141 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1142 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1143 0x00020652,
1144 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1145 0x00020655,
1146 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1147 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1148 /*
1149 * 320767.pdf - AAP86 - B1 -
1150 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1151 */
1152 0x000106E5,
1153 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1154 0x000106A0,
1155 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1156 0x000106A1,
1157 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1158 0x000106A4,
1159 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1160 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1161 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1162 0x000106A5,
1163 };
1164
1165 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1166 {
1167 u32 eax = cpuid_eax(0x00000001), i;
1168
1169 /* Clear the reserved bits */
1170 eax &= ~(0x3U << 14 | 0xfU << 28);
1171 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1172 if (eax == vmx_preemption_cpu_tfms[i])
1173 return true;
1174
1175 return false;
1176 }
1177
1178 static inline bool cpu_has_vmx_preemption_timer(void)
1179 {
1180 return vmcs_config.pin_based_exec_ctrl &
1181 PIN_BASED_VMX_PREEMPTION_TIMER;
1182 }
1183
1184 static inline bool cpu_has_vmx_posted_intr(void)
1185 {
1186 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1187 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1188 }
1189
1190 static inline bool cpu_has_vmx_apicv(void)
1191 {
1192 return cpu_has_vmx_apic_register_virt() &&
1193 cpu_has_vmx_virtual_intr_delivery() &&
1194 cpu_has_vmx_posted_intr();
1195 }
1196
1197 static inline bool cpu_has_vmx_flexpriority(void)
1198 {
1199 return cpu_has_vmx_tpr_shadow() &&
1200 cpu_has_vmx_virtualize_apic_accesses();
1201 }
1202
1203 static inline bool cpu_has_vmx_ept_execute_only(void)
1204 {
1205 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1206 }
1207
1208 static inline bool cpu_has_vmx_ept_2m_page(void)
1209 {
1210 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1211 }
1212
1213 static inline bool cpu_has_vmx_ept_1g_page(void)
1214 {
1215 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1216 }
1217
1218 static inline bool cpu_has_vmx_ept_4levels(void)
1219 {
1220 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1221 }
1222
1223 static inline bool cpu_has_vmx_ept_mt_wb(void)
1224 {
1225 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1226 }
1227
1228 static inline bool cpu_has_vmx_ept_5levels(void)
1229 {
1230 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1231 }
1232
1233 static inline bool cpu_has_vmx_ept_ad_bits(void)
1234 {
1235 return vmx_capability.ept & VMX_EPT_AD_BIT;
1236 }
1237
1238 static inline bool cpu_has_vmx_invept_context(void)
1239 {
1240 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1241 }
1242
1243 static inline bool cpu_has_vmx_invept_global(void)
1244 {
1245 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1246 }
1247
1248 static inline bool cpu_has_vmx_invvpid_single(void)
1249 {
1250 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1251 }
1252
1253 static inline bool cpu_has_vmx_invvpid_global(void)
1254 {
1255 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1256 }
1257
1258 static inline bool cpu_has_vmx_invvpid(void)
1259 {
1260 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1261 }
1262
1263 static inline bool cpu_has_vmx_ept(void)
1264 {
1265 return vmcs_config.cpu_based_2nd_exec_ctrl &
1266 SECONDARY_EXEC_ENABLE_EPT;
1267 }
1268
1269 static inline bool cpu_has_vmx_unrestricted_guest(void)
1270 {
1271 return vmcs_config.cpu_based_2nd_exec_ctrl &
1272 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1273 }
1274
1275 static inline bool cpu_has_vmx_ple(void)
1276 {
1277 return vmcs_config.cpu_based_2nd_exec_ctrl &
1278 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1279 }
1280
1281 static inline bool cpu_has_vmx_basic_inout(void)
1282 {
1283 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1284 }
1285
1286 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1287 {
1288 return flexpriority_enabled && lapic_in_kernel(vcpu);
1289 }
1290
1291 static inline bool cpu_has_vmx_vpid(void)
1292 {
1293 return vmcs_config.cpu_based_2nd_exec_ctrl &
1294 SECONDARY_EXEC_ENABLE_VPID;
1295 }
1296
1297 static inline bool cpu_has_vmx_rdtscp(void)
1298 {
1299 return vmcs_config.cpu_based_2nd_exec_ctrl &
1300 SECONDARY_EXEC_RDTSCP;
1301 }
1302
1303 static inline bool cpu_has_vmx_invpcid(void)
1304 {
1305 return vmcs_config.cpu_based_2nd_exec_ctrl &
1306 SECONDARY_EXEC_ENABLE_INVPCID;
1307 }
1308
1309 static inline bool cpu_has_virtual_nmis(void)
1310 {
1311 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1312 }
1313
1314 static inline bool cpu_has_vmx_wbinvd_exit(void)
1315 {
1316 return vmcs_config.cpu_based_2nd_exec_ctrl &
1317 SECONDARY_EXEC_WBINVD_EXITING;
1318 }
1319
1320 static inline bool cpu_has_vmx_shadow_vmcs(void)
1321 {
1322 u64 vmx_msr;
1323 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1324 /* check if the cpu supports writing r/o exit information fields */
1325 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1326 return false;
1327
1328 return vmcs_config.cpu_based_2nd_exec_ctrl &
1329 SECONDARY_EXEC_SHADOW_VMCS;
1330 }
1331
1332 static inline bool cpu_has_vmx_pml(void)
1333 {
1334 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1335 }
1336
1337 static inline bool cpu_has_vmx_tsc_scaling(void)
1338 {
1339 return vmcs_config.cpu_based_2nd_exec_ctrl &
1340 SECONDARY_EXEC_TSC_SCALING;
1341 }
1342
1343 static inline bool cpu_has_vmx_vmfunc(void)
1344 {
1345 return vmcs_config.cpu_based_2nd_exec_ctrl &
1346 SECONDARY_EXEC_ENABLE_VMFUNC;
1347 }
1348
1349 static inline bool report_flexpriority(void)
1350 {
1351 return flexpriority_enabled;
1352 }
1353
1354 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1355 {
1356 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1357 }
1358
1359 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1360 {
1361 return vmcs12->cpu_based_vm_exec_control & bit;
1362 }
1363
1364 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1365 {
1366 return (vmcs12->cpu_based_vm_exec_control &
1367 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1368 (vmcs12->secondary_vm_exec_control & bit);
1369 }
1370
1371 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1372 {
1373 return vmcs12->pin_based_vm_exec_control &
1374 PIN_BASED_VMX_PREEMPTION_TIMER;
1375 }
1376
1377 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1378 {
1379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1380 }
1381
1382 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1383 {
1384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1385 }
1386
1387 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1388 {
1389 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1390 }
1391
1392 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1393 {
1394 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1395 }
1396
1397 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1398 {
1399 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1400 }
1401
1402 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1403 {
1404 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1405 }
1406
1407 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1408 {
1409 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1410 }
1411
1412 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1413 {
1414 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1415 }
1416
1417 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1418 {
1419 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1420 }
1421
1422 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1423 {
1424 return nested_cpu_has_vmfunc(vmcs12) &&
1425 (vmcs12->vm_function_control &
1426 VMX_VMFUNC_EPTP_SWITCHING);
1427 }
1428
1429 static inline bool is_nmi(u32 intr_info)
1430 {
1431 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1432 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1433 }
1434
1435 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1436 u32 exit_intr_info,
1437 unsigned long exit_qualification);
1438 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1439 struct vmcs12 *vmcs12,
1440 u32 reason, unsigned long qualification);
1441
1442 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1443 {
1444 int i;
1445
1446 for (i = 0; i < vmx->nmsrs; ++i)
1447 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1448 return i;
1449 return -1;
1450 }
1451
1452 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1453 {
1454 struct {
1455 u64 vpid : 16;
1456 u64 rsvd : 48;
1457 u64 gva;
1458 } operand = { vpid, 0, gva };
1459
1460 asm volatile (__ex(ASM_VMX_INVVPID)
1461 /* CF==1 or ZF==1 --> rc = -1 */
1462 "; ja 1f ; ud2 ; 1:"
1463 : : "a"(&operand), "c"(ext) : "cc", "memory");
1464 }
1465
1466 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1467 {
1468 struct {
1469 u64 eptp, gpa;
1470 } operand = {eptp, gpa};
1471
1472 asm volatile (__ex(ASM_VMX_INVEPT)
1473 /* CF==1 or ZF==1 --> rc = -1 */
1474 "; ja 1f ; ud2 ; 1:\n"
1475 : : "a" (&operand), "c" (ext) : "cc", "memory");
1476 }
1477
1478 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1479 {
1480 int i;
1481
1482 i = __find_msr_index(vmx, msr);
1483 if (i >= 0)
1484 return &vmx->guest_msrs[i];
1485 return NULL;
1486 }
1487
1488 static void vmcs_clear(struct vmcs *vmcs)
1489 {
1490 u64 phys_addr = __pa(vmcs);
1491 u8 error;
1492
1493 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1494 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1495 : "cc", "memory");
1496 if (error)
1497 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1498 vmcs, phys_addr);
1499 }
1500
1501 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1502 {
1503 vmcs_clear(loaded_vmcs->vmcs);
1504 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1505 vmcs_clear(loaded_vmcs->shadow_vmcs);
1506 loaded_vmcs->cpu = -1;
1507 loaded_vmcs->launched = 0;
1508 }
1509
1510 static void vmcs_load(struct vmcs *vmcs)
1511 {
1512 u64 phys_addr = __pa(vmcs);
1513 u8 error;
1514
1515 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1516 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1517 : "cc", "memory");
1518 if (error)
1519 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1520 vmcs, phys_addr);
1521 }
1522
1523 #ifdef CONFIG_KEXEC_CORE
1524 /*
1525 * This bitmap is used to indicate whether the vmclear
1526 * operation is enabled on all cpus. All disabled by
1527 * default.
1528 */
1529 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1530
1531 static inline void crash_enable_local_vmclear(int cpu)
1532 {
1533 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1534 }
1535
1536 static inline void crash_disable_local_vmclear(int cpu)
1537 {
1538 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1539 }
1540
1541 static inline int crash_local_vmclear_enabled(int cpu)
1542 {
1543 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1544 }
1545
1546 static void crash_vmclear_local_loaded_vmcss(void)
1547 {
1548 int cpu = raw_smp_processor_id();
1549 struct loaded_vmcs *v;
1550
1551 if (!crash_local_vmclear_enabled(cpu))
1552 return;
1553
1554 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1555 loaded_vmcss_on_cpu_link)
1556 vmcs_clear(v->vmcs);
1557 }
1558 #else
1559 static inline void crash_enable_local_vmclear(int cpu) { }
1560 static inline void crash_disable_local_vmclear(int cpu) { }
1561 #endif /* CONFIG_KEXEC_CORE */
1562
1563 static void __loaded_vmcs_clear(void *arg)
1564 {
1565 struct loaded_vmcs *loaded_vmcs = arg;
1566 int cpu = raw_smp_processor_id();
1567
1568 if (loaded_vmcs->cpu != cpu)
1569 return; /* vcpu migration can race with cpu offline */
1570 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1571 per_cpu(current_vmcs, cpu) = NULL;
1572 crash_disable_local_vmclear(cpu);
1573 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1574
1575 /*
1576 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1577 * is before setting loaded_vmcs->vcpu to -1 which is done in
1578 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1579 * then adds the vmcs into percpu list before it is deleted.
1580 */
1581 smp_wmb();
1582
1583 loaded_vmcs_init(loaded_vmcs);
1584 crash_enable_local_vmclear(cpu);
1585 }
1586
1587 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1588 {
1589 int cpu = loaded_vmcs->cpu;
1590
1591 if (cpu != -1)
1592 smp_call_function_single(cpu,
1593 __loaded_vmcs_clear, loaded_vmcs, 1);
1594 }
1595
1596 static inline void vpid_sync_vcpu_single(int vpid)
1597 {
1598 if (vpid == 0)
1599 return;
1600
1601 if (cpu_has_vmx_invvpid_single())
1602 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1603 }
1604
1605 static inline void vpid_sync_vcpu_global(void)
1606 {
1607 if (cpu_has_vmx_invvpid_global())
1608 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1609 }
1610
1611 static inline void vpid_sync_context(int vpid)
1612 {
1613 if (cpu_has_vmx_invvpid_single())
1614 vpid_sync_vcpu_single(vpid);
1615 else
1616 vpid_sync_vcpu_global();
1617 }
1618
1619 static inline void ept_sync_global(void)
1620 {
1621 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1622 }
1623
1624 static inline void ept_sync_context(u64 eptp)
1625 {
1626 if (cpu_has_vmx_invept_context())
1627 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1628 else
1629 ept_sync_global();
1630 }
1631
1632 static __always_inline void vmcs_check16(unsigned long field)
1633 {
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1635 "16-bit accessor invalid for 64-bit field");
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1637 "16-bit accessor invalid for 64-bit high field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1639 "16-bit accessor invalid for 32-bit high field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1641 "16-bit accessor invalid for natural width field");
1642 }
1643
1644 static __always_inline void vmcs_check32(unsigned long field)
1645 {
1646 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1647 "32-bit accessor invalid for 16-bit field");
1648 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1649 "32-bit accessor invalid for natural width field");
1650 }
1651
1652 static __always_inline void vmcs_check64(unsigned long field)
1653 {
1654 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1655 "64-bit accessor invalid for 16-bit field");
1656 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1657 "64-bit accessor invalid for 64-bit high field");
1658 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1659 "64-bit accessor invalid for 32-bit field");
1660 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1661 "64-bit accessor invalid for natural width field");
1662 }
1663
1664 static __always_inline void vmcs_checkl(unsigned long field)
1665 {
1666 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1667 "Natural width accessor invalid for 16-bit field");
1668 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1669 "Natural width accessor invalid for 64-bit field");
1670 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1671 "Natural width accessor invalid for 64-bit high field");
1672 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1673 "Natural width accessor invalid for 32-bit field");
1674 }
1675
1676 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1677 {
1678 unsigned long value;
1679
1680 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1681 : "=a"(value) : "d"(field) : "cc");
1682 return value;
1683 }
1684
1685 static __always_inline u16 vmcs_read16(unsigned long field)
1686 {
1687 vmcs_check16(field);
1688 return __vmcs_readl(field);
1689 }
1690
1691 static __always_inline u32 vmcs_read32(unsigned long field)
1692 {
1693 vmcs_check32(field);
1694 return __vmcs_readl(field);
1695 }
1696
1697 static __always_inline u64 vmcs_read64(unsigned long field)
1698 {
1699 vmcs_check64(field);
1700 #ifdef CONFIG_X86_64
1701 return __vmcs_readl(field);
1702 #else
1703 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1704 #endif
1705 }
1706
1707 static __always_inline unsigned long vmcs_readl(unsigned long field)
1708 {
1709 vmcs_checkl(field);
1710 return __vmcs_readl(field);
1711 }
1712
1713 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1714 {
1715 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1716 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1717 dump_stack();
1718 }
1719
1720 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1721 {
1722 u8 error;
1723
1724 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1725 : "=q"(error) : "a"(value), "d"(field) : "cc");
1726 if (unlikely(error))
1727 vmwrite_error(field, value);
1728 }
1729
1730 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1731 {
1732 vmcs_check16(field);
1733 __vmcs_writel(field, value);
1734 }
1735
1736 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1737 {
1738 vmcs_check32(field);
1739 __vmcs_writel(field, value);
1740 }
1741
1742 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1743 {
1744 vmcs_check64(field);
1745 __vmcs_writel(field, value);
1746 #ifndef CONFIG_X86_64
1747 asm volatile ("");
1748 __vmcs_writel(field+1, value >> 32);
1749 #endif
1750 }
1751
1752 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1753 {
1754 vmcs_checkl(field);
1755 __vmcs_writel(field, value);
1756 }
1757
1758 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1759 {
1760 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1761 "vmcs_clear_bits does not support 64-bit fields");
1762 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1763 }
1764
1765 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1766 {
1767 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1768 "vmcs_set_bits does not support 64-bit fields");
1769 __vmcs_writel(field, __vmcs_readl(field) | mask);
1770 }
1771
1772 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1773 {
1774 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1775 }
1776
1777 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1778 {
1779 vmcs_write32(VM_ENTRY_CONTROLS, val);
1780 vmx->vm_entry_controls_shadow = val;
1781 }
1782
1783 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1784 {
1785 if (vmx->vm_entry_controls_shadow != val)
1786 vm_entry_controls_init(vmx, val);
1787 }
1788
1789 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1790 {
1791 return vmx->vm_entry_controls_shadow;
1792 }
1793
1794
1795 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1796 {
1797 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1798 }
1799
1800 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1801 {
1802 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1803 }
1804
1805 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1806 {
1807 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1808 }
1809
1810 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1811 {
1812 vmcs_write32(VM_EXIT_CONTROLS, val);
1813 vmx->vm_exit_controls_shadow = val;
1814 }
1815
1816 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1817 {
1818 if (vmx->vm_exit_controls_shadow != val)
1819 vm_exit_controls_init(vmx, val);
1820 }
1821
1822 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1823 {
1824 return vmx->vm_exit_controls_shadow;
1825 }
1826
1827
1828 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1829 {
1830 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1831 }
1832
1833 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1834 {
1835 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1836 }
1837
1838 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1839 {
1840 vmx->segment_cache.bitmask = 0;
1841 }
1842
1843 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1844 unsigned field)
1845 {
1846 bool ret;
1847 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1848
1849 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1850 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1851 vmx->segment_cache.bitmask = 0;
1852 }
1853 ret = vmx->segment_cache.bitmask & mask;
1854 vmx->segment_cache.bitmask |= mask;
1855 return ret;
1856 }
1857
1858 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1859 {
1860 u16 *p = &vmx->segment_cache.seg[seg].selector;
1861
1862 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1863 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1864 return *p;
1865 }
1866
1867 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1868 {
1869 ulong *p = &vmx->segment_cache.seg[seg].base;
1870
1871 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1872 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1873 return *p;
1874 }
1875
1876 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1877 {
1878 u32 *p = &vmx->segment_cache.seg[seg].limit;
1879
1880 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1881 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1882 return *p;
1883 }
1884
1885 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1886 {
1887 u32 *p = &vmx->segment_cache.seg[seg].ar;
1888
1889 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1890 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1891 return *p;
1892 }
1893
1894 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1895 {
1896 u32 eb;
1897
1898 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1899 (1u << DB_VECTOR) | (1u << AC_VECTOR);
1900 if ((vcpu->guest_debug &
1901 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1902 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1903 eb |= 1u << BP_VECTOR;
1904 if (to_vmx(vcpu)->rmode.vm86_active)
1905 eb = ~0;
1906 if (enable_ept)
1907 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1908
1909 /* When we are running a nested L2 guest and L1 specified for it a
1910 * certain exception bitmap, we must trap the same exceptions and pass
1911 * them to L1. When running L2, we will only handle the exceptions
1912 * specified above if L1 did not want them.
1913 */
1914 if (is_guest_mode(vcpu))
1915 eb |= get_vmcs12(vcpu)->exception_bitmap;
1916
1917 vmcs_write32(EXCEPTION_BITMAP, eb);
1918 }
1919
1920 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1921 unsigned long entry, unsigned long exit)
1922 {
1923 vm_entry_controls_clearbit(vmx, entry);
1924 vm_exit_controls_clearbit(vmx, exit);
1925 }
1926
1927 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1928 {
1929 unsigned i;
1930 struct msr_autoload *m = &vmx->msr_autoload;
1931
1932 switch (msr) {
1933 case MSR_EFER:
1934 if (cpu_has_load_ia32_efer) {
1935 clear_atomic_switch_msr_special(vmx,
1936 VM_ENTRY_LOAD_IA32_EFER,
1937 VM_EXIT_LOAD_IA32_EFER);
1938 return;
1939 }
1940 break;
1941 case MSR_CORE_PERF_GLOBAL_CTRL:
1942 if (cpu_has_load_perf_global_ctrl) {
1943 clear_atomic_switch_msr_special(vmx,
1944 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1945 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1946 return;
1947 }
1948 break;
1949 }
1950
1951 for (i = 0; i < m->nr; ++i)
1952 if (m->guest[i].index == msr)
1953 break;
1954
1955 if (i == m->nr)
1956 return;
1957 --m->nr;
1958 m->guest[i] = m->guest[m->nr];
1959 m->host[i] = m->host[m->nr];
1960 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1962 }
1963
1964 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1965 unsigned long entry, unsigned long exit,
1966 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1967 u64 guest_val, u64 host_val)
1968 {
1969 vmcs_write64(guest_val_vmcs, guest_val);
1970 vmcs_write64(host_val_vmcs, host_val);
1971 vm_entry_controls_setbit(vmx, entry);
1972 vm_exit_controls_setbit(vmx, exit);
1973 }
1974
1975 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1976 u64 guest_val, u64 host_val)
1977 {
1978 unsigned i;
1979 struct msr_autoload *m = &vmx->msr_autoload;
1980
1981 switch (msr) {
1982 case MSR_EFER:
1983 if (cpu_has_load_ia32_efer) {
1984 add_atomic_switch_msr_special(vmx,
1985 VM_ENTRY_LOAD_IA32_EFER,
1986 VM_EXIT_LOAD_IA32_EFER,
1987 GUEST_IA32_EFER,
1988 HOST_IA32_EFER,
1989 guest_val, host_val);
1990 return;
1991 }
1992 break;
1993 case MSR_CORE_PERF_GLOBAL_CTRL:
1994 if (cpu_has_load_perf_global_ctrl) {
1995 add_atomic_switch_msr_special(vmx,
1996 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1997 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1998 GUEST_IA32_PERF_GLOBAL_CTRL,
1999 HOST_IA32_PERF_GLOBAL_CTRL,
2000 guest_val, host_val);
2001 return;
2002 }
2003 break;
2004 case MSR_IA32_PEBS_ENABLE:
2005 /* PEBS needs a quiescent period after being disabled (to write
2006 * a record). Disabling PEBS through VMX MSR swapping doesn't
2007 * provide that period, so a CPU could write host's record into
2008 * guest's memory.
2009 */
2010 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2011 }
2012
2013 for (i = 0; i < m->nr; ++i)
2014 if (m->guest[i].index == msr)
2015 break;
2016
2017 if (i == NR_AUTOLOAD_MSRS) {
2018 printk_once(KERN_WARNING "Not enough msr switch entries. "
2019 "Can't add msr %x\n", msr);
2020 return;
2021 } else if (i == m->nr) {
2022 ++m->nr;
2023 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2024 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2025 }
2026
2027 m->guest[i].index = msr;
2028 m->guest[i].value = guest_val;
2029 m->host[i].index = msr;
2030 m->host[i].value = host_val;
2031 }
2032
2033 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2034 {
2035 u64 guest_efer = vmx->vcpu.arch.efer;
2036 u64 ignore_bits = 0;
2037
2038 if (!enable_ept) {
2039 /*
2040 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2041 * host CPUID is more efficient than testing guest CPUID
2042 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2043 */
2044 if (boot_cpu_has(X86_FEATURE_SMEP))
2045 guest_efer |= EFER_NX;
2046 else if (!(guest_efer & EFER_NX))
2047 ignore_bits |= EFER_NX;
2048 }
2049
2050 /*
2051 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2052 */
2053 ignore_bits |= EFER_SCE;
2054 #ifdef CONFIG_X86_64
2055 ignore_bits |= EFER_LMA | EFER_LME;
2056 /* SCE is meaningful only in long mode on Intel */
2057 if (guest_efer & EFER_LMA)
2058 ignore_bits &= ~(u64)EFER_SCE;
2059 #endif
2060
2061 clear_atomic_switch_msr(vmx, MSR_EFER);
2062
2063 /*
2064 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2065 * On CPUs that support "load IA32_EFER", always switch EFER
2066 * atomically, since it's faster than switching it manually.
2067 */
2068 if (cpu_has_load_ia32_efer ||
2069 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2070 if (!(guest_efer & EFER_LMA))
2071 guest_efer &= ~EFER_LME;
2072 if (guest_efer != host_efer)
2073 add_atomic_switch_msr(vmx, MSR_EFER,
2074 guest_efer, host_efer);
2075 return false;
2076 } else {
2077 guest_efer &= ~ignore_bits;
2078 guest_efer |= host_efer & ignore_bits;
2079
2080 vmx->guest_msrs[efer_offset].data = guest_efer;
2081 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2082
2083 return true;
2084 }
2085 }
2086
2087 #ifdef CONFIG_X86_32
2088 /*
2089 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2090 * VMCS rather than the segment table. KVM uses this helper to figure
2091 * out the current bases to poke them into the VMCS before entry.
2092 */
2093 static unsigned long segment_base(u16 selector)
2094 {
2095 struct desc_struct *table;
2096 unsigned long v;
2097
2098 if (!(selector & ~SEGMENT_RPL_MASK))
2099 return 0;
2100
2101 table = get_current_gdt_ro();
2102
2103 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2104 u16 ldt_selector = kvm_read_ldt();
2105
2106 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2107 return 0;
2108
2109 table = (struct desc_struct *)segment_base(ldt_selector);
2110 }
2111 v = get_desc_base(&table[selector >> 3]);
2112 return v;
2113 }
2114 #endif
2115
2116 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2117 {
2118 struct vcpu_vmx *vmx = to_vmx(vcpu);
2119 int i;
2120
2121 if (vmx->host_state.loaded)
2122 return;
2123
2124 vmx->host_state.loaded = 1;
2125 /*
2126 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2127 * allow segment selectors with cpl > 0 or ti == 1.
2128 */
2129 vmx->host_state.ldt_sel = kvm_read_ldt();
2130 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2131 savesegment(fs, vmx->host_state.fs_sel);
2132 if (!(vmx->host_state.fs_sel & 7)) {
2133 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2134 vmx->host_state.fs_reload_needed = 0;
2135 } else {
2136 vmcs_write16(HOST_FS_SELECTOR, 0);
2137 vmx->host_state.fs_reload_needed = 1;
2138 }
2139 savesegment(gs, vmx->host_state.gs_sel);
2140 if (!(vmx->host_state.gs_sel & 7))
2141 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2142 else {
2143 vmcs_write16(HOST_GS_SELECTOR, 0);
2144 vmx->host_state.gs_ldt_reload_needed = 1;
2145 }
2146
2147 #ifdef CONFIG_X86_64
2148 savesegment(ds, vmx->host_state.ds_sel);
2149 savesegment(es, vmx->host_state.es_sel);
2150 #endif
2151
2152 #ifdef CONFIG_X86_64
2153 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2154 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2155 #else
2156 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2157 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2158 #endif
2159
2160 #ifdef CONFIG_X86_64
2161 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2162 if (is_long_mode(&vmx->vcpu))
2163 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2164 #endif
2165 if (boot_cpu_has(X86_FEATURE_MPX))
2166 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2167 for (i = 0; i < vmx->save_nmsrs; ++i)
2168 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2169 vmx->guest_msrs[i].data,
2170 vmx->guest_msrs[i].mask);
2171 }
2172
2173 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2174 {
2175 if (!vmx->host_state.loaded)
2176 return;
2177
2178 ++vmx->vcpu.stat.host_state_reload;
2179 vmx->host_state.loaded = 0;
2180 #ifdef CONFIG_X86_64
2181 if (is_long_mode(&vmx->vcpu))
2182 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2183 #endif
2184 if (vmx->host_state.gs_ldt_reload_needed) {
2185 kvm_load_ldt(vmx->host_state.ldt_sel);
2186 #ifdef CONFIG_X86_64
2187 load_gs_index(vmx->host_state.gs_sel);
2188 #else
2189 loadsegment(gs, vmx->host_state.gs_sel);
2190 #endif
2191 }
2192 if (vmx->host_state.fs_reload_needed)
2193 loadsegment(fs, vmx->host_state.fs_sel);
2194 #ifdef CONFIG_X86_64
2195 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2196 loadsegment(ds, vmx->host_state.ds_sel);
2197 loadsegment(es, vmx->host_state.es_sel);
2198 }
2199 #endif
2200 invalidate_tss_limit();
2201 #ifdef CONFIG_X86_64
2202 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2203 #endif
2204 if (vmx->host_state.msr_host_bndcfgs)
2205 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2206 load_fixmap_gdt(raw_smp_processor_id());
2207 }
2208
2209 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2210 {
2211 preempt_disable();
2212 __vmx_load_host_state(vmx);
2213 preempt_enable();
2214 }
2215
2216 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2217 {
2218 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2219 struct pi_desc old, new;
2220 unsigned int dest;
2221
2222 /*
2223 * In case of hot-plug or hot-unplug, we may have to undo
2224 * vmx_vcpu_pi_put even if there is no assigned device. And we
2225 * always keep PI.NDST up to date for simplicity: it makes the
2226 * code easier, and CPU migration is not a fast path.
2227 */
2228 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2229 return;
2230
2231 /*
2232 * First handle the simple case where no cmpxchg is necessary; just
2233 * allow posting non-urgent interrupts.
2234 *
2235 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2236 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2237 * expects the VCPU to be on the blocked_vcpu_list that matches
2238 * PI.NDST.
2239 */
2240 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2241 vcpu->cpu == cpu) {
2242 pi_clear_sn(pi_desc);
2243 return;
2244 }
2245
2246 /* The full case. */
2247 do {
2248 old.control = new.control = pi_desc->control;
2249
2250 dest = cpu_physical_id(cpu);
2251
2252 if (x2apic_enabled())
2253 new.ndst = dest;
2254 else
2255 new.ndst = (dest << 8) & 0xFF00;
2256
2257 new.sn = 0;
2258 } while (cmpxchg64(&pi_desc->control, old.control,
2259 new.control) != old.control);
2260 }
2261
2262 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2263 {
2264 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2265 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2266 }
2267
2268 /*
2269 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2270 * vcpu mutex is already taken.
2271 */
2272 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2273 {
2274 struct vcpu_vmx *vmx = to_vmx(vcpu);
2275 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2276
2277 if (!already_loaded) {
2278 loaded_vmcs_clear(vmx->loaded_vmcs);
2279 local_irq_disable();
2280 crash_disable_local_vmclear(cpu);
2281
2282 /*
2283 * Read loaded_vmcs->cpu should be before fetching
2284 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2285 * See the comments in __loaded_vmcs_clear().
2286 */
2287 smp_rmb();
2288
2289 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2290 &per_cpu(loaded_vmcss_on_cpu, cpu));
2291 crash_enable_local_vmclear(cpu);
2292 local_irq_enable();
2293 }
2294
2295 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2296 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2297 vmcs_load(vmx->loaded_vmcs->vmcs);
2298 }
2299
2300 if (!already_loaded) {
2301 void *gdt = get_current_gdt_ro();
2302 unsigned long sysenter_esp;
2303
2304 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2305
2306 /*
2307 * Linux uses per-cpu TSS and GDT, so set these when switching
2308 * processors. See 22.2.4.
2309 */
2310 vmcs_writel(HOST_TR_BASE,
2311 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2312 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
2313
2314 /*
2315 * VM exits change the host TR limit to 0x67 after a VM
2316 * exit. This is okay, since 0x67 covers everything except
2317 * the IO bitmap and have have code to handle the IO bitmap
2318 * being lost after a VM exit.
2319 */
2320 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2321
2322 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2323 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2324
2325 vmx->loaded_vmcs->cpu = cpu;
2326 }
2327
2328 /* Setup TSC multiplier */
2329 if (kvm_has_tsc_control &&
2330 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2331 decache_tsc_multiplier(vmx);
2332
2333 vmx_vcpu_pi_load(vcpu, cpu);
2334 vmx->host_pkru = read_pkru();
2335 }
2336
2337 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2338 {
2339 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2340
2341 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2342 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2343 !kvm_vcpu_apicv_active(vcpu))
2344 return;
2345
2346 /* Set SN when the vCPU is preempted */
2347 if (vcpu->preempted)
2348 pi_set_sn(pi_desc);
2349 }
2350
2351 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2352 {
2353 vmx_vcpu_pi_put(vcpu);
2354
2355 __vmx_load_host_state(to_vmx(vcpu));
2356 }
2357
2358 static bool emulation_required(struct kvm_vcpu *vcpu)
2359 {
2360 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2361 }
2362
2363 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2364
2365 /*
2366 * Return the cr0 value that a nested guest would read. This is a combination
2367 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2368 * its hypervisor (cr0_read_shadow).
2369 */
2370 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2371 {
2372 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2373 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2374 }
2375 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2376 {
2377 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2378 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2379 }
2380
2381 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2382 {
2383 unsigned long rflags, save_rflags;
2384
2385 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2386 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2387 rflags = vmcs_readl(GUEST_RFLAGS);
2388 if (to_vmx(vcpu)->rmode.vm86_active) {
2389 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2390 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2391 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2392 }
2393 to_vmx(vcpu)->rflags = rflags;
2394 }
2395 return to_vmx(vcpu)->rflags;
2396 }
2397
2398 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2399 {
2400 unsigned long old_rflags = vmx_get_rflags(vcpu);
2401
2402 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2403 to_vmx(vcpu)->rflags = rflags;
2404 if (to_vmx(vcpu)->rmode.vm86_active) {
2405 to_vmx(vcpu)->rmode.save_rflags = rflags;
2406 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2407 }
2408 vmcs_writel(GUEST_RFLAGS, rflags);
2409
2410 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2411 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2412 }
2413
2414 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2415 {
2416 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2417 int ret = 0;
2418
2419 if (interruptibility & GUEST_INTR_STATE_STI)
2420 ret |= KVM_X86_SHADOW_INT_STI;
2421 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2422 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2423
2424 return ret;
2425 }
2426
2427 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2428 {
2429 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2430 u32 interruptibility = interruptibility_old;
2431
2432 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2433
2434 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2435 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2436 else if (mask & KVM_X86_SHADOW_INT_STI)
2437 interruptibility |= GUEST_INTR_STATE_STI;
2438
2439 if ((interruptibility != interruptibility_old))
2440 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2441 }
2442
2443 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2444 {
2445 unsigned long rip;
2446
2447 rip = kvm_rip_read(vcpu);
2448 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2449 kvm_rip_write(vcpu, rip);
2450
2451 /* skipping an emulated instruction also counts */
2452 vmx_set_interrupt_shadow(vcpu, 0);
2453 }
2454
2455 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2456 unsigned long exit_qual)
2457 {
2458 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2459 unsigned int nr = vcpu->arch.exception.nr;
2460 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2461
2462 if (vcpu->arch.exception.has_error_code) {
2463 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2464 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2465 }
2466
2467 if (kvm_exception_is_soft(nr))
2468 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2469 else
2470 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2471
2472 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2473 vmx_get_nmi_mask(vcpu))
2474 intr_info |= INTR_INFO_UNBLOCK_NMI;
2475
2476 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2477 }
2478
2479 /*
2480 * KVM wants to inject page-faults which it got to the guest. This function
2481 * checks whether in a nested guest, we need to inject them to L1 or L2.
2482 */
2483 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2484 {
2485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2486 unsigned int nr = vcpu->arch.exception.nr;
2487
2488 if (nr == PF_VECTOR) {
2489 if (vcpu->arch.exception.nested_apf) {
2490 *exit_qual = vcpu->arch.apf.nested_apf_token;
2491 return 1;
2492 }
2493 /*
2494 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2495 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2496 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2497 * can be written only when inject_pending_event runs. This should be
2498 * conditional on a new capability---if the capability is disabled,
2499 * kvm_multiple_exception would write the ancillary information to
2500 * CR2 or DR6, for backwards ABI-compatibility.
2501 */
2502 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2503 vcpu->arch.exception.error_code)) {
2504 *exit_qual = vcpu->arch.cr2;
2505 return 1;
2506 }
2507 } else {
2508 if (vmcs12->exception_bitmap & (1u << nr)) {
2509 if (nr == DB_VECTOR)
2510 *exit_qual = vcpu->arch.dr6;
2511 else
2512 *exit_qual = 0;
2513 return 1;
2514 }
2515 }
2516
2517 return 0;
2518 }
2519
2520 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2521 {
2522 struct vcpu_vmx *vmx = to_vmx(vcpu);
2523 unsigned nr = vcpu->arch.exception.nr;
2524 bool has_error_code = vcpu->arch.exception.has_error_code;
2525 u32 error_code = vcpu->arch.exception.error_code;
2526 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2527
2528 if (has_error_code) {
2529 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2530 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2531 }
2532
2533 if (vmx->rmode.vm86_active) {
2534 int inc_eip = 0;
2535 if (kvm_exception_is_soft(nr))
2536 inc_eip = vcpu->arch.event_exit_inst_len;
2537 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2538 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2539 return;
2540 }
2541
2542 if (kvm_exception_is_soft(nr)) {
2543 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2544 vmx->vcpu.arch.event_exit_inst_len);
2545 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2546 } else
2547 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2548
2549 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2550 }
2551
2552 static bool vmx_rdtscp_supported(void)
2553 {
2554 return cpu_has_vmx_rdtscp();
2555 }
2556
2557 static bool vmx_invpcid_supported(void)
2558 {
2559 return cpu_has_vmx_invpcid() && enable_ept;
2560 }
2561
2562 /*
2563 * Swap MSR entry in host/guest MSR entry array.
2564 */
2565 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2566 {
2567 struct shared_msr_entry tmp;
2568
2569 tmp = vmx->guest_msrs[to];
2570 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2571 vmx->guest_msrs[from] = tmp;
2572 }
2573
2574 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2575 {
2576 unsigned long *msr_bitmap;
2577
2578 if (is_guest_mode(vcpu))
2579 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2580 else if (cpu_has_secondary_exec_ctrls() &&
2581 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2582 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2583 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2584 if (is_long_mode(vcpu))
2585 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2586 else
2587 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2588 } else {
2589 if (is_long_mode(vcpu))
2590 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2591 else
2592 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2593 }
2594 } else {
2595 if (is_long_mode(vcpu))
2596 msr_bitmap = vmx_msr_bitmap_longmode;
2597 else
2598 msr_bitmap = vmx_msr_bitmap_legacy;
2599 }
2600
2601 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2602 }
2603
2604 /*
2605 * Set up the vmcs to automatically save and restore system
2606 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2607 * mode, as fiddling with msrs is very expensive.
2608 */
2609 static void setup_msrs(struct vcpu_vmx *vmx)
2610 {
2611 int save_nmsrs, index;
2612
2613 save_nmsrs = 0;
2614 #ifdef CONFIG_X86_64
2615 if (is_long_mode(&vmx->vcpu)) {
2616 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2617 if (index >= 0)
2618 move_msr_up(vmx, index, save_nmsrs++);
2619 index = __find_msr_index(vmx, MSR_LSTAR);
2620 if (index >= 0)
2621 move_msr_up(vmx, index, save_nmsrs++);
2622 index = __find_msr_index(vmx, MSR_CSTAR);
2623 if (index >= 0)
2624 move_msr_up(vmx, index, save_nmsrs++);
2625 index = __find_msr_index(vmx, MSR_TSC_AUX);
2626 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2627 move_msr_up(vmx, index, save_nmsrs++);
2628 /*
2629 * MSR_STAR is only needed on long mode guests, and only
2630 * if efer.sce is enabled.
2631 */
2632 index = __find_msr_index(vmx, MSR_STAR);
2633 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2634 move_msr_up(vmx, index, save_nmsrs++);
2635 }
2636 #endif
2637 index = __find_msr_index(vmx, MSR_EFER);
2638 if (index >= 0 && update_transition_efer(vmx, index))
2639 move_msr_up(vmx, index, save_nmsrs++);
2640
2641 vmx->save_nmsrs = save_nmsrs;
2642
2643 if (cpu_has_vmx_msr_bitmap())
2644 vmx_set_msr_bitmap(&vmx->vcpu);
2645 }
2646
2647 /*
2648 * reads and returns guest's timestamp counter "register"
2649 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2650 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2651 */
2652 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2653 {
2654 u64 host_tsc, tsc_offset;
2655
2656 host_tsc = rdtsc();
2657 tsc_offset = vmcs_read64(TSC_OFFSET);
2658 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2659 }
2660
2661 /*
2662 * writes 'offset' into guest's timestamp counter offset register
2663 */
2664 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2665 {
2666 if (is_guest_mode(vcpu)) {
2667 /*
2668 * We're here if L1 chose not to trap WRMSR to TSC. According
2669 * to the spec, this should set L1's TSC; The offset that L1
2670 * set for L2 remains unchanged, and still needs to be added
2671 * to the newly set TSC to get L2's TSC.
2672 */
2673 struct vmcs12 *vmcs12;
2674 /* recalculate vmcs02.TSC_OFFSET: */
2675 vmcs12 = get_vmcs12(vcpu);
2676 vmcs_write64(TSC_OFFSET, offset +
2677 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2678 vmcs12->tsc_offset : 0));
2679 } else {
2680 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2681 vmcs_read64(TSC_OFFSET), offset);
2682 vmcs_write64(TSC_OFFSET, offset);
2683 }
2684 }
2685
2686 /*
2687 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2688 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2689 * all guests if the "nested" module option is off, and can also be disabled
2690 * for a single guest by disabling its VMX cpuid bit.
2691 */
2692 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2693 {
2694 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2695 }
2696
2697 /*
2698 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2699 * returned for the various VMX controls MSRs when nested VMX is enabled.
2700 * The same values should also be used to verify that vmcs12 control fields are
2701 * valid during nested entry from L1 to L2.
2702 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2703 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2704 * bit in the high half is on if the corresponding bit in the control field
2705 * may be on. See also vmx_control_verify().
2706 */
2707 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2708 {
2709 /*
2710 * Note that as a general rule, the high half of the MSRs (bits in
2711 * the control fields which may be 1) should be initialized by the
2712 * intersection of the underlying hardware's MSR (i.e., features which
2713 * can be supported) and the list of features we want to expose -
2714 * because they are known to be properly supported in our code.
2715 * Also, usually, the low half of the MSRs (bits which must be 1) can
2716 * be set to 0, meaning that L1 may turn off any of these bits. The
2717 * reason is that if one of these bits is necessary, it will appear
2718 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2719 * fields of vmcs01 and vmcs02, will turn these bits off - and
2720 * nested_vmx_exit_reflected() will not pass related exits to L1.
2721 * These rules have exceptions below.
2722 */
2723
2724 /* pin-based controls */
2725 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2726 vmx->nested.nested_vmx_pinbased_ctls_low,
2727 vmx->nested.nested_vmx_pinbased_ctls_high);
2728 vmx->nested.nested_vmx_pinbased_ctls_low |=
2729 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2730 vmx->nested.nested_vmx_pinbased_ctls_high &=
2731 PIN_BASED_EXT_INTR_MASK |
2732 PIN_BASED_NMI_EXITING |
2733 PIN_BASED_VIRTUAL_NMIS;
2734 vmx->nested.nested_vmx_pinbased_ctls_high |=
2735 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2736 PIN_BASED_VMX_PREEMPTION_TIMER;
2737 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2738 vmx->nested.nested_vmx_pinbased_ctls_high |=
2739 PIN_BASED_POSTED_INTR;
2740
2741 /* exit controls */
2742 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2743 vmx->nested.nested_vmx_exit_ctls_low,
2744 vmx->nested.nested_vmx_exit_ctls_high);
2745 vmx->nested.nested_vmx_exit_ctls_low =
2746 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2747
2748 vmx->nested.nested_vmx_exit_ctls_high &=
2749 #ifdef CONFIG_X86_64
2750 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2751 #endif
2752 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2753 vmx->nested.nested_vmx_exit_ctls_high |=
2754 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2755 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2756 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2757
2758 if (kvm_mpx_supported())
2759 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2760
2761 /* We support free control of debug control saving. */
2762 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2763
2764 /* entry controls */
2765 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2766 vmx->nested.nested_vmx_entry_ctls_low,
2767 vmx->nested.nested_vmx_entry_ctls_high);
2768 vmx->nested.nested_vmx_entry_ctls_low =
2769 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2770 vmx->nested.nested_vmx_entry_ctls_high &=
2771 #ifdef CONFIG_X86_64
2772 VM_ENTRY_IA32E_MODE |
2773 #endif
2774 VM_ENTRY_LOAD_IA32_PAT;
2775 vmx->nested.nested_vmx_entry_ctls_high |=
2776 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2777 if (kvm_mpx_supported())
2778 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2779
2780 /* We support free control of debug control loading. */
2781 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2782
2783 /* cpu-based controls */
2784 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2785 vmx->nested.nested_vmx_procbased_ctls_low,
2786 vmx->nested.nested_vmx_procbased_ctls_high);
2787 vmx->nested.nested_vmx_procbased_ctls_low =
2788 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2789 vmx->nested.nested_vmx_procbased_ctls_high &=
2790 CPU_BASED_VIRTUAL_INTR_PENDING |
2791 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2792 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2793 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2794 CPU_BASED_CR3_STORE_EXITING |
2795 #ifdef CONFIG_X86_64
2796 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2797 #endif
2798 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2799 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2800 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2801 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2802 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2803 /*
2804 * We can allow some features even when not supported by the
2805 * hardware. For example, L1 can specify an MSR bitmap - and we
2806 * can use it to avoid exits to L1 - even when L0 runs L2
2807 * without MSR bitmaps.
2808 */
2809 vmx->nested.nested_vmx_procbased_ctls_high |=
2810 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2811 CPU_BASED_USE_MSR_BITMAPS;
2812
2813 /* We support free control of CR3 access interception. */
2814 vmx->nested.nested_vmx_procbased_ctls_low &=
2815 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2816
2817 /*
2818 * secondary cpu-based controls. Do not include those that
2819 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2820 */
2821 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2822 vmx->nested.nested_vmx_secondary_ctls_low,
2823 vmx->nested.nested_vmx_secondary_ctls_high);
2824 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2825 vmx->nested.nested_vmx_secondary_ctls_high &=
2826 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2827 SECONDARY_EXEC_DESC |
2828 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2829 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2830 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2831 SECONDARY_EXEC_WBINVD_EXITING;
2832
2833 if (enable_ept) {
2834 /* nested EPT: emulate EPT also to L1 */
2835 vmx->nested.nested_vmx_secondary_ctls_high |=
2836 SECONDARY_EXEC_ENABLE_EPT;
2837 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2838 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2839 if (cpu_has_vmx_ept_execute_only())
2840 vmx->nested.nested_vmx_ept_caps |=
2841 VMX_EPT_EXECUTE_ONLY_BIT;
2842 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2844 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2845 VMX_EPT_1GB_PAGE_BIT;
2846 if (enable_ept_ad_bits) {
2847 vmx->nested.nested_vmx_secondary_ctls_high |=
2848 SECONDARY_EXEC_ENABLE_PML;
2849 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2850 }
2851 }
2852
2853 if (cpu_has_vmx_vmfunc()) {
2854 vmx->nested.nested_vmx_secondary_ctls_high |=
2855 SECONDARY_EXEC_ENABLE_VMFUNC;
2856 /*
2857 * Advertise EPTP switching unconditionally
2858 * since we emulate it
2859 */
2860 if (enable_ept)
2861 vmx->nested.nested_vmx_vmfunc_controls =
2862 VMX_VMFUNC_EPTP_SWITCHING;
2863 }
2864
2865 /*
2866 * Old versions of KVM use the single-context version without
2867 * checking for support, so declare that it is supported even
2868 * though it is treated as global context. The alternative is
2869 * not failing the single-context invvpid, and it is worse.
2870 */
2871 if (enable_vpid) {
2872 vmx->nested.nested_vmx_secondary_ctls_high |=
2873 SECONDARY_EXEC_ENABLE_VPID;
2874 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2875 VMX_VPID_EXTENT_SUPPORTED_MASK;
2876 }
2877
2878 if (enable_unrestricted_guest)
2879 vmx->nested.nested_vmx_secondary_ctls_high |=
2880 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2881
2882 /* miscellaneous data */
2883 rdmsr(MSR_IA32_VMX_MISC,
2884 vmx->nested.nested_vmx_misc_low,
2885 vmx->nested.nested_vmx_misc_high);
2886 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2887 vmx->nested.nested_vmx_misc_low |=
2888 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2889 VMX_MISC_ACTIVITY_HLT;
2890 vmx->nested.nested_vmx_misc_high = 0;
2891
2892 /*
2893 * This MSR reports some information about VMX support. We
2894 * should return information about the VMX we emulate for the
2895 * guest, and the VMCS structure we give it - not about the
2896 * VMX support of the underlying hardware.
2897 */
2898 vmx->nested.nested_vmx_basic =
2899 VMCS12_REVISION |
2900 VMX_BASIC_TRUE_CTLS |
2901 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2902 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2903
2904 if (cpu_has_vmx_basic_inout())
2905 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2906
2907 /*
2908 * These MSRs specify bits which the guest must keep fixed on
2909 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2910 * We picked the standard core2 setting.
2911 */
2912 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2913 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2914 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2915 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2916
2917 /* These MSRs specify bits which the guest must keep fixed off. */
2918 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2919 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2920
2921 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2922 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2923 }
2924
2925 /*
2926 * if fixed0[i] == 1: val[i] must be 1
2927 * if fixed1[i] == 0: val[i] must be 0
2928 */
2929 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2930 {
2931 return ((val & fixed1) | fixed0) == val;
2932 }
2933
2934 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2935 {
2936 return fixed_bits_valid(control, low, high);
2937 }
2938
2939 static inline u64 vmx_control_msr(u32 low, u32 high)
2940 {
2941 return low | ((u64)high << 32);
2942 }
2943
2944 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2945 {
2946 superset &= mask;
2947 subset &= mask;
2948
2949 return (superset | subset) == superset;
2950 }
2951
2952 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2953 {
2954 const u64 feature_and_reserved =
2955 /* feature (except bit 48; see below) */
2956 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2957 /* reserved */
2958 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2959 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2960
2961 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2962 return -EINVAL;
2963
2964 /*
2965 * KVM does not emulate a version of VMX that constrains physical
2966 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2967 */
2968 if (data & BIT_ULL(48))
2969 return -EINVAL;
2970
2971 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2972 vmx_basic_vmcs_revision_id(data))
2973 return -EINVAL;
2974
2975 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2976 return -EINVAL;
2977
2978 vmx->nested.nested_vmx_basic = data;
2979 return 0;
2980 }
2981
2982 static int
2983 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2984 {
2985 u64 supported;
2986 u32 *lowp, *highp;
2987
2988 switch (msr_index) {
2989 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2990 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2991 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2992 break;
2993 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2994 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2995 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2996 break;
2997 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2998 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2999 highp = &vmx->nested.nested_vmx_exit_ctls_high;
3000 break;
3001 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3002 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
3003 highp = &vmx->nested.nested_vmx_entry_ctls_high;
3004 break;
3005 case MSR_IA32_VMX_PROCBASED_CTLS2:
3006 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
3007 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
3008 break;
3009 default:
3010 BUG();
3011 }
3012
3013 supported = vmx_control_msr(*lowp, *highp);
3014
3015 /* Check must-be-1 bits are still 1. */
3016 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3017 return -EINVAL;
3018
3019 /* Check must-be-0 bits are still 0. */
3020 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3021 return -EINVAL;
3022
3023 *lowp = data;
3024 *highp = data >> 32;
3025 return 0;
3026 }
3027
3028 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3029 {
3030 const u64 feature_and_reserved_bits =
3031 /* feature */
3032 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3033 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3034 /* reserved */
3035 GENMASK_ULL(13, 9) | BIT_ULL(31);
3036 u64 vmx_misc;
3037
3038 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3039 vmx->nested.nested_vmx_misc_high);
3040
3041 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3042 return -EINVAL;
3043
3044 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3045 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3046 vmx_misc_preemption_timer_rate(data) !=
3047 vmx_misc_preemption_timer_rate(vmx_misc))
3048 return -EINVAL;
3049
3050 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3051 return -EINVAL;
3052
3053 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3054 return -EINVAL;
3055
3056 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3057 return -EINVAL;
3058
3059 vmx->nested.nested_vmx_misc_low = data;
3060 vmx->nested.nested_vmx_misc_high = data >> 32;
3061 return 0;
3062 }
3063
3064 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3065 {
3066 u64 vmx_ept_vpid_cap;
3067
3068 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3069 vmx->nested.nested_vmx_vpid_caps);
3070
3071 /* Every bit is either reserved or a feature bit. */
3072 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3073 return -EINVAL;
3074
3075 vmx->nested.nested_vmx_ept_caps = data;
3076 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3077 return 0;
3078 }
3079
3080 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3081 {
3082 u64 *msr;
3083
3084 switch (msr_index) {
3085 case MSR_IA32_VMX_CR0_FIXED0:
3086 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3087 break;
3088 case MSR_IA32_VMX_CR4_FIXED0:
3089 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3090 break;
3091 default:
3092 BUG();
3093 }
3094
3095 /*
3096 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3097 * must be 1 in the restored value.
3098 */
3099 if (!is_bitwise_subset(data, *msr, -1ULL))
3100 return -EINVAL;
3101
3102 *msr = data;
3103 return 0;
3104 }
3105
3106 /*
3107 * Called when userspace is restoring VMX MSRs.
3108 *
3109 * Returns 0 on success, non-0 otherwise.
3110 */
3111 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3112 {
3113 struct vcpu_vmx *vmx = to_vmx(vcpu);
3114
3115 switch (msr_index) {
3116 case MSR_IA32_VMX_BASIC:
3117 return vmx_restore_vmx_basic(vmx, data);
3118 case MSR_IA32_VMX_PINBASED_CTLS:
3119 case MSR_IA32_VMX_PROCBASED_CTLS:
3120 case MSR_IA32_VMX_EXIT_CTLS:
3121 case MSR_IA32_VMX_ENTRY_CTLS:
3122 /*
3123 * The "non-true" VMX capability MSRs are generated from the
3124 * "true" MSRs, so we do not support restoring them directly.
3125 *
3126 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3127 * should restore the "true" MSRs with the must-be-1 bits
3128 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3129 * DEFAULT SETTINGS".
3130 */
3131 return -EINVAL;
3132 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3133 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3134 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3135 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3136 case MSR_IA32_VMX_PROCBASED_CTLS2:
3137 return vmx_restore_control_msr(vmx, msr_index, data);
3138 case MSR_IA32_VMX_MISC:
3139 return vmx_restore_vmx_misc(vmx, data);
3140 case MSR_IA32_VMX_CR0_FIXED0:
3141 case MSR_IA32_VMX_CR4_FIXED0:
3142 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3143 case MSR_IA32_VMX_CR0_FIXED1:
3144 case MSR_IA32_VMX_CR4_FIXED1:
3145 /*
3146 * These MSRs are generated based on the vCPU's CPUID, so we
3147 * do not support restoring them directly.
3148 */
3149 return -EINVAL;
3150 case MSR_IA32_VMX_EPT_VPID_CAP:
3151 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3152 case MSR_IA32_VMX_VMCS_ENUM:
3153 vmx->nested.nested_vmx_vmcs_enum = data;
3154 return 0;
3155 default:
3156 /*
3157 * The rest of the VMX capability MSRs do not support restore.
3158 */
3159 return -EINVAL;
3160 }
3161 }
3162
3163 /* Returns 0 on success, non-0 otherwise. */
3164 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3165 {
3166 struct vcpu_vmx *vmx = to_vmx(vcpu);
3167
3168 switch (msr_index) {
3169 case MSR_IA32_VMX_BASIC:
3170 *pdata = vmx->nested.nested_vmx_basic;
3171 break;
3172 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3173 case MSR_IA32_VMX_PINBASED_CTLS:
3174 *pdata = vmx_control_msr(
3175 vmx->nested.nested_vmx_pinbased_ctls_low,
3176 vmx->nested.nested_vmx_pinbased_ctls_high);
3177 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3178 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3179 break;
3180 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3181 case MSR_IA32_VMX_PROCBASED_CTLS:
3182 *pdata = vmx_control_msr(
3183 vmx->nested.nested_vmx_procbased_ctls_low,
3184 vmx->nested.nested_vmx_procbased_ctls_high);
3185 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3186 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3187 break;
3188 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3189 case MSR_IA32_VMX_EXIT_CTLS:
3190 *pdata = vmx_control_msr(
3191 vmx->nested.nested_vmx_exit_ctls_low,
3192 vmx->nested.nested_vmx_exit_ctls_high);
3193 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3194 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3195 break;
3196 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3197 case MSR_IA32_VMX_ENTRY_CTLS:
3198 *pdata = vmx_control_msr(
3199 vmx->nested.nested_vmx_entry_ctls_low,
3200 vmx->nested.nested_vmx_entry_ctls_high);
3201 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3202 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3203 break;
3204 case MSR_IA32_VMX_MISC:
3205 *pdata = vmx_control_msr(
3206 vmx->nested.nested_vmx_misc_low,
3207 vmx->nested.nested_vmx_misc_high);
3208 break;
3209 case MSR_IA32_VMX_CR0_FIXED0:
3210 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3211 break;
3212 case MSR_IA32_VMX_CR0_FIXED1:
3213 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3214 break;
3215 case MSR_IA32_VMX_CR4_FIXED0:
3216 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3217 break;
3218 case MSR_IA32_VMX_CR4_FIXED1:
3219 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3220 break;
3221 case MSR_IA32_VMX_VMCS_ENUM:
3222 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3223 break;
3224 case MSR_IA32_VMX_PROCBASED_CTLS2:
3225 *pdata = vmx_control_msr(
3226 vmx->nested.nested_vmx_secondary_ctls_low,
3227 vmx->nested.nested_vmx_secondary_ctls_high);
3228 break;
3229 case MSR_IA32_VMX_EPT_VPID_CAP:
3230 *pdata = vmx->nested.nested_vmx_ept_caps |
3231 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3232 break;
3233 case MSR_IA32_VMX_VMFUNC:
3234 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3235 break;
3236 default:
3237 return 1;
3238 }
3239
3240 return 0;
3241 }
3242
3243 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3244 uint64_t val)
3245 {
3246 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3247
3248 return !(val & ~valid_bits);
3249 }
3250
3251 /*
3252 * Reads an msr value (of 'msr_index') into 'pdata'.
3253 * Returns 0 on success, non-0 otherwise.
3254 * Assumes vcpu_load() was already called.
3255 */
3256 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3257 {
3258 struct shared_msr_entry *msr;
3259
3260 switch (msr_info->index) {
3261 #ifdef CONFIG_X86_64
3262 case MSR_FS_BASE:
3263 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3264 break;
3265 case MSR_GS_BASE:
3266 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3267 break;
3268 case MSR_KERNEL_GS_BASE:
3269 vmx_load_host_state(to_vmx(vcpu));
3270 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3271 break;
3272 #endif
3273 case MSR_EFER:
3274 return kvm_get_msr_common(vcpu, msr_info);
3275 case MSR_IA32_TSC:
3276 msr_info->data = guest_read_tsc(vcpu);
3277 break;
3278 case MSR_IA32_SYSENTER_CS:
3279 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3280 break;
3281 case MSR_IA32_SYSENTER_EIP:
3282 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3283 break;
3284 case MSR_IA32_SYSENTER_ESP:
3285 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3286 break;
3287 case MSR_IA32_BNDCFGS:
3288 if (!kvm_mpx_supported() ||
3289 (!msr_info->host_initiated &&
3290 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3291 return 1;
3292 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3293 break;
3294 case MSR_IA32_MCG_EXT_CTL:
3295 if (!msr_info->host_initiated &&
3296 !(to_vmx(vcpu)->msr_ia32_feature_control &
3297 FEATURE_CONTROL_LMCE))
3298 return 1;
3299 msr_info->data = vcpu->arch.mcg_ext_ctl;
3300 break;
3301 case MSR_IA32_FEATURE_CONTROL:
3302 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3303 break;
3304 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3305 if (!nested_vmx_allowed(vcpu))
3306 return 1;
3307 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3308 case MSR_IA32_XSS:
3309 if (!vmx_xsaves_supported())
3310 return 1;
3311 msr_info->data = vcpu->arch.ia32_xss;
3312 break;
3313 case MSR_TSC_AUX:
3314 if (!msr_info->host_initiated &&
3315 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3316 return 1;
3317 /* Otherwise falls through */
3318 default:
3319 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3320 if (msr) {
3321 msr_info->data = msr->data;
3322 break;
3323 }
3324 return kvm_get_msr_common(vcpu, msr_info);
3325 }
3326
3327 return 0;
3328 }
3329
3330 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3331
3332 /*
3333 * Writes msr value into into the appropriate "register".
3334 * Returns 0 on success, non-0 otherwise.
3335 * Assumes vcpu_load() was already called.
3336 */
3337 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3338 {
3339 struct vcpu_vmx *vmx = to_vmx(vcpu);
3340 struct shared_msr_entry *msr;
3341 int ret = 0;
3342 u32 msr_index = msr_info->index;
3343 u64 data = msr_info->data;
3344
3345 switch (msr_index) {
3346 case MSR_EFER:
3347 ret = kvm_set_msr_common(vcpu, msr_info);
3348 break;
3349 #ifdef CONFIG_X86_64
3350 case MSR_FS_BASE:
3351 vmx_segment_cache_clear(vmx);
3352 vmcs_writel(GUEST_FS_BASE, data);
3353 break;
3354 case MSR_GS_BASE:
3355 vmx_segment_cache_clear(vmx);
3356 vmcs_writel(GUEST_GS_BASE, data);
3357 break;
3358 case MSR_KERNEL_GS_BASE:
3359 vmx_load_host_state(vmx);
3360 vmx->msr_guest_kernel_gs_base = data;
3361 break;
3362 #endif
3363 case MSR_IA32_SYSENTER_CS:
3364 vmcs_write32(GUEST_SYSENTER_CS, data);
3365 break;
3366 case MSR_IA32_SYSENTER_EIP:
3367 vmcs_writel(GUEST_SYSENTER_EIP, data);
3368 break;
3369 case MSR_IA32_SYSENTER_ESP:
3370 vmcs_writel(GUEST_SYSENTER_ESP, data);
3371 break;
3372 case MSR_IA32_BNDCFGS:
3373 if (!kvm_mpx_supported() ||
3374 (!msr_info->host_initiated &&
3375 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3376 return 1;
3377 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3378 (data & MSR_IA32_BNDCFGS_RSVD))
3379 return 1;
3380 vmcs_write64(GUEST_BNDCFGS, data);
3381 break;
3382 case MSR_IA32_TSC:
3383 kvm_write_tsc(vcpu, msr_info);
3384 break;
3385 case MSR_IA32_CR_PAT:
3386 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3387 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3388 return 1;
3389 vmcs_write64(GUEST_IA32_PAT, data);
3390 vcpu->arch.pat = data;
3391 break;
3392 }
3393 ret = kvm_set_msr_common(vcpu, msr_info);
3394 break;
3395 case MSR_IA32_TSC_ADJUST:
3396 ret = kvm_set_msr_common(vcpu, msr_info);
3397 break;
3398 case MSR_IA32_MCG_EXT_CTL:
3399 if ((!msr_info->host_initiated &&
3400 !(to_vmx(vcpu)->msr_ia32_feature_control &
3401 FEATURE_CONTROL_LMCE)) ||
3402 (data & ~MCG_EXT_CTL_LMCE_EN))
3403 return 1;
3404 vcpu->arch.mcg_ext_ctl = data;
3405 break;
3406 case MSR_IA32_FEATURE_CONTROL:
3407 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3408 (to_vmx(vcpu)->msr_ia32_feature_control &
3409 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3410 return 1;
3411 vmx->msr_ia32_feature_control = data;
3412 if (msr_info->host_initiated && data == 0)
3413 vmx_leave_nested(vcpu);
3414 break;
3415 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3416 if (!msr_info->host_initiated)
3417 return 1; /* they are read-only */
3418 if (!nested_vmx_allowed(vcpu))
3419 return 1;
3420 return vmx_set_vmx_msr(vcpu, msr_index, data);
3421 case MSR_IA32_XSS:
3422 if (!vmx_xsaves_supported())
3423 return 1;
3424 /*
3425 * The only supported bit as of Skylake is bit 8, but
3426 * it is not supported on KVM.
3427 */
3428 if (data != 0)
3429 return 1;
3430 vcpu->arch.ia32_xss = data;
3431 if (vcpu->arch.ia32_xss != host_xss)
3432 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3433 vcpu->arch.ia32_xss, host_xss);
3434 else
3435 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3436 break;
3437 case MSR_TSC_AUX:
3438 if (!msr_info->host_initiated &&
3439 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3440 return 1;
3441 /* Check reserved bit, higher 32 bits should be zero */
3442 if ((data >> 32) != 0)
3443 return 1;
3444 /* Otherwise falls through */
3445 default:
3446 msr = find_msr_entry(vmx, msr_index);
3447 if (msr) {
3448 u64 old_msr_data = msr->data;
3449 msr->data = data;
3450 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3451 preempt_disable();
3452 ret = kvm_set_shared_msr(msr->index, msr->data,
3453 msr->mask);
3454 preempt_enable();
3455 if (ret)
3456 msr->data = old_msr_data;
3457 }
3458 break;
3459 }
3460 ret = kvm_set_msr_common(vcpu, msr_info);
3461 }
3462
3463 return ret;
3464 }
3465
3466 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3467 {
3468 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3469 switch (reg) {
3470 case VCPU_REGS_RSP:
3471 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3472 break;
3473 case VCPU_REGS_RIP:
3474 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3475 break;
3476 case VCPU_EXREG_PDPTR:
3477 if (enable_ept)
3478 ept_save_pdptrs(vcpu);
3479 break;
3480 default:
3481 break;
3482 }
3483 }
3484
3485 static __init int cpu_has_kvm_support(void)
3486 {
3487 return cpu_has_vmx();
3488 }
3489
3490 static __init int vmx_disabled_by_bios(void)
3491 {
3492 u64 msr;
3493
3494 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3495 if (msr & FEATURE_CONTROL_LOCKED) {
3496 /* launched w/ TXT and VMX disabled */
3497 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3498 && tboot_enabled())
3499 return 1;
3500 /* launched w/o TXT and VMX only enabled w/ TXT */
3501 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3502 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3503 && !tboot_enabled()) {
3504 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3505 "activate TXT before enabling KVM\n");
3506 return 1;
3507 }
3508 /* launched w/o TXT and VMX disabled */
3509 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3510 && !tboot_enabled())
3511 return 1;
3512 }
3513
3514 return 0;
3515 }
3516
3517 static void kvm_cpu_vmxon(u64 addr)
3518 {
3519 cr4_set_bits(X86_CR4_VMXE);
3520 intel_pt_handle_vmx(1);
3521
3522 asm volatile (ASM_VMX_VMXON_RAX
3523 : : "a"(&addr), "m"(addr)
3524 : "memory", "cc");
3525 }
3526
3527 static int hardware_enable(void)
3528 {
3529 int cpu = raw_smp_processor_id();
3530 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3531 u64 old, test_bits;
3532
3533 if (cr4_read_shadow() & X86_CR4_VMXE)
3534 return -EBUSY;
3535
3536 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3537 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3538 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3539
3540 /*
3541 * Now we can enable the vmclear operation in kdump
3542 * since the loaded_vmcss_on_cpu list on this cpu
3543 * has been initialized.
3544 *
3545 * Though the cpu is not in VMX operation now, there
3546 * is no problem to enable the vmclear operation
3547 * for the loaded_vmcss_on_cpu list is empty!
3548 */
3549 crash_enable_local_vmclear(cpu);
3550
3551 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3552
3553 test_bits = FEATURE_CONTROL_LOCKED;
3554 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3555 if (tboot_enabled())
3556 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3557
3558 if ((old & test_bits) != test_bits) {
3559 /* enable and lock */
3560 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3561 }
3562 kvm_cpu_vmxon(phys_addr);
3563 if (enable_ept)
3564 ept_sync_global();
3565
3566 return 0;
3567 }
3568
3569 static void vmclear_local_loaded_vmcss(void)
3570 {
3571 int cpu = raw_smp_processor_id();
3572 struct loaded_vmcs *v, *n;
3573
3574 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3575 loaded_vmcss_on_cpu_link)
3576 __loaded_vmcs_clear(v);
3577 }
3578
3579
3580 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3581 * tricks.
3582 */
3583 static void kvm_cpu_vmxoff(void)
3584 {
3585 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3586
3587 intel_pt_handle_vmx(0);
3588 cr4_clear_bits(X86_CR4_VMXE);
3589 }
3590
3591 static void hardware_disable(void)
3592 {
3593 vmclear_local_loaded_vmcss();
3594 kvm_cpu_vmxoff();
3595 }
3596
3597 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3598 u32 msr, u32 *result)
3599 {
3600 u32 vmx_msr_low, vmx_msr_high;
3601 u32 ctl = ctl_min | ctl_opt;
3602
3603 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3604
3605 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3606 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3607
3608 /* Ensure minimum (required) set of control bits are supported. */
3609 if (ctl_min & ~ctl)
3610 return -EIO;
3611
3612 *result = ctl;
3613 return 0;
3614 }
3615
3616 static __init bool allow_1_setting(u32 msr, u32 ctl)
3617 {
3618 u32 vmx_msr_low, vmx_msr_high;
3619
3620 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3621 return vmx_msr_high & ctl;
3622 }
3623
3624 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3625 {
3626 u32 vmx_msr_low, vmx_msr_high;
3627 u32 min, opt, min2, opt2;
3628 u32 _pin_based_exec_control = 0;
3629 u32 _cpu_based_exec_control = 0;
3630 u32 _cpu_based_2nd_exec_control = 0;
3631 u32 _vmexit_control = 0;
3632 u32 _vmentry_control = 0;
3633
3634 min = CPU_BASED_HLT_EXITING |
3635 #ifdef CONFIG_X86_64
3636 CPU_BASED_CR8_LOAD_EXITING |
3637 CPU_BASED_CR8_STORE_EXITING |
3638 #endif
3639 CPU_BASED_CR3_LOAD_EXITING |
3640 CPU_BASED_CR3_STORE_EXITING |
3641 CPU_BASED_USE_IO_BITMAPS |
3642 CPU_BASED_MOV_DR_EXITING |
3643 CPU_BASED_USE_TSC_OFFSETING |
3644 CPU_BASED_INVLPG_EXITING |
3645 CPU_BASED_RDPMC_EXITING;
3646
3647 if (!kvm_mwait_in_guest())
3648 min |= CPU_BASED_MWAIT_EXITING |
3649 CPU_BASED_MONITOR_EXITING;
3650
3651 opt = CPU_BASED_TPR_SHADOW |
3652 CPU_BASED_USE_MSR_BITMAPS |
3653 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3654 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3655 &_cpu_based_exec_control) < 0)
3656 return -EIO;
3657 #ifdef CONFIG_X86_64
3658 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3659 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3660 ~CPU_BASED_CR8_STORE_EXITING;
3661 #endif
3662 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3663 min2 = 0;
3664 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3665 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3666 SECONDARY_EXEC_WBINVD_EXITING |
3667 SECONDARY_EXEC_ENABLE_VPID |
3668 SECONDARY_EXEC_ENABLE_EPT |
3669 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3670 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3671 SECONDARY_EXEC_RDTSCP |
3672 SECONDARY_EXEC_ENABLE_INVPCID |
3673 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3674 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3675 SECONDARY_EXEC_SHADOW_VMCS |
3676 SECONDARY_EXEC_XSAVES |
3677 SECONDARY_EXEC_RDSEED_EXITING |
3678 SECONDARY_EXEC_RDRAND_EXITING |
3679 SECONDARY_EXEC_ENABLE_PML |
3680 SECONDARY_EXEC_TSC_SCALING |
3681 SECONDARY_EXEC_ENABLE_VMFUNC;
3682 if (adjust_vmx_controls(min2, opt2,
3683 MSR_IA32_VMX_PROCBASED_CTLS2,
3684 &_cpu_based_2nd_exec_control) < 0)
3685 return -EIO;
3686 }
3687 #ifndef CONFIG_X86_64
3688 if (!(_cpu_based_2nd_exec_control &
3689 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3690 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3691 #endif
3692
3693 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3694 _cpu_based_2nd_exec_control &= ~(
3695 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3696 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3697 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3698
3699 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3700 &vmx_capability.ept, &vmx_capability.vpid);
3701
3702 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3703 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3704 enabled */
3705 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3706 CPU_BASED_CR3_STORE_EXITING |
3707 CPU_BASED_INVLPG_EXITING);
3708 } else if (vmx_capability.ept) {
3709 vmx_capability.ept = 0;
3710 pr_warn_once("EPT CAP should not exist if not support "
3711 "1-setting enable EPT VM-execution control\n");
3712 }
3713 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3714 vmx_capability.vpid) {
3715 vmx_capability.vpid = 0;
3716 pr_warn_once("VPID CAP should not exist if not support "
3717 "1-setting enable VPID VM-execution control\n");
3718 }
3719
3720 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3721 #ifdef CONFIG_X86_64
3722 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3723 #endif
3724 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3725 VM_EXIT_CLEAR_BNDCFGS;
3726 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3727 &_vmexit_control) < 0)
3728 return -EIO;
3729
3730 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3731 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3732 PIN_BASED_VMX_PREEMPTION_TIMER;
3733 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3734 &_pin_based_exec_control) < 0)
3735 return -EIO;
3736
3737 if (cpu_has_broken_vmx_preemption_timer())
3738 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3739 if (!(_cpu_based_2nd_exec_control &
3740 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3741 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3742
3743 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3744 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3745 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3746 &_vmentry_control) < 0)
3747 return -EIO;
3748
3749 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3750
3751 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3752 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3753 return -EIO;
3754
3755 #ifdef CONFIG_X86_64
3756 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3757 if (vmx_msr_high & (1u<<16))
3758 return -EIO;
3759 #endif
3760
3761 /* Require Write-Back (WB) memory type for VMCS accesses. */
3762 if (((vmx_msr_high >> 18) & 15) != 6)
3763 return -EIO;
3764
3765 vmcs_conf->size = vmx_msr_high & 0x1fff;
3766 vmcs_conf->order = get_order(vmcs_conf->size);
3767 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3768 vmcs_conf->revision_id = vmx_msr_low;
3769
3770 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3771 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3772 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3773 vmcs_conf->vmexit_ctrl = _vmexit_control;
3774 vmcs_conf->vmentry_ctrl = _vmentry_control;
3775
3776 cpu_has_load_ia32_efer =
3777 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3778 VM_ENTRY_LOAD_IA32_EFER)
3779 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3780 VM_EXIT_LOAD_IA32_EFER);
3781
3782 cpu_has_load_perf_global_ctrl =
3783 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3784 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3785 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3786 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3787
3788 /*
3789 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3790 * but due to errata below it can't be used. Workaround is to use
3791 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3792 *
3793 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3794 *
3795 * AAK155 (model 26)
3796 * AAP115 (model 30)
3797 * AAT100 (model 37)
3798 * BC86,AAY89,BD102 (model 44)
3799 * BA97 (model 46)
3800 *
3801 */
3802 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3803 switch (boot_cpu_data.x86_model) {
3804 case 26:
3805 case 30:
3806 case 37:
3807 case 44:
3808 case 46:
3809 cpu_has_load_perf_global_ctrl = false;
3810 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3811 "does not work properly. Using workaround\n");
3812 break;
3813 default:
3814 break;
3815 }
3816 }
3817
3818 if (boot_cpu_has(X86_FEATURE_XSAVES))
3819 rdmsrl(MSR_IA32_XSS, host_xss);
3820
3821 return 0;
3822 }
3823
3824 static struct vmcs *alloc_vmcs_cpu(int cpu)
3825 {
3826 int node = cpu_to_node(cpu);
3827 struct page *pages;
3828 struct vmcs *vmcs;
3829
3830 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3831 if (!pages)
3832 return NULL;
3833 vmcs = page_address(pages);
3834 memset(vmcs, 0, vmcs_config.size);
3835 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3836 return vmcs;
3837 }
3838
3839 static struct vmcs *alloc_vmcs(void)
3840 {
3841 return alloc_vmcs_cpu(raw_smp_processor_id());
3842 }
3843
3844 static void free_vmcs(struct vmcs *vmcs)
3845 {
3846 free_pages((unsigned long)vmcs, vmcs_config.order);
3847 }
3848
3849 /*
3850 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3851 */
3852 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3853 {
3854 if (!loaded_vmcs->vmcs)
3855 return;
3856 loaded_vmcs_clear(loaded_vmcs);
3857 free_vmcs(loaded_vmcs->vmcs);
3858 loaded_vmcs->vmcs = NULL;
3859 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3860 }
3861
3862 static void free_kvm_area(void)
3863 {
3864 int cpu;
3865
3866 for_each_possible_cpu(cpu) {
3867 free_vmcs(per_cpu(vmxarea, cpu));
3868 per_cpu(vmxarea, cpu) = NULL;
3869 }
3870 }
3871
3872 enum vmcs_field_type {
3873 VMCS_FIELD_TYPE_U16 = 0,
3874 VMCS_FIELD_TYPE_U64 = 1,
3875 VMCS_FIELD_TYPE_U32 = 2,
3876 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3877 };
3878
3879 static inline int vmcs_field_type(unsigned long field)
3880 {
3881 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3882 return VMCS_FIELD_TYPE_U32;
3883 return (field >> 13) & 0x3 ;
3884 }
3885
3886 static inline int vmcs_field_readonly(unsigned long field)
3887 {
3888 return (((field >> 10) & 0x3) == 1);
3889 }
3890
3891 static void init_vmcs_shadow_fields(void)
3892 {
3893 int i, j;
3894
3895 /* No checks for read only fields yet */
3896
3897 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3898 switch (shadow_read_write_fields[i]) {
3899 case GUEST_BNDCFGS:
3900 if (!kvm_mpx_supported())
3901 continue;
3902 break;
3903 default:
3904 break;
3905 }
3906
3907 if (j < i)
3908 shadow_read_write_fields[j] =
3909 shadow_read_write_fields[i];
3910 j++;
3911 }
3912 max_shadow_read_write_fields = j;
3913
3914 /* shadowed fields guest access without vmexit */
3915 for (i = 0; i < max_shadow_read_write_fields; i++) {
3916 unsigned long field = shadow_read_write_fields[i];
3917
3918 clear_bit(field, vmx_vmwrite_bitmap);
3919 clear_bit(field, vmx_vmread_bitmap);
3920 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3921 clear_bit(field + 1, vmx_vmwrite_bitmap);
3922 clear_bit(field + 1, vmx_vmread_bitmap);
3923 }
3924 }
3925 for (i = 0; i < max_shadow_read_only_fields; i++) {
3926 unsigned long field = shadow_read_only_fields[i];
3927
3928 clear_bit(field, vmx_vmread_bitmap);
3929 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3930 clear_bit(field + 1, vmx_vmread_bitmap);
3931 }
3932 }
3933
3934 static __init int alloc_kvm_area(void)
3935 {
3936 int cpu;
3937
3938 for_each_possible_cpu(cpu) {
3939 struct vmcs *vmcs;
3940
3941 vmcs = alloc_vmcs_cpu(cpu);
3942 if (!vmcs) {
3943 free_kvm_area();
3944 return -ENOMEM;
3945 }
3946
3947 per_cpu(vmxarea, cpu) = vmcs;
3948 }
3949 return 0;
3950 }
3951
3952 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3953 struct kvm_segment *save)
3954 {
3955 if (!emulate_invalid_guest_state) {
3956 /*
3957 * CS and SS RPL should be equal during guest entry according
3958 * to VMX spec, but in reality it is not always so. Since vcpu
3959 * is in the middle of the transition from real mode to
3960 * protected mode it is safe to assume that RPL 0 is a good
3961 * default value.
3962 */
3963 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3964 save->selector &= ~SEGMENT_RPL_MASK;
3965 save->dpl = save->selector & SEGMENT_RPL_MASK;
3966 save->s = 1;
3967 }
3968 vmx_set_segment(vcpu, save, seg);
3969 }
3970
3971 static void enter_pmode(struct kvm_vcpu *vcpu)
3972 {
3973 unsigned long flags;
3974 struct vcpu_vmx *vmx = to_vmx(vcpu);
3975
3976 /*
3977 * Update real mode segment cache. It may be not up-to-date if sement
3978 * register was written while vcpu was in a guest mode.
3979 */
3980 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3981 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3982 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3983 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3984 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3985 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3986
3987 vmx->rmode.vm86_active = 0;
3988
3989 vmx_segment_cache_clear(vmx);
3990
3991 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3992
3993 flags = vmcs_readl(GUEST_RFLAGS);
3994 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3995 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3996 vmcs_writel(GUEST_RFLAGS, flags);
3997
3998 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3999 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4000
4001 update_exception_bitmap(vcpu);
4002
4003 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4004 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4005 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4006 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4007 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4008 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4009 }
4010
4011 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4012 {
4013 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4014 struct kvm_segment var = *save;
4015
4016 var.dpl = 0x3;
4017 if (seg == VCPU_SREG_CS)
4018 var.type = 0x3;
4019
4020 if (!emulate_invalid_guest_state) {
4021 var.selector = var.base >> 4;
4022 var.base = var.base & 0xffff0;
4023 var.limit = 0xffff;
4024 var.g = 0;
4025 var.db = 0;
4026 var.present = 1;
4027 var.s = 1;
4028 var.l = 0;
4029 var.unusable = 0;
4030 var.type = 0x3;
4031 var.avl = 0;
4032 if (save->base & 0xf)
4033 printk_once(KERN_WARNING "kvm: segment base is not "
4034 "paragraph aligned when entering "
4035 "protected mode (seg=%d)", seg);
4036 }
4037
4038 vmcs_write16(sf->selector, var.selector);
4039 vmcs_writel(sf->base, var.base);
4040 vmcs_write32(sf->limit, var.limit);
4041 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4042 }
4043
4044 static void enter_rmode(struct kvm_vcpu *vcpu)
4045 {
4046 unsigned long flags;
4047 struct vcpu_vmx *vmx = to_vmx(vcpu);
4048
4049 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4050 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4051 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4052 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4053 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4054 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4055 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4056
4057 vmx->rmode.vm86_active = 1;
4058
4059 /*
4060 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4061 * vcpu. Warn the user that an update is overdue.
4062 */
4063 if (!vcpu->kvm->arch.tss_addr)
4064 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4065 "called before entering vcpu\n");
4066
4067 vmx_segment_cache_clear(vmx);
4068
4069 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4070 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4071 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4072
4073 flags = vmcs_readl(GUEST_RFLAGS);
4074 vmx->rmode.save_rflags = flags;
4075
4076 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4077
4078 vmcs_writel(GUEST_RFLAGS, flags);
4079 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4080 update_exception_bitmap(vcpu);
4081
4082 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4083 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4084 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4085 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4086 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4087 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4088
4089 kvm_mmu_reset_context(vcpu);
4090 }
4091
4092 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4093 {
4094 struct vcpu_vmx *vmx = to_vmx(vcpu);
4095 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4096
4097 if (!msr)
4098 return;
4099
4100 /*
4101 * Force kernel_gs_base reloading before EFER changes, as control
4102 * of this msr depends on is_long_mode().
4103 */
4104 vmx_load_host_state(to_vmx(vcpu));
4105 vcpu->arch.efer = efer;
4106 if (efer & EFER_LMA) {
4107 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4108 msr->data = efer;
4109 } else {
4110 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4111
4112 msr->data = efer & ~EFER_LME;
4113 }
4114 setup_msrs(vmx);
4115 }
4116
4117 #ifdef CONFIG_X86_64
4118
4119 static void enter_lmode(struct kvm_vcpu *vcpu)
4120 {
4121 u32 guest_tr_ar;
4122
4123 vmx_segment_cache_clear(to_vmx(vcpu));
4124
4125 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4126 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4127 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4128 __func__);
4129 vmcs_write32(GUEST_TR_AR_BYTES,
4130 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4131 | VMX_AR_TYPE_BUSY_64_TSS);
4132 }
4133 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4134 }
4135
4136 static void exit_lmode(struct kvm_vcpu *vcpu)
4137 {
4138 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4139 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4140 }
4141
4142 #endif
4143
4144 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4145 {
4146 if (enable_ept) {
4147 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4148 return;
4149 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4150 } else {
4151 vpid_sync_context(vpid);
4152 }
4153 }
4154
4155 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4156 {
4157 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4158 }
4159
4160 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4161 {
4162 if (enable_ept)
4163 vmx_flush_tlb(vcpu);
4164 }
4165
4166 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4167 {
4168 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4169
4170 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4171 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4172 }
4173
4174 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4175 {
4176 if (enable_ept && is_paging(vcpu))
4177 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4178 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4179 }
4180
4181 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4182 {
4183 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4184
4185 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4186 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4187 }
4188
4189 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4190 {
4191 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4192
4193 if (!test_bit(VCPU_EXREG_PDPTR,
4194 (unsigned long *)&vcpu->arch.regs_dirty))
4195 return;
4196
4197 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4198 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4199 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4200 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4201 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4202 }
4203 }
4204
4205 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4206 {
4207 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4208
4209 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4210 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4211 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4212 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4213 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4214 }
4215
4216 __set_bit(VCPU_EXREG_PDPTR,
4217 (unsigned long *)&vcpu->arch.regs_avail);
4218 __set_bit(VCPU_EXREG_PDPTR,
4219 (unsigned long *)&vcpu->arch.regs_dirty);
4220 }
4221
4222 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4223 {
4224 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4225 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4226 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4227
4228 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4229 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4230 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4231 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4232
4233 return fixed_bits_valid(val, fixed0, fixed1);
4234 }
4235
4236 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4237 {
4238 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4239 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4240
4241 return fixed_bits_valid(val, fixed0, fixed1);
4242 }
4243
4244 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4245 {
4246 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4247 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4248
4249 return fixed_bits_valid(val, fixed0, fixed1);
4250 }
4251
4252 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4253 #define nested_guest_cr4_valid nested_cr4_valid
4254 #define nested_host_cr4_valid nested_cr4_valid
4255
4256 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4257
4258 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4259 unsigned long cr0,
4260 struct kvm_vcpu *vcpu)
4261 {
4262 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4263 vmx_decache_cr3(vcpu);
4264 if (!(cr0 & X86_CR0_PG)) {
4265 /* From paging/starting to nonpaging */
4266 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4267 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4268 (CPU_BASED_CR3_LOAD_EXITING |
4269 CPU_BASED_CR3_STORE_EXITING));
4270 vcpu->arch.cr0 = cr0;
4271 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4272 } else if (!is_paging(vcpu)) {
4273 /* From nonpaging to paging */
4274 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4275 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4276 ~(CPU_BASED_CR3_LOAD_EXITING |
4277 CPU_BASED_CR3_STORE_EXITING));
4278 vcpu->arch.cr0 = cr0;
4279 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4280 }
4281
4282 if (!(cr0 & X86_CR0_WP))
4283 *hw_cr0 &= ~X86_CR0_WP;
4284 }
4285
4286 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4287 {
4288 struct vcpu_vmx *vmx = to_vmx(vcpu);
4289 unsigned long hw_cr0;
4290
4291 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4292 if (enable_unrestricted_guest)
4293 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4294 else {
4295 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4296
4297 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4298 enter_pmode(vcpu);
4299
4300 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4301 enter_rmode(vcpu);
4302 }
4303
4304 #ifdef CONFIG_X86_64
4305 if (vcpu->arch.efer & EFER_LME) {
4306 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4307 enter_lmode(vcpu);
4308 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4309 exit_lmode(vcpu);
4310 }
4311 #endif
4312
4313 if (enable_ept)
4314 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4315
4316 vmcs_writel(CR0_READ_SHADOW, cr0);
4317 vmcs_writel(GUEST_CR0, hw_cr0);
4318 vcpu->arch.cr0 = cr0;
4319
4320 /* depends on vcpu->arch.cr0 to be set to a new value */
4321 vmx->emulation_required = emulation_required(vcpu);
4322 }
4323
4324 static int get_ept_level(struct kvm_vcpu *vcpu)
4325 {
4326 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4327 return 5;
4328 return 4;
4329 }
4330
4331 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4332 {
4333 u64 eptp = VMX_EPTP_MT_WB;
4334
4335 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4336
4337 if (enable_ept_ad_bits &&
4338 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4339 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4340 eptp |= (root_hpa & PAGE_MASK);
4341
4342 return eptp;
4343 }
4344
4345 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4346 {
4347 unsigned long guest_cr3;
4348 u64 eptp;
4349
4350 guest_cr3 = cr3;
4351 if (enable_ept) {
4352 eptp = construct_eptp(vcpu, cr3);
4353 vmcs_write64(EPT_POINTER, eptp);
4354 if (is_paging(vcpu) || is_guest_mode(vcpu))
4355 guest_cr3 = kvm_read_cr3(vcpu);
4356 else
4357 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4358 ept_load_pdptrs(vcpu);
4359 }
4360
4361 vmx_flush_tlb(vcpu);
4362 vmcs_writel(GUEST_CR3, guest_cr3);
4363 }
4364
4365 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4366 {
4367 /*
4368 * Pass through host's Machine Check Enable value to hw_cr4, which
4369 * is in force while we are in guest mode. Do not let guests control
4370 * this bit, even if host CR4.MCE == 0.
4371 */
4372 unsigned long hw_cr4 =
4373 (cr4_read_shadow() & X86_CR4_MCE) |
4374 (cr4 & ~X86_CR4_MCE) |
4375 (to_vmx(vcpu)->rmode.vm86_active ?
4376 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4377
4378 if (cr4 & X86_CR4_VMXE) {
4379 /*
4380 * To use VMXON (and later other VMX instructions), a guest
4381 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4382 * So basically the check on whether to allow nested VMX
4383 * is here.
4384 */
4385 if (!nested_vmx_allowed(vcpu))
4386 return 1;
4387 }
4388
4389 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4390 return 1;
4391
4392 vcpu->arch.cr4 = cr4;
4393 if (enable_ept) {
4394 if (!is_paging(vcpu)) {
4395 hw_cr4 &= ~X86_CR4_PAE;
4396 hw_cr4 |= X86_CR4_PSE;
4397 } else if (!(cr4 & X86_CR4_PAE)) {
4398 hw_cr4 &= ~X86_CR4_PAE;
4399 }
4400 }
4401
4402 if (!enable_unrestricted_guest && !is_paging(vcpu))
4403 /*
4404 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4405 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4406 * to be manually disabled when guest switches to non-paging
4407 * mode.
4408 *
4409 * If !enable_unrestricted_guest, the CPU is always running
4410 * with CR0.PG=1 and CR4 needs to be modified.
4411 * If enable_unrestricted_guest, the CPU automatically
4412 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4413 */
4414 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4415
4416 vmcs_writel(CR4_READ_SHADOW, cr4);
4417 vmcs_writel(GUEST_CR4, hw_cr4);
4418 return 0;
4419 }
4420
4421 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4422 struct kvm_segment *var, int seg)
4423 {
4424 struct vcpu_vmx *vmx = to_vmx(vcpu);
4425 u32 ar;
4426
4427 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4428 *var = vmx->rmode.segs[seg];
4429 if (seg == VCPU_SREG_TR
4430 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4431 return;
4432 var->base = vmx_read_guest_seg_base(vmx, seg);
4433 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4434 return;
4435 }
4436 var->base = vmx_read_guest_seg_base(vmx, seg);
4437 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4438 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4439 ar = vmx_read_guest_seg_ar(vmx, seg);
4440 var->unusable = (ar >> 16) & 1;
4441 var->type = ar & 15;
4442 var->s = (ar >> 4) & 1;
4443 var->dpl = (ar >> 5) & 3;
4444 /*
4445 * Some userspaces do not preserve unusable property. Since usable
4446 * segment has to be present according to VMX spec we can use present
4447 * property to amend userspace bug by making unusable segment always
4448 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4449 * segment as unusable.
4450 */
4451 var->present = !var->unusable;
4452 var->avl = (ar >> 12) & 1;
4453 var->l = (ar >> 13) & 1;
4454 var->db = (ar >> 14) & 1;
4455 var->g = (ar >> 15) & 1;
4456 }
4457
4458 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4459 {
4460 struct kvm_segment s;
4461
4462 if (to_vmx(vcpu)->rmode.vm86_active) {
4463 vmx_get_segment(vcpu, &s, seg);
4464 return s.base;
4465 }
4466 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4467 }
4468
4469 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4470 {
4471 struct vcpu_vmx *vmx = to_vmx(vcpu);
4472
4473 if (unlikely(vmx->rmode.vm86_active))
4474 return 0;
4475 else {
4476 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4477 return VMX_AR_DPL(ar);
4478 }
4479 }
4480
4481 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4482 {
4483 u32 ar;
4484
4485 if (var->unusable || !var->present)
4486 ar = 1 << 16;
4487 else {
4488 ar = var->type & 15;
4489 ar |= (var->s & 1) << 4;
4490 ar |= (var->dpl & 3) << 5;
4491 ar |= (var->present & 1) << 7;
4492 ar |= (var->avl & 1) << 12;
4493 ar |= (var->l & 1) << 13;
4494 ar |= (var->db & 1) << 14;
4495 ar |= (var->g & 1) << 15;
4496 }
4497
4498 return ar;
4499 }
4500
4501 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4502 struct kvm_segment *var, int seg)
4503 {
4504 struct vcpu_vmx *vmx = to_vmx(vcpu);
4505 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4506
4507 vmx_segment_cache_clear(vmx);
4508
4509 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4510 vmx->rmode.segs[seg] = *var;
4511 if (seg == VCPU_SREG_TR)
4512 vmcs_write16(sf->selector, var->selector);
4513 else if (var->s)
4514 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4515 goto out;
4516 }
4517
4518 vmcs_writel(sf->base, var->base);
4519 vmcs_write32(sf->limit, var->limit);
4520 vmcs_write16(sf->selector, var->selector);
4521
4522 /*
4523 * Fix the "Accessed" bit in AR field of segment registers for older
4524 * qemu binaries.
4525 * IA32 arch specifies that at the time of processor reset the
4526 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4527 * is setting it to 0 in the userland code. This causes invalid guest
4528 * state vmexit when "unrestricted guest" mode is turned on.
4529 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4530 * tree. Newer qemu binaries with that qemu fix would not need this
4531 * kvm hack.
4532 */
4533 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4534 var->type |= 0x1; /* Accessed */
4535
4536 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4537
4538 out:
4539 vmx->emulation_required = emulation_required(vcpu);
4540 }
4541
4542 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4543 {
4544 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4545
4546 *db = (ar >> 14) & 1;
4547 *l = (ar >> 13) & 1;
4548 }
4549
4550 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4551 {
4552 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4553 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4554 }
4555
4556 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4557 {
4558 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4559 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4560 }
4561
4562 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4563 {
4564 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4565 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4566 }
4567
4568 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4569 {
4570 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4571 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4572 }
4573
4574 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4575 {
4576 struct kvm_segment var;
4577 u32 ar;
4578
4579 vmx_get_segment(vcpu, &var, seg);
4580 var.dpl = 0x3;
4581 if (seg == VCPU_SREG_CS)
4582 var.type = 0x3;
4583 ar = vmx_segment_access_rights(&var);
4584
4585 if (var.base != (var.selector << 4))
4586 return false;
4587 if (var.limit != 0xffff)
4588 return false;
4589 if (ar != 0xf3)
4590 return false;
4591
4592 return true;
4593 }
4594
4595 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4596 {
4597 struct kvm_segment cs;
4598 unsigned int cs_rpl;
4599
4600 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4601 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4602
4603 if (cs.unusable)
4604 return false;
4605 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4606 return false;
4607 if (!cs.s)
4608 return false;
4609 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4610 if (cs.dpl > cs_rpl)
4611 return false;
4612 } else {
4613 if (cs.dpl != cs_rpl)
4614 return false;
4615 }
4616 if (!cs.present)
4617 return false;
4618
4619 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4620 return true;
4621 }
4622
4623 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4624 {
4625 struct kvm_segment ss;
4626 unsigned int ss_rpl;
4627
4628 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4629 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4630
4631 if (ss.unusable)
4632 return true;
4633 if (ss.type != 3 && ss.type != 7)
4634 return false;
4635 if (!ss.s)
4636 return false;
4637 if (ss.dpl != ss_rpl) /* DPL != RPL */
4638 return false;
4639 if (!ss.present)
4640 return false;
4641
4642 return true;
4643 }
4644
4645 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4646 {
4647 struct kvm_segment var;
4648 unsigned int rpl;
4649
4650 vmx_get_segment(vcpu, &var, seg);
4651 rpl = var.selector & SEGMENT_RPL_MASK;
4652
4653 if (var.unusable)
4654 return true;
4655 if (!var.s)
4656 return false;
4657 if (!var.present)
4658 return false;
4659 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4660 if (var.dpl < rpl) /* DPL < RPL */
4661 return false;
4662 }
4663
4664 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4665 * rights flags
4666 */
4667 return true;
4668 }
4669
4670 static bool tr_valid(struct kvm_vcpu *vcpu)
4671 {
4672 struct kvm_segment tr;
4673
4674 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4675
4676 if (tr.unusable)
4677 return false;
4678 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4679 return false;
4680 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4681 return false;
4682 if (!tr.present)
4683 return false;
4684
4685 return true;
4686 }
4687
4688 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4689 {
4690 struct kvm_segment ldtr;
4691
4692 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4693
4694 if (ldtr.unusable)
4695 return true;
4696 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4697 return false;
4698 if (ldtr.type != 2)
4699 return false;
4700 if (!ldtr.present)
4701 return false;
4702
4703 return true;
4704 }
4705
4706 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4707 {
4708 struct kvm_segment cs, ss;
4709
4710 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4711 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4712
4713 return ((cs.selector & SEGMENT_RPL_MASK) ==
4714 (ss.selector & SEGMENT_RPL_MASK));
4715 }
4716
4717 /*
4718 * Check if guest state is valid. Returns true if valid, false if
4719 * not.
4720 * We assume that registers are always usable
4721 */
4722 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4723 {
4724 if (enable_unrestricted_guest)
4725 return true;
4726
4727 /* real mode guest state checks */
4728 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4729 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4730 return false;
4731 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4732 return false;
4733 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4734 return false;
4735 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4736 return false;
4737 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4738 return false;
4739 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4740 return false;
4741 } else {
4742 /* protected mode guest state checks */
4743 if (!cs_ss_rpl_check(vcpu))
4744 return false;
4745 if (!code_segment_valid(vcpu))
4746 return false;
4747 if (!stack_segment_valid(vcpu))
4748 return false;
4749 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4750 return false;
4751 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4752 return false;
4753 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4754 return false;
4755 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4756 return false;
4757 if (!tr_valid(vcpu))
4758 return false;
4759 if (!ldtr_valid(vcpu))
4760 return false;
4761 }
4762 /* TODO:
4763 * - Add checks on RIP
4764 * - Add checks on RFLAGS
4765 */
4766
4767 return true;
4768 }
4769
4770 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4771 {
4772 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4773 }
4774
4775 static int init_rmode_tss(struct kvm *kvm)
4776 {
4777 gfn_t fn;
4778 u16 data = 0;
4779 int idx, r;
4780
4781 idx = srcu_read_lock(&kvm->srcu);
4782 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4783 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4784 if (r < 0)
4785 goto out;
4786 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4787 r = kvm_write_guest_page(kvm, fn++, &data,
4788 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4789 if (r < 0)
4790 goto out;
4791 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4792 if (r < 0)
4793 goto out;
4794 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4795 if (r < 0)
4796 goto out;
4797 data = ~0;
4798 r = kvm_write_guest_page(kvm, fn, &data,
4799 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4800 sizeof(u8));
4801 out:
4802 srcu_read_unlock(&kvm->srcu, idx);
4803 return r;
4804 }
4805
4806 static int init_rmode_identity_map(struct kvm *kvm)
4807 {
4808 int i, idx, r = 0;
4809 kvm_pfn_t identity_map_pfn;
4810 u32 tmp;
4811
4812 /* Protect kvm->arch.ept_identity_pagetable_done. */
4813 mutex_lock(&kvm->slots_lock);
4814
4815 if (likely(kvm->arch.ept_identity_pagetable_done))
4816 goto out2;
4817
4818 if (!kvm->arch.ept_identity_map_addr)
4819 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4820 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4821
4822 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4823 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4824 if (r < 0)
4825 goto out2;
4826
4827 idx = srcu_read_lock(&kvm->srcu);
4828 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4829 if (r < 0)
4830 goto out;
4831 /* Set up identity-mapping pagetable for EPT in real mode */
4832 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4833 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4834 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4835 r = kvm_write_guest_page(kvm, identity_map_pfn,
4836 &tmp, i * sizeof(tmp), sizeof(tmp));
4837 if (r < 0)
4838 goto out;
4839 }
4840 kvm->arch.ept_identity_pagetable_done = true;
4841
4842 out:
4843 srcu_read_unlock(&kvm->srcu, idx);
4844
4845 out2:
4846 mutex_unlock(&kvm->slots_lock);
4847 return r;
4848 }
4849
4850 static void seg_setup(int seg)
4851 {
4852 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4853 unsigned int ar;
4854
4855 vmcs_write16(sf->selector, 0);
4856 vmcs_writel(sf->base, 0);
4857 vmcs_write32(sf->limit, 0xffff);
4858 ar = 0x93;
4859 if (seg == VCPU_SREG_CS)
4860 ar |= 0x08; /* code segment */
4861
4862 vmcs_write32(sf->ar_bytes, ar);
4863 }
4864
4865 static int alloc_apic_access_page(struct kvm *kvm)
4866 {
4867 struct page *page;
4868 int r = 0;
4869
4870 mutex_lock(&kvm->slots_lock);
4871 if (kvm->arch.apic_access_page_done)
4872 goto out;
4873 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4874 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4875 if (r)
4876 goto out;
4877
4878 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4879 if (is_error_page(page)) {
4880 r = -EFAULT;
4881 goto out;
4882 }
4883
4884 /*
4885 * Do not pin the page in memory, so that memory hot-unplug
4886 * is able to migrate it.
4887 */
4888 put_page(page);
4889 kvm->arch.apic_access_page_done = true;
4890 out:
4891 mutex_unlock(&kvm->slots_lock);
4892 return r;
4893 }
4894
4895 static int allocate_vpid(void)
4896 {
4897 int vpid;
4898
4899 if (!enable_vpid)
4900 return 0;
4901 spin_lock(&vmx_vpid_lock);
4902 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4903 if (vpid < VMX_NR_VPIDS)
4904 __set_bit(vpid, vmx_vpid_bitmap);
4905 else
4906 vpid = 0;
4907 spin_unlock(&vmx_vpid_lock);
4908 return vpid;
4909 }
4910
4911 static void free_vpid(int vpid)
4912 {
4913 if (!enable_vpid || vpid == 0)
4914 return;
4915 spin_lock(&vmx_vpid_lock);
4916 __clear_bit(vpid, vmx_vpid_bitmap);
4917 spin_unlock(&vmx_vpid_lock);
4918 }
4919
4920 #define MSR_TYPE_R 1
4921 #define MSR_TYPE_W 2
4922 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4923 u32 msr, int type)
4924 {
4925 int f = sizeof(unsigned long);
4926
4927 if (!cpu_has_vmx_msr_bitmap())
4928 return;
4929
4930 /*
4931 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4932 * have the write-low and read-high bitmap offsets the wrong way round.
4933 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4934 */
4935 if (msr <= 0x1fff) {
4936 if (type & MSR_TYPE_R)
4937 /* read-low */
4938 __clear_bit(msr, msr_bitmap + 0x000 / f);
4939
4940 if (type & MSR_TYPE_W)
4941 /* write-low */
4942 __clear_bit(msr, msr_bitmap + 0x800 / f);
4943
4944 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4945 msr &= 0x1fff;
4946 if (type & MSR_TYPE_R)
4947 /* read-high */
4948 __clear_bit(msr, msr_bitmap + 0x400 / f);
4949
4950 if (type & MSR_TYPE_W)
4951 /* write-high */
4952 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4953
4954 }
4955 }
4956
4957 /*
4958 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4959 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4960 */
4961 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4962 unsigned long *msr_bitmap_nested,
4963 u32 msr, int type)
4964 {
4965 int f = sizeof(unsigned long);
4966
4967 if (!cpu_has_vmx_msr_bitmap()) {
4968 WARN_ON(1);
4969 return;
4970 }
4971
4972 /*
4973 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4974 * have the write-low and read-high bitmap offsets the wrong way round.
4975 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4976 */
4977 if (msr <= 0x1fff) {
4978 if (type & MSR_TYPE_R &&
4979 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4980 /* read-low */
4981 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4982
4983 if (type & MSR_TYPE_W &&
4984 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4985 /* write-low */
4986 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4987
4988 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4989 msr &= 0x1fff;
4990 if (type & MSR_TYPE_R &&
4991 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4992 /* read-high */
4993 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4994
4995 if (type & MSR_TYPE_W &&
4996 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4997 /* write-high */
4998 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4999
5000 }
5001 }
5002
5003 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
5004 {
5005 if (!longmode_only)
5006 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
5007 msr, MSR_TYPE_R | MSR_TYPE_W);
5008 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
5009 msr, MSR_TYPE_R | MSR_TYPE_W);
5010 }
5011
5012 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
5013 {
5014 if (apicv_active) {
5015 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5016 msr, type);
5017 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5018 msr, type);
5019 } else {
5020 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5021 msr, type);
5022 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5023 msr, type);
5024 }
5025 }
5026
5027 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5028 {
5029 return enable_apicv;
5030 }
5031
5032 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5033 {
5034 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5035 gfn_t gfn;
5036
5037 /*
5038 * Don't need to mark the APIC access page dirty; it is never
5039 * written to by the CPU during APIC virtualization.
5040 */
5041
5042 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5043 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5044 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5045 }
5046
5047 if (nested_cpu_has_posted_intr(vmcs12)) {
5048 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5049 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5050 }
5051 }
5052
5053
5054 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5055 {
5056 struct vcpu_vmx *vmx = to_vmx(vcpu);
5057 int max_irr;
5058 void *vapic_page;
5059 u16 status;
5060
5061 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5062 return;
5063
5064 vmx->nested.pi_pending = false;
5065 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5066 return;
5067
5068 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5069 if (max_irr != 256) {
5070 vapic_page = kmap(vmx->nested.virtual_apic_page);
5071 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5072 kunmap(vmx->nested.virtual_apic_page);
5073
5074 status = vmcs_read16(GUEST_INTR_STATUS);
5075 if ((u8)max_irr > ((u8)status & 0xff)) {
5076 status &= ~0xff;
5077 status |= (u8)max_irr;
5078 vmcs_write16(GUEST_INTR_STATUS, status);
5079 }
5080 }
5081
5082 nested_mark_vmcs12_pages_dirty(vcpu);
5083 }
5084
5085 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5086 bool nested)
5087 {
5088 #ifdef CONFIG_SMP
5089 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5090
5091 if (vcpu->mode == IN_GUEST_MODE) {
5092 /*
5093 * The vector of interrupt to be delivered to vcpu had
5094 * been set in PIR before this function.
5095 *
5096 * Following cases will be reached in this block, and
5097 * we always send a notification event in all cases as
5098 * explained below.
5099 *
5100 * Case 1: vcpu keeps in non-root mode. Sending a
5101 * notification event posts the interrupt to vcpu.
5102 *
5103 * Case 2: vcpu exits to root mode and is still
5104 * runnable. PIR will be synced to vIRR before the
5105 * next vcpu entry. Sending a notification event in
5106 * this case has no effect, as vcpu is not in root
5107 * mode.
5108 *
5109 * Case 3: vcpu exits to root mode and is blocked.
5110 * vcpu_block() has already synced PIR to vIRR and
5111 * never blocks vcpu if vIRR is not cleared. Therefore,
5112 * a blocked vcpu here does not wait for any requested
5113 * interrupts in PIR, and sending a notification event
5114 * which has no effect is safe here.
5115 */
5116
5117 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5118 return true;
5119 }
5120 #endif
5121 return false;
5122 }
5123
5124 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5125 int vector)
5126 {
5127 struct vcpu_vmx *vmx = to_vmx(vcpu);
5128
5129 if (is_guest_mode(vcpu) &&
5130 vector == vmx->nested.posted_intr_nv) {
5131 /* the PIR and ON have been set by L1. */
5132 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5133 /*
5134 * If a posted intr is not recognized by hardware,
5135 * we will accomplish it in the next vmentry.
5136 */
5137 vmx->nested.pi_pending = true;
5138 kvm_make_request(KVM_REQ_EVENT, vcpu);
5139 return 0;
5140 }
5141 return -1;
5142 }
5143 /*
5144 * Send interrupt to vcpu via posted interrupt way.
5145 * 1. If target vcpu is running(non-root mode), send posted interrupt
5146 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5147 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5148 * interrupt from PIR in next vmentry.
5149 */
5150 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5151 {
5152 struct vcpu_vmx *vmx = to_vmx(vcpu);
5153 int r;
5154
5155 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5156 if (!r)
5157 return;
5158
5159 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5160 return;
5161
5162 /* If a previous notification has sent the IPI, nothing to do. */
5163 if (pi_test_and_set_on(&vmx->pi_desc))
5164 return;
5165
5166 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5167 kvm_vcpu_kick(vcpu);
5168 }
5169
5170 /*
5171 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5172 * will not change in the lifetime of the guest.
5173 * Note that host-state that does change is set elsewhere. E.g., host-state
5174 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5175 */
5176 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5177 {
5178 u32 low32, high32;
5179 unsigned long tmpl;
5180 struct desc_ptr dt;
5181 unsigned long cr0, cr3, cr4;
5182
5183 cr0 = read_cr0();
5184 WARN_ON(cr0 & X86_CR0_TS);
5185 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
5186
5187 /*
5188 * Save the most likely value for this task's CR3 in the VMCS.
5189 * We can't use __get_current_cr3_fast() because we're not atomic.
5190 */
5191 cr3 = __read_cr3();
5192 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
5193 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5194
5195 /* Save the most likely value for this task's CR4 in the VMCS. */
5196 cr4 = cr4_read_shadow();
5197 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5198 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5199
5200 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5201 #ifdef CONFIG_X86_64
5202 /*
5203 * Load null selectors, so we can avoid reloading them in
5204 * __vmx_load_host_state(), in case userspace uses the null selectors
5205 * too (the expected case).
5206 */
5207 vmcs_write16(HOST_DS_SELECTOR, 0);
5208 vmcs_write16(HOST_ES_SELECTOR, 0);
5209 #else
5210 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5211 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5212 #endif
5213 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5214 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5215
5216 store_idt(&dt);
5217 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5218 vmx->host_idt_base = dt.address;
5219
5220 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5221
5222 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5223 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5224 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5225 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5226
5227 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5228 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5229 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5230 }
5231 }
5232
5233 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5234 {
5235 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5236 if (enable_ept)
5237 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5238 if (is_guest_mode(&vmx->vcpu))
5239 vmx->vcpu.arch.cr4_guest_owned_bits &=
5240 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5241 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5242 }
5243
5244 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5245 {
5246 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5247
5248 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5249 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5250
5251 if (!enable_vnmi)
5252 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5253
5254 /* Enable the preemption timer dynamically */
5255 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5256 return pin_based_exec_ctrl;
5257 }
5258
5259 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5260 {
5261 struct vcpu_vmx *vmx = to_vmx(vcpu);
5262
5263 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5264 if (cpu_has_secondary_exec_ctrls()) {
5265 if (kvm_vcpu_apicv_active(vcpu))
5266 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5267 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5268 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5269 else
5270 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5271 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5272 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5273 }
5274
5275 if (cpu_has_vmx_msr_bitmap())
5276 vmx_set_msr_bitmap(vcpu);
5277 }
5278
5279 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5280 {
5281 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5282
5283 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5284 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5285
5286 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5287 exec_control &= ~CPU_BASED_TPR_SHADOW;
5288 #ifdef CONFIG_X86_64
5289 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5290 CPU_BASED_CR8_LOAD_EXITING;
5291 #endif
5292 }
5293 if (!enable_ept)
5294 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5295 CPU_BASED_CR3_LOAD_EXITING |
5296 CPU_BASED_INVLPG_EXITING;
5297 return exec_control;
5298 }
5299
5300 static bool vmx_rdrand_supported(void)
5301 {
5302 return vmcs_config.cpu_based_2nd_exec_ctrl &
5303 SECONDARY_EXEC_RDRAND_EXITING;
5304 }
5305
5306 static bool vmx_rdseed_supported(void)
5307 {
5308 return vmcs_config.cpu_based_2nd_exec_ctrl &
5309 SECONDARY_EXEC_RDSEED_EXITING;
5310 }
5311
5312 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5313 {
5314 struct kvm_vcpu *vcpu = &vmx->vcpu;
5315
5316 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5317 if (!cpu_need_virtualize_apic_accesses(vcpu))
5318 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5319 if (vmx->vpid == 0)
5320 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5321 if (!enable_ept) {
5322 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5323 enable_unrestricted_guest = 0;
5324 /* Enable INVPCID for non-ept guests may cause performance regression. */
5325 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5326 }
5327 if (!enable_unrestricted_guest)
5328 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5329 if (!ple_gap)
5330 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5331 if (!kvm_vcpu_apicv_active(vcpu))
5332 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5333 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5334 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5335 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5336 (handle_vmptrld).
5337 We can NOT enable shadow_vmcs here because we don't have yet
5338 a current VMCS12
5339 */
5340 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5341
5342 if (!enable_pml)
5343 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5344
5345 if (vmx_xsaves_supported()) {
5346 /* Exposing XSAVES only when XSAVE is exposed */
5347 bool xsaves_enabled =
5348 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5349 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5350
5351 if (!xsaves_enabled)
5352 exec_control &= ~SECONDARY_EXEC_XSAVES;
5353
5354 if (nested) {
5355 if (xsaves_enabled)
5356 vmx->nested.nested_vmx_secondary_ctls_high |=
5357 SECONDARY_EXEC_XSAVES;
5358 else
5359 vmx->nested.nested_vmx_secondary_ctls_high &=
5360 ~SECONDARY_EXEC_XSAVES;
5361 }
5362 }
5363
5364 if (vmx_rdtscp_supported()) {
5365 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5366 if (!rdtscp_enabled)
5367 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5368
5369 if (nested) {
5370 if (rdtscp_enabled)
5371 vmx->nested.nested_vmx_secondary_ctls_high |=
5372 SECONDARY_EXEC_RDTSCP;
5373 else
5374 vmx->nested.nested_vmx_secondary_ctls_high &=
5375 ~SECONDARY_EXEC_RDTSCP;
5376 }
5377 }
5378
5379 if (vmx_invpcid_supported()) {
5380 /* Exposing INVPCID only when PCID is exposed */
5381 bool invpcid_enabled =
5382 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5383 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5384
5385 if (!invpcid_enabled) {
5386 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5387 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5388 }
5389
5390 if (nested) {
5391 if (invpcid_enabled)
5392 vmx->nested.nested_vmx_secondary_ctls_high |=
5393 SECONDARY_EXEC_ENABLE_INVPCID;
5394 else
5395 vmx->nested.nested_vmx_secondary_ctls_high &=
5396 ~SECONDARY_EXEC_ENABLE_INVPCID;
5397 }
5398 }
5399
5400 if (vmx_rdrand_supported()) {
5401 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5402 if (rdrand_enabled)
5403 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
5404
5405 if (nested) {
5406 if (rdrand_enabled)
5407 vmx->nested.nested_vmx_secondary_ctls_high |=
5408 SECONDARY_EXEC_RDRAND_EXITING;
5409 else
5410 vmx->nested.nested_vmx_secondary_ctls_high &=
5411 ~SECONDARY_EXEC_RDRAND_EXITING;
5412 }
5413 }
5414
5415 if (vmx_rdseed_supported()) {
5416 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5417 if (rdseed_enabled)
5418 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
5419
5420 if (nested) {
5421 if (rdseed_enabled)
5422 vmx->nested.nested_vmx_secondary_ctls_high |=
5423 SECONDARY_EXEC_RDSEED_EXITING;
5424 else
5425 vmx->nested.nested_vmx_secondary_ctls_high &=
5426 ~SECONDARY_EXEC_RDSEED_EXITING;
5427 }
5428 }
5429
5430 vmx->secondary_exec_control = exec_control;
5431 }
5432
5433 static void ept_set_mmio_spte_mask(void)
5434 {
5435 /*
5436 * EPT Misconfigurations can be generated if the value of bits 2:0
5437 * of an EPT paging-structure entry is 110b (write/execute).
5438 */
5439 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5440 VMX_EPT_MISCONFIG_WX_VALUE);
5441 }
5442
5443 #define VMX_XSS_EXIT_BITMAP 0
5444 /*
5445 * Sets up the vmcs for emulated real mode.
5446 */
5447 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
5448 {
5449 #ifdef CONFIG_X86_64
5450 unsigned long a;
5451 #endif
5452 int i;
5453
5454 /* I/O */
5455 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5456 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5457
5458 if (enable_shadow_vmcs) {
5459 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5460 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5461 }
5462 if (cpu_has_vmx_msr_bitmap())
5463 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5464
5465 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5466
5467 /* Control */
5468 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5469 vmx->hv_deadline_tsc = -1;
5470
5471 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5472
5473 if (cpu_has_secondary_exec_ctrls()) {
5474 vmx_compute_secondary_exec_control(vmx);
5475 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5476 vmx->secondary_exec_control);
5477 }
5478
5479 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5480 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5481 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5482 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5483 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5484
5485 vmcs_write16(GUEST_INTR_STATUS, 0);
5486
5487 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5488 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5489 }
5490
5491 if (ple_gap) {
5492 vmcs_write32(PLE_GAP, ple_gap);
5493 vmx->ple_window = ple_window;
5494 vmx->ple_window_dirty = true;
5495 }
5496
5497 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5498 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5499 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5500
5501 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5502 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5503 vmx_set_constant_host_state(vmx);
5504 #ifdef CONFIG_X86_64
5505 rdmsrl(MSR_FS_BASE, a);
5506 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5507 rdmsrl(MSR_GS_BASE, a);
5508 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5509 #else
5510 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5511 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5512 #endif
5513
5514 if (cpu_has_vmx_vmfunc())
5515 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5516
5517 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5518 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5519 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5520 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5521 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5522
5523 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5524 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5525
5526 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5527 u32 index = vmx_msr_index[i];
5528 u32 data_low, data_high;
5529 int j = vmx->nmsrs;
5530
5531 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5532 continue;
5533 if (wrmsr_safe(index, data_low, data_high) < 0)
5534 continue;
5535 vmx->guest_msrs[j].index = i;
5536 vmx->guest_msrs[j].data = 0;
5537 vmx->guest_msrs[j].mask = -1ull;
5538 ++vmx->nmsrs;
5539 }
5540
5541
5542 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5543
5544 /* 22.2.1, 20.8.1 */
5545 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5546
5547 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5548 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5549
5550 set_cr4_guest_host_mask(vmx);
5551
5552 if (vmx_xsaves_supported())
5553 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5554
5555 if (enable_pml) {
5556 ASSERT(vmx->pml_pg);
5557 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5558 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5559 }
5560 }
5561
5562 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5563 {
5564 struct vcpu_vmx *vmx = to_vmx(vcpu);
5565 struct msr_data apic_base_msr;
5566 u64 cr0;
5567
5568 vmx->rmode.vm86_active = 0;
5569
5570 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5571 kvm_set_cr8(vcpu, 0);
5572
5573 if (!init_event) {
5574 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5575 MSR_IA32_APICBASE_ENABLE;
5576 if (kvm_vcpu_is_reset_bsp(vcpu))
5577 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5578 apic_base_msr.host_initiated = true;
5579 kvm_set_apic_base(vcpu, &apic_base_msr);
5580 }
5581
5582 vmx_segment_cache_clear(vmx);
5583
5584 seg_setup(VCPU_SREG_CS);
5585 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5586 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5587
5588 seg_setup(VCPU_SREG_DS);
5589 seg_setup(VCPU_SREG_ES);
5590 seg_setup(VCPU_SREG_FS);
5591 seg_setup(VCPU_SREG_GS);
5592 seg_setup(VCPU_SREG_SS);
5593
5594 vmcs_write16(GUEST_TR_SELECTOR, 0);
5595 vmcs_writel(GUEST_TR_BASE, 0);
5596 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5597 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5598
5599 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5600 vmcs_writel(GUEST_LDTR_BASE, 0);
5601 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5602 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5603
5604 if (!init_event) {
5605 vmcs_write32(GUEST_SYSENTER_CS, 0);
5606 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5607 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5608 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5609 }
5610
5611 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5612 kvm_rip_write(vcpu, 0xfff0);
5613
5614 vmcs_writel(GUEST_GDTR_BASE, 0);
5615 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5616
5617 vmcs_writel(GUEST_IDTR_BASE, 0);
5618 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5619
5620 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5621 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5622 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5623 if (kvm_mpx_supported())
5624 vmcs_write64(GUEST_BNDCFGS, 0);
5625
5626 setup_msrs(vmx);
5627
5628 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5629
5630 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5631 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5632 if (cpu_need_tpr_shadow(vcpu))
5633 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5634 __pa(vcpu->arch.apic->regs));
5635 vmcs_write32(TPR_THRESHOLD, 0);
5636 }
5637
5638 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5639
5640 if (vmx->vpid != 0)
5641 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5642
5643 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5644 vmx->vcpu.arch.cr0 = cr0;
5645 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5646 vmx_set_cr4(vcpu, 0);
5647 vmx_set_efer(vcpu, 0);
5648
5649 update_exception_bitmap(vcpu);
5650
5651 vpid_sync_context(vmx->vpid);
5652 }
5653
5654 /*
5655 * In nested virtualization, check if L1 asked to exit on external interrupts.
5656 * For most existing hypervisors, this will always return true.
5657 */
5658 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5659 {
5660 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5661 PIN_BASED_EXT_INTR_MASK;
5662 }
5663
5664 /*
5665 * In nested virtualization, check if L1 has set
5666 * VM_EXIT_ACK_INTR_ON_EXIT
5667 */
5668 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5669 {
5670 return get_vmcs12(vcpu)->vm_exit_controls &
5671 VM_EXIT_ACK_INTR_ON_EXIT;
5672 }
5673
5674 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5675 {
5676 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5677 PIN_BASED_NMI_EXITING;
5678 }
5679
5680 static void enable_irq_window(struct kvm_vcpu *vcpu)
5681 {
5682 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5683 CPU_BASED_VIRTUAL_INTR_PENDING);
5684 }
5685
5686 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5687 {
5688 if (!enable_vnmi ||
5689 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5690 enable_irq_window(vcpu);
5691 return;
5692 }
5693
5694 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5695 CPU_BASED_VIRTUAL_NMI_PENDING);
5696 }
5697
5698 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5699 {
5700 struct vcpu_vmx *vmx = to_vmx(vcpu);
5701 uint32_t intr;
5702 int irq = vcpu->arch.interrupt.nr;
5703
5704 trace_kvm_inj_virq(irq);
5705
5706 ++vcpu->stat.irq_injections;
5707 if (vmx->rmode.vm86_active) {
5708 int inc_eip = 0;
5709 if (vcpu->arch.interrupt.soft)
5710 inc_eip = vcpu->arch.event_exit_inst_len;
5711 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5712 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5713 return;
5714 }
5715 intr = irq | INTR_INFO_VALID_MASK;
5716 if (vcpu->arch.interrupt.soft) {
5717 intr |= INTR_TYPE_SOFT_INTR;
5718 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5719 vmx->vcpu.arch.event_exit_inst_len);
5720 } else
5721 intr |= INTR_TYPE_EXT_INTR;
5722 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5723 }
5724
5725 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5726 {
5727 struct vcpu_vmx *vmx = to_vmx(vcpu);
5728
5729 if (!enable_vnmi) {
5730 /*
5731 * Tracking the NMI-blocked state in software is built upon
5732 * finding the next open IRQ window. This, in turn, depends on
5733 * well-behaving guests: They have to keep IRQs disabled at
5734 * least as long as the NMI handler runs. Otherwise we may
5735 * cause NMI nesting, maybe breaking the guest. But as this is
5736 * highly unlikely, we can live with the residual risk.
5737 */
5738 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5739 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5740 }
5741
5742 ++vcpu->stat.nmi_injections;
5743 vmx->loaded_vmcs->nmi_known_unmasked = false;
5744
5745 if (vmx->rmode.vm86_active) {
5746 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5747 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5748 return;
5749 }
5750
5751 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5752 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5753 }
5754
5755 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5756 {
5757 struct vcpu_vmx *vmx = to_vmx(vcpu);
5758 bool masked;
5759
5760 if (!enable_vnmi)
5761 return vmx->loaded_vmcs->soft_vnmi_blocked;
5762 if (vmx->loaded_vmcs->nmi_known_unmasked)
5763 return false;
5764 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5765 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5766 return masked;
5767 }
5768
5769 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5770 {
5771 struct vcpu_vmx *vmx = to_vmx(vcpu);
5772
5773 if (!enable_vnmi) {
5774 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5775 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5776 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5777 }
5778 } else {
5779 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5780 if (masked)
5781 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5782 GUEST_INTR_STATE_NMI);
5783 else
5784 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5785 GUEST_INTR_STATE_NMI);
5786 }
5787 }
5788
5789 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5790 {
5791 if (to_vmx(vcpu)->nested.nested_run_pending)
5792 return 0;
5793
5794 if (!enable_vnmi &&
5795 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5796 return 0;
5797
5798 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5799 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5800 | GUEST_INTR_STATE_NMI));
5801 }
5802
5803 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5804 {
5805 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5806 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5807 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5808 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5809 }
5810
5811 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5812 {
5813 int ret;
5814
5815 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5816 PAGE_SIZE * 3);
5817 if (ret)
5818 return ret;
5819 kvm->arch.tss_addr = addr;
5820 return init_rmode_tss(kvm);
5821 }
5822
5823 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5824 {
5825 switch (vec) {
5826 case BP_VECTOR:
5827 /*
5828 * Update instruction length as we may reinject the exception
5829 * from user space while in guest debugging mode.
5830 */
5831 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5832 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5833 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5834 return false;
5835 /* fall through */
5836 case DB_VECTOR:
5837 if (vcpu->guest_debug &
5838 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5839 return false;
5840 /* fall through */
5841 case DE_VECTOR:
5842 case OF_VECTOR:
5843 case BR_VECTOR:
5844 case UD_VECTOR:
5845 case DF_VECTOR:
5846 case SS_VECTOR:
5847 case GP_VECTOR:
5848 case MF_VECTOR:
5849 return true;
5850 break;
5851 }
5852 return false;
5853 }
5854
5855 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5856 int vec, u32 err_code)
5857 {
5858 /*
5859 * Instruction with address size override prefix opcode 0x67
5860 * Cause the #SS fault with 0 error code in VM86 mode.
5861 */
5862 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5863 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5864 if (vcpu->arch.halt_request) {
5865 vcpu->arch.halt_request = 0;
5866 return kvm_vcpu_halt(vcpu);
5867 }
5868 return 1;
5869 }
5870 return 0;
5871 }
5872
5873 /*
5874 * Forward all other exceptions that are valid in real mode.
5875 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5876 * the required debugging infrastructure rework.
5877 */
5878 kvm_queue_exception(vcpu, vec);
5879 return 1;
5880 }
5881
5882 /*
5883 * Trigger machine check on the host. We assume all the MSRs are already set up
5884 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5885 * We pass a fake environment to the machine check handler because we want
5886 * the guest to be always treated like user space, no matter what context
5887 * it used internally.
5888 */
5889 static void kvm_machine_check(void)
5890 {
5891 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5892 struct pt_regs regs = {
5893 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5894 .flags = X86_EFLAGS_IF,
5895 };
5896
5897 do_machine_check(&regs, 0);
5898 #endif
5899 }
5900
5901 static int handle_machine_check(struct kvm_vcpu *vcpu)
5902 {
5903 /* already handled by vcpu_run */
5904 return 1;
5905 }
5906
5907 static int handle_exception(struct kvm_vcpu *vcpu)
5908 {
5909 struct vcpu_vmx *vmx = to_vmx(vcpu);
5910 struct kvm_run *kvm_run = vcpu->run;
5911 u32 intr_info, ex_no, error_code;
5912 unsigned long cr2, rip, dr6;
5913 u32 vect_info;
5914 enum emulation_result er;
5915
5916 vect_info = vmx->idt_vectoring_info;
5917 intr_info = vmx->exit_intr_info;
5918
5919 if (is_machine_check(intr_info))
5920 return handle_machine_check(vcpu);
5921
5922 if (is_nmi(intr_info))
5923 return 1; /* already handled by vmx_vcpu_run() */
5924
5925 if (is_invalid_opcode(intr_info)) {
5926 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5927 if (er == EMULATE_USER_EXIT)
5928 return 0;
5929 if (er != EMULATE_DONE)
5930 kvm_queue_exception(vcpu, UD_VECTOR);
5931 return 1;
5932 }
5933
5934 error_code = 0;
5935 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5936 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5937
5938 /*
5939 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5940 * MMIO, it is better to report an internal error.
5941 * See the comments in vmx_handle_exit.
5942 */
5943 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5944 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5945 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5946 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5947 vcpu->run->internal.ndata = 3;
5948 vcpu->run->internal.data[0] = vect_info;
5949 vcpu->run->internal.data[1] = intr_info;
5950 vcpu->run->internal.data[2] = error_code;
5951 return 0;
5952 }
5953
5954 if (is_page_fault(intr_info)) {
5955 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5956 /* EPT won't cause page fault directly */
5957 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5958 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5959 }
5960
5961 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5962
5963 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5964 return handle_rmode_exception(vcpu, ex_no, error_code);
5965
5966 switch (ex_no) {
5967 case AC_VECTOR:
5968 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5969 return 1;
5970 case DB_VECTOR:
5971 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5972 if (!(vcpu->guest_debug &
5973 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5974 vcpu->arch.dr6 &= ~15;
5975 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5976 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5977 skip_emulated_instruction(vcpu);
5978
5979 kvm_queue_exception(vcpu, DB_VECTOR);
5980 return 1;
5981 }
5982 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5983 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5984 /* fall through */
5985 case BP_VECTOR:
5986 /*
5987 * Update instruction length as we may reinject #BP from
5988 * user space while in guest debugging mode. Reading it for
5989 * #DB as well causes no harm, it is not used in that case.
5990 */
5991 vmx->vcpu.arch.event_exit_inst_len =
5992 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5993 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5994 rip = kvm_rip_read(vcpu);
5995 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5996 kvm_run->debug.arch.exception = ex_no;
5997 break;
5998 default:
5999 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6000 kvm_run->ex.exception = ex_no;
6001 kvm_run->ex.error_code = error_code;
6002 break;
6003 }
6004 return 0;
6005 }
6006
6007 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6008 {
6009 ++vcpu->stat.irq_exits;
6010 return 1;
6011 }
6012
6013 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6014 {
6015 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6016 vcpu->mmio_needed = 0;
6017 return 0;
6018 }
6019
6020 static int handle_io(struct kvm_vcpu *vcpu)
6021 {
6022 unsigned long exit_qualification;
6023 int size, in, string, ret;
6024 unsigned port;
6025
6026 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6027 string = (exit_qualification & 16) != 0;
6028 in = (exit_qualification & 8) != 0;
6029
6030 ++vcpu->stat.io_exits;
6031
6032 if (string || in)
6033 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6034
6035 port = exit_qualification >> 16;
6036 size = (exit_qualification & 7) + 1;
6037
6038 ret = kvm_skip_emulated_instruction(vcpu);
6039
6040 /*
6041 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6042 * KVM_EXIT_DEBUG here.
6043 */
6044 return kvm_fast_pio_out(vcpu, size, port) && ret;
6045 }
6046
6047 static void
6048 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6049 {
6050 /*
6051 * Patch in the VMCALL instruction:
6052 */
6053 hypercall[0] = 0x0f;
6054 hypercall[1] = 0x01;
6055 hypercall[2] = 0xc1;
6056 }
6057
6058 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6059 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6060 {
6061 if (is_guest_mode(vcpu)) {
6062 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6063 unsigned long orig_val = val;
6064
6065 /*
6066 * We get here when L2 changed cr0 in a way that did not change
6067 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6068 * but did change L0 shadowed bits. So we first calculate the
6069 * effective cr0 value that L1 would like to write into the
6070 * hardware. It consists of the L2-owned bits from the new
6071 * value combined with the L1-owned bits from L1's guest_cr0.
6072 */
6073 val = (val & ~vmcs12->cr0_guest_host_mask) |
6074 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6075
6076 if (!nested_guest_cr0_valid(vcpu, val))
6077 return 1;
6078
6079 if (kvm_set_cr0(vcpu, val))
6080 return 1;
6081 vmcs_writel(CR0_READ_SHADOW, orig_val);
6082 return 0;
6083 } else {
6084 if (to_vmx(vcpu)->nested.vmxon &&
6085 !nested_host_cr0_valid(vcpu, val))
6086 return 1;
6087
6088 return kvm_set_cr0(vcpu, val);
6089 }
6090 }
6091
6092 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6093 {
6094 if (is_guest_mode(vcpu)) {
6095 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6096 unsigned long orig_val = val;
6097
6098 /* analogously to handle_set_cr0 */
6099 val = (val & ~vmcs12->cr4_guest_host_mask) |
6100 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6101 if (kvm_set_cr4(vcpu, val))
6102 return 1;
6103 vmcs_writel(CR4_READ_SHADOW, orig_val);
6104 return 0;
6105 } else
6106 return kvm_set_cr4(vcpu, val);
6107 }
6108
6109 static int handle_cr(struct kvm_vcpu *vcpu)
6110 {
6111 unsigned long exit_qualification, val;
6112 int cr;
6113 int reg;
6114 int err;
6115 int ret;
6116
6117 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6118 cr = exit_qualification & 15;
6119 reg = (exit_qualification >> 8) & 15;
6120 switch ((exit_qualification >> 4) & 3) {
6121 case 0: /* mov to cr */
6122 val = kvm_register_readl(vcpu, reg);
6123 trace_kvm_cr_write(cr, val);
6124 switch (cr) {
6125 case 0:
6126 err = handle_set_cr0(vcpu, val);
6127 return kvm_complete_insn_gp(vcpu, err);
6128 case 3:
6129 err = kvm_set_cr3(vcpu, val);
6130 return kvm_complete_insn_gp(vcpu, err);
6131 case 4:
6132 err = handle_set_cr4(vcpu, val);
6133 return kvm_complete_insn_gp(vcpu, err);
6134 case 8: {
6135 u8 cr8_prev = kvm_get_cr8(vcpu);
6136 u8 cr8 = (u8)val;
6137 err = kvm_set_cr8(vcpu, cr8);
6138 ret = kvm_complete_insn_gp(vcpu, err);
6139 if (lapic_in_kernel(vcpu))
6140 return ret;
6141 if (cr8_prev <= cr8)
6142 return ret;
6143 /*
6144 * TODO: we might be squashing a
6145 * KVM_GUESTDBG_SINGLESTEP-triggered
6146 * KVM_EXIT_DEBUG here.
6147 */
6148 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6149 return 0;
6150 }
6151 }
6152 break;
6153 case 2: /* clts */
6154 WARN_ONCE(1, "Guest should always own CR0.TS");
6155 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6156 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6157 return kvm_skip_emulated_instruction(vcpu);
6158 case 1: /*mov from cr*/
6159 switch (cr) {
6160 case 3:
6161 val = kvm_read_cr3(vcpu);
6162 kvm_register_write(vcpu, reg, val);
6163 trace_kvm_cr_read(cr, val);
6164 return kvm_skip_emulated_instruction(vcpu);
6165 case 8:
6166 val = kvm_get_cr8(vcpu);
6167 kvm_register_write(vcpu, reg, val);
6168 trace_kvm_cr_read(cr, val);
6169 return kvm_skip_emulated_instruction(vcpu);
6170 }
6171 break;
6172 case 3: /* lmsw */
6173 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6174 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6175 kvm_lmsw(vcpu, val);
6176
6177 return kvm_skip_emulated_instruction(vcpu);
6178 default:
6179 break;
6180 }
6181 vcpu->run->exit_reason = 0;
6182 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6183 (int)(exit_qualification >> 4) & 3, cr);
6184 return 0;
6185 }
6186
6187 static int handle_dr(struct kvm_vcpu *vcpu)
6188 {
6189 unsigned long exit_qualification;
6190 int dr, dr7, reg;
6191
6192 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6193 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6194
6195 /* First, if DR does not exist, trigger UD */
6196 if (!kvm_require_dr(vcpu, dr))
6197 return 1;
6198
6199 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6200 if (!kvm_require_cpl(vcpu, 0))
6201 return 1;
6202 dr7 = vmcs_readl(GUEST_DR7);
6203 if (dr7 & DR7_GD) {
6204 /*
6205 * As the vm-exit takes precedence over the debug trap, we
6206 * need to emulate the latter, either for the host or the
6207 * guest debugging itself.
6208 */
6209 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6210 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6211 vcpu->run->debug.arch.dr7 = dr7;
6212 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6213 vcpu->run->debug.arch.exception = DB_VECTOR;
6214 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6215 return 0;
6216 } else {
6217 vcpu->arch.dr6 &= ~15;
6218 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6219 kvm_queue_exception(vcpu, DB_VECTOR);
6220 return 1;
6221 }
6222 }
6223
6224 if (vcpu->guest_debug == 0) {
6225 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6226 CPU_BASED_MOV_DR_EXITING);
6227
6228 /*
6229 * No more DR vmexits; force a reload of the debug registers
6230 * and reenter on this instruction. The next vmexit will
6231 * retrieve the full state of the debug registers.
6232 */
6233 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6234 return 1;
6235 }
6236
6237 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6238 if (exit_qualification & TYPE_MOV_FROM_DR) {
6239 unsigned long val;
6240
6241 if (kvm_get_dr(vcpu, dr, &val))
6242 return 1;
6243 kvm_register_write(vcpu, reg, val);
6244 } else
6245 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6246 return 1;
6247
6248 return kvm_skip_emulated_instruction(vcpu);
6249 }
6250
6251 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6252 {
6253 return vcpu->arch.dr6;
6254 }
6255
6256 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6257 {
6258 }
6259
6260 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6261 {
6262 get_debugreg(vcpu->arch.db[0], 0);
6263 get_debugreg(vcpu->arch.db[1], 1);
6264 get_debugreg(vcpu->arch.db[2], 2);
6265 get_debugreg(vcpu->arch.db[3], 3);
6266 get_debugreg(vcpu->arch.dr6, 6);
6267 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6268
6269 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6270 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6271 }
6272
6273 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6274 {
6275 vmcs_writel(GUEST_DR7, val);
6276 }
6277
6278 static int handle_cpuid(struct kvm_vcpu *vcpu)
6279 {
6280 return kvm_emulate_cpuid(vcpu);
6281 }
6282
6283 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6284 {
6285 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6286 struct msr_data msr_info;
6287
6288 msr_info.index = ecx;
6289 msr_info.host_initiated = false;
6290 if (vmx_get_msr(vcpu, &msr_info)) {
6291 trace_kvm_msr_read_ex(ecx);
6292 kvm_inject_gp(vcpu, 0);
6293 return 1;
6294 }
6295
6296 trace_kvm_msr_read(ecx, msr_info.data);
6297
6298 /* FIXME: handling of bits 32:63 of rax, rdx */
6299 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6300 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6301 return kvm_skip_emulated_instruction(vcpu);
6302 }
6303
6304 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6305 {
6306 struct msr_data msr;
6307 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6308 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6309 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6310
6311 msr.data = data;
6312 msr.index = ecx;
6313 msr.host_initiated = false;
6314 if (kvm_set_msr(vcpu, &msr) != 0) {
6315 trace_kvm_msr_write_ex(ecx, data);
6316 kvm_inject_gp(vcpu, 0);
6317 return 1;
6318 }
6319
6320 trace_kvm_msr_write(ecx, data);
6321 return kvm_skip_emulated_instruction(vcpu);
6322 }
6323
6324 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6325 {
6326 kvm_apic_update_ppr(vcpu);
6327 return 1;
6328 }
6329
6330 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6331 {
6332 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6333 CPU_BASED_VIRTUAL_INTR_PENDING);
6334
6335 kvm_make_request(KVM_REQ_EVENT, vcpu);
6336
6337 ++vcpu->stat.irq_window_exits;
6338 return 1;
6339 }
6340
6341 static int handle_halt(struct kvm_vcpu *vcpu)
6342 {
6343 return kvm_emulate_halt(vcpu);
6344 }
6345
6346 static int handle_vmcall(struct kvm_vcpu *vcpu)
6347 {
6348 return kvm_emulate_hypercall(vcpu);
6349 }
6350
6351 static int handle_invd(struct kvm_vcpu *vcpu)
6352 {
6353 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6354 }
6355
6356 static int handle_invlpg(struct kvm_vcpu *vcpu)
6357 {
6358 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6359
6360 kvm_mmu_invlpg(vcpu, exit_qualification);
6361 return kvm_skip_emulated_instruction(vcpu);
6362 }
6363
6364 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6365 {
6366 int err;
6367
6368 err = kvm_rdpmc(vcpu);
6369 return kvm_complete_insn_gp(vcpu, err);
6370 }
6371
6372 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6373 {
6374 return kvm_emulate_wbinvd(vcpu);
6375 }
6376
6377 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6378 {
6379 u64 new_bv = kvm_read_edx_eax(vcpu);
6380 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6381
6382 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6383 return kvm_skip_emulated_instruction(vcpu);
6384 return 1;
6385 }
6386
6387 static int handle_xsaves(struct kvm_vcpu *vcpu)
6388 {
6389 kvm_skip_emulated_instruction(vcpu);
6390 WARN(1, "this should never happen\n");
6391 return 1;
6392 }
6393
6394 static int handle_xrstors(struct kvm_vcpu *vcpu)
6395 {
6396 kvm_skip_emulated_instruction(vcpu);
6397 WARN(1, "this should never happen\n");
6398 return 1;
6399 }
6400
6401 static int handle_apic_access(struct kvm_vcpu *vcpu)
6402 {
6403 if (likely(fasteoi)) {
6404 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6405 int access_type, offset;
6406
6407 access_type = exit_qualification & APIC_ACCESS_TYPE;
6408 offset = exit_qualification & APIC_ACCESS_OFFSET;
6409 /*
6410 * Sane guest uses MOV to write EOI, with written value
6411 * not cared. So make a short-circuit here by avoiding
6412 * heavy instruction emulation.
6413 */
6414 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6415 (offset == APIC_EOI)) {
6416 kvm_lapic_set_eoi(vcpu);
6417 return kvm_skip_emulated_instruction(vcpu);
6418 }
6419 }
6420 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6421 }
6422
6423 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6424 {
6425 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6426 int vector = exit_qualification & 0xff;
6427
6428 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6429 kvm_apic_set_eoi_accelerated(vcpu, vector);
6430 return 1;
6431 }
6432
6433 static int handle_apic_write(struct kvm_vcpu *vcpu)
6434 {
6435 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6436 u32 offset = exit_qualification & 0xfff;
6437
6438 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6439 kvm_apic_write_nodecode(vcpu, offset);
6440 return 1;
6441 }
6442
6443 static int handle_task_switch(struct kvm_vcpu *vcpu)
6444 {
6445 struct vcpu_vmx *vmx = to_vmx(vcpu);
6446 unsigned long exit_qualification;
6447 bool has_error_code = false;
6448 u32 error_code = 0;
6449 u16 tss_selector;
6450 int reason, type, idt_v, idt_index;
6451
6452 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6453 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6454 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6455
6456 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6457
6458 reason = (u32)exit_qualification >> 30;
6459 if (reason == TASK_SWITCH_GATE && idt_v) {
6460 switch (type) {
6461 case INTR_TYPE_NMI_INTR:
6462 vcpu->arch.nmi_injected = false;
6463 vmx_set_nmi_mask(vcpu, true);
6464 break;
6465 case INTR_TYPE_EXT_INTR:
6466 case INTR_TYPE_SOFT_INTR:
6467 kvm_clear_interrupt_queue(vcpu);
6468 break;
6469 case INTR_TYPE_HARD_EXCEPTION:
6470 if (vmx->idt_vectoring_info &
6471 VECTORING_INFO_DELIVER_CODE_MASK) {
6472 has_error_code = true;
6473 error_code =
6474 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6475 }
6476 /* fall through */
6477 case INTR_TYPE_SOFT_EXCEPTION:
6478 kvm_clear_exception_queue(vcpu);
6479 break;
6480 default:
6481 break;
6482 }
6483 }
6484 tss_selector = exit_qualification;
6485
6486 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6487 type != INTR_TYPE_EXT_INTR &&
6488 type != INTR_TYPE_NMI_INTR))
6489 skip_emulated_instruction(vcpu);
6490
6491 if (kvm_task_switch(vcpu, tss_selector,
6492 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6493 has_error_code, error_code) == EMULATE_FAIL) {
6494 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6495 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6496 vcpu->run->internal.ndata = 0;
6497 return 0;
6498 }
6499
6500 /*
6501 * TODO: What about debug traps on tss switch?
6502 * Are we supposed to inject them and update dr6?
6503 */
6504
6505 return 1;
6506 }
6507
6508 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6509 {
6510 unsigned long exit_qualification;
6511 gpa_t gpa;
6512 u64 error_code;
6513
6514 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6515
6516 /*
6517 * EPT violation happened while executing iret from NMI,
6518 * "blocked by NMI" bit has to be set before next VM entry.
6519 * There are errata that may cause this bit to not be set:
6520 * AAK134, BY25.
6521 */
6522 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6523 enable_vnmi &&
6524 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6525 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6526
6527 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6528 trace_kvm_page_fault(gpa, exit_qualification);
6529
6530 /* Is it a read fault? */
6531 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6532 ? PFERR_USER_MASK : 0;
6533 /* Is it a write fault? */
6534 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6535 ? PFERR_WRITE_MASK : 0;
6536 /* Is it a fetch fault? */
6537 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6538 ? PFERR_FETCH_MASK : 0;
6539 /* ept page table entry is present? */
6540 error_code |= (exit_qualification &
6541 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6542 EPT_VIOLATION_EXECUTABLE))
6543 ? PFERR_PRESENT_MASK : 0;
6544
6545 error_code |= (exit_qualification & 0x100) != 0 ?
6546 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6547
6548 vcpu->arch.exit_qualification = exit_qualification;
6549 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6550 }
6551
6552 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6553 {
6554 int ret;
6555 gpa_t gpa;
6556
6557 /*
6558 * A nested guest cannot optimize MMIO vmexits, because we have an
6559 * nGPA here instead of the required GPA.
6560 */
6561 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6562 if (!is_guest_mode(vcpu) &&
6563 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6564 trace_kvm_fast_mmio(gpa);
6565 return kvm_skip_emulated_instruction(vcpu);
6566 }
6567
6568 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6569 if (ret >= 0)
6570 return ret;
6571
6572 /* It is the real ept misconfig */
6573 WARN_ON(1);
6574
6575 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6576 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6577
6578 return 0;
6579 }
6580
6581 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6582 {
6583 WARN_ON_ONCE(!enable_vnmi);
6584 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6585 CPU_BASED_VIRTUAL_NMI_PENDING);
6586 ++vcpu->stat.nmi_window_exits;
6587 kvm_make_request(KVM_REQ_EVENT, vcpu);
6588
6589 return 1;
6590 }
6591
6592 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6593 {
6594 struct vcpu_vmx *vmx = to_vmx(vcpu);
6595 enum emulation_result err = EMULATE_DONE;
6596 int ret = 1;
6597 u32 cpu_exec_ctrl;
6598 bool intr_window_requested;
6599 unsigned count = 130;
6600
6601 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6602 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6603
6604 while (vmx->emulation_required && count-- != 0) {
6605 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6606 return handle_interrupt_window(&vmx->vcpu);
6607
6608 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6609 return 1;
6610
6611 err = emulate_instruction(vcpu, 0);
6612
6613 if (err == EMULATE_USER_EXIT) {
6614 ++vcpu->stat.mmio_exits;
6615 ret = 0;
6616 goto out;
6617 }
6618
6619 if (err != EMULATE_DONE) {
6620 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6621 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6622 vcpu->run->internal.ndata = 0;
6623 return 0;
6624 }
6625
6626 if (vcpu->arch.halt_request) {
6627 vcpu->arch.halt_request = 0;
6628 ret = kvm_vcpu_halt(vcpu);
6629 goto out;
6630 }
6631
6632 if (signal_pending(current))
6633 goto out;
6634 if (need_resched())
6635 schedule();
6636 }
6637
6638 out:
6639 return ret;
6640 }
6641
6642 static int __grow_ple_window(int val)
6643 {
6644 if (ple_window_grow < 1)
6645 return ple_window;
6646
6647 val = min(val, ple_window_actual_max);
6648
6649 if (ple_window_grow < ple_window)
6650 val *= ple_window_grow;
6651 else
6652 val += ple_window_grow;
6653
6654 return val;
6655 }
6656
6657 static int __shrink_ple_window(int val, int modifier, int minimum)
6658 {
6659 if (modifier < 1)
6660 return ple_window;
6661
6662 if (modifier < ple_window)
6663 val /= modifier;
6664 else
6665 val -= modifier;
6666
6667 return max(val, minimum);
6668 }
6669
6670 static void grow_ple_window(struct kvm_vcpu *vcpu)
6671 {
6672 struct vcpu_vmx *vmx = to_vmx(vcpu);
6673 int old = vmx->ple_window;
6674
6675 vmx->ple_window = __grow_ple_window(old);
6676
6677 if (vmx->ple_window != old)
6678 vmx->ple_window_dirty = true;
6679
6680 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6681 }
6682
6683 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6684 {
6685 struct vcpu_vmx *vmx = to_vmx(vcpu);
6686 int old = vmx->ple_window;
6687
6688 vmx->ple_window = __shrink_ple_window(old,
6689 ple_window_shrink, ple_window);
6690
6691 if (vmx->ple_window != old)
6692 vmx->ple_window_dirty = true;
6693
6694 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6695 }
6696
6697 /*
6698 * ple_window_actual_max is computed to be one grow_ple_window() below
6699 * ple_window_max. (See __grow_ple_window for the reason.)
6700 * This prevents overflows, because ple_window_max is int.
6701 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6702 * this process.
6703 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6704 */
6705 static void update_ple_window_actual_max(void)
6706 {
6707 ple_window_actual_max =
6708 __shrink_ple_window(max(ple_window_max, ple_window),
6709 ple_window_grow, INT_MIN);
6710 }
6711
6712 /*
6713 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6714 */
6715 static void wakeup_handler(void)
6716 {
6717 struct kvm_vcpu *vcpu;
6718 int cpu = smp_processor_id();
6719
6720 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6721 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6722 blocked_vcpu_list) {
6723 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6724
6725 if (pi_test_on(pi_desc) == 1)
6726 kvm_vcpu_kick(vcpu);
6727 }
6728 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6729 }
6730
6731 void vmx_enable_tdp(void)
6732 {
6733 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6734 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6735 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6736 0ull, VMX_EPT_EXECUTABLE_MASK,
6737 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6738 VMX_EPT_RWX_MASK, 0ull);
6739
6740 ept_set_mmio_spte_mask();
6741 kvm_enable_tdp();
6742 }
6743
6744 static __init int hardware_setup(void)
6745 {
6746 int r = -ENOMEM, i, msr;
6747
6748 rdmsrl_safe(MSR_EFER, &host_efer);
6749
6750 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6751 kvm_define_shared_msr(i, vmx_msr_index[i]);
6752
6753 for (i = 0; i < VMX_BITMAP_NR; i++) {
6754 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6755 if (!vmx_bitmap[i])
6756 goto out;
6757 }
6758
6759 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6760 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6761
6762 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6763
6764 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6765
6766 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6767 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6768
6769 if (setup_vmcs_config(&vmcs_config) < 0) {
6770 r = -EIO;
6771 goto out;
6772 }
6773
6774 if (boot_cpu_has(X86_FEATURE_NX))
6775 kvm_enable_efer_bits(EFER_NX);
6776
6777 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6778 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6779 enable_vpid = 0;
6780
6781 if (!cpu_has_vmx_shadow_vmcs())
6782 enable_shadow_vmcs = 0;
6783 if (enable_shadow_vmcs)
6784 init_vmcs_shadow_fields();
6785
6786 if (!cpu_has_vmx_ept() ||
6787 !cpu_has_vmx_ept_4levels() ||
6788 !cpu_has_vmx_ept_mt_wb() ||
6789 !cpu_has_vmx_invept_global())
6790 enable_ept = 0;
6791
6792 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6793 enable_ept_ad_bits = 0;
6794
6795 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
6796 enable_unrestricted_guest = 0;
6797
6798 if (!cpu_has_vmx_flexpriority())
6799 flexpriority_enabled = 0;
6800
6801 if (!cpu_has_virtual_nmis())
6802 enable_vnmi = 0;
6803
6804 /*
6805 * set_apic_access_page_addr() is used to reload apic access
6806 * page upon invalidation. No need to do anything if not
6807 * using the APIC_ACCESS_ADDR VMCS field.
6808 */
6809 if (!flexpriority_enabled)
6810 kvm_x86_ops->set_apic_access_page_addr = NULL;
6811
6812 if (!cpu_has_vmx_tpr_shadow())
6813 kvm_x86_ops->update_cr8_intercept = NULL;
6814
6815 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6816 kvm_disable_largepages();
6817
6818 if (!cpu_has_vmx_ple()) {
6819 ple_gap = 0;
6820 ple_window = 0;
6821 ple_window_grow = 0;
6822 ple_window_max = 0;
6823 ple_window_shrink = 0;
6824 }
6825
6826 if (!cpu_has_vmx_apicv()) {
6827 enable_apicv = 0;
6828 kvm_x86_ops->sync_pir_to_irr = NULL;
6829 }
6830
6831 if (cpu_has_vmx_tsc_scaling()) {
6832 kvm_has_tsc_control = true;
6833 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6834 kvm_tsc_scaling_ratio_frac_bits = 48;
6835 }
6836
6837 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6838 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6839 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6840 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6841 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6842 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6843
6844 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6845 vmx_msr_bitmap_legacy, PAGE_SIZE);
6846 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6847 vmx_msr_bitmap_longmode, PAGE_SIZE);
6848 memcpy(vmx_msr_bitmap_legacy_x2apic,
6849 vmx_msr_bitmap_legacy, PAGE_SIZE);
6850 memcpy(vmx_msr_bitmap_longmode_x2apic,
6851 vmx_msr_bitmap_longmode, PAGE_SIZE);
6852
6853 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6854
6855 for (msr = 0x800; msr <= 0x8ff; msr++) {
6856 if (msr == 0x839 /* TMCCT */)
6857 continue;
6858 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6859 }
6860
6861 /*
6862 * TPR reads and writes can be virtualized even if virtual interrupt
6863 * delivery is not in use.
6864 */
6865 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6866 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6867
6868 /* EOI */
6869 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6870 /* SELF-IPI */
6871 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6872
6873 if (enable_ept)
6874 vmx_enable_tdp();
6875 else
6876 kvm_disable_tdp();
6877
6878 update_ple_window_actual_max();
6879
6880 /*
6881 * Only enable PML when hardware supports PML feature, and both EPT
6882 * and EPT A/D bit features are enabled -- PML depends on them to work.
6883 */
6884 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6885 enable_pml = 0;
6886
6887 if (!enable_pml) {
6888 kvm_x86_ops->slot_enable_log_dirty = NULL;
6889 kvm_x86_ops->slot_disable_log_dirty = NULL;
6890 kvm_x86_ops->flush_log_dirty = NULL;
6891 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6892 }
6893
6894 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6895 u64 vmx_msr;
6896
6897 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6898 cpu_preemption_timer_multi =
6899 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6900 } else {
6901 kvm_x86_ops->set_hv_timer = NULL;
6902 kvm_x86_ops->cancel_hv_timer = NULL;
6903 }
6904
6905 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6906
6907 kvm_mce_cap_supported |= MCG_LMCE_P;
6908
6909 return alloc_kvm_area();
6910
6911 out:
6912 for (i = 0; i < VMX_BITMAP_NR; i++)
6913 free_page((unsigned long)vmx_bitmap[i]);
6914
6915 return r;
6916 }
6917
6918 static __exit void hardware_unsetup(void)
6919 {
6920 int i;
6921
6922 for (i = 0; i < VMX_BITMAP_NR; i++)
6923 free_page((unsigned long)vmx_bitmap[i]);
6924
6925 free_kvm_area();
6926 }
6927
6928 /*
6929 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6930 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6931 */
6932 static int handle_pause(struct kvm_vcpu *vcpu)
6933 {
6934 if (ple_gap)
6935 grow_ple_window(vcpu);
6936
6937 /*
6938 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6939 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6940 * never set PAUSE_EXITING and just set PLE if supported,
6941 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6942 */
6943 kvm_vcpu_on_spin(vcpu, true);
6944 return kvm_skip_emulated_instruction(vcpu);
6945 }
6946
6947 static int handle_nop(struct kvm_vcpu *vcpu)
6948 {
6949 return kvm_skip_emulated_instruction(vcpu);
6950 }
6951
6952 static int handle_mwait(struct kvm_vcpu *vcpu)
6953 {
6954 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6955 return handle_nop(vcpu);
6956 }
6957
6958 static int handle_invalid_op(struct kvm_vcpu *vcpu)
6959 {
6960 kvm_queue_exception(vcpu, UD_VECTOR);
6961 return 1;
6962 }
6963
6964 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6965 {
6966 return 1;
6967 }
6968
6969 static int handle_monitor(struct kvm_vcpu *vcpu)
6970 {
6971 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6972 return handle_nop(vcpu);
6973 }
6974
6975 /*
6976 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6977 * We could reuse a single VMCS for all the L2 guests, but we also want the
6978 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6979 * allows keeping them loaded on the processor, and in the future will allow
6980 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6981 * every entry if they never change.
6982 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6983 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6984 *
6985 * The following functions allocate and free a vmcs02 in this pool.
6986 */
6987
6988 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6989 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6990 {
6991 struct vmcs02_list *item;
6992 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6993 if (item->vmptr == vmx->nested.current_vmptr) {
6994 list_move(&item->list, &vmx->nested.vmcs02_pool);
6995 return &item->vmcs02;
6996 }
6997
6998 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6999 /* Recycle the least recently used VMCS. */
7000 item = list_last_entry(&vmx->nested.vmcs02_pool,
7001 struct vmcs02_list, list);
7002 item->vmptr = vmx->nested.current_vmptr;
7003 list_move(&item->list, &vmx->nested.vmcs02_pool);
7004 return &item->vmcs02;
7005 }
7006
7007 /* Create a new VMCS */
7008 item = kzalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
7009 if (!item)
7010 return NULL;
7011 item->vmcs02.vmcs = alloc_vmcs();
7012 item->vmcs02.shadow_vmcs = NULL;
7013 if (!item->vmcs02.vmcs) {
7014 kfree(item);
7015 return NULL;
7016 }
7017 loaded_vmcs_init(&item->vmcs02);
7018 item->vmptr = vmx->nested.current_vmptr;
7019 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
7020 vmx->nested.vmcs02_num++;
7021 return &item->vmcs02;
7022 }
7023
7024 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
7025 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
7026 {
7027 struct vmcs02_list *item;
7028 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
7029 if (item->vmptr == vmptr) {
7030 free_loaded_vmcs(&item->vmcs02);
7031 list_del(&item->list);
7032 kfree(item);
7033 vmx->nested.vmcs02_num--;
7034 return;
7035 }
7036 }
7037
7038 /*
7039 * Free all VMCSs saved for this vcpu, except the one pointed by
7040 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7041 * must be &vmx->vmcs01.
7042 */
7043 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7044 {
7045 struct vmcs02_list *item, *n;
7046
7047 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7048 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7049 /*
7050 * Something will leak if the above WARN triggers. Better than
7051 * a use-after-free.
7052 */
7053 if (vmx->loaded_vmcs == &item->vmcs02)
7054 continue;
7055
7056 free_loaded_vmcs(&item->vmcs02);
7057 list_del(&item->list);
7058 kfree(item);
7059 vmx->nested.vmcs02_num--;
7060 }
7061 }
7062
7063 /*
7064 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7065 * set the success or error code of an emulated VMX instruction, as specified
7066 * by Vol 2B, VMX Instruction Reference, "Conventions".
7067 */
7068 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7069 {
7070 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7071 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7072 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7073 }
7074
7075 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7076 {
7077 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7078 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7079 X86_EFLAGS_SF | X86_EFLAGS_OF))
7080 | X86_EFLAGS_CF);
7081 }
7082
7083 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7084 u32 vm_instruction_error)
7085 {
7086 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7087 /*
7088 * failValid writes the error number to the current VMCS, which
7089 * can't be done there isn't a current VMCS.
7090 */
7091 nested_vmx_failInvalid(vcpu);
7092 return;
7093 }
7094 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7095 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7096 X86_EFLAGS_SF | X86_EFLAGS_OF))
7097 | X86_EFLAGS_ZF);
7098 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7099 /*
7100 * We don't need to force a shadow sync because
7101 * VM_INSTRUCTION_ERROR is not shadowed
7102 */
7103 }
7104
7105 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7106 {
7107 /* TODO: not to reset guest simply here. */
7108 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7109 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7110 }
7111
7112 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7113 {
7114 struct vcpu_vmx *vmx =
7115 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7116
7117 vmx->nested.preemption_timer_expired = true;
7118 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7119 kvm_vcpu_kick(&vmx->vcpu);
7120
7121 return HRTIMER_NORESTART;
7122 }
7123
7124 /*
7125 * Decode the memory-address operand of a vmx instruction, as recorded on an
7126 * exit caused by such an instruction (run by a guest hypervisor).
7127 * On success, returns 0. When the operand is invalid, returns 1 and throws
7128 * #UD or #GP.
7129 */
7130 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7131 unsigned long exit_qualification,
7132 u32 vmx_instruction_info, bool wr, gva_t *ret)
7133 {
7134 gva_t off;
7135 bool exn;
7136 struct kvm_segment s;
7137
7138 /*
7139 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7140 * Execution", on an exit, vmx_instruction_info holds most of the
7141 * addressing components of the operand. Only the displacement part
7142 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7143 * For how an actual address is calculated from all these components,
7144 * refer to Vol. 1, "Operand Addressing".
7145 */
7146 int scaling = vmx_instruction_info & 3;
7147 int addr_size = (vmx_instruction_info >> 7) & 7;
7148 bool is_reg = vmx_instruction_info & (1u << 10);
7149 int seg_reg = (vmx_instruction_info >> 15) & 7;
7150 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7151 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7152 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7153 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7154
7155 if (is_reg) {
7156 kvm_queue_exception(vcpu, UD_VECTOR);
7157 return 1;
7158 }
7159
7160 /* Addr = segment_base + offset */
7161 /* offset = base + [index * scale] + displacement */
7162 off = exit_qualification; /* holds the displacement */
7163 if (base_is_valid)
7164 off += kvm_register_read(vcpu, base_reg);
7165 if (index_is_valid)
7166 off += kvm_register_read(vcpu, index_reg)<<scaling;
7167 vmx_get_segment(vcpu, &s, seg_reg);
7168 *ret = s.base + off;
7169
7170 if (addr_size == 1) /* 32 bit */
7171 *ret &= 0xffffffff;
7172
7173 /* Checks for #GP/#SS exceptions. */
7174 exn = false;
7175 if (is_long_mode(vcpu)) {
7176 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7177 * non-canonical form. This is the only check on the memory
7178 * destination for long mode!
7179 */
7180 exn = is_noncanonical_address(*ret, vcpu);
7181 } else if (is_protmode(vcpu)) {
7182 /* Protected mode: apply checks for segment validity in the
7183 * following order:
7184 * - segment type check (#GP(0) may be thrown)
7185 * - usability check (#GP(0)/#SS(0))
7186 * - limit check (#GP(0)/#SS(0))
7187 */
7188 if (wr)
7189 /* #GP(0) if the destination operand is located in a
7190 * read-only data segment or any code segment.
7191 */
7192 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7193 else
7194 /* #GP(0) if the source operand is located in an
7195 * execute-only code segment
7196 */
7197 exn = ((s.type & 0xa) == 8);
7198 if (exn) {
7199 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7200 return 1;
7201 }
7202 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7203 */
7204 exn = (s.unusable != 0);
7205 /* Protected mode: #GP(0)/#SS(0) if the memory
7206 * operand is outside the segment limit.
7207 */
7208 exn = exn || (off + sizeof(u64) > s.limit);
7209 }
7210 if (exn) {
7211 kvm_queue_exception_e(vcpu,
7212 seg_reg == VCPU_SREG_SS ?
7213 SS_VECTOR : GP_VECTOR,
7214 0);
7215 return 1;
7216 }
7217
7218 return 0;
7219 }
7220
7221 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7222 {
7223 gva_t gva;
7224 struct x86_exception e;
7225
7226 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7227 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7228 return 1;
7229
7230 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7231 sizeof(*vmpointer), &e)) {
7232 kvm_inject_page_fault(vcpu, &e);
7233 return 1;
7234 }
7235
7236 return 0;
7237 }
7238
7239 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7240 {
7241 struct vcpu_vmx *vmx = to_vmx(vcpu);
7242 struct vmcs *shadow_vmcs;
7243
7244 if (cpu_has_vmx_msr_bitmap()) {
7245 vmx->nested.msr_bitmap =
7246 (unsigned long *)__get_free_page(GFP_KERNEL);
7247 if (!vmx->nested.msr_bitmap)
7248 goto out_msr_bitmap;
7249 }
7250
7251 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7252 if (!vmx->nested.cached_vmcs12)
7253 goto out_cached_vmcs12;
7254
7255 if (enable_shadow_vmcs) {
7256 shadow_vmcs = alloc_vmcs();
7257 if (!shadow_vmcs)
7258 goto out_shadow_vmcs;
7259 /* mark vmcs as shadow */
7260 shadow_vmcs->revision_id |= (1u << 31);
7261 /* init shadow vmcs */
7262 vmcs_clear(shadow_vmcs);
7263 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7264 }
7265
7266 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7267 vmx->nested.vmcs02_num = 0;
7268
7269 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7270 HRTIMER_MODE_REL_PINNED);
7271 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7272
7273 vmx->nested.vmxon = true;
7274 return 0;
7275
7276 out_shadow_vmcs:
7277 kfree(vmx->nested.cached_vmcs12);
7278
7279 out_cached_vmcs12:
7280 free_page((unsigned long)vmx->nested.msr_bitmap);
7281
7282 out_msr_bitmap:
7283 return -ENOMEM;
7284 }
7285
7286 /*
7287 * Emulate the VMXON instruction.
7288 * Currently, we just remember that VMX is active, and do not save or even
7289 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7290 * do not currently need to store anything in that guest-allocated memory
7291 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7292 * argument is different from the VMXON pointer (which the spec says they do).
7293 */
7294 static int handle_vmon(struct kvm_vcpu *vcpu)
7295 {
7296 int ret;
7297 gpa_t vmptr;
7298 struct page *page;
7299 struct vcpu_vmx *vmx = to_vmx(vcpu);
7300 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7301 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7302
7303 /*
7304 * The Intel VMX Instruction Reference lists a bunch of bits that are
7305 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7306 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7307 * Otherwise, we should fail with #UD. But most faulting conditions
7308 * have already been checked by hardware, prior to the VM-exit for
7309 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7310 * that bit set to 1 in non-root mode.
7311 */
7312 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7313 kvm_queue_exception(vcpu, UD_VECTOR);
7314 return 1;
7315 }
7316
7317 if (vmx->nested.vmxon) {
7318 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7319 return kvm_skip_emulated_instruction(vcpu);
7320 }
7321
7322 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7323 != VMXON_NEEDED_FEATURES) {
7324 kvm_inject_gp(vcpu, 0);
7325 return 1;
7326 }
7327
7328 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7329 return 1;
7330
7331 /*
7332 * SDM 3: 24.11.5
7333 * The first 4 bytes of VMXON region contain the supported
7334 * VMCS revision identifier
7335 *
7336 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7337 * which replaces physical address width with 32
7338 */
7339 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7340 nested_vmx_failInvalid(vcpu);
7341 return kvm_skip_emulated_instruction(vcpu);
7342 }
7343
7344 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7345 if (is_error_page(page)) {
7346 nested_vmx_failInvalid(vcpu);
7347 return kvm_skip_emulated_instruction(vcpu);
7348 }
7349 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7350 kunmap(page);
7351 kvm_release_page_clean(page);
7352 nested_vmx_failInvalid(vcpu);
7353 return kvm_skip_emulated_instruction(vcpu);
7354 }
7355 kunmap(page);
7356 kvm_release_page_clean(page);
7357
7358 vmx->nested.vmxon_ptr = vmptr;
7359 ret = enter_vmx_operation(vcpu);
7360 if (ret)
7361 return ret;
7362
7363 nested_vmx_succeed(vcpu);
7364 return kvm_skip_emulated_instruction(vcpu);
7365 }
7366
7367 /*
7368 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7369 * for running VMX instructions (except VMXON, whose prerequisites are
7370 * slightly different). It also specifies what exception to inject otherwise.
7371 * Note that many of these exceptions have priority over VM exits, so they
7372 * don't have to be checked again here.
7373 */
7374 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7375 {
7376 if (!to_vmx(vcpu)->nested.vmxon) {
7377 kvm_queue_exception(vcpu, UD_VECTOR);
7378 return 0;
7379 }
7380 return 1;
7381 }
7382
7383 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7384 {
7385 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7386 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7387 }
7388
7389 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7390 {
7391 if (vmx->nested.current_vmptr == -1ull)
7392 return;
7393
7394 if (enable_shadow_vmcs) {
7395 /* copy to memory all shadowed fields in case
7396 they were modified */
7397 copy_shadow_to_vmcs12(vmx);
7398 vmx->nested.sync_shadow_vmcs = false;
7399 vmx_disable_shadow_vmcs(vmx);
7400 }
7401 vmx->nested.posted_intr_nv = -1;
7402
7403 /* Flush VMCS12 to guest memory */
7404 kvm_vcpu_write_guest_page(&vmx->vcpu,
7405 vmx->nested.current_vmptr >> PAGE_SHIFT,
7406 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7407
7408 vmx->nested.current_vmptr = -1ull;
7409 }
7410
7411 /*
7412 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7413 * just stops using VMX.
7414 */
7415 static void free_nested(struct vcpu_vmx *vmx)
7416 {
7417 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
7418 return;
7419
7420 vmx->nested.vmxon = false;
7421 vmx->nested.smm.vmxon = false;
7422 free_vpid(vmx->nested.vpid02);
7423 vmx->nested.posted_intr_nv = -1;
7424 vmx->nested.current_vmptr = -1ull;
7425 if (vmx->nested.msr_bitmap) {
7426 free_page((unsigned long)vmx->nested.msr_bitmap);
7427 vmx->nested.msr_bitmap = NULL;
7428 }
7429 if (enable_shadow_vmcs) {
7430 vmx_disable_shadow_vmcs(vmx);
7431 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7432 free_vmcs(vmx->vmcs01.shadow_vmcs);
7433 vmx->vmcs01.shadow_vmcs = NULL;
7434 }
7435 kfree(vmx->nested.cached_vmcs12);
7436 /* Unpin physical memory we referred to in current vmcs02 */
7437 if (vmx->nested.apic_access_page) {
7438 kvm_release_page_dirty(vmx->nested.apic_access_page);
7439 vmx->nested.apic_access_page = NULL;
7440 }
7441 if (vmx->nested.virtual_apic_page) {
7442 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7443 vmx->nested.virtual_apic_page = NULL;
7444 }
7445 if (vmx->nested.pi_desc_page) {
7446 kunmap(vmx->nested.pi_desc_page);
7447 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7448 vmx->nested.pi_desc_page = NULL;
7449 vmx->nested.pi_desc = NULL;
7450 }
7451
7452 nested_free_all_saved_vmcss(vmx);
7453 }
7454
7455 /* Emulate the VMXOFF instruction */
7456 static int handle_vmoff(struct kvm_vcpu *vcpu)
7457 {
7458 if (!nested_vmx_check_permission(vcpu))
7459 return 1;
7460 free_nested(to_vmx(vcpu));
7461 nested_vmx_succeed(vcpu);
7462 return kvm_skip_emulated_instruction(vcpu);
7463 }
7464
7465 /* Emulate the VMCLEAR instruction */
7466 static int handle_vmclear(struct kvm_vcpu *vcpu)
7467 {
7468 struct vcpu_vmx *vmx = to_vmx(vcpu);
7469 u32 zero = 0;
7470 gpa_t vmptr;
7471
7472 if (!nested_vmx_check_permission(vcpu))
7473 return 1;
7474
7475 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7476 return 1;
7477
7478 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7479 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7480 return kvm_skip_emulated_instruction(vcpu);
7481 }
7482
7483 if (vmptr == vmx->nested.vmxon_ptr) {
7484 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7485 return kvm_skip_emulated_instruction(vcpu);
7486 }
7487
7488 if (vmptr == vmx->nested.current_vmptr)
7489 nested_release_vmcs12(vmx);
7490
7491 kvm_vcpu_write_guest(vcpu,
7492 vmptr + offsetof(struct vmcs12, launch_state),
7493 &zero, sizeof(zero));
7494
7495 nested_free_vmcs02(vmx, vmptr);
7496
7497 nested_vmx_succeed(vcpu);
7498 return kvm_skip_emulated_instruction(vcpu);
7499 }
7500
7501 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7502
7503 /* Emulate the VMLAUNCH instruction */
7504 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7505 {
7506 return nested_vmx_run(vcpu, true);
7507 }
7508
7509 /* Emulate the VMRESUME instruction */
7510 static int handle_vmresume(struct kvm_vcpu *vcpu)
7511 {
7512
7513 return nested_vmx_run(vcpu, false);
7514 }
7515
7516 /*
7517 * Read a vmcs12 field. Since these can have varying lengths and we return
7518 * one type, we chose the biggest type (u64) and zero-extend the return value
7519 * to that size. Note that the caller, handle_vmread, might need to use only
7520 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7521 * 64-bit fields are to be returned).
7522 */
7523 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7524 unsigned long field, u64 *ret)
7525 {
7526 short offset = vmcs_field_to_offset(field);
7527 char *p;
7528
7529 if (offset < 0)
7530 return offset;
7531
7532 p = ((char *)(get_vmcs12(vcpu))) + offset;
7533
7534 switch (vmcs_field_type(field)) {
7535 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7536 *ret = *((natural_width *)p);
7537 return 0;
7538 case VMCS_FIELD_TYPE_U16:
7539 *ret = *((u16 *)p);
7540 return 0;
7541 case VMCS_FIELD_TYPE_U32:
7542 *ret = *((u32 *)p);
7543 return 0;
7544 case VMCS_FIELD_TYPE_U64:
7545 *ret = *((u64 *)p);
7546 return 0;
7547 default:
7548 WARN_ON(1);
7549 return -ENOENT;
7550 }
7551 }
7552
7553
7554 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7555 unsigned long field, u64 field_value){
7556 short offset = vmcs_field_to_offset(field);
7557 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7558 if (offset < 0)
7559 return offset;
7560
7561 switch (vmcs_field_type(field)) {
7562 case VMCS_FIELD_TYPE_U16:
7563 *(u16 *)p = field_value;
7564 return 0;
7565 case VMCS_FIELD_TYPE_U32:
7566 *(u32 *)p = field_value;
7567 return 0;
7568 case VMCS_FIELD_TYPE_U64:
7569 *(u64 *)p = field_value;
7570 return 0;
7571 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7572 *(natural_width *)p = field_value;
7573 return 0;
7574 default:
7575 WARN_ON(1);
7576 return -ENOENT;
7577 }
7578
7579 }
7580
7581 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7582 {
7583 int i;
7584 unsigned long field;
7585 u64 field_value;
7586 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7587 const unsigned long *fields = shadow_read_write_fields;
7588 const int num_fields = max_shadow_read_write_fields;
7589
7590 preempt_disable();
7591
7592 vmcs_load(shadow_vmcs);
7593
7594 for (i = 0; i < num_fields; i++) {
7595 field = fields[i];
7596 switch (vmcs_field_type(field)) {
7597 case VMCS_FIELD_TYPE_U16:
7598 field_value = vmcs_read16(field);
7599 break;
7600 case VMCS_FIELD_TYPE_U32:
7601 field_value = vmcs_read32(field);
7602 break;
7603 case VMCS_FIELD_TYPE_U64:
7604 field_value = vmcs_read64(field);
7605 break;
7606 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7607 field_value = vmcs_readl(field);
7608 break;
7609 default:
7610 WARN_ON(1);
7611 continue;
7612 }
7613 vmcs12_write_any(&vmx->vcpu, field, field_value);
7614 }
7615
7616 vmcs_clear(shadow_vmcs);
7617 vmcs_load(vmx->loaded_vmcs->vmcs);
7618
7619 preempt_enable();
7620 }
7621
7622 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7623 {
7624 const unsigned long *fields[] = {
7625 shadow_read_write_fields,
7626 shadow_read_only_fields
7627 };
7628 const int max_fields[] = {
7629 max_shadow_read_write_fields,
7630 max_shadow_read_only_fields
7631 };
7632 int i, q;
7633 unsigned long field;
7634 u64 field_value = 0;
7635 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7636
7637 vmcs_load(shadow_vmcs);
7638
7639 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7640 for (i = 0; i < max_fields[q]; i++) {
7641 field = fields[q][i];
7642 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7643
7644 switch (vmcs_field_type(field)) {
7645 case VMCS_FIELD_TYPE_U16:
7646 vmcs_write16(field, (u16)field_value);
7647 break;
7648 case VMCS_FIELD_TYPE_U32:
7649 vmcs_write32(field, (u32)field_value);
7650 break;
7651 case VMCS_FIELD_TYPE_U64:
7652 vmcs_write64(field, (u64)field_value);
7653 break;
7654 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7655 vmcs_writel(field, (long)field_value);
7656 break;
7657 default:
7658 WARN_ON(1);
7659 break;
7660 }
7661 }
7662 }
7663
7664 vmcs_clear(shadow_vmcs);
7665 vmcs_load(vmx->loaded_vmcs->vmcs);
7666 }
7667
7668 /*
7669 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7670 * used before) all generate the same failure when it is missing.
7671 */
7672 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7673 {
7674 struct vcpu_vmx *vmx = to_vmx(vcpu);
7675 if (vmx->nested.current_vmptr == -1ull) {
7676 nested_vmx_failInvalid(vcpu);
7677 return 0;
7678 }
7679 return 1;
7680 }
7681
7682 static int handle_vmread(struct kvm_vcpu *vcpu)
7683 {
7684 unsigned long field;
7685 u64 field_value;
7686 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7687 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7688 gva_t gva = 0;
7689
7690 if (!nested_vmx_check_permission(vcpu))
7691 return 1;
7692
7693 if (!nested_vmx_check_vmcs12(vcpu))
7694 return kvm_skip_emulated_instruction(vcpu);
7695
7696 /* Decode instruction info and find the field to read */
7697 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7698 /* Read the field, zero-extended to a u64 field_value */
7699 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7700 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7701 return kvm_skip_emulated_instruction(vcpu);
7702 }
7703 /*
7704 * Now copy part of this value to register or memory, as requested.
7705 * Note that the number of bits actually copied is 32 or 64 depending
7706 * on the guest's mode (32 or 64 bit), not on the given field's length.
7707 */
7708 if (vmx_instruction_info & (1u << 10)) {
7709 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7710 field_value);
7711 } else {
7712 if (get_vmx_mem_address(vcpu, exit_qualification,
7713 vmx_instruction_info, true, &gva))
7714 return 1;
7715 /* _system ok, as hardware has verified cpl=0 */
7716 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7717 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7718 }
7719
7720 nested_vmx_succeed(vcpu);
7721 return kvm_skip_emulated_instruction(vcpu);
7722 }
7723
7724
7725 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7726 {
7727 unsigned long field;
7728 gva_t gva;
7729 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7730 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7731 /* The value to write might be 32 or 64 bits, depending on L1's long
7732 * mode, and eventually we need to write that into a field of several
7733 * possible lengths. The code below first zero-extends the value to 64
7734 * bit (field_value), and then copies only the appropriate number of
7735 * bits into the vmcs12 field.
7736 */
7737 u64 field_value = 0;
7738 struct x86_exception e;
7739
7740 if (!nested_vmx_check_permission(vcpu))
7741 return 1;
7742
7743 if (!nested_vmx_check_vmcs12(vcpu))
7744 return kvm_skip_emulated_instruction(vcpu);
7745
7746 if (vmx_instruction_info & (1u << 10))
7747 field_value = kvm_register_readl(vcpu,
7748 (((vmx_instruction_info) >> 3) & 0xf));
7749 else {
7750 if (get_vmx_mem_address(vcpu, exit_qualification,
7751 vmx_instruction_info, false, &gva))
7752 return 1;
7753 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7754 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7755 kvm_inject_page_fault(vcpu, &e);
7756 return 1;
7757 }
7758 }
7759
7760
7761 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7762 if (vmcs_field_readonly(field)) {
7763 nested_vmx_failValid(vcpu,
7764 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7765 return kvm_skip_emulated_instruction(vcpu);
7766 }
7767
7768 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7769 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7770 return kvm_skip_emulated_instruction(vcpu);
7771 }
7772
7773 nested_vmx_succeed(vcpu);
7774 return kvm_skip_emulated_instruction(vcpu);
7775 }
7776
7777 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7778 {
7779 vmx->nested.current_vmptr = vmptr;
7780 if (enable_shadow_vmcs) {
7781 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7782 SECONDARY_EXEC_SHADOW_VMCS);
7783 vmcs_write64(VMCS_LINK_POINTER,
7784 __pa(vmx->vmcs01.shadow_vmcs));
7785 vmx->nested.sync_shadow_vmcs = true;
7786 }
7787 }
7788
7789 /* Emulate the VMPTRLD instruction */
7790 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7791 {
7792 struct vcpu_vmx *vmx = to_vmx(vcpu);
7793 gpa_t vmptr;
7794
7795 if (!nested_vmx_check_permission(vcpu))
7796 return 1;
7797
7798 if (nested_vmx_get_vmptr(vcpu, &vmptr))
7799 return 1;
7800
7801 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7802 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7803 return kvm_skip_emulated_instruction(vcpu);
7804 }
7805
7806 if (vmptr == vmx->nested.vmxon_ptr) {
7807 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7808 return kvm_skip_emulated_instruction(vcpu);
7809 }
7810
7811 if (vmx->nested.current_vmptr != vmptr) {
7812 struct vmcs12 *new_vmcs12;
7813 struct page *page;
7814 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7815 if (is_error_page(page)) {
7816 nested_vmx_failInvalid(vcpu);
7817 return kvm_skip_emulated_instruction(vcpu);
7818 }
7819 new_vmcs12 = kmap(page);
7820 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7821 kunmap(page);
7822 kvm_release_page_clean(page);
7823 nested_vmx_failValid(vcpu,
7824 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7825 return kvm_skip_emulated_instruction(vcpu);
7826 }
7827
7828 nested_release_vmcs12(vmx);
7829 /*
7830 * Load VMCS12 from guest memory since it is not already
7831 * cached.
7832 */
7833 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7834 kunmap(page);
7835 kvm_release_page_clean(page);
7836
7837 set_current_vmptr(vmx, vmptr);
7838 }
7839
7840 nested_vmx_succeed(vcpu);
7841 return kvm_skip_emulated_instruction(vcpu);
7842 }
7843
7844 /* Emulate the VMPTRST instruction */
7845 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7846 {
7847 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7848 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7849 gva_t vmcs_gva;
7850 struct x86_exception e;
7851
7852 if (!nested_vmx_check_permission(vcpu))
7853 return 1;
7854
7855 if (get_vmx_mem_address(vcpu, exit_qualification,
7856 vmx_instruction_info, true, &vmcs_gva))
7857 return 1;
7858 /* ok to use *_system, as hardware has verified cpl=0 */
7859 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7860 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7861 sizeof(u64), &e)) {
7862 kvm_inject_page_fault(vcpu, &e);
7863 return 1;
7864 }
7865 nested_vmx_succeed(vcpu);
7866 return kvm_skip_emulated_instruction(vcpu);
7867 }
7868
7869 /* Emulate the INVEPT instruction */
7870 static int handle_invept(struct kvm_vcpu *vcpu)
7871 {
7872 struct vcpu_vmx *vmx = to_vmx(vcpu);
7873 u32 vmx_instruction_info, types;
7874 unsigned long type;
7875 gva_t gva;
7876 struct x86_exception e;
7877 struct {
7878 u64 eptp, gpa;
7879 } operand;
7880
7881 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7882 SECONDARY_EXEC_ENABLE_EPT) ||
7883 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7884 kvm_queue_exception(vcpu, UD_VECTOR);
7885 return 1;
7886 }
7887
7888 if (!nested_vmx_check_permission(vcpu))
7889 return 1;
7890
7891 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7892 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7893
7894 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7895
7896 if (type >= 32 || !(types & (1 << type))) {
7897 nested_vmx_failValid(vcpu,
7898 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7899 return kvm_skip_emulated_instruction(vcpu);
7900 }
7901
7902 /* According to the Intel VMX instruction reference, the memory
7903 * operand is read even if it isn't needed (e.g., for type==global)
7904 */
7905 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7906 vmx_instruction_info, false, &gva))
7907 return 1;
7908 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7909 sizeof(operand), &e)) {
7910 kvm_inject_page_fault(vcpu, &e);
7911 return 1;
7912 }
7913
7914 switch (type) {
7915 case VMX_EPT_EXTENT_GLOBAL:
7916 /*
7917 * TODO: track mappings and invalidate
7918 * single context requests appropriately
7919 */
7920 case VMX_EPT_EXTENT_CONTEXT:
7921 kvm_mmu_sync_roots(vcpu);
7922 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7923 nested_vmx_succeed(vcpu);
7924 break;
7925 default:
7926 BUG_ON(1);
7927 break;
7928 }
7929
7930 return kvm_skip_emulated_instruction(vcpu);
7931 }
7932
7933 static int handle_invvpid(struct kvm_vcpu *vcpu)
7934 {
7935 struct vcpu_vmx *vmx = to_vmx(vcpu);
7936 u32 vmx_instruction_info;
7937 unsigned long type, types;
7938 gva_t gva;
7939 struct x86_exception e;
7940 struct {
7941 u64 vpid;
7942 u64 gla;
7943 } operand;
7944
7945 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7946 SECONDARY_EXEC_ENABLE_VPID) ||
7947 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7948 kvm_queue_exception(vcpu, UD_VECTOR);
7949 return 1;
7950 }
7951
7952 if (!nested_vmx_check_permission(vcpu))
7953 return 1;
7954
7955 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7956 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7957
7958 types = (vmx->nested.nested_vmx_vpid_caps &
7959 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7960
7961 if (type >= 32 || !(types & (1 << type))) {
7962 nested_vmx_failValid(vcpu,
7963 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7964 return kvm_skip_emulated_instruction(vcpu);
7965 }
7966
7967 /* according to the intel vmx instruction reference, the memory
7968 * operand is read even if it isn't needed (e.g., for type==global)
7969 */
7970 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7971 vmx_instruction_info, false, &gva))
7972 return 1;
7973 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7974 sizeof(operand), &e)) {
7975 kvm_inject_page_fault(vcpu, &e);
7976 return 1;
7977 }
7978 if (operand.vpid >> 16) {
7979 nested_vmx_failValid(vcpu,
7980 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7981 return kvm_skip_emulated_instruction(vcpu);
7982 }
7983
7984 switch (type) {
7985 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7986 if (is_noncanonical_address(operand.gla, vcpu)) {
7987 nested_vmx_failValid(vcpu,
7988 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7989 return kvm_skip_emulated_instruction(vcpu);
7990 }
7991 /* fall through */
7992 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7993 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7994 if (!operand.vpid) {
7995 nested_vmx_failValid(vcpu,
7996 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7997 return kvm_skip_emulated_instruction(vcpu);
7998 }
7999 break;
8000 case VMX_VPID_EXTENT_ALL_CONTEXT:
8001 break;
8002 default:
8003 WARN_ON_ONCE(1);
8004 return kvm_skip_emulated_instruction(vcpu);
8005 }
8006
8007 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
8008 nested_vmx_succeed(vcpu);
8009
8010 return kvm_skip_emulated_instruction(vcpu);
8011 }
8012
8013 static int handle_pml_full(struct kvm_vcpu *vcpu)
8014 {
8015 unsigned long exit_qualification;
8016
8017 trace_kvm_pml_full(vcpu->vcpu_id);
8018
8019 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8020
8021 /*
8022 * PML buffer FULL happened while executing iret from NMI,
8023 * "blocked by NMI" bit has to be set before next VM entry.
8024 */
8025 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8026 enable_vnmi &&
8027 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8028 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8029 GUEST_INTR_STATE_NMI);
8030
8031 /*
8032 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8033 * here.., and there's no userspace involvement needed for PML.
8034 */
8035 return 1;
8036 }
8037
8038 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8039 {
8040 kvm_lapic_expired_hv_timer(vcpu);
8041 return 1;
8042 }
8043
8044 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8045 {
8046 struct vcpu_vmx *vmx = to_vmx(vcpu);
8047 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8048
8049 /* Check for memory type validity */
8050 switch (address & VMX_EPTP_MT_MASK) {
8051 case VMX_EPTP_MT_UC:
8052 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8053 return false;
8054 break;
8055 case VMX_EPTP_MT_WB:
8056 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8057 return false;
8058 break;
8059 default:
8060 return false;
8061 }
8062
8063 /* only 4 levels page-walk length are valid */
8064 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8065 return false;
8066
8067 /* Reserved bits should not be set */
8068 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8069 return false;
8070
8071 /* AD, if set, should be supported */
8072 if (address & VMX_EPTP_AD_ENABLE_BIT) {
8073 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8074 return false;
8075 }
8076
8077 return true;
8078 }
8079
8080 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8081 struct vmcs12 *vmcs12)
8082 {
8083 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8084 u64 address;
8085 bool accessed_dirty;
8086 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8087
8088 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8089 !nested_cpu_has_ept(vmcs12))
8090 return 1;
8091
8092 if (index >= VMFUNC_EPTP_ENTRIES)
8093 return 1;
8094
8095
8096 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8097 &address, index * 8, 8))
8098 return 1;
8099
8100 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8101
8102 /*
8103 * If the (L2) guest does a vmfunc to the currently
8104 * active ept pointer, we don't have to do anything else
8105 */
8106 if (vmcs12->ept_pointer != address) {
8107 if (!valid_ept_address(vcpu, address))
8108 return 1;
8109
8110 kvm_mmu_unload(vcpu);
8111 mmu->ept_ad = accessed_dirty;
8112 mmu->base_role.ad_disabled = !accessed_dirty;
8113 vmcs12->ept_pointer = address;
8114 /*
8115 * TODO: Check what's the correct approach in case
8116 * mmu reload fails. Currently, we just let the next
8117 * reload potentially fail
8118 */
8119 kvm_mmu_reload(vcpu);
8120 }
8121
8122 return 0;
8123 }
8124
8125 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8126 {
8127 struct vcpu_vmx *vmx = to_vmx(vcpu);
8128 struct vmcs12 *vmcs12;
8129 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8130
8131 /*
8132 * VMFUNC is only supported for nested guests, but we always enable the
8133 * secondary control for simplicity; for non-nested mode, fake that we
8134 * didn't by injecting #UD.
8135 */
8136 if (!is_guest_mode(vcpu)) {
8137 kvm_queue_exception(vcpu, UD_VECTOR);
8138 return 1;
8139 }
8140
8141 vmcs12 = get_vmcs12(vcpu);
8142 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8143 goto fail;
8144
8145 switch (function) {
8146 case 0:
8147 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8148 goto fail;
8149 break;
8150 default:
8151 goto fail;
8152 }
8153 return kvm_skip_emulated_instruction(vcpu);
8154
8155 fail:
8156 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8157 vmcs_read32(VM_EXIT_INTR_INFO),
8158 vmcs_readl(EXIT_QUALIFICATION));
8159 return 1;
8160 }
8161
8162 /*
8163 * The exit handlers return 1 if the exit was handled fully and guest execution
8164 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8165 * to be done to userspace and return 0.
8166 */
8167 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8168 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8169 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
8170 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
8171 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
8172 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
8173 [EXIT_REASON_CR_ACCESS] = handle_cr,
8174 [EXIT_REASON_DR_ACCESS] = handle_dr,
8175 [EXIT_REASON_CPUID] = handle_cpuid,
8176 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8177 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8178 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8179 [EXIT_REASON_HLT] = handle_halt,
8180 [EXIT_REASON_INVD] = handle_invd,
8181 [EXIT_REASON_INVLPG] = handle_invlpg,
8182 [EXIT_REASON_RDPMC] = handle_rdpmc,
8183 [EXIT_REASON_VMCALL] = handle_vmcall,
8184 [EXIT_REASON_VMCLEAR] = handle_vmclear,
8185 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
8186 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
8187 [EXIT_REASON_VMPTRST] = handle_vmptrst,
8188 [EXIT_REASON_VMREAD] = handle_vmread,
8189 [EXIT_REASON_VMRESUME] = handle_vmresume,
8190 [EXIT_REASON_VMWRITE] = handle_vmwrite,
8191 [EXIT_REASON_VMOFF] = handle_vmoff,
8192 [EXIT_REASON_VMON] = handle_vmon,
8193 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8194 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
8195 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
8196 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
8197 [EXIT_REASON_WBINVD] = handle_wbinvd,
8198 [EXIT_REASON_XSETBV] = handle_xsetbv,
8199 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
8200 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
8201 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8202 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
8203 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
8204 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
8205 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
8206 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
8207 [EXIT_REASON_INVEPT] = handle_invept,
8208 [EXIT_REASON_INVVPID] = handle_invvpid,
8209 [EXIT_REASON_RDRAND] = handle_invalid_op,
8210 [EXIT_REASON_RDSEED] = handle_invalid_op,
8211 [EXIT_REASON_XSAVES] = handle_xsaves,
8212 [EXIT_REASON_XRSTORS] = handle_xrstors,
8213 [EXIT_REASON_PML_FULL] = handle_pml_full,
8214 [EXIT_REASON_VMFUNC] = handle_vmfunc,
8215 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
8216 };
8217
8218 static const int kvm_vmx_max_exit_handlers =
8219 ARRAY_SIZE(kvm_vmx_exit_handlers);
8220
8221 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8222 struct vmcs12 *vmcs12)
8223 {
8224 unsigned long exit_qualification;
8225 gpa_t bitmap, last_bitmap;
8226 unsigned int port;
8227 int size;
8228 u8 b;
8229
8230 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8231 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8232
8233 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8234
8235 port = exit_qualification >> 16;
8236 size = (exit_qualification & 7) + 1;
8237
8238 last_bitmap = (gpa_t)-1;
8239 b = -1;
8240
8241 while (size > 0) {
8242 if (port < 0x8000)
8243 bitmap = vmcs12->io_bitmap_a;
8244 else if (port < 0x10000)
8245 bitmap = vmcs12->io_bitmap_b;
8246 else
8247 return true;
8248 bitmap += (port & 0x7fff) / 8;
8249
8250 if (last_bitmap != bitmap)
8251 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8252 return true;
8253 if (b & (1 << (port & 7)))
8254 return true;
8255
8256 port++;
8257 size--;
8258 last_bitmap = bitmap;
8259 }
8260
8261 return false;
8262 }
8263
8264 /*
8265 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8266 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8267 * disinterest in the current event (read or write a specific MSR) by using an
8268 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8269 */
8270 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8271 struct vmcs12 *vmcs12, u32 exit_reason)
8272 {
8273 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8274 gpa_t bitmap;
8275
8276 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8277 return true;
8278
8279 /*
8280 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8281 * for the four combinations of read/write and low/high MSR numbers.
8282 * First we need to figure out which of the four to use:
8283 */
8284 bitmap = vmcs12->msr_bitmap;
8285 if (exit_reason == EXIT_REASON_MSR_WRITE)
8286 bitmap += 2048;
8287 if (msr_index >= 0xc0000000) {
8288 msr_index -= 0xc0000000;
8289 bitmap += 1024;
8290 }
8291
8292 /* Then read the msr_index'th bit from this bitmap: */
8293 if (msr_index < 1024*8) {
8294 unsigned char b;
8295 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8296 return true;
8297 return 1 & (b >> (msr_index & 7));
8298 } else
8299 return true; /* let L1 handle the wrong parameter */
8300 }
8301
8302 /*
8303 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8304 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8305 * intercept (via guest_host_mask etc.) the current event.
8306 */
8307 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8308 struct vmcs12 *vmcs12)
8309 {
8310 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8311 int cr = exit_qualification & 15;
8312 int reg;
8313 unsigned long val;
8314
8315 switch ((exit_qualification >> 4) & 3) {
8316 case 0: /* mov to cr */
8317 reg = (exit_qualification >> 8) & 15;
8318 val = kvm_register_readl(vcpu, reg);
8319 switch (cr) {
8320 case 0:
8321 if (vmcs12->cr0_guest_host_mask &
8322 (val ^ vmcs12->cr0_read_shadow))
8323 return true;
8324 break;
8325 case 3:
8326 if ((vmcs12->cr3_target_count >= 1 &&
8327 vmcs12->cr3_target_value0 == val) ||
8328 (vmcs12->cr3_target_count >= 2 &&
8329 vmcs12->cr3_target_value1 == val) ||
8330 (vmcs12->cr3_target_count >= 3 &&
8331 vmcs12->cr3_target_value2 == val) ||
8332 (vmcs12->cr3_target_count >= 4 &&
8333 vmcs12->cr3_target_value3 == val))
8334 return false;
8335 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8336 return true;
8337 break;
8338 case 4:
8339 if (vmcs12->cr4_guest_host_mask &
8340 (vmcs12->cr4_read_shadow ^ val))
8341 return true;
8342 break;
8343 case 8:
8344 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8345 return true;
8346 break;
8347 }
8348 break;
8349 case 2: /* clts */
8350 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8351 (vmcs12->cr0_read_shadow & X86_CR0_TS))
8352 return true;
8353 break;
8354 case 1: /* mov from cr */
8355 switch (cr) {
8356 case 3:
8357 if (vmcs12->cpu_based_vm_exec_control &
8358 CPU_BASED_CR3_STORE_EXITING)
8359 return true;
8360 break;
8361 case 8:
8362 if (vmcs12->cpu_based_vm_exec_control &
8363 CPU_BASED_CR8_STORE_EXITING)
8364 return true;
8365 break;
8366 }
8367 break;
8368 case 3: /* lmsw */
8369 /*
8370 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8371 * cr0. Other attempted changes are ignored, with no exit.
8372 */
8373 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8374 if (vmcs12->cr0_guest_host_mask & 0xe &
8375 (val ^ vmcs12->cr0_read_shadow))
8376 return true;
8377 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8378 !(vmcs12->cr0_read_shadow & 0x1) &&
8379 (val & 0x1))
8380 return true;
8381 break;
8382 }
8383 return false;
8384 }
8385
8386 /*
8387 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8388 * should handle it ourselves in L0 (and then continue L2). Only call this
8389 * when in is_guest_mode (L2).
8390 */
8391 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8392 {
8393 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8394 struct vcpu_vmx *vmx = to_vmx(vcpu);
8395 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8396
8397 if (vmx->nested.nested_run_pending)
8398 return false;
8399
8400 if (unlikely(vmx->fail)) {
8401 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8402 vmcs_read32(VM_INSTRUCTION_ERROR));
8403 return true;
8404 }
8405
8406 /*
8407 * The host physical addresses of some pages of guest memory
8408 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8409 * may write to these pages via their host physical address while
8410 * L2 is running, bypassing any address-translation-based dirty
8411 * tracking (e.g. EPT write protection).
8412 *
8413 * Mark them dirty on every exit from L2 to prevent them from
8414 * getting out of sync with dirty tracking.
8415 */
8416 nested_mark_vmcs12_pages_dirty(vcpu);
8417
8418 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8419 vmcs_readl(EXIT_QUALIFICATION),
8420 vmx->idt_vectoring_info,
8421 intr_info,
8422 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8423 KVM_ISA_VMX);
8424
8425 switch (exit_reason) {
8426 case EXIT_REASON_EXCEPTION_NMI:
8427 if (is_nmi(intr_info))
8428 return false;
8429 else if (is_page_fault(intr_info))
8430 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8431 else if (is_no_device(intr_info) &&
8432 !(vmcs12->guest_cr0 & X86_CR0_TS))
8433 return false;
8434 else if (is_debug(intr_info) &&
8435 vcpu->guest_debug &
8436 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8437 return false;
8438 else if (is_breakpoint(intr_info) &&
8439 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8440 return false;
8441 return vmcs12->exception_bitmap &
8442 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8443 case EXIT_REASON_EXTERNAL_INTERRUPT:
8444 return false;
8445 case EXIT_REASON_TRIPLE_FAULT:
8446 return true;
8447 case EXIT_REASON_PENDING_INTERRUPT:
8448 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8449 case EXIT_REASON_NMI_WINDOW:
8450 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8451 case EXIT_REASON_TASK_SWITCH:
8452 return true;
8453 case EXIT_REASON_CPUID:
8454 return true;
8455 case EXIT_REASON_HLT:
8456 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8457 case EXIT_REASON_INVD:
8458 return true;
8459 case EXIT_REASON_INVLPG:
8460 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8461 case EXIT_REASON_RDPMC:
8462 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8463 case EXIT_REASON_RDRAND:
8464 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
8465 case EXIT_REASON_RDSEED:
8466 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
8467 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8468 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8469 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8470 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8471 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8472 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8473 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8474 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8475 /*
8476 * VMX instructions trap unconditionally. This allows L1 to
8477 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8478 */
8479 return true;
8480 case EXIT_REASON_CR_ACCESS:
8481 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8482 case EXIT_REASON_DR_ACCESS:
8483 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8484 case EXIT_REASON_IO_INSTRUCTION:
8485 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8486 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8487 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8488 case EXIT_REASON_MSR_READ:
8489 case EXIT_REASON_MSR_WRITE:
8490 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8491 case EXIT_REASON_INVALID_STATE:
8492 return true;
8493 case EXIT_REASON_MWAIT_INSTRUCTION:
8494 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8495 case EXIT_REASON_MONITOR_TRAP_FLAG:
8496 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8497 case EXIT_REASON_MONITOR_INSTRUCTION:
8498 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8499 case EXIT_REASON_PAUSE_INSTRUCTION:
8500 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8501 nested_cpu_has2(vmcs12,
8502 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8503 case EXIT_REASON_MCE_DURING_VMENTRY:
8504 return false;
8505 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8506 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8507 case EXIT_REASON_APIC_ACCESS:
8508 return nested_cpu_has2(vmcs12,
8509 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8510 case EXIT_REASON_APIC_WRITE:
8511 case EXIT_REASON_EOI_INDUCED:
8512 /* apic_write and eoi_induced should exit unconditionally. */
8513 return true;
8514 case EXIT_REASON_EPT_VIOLATION:
8515 /*
8516 * L0 always deals with the EPT violation. If nested EPT is
8517 * used, and the nested mmu code discovers that the address is
8518 * missing in the guest EPT table (EPT12), the EPT violation
8519 * will be injected with nested_ept_inject_page_fault()
8520 */
8521 return false;
8522 case EXIT_REASON_EPT_MISCONFIG:
8523 /*
8524 * L2 never uses directly L1's EPT, but rather L0's own EPT
8525 * table (shadow on EPT) or a merged EPT table that L0 built
8526 * (EPT on EPT). So any problems with the structure of the
8527 * table is L0's fault.
8528 */
8529 return false;
8530 case EXIT_REASON_INVPCID:
8531 return
8532 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8533 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8534 case EXIT_REASON_WBINVD:
8535 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8536 case EXIT_REASON_XSETBV:
8537 return true;
8538 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8539 /*
8540 * This should never happen, since it is not possible to
8541 * set XSS to a non-zero value---neither in L1 nor in L2.
8542 * If if it were, XSS would have to be checked against
8543 * the XSS exit bitmap in vmcs12.
8544 */
8545 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8546 case EXIT_REASON_PREEMPTION_TIMER:
8547 return false;
8548 case EXIT_REASON_PML_FULL:
8549 /* We emulate PML support to L1. */
8550 return false;
8551 case EXIT_REASON_VMFUNC:
8552 /* VM functions are emulated through L2->L0 vmexits. */
8553 return false;
8554 default:
8555 return true;
8556 }
8557 }
8558
8559 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8560 {
8561 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8562
8563 /*
8564 * At this point, the exit interruption info in exit_intr_info
8565 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8566 * we need to query the in-kernel LAPIC.
8567 */
8568 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8569 if ((exit_intr_info &
8570 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8571 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8572 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8573 vmcs12->vm_exit_intr_error_code =
8574 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8575 }
8576
8577 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8578 vmcs_readl(EXIT_QUALIFICATION));
8579 return 1;
8580 }
8581
8582 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8583 {
8584 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8585 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8586 }
8587
8588 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8589 {
8590 if (vmx->pml_pg) {
8591 __free_page(vmx->pml_pg);
8592 vmx->pml_pg = NULL;
8593 }
8594 }
8595
8596 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8597 {
8598 struct vcpu_vmx *vmx = to_vmx(vcpu);
8599 u64 *pml_buf;
8600 u16 pml_idx;
8601
8602 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8603
8604 /* Do nothing if PML buffer is empty */
8605 if (pml_idx == (PML_ENTITY_NUM - 1))
8606 return;
8607
8608 /* PML index always points to next available PML buffer entity */
8609 if (pml_idx >= PML_ENTITY_NUM)
8610 pml_idx = 0;
8611 else
8612 pml_idx++;
8613
8614 pml_buf = page_address(vmx->pml_pg);
8615 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8616 u64 gpa;
8617
8618 gpa = pml_buf[pml_idx];
8619 WARN_ON(gpa & (PAGE_SIZE - 1));
8620 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8621 }
8622
8623 /* reset PML index */
8624 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8625 }
8626
8627 /*
8628 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8629 * Called before reporting dirty_bitmap to userspace.
8630 */
8631 static void kvm_flush_pml_buffers(struct kvm *kvm)
8632 {
8633 int i;
8634 struct kvm_vcpu *vcpu;
8635 /*
8636 * We only need to kick vcpu out of guest mode here, as PML buffer
8637 * is flushed at beginning of all VMEXITs, and it's obvious that only
8638 * vcpus running in guest are possible to have unflushed GPAs in PML
8639 * buffer.
8640 */
8641 kvm_for_each_vcpu(i, vcpu, kvm)
8642 kvm_vcpu_kick(vcpu);
8643 }
8644
8645 static void vmx_dump_sel(char *name, uint32_t sel)
8646 {
8647 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8648 name, vmcs_read16(sel),
8649 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8650 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8651 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8652 }
8653
8654 static void vmx_dump_dtsel(char *name, uint32_t limit)
8655 {
8656 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8657 name, vmcs_read32(limit),
8658 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8659 }
8660
8661 static void dump_vmcs(void)
8662 {
8663 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8664 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8665 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8666 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8667 u32 secondary_exec_control = 0;
8668 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8669 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8670 int i, n;
8671
8672 if (cpu_has_secondary_exec_ctrls())
8673 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8674
8675 pr_err("*** Guest State ***\n");
8676 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8677 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8678 vmcs_readl(CR0_GUEST_HOST_MASK));
8679 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8680 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8681 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8682 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8683 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8684 {
8685 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8686 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8687 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8688 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8689 }
8690 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8691 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8692 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8693 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8694 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8695 vmcs_readl(GUEST_SYSENTER_ESP),
8696 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8697 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8698 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8699 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8700 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8701 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8702 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8703 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8704 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8705 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8706 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8707 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8708 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8709 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8710 efer, vmcs_read64(GUEST_IA32_PAT));
8711 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8712 vmcs_read64(GUEST_IA32_DEBUGCTL),
8713 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8714 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8715 pr_err("PerfGlobCtl = 0x%016llx\n",
8716 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8717 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8718 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8719 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8720 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8721 vmcs_read32(GUEST_ACTIVITY_STATE));
8722 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8723 pr_err("InterruptStatus = %04x\n",
8724 vmcs_read16(GUEST_INTR_STATUS));
8725
8726 pr_err("*** Host State ***\n");
8727 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8728 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8729 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8730 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8731 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8732 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8733 vmcs_read16(HOST_TR_SELECTOR));
8734 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8735 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8736 vmcs_readl(HOST_TR_BASE));
8737 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8738 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8739 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8740 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8741 vmcs_readl(HOST_CR4));
8742 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8743 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8744 vmcs_read32(HOST_IA32_SYSENTER_CS),
8745 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8746 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8747 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8748 vmcs_read64(HOST_IA32_EFER),
8749 vmcs_read64(HOST_IA32_PAT));
8750 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8751 pr_err("PerfGlobCtl = 0x%016llx\n",
8752 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8753
8754 pr_err("*** Control State ***\n");
8755 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8756 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8757 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8758 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8759 vmcs_read32(EXCEPTION_BITMAP),
8760 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8761 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8762 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8763 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8764 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8765 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8766 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8767 vmcs_read32(VM_EXIT_INTR_INFO),
8768 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8769 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8770 pr_err(" reason=%08x qualification=%016lx\n",
8771 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8772 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8773 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8774 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8775 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8776 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8777 pr_err("TSC Multiplier = 0x%016llx\n",
8778 vmcs_read64(TSC_MULTIPLIER));
8779 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8780 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8781 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8782 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8783 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8784 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8785 n = vmcs_read32(CR3_TARGET_COUNT);
8786 for (i = 0; i + 1 < n; i += 4)
8787 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8788 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8789 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8790 if (i < n)
8791 pr_err("CR3 target%u=%016lx\n",
8792 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8793 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8794 pr_err("PLE Gap=%08x Window=%08x\n",
8795 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8796 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8797 pr_err("Virtual processor ID = 0x%04x\n",
8798 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8799 }
8800
8801 /*
8802 * The guest has exited. See if we can fix it or if we need userspace
8803 * assistance.
8804 */
8805 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8806 {
8807 struct vcpu_vmx *vmx = to_vmx(vcpu);
8808 u32 exit_reason = vmx->exit_reason;
8809 u32 vectoring_info = vmx->idt_vectoring_info;
8810
8811 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8812
8813 /*
8814 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8815 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8816 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8817 * mode as if vcpus is in root mode, the PML buffer must has been
8818 * flushed already.
8819 */
8820 if (enable_pml)
8821 vmx_flush_pml_buffer(vcpu);
8822
8823 /* If guest state is invalid, start emulating */
8824 if (vmx->emulation_required)
8825 return handle_invalid_guest_state(vcpu);
8826
8827 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8828 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8829
8830 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8831 dump_vmcs();
8832 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8833 vcpu->run->fail_entry.hardware_entry_failure_reason
8834 = exit_reason;
8835 return 0;
8836 }
8837
8838 if (unlikely(vmx->fail)) {
8839 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8840 vcpu->run->fail_entry.hardware_entry_failure_reason
8841 = vmcs_read32(VM_INSTRUCTION_ERROR);
8842 return 0;
8843 }
8844
8845 /*
8846 * Note:
8847 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8848 * delivery event since it indicates guest is accessing MMIO.
8849 * The vm-exit can be triggered again after return to guest that
8850 * will cause infinite loop.
8851 */
8852 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8853 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8854 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8855 exit_reason != EXIT_REASON_PML_FULL &&
8856 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8857 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8858 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8859 vcpu->run->internal.ndata = 3;
8860 vcpu->run->internal.data[0] = vectoring_info;
8861 vcpu->run->internal.data[1] = exit_reason;
8862 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8863 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8864 vcpu->run->internal.ndata++;
8865 vcpu->run->internal.data[3] =
8866 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8867 }
8868 return 0;
8869 }
8870
8871 if (unlikely(!enable_vnmi &&
8872 vmx->loaded_vmcs->soft_vnmi_blocked)) {
8873 if (vmx_interrupt_allowed(vcpu)) {
8874 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8875 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8876 vcpu->arch.nmi_pending) {
8877 /*
8878 * This CPU don't support us in finding the end of an
8879 * NMI-blocked window if the guest runs with IRQs
8880 * disabled. So we pull the trigger after 1 s of
8881 * futile waiting, but inform the user about this.
8882 */
8883 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8884 "state on VCPU %d after 1 s timeout\n",
8885 __func__, vcpu->vcpu_id);
8886 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8887 }
8888 }
8889
8890 if (exit_reason < kvm_vmx_max_exit_handlers
8891 && kvm_vmx_exit_handlers[exit_reason])
8892 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8893 else {
8894 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8895 exit_reason);
8896 kvm_queue_exception(vcpu, UD_VECTOR);
8897 return 1;
8898 }
8899 }
8900
8901 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8902 {
8903 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8904
8905 if (is_guest_mode(vcpu) &&
8906 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8907 return;
8908
8909 if (irr == -1 || tpr < irr) {
8910 vmcs_write32(TPR_THRESHOLD, 0);
8911 return;
8912 }
8913
8914 vmcs_write32(TPR_THRESHOLD, irr);
8915 }
8916
8917 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8918 {
8919 u32 sec_exec_control;
8920
8921 /* Postpone execution until vmcs01 is the current VMCS. */
8922 if (is_guest_mode(vcpu)) {
8923 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8924 return;
8925 }
8926
8927 if (!cpu_has_vmx_virtualize_x2apic_mode())
8928 return;
8929
8930 if (!cpu_need_tpr_shadow(vcpu))
8931 return;
8932
8933 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8934
8935 if (set) {
8936 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8937 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8938 } else {
8939 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8940 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8941 vmx_flush_tlb_ept_only(vcpu);
8942 }
8943 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8944
8945 vmx_set_msr_bitmap(vcpu);
8946 }
8947
8948 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8949 {
8950 struct vcpu_vmx *vmx = to_vmx(vcpu);
8951
8952 /*
8953 * Currently we do not handle the nested case where L2 has an
8954 * APIC access page of its own; that page is still pinned.
8955 * Hence, we skip the case where the VCPU is in guest mode _and_
8956 * L1 prepared an APIC access page for L2.
8957 *
8958 * For the case where L1 and L2 share the same APIC access page
8959 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8960 * in the vmcs12), this function will only update either the vmcs01
8961 * or the vmcs02. If the former, the vmcs02 will be updated by
8962 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8963 * the next L2->L1 exit.
8964 */
8965 if (!is_guest_mode(vcpu) ||
8966 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8967 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8968 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8969 vmx_flush_tlb_ept_only(vcpu);
8970 }
8971 }
8972
8973 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8974 {
8975 u16 status;
8976 u8 old;
8977
8978 if (max_isr == -1)
8979 max_isr = 0;
8980
8981 status = vmcs_read16(GUEST_INTR_STATUS);
8982 old = status >> 8;
8983 if (max_isr != old) {
8984 status &= 0xff;
8985 status |= max_isr << 8;
8986 vmcs_write16(GUEST_INTR_STATUS, status);
8987 }
8988 }
8989
8990 static void vmx_set_rvi(int vector)
8991 {
8992 u16 status;
8993 u8 old;
8994
8995 if (vector == -1)
8996 vector = 0;
8997
8998 status = vmcs_read16(GUEST_INTR_STATUS);
8999 old = (u8)status & 0xff;
9000 if ((u8)vector != old) {
9001 status &= ~0xff;
9002 status |= (u8)vector;
9003 vmcs_write16(GUEST_INTR_STATUS, status);
9004 }
9005 }
9006
9007 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9008 {
9009 if (!is_guest_mode(vcpu)) {
9010 vmx_set_rvi(max_irr);
9011 return;
9012 }
9013
9014 if (max_irr == -1)
9015 return;
9016
9017 /*
9018 * In guest mode. If a vmexit is needed, vmx_check_nested_events
9019 * handles it.
9020 */
9021 if (nested_exit_on_intr(vcpu))
9022 return;
9023
9024 /*
9025 * Else, fall back to pre-APICv interrupt injection since L2
9026 * is run without virtual interrupt delivery.
9027 */
9028 if (!kvm_event_needs_reinjection(vcpu) &&
9029 vmx_interrupt_allowed(vcpu)) {
9030 kvm_queue_interrupt(vcpu, max_irr, false);
9031 vmx_inject_irq(vcpu);
9032 }
9033 }
9034
9035 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9036 {
9037 struct vcpu_vmx *vmx = to_vmx(vcpu);
9038 int max_irr;
9039
9040 WARN_ON(!vcpu->arch.apicv_active);
9041 if (pi_test_on(&vmx->pi_desc)) {
9042 pi_clear_on(&vmx->pi_desc);
9043 /*
9044 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9045 * But on x86 this is just a compiler barrier anyway.
9046 */
9047 smp_mb__after_atomic();
9048 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
9049 } else {
9050 max_irr = kvm_lapic_find_highest_irr(vcpu);
9051 }
9052 vmx_hwapic_irr_update(vcpu, max_irr);
9053 return max_irr;
9054 }
9055
9056 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9057 {
9058 if (!kvm_vcpu_apicv_active(vcpu))
9059 return;
9060
9061 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9062 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9063 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9064 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9065 }
9066
9067 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9068 {
9069 struct vcpu_vmx *vmx = to_vmx(vcpu);
9070
9071 pi_clear_on(&vmx->pi_desc);
9072 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9073 }
9074
9075 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9076 {
9077 u32 exit_intr_info = 0;
9078 u16 basic_exit_reason = (u16)vmx->exit_reason;
9079
9080 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9081 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9082 return;
9083
9084 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9085 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9086 vmx->exit_intr_info = exit_intr_info;
9087
9088 /* if exit due to PF check for async PF */
9089 if (is_page_fault(exit_intr_info))
9090 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9091
9092 /* Handle machine checks before interrupts are enabled */
9093 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9094 is_machine_check(exit_intr_info))
9095 kvm_machine_check();
9096
9097 /* We need to handle NMIs before interrupts are enabled */
9098 if (is_nmi(exit_intr_info)) {
9099 kvm_before_handle_nmi(&vmx->vcpu);
9100 asm("int $2");
9101 kvm_after_handle_nmi(&vmx->vcpu);
9102 }
9103 }
9104
9105 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9106 {
9107 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9108
9109 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9110 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9111 unsigned int vector;
9112 unsigned long entry;
9113 gate_desc *desc;
9114 struct vcpu_vmx *vmx = to_vmx(vcpu);
9115 #ifdef CONFIG_X86_64
9116 unsigned long tmp;
9117 #endif
9118
9119 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9120 desc = (gate_desc *)vmx->host_idt_base + vector;
9121 entry = gate_offset(desc);
9122 asm volatile(
9123 #ifdef CONFIG_X86_64
9124 "mov %%" _ASM_SP ", %[sp]\n\t"
9125 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9126 "push $%c[ss]\n\t"
9127 "push %[sp]\n\t"
9128 #endif
9129 "pushf\n\t"
9130 __ASM_SIZE(push) " $%c[cs]\n\t"
9131 "call *%[entry]\n\t"
9132 :
9133 #ifdef CONFIG_X86_64
9134 [sp]"=&r"(tmp),
9135 #endif
9136 ASM_CALL_CONSTRAINT
9137 :
9138 [entry]"r"(entry),
9139 [ss]"i"(__KERNEL_DS),
9140 [cs]"i"(__KERNEL_CS)
9141 );
9142 }
9143 }
9144 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9145
9146 static bool vmx_has_high_real_mode_segbase(void)
9147 {
9148 return enable_unrestricted_guest || emulate_invalid_guest_state;
9149 }
9150
9151 static bool vmx_mpx_supported(void)
9152 {
9153 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9154 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9155 }
9156
9157 static bool vmx_xsaves_supported(void)
9158 {
9159 return vmcs_config.cpu_based_2nd_exec_ctrl &
9160 SECONDARY_EXEC_XSAVES;
9161 }
9162
9163 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9164 {
9165 u32 exit_intr_info;
9166 bool unblock_nmi;
9167 u8 vector;
9168 bool idtv_info_valid;
9169
9170 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9171
9172 if (enable_vnmi) {
9173 if (vmx->loaded_vmcs->nmi_known_unmasked)
9174 return;
9175 /*
9176 * Can't use vmx->exit_intr_info since we're not sure what
9177 * the exit reason is.
9178 */
9179 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9180 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9181 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9182 /*
9183 * SDM 3: 27.7.1.2 (September 2008)
9184 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9185 * a guest IRET fault.
9186 * SDM 3: 23.2.2 (September 2008)
9187 * Bit 12 is undefined in any of the following cases:
9188 * If the VM exit sets the valid bit in the IDT-vectoring
9189 * information field.
9190 * If the VM exit is due to a double fault.
9191 */
9192 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9193 vector != DF_VECTOR && !idtv_info_valid)
9194 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9195 GUEST_INTR_STATE_NMI);
9196 else
9197 vmx->loaded_vmcs->nmi_known_unmasked =
9198 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9199 & GUEST_INTR_STATE_NMI);
9200 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9201 vmx->loaded_vmcs->vnmi_blocked_time +=
9202 ktime_to_ns(ktime_sub(ktime_get(),
9203 vmx->loaded_vmcs->entry_time));
9204 }
9205
9206 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9207 u32 idt_vectoring_info,
9208 int instr_len_field,
9209 int error_code_field)
9210 {
9211 u8 vector;
9212 int type;
9213 bool idtv_info_valid;
9214
9215 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9216
9217 vcpu->arch.nmi_injected = false;
9218 kvm_clear_exception_queue(vcpu);
9219 kvm_clear_interrupt_queue(vcpu);
9220
9221 if (!idtv_info_valid)
9222 return;
9223
9224 kvm_make_request(KVM_REQ_EVENT, vcpu);
9225
9226 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9227 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9228
9229 switch (type) {
9230 case INTR_TYPE_NMI_INTR:
9231 vcpu->arch.nmi_injected = true;
9232 /*
9233 * SDM 3: 27.7.1.2 (September 2008)
9234 * Clear bit "block by NMI" before VM entry if a NMI
9235 * delivery faulted.
9236 */
9237 vmx_set_nmi_mask(vcpu, false);
9238 break;
9239 case INTR_TYPE_SOFT_EXCEPTION:
9240 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9241 /* fall through */
9242 case INTR_TYPE_HARD_EXCEPTION:
9243 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9244 u32 err = vmcs_read32(error_code_field);
9245 kvm_requeue_exception_e(vcpu, vector, err);
9246 } else
9247 kvm_requeue_exception(vcpu, vector);
9248 break;
9249 case INTR_TYPE_SOFT_INTR:
9250 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9251 /* fall through */
9252 case INTR_TYPE_EXT_INTR:
9253 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9254 break;
9255 default:
9256 break;
9257 }
9258 }
9259
9260 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9261 {
9262 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9263 VM_EXIT_INSTRUCTION_LEN,
9264 IDT_VECTORING_ERROR_CODE);
9265 }
9266
9267 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9268 {
9269 __vmx_complete_interrupts(vcpu,
9270 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9271 VM_ENTRY_INSTRUCTION_LEN,
9272 VM_ENTRY_EXCEPTION_ERROR_CODE);
9273
9274 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9275 }
9276
9277 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9278 {
9279 int i, nr_msrs;
9280 struct perf_guest_switch_msr *msrs;
9281
9282 msrs = perf_guest_get_msrs(&nr_msrs);
9283
9284 if (!msrs)
9285 return;
9286
9287 for (i = 0; i < nr_msrs; i++)
9288 if (msrs[i].host == msrs[i].guest)
9289 clear_atomic_switch_msr(vmx, msrs[i].msr);
9290 else
9291 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9292 msrs[i].host);
9293 }
9294
9295 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9296 {
9297 struct vcpu_vmx *vmx = to_vmx(vcpu);
9298 u64 tscl;
9299 u32 delta_tsc;
9300
9301 if (vmx->hv_deadline_tsc == -1)
9302 return;
9303
9304 tscl = rdtsc();
9305 if (vmx->hv_deadline_tsc > tscl)
9306 /* sure to be 32 bit only because checked on set_hv_timer */
9307 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9308 cpu_preemption_timer_multi);
9309 else
9310 delta_tsc = 0;
9311
9312 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9313 }
9314
9315 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9316 {
9317 struct vcpu_vmx *vmx = to_vmx(vcpu);
9318 unsigned long debugctlmsr, cr3, cr4;
9319
9320 /* Record the guest's net vcpu time for enforced NMI injections. */
9321 if (unlikely(!enable_vnmi &&
9322 vmx->loaded_vmcs->soft_vnmi_blocked))
9323 vmx->loaded_vmcs->entry_time = ktime_get();
9324
9325 /* Don't enter VMX if guest state is invalid, let the exit handler
9326 start emulation until we arrive back to a valid state */
9327 if (vmx->emulation_required)
9328 return;
9329
9330 if (vmx->ple_window_dirty) {
9331 vmx->ple_window_dirty = false;
9332 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9333 }
9334
9335 if (vmx->nested.sync_shadow_vmcs) {
9336 copy_vmcs12_to_shadow(vmx);
9337 vmx->nested.sync_shadow_vmcs = false;
9338 }
9339
9340 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9341 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9342 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9343 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9344
9345 cr3 = __get_current_cr3_fast();
9346 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9347 vmcs_writel(HOST_CR3, cr3);
9348 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9349 }
9350
9351 cr4 = cr4_read_shadow();
9352 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9353 vmcs_writel(HOST_CR4, cr4);
9354 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9355 }
9356
9357 /* When single-stepping over STI and MOV SS, we must clear the
9358 * corresponding interruptibility bits in the guest state. Otherwise
9359 * vmentry fails as it then expects bit 14 (BS) in pending debug
9360 * exceptions being set, but that's not correct for the guest debugging
9361 * case. */
9362 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9363 vmx_set_interrupt_shadow(vcpu, 0);
9364
9365 if (static_cpu_has(X86_FEATURE_PKU) &&
9366 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9367 vcpu->arch.pkru != vmx->host_pkru)
9368 __write_pkru(vcpu->arch.pkru);
9369
9370 atomic_switch_perf_msrs(vmx);
9371 debugctlmsr = get_debugctlmsr();
9372
9373 vmx_arm_hv_timer(vcpu);
9374
9375 vmx->__launched = vmx->loaded_vmcs->launched;
9376 asm(
9377 /* Store host registers */
9378 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9379 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9380 "push %%" _ASM_CX " \n\t"
9381 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9382 "je 1f \n\t"
9383 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9384 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9385 "1: \n\t"
9386 /* Reload cr2 if changed */
9387 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9388 "mov %%cr2, %%" _ASM_DX " \n\t"
9389 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9390 "je 2f \n\t"
9391 "mov %%" _ASM_AX", %%cr2 \n\t"
9392 "2: \n\t"
9393 /* Check if vmlaunch of vmresume is needed */
9394 "cmpl $0, %c[launched](%0) \n\t"
9395 /* Load guest registers. Don't clobber flags. */
9396 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9397 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9398 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9399 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9400 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9401 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9402 #ifdef CONFIG_X86_64
9403 "mov %c[r8](%0), %%r8 \n\t"
9404 "mov %c[r9](%0), %%r9 \n\t"
9405 "mov %c[r10](%0), %%r10 \n\t"
9406 "mov %c[r11](%0), %%r11 \n\t"
9407 "mov %c[r12](%0), %%r12 \n\t"
9408 "mov %c[r13](%0), %%r13 \n\t"
9409 "mov %c[r14](%0), %%r14 \n\t"
9410 "mov %c[r15](%0), %%r15 \n\t"
9411 #endif
9412 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9413
9414 /* Enter guest mode */
9415 "jne 1f \n\t"
9416 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9417 "jmp 2f \n\t"
9418 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9419 "2: "
9420 /* Save guest registers, load host registers, keep flags */
9421 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9422 "pop %0 \n\t"
9423 "setbe %c[fail](%0)\n\t"
9424 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9425 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9426 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9427 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9428 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9429 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9430 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9431 #ifdef CONFIG_X86_64
9432 "mov %%r8, %c[r8](%0) \n\t"
9433 "mov %%r9, %c[r9](%0) \n\t"
9434 "mov %%r10, %c[r10](%0) \n\t"
9435 "mov %%r11, %c[r11](%0) \n\t"
9436 "mov %%r12, %c[r12](%0) \n\t"
9437 "mov %%r13, %c[r13](%0) \n\t"
9438 "mov %%r14, %c[r14](%0) \n\t"
9439 "mov %%r15, %c[r15](%0) \n\t"
9440 "xor %%r8d, %%r8d \n\t"
9441 "xor %%r9d, %%r9d \n\t"
9442 "xor %%r10d, %%r10d \n\t"
9443 "xor %%r11d, %%r11d \n\t"
9444 "xor %%r12d, %%r12d \n\t"
9445 "xor %%r13d, %%r13d \n\t"
9446 "xor %%r14d, %%r14d \n\t"
9447 "xor %%r15d, %%r15d \n\t"
9448 #endif
9449 "mov %%cr2, %%" _ASM_AX " \n\t"
9450 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9451
9452 "xor %%eax, %%eax \n\t"
9453 "xor %%ebx, %%ebx \n\t"
9454 "xor %%esi, %%esi \n\t"
9455 "xor %%edi, %%edi \n\t"
9456 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9457 ".pushsection .rodata \n\t"
9458 ".global vmx_return \n\t"
9459 "vmx_return: " _ASM_PTR " 2b \n\t"
9460 ".popsection"
9461 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9462 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9463 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9464 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9465 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9466 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9467 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9468 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9469 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9470 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9471 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9472 #ifdef CONFIG_X86_64
9473 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9474 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9475 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9476 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9477 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9478 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9479 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9480 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9481 #endif
9482 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9483 [wordsize]"i"(sizeof(ulong))
9484 : "cc", "memory"
9485 #ifdef CONFIG_X86_64
9486 , "rax", "rbx", "rdi", "rsi"
9487 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9488 #else
9489 , "eax", "ebx", "edi", "esi"
9490 #endif
9491 );
9492
9493 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9494 if (debugctlmsr)
9495 update_debugctlmsr(debugctlmsr);
9496
9497 #ifndef CONFIG_X86_64
9498 /*
9499 * The sysexit path does not restore ds/es, so we must set them to
9500 * a reasonable value ourselves.
9501 *
9502 * We can't defer this to vmx_load_host_state() since that function
9503 * may be executed in interrupt context, which saves and restore segments
9504 * around it, nullifying its effect.
9505 */
9506 loadsegment(ds, __USER_DS);
9507 loadsegment(es, __USER_DS);
9508 #endif
9509
9510 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9511 | (1 << VCPU_EXREG_RFLAGS)
9512 | (1 << VCPU_EXREG_PDPTR)
9513 | (1 << VCPU_EXREG_SEGMENTS)
9514 | (1 << VCPU_EXREG_CR3));
9515 vcpu->arch.regs_dirty = 0;
9516
9517 /*
9518 * eager fpu is enabled if PKEY is supported and CR4 is switched
9519 * back on host, so it is safe to read guest PKRU from current
9520 * XSAVE.
9521 */
9522 if (static_cpu_has(X86_FEATURE_PKU) &&
9523 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9524 vcpu->arch.pkru = __read_pkru();
9525 if (vcpu->arch.pkru != vmx->host_pkru)
9526 __write_pkru(vmx->host_pkru);
9527 }
9528
9529 /*
9530 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9531 * we did not inject a still-pending event to L1 now because of
9532 * nested_run_pending, we need to re-enable this bit.
9533 */
9534 if (vmx->nested.nested_run_pending)
9535 kvm_make_request(KVM_REQ_EVENT, vcpu);
9536
9537 vmx->nested.nested_run_pending = 0;
9538 vmx->idt_vectoring_info = 0;
9539
9540 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9541 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9542 return;
9543
9544 vmx->loaded_vmcs->launched = 1;
9545 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9546
9547 vmx_complete_atomic_exit(vmx);
9548 vmx_recover_nmi_blocking(vmx);
9549 vmx_complete_interrupts(vmx);
9550 }
9551 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9552
9553 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9554 {
9555 struct vcpu_vmx *vmx = to_vmx(vcpu);
9556 int cpu;
9557
9558 if (vmx->loaded_vmcs == vmcs)
9559 return;
9560
9561 cpu = get_cpu();
9562 vmx->loaded_vmcs = vmcs;
9563 vmx_vcpu_put(vcpu);
9564 vmx_vcpu_load(vcpu, cpu);
9565 put_cpu();
9566 }
9567
9568 /*
9569 * Ensure that the current vmcs of the logical processor is the
9570 * vmcs01 of the vcpu before calling free_nested().
9571 */
9572 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9573 {
9574 struct vcpu_vmx *vmx = to_vmx(vcpu);
9575 int r;
9576
9577 r = vcpu_load(vcpu);
9578 BUG_ON(r);
9579 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9580 free_nested(vmx);
9581 vcpu_put(vcpu);
9582 }
9583
9584 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9585 {
9586 struct vcpu_vmx *vmx = to_vmx(vcpu);
9587
9588 if (enable_pml)
9589 vmx_destroy_pml_buffer(vmx);
9590 free_vpid(vmx->vpid);
9591 leave_guest_mode(vcpu);
9592 vmx_free_vcpu_nested(vcpu);
9593 free_loaded_vmcs(vmx->loaded_vmcs);
9594 kfree(vmx->guest_msrs);
9595 kvm_vcpu_uninit(vcpu);
9596 kmem_cache_free(kvm_vcpu_cache, vmx);
9597 }
9598
9599 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9600 {
9601 int err;
9602 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9603 int cpu;
9604
9605 if (!vmx)
9606 return ERR_PTR(-ENOMEM);
9607
9608 vmx->vpid = allocate_vpid();
9609
9610 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9611 if (err)
9612 goto free_vcpu;
9613
9614 err = -ENOMEM;
9615
9616 /*
9617 * If PML is turned on, failure on enabling PML just results in failure
9618 * of creating the vcpu, therefore we can simplify PML logic (by
9619 * avoiding dealing with cases, such as enabling PML partially on vcpus
9620 * for the guest, etc.
9621 */
9622 if (enable_pml) {
9623 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9624 if (!vmx->pml_pg)
9625 goto uninit_vcpu;
9626 }
9627
9628 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9629 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9630 > PAGE_SIZE);
9631
9632 if (!vmx->guest_msrs)
9633 goto free_pml;
9634
9635 vmx->loaded_vmcs = &vmx->vmcs01;
9636 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9637 vmx->loaded_vmcs->shadow_vmcs = NULL;
9638 if (!vmx->loaded_vmcs->vmcs)
9639 goto free_msrs;
9640 loaded_vmcs_init(vmx->loaded_vmcs);
9641
9642 cpu = get_cpu();
9643 vmx_vcpu_load(&vmx->vcpu, cpu);
9644 vmx->vcpu.cpu = cpu;
9645 vmx_vcpu_setup(vmx);
9646 vmx_vcpu_put(&vmx->vcpu);
9647 put_cpu();
9648 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9649 err = alloc_apic_access_page(kvm);
9650 if (err)
9651 goto free_vmcs;
9652 }
9653
9654 if (enable_ept) {
9655 err = init_rmode_identity_map(kvm);
9656 if (err)
9657 goto free_vmcs;
9658 }
9659
9660 if (nested) {
9661 nested_vmx_setup_ctls_msrs(vmx);
9662 vmx->nested.vpid02 = allocate_vpid();
9663 }
9664
9665 vmx->nested.posted_intr_nv = -1;
9666 vmx->nested.current_vmptr = -1ull;
9667
9668 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9669
9670 /*
9671 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9672 * or POSTED_INTR_WAKEUP_VECTOR.
9673 */
9674 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9675 vmx->pi_desc.sn = 1;
9676
9677 return &vmx->vcpu;
9678
9679 free_vmcs:
9680 free_vpid(vmx->nested.vpid02);
9681 free_loaded_vmcs(vmx->loaded_vmcs);
9682 free_msrs:
9683 kfree(vmx->guest_msrs);
9684 free_pml:
9685 vmx_destroy_pml_buffer(vmx);
9686 uninit_vcpu:
9687 kvm_vcpu_uninit(&vmx->vcpu);
9688 free_vcpu:
9689 free_vpid(vmx->vpid);
9690 kmem_cache_free(kvm_vcpu_cache, vmx);
9691 return ERR_PTR(err);
9692 }
9693
9694 static void __init vmx_check_processor_compat(void *rtn)
9695 {
9696 struct vmcs_config vmcs_conf;
9697
9698 *(int *)rtn = 0;
9699 if (setup_vmcs_config(&vmcs_conf) < 0)
9700 *(int *)rtn = -EIO;
9701 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9702 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9703 smp_processor_id());
9704 *(int *)rtn = -EIO;
9705 }
9706 }
9707
9708 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9709 {
9710 u8 cache;
9711 u64 ipat = 0;
9712
9713 /* For VT-d and EPT combination
9714 * 1. MMIO: always map as UC
9715 * 2. EPT with VT-d:
9716 * a. VT-d without snooping control feature: can't guarantee the
9717 * result, try to trust guest.
9718 * b. VT-d with snooping control feature: snooping control feature of
9719 * VT-d engine can guarantee the cache correctness. Just set it
9720 * to WB to keep consistent with host. So the same as item 3.
9721 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9722 * consistent with host MTRR
9723 */
9724 if (is_mmio) {
9725 cache = MTRR_TYPE_UNCACHABLE;
9726 goto exit;
9727 }
9728
9729 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9730 ipat = VMX_EPT_IPAT_BIT;
9731 cache = MTRR_TYPE_WRBACK;
9732 goto exit;
9733 }
9734
9735 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9736 ipat = VMX_EPT_IPAT_BIT;
9737 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9738 cache = MTRR_TYPE_WRBACK;
9739 else
9740 cache = MTRR_TYPE_UNCACHABLE;
9741 goto exit;
9742 }
9743
9744 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9745
9746 exit:
9747 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9748 }
9749
9750 static int vmx_get_lpage_level(void)
9751 {
9752 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9753 return PT_DIRECTORY_LEVEL;
9754 else
9755 /* For shadow and EPT supported 1GB page */
9756 return PT_PDPE_LEVEL;
9757 }
9758
9759 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9760 {
9761 /*
9762 * These bits in the secondary execution controls field
9763 * are dynamic, the others are mostly based on the hypervisor
9764 * architecture and the guest's CPUID. Do not touch the
9765 * dynamic bits.
9766 */
9767 u32 mask =
9768 SECONDARY_EXEC_SHADOW_VMCS |
9769 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9770 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9771
9772 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9773
9774 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9775 (new_ctl & ~mask) | (cur_ctl & mask));
9776 }
9777
9778 /*
9779 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9780 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9781 */
9782 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9783 {
9784 struct vcpu_vmx *vmx = to_vmx(vcpu);
9785 struct kvm_cpuid_entry2 *entry;
9786
9787 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9788 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9789
9790 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9791 if (entry && (entry->_reg & (_cpuid_mask))) \
9792 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9793 } while (0)
9794
9795 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9796 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9797 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9798 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9799 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9800 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9801 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9802 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9803 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9804 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9805 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9806 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9807 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9808 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9809 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9810
9811 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9812 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9813 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9814 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9815 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9816 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
9817
9818 #undef cr4_fixed1_update
9819 }
9820
9821 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9822 {
9823 struct vcpu_vmx *vmx = to_vmx(vcpu);
9824
9825 if (cpu_has_secondary_exec_ctrls()) {
9826 vmx_compute_secondary_exec_control(vmx);
9827 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9828 }
9829
9830 if (nested_vmx_allowed(vcpu))
9831 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9832 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9833 else
9834 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9835 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9836
9837 if (nested_vmx_allowed(vcpu))
9838 nested_vmx_cr_fixed1_bits_update(vcpu);
9839 }
9840
9841 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9842 {
9843 if (func == 1 && nested)
9844 entry->ecx |= bit(X86_FEATURE_VMX);
9845 }
9846
9847 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9848 struct x86_exception *fault)
9849 {
9850 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9851 struct vcpu_vmx *vmx = to_vmx(vcpu);
9852 u32 exit_reason;
9853 unsigned long exit_qualification = vcpu->arch.exit_qualification;
9854
9855 if (vmx->nested.pml_full) {
9856 exit_reason = EXIT_REASON_PML_FULL;
9857 vmx->nested.pml_full = false;
9858 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9859 } else if (fault->error_code & PFERR_RSVD_MASK)
9860 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9861 else
9862 exit_reason = EXIT_REASON_EPT_VIOLATION;
9863
9864 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9865 vmcs12->guest_physical_address = fault->address;
9866 }
9867
9868 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9869 {
9870 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9871 }
9872
9873 /* Callbacks for nested_ept_init_mmu_context: */
9874
9875 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9876 {
9877 /* return the page table to be shadowed - in our case, EPT12 */
9878 return get_vmcs12(vcpu)->ept_pointer;
9879 }
9880
9881 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9882 {
9883 WARN_ON(mmu_is_nested(vcpu));
9884 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9885 return 1;
9886
9887 kvm_mmu_unload(vcpu);
9888 kvm_init_shadow_ept_mmu(vcpu,
9889 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9890 VMX_EPT_EXECUTE_ONLY_BIT,
9891 nested_ept_ad_enabled(vcpu));
9892 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9893 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9894 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9895
9896 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9897 return 0;
9898 }
9899
9900 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9901 {
9902 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9903 }
9904
9905 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9906 u16 error_code)
9907 {
9908 bool inequality, bit;
9909
9910 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9911 inequality =
9912 (error_code & vmcs12->page_fault_error_code_mask) !=
9913 vmcs12->page_fault_error_code_match;
9914 return inequality ^ bit;
9915 }
9916
9917 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9918 struct x86_exception *fault)
9919 {
9920 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9921
9922 WARN_ON(!is_guest_mode(vcpu));
9923
9924 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9925 !to_vmx(vcpu)->nested.nested_run_pending) {
9926 vmcs12->vm_exit_intr_error_code = fault->error_code;
9927 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9928 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9929 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9930 fault->address);
9931 } else {
9932 kvm_inject_page_fault(vcpu, fault);
9933 }
9934 }
9935
9936 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9937 struct vmcs12 *vmcs12);
9938
9939 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9940 struct vmcs12 *vmcs12)
9941 {
9942 struct vcpu_vmx *vmx = to_vmx(vcpu);
9943 struct page *page;
9944 u64 hpa;
9945
9946 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9947 /*
9948 * Translate L1 physical address to host physical
9949 * address for vmcs02. Keep the page pinned, so this
9950 * physical address remains valid. We keep a reference
9951 * to it so we can release it later.
9952 */
9953 if (vmx->nested.apic_access_page) { /* shouldn't happen */
9954 kvm_release_page_dirty(vmx->nested.apic_access_page);
9955 vmx->nested.apic_access_page = NULL;
9956 }
9957 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9958 /*
9959 * If translation failed, no matter: This feature asks
9960 * to exit when accessing the given address, and if it
9961 * can never be accessed, this feature won't do
9962 * anything anyway.
9963 */
9964 if (!is_error_page(page)) {
9965 vmx->nested.apic_access_page = page;
9966 hpa = page_to_phys(vmx->nested.apic_access_page);
9967 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9968 } else {
9969 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9970 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9971 }
9972 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9973 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9974 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9975 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9976 kvm_vcpu_reload_apic_access_page(vcpu);
9977 }
9978
9979 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9980 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9981 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9982 vmx->nested.virtual_apic_page = NULL;
9983 }
9984 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9985
9986 /*
9987 * If translation failed, VM entry will fail because
9988 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9989 * Failing the vm entry is _not_ what the processor
9990 * does but it's basically the only possibility we
9991 * have. We could still enter the guest if CR8 load
9992 * exits are enabled, CR8 store exits are enabled, and
9993 * virtualize APIC access is disabled; in this case
9994 * the processor would never use the TPR shadow and we
9995 * could simply clear the bit from the execution
9996 * control. But such a configuration is useless, so
9997 * let's keep the code simple.
9998 */
9999 if (!is_error_page(page)) {
10000 vmx->nested.virtual_apic_page = page;
10001 hpa = page_to_phys(vmx->nested.virtual_apic_page);
10002 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10003 }
10004 }
10005
10006 if (nested_cpu_has_posted_intr(vmcs12)) {
10007 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10008 kunmap(vmx->nested.pi_desc_page);
10009 kvm_release_page_dirty(vmx->nested.pi_desc_page);
10010 vmx->nested.pi_desc_page = NULL;
10011 }
10012 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10013 if (is_error_page(page))
10014 return;
10015 vmx->nested.pi_desc_page = page;
10016 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10017 vmx->nested.pi_desc =
10018 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10019 (unsigned long)(vmcs12->posted_intr_desc_addr &
10020 (PAGE_SIZE - 1)));
10021 vmcs_write64(POSTED_INTR_DESC_ADDR,
10022 page_to_phys(vmx->nested.pi_desc_page) +
10023 (unsigned long)(vmcs12->posted_intr_desc_addr &
10024 (PAGE_SIZE - 1)));
10025 }
10026 if (cpu_has_vmx_msr_bitmap() &&
10027 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
10028 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10029 ;
10030 else
10031 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10032 CPU_BASED_USE_MSR_BITMAPS);
10033 }
10034
10035 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10036 {
10037 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10038 struct vcpu_vmx *vmx = to_vmx(vcpu);
10039
10040 if (vcpu->arch.virtual_tsc_khz == 0)
10041 return;
10042
10043 /* Make sure short timeouts reliably trigger an immediate vmexit.
10044 * hrtimer_start does not guarantee this. */
10045 if (preemption_timeout <= 1) {
10046 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10047 return;
10048 }
10049
10050 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10051 preemption_timeout *= 1000000;
10052 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10053 hrtimer_start(&vmx->nested.preemption_timer,
10054 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10055 }
10056
10057 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10058 struct vmcs12 *vmcs12)
10059 {
10060 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10061 return 0;
10062
10063 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10064 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10065 return -EINVAL;
10066
10067 return 0;
10068 }
10069
10070 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10071 struct vmcs12 *vmcs12)
10072 {
10073 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10074 return 0;
10075
10076 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10077 return -EINVAL;
10078
10079 return 0;
10080 }
10081
10082 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10083 struct vmcs12 *vmcs12)
10084 {
10085 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10086 return 0;
10087
10088 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10089 return -EINVAL;
10090
10091 return 0;
10092 }
10093
10094 /*
10095 * Merge L0's and L1's MSR bitmap, return false to indicate that
10096 * we do not use the hardware.
10097 */
10098 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10099 struct vmcs12 *vmcs12)
10100 {
10101 int msr;
10102 struct page *page;
10103 unsigned long *msr_bitmap_l1;
10104 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10105
10106 /* This shortcut is ok because we support only x2APIC MSRs so far. */
10107 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10108 return false;
10109
10110 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10111 if (is_error_page(page))
10112 return false;
10113 msr_bitmap_l1 = (unsigned long *)kmap(page);
10114
10115 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10116
10117 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10118 if (nested_cpu_has_apic_reg_virt(vmcs12))
10119 for (msr = 0x800; msr <= 0x8ff; msr++)
10120 nested_vmx_disable_intercept_for_msr(
10121 msr_bitmap_l1, msr_bitmap_l0,
10122 msr, MSR_TYPE_R);
10123
10124 nested_vmx_disable_intercept_for_msr(
10125 msr_bitmap_l1, msr_bitmap_l0,
10126 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10127 MSR_TYPE_R | MSR_TYPE_W);
10128
10129 if (nested_cpu_has_vid(vmcs12)) {
10130 nested_vmx_disable_intercept_for_msr(
10131 msr_bitmap_l1, msr_bitmap_l0,
10132 APIC_BASE_MSR + (APIC_EOI >> 4),
10133 MSR_TYPE_W);
10134 nested_vmx_disable_intercept_for_msr(
10135 msr_bitmap_l1, msr_bitmap_l0,
10136 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10137 MSR_TYPE_W);
10138 }
10139 }
10140 kunmap(page);
10141 kvm_release_page_clean(page);
10142
10143 return true;
10144 }
10145
10146 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10147 struct vmcs12 *vmcs12)
10148 {
10149 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10150 !nested_cpu_has_apic_reg_virt(vmcs12) &&
10151 !nested_cpu_has_vid(vmcs12) &&
10152 !nested_cpu_has_posted_intr(vmcs12))
10153 return 0;
10154
10155 /*
10156 * If virtualize x2apic mode is enabled,
10157 * virtualize apic access must be disabled.
10158 */
10159 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10160 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10161 return -EINVAL;
10162
10163 /*
10164 * If virtual interrupt delivery is enabled,
10165 * we must exit on external interrupts.
10166 */
10167 if (nested_cpu_has_vid(vmcs12) &&
10168 !nested_exit_on_intr(vcpu))
10169 return -EINVAL;
10170
10171 /*
10172 * bits 15:8 should be zero in posted_intr_nv,
10173 * the descriptor address has been already checked
10174 * in nested_get_vmcs12_pages.
10175 */
10176 if (nested_cpu_has_posted_intr(vmcs12) &&
10177 (!nested_cpu_has_vid(vmcs12) ||
10178 !nested_exit_intr_ack_set(vcpu) ||
10179 vmcs12->posted_intr_nv & 0xff00))
10180 return -EINVAL;
10181
10182 /* tpr shadow is needed by all apicv features. */
10183 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10184 return -EINVAL;
10185
10186 return 0;
10187 }
10188
10189 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10190 unsigned long count_field,
10191 unsigned long addr_field)
10192 {
10193 int maxphyaddr;
10194 u64 count, addr;
10195
10196 if (vmcs12_read_any(vcpu, count_field, &count) ||
10197 vmcs12_read_any(vcpu, addr_field, &addr)) {
10198 WARN_ON(1);
10199 return -EINVAL;
10200 }
10201 if (count == 0)
10202 return 0;
10203 maxphyaddr = cpuid_maxphyaddr(vcpu);
10204 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10205 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10206 pr_debug_ratelimited(
10207 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10208 addr_field, maxphyaddr, count, addr);
10209 return -EINVAL;
10210 }
10211 return 0;
10212 }
10213
10214 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10215 struct vmcs12 *vmcs12)
10216 {
10217 if (vmcs12->vm_exit_msr_load_count == 0 &&
10218 vmcs12->vm_exit_msr_store_count == 0 &&
10219 vmcs12->vm_entry_msr_load_count == 0)
10220 return 0; /* Fast path */
10221 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10222 VM_EXIT_MSR_LOAD_ADDR) ||
10223 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10224 VM_EXIT_MSR_STORE_ADDR) ||
10225 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10226 VM_ENTRY_MSR_LOAD_ADDR))
10227 return -EINVAL;
10228 return 0;
10229 }
10230
10231 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10232 struct vmcs12 *vmcs12)
10233 {
10234 u64 address = vmcs12->pml_address;
10235 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10236
10237 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10238 if (!nested_cpu_has_ept(vmcs12) ||
10239 !IS_ALIGNED(address, 4096) ||
10240 address >> maxphyaddr)
10241 return -EINVAL;
10242 }
10243
10244 return 0;
10245 }
10246
10247 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10248 struct vmx_msr_entry *e)
10249 {
10250 /* x2APIC MSR accesses are not allowed */
10251 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10252 return -EINVAL;
10253 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10254 e->index == MSR_IA32_UCODE_REV)
10255 return -EINVAL;
10256 if (e->reserved != 0)
10257 return -EINVAL;
10258 return 0;
10259 }
10260
10261 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10262 struct vmx_msr_entry *e)
10263 {
10264 if (e->index == MSR_FS_BASE ||
10265 e->index == MSR_GS_BASE ||
10266 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10267 nested_vmx_msr_check_common(vcpu, e))
10268 return -EINVAL;
10269 return 0;
10270 }
10271
10272 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10273 struct vmx_msr_entry *e)
10274 {
10275 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10276 nested_vmx_msr_check_common(vcpu, e))
10277 return -EINVAL;
10278 return 0;
10279 }
10280
10281 /*
10282 * Load guest's/host's msr at nested entry/exit.
10283 * return 0 for success, entry index for failure.
10284 */
10285 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10286 {
10287 u32 i;
10288 struct vmx_msr_entry e;
10289 struct msr_data msr;
10290
10291 msr.host_initiated = false;
10292 for (i = 0; i < count; i++) {
10293 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10294 &e, sizeof(e))) {
10295 pr_debug_ratelimited(
10296 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10297 __func__, i, gpa + i * sizeof(e));
10298 goto fail;
10299 }
10300 if (nested_vmx_load_msr_check(vcpu, &e)) {
10301 pr_debug_ratelimited(
10302 "%s check failed (%u, 0x%x, 0x%x)\n",
10303 __func__, i, e.index, e.reserved);
10304 goto fail;
10305 }
10306 msr.index = e.index;
10307 msr.data = e.value;
10308 if (kvm_set_msr(vcpu, &msr)) {
10309 pr_debug_ratelimited(
10310 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10311 __func__, i, e.index, e.value);
10312 goto fail;
10313 }
10314 }
10315 return 0;
10316 fail:
10317 return i + 1;
10318 }
10319
10320 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10321 {
10322 u32 i;
10323 struct vmx_msr_entry e;
10324
10325 for (i = 0; i < count; i++) {
10326 struct msr_data msr_info;
10327 if (kvm_vcpu_read_guest(vcpu,
10328 gpa + i * sizeof(e),
10329 &e, 2 * sizeof(u32))) {
10330 pr_debug_ratelimited(
10331 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10332 __func__, i, gpa + i * sizeof(e));
10333 return -EINVAL;
10334 }
10335 if (nested_vmx_store_msr_check(vcpu, &e)) {
10336 pr_debug_ratelimited(
10337 "%s check failed (%u, 0x%x, 0x%x)\n",
10338 __func__, i, e.index, e.reserved);
10339 return -EINVAL;
10340 }
10341 msr_info.host_initiated = false;
10342 msr_info.index = e.index;
10343 if (kvm_get_msr(vcpu, &msr_info)) {
10344 pr_debug_ratelimited(
10345 "%s cannot read MSR (%u, 0x%x)\n",
10346 __func__, i, e.index);
10347 return -EINVAL;
10348 }
10349 if (kvm_vcpu_write_guest(vcpu,
10350 gpa + i * sizeof(e) +
10351 offsetof(struct vmx_msr_entry, value),
10352 &msr_info.data, sizeof(msr_info.data))) {
10353 pr_debug_ratelimited(
10354 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10355 __func__, i, e.index, msr_info.data);
10356 return -EINVAL;
10357 }
10358 }
10359 return 0;
10360 }
10361
10362 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10363 {
10364 unsigned long invalid_mask;
10365
10366 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10367 return (val & invalid_mask) == 0;
10368 }
10369
10370 /*
10371 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10372 * emulating VM entry into a guest with EPT enabled.
10373 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10374 * is assigned to entry_failure_code on failure.
10375 */
10376 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10377 u32 *entry_failure_code)
10378 {
10379 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10380 if (!nested_cr3_valid(vcpu, cr3)) {
10381 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10382 return 1;
10383 }
10384
10385 /*
10386 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10387 * must not be dereferenced.
10388 */
10389 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10390 !nested_ept) {
10391 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10392 *entry_failure_code = ENTRY_FAIL_PDPTE;
10393 return 1;
10394 }
10395 }
10396
10397 vcpu->arch.cr3 = cr3;
10398 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10399 }
10400
10401 kvm_mmu_reset_context(vcpu);
10402 return 0;
10403 }
10404
10405 /*
10406 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10407 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10408 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10409 * guest in a way that will both be appropriate to L1's requests, and our
10410 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10411 * function also has additional necessary side-effects, like setting various
10412 * vcpu->arch fields.
10413 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10414 * is assigned to entry_failure_code on failure.
10415 */
10416 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10417 bool from_vmentry, u32 *entry_failure_code)
10418 {
10419 struct vcpu_vmx *vmx = to_vmx(vcpu);
10420 u32 exec_control, vmcs12_exec_ctrl;
10421
10422 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10423 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10424 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10425 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10426 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10427 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10428 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10429 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10430 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10431 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10432 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10433 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10434 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10435 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10436 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10437 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10438 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10439 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10440 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10441 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10442 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10443 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10444 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10445 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10446 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10447 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10448 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10449 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10450 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10451 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10452 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10453 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10454 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10455 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10456 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10457 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10458
10459 if (from_vmentry &&
10460 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10461 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10462 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10463 } else {
10464 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10465 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10466 }
10467 if (from_vmentry) {
10468 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10469 vmcs12->vm_entry_intr_info_field);
10470 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10471 vmcs12->vm_entry_exception_error_code);
10472 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10473 vmcs12->vm_entry_instruction_len);
10474 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10475 vmcs12->guest_interruptibility_info);
10476 vmx->loaded_vmcs->nmi_known_unmasked =
10477 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10478 } else {
10479 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10480 }
10481 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10482 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10483 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10484 vmcs12->guest_pending_dbg_exceptions);
10485 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10486 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10487
10488 if (nested_cpu_has_xsaves(vmcs12))
10489 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10490 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10491
10492 exec_control = vmcs12->pin_based_vm_exec_control;
10493
10494 /* Preemption timer setting is only taken from vmcs01. */
10495 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10496 exec_control |= vmcs_config.pin_based_exec_ctrl;
10497 if (vmx->hv_deadline_tsc == -1)
10498 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10499
10500 /* Posted interrupts setting is only taken from vmcs12. */
10501 if (nested_cpu_has_posted_intr(vmcs12)) {
10502 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10503 vmx->nested.pi_pending = false;
10504 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10505 } else {
10506 exec_control &= ~PIN_BASED_POSTED_INTR;
10507 }
10508
10509 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10510
10511 vmx->nested.preemption_timer_expired = false;
10512 if (nested_cpu_has_preemption_timer(vmcs12))
10513 vmx_start_preemption_timer(vcpu);
10514
10515 /*
10516 * Whether page-faults are trapped is determined by a combination of
10517 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10518 * If enable_ept, L0 doesn't care about page faults and we should
10519 * set all of these to L1's desires. However, if !enable_ept, L0 does
10520 * care about (at least some) page faults, and because it is not easy
10521 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10522 * to exit on each and every L2 page fault. This is done by setting
10523 * MASK=MATCH=0 and (see below) EB.PF=1.
10524 * Note that below we don't need special code to set EB.PF beyond the
10525 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10526 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10527 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10528 */
10529 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10530 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10531 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10532 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10533
10534 if (cpu_has_secondary_exec_ctrls()) {
10535 exec_control = vmx->secondary_exec_control;
10536
10537 /* Take the following fields only from vmcs12 */
10538 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10539 SECONDARY_EXEC_ENABLE_INVPCID |
10540 SECONDARY_EXEC_RDTSCP |
10541 SECONDARY_EXEC_XSAVES |
10542 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10543 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10544 SECONDARY_EXEC_ENABLE_VMFUNC);
10545 if (nested_cpu_has(vmcs12,
10546 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10547 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10548 ~SECONDARY_EXEC_ENABLE_PML;
10549 exec_control |= vmcs12_exec_ctrl;
10550 }
10551
10552 /* All VMFUNCs are currently emulated through L0 vmexits. */
10553 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10554 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10555
10556 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10557 vmcs_write64(EOI_EXIT_BITMAP0,
10558 vmcs12->eoi_exit_bitmap0);
10559 vmcs_write64(EOI_EXIT_BITMAP1,
10560 vmcs12->eoi_exit_bitmap1);
10561 vmcs_write64(EOI_EXIT_BITMAP2,
10562 vmcs12->eoi_exit_bitmap2);
10563 vmcs_write64(EOI_EXIT_BITMAP3,
10564 vmcs12->eoi_exit_bitmap3);
10565 vmcs_write16(GUEST_INTR_STATUS,
10566 vmcs12->guest_intr_status);
10567 }
10568
10569 /*
10570 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10571 * nested_get_vmcs12_pages will either fix it up or
10572 * remove the VM execution control.
10573 */
10574 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10575 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10576
10577 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10578 }
10579
10580
10581 /*
10582 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10583 * Some constant fields are set here by vmx_set_constant_host_state().
10584 * Other fields are different per CPU, and will be set later when
10585 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10586 */
10587 vmx_set_constant_host_state(vmx);
10588
10589 /*
10590 * Set the MSR load/store lists to match L0's settings.
10591 */
10592 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10593 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10594 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10595 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10596 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10597
10598 /*
10599 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10600 * entry, but only if the current (host) sp changed from the value
10601 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10602 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10603 * here we just force the write to happen on entry.
10604 */
10605 vmx->host_rsp = 0;
10606
10607 exec_control = vmx_exec_control(vmx); /* L0's desires */
10608 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10609 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10610 exec_control &= ~CPU_BASED_TPR_SHADOW;
10611 exec_control |= vmcs12->cpu_based_vm_exec_control;
10612
10613 /*
10614 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10615 * nested_get_vmcs12_pages can't fix it up, the illegal value
10616 * will result in a VM entry failure.
10617 */
10618 if (exec_control & CPU_BASED_TPR_SHADOW) {
10619 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10620 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10621 } else {
10622 #ifdef CONFIG_X86_64
10623 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10624 CPU_BASED_CR8_STORE_EXITING;
10625 #endif
10626 }
10627
10628 /*
10629 * Merging of IO bitmap not currently supported.
10630 * Rather, exit every time.
10631 */
10632 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10633 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10634
10635 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10636
10637 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10638 * bitwise-or of what L1 wants to trap for L2, and what we want to
10639 * trap. Note that CR0.TS also needs updating - we do this later.
10640 */
10641 update_exception_bitmap(vcpu);
10642 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10643 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10644
10645 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10646 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10647 * bits are further modified by vmx_set_efer() below.
10648 */
10649 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10650
10651 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10652 * emulated by vmx_set_efer(), below.
10653 */
10654 vm_entry_controls_init(vmx,
10655 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10656 ~VM_ENTRY_IA32E_MODE) |
10657 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10658
10659 if (from_vmentry &&
10660 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10661 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10662 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10663 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10664 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10665 }
10666
10667 set_cr4_guest_host_mask(vmx);
10668
10669 if (from_vmentry &&
10670 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10671 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10672
10673 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10674 vmcs_write64(TSC_OFFSET,
10675 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10676 else
10677 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10678 if (kvm_has_tsc_control)
10679 decache_tsc_multiplier(vmx);
10680
10681 if (enable_vpid) {
10682 /*
10683 * There is no direct mapping between vpid02 and vpid12, the
10684 * vpid02 is per-vCPU for L0 and reused while the value of
10685 * vpid12 is changed w/ one invvpid during nested vmentry.
10686 * The vpid12 is allocated by L1 for L2, so it will not
10687 * influence global bitmap(for vpid01 and vpid02 allocation)
10688 * even if spawn a lot of nested vCPUs.
10689 */
10690 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10691 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10692 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10693 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10694 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10695 }
10696 } else {
10697 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10698 vmx_flush_tlb(vcpu);
10699 }
10700
10701 }
10702
10703 if (enable_pml) {
10704 /*
10705 * Conceptually we want to copy the PML address and index from
10706 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10707 * since we always flush the log on each vmexit, this happens
10708 * to be equivalent to simply resetting the fields in vmcs02.
10709 */
10710 ASSERT(vmx->pml_pg);
10711 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10712 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10713 }
10714
10715 if (nested_cpu_has_ept(vmcs12)) {
10716 if (nested_ept_init_mmu_context(vcpu)) {
10717 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10718 return 1;
10719 }
10720 } else if (nested_cpu_has2(vmcs12,
10721 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10722 vmx_flush_tlb_ept_only(vcpu);
10723 }
10724
10725 /*
10726 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10727 * bits which we consider mandatory enabled.
10728 * The CR0_READ_SHADOW is what L2 should have expected to read given
10729 * the specifications by L1; It's not enough to take
10730 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10731 * have more bits than L1 expected.
10732 */
10733 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10734 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10735
10736 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10737 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10738
10739 if (from_vmentry &&
10740 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10741 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10742 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10743 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10744 else
10745 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10746 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10747 vmx_set_efer(vcpu, vcpu->arch.efer);
10748
10749 /* Shadow page tables on either EPT or shadow page tables. */
10750 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10751 entry_failure_code))
10752 return 1;
10753
10754 if (!enable_ept)
10755 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10756
10757 /*
10758 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10759 */
10760 if (enable_ept) {
10761 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10762 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10763 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10764 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10765 }
10766
10767 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10768 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10769 return 0;
10770 }
10771
10772 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10773 {
10774 struct vcpu_vmx *vmx = to_vmx(vcpu);
10775
10776 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10777 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10778 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10779
10780 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10781 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10782
10783 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10784 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10785
10786 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10787 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10788
10789 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10790 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10791
10792 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10793 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10794
10795 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10796 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10797
10798 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10799 vmx->nested.nested_vmx_procbased_ctls_low,
10800 vmx->nested.nested_vmx_procbased_ctls_high) ||
10801 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10802 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10803 vmx->nested.nested_vmx_secondary_ctls_low,
10804 vmx->nested.nested_vmx_secondary_ctls_high)) ||
10805 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10806 vmx->nested.nested_vmx_pinbased_ctls_low,
10807 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10808 !vmx_control_verify(vmcs12->vm_exit_controls,
10809 vmx->nested.nested_vmx_exit_ctls_low,
10810 vmx->nested.nested_vmx_exit_ctls_high) ||
10811 !vmx_control_verify(vmcs12->vm_entry_controls,
10812 vmx->nested.nested_vmx_entry_ctls_low,
10813 vmx->nested.nested_vmx_entry_ctls_high))
10814 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10815
10816 if (nested_cpu_has_vmfunc(vmcs12)) {
10817 if (vmcs12->vm_function_control &
10818 ~vmx->nested.nested_vmx_vmfunc_controls)
10819 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10820
10821 if (nested_cpu_has_eptp_switching(vmcs12)) {
10822 if (!nested_cpu_has_ept(vmcs12) ||
10823 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10824 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10825 }
10826 }
10827
10828 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10829 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10830
10831 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10832 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10833 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10834 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10835
10836 return 0;
10837 }
10838
10839 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10840 u32 *exit_qual)
10841 {
10842 bool ia32e;
10843
10844 *exit_qual = ENTRY_FAIL_DEFAULT;
10845
10846 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10847 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10848 return 1;
10849
10850 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10851 vmcs12->vmcs_link_pointer != -1ull) {
10852 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10853 return 1;
10854 }
10855
10856 /*
10857 * If the load IA32_EFER VM-entry control is 1, the following checks
10858 * are performed on the field for the IA32_EFER MSR:
10859 * - Bits reserved in the IA32_EFER MSR must be 0.
10860 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10861 * the IA-32e mode guest VM-exit control. It must also be identical
10862 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10863 * CR0.PG) is 1.
10864 */
10865 if (to_vmx(vcpu)->nested.nested_run_pending &&
10866 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10867 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10868 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10869 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10870 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10871 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10872 return 1;
10873 }
10874
10875 /*
10876 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10877 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10878 * the values of the LMA and LME bits in the field must each be that of
10879 * the host address-space size VM-exit control.
10880 */
10881 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10882 ia32e = (vmcs12->vm_exit_controls &
10883 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10884 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10885 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10886 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10887 return 1;
10888 }
10889
10890 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
10891 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
10892 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
10893 return 1;
10894
10895 return 0;
10896 }
10897
10898 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10899 {
10900 struct vcpu_vmx *vmx = to_vmx(vcpu);
10901 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10902 struct loaded_vmcs *vmcs02;
10903 u32 msr_entry_idx;
10904 u32 exit_qual;
10905
10906 vmcs02 = nested_get_current_vmcs02(vmx);
10907 if (!vmcs02)
10908 return -ENOMEM;
10909
10910 enter_guest_mode(vcpu);
10911
10912 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10913 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10914
10915 vmx_switch_vmcs(vcpu, vmcs02);
10916 vmx_segment_cache_clear(vmx);
10917
10918 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10919 leave_guest_mode(vcpu);
10920 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10921 nested_vmx_entry_failure(vcpu, vmcs12,
10922 EXIT_REASON_INVALID_STATE, exit_qual);
10923 return 1;
10924 }
10925
10926 nested_get_vmcs12_pages(vcpu, vmcs12);
10927
10928 msr_entry_idx = nested_vmx_load_msr(vcpu,
10929 vmcs12->vm_entry_msr_load_addr,
10930 vmcs12->vm_entry_msr_load_count);
10931 if (msr_entry_idx) {
10932 leave_guest_mode(vcpu);
10933 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10934 nested_vmx_entry_failure(vcpu, vmcs12,
10935 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10936 return 1;
10937 }
10938
10939 /*
10940 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10941 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10942 * returned as far as L1 is concerned. It will only return (and set
10943 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10944 */
10945 return 0;
10946 }
10947
10948 /*
10949 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10950 * for running an L2 nested guest.
10951 */
10952 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10953 {
10954 struct vmcs12 *vmcs12;
10955 struct vcpu_vmx *vmx = to_vmx(vcpu);
10956 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10957 u32 exit_qual;
10958 int ret;
10959
10960 if (!nested_vmx_check_permission(vcpu))
10961 return 1;
10962
10963 if (!nested_vmx_check_vmcs12(vcpu))
10964 goto out;
10965
10966 vmcs12 = get_vmcs12(vcpu);
10967
10968 if (enable_shadow_vmcs)
10969 copy_shadow_to_vmcs12(vmx);
10970
10971 /*
10972 * The nested entry process starts with enforcing various prerequisites
10973 * on vmcs12 as required by the Intel SDM, and act appropriately when
10974 * they fail: As the SDM explains, some conditions should cause the
10975 * instruction to fail, while others will cause the instruction to seem
10976 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10977 * To speed up the normal (success) code path, we should avoid checking
10978 * for misconfigurations which will anyway be caught by the processor
10979 * when using the merged vmcs02.
10980 */
10981 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10982 nested_vmx_failValid(vcpu,
10983 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10984 goto out;
10985 }
10986
10987 if (vmcs12->launch_state == launch) {
10988 nested_vmx_failValid(vcpu,
10989 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10990 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10991 goto out;
10992 }
10993
10994 ret = check_vmentry_prereqs(vcpu, vmcs12);
10995 if (ret) {
10996 nested_vmx_failValid(vcpu, ret);
10997 goto out;
10998 }
10999
11000 /*
11001 * After this point, the trap flag no longer triggers a singlestep trap
11002 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11003 * This is not 100% correct; for performance reasons, we delegate most
11004 * of the checks on host state to the processor. If those fail,
11005 * the singlestep trap is missed.
11006 */
11007 skip_emulated_instruction(vcpu);
11008
11009 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11010 if (ret) {
11011 nested_vmx_entry_failure(vcpu, vmcs12,
11012 EXIT_REASON_INVALID_STATE, exit_qual);
11013 return 1;
11014 }
11015
11016 /*
11017 * We're finally done with prerequisite checking, and can start with
11018 * the nested entry.
11019 */
11020
11021 ret = enter_vmx_non_root_mode(vcpu, true);
11022 if (ret)
11023 return ret;
11024
11025 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
11026 return kvm_vcpu_halt(vcpu);
11027
11028 vmx->nested.nested_run_pending = 1;
11029
11030 return 1;
11031
11032 out:
11033 return kvm_skip_emulated_instruction(vcpu);
11034 }
11035
11036 /*
11037 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11038 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11039 * This function returns the new value we should put in vmcs12.guest_cr0.
11040 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11041 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11042 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11043 * didn't trap the bit, because if L1 did, so would L0).
11044 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11045 * been modified by L2, and L1 knows it. So just leave the old value of
11046 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11047 * isn't relevant, because if L0 traps this bit it can set it to anything.
11048 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11049 * changed these bits, and therefore they need to be updated, but L0
11050 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11051 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11052 */
11053 static inline unsigned long
11054 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11055 {
11056 return
11057 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11058 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11059 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11060 vcpu->arch.cr0_guest_owned_bits));
11061 }
11062
11063 static inline unsigned long
11064 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11065 {
11066 return
11067 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11068 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11069 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11070 vcpu->arch.cr4_guest_owned_bits));
11071 }
11072
11073 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11074 struct vmcs12 *vmcs12)
11075 {
11076 u32 idt_vectoring;
11077 unsigned int nr;
11078
11079 if (vcpu->arch.exception.injected) {
11080 nr = vcpu->arch.exception.nr;
11081 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11082
11083 if (kvm_exception_is_soft(nr)) {
11084 vmcs12->vm_exit_instruction_len =
11085 vcpu->arch.event_exit_inst_len;
11086 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11087 } else
11088 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11089
11090 if (vcpu->arch.exception.has_error_code) {
11091 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11092 vmcs12->idt_vectoring_error_code =
11093 vcpu->arch.exception.error_code;
11094 }
11095
11096 vmcs12->idt_vectoring_info_field = idt_vectoring;
11097 } else if (vcpu->arch.nmi_injected) {
11098 vmcs12->idt_vectoring_info_field =
11099 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11100 } else if (vcpu->arch.interrupt.pending) {
11101 nr = vcpu->arch.interrupt.nr;
11102 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11103
11104 if (vcpu->arch.interrupt.soft) {
11105 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11106 vmcs12->vm_entry_instruction_len =
11107 vcpu->arch.event_exit_inst_len;
11108 } else
11109 idt_vectoring |= INTR_TYPE_EXT_INTR;
11110
11111 vmcs12->idt_vectoring_info_field = idt_vectoring;
11112 }
11113 }
11114
11115 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11116 {
11117 struct vcpu_vmx *vmx = to_vmx(vcpu);
11118 unsigned long exit_qual;
11119 bool block_nested_events =
11120 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11121
11122 if (vcpu->arch.exception.pending &&
11123 nested_vmx_check_exception(vcpu, &exit_qual)) {
11124 if (block_nested_events)
11125 return -EBUSY;
11126 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11127 vcpu->arch.exception.pending = false;
11128 return 0;
11129 }
11130
11131 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11132 vmx->nested.preemption_timer_expired) {
11133 if (block_nested_events)
11134 return -EBUSY;
11135 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11136 return 0;
11137 }
11138
11139 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11140 if (block_nested_events)
11141 return -EBUSY;
11142 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11143 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11144 INTR_INFO_VALID_MASK, 0);
11145 /*
11146 * The NMI-triggered VM exit counts as injection:
11147 * clear this one and block further NMIs.
11148 */
11149 vcpu->arch.nmi_pending = 0;
11150 vmx_set_nmi_mask(vcpu, true);
11151 return 0;
11152 }
11153
11154 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11155 nested_exit_on_intr(vcpu)) {
11156 if (block_nested_events)
11157 return -EBUSY;
11158 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11159 return 0;
11160 }
11161
11162 vmx_complete_nested_posted_interrupt(vcpu);
11163 return 0;
11164 }
11165
11166 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11167 {
11168 ktime_t remaining =
11169 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11170 u64 value;
11171
11172 if (ktime_to_ns(remaining) <= 0)
11173 return 0;
11174
11175 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11176 do_div(value, 1000000);
11177 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11178 }
11179
11180 /*
11181 * Update the guest state fields of vmcs12 to reflect changes that
11182 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11183 * VM-entry controls is also updated, since this is really a guest
11184 * state bit.)
11185 */
11186 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11187 {
11188 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11189 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11190
11191 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11192 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11193 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11194
11195 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11196 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11197 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11198 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11199 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11200 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11201 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11202 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11203 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11204 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11205 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11206 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11207 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11208 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11209 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11210 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11211 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11212 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11213 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11214 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11215 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11216 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11217 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11218 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11219 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11220 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11221 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11222 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11223 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11224 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11225 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11226 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11227 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11228 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11229 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11230 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11231
11232 vmcs12->guest_interruptibility_info =
11233 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11234 vmcs12->guest_pending_dbg_exceptions =
11235 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11236 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11237 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11238 else
11239 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11240
11241 if (nested_cpu_has_preemption_timer(vmcs12)) {
11242 if (vmcs12->vm_exit_controls &
11243 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11244 vmcs12->vmx_preemption_timer_value =
11245 vmx_get_preemption_timer_value(vcpu);
11246 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11247 }
11248
11249 /*
11250 * In some cases (usually, nested EPT), L2 is allowed to change its
11251 * own CR3 without exiting. If it has changed it, we must keep it.
11252 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11253 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11254 *
11255 * Additionally, restore L2's PDPTR to vmcs12.
11256 */
11257 if (enable_ept) {
11258 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11259 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11260 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11261 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11262 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11263 }
11264
11265 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11266
11267 if (nested_cpu_has_vid(vmcs12))
11268 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11269
11270 vmcs12->vm_entry_controls =
11271 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11272 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11273
11274 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11275 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11276 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11277 }
11278
11279 /* TODO: These cannot have changed unless we have MSR bitmaps and
11280 * the relevant bit asks not to trap the change */
11281 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11282 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11283 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11284 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11285 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11286 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11287 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11288 if (kvm_mpx_supported())
11289 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11290 }
11291
11292 /*
11293 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11294 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11295 * and this function updates it to reflect the changes to the guest state while
11296 * L2 was running (and perhaps made some exits which were handled directly by L0
11297 * without going back to L1), and to reflect the exit reason.
11298 * Note that we do not have to copy here all VMCS fields, just those that
11299 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11300 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11301 * which already writes to vmcs12 directly.
11302 */
11303 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11304 u32 exit_reason, u32 exit_intr_info,
11305 unsigned long exit_qualification)
11306 {
11307 /* update guest state fields: */
11308 sync_vmcs12(vcpu, vmcs12);
11309
11310 /* update exit information fields: */
11311
11312 vmcs12->vm_exit_reason = exit_reason;
11313 vmcs12->exit_qualification = exit_qualification;
11314 vmcs12->vm_exit_intr_info = exit_intr_info;
11315
11316 vmcs12->idt_vectoring_info_field = 0;
11317 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11318 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11319
11320 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11321 vmcs12->launch_state = 1;
11322
11323 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11324 * instead of reading the real value. */
11325 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11326
11327 /*
11328 * Transfer the event that L0 or L1 may wanted to inject into
11329 * L2 to IDT_VECTORING_INFO_FIELD.
11330 */
11331 vmcs12_save_pending_event(vcpu, vmcs12);
11332 }
11333
11334 /*
11335 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11336 * preserved above and would only end up incorrectly in L1.
11337 */
11338 vcpu->arch.nmi_injected = false;
11339 kvm_clear_exception_queue(vcpu);
11340 kvm_clear_interrupt_queue(vcpu);
11341 }
11342
11343 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11344 struct vmcs12 *vmcs12)
11345 {
11346 u32 entry_failure_code;
11347
11348 nested_ept_uninit_mmu_context(vcpu);
11349
11350 /*
11351 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11352 * couldn't have changed.
11353 */
11354 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11355 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11356
11357 if (!enable_ept)
11358 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11359 }
11360
11361 /*
11362 * A part of what we need to when the nested L2 guest exits and we want to
11363 * run its L1 parent, is to reset L1's guest state to the host state specified
11364 * in vmcs12.
11365 * This function is to be called not only on normal nested exit, but also on
11366 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11367 * Failures During or After Loading Guest State").
11368 * This function should be called when the active VMCS is L1's (vmcs01).
11369 */
11370 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11371 struct vmcs12 *vmcs12)
11372 {
11373 struct kvm_segment seg;
11374
11375 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11376 vcpu->arch.efer = vmcs12->host_ia32_efer;
11377 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11378 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11379 else
11380 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11381 vmx_set_efer(vcpu, vcpu->arch.efer);
11382
11383 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11384 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11385 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11386 /*
11387 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11388 * actually changed, because vmx_set_cr0 refers to efer set above.
11389 *
11390 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11391 * (KVM doesn't change it);
11392 */
11393 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11394 vmx_set_cr0(vcpu, vmcs12->host_cr0);
11395
11396 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
11397 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11398 vmx_set_cr4(vcpu, vmcs12->host_cr4);
11399
11400 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11401
11402 if (enable_vpid) {
11403 /*
11404 * Trivially support vpid by letting L2s share their parent
11405 * L1's vpid. TODO: move to a more elaborate solution, giving
11406 * each L2 its own vpid and exposing the vpid feature to L1.
11407 */
11408 vmx_flush_tlb(vcpu);
11409 }
11410 /* Restore posted intr vector. */
11411 if (nested_cpu_has_posted_intr(vmcs12))
11412 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11413
11414 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11415 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11416 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11417 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11418 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11419 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11420 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
11421
11422 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11423 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11424 vmcs_write64(GUEST_BNDCFGS, 0);
11425
11426 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11427 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11428 vcpu->arch.pat = vmcs12->host_ia32_pat;
11429 }
11430 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11431 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11432 vmcs12->host_ia32_perf_global_ctrl);
11433
11434 /* Set L1 segment info according to Intel SDM
11435 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11436 seg = (struct kvm_segment) {
11437 .base = 0,
11438 .limit = 0xFFFFFFFF,
11439 .selector = vmcs12->host_cs_selector,
11440 .type = 11,
11441 .present = 1,
11442 .s = 1,
11443 .g = 1
11444 };
11445 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11446 seg.l = 1;
11447 else
11448 seg.db = 1;
11449 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11450 seg = (struct kvm_segment) {
11451 .base = 0,
11452 .limit = 0xFFFFFFFF,
11453 .type = 3,
11454 .present = 1,
11455 .s = 1,
11456 .db = 1,
11457 .g = 1
11458 };
11459 seg.selector = vmcs12->host_ds_selector;
11460 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11461 seg.selector = vmcs12->host_es_selector;
11462 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11463 seg.selector = vmcs12->host_ss_selector;
11464 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11465 seg.selector = vmcs12->host_fs_selector;
11466 seg.base = vmcs12->host_fs_base;
11467 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11468 seg.selector = vmcs12->host_gs_selector;
11469 seg.base = vmcs12->host_gs_base;
11470 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11471 seg = (struct kvm_segment) {
11472 .base = vmcs12->host_tr_base,
11473 .limit = 0x67,
11474 .selector = vmcs12->host_tr_selector,
11475 .type = 11,
11476 .present = 1
11477 };
11478 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11479
11480 kvm_set_dr(vcpu, 7, 0x400);
11481 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11482
11483 if (cpu_has_vmx_msr_bitmap())
11484 vmx_set_msr_bitmap(vcpu);
11485
11486 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11487 vmcs12->vm_exit_msr_load_count))
11488 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11489 }
11490
11491 /*
11492 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11493 * and modify vmcs12 to make it see what it would expect to see there if
11494 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11495 */
11496 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11497 u32 exit_intr_info,
11498 unsigned long exit_qualification)
11499 {
11500 struct vcpu_vmx *vmx = to_vmx(vcpu);
11501 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11502
11503 /* trying to cancel vmlaunch/vmresume is a bug */
11504 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11505
11506 /*
11507 * The only expected VM-instruction error is "VM entry with
11508 * invalid control field(s)." Anything else indicates a
11509 * problem with L0.
11510 */
11511 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11512 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11513
11514 leave_guest_mode(vcpu);
11515
11516 if (likely(!vmx->fail)) {
11517 if (exit_reason == -1)
11518 sync_vmcs12(vcpu, vmcs12);
11519 else
11520 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11521 exit_qualification);
11522
11523 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11524 vmcs12->vm_exit_msr_store_count))
11525 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11526 }
11527
11528 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11529 vm_entry_controls_reset_shadow(vmx);
11530 vm_exit_controls_reset_shadow(vmx);
11531 vmx_segment_cache_clear(vmx);
11532
11533 /* if no vmcs02 cache requested, remove the one we used */
11534 if (VMCS02_POOL_SIZE == 0)
11535 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11536
11537 /* Update any VMCS fields that might have changed while L2 ran */
11538 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11539 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11540 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11541 if (vmx->hv_deadline_tsc == -1)
11542 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11543 PIN_BASED_VMX_PREEMPTION_TIMER);
11544 else
11545 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11546 PIN_BASED_VMX_PREEMPTION_TIMER);
11547 if (kvm_has_tsc_control)
11548 decache_tsc_multiplier(vmx);
11549
11550 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11551 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11552 vmx_set_virtual_x2apic_mode(vcpu,
11553 vcpu->arch.apic_base & X2APIC_ENABLE);
11554 } else if (!nested_cpu_has_ept(vmcs12) &&
11555 nested_cpu_has2(vmcs12,
11556 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11557 vmx_flush_tlb_ept_only(vcpu);
11558 }
11559
11560 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11561 vmx->host_rsp = 0;
11562
11563 /* Unpin physical memory we referred to in vmcs02 */
11564 if (vmx->nested.apic_access_page) {
11565 kvm_release_page_dirty(vmx->nested.apic_access_page);
11566 vmx->nested.apic_access_page = NULL;
11567 }
11568 if (vmx->nested.virtual_apic_page) {
11569 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11570 vmx->nested.virtual_apic_page = NULL;
11571 }
11572 if (vmx->nested.pi_desc_page) {
11573 kunmap(vmx->nested.pi_desc_page);
11574 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11575 vmx->nested.pi_desc_page = NULL;
11576 vmx->nested.pi_desc = NULL;
11577 }
11578
11579 /*
11580 * We are now running in L2, mmu_notifier will force to reload the
11581 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11582 */
11583 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11584
11585 if (enable_shadow_vmcs && exit_reason != -1)
11586 vmx->nested.sync_shadow_vmcs = true;
11587
11588 /* in case we halted in L2 */
11589 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11590
11591 if (likely(!vmx->fail)) {
11592 /*
11593 * TODO: SDM says that with acknowledge interrupt on
11594 * exit, bit 31 of the VM-exit interrupt information
11595 * (valid interrupt) is always set to 1 on
11596 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11597 * need kvm_cpu_has_interrupt(). See the commit
11598 * message for details.
11599 */
11600 if (nested_exit_intr_ack_set(vcpu) &&
11601 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11602 kvm_cpu_has_interrupt(vcpu)) {
11603 int irq = kvm_cpu_get_interrupt(vcpu);
11604 WARN_ON(irq < 0);
11605 vmcs12->vm_exit_intr_info = irq |
11606 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11607 }
11608
11609 if (exit_reason != -1)
11610 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11611 vmcs12->exit_qualification,
11612 vmcs12->idt_vectoring_info_field,
11613 vmcs12->vm_exit_intr_info,
11614 vmcs12->vm_exit_intr_error_code,
11615 KVM_ISA_VMX);
11616
11617 load_vmcs12_host_state(vcpu, vmcs12);
11618
11619 return;
11620 }
11621
11622 /*
11623 * After an early L2 VM-entry failure, we're now back
11624 * in L1 which thinks it just finished a VMLAUNCH or
11625 * VMRESUME instruction, so we need to set the failure
11626 * flag and the VM-instruction error field of the VMCS
11627 * accordingly.
11628 */
11629 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11630
11631 load_vmcs12_mmu_host_state(vcpu, vmcs12);
11632
11633 /*
11634 * The emulated instruction was already skipped in
11635 * nested_vmx_run, but the updated RIP was never
11636 * written back to the vmcs01.
11637 */
11638 skip_emulated_instruction(vcpu);
11639 vmx->fail = 0;
11640 }
11641
11642 /*
11643 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11644 */
11645 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11646 {
11647 if (is_guest_mode(vcpu)) {
11648 to_vmx(vcpu)->nested.nested_run_pending = 0;
11649 nested_vmx_vmexit(vcpu, -1, 0, 0);
11650 }
11651 free_nested(to_vmx(vcpu));
11652 }
11653
11654 /*
11655 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11656 * 23.7 "VM-entry failures during or after loading guest state" (this also
11657 * lists the acceptable exit-reason and exit-qualification parameters).
11658 * It should only be called before L2 actually succeeded to run, and when
11659 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11660 */
11661 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11662 struct vmcs12 *vmcs12,
11663 u32 reason, unsigned long qualification)
11664 {
11665 load_vmcs12_host_state(vcpu, vmcs12);
11666 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11667 vmcs12->exit_qualification = qualification;
11668 nested_vmx_succeed(vcpu);
11669 if (enable_shadow_vmcs)
11670 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11671 }
11672
11673 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11674 struct x86_instruction_info *info,
11675 enum x86_intercept_stage stage)
11676 {
11677 return X86EMUL_CONTINUE;
11678 }
11679
11680 #ifdef CONFIG_X86_64
11681 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11682 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11683 u64 divisor, u64 *result)
11684 {
11685 u64 low = a << shift, high = a >> (64 - shift);
11686
11687 /* To avoid the overflow on divq */
11688 if (high >= divisor)
11689 return 1;
11690
11691 /* Low hold the result, high hold rem which is discarded */
11692 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11693 "rm" (divisor), "0" (low), "1" (high));
11694 *result = low;
11695
11696 return 0;
11697 }
11698
11699 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11700 {
11701 struct vcpu_vmx *vmx = to_vmx(vcpu);
11702 u64 tscl = rdtsc();
11703 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11704 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11705
11706 /* Convert to host delta tsc if tsc scaling is enabled */
11707 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11708 u64_shl_div_u64(delta_tsc,
11709 kvm_tsc_scaling_ratio_frac_bits,
11710 vcpu->arch.tsc_scaling_ratio,
11711 &delta_tsc))
11712 return -ERANGE;
11713
11714 /*
11715 * If the delta tsc can't fit in the 32 bit after the multi shift,
11716 * we can't use the preemption timer.
11717 * It's possible that it fits on later vmentries, but checking
11718 * on every vmentry is costly so we just use an hrtimer.
11719 */
11720 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11721 return -ERANGE;
11722
11723 vmx->hv_deadline_tsc = tscl + delta_tsc;
11724 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11725 PIN_BASED_VMX_PREEMPTION_TIMER);
11726
11727 return delta_tsc == 0;
11728 }
11729
11730 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11731 {
11732 struct vcpu_vmx *vmx = to_vmx(vcpu);
11733 vmx->hv_deadline_tsc = -1;
11734 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11735 PIN_BASED_VMX_PREEMPTION_TIMER);
11736 }
11737 #endif
11738
11739 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11740 {
11741 if (ple_gap)
11742 shrink_ple_window(vcpu);
11743 }
11744
11745 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11746 struct kvm_memory_slot *slot)
11747 {
11748 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11749 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11750 }
11751
11752 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11753 struct kvm_memory_slot *slot)
11754 {
11755 kvm_mmu_slot_set_dirty(kvm, slot);
11756 }
11757
11758 static void vmx_flush_log_dirty(struct kvm *kvm)
11759 {
11760 kvm_flush_pml_buffers(kvm);
11761 }
11762
11763 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11764 {
11765 struct vmcs12 *vmcs12;
11766 struct vcpu_vmx *vmx = to_vmx(vcpu);
11767 gpa_t gpa;
11768 struct page *page = NULL;
11769 u64 *pml_address;
11770
11771 if (is_guest_mode(vcpu)) {
11772 WARN_ON_ONCE(vmx->nested.pml_full);
11773
11774 /*
11775 * Check if PML is enabled for the nested guest.
11776 * Whether eptp bit 6 is set is already checked
11777 * as part of A/D emulation.
11778 */
11779 vmcs12 = get_vmcs12(vcpu);
11780 if (!nested_cpu_has_pml(vmcs12))
11781 return 0;
11782
11783 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11784 vmx->nested.pml_full = true;
11785 return 1;
11786 }
11787
11788 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11789
11790 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11791 if (is_error_page(page))
11792 return 0;
11793
11794 pml_address = kmap(page);
11795 pml_address[vmcs12->guest_pml_index--] = gpa;
11796 kunmap(page);
11797 kvm_release_page_clean(page);
11798 }
11799
11800 return 0;
11801 }
11802
11803 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11804 struct kvm_memory_slot *memslot,
11805 gfn_t offset, unsigned long mask)
11806 {
11807 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11808 }
11809
11810 static void __pi_post_block(struct kvm_vcpu *vcpu)
11811 {
11812 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11813 struct pi_desc old, new;
11814 unsigned int dest;
11815
11816 do {
11817 old.control = new.control = pi_desc->control;
11818 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11819 "Wakeup handler not enabled while the VCPU is blocked\n");
11820
11821 dest = cpu_physical_id(vcpu->cpu);
11822
11823 if (x2apic_enabled())
11824 new.ndst = dest;
11825 else
11826 new.ndst = (dest << 8) & 0xFF00;
11827
11828 /* set 'NV' to 'notification vector' */
11829 new.nv = POSTED_INTR_VECTOR;
11830 } while (cmpxchg64(&pi_desc->control, old.control,
11831 new.control) != old.control);
11832
11833 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11834 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11835 list_del(&vcpu->blocked_vcpu_list);
11836 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11837 vcpu->pre_pcpu = -1;
11838 }
11839 }
11840
11841 /*
11842 * This routine does the following things for vCPU which is going
11843 * to be blocked if VT-d PI is enabled.
11844 * - Store the vCPU to the wakeup list, so when interrupts happen
11845 * we can find the right vCPU to wake up.
11846 * - Change the Posted-interrupt descriptor as below:
11847 * 'NDST' <-- vcpu->pre_pcpu
11848 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11849 * - If 'ON' is set during this process, which means at least one
11850 * interrupt is posted for this vCPU, we cannot block it, in
11851 * this case, return 1, otherwise, return 0.
11852 *
11853 */
11854 static int pi_pre_block(struct kvm_vcpu *vcpu)
11855 {
11856 unsigned int dest;
11857 struct pi_desc old, new;
11858 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11859
11860 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11861 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11862 !kvm_vcpu_apicv_active(vcpu))
11863 return 0;
11864
11865 WARN_ON(irqs_disabled());
11866 local_irq_disable();
11867 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11868 vcpu->pre_pcpu = vcpu->cpu;
11869 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11870 list_add_tail(&vcpu->blocked_vcpu_list,
11871 &per_cpu(blocked_vcpu_on_cpu,
11872 vcpu->pre_pcpu));
11873 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11874 }
11875
11876 do {
11877 old.control = new.control = pi_desc->control;
11878
11879 WARN((pi_desc->sn == 1),
11880 "Warning: SN field of posted-interrupts "
11881 "is set before blocking\n");
11882
11883 /*
11884 * Since vCPU can be preempted during this process,
11885 * vcpu->cpu could be different with pre_pcpu, we
11886 * need to set pre_pcpu as the destination of wakeup
11887 * notification event, then we can find the right vCPU
11888 * to wakeup in wakeup handler if interrupts happen
11889 * when the vCPU is in blocked state.
11890 */
11891 dest = cpu_physical_id(vcpu->pre_pcpu);
11892
11893 if (x2apic_enabled())
11894 new.ndst = dest;
11895 else
11896 new.ndst = (dest << 8) & 0xFF00;
11897
11898 /* set 'NV' to 'wakeup vector' */
11899 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11900 } while (cmpxchg64(&pi_desc->control, old.control,
11901 new.control) != old.control);
11902
11903 /* We should not block the vCPU if an interrupt is posted for it. */
11904 if (pi_test_on(pi_desc) == 1)
11905 __pi_post_block(vcpu);
11906
11907 local_irq_enable();
11908 return (vcpu->pre_pcpu == -1);
11909 }
11910
11911 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11912 {
11913 if (pi_pre_block(vcpu))
11914 return 1;
11915
11916 if (kvm_lapic_hv_timer_in_use(vcpu))
11917 kvm_lapic_switch_to_sw_timer(vcpu);
11918
11919 return 0;
11920 }
11921
11922 static void pi_post_block(struct kvm_vcpu *vcpu)
11923 {
11924 if (vcpu->pre_pcpu == -1)
11925 return;
11926
11927 WARN_ON(irqs_disabled());
11928 local_irq_disable();
11929 __pi_post_block(vcpu);
11930 local_irq_enable();
11931 }
11932
11933 static void vmx_post_block(struct kvm_vcpu *vcpu)
11934 {
11935 if (kvm_x86_ops->set_hv_timer)
11936 kvm_lapic_switch_to_hv_timer(vcpu);
11937
11938 pi_post_block(vcpu);
11939 }
11940
11941 /*
11942 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11943 *
11944 * @kvm: kvm
11945 * @host_irq: host irq of the interrupt
11946 * @guest_irq: gsi of the interrupt
11947 * @set: set or unset PI
11948 * returns 0 on success, < 0 on failure
11949 */
11950 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11951 uint32_t guest_irq, bool set)
11952 {
11953 struct kvm_kernel_irq_routing_entry *e;
11954 struct kvm_irq_routing_table *irq_rt;
11955 struct kvm_lapic_irq irq;
11956 struct kvm_vcpu *vcpu;
11957 struct vcpu_data vcpu_info;
11958 int idx, ret = 0;
11959
11960 if (!kvm_arch_has_assigned_device(kvm) ||
11961 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11962 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11963 return 0;
11964
11965 idx = srcu_read_lock(&kvm->irq_srcu);
11966 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11967 if (guest_irq >= irq_rt->nr_rt_entries ||
11968 hlist_empty(&irq_rt->map[guest_irq])) {
11969 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11970 guest_irq, irq_rt->nr_rt_entries);
11971 goto out;
11972 }
11973
11974 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11975 if (e->type != KVM_IRQ_ROUTING_MSI)
11976 continue;
11977 /*
11978 * VT-d PI cannot support posting multicast/broadcast
11979 * interrupts to a vCPU, we still use interrupt remapping
11980 * for these kind of interrupts.
11981 *
11982 * For lowest-priority interrupts, we only support
11983 * those with single CPU as the destination, e.g. user
11984 * configures the interrupts via /proc/irq or uses
11985 * irqbalance to make the interrupts single-CPU.
11986 *
11987 * We will support full lowest-priority interrupt later.
11988 */
11989
11990 kvm_set_msi_irq(kvm, e, &irq);
11991 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11992 /*
11993 * Make sure the IRTE is in remapped mode if
11994 * we don't handle it in posted mode.
11995 */
11996 ret = irq_set_vcpu_affinity(host_irq, NULL);
11997 if (ret < 0) {
11998 printk(KERN_INFO
11999 "failed to back to remapped mode, irq: %u\n",
12000 host_irq);
12001 goto out;
12002 }
12003
12004 continue;
12005 }
12006
12007 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12008 vcpu_info.vector = irq.vector;
12009
12010 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
12011 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12012
12013 if (set)
12014 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12015 else
12016 ret = irq_set_vcpu_affinity(host_irq, NULL);
12017
12018 if (ret < 0) {
12019 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12020 __func__);
12021 goto out;
12022 }
12023 }
12024
12025 ret = 0;
12026 out:
12027 srcu_read_unlock(&kvm->irq_srcu, idx);
12028 return ret;
12029 }
12030
12031 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12032 {
12033 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12034 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12035 FEATURE_CONTROL_LMCE;
12036 else
12037 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12038 ~FEATURE_CONTROL_LMCE;
12039 }
12040
12041 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12042 {
12043 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12044 if (to_vmx(vcpu)->nested.nested_run_pending)
12045 return 0;
12046 return 1;
12047 }
12048
12049 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12050 {
12051 struct vcpu_vmx *vmx = to_vmx(vcpu);
12052
12053 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12054 if (vmx->nested.smm.guest_mode)
12055 nested_vmx_vmexit(vcpu, -1, 0, 0);
12056
12057 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12058 vmx->nested.vmxon = false;
12059 return 0;
12060 }
12061
12062 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12063 {
12064 struct vcpu_vmx *vmx = to_vmx(vcpu);
12065 int ret;
12066
12067 if (vmx->nested.smm.vmxon) {
12068 vmx->nested.vmxon = true;
12069 vmx->nested.smm.vmxon = false;
12070 }
12071
12072 if (vmx->nested.smm.guest_mode) {
12073 vcpu->arch.hflags &= ~HF_SMM_MASK;
12074 ret = enter_vmx_non_root_mode(vcpu, false);
12075 vcpu->arch.hflags |= HF_SMM_MASK;
12076 if (ret)
12077 return ret;
12078
12079 vmx->nested.smm.guest_mode = false;
12080 }
12081 return 0;
12082 }
12083
12084 static int enable_smi_window(struct kvm_vcpu *vcpu)
12085 {
12086 return 0;
12087 }
12088
12089 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12090 .cpu_has_kvm_support = cpu_has_kvm_support,
12091 .disabled_by_bios = vmx_disabled_by_bios,
12092 .hardware_setup = hardware_setup,
12093 .hardware_unsetup = hardware_unsetup,
12094 .check_processor_compatibility = vmx_check_processor_compat,
12095 .hardware_enable = hardware_enable,
12096 .hardware_disable = hardware_disable,
12097 .cpu_has_accelerated_tpr = report_flexpriority,
12098 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
12099
12100 .vcpu_create = vmx_create_vcpu,
12101 .vcpu_free = vmx_free_vcpu,
12102 .vcpu_reset = vmx_vcpu_reset,
12103
12104 .prepare_guest_switch = vmx_save_host_state,
12105 .vcpu_load = vmx_vcpu_load,
12106 .vcpu_put = vmx_vcpu_put,
12107
12108 .update_bp_intercept = update_exception_bitmap,
12109 .get_msr = vmx_get_msr,
12110 .set_msr = vmx_set_msr,
12111 .get_segment_base = vmx_get_segment_base,
12112 .get_segment = vmx_get_segment,
12113 .set_segment = vmx_set_segment,
12114 .get_cpl = vmx_get_cpl,
12115 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
12116 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
12117 .decache_cr3 = vmx_decache_cr3,
12118 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
12119 .set_cr0 = vmx_set_cr0,
12120 .set_cr3 = vmx_set_cr3,
12121 .set_cr4 = vmx_set_cr4,
12122 .set_efer = vmx_set_efer,
12123 .get_idt = vmx_get_idt,
12124 .set_idt = vmx_set_idt,
12125 .get_gdt = vmx_get_gdt,
12126 .set_gdt = vmx_set_gdt,
12127 .get_dr6 = vmx_get_dr6,
12128 .set_dr6 = vmx_set_dr6,
12129 .set_dr7 = vmx_set_dr7,
12130 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
12131 .cache_reg = vmx_cache_reg,
12132 .get_rflags = vmx_get_rflags,
12133 .set_rflags = vmx_set_rflags,
12134
12135 .tlb_flush = vmx_flush_tlb,
12136
12137 .run = vmx_vcpu_run,
12138 .handle_exit = vmx_handle_exit,
12139 .skip_emulated_instruction = skip_emulated_instruction,
12140 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12141 .get_interrupt_shadow = vmx_get_interrupt_shadow,
12142 .patch_hypercall = vmx_patch_hypercall,
12143 .set_irq = vmx_inject_irq,
12144 .set_nmi = vmx_inject_nmi,
12145 .queue_exception = vmx_queue_exception,
12146 .cancel_injection = vmx_cancel_injection,
12147 .interrupt_allowed = vmx_interrupt_allowed,
12148 .nmi_allowed = vmx_nmi_allowed,
12149 .get_nmi_mask = vmx_get_nmi_mask,
12150 .set_nmi_mask = vmx_set_nmi_mask,
12151 .enable_nmi_window = enable_nmi_window,
12152 .enable_irq_window = enable_irq_window,
12153 .update_cr8_intercept = update_cr8_intercept,
12154 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12155 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12156 .get_enable_apicv = vmx_get_enable_apicv,
12157 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12158 .load_eoi_exitmap = vmx_load_eoi_exitmap,
12159 .apicv_post_state_restore = vmx_apicv_post_state_restore,
12160 .hwapic_irr_update = vmx_hwapic_irr_update,
12161 .hwapic_isr_update = vmx_hwapic_isr_update,
12162 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12163 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12164
12165 .set_tss_addr = vmx_set_tss_addr,
12166 .get_tdp_level = get_ept_level,
12167 .get_mt_mask = vmx_get_mt_mask,
12168
12169 .get_exit_info = vmx_get_exit_info,
12170
12171 .get_lpage_level = vmx_get_lpage_level,
12172
12173 .cpuid_update = vmx_cpuid_update,
12174
12175 .rdtscp_supported = vmx_rdtscp_supported,
12176 .invpcid_supported = vmx_invpcid_supported,
12177
12178 .set_supported_cpuid = vmx_set_supported_cpuid,
12179
12180 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12181
12182 .write_tsc_offset = vmx_write_tsc_offset,
12183
12184 .set_tdp_cr3 = vmx_set_cr3,
12185
12186 .check_intercept = vmx_check_intercept,
12187 .handle_external_intr = vmx_handle_external_intr,
12188 .mpx_supported = vmx_mpx_supported,
12189 .xsaves_supported = vmx_xsaves_supported,
12190
12191 .check_nested_events = vmx_check_nested_events,
12192
12193 .sched_in = vmx_sched_in,
12194
12195 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12196 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12197 .flush_log_dirty = vmx_flush_log_dirty,
12198 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12199 .write_log_dirty = vmx_write_pml_buffer,
12200
12201 .pre_block = vmx_pre_block,
12202 .post_block = vmx_post_block,
12203
12204 .pmu_ops = &intel_pmu_ops,
12205
12206 .update_pi_irte = vmx_update_pi_irte,
12207
12208 #ifdef CONFIG_X86_64
12209 .set_hv_timer = vmx_set_hv_timer,
12210 .cancel_hv_timer = vmx_cancel_hv_timer,
12211 #endif
12212
12213 .setup_mce = vmx_setup_mce,
12214
12215 .smi_allowed = vmx_smi_allowed,
12216 .pre_enter_smm = vmx_pre_enter_smm,
12217 .pre_leave_smm = vmx_pre_leave_smm,
12218 .enable_smi_window = enable_smi_window,
12219 };
12220
12221 static int __init vmx_init(void)
12222 {
12223 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12224 __alignof__(struct vcpu_vmx), THIS_MODULE);
12225 if (r)
12226 return r;
12227
12228 #ifdef CONFIG_KEXEC_CORE
12229 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12230 crash_vmclear_local_loaded_vmcss);
12231 #endif
12232
12233 return 0;
12234 }
12235
12236 static void __exit vmx_exit(void)
12237 {
12238 #ifdef CONFIG_KEXEC_CORE
12239 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12240 synchronize_rcu();
12241 #endif
12242
12243 kvm_exit();
12244 }
12245
12246 module_init(vmx_init)
12247 module_exit(vmx_exit)