]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/vmx.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK \
78 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80 (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON \
82 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS \
84 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
85 | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94 * ple_gap: upper bound on the amount of time between two successive
95 * executions of PAUSE in a loop. Also indicate if ple enabled.
96 * According to test, this time is usually smaller than 128 cycles.
97 * ple_window: upper bound on the amount of time a guest is allowed to execute
98 * in a PAUSE loop. Tests indicate that most spinlocks are held for
99 * less than 2^12 cycles
100 * Time is measured based on a counter that runs at the same rate as the TSC,
101 * refer SDM volume 3b section 21.6.13 & 22.1.3.
102 */
103 #define KVM_VMX_DEFAULT_PLE_GAP 128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114 u32 revision_id;
115 u32 abort;
116 char data[0];
117 };
118
119 struct shared_msr_entry {
120 unsigned index;
121 u64 data;
122 u64 mask;
123 };
124
125 struct vcpu_vmx {
126 struct kvm_vcpu vcpu;
127 struct list_head local_vcpus_link;
128 unsigned long host_rsp;
129 int launched;
130 u8 fail;
131 u8 cpl;
132 bool nmi_known_unmasked;
133 u32 exit_intr_info;
134 u32 idt_vectoring_info;
135 ulong rflags;
136 struct shared_msr_entry *guest_msrs;
137 int nmsrs;
138 int save_nmsrs;
139 #ifdef CONFIG_X86_64
140 u64 msr_host_kernel_gs_base;
141 u64 msr_guest_kernel_gs_base;
142 #endif
143 struct vmcs *vmcs;
144 struct msr_autoload {
145 unsigned nr;
146 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
147 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148 } msr_autoload;
149 struct {
150 int loaded;
151 u16 fs_sel, gs_sel, ldt_sel;
152 int gs_ldt_reload_needed;
153 int fs_reload_needed;
154 } host_state;
155 struct {
156 int vm86_active;
157 ulong save_rflags;
158 struct kvm_save_segment {
159 u16 selector;
160 unsigned long base;
161 u32 limit;
162 u32 ar;
163 } tr, es, ds, fs, gs;
164 } rmode;
165 struct {
166 u32 bitmask; /* 4 bits per segment (1 bit per field) */
167 struct kvm_save_segment seg[8];
168 } segment_cache;
169 int vpid;
170 bool emulation_required;
171
172 /* Support for vnmi-less CPUs */
173 int soft_vnmi_blocked;
174 ktime_t entry_time;
175 s64 vnmi_blocked_time;
176 u32 exit_reason;
177
178 bool rdtscp_enabled;
179 };
180
181 enum segment_cache_field {
182 SEG_FIELD_SEL = 0,
183 SEG_FIELD_BASE = 1,
184 SEG_FIELD_LIMIT = 2,
185 SEG_FIELD_AR = 3,
186
187 SEG_FIELD_NR = 4
188 };
189
190 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
191 {
192 return container_of(vcpu, struct vcpu_vmx, vcpu);
193 }
194
195 static u64 construct_eptp(unsigned long root_hpa);
196 static void kvm_cpu_vmxon(u64 addr);
197 static void kvm_cpu_vmxoff(void);
198 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
199 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
200
201 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
202 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
203 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
204 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
205
206 static unsigned long *vmx_io_bitmap_a;
207 static unsigned long *vmx_io_bitmap_b;
208 static unsigned long *vmx_msr_bitmap_legacy;
209 static unsigned long *vmx_msr_bitmap_longmode;
210
211 static bool cpu_has_load_ia32_efer;
212
213 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
214 static DEFINE_SPINLOCK(vmx_vpid_lock);
215
216 static struct vmcs_config {
217 int size;
218 int order;
219 u32 revision_id;
220 u32 pin_based_exec_ctrl;
221 u32 cpu_based_exec_ctrl;
222 u32 cpu_based_2nd_exec_ctrl;
223 u32 vmexit_ctrl;
224 u32 vmentry_ctrl;
225 } vmcs_config;
226
227 static struct vmx_capability {
228 u32 ept;
229 u32 vpid;
230 } vmx_capability;
231
232 #define VMX_SEGMENT_FIELD(seg) \
233 [VCPU_SREG_##seg] = { \
234 .selector = GUEST_##seg##_SELECTOR, \
235 .base = GUEST_##seg##_BASE, \
236 .limit = GUEST_##seg##_LIMIT, \
237 .ar_bytes = GUEST_##seg##_AR_BYTES, \
238 }
239
240 static struct kvm_vmx_segment_field {
241 unsigned selector;
242 unsigned base;
243 unsigned limit;
244 unsigned ar_bytes;
245 } kvm_vmx_segment_fields[] = {
246 VMX_SEGMENT_FIELD(CS),
247 VMX_SEGMENT_FIELD(DS),
248 VMX_SEGMENT_FIELD(ES),
249 VMX_SEGMENT_FIELD(FS),
250 VMX_SEGMENT_FIELD(GS),
251 VMX_SEGMENT_FIELD(SS),
252 VMX_SEGMENT_FIELD(TR),
253 VMX_SEGMENT_FIELD(LDTR),
254 };
255
256 static u64 host_efer;
257
258 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
259
260 /*
261 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
262 * away by decrementing the array size.
263 */
264 static const u32 vmx_msr_index[] = {
265 #ifdef CONFIG_X86_64
266 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
267 #endif
268 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
269 };
270 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
271
272 static inline bool is_page_fault(u32 intr_info)
273 {
274 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
275 INTR_INFO_VALID_MASK)) ==
276 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
277 }
278
279 static inline bool is_no_device(u32 intr_info)
280 {
281 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
282 INTR_INFO_VALID_MASK)) ==
283 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
284 }
285
286 static inline bool is_invalid_opcode(u32 intr_info)
287 {
288 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
289 INTR_INFO_VALID_MASK)) ==
290 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
291 }
292
293 static inline bool is_external_interrupt(u32 intr_info)
294 {
295 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
296 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
297 }
298
299 static inline bool is_machine_check(u32 intr_info)
300 {
301 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
302 INTR_INFO_VALID_MASK)) ==
303 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
304 }
305
306 static inline bool cpu_has_vmx_msr_bitmap(void)
307 {
308 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
309 }
310
311 static inline bool cpu_has_vmx_tpr_shadow(void)
312 {
313 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
314 }
315
316 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
317 {
318 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
319 }
320
321 static inline bool cpu_has_secondary_exec_ctrls(void)
322 {
323 return vmcs_config.cpu_based_exec_ctrl &
324 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
325 }
326
327 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
328 {
329 return vmcs_config.cpu_based_2nd_exec_ctrl &
330 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
331 }
332
333 static inline bool cpu_has_vmx_flexpriority(void)
334 {
335 return cpu_has_vmx_tpr_shadow() &&
336 cpu_has_vmx_virtualize_apic_accesses();
337 }
338
339 static inline bool cpu_has_vmx_ept_execute_only(void)
340 {
341 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
342 }
343
344 static inline bool cpu_has_vmx_eptp_uncacheable(void)
345 {
346 return vmx_capability.ept & VMX_EPTP_UC_BIT;
347 }
348
349 static inline bool cpu_has_vmx_eptp_writeback(void)
350 {
351 return vmx_capability.ept & VMX_EPTP_WB_BIT;
352 }
353
354 static inline bool cpu_has_vmx_ept_2m_page(void)
355 {
356 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
357 }
358
359 static inline bool cpu_has_vmx_ept_1g_page(void)
360 {
361 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
362 }
363
364 static inline bool cpu_has_vmx_ept_4levels(void)
365 {
366 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
367 }
368
369 static inline bool cpu_has_vmx_invept_individual_addr(void)
370 {
371 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
372 }
373
374 static inline bool cpu_has_vmx_invept_context(void)
375 {
376 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
377 }
378
379 static inline bool cpu_has_vmx_invept_global(void)
380 {
381 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
382 }
383
384 static inline bool cpu_has_vmx_invvpid_single(void)
385 {
386 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
387 }
388
389 static inline bool cpu_has_vmx_invvpid_global(void)
390 {
391 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
392 }
393
394 static inline bool cpu_has_vmx_ept(void)
395 {
396 return vmcs_config.cpu_based_2nd_exec_ctrl &
397 SECONDARY_EXEC_ENABLE_EPT;
398 }
399
400 static inline bool cpu_has_vmx_unrestricted_guest(void)
401 {
402 return vmcs_config.cpu_based_2nd_exec_ctrl &
403 SECONDARY_EXEC_UNRESTRICTED_GUEST;
404 }
405
406 static inline bool cpu_has_vmx_ple(void)
407 {
408 return vmcs_config.cpu_based_2nd_exec_ctrl &
409 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
410 }
411
412 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
413 {
414 return flexpriority_enabled && irqchip_in_kernel(kvm);
415 }
416
417 static inline bool cpu_has_vmx_vpid(void)
418 {
419 return vmcs_config.cpu_based_2nd_exec_ctrl &
420 SECONDARY_EXEC_ENABLE_VPID;
421 }
422
423 static inline bool cpu_has_vmx_rdtscp(void)
424 {
425 return vmcs_config.cpu_based_2nd_exec_ctrl &
426 SECONDARY_EXEC_RDTSCP;
427 }
428
429 static inline bool cpu_has_virtual_nmis(void)
430 {
431 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
432 }
433
434 static inline bool cpu_has_vmx_wbinvd_exit(void)
435 {
436 return vmcs_config.cpu_based_2nd_exec_ctrl &
437 SECONDARY_EXEC_WBINVD_EXITING;
438 }
439
440 static inline bool report_flexpriority(void)
441 {
442 return flexpriority_enabled;
443 }
444
445 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
446 {
447 int i;
448
449 for (i = 0; i < vmx->nmsrs; ++i)
450 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
451 return i;
452 return -1;
453 }
454
455 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
456 {
457 struct {
458 u64 vpid : 16;
459 u64 rsvd : 48;
460 u64 gva;
461 } operand = { vpid, 0, gva };
462
463 asm volatile (__ex(ASM_VMX_INVVPID)
464 /* CF==1 or ZF==1 --> rc = -1 */
465 "; ja 1f ; ud2 ; 1:"
466 : : "a"(&operand), "c"(ext) : "cc", "memory");
467 }
468
469 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
470 {
471 struct {
472 u64 eptp, gpa;
473 } operand = {eptp, gpa};
474
475 asm volatile (__ex(ASM_VMX_INVEPT)
476 /* CF==1 or ZF==1 --> rc = -1 */
477 "; ja 1f ; ud2 ; 1:\n"
478 : : "a" (&operand), "c" (ext) : "cc", "memory");
479 }
480
481 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
482 {
483 int i;
484
485 i = __find_msr_index(vmx, msr);
486 if (i >= 0)
487 return &vmx->guest_msrs[i];
488 return NULL;
489 }
490
491 static void vmcs_clear(struct vmcs *vmcs)
492 {
493 u64 phys_addr = __pa(vmcs);
494 u8 error;
495
496 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
497 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
498 : "cc", "memory");
499 if (error)
500 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
501 vmcs, phys_addr);
502 }
503
504 static void vmcs_load(struct vmcs *vmcs)
505 {
506 u64 phys_addr = __pa(vmcs);
507 u8 error;
508
509 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
510 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
511 : "cc", "memory");
512 if (error)
513 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
514 vmcs, phys_addr);
515 }
516
517 static void __vcpu_clear(void *arg)
518 {
519 struct vcpu_vmx *vmx = arg;
520 int cpu = raw_smp_processor_id();
521
522 if (vmx->vcpu.cpu == cpu)
523 vmcs_clear(vmx->vmcs);
524 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
525 per_cpu(current_vmcs, cpu) = NULL;
526 list_del(&vmx->local_vcpus_link);
527 vmx->vcpu.cpu = -1;
528 vmx->launched = 0;
529 }
530
531 static void vcpu_clear(struct vcpu_vmx *vmx)
532 {
533 if (vmx->vcpu.cpu == -1)
534 return;
535 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
536 }
537
538 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
539 {
540 if (vmx->vpid == 0)
541 return;
542
543 if (cpu_has_vmx_invvpid_single())
544 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
545 }
546
547 static inline void vpid_sync_vcpu_global(void)
548 {
549 if (cpu_has_vmx_invvpid_global())
550 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
551 }
552
553 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
554 {
555 if (cpu_has_vmx_invvpid_single())
556 vpid_sync_vcpu_single(vmx);
557 else
558 vpid_sync_vcpu_global();
559 }
560
561 static inline void ept_sync_global(void)
562 {
563 if (cpu_has_vmx_invept_global())
564 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
565 }
566
567 static inline void ept_sync_context(u64 eptp)
568 {
569 if (enable_ept) {
570 if (cpu_has_vmx_invept_context())
571 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
572 else
573 ept_sync_global();
574 }
575 }
576
577 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
578 {
579 if (enable_ept) {
580 if (cpu_has_vmx_invept_individual_addr())
581 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
582 eptp, gpa);
583 else
584 ept_sync_context(eptp);
585 }
586 }
587
588 static unsigned long vmcs_readl(unsigned long field)
589 {
590 unsigned long value = 0;
591
592 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
593 : "+a"(value) : "d"(field) : "cc");
594 return value;
595 }
596
597 static u16 vmcs_read16(unsigned long field)
598 {
599 return vmcs_readl(field);
600 }
601
602 static u32 vmcs_read32(unsigned long field)
603 {
604 return vmcs_readl(field);
605 }
606
607 static u64 vmcs_read64(unsigned long field)
608 {
609 #ifdef CONFIG_X86_64
610 return vmcs_readl(field);
611 #else
612 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
613 #endif
614 }
615
616 static noinline void vmwrite_error(unsigned long field, unsigned long value)
617 {
618 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
619 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
620 dump_stack();
621 }
622
623 static void vmcs_writel(unsigned long field, unsigned long value)
624 {
625 u8 error;
626
627 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
628 : "=q"(error) : "a"(value), "d"(field) : "cc");
629 if (unlikely(error))
630 vmwrite_error(field, value);
631 }
632
633 static void vmcs_write16(unsigned long field, u16 value)
634 {
635 vmcs_writel(field, value);
636 }
637
638 static void vmcs_write32(unsigned long field, u32 value)
639 {
640 vmcs_writel(field, value);
641 }
642
643 static void vmcs_write64(unsigned long field, u64 value)
644 {
645 vmcs_writel(field, value);
646 #ifndef CONFIG_X86_64
647 asm volatile ("");
648 vmcs_writel(field+1, value >> 32);
649 #endif
650 }
651
652 static void vmcs_clear_bits(unsigned long field, u32 mask)
653 {
654 vmcs_writel(field, vmcs_readl(field) & ~mask);
655 }
656
657 static void vmcs_set_bits(unsigned long field, u32 mask)
658 {
659 vmcs_writel(field, vmcs_readl(field) | mask);
660 }
661
662 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
663 {
664 vmx->segment_cache.bitmask = 0;
665 }
666
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 unsigned field)
669 {
670 bool ret;
671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672
673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
675 vmx->segment_cache.bitmask = 0;
676 }
677 ret = vmx->segment_cache.bitmask & mask;
678 vmx->segment_cache.bitmask |= mask;
679 return ret;
680 }
681
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 u16 *p = &vmx->segment_cache.seg[seg].selector;
685
686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 return *p;
689 }
690
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 ulong *p = &vmx->segment_cache.seg[seg].base;
694
695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 return *p;
698 }
699
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 u32 *p = &vmx->segment_cache.seg[seg].limit;
703
704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 return *p;
707 }
708
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 u32 *p = &vmx->segment_cache.seg[seg].ar;
712
713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 return *p;
716 }
717
718 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 u32 eb;
721
722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 (1u << NM_VECTOR) | (1u << DB_VECTOR);
724 if ((vcpu->guest_debug &
725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
727 eb |= 1u << BP_VECTOR;
728 if (to_vmx(vcpu)->rmode.vm86_active)
729 eb = ~0;
730 if (enable_ept)
731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
732 if (vcpu->fpu_active)
733 eb &= ~(1u << NM_VECTOR);
734 vmcs_write32(EXCEPTION_BITMAP, eb);
735 }
736
737 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
738 {
739 unsigned i;
740 struct msr_autoload *m = &vmx->msr_autoload;
741
742 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
743 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
744 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
745 return;
746 }
747
748 for (i = 0; i < m->nr; ++i)
749 if (m->guest[i].index == msr)
750 break;
751
752 if (i == m->nr)
753 return;
754 --m->nr;
755 m->guest[i] = m->guest[m->nr];
756 m->host[i] = m->host[m->nr];
757 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
758 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
759 }
760
761 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
762 u64 guest_val, u64 host_val)
763 {
764 unsigned i;
765 struct msr_autoload *m = &vmx->msr_autoload;
766
767 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
768 vmcs_write64(GUEST_IA32_EFER, guest_val);
769 vmcs_write64(HOST_IA32_EFER, host_val);
770 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
771 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
772 return;
773 }
774
775 for (i = 0; i < m->nr; ++i)
776 if (m->guest[i].index == msr)
777 break;
778
779 if (i == m->nr) {
780 ++m->nr;
781 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
782 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
783 }
784
785 m->guest[i].index = msr;
786 m->guest[i].value = guest_val;
787 m->host[i].index = msr;
788 m->host[i].value = host_val;
789 }
790
791 static void reload_tss(void)
792 {
793 /*
794 * VT restores TR but not its size. Useless.
795 */
796 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
797 struct desc_struct *descs;
798
799 descs = (void *)gdt->address;
800 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
801 load_TR_desc();
802 }
803
804 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
805 {
806 u64 guest_efer;
807 u64 ignore_bits;
808
809 guest_efer = vmx->vcpu.arch.efer;
810
811 /*
812 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
813 * outside long mode
814 */
815 ignore_bits = EFER_NX | EFER_SCE;
816 #ifdef CONFIG_X86_64
817 ignore_bits |= EFER_LMA | EFER_LME;
818 /* SCE is meaningful only in long mode on Intel */
819 if (guest_efer & EFER_LMA)
820 ignore_bits &= ~(u64)EFER_SCE;
821 #endif
822 guest_efer &= ~ignore_bits;
823 guest_efer |= host_efer & ignore_bits;
824 vmx->guest_msrs[efer_offset].data = guest_efer;
825 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
826
827 clear_atomic_switch_msr(vmx, MSR_EFER);
828 /* On ept, can't emulate nx, and must switch nx atomically */
829 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
830 guest_efer = vmx->vcpu.arch.efer;
831 if (!(guest_efer & EFER_LMA))
832 guest_efer &= ~EFER_LME;
833 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
834 return false;
835 }
836
837 return true;
838 }
839
840 static unsigned long segment_base(u16 selector)
841 {
842 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
843 struct desc_struct *d;
844 unsigned long table_base;
845 unsigned long v;
846
847 if (!(selector & ~3))
848 return 0;
849
850 table_base = gdt->address;
851
852 if (selector & 4) { /* from ldt */
853 u16 ldt_selector = kvm_read_ldt();
854
855 if (!(ldt_selector & ~3))
856 return 0;
857
858 table_base = segment_base(ldt_selector);
859 }
860 d = (struct desc_struct *)(table_base + (selector & ~7));
861 v = get_desc_base(d);
862 #ifdef CONFIG_X86_64
863 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
864 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
865 #endif
866 return v;
867 }
868
869 static inline unsigned long kvm_read_tr_base(void)
870 {
871 u16 tr;
872 asm("str %0" : "=g"(tr));
873 return segment_base(tr);
874 }
875
876 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
877 {
878 struct vcpu_vmx *vmx = to_vmx(vcpu);
879 int i;
880
881 if (vmx->host_state.loaded)
882 return;
883
884 vmx->host_state.loaded = 1;
885 /*
886 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
887 * allow segment selectors with cpl > 0 or ti == 1.
888 */
889 vmx->host_state.ldt_sel = kvm_read_ldt();
890 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
891 savesegment(fs, vmx->host_state.fs_sel);
892 if (!(vmx->host_state.fs_sel & 7)) {
893 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
894 vmx->host_state.fs_reload_needed = 0;
895 } else {
896 vmcs_write16(HOST_FS_SELECTOR, 0);
897 vmx->host_state.fs_reload_needed = 1;
898 }
899 savesegment(gs, vmx->host_state.gs_sel);
900 if (!(vmx->host_state.gs_sel & 7))
901 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
902 else {
903 vmcs_write16(HOST_GS_SELECTOR, 0);
904 vmx->host_state.gs_ldt_reload_needed = 1;
905 }
906
907 #ifdef CONFIG_X86_64
908 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
909 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
910 #else
911 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
912 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
913 #endif
914
915 #ifdef CONFIG_X86_64
916 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
917 if (is_long_mode(&vmx->vcpu))
918 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
919 #endif
920 for (i = 0; i < vmx->save_nmsrs; ++i)
921 kvm_set_shared_msr(vmx->guest_msrs[i].index,
922 vmx->guest_msrs[i].data,
923 vmx->guest_msrs[i].mask);
924 }
925
926 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
927 {
928 if (!vmx->host_state.loaded)
929 return;
930
931 ++vmx->vcpu.stat.host_state_reload;
932 vmx->host_state.loaded = 0;
933 #ifdef CONFIG_X86_64
934 if (is_long_mode(&vmx->vcpu))
935 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
936 #endif
937 if (vmx->host_state.gs_ldt_reload_needed) {
938 kvm_load_ldt(vmx->host_state.ldt_sel);
939 #ifdef CONFIG_X86_64
940 load_gs_index(vmx->host_state.gs_sel);
941 #else
942 loadsegment(gs, vmx->host_state.gs_sel);
943 #endif
944 }
945 if (vmx->host_state.fs_reload_needed)
946 loadsegment(fs, vmx->host_state.fs_sel);
947 reload_tss();
948 #ifdef CONFIG_X86_64
949 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
950 #endif
951 if (current_thread_info()->status & TS_USEDFPU)
952 clts();
953 load_gdt(&__get_cpu_var(host_gdt));
954 }
955
956 static void vmx_load_host_state(struct vcpu_vmx *vmx)
957 {
958 preempt_disable();
959 __vmx_load_host_state(vmx);
960 preempt_enable();
961 }
962
963 /*
964 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
965 * vcpu mutex is already taken.
966 */
967 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
968 {
969 struct vcpu_vmx *vmx = to_vmx(vcpu);
970 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
971
972 if (!vmm_exclusive)
973 kvm_cpu_vmxon(phys_addr);
974 else if (vcpu->cpu != cpu)
975 vcpu_clear(vmx);
976
977 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
978 per_cpu(current_vmcs, cpu) = vmx->vmcs;
979 vmcs_load(vmx->vmcs);
980 }
981
982 if (vcpu->cpu != cpu) {
983 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
984 unsigned long sysenter_esp;
985
986 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
987 local_irq_disable();
988 list_add(&vmx->local_vcpus_link,
989 &per_cpu(vcpus_on_cpu, cpu));
990 local_irq_enable();
991
992 /*
993 * Linux uses per-cpu TSS and GDT, so set these when switching
994 * processors.
995 */
996 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
997 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
998
999 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1000 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1001 }
1002 }
1003
1004 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1005 {
1006 __vmx_load_host_state(to_vmx(vcpu));
1007 if (!vmm_exclusive) {
1008 __vcpu_clear(to_vmx(vcpu));
1009 kvm_cpu_vmxoff();
1010 }
1011 }
1012
1013 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1014 {
1015 ulong cr0;
1016
1017 if (vcpu->fpu_active)
1018 return;
1019 vcpu->fpu_active = 1;
1020 cr0 = vmcs_readl(GUEST_CR0);
1021 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1022 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1023 vmcs_writel(GUEST_CR0, cr0);
1024 update_exception_bitmap(vcpu);
1025 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1026 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1027 }
1028
1029 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1030
1031 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1032 {
1033 vmx_decache_cr0_guest_bits(vcpu);
1034 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1035 update_exception_bitmap(vcpu);
1036 vcpu->arch.cr0_guest_owned_bits = 0;
1037 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1038 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1039 }
1040
1041 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1042 {
1043 unsigned long rflags, save_rflags;
1044
1045 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1046 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1047 rflags = vmcs_readl(GUEST_RFLAGS);
1048 if (to_vmx(vcpu)->rmode.vm86_active) {
1049 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1050 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1051 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1052 }
1053 to_vmx(vcpu)->rflags = rflags;
1054 }
1055 return to_vmx(vcpu)->rflags;
1056 }
1057
1058 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1059 {
1060 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1061 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1062 to_vmx(vcpu)->rflags = rflags;
1063 if (to_vmx(vcpu)->rmode.vm86_active) {
1064 to_vmx(vcpu)->rmode.save_rflags = rflags;
1065 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1066 }
1067 vmcs_writel(GUEST_RFLAGS, rflags);
1068 }
1069
1070 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1071 {
1072 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1073 int ret = 0;
1074
1075 if (interruptibility & GUEST_INTR_STATE_STI)
1076 ret |= KVM_X86_SHADOW_INT_STI;
1077 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1078 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1079
1080 return ret & mask;
1081 }
1082
1083 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1084 {
1085 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1086 u32 interruptibility = interruptibility_old;
1087
1088 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1089
1090 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1091 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1092 else if (mask & KVM_X86_SHADOW_INT_STI)
1093 interruptibility |= GUEST_INTR_STATE_STI;
1094
1095 if ((interruptibility != interruptibility_old))
1096 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1097 }
1098
1099 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1100 {
1101 unsigned long rip;
1102
1103 rip = kvm_rip_read(vcpu);
1104 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1105 kvm_rip_write(vcpu, rip);
1106
1107 /* skipping an emulated instruction also counts */
1108 vmx_set_interrupt_shadow(vcpu, 0);
1109 }
1110
1111 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1112 {
1113 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1114 * explicitly skip the instruction because if the HLT state is set, then
1115 * the instruction is already executing and RIP has already been
1116 * advanced. */
1117 if (!yield_on_hlt &&
1118 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1119 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1120 }
1121
1122 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1123 bool has_error_code, u32 error_code,
1124 bool reinject)
1125 {
1126 struct vcpu_vmx *vmx = to_vmx(vcpu);
1127 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1128
1129 if (has_error_code) {
1130 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1131 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1132 }
1133
1134 if (vmx->rmode.vm86_active) {
1135 int inc_eip = 0;
1136 if (kvm_exception_is_soft(nr))
1137 inc_eip = vcpu->arch.event_exit_inst_len;
1138 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1139 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1140 return;
1141 }
1142
1143 if (kvm_exception_is_soft(nr)) {
1144 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1145 vmx->vcpu.arch.event_exit_inst_len);
1146 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1147 } else
1148 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1149
1150 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1151 vmx_clear_hlt(vcpu);
1152 }
1153
1154 static bool vmx_rdtscp_supported(void)
1155 {
1156 return cpu_has_vmx_rdtscp();
1157 }
1158
1159 /*
1160 * Swap MSR entry in host/guest MSR entry array.
1161 */
1162 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1163 {
1164 struct shared_msr_entry tmp;
1165
1166 tmp = vmx->guest_msrs[to];
1167 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1168 vmx->guest_msrs[from] = tmp;
1169 }
1170
1171 /*
1172 * Set up the vmcs to automatically save and restore system
1173 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1174 * mode, as fiddling with msrs is very expensive.
1175 */
1176 static void setup_msrs(struct vcpu_vmx *vmx)
1177 {
1178 int save_nmsrs, index;
1179 unsigned long *msr_bitmap;
1180
1181 vmx_load_host_state(vmx);
1182 save_nmsrs = 0;
1183 #ifdef CONFIG_X86_64
1184 if (is_long_mode(&vmx->vcpu)) {
1185 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1186 if (index >= 0)
1187 move_msr_up(vmx, index, save_nmsrs++);
1188 index = __find_msr_index(vmx, MSR_LSTAR);
1189 if (index >= 0)
1190 move_msr_up(vmx, index, save_nmsrs++);
1191 index = __find_msr_index(vmx, MSR_CSTAR);
1192 if (index >= 0)
1193 move_msr_up(vmx, index, save_nmsrs++);
1194 index = __find_msr_index(vmx, MSR_TSC_AUX);
1195 if (index >= 0 && vmx->rdtscp_enabled)
1196 move_msr_up(vmx, index, save_nmsrs++);
1197 /*
1198 * MSR_STAR is only needed on long mode guests, and only
1199 * if efer.sce is enabled.
1200 */
1201 index = __find_msr_index(vmx, MSR_STAR);
1202 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1203 move_msr_up(vmx, index, save_nmsrs++);
1204 }
1205 #endif
1206 index = __find_msr_index(vmx, MSR_EFER);
1207 if (index >= 0 && update_transition_efer(vmx, index))
1208 move_msr_up(vmx, index, save_nmsrs++);
1209
1210 vmx->save_nmsrs = save_nmsrs;
1211
1212 if (cpu_has_vmx_msr_bitmap()) {
1213 if (is_long_mode(&vmx->vcpu))
1214 msr_bitmap = vmx_msr_bitmap_longmode;
1215 else
1216 msr_bitmap = vmx_msr_bitmap_legacy;
1217
1218 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1219 }
1220 }
1221
1222 /*
1223 * reads and returns guest's timestamp counter "register"
1224 * guest_tsc = host_tsc + tsc_offset -- 21.3
1225 */
1226 static u64 guest_read_tsc(void)
1227 {
1228 u64 host_tsc, tsc_offset;
1229
1230 rdtscll(host_tsc);
1231 tsc_offset = vmcs_read64(TSC_OFFSET);
1232 return host_tsc + tsc_offset;
1233 }
1234
1235 /*
1236 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1237 * ioctl. In this case the call-back should update internal vmx state to make
1238 * the changes effective.
1239 */
1240 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1241 {
1242 /* Nothing to do here */
1243 }
1244
1245 /*
1246 * writes 'offset' into guest's timestamp counter offset register
1247 */
1248 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1249 {
1250 vmcs_write64(TSC_OFFSET, offset);
1251 }
1252
1253 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1254 {
1255 u64 offset = vmcs_read64(TSC_OFFSET);
1256 vmcs_write64(TSC_OFFSET, offset + adjustment);
1257 }
1258
1259 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1260 {
1261 return target_tsc - native_read_tsc();
1262 }
1263
1264 /*
1265 * Reads an msr value (of 'msr_index') into 'pdata'.
1266 * Returns 0 on success, non-0 otherwise.
1267 * Assumes vcpu_load() was already called.
1268 */
1269 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1270 {
1271 u64 data;
1272 struct shared_msr_entry *msr;
1273
1274 if (!pdata) {
1275 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1276 return -EINVAL;
1277 }
1278
1279 switch (msr_index) {
1280 #ifdef CONFIG_X86_64
1281 case MSR_FS_BASE:
1282 data = vmcs_readl(GUEST_FS_BASE);
1283 break;
1284 case MSR_GS_BASE:
1285 data = vmcs_readl(GUEST_GS_BASE);
1286 break;
1287 case MSR_KERNEL_GS_BASE:
1288 vmx_load_host_state(to_vmx(vcpu));
1289 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1290 break;
1291 #endif
1292 case MSR_EFER:
1293 return kvm_get_msr_common(vcpu, msr_index, pdata);
1294 case MSR_IA32_TSC:
1295 data = guest_read_tsc();
1296 break;
1297 case MSR_IA32_SYSENTER_CS:
1298 data = vmcs_read32(GUEST_SYSENTER_CS);
1299 break;
1300 case MSR_IA32_SYSENTER_EIP:
1301 data = vmcs_readl(GUEST_SYSENTER_EIP);
1302 break;
1303 case MSR_IA32_SYSENTER_ESP:
1304 data = vmcs_readl(GUEST_SYSENTER_ESP);
1305 break;
1306 case MSR_TSC_AUX:
1307 if (!to_vmx(vcpu)->rdtscp_enabled)
1308 return 1;
1309 /* Otherwise falls through */
1310 default:
1311 vmx_load_host_state(to_vmx(vcpu));
1312 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1313 if (msr) {
1314 vmx_load_host_state(to_vmx(vcpu));
1315 data = msr->data;
1316 break;
1317 }
1318 return kvm_get_msr_common(vcpu, msr_index, pdata);
1319 }
1320
1321 *pdata = data;
1322 return 0;
1323 }
1324
1325 /*
1326 * Writes msr value into into the appropriate "register".
1327 * Returns 0 on success, non-0 otherwise.
1328 * Assumes vcpu_load() was already called.
1329 */
1330 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1331 {
1332 struct vcpu_vmx *vmx = to_vmx(vcpu);
1333 struct shared_msr_entry *msr;
1334 int ret = 0;
1335
1336 switch (msr_index) {
1337 case MSR_EFER:
1338 vmx_load_host_state(vmx);
1339 ret = kvm_set_msr_common(vcpu, msr_index, data);
1340 break;
1341 #ifdef CONFIG_X86_64
1342 case MSR_FS_BASE:
1343 vmx_segment_cache_clear(vmx);
1344 vmcs_writel(GUEST_FS_BASE, data);
1345 break;
1346 case MSR_GS_BASE:
1347 vmx_segment_cache_clear(vmx);
1348 vmcs_writel(GUEST_GS_BASE, data);
1349 break;
1350 case MSR_KERNEL_GS_BASE:
1351 vmx_load_host_state(vmx);
1352 vmx->msr_guest_kernel_gs_base = data;
1353 break;
1354 #endif
1355 case MSR_IA32_SYSENTER_CS:
1356 vmcs_write32(GUEST_SYSENTER_CS, data);
1357 break;
1358 case MSR_IA32_SYSENTER_EIP:
1359 vmcs_writel(GUEST_SYSENTER_EIP, data);
1360 break;
1361 case MSR_IA32_SYSENTER_ESP:
1362 vmcs_writel(GUEST_SYSENTER_ESP, data);
1363 break;
1364 case MSR_IA32_TSC:
1365 kvm_write_tsc(vcpu, data);
1366 break;
1367 case MSR_IA32_CR_PAT:
1368 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1369 vmcs_write64(GUEST_IA32_PAT, data);
1370 vcpu->arch.pat = data;
1371 break;
1372 }
1373 ret = kvm_set_msr_common(vcpu, msr_index, data);
1374 break;
1375 case MSR_TSC_AUX:
1376 if (!vmx->rdtscp_enabled)
1377 return 1;
1378 /* Check reserved bit, higher 32 bits should be zero */
1379 if ((data >> 32) != 0)
1380 return 1;
1381 /* Otherwise falls through */
1382 default:
1383 msr = find_msr_entry(vmx, msr_index);
1384 if (msr) {
1385 vmx_load_host_state(vmx);
1386 msr->data = data;
1387 break;
1388 }
1389 ret = kvm_set_msr_common(vcpu, msr_index, data);
1390 }
1391
1392 return ret;
1393 }
1394
1395 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1396 {
1397 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1398 switch (reg) {
1399 case VCPU_REGS_RSP:
1400 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1401 break;
1402 case VCPU_REGS_RIP:
1403 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1404 break;
1405 case VCPU_EXREG_PDPTR:
1406 if (enable_ept)
1407 ept_save_pdptrs(vcpu);
1408 break;
1409 default:
1410 break;
1411 }
1412 }
1413
1414 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1415 {
1416 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1417 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1418 else
1419 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1420
1421 update_exception_bitmap(vcpu);
1422 }
1423
1424 static __init int cpu_has_kvm_support(void)
1425 {
1426 return cpu_has_vmx();
1427 }
1428
1429 static __init int vmx_disabled_by_bios(void)
1430 {
1431 u64 msr;
1432
1433 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1434 if (msr & FEATURE_CONTROL_LOCKED) {
1435 /* launched w/ TXT and VMX disabled */
1436 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1437 && tboot_enabled())
1438 return 1;
1439 /* launched w/o TXT and VMX only enabled w/ TXT */
1440 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1441 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1442 && !tboot_enabled()) {
1443 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1444 "activate TXT before enabling KVM\n");
1445 return 1;
1446 }
1447 /* launched w/o TXT and VMX disabled */
1448 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1449 && !tboot_enabled())
1450 return 1;
1451 }
1452
1453 return 0;
1454 }
1455
1456 static void kvm_cpu_vmxon(u64 addr)
1457 {
1458 asm volatile (ASM_VMX_VMXON_RAX
1459 : : "a"(&addr), "m"(addr)
1460 : "memory", "cc");
1461 }
1462
1463 static int hardware_enable(void *garbage)
1464 {
1465 int cpu = raw_smp_processor_id();
1466 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1467 u64 old, test_bits;
1468
1469 if (read_cr4() & X86_CR4_VMXE)
1470 return -EBUSY;
1471
1472 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1473 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1474
1475 test_bits = FEATURE_CONTROL_LOCKED;
1476 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1477 if (tboot_enabled())
1478 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1479
1480 if ((old & test_bits) != test_bits) {
1481 /* enable and lock */
1482 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1483 }
1484 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1485
1486 if (vmm_exclusive) {
1487 kvm_cpu_vmxon(phys_addr);
1488 ept_sync_global();
1489 }
1490
1491 store_gdt(&__get_cpu_var(host_gdt));
1492
1493 return 0;
1494 }
1495
1496 static void vmclear_local_vcpus(void)
1497 {
1498 int cpu = raw_smp_processor_id();
1499 struct vcpu_vmx *vmx, *n;
1500
1501 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1502 local_vcpus_link)
1503 __vcpu_clear(vmx);
1504 }
1505
1506
1507 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1508 * tricks.
1509 */
1510 static void kvm_cpu_vmxoff(void)
1511 {
1512 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1513 }
1514
1515 static void hardware_disable(void *garbage)
1516 {
1517 if (vmm_exclusive) {
1518 vmclear_local_vcpus();
1519 kvm_cpu_vmxoff();
1520 }
1521 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1522 }
1523
1524 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1525 u32 msr, u32 *result)
1526 {
1527 u32 vmx_msr_low, vmx_msr_high;
1528 u32 ctl = ctl_min | ctl_opt;
1529
1530 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1531
1532 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1533 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1534
1535 /* Ensure minimum (required) set of control bits are supported. */
1536 if (ctl_min & ~ctl)
1537 return -EIO;
1538
1539 *result = ctl;
1540 return 0;
1541 }
1542
1543 static __init bool allow_1_setting(u32 msr, u32 ctl)
1544 {
1545 u32 vmx_msr_low, vmx_msr_high;
1546
1547 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1548 return vmx_msr_high & ctl;
1549 }
1550
1551 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1552 {
1553 u32 vmx_msr_low, vmx_msr_high;
1554 u32 min, opt, min2, opt2;
1555 u32 _pin_based_exec_control = 0;
1556 u32 _cpu_based_exec_control = 0;
1557 u32 _cpu_based_2nd_exec_control = 0;
1558 u32 _vmexit_control = 0;
1559 u32 _vmentry_control = 0;
1560
1561 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1562 opt = PIN_BASED_VIRTUAL_NMIS;
1563 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1564 &_pin_based_exec_control) < 0)
1565 return -EIO;
1566
1567 min =
1568 #ifdef CONFIG_X86_64
1569 CPU_BASED_CR8_LOAD_EXITING |
1570 CPU_BASED_CR8_STORE_EXITING |
1571 #endif
1572 CPU_BASED_CR3_LOAD_EXITING |
1573 CPU_BASED_CR3_STORE_EXITING |
1574 CPU_BASED_USE_IO_BITMAPS |
1575 CPU_BASED_MOV_DR_EXITING |
1576 CPU_BASED_USE_TSC_OFFSETING |
1577 CPU_BASED_MWAIT_EXITING |
1578 CPU_BASED_MONITOR_EXITING |
1579 CPU_BASED_INVLPG_EXITING;
1580
1581 if (yield_on_hlt)
1582 min |= CPU_BASED_HLT_EXITING;
1583
1584 opt = CPU_BASED_TPR_SHADOW |
1585 CPU_BASED_USE_MSR_BITMAPS |
1586 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1587 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1588 &_cpu_based_exec_control) < 0)
1589 return -EIO;
1590 #ifdef CONFIG_X86_64
1591 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1592 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1593 ~CPU_BASED_CR8_STORE_EXITING;
1594 #endif
1595 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1596 min2 = 0;
1597 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1598 SECONDARY_EXEC_WBINVD_EXITING |
1599 SECONDARY_EXEC_ENABLE_VPID |
1600 SECONDARY_EXEC_ENABLE_EPT |
1601 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1602 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1603 SECONDARY_EXEC_RDTSCP;
1604 if (adjust_vmx_controls(min2, opt2,
1605 MSR_IA32_VMX_PROCBASED_CTLS2,
1606 &_cpu_based_2nd_exec_control) < 0)
1607 return -EIO;
1608 }
1609 #ifndef CONFIG_X86_64
1610 if (!(_cpu_based_2nd_exec_control &
1611 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1612 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1613 #endif
1614 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1615 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1616 enabled */
1617 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1618 CPU_BASED_CR3_STORE_EXITING |
1619 CPU_BASED_INVLPG_EXITING);
1620 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1621 vmx_capability.ept, vmx_capability.vpid);
1622 }
1623
1624 min = 0;
1625 #ifdef CONFIG_X86_64
1626 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1627 #endif
1628 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1629 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1630 &_vmexit_control) < 0)
1631 return -EIO;
1632
1633 min = 0;
1634 opt = VM_ENTRY_LOAD_IA32_PAT;
1635 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1636 &_vmentry_control) < 0)
1637 return -EIO;
1638
1639 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1640
1641 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1642 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1643 return -EIO;
1644
1645 #ifdef CONFIG_X86_64
1646 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1647 if (vmx_msr_high & (1u<<16))
1648 return -EIO;
1649 #endif
1650
1651 /* Require Write-Back (WB) memory type for VMCS accesses. */
1652 if (((vmx_msr_high >> 18) & 15) != 6)
1653 return -EIO;
1654
1655 vmcs_conf->size = vmx_msr_high & 0x1fff;
1656 vmcs_conf->order = get_order(vmcs_config.size);
1657 vmcs_conf->revision_id = vmx_msr_low;
1658
1659 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1660 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1661 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1662 vmcs_conf->vmexit_ctrl = _vmexit_control;
1663 vmcs_conf->vmentry_ctrl = _vmentry_control;
1664
1665 cpu_has_load_ia32_efer =
1666 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1667 VM_ENTRY_LOAD_IA32_EFER)
1668 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1669 VM_EXIT_LOAD_IA32_EFER);
1670
1671 return 0;
1672 }
1673
1674 static struct vmcs *alloc_vmcs_cpu(int cpu)
1675 {
1676 int node = cpu_to_node(cpu);
1677 struct page *pages;
1678 struct vmcs *vmcs;
1679
1680 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1681 if (!pages)
1682 return NULL;
1683 vmcs = page_address(pages);
1684 memset(vmcs, 0, vmcs_config.size);
1685 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1686 return vmcs;
1687 }
1688
1689 static struct vmcs *alloc_vmcs(void)
1690 {
1691 return alloc_vmcs_cpu(raw_smp_processor_id());
1692 }
1693
1694 static void free_vmcs(struct vmcs *vmcs)
1695 {
1696 free_pages((unsigned long)vmcs, vmcs_config.order);
1697 }
1698
1699 static void free_kvm_area(void)
1700 {
1701 int cpu;
1702
1703 for_each_possible_cpu(cpu) {
1704 free_vmcs(per_cpu(vmxarea, cpu));
1705 per_cpu(vmxarea, cpu) = NULL;
1706 }
1707 }
1708
1709 static __init int alloc_kvm_area(void)
1710 {
1711 int cpu;
1712
1713 for_each_possible_cpu(cpu) {
1714 struct vmcs *vmcs;
1715
1716 vmcs = alloc_vmcs_cpu(cpu);
1717 if (!vmcs) {
1718 free_kvm_area();
1719 return -ENOMEM;
1720 }
1721
1722 per_cpu(vmxarea, cpu) = vmcs;
1723 }
1724 return 0;
1725 }
1726
1727 static __init int hardware_setup(void)
1728 {
1729 if (setup_vmcs_config(&vmcs_config) < 0)
1730 return -EIO;
1731
1732 if (boot_cpu_has(X86_FEATURE_NX))
1733 kvm_enable_efer_bits(EFER_NX);
1734
1735 if (!cpu_has_vmx_vpid())
1736 enable_vpid = 0;
1737
1738 if (!cpu_has_vmx_ept() ||
1739 !cpu_has_vmx_ept_4levels()) {
1740 enable_ept = 0;
1741 enable_unrestricted_guest = 0;
1742 }
1743
1744 if (!cpu_has_vmx_unrestricted_guest())
1745 enable_unrestricted_guest = 0;
1746
1747 if (!cpu_has_vmx_flexpriority())
1748 flexpriority_enabled = 0;
1749
1750 if (!cpu_has_vmx_tpr_shadow())
1751 kvm_x86_ops->update_cr8_intercept = NULL;
1752
1753 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1754 kvm_disable_largepages();
1755
1756 if (!cpu_has_vmx_ple())
1757 ple_gap = 0;
1758
1759 return alloc_kvm_area();
1760 }
1761
1762 static __exit void hardware_unsetup(void)
1763 {
1764 free_kvm_area();
1765 }
1766
1767 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1768 {
1769 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1770
1771 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1772 vmcs_write16(sf->selector, save->selector);
1773 vmcs_writel(sf->base, save->base);
1774 vmcs_write32(sf->limit, save->limit);
1775 vmcs_write32(sf->ar_bytes, save->ar);
1776 } else {
1777 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1778 << AR_DPL_SHIFT;
1779 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1780 }
1781 }
1782
1783 static void enter_pmode(struct kvm_vcpu *vcpu)
1784 {
1785 unsigned long flags;
1786 struct vcpu_vmx *vmx = to_vmx(vcpu);
1787
1788 vmx->emulation_required = 1;
1789 vmx->rmode.vm86_active = 0;
1790
1791 vmx_segment_cache_clear(vmx);
1792
1793 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1794 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1795 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1796 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1797
1798 flags = vmcs_readl(GUEST_RFLAGS);
1799 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1800 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1801 vmcs_writel(GUEST_RFLAGS, flags);
1802
1803 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1804 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1805
1806 update_exception_bitmap(vcpu);
1807
1808 if (emulate_invalid_guest_state)
1809 return;
1810
1811 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1812 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1813 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1814 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1815
1816 vmx_segment_cache_clear(vmx);
1817
1818 vmcs_write16(GUEST_SS_SELECTOR, 0);
1819 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1820
1821 vmcs_write16(GUEST_CS_SELECTOR,
1822 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1823 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1824 }
1825
1826 static gva_t rmode_tss_base(struct kvm *kvm)
1827 {
1828 if (!kvm->arch.tss_addr) {
1829 struct kvm_memslots *slots;
1830 gfn_t base_gfn;
1831
1832 slots = kvm_memslots(kvm);
1833 base_gfn = slots->memslots[0].base_gfn +
1834 kvm->memslots->memslots[0].npages - 3;
1835 return base_gfn << PAGE_SHIFT;
1836 }
1837 return kvm->arch.tss_addr;
1838 }
1839
1840 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1841 {
1842 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1843
1844 save->selector = vmcs_read16(sf->selector);
1845 save->base = vmcs_readl(sf->base);
1846 save->limit = vmcs_read32(sf->limit);
1847 save->ar = vmcs_read32(sf->ar_bytes);
1848 vmcs_write16(sf->selector, save->base >> 4);
1849 vmcs_write32(sf->base, save->base & 0xffff0);
1850 vmcs_write32(sf->limit, 0xffff);
1851 vmcs_write32(sf->ar_bytes, 0xf3);
1852 if (save->base & 0xf)
1853 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1854 " aligned when entering protected mode (seg=%d)",
1855 seg);
1856 }
1857
1858 static void enter_rmode(struct kvm_vcpu *vcpu)
1859 {
1860 unsigned long flags;
1861 struct vcpu_vmx *vmx = to_vmx(vcpu);
1862
1863 if (enable_unrestricted_guest)
1864 return;
1865
1866 vmx->emulation_required = 1;
1867 vmx->rmode.vm86_active = 1;
1868
1869 /*
1870 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1871 * vcpu. Call it here with phys address pointing 16M below 4G.
1872 */
1873 if (!vcpu->kvm->arch.tss_addr) {
1874 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1875 "called before entering vcpu\n");
1876 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1877 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1878 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1879 }
1880
1881 vmx_segment_cache_clear(vmx);
1882
1883 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1884 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1885 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1886
1887 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1888 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1889
1890 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1891 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1892
1893 flags = vmcs_readl(GUEST_RFLAGS);
1894 vmx->rmode.save_rflags = flags;
1895
1896 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1897
1898 vmcs_writel(GUEST_RFLAGS, flags);
1899 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1900 update_exception_bitmap(vcpu);
1901
1902 if (emulate_invalid_guest_state)
1903 goto continue_rmode;
1904
1905 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1906 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1907 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1908
1909 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1910 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1911 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1912 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1913 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1914
1915 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1916 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1917 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1918 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1919
1920 continue_rmode:
1921 kvm_mmu_reset_context(vcpu);
1922 }
1923
1924 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1925 {
1926 struct vcpu_vmx *vmx = to_vmx(vcpu);
1927 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1928
1929 if (!msr)
1930 return;
1931
1932 /*
1933 * Force kernel_gs_base reloading before EFER changes, as control
1934 * of this msr depends on is_long_mode().
1935 */
1936 vmx_load_host_state(to_vmx(vcpu));
1937 vcpu->arch.efer = efer;
1938 if (efer & EFER_LMA) {
1939 vmcs_write32(VM_ENTRY_CONTROLS,
1940 vmcs_read32(VM_ENTRY_CONTROLS) |
1941 VM_ENTRY_IA32E_MODE);
1942 msr->data = efer;
1943 } else {
1944 vmcs_write32(VM_ENTRY_CONTROLS,
1945 vmcs_read32(VM_ENTRY_CONTROLS) &
1946 ~VM_ENTRY_IA32E_MODE);
1947
1948 msr->data = efer & ~EFER_LME;
1949 }
1950 setup_msrs(vmx);
1951 }
1952
1953 #ifdef CONFIG_X86_64
1954
1955 static void enter_lmode(struct kvm_vcpu *vcpu)
1956 {
1957 u32 guest_tr_ar;
1958
1959 vmx_segment_cache_clear(to_vmx(vcpu));
1960
1961 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1962 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1963 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1964 __func__);
1965 vmcs_write32(GUEST_TR_AR_BYTES,
1966 (guest_tr_ar & ~AR_TYPE_MASK)
1967 | AR_TYPE_BUSY_64_TSS);
1968 }
1969 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1970 }
1971
1972 static void exit_lmode(struct kvm_vcpu *vcpu)
1973 {
1974 vmcs_write32(VM_ENTRY_CONTROLS,
1975 vmcs_read32(VM_ENTRY_CONTROLS)
1976 & ~VM_ENTRY_IA32E_MODE);
1977 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1978 }
1979
1980 #endif
1981
1982 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1983 {
1984 vpid_sync_context(to_vmx(vcpu));
1985 if (enable_ept) {
1986 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1987 return;
1988 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1989 }
1990 }
1991
1992 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1993 {
1994 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1995
1996 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1997 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1998 }
1999
2000 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2001 {
2002 if (enable_ept && is_paging(vcpu))
2003 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2004 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2005 }
2006
2007 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2008 {
2009 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2010
2011 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2012 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2013 }
2014
2015 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2016 {
2017 if (!test_bit(VCPU_EXREG_PDPTR,
2018 (unsigned long *)&vcpu->arch.regs_dirty))
2019 return;
2020
2021 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2022 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2023 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2024 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2025 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2026 }
2027 }
2028
2029 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2030 {
2031 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2032 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2033 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2034 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2035 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2036 }
2037
2038 __set_bit(VCPU_EXREG_PDPTR,
2039 (unsigned long *)&vcpu->arch.regs_avail);
2040 __set_bit(VCPU_EXREG_PDPTR,
2041 (unsigned long *)&vcpu->arch.regs_dirty);
2042 }
2043
2044 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2045
2046 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2047 unsigned long cr0,
2048 struct kvm_vcpu *vcpu)
2049 {
2050 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2051 vmx_decache_cr3(vcpu);
2052 if (!(cr0 & X86_CR0_PG)) {
2053 /* From paging/starting to nonpaging */
2054 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2055 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2056 (CPU_BASED_CR3_LOAD_EXITING |
2057 CPU_BASED_CR3_STORE_EXITING));
2058 vcpu->arch.cr0 = cr0;
2059 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2060 } else if (!is_paging(vcpu)) {
2061 /* From nonpaging to paging */
2062 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2063 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2064 ~(CPU_BASED_CR3_LOAD_EXITING |
2065 CPU_BASED_CR3_STORE_EXITING));
2066 vcpu->arch.cr0 = cr0;
2067 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2068 }
2069
2070 if (!(cr0 & X86_CR0_WP))
2071 *hw_cr0 &= ~X86_CR0_WP;
2072 }
2073
2074 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2075 {
2076 struct vcpu_vmx *vmx = to_vmx(vcpu);
2077 unsigned long hw_cr0;
2078
2079 if (enable_unrestricted_guest)
2080 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2081 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2082 else
2083 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2084
2085 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2086 enter_pmode(vcpu);
2087
2088 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2089 enter_rmode(vcpu);
2090
2091 #ifdef CONFIG_X86_64
2092 if (vcpu->arch.efer & EFER_LME) {
2093 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2094 enter_lmode(vcpu);
2095 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2096 exit_lmode(vcpu);
2097 }
2098 #endif
2099
2100 if (enable_ept)
2101 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2102
2103 if (!vcpu->fpu_active)
2104 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2105
2106 vmcs_writel(CR0_READ_SHADOW, cr0);
2107 vmcs_writel(GUEST_CR0, hw_cr0);
2108 vcpu->arch.cr0 = cr0;
2109 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2110 }
2111
2112 static u64 construct_eptp(unsigned long root_hpa)
2113 {
2114 u64 eptp;
2115
2116 /* TODO write the value reading from MSR */
2117 eptp = VMX_EPT_DEFAULT_MT |
2118 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2119 eptp |= (root_hpa & PAGE_MASK);
2120
2121 return eptp;
2122 }
2123
2124 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2125 {
2126 unsigned long guest_cr3;
2127 u64 eptp;
2128
2129 guest_cr3 = cr3;
2130 if (enable_ept) {
2131 eptp = construct_eptp(cr3);
2132 vmcs_write64(EPT_POINTER, eptp);
2133 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2134 vcpu->kvm->arch.ept_identity_map_addr;
2135 ept_load_pdptrs(vcpu);
2136 }
2137
2138 vmx_flush_tlb(vcpu);
2139 vmcs_writel(GUEST_CR3, guest_cr3);
2140 }
2141
2142 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2143 {
2144 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2145 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2146
2147 vcpu->arch.cr4 = cr4;
2148 if (enable_ept) {
2149 if (!is_paging(vcpu)) {
2150 hw_cr4 &= ~X86_CR4_PAE;
2151 hw_cr4 |= X86_CR4_PSE;
2152 } else if (!(cr4 & X86_CR4_PAE)) {
2153 hw_cr4 &= ~X86_CR4_PAE;
2154 }
2155 }
2156
2157 vmcs_writel(CR4_READ_SHADOW, cr4);
2158 vmcs_writel(GUEST_CR4, hw_cr4);
2159 }
2160
2161 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2162 struct kvm_segment *var, int seg)
2163 {
2164 struct vcpu_vmx *vmx = to_vmx(vcpu);
2165 struct kvm_save_segment *save;
2166 u32 ar;
2167
2168 if (vmx->rmode.vm86_active
2169 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2170 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2171 || seg == VCPU_SREG_GS)
2172 && !emulate_invalid_guest_state) {
2173 switch (seg) {
2174 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2175 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2176 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2177 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2178 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2179 default: BUG();
2180 }
2181 var->selector = save->selector;
2182 var->base = save->base;
2183 var->limit = save->limit;
2184 ar = save->ar;
2185 if (seg == VCPU_SREG_TR
2186 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2187 goto use_saved_rmode_seg;
2188 }
2189 var->base = vmx_read_guest_seg_base(vmx, seg);
2190 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2191 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2192 ar = vmx_read_guest_seg_ar(vmx, seg);
2193 use_saved_rmode_seg:
2194 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2195 ar = 0;
2196 var->type = ar & 15;
2197 var->s = (ar >> 4) & 1;
2198 var->dpl = (ar >> 5) & 3;
2199 var->present = (ar >> 7) & 1;
2200 var->avl = (ar >> 12) & 1;
2201 var->l = (ar >> 13) & 1;
2202 var->db = (ar >> 14) & 1;
2203 var->g = (ar >> 15) & 1;
2204 var->unusable = (ar >> 16) & 1;
2205 }
2206
2207 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2208 {
2209 struct kvm_segment s;
2210
2211 if (to_vmx(vcpu)->rmode.vm86_active) {
2212 vmx_get_segment(vcpu, &s, seg);
2213 return s.base;
2214 }
2215 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2216 }
2217
2218 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2219 {
2220 if (!is_protmode(vcpu))
2221 return 0;
2222
2223 if (!is_long_mode(vcpu)
2224 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2225 return 3;
2226
2227 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2228 }
2229
2230 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2231 {
2232 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2233 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2234 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2235 }
2236 return to_vmx(vcpu)->cpl;
2237 }
2238
2239
2240 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2241 {
2242 u32 ar;
2243
2244 if (var->unusable)
2245 ar = 1 << 16;
2246 else {
2247 ar = var->type & 15;
2248 ar |= (var->s & 1) << 4;
2249 ar |= (var->dpl & 3) << 5;
2250 ar |= (var->present & 1) << 7;
2251 ar |= (var->avl & 1) << 12;
2252 ar |= (var->l & 1) << 13;
2253 ar |= (var->db & 1) << 14;
2254 ar |= (var->g & 1) << 15;
2255 }
2256 if (ar == 0) /* a 0 value means unusable */
2257 ar = AR_UNUSABLE_MASK;
2258
2259 return ar;
2260 }
2261
2262 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2263 struct kvm_segment *var, int seg)
2264 {
2265 struct vcpu_vmx *vmx = to_vmx(vcpu);
2266 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2267 u32 ar;
2268
2269 vmx_segment_cache_clear(vmx);
2270
2271 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2272 vmcs_write16(sf->selector, var->selector);
2273 vmx->rmode.tr.selector = var->selector;
2274 vmx->rmode.tr.base = var->base;
2275 vmx->rmode.tr.limit = var->limit;
2276 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2277 return;
2278 }
2279 vmcs_writel(sf->base, var->base);
2280 vmcs_write32(sf->limit, var->limit);
2281 vmcs_write16(sf->selector, var->selector);
2282 if (vmx->rmode.vm86_active && var->s) {
2283 /*
2284 * Hack real-mode segments into vm86 compatibility.
2285 */
2286 if (var->base == 0xffff0000 && var->selector == 0xf000)
2287 vmcs_writel(sf->base, 0xf0000);
2288 ar = 0xf3;
2289 } else
2290 ar = vmx_segment_access_rights(var);
2291
2292 /*
2293 * Fix the "Accessed" bit in AR field of segment registers for older
2294 * qemu binaries.
2295 * IA32 arch specifies that at the time of processor reset the
2296 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2297 * is setting it to 0 in the usedland code. This causes invalid guest
2298 * state vmexit when "unrestricted guest" mode is turned on.
2299 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2300 * tree. Newer qemu binaries with that qemu fix would not need this
2301 * kvm hack.
2302 */
2303 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2304 ar |= 0x1; /* Accessed */
2305
2306 vmcs_write32(sf->ar_bytes, ar);
2307 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2308 }
2309
2310 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2311 {
2312 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2313
2314 *db = (ar >> 14) & 1;
2315 *l = (ar >> 13) & 1;
2316 }
2317
2318 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2319 {
2320 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2321 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2322 }
2323
2324 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2325 {
2326 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2327 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2328 }
2329
2330 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2331 {
2332 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2333 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2334 }
2335
2336 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2337 {
2338 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2339 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2340 }
2341
2342 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2343 {
2344 struct kvm_segment var;
2345 u32 ar;
2346
2347 vmx_get_segment(vcpu, &var, seg);
2348 ar = vmx_segment_access_rights(&var);
2349
2350 if (var.base != (var.selector << 4))
2351 return false;
2352 if (var.limit != 0xffff)
2353 return false;
2354 if (ar != 0xf3)
2355 return false;
2356
2357 return true;
2358 }
2359
2360 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2361 {
2362 struct kvm_segment cs;
2363 unsigned int cs_rpl;
2364
2365 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2366 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2367
2368 if (cs.unusable)
2369 return false;
2370 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2371 return false;
2372 if (!cs.s)
2373 return false;
2374 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2375 if (cs.dpl > cs_rpl)
2376 return false;
2377 } else {
2378 if (cs.dpl != cs_rpl)
2379 return false;
2380 }
2381 if (!cs.present)
2382 return false;
2383
2384 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2385 return true;
2386 }
2387
2388 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2389 {
2390 struct kvm_segment ss;
2391 unsigned int ss_rpl;
2392
2393 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2394 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2395
2396 if (ss.unusable)
2397 return true;
2398 if (ss.type != 3 && ss.type != 7)
2399 return false;
2400 if (!ss.s)
2401 return false;
2402 if (ss.dpl != ss_rpl) /* DPL != RPL */
2403 return false;
2404 if (!ss.present)
2405 return false;
2406
2407 return true;
2408 }
2409
2410 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2411 {
2412 struct kvm_segment var;
2413 unsigned int rpl;
2414
2415 vmx_get_segment(vcpu, &var, seg);
2416 rpl = var.selector & SELECTOR_RPL_MASK;
2417
2418 if (var.unusable)
2419 return true;
2420 if (!var.s)
2421 return false;
2422 if (!var.present)
2423 return false;
2424 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2425 if (var.dpl < rpl) /* DPL < RPL */
2426 return false;
2427 }
2428
2429 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2430 * rights flags
2431 */
2432 return true;
2433 }
2434
2435 static bool tr_valid(struct kvm_vcpu *vcpu)
2436 {
2437 struct kvm_segment tr;
2438
2439 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2440
2441 if (tr.unusable)
2442 return false;
2443 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2444 return false;
2445 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2446 return false;
2447 if (!tr.present)
2448 return false;
2449
2450 return true;
2451 }
2452
2453 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2454 {
2455 struct kvm_segment ldtr;
2456
2457 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2458
2459 if (ldtr.unusable)
2460 return true;
2461 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2462 return false;
2463 if (ldtr.type != 2)
2464 return false;
2465 if (!ldtr.present)
2466 return false;
2467
2468 return true;
2469 }
2470
2471 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2472 {
2473 struct kvm_segment cs, ss;
2474
2475 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2476 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2477
2478 return ((cs.selector & SELECTOR_RPL_MASK) ==
2479 (ss.selector & SELECTOR_RPL_MASK));
2480 }
2481
2482 /*
2483 * Check if guest state is valid. Returns true if valid, false if
2484 * not.
2485 * We assume that registers are always usable
2486 */
2487 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2488 {
2489 /* real mode guest state checks */
2490 if (!is_protmode(vcpu)) {
2491 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2492 return false;
2493 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2494 return false;
2495 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2496 return false;
2497 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2498 return false;
2499 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2500 return false;
2501 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2502 return false;
2503 } else {
2504 /* protected mode guest state checks */
2505 if (!cs_ss_rpl_check(vcpu))
2506 return false;
2507 if (!code_segment_valid(vcpu))
2508 return false;
2509 if (!stack_segment_valid(vcpu))
2510 return false;
2511 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2512 return false;
2513 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2514 return false;
2515 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2516 return false;
2517 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2518 return false;
2519 if (!tr_valid(vcpu))
2520 return false;
2521 if (!ldtr_valid(vcpu))
2522 return false;
2523 }
2524 /* TODO:
2525 * - Add checks on RIP
2526 * - Add checks on RFLAGS
2527 */
2528
2529 return true;
2530 }
2531
2532 static int init_rmode_tss(struct kvm *kvm)
2533 {
2534 gfn_t fn;
2535 u16 data = 0;
2536 int r, idx, ret = 0;
2537
2538 idx = srcu_read_lock(&kvm->srcu);
2539 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2540 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2541 if (r < 0)
2542 goto out;
2543 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2544 r = kvm_write_guest_page(kvm, fn++, &data,
2545 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2546 if (r < 0)
2547 goto out;
2548 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2549 if (r < 0)
2550 goto out;
2551 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2552 if (r < 0)
2553 goto out;
2554 data = ~0;
2555 r = kvm_write_guest_page(kvm, fn, &data,
2556 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2557 sizeof(u8));
2558 if (r < 0)
2559 goto out;
2560
2561 ret = 1;
2562 out:
2563 srcu_read_unlock(&kvm->srcu, idx);
2564 return ret;
2565 }
2566
2567 static int init_rmode_identity_map(struct kvm *kvm)
2568 {
2569 int i, idx, r, ret;
2570 pfn_t identity_map_pfn;
2571 u32 tmp;
2572
2573 if (!enable_ept)
2574 return 1;
2575 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2576 printk(KERN_ERR "EPT: identity-mapping pagetable "
2577 "haven't been allocated!\n");
2578 return 0;
2579 }
2580 if (likely(kvm->arch.ept_identity_pagetable_done))
2581 return 1;
2582 ret = 0;
2583 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2584 idx = srcu_read_lock(&kvm->srcu);
2585 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2586 if (r < 0)
2587 goto out;
2588 /* Set up identity-mapping pagetable for EPT in real mode */
2589 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2590 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2591 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2592 r = kvm_write_guest_page(kvm, identity_map_pfn,
2593 &tmp, i * sizeof(tmp), sizeof(tmp));
2594 if (r < 0)
2595 goto out;
2596 }
2597 kvm->arch.ept_identity_pagetable_done = true;
2598 ret = 1;
2599 out:
2600 srcu_read_unlock(&kvm->srcu, idx);
2601 return ret;
2602 }
2603
2604 static void seg_setup(int seg)
2605 {
2606 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2607 unsigned int ar;
2608
2609 vmcs_write16(sf->selector, 0);
2610 vmcs_writel(sf->base, 0);
2611 vmcs_write32(sf->limit, 0xffff);
2612 if (enable_unrestricted_guest) {
2613 ar = 0x93;
2614 if (seg == VCPU_SREG_CS)
2615 ar |= 0x08; /* code segment */
2616 } else
2617 ar = 0xf3;
2618
2619 vmcs_write32(sf->ar_bytes, ar);
2620 }
2621
2622 static int alloc_apic_access_page(struct kvm *kvm)
2623 {
2624 struct kvm_userspace_memory_region kvm_userspace_mem;
2625 int r = 0;
2626
2627 mutex_lock(&kvm->slots_lock);
2628 if (kvm->arch.apic_access_page)
2629 goto out;
2630 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2631 kvm_userspace_mem.flags = 0;
2632 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2633 kvm_userspace_mem.memory_size = PAGE_SIZE;
2634 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2635 if (r)
2636 goto out;
2637
2638 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2639 out:
2640 mutex_unlock(&kvm->slots_lock);
2641 return r;
2642 }
2643
2644 static int alloc_identity_pagetable(struct kvm *kvm)
2645 {
2646 struct kvm_userspace_memory_region kvm_userspace_mem;
2647 int r = 0;
2648
2649 mutex_lock(&kvm->slots_lock);
2650 if (kvm->arch.ept_identity_pagetable)
2651 goto out;
2652 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2653 kvm_userspace_mem.flags = 0;
2654 kvm_userspace_mem.guest_phys_addr =
2655 kvm->arch.ept_identity_map_addr;
2656 kvm_userspace_mem.memory_size = PAGE_SIZE;
2657 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2658 if (r)
2659 goto out;
2660
2661 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2662 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2663 out:
2664 mutex_unlock(&kvm->slots_lock);
2665 return r;
2666 }
2667
2668 static void allocate_vpid(struct vcpu_vmx *vmx)
2669 {
2670 int vpid;
2671
2672 vmx->vpid = 0;
2673 if (!enable_vpid)
2674 return;
2675 spin_lock(&vmx_vpid_lock);
2676 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2677 if (vpid < VMX_NR_VPIDS) {
2678 vmx->vpid = vpid;
2679 __set_bit(vpid, vmx_vpid_bitmap);
2680 }
2681 spin_unlock(&vmx_vpid_lock);
2682 }
2683
2684 static void free_vpid(struct vcpu_vmx *vmx)
2685 {
2686 if (!enable_vpid)
2687 return;
2688 spin_lock(&vmx_vpid_lock);
2689 if (vmx->vpid != 0)
2690 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2691 spin_unlock(&vmx_vpid_lock);
2692 }
2693
2694 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2695 {
2696 int f = sizeof(unsigned long);
2697
2698 if (!cpu_has_vmx_msr_bitmap())
2699 return;
2700
2701 /*
2702 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2703 * have the write-low and read-high bitmap offsets the wrong way round.
2704 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2705 */
2706 if (msr <= 0x1fff) {
2707 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2708 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2709 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2710 msr &= 0x1fff;
2711 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2712 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2713 }
2714 }
2715
2716 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2717 {
2718 if (!longmode_only)
2719 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2720 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2721 }
2722
2723 /*
2724 * Sets up the vmcs for emulated real mode.
2725 */
2726 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2727 {
2728 u32 host_sysenter_cs, msr_low, msr_high;
2729 u32 junk;
2730 u64 host_pat;
2731 unsigned long a;
2732 struct desc_ptr dt;
2733 int i;
2734 unsigned long kvm_vmx_return;
2735 u32 exec_control;
2736
2737 /* I/O */
2738 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2739 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2740
2741 if (cpu_has_vmx_msr_bitmap())
2742 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2743
2744 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2745
2746 /* Control */
2747 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2748 vmcs_config.pin_based_exec_ctrl);
2749
2750 exec_control = vmcs_config.cpu_based_exec_ctrl;
2751 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2752 exec_control &= ~CPU_BASED_TPR_SHADOW;
2753 #ifdef CONFIG_X86_64
2754 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2755 CPU_BASED_CR8_LOAD_EXITING;
2756 #endif
2757 }
2758 if (!enable_ept)
2759 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2760 CPU_BASED_CR3_LOAD_EXITING |
2761 CPU_BASED_INVLPG_EXITING;
2762 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2763
2764 if (cpu_has_secondary_exec_ctrls()) {
2765 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2766 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2767 exec_control &=
2768 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2769 if (vmx->vpid == 0)
2770 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2771 if (!enable_ept) {
2772 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2773 enable_unrestricted_guest = 0;
2774 }
2775 if (!enable_unrestricted_guest)
2776 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2777 if (!ple_gap)
2778 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2779 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2780 }
2781
2782 if (ple_gap) {
2783 vmcs_write32(PLE_GAP, ple_gap);
2784 vmcs_write32(PLE_WINDOW, ple_window);
2785 }
2786
2787 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2788 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2789 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2790
2791 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2792 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2793 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2794
2795 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2796 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2797 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2798 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2799 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2800 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2801 #ifdef CONFIG_X86_64
2802 rdmsrl(MSR_FS_BASE, a);
2803 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2804 rdmsrl(MSR_GS_BASE, a);
2805 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2806 #else
2807 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2808 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2809 #endif
2810
2811 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2812
2813 native_store_idt(&dt);
2814 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2815
2816 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2817 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2818 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2819 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2820 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2821 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2822 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2823
2824 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2825 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2826 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2827 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2828 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2829 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2830
2831 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2832 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2833 host_pat = msr_low | ((u64) msr_high << 32);
2834 vmcs_write64(HOST_IA32_PAT, host_pat);
2835 }
2836 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2837 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2838 host_pat = msr_low | ((u64) msr_high << 32);
2839 /* Write the default value follow host pat */
2840 vmcs_write64(GUEST_IA32_PAT, host_pat);
2841 /* Keep arch.pat sync with GUEST_IA32_PAT */
2842 vmx->vcpu.arch.pat = host_pat;
2843 }
2844
2845 for (i = 0; i < NR_VMX_MSR; ++i) {
2846 u32 index = vmx_msr_index[i];
2847 u32 data_low, data_high;
2848 int j = vmx->nmsrs;
2849
2850 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2851 continue;
2852 if (wrmsr_safe(index, data_low, data_high) < 0)
2853 continue;
2854 vmx->guest_msrs[j].index = i;
2855 vmx->guest_msrs[j].data = 0;
2856 vmx->guest_msrs[j].mask = -1ull;
2857 ++vmx->nmsrs;
2858 }
2859
2860 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2861
2862 /* 22.2.1, 20.8.1 */
2863 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2864
2865 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2866 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2867 if (enable_ept)
2868 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2869 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2870
2871 kvm_write_tsc(&vmx->vcpu, 0);
2872
2873 return 0;
2874 }
2875
2876 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2877 {
2878 struct vcpu_vmx *vmx = to_vmx(vcpu);
2879 u64 msr;
2880 int ret;
2881
2882 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2883
2884 vmx->rmode.vm86_active = 0;
2885
2886 vmx->soft_vnmi_blocked = 0;
2887
2888 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2889 kvm_set_cr8(&vmx->vcpu, 0);
2890 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2891 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2892 msr |= MSR_IA32_APICBASE_BSP;
2893 kvm_set_apic_base(&vmx->vcpu, msr);
2894
2895 ret = fx_init(&vmx->vcpu);
2896 if (ret != 0)
2897 goto out;
2898
2899 vmx_segment_cache_clear(vmx);
2900
2901 seg_setup(VCPU_SREG_CS);
2902 /*
2903 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2904 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2905 */
2906 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2907 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2908 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2909 } else {
2910 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2911 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2912 }
2913
2914 seg_setup(VCPU_SREG_DS);
2915 seg_setup(VCPU_SREG_ES);
2916 seg_setup(VCPU_SREG_FS);
2917 seg_setup(VCPU_SREG_GS);
2918 seg_setup(VCPU_SREG_SS);
2919
2920 vmcs_write16(GUEST_TR_SELECTOR, 0);
2921 vmcs_writel(GUEST_TR_BASE, 0);
2922 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2923 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2924
2925 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2926 vmcs_writel(GUEST_LDTR_BASE, 0);
2927 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2928 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2929
2930 vmcs_write32(GUEST_SYSENTER_CS, 0);
2931 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2932 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2933
2934 vmcs_writel(GUEST_RFLAGS, 0x02);
2935 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2936 kvm_rip_write(vcpu, 0xfff0);
2937 else
2938 kvm_rip_write(vcpu, 0);
2939 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2940
2941 vmcs_writel(GUEST_DR7, 0x400);
2942
2943 vmcs_writel(GUEST_GDTR_BASE, 0);
2944 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2945
2946 vmcs_writel(GUEST_IDTR_BASE, 0);
2947 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2948
2949 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2950 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2951 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2952
2953 /* Special registers */
2954 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2955
2956 setup_msrs(vmx);
2957
2958 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2959
2960 if (cpu_has_vmx_tpr_shadow()) {
2961 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2962 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2963 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2964 __pa(vmx->vcpu.arch.apic->regs));
2965 vmcs_write32(TPR_THRESHOLD, 0);
2966 }
2967
2968 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2969 vmcs_write64(APIC_ACCESS_ADDR,
2970 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2971
2972 if (vmx->vpid != 0)
2973 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2974
2975 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2976 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2977 vmx_set_cr4(&vmx->vcpu, 0);
2978 vmx_set_efer(&vmx->vcpu, 0);
2979 vmx_fpu_activate(&vmx->vcpu);
2980 update_exception_bitmap(&vmx->vcpu);
2981
2982 vpid_sync_context(vmx);
2983
2984 ret = 0;
2985
2986 /* HACK: Don't enable emulation on guest boot/reset */
2987 vmx->emulation_required = 0;
2988
2989 out:
2990 return ret;
2991 }
2992
2993 static void enable_irq_window(struct kvm_vcpu *vcpu)
2994 {
2995 u32 cpu_based_vm_exec_control;
2996
2997 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2998 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2999 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3000 }
3001
3002 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3003 {
3004 u32 cpu_based_vm_exec_control;
3005
3006 if (!cpu_has_virtual_nmis()) {
3007 enable_irq_window(vcpu);
3008 return;
3009 }
3010
3011 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3012 enable_irq_window(vcpu);
3013 return;
3014 }
3015 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3016 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3017 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3018 }
3019
3020 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3021 {
3022 struct vcpu_vmx *vmx = to_vmx(vcpu);
3023 uint32_t intr;
3024 int irq = vcpu->arch.interrupt.nr;
3025
3026 trace_kvm_inj_virq(irq);
3027
3028 ++vcpu->stat.irq_injections;
3029 if (vmx->rmode.vm86_active) {
3030 int inc_eip = 0;
3031 if (vcpu->arch.interrupt.soft)
3032 inc_eip = vcpu->arch.event_exit_inst_len;
3033 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3034 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3035 return;
3036 }
3037 intr = irq | INTR_INFO_VALID_MASK;
3038 if (vcpu->arch.interrupt.soft) {
3039 intr |= INTR_TYPE_SOFT_INTR;
3040 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3041 vmx->vcpu.arch.event_exit_inst_len);
3042 } else
3043 intr |= INTR_TYPE_EXT_INTR;
3044 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3045 vmx_clear_hlt(vcpu);
3046 }
3047
3048 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3049 {
3050 struct vcpu_vmx *vmx = to_vmx(vcpu);
3051
3052 if (!cpu_has_virtual_nmis()) {
3053 /*
3054 * Tracking the NMI-blocked state in software is built upon
3055 * finding the next open IRQ window. This, in turn, depends on
3056 * well-behaving guests: They have to keep IRQs disabled at
3057 * least as long as the NMI handler runs. Otherwise we may
3058 * cause NMI nesting, maybe breaking the guest. But as this is
3059 * highly unlikely, we can live with the residual risk.
3060 */
3061 vmx->soft_vnmi_blocked = 1;
3062 vmx->vnmi_blocked_time = 0;
3063 }
3064
3065 ++vcpu->stat.nmi_injections;
3066 vmx->nmi_known_unmasked = false;
3067 if (vmx->rmode.vm86_active) {
3068 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3069 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3070 return;
3071 }
3072 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3073 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3074 vmx_clear_hlt(vcpu);
3075 }
3076
3077 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3078 {
3079 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3080 return 0;
3081
3082 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3083 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3084 | GUEST_INTR_STATE_NMI));
3085 }
3086
3087 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3088 {
3089 if (!cpu_has_virtual_nmis())
3090 return to_vmx(vcpu)->soft_vnmi_blocked;
3091 if (to_vmx(vcpu)->nmi_known_unmasked)
3092 return false;
3093 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3094 }
3095
3096 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3097 {
3098 struct vcpu_vmx *vmx = to_vmx(vcpu);
3099
3100 if (!cpu_has_virtual_nmis()) {
3101 if (vmx->soft_vnmi_blocked != masked) {
3102 vmx->soft_vnmi_blocked = masked;
3103 vmx->vnmi_blocked_time = 0;
3104 }
3105 } else {
3106 vmx->nmi_known_unmasked = !masked;
3107 if (masked)
3108 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3109 GUEST_INTR_STATE_NMI);
3110 else
3111 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3112 GUEST_INTR_STATE_NMI);
3113 }
3114 }
3115
3116 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3117 {
3118 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3119 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3120 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3121 }
3122
3123 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3124 {
3125 int ret;
3126 struct kvm_userspace_memory_region tss_mem = {
3127 .slot = TSS_PRIVATE_MEMSLOT,
3128 .guest_phys_addr = addr,
3129 .memory_size = PAGE_SIZE * 3,
3130 .flags = 0,
3131 };
3132
3133 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3134 if (ret)
3135 return ret;
3136 kvm->arch.tss_addr = addr;
3137 if (!init_rmode_tss(kvm))
3138 return -ENOMEM;
3139
3140 return 0;
3141 }
3142
3143 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3144 int vec, u32 err_code)
3145 {
3146 /*
3147 * Instruction with address size override prefix opcode 0x67
3148 * Cause the #SS fault with 0 error code in VM86 mode.
3149 */
3150 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3151 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3152 return 1;
3153 /*
3154 * Forward all other exceptions that are valid in real mode.
3155 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3156 * the required debugging infrastructure rework.
3157 */
3158 switch (vec) {
3159 case DB_VECTOR:
3160 if (vcpu->guest_debug &
3161 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3162 return 0;
3163 kvm_queue_exception(vcpu, vec);
3164 return 1;
3165 case BP_VECTOR:
3166 /*
3167 * Update instruction length as we may reinject the exception
3168 * from user space while in guest debugging mode.
3169 */
3170 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3171 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3172 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3173 return 0;
3174 /* fall through */
3175 case DE_VECTOR:
3176 case OF_VECTOR:
3177 case BR_VECTOR:
3178 case UD_VECTOR:
3179 case DF_VECTOR:
3180 case SS_VECTOR:
3181 case GP_VECTOR:
3182 case MF_VECTOR:
3183 kvm_queue_exception(vcpu, vec);
3184 return 1;
3185 }
3186 return 0;
3187 }
3188
3189 /*
3190 * Trigger machine check on the host. We assume all the MSRs are already set up
3191 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3192 * We pass a fake environment to the machine check handler because we want
3193 * the guest to be always treated like user space, no matter what context
3194 * it used internally.
3195 */
3196 static void kvm_machine_check(void)
3197 {
3198 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3199 struct pt_regs regs = {
3200 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3201 .flags = X86_EFLAGS_IF,
3202 };
3203
3204 do_machine_check(&regs, 0);
3205 #endif
3206 }
3207
3208 static int handle_machine_check(struct kvm_vcpu *vcpu)
3209 {
3210 /* already handled by vcpu_run */
3211 return 1;
3212 }
3213
3214 static int handle_exception(struct kvm_vcpu *vcpu)
3215 {
3216 struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 struct kvm_run *kvm_run = vcpu->run;
3218 u32 intr_info, ex_no, error_code;
3219 unsigned long cr2, rip, dr6;
3220 u32 vect_info;
3221 enum emulation_result er;
3222
3223 vect_info = vmx->idt_vectoring_info;
3224 intr_info = vmx->exit_intr_info;
3225
3226 if (is_machine_check(intr_info))
3227 return handle_machine_check(vcpu);
3228
3229 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3230 !is_page_fault(intr_info)) {
3231 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3232 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3233 vcpu->run->internal.ndata = 2;
3234 vcpu->run->internal.data[0] = vect_info;
3235 vcpu->run->internal.data[1] = intr_info;
3236 return 0;
3237 }
3238
3239 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3240 return 1; /* already handled by vmx_vcpu_run() */
3241
3242 if (is_no_device(intr_info)) {
3243 vmx_fpu_activate(vcpu);
3244 return 1;
3245 }
3246
3247 if (is_invalid_opcode(intr_info)) {
3248 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3249 if (er != EMULATE_DONE)
3250 kvm_queue_exception(vcpu, UD_VECTOR);
3251 return 1;
3252 }
3253
3254 error_code = 0;
3255 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3256 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3257 if (is_page_fault(intr_info)) {
3258 /* EPT won't cause page fault directly */
3259 if (enable_ept)
3260 BUG();
3261 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3262 trace_kvm_page_fault(cr2, error_code);
3263
3264 if (kvm_event_needs_reinjection(vcpu))
3265 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3266 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3267 }
3268
3269 if (vmx->rmode.vm86_active &&
3270 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3271 error_code)) {
3272 if (vcpu->arch.halt_request) {
3273 vcpu->arch.halt_request = 0;
3274 return kvm_emulate_halt(vcpu);
3275 }
3276 return 1;
3277 }
3278
3279 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3280 switch (ex_no) {
3281 case DB_VECTOR:
3282 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3283 if (!(vcpu->guest_debug &
3284 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3285 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3286 kvm_queue_exception(vcpu, DB_VECTOR);
3287 return 1;
3288 }
3289 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3290 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3291 /* fall through */
3292 case BP_VECTOR:
3293 /*
3294 * Update instruction length as we may reinject #BP from
3295 * user space while in guest debugging mode. Reading it for
3296 * #DB as well causes no harm, it is not used in that case.
3297 */
3298 vmx->vcpu.arch.event_exit_inst_len =
3299 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3300 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3301 rip = kvm_rip_read(vcpu);
3302 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3303 kvm_run->debug.arch.exception = ex_no;
3304 break;
3305 default:
3306 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3307 kvm_run->ex.exception = ex_no;
3308 kvm_run->ex.error_code = error_code;
3309 break;
3310 }
3311 return 0;
3312 }
3313
3314 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3315 {
3316 ++vcpu->stat.irq_exits;
3317 return 1;
3318 }
3319
3320 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3321 {
3322 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3323 return 0;
3324 }
3325
3326 static int handle_io(struct kvm_vcpu *vcpu)
3327 {
3328 unsigned long exit_qualification;
3329 int size, in, string;
3330 unsigned port;
3331
3332 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3333 string = (exit_qualification & 16) != 0;
3334 in = (exit_qualification & 8) != 0;
3335
3336 ++vcpu->stat.io_exits;
3337
3338 if (string || in)
3339 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3340
3341 port = exit_qualification >> 16;
3342 size = (exit_qualification & 7) + 1;
3343 skip_emulated_instruction(vcpu);
3344
3345 return kvm_fast_pio_out(vcpu, size, port);
3346 }
3347
3348 static void
3349 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3350 {
3351 /*
3352 * Patch in the VMCALL instruction:
3353 */
3354 hypercall[0] = 0x0f;
3355 hypercall[1] = 0x01;
3356 hypercall[2] = 0xc1;
3357 }
3358
3359 static int handle_cr(struct kvm_vcpu *vcpu)
3360 {
3361 unsigned long exit_qualification, val;
3362 int cr;
3363 int reg;
3364 int err;
3365
3366 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3367 cr = exit_qualification & 15;
3368 reg = (exit_qualification >> 8) & 15;
3369 switch ((exit_qualification >> 4) & 3) {
3370 case 0: /* mov to cr */
3371 val = kvm_register_read(vcpu, reg);
3372 trace_kvm_cr_write(cr, val);
3373 switch (cr) {
3374 case 0:
3375 err = kvm_set_cr0(vcpu, val);
3376 kvm_complete_insn_gp(vcpu, err);
3377 return 1;
3378 case 3:
3379 err = kvm_set_cr3(vcpu, val);
3380 kvm_complete_insn_gp(vcpu, err);
3381 return 1;
3382 case 4:
3383 err = kvm_set_cr4(vcpu, val);
3384 kvm_complete_insn_gp(vcpu, err);
3385 return 1;
3386 case 8: {
3387 u8 cr8_prev = kvm_get_cr8(vcpu);
3388 u8 cr8 = kvm_register_read(vcpu, reg);
3389 err = kvm_set_cr8(vcpu, cr8);
3390 kvm_complete_insn_gp(vcpu, err);
3391 if (irqchip_in_kernel(vcpu->kvm))
3392 return 1;
3393 if (cr8_prev <= cr8)
3394 return 1;
3395 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3396 return 0;
3397 }
3398 };
3399 break;
3400 case 2: /* clts */
3401 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3402 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3403 skip_emulated_instruction(vcpu);
3404 vmx_fpu_activate(vcpu);
3405 return 1;
3406 case 1: /*mov from cr*/
3407 switch (cr) {
3408 case 3:
3409 val = kvm_read_cr3(vcpu);
3410 kvm_register_write(vcpu, reg, val);
3411 trace_kvm_cr_read(cr, val);
3412 skip_emulated_instruction(vcpu);
3413 return 1;
3414 case 8:
3415 val = kvm_get_cr8(vcpu);
3416 kvm_register_write(vcpu, reg, val);
3417 trace_kvm_cr_read(cr, val);
3418 skip_emulated_instruction(vcpu);
3419 return 1;
3420 }
3421 break;
3422 case 3: /* lmsw */
3423 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3424 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3425 kvm_lmsw(vcpu, val);
3426
3427 skip_emulated_instruction(vcpu);
3428 return 1;
3429 default:
3430 break;
3431 }
3432 vcpu->run->exit_reason = 0;
3433 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3434 (int)(exit_qualification >> 4) & 3, cr);
3435 return 0;
3436 }
3437
3438 static int handle_dr(struct kvm_vcpu *vcpu)
3439 {
3440 unsigned long exit_qualification;
3441 int dr, reg;
3442
3443 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3444 if (!kvm_require_cpl(vcpu, 0))
3445 return 1;
3446 dr = vmcs_readl(GUEST_DR7);
3447 if (dr & DR7_GD) {
3448 /*
3449 * As the vm-exit takes precedence over the debug trap, we
3450 * need to emulate the latter, either for the host or the
3451 * guest debugging itself.
3452 */
3453 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3454 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3455 vcpu->run->debug.arch.dr7 = dr;
3456 vcpu->run->debug.arch.pc =
3457 vmcs_readl(GUEST_CS_BASE) +
3458 vmcs_readl(GUEST_RIP);
3459 vcpu->run->debug.arch.exception = DB_VECTOR;
3460 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3461 return 0;
3462 } else {
3463 vcpu->arch.dr7 &= ~DR7_GD;
3464 vcpu->arch.dr6 |= DR6_BD;
3465 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3466 kvm_queue_exception(vcpu, DB_VECTOR);
3467 return 1;
3468 }
3469 }
3470
3471 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3472 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3473 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3474 if (exit_qualification & TYPE_MOV_FROM_DR) {
3475 unsigned long val;
3476 if (!kvm_get_dr(vcpu, dr, &val))
3477 kvm_register_write(vcpu, reg, val);
3478 } else
3479 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3480 skip_emulated_instruction(vcpu);
3481 return 1;
3482 }
3483
3484 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3485 {
3486 vmcs_writel(GUEST_DR7, val);
3487 }
3488
3489 static int handle_cpuid(struct kvm_vcpu *vcpu)
3490 {
3491 kvm_emulate_cpuid(vcpu);
3492 return 1;
3493 }
3494
3495 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3496 {
3497 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3498 u64 data;
3499
3500 if (vmx_get_msr(vcpu, ecx, &data)) {
3501 trace_kvm_msr_read_ex(ecx);
3502 kvm_inject_gp(vcpu, 0);
3503 return 1;
3504 }
3505
3506 trace_kvm_msr_read(ecx, data);
3507
3508 /* FIXME: handling of bits 32:63 of rax, rdx */
3509 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3510 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3511 skip_emulated_instruction(vcpu);
3512 return 1;
3513 }
3514
3515 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3516 {
3517 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3518 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3519 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3520
3521 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3522 trace_kvm_msr_write_ex(ecx, data);
3523 kvm_inject_gp(vcpu, 0);
3524 return 1;
3525 }
3526
3527 trace_kvm_msr_write(ecx, data);
3528 skip_emulated_instruction(vcpu);
3529 return 1;
3530 }
3531
3532 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3533 {
3534 kvm_make_request(KVM_REQ_EVENT, vcpu);
3535 return 1;
3536 }
3537
3538 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3539 {
3540 u32 cpu_based_vm_exec_control;
3541
3542 /* clear pending irq */
3543 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3544 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3545 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3546
3547 kvm_make_request(KVM_REQ_EVENT, vcpu);
3548
3549 ++vcpu->stat.irq_window_exits;
3550
3551 /*
3552 * If the user space waits to inject interrupts, exit as soon as
3553 * possible
3554 */
3555 if (!irqchip_in_kernel(vcpu->kvm) &&
3556 vcpu->run->request_interrupt_window &&
3557 !kvm_cpu_has_interrupt(vcpu)) {
3558 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3559 return 0;
3560 }
3561 return 1;
3562 }
3563
3564 static int handle_halt(struct kvm_vcpu *vcpu)
3565 {
3566 skip_emulated_instruction(vcpu);
3567 return kvm_emulate_halt(vcpu);
3568 }
3569
3570 static int handle_vmcall(struct kvm_vcpu *vcpu)
3571 {
3572 skip_emulated_instruction(vcpu);
3573 kvm_emulate_hypercall(vcpu);
3574 return 1;
3575 }
3576
3577 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3578 {
3579 kvm_queue_exception(vcpu, UD_VECTOR);
3580 return 1;
3581 }
3582
3583 static int handle_invd(struct kvm_vcpu *vcpu)
3584 {
3585 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3586 }
3587
3588 static int handle_invlpg(struct kvm_vcpu *vcpu)
3589 {
3590 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3591
3592 kvm_mmu_invlpg(vcpu, exit_qualification);
3593 skip_emulated_instruction(vcpu);
3594 return 1;
3595 }
3596
3597 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3598 {
3599 skip_emulated_instruction(vcpu);
3600 kvm_emulate_wbinvd(vcpu);
3601 return 1;
3602 }
3603
3604 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3605 {
3606 u64 new_bv = kvm_read_edx_eax(vcpu);
3607 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3608
3609 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3610 skip_emulated_instruction(vcpu);
3611 return 1;
3612 }
3613
3614 static int handle_apic_access(struct kvm_vcpu *vcpu)
3615 {
3616 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3617 }
3618
3619 static int handle_task_switch(struct kvm_vcpu *vcpu)
3620 {
3621 struct vcpu_vmx *vmx = to_vmx(vcpu);
3622 unsigned long exit_qualification;
3623 bool has_error_code = false;
3624 u32 error_code = 0;
3625 u16 tss_selector;
3626 int reason, type, idt_v;
3627
3628 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3629 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3630
3631 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3632
3633 reason = (u32)exit_qualification >> 30;
3634 if (reason == TASK_SWITCH_GATE && idt_v) {
3635 switch (type) {
3636 case INTR_TYPE_NMI_INTR:
3637 vcpu->arch.nmi_injected = false;
3638 vmx_set_nmi_mask(vcpu, true);
3639 break;
3640 case INTR_TYPE_EXT_INTR:
3641 case INTR_TYPE_SOFT_INTR:
3642 kvm_clear_interrupt_queue(vcpu);
3643 break;
3644 case INTR_TYPE_HARD_EXCEPTION:
3645 if (vmx->idt_vectoring_info &
3646 VECTORING_INFO_DELIVER_CODE_MASK) {
3647 has_error_code = true;
3648 error_code =
3649 vmcs_read32(IDT_VECTORING_ERROR_CODE);
3650 }
3651 /* fall through */
3652 case INTR_TYPE_SOFT_EXCEPTION:
3653 kvm_clear_exception_queue(vcpu);
3654 break;
3655 default:
3656 break;
3657 }
3658 }
3659 tss_selector = exit_qualification;
3660
3661 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3662 type != INTR_TYPE_EXT_INTR &&
3663 type != INTR_TYPE_NMI_INTR))
3664 skip_emulated_instruction(vcpu);
3665
3666 if (kvm_task_switch(vcpu, tss_selector, reason,
3667 has_error_code, error_code) == EMULATE_FAIL) {
3668 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3669 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3670 vcpu->run->internal.ndata = 0;
3671 return 0;
3672 }
3673
3674 /* clear all local breakpoint enable flags */
3675 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3676
3677 /*
3678 * TODO: What about debug traps on tss switch?
3679 * Are we supposed to inject them and update dr6?
3680 */
3681
3682 return 1;
3683 }
3684
3685 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3686 {
3687 unsigned long exit_qualification;
3688 gpa_t gpa;
3689 int gla_validity;
3690
3691 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3692
3693 if (exit_qualification & (1 << 6)) {
3694 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3695 return -EINVAL;
3696 }
3697
3698 gla_validity = (exit_qualification >> 7) & 0x3;
3699 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3700 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3701 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3702 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3703 vmcs_readl(GUEST_LINEAR_ADDRESS));
3704 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3705 (long unsigned int)exit_qualification);
3706 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3707 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3708 return 0;
3709 }
3710
3711 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3712 trace_kvm_page_fault(gpa, exit_qualification);
3713 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3714 }
3715
3716 static u64 ept_rsvd_mask(u64 spte, int level)
3717 {
3718 int i;
3719 u64 mask = 0;
3720
3721 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3722 mask |= (1ULL << i);
3723
3724 if (level > 2)
3725 /* bits 7:3 reserved */
3726 mask |= 0xf8;
3727 else if (level == 2) {
3728 if (spte & (1ULL << 7))
3729 /* 2MB ref, bits 20:12 reserved */
3730 mask |= 0x1ff000;
3731 else
3732 /* bits 6:3 reserved */
3733 mask |= 0x78;
3734 }
3735
3736 return mask;
3737 }
3738
3739 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3740 int level)
3741 {
3742 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3743
3744 /* 010b (write-only) */
3745 WARN_ON((spte & 0x7) == 0x2);
3746
3747 /* 110b (write/execute) */
3748 WARN_ON((spte & 0x7) == 0x6);
3749
3750 /* 100b (execute-only) and value not supported by logical processor */
3751 if (!cpu_has_vmx_ept_execute_only())
3752 WARN_ON((spte & 0x7) == 0x4);
3753
3754 /* not 000b */
3755 if ((spte & 0x7)) {
3756 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3757
3758 if (rsvd_bits != 0) {
3759 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3760 __func__, rsvd_bits);
3761 WARN_ON(1);
3762 }
3763
3764 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3765 u64 ept_mem_type = (spte & 0x38) >> 3;
3766
3767 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3768 ept_mem_type == 7) {
3769 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3770 __func__, ept_mem_type);
3771 WARN_ON(1);
3772 }
3773 }
3774 }
3775 }
3776
3777 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3778 {
3779 u64 sptes[4];
3780 int nr_sptes, i;
3781 gpa_t gpa;
3782
3783 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3784
3785 printk(KERN_ERR "EPT: Misconfiguration.\n");
3786 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3787
3788 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3789
3790 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3791 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3792
3793 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3794 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3795
3796 return 0;
3797 }
3798
3799 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3800 {
3801 u32 cpu_based_vm_exec_control;
3802
3803 /* clear pending NMI */
3804 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3805 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3806 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3807 ++vcpu->stat.nmi_window_exits;
3808 kvm_make_request(KVM_REQ_EVENT, vcpu);
3809
3810 return 1;
3811 }
3812
3813 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3814 {
3815 struct vcpu_vmx *vmx = to_vmx(vcpu);
3816 enum emulation_result err = EMULATE_DONE;
3817 int ret = 1;
3818 u32 cpu_exec_ctrl;
3819 bool intr_window_requested;
3820
3821 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3822 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3823
3824 while (!guest_state_valid(vcpu)) {
3825 if (intr_window_requested
3826 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3827 return handle_interrupt_window(&vmx->vcpu);
3828
3829 err = emulate_instruction(vcpu, 0);
3830
3831 if (err == EMULATE_DO_MMIO) {
3832 ret = 0;
3833 goto out;
3834 }
3835
3836 if (err != EMULATE_DONE)
3837 return 0;
3838
3839 if (signal_pending(current))
3840 goto out;
3841 if (need_resched())
3842 schedule();
3843 }
3844
3845 vmx->emulation_required = 0;
3846 out:
3847 return ret;
3848 }
3849
3850 /*
3851 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3852 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3853 */
3854 static int handle_pause(struct kvm_vcpu *vcpu)
3855 {
3856 skip_emulated_instruction(vcpu);
3857 kvm_vcpu_on_spin(vcpu);
3858
3859 return 1;
3860 }
3861
3862 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3863 {
3864 kvm_queue_exception(vcpu, UD_VECTOR);
3865 return 1;
3866 }
3867
3868 /*
3869 * The exit handlers return 1 if the exit was handled fully and guest execution
3870 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3871 * to be done to userspace and return 0.
3872 */
3873 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3874 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3875 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3876 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3877 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3878 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3879 [EXIT_REASON_CR_ACCESS] = handle_cr,
3880 [EXIT_REASON_DR_ACCESS] = handle_dr,
3881 [EXIT_REASON_CPUID] = handle_cpuid,
3882 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3883 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3884 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3885 [EXIT_REASON_HLT] = handle_halt,
3886 [EXIT_REASON_INVD] = handle_invd,
3887 [EXIT_REASON_INVLPG] = handle_invlpg,
3888 [EXIT_REASON_VMCALL] = handle_vmcall,
3889 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3890 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3891 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3892 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3893 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3894 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3895 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3896 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3897 [EXIT_REASON_VMON] = handle_vmx_insn,
3898 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3899 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3900 [EXIT_REASON_WBINVD] = handle_wbinvd,
3901 [EXIT_REASON_XSETBV] = handle_xsetbv,
3902 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3903 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3904 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3905 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3906 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3907 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3908 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3909 };
3910
3911 static const int kvm_vmx_max_exit_handlers =
3912 ARRAY_SIZE(kvm_vmx_exit_handlers);
3913
3914 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3915 {
3916 *info1 = vmcs_readl(EXIT_QUALIFICATION);
3917 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3918 }
3919
3920 /*
3921 * The guest has exited. See if we can fix it or if we need userspace
3922 * assistance.
3923 */
3924 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3925 {
3926 struct vcpu_vmx *vmx = to_vmx(vcpu);
3927 u32 exit_reason = vmx->exit_reason;
3928 u32 vectoring_info = vmx->idt_vectoring_info;
3929
3930 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3931
3932 /* If guest state is invalid, start emulating */
3933 if (vmx->emulation_required && emulate_invalid_guest_state)
3934 return handle_invalid_guest_state(vcpu);
3935
3936 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3937 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3938 vcpu->run->fail_entry.hardware_entry_failure_reason
3939 = exit_reason;
3940 return 0;
3941 }
3942
3943 if (unlikely(vmx->fail)) {
3944 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3945 vcpu->run->fail_entry.hardware_entry_failure_reason
3946 = vmcs_read32(VM_INSTRUCTION_ERROR);
3947 return 0;
3948 }
3949
3950 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3951 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3952 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3953 exit_reason != EXIT_REASON_TASK_SWITCH))
3954 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3955 "(0x%x) and exit reason is 0x%x\n",
3956 __func__, vectoring_info, exit_reason);
3957
3958 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3959 if (vmx_interrupt_allowed(vcpu)) {
3960 vmx->soft_vnmi_blocked = 0;
3961 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3962 vcpu->arch.nmi_pending) {
3963 /*
3964 * This CPU don't support us in finding the end of an
3965 * NMI-blocked window if the guest runs with IRQs
3966 * disabled. So we pull the trigger after 1 s of
3967 * futile waiting, but inform the user about this.
3968 */
3969 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3970 "state on VCPU %d after 1 s timeout\n",
3971 __func__, vcpu->vcpu_id);
3972 vmx->soft_vnmi_blocked = 0;
3973 }
3974 }
3975
3976 if (exit_reason < kvm_vmx_max_exit_handlers
3977 && kvm_vmx_exit_handlers[exit_reason])
3978 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3979 else {
3980 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3981 vcpu->run->hw.hardware_exit_reason = exit_reason;
3982 }
3983 return 0;
3984 }
3985
3986 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3987 {
3988 if (irr == -1 || tpr < irr) {
3989 vmcs_write32(TPR_THRESHOLD, 0);
3990 return;
3991 }
3992
3993 vmcs_write32(TPR_THRESHOLD, irr);
3994 }
3995
3996 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3997 {
3998 u32 exit_intr_info;
3999
4000 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
4001 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
4002 return;
4003
4004 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4005 exit_intr_info = vmx->exit_intr_info;
4006
4007 /* Handle machine checks before interrupts are enabled */
4008 if (is_machine_check(exit_intr_info))
4009 kvm_machine_check();
4010
4011 /* We need to handle NMIs before interrupts are enabled */
4012 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
4013 (exit_intr_info & INTR_INFO_VALID_MASK)) {
4014 kvm_before_handle_nmi(&vmx->vcpu);
4015 asm("int $2");
4016 kvm_after_handle_nmi(&vmx->vcpu);
4017 }
4018 }
4019
4020 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
4021 {
4022 u32 exit_intr_info;
4023 bool unblock_nmi;
4024 u8 vector;
4025 bool idtv_info_valid;
4026
4027 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4028
4029 if (cpu_has_virtual_nmis()) {
4030 if (vmx->nmi_known_unmasked)
4031 return;
4032 /*
4033 * Can't use vmx->exit_intr_info since we're not sure what
4034 * the exit reason is.
4035 */
4036 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4037 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
4038 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
4039 /*
4040 * SDM 3: 27.7.1.2 (September 2008)
4041 * Re-set bit "block by NMI" before VM entry if vmexit caused by
4042 * a guest IRET fault.
4043 * SDM 3: 23.2.2 (September 2008)
4044 * Bit 12 is undefined in any of the following cases:
4045 * If the VM exit sets the valid bit in the IDT-vectoring
4046 * information field.
4047 * If the VM exit is due to a double fault.
4048 */
4049 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
4050 vector != DF_VECTOR && !idtv_info_valid)
4051 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4052 GUEST_INTR_STATE_NMI);
4053 else
4054 vmx->nmi_known_unmasked =
4055 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
4056 & GUEST_INTR_STATE_NMI);
4057 } else if (unlikely(vmx->soft_vnmi_blocked))
4058 vmx->vnmi_blocked_time +=
4059 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
4060 }
4061
4062 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
4063 u32 idt_vectoring_info,
4064 int instr_len_field,
4065 int error_code_field)
4066 {
4067 u8 vector;
4068 int type;
4069 bool idtv_info_valid;
4070
4071 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4072
4073 vmx->vcpu.arch.nmi_injected = false;
4074 kvm_clear_exception_queue(&vmx->vcpu);
4075 kvm_clear_interrupt_queue(&vmx->vcpu);
4076
4077 if (!idtv_info_valid)
4078 return;
4079
4080 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
4081
4082 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
4083 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
4084
4085 switch (type) {
4086 case INTR_TYPE_NMI_INTR:
4087 vmx->vcpu.arch.nmi_injected = true;
4088 /*
4089 * SDM 3: 27.7.1.2 (September 2008)
4090 * Clear bit "block by NMI" before VM entry if a NMI
4091 * delivery faulted.
4092 */
4093 vmx_set_nmi_mask(&vmx->vcpu, false);
4094 break;
4095 case INTR_TYPE_SOFT_EXCEPTION:
4096 vmx->vcpu.arch.event_exit_inst_len =
4097 vmcs_read32(instr_len_field);
4098 /* fall through */
4099 case INTR_TYPE_HARD_EXCEPTION:
4100 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4101 u32 err = vmcs_read32(error_code_field);
4102 kvm_queue_exception_e(&vmx->vcpu, vector, err);
4103 } else
4104 kvm_queue_exception(&vmx->vcpu, vector);
4105 break;
4106 case INTR_TYPE_SOFT_INTR:
4107 vmx->vcpu.arch.event_exit_inst_len =
4108 vmcs_read32(instr_len_field);
4109 /* fall through */
4110 case INTR_TYPE_EXT_INTR:
4111 kvm_queue_interrupt(&vmx->vcpu, vector,
4112 type == INTR_TYPE_SOFT_INTR);
4113 break;
4114 default:
4115 break;
4116 }
4117 }
4118
4119 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4120 {
4121 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4122 VM_EXIT_INSTRUCTION_LEN,
4123 IDT_VECTORING_ERROR_CODE);
4124 }
4125
4126 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4127 {
4128 __vmx_complete_interrupts(to_vmx(vcpu),
4129 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4130 VM_ENTRY_INSTRUCTION_LEN,
4131 VM_ENTRY_EXCEPTION_ERROR_CODE);
4132
4133 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4134 }
4135
4136 #ifdef CONFIG_X86_64
4137 #define R "r"
4138 #define Q "q"
4139 #else
4140 #define R "e"
4141 #define Q "l"
4142 #endif
4143
4144 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4145 {
4146 struct vcpu_vmx *vmx = to_vmx(vcpu);
4147
4148 /* Record the guest's net vcpu time for enforced NMI injections. */
4149 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4150 vmx->entry_time = ktime_get();
4151
4152 /* Don't enter VMX if guest state is invalid, let the exit handler
4153 start emulation until we arrive back to a valid state */
4154 if (vmx->emulation_required && emulate_invalid_guest_state)
4155 return;
4156
4157 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4158 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4159 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4160 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4161
4162 /* When single-stepping over STI and MOV SS, we must clear the
4163 * corresponding interruptibility bits in the guest state. Otherwise
4164 * vmentry fails as it then expects bit 14 (BS) in pending debug
4165 * exceptions being set, but that's not correct for the guest debugging
4166 * case. */
4167 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4168 vmx_set_interrupt_shadow(vcpu, 0);
4169
4170 asm(
4171 /* Store host registers */
4172 "push %%"R"dx; push %%"R"bp;"
4173 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4174 "push %%"R"cx \n\t"
4175 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4176 "je 1f \n\t"
4177 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4178 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4179 "1: \n\t"
4180 /* Reload cr2 if changed */
4181 "mov %c[cr2](%0), %%"R"ax \n\t"
4182 "mov %%cr2, %%"R"dx \n\t"
4183 "cmp %%"R"ax, %%"R"dx \n\t"
4184 "je 2f \n\t"
4185 "mov %%"R"ax, %%cr2 \n\t"
4186 "2: \n\t"
4187 /* Check if vmlaunch of vmresume is needed */
4188 "cmpl $0, %c[launched](%0) \n\t"
4189 /* Load guest registers. Don't clobber flags. */
4190 "mov %c[rax](%0), %%"R"ax \n\t"
4191 "mov %c[rbx](%0), %%"R"bx \n\t"
4192 "mov %c[rdx](%0), %%"R"dx \n\t"
4193 "mov %c[rsi](%0), %%"R"si \n\t"
4194 "mov %c[rdi](%0), %%"R"di \n\t"
4195 "mov %c[rbp](%0), %%"R"bp \n\t"
4196 #ifdef CONFIG_X86_64
4197 "mov %c[r8](%0), %%r8 \n\t"
4198 "mov %c[r9](%0), %%r9 \n\t"
4199 "mov %c[r10](%0), %%r10 \n\t"
4200 "mov %c[r11](%0), %%r11 \n\t"
4201 "mov %c[r12](%0), %%r12 \n\t"
4202 "mov %c[r13](%0), %%r13 \n\t"
4203 "mov %c[r14](%0), %%r14 \n\t"
4204 "mov %c[r15](%0), %%r15 \n\t"
4205 #endif
4206 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4207
4208 /* Enter guest mode */
4209 "jne .Llaunched \n\t"
4210 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4211 "jmp .Lkvm_vmx_return \n\t"
4212 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4213 ".Lkvm_vmx_return: "
4214 /* Save guest registers, load host registers, keep flags */
4215 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4216 "pop %0 \n\t"
4217 "mov %%"R"ax, %c[rax](%0) \n\t"
4218 "mov %%"R"bx, %c[rbx](%0) \n\t"
4219 "pop"Q" %c[rcx](%0) \n\t"
4220 "mov %%"R"dx, %c[rdx](%0) \n\t"
4221 "mov %%"R"si, %c[rsi](%0) \n\t"
4222 "mov %%"R"di, %c[rdi](%0) \n\t"
4223 "mov %%"R"bp, %c[rbp](%0) \n\t"
4224 #ifdef CONFIG_X86_64
4225 "mov %%r8, %c[r8](%0) \n\t"
4226 "mov %%r9, %c[r9](%0) \n\t"
4227 "mov %%r10, %c[r10](%0) \n\t"
4228 "mov %%r11, %c[r11](%0) \n\t"
4229 "mov %%r12, %c[r12](%0) \n\t"
4230 "mov %%r13, %c[r13](%0) \n\t"
4231 "mov %%r14, %c[r14](%0) \n\t"
4232 "mov %%r15, %c[r15](%0) \n\t"
4233 #endif
4234 "mov %%cr2, %%"R"ax \n\t"
4235 "mov %%"R"ax, %c[cr2](%0) \n\t"
4236
4237 "pop %%"R"bp; pop %%"R"dx \n\t"
4238 "setbe %c[fail](%0) \n\t"
4239 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4240 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4241 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4242 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4243 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4244 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4245 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4246 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4247 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4248 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4249 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4250 #ifdef CONFIG_X86_64
4251 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4252 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4253 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4254 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4255 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4256 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4257 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4258 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4259 #endif
4260 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4261 [wordsize]"i"(sizeof(ulong))
4262 : "cc", "memory"
4263 , R"ax", R"bx", R"di", R"si"
4264 #ifdef CONFIG_X86_64
4265 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4266 #endif
4267 );
4268
4269 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4270 | (1 << VCPU_EXREG_RFLAGS)
4271 | (1 << VCPU_EXREG_CPL)
4272 | (1 << VCPU_EXREG_PDPTR)
4273 | (1 << VCPU_EXREG_SEGMENTS)
4274 | (1 << VCPU_EXREG_CR3));
4275 vcpu->arch.regs_dirty = 0;
4276
4277 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4278
4279 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4280 vmx->launched = 1;
4281
4282 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4283
4284 vmx_complete_atomic_exit(vmx);
4285 vmx_recover_nmi_blocking(vmx);
4286 vmx_complete_interrupts(vmx);
4287 }
4288
4289 #undef R
4290 #undef Q
4291
4292 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4293 {
4294 struct vcpu_vmx *vmx = to_vmx(vcpu);
4295
4296 if (vmx->vmcs) {
4297 vcpu_clear(vmx);
4298 free_vmcs(vmx->vmcs);
4299 vmx->vmcs = NULL;
4300 }
4301 }
4302
4303 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4304 {
4305 struct vcpu_vmx *vmx = to_vmx(vcpu);
4306
4307 free_vpid(vmx);
4308 vmx_free_vmcs(vcpu);
4309 kfree(vmx->guest_msrs);
4310 kvm_vcpu_uninit(vcpu);
4311 kmem_cache_free(kvm_vcpu_cache, vmx);
4312 }
4313
4314 static inline void vmcs_init(struct vmcs *vmcs)
4315 {
4316 u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4317
4318 if (!vmm_exclusive)
4319 kvm_cpu_vmxon(phys_addr);
4320
4321 vmcs_clear(vmcs);
4322
4323 if (!vmm_exclusive)
4324 kvm_cpu_vmxoff();
4325 }
4326
4327 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4328 {
4329 int err;
4330 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4331 int cpu;
4332
4333 if (!vmx)
4334 return ERR_PTR(-ENOMEM);
4335
4336 allocate_vpid(vmx);
4337
4338 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4339 if (err)
4340 goto free_vcpu;
4341
4342 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4343 err = -ENOMEM;
4344 if (!vmx->guest_msrs) {
4345 goto uninit_vcpu;
4346 }
4347
4348 vmx->vmcs = alloc_vmcs();
4349 if (!vmx->vmcs)
4350 goto free_msrs;
4351
4352 vmcs_init(vmx->vmcs);
4353
4354 cpu = get_cpu();
4355 vmx_vcpu_load(&vmx->vcpu, cpu);
4356 vmx->vcpu.cpu = cpu;
4357 err = vmx_vcpu_setup(vmx);
4358 vmx_vcpu_put(&vmx->vcpu);
4359 put_cpu();
4360 if (err)
4361 goto free_vmcs;
4362 if (vm_need_virtualize_apic_accesses(kvm))
4363 err = alloc_apic_access_page(kvm);
4364 if (err)
4365 goto free_vmcs;
4366
4367 if (enable_ept) {
4368 if (!kvm->arch.ept_identity_map_addr)
4369 kvm->arch.ept_identity_map_addr =
4370 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4371 err = -ENOMEM;
4372 if (alloc_identity_pagetable(kvm) != 0)
4373 goto free_vmcs;
4374 if (!init_rmode_identity_map(kvm))
4375 goto free_vmcs;
4376 }
4377
4378 return &vmx->vcpu;
4379
4380 free_vmcs:
4381 free_vmcs(vmx->vmcs);
4382 free_msrs:
4383 kfree(vmx->guest_msrs);
4384 uninit_vcpu:
4385 kvm_vcpu_uninit(&vmx->vcpu);
4386 free_vcpu:
4387 free_vpid(vmx);
4388 kmem_cache_free(kvm_vcpu_cache, vmx);
4389 return ERR_PTR(err);
4390 }
4391
4392 static void __init vmx_check_processor_compat(void *rtn)
4393 {
4394 struct vmcs_config vmcs_conf;
4395
4396 *(int *)rtn = 0;
4397 if (setup_vmcs_config(&vmcs_conf) < 0)
4398 *(int *)rtn = -EIO;
4399 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4400 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4401 smp_processor_id());
4402 *(int *)rtn = -EIO;
4403 }
4404 }
4405
4406 static int get_ept_level(void)
4407 {
4408 return VMX_EPT_DEFAULT_GAW + 1;
4409 }
4410
4411 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4412 {
4413 u64 ret;
4414
4415 /* For VT-d and EPT combination
4416 * 1. MMIO: always map as UC
4417 * 2. EPT with VT-d:
4418 * a. VT-d without snooping control feature: can't guarantee the
4419 * result, try to trust guest.
4420 * b. VT-d with snooping control feature: snooping control feature of
4421 * VT-d engine can guarantee the cache correctness. Just set it
4422 * to WB to keep consistent with host. So the same as item 3.
4423 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4424 * consistent with host MTRR
4425 */
4426 if (is_mmio)
4427 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4428 else if (vcpu->kvm->arch.iommu_domain &&
4429 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4430 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4431 VMX_EPT_MT_EPTE_SHIFT;
4432 else
4433 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4434 | VMX_EPT_IPAT_BIT;
4435
4436 return ret;
4437 }
4438
4439 #define _ER(x) { EXIT_REASON_##x, #x }
4440
4441 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4442 _ER(EXCEPTION_NMI),
4443 _ER(EXTERNAL_INTERRUPT),
4444 _ER(TRIPLE_FAULT),
4445 _ER(PENDING_INTERRUPT),
4446 _ER(NMI_WINDOW),
4447 _ER(TASK_SWITCH),
4448 _ER(CPUID),
4449 _ER(HLT),
4450 _ER(INVLPG),
4451 _ER(RDPMC),
4452 _ER(RDTSC),
4453 _ER(VMCALL),
4454 _ER(VMCLEAR),
4455 _ER(VMLAUNCH),
4456 _ER(VMPTRLD),
4457 _ER(VMPTRST),
4458 _ER(VMREAD),
4459 _ER(VMRESUME),
4460 _ER(VMWRITE),
4461 _ER(VMOFF),
4462 _ER(VMON),
4463 _ER(CR_ACCESS),
4464 _ER(DR_ACCESS),
4465 _ER(IO_INSTRUCTION),
4466 _ER(MSR_READ),
4467 _ER(MSR_WRITE),
4468 _ER(MWAIT_INSTRUCTION),
4469 _ER(MONITOR_INSTRUCTION),
4470 _ER(PAUSE_INSTRUCTION),
4471 _ER(MCE_DURING_VMENTRY),
4472 _ER(TPR_BELOW_THRESHOLD),
4473 _ER(APIC_ACCESS),
4474 _ER(EPT_VIOLATION),
4475 _ER(EPT_MISCONFIG),
4476 _ER(WBINVD),
4477 { -1, NULL }
4478 };
4479
4480 #undef _ER
4481
4482 static int vmx_get_lpage_level(void)
4483 {
4484 if (enable_ept && !cpu_has_vmx_ept_1g_page())
4485 return PT_DIRECTORY_LEVEL;
4486 else
4487 /* For shadow and EPT supported 1GB page */
4488 return PT_PDPE_LEVEL;
4489 }
4490
4491 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4492 {
4493 struct kvm_cpuid_entry2 *best;
4494 struct vcpu_vmx *vmx = to_vmx(vcpu);
4495 u32 exec_control;
4496
4497 vmx->rdtscp_enabled = false;
4498 if (vmx_rdtscp_supported()) {
4499 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4500 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4501 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4502 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4503 vmx->rdtscp_enabled = true;
4504 else {
4505 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4506 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4507 exec_control);
4508 }
4509 }
4510 }
4511 }
4512
4513 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4514 {
4515 }
4516
4517 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
4518 struct x86_instruction_info *info,
4519 enum x86_intercept_stage stage)
4520 {
4521 return X86EMUL_CONTINUE;
4522 }
4523
4524 static struct kvm_x86_ops vmx_x86_ops = {
4525 .cpu_has_kvm_support = cpu_has_kvm_support,
4526 .disabled_by_bios = vmx_disabled_by_bios,
4527 .hardware_setup = hardware_setup,
4528 .hardware_unsetup = hardware_unsetup,
4529 .check_processor_compatibility = vmx_check_processor_compat,
4530 .hardware_enable = hardware_enable,
4531 .hardware_disable = hardware_disable,
4532 .cpu_has_accelerated_tpr = report_flexpriority,
4533
4534 .vcpu_create = vmx_create_vcpu,
4535 .vcpu_free = vmx_free_vcpu,
4536 .vcpu_reset = vmx_vcpu_reset,
4537
4538 .prepare_guest_switch = vmx_save_host_state,
4539 .vcpu_load = vmx_vcpu_load,
4540 .vcpu_put = vmx_vcpu_put,
4541
4542 .set_guest_debug = set_guest_debug,
4543 .get_msr = vmx_get_msr,
4544 .set_msr = vmx_set_msr,
4545 .get_segment_base = vmx_get_segment_base,
4546 .get_segment = vmx_get_segment,
4547 .set_segment = vmx_set_segment,
4548 .get_cpl = vmx_get_cpl,
4549 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4550 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4551 .decache_cr3 = vmx_decache_cr3,
4552 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4553 .set_cr0 = vmx_set_cr0,
4554 .set_cr3 = vmx_set_cr3,
4555 .set_cr4 = vmx_set_cr4,
4556 .set_efer = vmx_set_efer,
4557 .get_idt = vmx_get_idt,
4558 .set_idt = vmx_set_idt,
4559 .get_gdt = vmx_get_gdt,
4560 .set_gdt = vmx_set_gdt,
4561 .set_dr7 = vmx_set_dr7,
4562 .cache_reg = vmx_cache_reg,
4563 .get_rflags = vmx_get_rflags,
4564 .set_rflags = vmx_set_rflags,
4565 .fpu_activate = vmx_fpu_activate,
4566 .fpu_deactivate = vmx_fpu_deactivate,
4567
4568 .tlb_flush = vmx_flush_tlb,
4569
4570 .run = vmx_vcpu_run,
4571 .handle_exit = vmx_handle_exit,
4572 .skip_emulated_instruction = skip_emulated_instruction,
4573 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4574 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4575 .patch_hypercall = vmx_patch_hypercall,
4576 .set_irq = vmx_inject_irq,
4577 .set_nmi = vmx_inject_nmi,
4578 .queue_exception = vmx_queue_exception,
4579 .cancel_injection = vmx_cancel_injection,
4580 .interrupt_allowed = vmx_interrupt_allowed,
4581 .nmi_allowed = vmx_nmi_allowed,
4582 .get_nmi_mask = vmx_get_nmi_mask,
4583 .set_nmi_mask = vmx_set_nmi_mask,
4584 .enable_nmi_window = enable_nmi_window,
4585 .enable_irq_window = enable_irq_window,
4586 .update_cr8_intercept = update_cr8_intercept,
4587
4588 .set_tss_addr = vmx_set_tss_addr,
4589 .get_tdp_level = get_ept_level,
4590 .get_mt_mask = vmx_get_mt_mask,
4591
4592 .get_exit_info = vmx_get_exit_info,
4593 .exit_reasons_str = vmx_exit_reasons_str,
4594
4595 .get_lpage_level = vmx_get_lpage_level,
4596
4597 .cpuid_update = vmx_cpuid_update,
4598
4599 .rdtscp_supported = vmx_rdtscp_supported,
4600
4601 .set_supported_cpuid = vmx_set_supported_cpuid,
4602
4603 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4604
4605 .set_tsc_khz = vmx_set_tsc_khz,
4606 .write_tsc_offset = vmx_write_tsc_offset,
4607 .adjust_tsc_offset = vmx_adjust_tsc_offset,
4608 .compute_tsc_offset = vmx_compute_tsc_offset,
4609
4610 .set_tdp_cr3 = vmx_set_cr3,
4611
4612 .check_intercept = vmx_check_intercept,
4613 };
4614
4615 static int __init vmx_init(void)
4616 {
4617 int r, i;
4618
4619 rdmsrl_safe(MSR_EFER, &host_efer);
4620
4621 for (i = 0; i < NR_VMX_MSR; ++i)
4622 kvm_define_shared_msr(i, vmx_msr_index[i]);
4623
4624 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4625 if (!vmx_io_bitmap_a)
4626 return -ENOMEM;
4627
4628 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4629 if (!vmx_io_bitmap_b) {
4630 r = -ENOMEM;
4631 goto out;
4632 }
4633
4634 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4635 if (!vmx_msr_bitmap_legacy) {
4636 r = -ENOMEM;
4637 goto out1;
4638 }
4639
4640 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4641 if (!vmx_msr_bitmap_longmode) {
4642 r = -ENOMEM;
4643 goto out2;
4644 }
4645
4646 /*
4647 * Allow direct access to the PC debug port (it is often used for I/O
4648 * delays, but the vmexits simply slow things down).
4649 */
4650 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4651 clear_bit(0x80, vmx_io_bitmap_a);
4652
4653 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4654
4655 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4656 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4657
4658 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4659
4660 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4661 __alignof__(struct vcpu_vmx), THIS_MODULE);
4662 if (r)
4663 goto out3;
4664
4665 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4666 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4667 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4668 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4669 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4670 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4671
4672 if (enable_ept) {
4673 bypass_guest_pf = 0;
4674 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4675 VMX_EPT_EXECUTABLE_MASK);
4676 kvm_enable_tdp();
4677 } else
4678 kvm_disable_tdp();
4679
4680 if (bypass_guest_pf)
4681 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4682
4683 return 0;
4684
4685 out3:
4686 free_page((unsigned long)vmx_msr_bitmap_longmode);
4687 out2:
4688 free_page((unsigned long)vmx_msr_bitmap_legacy);
4689 out1:
4690 free_page((unsigned long)vmx_io_bitmap_b);
4691 out:
4692 free_page((unsigned long)vmx_io_bitmap_a);
4693 return r;
4694 }
4695
4696 static void __exit vmx_exit(void)
4697 {
4698 free_page((unsigned long)vmx_msr_bitmap_legacy);
4699 free_page((unsigned long)vmx_msr_bitmap_longmode);
4700 free_page((unsigned long)vmx_io_bitmap_b);
4701 free_page((unsigned long)vmx_io_bitmap_a);
4702
4703 kvm_exit();
4704 }
4705
4706 module_init(vmx_init)
4707 module_exit(vmx_exit)