]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
KVM: nVMX: Introduce vmcs12: a VMCS structure for L1
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static int __read_mostly bypass_guest_pf = 1;
53 module_param(bypass_guest_pf, bool, S_IRUGO);
54
55 static int __read_mostly enable_vpid = 1;
56 module_param_named(vpid, enable_vpid, bool, 0444);
57
58 static int __read_mostly flexpriority_enabled = 1;
59 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60
61 static int __read_mostly enable_ept = 1;
62 module_param_named(ept, enable_ept, bool, S_IRUGO);
63
64 static int __read_mostly enable_unrestricted_guest = 1;
65 module_param_named(unrestricted_guest,
66 enable_unrestricted_guest, bool, S_IRUGO);
67
68 static int __read_mostly emulate_invalid_guest_state = 0;
69 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70
71 static int __read_mostly vmm_exclusive = 1;
72 module_param(vmm_exclusive, bool, S_IRUGO);
73
74 static int __read_mostly yield_on_hlt = 1;
75 module_param(yield_on_hlt, bool, S_IRUGO);
76
77 /*
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
81 */
82 static int __read_mostly nested = 0;
83 module_param(nested, bool, S_IRUGO);
84
85 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87 #define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
90 (X86_CR0_WP | X86_CR0_NE)
91 #define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
93 #define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
96
97 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
100 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
102 /*
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
106 * According to test, this time is usually smaller than 128 cycles.
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 */
113 #define KVM_VMX_DEFAULT_PLE_GAP 128
114 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116 module_param(ple_gap, int, S_IRUGO);
117
118 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119 module_param(ple_window, int, S_IRUGO);
120
121 #define NR_AUTOLOAD_MSRS 1
122
123 struct vmcs {
124 u32 revision_id;
125 u32 abort;
126 char data[0];
127 };
128
129 /*
130 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132 * loaded on this CPU (so we can clear them if the CPU goes down).
133 */
134 struct loaded_vmcs {
135 struct vmcs *vmcs;
136 int cpu;
137 int launched;
138 struct list_head loaded_vmcss_on_cpu_link;
139 };
140
141 struct shared_msr_entry {
142 unsigned index;
143 u64 data;
144 u64 mask;
145 };
146
147 /*
148 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153 * More than one of these structures may exist, if L1 runs multiple L2 guests.
154 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155 * underlying hardware which will be used to run L2.
156 * This structure is packed to ensure that its layout is identical across
157 * machines (necessary for live migration).
158 * If there are changes in this struct, VMCS12_REVISION must be changed.
159 */
160 struct __packed vmcs12 {
161 /* According to the Intel spec, a VMCS region must start with the
162 * following two fields. Then follow implementation-specific data.
163 */
164 u32 revision_id;
165 u32 abort;
166 };
167
168 /*
169 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
170 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
171 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
172 */
173 #define VMCS12_REVISION 0x11e57ed0
174
175 /*
176 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
177 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
178 * current implementation, 4K are reserved to avoid future complications.
179 */
180 #define VMCS12_SIZE 0x1000
181
182 /*
183 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
184 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
185 */
186 struct nested_vmx {
187 /* Has the level1 guest done vmxon? */
188 bool vmxon;
189
190 /* The guest-physical address of the current VMCS L1 keeps for L2 */
191 gpa_t current_vmptr;
192 /* The host-usable pointer to the above */
193 struct page *current_vmcs12_page;
194 struct vmcs12 *current_vmcs12;
195 };
196
197 struct vcpu_vmx {
198 struct kvm_vcpu vcpu;
199 unsigned long host_rsp;
200 u8 fail;
201 u8 cpl;
202 bool nmi_known_unmasked;
203 u32 exit_intr_info;
204 u32 idt_vectoring_info;
205 ulong rflags;
206 struct shared_msr_entry *guest_msrs;
207 int nmsrs;
208 int save_nmsrs;
209 #ifdef CONFIG_X86_64
210 u64 msr_host_kernel_gs_base;
211 u64 msr_guest_kernel_gs_base;
212 #endif
213 /*
214 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
215 * non-nested (L1) guest, it always points to vmcs01. For a nested
216 * guest (L2), it points to a different VMCS.
217 */
218 struct loaded_vmcs vmcs01;
219 struct loaded_vmcs *loaded_vmcs;
220 bool __launched; /* temporary, used in vmx_vcpu_run */
221 struct msr_autoload {
222 unsigned nr;
223 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
224 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
225 } msr_autoload;
226 struct {
227 int loaded;
228 u16 fs_sel, gs_sel, ldt_sel;
229 int gs_ldt_reload_needed;
230 int fs_reload_needed;
231 } host_state;
232 struct {
233 int vm86_active;
234 ulong save_rflags;
235 struct kvm_save_segment {
236 u16 selector;
237 unsigned long base;
238 u32 limit;
239 u32 ar;
240 } tr, es, ds, fs, gs;
241 } rmode;
242 struct {
243 u32 bitmask; /* 4 bits per segment (1 bit per field) */
244 struct kvm_save_segment seg[8];
245 } segment_cache;
246 int vpid;
247 bool emulation_required;
248
249 /* Support for vnmi-less CPUs */
250 int soft_vnmi_blocked;
251 ktime_t entry_time;
252 s64 vnmi_blocked_time;
253 u32 exit_reason;
254
255 bool rdtscp_enabled;
256
257 /* Support for a guest hypervisor (nested VMX) */
258 struct nested_vmx nested;
259 };
260
261 enum segment_cache_field {
262 SEG_FIELD_SEL = 0,
263 SEG_FIELD_BASE = 1,
264 SEG_FIELD_LIMIT = 2,
265 SEG_FIELD_AR = 3,
266
267 SEG_FIELD_NR = 4
268 };
269
270 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
271 {
272 return container_of(vcpu, struct vcpu_vmx, vcpu);
273 }
274
275 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
276 {
277 return to_vmx(vcpu)->nested.current_vmcs12;
278 }
279
280 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
281 {
282 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
283 if (is_error_page(page)) {
284 kvm_release_page_clean(page);
285 return NULL;
286 }
287 return page;
288 }
289
290 static void nested_release_page(struct page *page)
291 {
292 kvm_release_page_dirty(page);
293 }
294
295 static void nested_release_page_clean(struct page *page)
296 {
297 kvm_release_page_clean(page);
298 }
299
300 static u64 construct_eptp(unsigned long root_hpa);
301 static void kvm_cpu_vmxon(u64 addr);
302 static void kvm_cpu_vmxoff(void);
303 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
304 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
305
306 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
307 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
308 /*
309 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
310 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
311 */
312 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
313 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
314
315 static unsigned long *vmx_io_bitmap_a;
316 static unsigned long *vmx_io_bitmap_b;
317 static unsigned long *vmx_msr_bitmap_legacy;
318 static unsigned long *vmx_msr_bitmap_longmode;
319
320 static bool cpu_has_load_ia32_efer;
321
322 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
323 static DEFINE_SPINLOCK(vmx_vpid_lock);
324
325 static struct vmcs_config {
326 int size;
327 int order;
328 u32 revision_id;
329 u32 pin_based_exec_ctrl;
330 u32 cpu_based_exec_ctrl;
331 u32 cpu_based_2nd_exec_ctrl;
332 u32 vmexit_ctrl;
333 u32 vmentry_ctrl;
334 } vmcs_config;
335
336 static struct vmx_capability {
337 u32 ept;
338 u32 vpid;
339 } vmx_capability;
340
341 #define VMX_SEGMENT_FIELD(seg) \
342 [VCPU_SREG_##seg] = { \
343 .selector = GUEST_##seg##_SELECTOR, \
344 .base = GUEST_##seg##_BASE, \
345 .limit = GUEST_##seg##_LIMIT, \
346 .ar_bytes = GUEST_##seg##_AR_BYTES, \
347 }
348
349 static struct kvm_vmx_segment_field {
350 unsigned selector;
351 unsigned base;
352 unsigned limit;
353 unsigned ar_bytes;
354 } kvm_vmx_segment_fields[] = {
355 VMX_SEGMENT_FIELD(CS),
356 VMX_SEGMENT_FIELD(DS),
357 VMX_SEGMENT_FIELD(ES),
358 VMX_SEGMENT_FIELD(FS),
359 VMX_SEGMENT_FIELD(GS),
360 VMX_SEGMENT_FIELD(SS),
361 VMX_SEGMENT_FIELD(TR),
362 VMX_SEGMENT_FIELD(LDTR),
363 };
364
365 static u64 host_efer;
366
367 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
368
369 /*
370 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
371 * away by decrementing the array size.
372 */
373 static const u32 vmx_msr_index[] = {
374 #ifdef CONFIG_X86_64
375 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
376 #endif
377 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
378 };
379 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
380
381 static inline bool is_page_fault(u32 intr_info)
382 {
383 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
384 INTR_INFO_VALID_MASK)) ==
385 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
386 }
387
388 static inline bool is_no_device(u32 intr_info)
389 {
390 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
391 INTR_INFO_VALID_MASK)) ==
392 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
393 }
394
395 static inline bool is_invalid_opcode(u32 intr_info)
396 {
397 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
398 INTR_INFO_VALID_MASK)) ==
399 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
400 }
401
402 static inline bool is_external_interrupt(u32 intr_info)
403 {
404 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
405 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
406 }
407
408 static inline bool is_machine_check(u32 intr_info)
409 {
410 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
411 INTR_INFO_VALID_MASK)) ==
412 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
413 }
414
415 static inline bool cpu_has_vmx_msr_bitmap(void)
416 {
417 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
418 }
419
420 static inline bool cpu_has_vmx_tpr_shadow(void)
421 {
422 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
423 }
424
425 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
426 {
427 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
428 }
429
430 static inline bool cpu_has_secondary_exec_ctrls(void)
431 {
432 return vmcs_config.cpu_based_exec_ctrl &
433 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
434 }
435
436 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
437 {
438 return vmcs_config.cpu_based_2nd_exec_ctrl &
439 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
440 }
441
442 static inline bool cpu_has_vmx_flexpriority(void)
443 {
444 return cpu_has_vmx_tpr_shadow() &&
445 cpu_has_vmx_virtualize_apic_accesses();
446 }
447
448 static inline bool cpu_has_vmx_ept_execute_only(void)
449 {
450 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
451 }
452
453 static inline bool cpu_has_vmx_eptp_uncacheable(void)
454 {
455 return vmx_capability.ept & VMX_EPTP_UC_BIT;
456 }
457
458 static inline bool cpu_has_vmx_eptp_writeback(void)
459 {
460 return vmx_capability.ept & VMX_EPTP_WB_BIT;
461 }
462
463 static inline bool cpu_has_vmx_ept_2m_page(void)
464 {
465 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
466 }
467
468 static inline bool cpu_has_vmx_ept_1g_page(void)
469 {
470 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
471 }
472
473 static inline bool cpu_has_vmx_ept_4levels(void)
474 {
475 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
476 }
477
478 static inline bool cpu_has_vmx_invept_individual_addr(void)
479 {
480 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
481 }
482
483 static inline bool cpu_has_vmx_invept_context(void)
484 {
485 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
486 }
487
488 static inline bool cpu_has_vmx_invept_global(void)
489 {
490 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
491 }
492
493 static inline bool cpu_has_vmx_invvpid_single(void)
494 {
495 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
496 }
497
498 static inline bool cpu_has_vmx_invvpid_global(void)
499 {
500 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
501 }
502
503 static inline bool cpu_has_vmx_ept(void)
504 {
505 return vmcs_config.cpu_based_2nd_exec_ctrl &
506 SECONDARY_EXEC_ENABLE_EPT;
507 }
508
509 static inline bool cpu_has_vmx_unrestricted_guest(void)
510 {
511 return vmcs_config.cpu_based_2nd_exec_ctrl &
512 SECONDARY_EXEC_UNRESTRICTED_GUEST;
513 }
514
515 static inline bool cpu_has_vmx_ple(void)
516 {
517 return vmcs_config.cpu_based_2nd_exec_ctrl &
518 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
519 }
520
521 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
522 {
523 return flexpriority_enabled && irqchip_in_kernel(kvm);
524 }
525
526 static inline bool cpu_has_vmx_vpid(void)
527 {
528 return vmcs_config.cpu_based_2nd_exec_ctrl &
529 SECONDARY_EXEC_ENABLE_VPID;
530 }
531
532 static inline bool cpu_has_vmx_rdtscp(void)
533 {
534 return vmcs_config.cpu_based_2nd_exec_ctrl &
535 SECONDARY_EXEC_RDTSCP;
536 }
537
538 static inline bool cpu_has_virtual_nmis(void)
539 {
540 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
541 }
542
543 static inline bool cpu_has_vmx_wbinvd_exit(void)
544 {
545 return vmcs_config.cpu_based_2nd_exec_ctrl &
546 SECONDARY_EXEC_WBINVD_EXITING;
547 }
548
549 static inline bool report_flexpriority(void)
550 {
551 return flexpriority_enabled;
552 }
553
554 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
555 {
556 int i;
557
558 for (i = 0; i < vmx->nmsrs; ++i)
559 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
560 return i;
561 return -1;
562 }
563
564 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
565 {
566 struct {
567 u64 vpid : 16;
568 u64 rsvd : 48;
569 u64 gva;
570 } operand = { vpid, 0, gva };
571
572 asm volatile (__ex(ASM_VMX_INVVPID)
573 /* CF==1 or ZF==1 --> rc = -1 */
574 "; ja 1f ; ud2 ; 1:"
575 : : "a"(&operand), "c"(ext) : "cc", "memory");
576 }
577
578 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
579 {
580 struct {
581 u64 eptp, gpa;
582 } operand = {eptp, gpa};
583
584 asm volatile (__ex(ASM_VMX_INVEPT)
585 /* CF==1 or ZF==1 --> rc = -1 */
586 "; ja 1f ; ud2 ; 1:\n"
587 : : "a" (&operand), "c" (ext) : "cc", "memory");
588 }
589
590 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
591 {
592 int i;
593
594 i = __find_msr_index(vmx, msr);
595 if (i >= 0)
596 return &vmx->guest_msrs[i];
597 return NULL;
598 }
599
600 static void vmcs_clear(struct vmcs *vmcs)
601 {
602 u64 phys_addr = __pa(vmcs);
603 u8 error;
604
605 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
606 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
607 : "cc", "memory");
608 if (error)
609 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
610 vmcs, phys_addr);
611 }
612
613 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
614 {
615 vmcs_clear(loaded_vmcs->vmcs);
616 loaded_vmcs->cpu = -1;
617 loaded_vmcs->launched = 0;
618 }
619
620 static void vmcs_load(struct vmcs *vmcs)
621 {
622 u64 phys_addr = __pa(vmcs);
623 u8 error;
624
625 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
626 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
627 : "cc", "memory");
628 if (error)
629 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
630 vmcs, phys_addr);
631 }
632
633 static void __loaded_vmcs_clear(void *arg)
634 {
635 struct loaded_vmcs *loaded_vmcs = arg;
636 int cpu = raw_smp_processor_id();
637
638 if (loaded_vmcs->cpu != cpu)
639 return; /* vcpu migration can race with cpu offline */
640 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
641 per_cpu(current_vmcs, cpu) = NULL;
642 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
643 loaded_vmcs_init(loaded_vmcs);
644 }
645
646 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
647 {
648 if (loaded_vmcs->cpu != -1)
649 smp_call_function_single(
650 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
651 }
652
653 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
654 {
655 if (vmx->vpid == 0)
656 return;
657
658 if (cpu_has_vmx_invvpid_single())
659 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
660 }
661
662 static inline void vpid_sync_vcpu_global(void)
663 {
664 if (cpu_has_vmx_invvpid_global())
665 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
666 }
667
668 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
669 {
670 if (cpu_has_vmx_invvpid_single())
671 vpid_sync_vcpu_single(vmx);
672 else
673 vpid_sync_vcpu_global();
674 }
675
676 static inline void ept_sync_global(void)
677 {
678 if (cpu_has_vmx_invept_global())
679 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
680 }
681
682 static inline void ept_sync_context(u64 eptp)
683 {
684 if (enable_ept) {
685 if (cpu_has_vmx_invept_context())
686 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
687 else
688 ept_sync_global();
689 }
690 }
691
692 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
693 {
694 if (enable_ept) {
695 if (cpu_has_vmx_invept_individual_addr())
696 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
697 eptp, gpa);
698 else
699 ept_sync_context(eptp);
700 }
701 }
702
703 static __always_inline unsigned long vmcs_readl(unsigned long field)
704 {
705 unsigned long value;
706
707 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
708 : "=a"(value) : "d"(field) : "cc");
709 return value;
710 }
711
712 static __always_inline u16 vmcs_read16(unsigned long field)
713 {
714 return vmcs_readl(field);
715 }
716
717 static __always_inline u32 vmcs_read32(unsigned long field)
718 {
719 return vmcs_readl(field);
720 }
721
722 static __always_inline u64 vmcs_read64(unsigned long field)
723 {
724 #ifdef CONFIG_X86_64
725 return vmcs_readl(field);
726 #else
727 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
728 #endif
729 }
730
731 static noinline void vmwrite_error(unsigned long field, unsigned long value)
732 {
733 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
734 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
735 dump_stack();
736 }
737
738 static void vmcs_writel(unsigned long field, unsigned long value)
739 {
740 u8 error;
741
742 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
743 : "=q"(error) : "a"(value), "d"(field) : "cc");
744 if (unlikely(error))
745 vmwrite_error(field, value);
746 }
747
748 static void vmcs_write16(unsigned long field, u16 value)
749 {
750 vmcs_writel(field, value);
751 }
752
753 static void vmcs_write32(unsigned long field, u32 value)
754 {
755 vmcs_writel(field, value);
756 }
757
758 static void vmcs_write64(unsigned long field, u64 value)
759 {
760 vmcs_writel(field, value);
761 #ifndef CONFIG_X86_64
762 asm volatile ("");
763 vmcs_writel(field+1, value >> 32);
764 #endif
765 }
766
767 static void vmcs_clear_bits(unsigned long field, u32 mask)
768 {
769 vmcs_writel(field, vmcs_readl(field) & ~mask);
770 }
771
772 static void vmcs_set_bits(unsigned long field, u32 mask)
773 {
774 vmcs_writel(field, vmcs_readl(field) | mask);
775 }
776
777 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
778 {
779 vmx->segment_cache.bitmask = 0;
780 }
781
782 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
783 unsigned field)
784 {
785 bool ret;
786 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
787
788 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
789 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
790 vmx->segment_cache.bitmask = 0;
791 }
792 ret = vmx->segment_cache.bitmask & mask;
793 vmx->segment_cache.bitmask |= mask;
794 return ret;
795 }
796
797 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
798 {
799 u16 *p = &vmx->segment_cache.seg[seg].selector;
800
801 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
802 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
803 return *p;
804 }
805
806 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
807 {
808 ulong *p = &vmx->segment_cache.seg[seg].base;
809
810 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
811 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
812 return *p;
813 }
814
815 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
816 {
817 u32 *p = &vmx->segment_cache.seg[seg].limit;
818
819 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
820 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
821 return *p;
822 }
823
824 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
825 {
826 u32 *p = &vmx->segment_cache.seg[seg].ar;
827
828 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
829 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
830 return *p;
831 }
832
833 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
834 {
835 u32 eb;
836
837 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
838 (1u << NM_VECTOR) | (1u << DB_VECTOR);
839 if ((vcpu->guest_debug &
840 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
841 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
842 eb |= 1u << BP_VECTOR;
843 if (to_vmx(vcpu)->rmode.vm86_active)
844 eb = ~0;
845 if (enable_ept)
846 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
847 if (vcpu->fpu_active)
848 eb &= ~(1u << NM_VECTOR);
849 vmcs_write32(EXCEPTION_BITMAP, eb);
850 }
851
852 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
853 {
854 unsigned i;
855 struct msr_autoload *m = &vmx->msr_autoload;
856
857 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
858 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
859 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
860 return;
861 }
862
863 for (i = 0; i < m->nr; ++i)
864 if (m->guest[i].index == msr)
865 break;
866
867 if (i == m->nr)
868 return;
869 --m->nr;
870 m->guest[i] = m->guest[m->nr];
871 m->host[i] = m->host[m->nr];
872 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
873 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
874 }
875
876 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
877 u64 guest_val, u64 host_val)
878 {
879 unsigned i;
880 struct msr_autoload *m = &vmx->msr_autoload;
881
882 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
883 vmcs_write64(GUEST_IA32_EFER, guest_val);
884 vmcs_write64(HOST_IA32_EFER, host_val);
885 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
886 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
887 return;
888 }
889
890 for (i = 0; i < m->nr; ++i)
891 if (m->guest[i].index == msr)
892 break;
893
894 if (i == m->nr) {
895 ++m->nr;
896 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
897 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
898 }
899
900 m->guest[i].index = msr;
901 m->guest[i].value = guest_val;
902 m->host[i].index = msr;
903 m->host[i].value = host_val;
904 }
905
906 static void reload_tss(void)
907 {
908 /*
909 * VT restores TR but not its size. Useless.
910 */
911 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912 struct desc_struct *descs;
913
914 descs = (void *)gdt->address;
915 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
916 load_TR_desc();
917 }
918
919 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
920 {
921 u64 guest_efer;
922 u64 ignore_bits;
923
924 guest_efer = vmx->vcpu.arch.efer;
925
926 /*
927 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
928 * outside long mode
929 */
930 ignore_bits = EFER_NX | EFER_SCE;
931 #ifdef CONFIG_X86_64
932 ignore_bits |= EFER_LMA | EFER_LME;
933 /* SCE is meaningful only in long mode on Intel */
934 if (guest_efer & EFER_LMA)
935 ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937 guest_efer &= ~ignore_bits;
938 guest_efer |= host_efer & ignore_bits;
939 vmx->guest_msrs[efer_offset].data = guest_efer;
940 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
941
942 clear_atomic_switch_msr(vmx, MSR_EFER);
943 /* On ept, can't emulate nx, and must switch nx atomically */
944 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
945 guest_efer = vmx->vcpu.arch.efer;
946 if (!(guest_efer & EFER_LMA))
947 guest_efer &= ~EFER_LME;
948 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
949 return false;
950 }
951
952 return true;
953 }
954
955 static unsigned long segment_base(u16 selector)
956 {
957 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
958 struct desc_struct *d;
959 unsigned long table_base;
960 unsigned long v;
961
962 if (!(selector & ~3))
963 return 0;
964
965 table_base = gdt->address;
966
967 if (selector & 4) { /* from ldt */
968 u16 ldt_selector = kvm_read_ldt();
969
970 if (!(ldt_selector & ~3))
971 return 0;
972
973 table_base = segment_base(ldt_selector);
974 }
975 d = (struct desc_struct *)(table_base + (selector & ~7));
976 v = get_desc_base(d);
977 #ifdef CONFIG_X86_64
978 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
979 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
980 #endif
981 return v;
982 }
983
984 static inline unsigned long kvm_read_tr_base(void)
985 {
986 u16 tr;
987 asm("str %0" : "=g"(tr));
988 return segment_base(tr);
989 }
990
991 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
992 {
993 struct vcpu_vmx *vmx = to_vmx(vcpu);
994 int i;
995
996 if (vmx->host_state.loaded)
997 return;
998
999 vmx->host_state.loaded = 1;
1000 /*
1001 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1002 * allow segment selectors with cpl > 0 or ti == 1.
1003 */
1004 vmx->host_state.ldt_sel = kvm_read_ldt();
1005 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1006 savesegment(fs, vmx->host_state.fs_sel);
1007 if (!(vmx->host_state.fs_sel & 7)) {
1008 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1009 vmx->host_state.fs_reload_needed = 0;
1010 } else {
1011 vmcs_write16(HOST_FS_SELECTOR, 0);
1012 vmx->host_state.fs_reload_needed = 1;
1013 }
1014 savesegment(gs, vmx->host_state.gs_sel);
1015 if (!(vmx->host_state.gs_sel & 7))
1016 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1017 else {
1018 vmcs_write16(HOST_GS_SELECTOR, 0);
1019 vmx->host_state.gs_ldt_reload_needed = 1;
1020 }
1021
1022 #ifdef CONFIG_X86_64
1023 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1024 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1025 #else
1026 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1027 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1028 #endif
1029
1030 #ifdef CONFIG_X86_64
1031 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1032 if (is_long_mode(&vmx->vcpu))
1033 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1034 #endif
1035 for (i = 0; i < vmx->save_nmsrs; ++i)
1036 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1037 vmx->guest_msrs[i].data,
1038 vmx->guest_msrs[i].mask);
1039 }
1040
1041 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1042 {
1043 if (!vmx->host_state.loaded)
1044 return;
1045
1046 ++vmx->vcpu.stat.host_state_reload;
1047 vmx->host_state.loaded = 0;
1048 #ifdef CONFIG_X86_64
1049 if (is_long_mode(&vmx->vcpu))
1050 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1051 #endif
1052 if (vmx->host_state.gs_ldt_reload_needed) {
1053 kvm_load_ldt(vmx->host_state.ldt_sel);
1054 #ifdef CONFIG_X86_64
1055 load_gs_index(vmx->host_state.gs_sel);
1056 #else
1057 loadsegment(gs, vmx->host_state.gs_sel);
1058 #endif
1059 }
1060 if (vmx->host_state.fs_reload_needed)
1061 loadsegment(fs, vmx->host_state.fs_sel);
1062 reload_tss();
1063 #ifdef CONFIG_X86_64
1064 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1065 #endif
1066 if (current_thread_info()->status & TS_USEDFPU)
1067 clts();
1068 load_gdt(&__get_cpu_var(host_gdt));
1069 }
1070
1071 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1072 {
1073 preempt_disable();
1074 __vmx_load_host_state(vmx);
1075 preempt_enable();
1076 }
1077
1078 /*
1079 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1080 * vcpu mutex is already taken.
1081 */
1082 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1083 {
1084 struct vcpu_vmx *vmx = to_vmx(vcpu);
1085 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1086
1087 if (!vmm_exclusive)
1088 kvm_cpu_vmxon(phys_addr);
1089 else if (vmx->loaded_vmcs->cpu != cpu)
1090 loaded_vmcs_clear(vmx->loaded_vmcs);
1091
1092 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1093 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1094 vmcs_load(vmx->loaded_vmcs->vmcs);
1095 }
1096
1097 if (vmx->loaded_vmcs->cpu != cpu) {
1098 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1099 unsigned long sysenter_esp;
1100
1101 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1102 local_irq_disable();
1103 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1104 &per_cpu(loaded_vmcss_on_cpu, cpu));
1105 local_irq_enable();
1106
1107 /*
1108 * Linux uses per-cpu TSS and GDT, so set these when switching
1109 * processors.
1110 */
1111 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1112 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1113
1114 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1115 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1116 vmx->loaded_vmcs->cpu = cpu;
1117 }
1118 }
1119
1120 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1121 {
1122 __vmx_load_host_state(to_vmx(vcpu));
1123 if (!vmm_exclusive) {
1124 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1125 vcpu->cpu = -1;
1126 kvm_cpu_vmxoff();
1127 }
1128 }
1129
1130 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1131 {
1132 ulong cr0;
1133
1134 if (vcpu->fpu_active)
1135 return;
1136 vcpu->fpu_active = 1;
1137 cr0 = vmcs_readl(GUEST_CR0);
1138 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1139 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1140 vmcs_writel(GUEST_CR0, cr0);
1141 update_exception_bitmap(vcpu);
1142 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1143 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1144 }
1145
1146 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1147
1148 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1149 {
1150 vmx_decache_cr0_guest_bits(vcpu);
1151 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1152 update_exception_bitmap(vcpu);
1153 vcpu->arch.cr0_guest_owned_bits = 0;
1154 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1155 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1156 }
1157
1158 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1159 {
1160 unsigned long rflags, save_rflags;
1161
1162 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1163 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1164 rflags = vmcs_readl(GUEST_RFLAGS);
1165 if (to_vmx(vcpu)->rmode.vm86_active) {
1166 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1167 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1168 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1169 }
1170 to_vmx(vcpu)->rflags = rflags;
1171 }
1172 return to_vmx(vcpu)->rflags;
1173 }
1174
1175 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1176 {
1177 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1178 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1179 to_vmx(vcpu)->rflags = rflags;
1180 if (to_vmx(vcpu)->rmode.vm86_active) {
1181 to_vmx(vcpu)->rmode.save_rflags = rflags;
1182 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1183 }
1184 vmcs_writel(GUEST_RFLAGS, rflags);
1185 }
1186
1187 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1188 {
1189 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1190 int ret = 0;
1191
1192 if (interruptibility & GUEST_INTR_STATE_STI)
1193 ret |= KVM_X86_SHADOW_INT_STI;
1194 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1195 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1196
1197 return ret & mask;
1198 }
1199
1200 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1201 {
1202 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1203 u32 interruptibility = interruptibility_old;
1204
1205 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1206
1207 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1208 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1209 else if (mask & KVM_X86_SHADOW_INT_STI)
1210 interruptibility |= GUEST_INTR_STATE_STI;
1211
1212 if ((interruptibility != interruptibility_old))
1213 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1214 }
1215
1216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1217 {
1218 unsigned long rip;
1219
1220 rip = kvm_rip_read(vcpu);
1221 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1222 kvm_rip_write(vcpu, rip);
1223
1224 /* skipping an emulated instruction also counts */
1225 vmx_set_interrupt_shadow(vcpu, 0);
1226 }
1227
1228 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1229 {
1230 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1231 * explicitly skip the instruction because if the HLT state is set, then
1232 * the instruction is already executing and RIP has already been
1233 * advanced. */
1234 if (!yield_on_hlt &&
1235 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1236 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1237 }
1238
1239 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1240 bool has_error_code, u32 error_code,
1241 bool reinject)
1242 {
1243 struct vcpu_vmx *vmx = to_vmx(vcpu);
1244 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1245
1246 if (has_error_code) {
1247 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1248 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1249 }
1250
1251 if (vmx->rmode.vm86_active) {
1252 int inc_eip = 0;
1253 if (kvm_exception_is_soft(nr))
1254 inc_eip = vcpu->arch.event_exit_inst_len;
1255 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1256 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1257 return;
1258 }
1259
1260 if (kvm_exception_is_soft(nr)) {
1261 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1262 vmx->vcpu.arch.event_exit_inst_len);
1263 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1264 } else
1265 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1266
1267 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1268 vmx_clear_hlt(vcpu);
1269 }
1270
1271 static bool vmx_rdtscp_supported(void)
1272 {
1273 return cpu_has_vmx_rdtscp();
1274 }
1275
1276 /*
1277 * Swap MSR entry in host/guest MSR entry array.
1278 */
1279 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1280 {
1281 struct shared_msr_entry tmp;
1282
1283 tmp = vmx->guest_msrs[to];
1284 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1285 vmx->guest_msrs[from] = tmp;
1286 }
1287
1288 /*
1289 * Set up the vmcs to automatically save and restore system
1290 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1291 * mode, as fiddling with msrs is very expensive.
1292 */
1293 static void setup_msrs(struct vcpu_vmx *vmx)
1294 {
1295 int save_nmsrs, index;
1296 unsigned long *msr_bitmap;
1297
1298 vmx_load_host_state(vmx);
1299 save_nmsrs = 0;
1300 #ifdef CONFIG_X86_64
1301 if (is_long_mode(&vmx->vcpu)) {
1302 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1303 if (index >= 0)
1304 move_msr_up(vmx, index, save_nmsrs++);
1305 index = __find_msr_index(vmx, MSR_LSTAR);
1306 if (index >= 0)
1307 move_msr_up(vmx, index, save_nmsrs++);
1308 index = __find_msr_index(vmx, MSR_CSTAR);
1309 if (index >= 0)
1310 move_msr_up(vmx, index, save_nmsrs++);
1311 index = __find_msr_index(vmx, MSR_TSC_AUX);
1312 if (index >= 0 && vmx->rdtscp_enabled)
1313 move_msr_up(vmx, index, save_nmsrs++);
1314 /*
1315 * MSR_STAR is only needed on long mode guests, and only
1316 * if efer.sce is enabled.
1317 */
1318 index = __find_msr_index(vmx, MSR_STAR);
1319 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1320 move_msr_up(vmx, index, save_nmsrs++);
1321 }
1322 #endif
1323 index = __find_msr_index(vmx, MSR_EFER);
1324 if (index >= 0 && update_transition_efer(vmx, index))
1325 move_msr_up(vmx, index, save_nmsrs++);
1326
1327 vmx->save_nmsrs = save_nmsrs;
1328
1329 if (cpu_has_vmx_msr_bitmap()) {
1330 if (is_long_mode(&vmx->vcpu))
1331 msr_bitmap = vmx_msr_bitmap_longmode;
1332 else
1333 msr_bitmap = vmx_msr_bitmap_legacy;
1334
1335 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1336 }
1337 }
1338
1339 /*
1340 * reads and returns guest's timestamp counter "register"
1341 * guest_tsc = host_tsc + tsc_offset -- 21.3
1342 */
1343 static u64 guest_read_tsc(void)
1344 {
1345 u64 host_tsc, tsc_offset;
1346
1347 rdtscll(host_tsc);
1348 tsc_offset = vmcs_read64(TSC_OFFSET);
1349 return host_tsc + tsc_offset;
1350 }
1351
1352 /*
1353 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1354 * ioctl. In this case the call-back should update internal vmx state to make
1355 * the changes effective.
1356 */
1357 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1358 {
1359 /* Nothing to do here */
1360 }
1361
1362 /*
1363 * writes 'offset' into guest's timestamp counter offset register
1364 */
1365 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1366 {
1367 vmcs_write64(TSC_OFFSET, offset);
1368 }
1369
1370 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1371 {
1372 u64 offset = vmcs_read64(TSC_OFFSET);
1373 vmcs_write64(TSC_OFFSET, offset + adjustment);
1374 }
1375
1376 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1377 {
1378 return target_tsc - native_read_tsc();
1379 }
1380
1381 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1382 {
1383 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1384 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1385 }
1386
1387 /*
1388 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1389 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1390 * all guests if the "nested" module option is off, and can also be disabled
1391 * for a single guest by disabling its VMX cpuid bit.
1392 */
1393 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1394 {
1395 return nested && guest_cpuid_has_vmx(vcpu);
1396 }
1397
1398 /*
1399 * Reads an msr value (of 'msr_index') into 'pdata'.
1400 * Returns 0 on success, non-0 otherwise.
1401 * Assumes vcpu_load() was already called.
1402 */
1403 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1404 {
1405 u64 data;
1406 struct shared_msr_entry *msr;
1407
1408 if (!pdata) {
1409 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1410 return -EINVAL;
1411 }
1412
1413 switch (msr_index) {
1414 #ifdef CONFIG_X86_64
1415 case MSR_FS_BASE:
1416 data = vmcs_readl(GUEST_FS_BASE);
1417 break;
1418 case MSR_GS_BASE:
1419 data = vmcs_readl(GUEST_GS_BASE);
1420 break;
1421 case MSR_KERNEL_GS_BASE:
1422 vmx_load_host_state(to_vmx(vcpu));
1423 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1424 break;
1425 #endif
1426 case MSR_EFER:
1427 return kvm_get_msr_common(vcpu, msr_index, pdata);
1428 case MSR_IA32_TSC:
1429 data = guest_read_tsc();
1430 break;
1431 case MSR_IA32_SYSENTER_CS:
1432 data = vmcs_read32(GUEST_SYSENTER_CS);
1433 break;
1434 case MSR_IA32_SYSENTER_EIP:
1435 data = vmcs_readl(GUEST_SYSENTER_EIP);
1436 break;
1437 case MSR_IA32_SYSENTER_ESP:
1438 data = vmcs_readl(GUEST_SYSENTER_ESP);
1439 break;
1440 case MSR_TSC_AUX:
1441 if (!to_vmx(vcpu)->rdtscp_enabled)
1442 return 1;
1443 /* Otherwise falls through */
1444 default:
1445 vmx_load_host_state(to_vmx(vcpu));
1446 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1447 if (msr) {
1448 vmx_load_host_state(to_vmx(vcpu));
1449 data = msr->data;
1450 break;
1451 }
1452 return kvm_get_msr_common(vcpu, msr_index, pdata);
1453 }
1454
1455 *pdata = data;
1456 return 0;
1457 }
1458
1459 /*
1460 * Writes msr value into into the appropriate "register".
1461 * Returns 0 on success, non-0 otherwise.
1462 * Assumes vcpu_load() was already called.
1463 */
1464 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1465 {
1466 struct vcpu_vmx *vmx = to_vmx(vcpu);
1467 struct shared_msr_entry *msr;
1468 int ret = 0;
1469
1470 switch (msr_index) {
1471 case MSR_EFER:
1472 vmx_load_host_state(vmx);
1473 ret = kvm_set_msr_common(vcpu, msr_index, data);
1474 break;
1475 #ifdef CONFIG_X86_64
1476 case MSR_FS_BASE:
1477 vmx_segment_cache_clear(vmx);
1478 vmcs_writel(GUEST_FS_BASE, data);
1479 break;
1480 case MSR_GS_BASE:
1481 vmx_segment_cache_clear(vmx);
1482 vmcs_writel(GUEST_GS_BASE, data);
1483 break;
1484 case MSR_KERNEL_GS_BASE:
1485 vmx_load_host_state(vmx);
1486 vmx->msr_guest_kernel_gs_base = data;
1487 break;
1488 #endif
1489 case MSR_IA32_SYSENTER_CS:
1490 vmcs_write32(GUEST_SYSENTER_CS, data);
1491 break;
1492 case MSR_IA32_SYSENTER_EIP:
1493 vmcs_writel(GUEST_SYSENTER_EIP, data);
1494 break;
1495 case MSR_IA32_SYSENTER_ESP:
1496 vmcs_writel(GUEST_SYSENTER_ESP, data);
1497 break;
1498 case MSR_IA32_TSC:
1499 kvm_write_tsc(vcpu, data);
1500 break;
1501 case MSR_IA32_CR_PAT:
1502 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1503 vmcs_write64(GUEST_IA32_PAT, data);
1504 vcpu->arch.pat = data;
1505 break;
1506 }
1507 ret = kvm_set_msr_common(vcpu, msr_index, data);
1508 break;
1509 case MSR_TSC_AUX:
1510 if (!vmx->rdtscp_enabled)
1511 return 1;
1512 /* Check reserved bit, higher 32 bits should be zero */
1513 if ((data >> 32) != 0)
1514 return 1;
1515 /* Otherwise falls through */
1516 default:
1517 msr = find_msr_entry(vmx, msr_index);
1518 if (msr) {
1519 vmx_load_host_state(vmx);
1520 msr->data = data;
1521 break;
1522 }
1523 ret = kvm_set_msr_common(vcpu, msr_index, data);
1524 }
1525
1526 return ret;
1527 }
1528
1529 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1530 {
1531 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1532 switch (reg) {
1533 case VCPU_REGS_RSP:
1534 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1535 break;
1536 case VCPU_REGS_RIP:
1537 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1538 break;
1539 case VCPU_EXREG_PDPTR:
1540 if (enable_ept)
1541 ept_save_pdptrs(vcpu);
1542 break;
1543 default:
1544 break;
1545 }
1546 }
1547
1548 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1549 {
1550 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1551 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1552 else
1553 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1554
1555 update_exception_bitmap(vcpu);
1556 }
1557
1558 static __init int cpu_has_kvm_support(void)
1559 {
1560 return cpu_has_vmx();
1561 }
1562
1563 static __init int vmx_disabled_by_bios(void)
1564 {
1565 u64 msr;
1566
1567 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1568 if (msr & FEATURE_CONTROL_LOCKED) {
1569 /* launched w/ TXT and VMX disabled */
1570 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1571 && tboot_enabled())
1572 return 1;
1573 /* launched w/o TXT and VMX only enabled w/ TXT */
1574 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1575 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1576 && !tboot_enabled()) {
1577 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1578 "activate TXT before enabling KVM\n");
1579 return 1;
1580 }
1581 /* launched w/o TXT and VMX disabled */
1582 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1583 && !tboot_enabled())
1584 return 1;
1585 }
1586
1587 return 0;
1588 }
1589
1590 static void kvm_cpu_vmxon(u64 addr)
1591 {
1592 asm volatile (ASM_VMX_VMXON_RAX
1593 : : "a"(&addr), "m"(addr)
1594 : "memory", "cc");
1595 }
1596
1597 static int hardware_enable(void *garbage)
1598 {
1599 int cpu = raw_smp_processor_id();
1600 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1601 u64 old, test_bits;
1602
1603 if (read_cr4() & X86_CR4_VMXE)
1604 return -EBUSY;
1605
1606 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
1607 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1608
1609 test_bits = FEATURE_CONTROL_LOCKED;
1610 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1611 if (tboot_enabled())
1612 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1613
1614 if ((old & test_bits) != test_bits) {
1615 /* enable and lock */
1616 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1617 }
1618 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1619
1620 if (vmm_exclusive) {
1621 kvm_cpu_vmxon(phys_addr);
1622 ept_sync_global();
1623 }
1624
1625 store_gdt(&__get_cpu_var(host_gdt));
1626
1627 return 0;
1628 }
1629
1630 static void vmclear_local_loaded_vmcss(void)
1631 {
1632 int cpu = raw_smp_processor_id();
1633 struct loaded_vmcs *v, *n;
1634
1635 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
1636 loaded_vmcss_on_cpu_link)
1637 __loaded_vmcs_clear(v);
1638 }
1639
1640
1641 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1642 * tricks.
1643 */
1644 static void kvm_cpu_vmxoff(void)
1645 {
1646 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1647 }
1648
1649 static void hardware_disable(void *garbage)
1650 {
1651 if (vmm_exclusive) {
1652 vmclear_local_loaded_vmcss();
1653 kvm_cpu_vmxoff();
1654 }
1655 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1656 }
1657
1658 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1659 u32 msr, u32 *result)
1660 {
1661 u32 vmx_msr_low, vmx_msr_high;
1662 u32 ctl = ctl_min | ctl_opt;
1663
1664 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1665
1666 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1667 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1668
1669 /* Ensure minimum (required) set of control bits are supported. */
1670 if (ctl_min & ~ctl)
1671 return -EIO;
1672
1673 *result = ctl;
1674 return 0;
1675 }
1676
1677 static __init bool allow_1_setting(u32 msr, u32 ctl)
1678 {
1679 u32 vmx_msr_low, vmx_msr_high;
1680
1681 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1682 return vmx_msr_high & ctl;
1683 }
1684
1685 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1686 {
1687 u32 vmx_msr_low, vmx_msr_high;
1688 u32 min, opt, min2, opt2;
1689 u32 _pin_based_exec_control = 0;
1690 u32 _cpu_based_exec_control = 0;
1691 u32 _cpu_based_2nd_exec_control = 0;
1692 u32 _vmexit_control = 0;
1693 u32 _vmentry_control = 0;
1694
1695 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1696 opt = PIN_BASED_VIRTUAL_NMIS;
1697 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1698 &_pin_based_exec_control) < 0)
1699 return -EIO;
1700
1701 min =
1702 #ifdef CONFIG_X86_64
1703 CPU_BASED_CR8_LOAD_EXITING |
1704 CPU_BASED_CR8_STORE_EXITING |
1705 #endif
1706 CPU_BASED_CR3_LOAD_EXITING |
1707 CPU_BASED_CR3_STORE_EXITING |
1708 CPU_BASED_USE_IO_BITMAPS |
1709 CPU_BASED_MOV_DR_EXITING |
1710 CPU_BASED_USE_TSC_OFFSETING |
1711 CPU_BASED_MWAIT_EXITING |
1712 CPU_BASED_MONITOR_EXITING |
1713 CPU_BASED_INVLPG_EXITING;
1714
1715 if (yield_on_hlt)
1716 min |= CPU_BASED_HLT_EXITING;
1717
1718 opt = CPU_BASED_TPR_SHADOW |
1719 CPU_BASED_USE_MSR_BITMAPS |
1720 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1721 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1722 &_cpu_based_exec_control) < 0)
1723 return -EIO;
1724 #ifdef CONFIG_X86_64
1725 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1726 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1727 ~CPU_BASED_CR8_STORE_EXITING;
1728 #endif
1729 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1730 min2 = 0;
1731 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1732 SECONDARY_EXEC_WBINVD_EXITING |
1733 SECONDARY_EXEC_ENABLE_VPID |
1734 SECONDARY_EXEC_ENABLE_EPT |
1735 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1736 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1737 SECONDARY_EXEC_RDTSCP;
1738 if (adjust_vmx_controls(min2, opt2,
1739 MSR_IA32_VMX_PROCBASED_CTLS2,
1740 &_cpu_based_2nd_exec_control) < 0)
1741 return -EIO;
1742 }
1743 #ifndef CONFIG_X86_64
1744 if (!(_cpu_based_2nd_exec_control &
1745 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1746 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1747 #endif
1748 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1749 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1750 enabled */
1751 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1752 CPU_BASED_CR3_STORE_EXITING |
1753 CPU_BASED_INVLPG_EXITING);
1754 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1755 vmx_capability.ept, vmx_capability.vpid);
1756 }
1757
1758 min = 0;
1759 #ifdef CONFIG_X86_64
1760 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1761 #endif
1762 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1763 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1764 &_vmexit_control) < 0)
1765 return -EIO;
1766
1767 min = 0;
1768 opt = VM_ENTRY_LOAD_IA32_PAT;
1769 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1770 &_vmentry_control) < 0)
1771 return -EIO;
1772
1773 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1774
1775 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1776 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1777 return -EIO;
1778
1779 #ifdef CONFIG_X86_64
1780 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1781 if (vmx_msr_high & (1u<<16))
1782 return -EIO;
1783 #endif
1784
1785 /* Require Write-Back (WB) memory type for VMCS accesses. */
1786 if (((vmx_msr_high >> 18) & 15) != 6)
1787 return -EIO;
1788
1789 vmcs_conf->size = vmx_msr_high & 0x1fff;
1790 vmcs_conf->order = get_order(vmcs_config.size);
1791 vmcs_conf->revision_id = vmx_msr_low;
1792
1793 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1794 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1795 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1796 vmcs_conf->vmexit_ctrl = _vmexit_control;
1797 vmcs_conf->vmentry_ctrl = _vmentry_control;
1798
1799 cpu_has_load_ia32_efer =
1800 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1801 VM_ENTRY_LOAD_IA32_EFER)
1802 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1803 VM_EXIT_LOAD_IA32_EFER);
1804
1805 return 0;
1806 }
1807
1808 static struct vmcs *alloc_vmcs_cpu(int cpu)
1809 {
1810 int node = cpu_to_node(cpu);
1811 struct page *pages;
1812 struct vmcs *vmcs;
1813
1814 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1815 if (!pages)
1816 return NULL;
1817 vmcs = page_address(pages);
1818 memset(vmcs, 0, vmcs_config.size);
1819 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1820 return vmcs;
1821 }
1822
1823 static struct vmcs *alloc_vmcs(void)
1824 {
1825 return alloc_vmcs_cpu(raw_smp_processor_id());
1826 }
1827
1828 static void free_vmcs(struct vmcs *vmcs)
1829 {
1830 free_pages((unsigned long)vmcs, vmcs_config.order);
1831 }
1832
1833 /*
1834 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
1835 */
1836 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
1837 {
1838 if (!loaded_vmcs->vmcs)
1839 return;
1840 loaded_vmcs_clear(loaded_vmcs);
1841 free_vmcs(loaded_vmcs->vmcs);
1842 loaded_vmcs->vmcs = NULL;
1843 }
1844
1845 static void free_kvm_area(void)
1846 {
1847 int cpu;
1848
1849 for_each_possible_cpu(cpu) {
1850 free_vmcs(per_cpu(vmxarea, cpu));
1851 per_cpu(vmxarea, cpu) = NULL;
1852 }
1853 }
1854
1855 static __init int alloc_kvm_area(void)
1856 {
1857 int cpu;
1858
1859 for_each_possible_cpu(cpu) {
1860 struct vmcs *vmcs;
1861
1862 vmcs = alloc_vmcs_cpu(cpu);
1863 if (!vmcs) {
1864 free_kvm_area();
1865 return -ENOMEM;
1866 }
1867
1868 per_cpu(vmxarea, cpu) = vmcs;
1869 }
1870 return 0;
1871 }
1872
1873 static __init int hardware_setup(void)
1874 {
1875 if (setup_vmcs_config(&vmcs_config) < 0)
1876 return -EIO;
1877
1878 if (boot_cpu_has(X86_FEATURE_NX))
1879 kvm_enable_efer_bits(EFER_NX);
1880
1881 if (!cpu_has_vmx_vpid())
1882 enable_vpid = 0;
1883
1884 if (!cpu_has_vmx_ept() ||
1885 !cpu_has_vmx_ept_4levels()) {
1886 enable_ept = 0;
1887 enable_unrestricted_guest = 0;
1888 }
1889
1890 if (!cpu_has_vmx_unrestricted_guest())
1891 enable_unrestricted_guest = 0;
1892
1893 if (!cpu_has_vmx_flexpriority())
1894 flexpriority_enabled = 0;
1895
1896 if (!cpu_has_vmx_tpr_shadow())
1897 kvm_x86_ops->update_cr8_intercept = NULL;
1898
1899 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1900 kvm_disable_largepages();
1901
1902 if (!cpu_has_vmx_ple())
1903 ple_gap = 0;
1904
1905 return alloc_kvm_area();
1906 }
1907
1908 static __exit void hardware_unsetup(void)
1909 {
1910 free_kvm_area();
1911 }
1912
1913 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1914 {
1915 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1916
1917 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1918 vmcs_write16(sf->selector, save->selector);
1919 vmcs_writel(sf->base, save->base);
1920 vmcs_write32(sf->limit, save->limit);
1921 vmcs_write32(sf->ar_bytes, save->ar);
1922 } else {
1923 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1924 << AR_DPL_SHIFT;
1925 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1926 }
1927 }
1928
1929 static void enter_pmode(struct kvm_vcpu *vcpu)
1930 {
1931 unsigned long flags;
1932 struct vcpu_vmx *vmx = to_vmx(vcpu);
1933
1934 vmx->emulation_required = 1;
1935 vmx->rmode.vm86_active = 0;
1936
1937 vmx_segment_cache_clear(vmx);
1938
1939 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1940 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1941 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1942 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1943
1944 flags = vmcs_readl(GUEST_RFLAGS);
1945 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1946 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1947 vmcs_writel(GUEST_RFLAGS, flags);
1948
1949 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1950 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1951
1952 update_exception_bitmap(vcpu);
1953
1954 if (emulate_invalid_guest_state)
1955 return;
1956
1957 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1958 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1959 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1960 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1961
1962 vmx_segment_cache_clear(vmx);
1963
1964 vmcs_write16(GUEST_SS_SELECTOR, 0);
1965 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1966
1967 vmcs_write16(GUEST_CS_SELECTOR,
1968 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1969 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1970 }
1971
1972 static gva_t rmode_tss_base(struct kvm *kvm)
1973 {
1974 if (!kvm->arch.tss_addr) {
1975 struct kvm_memslots *slots;
1976 gfn_t base_gfn;
1977
1978 slots = kvm_memslots(kvm);
1979 base_gfn = slots->memslots[0].base_gfn +
1980 kvm->memslots->memslots[0].npages - 3;
1981 return base_gfn << PAGE_SHIFT;
1982 }
1983 return kvm->arch.tss_addr;
1984 }
1985
1986 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1987 {
1988 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1989
1990 save->selector = vmcs_read16(sf->selector);
1991 save->base = vmcs_readl(sf->base);
1992 save->limit = vmcs_read32(sf->limit);
1993 save->ar = vmcs_read32(sf->ar_bytes);
1994 vmcs_write16(sf->selector, save->base >> 4);
1995 vmcs_write32(sf->base, save->base & 0xffff0);
1996 vmcs_write32(sf->limit, 0xffff);
1997 vmcs_write32(sf->ar_bytes, 0xf3);
1998 if (save->base & 0xf)
1999 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2000 " aligned when entering protected mode (seg=%d)",
2001 seg);
2002 }
2003
2004 static void enter_rmode(struct kvm_vcpu *vcpu)
2005 {
2006 unsigned long flags;
2007 struct vcpu_vmx *vmx = to_vmx(vcpu);
2008
2009 if (enable_unrestricted_guest)
2010 return;
2011
2012 vmx->emulation_required = 1;
2013 vmx->rmode.vm86_active = 1;
2014
2015 /*
2016 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2017 * vcpu. Call it here with phys address pointing 16M below 4G.
2018 */
2019 if (!vcpu->kvm->arch.tss_addr) {
2020 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2021 "called before entering vcpu\n");
2022 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2023 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2024 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2025 }
2026
2027 vmx_segment_cache_clear(vmx);
2028
2029 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2030 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2031 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2032
2033 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2034 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2035
2036 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2037 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2038
2039 flags = vmcs_readl(GUEST_RFLAGS);
2040 vmx->rmode.save_rflags = flags;
2041
2042 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2043
2044 vmcs_writel(GUEST_RFLAGS, flags);
2045 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2046 update_exception_bitmap(vcpu);
2047
2048 if (emulate_invalid_guest_state)
2049 goto continue_rmode;
2050
2051 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2052 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2053 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2054
2055 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2056 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2057 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2058 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2059 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2060
2061 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2062 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2063 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2064 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2065
2066 continue_rmode:
2067 kvm_mmu_reset_context(vcpu);
2068 }
2069
2070 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2071 {
2072 struct vcpu_vmx *vmx = to_vmx(vcpu);
2073 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2074
2075 if (!msr)
2076 return;
2077
2078 /*
2079 * Force kernel_gs_base reloading before EFER changes, as control
2080 * of this msr depends on is_long_mode().
2081 */
2082 vmx_load_host_state(to_vmx(vcpu));
2083 vcpu->arch.efer = efer;
2084 if (efer & EFER_LMA) {
2085 vmcs_write32(VM_ENTRY_CONTROLS,
2086 vmcs_read32(VM_ENTRY_CONTROLS) |
2087 VM_ENTRY_IA32E_MODE);
2088 msr->data = efer;
2089 } else {
2090 vmcs_write32(VM_ENTRY_CONTROLS,
2091 vmcs_read32(VM_ENTRY_CONTROLS) &
2092 ~VM_ENTRY_IA32E_MODE);
2093
2094 msr->data = efer & ~EFER_LME;
2095 }
2096 setup_msrs(vmx);
2097 }
2098
2099 #ifdef CONFIG_X86_64
2100
2101 static void enter_lmode(struct kvm_vcpu *vcpu)
2102 {
2103 u32 guest_tr_ar;
2104
2105 vmx_segment_cache_clear(to_vmx(vcpu));
2106
2107 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2108 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2109 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2110 __func__);
2111 vmcs_write32(GUEST_TR_AR_BYTES,
2112 (guest_tr_ar & ~AR_TYPE_MASK)
2113 | AR_TYPE_BUSY_64_TSS);
2114 }
2115 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2116 }
2117
2118 static void exit_lmode(struct kvm_vcpu *vcpu)
2119 {
2120 vmcs_write32(VM_ENTRY_CONTROLS,
2121 vmcs_read32(VM_ENTRY_CONTROLS)
2122 & ~VM_ENTRY_IA32E_MODE);
2123 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2124 }
2125
2126 #endif
2127
2128 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2129 {
2130 vpid_sync_context(to_vmx(vcpu));
2131 if (enable_ept) {
2132 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2133 return;
2134 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2135 }
2136 }
2137
2138 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2139 {
2140 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2141
2142 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2143 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2144 }
2145
2146 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2147 {
2148 if (enable_ept && is_paging(vcpu))
2149 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2150 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2151 }
2152
2153 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2154 {
2155 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2156
2157 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2158 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2159 }
2160
2161 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2162 {
2163 if (!test_bit(VCPU_EXREG_PDPTR,
2164 (unsigned long *)&vcpu->arch.regs_dirty))
2165 return;
2166
2167 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2168 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2169 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2170 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2171 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2172 }
2173 }
2174
2175 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2176 {
2177 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2178 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2179 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2180 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2181 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2182 }
2183
2184 __set_bit(VCPU_EXREG_PDPTR,
2185 (unsigned long *)&vcpu->arch.regs_avail);
2186 __set_bit(VCPU_EXREG_PDPTR,
2187 (unsigned long *)&vcpu->arch.regs_dirty);
2188 }
2189
2190 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2191
2192 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2193 unsigned long cr0,
2194 struct kvm_vcpu *vcpu)
2195 {
2196 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2197 vmx_decache_cr3(vcpu);
2198 if (!(cr0 & X86_CR0_PG)) {
2199 /* From paging/starting to nonpaging */
2200 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2201 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2202 (CPU_BASED_CR3_LOAD_EXITING |
2203 CPU_BASED_CR3_STORE_EXITING));
2204 vcpu->arch.cr0 = cr0;
2205 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2206 } else if (!is_paging(vcpu)) {
2207 /* From nonpaging to paging */
2208 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2209 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2210 ~(CPU_BASED_CR3_LOAD_EXITING |
2211 CPU_BASED_CR3_STORE_EXITING));
2212 vcpu->arch.cr0 = cr0;
2213 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2214 }
2215
2216 if (!(cr0 & X86_CR0_WP))
2217 *hw_cr0 &= ~X86_CR0_WP;
2218 }
2219
2220 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2221 {
2222 struct vcpu_vmx *vmx = to_vmx(vcpu);
2223 unsigned long hw_cr0;
2224
2225 if (enable_unrestricted_guest)
2226 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2227 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2228 else
2229 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2230
2231 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2232 enter_pmode(vcpu);
2233
2234 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2235 enter_rmode(vcpu);
2236
2237 #ifdef CONFIG_X86_64
2238 if (vcpu->arch.efer & EFER_LME) {
2239 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2240 enter_lmode(vcpu);
2241 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2242 exit_lmode(vcpu);
2243 }
2244 #endif
2245
2246 if (enable_ept)
2247 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2248
2249 if (!vcpu->fpu_active)
2250 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2251
2252 vmcs_writel(CR0_READ_SHADOW, cr0);
2253 vmcs_writel(GUEST_CR0, hw_cr0);
2254 vcpu->arch.cr0 = cr0;
2255 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2256 }
2257
2258 static u64 construct_eptp(unsigned long root_hpa)
2259 {
2260 u64 eptp;
2261
2262 /* TODO write the value reading from MSR */
2263 eptp = VMX_EPT_DEFAULT_MT |
2264 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2265 eptp |= (root_hpa & PAGE_MASK);
2266
2267 return eptp;
2268 }
2269
2270 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2271 {
2272 unsigned long guest_cr3;
2273 u64 eptp;
2274
2275 guest_cr3 = cr3;
2276 if (enable_ept) {
2277 eptp = construct_eptp(cr3);
2278 vmcs_write64(EPT_POINTER, eptp);
2279 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2280 vcpu->kvm->arch.ept_identity_map_addr;
2281 ept_load_pdptrs(vcpu);
2282 }
2283
2284 vmx_flush_tlb(vcpu);
2285 vmcs_writel(GUEST_CR3, guest_cr3);
2286 }
2287
2288 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2289 {
2290 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2291 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2292
2293 if (cr4 & X86_CR4_VMXE) {
2294 /*
2295 * To use VMXON (and later other VMX instructions), a guest
2296 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2297 * So basically the check on whether to allow nested VMX
2298 * is here.
2299 */
2300 if (!nested_vmx_allowed(vcpu))
2301 return 1;
2302 } else if (to_vmx(vcpu)->nested.vmxon)
2303 return 1;
2304
2305 vcpu->arch.cr4 = cr4;
2306 if (enable_ept) {
2307 if (!is_paging(vcpu)) {
2308 hw_cr4 &= ~X86_CR4_PAE;
2309 hw_cr4 |= X86_CR4_PSE;
2310 } else if (!(cr4 & X86_CR4_PAE)) {
2311 hw_cr4 &= ~X86_CR4_PAE;
2312 }
2313 }
2314
2315 vmcs_writel(CR4_READ_SHADOW, cr4);
2316 vmcs_writel(GUEST_CR4, hw_cr4);
2317 return 0;
2318 }
2319
2320 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2321 struct kvm_segment *var, int seg)
2322 {
2323 struct vcpu_vmx *vmx = to_vmx(vcpu);
2324 struct kvm_save_segment *save;
2325 u32 ar;
2326
2327 if (vmx->rmode.vm86_active
2328 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2329 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2330 || seg == VCPU_SREG_GS)
2331 && !emulate_invalid_guest_state) {
2332 switch (seg) {
2333 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2334 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2335 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2336 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2337 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2338 default: BUG();
2339 }
2340 var->selector = save->selector;
2341 var->base = save->base;
2342 var->limit = save->limit;
2343 ar = save->ar;
2344 if (seg == VCPU_SREG_TR
2345 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2346 goto use_saved_rmode_seg;
2347 }
2348 var->base = vmx_read_guest_seg_base(vmx, seg);
2349 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2350 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2351 ar = vmx_read_guest_seg_ar(vmx, seg);
2352 use_saved_rmode_seg:
2353 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2354 ar = 0;
2355 var->type = ar & 15;
2356 var->s = (ar >> 4) & 1;
2357 var->dpl = (ar >> 5) & 3;
2358 var->present = (ar >> 7) & 1;
2359 var->avl = (ar >> 12) & 1;
2360 var->l = (ar >> 13) & 1;
2361 var->db = (ar >> 14) & 1;
2362 var->g = (ar >> 15) & 1;
2363 var->unusable = (ar >> 16) & 1;
2364 }
2365
2366 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2367 {
2368 struct kvm_segment s;
2369
2370 if (to_vmx(vcpu)->rmode.vm86_active) {
2371 vmx_get_segment(vcpu, &s, seg);
2372 return s.base;
2373 }
2374 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2375 }
2376
2377 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2378 {
2379 if (!is_protmode(vcpu))
2380 return 0;
2381
2382 if (!is_long_mode(vcpu)
2383 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2384 return 3;
2385
2386 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2387 }
2388
2389 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2390 {
2391 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2392 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2393 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2394 }
2395 return to_vmx(vcpu)->cpl;
2396 }
2397
2398
2399 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2400 {
2401 u32 ar;
2402
2403 if (var->unusable)
2404 ar = 1 << 16;
2405 else {
2406 ar = var->type & 15;
2407 ar |= (var->s & 1) << 4;
2408 ar |= (var->dpl & 3) << 5;
2409 ar |= (var->present & 1) << 7;
2410 ar |= (var->avl & 1) << 12;
2411 ar |= (var->l & 1) << 13;
2412 ar |= (var->db & 1) << 14;
2413 ar |= (var->g & 1) << 15;
2414 }
2415 if (ar == 0) /* a 0 value means unusable */
2416 ar = AR_UNUSABLE_MASK;
2417
2418 return ar;
2419 }
2420
2421 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2422 struct kvm_segment *var, int seg)
2423 {
2424 struct vcpu_vmx *vmx = to_vmx(vcpu);
2425 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2426 u32 ar;
2427
2428 vmx_segment_cache_clear(vmx);
2429
2430 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2431 vmcs_write16(sf->selector, var->selector);
2432 vmx->rmode.tr.selector = var->selector;
2433 vmx->rmode.tr.base = var->base;
2434 vmx->rmode.tr.limit = var->limit;
2435 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2436 return;
2437 }
2438 vmcs_writel(sf->base, var->base);
2439 vmcs_write32(sf->limit, var->limit);
2440 vmcs_write16(sf->selector, var->selector);
2441 if (vmx->rmode.vm86_active && var->s) {
2442 /*
2443 * Hack real-mode segments into vm86 compatibility.
2444 */
2445 if (var->base == 0xffff0000 && var->selector == 0xf000)
2446 vmcs_writel(sf->base, 0xf0000);
2447 ar = 0xf3;
2448 } else
2449 ar = vmx_segment_access_rights(var);
2450
2451 /*
2452 * Fix the "Accessed" bit in AR field of segment registers for older
2453 * qemu binaries.
2454 * IA32 arch specifies that at the time of processor reset the
2455 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2456 * is setting it to 0 in the usedland code. This causes invalid guest
2457 * state vmexit when "unrestricted guest" mode is turned on.
2458 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2459 * tree. Newer qemu binaries with that qemu fix would not need this
2460 * kvm hack.
2461 */
2462 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2463 ar |= 0x1; /* Accessed */
2464
2465 vmcs_write32(sf->ar_bytes, ar);
2466 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2467 }
2468
2469 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2470 {
2471 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2472
2473 *db = (ar >> 14) & 1;
2474 *l = (ar >> 13) & 1;
2475 }
2476
2477 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2478 {
2479 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2480 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2481 }
2482
2483 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2484 {
2485 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2486 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2487 }
2488
2489 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2490 {
2491 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2492 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2493 }
2494
2495 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2496 {
2497 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2498 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2499 }
2500
2501 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2502 {
2503 struct kvm_segment var;
2504 u32 ar;
2505
2506 vmx_get_segment(vcpu, &var, seg);
2507 ar = vmx_segment_access_rights(&var);
2508
2509 if (var.base != (var.selector << 4))
2510 return false;
2511 if (var.limit != 0xffff)
2512 return false;
2513 if (ar != 0xf3)
2514 return false;
2515
2516 return true;
2517 }
2518
2519 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2520 {
2521 struct kvm_segment cs;
2522 unsigned int cs_rpl;
2523
2524 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2525 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2526
2527 if (cs.unusable)
2528 return false;
2529 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2530 return false;
2531 if (!cs.s)
2532 return false;
2533 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2534 if (cs.dpl > cs_rpl)
2535 return false;
2536 } else {
2537 if (cs.dpl != cs_rpl)
2538 return false;
2539 }
2540 if (!cs.present)
2541 return false;
2542
2543 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2544 return true;
2545 }
2546
2547 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2548 {
2549 struct kvm_segment ss;
2550 unsigned int ss_rpl;
2551
2552 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2553 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2554
2555 if (ss.unusable)
2556 return true;
2557 if (ss.type != 3 && ss.type != 7)
2558 return false;
2559 if (!ss.s)
2560 return false;
2561 if (ss.dpl != ss_rpl) /* DPL != RPL */
2562 return false;
2563 if (!ss.present)
2564 return false;
2565
2566 return true;
2567 }
2568
2569 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2570 {
2571 struct kvm_segment var;
2572 unsigned int rpl;
2573
2574 vmx_get_segment(vcpu, &var, seg);
2575 rpl = var.selector & SELECTOR_RPL_MASK;
2576
2577 if (var.unusable)
2578 return true;
2579 if (!var.s)
2580 return false;
2581 if (!var.present)
2582 return false;
2583 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2584 if (var.dpl < rpl) /* DPL < RPL */
2585 return false;
2586 }
2587
2588 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2589 * rights flags
2590 */
2591 return true;
2592 }
2593
2594 static bool tr_valid(struct kvm_vcpu *vcpu)
2595 {
2596 struct kvm_segment tr;
2597
2598 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2599
2600 if (tr.unusable)
2601 return false;
2602 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2603 return false;
2604 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2605 return false;
2606 if (!tr.present)
2607 return false;
2608
2609 return true;
2610 }
2611
2612 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2613 {
2614 struct kvm_segment ldtr;
2615
2616 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2617
2618 if (ldtr.unusable)
2619 return true;
2620 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2621 return false;
2622 if (ldtr.type != 2)
2623 return false;
2624 if (!ldtr.present)
2625 return false;
2626
2627 return true;
2628 }
2629
2630 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2631 {
2632 struct kvm_segment cs, ss;
2633
2634 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2635 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2636
2637 return ((cs.selector & SELECTOR_RPL_MASK) ==
2638 (ss.selector & SELECTOR_RPL_MASK));
2639 }
2640
2641 /*
2642 * Check if guest state is valid. Returns true if valid, false if
2643 * not.
2644 * We assume that registers are always usable
2645 */
2646 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2647 {
2648 /* real mode guest state checks */
2649 if (!is_protmode(vcpu)) {
2650 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2651 return false;
2652 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2653 return false;
2654 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2655 return false;
2656 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2657 return false;
2658 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2659 return false;
2660 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2661 return false;
2662 } else {
2663 /* protected mode guest state checks */
2664 if (!cs_ss_rpl_check(vcpu))
2665 return false;
2666 if (!code_segment_valid(vcpu))
2667 return false;
2668 if (!stack_segment_valid(vcpu))
2669 return false;
2670 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2671 return false;
2672 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2673 return false;
2674 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2675 return false;
2676 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2677 return false;
2678 if (!tr_valid(vcpu))
2679 return false;
2680 if (!ldtr_valid(vcpu))
2681 return false;
2682 }
2683 /* TODO:
2684 * - Add checks on RIP
2685 * - Add checks on RFLAGS
2686 */
2687
2688 return true;
2689 }
2690
2691 static int init_rmode_tss(struct kvm *kvm)
2692 {
2693 gfn_t fn;
2694 u16 data = 0;
2695 int r, idx, ret = 0;
2696
2697 idx = srcu_read_lock(&kvm->srcu);
2698 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2699 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2700 if (r < 0)
2701 goto out;
2702 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2703 r = kvm_write_guest_page(kvm, fn++, &data,
2704 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2705 if (r < 0)
2706 goto out;
2707 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2708 if (r < 0)
2709 goto out;
2710 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2711 if (r < 0)
2712 goto out;
2713 data = ~0;
2714 r = kvm_write_guest_page(kvm, fn, &data,
2715 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2716 sizeof(u8));
2717 if (r < 0)
2718 goto out;
2719
2720 ret = 1;
2721 out:
2722 srcu_read_unlock(&kvm->srcu, idx);
2723 return ret;
2724 }
2725
2726 static int init_rmode_identity_map(struct kvm *kvm)
2727 {
2728 int i, idx, r, ret;
2729 pfn_t identity_map_pfn;
2730 u32 tmp;
2731
2732 if (!enable_ept)
2733 return 1;
2734 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2735 printk(KERN_ERR "EPT: identity-mapping pagetable "
2736 "haven't been allocated!\n");
2737 return 0;
2738 }
2739 if (likely(kvm->arch.ept_identity_pagetable_done))
2740 return 1;
2741 ret = 0;
2742 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2743 idx = srcu_read_lock(&kvm->srcu);
2744 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2745 if (r < 0)
2746 goto out;
2747 /* Set up identity-mapping pagetable for EPT in real mode */
2748 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2749 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2750 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2751 r = kvm_write_guest_page(kvm, identity_map_pfn,
2752 &tmp, i * sizeof(tmp), sizeof(tmp));
2753 if (r < 0)
2754 goto out;
2755 }
2756 kvm->arch.ept_identity_pagetable_done = true;
2757 ret = 1;
2758 out:
2759 srcu_read_unlock(&kvm->srcu, idx);
2760 return ret;
2761 }
2762
2763 static void seg_setup(int seg)
2764 {
2765 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2766 unsigned int ar;
2767
2768 vmcs_write16(sf->selector, 0);
2769 vmcs_writel(sf->base, 0);
2770 vmcs_write32(sf->limit, 0xffff);
2771 if (enable_unrestricted_guest) {
2772 ar = 0x93;
2773 if (seg == VCPU_SREG_CS)
2774 ar |= 0x08; /* code segment */
2775 } else
2776 ar = 0xf3;
2777
2778 vmcs_write32(sf->ar_bytes, ar);
2779 }
2780
2781 static int alloc_apic_access_page(struct kvm *kvm)
2782 {
2783 struct kvm_userspace_memory_region kvm_userspace_mem;
2784 int r = 0;
2785
2786 mutex_lock(&kvm->slots_lock);
2787 if (kvm->arch.apic_access_page)
2788 goto out;
2789 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2790 kvm_userspace_mem.flags = 0;
2791 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2792 kvm_userspace_mem.memory_size = PAGE_SIZE;
2793 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2794 if (r)
2795 goto out;
2796
2797 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2798 out:
2799 mutex_unlock(&kvm->slots_lock);
2800 return r;
2801 }
2802
2803 static int alloc_identity_pagetable(struct kvm *kvm)
2804 {
2805 struct kvm_userspace_memory_region kvm_userspace_mem;
2806 int r = 0;
2807
2808 mutex_lock(&kvm->slots_lock);
2809 if (kvm->arch.ept_identity_pagetable)
2810 goto out;
2811 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2812 kvm_userspace_mem.flags = 0;
2813 kvm_userspace_mem.guest_phys_addr =
2814 kvm->arch.ept_identity_map_addr;
2815 kvm_userspace_mem.memory_size = PAGE_SIZE;
2816 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2817 if (r)
2818 goto out;
2819
2820 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2821 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2822 out:
2823 mutex_unlock(&kvm->slots_lock);
2824 return r;
2825 }
2826
2827 static void allocate_vpid(struct vcpu_vmx *vmx)
2828 {
2829 int vpid;
2830
2831 vmx->vpid = 0;
2832 if (!enable_vpid)
2833 return;
2834 spin_lock(&vmx_vpid_lock);
2835 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2836 if (vpid < VMX_NR_VPIDS) {
2837 vmx->vpid = vpid;
2838 __set_bit(vpid, vmx_vpid_bitmap);
2839 }
2840 spin_unlock(&vmx_vpid_lock);
2841 }
2842
2843 static void free_vpid(struct vcpu_vmx *vmx)
2844 {
2845 if (!enable_vpid)
2846 return;
2847 spin_lock(&vmx_vpid_lock);
2848 if (vmx->vpid != 0)
2849 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2850 spin_unlock(&vmx_vpid_lock);
2851 }
2852
2853 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2854 {
2855 int f = sizeof(unsigned long);
2856
2857 if (!cpu_has_vmx_msr_bitmap())
2858 return;
2859
2860 /*
2861 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2862 * have the write-low and read-high bitmap offsets the wrong way round.
2863 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2864 */
2865 if (msr <= 0x1fff) {
2866 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2867 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2868 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2869 msr &= 0x1fff;
2870 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2871 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2872 }
2873 }
2874
2875 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2876 {
2877 if (!longmode_only)
2878 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2879 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2880 }
2881
2882 /*
2883 * Sets up the vmcs for emulated real mode.
2884 */
2885 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2886 {
2887 u32 host_sysenter_cs, msr_low, msr_high;
2888 u32 junk;
2889 u64 host_pat;
2890 unsigned long a;
2891 struct desc_ptr dt;
2892 int i;
2893 unsigned long kvm_vmx_return;
2894 u32 exec_control;
2895
2896 /* I/O */
2897 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2898 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2899
2900 if (cpu_has_vmx_msr_bitmap())
2901 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2902
2903 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2904
2905 /* Control */
2906 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2907 vmcs_config.pin_based_exec_ctrl);
2908
2909 exec_control = vmcs_config.cpu_based_exec_ctrl;
2910 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2911 exec_control &= ~CPU_BASED_TPR_SHADOW;
2912 #ifdef CONFIG_X86_64
2913 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2914 CPU_BASED_CR8_LOAD_EXITING;
2915 #endif
2916 }
2917 if (!enable_ept)
2918 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2919 CPU_BASED_CR3_LOAD_EXITING |
2920 CPU_BASED_INVLPG_EXITING;
2921 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2922
2923 if (cpu_has_secondary_exec_ctrls()) {
2924 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2925 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2926 exec_control &=
2927 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2928 if (vmx->vpid == 0)
2929 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2930 if (!enable_ept) {
2931 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2932 enable_unrestricted_guest = 0;
2933 }
2934 if (!enable_unrestricted_guest)
2935 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2936 if (!ple_gap)
2937 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2938 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2939 }
2940
2941 if (ple_gap) {
2942 vmcs_write32(PLE_GAP, ple_gap);
2943 vmcs_write32(PLE_WINDOW, ple_window);
2944 }
2945
2946 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2947 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2948 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2949
2950 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2951 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2952 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2953
2954 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2955 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2956 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2957 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2958 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2959 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2960 #ifdef CONFIG_X86_64
2961 rdmsrl(MSR_FS_BASE, a);
2962 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2963 rdmsrl(MSR_GS_BASE, a);
2964 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2965 #else
2966 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2967 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2968 #endif
2969
2970 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2971
2972 native_store_idt(&dt);
2973 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2974
2975 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2976 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2977 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2978 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2979 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2980 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2981 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2982
2983 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2984 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2985 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2986 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2987 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2988 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2989
2990 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2991 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2992 host_pat = msr_low | ((u64) msr_high << 32);
2993 vmcs_write64(HOST_IA32_PAT, host_pat);
2994 }
2995 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2996 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2997 host_pat = msr_low | ((u64) msr_high << 32);
2998 /* Write the default value follow host pat */
2999 vmcs_write64(GUEST_IA32_PAT, host_pat);
3000 /* Keep arch.pat sync with GUEST_IA32_PAT */
3001 vmx->vcpu.arch.pat = host_pat;
3002 }
3003
3004 for (i = 0; i < NR_VMX_MSR; ++i) {
3005 u32 index = vmx_msr_index[i];
3006 u32 data_low, data_high;
3007 int j = vmx->nmsrs;
3008
3009 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3010 continue;
3011 if (wrmsr_safe(index, data_low, data_high) < 0)
3012 continue;
3013 vmx->guest_msrs[j].index = i;
3014 vmx->guest_msrs[j].data = 0;
3015 vmx->guest_msrs[j].mask = -1ull;
3016 ++vmx->nmsrs;
3017 }
3018
3019 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3020
3021 /* 22.2.1, 20.8.1 */
3022 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3023
3024 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3025 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3026 if (enable_ept)
3027 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3028 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3029
3030 kvm_write_tsc(&vmx->vcpu, 0);
3031
3032 return 0;
3033 }
3034
3035 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3036 {
3037 struct vcpu_vmx *vmx = to_vmx(vcpu);
3038 u64 msr;
3039 int ret;
3040
3041 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3042
3043 vmx->rmode.vm86_active = 0;
3044
3045 vmx->soft_vnmi_blocked = 0;
3046
3047 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3048 kvm_set_cr8(&vmx->vcpu, 0);
3049 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3050 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3051 msr |= MSR_IA32_APICBASE_BSP;
3052 kvm_set_apic_base(&vmx->vcpu, msr);
3053
3054 ret = fx_init(&vmx->vcpu);
3055 if (ret != 0)
3056 goto out;
3057
3058 vmx_segment_cache_clear(vmx);
3059
3060 seg_setup(VCPU_SREG_CS);
3061 /*
3062 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3063 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3064 */
3065 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3066 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3067 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3068 } else {
3069 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3070 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3071 }
3072
3073 seg_setup(VCPU_SREG_DS);
3074 seg_setup(VCPU_SREG_ES);
3075 seg_setup(VCPU_SREG_FS);
3076 seg_setup(VCPU_SREG_GS);
3077 seg_setup(VCPU_SREG_SS);
3078
3079 vmcs_write16(GUEST_TR_SELECTOR, 0);
3080 vmcs_writel(GUEST_TR_BASE, 0);
3081 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3082 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3083
3084 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3085 vmcs_writel(GUEST_LDTR_BASE, 0);
3086 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3087 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3088
3089 vmcs_write32(GUEST_SYSENTER_CS, 0);
3090 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3091 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3092
3093 vmcs_writel(GUEST_RFLAGS, 0x02);
3094 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3095 kvm_rip_write(vcpu, 0xfff0);
3096 else
3097 kvm_rip_write(vcpu, 0);
3098 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3099
3100 vmcs_writel(GUEST_DR7, 0x400);
3101
3102 vmcs_writel(GUEST_GDTR_BASE, 0);
3103 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3104
3105 vmcs_writel(GUEST_IDTR_BASE, 0);
3106 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3107
3108 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3109 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3110 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3111
3112 /* Special registers */
3113 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3114
3115 setup_msrs(vmx);
3116
3117 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3118
3119 if (cpu_has_vmx_tpr_shadow()) {
3120 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3121 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3122 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3123 __pa(vmx->vcpu.arch.apic->regs));
3124 vmcs_write32(TPR_THRESHOLD, 0);
3125 }
3126
3127 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3128 vmcs_write64(APIC_ACCESS_ADDR,
3129 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3130
3131 if (vmx->vpid != 0)
3132 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3133
3134 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3135 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3136 vmx_set_cr4(&vmx->vcpu, 0);
3137 vmx_set_efer(&vmx->vcpu, 0);
3138 vmx_fpu_activate(&vmx->vcpu);
3139 update_exception_bitmap(&vmx->vcpu);
3140
3141 vpid_sync_context(vmx);
3142
3143 ret = 0;
3144
3145 /* HACK: Don't enable emulation on guest boot/reset */
3146 vmx->emulation_required = 0;
3147
3148 out:
3149 return ret;
3150 }
3151
3152 static void enable_irq_window(struct kvm_vcpu *vcpu)
3153 {
3154 u32 cpu_based_vm_exec_control;
3155
3156 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3157 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3158 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3159 }
3160
3161 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3162 {
3163 u32 cpu_based_vm_exec_control;
3164
3165 if (!cpu_has_virtual_nmis()) {
3166 enable_irq_window(vcpu);
3167 return;
3168 }
3169
3170 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3171 enable_irq_window(vcpu);
3172 return;
3173 }
3174 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3175 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3176 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3177 }
3178
3179 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3180 {
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 uint32_t intr;
3183 int irq = vcpu->arch.interrupt.nr;
3184
3185 trace_kvm_inj_virq(irq);
3186
3187 ++vcpu->stat.irq_injections;
3188 if (vmx->rmode.vm86_active) {
3189 int inc_eip = 0;
3190 if (vcpu->arch.interrupt.soft)
3191 inc_eip = vcpu->arch.event_exit_inst_len;
3192 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3193 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3194 return;
3195 }
3196 intr = irq | INTR_INFO_VALID_MASK;
3197 if (vcpu->arch.interrupt.soft) {
3198 intr |= INTR_TYPE_SOFT_INTR;
3199 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3200 vmx->vcpu.arch.event_exit_inst_len);
3201 } else
3202 intr |= INTR_TYPE_EXT_INTR;
3203 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3204 vmx_clear_hlt(vcpu);
3205 }
3206
3207 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3208 {
3209 struct vcpu_vmx *vmx = to_vmx(vcpu);
3210
3211 if (!cpu_has_virtual_nmis()) {
3212 /*
3213 * Tracking the NMI-blocked state in software is built upon
3214 * finding the next open IRQ window. This, in turn, depends on
3215 * well-behaving guests: They have to keep IRQs disabled at
3216 * least as long as the NMI handler runs. Otherwise we may
3217 * cause NMI nesting, maybe breaking the guest. But as this is
3218 * highly unlikely, we can live with the residual risk.
3219 */
3220 vmx->soft_vnmi_blocked = 1;
3221 vmx->vnmi_blocked_time = 0;
3222 }
3223
3224 ++vcpu->stat.nmi_injections;
3225 vmx->nmi_known_unmasked = false;
3226 if (vmx->rmode.vm86_active) {
3227 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3228 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3229 return;
3230 }
3231 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3232 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3233 vmx_clear_hlt(vcpu);
3234 }
3235
3236 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3237 {
3238 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3239 return 0;
3240
3241 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3242 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3243 | GUEST_INTR_STATE_NMI));
3244 }
3245
3246 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3247 {
3248 if (!cpu_has_virtual_nmis())
3249 return to_vmx(vcpu)->soft_vnmi_blocked;
3250 if (to_vmx(vcpu)->nmi_known_unmasked)
3251 return false;
3252 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3253 }
3254
3255 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3256 {
3257 struct vcpu_vmx *vmx = to_vmx(vcpu);
3258
3259 if (!cpu_has_virtual_nmis()) {
3260 if (vmx->soft_vnmi_blocked != masked) {
3261 vmx->soft_vnmi_blocked = masked;
3262 vmx->vnmi_blocked_time = 0;
3263 }
3264 } else {
3265 vmx->nmi_known_unmasked = !masked;
3266 if (masked)
3267 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3268 GUEST_INTR_STATE_NMI);
3269 else
3270 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3271 GUEST_INTR_STATE_NMI);
3272 }
3273 }
3274
3275 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3276 {
3277 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3278 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3279 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3280 }
3281
3282 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3283 {
3284 int ret;
3285 struct kvm_userspace_memory_region tss_mem = {
3286 .slot = TSS_PRIVATE_MEMSLOT,
3287 .guest_phys_addr = addr,
3288 .memory_size = PAGE_SIZE * 3,
3289 .flags = 0,
3290 };
3291
3292 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3293 if (ret)
3294 return ret;
3295 kvm->arch.tss_addr = addr;
3296 if (!init_rmode_tss(kvm))
3297 return -ENOMEM;
3298
3299 return 0;
3300 }
3301
3302 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3303 int vec, u32 err_code)
3304 {
3305 /*
3306 * Instruction with address size override prefix opcode 0x67
3307 * Cause the #SS fault with 0 error code in VM86 mode.
3308 */
3309 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3310 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3311 return 1;
3312 /*
3313 * Forward all other exceptions that are valid in real mode.
3314 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3315 * the required debugging infrastructure rework.
3316 */
3317 switch (vec) {
3318 case DB_VECTOR:
3319 if (vcpu->guest_debug &
3320 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3321 return 0;
3322 kvm_queue_exception(vcpu, vec);
3323 return 1;
3324 case BP_VECTOR:
3325 /*
3326 * Update instruction length as we may reinject the exception
3327 * from user space while in guest debugging mode.
3328 */
3329 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3330 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3331 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3332 return 0;
3333 /* fall through */
3334 case DE_VECTOR:
3335 case OF_VECTOR:
3336 case BR_VECTOR:
3337 case UD_VECTOR:
3338 case DF_VECTOR:
3339 case SS_VECTOR:
3340 case GP_VECTOR:
3341 case MF_VECTOR:
3342 kvm_queue_exception(vcpu, vec);
3343 return 1;
3344 }
3345 return 0;
3346 }
3347
3348 /*
3349 * Trigger machine check on the host. We assume all the MSRs are already set up
3350 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3351 * We pass a fake environment to the machine check handler because we want
3352 * the guest to be always treated like user space, no matter what context
3353 * it used internally.
3354 */
3355 static void kvm_machine_check(void)
3356 {
3357 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3358 struct pt_regs regs = {
3359 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3360 .flags = X86_EFLAGS_IF,
3361 };
3362
3363 do_machine_check(&regs, 0);
3364 #endif
3365 }
3366
3367 static int handle_machine_check(struct kvm_vcpu *vcpu)
3368 {
3369 /* already handled by vcpu_run */
3370 return 1;
3371 }
3372
3373 static int handle_exception(struct kvm_vcpu *vcpu)
3374 {
3375 struct vcpu_vmx *vmx = to_vmx(vcpu);
3376 struct kvm_run *kvm_run = vcpu->run;
3377 u32 intr_info, ex_no, error_code;
3378 unsigned long cr2, rip, dr6;
3379 u32 vect_info;
3380 enum emulation_result er;
3381
3382 vect_info = vmx->idt_vectoring_info;
3383 intr_info = vmx->exit_intr_info;
3384
3385 if (is_machine_check(intr_info))
3386 return handle_machine_check(vcpu);
3387
3388 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3389 !is_page_fault(intr_info)) {
3390 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3391 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3392 vcpu->run->internal.ndata = 2;
3393 vcpu->run->internal.data[0] = vect_info;
3394 vcpu->run->internal.data[1] = intr_info;
3395 return 0;
3396 }
3397
3398 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3399 return 1; /* already handled by vmx_vcpu_run() */
3400
3401 if (is_no_device(intr_info)) {
3402 vmx_fpu_activate(vcpu);
3403 return 1;
3404 }
3405
3406 if (is_invalid_opcode(intr_info)) {
3407 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3408 if (er != EMULATE_DONE)
3409 kvm_queue_exception(vcpu, UD_VECTOR);
3410 return 1;
3411 }
3412
3413 error_code = 0;
3414 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3415 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3416 if (is_page_fault(intr_info)) {
3417 /* EPT won't cause page fault directly */
3418 if (enable_ept)
3419 BUG();
3420 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3421 trace_kvm_page_fault(cr2, error_code);
3422
3423 if (kvm_event_needs_reinjection(vcpu))
3424 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3425 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3426 }
3427
3428 if (vmx->rmode.vm86_active &&
3429 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3430 error_code)) {
3431 if (vcpu->arch.halt_request) {
3432 vcpu->arch.halt_request = 0;
3433 return kvm_emulate_halt(vcpu);
3434 }
3435 return 1;
3436 }
3437
3438 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3439 switch (ex_no) {
3440 case DB_VECTOR:
3441 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3442 if (!(vcpu->guest_debug &
3443 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3444 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3445 kvm_queue_exception(vcpu, DB_VECTOR);
3446 return 1;
3447 }
3448 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3449 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3450 /* fall through */
3451 case BP_VECTOR:
3452 /*
3453 * Update instruction length as we may reinject #BP from
3454 * user space while in guest debugging mode. Reading it for
3455 * #DB as well causes no harm, it is not used in that case.
3456 */
3457 vmx->vcpu.arch.event_exit_inst_len =
3458 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3459 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3460 rip = kvm_rip_read(vcpu);
3461 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3462 kvm_run->debug.arch.exception = ex_no;
3463 break;
3464 default:
3465 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3466 kvm_run->ex.exception = ex_no;
3467 kvm_run->ex.error_code = error_code;
3468 break;
3469 }
3470 return 0;
3471 }
3472
3473 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3474 {
3475 ++vcpu->stat.irq_exits;
3476 return 1;
3477 }
3478
3479 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3480 {
3481 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3482 return 0;
3483 }
3484
3485 static int handle_io(struct kvm_vcpu *vcpu)
3486 {
3487 unsigned long exit_qualification;
3488 int size, in, string;
3489 unsigned port;
3490
3491 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3492 string = (exit_qualification & 16) != 0;
3493 in = (exit_qualification & 8) != 0;
3494
3495 ++vcpu->stat.io_exits;
3496
3497 if (string || in)
3498 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3499
3500 port = exit_qualification >> 16;
3501 size = (exit_qualification & 7) + 1;
3502 skip_emulated_instruction(vcpu);
3503
3504 return kvm_fast_pio_out(vcpu, size, port);
3505 }
3506
3507 static void
3508 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3509 {
3510 /*
3511 * Patch in the VMCALL instruction:
3512 */
3513 hypercall[0] = 0x0f;
3514 hypercall[1] = 0x01;
3515 hypercall[2] = 0xc1;
3516 }
3517
3518 static int handle_cr(struct kvm_vcpu *vcpu)
3519 {
3520 unsigned long exit_qualification, val;
3521 int cr;
3522 int reg;
3523 int err;
3524
3525 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3526 cr = exit_qualification & 15;
3527 reg = (exit_qualification >> 8) & 15;
3528 switch ((exit_qualification >> 4) & 3) {
3529 case 0: /* mov to cr */
3530 val = kvm_register_read(vcpu, reg);
3531 trace_kvm_cr_write(cr, val);
3532 switch (cr) {
3533 case 0:
3534 err = kvm_set_cr0(vcpu, val);
3535 kvm_complete_insn_gp(vcpu, err);
3536 return 1;
3537 case 3:
3538 err = kvm_set_cr3(vcpu, val);
3539 kvm_complete_insn_gp(vcpu, err);
3540 return 1;
3541 case 4:
3542 err = kvm_set_cr4(vcpu, val);
3543 kvm_complete_insn_gp(vcpu, err);
3544 return 1;
3545 case 8: {
3546 u8 cr8_prev = kvm_get_cr8(vcpu);
3547 u8 cr8 = kvm_register_read(vcpu, reg);
3548 err = kvm_set_cr8(vcpu, cr8);
3549 kvm_complete_insn_gp(vcpu, err);
3550 if (irqchip_in_kernel(vcpu->kvm))
3551 return 1;
3552 if (cr8_prev <= cr8)
3553 return 1;
3554 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3555 return 0;
3556 }
3557 };
3558 break;
3559 case 2: /* clts */
3560 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3561 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3562 skip_emulated_instruction(vcpu);
3563 vmx_fpu_activate(vcpu);
3564 return 1;
3565 case 1: /*mov from cr*/
3566 switch (cr) {
3567 case 3:
3568 val = kvm_read_cr3(vcpu);
3569 kvm_register_write(vcpu, reg, val);
3570 trace_kvm_cr_read(cr, val);
3571 skip_emulated_instruction(vcpu);
3572 return 1;
3573 case 8:
3574 val = kvm_get_cr8(vcpu);
3575 kvm_register_write(vcpu, reg, val);
3576 trace_kvm_cr_read(cr, val);
3577 skip_emulated_instruction(vcpu);
3578 return 1;
3579 }
3580 break;
3581 case 3: /* lmsw */
3582 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3583 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3584 kvm_lmsw(vcpu, val);
3585
3586 skip_emulated_instruction(vcpu);
3587 return 1;
3588 default:
3589 break;
3590 }
3591 vcpu->run->exit_reason = 0;
3592 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3593 (int)(exit_qualification >> 4) & 3, cr);
3594 return 0;
3595 }
3596
3597 static int handle_dr(struct kvm_vcpu *vcpu)
3598 {
3599 unsigned long exit_qualification;
3600 int dr, reg;
3601
3602 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3603 if (!kvm_require_cpl(vcpu, 0))
3604 return 1;
3605 dr = vmcs_readl(GUEST_DR7);
3606 if (dr & DR7_GD) {
3607 /*
3608 * As the vm-exit takes precedence over the debug trap, we
3609 * need to emulate the latter, either for the host or the
3610 * guest debugging itself.
3611 */
3612 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3613 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3614 vcpu->run->debug.arch.dr7 = dr;
3615 vcpu->run->debug.arch.pc =
3616 vmcs_readl(GUEST_CS_BASE) +
3617 vmcs_readl(GUEST_RIP);
3618 vcpu->run->debug.arch.exception = DB_VECTOR;
3619 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3620 return 0;
3621 } else {
3622 vcpu->arch.dr7 &= ~DR7_GD;
3623 vcpu->arch.dr6 |= DR6_BD;
3624 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3625 kvm_queue_exception(vcpu, DB_VECTOR);
3626 return 1;
3627 }
3628 }
3629
3630 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3631 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3632 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3633 if (exit_qualification & TYPE_MOV_FROM_DR) {
3634 unsigned long val;
3635 if (!kvm_get_dr(vcpu, dr, &val))
3636 kvm_register_write(vcpu, reg, val);
3637 } else
3638 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3639 skip_emulated_instruction(vcpu);
3640 return 1;
3641 }
3642
3643 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3644 {
3645 vmcs_writel(GUEST_DR7, val);
3646 }
3647
3648 static int handle_cpuid(struct kvm_vcpu *vcpu)
3649 {
3650 kvm_emulate_cpuid(vcpu);
3651 return 1;
3652 }
3653
3654 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3655 {
3656 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3657 u64 data;
3658
3659 if (vmx_get_msr(vcpu, ecx, &data)) {
3660 trace_kvm_msr_read_ex(ecx);
3661 kvm_inject_gp(vcpu, 0);
3662 return 1;
3663 }
3664
3665 trace_kvm_msr_read(ecx, data);
3666
3667 /* FIXME: handling of bits 32:63 of rax, rdx */
3668 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3669 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3670 skip_emulated_instruction(vcpu);
3671 return 1;
3672 }
3673
3674 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3675 {
3676 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3677 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3678 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3679
3680 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3681 trace_kvm_msr_write_ex(ecx, data);
3682 kvm_inject_gp(vcpu, 0);
3683 return 1;
3684 }
3685
3686 trace_kvm_msr_write(ecx, data);
3687 skip_emulated_instruction(vcpu);
3688 return 1;
3689 }
3690
3691 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3692 {
3693 kvm_make_request(KVM_REQ_EVENT, vcpu);
3694 return 1;
3695 }
3696
3697 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3698 {
3699 u32 cpu_based_vm_exec_control;
3700
3701 /* clear pending irq */
3702 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3703 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3704 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3705
3706 kvm_make_request(KVM_REQ_EVENT, vcpu);
3707
3708 ++vcpu->stat.irq_window_exits;
3709
3710 /*
3711 * If the user space waits to inject interrupts, exit as soon as
3712 * possible
3713 */
3714 if (!irqchip_in_kernel(vcpu->kvm) &&
3715 vcpu->run->request_interrupt_window &&
3716 !kvm_cpu_has_interrupt(vcpu)) {
3717 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3718 return 0;
3719 }
3720 return 1;
3721 }
3722
3723 static int handle_halt(struct kvm_vcpu *vcpu)
3724 {
3725 skip_emulated_instruction(vcpu);
3726 return kvm_emulate_halt(vcpu);
3727 }
3728
3729 static int handle_vmcall(struct kvm_vcpu *vcpu)
3730 {
3731 skip_emulated_instruction(vcpu);
3732 kvm_emulate_hypercall(vcpu);
3733 return 1;
3734 }
3735
3736 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3737 {
3738 kvm_queue_exception(vcpu, UD_VECTOR);
3739 return 1;
3740 }
3741
3742 static int handle_invd(struct kvm_vcpu *vcpu)
3743 {
3744 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3745 }
3746
3747 static int handle_invlpg(struct kvm_vcpu *vcpu)
3748 {
3749 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3750
3751 kvm_mmu_invlpg(vcpu, exit_qualification);
3752 skip_emulated_instruction(vcpu);
3753 return 1;
3754 }
3755
3756 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3757 {
3758 skip_emulated_instruction(vcpu);
3759 kvm_emulate_wbinvd(vcpu);
3760 return 1;
3761 }
3762
3763 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3764 {
3765 u64 new_bv = kvm_read_edx_eax(vcpu);
3766 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3767
3768 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3769 skip_emulated_instruction(vcpu);
3770 return 1;
3771 }
3772
3773 static int handle_apic_access(struct kvm_vcpu *vcpu)
3774 {
3775 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3776 }
3777
3778 static int handle_task_switch(struct kvm_vcpu *vcpu)
3779 {
3780 struct vcpu_vmx *vmx = to_vmx(vcpu);
3781 unsigned long exit_qualification;
3782 bool has_error_code = false;
3783 u32 error_code = 0;
3784 u16 tss_selector;
3785 int reason, type, idt_v;
3786
3787 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3788 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3789
3790 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3791
3792 reason = (u32)exit_qualification >> 30;
3793 if (reason == TASK_SWITCH_GATE && idt_v) {
3794 switch (type) {
3795 case INTR_TYPE_NMI_INTR:
3796 vcpu->arch.nmi_injected = false;
3797 vmx_set_nmi_mask(vcpu, true);
3798 break;
3799 case INTR_TYPE_EXT_INTR:
3800 case INTR_TYPE_SOFT_INTR:
3801 kvm_clear_interrupt_queue(vcpu);
3802 break;
3803 case INTR_TYPE_HARD_EXCEPTION:
3804 if (vmx->idt_vectoring_info &
3805 VECTORING_INFO_DELIVER_CODE_MASK) {
3806 has_error_code = true;
3807 error_code =
3808 vmcs_read32(IDT_VECTORING_ERROR_CODE);
3809 }
3810 /* fall through */
3811 case INTR_TYPE_SOFT_EXCEPTION:
3812 kvm_clear_exception_queue(vcpu);
3813 break;
3814 default:
3815 break;
3816 }
3817 }
3818 tss_selector = exit_qualification;
3819
3820 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3821 type != INTR_TYPE_EXT_INTR &&
3822 type != INTR_TYPE_NMI_INTR))
3823 skip_emulated_instruction(vcpu);
3824
3825 if (kvm_task_switch(vcpu, tss_selector, reason,
3826 has_error_code, error_code) == EMULATE_FAIL) {
3827 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3828 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3829 vcpu->run->internal.ndata = 0;
3830 return 0;
3831 }
3832
3833 /* clear all local breakpoint enable flags */
3834 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3835
3836 /*
3837 * TODO: What about debug traps on tss switch?
3838 * Are we supposed to inject them and update dr6?
3839 */
3840
3841 return 1;
3842 }
3843
3844 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3845 {
3846 unsigned long exit_qualification;
3847 gpa_t gpa;
3848 int gla_validity;
3849
3850 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3851
3852 if (exit_qualification & (1 << 6)) {
3853 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3854 return -EINVAL;
3855 }
3856
3857 gla_validity = (exit_qualification >> 7) & 0x3;
3858 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3859 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3860 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3861 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3862 vmcs_readl(GUEST_LINEAR_ADDRESS));
3863 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3864 (long unsigned int)exit_qualification);
3865 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3866 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3867 return 0;
3868 }
3869
3870 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3871 trace_kvm_page_fault(gpa, exit_qualification);
3872 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3873 }
3874
3875 static u64 ept_rsvd_mask(u64 spte, int level)
3876 {
3877 int i;
3878 u64 mask = 0;
3879
3880 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3881 mask |= (1ULL << i);
3882
3883 if (level > 2)
3884 /* bits 7:3 reserved */
3885 mask |= 0xf8;
3886 else if (level == 2) {
3887 if (spte & (1ULL << 7))
3888 /* 2MB ref, bits 20:12 reserved */
3889 mask |= 0x1ff000;
3890 else
3891 /* bits 6:3 reserved */
3892 mask |= 0x78;
3893 }
3894
3895 return mask;
3896 }
3897
3898 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3899 int level)
3900 {
3901 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3902
3903 /* 010b (write-only) */
3904 WARN_ON((spte & 0x7) == 0x2);
3905
3906 /* 110b (write/execute) */
3907 WARN_ON((spte & 0x7) == 0x6);
3908
3909 /* 100b (execute-only) and value not supported by logical processor */
3910 if (!cpu_has_vmx_ept_execute_only())
3911 WARN_ON((spte & 0x7) == 0x4);
3912
3913 /* not 000b */
3914 if ((spte & 0x7)) {
3915 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3916
3917 if (rsvd_bits != 0) {
3918 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3919 __func__, rsvd_bits);
3920 WARN_ON(1);
3921 }
3922
3923 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3924 u64 ept_mem_type = (spte & 0x38) >> 3;
3925
3926 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3927 ept_mem_type == 7) {
3928 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3929 __func__, ept_mem_type);
3930 WARN_ON(1);
3931 }
3932 }
3933 }
3934 }
3935
3936 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3937 {
3938 u64 sptes[4];
3939 int nr_sptes, i;
3940 gpa_t gpa;
3941
3942 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3943
3944 printk(KERN_ERR "EPT: Misconfiguration.\n");
3945 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3946
3947 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3948
3949 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3950 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3951
3952 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3953 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3954
3955 return 0;
3956 }
3957
3958 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3959 {
3960 u32 cpu_based_vm_exec_control;
3961
3962 /* clear pending NMI */
3963 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3964 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3965 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3966 ++vcpu->stat.nmi_window_exits;
3967 kvm_make_request(KVM_REQ_EVENT, vcpu);
3968
3969 return 1;
3970 }
3971
3972 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3973 {
3974 struct vcpu_vmx *vmx = to_vmx(vcpu);
3975 enum emulation_result err = EMULATE_DONE;
3976 int ret = 1;
3977 u32 cpu_exec_ctrl;
3978 bool intr_window_requested;
3979
3980 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3981 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3982
3983 while (!guest_state_valid(vcpu)) {
3984 if (intr_window_requested
3985 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3986 return handle_interrupt_window(&vmx->vcpu);
3987
3988 err = emulate_instruction(vcpu, 0);
3989
3990 if (err == EMULATE_DO_MMIO) {
3991 ret = 0;
3992 goto out;
3993 }
3994
3995 if (err != EMULATE_DONE)
3996 return 0;
3997
3998 if (signal_pending(current))
3999 goto out;
4000 if (need_resched())
4001 schedule();
4002 }
4003
4004 vmx->emulation_required = 0;
4005 out:
4006 return ret;
4007 }
4008
4009 /*
4010 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4011 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4012 */
4013 static int handle_pause(struct kvm_vcpu *vcpu)
4014 {
4015 skip_emulated_instruction(vcpu);
4016 kvm_vcpu_on_spin(vcpu);
4017
4018 return 1;
4019 }
4020
4021 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4022 {
4023 kvm_queue_exception(vcpu, UD_VECTOR);
4024 return 1;
4025 }
4026
4027 /*
4028 * Emulate the VMXON instruction.
4029 * Currently, we just remember that VMX is active, and do not save or even
4030 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4031 * do not currently need to store anything in that guest-allocated memory
4032 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4033 * argument is different from the VMXON pointer (which the spec says they do).
4034 */
4035 static int handle_vmon(struct kvm_vcpu *vcpu)
4036 {
4037 struct kvm_segment cs;
4038 struct vcpu_vmx *vmx = to_vmx(vcpu);
4039
4040 /* The Intel VMX Instruction Reference lists a bunch of bits that
4041 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4042 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4043 * Otherwise, we should fail with #UD. We test these now:
4044 */
4045 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4046 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4047 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4048 kvm_queue_exception(vcpu, UD_VECTOR);
4049 return 1;
4050 }
4051
4052 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4053 if (is_long_mode(vcpu) && !cs.l) {
4054 kvm_queue_exception(vcpu, UD_VECTOR);
4055 return 1;
4056 }
4057
4058 if (vmx_get_cpl(vcpu)) {
4059 kvm_inject_gp(vcpu, 0);
4060 return 1;
4061 }
4062
4063 vmx->nested.vmxon = true;
4064
4065 skip_emulated_instruction(vcpu);
4066 return 1;
4067 }
4068
4069 /*
4070 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4071 * for running VMX instructions (except VMXON, whose prerequisites are
4072 * slightly different). It also specifies what exception to inject otherwise.
4073 */
4074 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4075 {
4076 struct kvm_segment cs;
4077 struct vcpu_vmx *vmx = to_vmx(vcpu);
4078
4079 if (!vmx->nested.vmxon) {
4080 kvm_queue_exception(vcpu, UD_VECTOR);
4081 return 0;
4082 }
4083
4084 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4085 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4086 (is_long_mode(vcpu) && !cs.l)) {
4087 kvm_queue_exception(vcpu, UD_VECTOR);
4088 return 0;
4089 }
4090
4091 if (vmx_get_cpl(vcpu)) {
4092 kvm_inject_gp(vcpu, 0);
4093 return 0;
4094 }
4095
4096 return 1;
4097 }
4098
4099 /*
4100 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4101 * just stops using VMX.
4102 */
4103 static void free_nested(struct vcpu_vmx *vmx)
4104 {
4105 if (!vmx->nested.vmxon)
4106 return;
4107 vmx->nested.vmxon = false;
4108 if (vmx->nested.current_vmptr != -1ull) {
4109 kunmap(vmx->nested.current_vmcs12_page);
4110 nested_release_page(vmx->nested.current_vmcs12_page);
4111 vmx->nested.current_vmptr = -1ull;
4112 vmx->nested.current_vmcs12 = NULL;
4113 }
4114 }
4115
4116 /* Emulate the VMXOFF instruction */
4117 static int handle_vmoff(struct kvm_vcpu *vcpu)
4118 {
4119 if (!nested_vmx_check_permission(vcpu))
4120 return 1;
4121 free_nested(to_vmx(vcpu));
4122 skip_emulated_instruction(vcpu);
4123 return 1;
4124 }
4125
4126 /*
4127 * The exit handlers return 1 if the exit was handled fully and guest execution
4128 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
4129 * to be done to userspace and return 0.
4130 */
4131 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
4132 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
4133 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
4134 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
4135 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
4136 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
4137 [EXIT_REASON_CR_ACCESS] = handle_cr,
4138 [EXIT_REASON_DR_ACCESS] = handle_dr,
4139 [EXIT_REASON_CPUID] = handle_cpuid,
4140 [EXIT_REASON_MSR_READ] = handle_rdmsr,
4141 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
4142 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
4143 [EXIT_REASON_HLT] = handle_halt,
4144 [EXIT_REASON_INVD] = handle_invd,
4145 [EXIT_REASON_INVLPG] = handle_invlpg,
4146 [EXIT_REASON_VMCALL] = handle_vmcall,
4147 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
4148 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
4149 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
4150 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
4151 [EXIT_REASON_VMREAD] = handle_vmx_insn,
4152 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
4153 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
4154 [EXIT_REASON_VMOFF] = handle_vmoff,
4155 [EXIT_REASON_VMON] = handle_vmon,
4156 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
4157 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
4158 [EXIT_REASON_WBINVD] = handle_wbinvd,
4159 [EXIT_REASON_XSETBV] = handle_xsetbv,
4160 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
4161 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
4162 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
4163 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4164 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
4165 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
4166 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
4167 };
4168
4169 static const int kvm_vmx_max_exit_handlers =
4170 ARRAY_SIZE(kvm_vmx_exit_handlers);
4171
4172 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4173 {
4174 *info1 = vmcs_readl(EXIT_QUALIFICATION);
4175 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
4176 }
4177
4178 /*
4179 * The guest has exited. See if we can fix it or if we need userspace
4180 * assistance.
4181 */
4182 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
4183 {
4184 struct vcpu_vmx *vmx = to_vmx(vcpu);
4185 u32 exit_reason = vmx->exit_reason;
4186 u32 vectoring_info = vmx->idt_vectoring_info;
4187
4188 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
4189
4190 /* If guest state is invalid, start emulating */
4191 if (vmx->emulation_required && emulate_invalid_guest_state)
4192 return handle_invalid_guest_state(vcpu);
4193
4194 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4195 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4196 vcpu->run->fail_entry.hardware_entry_failure_reason
4197 = exit_reason;
4198 return 0;
4199 }
4200
4201 if (unlikely(vmx->fail)) {
4202 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4203 vcpu->run->fail_entry.hardware_entry_failure_reason
4204 = vmcs_read32(VM_INSTRUCTION_ERROR);
4205 return 0;
4206 }
4207
4208 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
4209 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
4210 exit_reason != EXIT_REASON_EPT_VIOLATION &&
4211 exit_reason != EXIT_REASON_TASK_SWITCH))
4212 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
4213 "(0x%x) and exit reason is 0x%x\n",
4214 __func__, vectoring_info, exit_reason);
4215
4216 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
4217 if (vmx_interrupt_allowed(vcpu)) {
4218 vmx->soft_vnmi_blocked = 0;
4219 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4220 vcpu->arch.nmi_pending) {
4221 /*
4222 * This CPU don't support us in finding the end of an
4223 * NMI-blocked window if the guest runs with IRQs
4224 * disabled. So we pull the trigger after 1 s of
4225 * futile waiting, but inform the user about this.
4226 */
4227 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
4228 "state on VCPU %d after 1 s timeout\n",
4229 __func__, vcpu->vcpu_id);
4230 vmx->soft_vnmi_blocked = 0;
4231 }
4232 }
4233
4234 if (exit_reason < kvm_vmx_max_exit_handlers
4235 && kvm_vmx_exit_handlers[exit_reason])
4236 return kvm_vmx_exit_handlers[exit_reason](vcpu);
4237 else {
4238 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4239 vcpu->run->hw.hardware_exit_reason = exit_reason;
4240 }
4241 return 0;
4242 }
4243
4244 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4245 {
4246 if (irr == -1 || tpr < irr) {
4247 vmcs_write32(TPR_THRESHOLD, 0);
4248 return;
4249 }
4250
4251 vmcs_write32(TPR_THRESHOLD, irr);
4252 }
4253
4254 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
4255 {
4256 u32 exit_intr_info;
4257
4258 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
4259 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
4260 return;
4261
4262 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4263 exit_intr_info = vmx->exit_intr_info;
4264
4265 /* Handle machine checks before interrupts are enabled */
4266 if (is_machine_check(exit_intr_info))
4267 kvm_machine_check();
4268
4269 /* We need to handle NMIs before interrupts are enabled */
4270 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
4271 (exit_intr_info & INTR_INFO_VALID_MASK)) {
4272 kvm_before_handle_nmi(&vmx->vcpu);
4273 asm("int $2");
4274 kvm_after_handle_nmi(&vmx->vcpu);
4275 }
4276 }
4277
4278 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
4279 {
4280 u32 exit_intr_info;
4281 bool unblock_nmi;
4282 u8 vector;
4283 bool idtv_info_valid;
4284
4285 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4286
4287 if (cpu_has_virtual_nmis()) {
4288 if (vmx->nmi_known_unmasked)
4289 return;
4290 /*
4291 * Can't use vmx->exit_intr_info since we're not sure what
4292 * the exit reason is.
4293 */
4294 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4295 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
4296 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
4297 /*
4298 * SDM 3: 27.7.1.2 (September 2008)
4299 * Re-set bit "block by NMI" before VM entry if vmexit caused by
4300 * a guest IRET fault.
4301 * SDM 3: 23.2.2 (September 2008)
4302 * Bit 12 is undefined in any of the following cases:
4303 * If the VM exit sets the valid bit in the IDT-vectoring
4304 * information field.
4305 * If the VM exit is due to a double fault.
4306 */
4307 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
4308 vector != DF_VECTOR && !idtv_info_valid)
4309 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4310 GUEST_INTR_STATE_NMI);
4311 else
4312 vmx->nmi_known_unmasked =
4313 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
4314 & GUEST_INTR_STATE_NMI);
4315 } else if (unlikely(vmx->soft_vnmi_blocked))
4316 vmx->vnmi_blocked_time +=
4317 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
4318 }
4319
4320 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
4321 u32 idt_vectoring_info,
4322 int instr_len_field,
4323 int error_code_field)
4324 {
4325 u8 vector;
4326 int type;
4327 bool idtv_info_valid;
4328
4329 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4330
4331 vmx->vcpu.arch.nmi_injected = false;
4332 kvm_clear_exception_queue(&vmx->vcpu);
4333 kvm_clear_interrupt_queue(&vmx->vcpu);
4334
4335 if (!idtv_info_valid)
4336 return;
4337
4338 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
4339
4340 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
4341 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
4342
4343 switch (type) {
4344 case INTR_TYPE_NMI_INTR:
4345 vmx->vcpu.arch.nmi_injected = true;
4346 /*
4347 * SDM 3: 27.7.1.2 (September 2008)
4348 * Clear bit "block by NMI" before VM entry if a NMI
4349 * delivery faulted.
4350 */
4351 vmx_set_nmi_mask(&vmx->vcpu, false);
4352 break;
4353 case INTR_TYPE_SOFT_EXCEPTION:
4354 vmx->vcpu.arch.event_exit_inst_len =
4355 vmcs_read32(instr_len_field);
4356 /* fall through */
4357 case INTR_TYPE_HARD_EXCEPTION:
4358 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4359 u32 err = vmcs_read32(error_code_field);
4360 kvm_queue_exception_e(&vmx->vcpu, vector, err);
4361 } else
4362 kvm_queue_exception(&vmx->vcpu, vector);
4363 break;
4364 case INTR_TYPE_SOFT_INTR:
4365 vmx->vcpu.arch.event_exit_inst_len =
4366 vmcs_read32(instr_len_field);
4367 /* fall through */
4368 case INTR_TYPE_EXT_INTR:
4369 kvm_queue_interrupt(&vmx->vcpu, vector,
4370 type == INTR_TYPE_SOFT_INTR);
4371 break;
4372 default:
4373 break;
4374 }
4375 }
4376
4377 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4378 {
4379 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4380 VM_EXIT_INSTRUCTION_LEN,
4381 IDT_VECTORING_ERROR_CODE);
4382 }
4383
4384 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4385 {
4386 __vmx_complete_interrupts(to_vmx(vcpu),
4387 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4388 VM_ENTRY_INSTRUCTION_LEN,
4389 VM_ENTRY_EXCEPTION_ERROR_CODE);
4390
4391 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4392 }
4393
4394 #ifdef CONFIG_X86_64
4395 #define R "r"
4396 #define Q "q"
4397 #else
4398 #define R "e"
4399 #define Q "l"
4400 #endif
4401
4402 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4403 {
4404 struct vcpu_vmx *vmx = to_vmx(vcpu);
4405
4406 /* Record the guest's net vcpu time for enforced NMI injections. */
4407 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4408 vmx->entry_time = ktime_get();
4409
4410 /* Don't enter VMX if guest state is invalid, let the exit handler
4411 start emulation until we arrive back to a valid state */
4412 if (vmx->emulation_required && emulate_invalid_guest_state)
4413 return;
4414
4415 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4416 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4417 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4418 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4419
4420 /* When single-stepping over STI and MOV SS, we must clear the
4421 * corresponding interruptibility bits in the guest state. Otherwise
4422 * vmentry fails as it then expects bit 14 (BS) in pending debug
4423 * exceptions being set, but that's not correct for the guest debugging
4424 * case. */
4425 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4426 vmx_set_interrupt_shadow(vcpu, 0);
4427
4428 vmx->__launched = vmx->loaded_vmcs->launched;
4429 asm(
4430 /* Store host registers */
4431 "push %%"R"dx; push %%"R"bp;"
4432 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4433 "push %%"R"cx \n\t"
4434 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4435 "je 1f \n\t"
4436 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4437 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4438 "1: \n\t"
4439 /* Reload cr2 if changed */
4440 "mov %c[cr2](%0), %%"R"ax \n\t"
4441 "mov %%cr2, %%"R"dx \n\t"
4442 "cmp %%"R"ax, %%"R"dx \n\t"
4443 "je 2f \n\t"
4444 "mov %%"R"ax, %%cr2 \n\t"
4445 "2: \n\t"
4446 /* Check if vmlaunch of vmresume is needed */
4447 "cmpl $0, %c[launched](%0) \n\t"
4448 /* Load guest registers. Don't clobber flags. */
4449 "mov %c[rax](%0), %%"R"ax \n\t"
4450 "mov %c[rbx](%0), %%"R"bx \n\t"
4451 "mov %c[rdx](%0), %%"R"dx \n\t"
4452 "mov %c[rsi](%0), %%"R"si \n\t"
4453 "mov %c[rdi](%0), %%"R"di \n\t"
4454 "mov %c[rbp](%0), %%"R"bp \n\t"
4455 #ifdef CONFIG_X86_64
4456 "mov %c[r8](%0), %%r8 \n\t"
4457 "mov %c[r9](%0), %%r9 \n\t"
4458 "mov %c[r10](%0), %%r10 \n\t"
4459 "mov %c[r11](%0), %%r11 \n\t"
4460 "mov %c[r12](%0), %%r12 \n\t"
4461 "mov %c[r13](%0), %%r13 \n\t"
4462 "mov %c[r14](%0), %%r14 \n\t"
4463 "mov %c[r15](%0), %%r15 \n\t"
4464 #endif
4465 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4466
4467 /* Enter guest mode */
4468 "jne .Llaunched \n\t"
4469 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4470 "jmp .Lkvm_vmx_return \n\t"
4471 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4472 ".Lkvm_vmx_return: "
4473 /* Save guest registers, load host registers, keep flags */
4474 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4475 "pop %0 \n\t"
4476 "mov %%"R"ax, %c[rax](%0) \n\t"
4477 "mov %%"R"bx, %c[rbx](%0) \n\t"
4478 "pop"Q" %c[rcx](%0) \n\t"
4479 "mov %%"R"dx, %c[rdx](%0) \n\t"
4480 "mov %%"R"si, %c[rsi](%0) \n\t"
4481 "mov %%"R"di, %c[rdi](%0) \n\t"
4482 "mov %%"R"bp, %c[rbp](%0) \n\t"
4483 #ifdef CONFIG_X86_64
4484 "mov %%r8, %c[r8](%0) \n\t"
4485 "mov %%r9, %c[r9](%0) \n\t"
4486 "mov %%r10, %c[r10](%0) \n\t"
4487 "mov %%r11, %c[r11](%0) \n\t"
4488 "mov %%r12, %c[r12](%0) \n\t"
4489 "mov %%r13, %c[r13](%0) \n\t"
4490 "mov %%r14, %c[r14](%0) \n\t"
4491 "mov %%r15, %c[r15](%0) \n\t"
4492 #endif
4493 "mov %%cr2, %%"R"ax \n\t"
4494 "mov %%"R"ax, %c[cr2](%0) \n\t"
4495
4496 "pop %%"R"bp; pop %%"R"dx \n\t"
4497 "setbe %c[fail](%0) \n\t"
4498 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4499 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
4500 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4501 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4502 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4503 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4504 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4505 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4506 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4507 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4508 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4509 #ifdef CONFIG_X86_64
4510 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4511 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4512 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4513 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4514 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4515 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4516 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4517 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4518 #endif
4519 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4520 [wordsize]"i"(sizeof(ulong))
4521 : "cc", "memory"
4522 , R"ax", R"bx", R"di", R"si"
4523 #ifdef CONFIG_X86_64
4524 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4525 #endif
4526 );
4527
4528 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4529 | (1 << VCPU_EXREG_RFLAGS)
4530 | (1 << VCPU_EXREG_CPL)
4531 | (1 << VCPU_EXREG_PDPTR)
4532 | (1 << VCPU_EXREG_SEGMENTS)
4533 | (1 << VCPU_EXREG_CR3));
4534 vcpu->arch.regs_dirty = 0;
4535
4536 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4537
4538 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4539 vmx->loaded_vmcs->launched = 1;
4540
4541 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4542
4543 vmx_complete_atomic_exit(vmx);
4544 vmx_recover_nmi_blocking(vmx);
4545 vmx_complete_interrupts(vmx);
4546 }
4547
4548 #undef R
4549 #undef Q
4550
4551 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4552 {
4553 struct vcpu_vmx *vmx = to_vmx(vcpu);
4554
4555 free_vpid(vmx);
4556 free_nested(vmx);
4557 free_loaded_vmcs(vmx->loaded_vmcs);
4558 kfree(vmx->guest_msrs);
4559 kvm_vcpu_uninit(vcpu);
4560 kmem_cache_free(kvm_vcpu_cache, vmx);
4561 }
4562
4563 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4564 {
4565 int err;
4566 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4567 int cpu;
4568
4569 if (!vmx)
4570 return ERR_PTR(-ENOMEM);
4571
4572 allocate_vpid(vmx);
4573
4574 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4575 if (err)
4576 goto free_vcpu;
4577
4578 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4579 err = -ENOMEM;
4580 if (!vmx->guest_msrs) {
4581 goto uninit_vcpu;
4582 }
4583
4584 vmx->loaded_vmcs = &vmx->vmcs01;
4585 vmx->loaded_vmcs->vmcs = alloc_vmcs();
4586 if (!vmx->loaded_vmcs->vmcs)
4587 goto free_msrs;
4588 if (!vmm_exclusive)
4589 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
4590 loaded_vmcs_init(vmx->loaded_vmcs);
4591 if (!vmm_exclusive)
4592 kvm_cpu_vmxoff();
4593
4594 cpu = get_cpu();
4595 vmx_vcpu_load(&vmx->vcpu, cpu);
4596 vmx->vcpu.cpu = cpu;
4597 err = vmx_vcpu_setup(vmx);
4598 vmx_vcpu_put(&vmx->vcpu);
4599 put_cpu();
4600 if (err)
4601 goto free_vmcs;
4602 if (vm_need_virtualize_apic_accesses(kvm))
4603 err = alloc_apic_access_page(kvm);
4604 if (err)
4605 goto free_vmcs;
4606
4607 if (enable_ept) {
4608 if (!kvm->arch.ept_identity_map_addr)
4609 kvm->arch.ept_identity_map_addr =
4610 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4611 err = -ENOMEM;
4612 if (alloc_identity_pagetable(kvm) != 0)
4613 goto free_vmcs;
4614 if (!init_rmode_identity_map(kvm))
4615 goto free_vmcs;
4616 }
4617
4618 vmx->nested.current_vmptr = -1ull;
4619 vmx->nested.current_vmcs12 = NULL;
4620
4621 return &vmx->vcpu;
4622
4623 free_vmcs:
4624 free_vmcs(vmx->loaded_vmcs->vmcs);
4625 free_msrs:
4626 kfree(vmx->guest_msrs);
4627 uninit_vcpu:
4628 kvm_vcpu_uninit(&vmx->vcpu);
4629 free_vcpu:
4630 free_vpid(vmx);
4631 kmem_cache_free(kvm_vcpu_cache, vmx);
4632 return ERR_PTR(err);
4633 }
4634
4635 static void __init vmx_check_processor_compat(void *rtn)
4636 {
4637 struct vmcs_config vmcs_conf;
4638
4639 *(int *)rtn = 0;
4640 if (setup_vmcs_config(&vmcs_conf) < 0)
4641 *(int *)rtn = -EIO;
4642 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4643 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4644 smp_processor_id());
4645 *(int *)rtn = -EIO;
4646 }
4647 }
4648
4649 static int get_ept_level(void)
4650 {
4651 return VMX_EPT_DEFAULT_GAW + 1;
4652 }
4653
4654 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4655 {
4656 u64 ret;
4657
4658 /* For VT-d and EPT combination
4659 * 1. MMIO: always map as UC
4660 * 2. EPT with VT-d:
4661 * a. VT-d without snooping control feature: can't guarantee the
4662 * result, try to trust guest.
4663 * b. VT-d with snooping control feature: snooping control feature of
4664 * VT-d engine can guarantee the cache correctness. Just set it
4665 * to WB to keep consistent with host. So the same as item 3.
4666 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4667 * consistent with host MTRR
4668 */
4669 if (is_mmio)
4670 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4671 else if (vcpu->kvm->arch.iommu_domain &&
4672 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4673 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4674 VMX_EPT_MT_EPTE_SHIFT;
4675 else
4676 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4677 | VMX_EPT_IPAT_BIT;
4678
4679 return ret;
4680 }
4681
4682 #define _ER(x) { EXIT_REASON_##x, #x }
4683
4684 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4685 _ER(EXCEPTION_NMI),
4686 _ER(EXTERNAL_INTERRUPT),
4687 _ER(TRIPLE_FAULT),
4688 _ER(PENDING_INTERRUPT),
4689 _ER(NMI_WINDOW),
4690 _ER(TASK_SWITCH),
4691 _ER(CPUID),
4692 _ER(HLT),
4693 _ER(INVLPG),
4694 _ER(RDPMC),
4695 _ER(RDTSC),
4696 _ER(VMCALL),
4697 _ER(VMCLEAR),
4698 _ER(VMLAUNCH),
4699 _ER(VMPTRLD),
4700 _ER(VMPTRST),
4701 _ER(VMREAD),
4702 _ER(VMRESUME),
4703 _ER(VMWRITE),
4704 _ER(VMOFF),
4705 _ER(VMON),
4706 _ER(CR_ACCESS),
4707 _ER(DR_ACCESS),
4708 _ER(IO_INSTRUCTION),
4709 _ER(MSR_READ),
4710 _ER(MSR_WRITE),
4711 _ER(MWAIT_INSTRUCTION),
4712 _ER(MONITOR_INSTRUCTION),
4713 _ER(PAUSE_INSTRUCTION),
4714 _ER(MCE_DURING_VMENTRY),
4715 _ER(TPR_BELOW_THRESHOLD),
4716 _ER(APIC_ACCESS),
4717 _ER(EPT_VIOLATION),
4718 _ER(EPT_MISCONFIG),
4719 _ER(WBINVD),
4720 { -1, NULL }
4721 };
4722
4723 #undef _ER
4724
4725 static int vmx_get_lpage_level(void)
4726 {
4727 if (enable_ept && !cpu_has_vmx_ept_1g_page())
4728 return PT_DIRECTORY_LEVEL;
4729 else
4730 /* For shadow and EPT supported 1GB page */
4731 return PT_PDPE_LEVEL;
4732 }
4733
4734 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4735 {
4736 struct kvm_cpuid_entry2 *best;
4737 struct vcpu_vmx *vmx = to_vmx(vcpu);
4738 u32 exec_control;
4739
4740 vmx->rdtscp_enabled = false;
4741 if (vmx_rdtscp_supported()) {
4742 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4743 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4744 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4745 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4746 vmx->rdtscp_enabled = true;
4747 else {
4748 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4749 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4750 exec_control);
4751 }
4752 }
4753 }
4754 }
4755
4756 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4757 {
4758 }
4759
4760 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
4761 struct x86_instruction_info *info,
4762 enum x86_intercept_stage stage)
4763 {
4764 return X86EMUL_CONTINUE;
4765 }
4766
4767 static struct kvm_x86_ops vmx_x86_ops = {
4768 .cpu_has_kvm_support = cpu_has_kvm_support,
4769 .disabled_by_bios = vmx_disabled_by_bios,
4770 .hardware_setup = hardware_setup,
4771 .hardware_unsetup = hardware_unsetup,
4772 .check_processor_compatibility = vmx_check_processor_compat,
4773 .hardware_enable = hardware_enable,
4774 .hardware_disable = hardware_disable,
4775 .cpu_has_accelerated_tpr = report_flexpriority,
4776
4777 .vcpu_create = vmx_create_vcpu,
4778 .vcpu_free = vmx_free_vcpu,
4779 .vcpu_reset = vmx_vcpu_reset,
4780
4781 .prepare_guest_switch = vmx_save_host_state,
4782 .vcpu_load = vmx_vcpu_load,
4783 .vcpu_put = vmx_vcpu_put,
4784
4785 .set_guest_debug = set_guest_debug,
4786 .get_msr = vmx_get_msr,
4787 .set_msr = vmx_set_msr,
4788 .get_segment_base = vmx_get_segment_base,
4789 .get_segment = vmx_get_segment,
4790 .set_segment = vmx_set_segment,
4791 .get_cpl = vmx_get_cpl,
4792 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4793 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4794 .decache_cr3 = vmx_decache_cr3,
4795 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4796 .set_cr0 = vmx_set_cr0,
4797 .set_cr3 = vmx_set_cr3,
4798 .set_cr4 = vmx_set_cr4,
4799 .set_efer = vmx_set_efer,
4800 .get_idt = vmx_get_idt,
4801 .set_idt = vmx_set_idt,
4802 .get_gdt = vmx_get_gdt,
4803 .set_gdt = vmx_set_gdt,
4804 .set_dr7 = vmx_set_dr7,
4805 .cache_reg = vmx_cache_reg,
4806 .get_rflags = vmx_get_rflags,
4807 .set_rflags = vmx_set_rflags,
4808 .fpu_activate = vmx_fpu_activate,
4809 .fpu_deactivate = vmx_fpu_deactivate,
4810
4811 .tlb_flush = vmx_flush_tlb,
4812
4813 .run = vmx_vcpu_run,
4814 .handle_exit = vmx_handle_exit,
4815 .skip_emulated_instruction = skip_emulated_instruction,
4816 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4817 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4818 .patch_hypercall = vmx_patch_hypercall,
4819 .set_irq = vmx_inject_irq,
4820 .set_nmi = vmx_inject_nmi,
4821 .queue_exception = vmx_queue_exception,
4822 .cancel_injection = vmx_cancel_injection,
4823 .interrupt_allowed = vmx_interrupt_allowed,
4824 .nmi_allowed = vmx_nmi_allowed,
4825 .get_nmi_mask = vmx_get_nmi_mask,
4826 .set_nmi_mask = vmx_set_nmi_mask,
4827 .enable_nmi_window = enable_nmi_window,
4828 .enable_irq_window = enable_irq_window,
4829 .update_cr8_intercept = update_cr8_intercept,
4830
4831 .set_tss_addr = vmx_set_tss_addr,
4832 .get_tdp_level = get_ept_level,
4833 .get_mt_mask = vmx_get_mt_mask,
4834
4835 .get_exit_info = vmx_get_exit_info,
4836 .exit_reasons_str = vmx_exit_reasons_str,
4837
4838 .get_lpage_level = vmx_get_lpage_level,
4839
4840 .cpuid_update = vmx_cpuid_update,
4841
4842 .rdtscp_supported = vmx_rdtscp_supported,
4843
4844 .set_supported_cpuid = vmx_set_supported_cpuid,
4845
4846 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4847
4848 .set_tsc_khz = vmx_set_tsc_khz,
4849 .write_tsc_offset = vmx_write_tsc_offset,
4850 .adjust_tsc_offset = vmx_adjust_tsc_offset,
4851 .compute_tsc_offset = vmx_compute_tsc_offset,
4852
4853 .set_tdp_cr3 = vmx_set_cr3,
4854
4855 .check_intercept = vmx_check_intercept,
4856 };
4857
4858 static int __init vmx_init(void)
4859 {
4860 int r, i;
4861
4862 rdmsrl_safe(MSR_EFER, &host_efer);
4863
4864 for (i = 0; i < NR_VMX_MSR; ++i)
4865 kvm_define_shared_msr(i, vmx_msr_index[i]);
4866
4867 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4868 if (!vmx_io_bitmap_a)
4869 return -ENOMEM;
4870
4871 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4872 if (!vmx_io_bitmap_b) {
4873 r = -ENOMEM;
4874 goto out;
4875 }
4876
4877 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4878 if (!vmx_msr_bitmap_legacy) {
4879 r = -ENOMEM;
4880 goto out1;
4881 }
4882
4883 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4884 if (!vmx_msr_bitmap_longmode) {
4885 r = -ENOMEM;
4886 goto out2;
4887 }
4888
4889 /*
4890 * Allow direct access to the PC debug port (it is often used for I/O
4891 * delays, but the vmexits simply slow things down).
4892 */
4893 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4894 clear_bit(0x80, vmx_io_bitmap_a);
4895
4896 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4897
4898 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4899 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4900
4901 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4902
4903 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4904 __alignof__(struct vcpu_vmx), THIS_MODULE);
4905 if (r)
4906 goto out3;
4907
4908 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4909 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4910 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4911 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4912 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4913 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4914
4915 if (enable_ept) {
4916 bypass_guest_pf = 0;
4917 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4918 VMX_EPT_EXECUTABLE_MASK);
4919 kvm_enable_tdp();
4920 } else
4921 kvm_disable_tdp();
4922
4923 if (bypass_guest_pf)
4924 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4925
4926 return 0;
4927
4928 out3:
4929 free_page((unsigned long)vmx_msr_bitmap_longmode);
4930 out2:
4931 free_page((unsigned long)vmx_msr_bitmap_legacy);
4932 out1:
4933 free_page((unsigned long)vmx_io_bitmap_b);
4934 out:
4935 free_page((unsigned long)vmx_io_bitmap_a);
4936 return r;
4937 }
4938
4939 static void __exit vmx_exit(void)
4940 {
4941 free_page((unsigned long)vmx_msr_bitmap_legacy);
4942 free_page((unsigned long)vmx_msr_bitmap_longmode);
4943 free_page((unsigned long)vmx_io_bitmap_b);
4944 free_page((unsigned long)vmx_io_bitmap_a);
4945
4946 kvm_exit();
4947 }
4948
4949 module_init(vmx_init)
4950 module_exit(vmx_exit)